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Abstract

In this paper we describe the components
of our statistical machine translation sys-
tem. This system combines phrase-to-
phrase translations extracted from a bilin-
gual corpus using different alignment ap-
proaches. Special methods to extract and
align named entities are used. We show
how a manual lexicon can be incorpo-
rated into the statistical system in an op-
timized way. Experiments on Chinese-to-
English and Arabic-to-English translation

the translations is largely dependent on the qual-
ity of phrase-to-phrase translation pairs extracted
from bilingual corpora. We have developed and ex-
plored several methods to find and generalize bilin-
gual phrase pairs which are described in detail in
Section 2. In addition to extracted phrase transla-
tions, reliable translation of source language named
entities is important as they carry information which
often cannot be reconstructed from context. A short
overview of our work on named entities is included
in Section 3.

Section 4 outlines the architecture of the decoder
that combines the translation and language model to

tasks are presented. generate complete translations, and provides details

regarding our decoding procedure.
Finally, in Section 5 we present a series of experi-

- . o nts in Chinese-to-English and Arabic-to-English
Statistical machine translation is currently the mos{:e S in Chinese-to-English and bic-to-Englis

- anslation task. We compare the different phrase
promising approach to large vocabulary text trans- . . L )
. . . alignment methods and their combinations, give re-
lation. In the spirit of the Candide system devel-

oped in the early 90s at IBM (Brown et al. 1993),sults for introducing named entities, and explore f[he
e . . effect of the language model and word reordering

a number of statistical machine translation systemg translation quality

have been presented in the last few years (Wang and' '

ngbel, 1998), (Och and Ney, 2000), (Yamada_t and  pnrase Translations

Knight, 2000). These systems share the basic un-

derlying principles of applying a translation model Different methods to find phrase-to-phrase transla-

to capture the lexical and word reordering relationtions from a bilingual corpus have been proposed.

ships between two languages, complemented by Most of them rely on word-to-word alignment. In

target language model to drive the search processur system we have experimented with four differ-

through translation model hypotheses. Their prient approaches to phrase pair extraction, each of

mary differences lie in the structure and source ofvhich will be described below. We also describe our

their translation models. Whereas the original IBMtechnique for adding generalization power by allow-

system was based on purely word-based translationg for overlapping phrases.

models, modern systems try to incorporate more o

complex structure. 2.1 Fr'om Viterbi Path of HMM Word

Our system uses phrase-to-phrase translations as  Allgnment

the primary building blocks to capture local con-A simple approach to extract phrase translations

text information, leading to better lexical choice from a bilingual corpus is to harvest the Viterbi path

and more reliable local reordering. The quality ofgenerated by a word alignment model. A number of

1 Introduction



probabilistic word alignment models have been protract phrases corresponding to aligned sub-trees in
posed (Brown et al., 1993) (Och and Ney, 2000) andhe bilingual bracketing.

shown to be effective for statistical machine trans- Instead of estimating the lexical probabilities for
lation. We use the HMM-based alignment modelthe bilingual bracketing alignment using the Inside-
introduced in (Vogel et al., 1996) which estimatesOutside algorithm as in (Wu, 1997), we use the
position alignment probabilities in addition to lexi- IBM1 alignment model to estimate the lexical prob-
cal probabilities. The HMM-based alignment modelability p(f|e) and calculate a forced alignment us-
is based on relative positions: it addresses the likeliing the restrictions of the bilingual bracketing align-
hood that the word at source positip# 1 is aligned  ment model (Zhao, 2003).

to target positior’ when source positiopis aligned
to target position.

The Viterbi path can be used not only to map
source words to target words, i.e. building a sta-The third phrase alignment method starts from a
tistical lexicon, but also to map source phrases tdigh recall sentence level word alignment for gen-
target phrases. For each source phrase ranging froenating phrase translation pairs and uses occurrence
positionsj; to jo the corresponding target phrasestatistics collected over the entire corpus to achieve
is given byip, = minj{i = a(j)} andipn., =  higher precision.
maz;{i = a(j)}, wherej = ji...jo. This is We begin by training a high order IBM transla-

a very simple criterion which does not test if thetion model in both directions, i.e. from source lan-
source phrase actually aligns to two or more nonguage to target language and vice versa. The re-
contiguous sequences of words in the target sersulting alignments are unioned at the sentence level
tence. Due to the potential for alignment errors;to achieve high recall when evaluated against manu-
such a test would be unreliable. However, by preally aligned sentences. For a given sentence pair, we
venting the length of the aligned target phrase frontonsider each possible sequence of source and target
exceeding the length of the source phrase by a givewords and evaluate them using a series of metrics
factor, the problem of non-contiguous alignmentshat estimate the quality of the phrase translation.
can be reduced. We consider metrics that measure within sentence
consistency (ratio of hypothesized alignment points
within this phrase region to the alignment points in-
In (Wu, 1997) a word alignment model was pro-consistent with this region), across sentence consis-
posed which adds additional alignment restrictiongency (evaluating the number of similar phrases ex-
over the IBM-style alignment models. The bilingual tracted across the corpus), and language pair spe-
bracketing builds an hierarchical alignment, whichcific measures to ensure that phrases have appropri-
can be viewed as a simple top-down bilingual parseate lengths. These metrics are combined using ex-
split source and target segment into two halfieg,  perimentally determined weights and the candidate
andé;, é,. Then either align/; to ¢; and f, to é,, phrase list is pruned to reduce the computational
which is called a straight alignment, or alighto  burden when introduced into the decoding process.
¢ and f, to ¢, called a reversed alignment. Re- This method has been described in detail in (Venu-
peat this for each aligned segment pair down to thgopal, 2003).

word level. At each level the optimization is over _

the split points and the direction, i.e. straight or re-2-4 Integrated Segmentation and Phrase

versed alignment. The resulting alignment can be  Alignment (ISA)

viewed as an alignment of two binary trees, wherdn moving from word level lexicons to phrase based
the sub-trees of the target side can be swapped wittxtractions, most techniques rely on an initial word
respect to the sub-trees of the source side. level alignment as the foundation for phrase level

Again, this leads to a word alignment betweenextraction. As (Marcu, 2002) argues by example,
source and target sentence which can be used to ethe word level estimates are liable to provide non-
tract phrase translation pairs. In this case we exintuitive translation probabilities, and lexical cor-

2.3 Robust Alignment Based Phrase
Extraction

2.2 From Bilingual Bracketing



respondence can in fact be estimated at the phrase

. : f P .
level by moving toward joint probability models. Table 1. Example of an OP merge

Our fourth phrase translation method extends this Src. Tgt.
work by proposing a generative phrase correspon- abc # wxy
dence model that attempts to segment sentences cde # xyz
across phrase boundaries. merge result: abcde # wxyz

A bilingual sentence paiff,e) can be repre-
sented by a two-dimensional matri¥,, ., where
m in the number of words irf, n in e respectively. Where the word probabilities( f;|e;) are estimated
The value for cellfi, j] is the point-wise mutual Uusing the IBM1 word alignment model.
information (MI) between word pairéf;, e;), de- The phrase translations still show some advantage
noted asl(f;,e;). If, for example, the translation over word-for-word translation due to the summa-
for phrasee;e; is f1, thenI(ey, f1) andI(ez, f1) tion over all aligned target words. However, if there
should be similar. Based on this observation, d no appropriate translation for one of the source
phrase paif( f, &) should correspond to a contigu- words, this will lead to a small word alignment fac-
ous rectangle region iR, where Ml values for cells tor making the overall phrase translation probability
in this region are similar to each other. We use @mall. Probabilities are calculated in this fashion for
greedy search algorithm to find all possible phras@hrases generated by the HMM and bilingual brack-
pairs for a sentence pair. These phrase pairs regting Viterbi alignments.
resent the segmentations ovgrand e as well as i
the alignment betweelfi ande at the phrase level 2.6 Overlapping Phrases
(zhang, 2003). Each of the phrase alignment methods described
so far helps the system generate more fluent trans-
lations by essentially memorizing useful examples
One general problem with using phrase translationffom the training data. In order to take better ad-
in a statistical machine translation system is thavantage of these examples and add some general-
most phrase pairs are seen only a few times, evenation power, we also combine phrase alignments
in very large corpora. This is especially true forto generate translations for unseen phrases. Specif-
longer phrases. As our translation system is baseidally, we combine phrase alignments that overlap
on Bayes’ decision rule, we are looking for phraseon both source and target side as described in (Trib-
translation probabilitieg( f|€), wheref denotes the ble, 2003). The Overlapping Phrases (OP) that re-
source phrase anél denotes the target phrase. If sult can be used as an additional source of phrase
a phrasef is seen three times in the training cor- alignments during translation.
pus, but each time it is aligned to a different transla- In the OP approach, a set of phrase alignments is
tion, then the probabilities of all three phrase pairs isead in and stored according to its prefixes and suf-
equal,1/3 in this example. Therefore, probabilities fixes of length 1-4 tokens. For each source-side pre-
based on occurrence counts have little discriminafix string s, rules beginning withs are paired with
tive power. Selecting one translation over the othergules ending in the same string. The target sides of
is left to the language model within the decoder.  the candidate pair are checked for an overlapping

To get more discriminative probabilities in the substringt, where the length of must be 1-4 to-
phrase translation models we calculate phrase trankens but may differ from the length of If sub-
lation probabilities based on a statistical lexicon forstringss andt are found for a particular phrase pair,
the constituent words in the phrase. As the IBMlthen the alignments are merged to form a new, usu-
alignment model gives the global optimum for theally longer, phrase alignment. An example merge
lexical probabilities, it is the natural choice. This pbetween two overlapping rules is given in Table 1.
leads to the phrase translation probability Phrase-level alignment probabilities are assigned

Flay s to the new rules using to the IBM1 lexical probabil-
p(f1) 1;[ Xi:p(fj e ities as described above.

2.5 Phrase Translation Probabilities



3 Named Entities tion like NE translation tables are used to generate
a translation lattice. Second, a standard n-gram lan-

Translating named entities (NE), which include uage model is applied to find the best path in this

named persons, locations and organizations, is bo ttice. Both steps will now be described in more
semantically important and technically chaIIenging.deta“.

NE translation involves both semantic translation

and phonetic transliteration, and is made more difs. 1 Building the Translation Lattice

ficult by the frequent occurrence of OOV words in

NEs We define a@ransduceras a set of translation pairs

An integrated two-step strategy, Offline and On_generated by.the methods described above as well
line NE translation, is proposed and implementeciis by alternative knowledge sources such as manual

in the current SMT system. Offline NE transla- dictionaries. Each translation pair has the form
tion automatically extracts NE translingual equiv- Label # Source # Target # Probability,

alence from a parallel corpus, where NEs have beefjore the label can be used to build hirarchical
mar_u_JaIIy or automatically annotated. Startlng_fromtransducers (Vogel et al., 2000), but in most cases
a bilingual corpus where NEs are automaticallyynctions just as a name for the transducer. The first
tagged for each language, NE pairs are aligned igie, in the decoding process is to build a transla-

ordgr to minimize a mgltl-feature allgnment'cost IN-tion lattice by applying all the transducers, result-
cluding the transliteration cost, the NE tagging Costing in a Jattice over the source words similair to the
and word-based translation cost. These features ajgi-o employed in speech recognition. The trans-
designed to capture the semantic or phonetic simy,cers are organized as prefix trees over the source
llarities between NE pairs as well as NE taggingsige with translations and translation probabilities
confidence, and are derived from several informaz o hed to the final nodes. This allows for effi-
tion sources using unsupervised and partly Supegjent search, as a node in the transducer represents
vised methods. A greedy search algorithm is apz| squrce phrases consisting of the words along the
plied to minimize the alignment cost (Huang et al.,n1h tg this node and all possible paths to final nodes
2003). in the sub-tree under this node.

Online NE translation is specially designed for - aq \ye nuild a translation graph over the source
translating NEs which appear in the given test doCUggnence, we construct an initial graph from this

ment, put_ are not covered by the Offline translati_onsemence, which has nodesJ, where J is the sen-

The missing source NEs and target NE translatlonﬁence length, and each edge= (n;,nj41) is la-

are “retrieved” cross-lingually from topic-relevant beled with w,ordf' An hypothesishj’—](jl j2,0)
J" - ’ )

documents (w.r.t. the test document). Relevant doGyegribes a partial translation for the sentence, cov-

uments are retrieved from a monolingual corpus USaring the words between the nodgsand j, and

ing a 1st-pass translation.of the test document dhatching the path from the inital state in the
the query. NEs in the retrieved documents are X ansducer to the state Matching a path through a

tracted and aligned with source NEs according Qy,nsqycer with part of a sentence can start at each

their transliteration cost. The NE pairs with mini- position in the sentence. Therefore, an initial hy-
mum transliteration cost are considered as trans"'bothesis(j j,o = ay), whereo, denotes the root

gual equivalence, and added for the 2nd pass tranfy, e o initial state of the transducer, is set for each
lation. This approach works well for translating for- Positionj — 0. J—1.

faign person/location names, which is an importan Expansion of an hypothesis means moving over
issue in word-based translation systems. an edge in the translation lattice and simultaneously
over an edge in the transducer tree. If this expan-
sion of hypothesi: = (j1,j,0) is possible then
The decoding process works in two stages: First, tha new hypothesié = (j1,j + 1, 0’) is generated.
word-to-word translations and the phrase-to-phrasH the expansion of an hypothesis leads into a final
translations and, if available, other specific informa-state of the transducer, a new edge is created and in-

4 Decoding



serted into the translation lattice for each translatio> Experiments
attached to this final state. All relevant information 1 Thec
(translation and translation probability ) is attacheos' € Lorpora

to the new edges. We report a number of experiments carried out on
Chinese-to-English and Arabic-to-English transla-
4.2 Searching for the Best Path tion tasks. As defined for the TIDES machine trans-

] ] _lation evaluation, the small Chinese-to-English data
Once the complete translation lattice has been bun{rack allows system training on limited bilingual

a first-best search through this lattice is performedda,[a but. In addition to a 100K bilingual corpus,
In addition to the translation probabilities, or rathera 10k subset of the LDC Chinese-English dictio-
translation costs, as we use the negative Iogarithn];?ary can be used. For the large data track, the bilin-
of the probabilities for numerical stability, the lan- , 5| corpora consist of the full LDC dictionary with
guage model costs are added and the path Whicibpr. 54,000 Chinese entries, and a number of cor-
minimizes the combined cost is returned. pora adding up to about 150 million words. To train

Starting with a special begin-of-sentence hypoththe Arabic-to-English system, no small data track in
esis attached to the first node in the translatioRyis case, we use the 80 million word UN corpus
lattice, hypotheses are expanded over all outgoingnd the small Ummah corpus. No restrictions apply
edges from the current node. To allow for local re-as to the monolingual English data used for building
ordering, the search algorithm can be extended bjunguage models. All the data were made available
leaving a gap and jumping to a distant node in theby LDC.
translation lattice. This requires that we also keep \we tested our system on the 878 test sentences
track of positions already covered in the source sen;sed in the June 2002 TIDES MT evaluation. The
tence. To restrict reordering we use position align-apic system was tested on the devtest data con-
ment probabilities; specifically, the jump probabili- isiing of 203 sentences. 4 reference translations
ties as estimated in the HMM alignment. are available for automatic evaluation of these test

The decoder allows for recombination of hy-sentences.
potheses in a flexible way. It is important to keep
hypotheses apart if the partial translations end in dif5.2  Preprocessing
ferent words, as this will result in different SCOres A number of preprocessing steps were performed
from the language model during the next expansio®n these corpora. For the Chinese data these were:
step. In addition, we can distinguish hypotheses ib pyte character to 1 byte character conversion, esp.
they cover different positions in the source sentencee convert names written in two-byte encoded Latin
and also if the Iength of the translation generated SBharacters into their one_byte equiva|ent; word seg-
far is different. The latter comes into effect whenmentation using the LDC segmenter with a 43k
a sentence length model is applied at the sentenggord list; number and date conversion using a small
end. number of regular expressions.

The search space, especially when allowing for For Arabic the preprocessing included conversion
reordering, becomes very large. Pruning is appliefrom UTF-8 encoding into a romanized form and
to keep decoding times reasonable. Our decoder reorrection of errors in numbers.
alizes a standard beam search, where a best hypoth-
esis is stored based on some of the features used fer3  The Evaluation Method
hypothesis recombination, and all hypotheses whichve report results using the NIST mteval metric
are worse by some margin are deleted. that was applied in the TIDES evaluation (MTeval,

The new hypothesis stores information about th002). It compares the system output with sev-
hypothesis which was just expanded and the edgeral human translations (in our case 4) and uses
over which it was expanded. This allows us to tracen-gram matches to calculate a translation quality
back and reconstruct the translation along the besicore. More specifically, information gains for all
path. matching n-grams are calculated and summed up.



This score functions as a weighted precision: hovbut they are only selected appropriately when the
many of the generated n-grams are correct. To balM is also added, helping the system discriminate
ance high precision a length penalty is applied tdetween good and bad augmentations. An improve-
translations which are too short compared to the refment of 1.99 and 2.43 in NIST MTeval scores is
erence translations. achieved for 10K and full dictionary when using
For the experiments on overlapping phrases andoth.

word reordering we use an additional metric called Adding probabilities allows the translation model
the Bleu score, described in (Papineni, 2001). Whiléo be more discriminative and gives an additional
both the Bleu and NIST metrics correlate well withimprovement. For the small data track (10K) these
human judgements of translation quality, the Bleuprobabilities must be normalized since the training
score gives more scoring weight to high order (2, 3data is so small that most word pairs from the dic-
4) n-grams and as a result is better for highlightingionary are not seen in the corpus and are assigned
the longer fluent phrases generated by the OP tecl-small default probability only. For the large data
nigue. track (Full) the probabilities from the corpus are re-

. . - liable enough to be used without renormalization.
5.4 The LDC Chinese-English Dictionary

A manually created dictionary can be a valuabled-5 Different Phrase Translation Approaches

addition to the statistical translation system, as thén Section 2 we presented four different approaches
translations are generally very reliable. to phrase alignment: from HMM Viterbi alignment
To make the dictionary even more useful we aug{HMM), from bilingual bracketing Viterbi align-
ment it with some morphological variations andment (BiBr), robust alignment based phrase extrac-
other additions, on the English side only. Typi-tion (RPE), and integrated phrase segmentation and
cal augmentation steps include adding plural or pagilignment (ISA). Table 3 gives translation results
tense forms and prepending nouns with the articlegsing each of these methods alone and in combi-
'a’ and 'the’. This technique tends to over-generatenation. As the bilingual bracketing has high time
and we rely somewhat on the language model t@gomplexity this alignment could not be trained on
select the reasonable translations. We can also renough data to make a comparison meaningful. All
calculate the probabilities of the entries in the dic-of these translations were done using a 20 million
tionary using a trained statistical lexicon just as weword 3-gram language model and the augmented
do for phrase translations. LDC dictionary with probabilities assigned as de-
Table 2 shows translation results using the 10Kscribed section 5.4
and full 56K LDC dictionaries under several differ-  \We see that each phrase alignment approach gives
ent conditions. A 20 million word language model different results when used alone, with high scores
was used in this experiment. coming from the ISA phrases. We also observe
that the different methods complement each other:

Table 2: Translation results for the June-2002 testSA generates short, reliable phrases, while the

data when using only the LDC dictionary. other methods find longer phrases but tend to over-
generate. Combining methods always leads to im-
10K | Full provement.

original no-LM 3.79| 3.72 i
original with-LM 5.40| 5.52 5.6 Overlapping Phrases
augmented with-LM | 5.78 | 6.15 In addition to translating with several combinations
probs renorm with-LM| 5.91| 6.28 of phrase alignment models, we applied the Over-
probs no-ren with-LM | 4.77 | 6.59 lapping Phrases approach and translated with these

new rules in addition to the original ones. We tested

Using no language model results in always pick-on Chinese-to-English and Arabic-to-English trans-
ing the first translation alternative. Augmenting thelation. Table 4 gives some experimental results. The
dictionaries provides some useful new translationgaseline used the ISA and HMM phrase transducers.



Table 3: Translation results for the June-2002 testthat did not appear in the bilingual training data.

data for the different phrases translation approaches.
Table 5: Translation results for the June-2002 test

data when using named entities.

Small | Large
LDC 591 | 6.59 Small | Large
+ HMM 6.70 | 7.76 Baseline 6.57 | 7.82
+ BiBr 6.50 - + Offline NEs| 6.61 | 7.87
+ RPE 6.52 | 7.68 + Online NEs| 6.81 | 7.96
+ISA 6.86 | 7.88
+ ISA,HMM 6.97 | 7.97
+HMM,ISARPE| 7.00 | 8.11 5.8 Effectofthe LM
All 7.03 - In this experiment we investigated the effect of LM

training corpus size. Small data track experiments

Table 4° T lati | : 20D use the 10K LDC dictionary and all 4 phrase trans-
aole 4. frans atlgn results using overiappingaiion methods, for the large data track we used the

phrases for large Chinese-to-English and Arablc-tofu” LDC dictionary, HMM and ISA phrases. The

English translation tasks. results are shown in Table 6.

NIST | Bleu
Baseline Chinese 7.97 | 0.201 Table 6: Test set perplexity and translation results
With Overlapping Phrases8.09 | 0.210 for LMs of different sizes small and large data
Baseline Arabic 8.59 | 0.385 tracks.
With Overlapping Phrases8.78 | 0.425
LM PP | Small | Large
MOO1 | 243.91| 6.62 | 7.46
The overall improvement for Arabic-to-English is M010 | 184.59| 6.96 | 7.88
2.2% in NIST score and 10.4% in Bleu score. The M020 | 172.51| 7.03 | 7.97
effect of adding overlapping phrases is to increase MO050 | 161.17| 7.07 | 8.05
the number of long phrases that are correctly trans- M160 | 147.81| 7.08 | 8.15

lated by the SMT system. As the Bleu score takes
longer n-grams more into account, the effectis more On the small data track, the translation candidates
visible with this metric. provided by the translation model are restricted due
In the Chinese-to-English translation tasks weto the limited bilingual training data. This restricts
see only a smaller effect when adding overlappinghe effect of the LM and we see little improvement
phrases. This is in line with our general observabeyond the 20 million word LM. For the large data
tion that word order places a more difficult problemtrack, the translation model generates a larger trans-
in Chinese-to-English translation when compared tdation lattice with more paths to choose from and the
Arabic-to-English translation. larger LMs give greater improvement.

5.7 Named Entities 5.9 Reordering

The baseline for the NE experiments was the LDCThe results reported so far were all obtained by es-
dictionary (augmented and with probabilities) with sentially monotone decoding. Word reordering was
the ISA phrase translations. Table 5 shows that theestricted to the local reordering captured within
Offline NE approach gave only a small improve-phrase translation pairs. In the final experiment
ment over the baseline system, as many of the NEse investigated the effect of allowing for additional
were already covered by the LDC dictionary or byword reordering during the decoding process. The
the phrase transducer. The Online NE approackffect of increasing this window for the Arabic-
gave a nice additional improvement by finding NEsto-English translation task can be seen in Table 7.



The best improvement was obtained for a reorderrFei Huang, Stephan Vogel and A. Waibel. Automatic Extrac-

ing window of size 4. Similar to the case of over- tion of Named Entity Translingual Equivalence Based on
Multi-feature Cost Minimization.Proceedings of the ACL-

lapping phrases, the improvement in Bleu score iS o3 workshop on Multilingual and Mixed-language Named
more pronounced. So far, we have observed a lesserEntity Recognitionpp. 9-16, July, 2003. Sapporo, Japan.
effect for Chinese-to-English translation, only abOUtDaniel Marcu and William Wong. A Phrase-Based, Joint Prob-

5% for the Bleu score. ability Model for Statistical Machine Translatiofroceed-
ings of EMNLP-2002Philadelphia, PA, July 6-7, 2002.

Table 7: Effect of reordering on translation quality NIST MT evaluation kit version 9. Available at
. . . http://www.nist.gov/speech/tests/mt/.
for Arabic-to-English translation task.
Franz Josef Och and Hermann Ney. Improved Statistical

NIST | BLEU ﬁl(;%rérlig:\é héljcr)]?lr?;s. Proceedings of ACL-QQpp. 440-447,

1| 859 | 0.385 ' '

21| 8.87 | 0.424 Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing

3| 894 | 0432 Zhu. Bleu: a Method for Automatic Evaluation of Machine

: : Translation.Technical Report RC22176 (W0109-02BM

4] 9.02 | 0.441 Research Division, T. J. Watson Research Center.

5| 8.99] 0433 Alicia Tribble, Stephan Vogel, and Alex Waibel. Overlapping
Phrase-Level Translation Rules in an SMT Engine. submit-
ted toProc. of International Confrerence on Natural Lan-
guage Processing and Knowledge Engineering (NLP;KE)

6 Summary 2003, Beijing, China.

| hi h | Ashish Venugopal, Stephan Vogel and Alex Waibel. Effective
n summary, this paper presents the central COM- pprase Translation Extraction from Alignment Models. in

ponents of the CMU statistical machine translation Proc. of 41st Annual Meeting of AChp. 319-326, Sopporo,

system including approaches to extract phrase trans- Japan. July 2003.

lation from bilingual corpora, LDC dictionary aug- Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-

mentation, and named en“ty translation, a|0ng with based Word Alignment in Statistical Tran_slation_. @IQL-_

the decoding framework for the translation endine ING '96: The 16th Int. Conf. on Computational Linguistics

_ 9 g pp. 836-841, Copenhagen, August 1996.

itself. Experimental results demonstrate that each A ' and | ) ded

; i tephan Vogel and Hermann Ney. Translation with Cascade

of these_ components contributes ppsmvely tqward§ Finite State TransducersProceedings of the 38th Annual

translation performance. Translation experiments Meeting of the Association for Computational Linguistics

for Chinese-to-English and Arabic-to-English trans-  (ACL 2000) pp. 23-30. Hongkong, China, October 2000.

lations tasks on the TIDES June 2002 test data wergyj wang and Alex Waibel. Fast Decoding for Statistical Ma-

presented, giving results which are comparable to chine Translation.Proc. ICSLP 98Vol. 6, pp. 2775-2778,

the best results reported so far on these test sets. Us-Sidney, Australia, 1998.

ing overlapping phrases and word reordering gav®ekai Wu. Stochastic Inversion Transduction Grammars and

less improvement in the Chinese-to-English trans- B”?“guaz'spgrssi';% Tozarsa”el lcg‘ggoracomp“tationa' Lin-

. . . . uistics : - , Oep. .

lation experiments, compared to Arabic-to-English 9 3 P

translation. This indicates that word order poses ée?'i Ya?%}da &n% Kle\{inr; Knigf;t-hASSgyﬂtiX-baslela Statistinal
e . . ranslation Model. irProc. of the t nnual eetlng (0)

more difficult .problem when translation _from Chi- ACL, Nancy, France, 2000.

nese to English. We plan to study this problem

; ; : ; - ing Zhang, Stephan Vogel and Alex Waibel. Integrated

in more detail, especially adding class-based and Phrase Segmentation and Alignment Model for Statistical

syntax-based language models to our decoder. Machine Translation. submitted ®roc. of International

Confrerence on Natural Language Processing and Knowl-
edge Engineering (NLP-KE2003, Beijing, China.
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