A Collaborative Problem-Solving Model of Dialogue

Nate Blaylock James Allen
Department of Computational Linguistics Deptartment of Computer Science
Saarland University University of Rochester
Saarbiicken, Germany Rochester, New York, USA
bl ayl ock@ol i . uni -sb. de j ames@s. rochester. edu
Abstract it together with a well-known model of grounding (Traum
and Hinkelman, 1992).
We present a formal model of agent collabo- The remainder of the paper is as follows: in Section 2,
rative problem solving and use it to define a  we give an intuitive definition of collaborative problem
novel type of dialogue model. The model pro-  solving and then in Sections 3 to 6, we present the for-
vides arich structure for tracking dialogue state  malization of the collaborative problem solving model.
and supports a wide range of dialogue, includ-  |n Section 7 we then extend the model to handle ground-
ing dialogue which contributes to interleaved  ing. In Section 8 we show an example of the model on a
planning and execution of domain goals. dialogue. Section 9 then discusses related work, and then

we conclude and mention future work in Section 10.
1 Introduction 2 Collaborative Problem Solving
We are interested in buildingonversational agents— ) )
autonomous agents which can communicate with huma¥e Se€ problem solving (PS) as the process by which a
through natural language dialogue. In order to suppokingle) agent chooses and pursabectivedi.e., goals).
dialogue with autonomous agents, we need to be abRpecifically, we model it as consisting of the following
to model dialogue about the range of activities an ageffiree general phases:
may engage in, including such things as goal evaluation,
goal selection, planning, execution, monitoring, replan-
ning, and so forth.

Current models of dialogue are only able to support
a small subset of these sorts of agent activities. Plan-
based dialogue models, for example, typically model ei-
ther planning dialogue (e.g., (Grosz and Sidner, 1990))
or execution dialogue (e.g., (Cohen et al., 1991)), but
not both. Also, most plan-based dialogue models make
the assumption that agents already have a high-level goal
which they are pursuing.

In this work, we are trying to extend plan-based dia- e Executing Recipes and Monitoring Succelssthis
logue systems to more genesglent-basedlialogue sys- phase, an agent executes a recipe and monitors the
tems (cf. (Allen et al., 2001)). In previous work (Allen et execution to check for success.
al., 2002; Blaylock et al., 2003), we presented a prelim-
inary model of collaborative problem solving to model There are several things to note about this general de-
communicative intentions at the utterance level. In thiscription. First, we do not impose any strict ordering on
paper, we formalize and extend that model and use it dke phases above. For example, an agent may begin exe-
part of a dialogue model that can represent dialogue aboeiiiting a partially-instantiated recipe and do more instan-
a larger range of agent activities — including those mertiation later as necessary. An agent may also adopt and
tioned above. We also extend the collaborative problenpursue an objective in order to help it in deciding what
solving model to handle grounding phenomena by tyingecipe to use for another objective.

e Determining Objectives In this phase, an agent
manages objectives, deciding to which it is commit-
ted, which will drive its current behavior, etc.

Determining and Instantiating Recipes for Objec-
tives In this phase, an agent determines and instan-
tiates a recipe to use to work towards an objective.
An agent may either choose a recipe from its recipe
library, or it may choose toreatea new recipe via
planning.



It is also important to note that our purpose here is ndRecipe Beliefs of how to attain an objective. A recipe
to specify a specifiproblem-solving strateggr prescrip- library can be expanded or modified through (col-
tive model of how an ageshouldperform problem solv- laborative or single-agent) planning.
ing. Instead, we want to provide a general descriptive

model that enables agents with different PS strategies fg°nStraint A restriction on an object. Constraints are
still communicate. used to restrict possible solutions in the problem-

solving process as well as possible referents in ob-

Collaborative problem solving (CPS) follows a similar S o
ject identification.

process to single-agent problem solving. Here two agents

jointly choose and pursue objectives in the same stagesajuation An assessment of an object’s value within a

(listed above) as single agents. certain problem-solving context. Agents will often
There are several things to note here. First, the level evaluate several options before choosing one.

of collaboration in the problem solving may vary greatly.

In some cases, for examp|e’ the collaboration may be pr$ituation The state of the world (or a possible W0r|d). In

marily in the planning phase, but one agent will actually ~ all but the simplest domains, agents may only have

execute the plan alone. In other cases, the collaboration Partial knowledge about a given situation.

may be active in all stages, including the planning and “Resource All other objects in the domain. These in-

ecution of a joint plan, where both agents execute actions clude include real-world objects (e.g., airplanes, am-

in a coordinated fashion. Again, we want a model that : .
. . : bulances) as well as concepts (e.g., song titles, artist
will cover the range of possible levels of collaboration. names)

3 Problem-Solving Objects In order to ensure that all objects in our problem-

_ o solving model are labeled with a unique 1D, we introduce
The basic building blocks of our formal CPS modely pasic typebjectwith a single attributep .2 This is then
are problem-solving (PS) objects, which we represent a&ed as the root of all objects in the hierarchy.
typed feature structures. PS object types form a single- gach of the abstract PS objects share a set of common
inheritance hierarchy, where children inherit or specialtaatyres. We put these common features in a new type,
ize feature_s from parents. Instances of these types &¥8-object which is the common parent of all of the ab-
then used in problem solvirig. stract PS objects. We briefly describe its features here and

In our CPS model, we define types for the upper levehen continue by giving the type declarations for each of
of an ontology of PS objects, which we terastract the abstract PS objects in turn.

PS objects These abstract PS objects are used to model ps-objectinherits fromobjectand therefore contains

problem-solving at a domain-independent level, and alin b attribute (not shown — we will typically not list
operators (discussed below) operate on them. The modgherited features). It also has one additional attribute:

is then specialized to a domain by inheriting and instarbONSTRNNTS This provides a way of describing the
tiating domain-specific types and instances from the P§s-objectwith a set ofconstraints

objects. The operators, however, do not change with do- |t is important to note that the type of theon-
main, which allows reasoning to be done at a domainstrainTsattribute is not simply a set of typmnstraint

independent level. Rather, it is one of a special class of middleman types
We first describe the abstract PS objects and then hame callslots As these middleman types are a vital part
they are specialized. of the CPS model, we take a brief aside here to discuss

them before continuing with the abstract PS objects.

3.1 Abstract PS Objects ) . .
Slots and Fillers Collaborative problem solving can be
The following are the six abstract PS objects from whiclkeen as a decision-making process with respect to choos-
all other domain-specific PS objects inherit: ing and pursuing objectives. In modeling problem solv-
ing, we want to model more than just the decisions made;
Objective A goal, subgoal or action. For example, in awe want to model the decision-makipgocessitself.
rescue domain, objectives could include rescuing a within our model, decisions can be seen as the choos-
person, evacuating a city, and so forth. We consideng of values (objects) or sets of values for certain roles.
objectives to be actions rather than states, a”OWingor examp|e, agents decide on a set of objectives to pur-
us to unify the concepts of action and goal. sue; for each objective they have, agents must decide on

— a (single) recipe to use in pursuing it; and so forth. A
Due to space constraints, we omit here a discussion ofthe

formal representation of objects. We refer readers to (Blaylock, 2Formal definitions for all objects discussed here are found

2005) for details. in Appendix A.



straightforward way of modeling these decisions woulatonsidered/are considering to fill this slobhDOPTED

be to include, for example, a featureCIPEIn an objec- records the single value which the agents have commit-

tive which takes a recipe value, and represents the curreetl to for this slot. (This value may also be empty in

recipe the agents are using to pursue this objective. Sirthe case that the agents have not yet made a decision, or

ilarly, we could define a featureBJECTIVESat the top have reversed a previous decision.) THBNSTRAINTS

level which would hold the set of objectives the agent$eature describes possible constraints the agents have put

are currently committed to. on possible slot fillers (such that the chosen recipe have
Doing this, however, would only model the agerts~ 5 or fewer steps). Note that this is itself a type of slot,

cision but not theprocessthe agents followed/are fol- constraints-slgtwhich we will describe shortly.

lowing in making that decision. In deciding on a recipe Note also that the types of theDENTIFIED and

to use for an objective, agents may identify several poxDOPTED features contain diller type. A filler con-

sible recipes as possibilities and evaluate each one. Thi&ns both avaLUE which it wraps, as well aEvALU -

may similarly narrow down the space of possible recipeaTiONs attribute, which represents any evaluations the

by placing constraints on what they are willing to con-agents may make/have made about the value in the local

sider. These kinds of meta-decisions can constitute @ntext. This is also a slot of typvaluations-slowhich

large chunk of collaborative communication, but mostve will describe momentarily.

models of dialogue do not represent them explicitly. i i
To be able to model these and other kinds of decision§-IOtS for Sets of Values The typem.uIt|ple-slotdef|nes

making processes, we add two levels of indirection " ab;tract slot for decisions which allow more than

each decision point in the model. The first is what wene 5|mult§me_ous yalue. Ir_1 our model, we use three

call aslot, which contains information about the possi—dasses_whICh inherit iromultiple-slot constraints-slat

ble filler values (e.qg., recipes) which have been/are undgyaluatlons—slqtandobjectlves—slotWe describe eachin

consideration in that context. A slot also contains infor-""" . . .

mation about possible constraints which have been put on PreV|oust—_d|scussed typqas—opjectand smgle—sl_ot

what should be considered (e.g., atitvalid recipes, but ave already mtrqduced tienstraints-slotype. AS. dis-

just those which take less than 30 minutes to execute). ussed above, this type allows a set of constraints to be

slot also records which (if anyijiler has been chosen by identified and adopted in a confcegt. Here "?ENT'F'ED .
the agents. andabopTEDfeatures have a similar meaning to those in

A filler is the second layer of indirection. It is used tosmgle-slot with the only exception being thaboPTED

wrap an actual value with a set of evaluations the agenr%lkeS a set dillers, instead of a single value.

have made/might make about it. Note that this wrap- Tlhet'seconld i quthtype for dmt;)lﬂple. v{ar:ueds f.ls.t.the
ping is necessary, as evaluations will always be contexfty & Uatlons-sigiwhich was used above in the detinition

dependent (i.e., dependent on the current slot) and cann%E,f'_”er' An evaluatlon-sloqorowd_es a space for qleter-
therefore. be attached to the value itself. mining a set okvaluations Its attributes are used in the

. o . ., same way to those afingle-slotandconstraints-sloand
Using these two levels of indirection gives us a rich, ", 4
- don’'t merit further comment here.
model of not only the decisions (to be) made, but also the . . . L
The final slot type for multiple values is tlobjectives-

decision-making process itself., as we will show in theslot It 00 has the featureSONSTRAINTS IDENTIFIED
dialogue examples below. S

As the parent of slots, we define an abstisiot type, andApoPTEDwhich are used as they areemaluations-

S . . slot Objectives are not only committed to, but can also

which is the parent aingle-slotandmultiple-slot These - .

. . e ) : .~ .be executed. Objectives in tleELECTED Set are those
types differentiate decision points where just one filler is | . . .
. . Co which the agents are currently executing (more details
needed (e.g., a single recipe for an objective), or where S . .
S elow), as opposed to just intending to execute. Finally,
a set of values can be chosen (e.g., objectives that the . . L
. . . . as discussed above, agents must monitor the situation in
agents wish to pursue). We first discuss the single-value . L .
: order to notice when an objective has been fulfilled (so
case, and then the multiple-value case.

that they stop pursuing it). Objectives which the agents

Slots for S|ng|e Values The most typ|ca| case is where believe have been fulfilled are pUt into tRELEASEDSet.
a single value can be used to fill a slgingle-slotis an
abstract type for handling thislt has three features (be-
sides thelD inherited fromobjec): IDENTIFIED is the
set of all values (wrapped ffillers) that the agents have

Objective Now that we have described the various slot
and filler types which are used in the model, we are
ready to get on with the definitions of the abstract PS
object types. The typebjectives like all six abstract
" 3Note that this is actually a type schema, whergan be in- PS objects, inherits directly frops-object objectiveex-

stantiated with a given type. The same holds for the discussidgnds this by adding RECIPEattribute which is of type
of thefiller type below. single-slot(recipe) This slot provides a place to track



all problem-solving activity related to choosing a singlehe agents have performed (see below).
recipeto use to pursue thebjective as discussed above. The oBJECTIVES attribute holds thepbjectivesthey

. . . agents are considering/planning/executing in the situa-
Recipe Recipes are represented as a set of subobjet(fg op 9 9

tives (i.e., actions) and a set of constraints on those
subobjectives. ThecTIONS attribute is anobjectives-
slot which allows a set ofobjectivesassociated with
the recipg as discussed above. The attributeTION-
CONSTRAINTScontains theonstraintsplaced on theb-
jectives

The Focus attribute tracks the agents’ problem-
solving focus as a stack, which is similar to linguistic
focus in (Grosz and Sidner, 1986).

All other beliefs about the world are stored in then-
STRAINTSattribute (inherited fronps-objec}. This mod-
els the fact that the agents do not have perfect knowl-
Constraint Constraints are represented asoolean- edge of the world state, but rather only bits of knowledge
expressionsWe do not define the form of these expreswhich constrain which state it is actually in.
sions here, but we envision a typical kind of expression ) o
involving boolean connectivesiid, or, etc.) as well as 32 Domain Specialization
(possibly domain-specific) predicates. The CPS model can be specialized to a domain by cre-
ating new types that inherit from the abstract PS objects

Re;ource Resourcesire used to r”e present What WOUIdand/or creating instantiations of them. We describe each
typically be thought of as “objects” in a domain. These

include real-world objects, but can also include any sor?f these cases separately.

of object used in problem solving that does not fall intoSpecialization through Inheritance As described

one of the other categories of abstract PS objects. above, inheritance is basically the process of adding new
In addition to the attributes inherited frops-object attributes to a previously existing type, and/or specializ

resourcescontain the attributeaCTUAL-OBJECT, which  ing the types of preexisting attributes. In our CPS model,

holds a pointer to the “actual” object as represented in @nheritance is only used foobjectives and resources

agent’'s mental state. The other abstract PS objects are specialized through in-

. . L . stantiation.
Evaluation Before making decisions in problem solv- Inheriting from resourceis done to specify domain
ing, agents often evaluate each of the options that ha\ée ecificl rlegourcet eu Aslan exam Iepwel defishi '
been identified. Arevaluationrepresents the agents’ as- P ype. p'e, R

: . o . )y-train objective for a logistics domain (used in an ex-
sessment of a particular PS object within a particular Corgmple below), which is also shown in Appendix A. This

text. Theevaluationis therefore always associated with a%herits all atiributes fronpbjectiveand adds two more:
P j n ntext (e.g., which P j h . X S S '
S object and a context (e.g., ch PS object to choo he item to be shipped and a destination whichsamgle-

to fill a slot). As we are not yet sure how best to repre: lots of type movableand city respectively (definitions
sent the evaluations themselves, we leave the type of the yp y resp y

ASSESSMENTattribute unstructured. not shown).

Situation A c-situation® describes the state of a pos_Speclallzatlon through Instantiation All PS object

sible world, or more precisely, the agents’ beliefs abo yPeS (including new types created by inheritance) can be
that possible world. Rather than just packing all state inU"ther specialized by instantiation, i.e., by assigniag v
Jes to some set of their attributes. This can be done both

formation into a general world-state attribute, we sepa? desian i by the d . del d i
rate out information about problem-solving in the situa @t design time (by the domain modeler) and (as we dis-

tion, and then have a separate place to store other woGySS P€low) it happens at runtime as part of the problem-
beliefs. solving process itself.

The ps-OBJECTSattribute holds a set of all PS objects . .
known to the agents in the situation, where&siDING- 4 The Collaborative Problem Solving State

PS-OBJECTSIS atemporary_holdt_erforobjects which haveThe cps state is part of the agents’ common ground
not yet_been successfullly identified (but have been mefclark, 1996), and models the agents’ current problem-
tioned in the conversation). These sets include domaildy)ying context. It is represented as an instance of type
specific PS objects (such as objectives, recipes and rgsjtyationcalled theactual-situation As the name im-
sources) which the agents can use in problem solving. pjies, theactual-situatioris a model of the agents’ beliefs

The PS-HISTORY attribute records the history of the apout the current situation and the actual problem-solving
agents’ problem solving. This is a list of interaction act$,gptext.

“This object as well as the CPS acts below are prefaced with TheosJeCTIVESattribute contains all of the top-level

c- to differentiate them with types in our model of single-agen©bjectivesassociated with the agents’ problem solving
problem solving, which is not discussed here. process. Thesebjectivesform the roots of individual



problem-solving contexts associated with reasoning with, All objects must be identified before they can be used
and/or trying to accomplish thosdjectivesand can in- further in the CPS process. For this reason, CPS acts

clude all types of other PS objects. in the c-identify family exist for all PS object8. The
_ _ are as follows:c-identify-objective c-identify-recipe c-
5 Collaborative Problem Solving Acts identify-constraint c-identify-resource and c-identify-

. . eyaluation
Agents change their CPS state through the execution OY . . . .
9 g 9 The basic syntax of identify acts is

CPS acts. There are two broad categories of CPS acts:
those used in reasoning and those used for commitment.

-identify{t lot-id,ps-object
We describe severdhmilies of CPS act types within c-identify{type}(slot-id,ps-object)

those categories: wheretyperefers to any of the PS objects in the acts listed
. N above. Theps-objectparameter is the PS object instance
Reasoning Act Families which is being introduced and tiséot-id parameter gives

theid of the problem-solving context for which it is be-
ing identified. Note that-identifyacts take an actugls-
objectas an argument, whereas the remaining CPS acts
take only arobject-id(i.e., pointer to an object).

The effect of a-identifyis that theps-objecis inserted
into theps-OBJECTSSet in theactual-situation(if not al-
Commitment Act Families ready there). It is also wrapped in an appropridter

type and inserted into theENTIFIED set of theslotiden-
¢ c-adopt Commits the agents to ajectin a certain tified by slot-id.

context.
e c-abandon Removes an existing commitment to ans 3 c-adopt/c-abandon
object
. c-sjeleci Moves arobjectiveinto active execution. e treat the CPS act familiesadoptandc-abandorto-
o c-defer Removes aobjectivefrom active execution gether here, as one essentially undoes the other. The syn-
(but does not remove a commitment to it). tax of the two is as follows:
e c-release Removes the agents’ commitment to an
objectivewhich they believe has been fulfilled.

e c-focus Used to focus problem solving on a partic-
ular object

e c-defocusRemoves the focus on a particutdiject

e c-identify Used to identify gps-objectas a possible
option in a certain context.

c-adopt{type}(slot-id,filler-id)
c-abandon{type}(slot-id,filler-id)

Each of these families encompasses a set of CPS actsA ith c-identifv th o families have t
For the remainder of this section, we discuss each of the S with c-identify, these two families have types corre-

CPS act families and their corresponding acts as well %’odnd'?? toi most agstr?cr:t PSrObJe(ﬂS?jdoFt)t'o?]Ji?t'ivﬁ
their effects on the CPS state. c-adopt-recipe  c-adopt-resource c-adopt-constrain

c-adopt-evaluation c-abandon-objective c-abandon-
5.1 c-focus/c-defocus recipe c-abandon-resourcec-abandon-constraintand

Agents need to coordinate their problem-solving focusg-abandon—evaluatlon

They do this through the execution of the following cPs A ¢-adopthas the effect of adding ttdler referred to
by filler-id to the ADOPTED attribute of theslot referred

acts: to by slot-id (either by assigning the value, in the case of
c-focus(situation-id,object-id) asingle-slotor adding the value to the set fonaultiple-
c-defocus(situation-id,object-id) slot Note that this requires that the PS object referred to
The semantics of these are simptefocuspushes the DY filler-id be in theiDENTIFIED set in that context.
givenobject-idonto the focus stack in thesituationrep- A c-abandonbasically has the opposite effect. It re-
resented bituation-id c-defocugpops theobject-idoff ~moves the object from theDboPTED attribute. Thus
the stack as well as ampject-idsabove it. c-abandonrequires that the object actually be adopted
when the act is executed.
5.2 c-identify When a PS object is adopted with respect to a slot, it

CPS acts in the-identify family are used to introduce means the agents are committed to that object in that con-
CPS objects into the realm of a problem-solving contextext. For example, for gcipg this means the agents are
This could either be in identifying previously unknowncommitted to using thatecipefor the associatedbjec-
objects (i.e., objects not listed s-0BJECTSwithin the  tive. The other PS objects are similarly treated.
c-situation, or it could be in identifying a known object

as a possible option for filling a certain slot. SExceptc-situationfor reasons described above.



5.4 c-select/c-defer the proposed CPS act — and thus the proposed change to

The act familiesc-selectand c-deferare only used for the CPS state —to fail.
objectives Their syntax is as follows: 7 Grounding Acts
c-select-objective(slot-id,filler-id)
c-defer-objective(slot-id filler-id) The model as it stands thus far makes the simplifying as-
sumption that utterances are always correctly heard by
the hearer and that he also correctly interprets them (i.e.,
roperly recovers the intended (instantiated) interactio
cts). In human communication, mishearing and misun-
derstanding can be the rule, rather than the exception. Be-
cause of this, both speaker and hearer neawbiiabora-
inely determine the meaning of an utterance through a
process termedrounding(Clark, 1996).

We add grounding to our model by utilizing the

Executing ac-select-objectiveadds anobjective to
the SELECTED et in the giverobjectives-slat c-defer-
objectivecan then be used to delete an object from thg
SELECTEDSet.

Although agents may have any number of adoted
jectives there is only a small subset that is actually bein
executed at any given point. These are ¢hgectivesn
the SELECTEDSet. Anobjectivedoes not need to be an

atomic action to be selected. Higher-leabljectivescan Grounding Act{GAs) proposed as part of Conversation

be marked as selected if the agents believe that they €is theory (Traum and Hinkelman, 19623nd used
currently executing some action as part of executing '[hI(F| Traum’s computational model of grounding (Traum,

higher-levelobjective 1994). In our model, we expand the definition of GAs to
5.5 c-release allow them to take individual IntActs as arguments. As
the grounding acts themselves are not our focus here, we

The final CPS act we discuss hereigelease As with discuss them only briefly. The Grounding Acts are as fol-

c-selectandc-defer this is only applicable tobjectives

The syntax is as follows: lows:
c-release-objective(slot-id filler-id) Initiate  The initial contribution of an IntAct.
This act has the effect of moving abjectivefiller  continue Used when the initiating agent has a turn of
from the ADOPTED set to theRELEASED set. Note that several utterances. An utterance which further ex-
theobjectivemust first be in theaDoPTED set for this act pands the meaning of the IntAct.

to be executed.

Rational agents should notice when ainjectivehas Acknowledge Signals understanding of the IntAct (al-
been successfully achieved and then stop intending to though not necessariggreementas this is modeled
achieve it (cf. (Cohen and Levesque, 1990)). Re at the IntAct level).

LEASED set contains thosebjectiveswhich the agents

believe have successfully been achieved. Repair Changes some part of the IntAct.

ReqgRepair A request that the other agent repair the In-

6 Interaction Acts tAct.

An agent cannot single-handedly execute CPS acts to -
make changes to the CPS state. Doing so requires the &@chk An explicit request for an acknowledgment by

operation and coordination of both agents. In the model, the other agent.

CPS acts are generated by setsréraction acts(In-  cancel Declares the attempted IntAct as 'dead’ and un-
tActs) — actions that single agents execute in order to grounded.

negotiate and coordinate changes to the CPS state. An

IntAct is a single-agent action which takes a CPS act as |n the model, an IntAct is not successfully executed
an argument. until it has been successfully grounded. This is typically

The IntActs arebegin continue completeandreject  after anacknowledggealthough see (Traum, 1994) for de-
An agent beginning a new CPS act proposal performgils.

a begin For successful generation of the CPS act, the

proposal is possibly passed back and forth between ti& Example

agents, being revised wittontinuesuntil both agents fi- .

nally agree on it, which is signified by an ageotadding 10 Show concretely how the model is used, we ana-
any new information to the proposal but simply acceptingyZ€ and discuss here a human-human dialogue from

it with a complete This generates the proposed CPS act sjterestingly enough, our interaction acts and CPS acts

resulting in a change to the CPS state. Atany point in thigould be seen as roughly corresponding to the Core Speech Acts
exchange, either agent can perfornegct which causes and Argumentation Acts levels in Conversation Acts theory.



(Traum and Hinkelman, 1992). As a further example, The type of the objective iship-by-train which we
Appendix C shows the analysis for a human-human dhave invented for this examplé. It introduces two new
alogue from (Grosz and Sidner, 1986), although spactributes to th@bjectiveclass: an item to be shipped and
precludes a detailed discussion of the analysis. a destination. As the abbreviated form of the objective
Figure 1 shows the dialogue from (Traum and Hinkelshows! there are three main components to the objec-
man, 1992) marked up with instantiated grounding &ctstive as it has been introduced by the user. First of all, it
We first discuss the dialogue at the grounding level, andas a pre-adopted destination — Bath (modeled as a lo-
then at the problem-solving level. cation with aNAME). Second, the item to be shipped has

not yet been determined, but a constraint has been put

G_roundmg Our analysis at the grounding Ie\_/el IS ba'on possible values for that slot — they must be of type
sically unchanged from that of (Traum and HlnkelmanOranges

1992). We therefore describe it only briefly. The main Recall that this was one of the motivations for intro-

. L SSBucing slots in the model. Notice here that the constraint
ciate GAs with individual IntActs, whereas they associate 9 . . .
. iS not put on a particular instance of oranges, rather it
them with utterances. . . ) .
. - is put on thesingle-slotitself. Constraints on a slot are
In Utterance Unit (UU) 1.1, the user initiates three ; . : o
. . adopted to restrict the values considered (e.g., idenfified
IntActs, which the system acknowledges in UU 2.1, . ;
. as possible fillers.
(Note that, for compactness, we use subscripted rangesFinall a constraint has also been placed on the objec
to refer to series of GAs and IntActsack, _, expands Y, P )

to ack andack, andinits_,(complete_,) expands to tive itself — that it be completed by 8am. Note the dif-
1 ) 3—4 -2 : ; ;
inits(completg) andinit,(completg).) Note that, only ference here between placing a constraint @s-@bject

lacing it on alot, as just discussed.
fter UU 2.1 are th the effects of the IntActs 1-3° 15 P
3a”e(; and causaerz Cheaf:;; toeth?a g%; (s)tatee IACES UU 2.1 completes the CPS acts, and after 3.1, when

- . the completes are grounded, the CPS acts are generated
UU 2.1 also initiates the correspondicgmpleteln- o - '
P gmp resulting in the corresponding changes to the CPS state.

tActs to those initiated in UU 1.1; these are acknowl- . .
edged in UU 3.1. In UU 3.1, the user proposes the adoption of a (partial)

UU 3.1 also inits three IntActs (7, 8, and 9), WhiChrecipe for shipping the oranges, as well as that focus be

are never groundetiThese, therefore don't result in any placed on it. These IntActs are never grounded, and thus

successfully executed IntActs, and thus no changes to tﬁgver result in a change in the CPS state. However, as

CPS state IS utterance gives a good example of the introduction of

In UU 3.2, the user inits new IntActs for which he ex-2 ecipe, we still discuss it. i i
plicitly requests an acknowledgment in UU 3.3. UU 4.1 The recipe that the user attempts to introduce is shown

inits two completes, which are acknowledged by the suBD Figure 3,_and consists of a sir!gle aO!OF’ted objegtive o
sequent utterance by the user (not shown). that of moving a boxcar to (;ornmg. Similar to tekip-
The remainder of the dialogue consists solely of pairefly-train objective above, this also has an adopted value

inits and acks, which are handled similarly to the first twdh€ destination is Coming), and a constraint on the slot
utterances. of the other (that the only resources to be considered to

be moved should be of tygeoxcal). At this point, the

Problem Solving At the problem-solving level, in recipe has n@CTION-CONSTRAINTS

UU 1.1., the user proposes the adoption (and identifica- As mentioned, however, this recipe never makes it into
tion) of an objective of shipping oranges. (Again, theseéhe CPS state. Instead, in UU 3.2, the user decides he
do not become valid until grounded in UU 2.1). He alsavants to adopt (confirm) the joint belief that there are or-
proposes that problem-solving focus be placed on that olanges at Corning. Note that no focus change is proposed
jective (i.e., in order to work on accomplishing it). Theby UU 3.2. We model this in this way, as it appears that
proposed objective is shown in Figure 2, and deservafe user did not intend for further work (beyond adoption)

some explanation. to be done on this constraint, or on finding out the state of

T : . the world. Instead, it was intended as a quick check, but
The description of this analysis as well as other examplefs . ded . in-b inobi

can be found in (Blaylock, 2005). ocus was intended to remain on thieip-by-trainobjec-

8\We have at times combined multiple utterance units into #Ve-
single utterance unit in the case that the units were tagged asAs discussed above, we model beliefs about the world
contsat the grounding level. Although modeling this is impor-—
tant at the grounding level, anit followed by contsare just 91N all examples, we invent simple-minded domain-specific
gathered up into a single (group of) IntActs that are proposedabject types as we need them.
so at the problem-solving level, this is not an important differ- 'Because of space constraints, we only list the most salient
ence. features of the objective, given with their feature paths. We also
9Although see discussion in (Traum and Hinkelman, 1992)abbreviate feature names as detailed in Appendix B.



1.1

2.1

3.1

3.2

3.3

4.1

13.2
141

15.1

16.1
17.1

18.1

19.1

20.1

U: okay, the problem is we better ship a boxcar of orang&sath by 8 AM.
init, (begin (c-identify-objectivef TATE | 0BJVS| ID, [1])))
inity (begin(c-adopt-objective{TATE| 0BJVS|ID, [ | ID)))
inits(begirg(c-focus6TATE| 1D, [1 | ID)))
S: okay.
aCk1_3
inity_g(complete_3)
U: now ... umm ... so we need to get a boxcar to Corning, evthere are oranges.
acky_g
init7(begin, (c-identify-recipe(d | REC| ID, [2])))
initg(begins (c-adopt-recipe(d | REC| D, [2] | ID)))
initg(begin; (c-focus6TATE| ID, [2] | ID)))
U: there are oranges at Corning
init;o(begiry (c-identify-constrain§ TATE | CONS| 1D, [3])))
init1; (begirg (c-adopt-constrain§TATE | CONS| 1D, [3] | ID)))
U: right?
reqacko_11
S: right.
ackip—11
init;o_13(complete_g)

(Utterances 5.1-13.1 removed due to space constraints)

U: or, we could actually move it [Engine E1] to Dansvitie pick up the boxcar there
init; (begin (c-identify-recipe | REC| 1D, [4 [move(E1,Dansville)]))
inity(begin(c-focus6TATE| 1D, (4 | ID)))

S: okay.
aCk1,2
init3_4(complete_»)

U: um and hook up the boxcar to the engine, move it fromsiidla to Corning,
load up some oranges into the boxcar, and then move it on to Bat
aCk3_4
init; (begins (c-identify-objectivef@ | AcTs| 1D, 5] [hook(boxcarl,enginel)]))
initg (begin, (c-adopt-objectivell] | ACTS| 1D, 5] | ID) ))
init;(begin; (c-identify-constraint{@ | AcoNs| 1D, [6] [before([, 21)])))
initg(begins (c-adopt-constraintfz] | ACONS| ID, [6] | ID))
initg_16(beginy_14) [2 other actions and 2 other ordering constraints]

S: okay.
acks_16
init;7_2s(completg_14)

U: how does THAT sound?
acki7_og
initag (begin s (c-identify-evaluatiorfiLLER([4] ) | EVALS | ID, [7] [blank evaluation])))

S: that gets us to Bath at 7 AM, and (inc) so that’s no bl
acke
initso(continugs(c-identify-evaluatiorfILLER([4] ) | EVALS | 1D, [7] [sufficient]) ))
init3; (begin ¢ (c-adopt-evaluatiorfiLLER([4] ) | EVALS | ID, [7] | ID)))

U: good.
ackso—31
initzz_33(completes 1)
inits4(begin 7(c-adopt-recipe(d | REC|ID,[4] |ID))
inits; (begin s (c-defocus§ TATE| 1D, [4] | ID)))

S: okay.
ackss 35
init3s_37(completer_1s)

Figure 1: Analysis of a Planning Dialogue from (Traum andkdiman, 1992)



CONS| APTD { [VAL | EXPR 'completion before 8arﬂ|}
fill

ITEM | CONS| APTD { [VAL | EXPR ’type:oranges}}
fill

DEST|APTD {VAL | NAME ’Bath’}
. . fill
ship-by-train- -
Figure 2: Contents afbjective]
ITEM | CONS| APTD { [VAL |EXPR 'type = boxcar']}
ACTS|APTD VAL fll

DEST|APTD| VAL | NAME ’'Corning’

fil mov
rec

Figure 3: Contents akcipe[2]

state as constraints on the situation. The proposed con-

straint is shown in Figure 4. In this paper, we do no

present a theory of constraint representation, thus we"

have been glossing constraints until now. The only speci- Figure 4: Contents afonstraint(3]

fication we have made is that te& PRESSIONbe of type

boolean In the case of this constraint, however, a sim-

ple gloss is not enough, as this constraint actually intrghen asks for the system’s evaluation of the recipe, which

duces a new embeddedsource— the instance of the IS providedin UU 18.1. The surface form of 19.1 is a bit

oranges that are at Corning. For this reason, we show tHiisleading. With this “good”, the user is acking the sys-

constraint as a domain-specific predica that takes a t€m's last utterance and accepting the given evaluation.

location and an item. More work obviously needs to bé&l€ is also, based on this evaluation, proposing that the

done on the general specification of constraints, but tH&CiPe be adopted for the objective and proposing that the

representation here is sufficient for our purposes. focus be taken off the recipe. The system accepts these
It is important to point out that when thbeginc- Proposals in the final utterance.

identify-constraintis grounded in UU 4.1, the oranges

instance from the constraint is also placed in e 9 Related Work

OBJECTSset within the CPS state, making it availabl

for use in further problem solving.

EXPR at([NAME 'Corning’ ,LAOBJ orangesS}’)
loc oran

®The work in (Cohen et al., 1991) motivates dialogue as
;ge result of the intentions of rational agents executing

lrt] t?teh|négr<|ast of S&?Ce andJ Ia}tr|t)é i’viz??ve ik'ﬁpe int plans. Whereas their focus was the formal represen-
part of the dialogue (Utterance Units 5.1-13.1) which i of single and joint intentions, we focus on describ-

cIudepI mostly grounding m_teractlon which is adequatelyng and formalizing the interaction itself. We also extend
descrlbeq n ('_I'_raum and Hmkelma_m, 199_2)' In UU 13'_2coverage to the entire problem-solving process, including
the user identifies a possible (partial) recipe for the Sh'pdoal selection, planning, and so forth.

by-train objective. The recipe includes a single objec Our work is, also simiiar in spirit to work on Shared-
tive (action) of moving engine E1 to pansyiﬂé. Note Plans (Grosz and Sidner, 1990; Grosz and Kraus, 1996),
that the user QOes nqt propose that this recipe be adopt\ﬁﬁich describes the necessary intentions for agents to
for the objective, yet; he only proposes that it be conswtu"d and hold a joint plan, as well as a high-level
ered as a candidate. He also proposes moving prOblegketch of how such joint 'planning occurs. It de-
golvingfocus to the recipe (in order to work on expandingines four operators which describe the plaﬁning pro-

iD). cess: SelectReg Elaboratelndividual, SelectRecGR,

In 14'13 the system acknowledges these grounding acéﬁd ElaborateGroup. Our CPS acts describe the joint
and also inits IntActs to complete them. In 15.1, the user

proposes Several new aCtlonS to add to the I’eCIpe as We”le’AS with any grounding model’ we have the pr0b|em that
as ordering constraints among them. In UU 17.1, the usénal utterances will not be verbally acked. We assume within
- the model that, if after a small pause, if there is no evidence of

12From now on, we will gloss PS objects with a boxed num-+the usemot having heard or understood, inits of completes are
ber, [4] in this case, and some description of their contents. considered acknowledged.



planning process at a more fine-grained level in order t607802). Any opinions, findings, and conclusions or rec-
be able to describe contributions of individual utterance®mmendations expressed in this material are those of the
The CPS acts could possibly be seen as a further refinedthors and do not necessarily reflect the views of the
ment of the SharedPlans operators. Our model also dabove-mentioned organizations.
scribes other problem-solving stages, such as joint exe-
cution and monitoring.

Collagen (Rich et al., 2001) is a framework for build-References
ing intelligent interactive systems based on Grosz angames F. Allen, Donna K. Byron, Myroslava Dzikovska,
Sidner’s tripartite model of discourse (Grosz and Sidner, George Ferguson, Lucian Galescu, and Amanda Stent.
1986). It provides middleware for creating agents which 2001. Towards conversational human-computer inter-
act as collaborative partners in executing plans using a ction. Al Magazine 22(4):27-37.
shared artifact (e.g., a software application). In thisegn James Allen, Nate Blaylock, and George Ferguson.
it is similar to the work of Cohen and Levesque described 2002. A problem-solving model for collaborative
above. agents. IMNAMAS’02 Bologna, Italy, July 15-19.

Collagen uses a subset of Sidner’s artificial negotiaNate Blaylock, James Allen, and George Ferguson.
tion language (Sidner, 1994) to model individual con- 2003. Managing communicative intentions with col-
tributions of utterances to the discourse state. The lan- laborative problem solving. I€urrent and New Di-
guage defines operators with an outer layer of negotia- aergt(l:cr)l?s in Discourse and DialogueKiuwer, Dor-
tion (e.g.,ProposeForAccepfPFA) and AcceptProposal )
(AP)) which take arguments such &HOULD(action) Nathan J. Blaylock. 2005.Towards Tractable Agent-
andRECIPE Our interaction and collaborative problem- gased DialoguePh.D. thesis, University of Rochester,

) ST o . i L ept. of Computer Science.

solving acts are similar in spirit to Sidner’'s negotiation
language, covering a wider range of phenomena in motderbert H. Clark. 1996.Using Language Cambridge
detail (including evaluations of goals and recipes, solu- University Press.

tion constraining, and a layer of grounding). Philip R. Cohen and Hector J. Levesque. 1990. Inten-
tion is choice with commitmentArtificial Intelligence
10 Conclusion and Future Work 42:213-261.

: Philip R. Cohen, Hector J. Levesque, 8d3. T. Nunes,
In this paper, we have presented a formal model of agent ynq Sharon L. Oviatt. 1991. Task-oriented dialogue

collaborative problem solving. We also introduced a as a consequence of joint activity. Atificial Intelli-
model of dialogue created by combining the CPS model gence in the Pacific RilOS Press, Amsterdam.

with a known model of grounding. The dialogue modeg, a1 3. Grosz and Sarit Kraus. 1996. Collaborative
is able to support a wide range of dialogue phenomena, plans for complex group actiorrtificial Intelligence
including dialogues supporting interleaved planning and 86(2):269-357.

execution, mixed-initiative d@logues, and grounding. .Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
We are currently developing an autonomous agent dia- tjon, intention, and the structure of discour€ampu-
logue manager that can participate in collaborative prob- tational Linguistics 12(3):175—204.

lem solving, Wh'.Ch serves as the bgck-end of a .d'alogtﬁarbara J. Grosz and Candace L. Sidner. 1990. Plans
system. In addition, we are developing a generation com- s giscourse. Inintentions in CommunicatiorMIT
ponent that can generate multimodal output from these Press, Cambridge.

instfantiatgd groundihg acts. Einally, we plan to dev.e!o%harles Rich, Candace L. Sidner, and Neal Lesh. 2001.
an intention recognizer that is capable of recognizing” -0 | AGEN: Applying collaborative discourse the-

these instantiated grounding acts. ory to human-computer interaction.Al Magazine
23(4):15-25.
Acknowledgments Candace L. Sidner. 1994. An artificial discourse lan-

We would like to thank George Ferguson for early glﬁgglfgrscggg%on\fvtxe negotiation. AAAI, pages

collaboration on the CPS model and the members of _ _
the Saarhicken TALK group (especia”y lvana Kruijff_ David R. Traum and _Ellzabeth_ A. Hinkelman. 1992
Korbayowa and Tilman Becker) for input on the model. ~ GOnversation acts in task-oriented spoken dialogue.
) - Computational Intelligence3(3):575-599.

This material is based upon work supported by a grant _
from DARPA under grant number F30602-98-2-0133David R. Traum. 1994. A Computational Theory of
two grants from the National Science Foundation un- &rounding in Natural Language ConversatioRh.D.

thesis, University of Rochester, Department of Com-

der grant number 11S-0328811 and grant number E1A- puter Science.
0080124; and the EU-funded TALK project (No. IST-



A Definitions of PS Objects recipe — ps-object
[ACTIONS objectives-slotl
The following are the feature structure type definitions ACTION-CONSTRAINTS constraints-slo
for the objects described in this paper (including the
domain-specific types used in the example). Type name
and parent class are shown above the feature structure in

the formtype « parent.

resource« ps-object
[ACTUAL -OBJECT id}

constraint < ps-object
object — ¢ [EXPRESSION boolean-expressic}n
{ID id}
evaluation < ps-object

slot « object {ASSESSMENT unstructure%l
[IDENTIFIED set(filler(ps—object)})

c-situation « ps-object

) single-slotg) < slot PENDING-PS-OBJECTS set(ps-object)
CONSTRAINTS constraints-slo PS-OBJECTS set(ps-object)
IDENTIFIED  set(filler()) PS-HISTORY list(interaction-act

| ADOPTED filler(o) FOCUS stack(object)

OBJECTIVES objectives-slot
filler(o) < object
EVALUATIONS evaluations-s| ship-by-train < objective
| VALUE o ITEM single-slot(moveablg)

DEST single-slot(city)
multiple-slot « slot
IDENTIFIED set(filler(ps-object)

B Abbreviations Used

The following table shows the various abbreviations of

constraints-slot— multiple-slot type and feature names used within the examples.
IDENTIFIED set(filler(constraint)}

ADOPTED  set(filler(constraint)

ADOPTED  set(filler(ps-object)

types features
. . full abbr | full abbr
evaluations-slot«< multiple-slot obiect ob constanis COTS
CONSTRAINTS constraints-slot ject )] o .
i ) ps-object psobj identified ided
IDENTIFIED set(filler(evaluation) single-slot ss adopted aptd
ADOPTED set(filler(evaluation) filler fill evaluations evals
constraints-slot  cslot| value val
objectives-slot« multiple-slot evaluations-slot eslot selected seld
CONSTRAINTS constraints-slot objectives-slot  oslot| released reld
IDENTIFIED  set(filler(objective) objective objv | recipe rec
ADOPTED set(filler(objective) recipe rec | actions , acts
. L constraint con | action-constraints  acons
SELECTED set(filler(objective) .
ller(objective) resource res | expression exp
RELEASED set(filler(objectiv evaluation eval | actual-object aobj
situation sit ps-objects psobjs
ps-object« object c-situation csit | ps-history pshist
{CONSTRAINTS constraints—slo}t objectives objvs
pending-ps-objects pend

objective « ps-object
[RECIPE single-slot(recip%)



C Analysis of an Expert-Apprentice Dialogue from (Grosz and &lner, 1986)

The context at the start of this segment is that the expeqéesifying a reciperrec to the apprentice for
removing a pump. A description of the analysis (as well asiogitamples) can be found in (Blaylock, 2005)

1.1 E: First you have to remove the flywheel
init; (begin (c-identify-objectivefree | ACTS| 1D, [1] [remove(flywheel)]))
inito(begin(c-adopt-objectivefee] | ACTS|ID,[d] | ID)))
init3(begin; (c-select-objectivetee | ACTS|ID, 1] | ID)))
2.1 A:How do | remove the flywheel?
ack, _3 init,_g(complete_3)
init;(begin,(c-focus6TATE| ID, [1 | REC| ID)))
initg(begin (c-identify-recipe(d | REC| 1D, [2] [blank recipe])))
inity(begins (c-adopt-recipe[d | REC| 1D, 2] | ID)))
3.1 E: First, loosen the two allen head setscrews holdirathe shaft, then pull it off
ack,_g inityo(completg)
init,; (continug (c-identify-recipe(d] | REC| ID, [2] [loosen(screwsets),pull-off(wheel)])))
init;2(continug(c-adopt-recipefd | REC| ID, 2] | ID)))
4.1 A:OK.
ackio_11 init;2_13(completg_¢)

: (Utterances 5.1-17.1 removed due to space constraints)

18.1 A: The two screws are loose,
init14(beginy(c-release-objectivefea | ACTS| 1D, [loosen] | ID))

18.2 A: but I'm having trouble getting the wheel off
init, 5 (begir (c-select-objectivetea | ACTS| D, | 1D)))
init; ¢ (begin(c-focus6TATE | 1D, | REC| ID)))
init;~(begin o(c-identify-recipe(pwii=of7] | REC| ID, [3] [blank recipe])))
init15(begin ; (c-adopt-recipelpuil—o/f] | REC| ID, B | ID)))

19.1 E: Use the wheelpuller.
ackis—1s init;9 o1 (complete_o)
initao (continue (c-identify-recipe{puii=o/7] | REC| ID, B8] [recipe using wheelpuller])))
inity3(continue (c-adopt-recipefp«ll—off] | REC| 1D, B | ID)))

19.2 E: Do you know how to use it?

regacks_o3
20.1 A:No.
ackig_o1 regrepainhs o3
21.1 E: Do you know what it looks like?
cancebs_o3
inito4(begin o (c-identify-resourcefTATE | ID, [4] [wheelpuller])))
22.1 A:Yes.
ackyy initos(continugs)
23.1 E: Show it to me please.
ackos initog(continugs)

inito7 (begin 3 (c-identify-objectivef TATE | 0BJVS| ID, [B] [show(A,E[4])])))
initog(begin 4 (c-adopt-objectivefTATE | 0BJVS| ID, [5] | ID)))
initog (begin; (c-select-objectiveTATE | 0BJVS| ID, [5] | ID)))

24.1 A:OK.

ackyg_29 initso(continugs) init3; _ss(completes_15)
25.1 E: Good.

acksp_33 initz4(completes)

initss(begin g (c-release-objectivs(raTE | 0BJVS| ID, [5] | ID)))

25.2 E: Loosen the screw in the center and place the jaws dtberhub of the wheel. ..
init3 (continue, (c-identify-recipe(puli—off] | REC| ID, [3] [loosen(screw),. . . ])))
inits7(continueg (c-adopt-recipefpull—off] | REC| 1D, 3 | ID)))



