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Abstract

We propose a novel statistical machine translation de-
coding algorithm for speech translation to improve speech
translation quality. The algorithm can translate the speech
recognition word lattice, where more hypotheses are uti-
lized to bypass the misrecognized single-best hypothe-
ses. We also show that a speech recognition confidence
measure, implemented by posterior probability, is effec-
tive to improve speech translation. The proposed tech-
niques were tested in a Japanese-to-English speech trans-
lation task. The experimental results demonstrate the im-
proved speech translation performance by the proposed
techniques.

1. Introduction

Most current speech translation systems have a cascaded
structure: a speech recognition component followed by a
machine translation component. Usually only the single-
best outcome of speech recognition is used in the machine
translation component. Due to the inevitable errors of
speech recognition, speech translation cannot achieve the
same level of translation performance as that achieved by
perfect text input.

To overcome the weakness in speech translation, sev-
eral architectures have been proposed so far. [1] pro-
posed a coupling structure to combine automatic speech
recognition and statistical machine translation. [2] used a
unified structure where the maximum entropy approach is
proposed to build entire speech translation system mod-
els. [3] and [4] implemented the integrated structure
by means of finite-state network, and a comparison with
the cascaded structure was made. Strictly speaking, this
approach does not use the statistical speech translation
structure [1].

In this work we used the speech recognition word lat-
tice as the output of speech recognition and the input of
machine translation. While in this structure the speech
recognition component and the machine translation com-
ponent are sequentially connected, more hypotheses are
stored in the word lattice than the single-best structure;
complementary information, such as the acoustic model

and language model scores instantiated by posterior prob-
ability, was used in the machine translation component to
enhance translation performance.

In the field of statistical machine translation, the fa-
mous, early models are the IBM models [5], using Bayes
rule to convert P (e|f) into P (e)P (f |e). The IBM Mod-
els 1 through 5 introduced various models for P (f |e)
with increasing complexity. Another popular model is
called an “HMM” model [6], which adds alignment prob-
ability in the basis of IBM Model 1. Recently a direct
modeling of P (e|f) in the maximum entropy framework,
the log-linear model, has been proved effective [7]. This
model can integrate a number of features log-linearly.
Hence, we use the statistical log-linear model as the trans-
lation model in this work.

We implemented a new lattice translation decoding
algorithm specialized for speech translation. In the de-
coding we used a two-pass search strategy, graph-based
plus A*. For the first graph search, we integrated fea-
tures from IBM Model 1 into the log-linear model while
IBM Model 4’s features were integrated in the second A*
search. We invented a new method to minimize the size
of the raw lattice generated by the speech recognizer to
reduce the decoding complexity. We found these tech-
niques effective for improving speech translation quality.

We also found that sentence posterior probability of
speech recognition was very useful for further improv-
ing speech translation. A significant translation improve-
ment was achieved by filtering low-confidence hypothe-
ses based on the posterior probability in the word lattice.

The remaining sections are organized as follows. Sec-
tion 2 introduces our speech translation models and struc-
ture, then Section 3 provides detailed descriptions of the
decoding algorithm of the word lattice translation. In
Section 4 we describe a lattice reduction method to re-
duce the computations. We describe the sentence poste-
rior probability approach for choosing hypotheses in Sec-
tion 5. Section 6 presents our experimental results and a
detailed analysis, and Section 7 gives our discussions and
conclusions.
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Figure 1: Speech Translation Framework

2. Proposed Speech Translation Structure

The proposed speech translation system is illustrated in
Figure 1. It consists of two major components: an auto-
matic speech recognition (ASR) module and a word lat-
tice translation (WLT) module. The interface between the
two components is a recognition word lattice.

The task of speech translation, in the case of Japanese-
to-English translation, can be modeled as to find the tar-
get English sentence, Ê, given a source Japanese spoken
utterance, X , such that the probability, P (E|X), is max-
imized. If the intermediate output of ASR is defined as
J , we can get the following formula according to [4]:

Ê = argmax
E

P (E|X)

= argmax
E

{
∑

J

P (J, E)P (X |J)

}
(1)

where P (X |J) is the ASR acoustic model; P (J, E), the
joint model of source and target languages.

For searching the best E, two methods are used in [4]:
serial structure and integrated stochastic finite-state trans-
ducer(SFST). The first used the single-best results of ASR,
and the second used a finite-state transducer.

We use the word lattice in our work, by which the
implementation indicated by the model 1 is approximated
in two steps:

• First, use the ASR component to generate a word
lattice G. Only the top ranked hypotheses with an
ASR scores higher than a threshold, TH , are kept
in the word lattice:

G = {J |P (J)P (X |J) > TH} (2)

• Second, use the WLT component to find output
which maximizes:

< Ê, Ĵ >= arg max
E,J

{P (E)P (X |J)P (J |E)}

J ∈ G (3)

The combination of Eq. 2 and Eq. 3 is an approxima-
tion of Eq. 1, where we assume E and X is independent
to derive Eq. 2; and summation is replaced by maximiza-
tion to derive Eq. 3. Meanwhile, a Ĵ , producing the best
Ê, is also obtained in WLT despite that the goal of speech
translation is only for Ê.

Although the WLT translation model is derived in the
form of Eq. 3, we actually used a more advanced model,
namely a feature based log-linear models, formalized as:

Ê = arg max
E

{λ0 log Ppp(J |X) + λ1 log Plm(E)

+ λ2 log Plm(POS(E)) + λ3 logN (Φ|E)

+ λ4 log P (Φ0|E) + λ5 log T (J |E)

+ λ6 logD(E, J)} (4)

where we defined seven features represented by the fol-
lowing.

(a)ASR hypothesis posterior probability, Ppp(J |X).
We used the posterior probability instead of the acoustic
model score since the acoustic model score has a large
dynamic range and difficult to normalize. The posterior
probability is calculated as:

P (J |X) =
P (X |J)P (J)∑
Ji

P (X |Ji)P (Ji)
(5)

where the summation is made over all hypotheses in the
word lattice, G. Ji is a hypothesis in the word lattice.
(b)Word sequence target language model, Plm(E). (c)Part-
of-speech sequence target language models, Plm(POS(E)).
(d)Fertility model, N (Φ|E) represents the probability of
the English word, e, generating φ words. (e)NULL trans-
lation model, P (Φ0|E) is the probability of inserting a
NULL word. (f)Lexicon Model, T (J |E) is the proba-
bility of the word, j, in the Japanese source sentence be-
ing translated into the corresponding word, e, in the En-
glish target sentence. (g)Distortion model, D(E, J) in-
dicates the alignment probability of the source and target
sentence,(J, E).

Eq. 4 is a logarithmic extension of Eq. 1 except that
the translation model P (J |E) is extended by IBM model
4 [5] and the acoustic feature is replaced by the posterior
probability.

3. Word lattice translation – WLT

Word lattice translation is much more complicated than
text translation. In contrast to text translation where a
single source sentence is known, there is no single source
sentence for word lattice translation but a lattice contain-
ing multiple hypotheses. Which hypothesis is the best
one to be translated is unknown before the decoding is
completed.

We use the graph+A* decoding approach for the word
lattice translation. This approach has been used for text
translation by [8]. We extend the approach to speech
translation in this work. We adopted this approach be-
cause it can keep more hypotheses in a compact struc-
ture. The graph+A* decoding is a two-pass decoding.
The first pass uses a simple model to generate a word
graph to save the most likely hypotheses. It amounts to



converting a source language word lattice (SWL) into a
target language word graph (TWG). Edges in the SWL
are aligned to some edges in the TWG. The second pass
uses a complicated model to output the best hypothesis
by traversing the target word graph.

We describe the two-pass WLT algorithm in the fol-
lowing two sections.

3.1. First pass — from SWL to TWG

The bottom in Fig. 2 shows an example of a translation
word graph, which corresponds to the recognition word
lattice in the top. Each edge in the TWG is a target lan-
guage word being a translation of a source word in the
SWL, either from word translations provided by the lex-
ical models or fertility expansion by the fertility models.
Some edges that have the same structure are merged into
a node. The node has one element indicating the source
word coverage up to the current node. The coverage is
a binary vector with size equal to the number of edges
in the SWL, indicating the number of translated source
edges. If the j-th source word was translated, the j-th el-
ement is 1, otherwise it equals to 0. If the node covers all
the edges of a full path in the SWL, this node connects to
the last node, the end, in the TWG.

There are two main operations in expanding a node
into edges: DIRECT and ALIGN. DIRECT extends the
hypothesis with a target word by translating an uncovered
source word. The target word is determined based on
current target N -gram context and possible translations
of the uncovered source word.

ALIGN extends the hypothesis by aligning one more
uncovered source word to the current node, where the tar-
get word is a translation of multiple source words, in-
creasing fertilities of the target word.

The edge is not extended if the resulted hypothesis
does not correspond to any hypothesis in the SWL. If the
node has covered a full path in the SWL, this node is con-
nected to the end node. When there are no nodes avail-
able for possible extension, the conversion is completed.
A simple illustration of conversion algorithm is shown
in Algorithm 1. The whole process equals the growing
of a graph. The graph can be indexed in time slices be-
cause the new nodes are created based on the old nodes
of the last nearest time slice. New nodes are created by
DIRECT or ALIGN to cover the uncovered source edge
and connect to the old nodes. The new generated nodes
are sorted and merged in the graph buffer if they share the
same structure: the same coverage, the same translations
and the same N -gram sequence. If the node covers a full
hypothesis in the SWL, the node connects to the end. If
no nodes need to be expanded, the conversion finishes.

In the first pass, we incorporate a simpler translation
model into the log-linear model, only the lexical model,
IBM model 1. The ASR posterior probability Ppp are cal-
culated by partial hypothesis from the start to the current.

Algorithm 1 Conversion Algorithm from SWL to TWG

1: Initialize graph buffer G[0]=0; t=0
2: DO
3: FOR EACH node n=0,1,..., #(G[t]) DO
4: IF (n cover A FULL PATH) NEXT
5: FOR EACH edge l=0,1,...,#(EDGES) DO
6: IF (n cover l) NEXT
7: IF (n not cover ANY SWL PATH) NEXT
8: generate new node and push to G[t+1]
9: merge and prune nodes in G[t+1]
10: t= t+1
11:WHILE (G[t] is empty)

Ppp uses the highest value among all the ASR hypothe-
ses under the current context. The first pass serves to keep
the most likely hypotheses in the translation word graph,
and the second pass as a refined search that uses advanced
models.

3.2. Second pass — by an A* search to find the best
output from the TWG

An A* search traverses the TWG generated in last sec-
tion, and this is the best first approach. All partial hy-
potheses generated are pushed into a priority queue with
the top hypothesis popping first out of the queue for the
next extension.

To execute the A* search, the hypothesis score, D(h, n),
of a node n is evaluated in two parts: the forward score,
F (h, n), and the heuristic estimation, H(h, n), D(h, n) =
F (h, n) + H(h, n). The calculation of F (h, n) begins
from the start node and accumulates all nodes’ scores be-
longing to the hypothesis until the current node, n. The
H(h, n) is defined as the accumulated maximum proba-
bility of the models from the end node to the current node
n.

In the second pass we incorporated IBM Model 4’s
features into the log-linear model. However, we cannot
use IBM Model 4 directly because the calculations of the
two models, P (Φ0|E) and D(E, J), require the source
sentence, but unknown in fact. Hence, the probability of
P (Φ0|E) and D(E, J) cannot be calculated precisely in
decoding. Our method to fix this problem is to use the
maximum over all possible hypotheses. For the above
two models, we calculated the scores for all the possible
ASR hypotheses under the current context. The maxi-
mum value was used as the model’s probability.

4. Minimizing the SWL

Because we use HMM-based ASR to generate the raw
SWL, the same word identity can be recognized repeat-
edly in slightly different frames. As a result, the same



10000000

00000010 10000010

10100010

11000010 11010010

/s

e0

e6

e6

e0

e2

e1

e4

e3

e2

e5

10101010

10100000 10100100 10100101
e7

j5

j6

j7

j1

j2

j3

j4
j0

s

Figure 2: Source language word lattice (top) and target language word graph (bottom)

word identity may appear in more than one edge. Direct
conversion from SWL to TWG causes duplicated com-
putation and explosion of the TWG space. On the other
hand, while the raw SWL contains hundreds of hypothe-
ses, the top N -best hypotheses are among the most sig-
nificant, which are only a small portion of all hypotheses.
We can reduce the size of the raw SWL by cutting off all
other hypotheses except the top N -best without informa-
tion loss.

In reducing the size of SWL, we follow one rule: the
TWG is the translation counterpart of the SWL if and
only if any full path in the TWG is a translation of a full
path in the SWL.

We use the following steps to downsize the raw SWL.
From the raw SWL we generate N -best hypotheses in a
sequence of edge numbers. We list the word IDs of all
the edges in the hypotheses, remove the duplicate words,
and index the remainders with new edge IDs. The num-
ber of new edges is less than that in the raw SWL. Next,
we replace the edge sequence in each hypothesis with a
new edge ID. If more than one edge shares the same word
ID in one hypothesis, we add a new edge ID for the word
again and replace the edge with the new ID. Finally, we
generate a new word lattice with a new word list as its
edges, consisting of the N -best hypotheses only. The raw
SWL becomes the downsized SWL. The downsized SWL
is much smaller than the raw SWL. In fact, in our experi-
ments the word lattice is reduced by 50% on average.

Fig. 3 shows an example of lattice downsizing. The
word IDs are shown in the parentheses. After downsiz-
ing, one hypothesis is removed. In fact, the downsized
SWL is just the N -best ASR hypotheses with new as-
signed edge IDs. In this paper we use lattice-hypothesis
to indicate the quantities of hypotheses in the lattice, de-
fined as the number of hypotheses used to construct the
TWG in the downsized SWL. It is a more suitable metric
than lattice density for the downsized SWL because af-
ter lattice minimization, the downsized SWL saves only
the significant N -best ASR hypotheses regardless of the

density of the raw SWL.

5. Selection of hypotheses by confidence
measure (CM) filtering

As described above, the downsized SWL stores N ASR
hypotheses. All the hypotheses can find a counterpart in
the TWG after the conversion if they are not removed by
histogram and threshold pruning. The posterior probabil-
ity of a hypothesis can determine whether this hypothe-
sis is used in the TWG. In general, the hypotheses with
the lowest posterior probability are the least likely to be
used in the WLT module. They are most likely pruned in
the earlier stage of the decoding process. In the experi-
ments we found removing the hypotheses with extremely
low posterior probability in the TWG by hard decisions
can improve speech translation. We found that using pos-
terior probability as a confidence measure to filter low
confidence hypotheses achieved better results. For all the
hypotheses in the SWL, we used Eq. 5 to compute each
hypothesis posterior probability. We then compared each
one’s posterior probability with that of the single-best hy-
pothesis, P0, the highest posterior probability. If it ex-
ceeds a threshold, P0/T , where T is a confidence factor,
the hypothesis is used in WLT, otherwise removed. By
applying a confidence measure, WLT automatically se-
lects the hypotheses that are conversed into the TWG.
Hence, for a given SWL, the number of hypotheses for
translation in WLT is determined by the confidence mea-
sure (CM) filtering.

6. Experiments

6.1. BTEC Database & Model Training

The Japanese/English bilingual data used in this study
were from the Basic Travel Expression Corpus (BTEC) [9],
consisting of commonly used sentences published in travel
guidebooks and tour conversations.

In our experiments we used the BTEC training data to
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Figure 3: An example of word lattice reduction

train the models, the BTEC1 test data #1 as the develop-
ment data for the parameter optimization of the log-linear
model, and the BTEC1 test data #2 for evaluation. The
training data contains 468,595 sentences. The develop
and test data have 510 and 508 sentences respectively.

The adopted ASR is HMM-based, implemented by
triphone models with 2,100 states and 25 dimensional
MFCC features. A multiclass word bigram and a word
trigram language models were used in the ASR with a
lexicon of 47,000 words. All the LMs and the feature
models of the translation models were trained by the BTEC
training data.

The automatic evaluation metric, BLEU, was used for
evaluating our translation quality. It was calculated by the
downloadable tool (version v11a) 1. We use 16 reference
sentences for each utterance, created by human transla-
tors

In the development phase, we optimized the λs of the
log-linear model by the approach in [7], for maximizing
the BLEU score of the translation results of the develop-
ment data given the 16 references for each utterance.

6.2. The effect of CM filtering

In the experiments the ASR system output the raw lattice.
Its performance for one of our test data (BTEC test #2) is
shown in Fig. 4, where the word and sentence accuracy
for the single-best (lattice-hypothesis=1) recognition are
around 93% and 79%, respectively. They increase to 96%
and 87% at lattice-hypothesis=20, showing the potential
improvement for speech translation.

The required lattice for WLT was generated by the
lattice reduction approach described in section 4. We
set the number of ASR hypotheses to 100 when we cre-
ated the downsized SWL. The downsized SWL was then

1http://www.nist.gov/speech/tests/mt/
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translated by the WLT translation module. While the
downsized SWL contained 100 ASR hypotheses, the ac-
tual number of hypotheses used in WLT can be desig-
nated by changing the lattice-hypothesis. For a given
lattice-hypothesis, we carried out the translation experi-
ments under the conditions of with and without CM fil-
tering. When did with CM filtering, the number of hy-
potheses used decreased further.

Figure 5 presents the translation results of WLT, show-
ing the change of BLEU with increasing lattice-hypothesis.
The bottom curve represents the translation without CM
filtering while the top curve is the one with it. The re-
sults of lattice-hypothesis=1 corresponds to the single-
best translation, the worst BLEU score. The BLEU scores
of both translations increase as the lattice-hypothesis in-
creases, and we found that the results when lattice-hypothesis=20
are the best for both. It proves the effectiveness of lattice
translation in improving translation.

This experiments prove the speech translation with
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CM filtering is more effective than that without CM fil-
tering. The translation improvement with CM filtering
is more stable when the lattice-hypothesis increases, and
the improvement’s amplitude is greater than that without
CM filtering. On the contrary, the translation improve-
ment without CM filtering is unstable and fluctuating, and
in some case no better translations found than the single-
best.

The results of Figure. 5 were obtained when the con-
fidence threshold was set to T = 10, the best translation
results observed.

6.3. The effect of word lattice translation

In the last section we showed the effect of CM filtering,
proving that the CM filtering can improve lattice trans-
lation significantly in comparison with without CM fil-
tering. As shown in the Fig. 5, the BLEU score was
increased from the single-best translation, 0.545, to the
lattice translation, 0.557. Although the overall improve-
ment by lattice translation, indicated by the BLEU score,
is sightly higher than the baseline single-best translation,
this improvement is reliable because we measured the re-
sults by other popular evaluation metrics besides BLEU:
NIST,mWER and mPER. We found NIST increased from
6.0 to 6.2, mWER reduced from 0.42 to 0.41, and, mPER
reduced from 0.38 to 0.37. Therefore, the consistent pos-
itive evaluation results prove our approach works well
in improving speech translation. More than that, we il-
lustrated the change of BLEU for each test utterance in
Fig. 6, where we put a mark “x” if the word-lattice-translation’s
BLEU score was higher than the single-best translation’s,
a mark “+” if worse, or no sign in the figure if the same
BLEU was arrived by both word lattice translation and
single-best translation. Each mark corresponds to its ut-
terance number on the x axis. We found there were 43
utterances marked by “x” and 21 by “+”, which means
that word lattice translation is as twice as likely to get a
better translation by our approach.

In the next analysis we highlight part of the test data,
for being able to demonstrate the significant contribu-
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tion of our proposed approaches. The testset of the last
section included both single-best correctly-recognized ut-
terances and wrongly-recognized utterances by ASR. In
this experiment we only used the single-best wrongly-
recognized utterances, composed of 15% of the testset.

The translation results for this special part are shown
in Fig. 7. We used the same experimental settings as the
previous experiment and with CM filtering. In the figure,
the bottom straight line represents the single-best trans-
lation while the top one represents the translations of the
ASR oracle results, ASR hypotheses with the best word
accuracy. The curve in the middle shows the translation
of lattices as the increasing lattice-hypothesis. We found
a significant translation improvement by lattice transla-
tion. The BLEU score improved from 0.32 when lattice-
hypothesis=1 to 0.38 when lattice-hypothesis=20, achiev-
ing 75% of the maximum improvement made by the ora-
cle translations, 0.40.

7. Conclusions

This paper described our work on improving speech trans-
lation performance. We implemented a new speech trans-
lation system, WLT, that can translate speech recogni-



tion word lattice directly. To reduce computation cost
and improve translation quality we used a word lattice
size reduction method. While all these techniques im-
proved the speech translation, we found the largest gain
was achieved by applying the confidence measure in WLT.
By choosing ASR hypotheses based on the posterior prob-
ability, speech translation qualities were improved to a
new higher level. Our work of using the confidence mea-
sure is the first attempt in speech translation. We found it
is a promising approach for speech translation improve-
ments.

While the main features in the translation module come
from IBM Model 4, our translation model is not a pure
IBM Model 4 but a log-linear model incorporating the
features derived by IBM Model 4. The feature of poste-
rior probability is also integrated in the log-linear model,
representing the contributions of the ASR acoustic model
and language model.

The WLT developed in this work for speech trans-
lation is an extension of a word-based statistical machine
translation system, written for text translation. This word-
based SMT system achieved comparable performance with
the phrase-based translation approach in a recent evalua-
tion [10].

Currently, we only use word-to-word pairs in the log-
linear models, though we believe the system will be im-
proved further if we integrate phrase-to-phrase transla-
tion pairs. All the proposed approaches, such as word
lattice reduction and confidence measure filtering, can be
applied to phrase-based translator easily.
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