
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 55–58,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Dialogue Policy Learning for combinations of Noise and User Simulation:
transfer results

Oliver Lemon
Edinburgh University

olemon@inf.ed.ac.uk

Xingkun Liu
Edinburgh University

xliu4@inf.ed.ac.uk

Abstract

Once a dialogue strategy has been learned
for a particular set of conditions, we need
to know how well it will perform when de-
ployed in different conditions to those it was
specifically trained for, i.e. how robust it is
in transfer to different conditions. We first
present novel learning results for different
ASR noise models combined with different
user simulations. We then show that policies
trained in high-noise conditions perform sig-
nificantly better than those trained for low-
noise conditions, even when deployed in
low-noise environments.

1 Introduction

For any dialogue system, a major develop-
ment effort is in designing thedialogue policy
of the system, that is, which dialogue ac-
tions (e.g. ask(destination city) or
explict confirm) the system should perform.
Machine-learning approaches to dialogue policies
have been proposed by several authors, for example
(Levin et al., 2000; Young, 2000; Henderson et
al., 2005). These approaches are very attractive
because of their potential in efficient development
and automatic optimization of dialogue systems.

We will address the issue of whether policies
trained for one dialogue situation can be used suc-
cessfully in other dialogue situations (Paek, 2006).

For example, perhaps you have trained an opti-
mal policy for an operating environment where the
word-error rate (WER) is 5%, but you want to de-
ploy this policy for a new application where you are

not sure what the average WER is. So, you want to
know how well the policytransfersbetween operat-
ing situations. Likewise, perhaps you have trained
a policy on a data set of cooperative users, but you
want to know how that policy will behave in contact
with less co-operative users. So, you want to know
how useful the policy is with different users.

These transfer issues are important because when
deploying a real dialogue application we will not
know these parameters exactly in advance, so we
cannot train for the exact operating situation, but
we want to be able to learn robust dialogue policies
which are transferable to different noise/user/time-
penalty situations, which we do not know about pre-
cisely before deployment.

1.1 Related work

The issue of policy transfer has been partially ex-
plored before as part of recent work on types of
user simulations (Schatzmann et al., 2005). Here,
the authors explore how well policies trained on dif-
ferent types of user simulation perform when tested
with others. They train and test on three approaches
to user simulation: a bigram model (Eckert et al.,
1997), the Pietquin model (Pietquin, 2004), and the
Levin model (Levin et al., 2000). They show that
strategies learned with a “poor” user model can ap-
pear to perform well when tested with the same user
model, but perform badly when tested on a “better”
user model. However, the focus of (Schatzmann et
al., 2005) is on the quality of the user simulation
techniques themselves, rather than robustness of the
learned dialogue policies. We will focus on one type
of stochastic user simulation but different types of

55

users and on different environmental conditions.
(Frampton and Lemon, 2006) train a policy for

4-gram stochastic user simulation and test it on a 5-
gram simulation, and vice-versa, showing that the
learned policy works well for the 2 different simula-
tions. However, these simulations are trained on the
same dataset (Walker et al., 2001) and thus do not
simulate differenttypesof user or noise conditions.
Similarly (Henderson et al., 2005) test and train on
different segments of the COMMUNICATOR data,
so the results presented there do not deal with the
issue of policy transfer. (Lemon et al., 2006) show
that a single policy trained on a human-machine di-
alogue corpus also performs well with real users of
a dialogue system.

2 The experimental set-up

We experiment with a 3-slot information-seeking
system, resulting in 8 binary state variables (1 for
whether each slot is filled, 1 for whether each slot
is confirmed, 2 for whether the last user move was
“yes” or “no”), resulting in 256 distinct dialogue
states. There are 5 possible system actions (e.g.
implicit-confirm, greet, present-info).

We use the SHARSHA Hierarchical Reinforce-
ment Learning algorithm of REALL (Shapiro and
Langley, 2002) to learn over the policy space for ob-
taining 3 information slots. For all combinations
of Turn Penalty, noise, and user models we train
each policy on 32,000 iterations (approx. 8000 di-
alogues). We then test each policy (including the
hand-coded policies) over 1000 dialogues in the
conditions for which they were trained. Statistical
significance is measured by independent samples t-
tests, over 1000 test dialogues.

We use the hierarchical structure of REALL
(Shapiro and Langley, 2002) programs to encode
commonsense constraints on the dialogue problem,
while still leaving many options for learning. The
hierarchical plans encode obvious decisions such as:
“ never confirm already confirmed slots”.

2.1 Reward function
We use a reward function which incorporates noise
modelling, as in (Rieser and Lemon, 2007). For each
dialogue we have, as is now commonly used:

reward = completionValue
- dialogueLength*TurnPenalty

However, for our noise modelling, the
completionValue of a dialogue is defined
as the percentage probability that the user goal is
in the actual result set that they are presented with.
See (Rieser and Lemon, 2007) for full details. In
our experiments Low Noise (LN) means that there
is a 100% chance of confirmed slots being correct
and an 80% chance of filled (but not confirmed)
slots being correct. In a real application domain we
will not know these probabilities exactly, but we
want to be able to learn dialogue policies which are
transferrable to different noise situations, which we
do not know about precisely before deployment.

2.2 Simulated users

We use 2 probabilistic user simulations: “Coopera-
tive” (C) and “Uncooperative” (U). Each simulated
user produces a response to the previous system di-
alogue move, with a particular probablility distribu-
tion conditioned on the previous system move. For
example, if the system asks for slot1 (e.g. “what
type of food do you want?”) the cooperative user
responds to this according to the a probability distri-
bution over dialogue acts estimated from the COM-
MUNICATOR corpus (Walker et al., 2001).

In contrast, the “Uncooperative” user simply has
a flat probability distribution over the all the possi-
ble dialogue acts: it is just as likely to be silent as
it is to supply information. This is not intended to
be a particularly realistic user simulation, but it pro-
vides us with behaviour that is useful as one end of
a spectrum of possible behaviours.

2.3 Baseline hand-coded policies

The hand-coded dialogue policies obey the same
commonsense constraints as mentioned above but
they also try to confirm all slots implicitly or ex-
plicitly (based on standard rules) and then close the
dialogue, except for cases where particular dialogue
length thresholds are surpassed. For example, if the
current dialogue length is greater than 10 the hand-
coded policy will immediately provide information.

3 Results versus hand-coded policies

In general, learning takes about 500 dialogues be-
fore a policy of confirming as many slots as possi-
ble in the shortest time is discovered. Early in the
training runs the learner experiments with very short

56

dialogues (smaller length penalties), but usually re-
ceives less completion reward for them and so learns
how to conduct the dialogue so as to trade-off be-
tween turn penalties (TP) and completion value. For
example, in the High Noise, Cooperative user, turn
penalty 5 case, after a policy is discovered, testing
the learned policy in the same situation (but with
learning and exploration turned off), the average dia-
logue reward is 49.94 (see figure 1, plotting average
reward every 50 test dialogues, and table 1).

Figure 1: Testing: High noise, cooperative user, TP
5: Learned versus Hand-coded policy

Contrast this now with the performance of the
hand-coded policy in the same situation (high noise,
cooperative user, TP=5), over 1000 test dialogues,
also shown in figure 1. The average reward for
the hand-coded policy is 36.43 in these conditions,
which means that the learned policy provides a rela-
tive increase in average reward of 37% in this case.
This result is significant atp < .01.

Table 1 shows all results for the High Noise, Co-
operative user case, for turn penalties (TP) ranging
from 0 to 20. Here we can see that the learner is
able to develop policies which are significantly bet-
ter than the hand-coded policy. The exception is the
TP=10 case, where the learned policy is notsignifi-
cantlybetter than the handcoded one (p = .25). For
the significant results, the average relative increase
in reward for learned policies is28.4%

Considering the average dialogue lengths in each
case, note that the hand-coded policy is able to com-
plete the dialogues in, on average, fewer than 7

moves, which is less than the hand-coded length
threshold (10). The learned policies, on the
other hand, are able to discover their own local
length/completion value trade-offs, and we see that,
as expected, average dialogue length decreases as
Turn Penalty increases.

Learned Policy Hand-coded Policy
TP Av. Reward Length Av. Reward Length
0 85.70∗∗ 8.71 72.43 6.86
1 76.31∗∗ 9.36 64.62 6.80
5 49.94 ∗∗ 7.18 36.43 6.95
10 4.16 4.05 1.77 6.89
20 -37.68∗∗ 2.99 -63.76 6.80

Table 1: Results: Cooperative user, High Noise (**=
significant atp < .01)

Similar results hold for the other combinations of
Noise, User type, and Turn Penalty.

4 Transfer results

In the following experiments we chose to inves-
tigate the representative TP=5 case. We thus
have 2 degrees of variation: user type (Coop-
erative/Uncooperative, C/U), and noise conditions
(High/Low, H/L). Testing all combinations of these
learned policies, for 1000 dialogues each, we ob-
tained the results shown in table 5.

Training
Testing C,L C,H U,L U,H
C,L 73.66 74.72 54.86 54.48
C,H 49.64 50.08 21.07 25.36
U,L 23.67 27.84 37.62 39.37
U,H 09.99 14.40 08.93 10.22
Average: 39.24 41.76 30.62 32.36

Table 2: Transfer results for learned policies

Looking at table 2, we can see, for example, that
training with a Cooperative user in Low noise (1st
column) and testing with the same conditions (1st
row) results in an average dialogue reward of 73.66.
However, taking the same trained policy (C,L 1st
column) and testing it with a Uncooperative user in
High Noise conditions (row 4) results only in an av-
erage reward of 9.99. We would expect that the lead-

57

ing diagonal of this table should contain the highest
values (i.e. that the best policy for certain conditions
is the one trained on those conditions), but surpris-
ingly, this is not the case. For example, training a
C,H policy and testing it for C,L gives better results
than training for C,L (and testing for C,L). This is
significant atp < .05. This shows that a C,H policy
in fact transferswell to C, L conditions.

Looking at the 4 policies C,L, C,H, U,L, and U,H
we can see that C,H has the best transfer properties.
Interestingly, C,H is the best policy for all of the test-
ing conditions C,L, C,H, and U,H. But should we
then train only in High noise conditions? Consider
the following set of results (highlighted in bold font
in table 5):
train C,H and test C,L> train C,L and test C,L

train C,H and test C,H> train C,L and test C,H

train U,H and test U,L> train U,L and test U,L

train U,H and test U,H> train U,L and test U,H

This indeed shows that it is better to train in High
noise conditions than low noise, no matter what con-
ditions you deploy in. These results are all signifi-
cant atp < .05 except for the case “train C,H and
test C,H> train C,L and test C,H” (p = .37). This
means that for cooperative users, training in High
noise isas good astraining in Low noise. These re-
sults show that, when training a policy for an operat-
ing environment for which you don’t have much data
(i.e. the developer does not yet know the noise and
user characteristics) it is better to train and deploy
a High noise policy, than to deploy a policy trained
for Low noise conditions. Similar results show that
policies trained on uncooperative users perform well
when tested on cooperative users but not vice versa.

5 Conclusion

We addressed the robust of learned strategies in
transfer to different conditions. We provided trans-
fer results for dialogue policy learning and are the
first to present results for different ASR noise mod-
els combined with different user models. We first
showed that our learned policies for a range of envi-
ronmental conditions (Noise, Users, Turn Penalties)
significantly outperform hand-coded dialogue poli-
cies (e.g average 28% relative reward increase for
cooperative users in high noise). We then compared
different learned policies in terms of their transfer

properties. We showed that policies trained in high-
noise conditions perform significantly better than
those trained for low-noise conditions, even when
deployed in low-noise environments.

Acknowledgements This work is funded by the
EPSRC (grant number EP/E019501/1) and by Scot-
tish Enterprise under the Edinburgh-Stanford Link.

References
W. Eckert, E. Levin, and R. Pieraccini. 1997. User mod-

elling for spoken dialogue system evaluation. InPro-
ceedings of ASRU, pages 80–87.

Matthew Frampton and Oliver Lemon. 2006. Learning
more effective dialogue strategies using limited dia-
logue move features. InProceedings of ACL.

J. Henderson, O. Lemon, and K. Georgila. 2005. Hy-
brid Reinforcement/Supervised Learning for Dialogue
Policies from COMMUNICATOR data. InIJCAI
workshop on Dialogue Systems.

O. Lemon, K. Georgila, and J. Henderson. 2006.
Evaluating Effectiveness and Portability of Reinforce-
ment Learned Dialogue Strategies with real users: the
TALK TownInfo Evaluation. InProc. ACL/IEEE SLT.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-
tic model of human-machine interaction for learning
dialog strategies.IEEE Transactions on Speech and
Audio Processing, 8(1):11–23.

Tim Paek. 2006. Reinforcement learning for spoken di-
alogue systems: Comparing strengths and weaknesses
for practical deployment. InDialogue on Dialogues.
Interspeech2006 - ICSLP Satellite Workshop.

Olivier Pietquin. 2004.A Framework for Unsupervised
Learning of Dialogue Strategies. Presses Universi-
taires de Louvain, SIMILAR Collection.

V. Rieser and O. Lemon. 2007. Learning dialogue strate-
gies for interactive database search. InInterspeech.

J. Schatzmann, M. N. Stuttle, K. Weilhammer, and
S. Young. 2005. Effects of the user model on
simulation-based learning of dialogue strategies. In
IEEE ASRU Workshop.

D. Shapiro and P. Langley. 2002. Separating skills from
preference: using learning to program by reward. In
Intl. Conf. on Machine Learning.

M. Walker, R. Passonneau, and J.Boland. 2001. Quan-
titative and qualitative evaluation of DARPA Commu-
nicator spoken dialogue systems. InProc. ACL.

Steve Young. 2000. Probabilistic methods in spoken
dialogue systems.Philosophical Transactions of the
Royal Society (Series A), 358(1769):1389–1402.

58

