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Abstract
The development of broad domain statistical machine translation systems is gated by the availability of parallel data. A promising
strategy for mitigating data scarcity is to mine parallel data from comparable corpora. Although comparable corpora seldom contain
parallel sentences, they often contain parallel words or phrases. Recent fragment extraction approaches have shown that including
parallel fragments in SMT training data can significantly improve translation quality. We describe efficient and effective generative
models for extracting fragments, and demonstrate that these algorithms produce competitive improvements on cross-domain test data

without suffering in-domain degradation even at very large scale.

1. Introduction

Statistical Machine Translation (SMT) systems are
most influenced by two key components: language mod-
els and channel models. Language modeling still must
overcome several obstacles (e.g. n-gram models are brit-
tle especially with respect to morphology) but luckily data
acquisition is not one of them — between large LDC cor-
pora and the easy availability of web data, gigantic amounts
of monolingual data are available. For channel modeling,
however, the situation is much less promising. Most ap-
proaches require parallel data for training channel mod-
els, and derive continuing returns from larger datasets. Yet
there are few large parallel corpora currently available.
Even the largest (Arabic-English and Chinese-English) are
orders of magnitude smaller than the available monolingual
training data. These data sources also tend to be drawn from
a single domain, and SMT systems trained on one domain
suffer significant quality degradation when tested in other
domains. If we hope to improve translation quality within
a language pair and domain, expand to new domains, or
acquire new language pairs, we must find ways to exploit
non-parallel data sources.

1.1. Related work

There are many ways that we can identify and exploit
comparable data. Finding comparable documents is a use-
ful way point in this difficult task: we can significantly
reduce the search space of further steps in the pipeline if
we limit our attention to information in similar documents.
Document pairs can be found from the web by exploiting
URL structure, document structure, and lexical similarity
amongst other clues (see for instance Resnik and Smith
(2003), Zhang et al. (2006), Shi et al. (2006)). Alterna-
tively we can search within large newswire corpora, which

can be a rich source of translation information. Cross-
lingual information retrieval techniques can find promising
document pairs from large newswire corpora in different
languages, as in (Zhao and Vogel, 2002). Although the web
data is likely to be larger and more diverse, it presents ob-
stacles to controlled experimentation (the web is constantly
changing) and is seldom as carefully edited as newswire
data. Therefore we focus on the latter source, but we ex-
pect that the techniques developed here should also apply
to other sources of comparable data.

We loosely use the term “comparable” to describe the
document pairs that can be extracted from these newswire
sources, though the pairs differ significantly in translational
equivalence. Occasionally the articles contain sentence-for-
sentence translations of one another; there have been sev-
eral efforts to search for whole-sentence translation pairs
within comparable corpora (e.g., Zhao and Vogel (2002),
Fung and Cheung (2004b), Fung and Cheung (2004a), Che-
ung and Fung (2004)). More often it appears that either
two reporters have witnessed the same events and written
similar accounts or perhaps one reporter has read another
reporter’s account and subsequently written a new text with
some common information. The latter articles contain few
sentence-for-sentence translation pairs. Many researchers
have instead tried to gather a bilingual lexicon from these
sources, which could then be used by an MT system or
even human translators (Fung and Yee (1998), Rapp (1999),
Diab and Finch (2000), Koehn and Knight (1999), Gaussier
et al. (2004), Shao and Ng (2004)). However comparable
corpora contain multi-word translation information that is
overlooked by these methods. For instance, quoted mate-
rial from primary sources is often translated literally, as are
person names, institution names, and other named entities.

We believe that one of the most promising ideas is to



identify parallel sub-sentential fragments within compara-
ble corpora, as proposed by Munteanu and Marcu (2006).
Starting with a non-parallel corpus consisting of news ar-
ticles from three sources (the BBC, the Romanian newspa-
pers ‘Evenimentul Zilei’ and ‘Ziua’) they first produce a set
of similar article pairs using a cross-lingual information re-
trieval system. Restricting their attention to sentence pairs
that contain at least minimal lexical overlap, they search
for parallel fragments using an approach inspired by sig-
nal processing. Using a set of parameters derived from
LLR scores, they annotate each word with a value between
—1 and 1 indicating the likelihood that this word has some
translational equivalent in the other sentence by performing
a greedy alignment. (Note that this step is performed with-
out regard for position in the sentence, number of words
generated by a single word, etc.) This stream of values is
then treated as a signal and passed through a moving av-
erage filter. To find fragments—substrings of the original
sentence that are likely to have a translation pair in the other
side, they identify the longest spans that have only positive
signal values. All fragments longer than some threshold (3
words) are concatenated to form a subsequence of the sen-
tence that is likely to have a translation on the other side.
The same process is repeated on the other sentence, and the
resulting fragment pair is assumed to be parallel. They re-
port substantial positive effect on BLEU scores when mined
fragments are appended to a baseline parallel corpus.

We believe that there are several ways to improve this
approach. Since the greedy alignment is performed inde-
pendently in each direction, there is no guarantee that the
words aligned to a fragment in one sentence will appear in
the fragment from the other sentence. Nor is the number of
spans guaranteed to match; the resulting spans are simply
concatenated, which could produce odd phrases spanning
fragment boundaries. The method does not model phenom-
ena that have proven very important in the related task of
word alignment, such as locality and fertility. Finally, the
structure of the model is somewhat heuristic and thus diffi-
cult to optimize or chain in a pipelined process.

1.2. Our approach

We are primarily interested in the problem of extracting
parallel fragments, particularly in developing theoretically-
grounded, effective models. We present two algorithms for
mining parallel fragments from similar sentence pairs, both
based on generative models of semi-parallel data. First we
train translational equivalence models from parallel data
and monolingual generation models from source and tar-
get language data. Next, given two news wire corpora, we
identify promising sentence pairs using methods very simi-
lar to those used in Munteanu and Marcu (2006). Our main
innovation comes in identifying the parallel fragments from
these comparable sources. In section 2., we describe two
new models for extracting parallel fragments, and provide
algorithms for effectively using them. We describe the ex-
perimental setup and empirical findings in section 3.. In
section 4. we discuss our results and we propose some ideas
for future exploration.

2. Generative models of fragment alignment

In most prior work (e.g. Brown et al. (1993), Vogel et
al. (1996)), generative models are used to approximate the
translation process. Given a sentence in one language (arbi-
trarily designed the source, denoted s = s*), we can find a
probability distribution over sentences in the other language
(designated target, denoted t = ¢7'). While these models do
allow for a certain degree of deviation between sentences,
the deviations are assumed to be systematic (e.g. the Span-
ish word de must often be inserted when generating based
on an English string). In noisy comparable sentences, the
situation is markedly different: words may be inserted or
deleted seemingly at random depending on what informa-
tion each sentence happened to include. We describe two
models to handle these phenomena: a conditional model
of loose rather than exact translation, and a joint model of
simultaneous generation.

2.1. Model A: Conditional generation

In the case of noisy translation, we assume that source
language sentence has already been written, and the target
language sentence is generated conditionally based on that
sentence. Unlike standard word alignment models, how-
ever, we also allow words to be generated completely in-
dependently of the source language, based on prior target
language words only. The intuition is as follows: say we
already have a monolingual generation model (e.g., an n-
gram language model), and a model of translational equiv-
alence (e.g., an HMM word alignment model). We hypoth-
esize that parallel fragments are more likely to be produced
by translating the source sentence rather than a monolin-
gual model: Pr(t|s) > Pr(t).

Before describing the particulars of this model, we re-
view some standard word alignment models. The gener-
ative framework behind IBM Models 1, 2, and the HMM
model produces target language sentences in left-to-right
order in the following manner. First the target sentence
length is drawn according to an unspecified distribution —
this detail is not important for the word alignment case.
Next, for each target position, the position of the source
word that generated this word is picked. Then the target
word in that position is drawn according to the source word
that generated that position. Let s7* be the source sentence,
t be the target sentence, and af’ € {0..m}™ be the hidden
state denoting the position of the source word generating
each target word; a; = 0 indicates that ¢; was generated
from the null word. Then we can model a sentence and an
alignment as follows:

Pr (af,t7|s7") = Pr([t| = n)-
[T (Pr(ajlai™ 67" s7) -
j=1

Pr(tyla], ], 57)

All three models draw Pr(t;|al, )", s7*) from e(t, |5a;)s
a multinomial distribution conditioned on s,,. By drawing
a; from a uniform distribution, from a multinomial distri-
bution based on 7, or a multinomial distribution based on
aj_1, we produce IBM Model 1, Model 2, and the HMM
model respectively.
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Figure 1: An example pair with a Model A alignment, demonstrating generation of the Spanish sentence given the English
sentence. Each column contains a single box indicating the hidden state generating each Spanish word. In all but the last
row, empty boxes represent null alignments and solid boxes represent actual alignments. The last row represents the hidden
state indicating that the Spanish word was generated monolingually, independently of the English side.

To handle comparable data alignment, Model A aug-
ments the hidden space to include an additional state sig-
nifying that the current word is generated monolingually,
without any corresponding source word. Note that this sit-
uation is distinct from the null word case: rather than draw-
ing t; according to source language information, we draw
t; according to previously generated target material. Let
a; = —1 indicate the monolingual generation state. Model
A has the following structure for generating target words:

e(t;[t)™") ifa; = —1

{e(tjsaj)

and has a first-order dependence in the hidden states:

Pr(t;lal, ¢, s7") =

otherwise

i—1 ,j—1
Pr(ajlal ", 11, s7") = d(ajlaj_1)

Parameter estimation. Model A parameters are defined
in terms of standard HMM word alignment parameters and
n-gram language model parameters. We begin by estimat-
ing the HMM parameters from a parallel corpus using EM;
let the emission parameters be denoted with €’ (t|s) and the
transition parameters be denoted d’(a|a’). In addition, we
estimate a target language model based on monolingual
data; the parameters be defined as: ¢’ (t]—|t{71). Finally
we are given free parameters ¢ indicating the probability
of transitioning between bilingual BI and monolingual MO
states.

Model A has the same generative structure as the IBM
models 1 and 2 and the HMM model, so it suffices to define
how states and words are drawn. Transitioning between
states is a straightforward mixture of ¢ and the HMM state
model d’, except that when jumping into a bilingual state,
we consider all starting points equally likely:

Pr(asla} =", 40,57

p(BIBI) (a;]a] ")

ifaj_l 7é —1,aj 7é -1

»(BI]MO)1/m ifaj_1 =—-1,a; # -1
(p(MO|BI) ifaj_l 7£ 71,(1j =-1
(p(MO|MO) ifaj,1 = —1,CL]' =—-1

When generating words, we switch between monolingual
and bilingual generation models according to the current
hidden state.

e ([t ifa; = -1

7571n) = {6/(tj|5aj)

Fragment extraction. To find parallel fragments given
a similar sentence pair, we first find the most likely hid-
den structure according to Model A. Since Model A has an
HMM like structure, the familiar Viterbi algorithm will find
the most likely alignment & = arg max, {Pr(t, als)}.
Next we consider each maximal bilingual span (k,1);
thatis, forall &’ € k..l, apr # —1,and ax—1 = aj01 = —1.

Pr(t:|a’, +77!
(t5]a1, otherwise



Let ¢ and j be the minimal and maximal non-zero values
taken on by & between k and [. Then we consider s? and ¢}
to be a bilingual fragment pair if the following conditions
hold:

1. Both fragments are at least the minimum length (cur-
rently 3).

2. The fraction of “holes” (unaligned words) in either
span does not exceed a given threshold (30%).

3. The fraction of stop-words in either span does not ex-
ceed a given threshold (70%).

This model is attractive given that it is sound, relatively
easy to implement, and quick to evaluate. However there
are several aspects of the model which we might hope to
improve. First, there are many free parameters to be tuned,
including the transition probabilities ¢ and the threshold
values. Second, the asymmetry of the model means that
it does not forbid the same source fragment from generat-
ing multiple potentially overlapping fragments, nor does it
evaluate the likelihood of the segmentation of the source
side.

2.2. Model B: Joint generation

To address some of these limitations, we explore a joint
model based on a slightly different generative decomposi-
tion. Rather than conditioning on one of the sentences, we
generate the pair jointly. We imagine a process that chooses
between three options: generate a source-only fragment,
generate a target-only fragment, or generate a bilingual
fragment in tandem. To further simplify the story, we can
assume that the fragments are again generated left-to-right
in both the source and target sentences. Although this as-
sumption could potentially screen out non-monotone frag-
ments, it simplifies the model structure and search and is
probably sufficient for language pairs with similar word or-
der, such as English-Spanish.

The intuition behind Model B is similar to that of Model
A, though phrased in joint rather than conditional proba-
bilities. We hypothesize that the probability of generat-
ing source and target language fragments s and t jointly
should be more likely than generating them independently
(i.e. Pr(s,t) > Pr(s) - Pr(t)) if and only if they are par-
allel. However few joint models of translation have proven
effective in practice; conditional models have proven more
effective empirically on most MT tasks. We can use Bayes’
rule to combine a marginal probability and a conditional
probability to estimate a joint probability: Pr(s,t) =
Pr(s)Pr(t|s) = Pr(t)|Pr(t|s), though each direction is
likely to give a different estimate of this joint probability.
To optimize the precision of the extracted fragments, we
use the minimum of either decomposition as the estimate
of the joint probability. !

In this model, the hidden structure is a series of frag-
ments f. Each fragment f; is a 2 tuple where f;; and
fi,2 indicate the last source and target words covered by

IThis is equivalent to saying that a fraction is considered par-
allel iff Pr(s|t) > Pr(s) and Pr(t|s) > Pr(t).

fragment f;. The generative framework takes the following
form:

P(ff,sina tr)
HP fl|f 7 fz 11tfz 12).

= Pr(|f] = p)-

fi, f1 fi—1,2
PI’(Sf 11’tf1212|f1’ v tl ' )

We first predict the number of fragments. Then for each
fragment, we predict the number of source and target words
generated by that fragment. Finally, we generate the source
and target words in each fragment.

Model B makes several simplifying assumptions over

this generative model. It assumes a uniform distribution of
the number of fragments, and the number of source and
target words generated by any one fragment. The final
stage, the probability distribution over words within a frag-
ment, is derived from independently estimated models. As
in the conditional models, we use the HMM word align-
ment model for the conditional models with parameters
estimated on given parallel corpus, and n-gram language
models as marginal models with parameters estimated on
monolingual corpora.
Parameter estimation. Let L (s) and L;(t) be source and
target n-gram language models, and X (t|s) and Xy, (s|t)
be conditional translation models. We find the conditional
probabilities X, X¢s by marginalizing over hidden align-
ments using the forward algorithm for HMM. Given these
individual models, the Model B score of generating a frag-
ment is:

fz
PI‘(Sf 1,17 fz 21 2|f17

fi1

{1 II retsalsi™

j=fi—1,1+1
fi2

T Zeteli™

k=fi—1,2+1

1,1’t{i—1,2) — min

fL1

fi,2
'X (t 12| fi— 1,1)7

Xl I )b

Fragment extraction. With Model B, we simply need
to search for the most likely sequence of fragments f =
arg maxe{Pr(f,s, t)}. Note that each fragment need only
condition on the endpoint of the previous fragment; in a
sense this is like a first-order Markov model. This suggests
a simple dynamic programming algorithm for finding the
most likely alignment.

First we can precompute the cost of individual opera-
tions:

J
Ali,j] = [ Ls(salsi™
Blk,] = []ZLe(talti™)
=k
C[Z7Jak7l] = th(S“ti:)
Dli,j, k1] = Xu(ti]s))
Eli,j,k,1] = max{Al[i,j] D[, j k1],

Blk,1] - Cli, g5, k, 1)}
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Figure 2: An example Model B alignment. This model jointly generates the sentence pair; arrows indicate the order in which
each segment is generated. Since the Model B alignments are monotone, arrows may not point upwards or leftwards. Joint
segments correspond to diagonal arrows; the parallel substring pairs are indicated by shaded areas.

Then the probability of the most likely fragment sequence
ending at position (7,1) is

o[0,0] = 1

oli.) = max {0l k] Blk.1],
o<i<i. | dli, k] - E[i, j, k, ]
0<k<li

Unfortunately this algorithm is prohibitively expensive to
evaluate, requiring runtime on the order of O(m?n® +
m3n?) — even evaluating the E array is simply not fea-
sible on tens or hundreds of millions of sentence pairs.

Many of the regions in this space are obviously not
worth exploring. To help guide our search, we can com-
pute some admissible heuristics:

Cl[ia.ﬂ =
D/[k,l} =

Xus(s]t)
Xae(th]s)

When using the HMM model, we know that C'[i,j] =
Xis(slt) > Xys(sl|th) = Cli,j, k1] for any k,1 since
augmenting the state space only creates new paths and
therefore adds total probability. Given this estimate, we can
screen out any target span where C'[i, j] < A[i, j] as they
will never participate in the most likely fragment decom-
position; the corresponding filter also applies to the target
side.

Admissible future cost estimates can provide further re-

ordering evidence:

Flil = max {Ali.j] Flil, D'li ) FU)
Gl = max {Blk,1)- GI), C'lk,1] - G}

The cost of generating the remainder of the sentence pair
from point (7,5) is bounded from above by F[i] - G[j].
These future costs can be used in A* search or beam search.
We found that keeping a beam of size 10 for each total
number of words covered in both sentences leads to only
a modest degradation in model cost while achieving orders
of magnitude speedup over a true DP solution. Also limit-
ing the maximum fragment size (to 12) and source to target
fragment length ratios (to between 0.5 and 2) has a negligi-
ble impact on the fragments extracted while further increas-
ing speed.

3. Experiments

To evaluate the efficacy of our methods, we focus on
an extrinsic evaluation: the impact of the extracted parallel
fragments on end-to-end machine translation quality. In-
trinsic evaluation metrics could be quite useful for error
analysis, optimization of free parameters, and faster exper-
imental turnaround. However one must first demonstrate a
correlation between such an intrinsic measure and the over-
all task accuracy; we therefore postpone this problem to
future work.



\ Spanish \ English
Training sentences 730,740
Words 15,725,136 | 15,222,505
Vocabulary 102,885 64,122
Dev sentences 2,000
Words 60,628 58,655
Vocabulary 7,681 6,144
Devtest sentences 2,000
Words 60,332 57,951
Vocabulary 7,782 6,054
Test sentences 3,064
Words 91,730 85,232
Vocabulary 10,529 8,390

Table 1: Characteristics of the parallel seed corpus.

3.1. Data sources

As a seed parallel corpus, we use the English-Spanish
portion of the Europarl corpus (Koehn and Monz, 2006).
Table 1 lists pertinent characteristics of this dataset. We
train an HMM alignment model on this parallel data us-
ing GIZA++ (Och and Ney, 2003) using 5 iterations of
model 1 followed by 5 iterations of the HMM model. This
is performed symmetrically in both directions to produce
conditional models of Spanish given English and English
given Spanish. In addition to the Viterbi alignments, we
save the HMM parameters for use in Models A and B. We
also build trigram language models (smoothed using modi-
fied Kneser-Ney (Goodman, 2001)) on each side to be used
both in decoding and in Models A and B.

The LDC English and Spanish Gigaword corpora
(Graff, 2003; Graff, 2006) are a fertile ground for noisy
word and phrase alignment. The articles draw from sev-
eral major news feeds; both sides include articles from
Agence France Presse, the Associated Press, and Xinhua
News Agency, and the English side contains articles from
the New York Times. While some article pairs may be
rather close translations, more often it appears that stores
are written mostly independently by English and Spanish
authors. Therefore the articles are unlikely to contain paral-
lel sentence pairs except in the case of direct quotes, which
are often rendered exactly in one language and as a close
translation in the other. On the other hand, named entities
and other pairs do commonly occur in parallel.

3.2. First pass filtering

Invoking the fragment identification algorithm on all
sentence pairs of the Gigaword corpus is obviously quite in-
tractable. Therefore the first portion of our pipeline closely
resembles Munteanu and Marcu (2006): promising doc-
ument pairs are found using cross-lingual information re-
trieval techniques, then promising sentence pairs are found
from amongst those documents. First we index the English
Gigaword corpus. Next each Spanish article is translated
into an English bag of words using the t-table from the
HMM model: for all Spanish words s in the article, we
append the English word e to the bag of words if the trans-
lation probability is above a threshold. This bag of words is

Spanish English
Documents 2,223,117 3,479,870
Sentences 20,177,725 49,293,904
Words 686,902,169 1,767,840,671
Low recall
Document pairs 27,253,262
Sentence pairs 2,660,283
High recall
Document pairs 27,985,397
Sentence pairs 83,640,447

Table 2: Characteristics of the first pass extraction; size of
the raw Gigaword corpora as well as the selected document
and sentence pair sets under two parameter settings.

issued as a query against the English corpus, and the top 20
English documents published within 7 days of the Spanish
corpus are retrieved to form our promising document set.”
While it is theoretically possible to run the noisy alignment
algorithm on all sentence pairs in all promising documents,
runtime is significantly diminished if we first filter the set
down to a promising set of sentence pairs. To limit the sen-
tences we consider, we require that the source sentence be
neither more than twice as long as source, nor more than
twice as short. Also we require that some fraction of the
words in each sentence must have a translation in the other
sentence.

By adjusting these constants we can trade off recall of
potential translation information against the cleanliness of
the retrieved data. We explore two settings:

1. A clean, high precision set with a t-table threshold of
0.125, where at least 5 or 40% of the words (whichever
is greater) in each sentence must have a translation in
the other side.

2. A noisier, high recall set with a t-table threshold of
0.1, with the minimum lowered to 2 words or 30% of
the sentence.

Table 3 summarizes the results of this initial pass.

3.3. Fragment extraction

Next we apply several parallel fragment extraction ap-
proaches to these promising sentence pairs. As a baseline,
we attempted to faithfully reimplement the approach de-
scribed by Munteanu and Marcu (2006), which we will re-
fer to as MM. We also applied Models A and B as described
in the text. As Model A is a conditional model, the result-
ing fragments are asymmetric. We only evaluate it in one
direction in this paper: predict English given Spanish.

The outputs from each algorithm are shown in Table 3.
Yield from the MM algorithm is quite high; in fact, the
yield from MM and Model B on the high recall data was
so large that we could not easily employ it inside an MT
system. Therefore we also evaluated each system on high
recall data from only the year 2001, approximately one-
sixth of the promising sentence pairs.

2We use BM25 (Robertson et al., 1995) ranking with the free
parameter values k1 = 18, k3 = 0.54, and b = 0.65.



Spanish English

Fragments words words
Low recall
MM 2,648,290 63,223,784 62,076,668
A(els) 1,529,801 8,526,713 8,656,013
B 2,993,201 24,342,112 25,222,313
High recall, 2001 only
MM 3,780,631 64,193,250 68,096,131
A(els) 1,167,768 5,922,888 5,658,089
B 9,711,901 36,860,578 37,197,365
High recall, all years
A(els) 6,626,777 33,382,123 31,827,777

Table 3: Yield from various fragment extraction algorithms.

The differences across algorithms are striking. The MM
miner, for instance, has a very high yield. A large percent-
age of the sentences produce fragments, and often those
fragments are on average quite long; unusually long in fact.
It is difficult to evaluate precision and recall in these set-
tings, but inspection suggests that many of these fragments
are spurious.

Another unusual trend is that although Spanish sen-
tences tend to be longer than English sentences, in sev-
eral cases the models produce Spanish fragments that are
shorter than their English fragments. This may suggest that
modeling the length of each fragment could produce more
equivalent data pairs.

3.4. MT evaluation

Finally we evaluated each of these fragment sets in-
side a machine translation system. We concatenated the
fragment pairs with the original training data, retrained the
word alignments on the augmented data again using five
iterations of Model 1 and the HMM Model, then extracted
phrase tables (Koehn et al., 2003). The language model and
phrase tables are then used in a phrasal decoder that faith-
fully reimplements Pharaoh (Koehn, 2004) to translate the
given test sets. Parameter weights are trained for each data
set independently using minimum error rate training (Och,
2003) on BLEU (Papineni et al., 2002) using the provided
development test set.

The test set consists of 2,000 in-domain sentences
drawn from held-out parliamentary data, as well as 1,064
out-of domain sentences drawn from news commentary
web sites. As we see in Table 4, the extracted fragments
can positively influence translation quality in the out-of-
domain news commentary data. Adding the MM fragments
had a significantly negative impact on in-domain quality;
we suspect that this is due to the noisy fragments produced
by this approach. As the number of fragments in the train-
ing data increased, the quality of MM suffered even more.
In contrast, when using fragments from Models A and B
the system was able to achieve all the gains of that of the
MM fragments without degradation of in-domain quality.
The system also appears more robust to larger data, though
disappointingly it does not achieve incremental returns.

test

devtest in out
baseline 29.6 28.7 22.1
small data
MM 28,5 277 224
Model A(e|s) 29.5 28.7 224
Model B 29.0 28.5 223
large data, 2001
MM 264 26.1 20.0
Model A(els) 293 286 223
Model B 29.0 282 223
large data, all years
Model A(e|s) 29.1 283 223

Table 4: BLEU scores of translation systems built with var-
ious training data.

4. Conclusions

We have presented a novel extension of the word align-
ment model to account for noisy translations, described
how to leverage such a model to extract parallel fragments
from comparable new corpora, and demonstrated the im-
pact of these fragments on a machine translation system.
The models are not challenging to implement, and provide
a principled means of extracting information from sources
containing some shard information.

However there are many potential improvements to ex-
plore. If we limit ourselves to the problem of extracting
fragments from comparable articles, there are several points
in this pipeline that could benefit from optimization. The
information retrieval step in the middle has many free pa-
rameters (e.g., BM25 constants) and algorithmic variants
(query translation, thresholds, etc.) that may have a ma-
jor impact of final yield. If we selected these parameters
to maximize recall or accuracy against a test set, it would
likely lead to greater impact on new test sets. The free pa-
rameters within the extraction models should also be opti-
mized on some task-based measure.

We have applied only single pass extraction. Instead
we might bootstrap our models: retrain the noisy models,
and re-extract new fragments. Such methods could further
increase the vocabulary of the MT system. Although only a
small addition may occur on the each iteration, the gradual
increase in vocabulary aggregated across iterations might
lead to significant differences.

Better models could also increase fragment yield. The
simplifying assumptions in both models may well be a lim-
itation. For instance, the uniform assumptions over frag-
ment count and length could be replaced with learned mod-
els. Furthermore monotone alignments are not sufficient
for many language pairs; an extension of the joint model to-
ward ITG (Wu, 1997) could relieve the restriction, though
at a cost of greater computational complexity. Despite
the hard constraints on reordering imposed by ITG, Wu
and Fung (2005) found that an ITG model of translational
equivalence was very effective in identifying translation
pairs. Even a model with limited reordering is likely to
improve over a purely monotone baseline.



Noisy translation models also have potential applica-
tions beyond fragment extraction. Even so-called parallel
corpora often contain loose and noisy translations. Mod-
els that allow for sub-sequences of the sentence to not align
as well may lead to better alignment quality and better ex-
tracted phrase tables.
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