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Abstract

This paper describes the CMU-UKA statistical machine
translation systems submitted to the IWSLT 2007 eval-
uation campaign. Systems were submitted for three
language-pairs: Japanese→English, Chinese→English and
Arabic→English. All systems were based on a common
phrase-based SMT (statistical machine translation) frame-
work but for each language-pair a specific research prob-
lem was tackled. For Japanese→English we focused on
two problems: first, punctuation recovery, and second, how
to incorporatetopic-knowledge into the translation frame-
work. Our Chinese→English submission focused on syntax-
augmented SMT and for the Arabic→English task we fo-
cused on incorporating morphological-decomposition into
the SMT framework. This research strategy enabled us to
evaluate a wide variety of approaches which proved effective
for the language pairs they were evaluated on.

1. Introduction

For the IWSLT 2007 evaluation campaign we focused
on applying systems developed based on current re-
search topics within our lab. This includes our work
on syntax-augmented SMT (statistical machine transla-
tion), morphological-decomposition for rich morphology
languages, such as Arabic, and approaches to better cou-
ple ASR (automatic speech recognition) and MT (machine
translation) for spoken language translation. Three sys-
tems were submitted for evaluation: Japanese→English,
Chinese→English and Arabic→English, and all built upon
our 2006 submissions for these tasks. This year we fo-
cused on applying a number of distinct approaches for each
language-pair. This enabled us to cover many research topics
within spoken language translation.

In Section 3, we describe our J→E submission sys-
tem and compare various approaches to recover punctuation
(Section 3.3). In Section 3.4 we investigate methods to incor-
poratetopic-knowledge into the translation framework via
N -best list re-scoring. Our syntax-augmented SMT frame-
work is detailed in Section 4. Sections 4.5 and 4.6 describe
its application to the C→E task. Our A→E translation sys-
tem which incorporates morphological decomposition is in-
troduced in Section 5.

2. The CMU-UKA Phrase-based SMT System

Our J→E and A→E systems built upon the STTK (Statisti-
cal Translation Toolkit) framework used for our IWSLT 2006
submissions [1]. STTK implements phrase-based statistical
machine translation using a log-linear model [2] in which a
foreign language sentencefJ

1 = f1, f2, . . . , fJ is translated
into another languageeI

1 = e1, e2, . . . , eI by searching for
the hypothesiŝeI

1 with maximum likelihood, given:
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(during decoding the denominator is
dropped since it depends only onfJ

1 ). Feature functions ap-
plied during translation include: language models, transla-
tion models, and sentence length models. The scaling fac-
tors (λ1, λ2, . . . , λM ) applied during search are optimized
via MERT (minimum error rate training) [3] for a specific
translation metric such as BLEU [4]. Search is performed
using our STTK beam-search-decoder [5] which allows re-
stricted word re-ordering during translation.

3. Topic-Aware Japanese-to-English SLT

For the Japanese-to-English submission we focused on
two research areas. First, we compared various meth-
ods to recover intra-utterance sentence boundaries and sec-
ondary punctuation (commas); and second, we investigated
approaches to incorporatetopic-knowledge into the SMT
framework. These works are described in Sections 3.3 and
3.4, respectively. By incorporating publicly available cor-
pora from related domains and applying the proposed tech-
niques the translation accuracy of our system improved sig-
nificantly. On the 2006 IWSLT J→E evaluation task our
2007 system obtained obtaining 0.2546 BLEU, compared
to 0.2030 for our 2006 submission (open-data track, correct
recognition result task).



Table 1:Dev. and Held-out Eval. Sets for J→E Task
Development Set: IWSLT JE devset4

Description: 2005 IWSLT J→E evaluation set
No Utterances: 489 (6491 Source Tokens)

Held-out Evaluation Set: IWSLT JE devset5
Description: 2006 IWSLT J→E evaluation set
No Utterances: 500 (7113 Source Tokens)

3.1. Training Corpora Selection

To improve system performance we investigated using pub-
licly available corpora from related domains for this task.
Five publicly available, J-E corpora (indicated in Table 2)
were evaluated for relevance to the IWSLT task-domain.
Corpora were preprocessed by removing unnecessary punc-
tuation (only commas, full-stops and question-marks were
retained) and numerals were converted to their spoken
form on both the source (Japanese) and target (English)
sides. Japanese word-segmentation was performed using
the Conditional-Random-Field based morphological ana-
lyzer “mecab” [8], and sentence-pairs with outlying source-
target token ratios were removed.

Various metrics were evaluated for each corpus to deter-
mine their relevance to the IWSLT task-domain. These in-
cluded: average sentence-length, OOV (out-of-vocabulary)
rate, and target-side perplexity. Target-side perplexityis the
perplexity of an n-gram LM trained on that corpora and
evaluated on the English references of the development-set.
The resulting metrics for each corpus (evaluated using the
development-set described in Table 1) are shown in Table
2. The IWSLT corpora and “Tanaka Corpus” obtained low
OOV-rates and low target-side perplexity, indicating the rel-
evance of these corpora for this task. The average sentence
length of the “JENAAD” and “Reuters” corpora was three
times longer than that of the IWSLT corpora and target-side-
perplexity was significantly higher. These two corpora were
determined not to be relevant1. Combining the relevant cor-
pora (Table 2, “Combined”) significantly reduced the OOV-
rate (from 1.6% to 0.7%) and target-side perplexity (from
71.5 to 65.3) compared to using the provided IWSLT data
alone. This combined corpus consisting of 2.4M source-
tokens was used to develop the J→E system.

3.2. Baseline System

A phrase-based J→E SMT system was developed using the
same framework as our 2006 system [1]. Phrase extraction
was performed using thePESA(Phrase Pair Extraction as
Sentence Splitting) method proposed in [9]. SMT decod-
ing was performed using our STTK decoder described in

1Incorporating the two “non-relevant corpora” slightly degraded
translation-quality (BLEU) on the held-out evaluation set(from 0.2286 to
0.2304 (case sensitive)). However, other measures of translation-quality,
specifically, BLEU-precision and TER improved when this datawas in-
cluded, indicating that the above metrics may be of limited use for corpora
selection.

Table 3: Accuracy of Source-side Punctuation Recovery on
Held-Out Evaluation Set

Precision Recall F-score
Manual transcripts

Sentence Boundary 97.8% 96.8% 97.3%
Secondary Punctuation 82.1% 44.2% 57.5%

1-best ASR Hypothesis:Character Error Rate=10.4%

Sentence Boundary 96.4% 95.9% 96.2%
Secondary Punctuation 71.8% 43.6% 54.3%

Lower Bound: assume sentence boundary at end of utterance

Sentence Boundary 100% 63.9% 77.9%
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Figure 1:Comparison of punctuation recovery schemes

Section 2. Two target language models were applied dur-
ing decoding: a 6-gram suffix-array language model trained
on the combined corpora and a 4-gram LM, with Kneser-
Ney smoothing, obtained by interpolating LMs trained on
the three individual corpora to minimized perplexity on the
development-set. A re-ordering window of 6 was applied
during decoding. Scaling factors for feature functions were
optimized via MERT on the development-set. Translation
was performed using a lower-case target (English) and case-
recovery was performed using noisy-channel-model.

The baseline system obtained a case-sensitive BLEU
score of 0.2172 on the held-out evaluation set.

3.3. Punctuation Recovery for J→E SLT

The handling of punctuation in SLT (spoken language trans-
lation) is important not only to improve the readability of the
translation output, but also for its role during word-alignment
and phrase-extraction. One traditional approach to recover
punctuation in SLT is to disregard it during translation and
then re-generate it on the target side via a HELM (hidden-



Table 2:Training Corpora used for the UKA/CMU Japanese-to-EnglishTranslation System

No. Sent. No. Tokens Avg. Sent. Length OOV Rate Target-side ppl
Corpora Name Pairs Source Target Source Target (Source) (Vocab Size=70k)

1 IWSLT provided 39,953 429,010 381,776 10.74 9.56 1.6% 71.5
2 IWSLT devsets 1-3 24,192 212,256 204,387 8.77 8.45 10.4% 128.5
3 Tanaka Corpora [6] 155,340 1,706,683 1,367,354 11.52 9.23 1.8% 119.1

JENAAD [7] 179,299 6,233,303 5,477,149 24.64 30.44 3.0% 269.1
Reuters [7] 66,284 2,603,865 1,998,587 37.13 28.50 12.1% 415.0

Combined (1, 2, 3) 219,485 2,356,949 1,953,517 10.92 9.06 0.7% 65.3

event language model). This technique was applied in [10].
However, there are three drawbacks to this approach: first,
this approach is limited by the translation accuracy of the
system; second, as punctuation landmarks are discarded, the
accuracy of word-alignment will be degraded during phrase
extraction; and third, it is non-trivial to incorporate acoustic
cues when estimating target-side punctuation. To improve
the accuracy of our translation system we compared three ap-
proaches to automatically recover punctuation during trans-
lation: HELM-based punctuation recovery on the source or
target-side, and punctuation recovery via SMT.

First, the effectiveness of punctuation recovery on the
input source was evaluated. A HELM was trained on the
source-side of the training corpora to estimate both sentence-
boundaries and secondary punctuation (in this work only
commas are considered). This model was then applied to
the manual transcripts and 1-best ASR output of the held-
out evaluation set. Accuracy was evaluated by comparing
the output hypothesis to manually annotated reference. Pre-
cision, recall and F-score are shown in Table 3. Punctua-
tion recovery using a HELM obtained F-scores of 97.3% and
96.2% for sentence boundaries, when applied to the man-
ual transcripts and 1-best hypotheses, respectively. For sec-
ondary punctuation (commas) F-scores of 57.5%, and 54.3%
were obtained.

Source-side recovery of sentence-boundaries via a
HELM obtained high accuracy and performance was not sig-
nificantly degraded by speech recognition errors. Thus, this
approach was applied in the remaining experiments. For sec-
ondary punctuation, however, although precision was high,
recall was below 50%. This could be due to inconsistent an-
notation between the training corpora and evaluation set.

Next, to improve the handling of secondary punctu-
ation within SMT the effectiveness of three approaches
were compared: HELM-based punctuation recovery on the
source (“Source”) or target (“Target”) sides, and estimation
of target-side punctuation via SMT “SMT”, which involves
translating from a source with no secondary punctuation to
a target with full punctuation. For comparison the perfor-
mance for manually annotated punctuation (“Manual”) was
also evaluated. The performance of these four systems are
shown in Figure 1 when applied to the manual transcripts
and 1-best ASR hypotheses.

For the J→E IWSLT task, source-side punctuation-
recovery obtained the highest translation performance for
both the manual transcription and ASR cases. Furthermore,
this approach obtained performance close to that obtained
by manually annotation. Source-side punctuation-recovery
seems to be effective for this task due to the limited domain.
Also, the high ASR-accuracy of this task limits degradation
due to recognition errors. In future work, we intend to ex-
tent this approach to incorporate prosodic features, and to
improve robustness by considering source-side punctuation
in probabilistic manner within SMT decoding.

3.4. Incorporating Topic-Knowledge into SMT

Table 4:Effectiveness of N-best list rescoring with different
feature sets on Held-out Evaluation Set (BLEU lowercase)

Baseline TDLM TC TDLM + TC
0.2432 0.2662 0.2709 0.2678

TDLM: Topic-dependent language model
TC: Topic-confidence scores

To incorporatetopic-knowledge into the SMT framework
we investigated two sets oftopic-features: topic-dependent
language model score and topic confidence scores. These
features were calculated over an entire translation hypothe-
sis and thus could not be easily incorporated into the beam-
search-decoder. Instead, a largeN -best list was generated
in the first pass, and this was re-scored using feature-scores
generated during the 1st-pass decoding and the additional
topic-features described below. The scaling factors for the
combined feature-set were optimized via MERT on the de-
velopment set.

The first feature we investigated was a topic-dependent
LM score “TDLM”. For each utterance a singletopic-class
was selected based on the topic classification result of the
1-best translation result. The log probability of the relevant
topic-dependent LM was then calculated and used as an addi-
tional feature duringN -best list re-scoring. The assumption
is that a topic-dependent LM will better discriminate between
acceptable and bad translations for a specific topic-class than
a background language model trained over the entire corpus.

The second set of features we investigated were topic-
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Figure 2: Improvements of the J→E system on the
IWSLT2006 evaluation set

confidence scores “TC”. For each translation hypothesis
topic-confidence scores were calculated for all topic classes.
These scores were then added as additional features during
re-scoring. Topic confidence scores were generated using
SVM-based topic classifiers. Rather than only considering
word identity features during classification, 2-gram, 3-gram
features were also incorporated. It was observed that flu-
ent translation hypotheses obtained high topic-confidencefor
a singletopic-class, where as, poor translations, especially
those that were semantically incoherent, typically had low
confidence across all classifiers. In this manner the topic-
classification scores provide a measure of topic-consistency.

As topic labels did not exist for the training corpora, we
generated pseudotopic-classes by applying hierarchical clus-
tering to the target-side of the training data. Clustering was
performed to minimize overall perplexity. For eachtopic-
cluster a 4-gram LM and SVM-based topic classifier were
trained. In the evaluation system eighttopic-classes were
used. The effectiveness ofN -best list rescoring incorporat-
ing the two sets of features described above are shown in
Table 4.

On the held-out evaluation set (devset5), the high-
est translation score was obtained by incorporating topic-
confidence features during re-scoring (“TC”). Incorporating
the topic-dependent LM feature improved performance com-
pared to the baseline system, however, this feature tended
to over-generate words in the translation hypothesis, thusde-
grading performance when combined with the “TC” features.

3.5. The CMU-UKA J→E Submission System

For the CMU-UKA J→E submission system, first, source-
side punctuation recovery was applied using the approach de-
scribed in Section 3.3. Next, 1000-best translation hypothe-
ses were generated for each input utterance using the phrase-
based SMT system described in Section 3.2. Finally, N-best
list rescoring was performed. In this step, topic-consistency
scores were computed independently for each translation hy-
pothesis, and these scores were incorporated into the log-

linear translation model. The hypothesis with maximum like-
lihood after re-scoring was output as the final translation re-
sult. For the spoken language translation task, MERT was
applied to the 1-best ASR hypotheses from the development
set rather than to the manual transcriptions as was the case
for the correct recognition result task.

Our 2007 system significantly improved translation qual-
ity compared to our 2006 submission. Figure 2 shows the
improvements gained for each approach.

4. Syntax Augmented SMT for
Chinese-to-English Translation

There is currently intense interest in the application of hierar-
chical and syntax driven models for statistical machine trans-
lation. These models seek to address the problem of gener-
ating fluent, well structured target language output under the
premise that human language is essentially hierarchical inits
generation. Hierarchical approaches gain their representa-
tional power by allowing transformation rules to condition
on larger fragments of target language tree structure. The
application of hierarchically structured models to statistical
machine translation requires the development of techniques
to induce and estimate transformation rules from parallel data
(grammar induction), and efficient algorithms to apply these
rules to translate source language text (decoding).

In recent work [11], we presented the first results that
leverage target language syntactic structure to achieve higher
performance than comparable phrase based translation. [12]
presents results that show the impact of hierarchical structure
alone, and [13] achieves significant improvements using tree-
to-string transformations.

For the Chinese-to-English task, we used the latest ver-
sion of the Syntax-Augmented Machine Translation (SAMT)
system first described in [11]. The system is available open-
source under the GNU General Public License at:
www.cs.cmu.edu/˜zollmann/samt

4.1. Synchronous Grammars for SMT

Probabilistic synchronous context-free grammars (PSCFGs)
are defined by a source terminal set (source vocabulary)TS ,
a target terminal set (target vocabulary)TT , a shared nonter-
minal setN and induce rules of the form

X → 〈γ, α,∼, w〉

where

• X ∈ N is a nonterminal,

• γ ∈ (N ∪ TS)∗ is a sequence of nonterminals and source
terminals,

• α ∈ (N ∪ TT )∗ is a sequence of nonterminals and target
terminals,

• the count#NT(γ) of nonterminal tokens inγ is equal to
the count#NT(α) of nonterminal tokens inα,



• ∼: {1, . . . ,#NT(γ)} → {1, . . . ,#NT(α)} is a one-to-
one mapping from nonterminal tokens inγ to nonterminal
tokens inα, and

• w ∈ [0,∞) is a nonnegative real-valued weight assigned
to the rule.

In our notation, we will assume∼ to be implicitly defined
by indexing the NT occurrences inγ from left to right start-
ing with 1, and by indexing the NT occurrences inα by the
indices of their corresponding counterparts inγ. Syntax-
oriented PSCFG approaches often ignore source structure,
instead focusing on generating syntactically well-formedtar-
get derivations. [12] use a single nonterminal category, [14]
use syntactic constituents for the PSCFG nonterminal set,
and [11] take advantage of CCG [15] inspired “slash” and
“plus” categories.

4.2. Grammar Induction

The SAMT model generates a PSCFG given parallel sen-
tence pairs〈f, e〉, a parse treeπ for eache, the maximum
a posterioriword alignmenta over〈f, e〉, and a set of phrase
pairsPhrases(a) identified by any alignment-driven phrase
induction technique such as e.g. [16].

Each phrase inPhrases(a) is first annotated with a syn-
tactic category to produce initialrules, whereγ is set to the
source side of the phrase,α is set to the target side of the
phrase, andX is assigned based on the corresponding target
side span inπ. If the target span of the phrase does not match
a constituent inπ, heuristics are used to assign categories that
correspond to partial rewriting of the tree. These heuristics
first consider concatenation operations, forming categories
like “NP+VP”, and then resort to CCG style “slash” cate-
gories like “NP/NN.” Preference for the concatenation oper-
ations over the slash categories is based on the assumption
that categories closer to the leaves of the tree are more ac-
curate and more strongly tied to the words than categories
higher up the tree.

To illustrate this annotation process, we consider the
following French-English sentence pair and selected phrase
pairs obtained by phrase induction on an automatically pro-
duced alignmenta:

f = il ne va pas

e = he does not go

il : he

va : go

ne va pas : not go

il ne va pas : he does not go

The alignmenta with the associated target side parse tree
is shown in Fig. 3 in the alignment visualization style defined
by [14]. Matching the target span of each phrase with the
parseπ, we generate the following initial rules.

S

qqqqqqq

MMMMMMM

NP VP

qqqqqqq

MMMMMMM

PRN AUX RB VB

he does not

qqqqqqq

MMMMMMM
go

qqqqqqq

il ne va pas

Figure 3: Alignment graph (word alignment and target parse
tree) for a French-English sentence pair.

PRP → il , he

VB → va, go

RB+VB → ne va pas, not go

S → il ne va pas, he does not go

Note that the third rule illustrates the use of concatenation
categories to identify syntactic categories. These initial rules
form the lexical basis for generalized rules that include la-
beled syntactic categories inγ andα. Following the Data-
Oriented Parsing [17] inspired rule generalization technique
proposed by [12], one can now generalize eachidentified
rule (initial or already partially generalized)

N → f1 . . . fm/e1 . . . en

for which there is aninitial rule

M → fi . . . fu/ej . . . ev

where1 ≤ i < u ≤ m and1 ≤ j < v ≤ n, to obtain a new
rule

N → f1 . . . fi−1Mkfu+1 . . . fm/e1 . . . ej−1Mkev+1 . . . en

wherek is an index for the nonterminalM that indicates
the one-to-one correspondence between the newM tokens
on the two sides (it is not in the space of word indices like
i, j, u, v,m, n). The recursive form of this generalization op-
eration allows the generation of rules with multiple nontermi-
nal symbols. Note that since we only generalize over initial
rules, this operation has polynomial runtime as a function of
|Phrases(a)|.

The initial rules listed above can be generalized to addi-
tionally extract the following rules fromf, e.



S → PRP1 ne va pas, PRP1 does not go

S → il ne VB1 pas, he does not VB1
S → il RB+VB1, he does RB+VB1
S → PRP1 RB+VB2, PRP1 does RB+VB2

RB+VB → ne VB1 pas, not VB1

4.3. Decoding

Given a source sentencef , the translation task under a
PSCFG grammar can be expressed analogously to monolin-
gual parsing with a CFG. We find the most likely derivation
D of the input source sentence while reading off the English
translation from this derivation:

ê = tgt

(

arg max
D:src(D)=f

p(D)

)

(1)

wheretgt(D) refers to the target terminal symbols generated
by the derivationD andsrc(D) refers to the source terminal
symbols spanned byD.

Our distributionp over derivations is defined by a log-
linear model. The probability of a derivationD is defined in
terms of the rulesr that are used inD:

p(D) =
pLM (tgt(D))λLM ×

∏

r∈D

∏

i φi(r)
λi

Z(λ)
(2)

whereφi refers to features defined on each rule,pLM is a
n-gram LM probability applied to the target terminal sym-
bols generated by the derivationD, andZ(λ) is a normal-
ization constant chosen such that the probabilities sum up to
one. The computational challenges of this search task (com-
pounded by the integration of the language model) are ad-
dressed elsewhere [18, 19]. All feature weightsλi are trained
in concert with the language model weight via minimum-
error training [3]. Here, we focus on the estimation of the
featurevaluesφ during the grammar induction process. The
feature values are statistics estimated from rule counts.

4.4. Feature Value Statistics

The featuresφ represent multiple criteria by which the de-
coding process can judge the quality of each rule and, by
extension, each derivation. We include both real-valued and
boolean-valued features for each rule. The following proba-
bilistic quantities are estimated and used as feature values:

• p̂(r| lhs(X)) : Probability of a rule given its l.h.s category
• p̂(r| src(r)) : Probability of a rule given its source side
• p̂(r| tgt(r)) : Probability of a rule given its target side
• p̂(ul(src(r)),ul(tgt(r))|ul(src(r)) : Probability of the

unlabeled source and target side of the rule given its un-
labeled source side.

• p̂(ul(src(r)),ul(tgt(r))|ul(tgt(r))) : Probability of the
unlabeled source and target side of the rule given its un-
labeled target side.

where lhs returns the left-hand-side of a rule,src returns
the source sideγ, and tgt returns the target sideα of a
rule r. The functionul removes all syntactic labels from
its arguments, but retains ordering notation. For example,
ul(NP+AUX1does not go) = �1 does not go. The last two
features are extensions to the feature set suggested by [11].
They represent the same kind of relative frequency estimates
commonly used in phrase based systems. Theul function
allows us to calculate these estimates for rules with nonter-
minals as well.

To estimate these probabilistic features, we use maxi-
mum likelihood estimates based on counts of the rules ex-
tracted from the training data. For example,p̂(r|lhs(r))
is estimated by computing#(r)/#(lhs(r)), aggregating
counts from all extracted rules.

As in phrase-based translation model estimation,φ also
contains two lexical weightŝpw(lex(src(r))| lex(tgt(r)))
and p̂w(lex(tgt(r))| lex(src(r))) [20] that are based on the
lexical symbols ofγ, α. These weights are estimated based
on an pair of statistical lexicons that representp̂(s|t), p̂(t|s),
wheres andt are single words in the source and target vo-
cabulary. These word-level translation models are typically
estimated by maximum likelihood, considering the word-to-
word links from “single-best” alignments as evidence.

We also store several boolean and count features inφ: the
rule is purely lexical inα andγ; the rule is purelynon-lexical
in α andγ; the number of target words in the rule.

4.5. Training Corpora

We used the provided 40K sentence BTEC corpus for train-
ing. As successfully employed by some teams in last year’s
competition, we added the development sets (except devset4,
which we used for MER training) to the training corpus as
well. Since each devset source sentencef corresponds to
several referencese1, . . . , en, we added one sentence pair
(f, ei) for each referenceei. The resulting training corpus
comprised of 67645 sentence pairs total.

4.6. The CMU-UKA C→E Submission System

The submitted system was MER-tuned to devset4 towards
the NIST-BLEU metric for 5 iterations, yielding a final score
of 32.5%. The official score of the system during the evalu-
ation was 37.44%. We assume that this was according to the
IBM-BLEU metric.

5. Morphological-Decomposition for Robust
Arabic-to-English SMT

Statistical machine translation relies on a word alignment
model, between source and target language, to extract and
score phrase translations. In current word alignment methods



Training
IWSLT-BTEC 19847 sent. 157,795 Arabic words

189,861 English words
Development Data
IWSLT 04 500 sent. 16 references
IWSLT 05 506 sent. 16 references

Table 5: Arabic - English Data

[2, 21] the one-to-one mapping between tokens in the source
and target language is critical. However, for very diverse
language pairs, i.e. translating between a rich morphology
language such as Arabic and a poor morphology language
such as English, a significant mismatch is present. For this
language-pair, prefixes and suffixes of an Arabic word of-
ten correspond to separate English words. When translating
from Arabic to English, a preprocessing step on Arabic is
necessary to maintain consistency between two languages.

In our A→E submission system we applied full morpho-
logical decomposition to the training corpora using a state-
of-the-art Arabic morphological analyzer [22]. Morpholog-
ical decomposition replaces each word in the training cor-
pora with a sequence of its component morphemesprefix-,
stem, -suffix. This approach also improves the coverage of
the system, enabling it to translate words that do not occur in
the training data, by performing translation at the sub-word,
morpheme level.

The prefix of an Arabic word can be a combination of
conjunction (wa - and), article (Al - the), and preposition
(li - to/for). Its’ suffix can be a pronoun (hm - their/them),
case marker (u, i, a) gender (f - female singular), number, or
voice, etc. Even though many morphemes have an equiva-
lent English translation, some specific morphemes like gen-
der, number, and case markers are redundant and can be dis-
carded when translating to English. Previous work [23], used
knowledge of the Arabic language to explicitly remove in-
flectional features from Arabic text before translation.

In this work, we attempt to discard non-informative mor-
phemes using a data driven approach. First, Arabic full mor-
phology analysis and English text are passed to Giza++ word
alignment toolkit [24]. Figure 4 shows the fertility distri-
butions of Arabic morphemes from this alignment for the
training corpora defined below. Morphemes that are not
aligned to any English word are indicated by high zero-
fertility probability. These morphemes must be discarded
to reduce NULL alignments and balance sentence length be-
tween the Arabic and English data. Morphemes for which the
zero-fertility are greater than a thresholdθth are discarded
from the Arabic text. The thresholdθth is selected to maxi-
mize translation quality (BLEU) on a development set.

In the experimental evaluation, the “IWSLT A→E pro-
vided data” was used for system training. This corpus
consists of about 20K sentence pairs. The IWSLT04 and
IWSLT05 A→E evaluation sets were used as development
sets. Details of the training and development data are de-
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scribed in Table 5. From157, 795 original Arabic words, we
obtained294, 678 morphemes. This compares to189, 861
English words. Phrase extraction was performed using the
Pharaoh training scripts [20], our STTK decoder, described
in Section 2, was applied for decoding.

In our experiments, IWSLT04 and IWSLT05 are alterna-
tively used one as a development set and the other as an un-
seen test set. Figure 5 shows the translation quality (BLEU)
when different thresholds ofθth are applied to discard mor-
phemes. The threshold also relates to the percentage of mor-
phemes discarded. In Figure 5, the solid lines indicate the
translation accuracy of the development-set and the dotted
lines indicate the performance on the unseen test set. When
IWSLT04 was applied as the development set, the highest
BLEU score was obtained when 30% of morphemes were
discarded. For the IWSLT05 case discarding 40% of mor-
phemes obtained the highest score.



Original With
Test Set Arabic Morphology

Dev. IWSLT04 IWSLT04 0.5758 0.5970 (+2.1)
(remove 30%) IWSLT05 0.5573 0.5631 (+0.8)
Dev. IWSLT05 IWSLT04 0.5583 0.5742 (+1.6)
(remove 40%) IWSLT05 0.5756 0.5974 (+2.2)

Table 6: IWSLT04 and IWSLT05 results

Table 6 compares the translation quality (BLEU) of the
baseline system, trained using the original Arabic word-
tokens only, and the proposed approach, incorporating mor-
phological decomposition. On the held-out evaluation sets,
an improvement in BLEU of 0.8 and 1.6 points were obtained
for the IWSLT05 and IWSLT04 sets, respectively.

5.1. The CMU-UKA A→E Submission System

The above system was applied to the IWSLT 2007 A→E spo-
ken language translation and clean text tasks. Punctuation
normalization and morphological decomposition was applied
to the clean Arabic text. For the clean text task the IWSLT05
set was used for parameter tuning and 40% of morphemes
were discarded. By incorporating morphological decompo-
sition into the SMT framework our A→E submission sys-
tem obtained a BLEU-score of 0.4463 on the IWSLT 2007
“clean text” evaluation set. For the spoken language trans-
lation task, the IWSLT06 set was used for parameter tuning
and on this task, our A→E SMT system obtained a BLEU-
score of 0.3756.

6. Conclusion

In this IWSLT evaluation, we investigated several new
approaches: source-side punctuation recovery,N -Best
list rescoring incorporating topic-confidence scores,
morphological decomposition for A→E translation and
Syntax-Augmented SMT. These approaches proved effective
for the language-pairs they were evaluated on and we expect
further improvement by combining these techniques.
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