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Abstract

We investigate the problem of predicting
the quality of sentences produced by ma-
chine translation systems when reference
translations are not available. The prob-
lem is addressed as a regression task and
a method that takes into account the con-
tribution of different features is proposed.
We experiment with this method for trans-
lations produced by various MT systems
and different language pairs, annotated
with quality scores both automatically and
manually. Results show that our method
allows obtaining good estimates and that
identifying a reduced set of relevant fea-
tures plays an important role. The experi-
ments also highlight a number of outstand-
ing features that were consistently selected
as the most relevant and could be used
in different ways to improve MT perfor-
mance or to enhance MT evaluation.

1 Introduction

The notion of “quality” in Machine Translation
(MT) can have different interpretations depend-
ing on the intended use of the translations (e.g.,
fluency and adequacy, post-editing time, etc.).
Nonetheless, the assessment of the quality of a
translation is in general done by the user, who
needs to read the translation and the source text
to be able to judge whether it is a good transla-
tion or not. This is a very time consuming task
and may not even be possible, if the user does not
have knowledge about the source language. There-
fore, automatically assessing the quality of trans-
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lations produced by MT systems is a crucial prob-
lem, either to filter out the low quality ones, e.g. to
avoid professional translators spending time read-
ing / post-editing bad translations, or to present
them in such a way as to make end-users aware
of the quality. This task, referred to as Confidence
Estimation (CE), is concerned about predicting the
quality of a system’s output for a given input, with-
out any information about the expected output.

CE for MT has been viewed as a binary classi-
fication problem (Blatz et al., 2003) to distinguish
between “good” and “bad” translations. However,
it may be difficult to find a clear boundary between
“good” and “bad” translations and this information
may not be useful in certain applications (e.g, the
time necessary to post-edit translations).

We distinguish the task of CE from that of MT
evaluation by the need, in the latter, of reference
translations. The general goal of MT evaluation
is to compare a machine translation to reference
translation(s) and provide a quality score which re-
flects how close the two translations are. In CE, the
task consists in estimating the quality of the trans-
lation given only information about the input and
output texts and the translation process.

In this paper we consider CE for MT as a wider
problem, in which a continuous quality score is es-
timated for each sentence. This could be seen as a
proxy for MT evaluation, but without any form or
reference information. This problem is addressed
as a regression task, where we train algorithms
to predict different types of sentence-level scores.
The contribution of a large number of features is
epxloited by using a feature selection strategy. We
also distinguish between features that depend on
the translation process of a given MT system and
those that can be extracted given only the input
sentences and corresponding output translations,
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and are therefore independent on MT systems.
In the remaining of this paper we first discuss

the previous work on CE for MT (Section 2), to
then describe our experimental setting (Section 3)
and method (Section 4) and present and discuss the
results obtained (Sections 5 and 6).

2 Related work

Early work on CE for MT aimed at estimating
the quality at the word level (Gandrabur and Fos-
ter, 2003; Ueffing and Ney, 2005; Kadri and Nie,
2006). Sentence-level CE appears to be a more
natural set-up for practical applications of MT.
One should consider as real-world scenario for CE
an MT system in use, which would provide to the
user, together with each sentence translation, an
estimate of its quality. If this estimate is in the
form a numerical score, it sould also be viewed as
a proxy to some automatic or manual metric, like
NIST (Doddington, 2002) or 1-5 adequacy. Other
estimates include the time that would be necessary
to post-edit such translation, or simply a “good” /
“bad” indicator.

Differently from MT evaluation, in CE refer-
ence translations are not available to compute the
quality estimates. Therefore, CE approaches can-
not be directly compared to the several recently
proposed metrics for sentence-level MT evalua-
tion that also use machine learning algorithms and
sometimes similar features to those used in CE.
For example, (Kulesza and Shieber, 2004) use
Support Vector Machines (SVM) with n-gram pre-
cision and other reference-based features to pre-
dict if a sentence is produced by a human trans-
lator (presumably good) or by a MT system (pre-
sumably bad) (human-likeness classification). (Al-
brecht and Hwa, 2007a) rely on regression-based
algorithms and features, like string and syntax
matching of the translation over the correspond-
ing references, to measure the quality of sentences
as a continuous score. In (Albrecht and Hwa,
2007b),pseudo-references(produced by other MT
systems) are used instead of human references, but
this scenario with multiple MT systems is different
from that of CE.

The most comprehensive study on CE at the
sentence level to date is that of (Blatz et al.,
2004). Multi-layer perceptrons and Naive Bayes
are trained on 91 features extracted for transla-
tions tagged according to NIST and word error
rate. Scores are thresholded to label the 5th or

30th percentile of the examples as “correct” and
the remainder as “incorrect”. Regression is also
performed, but the estimated scores are mapped
into the same classes to make results binary. The
contribution of features is investigated by produc-
ing classifiers for each feature individually and for
combinations of all features except one at a time.
In both cases, none of the features is found to be
significantly more relevant than the others. This
seems to point out that many of the features are
redundant, but this aspect is not investigated.

(Quirk, 2004) uses linear regression with fea-
tures similar to those used in (Blatz et al., 2004) to
estimate sentence translation quality considering
also a small set of translations manually labeled
as correct / incorrect. Models trained on this small
dataset (350 sentences) outperform those trained
on a larger set of automatically labeled data. Given
the small amount of manually annotated data and
the fact that translations come from a single MT
system and language-pair, it is not clear how re-
sults can be generalized. The contribution of dif-
ferent features is not investigated.

(Gamon et al., 2005) train an SVM classifier us-
ing a number of linguistic features (grammar pro-
ductions, semantic relationships, etc.) extracted
from machine and human translations to distin-
guish between human and machine translations
(human-likeness classification). The predictions
of SVM, when combined to a 4-gram language
model score, only slightly increase the correlation
with human judgements and such correlation is
still lower than that achieved by BLEU (Papineni
et al., 2002). Moreover, as shown in (Albrecht
and Hwa, 2007a), high human-likeness does not
necessarily imply good MT quality. Besides esti-
mating the quality ofmachinetranslations directly,
we use a larger set of features, which are meant
to cover many more aspects of the translations.
These features are all resource-independent, allow-
ing to generalize this method across translations
produced by several MT systems and for different
language-pairs.

Although our goal is very similar to that of
(Blatz et al., 2004; Quirk, 2004), it is not possi-
ble to compare our results to these previous works,
since we estimate continuous scores, instead of
binary ones. We consider the following aspects
as main improvements wrt such previous works:
(a) evidence that is is possible to accurately esti-
mate continuous scores, besides binary indicators,

29



which can be more appropriate for certain applica-
tions (e.g. post-edition time); (b) the use of learn-
ing techniques that are appropriate for the type of
features used in CE (Partial Least Squares, which
can deal efficiently with multicollinearity of input
features); (c) the addition of new features that were
found to be very relevant; (d) the proposal of an ex-
plicit feature selection method to identify relevant
features in a systematic way; and (e) the exploita-
tion of multiple datasets of translations from differ-
ent MT systems and language pairs, with different
types of human and automatic quality annotations,
through the use of resource-independent features
and the definition of system-independent features.

3 Experimental setting

3.1 Features

We extract all the features identified in previous
work for sentence-level CE (see (Blatz et al., 2003)
for a list), except those depending on linguistic re-
sources like parsers or WordNet. We also add new
features to cover aspects that have not been di-
rectly addressed in previous work, including the
mismatch of many superficial constructions be-
tween the input and output sentences (percentages
of punctuation symbols, numbers, etc.), similar-
ity between the source sentence and sentences in a
monolingual corpus, word alignment between in-
put and output sentences, length of phrases, etc.
This results in a total of 84 features.

Many of these features depend on some aspect
of the translation process, and therefore are MT
system-dependent and could not be extracted from
all translation data used in this paper. We thus di-
vide the features in two subsets: (a)black-box fea-
tures, which can be extracted given only the in-
put sentence and the translation produced by the
MT system, i.e., the source and target sentences,
and possibly monolingual or parallel corpora, and
(b) glass-box features, which may also depend on
some aspect of the translation process.

The black-box group includes simple features
like source and target sentence lengths and their ra-
tios, source and target sentence n-gram frequency
statistics in the corpus, etc. This constitutes an
interesting scenario and can be particularly use-
ful when it is not possible to have access to in-
ternal features of the MT systems (in commercial
systems, e.g.). It also provides a way to perform
the task of CE across different MT systems, which
may use different frameworks. An interesting re-

search question is whether it is possible to produce
accurate CE models taking into account only these
very basic features. To our knowledge, this issue
has not been investigated before.

The glass-box group includes internal features
of the MT system, like the SMT model score,
phrase and word probabilities, and alternative
translations per source word. They also include
features based on the n-best list of translation can-
didates, some of which apply globally to the set
of all candidates for a given source sentence (e.g.
degree to which phrases are translated in the same
way throughout the n-best list), and some to spe-
cific candidates (e.g. ratio between scores of the
candidate and top candidate). We extract a total of
54 glass-box features.

3.2 Data

We use two types of translation data: (a) transla-
tions automatically annotated with NIST scores,
and (b) translations produced by different MT sys-
tems and for multiple language-pairs, manually an-
notated with different types of scores.

The automatically annotated dataset, henceforth
NIST dataset, is produced from the French-English
Europarl parallel corpus, as provided by the WMT-
2008 shared translation task (Callison-Burch et al.,
2008). We translate the three development-test sets
available (∼6k sentences) using a phrase-based
MT system [omitted for blind review]. These
translations and their 1,000 n-best lists are scored
according to sentence-level NIST and the 84 fea-
tures are extracted from them.

The dataset is first sampled into 1,000 subsam-
ples, where each subsample contains all feature
vectors for a certain position in all the n-best lists
and is randomly split in training (50%), validation
(30%) and test (20%) using a uniform distribution.

The first type of manually annotated datasets
(WMT datasets) is derived from several corpora
of the WMT-2006 translation shared task (Koehn
and Monz, 2006). These are subsets of sentences
from the test data used in the shared task, an-
notated by humans according to adequacy, with
scores from 1 (worst) to 5 (best). Each corpus
contains∼100-400 sentences and refers to a given
language pair and MT system. Since this number
is very small, we put together all sets of transla-
tions from a given MT system. We select four
among the resulting datasets: the three phrase-
based SMT systems (S1, S2, S3) with the high-
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est numbers of examples and the only rule-based
system (RB). Each new dataset contains∼1,300-
2,000 sentences, and 4-6 language-pairs. The fea-
ture vectors of these datasets contain only black-
box features. To account for mixing language-
pairs, we add the source and target language in-
dicators as features. The task becomes predicting
the quality of a given MT system which translates
between different language pairs.

The manually annotated datasets of the second
type (1-4 datasets) contain 4K sentences of the
Europarl domain (English-Spanish), translated by
four SMT systems developed by different partners
in the projectP [omitted for blind review]:P-ES-
1, P-ES-2, P-ES-3 and P-ES-4. The sentences are
annotated by professional translators according to
1-4 quality scores, which are commonly used by
them to indicate the quality of translations with re-
spect to the need of post-edition: 1 = requires com-
plete retranslation, ..., 4 = fit for purpose.

Datasets of the final type (post-edition datasets)
contain 3K sentences of the automotive industry
domain (English-Russian), translated by three MT
systems from the same projectP: P-ER-1, P-ER-2
and P-ER-3. The sentences are annotated accord-
ing to post-edition time, that is, given a source sen-
tence in English and its translation into Russian, a
professional translator post-edited such translation
to make it into a good quality sentence, while the
time was recorded.

Black-box features are extracted from all
datasets in the last two groups (1-4 and post-
edition). Additionally, glass-box features are ex-
tracted from one of the datasets (P-ES-1), since we
had access to the SMT system in this case. We
call thisP-ES-1gb. In thepost-editiondatasets, the
post-edition time is first normalized by the source
sentence length, so that the score refers to the time
necessary per source word.

For each manually annotated dataset, the fea-
ture vectors are randomly subsampled 100 times
in training (50%), validation (30%) and test (20%
using a uniform distribution.

In both automatically and manually annotated
datasets, we represent each subsample as a matrix
of variable predictors (X) times variable response
(Y ) and normalize feature values using thezscore.

Datasets covering different language pairs and
MT systems and particularly data annotated ac-
cording to post-edition time for CE have not been
investigated before.

3.3 Learning algorithm

We estimate the quality of the translations by pre-
dicting the sentence-level NIST, 1-5 / 1-4 scores
or post-edition time using Partial Least Squares
(PLS) (Wold et al., 1984). Given a matrixX (in-
put variables) and a vectorY (response variable),
the goal of PLS regression is to predictY from
X and to describe their common structure. In or-
der to do that, PLS projects the original data onto
a different space of latent variables (or “compo-
nents”) and is also able to provide information on
the importance of individual features inX. PLS
is particularly indicated when the features inX
are strongly correlated (multicollinearity). This is
the case in our datasets. For example, we con-
sider each of the SMT system features individu-
ally, as well as the sum of the all these features
(the actual SMT model score). With such datasets,
standard regression techniques usually fail (Rosi-
pal and Trejo, 2001). PLS has been widely used to
extract qualitative information from different types
of data (Frenich et al., 1995), but to our knowledge,
it has not been used in NLP applications. More for-
mally, PLS can be defined as an ordinary multiple
regression problem, i.e.,

Y = XBw + F

whereBw is the regression matrix,F is the resid-
ual matrix, butBw is computed directly using an
optimal number of components. For more details
see (Jong, 1993). WhenX is standardized, an ele-
ment ofBw with large absolute value indicates an
importantX-variable.

It is well known that feature selection can be
helpful to many tasks in NLP, and that even learn-
ing methods that implicitly perform some form of
feature selection, such as SVMs, can benefit from
the use of explicit feature selection techniques. We
take advantage of a property of PLS, which is the
ordering of the features ofX in Bw according to
their relevance, to define a method to select subsets
of discriminative features (Section 4).

To evaluate the performance of the approach,
we compute the average error in the estimation
of NIST or manual scores by means of the Root
Mean Squared Prediction Error (RMSPE) metric:√

1

N

∑N
j=1

(yj − ŷj)2, whereN is the number of
points,ŷ is the prediction obtained by the regressor
andy is the actual value of the test case. RMSPE
quantifies the amount by which the estimator dif-
fers from the expected score: the lower the value,
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the better the performance.

4 Method

Our method to perform regression supported by an
embedded feature selection procedure consists of
the following steps: (1) sort all features according
to their relevance in the training data; (2) select
only the top features according to their relevance
in the validation set; (3) apply the selected features
to the test data and evaluate the performance. In
more details:

1. Given each pre-defined number of compo-
nents, for eachi-th subsample of the training
data, we run PLS to compute theBw(i) ma-
trix, generating a listLb(i) of feature ranked
in decreasing order of importance. After gen-
eratingLb for all subsamples, we obtain a ma-
trix where each rowi contains anLb(i), e.g.:

66 7 56 ... 10
44 56 3 ... 10
... ... ... ... ...
66 56 3 ... 10

A list L containing the global feature order-
ing for all subsamples is obtained by select-
ing the feature appearing most frequently in
each column (i.e., taking themode, without
repeating features). In the case shown,L =
{66, 56, 3, . . . , 10}.

2. Given the listL produced for a certain num-
ber of components, for eachi-th subsample of
the validation data, we train the regression al-
gorithms on 80% of the data, adding features
from L one by one. We test the models on the
remaining validation data and plot the learn-
ing curves with the mean error scores over
all the subsamples. By analyzing the learn-
ing curves, we select the firstn features that
maximize the performance of the models.

3. Given the selectedn features and the number
of components that optmized the performance
in the validation data, for eachi-th subsam-
ple of the test data, we train (80%) and test
(20%) the performance of the regressor using
these features, and compute their correspond-
ing metrics over all subsamples.

5 Results

5.1 NIST dataset

Figure 1 illustrates the performance for different
numbers of PLS components used to generate or-
dered lists of features. The maximum performance

Figure 1: Performance for lists generated with dif-
ferent numbers of components -NIST dataset

is obtained from the ordered list generated with 40
components. This resulted in 32 features being se-
lected, and an RMSPE in the test set of1.503 ±
0.045. The RMSPE for all features, without apply-
ing the feature selection method, is1.670 ± 0.669.
Therefore, the models produced for the selected
subset of features perform better than using all fea-
tures. Moreover, results for the subsets of features
are more stable, given the large variance observed
in the RMSPE score with all features. To provide a
more intuitive measure, we can say that the system
deviates on average∼ 1.5 points when predicting
the sentence-level NIST score. We believe this is
an acceptable deviation, given that the scores vary
from 0 to 18.44.

Although the subsets of features selected vary
for different numbers of components, some appear
in all the top lists:

• average number of alternative translations for
words in the source sentence;

• ratio of source and target lengths;

• proportion of aborted nodes in the decoder’s
search graph.

The first feature reflects the ambiguity and
therefore the difficulty of translating the source
sentence. The second favors source and target sen-
tences which are similar in size, which is expected
for close language-pairs like English-French. The
last gives an idea about the uncertainty in the
search: nodes are aborted if the decoder is certain
that they will not yield good translations.

Other features appear as relevant for most
choices in the number of components:

• source sentence length;

• number of different words in the n-best list
divided by average sentence length;
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MT RMSPE RMSPE all features
RB 1.058± 0.087 1.171± 0.098
S1 1.159± 0.064 1.197± 0.059
S2 1.116± 0.073 1.190± 0.073
S3 1.160± 0.059 1.201± 0.062

Table 1: RMSPE -WMT datasets

• 1/3-gram source frequency statistics in the
whole corpus or its most frequent quartile;

• 3-gram source language model probability;
• 3-gram target language model probability

considering n-best list as corpus;
• phrase probabilities;
• average size of phrases in the target sentence;
• proportion of pruned and remaining nodes in

decoder’s final search graph.

These features in general point out the difficulty
of translating the source sentence, the uniformity
of the candidates in the n-best list, how well the
source sentence is covered in the training corpus,
and how commonplace the target sentence is. They
include some SMT model features, but notably not
the actual SMT score. Surprisingly, half of these
very discriminative features are black-box.

5.2 Manually annotated datasets

Results for theWMT datasetsare less straightfor-
ward to interpret, since the problem has more vari-
ables, particularly multiple language pairs, in- /
out-of-domain sentences in a single dataset, and
reduced dataset sizes. The best numbers of com-
ponents vary from 1 to 25 and feature selection re-
sults in different subsets of features (from 2 to 10
features) for different MT systems. Nevertheless,
in all the datasets, feature selection yields better
results, as shown in Table 1.

The models deviate on average∼ 1.1 points
when predicting 1-5 scores. This means, e.g., that
some sentences atually scoring4 would be given
to the user as scoring5.

Table 2 shows the performance obtained for the
1-4 andpost-edition datasets. The figures for the
subsets of features consistently outperform those
for using all features and are also more stable.

The models produced for different MT systems
(P-ES-1 to P-ES-4) deviate∼ 0.6-0.7 points when
predicting the sentence-level 1-4 scores, which we
believe is a satisfactory deviation. For example,
one sentence that should be considered as “fit for
purpose” (score 4) would never be predicted as “re-
quires complete retranslation” (score 1) and dis-
carded as a consequence.

MT RMSPE RMSPE all features
P-ES-1gb 0.690± 0.052 0.780± 0.385
P-ES-1 0.706± 0.059 0.793± 0.643
P-ES-2 0.653± 0.114 0.750± 0.541
P-ES-3 0.718± 0.144 0.745± 0.287
P-ES-4 0.603± 0.262 1.550± 3.551
P-ER-1 1.951± 0.174 2.083± 0.561
P-ER-2 2.883± 0.301 3.483± 1.489
P-ER-3 3.879± 0.339 4.893± 2.342

Table 2: RMSPE -1-4 andpost-edition datasets

An interesting result is the comparison between
the scores for the two variations of the first dataset,
i.e., P-ES-1gb(glass-box features) andP-ES-1
(black-box features). The gain in using glass-box
features is very little in this case. This shows that
although glass-box features may be very informa-
tive, it is possible to represent the same informa-
tion using simpler features. From a practical point
of view, this is very important, since black-box fea-
tures are usually faster to extract and can be used
with any MT system.

In order to investigate whether any single fea-
ture would be able to predict the quality scores as
well as the combination of selected good features,
we compare the Pearson’s correlation coefficient
of each feature and the predicted CE score with the
expected human score. The correlation of the best
features with the human score is∼ 0.5 (glass-box
features) or up to∼ 0.4 (black-box features) across
the different1-4 datasets. The CE score correlates
∼ 0.6 with the human score.

In Table 3 we compare the correlation of the CE
and human scores against that of well-known MT
evaluation metrics (at the sentence level) and hu-
man scores on a test set forP-ES-1gb(values are
similar for other datasets). The quality estimate
predicted by our method correlates better with hu-
man scores than reference-based MT evaluation
metrics. We apply bootstrapping re-sampling on
the data and then use paired t-test to determine
the statistical significance of the correlation dif-
ferences (Koehn, 2004). The differences between
all metrics and CE are statistically significant with
99.8% confidence. Different from these metrics,
our method requires some training data for a given
language-pair and text domain, but once ths train-
ing is done, it can be used to estimate the quality
of any number of new sentences.

Results for thepost-editiondatasets vary con-
siderably from system to system. This may indi-
cate that different MT systems require more post-
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BLEU-2 NIST TER Meteor CE score
0.342 0.298 -0.263 0.376 0.602

Table 3: Correlation of MT evaluation metrics and
our score with human annotation -P-ES-1gb

edition due to their translation quality. For exam-
ple, taking the error forP-ER-1, of ∼ 1.95, we
can say that the CE system is able to predict, for
a given source sentence, a post-edition time by
source word that will deviate up to1.95 seconds
from the real post-edition time needed. The aver-
age errors found may seem a very large on a word-
basis, but more investigation on the use of this type
of CE score to aid translators in their post-edition
work is necessary in this direction.

By analyzing the top features in all tasks with
the manually annotated datasets we can highlight
the following ones:

• source language and in/out-of-domain indica-
tors (WMT datasets);

• source & target sentence 3-gram language
model probability;

• source & target sentence lengths;
• percentages of types of word alignments;
• percentage and mismatch in the numbers and

punctuation symbols in the source and target.

The first two features convey corpus informa-
tion. Their impact in the performance is expected,
given that it may be easier to translate between cer-
tain pairs of languages and in-domain sentences.
The size of the source and target points out the
difficulty of the translation (longer sentences are
more difficult). Like the remaining features, it also
expresses some form between source and target.

6 Discussion and conclusions

We have presented a series of experiments on a
method for confidence estimation to MT that al-
lows taking into account the contribution of dif-
ferent features and have also identified very in-
formative and non-redundant features that improve
the performance of the produced CE models. Al-
though it is not directly possible to compare our
results to previous work, because of the unavail-
ability of the datasets used before, we consider our
results to be satisfactory. Particularly in the case of
the regression task, it is possible to have some intu-
ition on what the impact of the error would be. For
example, it would indicate crossing on average one

category in the quality ranking of the tasks predict-
ing adequacy scores (1 = worst, 5 = best), and only
result in uncertainty in the boundaries between two
adjacent categories in the1-4 datasets.

The sets of relevant features identified includes
many features that have not been used before, in-
cluding the average size of the phrases in the target,
several types of mismatchings in the source and
target, etc. Some of the others features have been
used in previous work, but their exact definition is
different here. For example, we use theproportion
of aborted search nodes, instead of absolute values,
and we compute the average number of alternative
translations by using probabilistic dictionaries pro-
duced from word-alignment.

Besides directly using the estimated scores as
quality indicators to professional translators or
end-users, we plan to further investigate uses for
the features selected across MT systems and lan-
guage pairs from different MT points of view. In
the experiments with theNIST dataset, the features
found to be the most relevant are not those usually
considered in SMT models. Simple features like
the ratio of lengths of source and target sentences,
the ambiguity of the source words, the coverage of
the source sentence in the corpus are clearly good
indicators of translation quality. A future direction
will be to investigate whether these features could
also be useful to improve the translations produced
by SMT systems, e.g., in the following ways:

• Complement existing features in SMT mod-
els.

• Rerank n-best lists produced by SMT sys-
tems, which could make use of the features
that are not local to single hipotheses.

As discussed in (Gamon et al., 2005), the read-
ability of the sentence, expressed by features like
3-gram language models, is a good proxy to pre-
dict translation quality, even in terms of adequacy.
Ultimately, automatic metrics such as NIST aim at
simulating how humans evaluate translations. In
that sense, the findings of our experiments with
the manually annotated datasets could also be ex-
ploited from an MT evaluation point of view, for
example, in the following ways:

• Provide additional features to a reference-
based metric like that proposed by (Albrecht
and Hwa, 2007a).

• Provide a score to be combined with other
MT evaluation metrics using frameworks like
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those proposed by (Paul et al., 2007) and
(Giménez and Màrquez, 2008).

Our findings could also be used to provide a new
evaluation metric on itself, with some function to
optimize the correlation with human annotations,
without the need of reference translations.
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