
TALN 2006, Leuven, 10-13 avril 2006

Computer Tools for the Management
of Lexicon-Grammar Databases

Javier M. Sastre Martínez
Université de Marne-la-Vallée – IGM

sastre@univ-mlv.fr

Résumé

Le lexique grammaire est une méthode systématique d’analyse et de représentation des structures de phrase
élémentaire d’une langue naturelle ; son produit : des grandes collections de dictionnaires syntaxiques
électroniques ou tables de lexique-grammaire (LGTs). Du travail collaboratif à très long terme est nécessaire
pour achever la description d’une langue. Cependant, les outils informatiques de gestion de LGTs actuels ne
remplissent pas les besoins suivant : intégration automatique de données multisource, controle de cohérence de
données et de versions, filtrage et tri, formats d’échange, gestion couplée des données et de la documentation,
interfaces graphiques (GUIs) dédiées et gestion d’utilisateurs et contrôle d’accès. Dans cet article nous
proposons une solution basée sur PostgreSQL et/ou MySQL (systèmes de gestion de bases de données libres),
Swing (une librairie pour la programmation de GUIs en Java), JDBC (API pour la connectivité de Java aux
bases de données), et StAX (API pour l’analyse et la création des documents en XML).

Mots-clés : table de lexique-grammaire, base de données, interface graphique, XML.

Abstract

Lexicon grammar is a systematic method for the analysis and the representation of the elementary sentence
structures of a natural language producing large collections of syntactic electronic dictionaries or lexicon-
grammar tables (LGTs). In order to describe a language, very long term collaborative work is required.
However, the current computer tools for the management of LGTs do not fulfill key requirements including
automatic integration of multisource data, data coherence and version control, filtering and sorting, exchange
formats, coupled management of data and documentation, dedicated graphical interfaces (GUIs) and user
management and access control. In this paper we propose a solution based on PostgreSQL and/or MySQL (open
source database management systems), Swing (a GUI toolkit for Java), JDBC (the API for Java database
connectivity) and StAX (an API for the analysis and generation of XML documents).

Keywords: Lexicon-grammar table, database, graphic interface, XML.

1. Introduction
Lexicon grammar is a model of syntax focused on the elementary sentences of a natural
language (Gross, 1996). Its major principle is that the unit of meaning is the sentence, but the
word or the words composing the predicative element (PE) of a sentence constraint its
structure. Natural language grammars are too irregular to be described by a set of general
rules (Gross, 1997). Rather than that, the lexicon grammar approach consists in enumerating
the sentence structures for each use of a sentence PE. In order to compact and split the list
into components easy to handle, the structures are classified by similarity into lexicon-
grammar tables (Leclère, 2002) or LGTs. Each table is associated to a common sentence
structure; table columns are associated to variants or differential properties of the common
structure; table rows illustrate the possible structures of a specific sentence PE. Two kinds of
columns are used: boolean and text. The former indicate the acceptability or unacceptability

COMPUTER TOOLS FOR THE MANAGEMENT OF LEXICON-GRAMMAR DATABASES

TALN 2006, Leuven, 10-13 avril 2006

601

of a structure property; e.g.: N1 =: Qu Psubj meaning that the direct object may be a clause in
subjunctive mood introduced by the conjunction que (e.g.: Max aime que Marie lui fasse des
câlins ≈ Max likes that Marie gives him cuddles1). The latter, to point out the use of a specific
word within the sentence (e.g.: the preposition introducing a verb argument; in tomber
amoureux de quelqu’un, only the preposition de can introduce the object complement
quelqu’un as well as in the English version to fall in love with somebody only the preposition
with can introduce the object complement somebody). LGTs can be automatically transformed
into finite state automata (FSTs) in order to perform parsing (Roche, 1993 ; Constant, 2003).
Each table is associated to a set of parameterized FSTs2, which recognize every variant of the
common sentence structure. By instantiating the parameters by the values contained in each
row we obtain the set of FSTs recognizing each particular structure. Other ongoing projects
intend to use LGTs with other parsing frameworks (Garden et al., 2005).

Summarizing, the representation of syntactic structures by means of LGTs benefits from three
important properties:

1. Simplicity: each cell contains a single unit of information, namely the acceptability or
unacceptability of a property or the potential use of a word, and information units are
grouped into tables which can be easily viewed or printed.

2. Exhaustiveness: a large coverage of a natural language can be achieved by the
incremental construction of LGTs, yet many irregularity instances can be taken into
account.

3. Potential exploitability for automatic parsing: it is possible to automatically transform the
tables into FSTs for corpus parsing given a set of parameterized FSTs.

2. State of the art in computer tools for the management of
lexicon grammar databases
LGTs are presently created and maintained using common spreadsheet software, mainly
Microsoft (MS) Excel but also OpenOffice. A Web interface is used for public table view
which implements a rudimentary LGT database indexed by sentence PEs and table codes. The
employed methodology presents several limitations mainly derived from the use of such
tools:

1. Property values are hard-coded as text sequences: ‘+’ and ‘-’ symbols represent
acceptability and unacceptability values respectively (figure 1); unset values (nulls) are
represented by ‘~’ symbols. Editor applications are not explicitly aware of the data
characteristics, thus do not offer a dedicated management depending on data types (e.g.:
appropriate representation of true/false values, correctness control of value codes, etc).

2. These tools do not support network shared objects; every LGT is locally developed and
registered as a file in the author’s computer. In order to share a LGT through the network
the correspondent file is copied into a public Web folder, where its access is limited to
read-only by means of a Web interface (figure 2). The integration of different data sources
must be manually done by locating the last version files, mixing the modifications done
by different authors and recollecting them within a public Web folder. As the number of
files, different file versions and different file copies increases, the integration of the global
database is complicated.

1 Literal translations.
2 Parameterized FSTs are built manually and tested against corpus.

JAVIER M. SASTRE MARTÍNEZ

TALN 2006, Leuven, 10-13 avril 2006

602

3. LGTs can reach a size of a thousand rows and forty columns, resulting in forty-thousand
information units within a single table. Under these conditions, filtering of columns and
rows becomes a need rather than an asset. Selective data access is limited to the search
within a single table of text sequences potentially contained in a single cell. The Web
interface allows direct access to the table or tables containing a specified PE.

4. Problems of software and data portability: MS Excel is meant to be run only on MS
Windows’s platforms3 and uses, by default, a proprietary file format4. MS. Excel allows
for exporting into Unicode (Allen, 2003) plain text files with some extra manual effort,
but a more appropriate solution would be the default use of an XML-based exchange
format (Sastre, 2005).

5. Just for distributional verbs there are already sixty LGTs available, which jointly contain
a set of 428 different properties. Each table and each property is represented by a short
code, which tries to reflect the nature of the referenced object. However, codes may not
always be easily interpreted without the aid of documentation; for example, the code Nnr
(non-restricted noun) indicates if the sentence may accept any subject independently of its
semantic nature (e.g.: human or not human) or syntactic structure, namely a completive or
an infinitival clause (Gross, 1975). Direct access to documentation fragments would be
useful not only for the interpretation of existent data but also to facilitate the creation of
new documentation. Current tools provide direct access to documentation about tables but
not about finer-grained objects like columns. Row documentation is limited to an extra
field within the table containing a general sentence example (figure 1). Examples for each
cell could be added by increasing the number of example columns, but the resultant tables
would be too big to be easily handled without selective data access support.

6. There is no inherent data access control or user management. Private files are simply not
distributed. If a file or a data subset of a file is to be shared, a new file containing the
required data is created and placed within a public Web folder. This complicates data
maintenance because of the increasing number of copies to keep up to date.

N
0

=:
 N

hu
m

N
0

=:
 N

nc

<ENT> au
x

=:
 a

vo
ir

au
x

=:
 ê

tre

1 N
1

=:
 Q

u
P

su
bj

Tc
 =

: p
as

sé

V
c

=:
 d

ev
oi

r

V
0-

in
f W

 =
 P

pv

<OPT>Exemple
+ - achever + - de - - - - Max achève de peindre le mur
+ + aller - - - - + - Max va partir
+ - aller - + jusqu’à - - - - La pluie va jusqu’à tomber
+ + ne aller Nég - + sans + - + - Cette mesure n’ira pas sans créer des troubles
~ ~ s’apprêter ~ ~ à ~ ~ ~ ~ La pluie s’apprête à tomber
+ + arrêter + - de - - - - Luc arrête de travailler

Figure 1. Classic representation of a LGT fragment (LGT 1) under MS Excel

3 MS Windows’s applications may work on other platforms thanks to Windows emulators or Windows

software compatibility layers (e.g.: Wine); however such scenarios may be unacceptable due to the potential
emulation errors and the added complexity to software utilisation.

4 There exist tools able to load MS Excel files (e.g.: OpenOffice), but errors due to format misinterpretation
may happen. Those tools are usually not able to modify MS Excel files, thus access is restricted to read-only.

COMPUTER TOOLS FOR THE MANAGEMENT OF LEXICON-GRAMMAR DATABASES

TALN 2006, Leuven, 10-13 avril 2006

603

Figure 2. Web interface for the visualisation of LGTs

7. The conception of a new LGT involves the identification of a sentence structure class and
its possible variants which are represented by property codes. Some properties are
extensively reused whilst others need to be created for dealing with new scenarios. Due to
the absence of a data coherence control and the increasing number of properties, it
happens that different codes are used to represent the same property in different tables.
This may not be problem for the human reader, but it is a serious obstacle to automatic
management.

3. Computer tools proposal
We propose a computer tool solution based in a Java Web/local client interface from which
the user will be able to manage shared lexicon-grammar databases contained in a PostgreSQL
or a MySQL database server. Clients use JDBC to communicate with the database server.
Each part is explained in detail in the following subsections.

3.1. Java Web/local applications

A very convenient feature of Java (Eckel, 2002) is the possibility of embedding Java
applications within Web pages (Java applets). Applets can be downloaded from the Web and
directly executed on several platforms just by opening their embedding Web pages. An
important drawback is the potential danger of executing malicious code, since we may not
have any control over the software origin. That is the reason why applets are executed, by
default, in a restricted resource access environment called “sandbox” (Gong, 1998). However,
it is possible to digitally sign our software packages in order to provide a mean of ensuring
their authenticity. Once the software packages are signed and deployed on a public Web
server, it is up to the user to trust or not the software Web distributor in order to grant the
same resource access as local applications. By adding some little source code to our typical
Java applications and signing the correspondent software packages it is possible to use the
same software package for local use as well as for Web direct execution. This permits the user

JAVIER M. SASTRE MARTÍNEZ

TALN 2006, Leuven, 10-13 avril 2006

604

to directly execute our application through the Web, thus avoiding the software installation,
or to download the package and execute it locally in order to avoid network transfer overhead.
Both scenarios have been taken into account for our LGT computer tools, the former for
facilitating the diffusion of LGTs and providing an easy and fast way to access them, the
latter for users who constantly work with them. Instead of having to develop two separate
tools, we have developed a single one able to deal with both scenarios.

3.2. The Swing graphical interface

Swing (Loy, 2002) provides a complete framework for the development of graphical
interfaces in Java. Amongst others, it gives a good support for the implementation of tabular
data graphical interfaces. One important requirement was to be able to horizontally scroll a
set of columns whilst keeping static the other ones. Since the LGTs may be larger than the
computer screen, scrolling is necessary for viewing all the data. However the column or
columns containing the PE must remain in view so that we can know at anytime which PE
each row corresponds to. The column containing the example sentence may be required to
remain as well. In figure 3 we can see a LGT split into four column groups: properties
affecting the sentence subject, the PE, complement properties and the examples.

Figure 3. Fragment of LGT 38L, highlighted line correspondent to verb balancer

Figure 4. Fragment of LGT for Korean verbs. A transcription to Latin characters is given

COMPUTER TOOLS FOR THE MANAGEMENT OF LEXICON-GRAMMAR DATABASES

TALN 2006, Leuven, 10-13 avril 2006

605

Another important requirement was to handle LGTs for any language. This is quite
problematic due to the existence of different character coding tables for different language
alphabets. The appropriate character coding table must be selected in order to correctly draw
the correspondent characters, but it may be also necessary to mix different alphabets within
the same table representation (e.g.: to compare tables of different languages). The unique
homogeneous solution is the use of Unicode, a universal character coding system. Java
natively supports Unicode and Java Swing can render Unicode symbols without further
complication (figure 4).

The developed graphical interface represents boolean properties in a specific manner: black
squares for acceptability, white squares for unacceptability and question marks for nulls. The
proposed representation is more convenient for detecting value patterns (e.g.: in figure 4 rows
29 and 30 have the same property values; several columns seem to have constant values).
Invalid codes for boolean values cannot be introduced since the interface responds uniquely
to ‘T’ (true), ‘F’ (false) or DEL (unknown value) key presses.

3.3. The lexicon-grammar database

LGTs can be easily inserted into database systems (Ullman, 1979) due to their similarity with
respect to relational tables. Nowadays there exist reliable and fully functional open source
implementations of database management systems (DBMS), mainly PostgreSQL
(PostgreSQL, 2005) and MySQL (MySQL, 2005). These systems receive and process
requests from client programs formulated in SQL (Structured Query Language) not only for
data creation, access and modification but also for statistical analysis. An immediate
application of LGT statistical analysis is the study of candidate LGT subclasses
(decomposition of LGTs into sets of rows sharing similar value patterns).

Both PostgreSQL and MySQL do correctly manage concurrent database access thanks to the
use of ACID transactions (Häder, 1983). Both provide a graphical interface for the
management of generic databases, users, and access rights; LGTs are created within a
database server from which network access is possible depending on the set permissions.
Both provide data backup mechanisms. Both allow computer programs written in Java or
C++, amongst other languages, direct database access for automatic data processing.

LGT properties are managed by maintaining within the database server a table of every
existent property and its documentation. During the creation of new LGTs, current properties
can be easily consulted in order to avoid the assignation of multiple codes to the same
property. If a new property is to be created, it is added to the property table with its
correspondent documentation. This mechanism provides a fast and direct access to property
characteristics, both useful for the creation and the consultation of LGTs. A table containing
the code and documentation of each LGT is also maintained.

3.4. Communicating with the database through JDBC

The JDBC API provides a universal mechanism to database access for Java clients (Fisher,
2002). The same Java program may access different database systems by loading the
correspondent JDBC driver. Basically, a JDBC driver makes it possible to connect to a data
source, send SQL statements and process the results. Since both PostgreSQL and MySQL
provide such a driver, our LGT management system can rely on both systems without having
to change a single line of source code. Since it is based on SQL, very few commands are
needed in order to perform complex operations on LGTs. For making things even easier, it is
even not necessary to have a perfect knowledge of SQL: the graphical interfaces included

JAVIER M. SASTRE MARTÍNEZ

TALN 2006, Leuven, 10-13 avril 2006

606

with PostgreSQL and MySQL show the SQL statement correspondent to each one of the
requests we compose with mouse clicks and key presses.

3.5. XML data exchange interface

XML (Skonnard, 2001) constitutes a convenient way for the representation of data to be
exchanged amongst computer applications. XML, Unicode and Java technologies converge
into a set of multiple free tools for the generation, analysis and validation of XML documents,
each one following a different approach:

1. Document Object Model (DOM) is a platform independent interface that exposes XML
documents as a tree structure. It loads the whole XML document in memory and then
provides an easy way to access specific parts. Random access to different document parts
is enabled with a memory cost proportional to the document size

2. XML Schema (Vlist, 2002) is a XML-based language for the definition of XML formats.
JAXB (Amstrong, 2005) is a metacompiler that automatically generates Java code for the
analysis, validation and generation of XML documents following a specific XML Schema
description. This is a Java specific solution similar to DOM: a Java object tree is created
in memory representing the whole document.

3. The XMLEncoder (Philip, 2005) provides a way to XML automatic serialization of Java
Beans (DeSoto, 1997). Java Beans are Java classes that follow some naming conventions.
Using the Java reflection mechanism (Green, 2000), XMLEncoder can find out which
data must be registered for the object serialization by inspecting the object structure.
XML documents generated this way are intended to be decoded by the XMLDecoder,
which in turn recreates the original Java object. This is the easiest but most Java specific
solution to XML serialization: we are not able to choose the XML format; it is
automatically generated for the serialization and recreation of Java objects by Java
applications.

4. Document streaming consist in serially parsing XML documents. Random access to
specific parts is not allowed but the resource requirements are often smaller, mainly if we
work with big data objects. Parsed elements may be pushed or pulled from the parser
towards the application. In the first case, the application passively receives and deals with
the events generated by the parser. In the second case, the application actively requests
the XML parsers for data fragments. Examples of push and pull parsers for Java are,
respectively, SAX (Brownell, 2002) and StAX (Amstrong, 2005). SAX provides
document parsing only, StAX both parsing and generation.

Since we do not require random document access, StAX represents the most suitable solution
because it is the minimal resource consumer, the source code required for pull parsing models
is usually simpler than for push parsing models, it can be used not only for reading but also
for writing XML documents and it is not restricted to the use of Java technologies (other
computer applications developed with other computer languages, like C++, may interact with
XML-serialized LGTs).

3.5.1. The XML-LGT format

LGTs are represented by <lgt> tags, e.g.: <lgt name=”38L” version=”1.0” docUri=”
http://···/38L.html”>. The attributes name, version and docUri indicate, respectively, the table
name, format version and the URI where to locate the table documentation. <lgt> tags may
contain a set of <column> tags, one per property column, followed by a set of <row> tags,

COMPUTER TOOLS FOR THE MANAGEMENT OF LEXICON-GRAMMAR DATABASES

TALN 2006, Leuven, 10-13 avril 2006

607

one per table row. <column> tags describe the properties of a column by the following
attribute set: type indicates the property type (“boolean” or “text”), isPrimaryKey indicates
whether a column contains the row identifiers (the sentence PEs) and acceptsNulls whether a
column may contain null values (usually non-primary key columns). <row> tags contain a set
of <value> text tags, one per column. Empty content is used to represent null values (e.g.:
<value/>). “true” and “false” strings indicate true and false values for boolean type columns
(e.g.: <value>true</value>). For text type columns, the correspondent text is the content of
the <value> tag (e.g.: <value>aimer</value>). This representation format is appropriate for
loading tables within a database by a document streaming parser, since the information is
accessed in the optimal order required by a database to create new tables: table name, column
properties and row values.

4. Conclusion
Lexicon grammar is a promising methodology for the collection of syntactic information
which can be later used for automatic parsing. As the work in this field has advanced, the
current used computer tools have begun to show their limitations. In order to ensure the
progress of lexicon-grammar based research, we have proceeded to study the new
requirements, to analyze the current existent free tools which could best fit them, and to
develop a LGT management system based on them. The use of a centralized database serves
as a nexus between linguistic data compilation from human experts and its exploitation by
computer programs. Future work will consist in the study of optimal algorithms for the
conversion of LGTs into FSTs and their implementation for lexicon-grammar based parsing.

5. Acknowledgements
We would like to thank Pr. E. Laporte for his continuous help. This work has been partially
supported by CNRS, the French Ministry of Industry and the Institut de linguistique française.

References
ALLEN J., BECKER J. (2003). The Unicode Standard Version 4.0. The Unicode Consortium,

http://www.unicode.org/versions/Unicode4.0.0/bookmarks.html.
AMSTRONG E., BODOFF S., CARSON D. (2005). The Javatm Web Services Tutorial. Sun Microsystems,

http://java.sun.com/webservices/docs/1.6/tutorial/doc/JavaWSTutorial.pdf.
BROWNELL D. (2002). SAX2. O’Reilly and Associates, Inc., Sebastopol.
CONSTANT M. (2003). “Converting Linguistic Systems of Relational Matrices into Finite State

Transducers”. In Proceedings of the EACL Workshop on Finite-State Methods in Natural
Language Processing. Budapest: 456-465.

DESOTO A. (1997). Using the Beans Development Kit 1.0: A Tutorial. Sun Microsystems,
http://java.sun.com/products/javabeans/docs/Tutorial-Sep97.pdf.

ECKEL B. (2002). Thinking in Java. Prentice-Hall.
FISHER M. (2002). JDBCTM Database Access. Sun Microsystems, http://java.sun.com/docs/books/

tutorial/jdbc/index.html.
GARDEN C., GUILLAUME B., PERRIER G., FALK I. (2005). “Maurice Gross’ Grammar Lexicon and

Natural Language Processing”. In Proceedings of the 2nd Language & Technology Conference.
Poznan.

JAVIER M. SASTRE MARTÍNEZ

TALN 2006, Leuven, 10-13 avril 2006

608

GONG L. (1998). JavaTM 2 Platform Security Architecture. Sun Microsystems, http://java.sun.com/
j2se/1.5.0/docs/guide/security/spec/security-spec.doc.html.

GREEN D. (2000). Reflection API Tutorial. Sun Microsystems, http://java.sun.com/docs/books/
tutorial/reflect/.

GROSS M. (1975). Méthodes en syntaxe. Hermann, Paris.
GROSS M. (1996). “Lexicon Grammar”. In K. Brown and J. Miller (eds). Concise Encyclopedia of

Syntactic Theories. Pergamon Press, Cambridge: 244-258.
GROSS M. (1997). “The Construction of Local Grammars”. In E. Roche and Y. Schabes (eds). Finite

State Language Processing. The MIT Press, Cambridge: 329-352.
HÄDER T., REUTER A. (1983). “Principles of Transaction-Oriented Database Recovery”. In ACM

Computing Surveys 15 (4). ACM Press, New York: 287-317.
LECLERE C. (2002). “Organization of the Lexicon-Grammar of French verbs”. In Lingvisticae

Investigationes 25 (1): 29-48.
LOY M., ECKSTEIN R., WOOD D. (2002). Java Swing. O’Reilly, Paris.
MYSQL AB. (2005). MySQL 5.1 Reference Manual. MySQL AB., http://downloads.mysql.com/docs/

refman-5.1-en.a4.pdf.
PHILIP M. (2005). Using XML Encoder. Sun Microsystems, http://java.sun.com/products/jfc/tsc/

articles/persistence4/.
POSTGRESQL GDG. (2005). PostgreSQL 8.1.0 Documentation. The PostgreSQL Global Development

Group, http://www.postgresql.org/files/documentation/pdf/8.1/postgresql-8.1-A4.pdf.
ROCHE E. (1993). “Une représentation par automate fini des textes et des propriétés

transformationnelles des verbes”. In Lingvisticae Investigationes 17 (1): 189-222.
SASTRE J. (2005). “XML-Based Representation Formats of Local-Grammars for the NLP”. In

Proceedings of the 2nd Language & Technology Conference. Poznan.
SKONNARD A., GUDGIN M. (2001). Essential XML Quick Reference: A Programmer’s Reference to

XML, XPath, XSLT, XML Schema, SOAP and More. Addison-Wesley.
ULLMAN J. (1979). Principles of Database Systems. Computer Science Press, Rockville.
VLIST E. (2002). XML-Schéma. O’Reilly, Paris.

