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Abstract 

Statistical machine translation relies heavily on the available 

training data. In some cases it is necessary to limit the amount 

of training data that can be created for or actually used by the 

systems. We introduce weighting schemes which allow us to 

sort sentences based on the frequency of unseen n-grams. A 

second approach uses TF-IDF to rank the sentences. After 

sorting we can select smaller training corpora and we are able 

to show that systems trained on much less training data 

achieve a very competitive performance compared to baseline 

systems using all available training data. 

1. Introduction 

The goal of this research was to decrease the amount of 

training data that is necessary to train a competitive statistical 

translation system regardless of the actual test data or its 

domain. “Competitive” here means that the system should not 

produce significantly worse translations compared to a system 

trained on a significantly larger amount of data. 

It is important to note that this is not an adaptation approach 

as we assume that the test data (and its domain) is not known 

at the time we select the actual training data.  

 

Statistical machine translation can be described in a formal 

way as follows: 
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Here t is the target sentence, and s is the source sentence. P(t) 

is the target language model and P(s|t) is the translation model 

used in the decoder. 

Statistical machine translation searches for the best target 

sentence from the space defined by the target language model 

and the translation model.  

Statistical translation models are usually either phrase- or 

word-based and include most notably IBM1 to IBM4 and 

HMM ([1], [2], [3]). Some recent developments focused on 

online phrase extraction ([4], [5]).  

All models use available bilingual training data in the source 

and target languages to estimate their parameters and 

approximate the translation probabilities. 

One of the main problems of Statistical Machine Translation 

(SMT) is the necessity to have large parallel corpora 

available. This might not be a big issue for major languages, 

but it certainly is a problem for languages with fewer 

resources ([6], [7]). To improve the data situation for these 

languages it is necessary to hire human translators at 

enormous costs who translate corpora that can later be used to 

train SMT systems. 

Our idea focuses on sorting the available source sentences 

that should be translated by a human translator according to 

their approximate importance. The importance is estimated 

using a frequency based and an information retrieval 

approach. 

2. Motivation 

There are three inherently different motivations for the goal of 

limiting the amount of necessary training data for a 

competitive translation system. We described those 

motivations and their applications already in the paper [8]. 

Application 1: Reducing Human Translation Cost 

The main problem of portability of SMT systems to new 

languages is the involved cost to generate parallel bilingual 

training data as it is necessary to have sentences translated by 

human translators. 

An assumption could be that a 1 million word corpus needs to 

be translated to a new language in order to build a decent SMT 

system.  

A human translator could charge in the range of approximately 

0.10-0.25 USD per word depending on the involved languages 

and the difficulty of the text. The translation of a 1 million 

word corpus would then cost between 100,000 and 250,000 

USD. 

The concept here is to select the most important sentences 

from the original 1 million word corpus and have only those 

translated by the human translators. If it would still be possible 

to get a similar translation performance with a significantly 

lower translation effort, a considerable amount of money could 

be saved. 

This could especially be applied to low density languages with 

limited resources ([6], [7]).  

Application 2: Translation on Small Devices 

Another possible application is the usage of statistical machine 

translation on portable small devices like PDAs or cell phones. 

Those devices tend to have a limited amount of memory 

available which limits the size of the models the device can 

actually hold and a larger training corpus will usually result in 

a larger model.  The more recent approaches to online phrase 

extraction for SMT make it necessary to have the corpus 

available (and in memory) at the time of translation ([4], [5]). 

Given the upper example, a small device might not be able to 

hold a 1 million word bilingual corpus but e.g. only a corpus 



with 200,000 words. The question is now which part of the 

corpus (especially which sentences) should be selected and put 

on the device to get the best possible translation system. 

Application 3: Standard Translation System 

Even on larger devices that do not have rigid limitations of 

memory, the approach could be helpful. The complexity of 

online phrase extraction and standard training algorithms 

depends mainly on the size of the bilingual training data. 

Limiting the size of the training data with the same translation 

performance on these devices would speed up the translations.  

Another problem is that the still widely used 32 bit 

machines like the Intel Pentium 4 and AMD Athlon XP series 

can only address up to 4 gigabytes of memory. There are 

already bilingual corpora in excess of 4 gigabytes available 

and therefore it is necessary to select the most important 

sentences from these corpora to be able to hold them in 

memory. (The last issue will certainly be resolved by the 

widespread introduction of 64 bit machines which can 

theoretically address 17 million terabytes of memory.) 

3. Previous Work 

This research can generally be regarded as an example of 

active learning. This means the machine learning algorithm 

does not just passively train on the available training data but 

plays an active role in selecting the best training data.  

Active learning, as a standard method in machine learning, 

has been applied to a variety of problems in natural language 

processing, for example to parsing ([9]) and to automatic 

speech recognition ([10]). 

 

It is important to note the difference between this approach 

and approaches to Translation Model Adaptation ([11]) or 

simple subsampling techniques that are based on the actual 

test data. Here we assume that the test data is not known at 

selection time so the intention is to get the best possible 

translation system for every possible test data. 

 

Our previous work in this area focused on improving the n-

gram (type-) coverage by selecting the sentences based on the 

number of previously unseen n-grams they contain [8]. 

Section 4.2 will give a short overview over our previous best 

method. 

4. Description of sentence sorting 

4.1. Algorithm 

The sentences are sorted according to the following very 

simple algorithm. 

 
For all sentences that are not in the sorted list 

Calculate weight of sentences 

Find sentence with highest weight  

Add sentence with highest weight to sorted list  

 
The interesting part is the calculation of the weight of each 

sentence. The weight of a sentence will generally depend on 

the previously selected sentences. 

We present three different schemes to calculate the importance 

of a sentence. Section 4.2 presents our previous best selection 

approach and section 4.3 an approach that weights sentences 

based on the frequency of the unseen n-grams.  The method in 

section 4.4 uses TF-IDF to find sentences that are different 

from the already seen sentences. 

4.2. Previous Best Weighting Scheme 

As stated earlier our previous work in this area focused on 

optimizing the sorting of the sentences based on the n-gram 

coverage. 

The best results were achieved using the following weighting 

term: 
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This means for each sentence, which had not been sorted yet, 

the number of unseen uni- and bigrams was calculated and 

divided by the length of the sentence (in words). This gave 

significantly better results than the baseline systems where the 

sentences were not weighted. 

4.3. Weighting of Sentences Based on N-gram Frequency 

The problem with the previous best system is that every 

unseen unigram gets the same weight. Words that only occur 

once in the whole training data will be given the same value as 

higher frequent and probably more important words. The same 

is certainly true for low- and high-frequency bigrams.  
This is why we wanted to make sure that our new weighting 

schemes focus on high-frequency n-grams and put less weight 

on lower frequency n-grams. This means the goal here is not 

necessarily to optimize the coverage of the types but of the 

tokens. 

We use the frequency of the n-grams in the training data to 

estimate their importance. The first term just sums over the 

frequencies for every unseen n-gram to get the sentence 

weight. 
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The parameter j here determines the n-grams that are 

considered and was set to values of 1, 2 and 3 in the 

experiments.  

This means an unseen sentence like “Where is the hotel?” will 

have a high weight, especially for data in the tourism domain 

because we can assume that every n-gram in this sentence is 

rather frequent. 

These simple weighting schemes already show improvements 

over the baseline systems as shown in the later parts of the 

paper but they have various shortcomings. They do not take 

the actual translation cost of the sentence into account. 

(Translators generally charge per word and not per sentence). 

This leads to the fact that longer sentences tend to get higher 

weights than shorter sentences, because they will contain 

more, and possibly higher frequent, unseen n-grams. The focus 

on token-coverage is certainly very helpful but longer 

sentences are more difficult for the training of statistical 

translation models. (When training the translation model 

IBM1 for example every possible word alignment between 

sentences is considered.) 



 

To fix these shortcomings we changed the weighting terms to 

incorporate the actual length of a sentence by dividing the sum 

of the frequencies of the unseen n-grams by the length of the 

sentence: 
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This changes the weight to – informally speaking – “newly 

covered tokens in the training data per word to translate”. 

As noted earlier the algorithms for training translation models 

in statistical machine translation usually work better (and 

faster) on shorter sentences. For this reason we also tried to 

divide by the square of the length of a sentence which prefers 

even shorter sentences. 

Overall the weighting terms can be written as:  
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We introduce the second parameter i here to indicate the 

exponent of the sentence length (values used in the 

experiments were 0, 1 and 2). 

It is certainly possible to use higher values for i and j but the 

results indicated that higher values would not produce better 

results.  

4.4. Weighting of sentences based on TF-IDF 

The second approach for the weighting of sentences is based 

on a different idea and uses an information retrieval method 

(TF-IDF) to attach a weight to sentences. 

TF-IDF similarity measure 

TF-IDF is a similarity measure widely used in information 

retrieval. The main idea of TF-IDF is to represent each 

document by a vector in the size of the overall vocabulary. 

Each document D (this will be a sentence or a set of 

sentences in our case) is then represented as a vector 

( )mwww ,...,, 21  if m is the size of the vocabulary. The entry 

kw   is calculated as: 

 )log(* kkk idftfw =  

• ktf  is the term frequency (TF) of the k-th word in 

the vocabulary in the document D i.e. the number 

of occurrences. 

• kidf  is the inverse document (IDF) frequency of the 

k-th term, given as  

th term-k containing documents#

documents #
=kidf  

The similarity between two documents is then defined as the 

cosine of the angle between the two vectors. 

Sentence weighting with TF-IDF 

The idea now is to use TF-IDF to find the most different 

sentence compared to the already selected sentences and give 

this one the highest importance - this means we just select the 

sentence with the lowest TF-IDF score (compared to the 

already selected sentences) next. 

The first sentence here has to be randomly selected because 

there is nothing to compare the available sentences against in 

the first step. The randomly selected sentence could be: 

 

1. Where is the hotel? 

 

In the next step the TF-IDF score for every still available 

sentence compared to this sentence is calculated. 

Sentences that do not have a single common word with this 

sentence will get the lowest possible TF-IDF score of 0 and 

one of those will again be selected, for example:  

 

1. Where is the hotel? 

2. I had soup for dinner. 

 

At some point there will be no more sentences left that only 

contain unseen words so every sentence will get a positive TF-

IDF score.  The lowest TF-IDF score will then be for 

sentences that have the fewest number of already seen words 

and the highest document frequency for these words. A 

selected sentence in this example could be: 

 

1. Where is the hotel? 

2. I had soup for dinner. 

3. This is fine. 

 

This sentence only shares the word “is” with the already 

sorted sentences. The word “is” most likely has a very high 

document frequency, thus a low IDF score which leads to an 

overall low score for this particular sentence. 

A sentence like “We ate dinner at a restaurant.” will get a 

higher score because the shared word “dinner” is certainly 

less frequent than “is” and will get a higher IDF score.  

The TF score in this example would be the same so it can be 

ignored. In the next iteration the TF score for “is” in the 

sorted sentences will be higher, which in turn lowers the 

chances to select another sentence with “is”.  

This means overall that this weighting scheme will make sure 

that at the beginning new and unseen words are covered and it 

will give more weight to higher frequent words later, which is 

the same behavior as the weighting schemes presented in 

section 4.3.  

 

A more information-retrieval centered motivation for the TF-

IDF method could be: We always select the sentence with the 

topic that is “furthest away” from the topic(s) of the sentences 

we already sorted. This will make sure that we cover all 

possible topics that are in our training data and might come up 

in the test data. 

Generalizing TF-IDF for N-grams 

TF-IDF can easily be generalized to n-grams by using every n-

gram as an entry in the document vectors (instead of only 

using words). We tried this for n-grams up to bigrams and plan 

on doing experiments with higher n-grams. 

The following section 5 will give an overview over the 

experiments that were done using the three presented 

approaches to sort sentences according to their estimated 

importance.  



5. Experiments English-Spanish 

5.1. Test and Training Data 

The full training data for the translation experiments consisted 

of 123,416 English sentences with 903,525 English words 

(tokens). This data is part of the BTEC corpus ([12]) with 

relatively simple sentences from the travel domain. The whole 

training data was also available in Spanish (852,362 words). 

The testing data which was used to measure the machine 

translation performance consisted of 500 lines of data from the 

medical domain. 

All translations in this task were done translating English to 

Spanish. 

5.2. Machine Translation System 

The applied statistical machine translation system uses an 

online phrase extraction algorithm based on IBM1 lexicon 

probabilities ([3], [13]). The language model is a trigram 

language model with Kneser-Ney-discounting built with the 

SRI-Toolkit ([14]) using only the Spanish part of the training 

data.  

We applied the standard metrics introduced for machine 

translation, NIST ([15]) and BLEU ([16]).  

5.3. Baseline and Previous Best Systems  

The baseline system that uses all available training data 

achieved a NIST score of 4.19 [4.03; 4.35]1 and a BLEU score 

of 0.141 [0.129; 0.154]1.  

For the baseline systems that do not use all available training 

data we selected sentences based on the original order of the 

training corpus and trained the smaller systems from this data. 

The second “baseline” systems were trained using the previous 

best approach presented in section 4.2.  

Translation systems trained on these (smaller) data sets give 

the scores shown in diagrams 1 and 2. The diagrams clearly 

illustrate that after a rather steep increase of the scores until 

the translation of approximately 400,000 words the scores of 

the baseline increase only slightly until they reach the final 

score for the system using all available training data. 

The previous best selection especially benefits at the 

beginning for a lower number of translated words and hits a 

NIST score of 4.0 at 170,000 translated words, which is very 

close to the confidence interval and only about 5% worse than 

the best overall score. A NIST score of 4.1 is already achieved 

at 220,000 translated words and 2% worse than the final 

baseline of 4.19. At 10,000 translated words the previous best 

system achieves a NIST score of 2.56, compared to a baseline 

of 2.04. 
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Diagram 1: NIST scores for Baseline and  

Previous best 

The picture is similar for the BLEU scores. The previous best 

selection reached a BLEU score of 0.13 at 400,000 translated 

words. The reason for the necessity to translate more words to 

reach a BLEU score in the confidence interval of the final 

system could be that the BLEU score puts higher importance 

on fluency. Larger systems might benefit from more robust 

estimations of the larger language models. 
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Diagram 2: BLEU scores for Baseline and  

Previous best 

5.4. Translation Results 

Because of the limited space we will only show diagrams for 

the NIST scores for each experiment. This can be justified as 

the graphs for the BLEU scores showed basically the same 

behavior. 

We did also not include the graph for the previous best system 

in the diagrams because the new approaches did not always 

clearly improve over the previous best system and this would 

have led to even more close-packed diagrams. 

Results for term weight0,j 

Diagram 3 illustrates the NIST scores for systems where the 

sentences were sorted according to weight0,j.  

If the optimization only uses the frequency sum of previously 

unseen unigrams to rank sentences, the systems score 

significantly higher than the baseline for very small amounts 

of training data. But the steep increase stops very soon and the 

systems fall slightly below the baseline, recover towards the 

end, and finish on the same scores.  

These problems are clearly fixed by incorporating the bi- and 

trigrams into the optimization process. The scores no longer 



fall beyond the scores of the baseline systems but stay 

consistently higher. 

The systems optimized on uni- and bigrams (weight0,2) are not 

significantly different from the systems for uni-/bi-  and 

trigrams (weight0,3) but show a very similar performance with 

slight advantages for the uni- and bigram-systems. 

Unfortunately both systems do not outperform the previous 

best method as they reach a NIST score of 4.0 at 230,000 and 

240,000 translated words and a score of 4.1 at 300,000 and 

320,000 translated words. However all three systems achieve 

better NIST scores at very small amounts of training data with 

the same NIST score of 2.72 for 10,000 translated words. 
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Diagram 3: NIST scores for sentences sorted 

according to weight0,j 

Results for term weight1,j 

The difference between the term weight0,j and weight1,j  is the 

incorporation of the length of a sentence. The frequency sum 

of the unseen n-grams is divided by the number of words in 

the respective sentence to get the weight for the sentence. 

Diagram 4 illustrates the associated NIST scores. 
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Diagram 4: NIST scores for sentences sorted 

according to weight1,j 

A comparison with Diagram 3 shows that the NIST scores for 

the sorting of the sentences according to weight1,j are even 

better than for the term weight0,j. 

We see a very similar behavior for the unigrams and an 

improvement for the optimizations based on uni- and bigrams 

and uni-/bi- and trigrams compared to weight0,j. 

We also do not see any significant differences between the 

scores for those two optimizations.  The performance is very 

similar with only slight advantages for the optimization based 

on uni- and bi-grams (weight1,2). For this system a NIST score 

of 4.0 was already reached at 140,000 translated words 

(190,000 for weight1,3) while 4.1 was reached at 300,000 

translated words (280,000 for weight1,3). It is again possible to 

outperform the baseline and previous best systems at 10,000 

translated words with a NIST scores of 2.64 (weight1,1) and 

2.97 (weight1,2 and weight1,3). 

Results for term weight2,j 

As explained in section 4.3 we tried to prefer shorter sentences 

in term weight2,j by dividing the frequency sum of the unseen 

n-grams by the square of the number of words in the 

respective sentence. Diagram 5 illustrates those scores. 

The scores overall are similar to the earlier diagrams. The term    

weight2,2 reaches a NIST score of 4.0 at 180,000 (220,000 for 

weight2,3) translated words, and a NIST score of 4.1 at 

220,000 translated words (270,000 for weight2,3). 

The systems again outperform the other systems for 10,000 

translated words with NIST scores of 3.02 for weight2,3 and 

2.98 for weight2,2  (weight2,1 gets a NIST score of only 2.56). 
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Diagram 5: NIST scores for sentences sorted 

according to weight2,j 

Results for TF-IDF based sorting 

Diagram 6 shows the scores for the optimization based on TF-

IDF for unigrams and uni-/bigrams. 

In this case the original TF-IDF (based only on unigrams) 

slightly outperforms the TF-IDF based on uni- and bigrams 

but both approaches do not show better results than the earlier 

weighting terms.  
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Diagram 6: NIST scores for sentences sorted  

according to TF-IDF 



5.5. Overview 

Table 1 compares the results achieved by the different 

methods with a special focus on small amounts of data. We 

give NIST scores for 10,000; 20,000; 50,000 and 100,000 

translated words. The last 2 columns show the number of 

translated words (in thousands) necessary to achieve NIST 

scores of 4.0 and 4.1. (Best values for each column are printed 

bold.) 
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Baseline 2.04 2.40 2.58 3.34 650k 850k 

Previous best 2.56 3.05 3.56 3.81 170k 220k 

weight0,1 (unigram) 2.72 3.00 3.31 3.42 380k 760k 

weight0,2 (uni-/bigram) 2.72 3.02 3.49 3.72 230k 300k 

weight0,3 (uni-/bi-/trigram) 2.72 3.00 3.50 3.71 240k 320k 

weight1,1 (unigram) 2.64 2.05 3.40 3.55 410k 450k 

weight1,2 (uni-/bigram) 2.97 3.25 3.63 3.86 140k 300k 

weight1,3 (uni-/bi-/trigram) 2.97 3.29 3.63 3.85 190k 280k 

weight2,1 (unigram) 2.56 2.98 3.36 3.57 400k 450k 

weight2,2 (uni-/bigram) 2.98 3.30 3.65 3.80 180k 220k 

weight2,3 (uni-/bi-/trigram) 3.02 3.27 3.62 3.77 220k 270k 

TF-IDF (unigram) 2.63 2.90 3.23 3.53 360k 390k 

TF-IDF (uni-/bigram) 2.57 2.82 3.19 3.50 370k 430k 

Table 1: Performance Overview 

One might argue that improvements at very small data sizes 

are not relevant, as the translations will still be very deficient. 

This might be the case, but there are applications where even 

a low-quality translation can be helpful ([17]). And as we 

showed in [8] - some translations are surprisingly good, even 

for very small amounts of training data. 

6. Future Work 

The presented weighting schemes could certainly incorporate 

other features of the original training data.  

The pure frequency based approach “tries” to cover every n 

gram once and then does not consider it anymore. It might be 

helpful to have a goal of covering every n-gram a number of 

times to get better estimates of translation probabilities.  

The TF-IDF based sorting did not yet show improvements 

over the earlier approaches. We hope that it will be beneficial 

to further investigate this idea and maybe combine it with the 

other methods. 

Both presented methods give a high weight to function words 

at the beginning. This is not necessarily desirable so it could 

be helpful to lower the impact of function words and increase 

the weight of (high-frequent) content words. Especially the 

NIST score could benefit from correctly translated content 

words, as it incorporates the information gain in the score 

calculation.  

It might be reasonable for some applications to also consider 

the target language part of the training data when sorting the 

sentences. This is certainly not possible if the goal is to limit 

the effort for human translators and the target sentences are 

not even available at selection time. It could however be 

included in the selection of training data for small devices 

because here the translations will already be available. 

  

7. Conclusion 

We presented two new weighting schemes to sort training 

sentences for statistical machine translation according to their 

importance for the translation performance.  

The first method mainly tries to improve the token coverage 

while taking the sentence length into account. We are able to 

outperform our baseline and our previously best system and 

see especially nice improvement for very small data sizes. The 

focus on token coverage is achieved by using the frequency of 

the previously unseen n-grams as the basis for the sentence 

weight. 

We also presented a second idea that bases the sorting of the 

sentences on the similarity measure TF-IDF, but we did not 

see improvements over the first method. 
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