
A Collaborative Problem-Solving Model of Dialogue

Nate Blaylock
Department of Computational Linguistics

Saarland University
Saarbr̈ucken, Germany

blaylock@coli.uni-sb.de

James Allen
Deptartment of Computer Science

University of Rochester
Rochester, New York, USA

james@cs.rochester.edu

Abstract

We present a formal model of agent collabo-
rative problem solving and use it to define a
novel type of dialogue model. The model pro-
vides a rich structure for tracking dialogue state
and supports a wide range of dialogue, includ-
ing dialogue which contributes to interleaved
planning and execution of domain goals.

1 Introduction

We are interested in buildingconversational agents—
autonomous agents which can communicate with humans
through natural language dialogue. In order to support
dialogue with autonomous agents, we need to be able
to model dialogue about the range of activities an agent
may engage in, including such things as goal evaluation,
goal selection, planning, execution, monitoring, replan-
ning, and so forth.

Current models of dialogue are only able to support
a small subset of these sorts of agent activities. Plan-
based dialogue models, for example, typically model ei-
ther planning dialogue (e.g., (Grosz and Sidner, 1990))
or execution dialogue (e.g., (Cohen et al., 1991)), but
not both. Also, most plan-based dialogue models make
the assumption that agents already have a high-level goal
which they are pursuing.

In this work, we are trying to extend plan-based dia-
logue systems to more generalagent-baseddialogue sys-
tems (cf. (Allen et al., 2001)). In previous work (Allen et
al., 2002; Blaylock et al., 2003), we presented a prelim-
inary model of collaborative problem solving to model
communicative intentions at the utterance level. In this
paper, we formalize and extend that model and use it as
part of a dialogue model that can represent dialogue about
a larger range of agent activities — including those men-
tioned above. We also extend the collaborative problem-
solving model to handle grounding phenomena by tying

it together with a well-known model of grounding (Traum
and Hinkelman, 1992).

The remainder of the paper is as follows: in Section 2,
we give an intuitive definition of collaborative problem
solving and then in Sections 3 to 6, we present the for-
malization of the collaborative problem solving model.
In Section 7 we then extend the model to handle ground-
ing. In Section 8 we show an example of the model on a
dialogue. Section 9 then discusses related work, and then
we conclude and mention future work in Section 10.

2 Collaborative Problem Solving

We see problem solving (PS) as the process by which a
(single) agent chooses and pursuesobjectives(i.e., goals).
Specifically, we model it as consisting of the following
three general phases:

• Determining Objectives: In this phase, an agent
manages objectives, deciding to which it is commit-
ted, which will drive its current behavior, etc.

• Determining and Instantiating Recipes for Objec-
tives: In this phase, an agent determines and instan-
tiates a recipe to use to work towards an objective.
An agent may either choose a recipe from its recipe
library, or it may choose tocreatea new recipe via
planning.

• Executing Recipes and Monitoring Success: In this
phase, an agent executes a recipe and monitors the
execution to check for success.

There are several things to note about this general de-
scription. First, we do not impose any strict ordering on
the phases above. For example, an agent may begin exe-
cuting a partially-instantiated recipe and do more instan-
tiation later as necessary. An agent may also adopt and
pursue an objective in order to help it in deciding what
recipe to use for another objective.



It is also important to note that our purpose here is not
to specify a specificproblem-solving strategyor prescrip-
tive model of how an agentshouldperform problem solv-
ing. Instead, we want to provide a general descriptive
model that enables agents with different PS strategies to
still communicate.

Collaborative problem solving (CPS) follows a similar
process to single-agent problem solving. Here two agents
jointly choose and pursue objectives in the same stages
(listed above) as single agents.

There are several things to note here. First, the level
of collaboration in the problem solving may vary greatly.
In some cases, for example, the collaboration may be pri-
marily in the planning phase, but one agent will actually
execute the plan alone. In other cases, the collaboration
may be active in all stages, including the planning and ex-
ecution of a joint plan, where both agents execute actions
in a coordinated fashion. Again, we want a model that
will cover the range of possible levels of collaboration.

3 Problem-Solving Objects

The basic building blocks of our formal CPS model
are problem-solving (PS) objects, which we represent as
typed feature structures. PS object types form a single-
inheritance hierarchy, where children inherit or special-
ize features from parents. Instances of these types are
then used in problem solving.1

In our CPS model, we define types for the upper level
of an ontology of PS objects, which we termabstract
PS objects. These abstract PS objects are used to model
problem-solving at a domain-independent level, and all
operators (discussed below) operate on them. The model
is then specialized to a domain by inheriting and instan-
tiating domain-specific types and instances from the PS
objects. The operators, however, do not change with do-
main, which allows reasoning to be done at a domain-
independent level.

We first describe the abstract PS objects and then how
they are specialized.

3.1 Abstract PS Objects

The following are the six abstract PS objects from which
all other domain-specific PS objects inherit:

Objective A goal, subgoal or action. For example, in a
rescue domain, objectives could include rescuing a
person, evacuating a city, and so forth. We consider
objectives to be actions rather than states, allowing
us to unify the concepts of action and goal.

1Due to space constraints, we omit here a discussion of the
formal representation of objects. We refer readers to (Blaylock,
2005) for details.

Recipe Beliefs of how to attain an objective. A recipe
library can be expanded or modified through (col-
laborative or single-agent) planning.

Constraint A restriction on an object. Constraints are
used to restrict possible solutions in the problem-
solving process as well as possible referents in ob-
ject identification.

Evaluation An assessment of an object’s value within a
certain problem-solving context. Agents will often
evaluate several options before choosing one.

Situation The state of the world (or a possible world). In
all but the simplest domains, agents may only have
partial knowledge about a given situation.

Resource All other objects in the domain. These in-
clude include real-world objects (e.g., airplanes, am-
bulances) as well as concepts (e.g., song titles, artist
names)

In order to ensure that all objects in our problem-
solving model are labeled with a unique ID, we introduce
a basic typeobjectwith a single attributeID.2 This is then
used as the root of all objects in the hierarchy.

Each of the abstract PS objects share a set of common
features. We put these common features in a new type,
ps-object, which is the common parent of all of the ab-
stract PS objects. We briefly describe its features here and
then continue by giving the type declarations for each of
the abstract PS objects in turn.

ps-objectinherits fromobject and therefore contains
an ID attribute (not shown — we will typically not list
inherited features). It also has one additional attribute:
CONSTRAINTS. This provides a way of describing the
ps-objectwith a set ofconstraints.

It is important to note that the type of theCON-
STRAINTSattribute is not simply a set of typeconstraint.
Rather, it is one of a special class of middleman types
we call slots. As these middleman types are a vital part
of the CPS model, we take a brief aside here to discuss
them before continuing with the abstract PS objects.

Slots and Fillers Collaborative problem solving can be
seen as a decision-making process with respect to choos-
ing and pursuing objectives. In modeling problem solv-
ing, we want to model more than just the decisions made;
we want to model the decision-makingprocessitself.

Within our model, decisions can be seen as the choos-
ing of values (objects) or sets of values for certain roles.
For example, agents decide on a set of objectives to pur-
sue; for each objective they have, agents must decide on
a (single) recipe to use in pursuing it; and so forth. A

2Formal definitions for all objects discussed here are found
in Appendix A.



straightforward way of modeling these decisions would
be to include, for example, a featureRECIPEin an objec-
tive which takes a recipe value, and represents the current
recipe the agents are using to pursue this objective. Sim-
ilarly, we could define a featureOBJECTIVESat the top
level which would hold the set of objectives the agents
are currently committed to.

Doing this, however, would only model the agents’de-
cision, but not theprocessthe agents followed/are fol-
lowing in making that decision. In deciding on a recipe
to use for an objective, agents may identify several pos-
sible recipes as possibilities and evaluate each one. They
may similarly narrow down the space of possible recipes
by placing constraints on what they are willing to con-
sider. These kinds of meta-decisions can constitute a
large chunk of collaborative communication, but most
models of dialogue do not represent them explicitly.

To be able to model these and other kinds of decisions-
making processes, we add two levels of indirection at
each decision point in the model. The first is what we
call a slot, which contains information about the possi-
ble filler values (e.g., recipes) which have been/are under
consideration in that context. A slot also contains infor-
mation about possible constraints which have been put on
what should be considered (e.g., notall valid recipes, but
just those which take less than 30 minutes to execute). A
slot also records which (if any)filler has been chosen by
the agents.

A filler is the second layer of indirection. It is used to
wrap an actual value with a set of evaluations the agents
have made/might make about it. Note that this wrap-
ping is necessary, as evaluations will always be context-
dependent (i.e., dependent on the current slot) and cannot,
therefore, be attached to the value itself.

Using these two levels of indirection gives us a rich
model of not only the decisions (to be) made, but also the
decision-making process itself., as we will show in the
dialogue examples below.

As the parent of slots, we define an abstractslot type,
which is the parent ofsingle-slotandmultiple-slot. These
types differentiate decision points where just one filler is
needed (e.g., a single recipe for an objective), or where
a set of values can be chosen (e.g., objectives that the
agents wish to pursue). We first discuss the single-value
case, and then the multiple-value case.

Slots for Single Values The most typical case is where
a single value can be used to fill a slot.single-slotis an
abstract type for handling this.3 It has three features (be-
sides theID inherited fromobject): IDENTIFIED is the
set of all values (wrapped infillers) that the agents have

3Note that this is actually a type schema, whereσ can be in-
stantiated with a given type. The same holds for the discussion
of thefiller type below.

considered/are considering to fill this slot.ADOPTED

records the single value which the agents have commit-
ted to for this slot. (This value may also be empty in
the case that the agents have not yet made a decision, or
have reversed a previous decision.) TheCONSTRAINTS

feature describes possible constraints the agents have put
on possible slot fillers (such that the chosen recipe have
5 or fewer steps). Note that this is itself a type of slot,
constraints-slot, which we will describe shortly.

Note also that the types of theIDENTIFIED and
ADOPTED features contain afiller type. A filler con-
tains both aVALUE which it wraps, as well anEVALU -
ATIONS attribute, which represents any evaluations the
agents may make/have made about the value in the local
context. This is also a slot of typeevaluations-slotwhich
we will describe momentarily.

Slots for Sets of Values The typemultiple-slotdefines
an abstract slot for decisions which allow more than
one simultaneous value. In our model, we use three
classes which inherit frommultiple-slot: constraints-slot,
evaluations-slot, andobjectives-slot. We describe each in
turn.

Previously-discussed typesps-objectand single-slot
have already introduced theconstraints-slottype. As dis-
cussed above, this type allows a set of constraints to be
identified and adopted in a context. Here theIDENTIFIED

andADOPTED features have a similar meaning to those in
single-slot, with the only exception being thatADOPTED

takes a set offillers, instead of a single value.
The second slot type for multiple values is the

evaluations-slot, which was used above in the definition
of filler. An evaluation-slotprovides a space for deter-
mining a set ofevaluations. Its attributes are used in the
same way to those ofsingle-slotandconstraints-slotand
don’t merit further comment here.

The final slot type for multiple values is theobjectives-
slot. It too has the featuresCONSTRAINTS, IDENTIFIED

andADOPTED which are used as they are inevaluations-
slot. Objectives are not only committed to, but can also
be executed. Objectives in theSELECTED set are those
which the agents are currently executing (more details
below), as opposed to just intending to execute. Finally,
as discussed above, agents must monitor the situation in
order to notice when an objective has been fulfilled (so
that they stop pursuing it). Objectives which the agents
believe have been fulfilled are put into theRELEASEDset.

Objective Now that we have described the various slot
and filler types which are used in the model, we are
ready to get on with the definitions of the abstract PS
object types. The typeobjectives, like all six abstract
PS objects, inherits directly fromps-object. objectiveex-
tends this by adding aRECIPEattribute which is of type
single-slot(recipe). This slot provides a place to track



all problem-solving activity related to choosing a single
recipeto use to pursue theobjective, as discussed above.

Recipe Recipes are represented as a set of subobjec-
tives (i.e., actions) and a set of constraints on those
subobjectives. TheACTIONS attribute is anobjectives-
slot which allows a set ofobjectivesassociated with
the recipe, as discussed above. The attributeACTION-
CONSTRAINTScontains theconstraintsplaced on theob-
jectives.

Constraint Constraints are represented asboolean-
expressions. We do not define the form of these expres-
sions here, but we envision a typical kind of expression
involving boolean connectives (and, or, etc.) as well as
(possibly domain-specific) predicates.

Resource Resourcesare used to represent what would
typically be thought of as “objects” in a domain. These
include real-world objects, but can also include any sort
of object used in problem solving that does not fall into
one of the other categories of abstract PS objects.

In addition to the attributes inherited fromps-object,
resourcescontain the attributeACTUAL -OBJECT, which
holds a pointer to the “actual” object as represented in an
agent’s mental state.

Evaluation Before making decisions in problem solv-
ing, agents often evaluate each of the options that have
been identified. Anevaluationrepresents the agents’ as-
sessment of a particular PS object within a particular con-
text. Theevaluationis therefore always associated with a
PS object and a context (e.g., which PS object to choose
to fill a slot). As we are not yet sure how best to repre-
sent the evaluations themselves, we leave the type of the
ASSESSMENTattribute unstructured.

Situation A c-situation,4 describes the state of a pos-
sible world, or more precisely, the agents’ beliefs about
that possible world. Rather than just packing all state in-
formation into a general world-state attribute, we sepa-
rate out information about problem-solving in the situa-
tion, and then have a separate place to store other world
beliefs.

ThePS-OBJECTSattribute holds a set of all PS objects
known to the agents in the situation, whereasPENDING-
PS-OBJECTSis a temporary holder for objects which have
not yet been successfully identified (but have been men-
tioned in the conversation). These sets include domain-
specific PS objects (such as objectives, recipes and re-
sources) which the agents can use in problem solving.

The PS-HISTORY attribute records the history of the
agents’ problem solving. This is a list of interaction acts

4This object as well as the CPS acts below are prefaced with
c- to differentiate them with types in our model of single-agent
problem solving, which is not discussed here.

the agents have performed (see below).
The OBJECTIVES attribute holds theobjectivesthey

agents are considering/planning/executing in the situa-
tion.

The FOCUS attribute tracks the agents’ problem-
solving focus as a stack, which is similar to linguistic
focus in (Grosz and Sidner, 1986).

All other beliefs about the world are stored in theCON-
STRAINTSattribute (inherited fromps-object). This mod-
els the fact that the agents do not have perfect knowl-
edge of the world state, but rather only bits of knowledge
which constrain which state it is actually in.

3.2 Domain Specialization

The CPS model can be specialized to a domain by cre-
ating new types that inherit from the abstract PS objects
and/or creating instantiations of them. We describe each
of these cases separately.

Specialization through Inheritance As described
above, inheritance is basically the process of adding new
attributes to a previously existing type, and/or specializ-
ing the types of preexisting attributes. In our CPS model,
inheritance is only used forobjectives, and resources.
The other abstract PS objects are specialized through in-
stantiation.

Inheriting from resourceis done to specify domain-
specific resource type. As an example, we define aship-
by-train objective for a logistics domain (used in an ex-
ample below), which is also shown in Appendix A. This
inherits all attributes fromobjectiveand adds two more:
the item to be shipped and a destination which aresingle-
slots of type movableand city respectively (definitions
not shown).

Specialization through Instantiation All PS object
types (including new types created by inheritance) can be
further specialized by instantiation, i.e., by assigning val-
ues to some set of their attributes. This can be done both
at design time (by the domain modeler) and (as we dis-
cuss below) it happens at runtime as part of the problem-
solving process itself.

4 The Collaborative Problem Solving State

The CPS state is part of the agents’ common ground
(Clark, 1996), and models the agents’ current problem-
solving context. It is represented as an instance of type
c-situationcalled theactual-situation. As the name im-
plies, theactual-situationis a model of the agents’ beliefs
about the current situation and the actual problem-solving
context.

TheOBJECTIVESattribute contains all of the top-level
objectivesassociated with the agents’ problem solving
process. Theseobjectivesform the roots of individual



problem-solving contexts associated with reasoning with,
and/or trying to accomplish thoseobjectives, and can in-
clude all types of other PS objects.

5 Collaborative Problem Solving Acts

Agents change their CPS state through the execution of
CPS acts. There are two broad categories of CPS acts:
those used in reasoning and those used for commitment.
We describe severalfamilies of CPS act types within
those categories:

Reasoning Act Families

• c-focus: Used to focus problem solving on a partic-
ularobject.

• c-defocus: Removes the focus on a particularobject.
• c-identify: Used to identify aps-objectas a possible

option in a certain context.

Commitment Act Families

• c-adopt: Commits the agents to anobjectin a certain
context.

• c-abandon: Removes an existing commitment to an
object.

• c-select: Moves anobjectiveinto active execution.
• c-defer: Removes anobjectivefrom active execution

(but does not remove a commitment to it).
• c-release: Removes the agents’ commitment to an

objectivewhich they believe has been fulfilled.

Each of these families encompasses a set of CPS acts.
For the remainder of this section, we discuss each of the
CPS act families and their corresponding acts as well as
their effects on the CPS state.

5.1 c-focus/c-defocus

Agents need to coordinate their problem-solving focus.
They do this through the execution of the following CPS
acts:

c-focus(situation-id,object-id)
c-defocus(situation-id,object-id)

The semantics of these are simple.c-focuspushes the
givenobject-idonto the focus stack in thec-situationrep-
resented bysituation-id. c-defocuspops theobject-idoff
the stack as well as anyobject-idsabove it.

5.2 c-identify

CPS acts in thec-identify family are used to introduce
CPS objects into the realm of a problem-solving context.
This could either be in identifying previously unknown
objects (i.e., objects not listed inPS-OBJECTSwithin the
c-situation), or it could be in identifying a known object
as a possible option for filling a certain slot.

All objects must be identified before they can be used
further in the CPS process. For this reason, CPS acts
in the c-identify family exist for all PS objects.5 The
are as follows:c-identify-objective, c-identify-recipe, c-
identify-constraint, c-identify-resource, and c-identify-
evaluation.

The basic syntax of identify acts is

c-identify-{type}(slot-id,ps-object)

wheretyperefers to any of the PS objects in the acts listed
above. Theps-objectparameter is the PS object instance
which is being introduced and theslot-id parameter gives
the id of the problem-solving context for which it is be-
ing identified. Note thatc-identifyacts take an actualps-
objectas an argument, whereas the remaining CPS acts
take only anobject-id(i.e., pointer to an object).

The effect of ac-identifyis that theps-objectis inserted
into thePS-OBJECTSset in theactual-situation(if not al-
ready there). It is also wrapped in an appropriatefiller
type and inserted into theIDENTIFIED set of theslot iden-
tified byslot-id.

5.3 c-adopt/c-abandon

We treat the CPS act familiesc-adoptandc-abandonto-
gether here, as one essentially undoes the other. The syn-
tax of the two is as follows:

c-adopt-{type}(slot-id,filler-id)
c-abandon-{type}(slot-id,filler-id)

As with c-identify, these two families have types corre-
sponding to most abstract PS objects:c-adopt-objective,
c-adopt-recipe, c-adopt-resource, c-adopt-constraint,
c-adopt-evaluation, c-abandon-objective, c-abandon-
recipe, c-abandon-resource, c-abandon-constraint, and
c-abandon-evaluation.

A c-adopthas the effect of adding thefiller referred to
by filler-id to theADOPTED attribute of theslot referred
to by slot-id (either by assigning the value, in the case of
a single-slotor adding the value to the set for amultiple-
slot. Note that this requires that the PS object referred to
by filler-id be in theIDENTIFIED set in that context.

A c-abandonbasically has the opposite effect. It re-
moves the object from theADOPTED attribute. Thus
c-abandonrequires that the object actually be adopted
when the act is executed.

When a PS object is adopted with respect to a slot, it
means the agents are committed to that object in that con-
text. For example, for arecipe, this means the agents are
committed to using thatrecipe for the associatedobjec-
tive. The other PS objects are similarly treated.

5Exceptc-situationfor reasons described above.



5.4 c-select/c-defer

The act familiesc-selectand c-deferare only used for
objectives. Their syntax is as follows:

c-select-objective(slot-id,filler-id)
c-defer-objective(slot-id,filler-id)

Executing ac-select-objectiveadds anobjective to
the SELECTED set in the givenobjectives-slot. c-defer-
objectivecan then be used to delete an object from the
SELECTEDset.

Although agents may have any number of adoptedob-
jectives, there is only a small subset that is actually being
executed at any given point. These are theobjectivesin
the SELECTEDset. Anobjectivedoes not need to be an
atomic action to be selected. Higher-levelobjectivescan
be marked as selected if the agents believe that they are
currently executing some action as part of executing the
higher-levelobjective.

5.5 c-release

The final CPS act we discuss here isc-release. As with
c-selectandc-defer, this is only applicable toobjectives.
The syntax is as follows:

c-release-objective(slot-id,filler-id)

This act has the effect of moving anobjectivefiller
from the ADOPTED set to theRELEASED set. Note that
theobjectivemust first be in theADOPTEDset for this act
to be executed.

Rational agents should notice when anobjectivehas
been successfully achieved and then stop intending to
achieve it (cf. (Cohen and Levesque, 1990)). TheRE-
LEASED set contains thoseobjectiveswhich the agents
believe have successfully been achieved.

6 Interaction Acts

An agent cannot single-handedly execute CPS acts to
make changes to the CPS state. Doing so requires the co-
operation and coordination of both agents. In the model,
CPS acts are generated by sets ofinteraction acts(In-
tActs) — actions that single agents execute in order to
negotiate and coordinate changes to the CPS state. An
IntAct is a single-agent action which takes a CPS act as
an argument.

The IntActs arebegin, continue, completeand reject.
An agent beginning a new CPS act proposal performs
a begin. For successful generation of the CPS act, the
proposal is possibly passed back and forth between the
agents, being revised withcontinues, until both agents fi-
nally agree on it, which is signified by an agentnotadding
any new information to the proposal but simply accepting
it with a complete. This generates the proposed CPS act
resulting in a change to the CPS state. At any point in this
exchange, either agent can perform areject, which causes

the proposed CPS act — and thus the proposed change to
the CPS state — to fail.

7 Grounding Acts

The model as it stands thus far makes the simplifying as-
sumption that utterances are always correctly heard by
the hearer and that he also correctly interprets them (i.e.,
properly recovers the intended (instantiated) interaction
acts). In human communication, mishearing and misun-
derstanding can be the rule, rather than the exception. Be-
cause of this, both speaker and hearer need tocollabora-
tively determine the meaning of an utterance through a
process termedgrounding(Clark, 1996).

We add grounding to our model by utilizing the
Grounding Acts(GAs) proposed as part of Conversation
Acts theory (Traum and Hinkelman, 1992)6 and used
in Traum’s computational model of grounding (Traum,
1994). In our model, we expand the definition of GAs to
allow them to take individual IntActs as arguments. As
the grounding acts themselves are not our focus here, we
discuss them only briefly. The Grounding Acts are as fol-
lows:

Initiate The initial contribution of an IntAct.

Continue Used when the initiating agent has a turn of
several utterances. An utterance which further ex-
pands the meaning of the IntAct.

Acknowledge Signals understanding of the IntAct (al-
though not necessarilyagreement, as this is modeled
at the IntAct level).

Repair Changes some part of the IntAct.

ReqRepair A request that the other agent repair the In-
tAct.

ReqAck An explicit request for an acknowledgment by
the other agent.

Cancel Declares the attempted IntAct as ’dead’ and un-
grounded.

In the model, an IntAct is not successfully executed
until it has been successfully grounded. This is typically
after anacknowledge, although see (Traum, 1994) for de-
tails.

8 Example

To show concretely how the model is used, we ana-
lyze and discuss here a human-human dialogue from

6Interestingly enough, our interaction acts and CPS acts
could be seen as roughly corresponding to the Core Speech Acts
and Argumentation Acts levels in Conversation Acts theory.



(Traum and Hinkelman, 1992). As a further example,
Appendix C shows the analysis for a human-human di-
alogue from (Grosz and Sidner, 1986), although space
precludes a detailed discussion of the analysis.7

Figure 1 shows the dialogue from (Traum and Hinkel-
man, 1992) marked up with instantiated grounding acts.8

We first discuss the dialogue at the grounding level, and
then at the problem-solving level.

Grounding Our analysis at the grounding level is ba-
sically unchanged from that of (Traum and Hinkelman,
1992). We therefore describe it only briefly. The main
difference between the two accounts is that we asso-
ciate GAs with individual IntActs, whereas they associate
them with utterances.

In Utterance Unit (UU) 1.1, the user initiates three
IntActs, which the system acknowledges in UU 2.1.
(Note that, for compactness, we use subscripted ranges
to refer to series of GAs and IntActs.ack1−2 expands
to ack1 and ack2, and init3−4(complete1−2) expands to
init3(complete1) and init4(complete2).) Note that, only
after UU 2.1 are the are the effects of the IntActs 1–3
valid and cause a change to the CPS state.

UU 2.1 also initiates the correspondingcompleteIn-
tActs to those initiated in UU 1.1; these are acknowl-
edged in UU 3.1.

UU 3.1 also inits three IntActs (7, 8, and 9), which
are never grounded.9 These, therefore don’t result in any
successfully executed IntActs, and thus no changes to the
CPS state.

In UU 3.2, the user inits new IntActs for which he ex-
plicitly requests an acknowledgment in UU 3.3. UU 4.1
inits two completes, which are acknowledged by the sub-
sequent utterance by the user (not shown).

The remainder of the dialogue consists solely of paired
inits and acks, which are handled similarly to the first two
utterances.

Problem Solving At the problem-solving level, in
UU 1.1., the user proposes the adoption (and identifica-
tion) of an objective of shipping oranges. (Again, these
do not become valid until grounded in UU 2.1). He also
proposes that problem-solving focus be placed on that ob-
jective (i.e., in order to work on accomplishing it). The
proposed objective is shown in Figure 2, and deserves
some explanation.

7The description of this analysis as well as other examples
can be found in (Blaylock, 2005).

8We have at times combined multiple utterance units into a
single utterance unit in the case that the units were tagged as
contsat the grounding level. Although modeling this is impor-
tant at the grounding level, aninit followed by contsare just
gathered up into a single (group of) IntActs that are proposed,
so at the problem-solving level, this is not an important differ-
ence.

9Although see discussion in (Traum and Hinkelman, 1992).

The type of the objective isship-by-train, which we
have invented for this example.10 It introduces two new
attributes to theobjectiveclass: an item to be shipped and
a destination. As the abbreviated form of the objective
shows,11 there are three main components to the objec-
tive as it has been introduced by the user. First of all, it
has a pre-adopted destination — Bath (modeled as a lo-
cation with aNAME). Second, the item to be shipped has
not yet been determined, but a constraint has been put
on possible values for that slot — they must be of type
oranges.

Recall that this was one of the motivations for intro-
ducing slots in the model. Notice here that the constraint
is not put on a particular instance of oranges, rather it
is put on thesingle-slotitself. Constraints on a slot are
adopted to restrict the values considered (e.g., identified)
as possible fillers.

Finally, a constraint has also been placed on the objec-
tive itself — that it be completed by 8am. Note the dif-
ference here between placing a constraint on aps-object
versus placing it on aslot, as just discussed.

UU 2.1 completes the CPS acts, and after 3.1, when
the completes are grounded, the CPS acts are generated,
resulting in the corresponding changes to the CPS state.

In UU 3.1, the user proposes the adoption of a (partial)
recipe for shipping the oranges, as well as that focus be
placed on it. These IntActs are never grounded, and thus
never result in a change in the CPS state. However, as
this utterance gives a good example of the introduction of
a recipe, we still discuss it.

The recipe that the user attempts to introduce is shown
in Figure 3, and consists of a single adopted objective —
that of moving a boxcar to Corning. Similar to theship-
by-train objective above, this also has an adopted value
(the destination is Corning), and a constraint on the slot
of the other (that the only resources to be considered to
be moved should be of typeboxcar). At this point, the
recipe has noACTION-CONSTRAINTS.

As mentioned, however, this recipe never makes it into
the CPS state. Instead, in UU 3.2, the user decides he
wants to adopt (confirm) the joint belief that there are or-
anges at Corning. Note that no focus change is proposed
by UU 3.2. We model this in this way, as it appears that
the user did not intend for further work (beyond adoption)
to be done on this constraint, or on finding out the state of
the world. Instead, it was intended as a quick check, but
focus was intended to remain on theship-by-trainobjec-
tive.

As discussed above, we model beliefs about the world

10In all examples, we invent simple-minded domain-specific
object types as we need them.

11Because of space constraints, we only list the most salient
features of the objective, given with their feature paths. We also
abbreviate feature names as detailed in Appendix B.



1.1 U: okay, the problem is we better ship a boxcar of oranges to Bath by 8 AM.
init1(begin1(c-identify-objective(STATE | OBJVS| ID , 1 )))
init2(begin2(c-adopt-objective(STATE | OBJVS| ID , 1 | ID)))
init3(begin3(c-focus(STATE | ID , 1 | ID)))

2.1 S: okay.
ack1−3

init4−6(complete1−3)
3.1 U: now ... umm ... so we need to get a boxcar to Corning, where there are oranges.

ack4−6

init7(begin4(c-identify-recipe(1 | REC| ID , 2 )))
init8(begin5(c-adopt-recipe(1 | REC| ID , 2 | ID)))
init9(begin6(c-focus(STATE | ID , 2 | ID)))

3.2 U: there are oranges at Corning
init10(begin7(c-identify-constraint(STATE | CONS| ID , 3 )))
init11(begin8(c-adopt-constraint(STATE | CONS| ID , 3 | ID)))

3.3 U: right?
reqack10−11

4.1 S: right.
ack10−11

init12−13(complete7−8)
... (Utterances 5.1–13.1 removed due to space constraints)

13.2 U: or, we could actually move it [Engine E1] to Dansville, to pick up the boxcar there
init1(begin1(c-identify-recipe(1 | REC| ID, 4 [move(E1,Dansville)]))
init2(begin2(c-focus(STATE | ID, 4 | ID)))

14.1 S: okay.
ack1−2

init3−4(complete1−2)
15.1 U: um and hook up the boxcar to the engine, move it from Dansville to Corning,

load up some oranges into the boxcar, and then move it on to Bath.
ack3−4

init5(begin3(c-identify-objective(4 | ACTS | ID, 5 [hook(boxcar1,engine1)] ))
init6(begin4(c-adopt-objective(4 | ACTS | ID, 5 | ID) ))
init7(begin5(c-identify-constraint(4 | ACONS| ID, 6 [before( 1 , 2 )])))
init8(begin6(c-adopt-constraint(4 | ACONS| ID, 6 | ID))
init9−16(begin7−14) [2 other actions and 2 other ordering constraints]

16.1 S: okay.
ack5−16

init17−28(complete3−14)
17.1 U: how does THAT sound?

ack17−28

init29(begin15(c-identify-evaluation(FILLER( 4 ) | EVALS | ID, 7 [blank evaluation])))
18.1 S: that gets us to Bath at 7 AM, and (inc) so that’s no problem.

ack29
init30(continue15(c-identify-evaluation(FILLER( 4 ) | EVALS | ID, 7 [sufficient]) ))
init31(begin16(c-adopt-evaluation(FILLER( 4 ) | EVALS | ID, 7 | ID)))

19.1 U: good.
ack30−31

init32−33(complete15−16)
init34(begin17(c-adopt-recipe(1 | REC| ID, 4 | ID))
init35(begin18(c-defocus(STATE | ID, 4 | ID)))

20.1 S: okay.
ack32−35

init36−37(complete17−18)

Figure 1: Analysis of a Planning Dialogue from (Traum and Hinkelman, 1992)



1

ship-by-train



















CONS| APTD

{

fill

[

VAL | EXPR ’completion before 8am’
]

}

ITEM | CONS| APTD

{

fill

[

VAL | EXPR ’type = oranges’
]

}

DEST| APTD
fill

[

VAL | NAME ’Bath’
]



















Figure 2: Contents ofobjective1

2

rec











ACTS | APTD



















fill









VAL

move







ITEM | CONS| APTD

{

fill

[

VAL | EXPR ’type = boxcar’
]

}

DEST| APTD | VAL | NAME ’Corning’











































Figure 3: Contents ofrecipe 2

state as constraints on the situation. The proposed con-
straint is shown in Figure 4. In this paper, we do not
present a theory of constraint representation, thus we
have been glossing constraints until now. The only speci-
fication we have made is that theEXPRESSIONbe of type
boolean. In the case of this constraint, however, a sim-
ple gloss is not enough, as this constraint actually intro-
duces a new embeddedresource— the instance of the
oranges that are at Corning. For this reason, we show this
constraint as a domain-specific predicate (at) that takes a
location and an item. More work obviously needs to be
done on the general specification of constraints, but the
representation here is sufficient for our purposes.

It is important to point out that when thebeginc-
identify-constraintis grounded in UU 4.1, the oranges
instance from the constraint is also placed in thePS-
OBJECTSset within the CPS state, making it available
for use in further problem solving.

In the interest of space and clarity, we have skipped
part of the dialogue (Utterance Units 5.1–13.1) which in-
cluded mostly grounding interaction which is adequately
described in (Traum and Hinkelman, 1992). In UU 13.2,
the user identifies a possible (partial) recipe for the ship-
by-train objective. The recipe includes a single objec-
tive (action) of moving engine E1 to Dansville.12 Note
that the user does not propose that this recipe be adopted
for the objective, yet; he only proposes that it be consid-
ered as a candidate. He also proposes moving problem-
solving focus to the recipe (in order to work on expanding
it).

In 14.1, the system acknowledges these grounding acts
and also inits IntActs to complete them. In 15.1, the user
proposes several new actions to add to the recipe as well
as ordering constraints among them. In UU 17.1, the user

12From now on, we will gloss PS objects with a boxed num-
ber, 4 in this case, and some description of their contents.

3

con

[

EXPR at(
loc

[

NAME ’Corning’
]

,
oranges

[

AOBJ oranges37
]

)
]

Figure 4: Contents ofconstraint 3

then asks for the system’s evaluation of the recipe, which
is provided in UU 18.1. The surface form of 19.1 is a bit
misleading. With this “good”, the user is acking the sys-
tem’s last utterance and accepting the given evaluation.
He is also, based on this evaluation, proposing that the
recipe be adopted for the objective and proposing that the
focus be taken off the recipe. The system accepts these
proposals in the final utterance.13

9 Related Work

The work in (Cohen et al., 1991) motivates dialogue as
the result of the intentions of rational agents executing
joint plans. Whereas their focus was the formal represen-
tation of single and joint intentions, we focus on describ-
ing and formalizing the interaction itself. We also extend
coverage to the entire problem-solving process, including
goal selection, planning, and so forth.

Our work is also similar in spirit to work on Shared-
Plans (Grosz and Sidner, 1990; Grosz and Kraus, 1996),
which describes the necessary intentions for agents to
build and hold a joint plan, as well as a high-level
sketch of how such joint planning occurs. It de-
fines four operators which describe the planning pro-
cess: SelectRec, ElaborateIndividual, SelectRecGR,
and ElaborateGroup. Our CPS acts describe the joint

13As with any grounding model, we have the problem that
final utterances will not be verbally acked. We assume within
the model that, if after a small pause, if there is no evidence of
the usernot having heard or understood, inits of completes are
considered acknowledged.



planning process at a more fine-grained level in order to
be able to describe contributions of individual utterances.
The CPS acts could possibly be seen as a further refine-
ment of the SharedPlans operators. Our model also de-
scribes other problem-solving stages, such as joint exe-
cution and monitoring.

Collagen (Rich et al., 2001) is a framework for build-
ing intelligent interactive systems based on Grosz and
Sidner’s tripartite model of discourse (Grosz and Sidner,
1986). It provides middleware for creating agents which
act as collaborative partners in executing plans using a
shared artifact (e.g., a software application). In this sense,
it is similar to the work of Cohen and Levesque described
above.

Collagen uses a subset of Sidner’s artificial negotia-
tion language (Sidner, 1994) to model individual con-
tributions of utterances to the discourse state. The lan-
guage defines operators with an outer layer of negotia-
tion (e.g.,ProposeForAccept(PFA) andAcceptProposal
(AP)) which take arguments such asSHOULD(action)
andRECIPE. Our interaction and collaborative problem-
solving acts are similar in spirit to Sidner’s negotiation
language, covering a wider range of phenomena in more
detail (including evaluations of goals and recipes, solu-
tion constraining, and a layer of grounding).

10 Conclusion and Future Work

In this paper, we have presented a formal model of agent
collaborative problem solving. We also introduced a
model of dialogue created by combining the CPS model
with a known model of grounding. The dialogue model
is able to support a wide range of dialogue phenomena,
including dialogues supporting interleaved planning and
execution, mixed-initiative dialogues, and grounding.

We are currently developing an autonomous agent dia-
logue manager that can participate in collaborative prob-
lem solving, which serves as the back-end of a dialogue
system. In addition, we are developing a generation com-
ponent that can generate multimodal output from these
instantiated grounding acts. Finally, we plan to develop
an intention recognizer that is capable of recognizing
these instantiated grounding acts.

Acknowledgments

We would like to thank George Ferguson for early
collaboration on the CPS model and the members of
the Saarbr̈ucken TALK group (especially Ivana Kruijff-
Korbayov́a and Tilman Becker) for input on the model.

This material is based upon work supported by a grant
from DARPA under grant number F30602-98-2-0133;
two grants from the National Science Foundation un-
der grant number IIS-0328811 and grant number E1A-
0080124; and the EU-funded TALK project (No. IST-

507802). Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
above-mentioned organizations.

References
James F. Allen, Donna K. Byron, Myroslava Dzikovska,

George Ferguson, Lucian Galescu, and Amanda Stent.
2001. Towards conversational human-computer inter-
action.AI Magazine, 22(4):27–37.

James Allen, Nate Blaylock, and George Ferguson.
2002. A problem-solving model for collaborative
agents. InAAMAS’02, Bologna, Italy, July 15-19.

Nate Blaylock, James Allen, and George Ferguson.
2003. Managing communicative intentions with col-
laborative problem solving. InCurrent and New Di-
rections in Discourse and Dialogue. Kluwer, Dor-
drecht.

Nathan J. Blaylock. 2005.Towards Tractable Agent-
based Dialogue. Ph.D. thesis, University of Rochester,
Dept. of Computer Science.

Herbert H. Clark. 1996.Using Language. Cambridge
University Press.

Philip R. Cohen and Hector J. Levesque. 1990. Inten-
tion is choice with commitment.Artificial Intelligence,
42:213–261.

Philip R. Cohen, Hector J. Levesque, José H. T. Nunes,
and Sharon L. Oviatt. 1991. Task-oriented dialogue
as a consequence of joint activity. InArtificial Intelli-
gence in the Pacific Rim. IOS Press, Amsterdam.

Barbara J. Grosz and Sarit Kraus. 1996. Collaborative
plans for complex group action.Artificial Intelligence,
86(2):269–357.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intention, and the structure of discourse.Compu-
tational Linguistics, 12(3):175–204.

Barbara J. Grosz and Candace L. Sidner. 1990. Plans
for discourse. InIntentions in Communication. MIT
Press, Cambridge.

Charles Rich, Candace L. Sidner, and Neal Lesh. 2001.
COLLAGEN: Applying collaborative discourse the-
ory to human-computer interaction.AI Magazine,
22(4):15–25.

Candace L. Sidner. 1994. An artificial discourse lan-
guage for collaborative negotiation. InAAAI, pages
814–819, Seattle, WA.

David R. Traum and Elizabeth A. Hinkelman. 1992.
Conversation acts in task-oriented spoken dialogue.
Computational Intelligence, 8(3):575–599.

David R. Traum. 1994. A Computational Theory of
Grounding in Natural Language Conversation. Ph.D.
thesis, University of Rochester, Department of Com-
puter Science.



A Definitions of PS Objects

The following are the feature structure type definitions
for the objects described in this paper (including the
domain-specific types used in the example). Type name
and parent class are shown above the feature structure in
the formtype← parent.

object← ǫ
[

ID id
]

slot← object
[

IDENTIFIED set(filler(ps-object))
]

single-slot(σ)← slot






CONSTRAINTS constraints-slot
IDENTIFIED set(filler(σ))
ADOPTED filler(σ)







filler( σ)← object
[

EVALUATIONS evaluations-slot
VALUE σ

]

multiple-slot ← slot
[

IDENTIFIED set(filler(ps-object))
ADOPTED set(filler(ps-object))

]

constraints-slot← multiple-slot
[

IDENTIFIED set(filler(constraint))
ADOPTED set(filler(constraint))

]

evaluations-slot← multiple-slot






CONSTRAINTS constraints-slot
IDENTIFIED set(filler(evaluation))
ADOPTED set(filler(evaluation))







objectives-slot←multiple-slot














CONSTRAINTS constraints-slot
IDENTIFIED set(filler(objective))
ADOPTED set(filler(objective))
SELECTED set(filler(objective))
RELEASED set(filler(objective))















ps-object← object
[

CONSTRAINTS constraints-slot
]

objective← ps-object
[

RECIPE single-slot(recipe)
]

recipe← ps-object
[

ACTIONS objectives-slot
ACTION-CONSTRAINTS constraints-slot

]

resource← ps-object
[

ACTUAL -OBJECT id
]

constraint← ps-object
[

EXPRESSION boolean-expression
]

evaluation← ps-object
[

ASSESSMENT unstructured
]

c-situation← ps-object














PENDING-PS-OBJECTS set(ps-object)
PS-OBJECTS set(ps-object)
PS-HISTORY list(interaction-act)
FOCUS stack(object)
OBJECTIVES objectives-slot















ship-by-train ← objective
[

ITEM single-slot(moveable)
DEST single-slot(city)

]

B Abbreviations Used

The following table shows the various abbreviations of
type and feature names used within the examples.

types features
full abbr full abbr
object obj constraints cons
ps-object psobj identified ided
single-slot ss adopted aptd
filler fill evaluations evals
constraints-slot cslot value val
evaluations-slot eslot selected seld
objectives-slot oslot released reld
objective objv recipe rec
recipe rec actions acts
constraint con action-constraints acons
resource res expression exp
evaluation eval actual-object aobj
situation sit ps-objects psobjs
c-situation csit ps-history pshist

objectives objvs
pending-ps-objects pend



C Analysis of an Expert-Apprentice Dialogue from (Grosz and Sidner, 1986)

The context at the start of this segment is that the expert is specifying a recipe rec to the apprentice for
removing a pump. A description of the analysis (as well as other examples) can be found in (Blaylock, 2005)

1.1 E: First you have to remove the flywheel
init1(begin1(c-identify-objective(rec | ACTS | ID, 1 [remove(flywheel)]))
init2(begin2(c-adopt-objective(rec | ACTS | ID, 1 | ID)))
init3(begin3(c-select-objective(rec | ACTS | ID, 1 | ID)))

2.1 A: How do I remove the flywheel?
ack1−3 init4−6(complete1−3)
init7(begin4(c-focus(STATE | ID, 1 | REC| ID)))
init8(begin5(c-identify-recipe(1 | REC| ID, 2 [blank recipe])))
init9(begin6(c-adopt-recipe(1 | REC| ID, 2 | ID)))

3.1 E: First, loosen the two allen head setscrews holding it to the shaft, then pull it off
ack4−9 init10(complete4)
init11(continue5(c-identify-recipe(1 | REC| ID, 2 [loosen(screwsets),pull-off(wheel)])))
init12(continue6(c-adopt-recipe(1 | REC| ID, 2 | ID)))

4.1 A: OK.
ack10−11 init12−13(complete5−6)

... (Utterances 5.1–17.1 removed due to space constraints)
18.1 A: The two screws are loose,

init14(begin7(c-release-objective(rec | ACTS | ID, loosen | ID))
18.2 A: but I’m having trouble getting the wheel off

init15(begin8(c-select-objective(rec | ACTS | ID, pull−off | ID)))
init16(begin9(c-focus(STATE | ID, pull−off | REC| ID)))
init17(begin10(c-identify-recipe(pull−off | REC| ID, 3 [blank recipe])))
init18(begin11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))

19.1 E: Use the wheelpuller.
ack14−18 init19−21(complete7−9)
init22(continue10(c-identify-recipe(pull−off | REC| ID, 3 [recipe using wheelpuller])))
init23(continue11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))

19.2 E: Do you know how to use it?
reqack22−23

20.1 A: No.
ack19−21 reqrepair22−23

21.1 E: Do you know what it looks like?
cancel22−23

init24(begin12(c-identify-resource(STATE | ID, 4 [wheelpuller])))
22.1 A: Yes.

ack24 init25(continue12)
23.1 E: Show it to me please.

ack25 init26(continue12)
init27(begin13(c-identify-objective(STATE | OBJVS| ID, 5 [show(A,E,4 )])))
init28(begin14(c-adopt-objective(STATE | OBJVS| ID, 5 | ID)))
init29(begin15(c-select-objective(STATE | OBJVS| ID, 5 | ID)))

24.1 A: OK.
ack26−29 init30(continue12) init31−33(complete13−15)

25.1 E: Good.
ack30−33 init34(complete12)
init35(begin16(c-release-objective(STATE | OBJVS| ID, 5 | ID)))

25.2 E: Loosen the screw in the center and place the jaws around the hub of the wheel. . .
init36(continue10(c-identify-recipe(pull−off | REC| ID, 3 [loosen(screw),. . . ])))
init37(continue11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))


