
Tuning Machine Translation Parameters with SPSA

Patrik Lambert, Rafael E. Banchs

TALP Research Center,
Jordi Girona Salgado 1–3. 08034 Barcelona, Spain

lambert,rbanchs@gps.tsc.upc.edu

Abstract
Most of statistical machine translation systems are combi-
nations of various models, and tuning of the scaling fac-
tors is an important step. However, this optimisation prob-
lem is hard because the objective function has many local
minima and the available algorithms cannot achieve a global
optimum. Consequently, optimisations starting from differ-
ent initial settings can converge to fairly different solutions.
We present tuning experiments with the Simultaneous Per-
turbation Stochastic Approximation (SPSA) algorithm, and
compare them to tuning with the widely used downhill sim-
plex method. With IWSLT 2006 Chinese-English data, both
methods showed similar performance, but SPSA was more
robust to the choice of initial settings.

1. Introduction

Statistical machine translation (SMT) was originally based
on the noisy channel approach [1]. In present SMT systems,
the noisy channel approach has been expanded to a more gen-
eral maximum entropy approach in which a log-linear com-
bination of multiple feature functions is implemented [2].
Translation quality can be improved by adjusting the weight
of each feature function in the log-linear combination. This
can be effectively performed by minimising translation er-
ror over a development corpus for which manually translated
references are available [3].

This minimisation problem in multiple dimensions is dif-
ficult because of three main characteristics of the objective
function. Firstly, it has no analytic representation, so the
gradient cannot be calculated. Secondly, it has many local
minima. Finally, its evaluation has a significant computa-
tional cost (depending on the scheme, it implies translat-
ing the development corpus or re-ranking an n-best list for
this corpus, and calculating some translation error measure).
Gradient may be approximated, but this is costly since it re-
quires typically as many function evaluations as the num-
ber of scaling factors. Thus, algorithms based on deriva-
tives are discarded. Algorithms which require many objec-
tive functions evaluations, such as simulated annealing or
genetic algorithms, are also discarded. Two popular alter-
natives are Powell’s method [4, 5, 3] and the downhill sim-
plex method [6, 5, 7]. In recent experiments at the 2006 John
Hopkins University Summer Workshop on SMT, both meth-

ods achieved similar performance [8]. The simplex method is
self-contained and straightforward and thus widely used for
SMT tuning [7, 9, 10, 11], although it is not very efficient in
terms of number of objective function evaluations for a high
number of dimensions [12].

However, from the authors experience, a slight modifi-
cation of initial parameters in the simplex optimisation can
result in an appreciable difference in both the value of the
local minimum found and the value of the optimal parame-
ters. This difference is transmitted when these parameters are
used to translate a test corpus. When a translation system is
compared to a baseline, the difference arising only from the
tuning process can be even greater than the difference arising
from the two systems differences, leading to insignificant re-
sults. In some data sets, some inconsistencies of the tuning
method have also been reported [13].

In this paper we compare tuning with the Downhill
Simplex method and with the Simultaneous Perturbation
Stochastic Approximation [14] (SPSA) method. SPSA has
been successfully applied in areas including statistical pa-
rameter estimation, simulation-based optimisation, signal
and image processing [15].

This paper is structured as follows. First the essential fea-
tures of the SPSA method are presented. Then in section 3,
objectives and details of the experimental work are given. In
section 4, results are shown and discussed. Finally, some
concluding remarks and perspectives are given.

2. Presentation of SPSA algorithm

The SPSA method is based on a gradient approximation
which requires only two evaluations of the objective func-
tion, regardless of the dimension of the optimisation prob-
lem. This feature makes it especially powerful when the
number of dimensions is increased.

The SPSA procedure is in the general recursive stochastic
approximation form:

λ̂k+1 = λ̂k − akĝk(λ̂k) (1)

whereĝk(λ̂k) is the estimate of the gradientg(λ) ≡ ∂E/∂λ

at the iteratêλk based on the previous mentioned evalua-
tions of the objective function.ak denotes a positive number
that usually gets smaller ask gets larger. Two-sided gradient
approximations involve evaluations ofE(λ̂k + perturbation)

paul
 190

andE(λ̂k − perturbation). In the simultaneous perturbation
approximation, all elements of̂λk are randomly perturbed
together and the approximated gradient vector is:

E(λ̂k + ck∆k)− E(λ̂k − ck∆k)
2ck


1/∆k1

1/∆k2

...
1/∆kN

 (2)

In equation 2,∆k is a perturbation vector of same dimen-
sionN asλ, whose values∆i are computed randomly.ck

denotes a small positive number that usually gets smaller ask
gets larger. Compared to a finite-difference gradient approx-
imation, involvingN times more function evaluations, the
simultaneous approximation causes deviations of the search
path. These deviations are averaged out in reaching a solu-
tion and according to [15], under reasonably general condi-
tions, both gradient approximations achieve the same level of
statistical accuracy for a given number of iterations. Notice
that in general, SPSA converges to a local minimum.

The general form of the algorithm consists of the follow-
ing steps (see section 3.4 for further implementation details):

Step 1 Calculate gain sequencesak andck.

Step 2 Generate the simultaneous perturbation vector∆k.

Step 3 EvaluateE(λ̂k + ck∆k) andE(λ̂k − ck∆k).

Step 4 Approximate the gradient as in equation 2

Step 5 Updateλ estimate as in equation 1

Step 6 Iteration or termination. Return to Step 2 withk +
1 replacingk. Terminate if the maximum number of
iterations have been reached or if there is little change
in several successive iterates.

3. Experimental Settings

3.1. Translation system used

Although the following discussion would be valid in many
contexts, and in particular for any Empirical MT system, it
is convenient here to present briefly the models implemented
by our system, and whose respective weights are tuned. For
a more complete description see [16]. The SMT approach
used here considers a translation model which is based on a
4-grams language model of bilingual units which are referred
to as tuples. Tuples are extracted from Viterbi alignments
and can be formally defined as the set of shortest phrases that
provides a monotonic segmentation of the bilingual corpus.

In addition to the bilingual4-gram translation model, the
translation system implements a log linear combination of
five additional feature functions: a4-gram language model of
the target language (denoted TM); a4-gram language model
of target POS-tags (TTM) which helps, along with the target
language model, to provide a better concatenation of tuples;

a word bonus feature (WB), which compensates the system
preference for short translations over large ones; and finally,
two lexicon models (L1 and L2) that implement, for a given
tuple, the IBM-1 translation probability estimate between the
source and target (or target and source, respectively) sides of
it.

3.2. Objectives

Thus we have a translation system whose outcome depends
on a set of parametersλ (in this experiment, parameters were
restricted to the scaling factors of the various models). We
want to minimise a functionE(λ), which measures the trans-
lation errors over a given development set, made by the sys-
tem with the parameter vectorλ. In this experiment, each
evaluation ofE(λ) implies computing full translation of the
development corpus, which is computationally intensive (the
number of evaluations ofE(λ) to achieve convergence is in
the order of 100). Note that in other setups [3, 8], tuning is
performed in two stages. In the first stage, full translation
of the development corpus is computed, with n-best output.
In the second stage, the n-best list is re-ranked. In this sec-
ond stage, a parameter optimisation is performed with the
downhill simplex method or with Powell’s method1. In this
case, an evaluation of the objective function only implies re-
ranking the n-best list. The number of re-rankings necessary
to achieve convergence is also in the order of 100. After this
optimisation, the optimum parameters are used to translate
again the development corpus and generate an updated n-best
list. In this setup, convergence (on the first stage level) usu-
ally occurs after less than 10 full translations.

The objective of the experiment was to perform the op-
timisation of E(λ) with the downhill simplex method and
the SPSA method, and to compare the consistency of the re-
sults over changes in initial settings. For this, we ran the
algorithms from 7 different initial points and for each point,
for 10 slightly different realisations. For both algorithms,
an evaluation ofE(λ) implied a translation of the develop-
ment corpus by exactly the same system (except the model
weights). Thus, an objective function evaluation had the
same computational cost for both algorithms.

We aimed at choosing initial points well distributed in
parameter space, but nevertheless realistic. Notice that in the
log-linear combination, weights can be rescaled to set one of
the parameters to some value, so the translation model was
set to 1 and kept fixed during optimisation. In the first initial
point, all parameters are also 1, so that all models start with
equal weights. In the second initial point, all parameters are
equal to 0.5. The other points were chosen in the following
way. We collected sets of optimal parameters obtained pre-
viously on another development corpus, and noted down in
which range the scaling factor of each model behaved. We
selected the initial value of each parameter randomly within
its corresponding range. Table 1 displays the initial points

1Actually, SPSA could also be used instead

paul
 191

used in the experiments.

ID TM TTM WB L1 L2
1 0.29 0.52 0.32 1.7 0.84
2 0.5 0.5 0.5 0.5 0.5
3 0.58 0.42 1.4 0.2 0.075
4 1 1 1 1 1
5 1.1 0.22 1.5 1.6 0.29
6 1.2 0.53 1.5 1.3 0.89
7 1.3 0.34 1.2 0.85 0.44

Table 1: Sets of initial parameters used in the experiments.
In table 3 points are referred to by their ID number.

The error function we choose is the BLEU score [17].
Actually it does not measure an error but a translation accu-
racy, so its opposite is to be minimised.

3.3. Downhill simplex implementation details

We implemented the simplex method according to [5]. The
method uses a geometrical figure called asimplex consist-
ing, in N dimensions, ofN + 1 points and all their inter-
connecting line segments, polygonal faces, etc. The starting
point is a set ofN + 1 points in parameter space, defining an
initial simplex. At each step, the simplex performs geometri-
cal operations (reflexions, contractions and expansions) until
a local minimum is reached.

Given a starting pointP0 (see section 3.2), the otherN
points of the initial simplex were taken to bePi = P0 +
αiei, where theei are unit vectors. TheN constantsαi were
chosen randomly such that the perturbed parameterP0i +
αi be in the range corresponding to this scaling factor (as
defined in section 3.2). For each of the seven starting points
P0, we ran the algorithm from 10 different initial simplexes.
Different initial simplexes were obtained by varying the seed
of the random generator used to compute theαi constants.

3.4. SPSA implementation details

After some experiments, we adopted slight changes to the
form of the algorithm presented in section 2. The algorithm
presented in section 2 does not restrict the updated set of pa-
rametersλ at a new iteration. This means that if we are un-
lucky with the∆k vector, we can go back from an goodλ
vector to a badλ vector. This process will eventually con-
verge, but it can take many iterations. Thus we introduced
a function evaluation after step 5, to be able to determine
whether the new parameters led to an improvement or not. A
new set of parametersλk+1 which was worse than the current
one (λk) was accepted according to the following probability
distribution:

exp

[
−|E(λ̂k+1)− E(λ̂k)|

T (k + 1)

]
, (3)

wereT was empirically set to 0.005. According to this prob-
ability distribution, the worse the new set of lambdas, the less
probability to accept it.

Since we introduced an evaluation ofE(λ̂k), we re-
placed the two-sided gradient approximation by a one-sided
one, which involves evaluations ofE(λ̂k) and E(λ̂k +
perturbation). If the noise caused by the one-sided approxi-
mation (as opposed to the two-sided approximation) is small
compared to the noise arising from the simultaneous approx-
imation, one-sided approximation can be more efficient since
it saves one function evaluation at each iteration.

Finally, after a certain number of iterations without im-
proving the optimum, we also changed the distribution in
Step 2 to a0,±1 distribution with probability1/3 for each
outcome. Although this distribution seems to slow down the
algorithm, it allows for a finer approximation of the gradient
in a subpart of the parameter space.

At the end the SPSA algorithm was implemented as fol-
lows:

Step 1 Calculate gain sequencesak and ck. Notice that the
choice of the gain sequenceak andck are critical to
the performance of SPSA. We choose the basic pa-
rameters according to [18], and tuning the algorithm
over various development sets (distinct from the one
used in this experiment) from different machine trans-
lation tasks. Thus these parameters are expected to be
valid for experiments with the same objective func-
tion on other language pairs and corpora. We used
ak = 8/(2 + k + 1)0.602 andck = 0.25/(k + 1)0.101.

Step 2 Generate the simultaneous perturbation vector∆k.
Each component of∆k was a Bernoulli±1 distribu-
tion with probability of1/2 for each±1 outcome (or
a 0,±1 distribution with probability1/3 for each out-
come, as mentioned above).

Step 3 EvaluateE(λ̂k + ck∆k)

Step 4 Approximate the gradient as in equation 2, but replac-
ing E(λ̂k − ck∆k) by E(λ̂k) and dividing byck in-
stead of2ck.

Step 5 Updateλ estimate as in equation 1, and evaluate the
objective function with this new set of parameters. Ac-
cept the new parameters according to the probability
distribution in equation 3.

Step 6 Iteration or termination (as in section 2).

In our comparative experiment, for each starting point
P0, we ran the algorithm with 10 different seeds for the ran-
dom generator which computes the simultaneous perturba-
tion vector in step 2. These seeds were the same as those
used to generate the 10 initial simplexes (see subsection 3.3).

paul
 192

3.5. Data set

The translation system was trained with the Chinese-English
data provided for IWSLT’06 evaluation campaign, and the
parameters were tuned over the development set provided for
the same evaluation (dev4). These parameters were then used
to translate the test set, which was a selection of 500 sen-
tences among the development sets of previous evaluations
(dev1, dev2 and dev3). Table 2 shows the main statistics of
the training, development and test data used, including num-
ber of references, number of sentences, number of words,
vocabulary and average sentence length for each language.

sent words vocab. avg len

Training set
Chinese 314k 9725 6.7
English

46k M
326k 9643 7.0

Development set (7 references)
Chinese 489 5478 1096 11.2

Test set (16 references)
Chinese 500 3005 909 6.0

Table 2:Training, development and test sets statistics.

4. Results

We report in table 3 the average BLEU score and standard
deviation obtained after running 20, 40, 60 and 90 function
evaluations of the simplex algorithms and SPSA algorithm.
When an optimisation converged before the given number of
function evaluations, the optimum value was taken. In each
cell of table 3, the upper number refers to the simplex, and the
lower refers to SPSA. For each initial set of parameters, aver-
age and standard deviation are calculated over the 10 slightly
different realisations controlled with the random seeds.

First, from table 3 it seems that both algorithms have sim-
ilar performance in terms of the optimum value achieved af-
ter a given number of function evaluations. Nevertheless, it is
remarkable that from 60 function evaluations on, the standard
deviation is always smaller for the SPSA algorithm, which
suggests that this is a more stable method. Since the imple-
mentation of the different realisations cannot be the same for
both algorithms, we cannot be totally certain that it was fair.
A change of seed to generate the simultaneous perturbation
for the SPSA may be less significant than a change of initial
simplex. To verify this, we need to fix the seed and see how
the algorithm behaves across several initial points. A first in-
dication is given by the last row of table 3. In this row, the av-
erage and standard deviation of the averages< BLEU >Ni

taken after N function evaluations, for each pointi, are calcu-
lated. The standard deviation of the averages, after 60 func-
tion evaluations, is much lower with SPSA method, which
confirms that on this data set, the simplex optimal value is
more dependent on the starting parameters than SPSA.

Table 4 explores this point in greater detail. For a given

Function Evaluations
Pt 20 40 60 90

17.9±0.45 18.4±0.55 18.7±0.47 18.9±0.471
17.6±0.74 18.9±0.53 19.4±0.22 19.7±0.15
18.8±0.40 19.1±0.41 19.2±0.41 19.3±0.422
18.9±0.48 19.3±0.15 19.5±0.11 19.6±0.16
19.1±0.22 19.3±0.26 19.5±0.29 19.5±0.303
19.1±0.44 19.4±0.21 19.5±0.19 19.6±0.10
18.9±0.45 19.4±0.39 19.6±0.34 19.7±0.344
18.7±0.63 19.5±0.28 19.6±0.18 19.7±0.11
19.4±0.23 19.6±0.23 19.6±0.24 19.6±0.255
19.4±0.19 19.5±0.17 19.5±0.17 19.6±0.14
19.5±0.19 19.7±0.20 19.7±0.20 19.8±0.206
19.3±0.20 19.5±0.20 19.6±0.16 19.7±0.10
19.6±0.13 19.7±0.15 19.8±0.14 19.8±0.157
19.4±0.19 19.6±0.12 19.7±0.11 19.7±0.11

19.0±0.58 19.3±0.45 19.4±0.37 19.5±0.33
18.9±0.64 19.4±0.22 19.5±0.09 19.7±0.08

Table 3: Average BLEU score and standard deviation ob-
tained with the simplex method (above) and SPSA method
(below) in the development set, after 20, 40, 60, and 90 func-
tion evaluations, for each initial point in parameter space (re-
ferred to as pt). In the last row, separated from the rest of the
table, the average and standard deviation of the averages are
displayed.

seed used, determining a given realisation, the only varying
factor is the starting point. For each seed, the average BLEU
score and standard deviation over all 7 starting points, af-
ter 20, 40, 60, and 90 function evaluations, are shown. For
all seeds, after at least 60 function evaluations, the optimum
value obtained with SPSA is less sensitive to the choice of
initial parameters, which should lead to more consistent re-
sults. For SPSA, the highest standard deviation after 90 func-
tion evaluations is 0.18. For the simplex, it reaches 0.67.
Thus doing two successive optimisations, one can expect in
average up to 0.4 percent BLEU difference with SPSA and
up to more than 1.3 percent BLEU different with the simplex.
The conjugated effect of two SPSA properties not shared by
the simplex method may contribute to explain this difference
in stability. Firstly, SPSA search path follows in average the
direction of the gradient, whereas the simplex orientation is
blind. Secondly, SPSA has always a probability to go away
from a zone close to a minimum, which allows it to find a
lower minimum elsewhere in the search space. On the con-
trary, when the simplex shrinks in a zone close to a minimum,
it is stuck in that zone.

While optimal objective function values lie in a pretty
close range, as seen in Table 3, Figure 1 show that final val-
ues in parameter space are very dispersed. Thus different
parameter sets lead to similar scores. Surprisingly, the value
of the lexical (L1) model weight does not seem to be determi-

paul
 193

Function Evaluations
ID 20 40 60 90

19.0±0.76 19.5±0.22 19.6±0.20 19.7±0.221
18.9±1.09 19.5±0.31 19.7±0.14 19.7±0.06
18.8±0.65 19.1±0.69 19.1±0.68 19.1±0.672
19.0±0.68 19.5±0.26 19.6±0.16 19.6±0.14
19.1±0.44 19.2±0.36 19.4±0.30 19.5±0.283
19.1±0.40 19.4±0.23 19.6±0.25 19.6±0.18
18.9±0.88 19.3±0.73 19.6±0.43 19.7±0.264
18.8±0.60 19.3±0.29 19.5±0.16 19.6±0.14
19.1±0.61 19.3±0.57 19.5±0.41 19.6±0.385
18.5±1.11 19.2±0.74 19.5±0.23 19.7±0.11
19.1±0.38 19.4±0.40 19.5±0.40 19.6±0.386
18.9±0.98 19.4±0.18 19.6±0.19 19.7±0.18
18.8±0.73 19.1±0.66 19.2±0.64 19.3±0.607
19.1±0.42 19.3±0.33 19.5±0.18 19.6±0.14
19.1±0.47 19.4±0.36 19.5±0.40 19.6±0.368
18.9±0.89 19.4±0.26 19.5±0.16 19.7±0.14
19.0±0.72 19.3±0.68 19.5±0.58 19.5±0.579
18.9±0.54 19.5±0.19 19.6±0.17 19.7±0.11
19.1±0.71 19.4±0.59 19.5±0.36 19.6±0.3210
18.9±0.65 19.4±0.28 19.5±0.16 19.6±0.16

Table 4: Average BLEU score and standard deviation ob-
tained with the simplex method (above) and SPSA method
(below) in the development set, after 20, 40, 60, and 90 func-
tion evaluations, for each seed used to generate different al-
gorithm conditions. Only seed ID numbers are displayed.

nant, although this model has got a big impact in translation
quality [19]. This is an indication of the interdependence of
the various models. Figure 1 also suggests that there would
be no point in averaging parameter values in order to gain
generalisation power.

As ultimate goal, we need to see if the stability of SPSA
optimisations is conserved when translating new text (i.e. the
test corpus). For each initial point and seed, and after a given
number of function evaluations, we collected the optimum
parameter set over the development corpus, and translated
the test corpus with these parameters. Results are brought
together in Table 5. Table 5 instructs, as expected, that dis-
persion of scores is higher in test than in development. It also
reveals that the standard deviation in test is similar for both
algorithms. Thus the stability gain observed in the develop-
ment corpus for SPSA was not conserved with new data. Fi-
nally, the last row of Table 5 indicates that the average BLEU
score in test is similar for both algorithms.

Since we have got 10 realisations of the algorithms for
each initial set of parameters, it is interesting to select the
parameters corresponding to the best score out of the 10 re-
alisations, and translate the test corpus with these parame-
ters. The results are plotted in Figure 2. Firstly, we can
notice that the selected parameters do not lead to substan-
tially better results than the average of all results (reported in

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5

N
U

M
B

E
R

 O
F

 C
A

S
E

S

L1 WEIGHT

SIMPLEX

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5

N
U

M
B

E
R

 O
F

 C
A

S
E

S

L1 WEIGHT

SPSA

Figure 1: Histogram of L1 model weights for simplex
(above) and SPSA (below)

the last row of Table 5). The largest gain is 0.2 point BLEU
for SPSA after 60 function evaluations. Secondly, while no
over-fitting seems to occur, continuing the optimisation over
development data after 30 function evaluations does not lead
to significant translation quality improvement in test. Even
10 function evaluations were sufficient to obtain nearly opti-
mal parameters with both algorithms.

5. Conclusions and further work

We have presented experiments in which the SPSA algorithm
has been used to tune SMT parameters. These experiments
have been repeated with the downhill simplex method for
comparison. According to the results obtained in this task,
both methods seem to have similar performance. However,
SPSA was more robust than the simplex with respect to the
choice of initial parameters and with respect to slightly dif-
ferent realisations of the algorithm. This conclusion is not
restricted to a particular tuning setup. However, this SPSA
advantage was not conserved when using the optimal param-
eters to translate new data. We also observed a high disper-
sion in parameter space, showing that various sets of param-

paul
 194

Function Evaluations
Pt 20 40 60 90

41.1±1.08 41.4±1.10 41.4±1.03 41.4±1.091
40.3±1.12 41.2±0.61 41.6±0.37 41.7±0.52
42.3±0.56 42.4±0.65 42.5±0.68 42.5±0.702
42.1±0.84 42.3±0.78 42.3±0.91 42.3±0.87
41.8±0.55 42.0±0.60 42.0±0.60 42.0±0.653
41.9±0.77 41.9±0.66 42.0±0.69 41.9±0.70
41.5±0.55 41.8±0.27 41.8±0.35 41.8±0.344
41.9±0.65 42.2±0.34 42.1±0.37 42.0±0.38
42.5±0.37 42.3±0.46 42.3±0.57 42.3±0.515
42.2±0.47 42.1±0.60 41.8±0.50 42.0±0.44
41.8±0.55 41.9±0.33 42.1±0.29 42.1±0.356
42.0±0.56 42.1±0.63 42.0±0.56 42.0±0.47
42.4±0.32 42.5±0.34 42.5±0.33 42.5±0.317
42.2±0.50 42.2±0.35 42.1±0.30 42.3±0.33

41.9±0.52 42.0±0.40 42.1±0.39 42.1±0.38
41.8±0.69 42.0±0.38 42.0±0.25 42.0±0.22

Table 5: Average BLEU score and standard deviation ob-
tained with the simplex method (above) and SPSA method
(below) in the TEST set, after 20, 40, 60, and 90 function
evaluations, for the parameters obtained in development for
each initial point (referred to as pt). In the last row, separated
from the rest of the table, the average and standard deviation
of the averages are displayed.

eters led to similar scores.
While no over-fitting was noticed, nearly optimum re-

sults in test could be obtained after only 10 function evalua-
tions over the development corpus. The dispersion of results
in test may be overvalued because of the task, which allows
particularly poor generalisation since training, development
and test corpora are small. Thus, it would be interesting to re-
peat these experiment with more data, such as those of Euro-
pean Parliament corpus. Furthermore, SPSA being expected
to perform better for a problem of higher dimensionality, we
should carry out experiments with a system including more
feature functions. Finally, we are planing to perform a sen-
sitiveness analysis with neural networks, in order to study
the impact in translation score (of the development corpus)
resulting from perturbations of each parameter.

6. Acknowledgements

This work has been partially funded by the European Union
under the integrated project TC-STAR - Technology and
Corpora for Speech to Speech Translation -(IST-2002-FP6-
506738, http://www.tc-star.org). The authors also want to
thank Dr. H́ector Klie, from the Center for Subsurface Mod-
eling of The University of Texas at Austin, for suggesting
the use of SPSA in the context of Statistical Machine Trans-
lation.

 38

 39

 40

 41

 42

 43

 0 20 40 60 80 100

B
LE

U
 S

C
O

R
E

ITERATIONS

SIMPLEX
SPSA

Figure 2: Average, over the initial points, of the results in test
for the best parameters obtained in development among the
10 different realisations.

7. References

[1] P. Brown, S. Della Pietra, V. Della Pietra, and R. Mer-
cer, “The mathematics of statistical machine transla-
tion: Parameter estimation,”Computational Linguis-
tics, vol. 19, no. 2, pp. 263–311, 1993.

[2] F. Och and H. Ney, “Dicriminative training and max-
imum entropy models for statistical machine transla-
tion,” in Proc. of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, Philadelphia,
PA, July 2002, pp. 295–302.

[3] F. Och, “Minimum error rate training in statistical ma-
chine translation,” inProc. of the 41th Annual Meeting
of the Association for Computational Linguistics, 2003,
pp. 160–167.

[4] M. J. D. Powell, “An efficient method for finding the
minimum of a function of several variables without cal-
culating derivatives,”The Computer Journal, vol. 7, pp.
155–162, 1964.

[5] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes in C++: the Art of Scientific Com-
puting. Cambridge University Press, 2002.

[6] J. Nelder and R. Mead, “A simplex method for function
minimization,”The Computer Journal, vol. 7, pp. 308–
313, 1965.

[7] M. Cettolo, M. Federico, N. Bertoldi, R. Cattoni, and
B. Chen, “A look inside the itc-irst smt system,” in
Proc. of Machine Translation Summit X, Phuket, Thai-
land, September 2005, pp. 451–457.

[8] N. Bertoldi, “Minimum error training (up-
dates),” Slides of the JHU Summer Workshop
(http://www.statmt.org/jhuws), 2006.

paul
 195

[9] K. Kirchhoff and M. Yang, “Improved language mod-
eling for statistical machine translation,” inProc. of the
ACL Workshop on Building and Using Parallel Texts,
Ann Arbor, Michigan, June 2005, pp. 125–128.

[10] J. Marĩno, R. Banchs, J. M. Crego, A. de Gispert,
P. Lambert, J. Fonollosa, and M. Ruiz, “Bilingual n-
gram statistical machine translation,” inProc. of Ma-
chine Translation Summit X, Phuket, Thailand, 2005,
pp. 275–82.

[11] E. Matusov, R. Zens, D. Vilar, A. Mauser, M. Popovic,
and H. Ney, “The rwth machine translation system,” in
Proc. of the TC-STAR Workshop on Speech-to-Speech
Translation, Barcelona, Spain, June 2006, pp. 31–36.

[12] L. Han and M. Neumann, “Effect of dimensionality on
the Nelder-Mead simplex method,”Optimization Meth-
ods and Software, vol. 21, no. 1, pp. 1–16, 2006.

[13] J. M. Crego, A. de Gispert, and J. Mariño, “The TALP
ngram-based SMT system for IWSLT’05,” Pittsburgh,
USA, October 2005, pp. 191–198.

[14] J. C. Spall, “Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approxima-
tion,” IEEE Trans. Automat. Control, vol. 37, pp. 332–
341, 1992.

[15] ——, “An overview of the simultaneous perturbation
method for efficient optimization,”Johns Hopkins APL
Technical Digest, vol. 19, no. 4, pp. 482–492, 1998.

[16] J. M. Crego, A. de Gispert, P. Lambert, M. R. Costa-
juss̀a, M. Khalilov, R. Banchs, J. B. Mariño, and
J. A. R. Fonollosa, “N-gram-based smt system en-
hanced with reordering patterns,” inProc. of the HLT-
NAACL Workshop on Statistical Machine Translation.
New York City: Association for Computational Lin-
guistics, June 2006, pp. 162–165.

[17] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a method for automatic evaluation of machine transla-
tion,” IBM Research Report, RC22176, 2001.

[18] J. C. Spall, “Implementation of the simultaneous per-
turbation algorithm of stochastic optimization,”IEEE
Trans. Aerospace and Electronic Systems, vol. 34,
no. 3, pp. 817–823, 1998.

[19] J. B. Marĩno, R. Banchs, J. M. Crego, A. de Gispert,
P. Lambert, J. A. R. Fonollosa, and M. R. Costa-jussà,
“N-gram based machine translation,”Computational
Linguistics, vol. 32, no. 4, 2006.

paul
 196

