
Induction of Probabilistic Synchronous Tree-Insertion Grammars
for Machine Translation

Rebecca Nesson, Stuart Shieber, and Alexander Rush
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

{nesson,shieber,rush}@eecs.harvard.edu

Abstract

The more expressive and flexible a base
formalism for machine translation is, the
less efficient parsing of it will be. How-
ever, even among formalisms with the
same parse complexity, some formalisms
better realize the desired characteristics
for machine translation formalisms than
others. We introduce a particular for-
malism, probabilistic synchronous tree-
insertion grammar (PSTIG) that we argue
satisfies the desiderata optimally within
the class of formalisms that can be parsed
no less efficiently than context-free gram-
mars and demonstrate that it outperforms
state-of-the-art word-based and phrase-
based finite-state translation models on
training and test data taken from the Eu-
roParl corpus (Koehn, 2005). We then ar-
gue that a higher level of translation qual-
ity can be achieved by hybridizing our in-
duced model with elementary structures
produced using supervised techniques
such as those of Groves et al. (2004).

1 Introduction

In this paper we identify a base formalism,
probabilistic synchronous tree-insertion grammar
(PSTIG), for a statistical machine translation system
that we propose:

1. maximizes, within its efficiency class, the qual-
ity of the MT system induced unsupervised
from aligned sentence pairs; and

2. is suitable for hybridization with linguistically-
motivated elementary structures (constructed
manually, or obtained automatically with or
without supervision).

We begin with an argument from first principles
for the choice of PSTIG as a base formalism for
syntax-aware statistical machine translation (SMT).
We then present our implementation of a system
that induces a PSTIG unsupervised from data and
show that it outperforms a state-of-the-art phrase-
based SMT system in both automatic and human
evaluation. We conclude by proposing a method
for hybridizing our system to include linguistically-
motivated elementary structures that draws on recent
results in Data-Oriented Parsing.

In Section 2 we place our work in the context
of similar work in the field and argue for the
efficacy of choosing a base formalism in the class of
formalisms that can be processed no less efficiently
than context-free grammars. In Section 3, we
present a formalism, probabilistic synchronous
tree-insertion grammar (PSTIG), that more fully
satisfies the desired characteristics than context-free
grammars. In Sections 4 and 5 we give the parsing
algorithm and discuss how we induce a PSTIG
grammar from data by synchronous parsing. We
demonstrate in Section 6 that the induced model
outperforms both word-based and phrase-based
finite-state models on a subset of the EuroParl
corpus. We suggest in Section 7 that, without
increasing the expressivity of the base formalism
beyond context-free, substantially higher quality
translations can be produced by unsupervised
induction systems that can easily be hybridized with

128

Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, pages 128-137,
Cambridge, August 2006. ©2006 The Association for Machine Translation in the Americas

linguistically-motivated elementary structures gen-
erated manually or though a supervised process. In
particular, we propose a method of hybridizing our
system by adding elementary structures generated
using the methods of Groves et al. (2004) in a man-
ner similar to that used by Groves and Way (2005).

2 Motivation and Related Work

Recent work in statistical machine translation by
parsing has identified a set of characteristics an ideal
base formalism should have for the translation task
(Melamed, 2003; Melamed, 2004; Melamed et al.,
2004). What is desired is a formalism that has the
substitution-based hierarchical structure of context-
free grammars and the lexical relationship potential
of n-gram models. Further, it should allow for dis-
continuity in phrases and be synchronizable, to allow
for multilinguality. Finally, in order to support auto-
mated induction, it should allow for a probabilistic
variant, and a reasonably efficient parsing algorithm.
The more expressive and flexible a formalism is, the
less efficient parsing of it will be. Therefore, the
primary trade-off to be made is between parsing ef-
ficiency on one hand and the rest of the desired char-
acteristics on the other. However, even among for-
malisms with the same parse complexity, some for-
malisms better satisfy the desiderata than others.

Finite-state word-based models, such as IBM
Model 5 (Brown et al., 1993), use a base formalism
that allows for synchronization, probabilistic vari-
ants, very efficient processing, and good ability to
capture lexical and bilexical relationships. However,
they are limited by the inability to use hierarchical
information in the interlingual mapping. That bilin-
gual dictionaries describe the mappings between
languages in terms of constructions, not individual
words, suggests that this information would be use-
ful. For instance, the HarperCollins Italian College
Dictionary (HCICD) translates the English “to take
advantage of” as “sfruttare”, although that word is a
direct translation of neither “take” nor “advantage”.

Retaining the same finite-state base formalism,
these models can be augmented to allow multiword
(in addition to single word) mapping. Marcu and
Wong (2002), among others, use joint probability
distributions over frequently co-occuring n-grams
to find multiword translations, thereby improving
on the performance of IBM Model 5. Such an ap-

proach does allow multiword relationships to be in-
duced, but does not in any sense incorporate syntac-
tic structure to do so. Indeed the natural way to aug-
ment the multiword approach to incorporate syntac-
tic constraints is to restrict the multiword sequences
to syntactic constituents (as determined by a statisti-
cal parser for instance) (Yamada and Knight, 2002).
Yet this augmentation turns out to underperform the
syntax-free variant (Koehn et al., 2003).

The reason is not hard to understand: the word
sequences that map well in translation—such as the
German-English example of Koehn et al. (2003)
“es gibt”/“there is”—are not themselves syntac-
tic constituents, but rather syntactic templates (“es
gibt. . . ”/“there is. . . ”) with “holes” (marked here
by ellipses) that might be substituted for in some
uniform manner. Bilingual dictionaries even make
the mapping between such constructions explicit
through the use of place fillers like “sb” (“some-
body”) or “qn” (“qualcuno”), as in the HCICD entry
“to drive sb mad”/“far impazzire qn”. Secondarily,
the phrases that are mapped need not appear con-
tiguously, either because the holes split the lexical
material, as in the example “drive sb mad”, or be-
cause other constituents interpose themselves, as in
the phrase “take advantage yesterday of sb”.1

This ability to substitute subparts is the hall-
mark of context-free grammars. A natural approach,
then is to incorporate synchronization of context-
free structures to allow for these kinds of map-
pings. However, probabilistic context-free gram-
mars (PCFG) are well known to perform poorly as
language models compared to finite-state models;
they gain the ability to substitute according to ab-
stract categories at the expense of stating lexical re-
lationships directly. Although arbitrary CFGs can
be weakly lexicalized by other CFGs, this can re-
quire changing the shape of the derived trees pro-
duced, and more critically, changes the structure of
the derivation (Schabes and Waters, 1993a; Sch-
abes and Waters, 1995). Because synchronization
requires substantial isomorphism of the derivation
trees, synchronization of lexicalized CFGs becomes
problematic. Chiang (2005) overcomes this short-

1For example, “The US took advantage yesterday of the po-
litical and military momentum in its Afghan campaign. . . ” is
one of many Google hits on the phrase “took advantage yester-
day of”.

129

V P

V NP PP

P NP↓take

advantage of Jean

NP

Figure 1: An example TAG/TIG substitution

coming in his synchronous CFG-based system by
making it both hierachical and phrase-based so that
n-grams used in phrasal mappings could still capture
some of the lexical dependencies. His system out-
performed Pharaoh, a state-of-the-art phrase-based
decoder (Koehn, 2004), on several translation tasks.

Although systems such as Chiang’s are the current
state-of-the-art, because of the limitations of CFGs
as a base formalism Melamed and others continue
to explore the possibility of trading off more parsing
efficiency for greater expressivity (Melamed, 2004;
Melamed et al., 2004). Formalisms such as Gen-
eralized Multitext Grammars (GMTG) do in prin-
ciple satisfy all of the desiderata if the higher time
and space complexity of the parsing algorithms for
them does not make training prohibitively expensive
(Melamed et al., 2004). It is an empirical question
whether systems with a high degree of parse com-
plexity can be induced in practice. Burbank et al.
(2005) implemented a framework in which base for-
malisms such as GMTG can be tested though no
substantial results have yet been reported. Ding
and Palmer (2005) also employ a more expressive
formalism but use heuristic approaches to limit the
complexity of the processing.

All of these considerations led us to seek a more
expressive formalism that could still be parsed effi-
ciently. As we will argue, probabilistic synchronous
tree-insertion grammar substantially satisfies each of
the desiderata without increasing parse complexity.
We present an MT system based on it in the remain-
der of this paper.

3 Synchronous Tree-Insertion Grammar

Tree-adjoining grammars (TAG), introduced in
monolingual form by Joshi (1985), and in a syn-
chronous variant (STAG) by Shieber and Schabes
(1990), are natural choices to capture lexically-
based dependencies while also allowing the substi-

V P

V NP PP

P NP↓take

advantage of

PP∗Adv

yesterday

PP

Figure 2: An example TAG/TIG adjunction

tution of sub-parts. Due to space limitations, for a
detailed description of the TAG formalism we re-
fer readers to the introduction by Joshi (1985). Im-
portantly, Schabes et al. (1988) show that TAG
can lexicalize CFG without changing the trees pro-
duced. That is, given a CFG a lexicalized TAG can
be constructed that will produce the same set of de-
rived structures produced by the CFG. Because each
elementary tree contains a lexical item, the opera-
tions of substitution and adjunction implicitly mani-
fest a lexical relationship. In addition, the two op-
erations of TAG, substitution and adjunction, are
exactly what is needed to handle noncontiguity, as
shown in Figures 1 and 2.

However, the TAG formalism’s additional ex-
pressivity leads to additional processing complex-
ity. TAG parsing requires O(n6) time; synchronous
TAG parsing would therefore require at least O(n12)
time. Because training an MT system based on syn-
chronous TAG would require repeated parsing of the
training corpus, this time complexity is prohibitive.

Tree-insertion grammars (TIG) are a compu-
tationally attractive alternative to TAG (Schabes
and Waters, 1993a). TIGs are similar to TAGs
except that restrictions are placed on the form of
elementary trees and on the adjunction operation.
In particular, the foot node of an auxiliary tree is
required to be at the left or right edge of the frontier,
so that all textual material dominated by the spine
will fall to the right or left, respectively, of the foot.
The auxiliary trees can thus be classified as either
right or left auxiliary trees, as determined by the
location of the non-foot material. To maintain the
invariant that textual material falls only on a single
side of the spine, adjunction is restricted so that left
auxiliary trees may not adjoin into a node on the
spine of a right auxiliary tree and vice versa. This
prevents the formation of “wrapping” trees in which
there are terminal symbols on both sides of the foot
node. This restriction, coupled with the requirement

130

WordAx
〈[ηS , (i, i + 1)], [ηT , (l, l + 1)], ∅, 1〉

wi+1 = Label(ηS)
vl+1 = Label(ηT)

AuxAx
〈[ηS , (i, i)], [ηT , (l, l)], ∅, 1〉

Foot(ηS)
Foot(ηT)

EmptyAx
〈[ηε, (i, i)], [ηε, (j, j)], {(x, y)}, 1〉

x, y ∈ {L, R}
EmptyTree(ηε)

Figure 3: Axioms for CKY-style PSTIG parsing

that all elementary auxiliary trees be non-wrapping,
is sufficient to limit the formalism to context-free
expressivity and O(n3) parsability. In addition,
Schabes and Waters (Schabes and Waters, 1995)
demonstrate that TIG, like TAG, can lexicalize
CFGs without changing the shape of the trees pro-
duced. Hwa (2001) shows that a probabilistic variant
of TIG can have language modeling performance at
the level of bigram models thereby capturing lexical
relationships, while also retaining the advantages of
CFGs in capturing syntactic structure.2

Synchronous TIG (STIG) extends TIG by making
elementary structures pairs of TIG trees with links
between particular nodes in those trees. An STIG
is a set of triples, 〈tL, tR,_〉 where tL and tR are
elementary TIG trees and _ is the linking relation
between nodes in tL and tR (Shieber, 1994). Deriva-
tion proceeds as in TIG except that all operations
must be paired. That is, a tree can only be substi-
tuted or adjoined at a node if its pair is simultane-
ously substituted or adjoined at a linked node.

TIGs are equivalent to CFGs in weak-generative
capacity, and in fact can be converted to weakly-
equivalent CFGs, as shown by Schabes and Waters
(1995). This raises the alternate possibility of
processing STIGs by conversion to synchronous
CFGs. However, the simple methods for parsing
STIGs, essentially CKY parsing, do not carry
over to the corresponding SCFG directly. (The
CFG rules tend to have long right-hand sides, and
are not lexicalized.) Without optimization, parse
complexity would be greatly increased. It may be
possible to optimize the resulting SCFG to achieve
O(n6) parse complexity, but parsing the STIG is
already this efficient. The STIG grammar can,
in effect, be seen as an optimized version of the

2For further background and discussion of TIGs and LTIGs,
see (Schabes and Waters, 1993a; Schabes and Waters, 1993b;
Schabes and Waters, 1995; Hwa, 2001).

SCFG at the outset. For this reason (in addition the
naturalness of the STIG approach and its potential
for hybridization with linguistically informed STIG
or STAG lexical entries) we use STIG as the basis
for our translation system rather than converting the
STIG grammar to an SCFG, optimizing, and using
one of the existing CFG-based systems.

A synchronous TIG can easily express lexically-
based dependencies, can (under some restrictions
discussed in the next section) be parsed in O(n6)
time, and can handle both the substitution and
adjunction requirements described above. Thus, a
probabilistic variant of synchronous TIG possesses
an appealing balance of the desired characteristics
that we would like as the basis for a syntax-aware
translation formalism.

4 Parsing Synchronous Tree-Insertion
Grammars

To define a STIG parsing algorithm we general-
ize Schabes and Waters’ (1993a) O(n3) CKY-style
lexicalized CFG parsing algorithm. In conjunction
with a standard chart parsing algorithm the rules de-
scribed below define an O(n6) parser for a restricted
STIG parsing a pair of strings w1 . . . wns , v1 . . . vnT .

We present this algorithm in Figures 3-5 as
a set of inference rules in the deductive parsing
style of Shieber et al. (1994). As with all de-
ductive parsing algorithms, the algorithm works
by generating items. Each item is of the form
〈[ηS , I], [ηT , J], LinkSet, SV 〉, where ηS and
ηT are nodes in some elementary tree pair of the
grammar,3 I is an interval (i, j) between string
positions i and j characterizing the substring
wi+1 . . . wj covered by the item (and similarly for
J , an interval in V), and LinkSet specifies the

3A node may be thought of as specified by the name of the
tree and a unique address for that node in the tree.

131

SibCat
〈[η1S , I1], [η1T , J1], ∅, P1〉 〈[η2S , I2], [η2T , J2], ∅, P2〉
〈[ηS , I1 ∪L I2], [ηT , J1 ∪x J2], LS(ηS , ηT), P1 ⊗ P2〉

ηS → η1S η2S

(ηT → η1T η2T or
ηT → η2T η1T)

SParSrc
〈[η1S , I], [ηT , J], ∅, P 〉

〈[ηS , I], [ηT , J], LS(ηS , ηT), P 〉
ηS → η1S

NoLinks(η1S)

SParTrg
〈[ηS , I], [η1T , J], ∅, P 〉

〈[ηS , I], [ηT , J], LS(ηS , ηT), P 〉
ηT → η1T

NoLinks(η1T)

Subst
〈[η1S , I], [η1T , J], ∅, P1〉

〈[η2S , I], [η2T , J], ∅, P1 ⊗ θ(η1,η2)〉
RootPair(η1)
Subst(η1, η2)

Adjoin
〈[η1S , I1], [η1T , J1], LS, P1〉 〈[η2S , I2], [η2T , J2], ∅, P2〉

〈[ηS , I1 ∪x I2], [η1T , J1 ∪y J2], LS − (x, y), P1 ⊗ P2 ⊗ θ(η1,η2)〉

RootPair(η2)
(x, y) ∈ LS
Adjoin(η1, η2, x, y)

Figure 4: Inference Rules for CKY-style STIG parsing

set of (unused) links between the two nodes. SV
is a semiring value associated with the item that
can be thought of as the probability of that item
being generated. (We discuss semirings and their
use in our model in Section 5.) A goal item is of
the form 〈[ηS , (0, nS)], [ηT , (0, nT)], ∅, SV 〉, where
the labels of ηS and ηT are the start symbols of
the source and target sides of the grammar and the
intervals (0, nS) and (0, nT) are complete covers
of the source and target sentences, respectively.
We use the notation LS(ηS , ηT) to indicate the
set of links between nodes ηS and ηT . We use
the predicate NoLinks(η) to signify that η has no
links to any other node, including those not in the
current item. We assume that each node η in an
elementary tree is associated with a nonterminal
or terminal label Label(η). We notate the pair of
nodes, ηS and ηT within an item by η. Root nodes
ηS and ηT of a tree pair satisfy RootPair(η) and
an item specifying a root pair is a root item. If
η1S and η1T are the root nodes of a tree pair that
can substitute or adjoin at nodes η2S and η2T , then
Subst(η1, η2), Adjoin(η1, η2, x, y) are respectively
satisfied. We write η0 → η1 . . . ηk to indicate that
node η0 dominates nodes η1, . . . , ηk. (As is standard
for CKY-style algorithms, we assume that all trees
are at most binary branching.) We make use of an
interval union operation

⋃
x, parameterized by the

order in which the intervals abut, where x is either
L or R, defined by

(i, j) ∪L (j, k) = (i, k)
(j, k) ∪R (i, j) = (i, k)

and is otherwise undefined.4

We briefly explicate the STIG inference rules
shown in Figures 3 and 4 here. WORDAX adds items
to the chart for each pair of nodes ηS and ηT labeled
with words that appear in the source and target input
sentences respectively. AUXAX adds items to the
chart for the foot nodes of each auxiliary tree pair
in the lexicon, making each auxiliary tree pair avail-
able for adjunction at each pair of string positions
in the source and target input sentences. EmptyAx
adds a special EmptyTree to the chart at every pair
of string positions. This tree is a special single node
auxiliary tree used to avoid having to maintain a sep-
arate parameter for when a particular link is not used
in the course of a parse. Instead, in our system ev-
ery link will be used, but they may be used by an
EmptyTree that does not change the shape or lexi-
cal content of the resulting tree.5

The sibling concatenation (SIBCAT) and sin-
gle parent (SPARSRC and SPARTRG) rules simply
move the derivation from child nodes to their par-
ent nodes in the tree pair. They only apply when
all adjunction operations on the child node are com-
pleted. The substitution rule (SUBST) applies at the
root nodes of initial tree pairs whenever all adjunc-

4Note that x and y, as used with the ∪ operator and as mem-
bers of link sets, are variables over the direction (L or R) in
which the adjunction takes place on the source and target sides
of the tree pair.

5The addition of EmptyTrees strictly speaking breaks lex-
icalization, but removes neither the linguistic advantages of lex-
icalization nor the parsing advantage that comes from disallow-
ing adjunctions that do not increase the span of the item. The
reason the latter is not a problem is that links can only be used
once. Thus no spurious adjunctions are introduced.

132

WordEpsAx
〈[ηS , (i, i + 1)], [ηT , (l, l)], ∅, 1〉

wi+1 = Label(ηS), ε = Label(ηT)
Anchor(ηS , src, TP)
Anchor(ηT , trg, TP), TP ∈ G

EpsWordAx
〈[ηS , (i, i)], [ηT , (l, l + 1)], ∅, 1〉

wl+1 = Label(ηT), ε = Label(ηS)
Anchor(ηS , src, TP)
Anchor(ηT , trg, TP), TP ∈ G

Figure 5: Axioms for introducing tree pairs with one ε anchored tree.

tion operations are completed at those nodes. It cre-
ates new items for each pair of nodes (within a sin-
gle elementary tree pair) into which the completely
processed initial tree could substitute, covering the
span of the input string that the completed initial tree
covers. The adjunction rule (ADJOIN) applies when-
ever a pair of nodes have an adjunction available in
their LinkSet and there is an auxiliary tree pair that
can adjoin at those nodes without violating the TIG
wrapping tree restrictions.

Adding the two axioms in Figure 5 lets the rules
generate translations of differing length. These ax-
ioms relax lexicalization so that only one of the trees
in a pair is required to have a non-empty anchor.

Another method for allowing sentences of dif-
fering length is to allow parsing to proceed
asynchronously on just one side of a tree pair
where possible. This method allows a restricted
amount of non-isomorphism as well. Nesson and
Shieber (2005) present a set of inference rules that
implement this solution.

Parsing STIGs requires only a straightforward
generalization of well-understood parsing algo-
rithms such as CKY or Earley’s algorithm. How-
ever, the procedural order for visiting the nodes in a
tree dictated by the parsing algorithm may conflict
with the order in which linked nodes need to be pro-
cessed. This means that the obvious generalizations
of these parsing algorithms are not complete for the
STIG languages. The difficulty arises because the
links between trees may “cross” in ways that make it
impossible for the parsing algorithm to perform op-
erations using both links. This problem is similar to
the one discussed by Melamed (2004) in the context
of generalizing Eisner and Satta’s (1999) splitting
technique to the synchronous case for lexicalized
multitext grammars (LMTG). Melamed opts to gen-
eralize a less efficient algorithm in order to allow
the crossing correspondences to be parsed. Rather

than take the penalty in parsing efficiency, we opt
to restrict the elementary structures to those that do
not exhibit the crossing links (Nesson et al., 2005).

5 Model Induction and Optimization

The advantage of PSTIG as a formalism for MT
is its naturalness in describing relations between
constructions in different languages. Nonetheless,
to make use of that ability it must be embeddable
in a system that can show at least the robustness of
performance of the finite-state methods that have
become standard. In this section, we describe how
to perform unsupervised induction of a PSTIG
based on aligned corpora that by itself shows good
translation performance.

The induced PSTIG is structured as a normal form
grammar in which adjunction parameters are esti-
mated by EM. The normal forms specify both the
shape of the trees in the tree pair as well as the
links between them. We elected to generalize the
normal form Hwa (2001) found to be most effec-
tive for monolingual TIG induction. Hwa allows two
auxiliary tree shapes that differ only in the orienta-
tion of the foot node relative to the root. Each nor-
mal form tree has both high and low adjunction sites
into which other trees can adjoin. We generalize to
tree pairs by combining the two monolingual nor-
mal forms in all four possible orientations and then
choosing a canonical set of links between nodes in
the tree pairs. In addition, we include up to four ini-
tial tree pairs rooted in the start symbol of the gram-
mar and with a single adjunction sites into which the
auxiliary trees can adjoin. The resulting set of nor-
mal form trees is shown in Figure 6.

For every observed word cooccurence in the train-
ing set, we introduce one of each of the normal
form auxiliary tree pairs anchored by the cooccur-
ring words. In order to handle sentence pairs in
which the sentences have differing length, we also

133

X

X

X

wTwS

ε

X

X

X

X

X

X

wTwS

X

X

X

X

X

X

wS wT

X

X

X

S

X

ε

S

X
X∗ X∗ X∗X∗ X∗ X∗

ε

S

X

ε

S

X
ε

S

X

ε

S

X

Figure 6: Canonical tree pair forms. Note that because of the set of links chosen, one auxiliary tree pair
orientation and one initial tree pair are not needed because they cannot be used.

X X

XX

X∗ X∗

〈[η2S , I2], [η2T , J2], ∅, P2〉〈[η1S , I1], [η1T , J1], LS1, P1〉

X X

X X

〈[ηS , I1∪LI2], [η1T , J1∪RJ2], LS1−(L,R), P1⊗P2⊗θ(η1,η2)〉

2

2

1

1

3

3

Figure 7: An example adjunction with items defined
as follows: 1 :〈[η1S , I1], [η1T , J1], LS1, P1〉,
2 :〈[η2S , I2], [η2T , J2], ∅, P2〉, 3 :〈[η1S , I1 ∪L I2],
[η1T , J1 ∪R J2], LS1−(L,R), P1⊗P2⊗θ(η1,η2)〉

include tree pairs in which one tree in the pair is an-
chored by the empty string. The full grammar has
O(|S| · |D|) tree pairs, where |S| and |D| are the
size of the source and destination lexicons.

We use the semiring parsing methodology de-
scribed by Goodman (1999) to make the grammar
probabilistic. A semiring defines a set containing
two binary operations ⊕ and ⊗ in addition to an
additive identity 0 and a multiplicative identity 1.
By varying the defintions used for these operators,
the semiring can be used to calculate probabilities,
derivation forests, and many other useful quantities.
As shown in the inference rules in Figures 3-5, we
associate a semiring value, denoted Pi for item i,
with each item in the chart. Taking the probability
semiring as an example, the semiring value for an
item will be the probability that the pair of nodes in
the item cover the intervals of the source and target
sentences given in the intervals of the item. Each
inference rule uses semiring operations to calculate
the semiring value of the consequent item from the
semiring values of the antecedent items and the pa-

rameters of the model. The most interesting opera-
tion is performed by the ADJOIN rule. As illustrated
by Figure 7, this rule could be used to adjoin item 2
with semiring value P2 and nodes η2 into tree pair
1 with semiring value P1 and nodes η1. The new
consequent item will be assigned the semiring value
P1 ⊗ P2 ⊗ θ(η1,η2) where θ(η1,η2) is a parameter of
the model indicating the probability of tree pair η2

adjoining into the tree pair containing nodes η1 at
nodes η1. The values for the θ parameters are main-
tained for each link in the grammar as a distribution
over all of the tree pairs in the grammar that can ad-
join at that link. Our grammar has O(n2) tree pairs,
where n is the size of the vocabulary. Since each
tree can adjoin into every other tree, we maintain a
total of O(n4) parameters. We also maintain a dis-
tribution over the initial trees used to root parses.

Our parser learns these parameters on an unsu-
pervised bilingual corpus using an adaptation of the
PCFG inside-outside algorithm developed by Lari
and Young (1991). During training, we parse using
the inside (probability) semiring which defines ⊕ as
+, ⊗ as ×, and semiring values as real numbers.

To perform translation we use inference rules that
are modified slightly to account for not having a
target sentence at the time of parsing. For instance,
we modify the WORDAX rule to remove the side
condition that requires the anchor of the target tree
to appear in the target sentence. We then parse using
the Viterbi n-best derivation semiring, which pro-
duces a list of the n most probable derivation trees.
Using the derivation trees it is trivial to generate the
corresponding target language sentences. We cur-
rently use a simple trigram-based reranker learned
from the corpus to choose the best translation. In

134

future work we plan to use a full discriminative
reranker as described by Collins (2000).

5.1 Parameter Pruning

The full model presented above learns a probabil-
ity for every combination of tree pairs in the corpus.
In a corpus with high word cooccurence this results
in O(n4) free parameters where n is the size of the
largest monolingual vocabulary. The large number
of parameters slows training and allows the model
to “memorize” the training data by learning high
probabilities for parameters that appear infrequently
in the corpus. In order to handle both overfitting
and training time constraints, we implemented two
methods to prune unneeded trees and parameters.

Before training, we pre-process the word cooc-
currence data by eliminating word pairs that are
unlikely to encode true relationships. However,
the preprocessing algorithm must be careful not to
eliminate so many word pairs that some training
sentences cannot be parsed. To ensure that all
training sentences remain parsable, we use a greedy
algorithm to learn one-to-one mappings for each
sentence pair. The preprocessor first runs a simple
word-to-word alignment tool (IBM Model 1) on the
corpus to produce an initial alignment. It uses this
alignment as the basis for a more sophisticated one-
to-one alignment that additionally scores particular
mappings.6 Using the resulting alignments we
repeatedly greedily match the highest scoring word
pairs. We run the preprocessor in both directions
and use the union of the two resulting alignments as
the basis for our elementary structures.

Before learning all of the parameters of the model
independently, we produce an intermediate model in
which we tie certain parameters together. In par-
ticular, rather than maintaining a distribution over
tree pairs at each link in the grammar, we maintain
a distribution over tree pairs at each link location.
We maintain parameters that correspond to each tree
pair in the grammar, adjoining into any other tree
pair at a particular link location. This reduces the
number of parameters to O(n2). This both provides
a good initial parameter setting for training with in-
dependent parameters and prevents the model from
favoring rarely occurring interactions between par-

6This differs from IBM Model 2 only in that it does not al-
low for one-to-many mappings.

ticular tree pairs. We also use this model for linear
interpolation smoothing during translation.

6 Results

We evaluated our system on a set of 15,277
sentences extracted from the over 600,000 sen-
tence pairs in the EuroParl German-English corpus
(Koehn, 2005). We selected sentence pairs in which
the German sentence contained only words within
the 1000 most frequent German words in the corpus,
in order to limit the size of the vocabulary. We then
further limited the set by using only sentence pairs
with combined length less than 25.7 We held out 100
sentence pairs for evaluation of the resulting system.

As baselines we trained GIZA++ (Och and Ney,
2003) using the CMU-Cambridge Statistical Lan-
guage Modeling Toolkit (CMU Toolkit) and the
ISI ReWrite Decoder for testing, and Pharaoh us-
ing alignments generated according to the algorithm
given in Koehn (2003) based on GIZA++ word
alignments and using the CMU Toolkit for language
modeling.8 We then evaluated all three systems on
the test set automatically using BLEU score. We
also ran a human evaluation in which three sub-
jects evaluated all of the 100 translations produced
by each system, in random order and with no in-
dication of which system generated the translation,
against the “gold standard” reference translations
using a 5 point fluency and adequacy scale. As
shown in Figure 8, our system outperformed both
Pharaoh and GIZA++ in automatic evaluation. In
human evaluation, also shown in Figure 8, our sys-
tem outperformed both Pharaoh and GIZA++ in the
fluency of the translations produced. It also outper-
formed Pharaoh in the adequacy of the translations
produced. We were surprised to find that GIZA++
received the best scores from human evaluators for
adequacy. We surmise this may be due to the close

7The primary reason for limiting the size of the test set and
the length of sentences is due to the time required for parsing.
Vocabulary size is not a significant factor. However, in order to
overcome sparseness in a smaller training set we opted to select
a set that used only a limited vocabulary.

8We were unfortunately unable to compare our system’s per-
formance either to Chiang’s (2005) system, for which the code
is not publicly available, or the GenPar system (Burbank et al.,
2005) instantiated with an MTG or LMTG, because adaptation
to a new language pair proved to be quite difficult. Needless
to say, it would be helpful to perform these comparisons in or-
der to empirically evaluate the claim that STIG is a better base
formalism for translation than CFG.

135

STIG Pharaoh GIZA++
BLEU .2441 .2273 .2184
Fluency 3.38 3.25 3.32
Adequacy 3.13 2.96 3.22

Figure 8: Results of evaluating our system and the
baseline systems on a 100 sentence test.

to word-for-word nature of the GIZA++ translations.
Many of the PSTIG systems adequacy errors arose
because negation words were dropped. This is just
one example of the type of shortcoming that could
be fixed by the addition of linguistically-motivated
elementary structures for the relevant constructions.

7 Potential for Hybridization

Using a base formalism that can capture hierarchi-
cal relationships makes it possible for our system
to express linguistically motivated relationships be-
tween words and constructions in the languages be-
ing translated. However, unsupervised grammar in-
duction is likely to miss many of the true relation-
ships and generalizations. We propose to hybridize
our system by augmenting the set of elementary tree
pairs available to the parser with linguistically mo-
tivated trees obtained either manually or automati-
cally from a parsed, tagged corpus of aligned sen-
tences. Groves and Way (2005) demonstrated the
efficacy of this approach by adding (flat) phrases
obtained using the method of Example-Based MT
to the translation table used by the Pharaoh decoder
and showing that the resulting system outperformed
both the Example-Based MT system and Pharaoh
without the additional phrases. In our system we ex-
pect even more substantial advantages because we
will be able to use the hierarchical syntactic infor-
mation encoded in elementary tree pairs. We pro-
pose to adapt the methods described by Groves et
al. (2004) to extract elementary tree pairs with links
from a corpus of parsed, aligned sentences. We will
then experiment with at least two methods of hy-
bridization. One option is to simply add the ex-
tracted trees to our initial set of elementary trees and
allow the EM algorithm to estimate the probability
of their use. A second option is to use the unsuper-
vised model as a backoff model to smooth transla-
tion using the extracted tree pairs.

8 Conclusion

We have presented a formalism, probabilis-
tic synchronous tree-insertion grammars, with
several desirable properties for statistical machine-
translation applications. First, we argued from first
principles that PSTIG arises naturally as a means
for expressing the kind of bilexical information
found in bilingual dictionaries and acquired by
phrase-based MT systems, indicating that it may
well serve as a representation for the kind of
information required for syntax-aware MT, whether
acquired manually or through supervised learning
techniques. Second, we showed that even used as a
basis for unsupervised acquisition of syntax-aware
statistical MT models, the formalism outperforms
state-of-the-art finite-state word and phrase-based
systems in initial tests. On the basis of these two
properties, and the simplicity and uniformity of
the formalism, we believe it may be ideal for the
next generation of hybrid statistical MT systems.
Certainly, further investigation is warranted.

Acknowledgements

This work was supported in part by grant IIS-
0329089 from the National Science Foundation.
We wish to thank Michael Collins, Rebecca Hwa,
and Rani Nelken and the anonymous reviewers
for valuable comments on earlier drafts. We also
thank Rebecca Hwa for sharing her code and Paul
Govereau and Daniel Mauer for work on the early
stages of implementation.

References
P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L.

Mercer. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational Lin-
guistics, 19(2):263–311.

A. Burbank, M. Carpuat, S. Clark, M. Dreyer, P. Fox,
D. Groves, K. Hall, M. Hearne, D. Melamed, Y. Shen,
A. Way, B. Wellington, and D. Wu. 2005. Final report
of the 2005 language engineering workshop on statis-
tical machine translation by parsing.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In ACL 2005, pages
263–270.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In Proc. 17th International

136

Conf. on Machine Learning, pages 175–182. Morgan
Kaufmann, San Francisco, CA.

Yuan Ding and Martha Palmer. 2005. Machine trans-
lation using probabilistic synchronous dependency in-
sertion grammars. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL–05).

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head-
automaton grammars. In Proceedings of the ACL.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573–605.

Declan Groves and Andy Way. 2005. Hybrid example-
based SMT: the best of both worlds? In Workshop on
Building and Using Parallel Texts: Data-Driven Ma-
chine Translation and Beyond, Ann Arbor, MI, June.
ACL ’05.

Declan Groves, Mary Hearne, and Andy Way. 2004. Ro-
bust sub-sentential alignment of phrase-structure trees.
In COLING ’04, Geneva Switzerland.

Rebecca Hwa. 2001. Learning Probabilistic Lexicalized
Grammars for Natural Language Processing. Ph.D.
thesis, Harvard University.

Aravind K. Joshi. 1985. How Much Context-
Sensitivity Is Necessary for Characterizing Structural
Descriptions—Tree-Adjoining Grammar. Cambridge
University Press.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT/NAACL.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. In Conference of the Association for Machine
Translation in the Americas, pages 115–124.

Philipp Koehn. 2005. Europarl: A parallel corpus for
machine translation. In MT Summit X, Phuket, Thai-
land. International Association for Machine Transla-
tion.

K. Lari and S.J. Young. 1991. Applications of stochastic
context-free grammars using the inside-outside algo-
rithm. Computer Speech and Language, 5:237–257.

D. Marcu and W. Wong. 2002. A phrase-based, joint
probability model for statistical machine translation.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

I. Dan Melamed, Giorgio Satta, and Ben Wellington.
2004. Generalized multitext grammars. In Proceed-
ings of the 42nd Annual Conference of the Association
for Computational Linguistics (ACL-04).

I. Dan Melamed. 2003. Multitext grammars and syn-
chronous parsers. In Proceedings of the 2003 Human
Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 79–86.

I. Dan Melamed. 2004. Statistical machine translation
by parsing. In Proceedings of the 42nd Annual Con-
ference of the Association for Computational Linguis-
tics (ACL-04).

Rebecca Nesson, Alexander Rush, and Stuart M. Shieber.
2005. Induction of probabilistic synchronous tree-
insertion grammars. Technical Report TR-20-05, Di-
vision of Engineering and Applied Sciences, Harvard
University, Cambridge, MA.

Franz Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models. Com-
putational Linguistics, 29:19–51.

Yves Schabes and Richard C. Waters. 1993a. Lex-
icalized context-free grammars. In Proceedings of
the 31st Conference on Association for Computational
Linguistics, pages 121–129. Association for Computa-
tional Linguistics.

Yves Schabes and Richard C. Waters. 1993b. Stochas-
tic lexicalized context-free grammar. Technical Report
93–12, Mitsubishi Electric Research Laboratories.

Yves Schabes and Richard C. Waters. 1995. Tree in-
sertion grammar: A cubic time, parsable formalism
that lexicalizes context-free grammars without chang-
ing the trees produced. Computational Linguistics,
21(3):479–512.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ grammars:
Application to tree-adjoining grammars. In Proceed-
ings of the 12th Conference on Computational Lin-
guistics, volume 2, pages 578–583.

Stuart M. Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. In Proceedings of the 13th
International Conference on Computational Linguis-
tics.

Stuart M. Shieber, Yves Schabes, and Fernando Pereira.
1994. Principles and implementation of deductive
parsing. Journal of Logic Programming, 24:503–512.

Stuart M. Shieber. 1994. Restricting the weak-generative
capacity of synchronous tree-adjoining grammars.
Computational Intelligence, 10(4):371–385.

Kenji Yamada and Kevin Knight. 2002. A decoder for
syntax-based statistical MT. In Proceedings of the
40th Annual meeting of the Association for Computa-
tional Linguistics.

137

