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Abstract

We present the University of Edinburgh’s submission for the
IWSLT 2007 shared task. Our efforts focused on adapting
our statistical machine translation system to the open data
conditions for the Italian-English task of the evaluation cam-
paign. We examine the challenges of building a system with
a limited set of in-domain development data (SITAL), a small
training corpus in a related but distinct domain (BTEC), and
a large out of domain corpus (Europarl). We concentrated on
the corrected text track, and present additional results of our
experiments using the open-source Moses MT system with
speech input.

1. Introduction
The IWSLT 2007 shared task offered the University of Ed-
inburgh a chance to expand our experience with spoken lan-
guage translation and with translation using data from multi-
ple corpora. We focused on the Italian-English challenge task
because it offered a chance to explore spontaneous speech as
well as an opportunity to use a corpus we are familiar with,
Europarl[1], as an additional data resource.

In this paper we first present a summary of the phrase-
based statistical machine translation system used for this
shared task. We go on to discuss the data sources we used
to train the system, and show the results of our analysis of
the domains of the development test data sets compared to
the corpora used for training.

Having explained the framework and data used, in Sec-
tion 5 we present the results of our experiments in cross-
domain adaptation. In Section 6 we describe the experiments
we conducted with ASR inputs to our system.

2. Framework
2.1. The Moses MT system

The open source Moses[2] MT system was originally devel-
oped at the University of Edinburgh. It received a major
boost through a 2006 Johns Hopkins workshop, and is now
used at several academic institutions as the basic infrastruc-
ture for statistical machine translation research.

The Moses system is an implementation of the phrase-
based machine translation approach[3]. In this approach,
an input sentence is first split into text chunks (so-called
phrases), which are then mapped one-to-one to target phrases
using a large phrase translation table. Phrases may be re-
ordered, but typically a maximum movement reordering limit
is used.

Phrase translation probabilities, reordering probabilities
and language model probabilities are combined to give each
possible sentence translation a score. The best-scoring trans-
lation is searched for by the decoding algorithm and out-
putted by the system as the best translation. The different
system components hi (phrase translation probabilities, lan-
guage model, etc.) are combined in a log-linear model to
obtain the score for the translation e of an input sentence f:

score(e, f) = exp
∑

i

λi hi(e, f) (1)

The weights of the components λi are set by minimum
error rate training on held-out development data[4]. The ba-
sic components used in our experiments are:

• two phrase translation probabilities (both p(e|f) and
p(f |e))

• two word translation probabilities (both p(e|f) and
p(f |e))

• phrase count
• output word count
• language model
• distance-based reordering model
• lexicalised reordering model

For a more detailed description of this model, please refer
to [5].

2.2. Lexicalised reordering

There are various models for reordering words to match the
target language’s word order. A simplistic method is distance
based reordering, which uses a factor δn to penalise move-
ments over n words. Moses also implements a more sophis-
ticated method called lexicalised reordering[5] which pays



the BLEU score of the system (Papineni et al., 2002) as the

optimisation metric.

2.1.1. Phrase and Lexical Translation Probability

Features

The most important component of the system is the phrase

translation probability table. To create the phrase transla-

tion table, we extracted phrase pairs from the training cor-

pus by first aligning the words in the corpus and extracting

phrase pairs that are consistent with the word alignment.

We then assign probabilities to the obtained phrase trans-

lations. By now, inducing phrase-based translation models

from word-level alignments is common practice in SMT.

We obtained word alignments by using the GIZA++ toolkit

(Och and Ney, 2003) on the training corpus in both transla-

tion directions. The two sets of alignments were then sym-

metrised using the grow-diag-final method previously de-

scribed in Koehn et al. (2005a). This particular method of

symmetrising — called the refined method (Och and Ney,

2003) — overcomes the inability of the IBM Models im-

plemented in GIZA++ to map one target (English) word to

multiple source (foreign) words.

Next, we collected phrase pairs that were consistent with

the word-level alignments that were extracted. We define a

consistent phrase pair as one where the words in the phrase

pair are aligned to only with each other, and no words out-

side of the phrase pair are aligned to any words in the phrase

pair. The extracted phrase pairs were assigned probabilities

by unsmoothed relative frequency, and the translation prob-

abilities were lexically weighted as in (Koehn et al., 2003).

2.1.2. The Word and Phrase Penalties

The word and phrase penalties simply add a constant fac-

tor for each word or phrase generated, to bias the model

towards shorter output.

2.1.3. The Reordering Model Features

The basic reordering model only considers the linear dis-

tance that a phrase needs to be moved in order to align with

its translation. This movement distance is measured on the

foreign side. The linear reordering penalty simply adds a

cost factor, δn, for all movements over n words.
Our system also includes a lexicalised reordering model

(Koehn et al., 2005a) as a feature. For each phrase pair,

we learn how likely it is to either directly follow the previ-

ous phrase (monotone), to swap positions with a previous

phrase (swap), or to not connect to the previous phrase at

all (discontinuous). These three types of reordering are il-

lustrated in Figure 2.

Reordering is modeled in a bidirectional manner, taking

into account both the previous and the next translated

phrases. The phrase pairs are classified by reordering type

during extraction, based on their alignments within the sen-

tence grid:

• monotone: a word alignment point to the top left exists

• swap: an alignment point to the top right exists

• discontinuous: no alignment points to the top left nor
top right

Figure 2: Possible orientations of phrases: monotone (m),

swap (s), or discontinuous (d)

By smoothing the counts from classifying the phrase pairs

by reordering type, we can estimate orientation probability

distributions:

pr(orientation|ē, f̄)

2.1.4. Language Model Score

During decoding, the candidate translation is created from

left to right. As target translation hypotheses are created in

our baseline system, their language model score is com-

puted by conditioning on the two previous target words

already generated. This is the standard trigram language

model.

For example:

p(Mary did not slap) = p(Mary|START, START )×
p(did|Mary, START )×
p(not|Mary did)×
p(slap|did not)

One of the recent additions to our system is the ability to

use higher-order languagemodels during decoding, and this

TC-STAR translation task presented us with the opportu-

nity to test it. For example, when our system is run using

a 4-gram language model, the phrase in Equation 2.1.4. is

scored as:

p(Mary did not slap) = p(Mary|START )×
p(did|Mary, START )×
p(not|START Mary did)×
p(slap|Mary did not)

We used the SRI Language Modeling toolkit (Stolcke,

2002) to train smoothed 3-gram, 4-gram (without 4gram

singletons) and 5-gram (without 4gram and 5gram single-

tons) language models for both Spanish and English on the

respective monolingual training datasets provided.

2.2. Recaser

Our standard translation system is trained on and pro-

duces lowercased text. As the TC-STAR evaluation was on

original-cased data, we implemented a recaser to capitalise

our output translations.

The recaser is a log-linear translation system with only two

component features, a translation model and a language

model. The decoding task then is to find the most probable
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Figure 1: Possible orientations of phrases: monotone (m),
swap (s), or discontinuous (d).

attention to the identity of the phrases being used. In lexi-
calised reordering, we learn for each phrase pair how likely
it is to directly follow the previous phrase (monotone), to
swap positions with the previous phrase (swap), or to not be
connected at all with the previous phrase (discontinuous). An
illustration of this is provided in Fig. 1.

We use bidirectional reordering, taking both the next and
previous translated phrase into account [6]. As described
above, phrase pairs are collected and classified based on their
reordering type relative to other phrase alignments generated
from the sentence pair:

• monotone: a word alignment point to the top left exists
• swap: an alignment point to the top right exists
• discontinuous: no alignment points to the top left nor

top right

We can use the counts from this classification to learn a
smoothed orientation probability distribution:

pr(orientation|ē, f̄) (2)

3. Training data
The IWSLT evaluation campaign for 2007 featured only the
open data condition. One set of training data was provided
in the BTEC domain. Five development sets were provided
in the BTEC domain and one in the SITAL domain. For this
evaluation, we chose to focus on the cleaned text transcrip-
tions of the ASR data.

3.1. Corpora

A small BTEC corpus was provided. We used the raw Eu-
roparl data available online1 to align over 800,000 Italian-
English sentences and construct a corpus providing addi-
tional coverage for our translation system. See Table 1 for
full corpora statistics.

3.2. Development data

Six development sets were provided for tuning and testing.
Three of the sets (devsets 1, 2 and 3) did not provide ASR

1http://www.statmt.org/europarl

Table 1: Statistics for BTEC and Europarl training corpora
and extracted phrase tables.

BTEC Italian English
Sentences 19,972
Words 147,564 188,961
Phrase table entries 314,874
EUROPARL Italian English
Sentences 868,047
Words 22,586,316 25,267,363
Phrase table entries 49,018,026

inputs. We focused on devsets 4, 5a, and 5b which contained
non-punctuated Italian inputs and cased, punctuated English
outputs. The inputs consisted of both ASR and cleaned text
data. We converted the SLF inputs to a confusion network
format that could be read by the Moses decoder. Addition-
ally, we used the 1-best text input as another form of ASR
data.

3.3. Punctuation adjustments

There is no punctuation in the BTEC and SITAL develop-
ment sets that were derived from ASR. We addressed this by
stripping punctuation from the source side for both Europarl
and BTEC training corpora, thus creating an MT system that
translates from un-punctuated Italian to punctuated English.
The target side language model was capable of judging most
punctuation re-insertion issues, and we added a small post-
processing script to eliminate multiple punctuation and en-
sure final punctuation.

4. Phrase table coverage and domain
perplexity

A condition unique to the IWSLT 2007 Challenge Tasks is
that the test set is not from the same domain as the training
corpus. The BTEC corpus and development sets are tourism-
related sentences, and the SITAL data consists of dialogues
between customers and phone operators at a travel agency.
To analyse how similar the SITAL data was to the BTEC and
Europarl corpora, we compared test sets from each of the 3
domains:

• Europarl: WMT07 test2007 (2000 lines)2

• BTEC: IWSLT07 devset4 (489 lines) and devset5a
(500 lines)

• SITAL: IWSLT07 devset5b (996 lines)

2For the Europarl test set, we extracted the Italian sentences that were
aligned with the English test set sentences used in the ACL 2007 Workshop
on Machine Translation shared task. The shared task at this workshop used
only English, Spanish, French, and German Europarl data, so we used the
heldout portion of the Europarl corpus to locate the Italian versions of the
same test set sentences.
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Figure 2: Phrase coverage within the BTEC phrase table for
each test set (test set domain in parentheses).

By using in-domain test sets as a baseline, we can see
how much coverage each corpus’s phrase table gives to the
SITAL data. One way to measure how close our test data is
to our training data is to look at the perplexity with respect
to a language model. We trained a 5-gram language model
using SRILM[7] on the source side of each of the BTEC and
Europarl corpora, and computed the perplexity of each of the
test sets. This is shown in Table 2.

Table 2: Source side language model perplexity: test2007 is
out of domain for the BTEC corpus, devset4 and devset5a
are out of domain for Europarl. Devset5b is out of domain
for both corpora.

Test Set LM
Test Set Domain Corpus Perplexity
test2007 Europarl BTEC 982.876
devset4 BTEC BTEC 171.67
devset5a BTEC BTEC 184.161
devset5b SITAL BTEC 311.835
test2007 Europarl Europarl 94.2004
devset4 BTEC Europarl 1294.4
devset5a BTEC Europarl 1139.26
devset5b SITAL Europarl 1868.88

From these two measures we can see that language model
perplexity is much lower for the in-domain conditions. This
gives us an idea of the “distance” between the domains of
each test set. Devsets 4 and 5a are both in the BTEC corpus
domain, and they have a similarly low perplexity with respect
to that language model. As expected, the test2007 set has
the lowest perplexity on the Europarl language model when
compared to other sets. Interestingly, devset5b does not have
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Figure 3: Phrase coverage within the Europarl phrase table
for each test set (test set domain in parentheses).

as low of a perplexity as devsets 4 and 5a on either LM. This
would seem to indicate that there is a difference in language
between the SITAL data and the BTEC data.

In Figs. 2 and 3, we examine this relationship from the
perspective of the phrase tables. We enumerated all phrases
up to length 7 (our phrase table maximum) in each test set,
and recorded what percentages of the unique phrases in each
set were covered by the BTEC and Europarl phrase tables.
Again, we see that the overall best coverage for a test set is
provided by its in-domain phrase table (Europarl for test2007
and BTEC for devset4 and devset5a). In general, devset5b
has fewer matches than the in-domain sets for both phrase
tables.

A subtle difference between devset5b and the BTEC test
data (devset4, devset5a) is revealed in the unigram coverage
for each test set. Devset5b actually has better single-word
coverage than the two BTEC sets when measured on the Eu-
roparl phrase table, and falls between them on the BTEC
phrase table. However, the coverage drops lower than the
BTEC sets as soon as we consider phrases of two or more
words. While the single word vocabulary has better cover-
age, multi-word phrases are not matched as well.

We can see a possible explanation by looking at the num-
ber of unique words in each of the test sets. To control for
set length, we examine the unigram and bigram counts only
for the first 4,976 words of each file (the shortest test set,
devset4, is 4,976 words long). This is shown in Table 3.

The SITAL set, devset5b, has less than half the number
of unique words compared to the vocabulary of the other test
sets. While many of these single words are present in both
the BTEC and Europarl phrase tables, the bigrams they form
are not. This may be a symptom of the devset5b SITAL data
being spontaneous speech. Devset5b has a smaller set of vo-



Table 3: Unique unigram and bigram phrase table coverage
in the first 4,976 words of each test set.

UNIGRAM COVERAGE

Unique BTEC Europarl
Test Set Unigrams Coverage Coverage
test2007 1737 788 (45.4%) 1721 (99.1%)
devset4 1234 1000 (81.0%) 1133 (91.8%)
devset5a 1331 1040 (78.1%) 1212 (91.1%)
devset5b 600 497 (82.8%) 564 (94.0%)

BIGRAM COVERAGE

Unique BTEC Europarl
Test Set Bigrams Coverage Coverage
test2007 5747 1361 (23.7%) 5226 (90.9%)
devset4 4537 2441 (53.8%) 3110 (68.5%)
devset5a 4789 2498 (52.2%) 3303 (69.0%)
devset5b 2984 1292 (43.3%) 1900 (63.7%)

cabulary, but those words are arranged in n-grams that are un-
common in both the BTEC and Europarl styles of language.

5. Experiments in cross-domain adaptation
Given that the official test set for the evaluation would be in
a domain not ideally covered by either corpus, we attempted
to make all the data from each separate corpus available to
the decoder. This can be looked at as a form of mixture mod-
elling or cross-domain adaptation. There has been extensive
research in the area of adapting SMT systems to new do-
mains. Recent work has distinguished between cross-domain
adaptation, where the domain of the test data is known ahead
of time, and dynamic adaptation, where the system must
adapt to the test domain on-the-fly without the ability to tune
ahead of time[8]. In both cases, models from each domain-
specific corpus are trained separately, and weighted relative
to their fit with the test domain.

In this case, the domain of the test set (SITAL) is known
ahead of time. Given that there was only one set of devel-
opment test data in the domain of the final test set, we chose
to split devset5b into two equal halves, using one half for
tuning and one half for testing. We refer to these sets below
as devset5b-tune and devset5b-test. To minimise vocabulary
shifts between individual dialogue sessions and speakers, we
shuffled the sentences before splitting.

5.1. Single corpus

In these tests we used either the BTEC or Europarl corpus,
and had only one phrase table, lexicalised reordering table,
and language model. There is no adaptation in these cases,
but each model is tuned to the SITAL data in devset5b-tune.

5.2. Corpus combination

The simplest way to combine two corpora is to append one to
the other and train the system as if the data was from one cor-

pus. Similar to single domain systems, there is still only one
set of tables and language model. It is possible to do coarse
weighting in this condition by duplicating the contents of
one corpus multiple times within the file before training the
system[9]. We conducted multiple experiments, incremen-
tally increasing the number of copies of the smaller BTEC
corpus from 1 to 8. We report our best results, which were
obtained with a combination of six copies of BTEC and one
copy of Europarl.

5.3. Separate corpora

In line with recent approaches to cross-domain adaptation,
we take the components created from training each corpus
separately and combine them at decoding time within one
translation model. Using Moses’ architecture, we can add a
second language model and reordering model as additional,
separate features in the model. In addition, we can use the
multiple alternative decoding paths functionality to utilise
multiple phrase tables[10]. We use two decoding paths (one
for each corpus), each consisting of only one translation step.

Like our previous approach to domain adaptation[11], we
maintain two separate phrase tables and language models.
Unlike our previous work, we allow for two reordering ta-
bles, instead of one combined table as used in the previous
system. While duplicating our previous best setup for sep-
arate language models and phrase tables, we tested using a
BTEC lexicalised reordering table, a Europarl table, a com-
bined table generated during the corpus combination experi-
ment with one copy of each corpus, and finally, two separate
lexicalised reordering tables.

5.4. Cross-domain adaptation results

The results of each of the approaches described above are
presented in Table 4. We show BLEU scores for both 1-
best and text input from devset5b-test. While having one
combined reordering table and two separate reordering ta-
bles produced identical BLEU scores for the devset5b-test
text data, the two table approach had a much better score
on 1-best input.

6. Experiments in ASR input
The Moses MT system is capable of handling ASR input[12].
Previous work has shown that higher-scoring systems can be
produced by using a confusion network than by using the 1-
best ASR output as a text translation source. We investigated
this in the case of the SITAL devset5b speech data, provided
in SLF format.

For the results presented here in Table 5, we used devset4,
devset5a and devset5b-tune as tuning sets, and devset4, de-
vset5a and devset5b-test as development test sets. We tuned
and tested on confusion network (CN), 1-best, and cleaned
text input. For devsets 4 and 5a we did not split into -test
and -tune subsets, so only results on the non-tuned set are
shown. The first three experiments use the single BTEC cor-



Table 4: Cross-domain adaptation results. For each model component, we use the BTEC corpus, the Europarl corpus, a con-
catenation of both in one training instance (Combined), or maintain two separate model components (BTEC, Europarl). Systems
were tuned to devset5b-tune. Scores are shown in %BLEU for devset5b-test text and 1-best inputs.

Phrase lexicalised %BLEU for
Method table(s) LM(s) reordering table(s) TEXT 1-BEST

5.1 Single corpus Europarl Europarl Europarl 15.97 14.54
BTEC BTEC BTEC 19.64 18.54

5.2 Corpus combination Combined Combined Combined 21.51 20.43

5.3 Separate corpora

BTEC, Europarl BTEC, Europarl Europarl 21.54 19.68
BTEC, Europarl BTEC, Europarl BTEC 22.92 20.82
BTEC, Europarl BTEC, Europarl Combined 23.02 20.68
BTEC, Europarl BTEC, Europarl BTEC, Europarl 23.02 21.13

pus translation model. The final setup uses the fully separate
two corpus model described in section 5.3. Scores for de-
vset4 and devset5a are higher at least in part due to multiple
target reference translations for those sets, whereas devset5b-
test has only single references.

As one would expect given previous work, the best ASR
scores for devsets 4 and 5a are found on confusion network
input using weights derived from confusion network tuning.
However, we were unable to obtain satisfactory performance
on the devset5b test set using confusion network input. The
highest score for devset5b-test ASR input is always found in
the 1-BEST column, not the CN column, and three of four
times it is found from weights generated with text input tun-
ing, not 1-best input.

Experiments in cross-domain adaptation for ASR were
unsuccessful for confusion network tuning: due to time and
memory restrictions we were unable to complete tuning runs
for the full separate corpora setup that was our most success-
ful system for cross-domain text translation adaptation.

7. Results
Based on the experiments above, we used the cross-domain
adaptation weights with separate phrase and reordering ta-
bles and language models for each corpus for our official
evaluation submission. Though we ran many experiments
with the confusion network functionality of Moses, we were
unable to satisfactorily tune the final system under confu-
sion network input and had disappointing results with 1-best
tuning. So, for the ASR track we submitted our text-tuned
settings on 1-best input.

8. Conclusions
Our analysis of the SITAL data and experiments in cross-
domain adaptation confirmed the benefits of using multiple
corpora when translating from test sets without a direct in-
domain training corpus, or with limited in-domain training
data.

For the two development test sets within the BTEC do-
main, our ASR results were in agreement with previous work

Table 5: ASR tuning results. All scores are shown in %BLEU.
Best results for a given tuning/test set combination are shown
in bold for ASR (CN or 1-BEST) and cleaned TEXT input
conditions.

BTEC CORPUS Test set devset4
Tuning set TEXT 1-BEST CN
devset5a TEXT 40.12 34.08 34.62
devset5a 1-BEST 40.43 34.31 34.41
devset5a CN 40.99 35.58 36.08
devset5b-tune TEXT 37.96 32.38 32.55
devset5b-tune 1-BEST 37.96 32.43 32.65
devset5b-tune CN 38.15 32.43 32.65
BTEC CORPUS Test set devset5a
Tuning set TEXT 1-BEST CN
devset4 TEXT 37.53 30.84 31.05
devset4 1-BEST 36.97 31.00 31.13
devset4 CN 37.15 31.02 31.21
devset5b-tune TEXT 34.53 29.14 29.10
devset5b-tune 1-BEST 34.93 29.47 29.61
devset5b-tune CN 35.18 29.53 29.63
BTEC CORPUS Test set devset5b-test
Tuning set TEXT 1-BEST CN
devset4 TEXT 19.28 17.76 17.37
devset4 1-BEST 17.69 16.04 15.83
devset4 CN 18.28 16.41 16.63
devset5a TEXT 15.70 14.62 13.78
devset5a 1-BEST 19.55 17.91 17.11
devset5a CN 18.03 16.51 16.13
devset5b-tune TEXT 19.64 18.54 18.42
devset5b-tune 1-BEST 19.52 18.38 18.12
devset5b-tune CN 19.74 18.24 17.94
SEPARATE CORPORA Test set devset5b-test
Tuning set TEXT 1-BEST CN
devset5b-tune TEXT 23.02 21.13 18.61
devset5b-tune 1-BEST 22.75 20.57 18.20
devset5b-tune CN — — —



which suggests confusion network input improves translation
performance over 1-best input. However, these results did
not hold in our attempts to use the SITAL domain devset5b
confusion network training data.

There are a number of possible causes for this result. At
the data creation stage, it is possible that the ASR data is
of a different quality for the SITAL input. During the tun-
ing phase, the lack of multiple references for the SITAL data
may have made tuning less effective. Final scoring may have
been affected by the small number of sentences and single
references, making it difficult to get accurate scores. It is
also possible that the lack of an in-domain training corpus
made it more difficult to translate the noisier ASR inputs.

In future work, we would like to improve the ability of
the Moses system to dynamically cache phrase and reorder-
ing table entries for confusion network input. This would en-
able quicker confusion network decoding with a lower mem-
ory footprint than is currently possible, allowing us to scale
to much larger training corpora. We would also like to test
alternate methods for balancing and tuning multiple corpora
within our system, scaling beyond two sets of training data.
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