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Abstract

In this paper we describe the components
of our statistical machine translation sys-
tem. This system combines phrase-to-
phrase translations extracted from a bilin-
gual corpus using different alignment ap-
proaches. Special methods to extract and
align named entities are used. We show
how a manual lexicon can be incorpo-
rated into the statistical system in an op-
timized way. Experiments on Chinese-to-
English and Arabic-to-English translation
tasks are presented.

1 Introduction

Statistical machine translation is currently the most
promising approach to large vocabulary text trans-
lation. In the spirit of the Candide system devel-
oped in the early 90s at IBM (Brown et al., 1993),
a number of statistical machine translation systems
have been presented in the last few years (Wang and
Waibel, 1998), (Och and Ney, 2000), (Yamada and
Knight, 2000). These systems share the basic un-
derlying principles of applying a translation model
to capture the lexical and word reordering relation-
ships between two languages, complemented by a
target language model to drive the search process
through translation model hypotheses. Their pri-
mary differences lie in the structure and source of
their translation models. Whereas the original IBM
system was based on purely word-based translation
models, modern systems try to incorporate more
complex structure.

Our system uses phrase-to-phrase translations as
the primary building blocks to capture local con-
text information, leading to better lexical choice
and more reliable local reordering. The quality of

the translations is largely dependent on the qual-
ity of phrase-to-phrase translation pairs extracted
from bilingual corpora. We have developed and ex-
plored several methods to find and generalize bilin-
gual phrase pairs which are described in detail in
Section 2. In addition to extracted phrase transla-
tions, reliable translation of source language named
entities is important as they carry information which
often cannot be reconstructed from context. A short
overview of our work on named entities is included
in Section 3.

Section 4 outlines the architecture of the decoder
that combines the translation and language model to
generate complete translations, and provides details
regarding our decoding procedure.

Finally, in Section 5 we present a series of experi-
ments in Chinese-to-English and Arabic-to-English
translation task. We compare the different phrase
alignment methods and their combinations, give re-
sults for introducing named entities, and explore the
effect of the language model and word reordering
on translation quality.

2 Phrase Translations

Different methods to find phrase-to-phrase transla-
tions from a bilingual corpus have been proposed.
Most of them rely on word-to-word alignment. In
our system we have experimented with four differ-
ent approaches to phrase pair extraction, each of
which will be described below. We also describe our
technique for adding generalization power by allow-
ing for overlapping phrases.

2.1 From Viterbi Path of HMM Word
Alignment

A simple approach to extract phrase translations
from a bilingual corpus is to harvest the Viterbi path
generated by a word alignment model. A number of



probabilistic word alignment models have been pro-
posed (Brown et al., 1993) (Och and Ney, 2000) and
shown to be effective for statistical machine trans-
lation. We use the HMM-based alignment model
introduced in (Vogel et al., 1996) which estimates
position alignment probabilities in addition to lexi-
cal probabilities. The HMM-based alignment model
is based on relative positions: it addresses the likeli-
hood that the word at source positionj+1 is aligned
to target positioni′ when source positionj is aligned
to target positioni.

The Viterbi path can be used not only to map
source words to target words, i.e. building a sta-
tistical lexicon, but also to map source phrases to
target phrases. For each source phrase ranging from
positionsj1 to j2 the corresponding target phrase
is given byimin = minj{i = a(j)} and imax =
maxj{i = a(j)}, where j = j1...j2. This is
a very simple criterion which does not test if the
source phrase actually aligns to two or more non-
contiguous sequences of words in the target sen-
tence. Due to the potential for alignment errors,
such a test would be unreliable. However, by pre-
venting the length of the aligned target phrase from
exceeding the length of the source phrase by a given
factor, the problem of non-contiguous alignments
can be reduced.

2.2 From Bilingual Bracketing

In (Wu, 1997) a word alignment model was pro-
posed which adds additional alignment restrictions
over the IBM-style alignment models. The bilingual
bracketing builds an hierarchical alignment, which
can be viewed as a simple top-down bilingual parse:
split source and target segment into two halvesf̃l, f̃r

and ẽl, ẽr. Then either alignf̃l to ẽl and f̃r to ẽr,
which is called a straight alignment, or aligñfl to
ẽr and f̃r to ẽl, called a reversed alignment. Re-
peat this for each aligned segment pair down to the
word level. At each level the optimization is over
the split points and the direction, i.e. straight or re-
versed alignment. The resulting alignment can be
viewed as an alignment of two binary trees, where
the sub-trees of the target side can be swapped with
respect to the sub-trees of the source side.

Again, this leads to a word alignment between
source and target sentence which can be used to ex-
tract phrase translation pairs. In this case we ex-

tract phrases corresponding to aligned sub-trees in
the bilingual bracketing.

Instead of estimating the lexical probabilities for
the bilingual bracketing alignment using the Inside-
Outside algorithm as in (Wu, 1997), we use the
IBM1 alignment model to estimate the lexical prob-
ability p(f |e) and calculate a forced alignment us-
ing the restrictions of the bilingual bracketing align-
ment model (Zhao, 2003).

2.3 Robust Alignment Based Phrase
Extraction

The third phrase alignment method starts from a
high recall sentence level word alignment for gen-
erating phrase translation pairs and uses occurrence
statistics collected over the entire corpus to achieve
higher precision.

We begin by training a high order IBM transla-
tion model in both directions, i.e. from source lan-
guage to target language and vice versa. The re-
sulting alignments are unioned at the sentence level
to achieve high recall when evaluated against manu-
ally aligned sentences. For a given sentence pair, we
consider each possible sequence of source and target
words and evaluate them using a series of metrics
that estimate the quality of the phrase translation.
We consider metrics that measure within sentence
consistency (ratio of hypothesized alignment points
within this phrase region to the alignment points in-
consistent with this region), across sentence consis-
tency (evaluating the number of similar phrases ex-
tracted across the corpus), and language pair spe-
cific measures to ensure that phrases have appropri-
ate lengths. These metrics are combined using ex-
perimentally determined weights and the candidate
phrase list is pruned to reduce the computational
burden when introduced into the decoding process.
This method has been described in detail in (Venu-
gopal, 2003).

2.4 Integrated Segmentation and Phrase
Alignment (ISA)

In moving from word level lexicons to phrase based
extractions, most techniques rely on an initial word
level alignment as the foundation for phrase level
extraction. As (Marcu, 2002) argues by example,
the word level estimates are liable to provide non-
intuitive translation probabilities, and lexical cor-



respondence can in fact be estimated at the phrase
level by moving toward joint probability models.
Our fourth phrase translation method extends this
work by proposing a generative phrase correspon-
dence model that attempts to segment sentences
across phrase boundaries.

A bilingual sentence pair(f, e) can be repre-
sented by a two-dimensional matrixRm×n, where
m in the number of words inf , n in e respectively.
The value for cell[i, j] is the point-wise mutual
information (MI) between word pairs(fi, ej), de-
noted asI(fi, ej). If, for example, the translation
for phrasee1e2 is f1, thenI(e1, f1) and I(e2, f1)
should be similar. Based on this observation, a
phrase pair(f̃ , ẽ) should correspond to a contigu-
ous rectangle region inR, where MI values for cells
in this region are similar to each other. We use a
greedy search algorithm to find all possible phrase
pairs for a sentence pair. These phrase pairs rep-
resent the segmentations overf and e as well as
the alignment betweenf ande at the phrase level
(Zhang, 2003).

2.5 Phrase Translation Probabilities

One general problem with using phrase translations
in a statistical machine translation system is that
most phrase pairs are seen only a few times, even
in very large corpora. This is especially true for
longer phrases. As our translation system is based
on Bayes’ decision rule, we are looking for phrase
translation probabilitiesp(f̃ |ẽ), wheref̃ denotes the
source phrase and̃e denotes the target phrase. If
a phrasef̃ is seen three times in the training cor-
pus, but each time it is aligned to a different transla-
tion, then the probabilities of all three phrase pairs is
equal,1/3 in this example. Therefore, probabilities
based on occurrence counts have little discrimina-
tive power. Selecting one translation over the others
is left to the language model within the decoder.

To get more discriminative probabilities in the
phrase translation models we calculate phrase trans-
lation probabilities based on a statistical lexicon for
the constituent words in the phrase. As the IBM1
alignment model gives the global optimum for the
lexical probabilities, it is the natural choice. This
leads to the phrase translation probability

p(f̃ |ẽ) =
∏

j

∑

i

p(fj |ei)

Table 1: Example of an OP merge.

Src. Tgt.
a b c # w x y
c d e # x y z

merge result: a b c d e # w x y z

where the word probabilitiesp(fj |ei) are estimated
using the IBM1 word alignment model.

The phrase translations still show some advantage
over word-for-word translation due to the summa-
tion over all aligned target words. However, if there
is no appropriate translation for one of the source
words, this will lead to a small word alignment fac-
tor making the overall phrase translation probability
small. Probabilities are calculated in this fashion for
phrases generated by the HMM and bilingual brack-
eting Viterbi alignments.

2.6 Overlapping Phrases

Each of the phrase alignment methods described
so far helps the system generate more fluent trans-
lations by essentially memorizing useful examples
from the training data. In order to take better ad-
vantage of these examples and add some general-
ization power, we also combine phrase alignments
to generate translations for unseen phrases. Specif-
ically, we combine phrase alignments that overlap
on both source and target side as described in (Trib-
ble, 2003). The Overlapping Phrases (OP) that re-
sult can be used as an additional source of phrase
alignments during translation.

In the OP approach, a set of phrase alignments is
read in and stored according to its prefixes and suf-
fixes of length 1-4 tokens. For each source-side pre-
fix string s, rules beginning withs are paired with
rules ending in the same string. The target sides of
the candidate pair are checked for an overlapping
substringt, where the length oft must be 1-4 to-
kens but may differ from the length ofs. If sub-
stringss andt are found for a particular phrase pair,
then the alignments are merged to form a new, usu-
ally longer, phrase alignment. An example merge
between two overlapping rules is given in Table 1.

Phrase-level alignment probabilities are assigned
to the new rules using to the IBM1 lexical probabil-
ities as described above.



3 Named Entities

Translating named entities (NE), which include
named persons, locations and organizations, is both
semantically important and technically challenging.
NE translation involves both semantic translation
and phonetic transliteration, and is made more dif-
ficult by the frequent occurrence of OOV words in
NEs.

An integrated two-step strategy, Offline and On-
line NE translation, is proposed and implemented
in the current SMT system. Offline NE transla-
tion automatically extracts NE translingual equiv-
alence from a parallel corpus, where NEs have been
manually or automatically annotated. Starting from
a bilingual corpus where NEs are automatically
tagged for each language, NE pairs are aligned in
order to minimize a multi-feature alignment cost in-
cluding the transliteration cost, the NE tagging cost,
and word-based translation cost. These features are
designed to capture the semantic or phonetic sim-
ilarities between NE pairs as well as NE tagging
confidence, and are derived from several informa-
tion sources using unsupervised and partly super-
vised methods. A greedy search algorithm is ap-
plied to minimize the alignment cost (Huang et al.,
2003).

Online NE translation is specially designed for
translating NEs which appear in the given test docu-
ment, but are not covered by the Offline translation.
The missing source NEs and target NE translations
are “retrieved” cross-lingually from topic-relevant
documents (w.r.t. the test document). Relevant doc-
uments are retrieved from a monolingual corpus us-
ing a 1st-pass translation of the test document as
the query. NEs in the retrieved documents are ex-
tracted and aligned with source NEs according to
their transliteration cost. The NE pairs with mini-
mum transliteration cost are considered as translin-
gual equivalence, and added for the 2nd pass trans-
lation. This approach works well for translating for-
eign person/location names, which is an important
issue in word-based translation systems.

4 Decoding

The decoding process works in two stages: First, the
word-to-word translations and the phrase-to-phrase
translations and, if available, other specific informa-

tion like NE translation tables are used to generate
a translation lattice. Second, a standard n-gram lan-
guage model is applied to find the best path in this
lattice. Both steps will now be described in more
detail.

4.1 Building the Translation Lattice

We define atransduceras a set of translation pairs
generated by the methods described above as well
as by alternative knowledge sources such as manual
dictionaries. Each translation pair has the form

Label # Source # Target # Probability,

where the label can be used to build hirarchical
transducers (Vogel et al., 2000), but in most cases
functions just as a name for the transducer. The first
step in the decoding process is to build a transla-
tion lattice by applying all the transducers, result-
ing in a lattice over the source words similair to the
lattice employed in speech recognition. The trans-
ducers are organized as prefix trees over the source
side, with translations and translation probabilities
attached to the final nodes. This allows for effi-
cient search, as a node in the transducer represents
all source phrases consisting of the words along the
path to this node and all possible paths to final nodes
in the sub-tree under this node.

As we build a translation graph over the source
sentence, we construct an initial graph from this
sentence, which has nodes0..J , where J is the sen-
tence length, and each edgeej = (nj , nj+1) is la-
beled with wordfj . An hypothesish = (j1, j2, σ)
describes a partial translation for the sentence, cov-
ering the words between the nodesj1 and j2 and
matching the path from the inital stateσ0 in the
transducer to the stateσ. Matching a path through a
transducer with part of a sentence can start at each
position in the sentence. Therefore, an initial hy-
pothesis(j, j, σ = σ0), whereσ0 denotes the root
node or initial state of the transducer, is set for each
positionj = 0, ..., J − 1.

Expansion of an hypothesis means moving over
an edge in the translation lattice and simultaneously
over an edge in the transducer tree. If this expan-
sion of hypothesish = (j1, j, σ) is possible then
a new hypothesish = (j1, j + 1, σ′) is generated.
If the expansion of an hypothesis leads into a final
state of the transducer, a new edge is created and in-



serted into the translation lattice for each translation
attached to this final state. All relevant information
(translation and translation probability ) is attached
to the new edges.

4.2 Searching for the Best Path

Once the complete translation lattice has been built,
a first-best search through this lattice is performed.
In addition to the translation probabilities, or rather
translation costs, as we use the negative logarithms
of the probabilities for numerical stability, the lan-
guage model costs are added and the path which
minimizes the combined cost is returned.

Starting with a special begin-of-sentence hypoth-
esis attached to the first node in the translation
lattice, hypotheses are expanded over all outgoing
edges from the current node. To allow for local re-
ordering, the search algorithm can be extended by
leaving a gap and jumping to a distant node in the
translation lattice. This requires that we also keep
track of positions already covered in the source sen-
tence. To restrict reordering we use position align-
ment probabilities; specifically, the jump probabili-
ties as estimated in the HMM alignment.

The decoder allows for recombination of hy-
potheses in a flexible way. It is important to keep
hypotheses apart if the partial translations end in dif-
ferent words, as this will result in different scores
from the language model during the next expansion
step. In addition, we can distinguish hypotheses if
they cover different positions in the source sentence,
and also if the length of the translation generated so
far is different. The latter comes into effect when
a sentence length model is applied at the sentence
end.

The search space, especially when allowing for
reordering, becomes very large. Pruning is applied
to keep decoding times reasonable. Our decoder re-
alizes a standard beam search, where a best hypoth-
esis is stored based on some of the features used for
hypothesis recombination, and all hypotheses which
are worse by some margin are deleted.

The new hypothesis stores information about the
hypothesis which was just expanded and the edge
over which it was expanded. This allows us to trace
back and reconstruct the translation along the best
path.

5 Experiments

5.1 The Corpora

We report a number of experiments carried out on
Chinese-to-English and Arabic-to-English transla-
tion tasks. As defined for the TIDES machine trans-
lation evaluation, the small Chinese-to-English data
track allows system training on limited bilingual
data but. In addition to a 100K bilingual corpus,
a 10k subset of the LDC Chinese-English dictio-
nary can be used. For the large data track, the bilin-
gual corpora consist of the full LDC dictionary with
appr. 54,000 Chinese entries, and a number of cor-
pora adding up to about 150 million words. To train
the Arabic-to-English system, no small data track in
this case, we use the 80 million word UN corpus
and the small Ummah corpus. No restrictions apply
as to the monolingual English data used for building
language models. All the data were made available
by LDC.

We tested our system on the 878 test sentences
used in the June 2002 TIDES MT evaluation. The
Arabic system was tested on the devtest data con-
sisting of 203 sentences. 4 reference translations
are available for automatic evaluation of these test
sentences.

5.2 Preprocessing

A number of preprocessing steps were performed
on these corpora. For the Chinese data these were:
2 byte character to 1 byte character conversion, esp.
to convert names written in two-byte encoded Latin
characters into their one-byte equivalent; word seg-
mentation using the LDC segmenter with a 43k
word list; number and date conversion using a small
number of regular expressions.

For Arabic the preprocessing included conversion
from UTF-8 encoding into a romanized form and
correction of errors in numbers.

5.3 The Evaluation Method

We report results using the NIST mteval metric
that was applied in the TIDES evaluation (MTeval,
2002). It compares the system output with sev-
eral human translations (in our case 4) and uses
n-gram matches to calculate a translation quality
score. More specifically, information gains for all
matching n-grams are calculated and summed up.



This score functions as a weighted precision: how
many of the generated n-grams are correct. To bal-
ance high precision a length penalty is applied to
translations which are too short compared to the ref-
erence translations.

For the experiments on overlapping phrases and
word reordering we use an additional metric called
the Bleu score, described in (Papineni, 2001). While
both the Bleu and NIST metrics correlate well with
human judgements of translation quality, the Bleu
score gives more scoring weight to high order (2, 3,
4) n-grams and as a result is better for highlighting
the longer fluent phrases generated by the OP tech-
nique.

5.4 The LDC Chinese-English Dictionary

A manually created dictionary can be a valuable
addition to the statistical translation system, as the
translations are generally very reliable.

To make the dictionary even more useful we aug-
ment it with some morphological variations and
other additions, on the English side only. Typi-
cal augmentation steps include adding plural or past
tense forms and prepending nouns with the articles
’a’ and ’the’. This technique tends to over-generate
and we rely somewhat on the language model to
select the reasonable translations. We can also re-
calculate the probabilities of the entries in the dic-
tionary using a trained statistical lexicon just as we
do for phrase translations.

Table 2 shows translation results using the 10K
and full 56K LDC dictionaries under several differ-
ent conditions. A 20 million word language model
was used in this experiment.

Table 2: Translation results for the June-2002 test
data when using only the LDC dictionary.

10K Full
original no-LM 3.79 3.72
original with-LM 5.40 5.52
augmented with-LM 5.78 6.15
probs renorm with-LM 5.91 6.28
probs no-ren with-LM 4.77 6.59

Using no language model results in always pick-
ing the first translation alternative. Augmenting the
dictionaries provides some useful new translations

but they are only selected appropriately when the
LM is also added, helping the system discriminate
between good and bad augmentations. An improve-
ment of 1.99 and 2.43 in NIST MTeval scores is
achieved for 10K and full dictionary when using
both.

Adding probabilities allows the translation model
to be more discriminative and gives an additional
improvement. For the small data track (10K) these
probabilities must be normalized since the training
data is so small that most word pairs from the dic-
tionary are not seen in the corpus and are assigned
a small default probability only. For the large data
track (Full) the probabilities from the corpus are re-
liable enough to be used without renormalization.

5.5 Different Phrase Translation Approaches

In Section 2 we presented four different approaches
to phrase alignment: from HMM Viterbi alignment
(HMM), from bilingual bracketing Viterbi align-
ment (BiBr), robust alignment based phrase extrac-
tion (RPE), and integrated phrase segmentation and
alignment (ISA). Table 3 gives translation results
using each of these methods alone and in combi-
nation. As the bilingual bracketing has high time
complexity this alignment could not be trained on
enough data to make a comparison meaningful. All
of these translations were done using a 20 million
word 3-gram language model and the augmented
LDC dictionary with probabilities assigned as de-
scribed section 5.4

We see that each phrase alignment approach gives
different results when used alone, with high scores
coming from the ISA phrases. We also observe
that the different methods complement each other:
ISA generates short, reliable phrases, while the
other methods find longer phrases but tend to over-
generate. Combining methods always leads to im-
provement.

5.6 Overlapping Phrases

In addition to translating with several combinations
of phrase alignment models, we applied the Over-
lapping Phrases approach and translated with these
new rules in addition to the original ones. We tested
on Chinese-to-English and Arabic-to-English trans-
lation. Table 4 gives some experimental results. The
baseline used the ISA and HMM phrase transducers.



Table 3: Translation results for the June-2002 test
data for the different phrases translation approaches.

Small Large
LDC 5.91 6.59
+ HMM 6.70 7.76
+ BiBr 6.50 -
+ RPE 6.52 7.68
+ ISA 6.86 7.88
+ ISA,HMM 6.97 7.97
+ HMM,ISA,RPE 7.00 8.11
All 7.03 -

Table 4: Translation results using overlapping
phrases for large Chinese-to-English and Arabic-to-
English translation tasks.

NIST Bleu
Baseline Chinese 7.97 0.201
With Overlapping Phrases8.09 0.210
Baseline Arabic 8.59 0.385
With Overlapping Phrases8.78 0.425

The overall improvement for Arabic-to-English is
2.2% in NIST score and 10.4% in Bleu score. The
effect of adding overlapping phrases is to increase
the number of long phrases that are correctly trans-
lated by the SMT system. As the Bleu score takes
longer n-grams more into account, the effect is more
visible with this metric.

In the Chinese-to-English translation tasks we
see only a smaller effect when adding overlapping
phrases. This is in line with our general observa-
tion that word order places a more difficult problem
in Chinese-to-English translation when compared to
Arabic-to-English translation.

5.7 Named Entities

The baseline for the NE experiments was the LDC
dictionary (augmented and with probabilities) with
the ISA phrase translations. Table 5 shows that the
Offline NE approach gave only a small improve-
ment over the baseline system, as many of the NEs
were already covered by the LDC dictionary or by
the phrase transducer. The Online NE approach
gave a nice additional improvement by finding NEs

that did not appear in the bilingual training data.

Table 5: Translation results for the June-2002 test
data when using named entities.

Small Large
Baseline 6.57 7.82
+ Offline NEs 6.61 7.87
+ Online NEs 6.81 7.96

5.8 Effect of the LM

In this experiment we investigated the effect of LM
training corpus size. Small data track experiments
use the 10K LDC dictionary and all 4 phrase trans-
lation methods, for the large data track we used the
full LDC dictionary, HMM and ISA phrases. The
results are shown in Table 6.

Table 6: Test set perplexity and translation results
for LMs of different sizes small and large data
tracks.

LM PP Small Large
M001 243.91 6.62 7.46
M010 184.59 6.96 7.88
M020 172.51 7.03 7.97
M050 161.17 7.07 8.05
M160 147.81 7.08 8.15

On the small data track, the translation candidates
provided by the translation model are restricted due
to the limited bilingual training data. This restricts
the effect of the LM and we see little improvement
beyond the 20 million word LM. For the large data
track, the translation model generates a larger trans-
lation lattice with more paths to choose from and the
larger LMs give greater improvement.

5.9 Reordering

The results reported so far were all obtained by es-
sentially monotone decoding. Word reordering was
restricted to the local reordering captured within
phrase translation pairs. In the final experiment
we investigated the effect of allowing for additional
word reordering during the decoding process. The
effect of increasing this window for the Arabic-
to-English translation task can be seen in Table 7.



The best improvement was obtained for a reorder-
ing window of size 4. Similar to the case of over-
lapping phrases, the improvement in Bleu score is
more pronounced. So far, we have observed a lesser
effect for Chinese-to-English translation, only about
5% for the Bleu score.

Table 7: Effect of reordering on translation quality
for Arabic-to-English translation task.

NIST BLEU
1 8.59 0.385
2 8.87 0.424
3 8.94 0.432
4 9.02 0.441
5 8.99 0.433

6 Summary

In summary, this paper presents the central com-
ponents of the CMU statistical machine translation
system including approaches to extract phrase trans-
lation from bilingual corpora, LDC dictionary aug-
mentation, and named entity translation, along with
the decoding framework for the translation engine
itself. Experimental results demonstrate that each
of these components contributes positively towards
translation performance. Translation experiments
for Chinese-to-English and Arabic-to-English trans-
lations tasks on the TIDES June 2002 test data were
presented, giving results which are comparable to
the best results reported so far on these test sets. Us-
ing overlapping phrases and word reordering gave
less improvement in the Chinese-to-English trans-
lation experiments, compared to Arabic-to-English
translation. This indicates that word order poses a
more difficult problem when translation from Chi-
nese to English. We plan to study this problem
in more detail, especially adding class-based and
syntax-based language models to our decoder.
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