
Low Cost Portability for Statistical Machine Translation

based on N-gram Frequency and TF-IDF

Matthias Eck, Stephan Vogel and Alex Waibel

Interactive Systems Laboratories

Carnegie Mellon University

Pittsburgh, PA, 15213, USA
matteck@cs.cmu.edu, vogel+@cs.cmu.edu, waibel@cs.cmu.edu

Abstract

Statistical machine translation relies heavily on the available

training data. In some cases it is necessary to limit the amount

of training data that can be created for or actually used by the

systems. We introduce weighting schemes which allow us to

sort sentences based on the frequency of unseen n-grams. A

second approach uses TF-IDF to rank the sentences. After

sorting we can select smaller training corpora and we are able

to show that systems trained on much less training data

achieve a very competitive performance compared to baseline

systems using all available training data.

1. Introduction

The goal of this research was to decrease the amount of

training data that is necessary to train a competitive statistical

translation system regardless of the actual test data or its

domain. “Competitive” here means that the system should not

produce significantly worse translations compared to a system

trained on a significantly larger amount of data.

It is important to note that this is not an adaptation approach

as we assume that the test data (and its domain) is not known

at the time we select the actual training data.

Statistical machine translation can be described in a formal

way as follows:

)()|(maxarg)|(maxarg*
tPtsPstPt

tt

⋅==

Here t is the target sentence, and s is the source sentence. P(t)

is the target language model and P(s|t) is the translation model

used in the decoder.

Statistical machine translation searches for the best target

sentence from the space defined by the target language model

and the translation model.

Statistical translation models are usually either phrase- or

word-based and include most notably IBM1 to IBM4 and

HMM ([1], [2], [3]). Some recent developments focused on

online phrase extraction ([4], [5]).

All models use available bilingual training data in the source

and target languages to estimate their parameters and

approximate the translation probabilities.

One of the main problems of Statistical Machine Translation

(SMT) is the necessity to have large parallel corpora

available. This might not be a big issue for major languages,

but it certainly is a problem for languages with fewer

resources ([6], [7]). To improve the data situation for these

languages it is necessary to hire human translators at

enormous costs who translate corpora that can later be used to

train SMT systems.

Our idea focuses on sorting the available source sentences

that should be translated by a human translator according to

their approximate importance. The importance is estimated

using a frequency based and an information retrieval

approach.

2. Motivation

There are three inherently different motivations for the goal of

limiting the amount of necessary training data for a

competitive translation system. We described those

motivations and their applications already in the paper [8].

Application 1: Reducing Human Translation Cost

The main problem of portability of SMT systems to new

languages is the involved cost to generate parallel bilingual

training data as it is necessary to have sentences translated by

human translators.

An assumption could be that a 1 million word corpus needs to

be translated to a new language in order to build a decent SMT

system.

A human translator could charge in the range of approximately

0.10-0.25 USD per word depending on the involved languages

and the difficulty of the text. The translation of a 1 million

word corpus would then cost between 100,000 and 250,000

USD.

The concept here is to select the most important sentences

from the original 1 million word corpus and have only those

translated by the human translators. If it would still be possible

to get a similar translation performance with a significantly

lower translation effort, a considerable amount of money could

be saved.

This could especially be applied to low density languages with

limited resources ([6], [7]).

Application 2: Translation on Small Devices

Another possible application is the usage of statistical machine

translation on portable small devices like PDAs or cell phones.

Those devices tend to have a limited amount of memory

available which limits the size of the models the device can

actually hold and a larger training corpus will usually result in

a larger model. The more recent approaches to online phrase

extraction for SMT make it necessary to have the corpus

available (and in memory) at the time of translation ([4], [5]).

Given the upper example, a small device might not be able to

hold a 1 million word bilingual corpus but e.g. only a corpus

with 200,000 words. The question is now which part of the

corpus (especially which sentences) should be selected and put

on the device to get the best possible translation system.

Application 3: Standard Translation System

Even on larger devices that do not have rigid limitations of

memory, the approach could be helpful. The complexity of

online phrase extraction and standard training algorithms

depends mainly on the size of the bilingual training data.

Limiting the size of the training data with the same translation

performance on these devices would speed up the translations.

Another problem is that the still widely used 32 bit

machines like the Intel Pentium 4 and AMD Athlon XP series

can only address up to 4 gigabytes of memory. There are

already bilingual corpora in excess of 4 gigabytes available

and therefore it is necessary to select the most important

sentences from these corpora to be able to hold them in

memory. (The last issue will certainly be resolved by the

widespread introduction of 64 bit machines which can

theoretically address 17 million terabytes of memory.)

3. Previous Work

This research can generally be regarded as an example of

active learning. This means the machine learning algorithm

does not just passively train on the available training data but

plays an active role in selecting the best training data.

Active learning, as a standard method in machine learning,

has been applied to a variety of problems in natural language

processing, for example to parsing ([9]) and to automatic

speech recognition ([10]).

It is important to note the difference between this approach

and approaches to Translation Model Adaptation ([11]) or

simple subsampling techniques that are based on the actual

test data. Here we assume that the test data is not known at

selection time so the intention is to get the best possible

translation system for every possible test data.

Our previous work in this area focused on improving the n-

gram (type-) coverage by selecting the sentences based on the

number of previously unseen n-grams they contain [8].

Section 4.2 will give a short overview over our previous best

method.

4. Description of sentence sorting

4.1. Algorithm

The sentences are sorted according to the following very

simple algorithm.

For all sentences that are not in the sorted list

Calculate weight of sentences

Find sentence with highest weight

Add sentence with highest weight to sorted list

The interesting part is the calculation of the weight of each

sentence. The weight of a sentence will generally depend on

the previously selected sentences.

We present three different schemes to calculate the importance

of a sentence. Section 4.2 presents our previous best selection

approach and section 4.3 an approach that weights sentences

based on the frequency of the unseen n-grams. The method in

section 4.4 uses TF-IDF to find sentences that are different

from the already seen sentences.

4.2. Previous Best Weighting Scheme

As stated earlier our previous work in this area focused on

optimizing the sorting of the sentences based on the n-gram

coverage.

The best results were achieved using the following weighting

term:

sentence

n

sentence n

grams) unseen(#

)(est_weightprevious_b

2

1

−

=

∑
=

This means for each sentence, which had not been sorted yet,

the number of unseen uni- and bigrams was calculated and

divided by the length of the sentence (in words). This gave

significantly better results than the baseline systems where the

sentences were not weighted.

4.3. Weighting of Sentences Based on N-gram Frequency

The problem with the previous best system is that every

unseen unigram gets the same weight. Words that only occur

once in the whole training data will be given the same value as

higher frequent and probably more important words. The same

is certainly true for low- and high-frequency bigrams.
This is why we wanted to make sure that our new weighting

schemes focus on high-frequency n-grams and put less weight

on lower frequency n-grams. This means the goal here is not

necessarily to optimize the coverage of the types but of the

tokens.

We use the frequency of the n-grams in the training data to

estimate their importance. The first term just sums over the

frequencies for every unseen n-gram to get the sentence

weight.

∑ ∑
= − 













−=

j

n n

nsentence

1 grams unseen

gram)frequency()(
j

weight

The parameter j here determines the n-grams that are

considered and was set to values of 1, 2 and 3 in the

experiments.

This means an unseen sentence like “Where is the hotel?” will

have a high weight, especially for data in the tourism domain

because we can assume that every n-gram in this sentence is

rather frequent.

These simple weighting schemes already show improvements

over the baseline systems as shown in the later parts of the

paper but they have various shortcomings. They do not take

the actual translation cost of the sentence into account.

(Translators generally charge per word and not per sentence).

This leads to the fact that longer sentences tend to get higher

weights than shorter sentences, because they will contain

more, and possibly higher frequent, unseen n-grams. The focus

on token-coverage is certainly very helpful but longer

sentences are more difficult for the training of statistical

translation models. (When training the translation model

IBM1 for example every possible word alignment between

sentences is considered.)

To fix these shortcomings we changed the weighting terms to

incorporate the actual length of a sentence by dividing the sum

of the frequencies of the unseen n-grams by the length of the

sentence:

sentence

n

sentence

j

n n

∑ ∑
= − 













−

=
1 grams unseen

gram)frequency(

)(
j

weight

This changes the weight to – informally speaking – “newly

covered tokens in the training data per word to translate”.

As noted earlier the algorithms for training translation models

in statistical machine translation usually work better (and

faster) on shorter sentences. For this reason we also tried to

divide by the square of the length of a sentence which prefers

even shorter sentences.

Overall the weighting terms can be written as:

i

j

n n

sentence

n

sentence

∑ ∑
= − 













−

=
1 grams unseen

gram)frequency(

)(
ji,

weight

We introduce the second parameter i here to indicate the

exponent of the sentence length (values used in the

experiments were 0, 1 and 2).

It is certainly possible to use higher values for i and j but the

results indicated that higher values would not produce better

results.

4.4. Weighting of sentences based on TF-IDF

The second approach for the weighting of sentences is based

on a different idea and uses an information retrieval method

(TF-IDF) to attach a weight to sentences.

TF-IDF similarity measure

TF-IDF is a similarity measure widely used in information

retrieval. The main idea of TF-IDF is to represent each

document by a vector in the size of the overall vocabulary.

Each document D (this will be a sentence or a set of

sentences in our case) is then represented as a vector

()mwww ,...,, 21 if m is the size of the vocabulary. The entry

kw is calculated as:

)log(* kkk idftfw =

• ktf is the term frequency (TF) of the k-th word in

the vocabulary in the document D i.e. the number

of occurrences.

• kidf is the inverse document (IDF) frequency of the

k-th term, given as

th term-k containing documents#

documents #
=kidf

The similarity between two documents is then defined as the

cosine of the angle between the two vectors.

Sentence weighting with TF-IDF

The idea now is to use TF-IDF to find the most different

sentence compared to the already selected sentences and give

this one the highest importance - this means we just select the

sentence with the lowest TF-IDF score (compared to the

already selected sentences) next.

The first sentence here has to be randomly selected because

there is nothing to compare the available sentences against in

the first step. The randomly selected sentence could be:

1. Where is the hotel?

In the next step the TF-IDF score for every still available

sentence compared to this sentence is calculated.

Sentences that do not have a single common word with this

sentence will get the lowest possible TF-IDF score of 0 and

one of those will again be selected, for example:

1. Where is the hotel?

2. I had soup for dinner.

At some point there will be no more sentences left that only

contain unseen words so every sentence will get a positive TF-

IDF score. The lowest TF-IDF score will then be for

sentences that have the fewest number of already seen words

and the highest document frequency for these words. A

selected sentence in this example could be:

1. Where is the hotel?

2. I had soup for dinner.

3. This is fine.

This sentence only shares the word “is” with the already

sorted sentences. The word “is” most likely has a very high

document frequency, thus a low IDF score which leads to an

overall low score for this particular sentence.

A sentence like “We ate dinner at a restaurant.” will get a

higher score because the shared word “dinner” is certainly

less frequent than “is” and will get a higher IDF score.

The TF score in this example would be the same so it can be

ignored. In the next iteration the TF score for “is” in the

sorted sentences will be higher, which in turn lowers the

chances to select another sentence with “is”.

This means overall that this weighting scheme will make sure

that at the beginning new and unseen words are covered and it

will give more weight to higher frequent words later, which is

the same behavior as the weighting schemes presented in

section 4.3.

A more information-retrieval centered motivation for the TF-

IDF method could be: We always select the sentence with the

topic that is “furthest away” from the topic(s) of the sentences

we already sorted. This will make sure that we cover all

possible topics that are in our training data and might come up

in the test data.

Generalizing TF-IDF for N-grams

TF-IDF can easily be generalized to n-grams by using every n-

gram as an entry in the document vectors (instead of only

using words). We tried this for n-grams up to bigrams and plan

on doing experiments with higher n-grams.

The following section 5 will give an overview over the

experiments that were done using the three presented

approaches to sort sentences according to their estimated

importance.

5. Experiments English-Spanish

5.1. Test and Training Data

The full training data for the translation experiments consisted

of 123,416 English sentences with 903,525 English words

(tokens). This data is part of the BTEC corpus ([12]) with

relatively simple sentences from the travel domain. The whole

training data was also available in Spanish (852,362 words).

The testing data which was used to measure the machine

translation performance consisted of 500 lines of data from the

medical domain.

All translations in this task were done translating English to

Spanish.

5.2. Machine Translation System

The applied statistical machine translation system uses an

online phrase extraction algorithm based on IBM1 lexicon

probabilities ([3], [13]). The language model is a trigram

language model with Kneser-Ney-discounting built with the

SRI-Toolkit ([14]) using only the Spanish part of the training

data.

We applied the standard metrics introduced for machine

translation, NIST ([15]) and BLEU ([16]).

5.3. Baseline and Previous Best Systems

The baseline system that uses all available training data

achieved a NIST score of 4.19 [4.03; 4.35]1 and a BLEU score

of 0.141 [0.129; 0.154]1.

For the baseline systems that do not use all available training

data we selected sentences based on the original order of the

training corpus and trained the smaller systems from this data.

The second “baseline” systems were trained using the previous

best approach presented in section 4.2.

Translation systems trained on these (smaller) data sets give

the scores shown in diagrams 1 and 2. The diagrams clearly

illustrate that after a rather steep increase of the scores until

the translation of approximately 400,000 words the scores of

the baseline increase only slightly until they reach the final

score for the system using all available training data.

The previous best selection especially benefits at the

beginning for a lower number of translated words and hits a

NIST score of 4.0 at 170,000 translated words, which is very

close to the confidence interval and only about 5% worse than

the best overall score. A NIST score of 4.1 is already achieved

at 220,000 translated words and 2% worse than the final

baseline of 4.19. At 10,000 translated words the previous best

system achieves a NIST score of 2.56, compared to a baseline

of 2.04.

1
 95% confidence intervals

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

0 200000 400000 600000 800000

translated words

N
IS

T
 s

c
o

r
e

Baseline Previous best

Diagram 1: NIST scores for Baseline and

Previous best

The picture is similar for the BLEU scores. The previous best

selection reached a BLEU score of 0.13 at 400,000 translated

words. The reason for the necessity to translate more words to

reach a BLEU score in the confidence interval of the final

system could be that the BLEU score puts higher importance

on fluency. Larger systems might benefit from more robust

estimations of the larger language models.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 200000 400000 600000 800000

translated words

B
L

E
U

 s
c
o

r
e

Baseline Previous best

Diagram 2: BLEU scores for Baseline and

Previous best

5.4. Translation Results

Because of the limited space we will only show diagrams for

the NIST scores for each experiment. This can be justified as

the graphs for the BLEU scores showed basically the same

behavior.

We did also not include the graph for the previous best system

in the diagrams because the new approaches did not always

clearly improve over the previous best system and this would

have led to even more close-packed diagrams.

Results for term weight0,j

Diagram 3 illustrates the NIST scores for systems where the

sentences were sorted according to weight0,j.

If the optimization only uses the frequency sum of previously

unseen unigrams to rank sentences, the systems score

significantly higher than the baseline for very small amounts

of training data. But the steep increase stops very soon and the

systems fall slightly below the baseline, recover towards the

end, and finish on the same scores.

These problems are clearly fixed by incorporating the bi- and

trigrams into the optimization process. The scores no longer

fall beyond the scores of the baseline systems but stay

consistently higher.

The systems optimized on uni- and bigrams (weight0,2) are not

significantly different from the systems for uni-/bi- and

trigrams (weight0,3) but show a very similar performance with

slight advantages for the uni- and bigram-systems.

Unfortunately both systems do not outperform the previous

best method as they reach a NIST score of 4.0 at 230,000 and

240,000 translated words and a score of 4.1 at 300,000 and

320,000 translated words. However all three systems achieve

better NIST scores at very small amounts of training data with

the same NIST score of 2.72 for 10,000 translated words.

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

0 200000 400000 600000 800000

translated words

N
IS

T
 s

c
o

r
e

Baseline unigram uni-/bigram uni-/bi-/trigram

Diagram 3: NIST scores for sentences sorted

according to weight0,j

Results for term weight1,j

The difference between the term weight0,j and weight1,j is the

incorporation of the length of a sentence. The frequency sum

of the unseen n-grams is divided by the number of words in

the respective sentence to get the weight for the sentence.

Diagram 4 illustrates the associated NIST scores.

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

0 200000 400000 600000 800000

translated words

N
IS

T
 s

c
o

r
e

Baseline unigram uni-/bigram uni-/bi-/trigram

Diagram 4: NIST scores for sentences sorted

according to weight1,j

A comparison with Diagram 3 shows that the NIST scores for

the sorting of the sentences according to weight1,j are even

better than for the term weight0,j.

We see a very similar behavior for the unigrams and an

improvement for the optimizations based on uni- and bigrams

and uni-/bi- and trigrams compared to weight0,j.

We also do not see any significant differences between the

scores for those two optimizations. The performance is very

similar with only slight advantages for the optimization based

on uni- and bi-grams (weight1,2). For this system a NIST score

of 4.0 was already reached at 140,000 translated words

(190,000 for weight1,3) while 4.1 was reached at 300,000

translated words (280,000 for weight1,3). It is again possible to

outperform the baseline and previous best systems at 10,000

translated words with a NIST scores of 2.64 (weight1,1) and

2.97 (weight1,2 and weight1,3).

Results for term weight2,j

As explained in section 4.3 we tried to prefer shorter sentences

in term weight2,j by dividing the frequency sum of the unseen

n-grams by the square of the number of words in the

respective sentence. Diagram 5 illustrates those scores.

The scores overall are similar to the earlier diagrams. The term

weight2,2 reaches a NIST score of 4.0 at 180,000 (220,000 for

weight2,3) translated words, and a NIST score of 4.1 at

220,000 translated words (270,000 for weight2,3).

The systems again outperform the other systems for 10,000

translated words with NIST scores of 3.02 for weight2,3 and

2.98 for weight2,2 (weight2,1 gets a NIST score of only 2.56).

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

0 200000 400000 600000 800000

translated words

N
IS

T
 s

c
o

r
e

Baseline unigram uni-/bigram uni-/bi-/trigram

Diagram 5: NIST scores for sentences sorted

according to weight2,j

Results for TF-IDF based sorting

Diagram 6 shows the scores for the optimization based on TF-

IDF for unigrams and uni-/bigrams.

In this case the original TF-IDF (based only on unigrams)

slightly outperforms the TF-IDF based on uni- and bigrams

but both approaches do not show better results than the earlier

weighting terms.

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

0 200000 400000 600000 800000

translated words

N
IS

T
 s

c
o

r
e

Baseline unigram uni-/bigram

Diagram 6: NIST scores for sentences sorted

according to TF-IDF

5.5. Overview

Table 1 compares the results achieved by the different

methods with a special focus on small amounts of data. We

give NIST scores for 10,000; 20,000; 50,000 and 100,000

translated words. The last 2 columns show the number of

translated words (in thousands) necessary to achieve NIST

scores of 4.0 and 4.1. (Best values for each column are printed

bold.)

S
co

re
 fo

r
10

k
tr

an
sl

at
ed

 w
or

ds

S
co

re
 fo

r
20

k
tr

an
sl

at
ed

 w
or

ds

S
co

re
 fo

r
50

k
tr

an
sl

at
ed

 w
or

ds

S
co

re
 fo

r
10

0k
 tr

an
sl

at
ed

 w
or

ds

T
ra

ns
la

te
d

w
or

ds
 fo

r
4.

0
(N

IS
T

)

T
ra

ns
la

te
d

w
or

ds
 fo

r
4.

1
(N

IS
T

)

Baseline 2.04 2.40 2.58 3.34 650k 850k

Previous best 2.56 3.05 3.56 3.81 170k 220k

weight0,1 (unigram) 2.72 3.00 3.31 3.42 380k 760k

weight0,2 (uni-/bigram) 2.72 3.02 3.49 3.72 230k 300k

weight0,3 (uni-/bi-/trigram) 2.72 3.00 3.50 3.71 240k 320k

weight1,1 (unigram) 2.64 2.05 3.40 3.55 410k 450k

weight1,2 (uni-/bigram) 2.97 3.25 3.63 3.86 140k 300k

weight1,3 (uni-/bi-/trigram) 2.97 3.29 3.63 3.85 190k 280k

weight2,1 (unigram) 2.56 2.98 3.36 3.57 400k 450k

weight2,2 (uni-/bigram) 2.98 3.30 3.65 3.80 180k 220k

weight2,3 (uni-/bi-/trigram) 3.02 3.27 3.62 3.77 220k 270k

TF-IDF (unigram) 2.63 2.90 3.23 3.53 360k 390k

TF-IDF (uni-/bigram) 2.57 2.82 3.19 3.50 370k 430k

Table 1: Performance Overview

One might argue that improvements at very small data sizes

are not relevant, as the translations will still be very deficient.

This might be the case, but there are applications where even

a low-quality translation can be helpful ([17]). And as we

showed in [8] - some translations are surprisingly good, even

for very small amounts of training data.

6. Future Work

The presented weighting schemes could certainly incorporate

other features of the original training data.

The pure frequency based approach “tries” to cover every n

gram once and then does not consider it anymore. It might be

helpful to have a goal of covering every n-gram a number of

times to get better estimates of translation probabilities.

The TF-IDF based sorting did not yet show improvements

over the earlier approaches. We hope that it will be beneficial

to further investigate this idea and maybe combine it with the

other methods.

Both presented methods give a high weight to function words

at the beginning. This is not necessarily desirable so it could

be helpful to lower the impact of function words and increase

the weight of (high-frequent) content words. Especially the

NIST score could benefit from correctly translated content

words, as it incorporates the information gain in the score

calculation.

It might be reasonable for some applications to also consider

the target language part of the training data when sorting the

sentences. This is certainly not possible if the goal is to limit

the effort for human translators and the target sentences are

not even available at selection time. It could however be

included in the selection of training data for small devices

because here the translations will already be available.

7. Conclusion

We presented two new weighting schemes to sort training

sentences for statistical machine translation according to their

importance for the translation performance.

The first method mainly tries to improve the token coverage

while taking the sentence length into account. We are able to

outperform our baseline and our previously best system and

see especially nice improvement for very small data sizes. The

focus on token coverage is achieved by using the frequency of

the previously unseen n-grams as the basis for the sentence

weight.

We also presented a second idea that bases the sorting of the

sentences on the similarity measure TF-IDF, but we did not

see improvements over the first method.

8. References

[1] Peter E. Brown, Stephen A. Della Pietra, Vincent J. Della

Pietra, and Robert L. Mercer. 1993. The mathematics of

statistical machine translation: Parameter estimation.

Computational Linguistics, 19(2), pp. 263-311.

[2] Stephan Vogel, Hermann Ney, and Christoph Tillmann,

1996. HMM-based Word Alignment in Statistical

Translation. Proceedings of Coling 1996, Copenhagen,

Denmark.

[3] Stephan Vogel, Ying Zhang, Alicia Tribble, Fei Huang,

Ashish Venugopal, Bing Zhao, and Alex Waibel. 2003.

The CMU Statistical Translation System. Proceedings of

MT Summit IX, 2003. New Orleans, LA, USA.

[4] Chris Callison-Burch, Colin Bannard and Josh

Schroeder. 2005. Scaling Phrase-Based Statistical

Machine Translation to Larger Corpora and Longer

Phrases. Proceedings of ACL 2005, Ann Arbor, MI,

USA.

[5] Ying Zhang and Stephan Vogel. 2005. An Efficient

Phrase-to-Phrase Alignment Model for Arbitrarily Long

Phrases and Large Corpora. Proceedings of EAMT

2005, Budapest, Hungary.

[6] Tony McEnery, Paul Baker, Lou Burnard. 2000. Corpus

Resources and Minority Language Engineering.

Proceedings of LREC 2000, Athens, Greece.

[7] Alon Lavie, Katharina Probst, Erik Peterson, Stephan

Vogel, Lori Levin, Ariadna Font-Llitjós, and Jaime

Carbonell. 2004. A Trainable Transfer-based Machine

Translation Approach for Languages with Limited

Resources. Proceedings of EAMT 2004, Malta.

[8] Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.

Low Cost Portability for Statistical Machine Translation

based on N-gram Coverage. Proceedings of MTSummit

X 2005. Phuket, Thailand.

[9] Rebecca Hwa. 2004. Sample selection for statistical

parsing. Computational Linguistics vol. 30, no. 3.

[10] Teresa. M. Kamm and Gerard G. L. Meyer. 2002.

Selective Sampling of Training Data for Speech

Recognition. Proceedings of HLT 2002, San Diego, CA,

USA.

[11] Almut Silja Hildebrand, Matthias Eck, Stephan Vogel

and Alex Waibel. 2005. Adaptation of the Translation

Model for Statistical Machine Translation based on

Information Retrieval. Proceedings of EAMT 2005,

Budapest, Hungary.

[12] Toshiyuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya,

Hirofumi Yamamoto, and Seiichi Yamamoto. 2002.

Toward a Broad-coverage Bilingual Corpus for Speech

Translation of Travel Conversation in the Real World.

Proceedings of LREC 2002, Las Palmas, Spain.

[13] Stephan Vogel, Sanjika Hewavitharana, Muntsin Kolss,

and Alex Waibel. 2004. The ISL Statistical Translation

System for Spoken Language Translation. Proceedings of

the International Workshop on Spoken Language

Translation, Kyoto, Japan.

[14] SRI Speech Technology and Research Laboratory. 1995-

2005. SRI Language Modeling Toolkit.

http://www.speech.sri.com/projects/srilm/

[15] George Doddington, 2001. Automatic Evaluation of

Machine Translation Quality using n-Gram Co-

occurrence Statistics. NIST Washington, DC, USA.

[16] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2002. BLEU: a Method for Automatic

Evaluation of Machine Translation. Proceedings of ACL

2002, Philadelphia, PA, USA.

[17] Ulrich Germann. 2001. Building a Statistical Machine

Translation System from Scratch: How Much Bang Can

We Expect for the Buck? Proceedings of the Data-Driven

MT Workshop of ACL 2001. Toulouse, France.

