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Abstract

This paper describes a statistical machine translation system based on freely available programs such as Moses. Several new features
were added, in particular a two-pass decoding strategy usingn-best lists and a continuous space language model that aims at taking
better advantage of the limited training data. We also investigated lexical disambiguation methods in the translation model based on
POS information. The task considered in this work is the translation of the European Parliament Plenary Sessions between English and
Spanish, in the framework of the TC-STAR project. The described systems performed very well in the 2007 TC-STAR evaluation.

Introduction

Automatic machine translation was one of the first natu-
ral language processing applications investigated in com-
puter science. From the pioneer works to today’s research,
many paradigms have been explored, for instance rule-
based, example-based, knowledge-based and statistical ap-
proaches to machine translation. Statistical machine trans-
lation (SMT) seems today to be the preferred approach of
many industrial and academic research laboratories, each of
them developing their own set of tools. In 1999 however, a
summer workshop at Johns-Hopkins University hosted the
creation of the EGYPT toolkit1, on which the widely used
training tool Giza++ (Och and Ney, 2003) is based. Later,
the Pharaoh phrase-based decoder (Koehn, 2004) became
available and distributed in binary form2, but as far as we
know, Pharaoh was not widely used. More recently, another
workshop3 released an open source toolkit, which includes
a decoder, Moses (Koehn and al., 2007), and a comprehen-
sive set of softwares and scripts to build a complete SMT
system—namely determining word alignments, extracting
phrases, performing the translation and tuning system pa-
rameters.

In this paper, we describe the development of a state-of-the-
art SMT system based on the Moses suite. Several new fea-
tures were added, in particular a two-pass decoding strategy
usingn-best lists and a continuous space language model
(CSLM) that aims at taking better advantage of the limited
training data. The described system participated in the 2007
TC-STAR evaluation and achieved very good rankings. We
also investigated lexical disambiguation methods based on
POS information, which can be interpreted as an intermedi-
ate step between “standard” phrase-based models and fac-
tored translation models. The latter approach is meant to
tightly integrate linguistic information into the translation
model, and is implemented in Moses, but to the best of
our knowledge, experimental results have not yet been pub-
lished.

This paper is organized as follows. In the next section, the

1http://www.clsp.jhu.edu/ws99/projects/mt/toolkit/
2http://www.isi.edu/licensed-sw/pharaoh/
3http://www.clsp.jhu.edu/ws2006/

LIMSI SMT system architecture is presented, as well as
its training and tuning procedures, and its unique features.
The following section describes the task on which the sys-
tem is evaluated and the data available to train the models.
Finally, experimental results are provided and commented.
The paper concludes with a discussion of future research
issues.

System architecture

The goal of statistical machine translation is to produce a
target sentencee from a source sentencef that maximizes
the posterior probability:

e∗ = argmax
e

Pr(e|f)

= argmax
e

∑
A

Pr(e,A|f) (1)

≈ argmax
e

max
A

Pr(e,A|f) (2)

In the above equations,A denotes a correspondence be-
tween source and target words and is called analignment.
The Moses decoder makes the so-calledmaximum approx-
imationas in Equation 2.

The Pr(e,A|f) probability is modeled by a combination
of feature functions, according to the maximum entropy
framework (Berger et al., 1996):

Pr(e,A|f) ∝ exp
∑

i

λifi(e,A|f) (3)

The translation process involves segmenting the source sen-
tence into source phrases̃f ; translating each source phrase
into a target phrasẽe, and optionally reordering the target
phrases to produce the target sentencee∗. A phrase is here
defined as a group of words that should be translated to-
gether (Koehn et al., 2003; Och and Ney, 2003). The seg-
mentation stage is not modeled explicitly by any feature
function, which amounts to considering every segmentation
equally likely. A phrase table provides several scores that
quantitize the relevance of translating̃f by ẽ. A distortion
model, a language model (LM) and a word penalty are also
included for a total of eight feature functions.
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Figure 1: The LIMSI SMT system architecture

Phrase table acquisition

Target-to-source and source-to-target word alignments are
first built with Giza++. The intersection of these two align-
ments is computed and augmented by word alignments
present in their union, similarly to the “diag-and” algorithm
from (Koehn et al., 2003). Phrase pairs consistent with the
obtained alignment are extracted and scored with two rela-
tive frequency scores, two lexical scores, and one constant
score, that serves as a phrase penalty (or bonus) during de-
coding.

Translation process

The translation process employs a two-pass strategy and is
summarized in Figure 1. In the first pass, Moses gener-
atesn-best lists—1000 distinct hypotheses are requested—
with a standard 3-gram language model and provides eight
partial scores for each hypothesis. In the second pass, the
n-best lists are rescored with a 4-gram continuous space
language model and the final hypothesis is then extracted.

Parameter tuning

Each of the two passes uses its own set of eight weights and
is tuned separately, a feature shared with other systems, for
instance (L̈oöf et al., 2006; Cettolo et al., 2005). The sec-
ond pass is often taken as an opportunity to compute several
feature functions on then-best list, yet after several experi-
ments we chose not to follow this direction. The described
system is thus voluntarily simple, with the hope that it will
generalize well to new data. We believe that adding many
feature functions, especially some that could just be ad hoc
fixes to phenomena from the development data, in conjunc-
tion with performing a numerical optimization of theλi that
is unaware of the highly discontinuous nature of BLEU (Pa-
pineni et al., 2002), bear the risk of heavily over-fitting the
development data. Some experimental evidence for this are
provided in the results section.

We use MERT, which is distributed along with the Moses
decoder, to tune the first pass. The weights were adjusted
to maximize BLEU on the development data after the first
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Figure 2: Tuning of second pass parameters with Condor.
The dashed box denotes the “black box”, needed by Con-
dor, that outputs a BLEU score for a given set of parame-
ters.

pass only. In this phase, a dozen Moses runs are neces-
sary for each MERT optimization, and several optimization
runs were started and compared during the system’s devel-
opment.

Tuning for the second pass is performed by Con-
dor (Berghen and Bersini, 2005), which implements an ex-
tension of Powell’s UOBYQA algorithm (Powell, 2002),
and is depicted in Figure 2. The tuning procedure is as fol-
lows:

0. Using tuned first-pass weights,n-best lists are gener-
ated by Moses. Thesen-best lists are then rescored
with the continuous space language model.

1. The n-best lists are reranked using the current set
of weights. The current hypothesis is extracted and
scored against the reference translations.

2. The obtained BLEU score is passed toCondor,
which either computes a new set of weights (the algo-
rithm then proceeds to step 1) or detects that a local
maximum has been reached and the algorithm stops
iterating.

The solution is usually found after about 100 iterations. It
is stressed that Moses in only run once and that the whole
second pass tuning operates onn-best lists.

Continuous space language model

Overall, there are roughly 60 million words of texts avail-
able to train the target language models. This is a quite lim-
ited amount in comparison to tasks like the NIST machine
translation evaluations for which several billion words of
newspaper texts are available. Therefore, specific tech-
niques must be deployed to make the most of the limited
resources.

In this paper, we propose to use the so-called continuous
space language model. The basic idea of this approach is
to project the word indices onto a continuous space and to
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Figure 3: Architecture of the continuous space language
model.hj denotes the contextwj−n+1, . . . , wj−1. P is the
size of one projection andH (resp. N ) is the size of the
hidden layer (resp. output layer). When short-lists are used
the size of the output layer is much smaller then the size of
the vocabulary.

use a probability estimator operating on this space (Bengio
et al., 2003). Since the resulting probability functions are
smooth functions of the word representation, better gener-
alization to unknownn-grams can be expected. A neural
network can be used to simultaneously learn the projec-
tion of the words onto the continuous space and to estimate
the n-gram probabilities. This is still an-gram approach,
but the language model posterior probabilities are “interpo-
lated” for any possible context of lengthn − 1 instead of
backing-off to shorter contexts.

This approach was successfully applied in large vocabu-
lary continuous speech recognition (Schwenk, 2007) and in
a state-of-the-art phrase-based system for a small-domain,
tourism related task (Schwenk et al., 2006). It is here ap-
plied to a broad-domain translation task.

The architecture of the neural network language model is
shown in Figure 3. A standard fully-connected multi-layer
perceptron is used. The inputs to the neural network are the
indices of then− 1 previous words in the vocabularyhj =
wj−n+1, . . . , wj−2, wj−1 and the outputs are the posterior
probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (4)

whereN is the size of the vocabulary. The input uses the
so-called 1-of-n coding, i.e., theith word of the vocabu-
lary is coded by setting theith element of the vector to 1
and all the other elements to 0. Theith line of theN × P
dimensional projection matrix corresponds to the continu-
ous representation of theith word. Let us denotecl these
projections,dj the hidden layer activities,oi the outputs,
pi their softmax normalization, andmjl, bj , vij andki the
hidden and output layer weights and the corresponding bi-
ases. Using these notations, the neural network performs

the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(5)

oi =
∑

j

vij dj + ki (6)

pi = eoi /
N∑

r=1

eor (7)

The value of the output neuronpi corresponds directly to
the probabilityP (wj = i|hj).

Training is performed with the standard back-propagation
algorithm minimizing the following error function:

E =
N∑

i=1

ti log pi + β

∑
jl

m2
jl +

∑
ij

v2
ij

 (8)

where ti denotes the desired output, i.e., the probability
should be 1.0 for the next word in the training sentence
and 0.0 for all the other ones. The first part of this equa-
tion is the cross-entropy between the output and the target
probability distributions, and the second part is a regular-
ization term that aims to prevent the neural network from
over-fitting the training data (weight decay). The parame-
terβ has to be determined experimentally. Training is done
using a re-sampling algorithm as described in (Schwenk,
2007).

It can be shown that the outputs of a neural network
trained in this manner converge to the posterior probabil-
ities. Therefore, the neural network directly minimizes the
perplexity on the training data. Note also that the gradi-
ent is back-propagated through the projection-layer, which
means that the neural network learns the projection of the
words onto the continuous space that is best for the proba-
bility estimation task.

In general, the complexity to calculate one probability with
this basic version of the neural network language model is
dominated by the dimension of the output layer since the
size of the vocabulary (up to 100k) is usually much larger
than the dimension of the hidden layer (500). Therefore,
the output was limited to ashort-list composed of thes
most frequent words, the other language model predictions
being performed by a back-off language model. Note that
this affects only the output of the neural network, all the
words of the word list are considered at the network input.

Enrichment with syntactical information

It is well-known that syntactic structures vary greatly across
languages. Spanish, for example, can be considered as a
highly inflectional language, whereas inflection plays only
a marginal role in English.

Part-of-speech (POS) language models can be used to
rerank translation hypotheses, but this requires tagging the
n-best lists generated by the SMT system. This can be dif-
ficult since POS taggers are not trained for ill-formed or



English: IPP declareV V P resumedV V D theDT sessionNN ofIN theDT EuropeanNP ParliamentNP

Spanish: declaroV Lfin reanudadoV Ladj elART peŕıodoNC dePREP sesionesNC delPDEL ParlamentoNC EuropeoADJ

Figure 4: Example of POS-tag enriched bi-text used to train the translation models

incorrect sentences. Finding a method in which morpho-
syntactic information is used directly in the translation
model could help overcome this drawback but also account
for the syntactic specificities of both source and target lan-
guages.

Therefore, we investigate a translation model which en-
riches every word with its syntactic category, resulting in
a sort of word disambiguation. Theenriched translation
units are a combination of the original word and the POS
tag, as shown in Figure 4. The translation system takes
a sequence of enriched units as inputs and outputs. This
implies that the test data must be POS tagged before trans-
lation. Likewise, the POS tags in the enriched output are
removed at the end of the process to provide the final trans-
lation hypothesis.

This approach also gives the flexibility to rescore then-best
lists using either a word language model, a POS language
model or a language model of enriched units.

POS tagging was performed with theTreeTagger(Schmid,
1994). This software provides resources for both of the
considered languages and it is freely available.TreeTag-
ger is a Markovian tagger that uses decision trees to esti-
mate trigram transition probabilities. The English version
is trained on thePENN treebankcorpus4 and the Spanish
version on theCRATERcorpus.5

Tasks and data

The task considered in this work is the translation of the
European Parliament Plenary Sessions (EPPS) between En-
glish and Spanish. The following experiments were carried
out in the framework of the TC-STAR project, which is en-
visaged as a long-term effort to advance research in all core
technologies for speech-to-speech translation. The train-
ing material consists of the minutes edited by the European
Parliament in several languages, known as the Final Text
Editions (Gollan et al., 2005). These texts were aligned at
the sentence level and are used to train the statistical trans-
lation models (see Table 1 for some statistics).

Three different conditions are considered in the TC-STAR

evaluation: translation of the Final Text Edition (text),
translation of the transcriptions of the acoustic development
data (verbatim) and translation of speech recognizer output
(ASR). Here we only consider theverbatimcondition, trans-
lating between English and Spanish (both ways). Specifics
of translating automatic speech transcriptions are described
in (Déchelotte et al., 2007). For theverbatimtask, the de-
velopment and test data consists of about 30k words. The
test data is partially collected in the Spanish Parliament,

4http://www.cis.upenn.edu/∼treebank
5http://www.comp.lancs.ac.uk/linguistics/crater/corpus.html

Spanish English

Whole
parallel
corpus

Sentence Pairs 1.2M

Total # Words 34.1M 32.7M

Vocabulary size 129k 74k

Sentences
shorter
than 40
words

Sentence Pairs 0.91M

Total # Words 18.5M 18.0M

Word vocabulary 104k 71k

Table 1: Statistics of the parallel texts used to train the sta-
tistical machine translation system.

Corpus English Spanish

EPPS 36.5 37.8

Audio transcriptions 1.6 0.8

Hansard/Cortes 57.7 50.4

Table 2: Number of words (in millions) of the various
mono-lingual corpora.

which results in a small mismatch between the training and
the test data. Scoring is case sensitive, includes punctuation
marks and uses two reference translations.6

Additional mono-lingual data is used to train the target lan-
guage models. Audio transcriptions of European parlia-
ment sessions are available in English and Spanish, and
transcriptions from the Spanish parliament are available as
well. A third and last mono-lingual data source was the
British Hansard corpus (proceedings of the British parlia-
ment) and the Cortes corpus (proceedings of the Spanish
parliament). Word counts are collected in Table 2.

Parallel corpus filtering

The distributed corpus includes some meta-information, for
instance speaker names, and session dates and topics. This
information was discarded by stripping out all lines con-
taining an angle bracket (< or >). The parallel data oc-
casionally contains sentences with no translations, which
have to be deleted from the translation model training set.

Additionally, sentence pairs that did not seem to be actu-
ally translations of each other were removed. The prun-
ing criteria only relies on the number of characters of the
source sentence and its alleged translation. Specifically, if
one of the sentences is less than 10 times shorter than its

6See http://www.elda.org/en/proj/tcstar-wp4/ for details on the
specifications and the available training data.



counterpart, or less than 4 times shorter but longer than 20
characters, the sentence pair is dismissed.

The parallel texts were converted from UTF-8 to Latin1 en-
coding. This process highlighted a great number of spuri-
ous symbols, some of which could be semi-automatically
corrected. For example, the characterń occurred 67 times
and ought to be replaced by the characterñ, and all 15 oc-
currences of the characterσ found in the original data were
actually meant to béo.

As English and Spanish words can be adequately repre-
sented in Latin1 encoding, the only “valid” uses of UTF-8
stem from proper names, which had to be artificially con-
verted to Latin1 and for which the correct UTF-8 form is
restored after translation. This process was again the op-
portunity to detect and fix normalization issues, as proper
nouns containing non-latin characters were frequently mis-
typed. As an example, the correct spelling ofMilo ševi ć
appears only three times in the corpus, whereas various
spellings with one or zero accentuated characters appear
several hundred times.

Language dependent preprocessing

The translation model is trained on parallel texts extracted
from the European Parliament website7, whose format dif-
fer from the “verbatim” format in several ways:

Original training data Verbatim condition

Case follows common
orthographic conventions,
the first word in the
sentence is capitalized.

True case: the first word in
the sentence is not capital-
ized, unless it corresponds
to its normal spelling.

Some punctuation marks
next to words without
space, as normal.

Punctuation marks sepa-
rated from words.

Number, dates, and other
quantities in digits or ab-
breviated.

Number, dates, and other
quantities explicited in
words.

Text edited for fluency. Speech transcription, with
disfluencies.

Some of the work of adapting the training data to the eval-
uation condition had already been done in-house for the
Speech-To-Text (STT) task, yet several aspects had to be
modified specifically for the machine translation task. This
includes a few “obvious” normalizations, e.g. for some
key words (Mister or Mr. , se ñor or Sr. , etc) and
acronyms (as some acronyms are spelled out for the speech
recognition task).

In English, several criteria to split words at hyphens have
been compared. An algorithm that relies on a word list and
splits compounds very conservatively was found to outper-
form the “baseline” word splitting algorithm deployed in
our STT system by roughly 0.5 BLEU, as measured in the

7http://www.europarl.europa.eu/

early stages of the translation system development. For
example, numbers likeforty-two and compounds like
pro-European may be split for the STT task but are bet-
ter translated when left in one token.

Experimental results

In this section, detailed results of the different variants of
our system are provided. Design decisions and parameter
tuning were performed on the development data (Dev06),
and the generalization behavior was estimated on the test
data of last year’s TC-STAR evaluation (Test06). For this,
the system was run with exactly the same parameters than
those used on the development data, without further tun-
ing. The systems also participated in the official evaluation
organized by the TC-STAR consortium in February 2007.
Results of our systems are provided here for completeness
(Test07).

Performance of the target language models

The first pass of the translation process (n-best list gener-
ation with Moses) makes use of 3-gram back-off language
models. The models for English were trained on the EPPS
data, the transcriptions of the audio data and the Hansard
corpus. The models for Spanish were trained on the EPPS
data, the transcriptions of the European and Spanish par-
liament audio data and the proceedings of the Spanish Par-
liament. For each language, three independent language
models were first built on each corpus and then linearly in-
terpolated so as to minimize perplexity on the development
data.

The continuous space language model was trained on ex-
actly the same data. The shortlist length was set to 8k for
both languages. The continuous space language model is
not used alone but interpolated with severaln-gram mod-
els. First of all, the neural network and the reference back-
off models are interpolated together—this always improved
performance since both seem to be complementary. Sec-
ond, several neural networks with different sizes of the
continuous representation were trained and interpolated to-
gether. This usually achieves better generalization behavior
than training one larger neural network. The interpolation
coefficients were calculated by optimizing perplexity on the
development data, using an EM procedure. The obtained
values are about 0.3 for the back-off language model, the
rest being roughly equally distributed over the continuous
space language models. This interpolation is used in all our
experiments. For the sake of simplicity we will still call

Language
Back-off LM CSLM

3-gram 4-gram 4-gram

English 134.5 123.4 102.7

Spanish 70.3 64.0 54.5

Table 3: Perplexities on the development data for back-off
and continuous space language models (CSLM).



Translation
direction

Translation
units

Dev06 Eval06 Eval07

3g 4g CSLM 3g 4g CSLM 3g 4g CSLM

Spanish→English words 47.20 47.64 48.26 50.96 51.23 51.66 48.42 48.67 49.19

English→Spanish
words 48.78 49.39 50.15 48.38 49.06 50.20 49.19 50.17 51.04

enriched 48.92 49.45 50.30 48.71 49.00 49.96 49.13 49.91 51.04

Table 4: BLEU scores on the development and test data. CSLM denotes the continuous space language model.

this the continuous space language model. Table 3 summa-
rizes the perplexities of all the language models used in our
system.

Translation performance
Table 4 gives a result summary of the developed systems for
both translation directions. When translating from Spanish
to English, the BLEU score increases by about 0.4 on the
development data and 0.3 on the test data when rescoring
the n-best lists with a 4-gram language model. The con-
tinuous space language model achieves an additional im-
provement of 0.6 BLEU on the development data and up
to 0.5 on the test data. Good language models seem to be
more important when translating to Spanish. The use of a
4-gram gives an 0.6 improvement and the continuous space
language model brings another 0.8 BLEU. Our systems also
exhibits a very good generalization behavior: the improve-
ments obtained on the test data are as good or even exceed
those observed on the development data. The importance
of the Spanish language model when translating from En-
glish can be explained by the additional inflections present
in Spanish: the target language model is then crucial to se-
lect the correct inflected forms.

Table 5 provides additional automatic evaluation metrics, as
well as the result range for all systems in the 2007 TC-STAR

evaluation. The systems described in this paper ranked first
in the English to Spanish translation task and in third po-
sition when translating from Spanish to English. Interest-
ingly, our systems achieved poorer rankings on the devel-
opment data (results not detailed here). This can be seen as
experimental evidence that “simple” systems may general-
ize better than systems with many feature functions.

BLEU NIST mWER mPER

S→E
49.19 10.67 39.8% 27.4%

(42.95–49.60)(9.81–10.83) (39.7–44.9) (27.4–31.7)

E→S
51.04 10.29 37.9% 28.8%

(37.39–51.04)(8.38–10.34) (37.1–51.4) (28.8–38.3)

Table 5: Automatic evaluation metrics of the 2007 TC-
STAR evaluation of our system and the result range from
all the participants (in parentheses).

Minor improvements in the BLEU scores were obtained us-
ing much largern-best lists (up to 10,000 were tried), but
at the expense of a prohibitive processing time.

Lexical disambiguation

Lexical disambiguation based on POS information has only
been applied when translating from English to Spanish
(Bonneau Maynard et al., 2007). The results are summa-
rized in the last line of Table 4. Although small improve-
ments may be observed on the development data, they do
not carry over to the test data. Still, it can be noticed that the
enriched unit system always outperforms the baseline word
system after the first pass; but there is no significant dif-
ference after rescoring then-best lists with the continuous
space language model. We conjecture that both approaches
correct the same translation problems.

The results reported in Table 4 were obtained by rescoring
with word language models, even in the last row. We be-
lieve that it is necessary to use the enriched representation
also in the language models in order to take full advantage
of the disambiguation in the translation model. Rescoring
with simple POS language models was tried, but without
success. We are now working on the use of factored lan-
guage models (Bilmes and Kirchhoff, 2003) that simulta-
neously use the word and POS information.

Figure 5 shows comparative translation examples from the
baseline and the enriched translation systems. In the first
example, the baseline system outputs “durante losúltimos
sesiones” where the enriched translation system produces
“en losúltimos peŕıodos de sesiones”, a better translation
that may be attributed to the introduction of the masculine
word “peŕıodos”, allowing the system to build a syntacti-
cally correct sentence. In the second example, the syntacti-
cal error “no puede ser un cierto reconocimiento” produced
by the baseline system induces an incorrect meaning of the
sentence, whereas the enriched translation system hypoth-
esis “existe un cierto reconocimiento” is both syntactically
and semantically correct. These examples could be seen as
experimental evidence that lexical disambiguation seems to
improve the translation quality although this is not neces-
sarily measured by the BLEU score.

Conclusion

This paper described a statistical machine translation sys-
tem based on freely available programs such as Moses. The
task considered is the translation of the European Parlia-
ment Plenary Sessions between English and Spanish, in
the framework of the TC-STAR project. A two-pass de-
coding strategy was described, which enabled the use of a
continuous-space language model in order to take better ad-
vantage of the limited amount of in-domain language model



English : you will be aware President that over the last few sessions in Strasbourg. ..

Baseline: usted sabe que el Presidentedurante losúltimos sesionesen Estrasburgo ...

Enriched units: usted sabe que el Presidenteen losúltimos peŕıodos de sesionesen Estrasburgo ...

English : ... in this house there might be some recognition ...

Baseline: ... en esta asambleano puede ser un cierto reconocimiento...

Enriched units: ... en esta asambleaexiste un cierto reconocimiento...

Figure 5: Comparative translations using the baseline word system and the enriched unit system.

training data. The described system is voluntarily “simple”,
in that it only uses eight feature functions. This contrasts
with an apparent tendency in the literature to use many fea-
ture functions, each one obtaining a small improvement on
the development data. Based on the limited experiments
described in this paper, a “simple” system may generalize
better on the test data: all of the systems achieved very good
results in the 2007 TC-STAR evaluation. We also described
work on lexical disambiguation in the translation model us-
ing POS information, but were unable to obtain significant
improvements on the test data with this technique. We plan
to pursue this direction by using factored representations in
the translation and language model.
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