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Abstract

Evaluation of MT evaluation measures is limited by inconsistent human judgment data. Nonetheless, machine transla-
tion can be evaluated using the well-known measures precision, recall, and their average, the F-measure. The unigram-
based F-measure has significantly higher correlation with human judgments than recently proposed alternatives. More
importantly, this standard measure has an intuitive graphical interpretation, which can facilitate insight into how MT
systems might be improved. The relevant software is publicly available fromhttp://nlp.cs.nyu.edu/GTM/.

1 Introduction

In the early 1990s, the U.S. government sponsored
a competition among machine translation (MT) sys-
tems. One of the valuable outcomes of that enter-
prise was a corpus of manually produced numerical
judgments of MT quality, with respect to a set of
reference translations (Whiteet al., 1993). The rel-
atively high cost of producing such judgments and
the benefits of objective evaluation have encouraged
many researchers to seek reliable methods for esti-
mating such measures automatically.

Most efforts have focused on strategies for com-
puting some kind of similarity score between the
output of an MT system and one or more refer-
ence translations. Early approaches to scoring a
“candidate” text with respect to a reference text
were based on the idea that the similarity score
should be proportional to the number of matching
words (e.g. Melamed, 1995). Another idea is that
matching words in the right order should result in
higher scores than matching words out of order (e.g.
Brew & Thompson, 1994; Rajman & Hartley, 2001).

Perhaps the simplest version of the same idea is
that a candidate text should be rewarded for con-
taining longer contiguous subsequences of match-
ing words. Papineniet al. (2002) recently reported
that a particular version of this idea, which they call
“BLEU,” correlates very highly with human judg-
ments. Doddington (2002) proposed another version
of this idea, now commonly known as the “NIST”
score. Although the BLEU and NIST measures

might be useful for comparing the relative quality
of different MT outputs, it is difficult to gain insight
from such measures. What does a BLEU score of
0.016 mean?

In this paper, we show how MT can be evaluated
in terms of the standard measures of precision and
recall, as well as their composite F-measure. These
measures have an intuitive graphical interpretation,
which can facilitate insights into how MT systems
might be improved. We present experiments show-
ing that:

• The correlation between human judgments of
MT quality is surprisingly low.

• Therefore, not surprisingly, the correlation be-
tween human judges and all automatic mea-
sures of MT quality is also quite low, contrary
to Papineniet al. and Doddington.

• For the MT systems evaluated in the 2002
DARPA MTEval exercises, the unigram-based
F-measure that follows from Melamed (1995)
is more reliable than the more recently pro-
posed BLEU and NIST measures.

2 Precision and Recall of MT

Precision and recall are widely used to evaluate NLP
systems. When comparing a set of candidate items
Y to a set of reference itemsX:

precision(Y|X) =
|X ∩ Y|
|Y| ; recall(Y|X) =

|X ∩ Y|
|X|

(1)
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Figure 1: Computation of the maximum match size, using either
unigrams or aligned blocks.

Both functions are proportional to|X ∩ Y|, the size
of the set intersection in their numerator. The main
challenge in adopting these well-known measures
for evaluation of MT systems is finding an appropri-
ate definition for the intersection of a pair of texts.

2.1 Unigram-Based Measures

The intersection of two items is what they have in
common. A bitext grid can show what two texts
have in common. Figure 1 shows an hypothetical
reference text on theX axis and an hypothetical can-
didate text on theY axis. Whenever a cell in the grid
co-ordinates two words that are identical, we place a
bullet in it, and call it ahit .

As a first approximation, suppose we were not in-
terested in giving more credit for correct word order.
A naı̈ve approach to computing|X ∩ Y| would be to
count the number of hits in the grid. However, this
algorithm runs the risk of double-counting, for ex-
ample by awarding two hits forB in the reference in
Figure 1.

To avoid double-counting, we borrow the concept
of “maximum matching” from graph theory (Cor-
menet al., 2001, pg. 1051). Amatching is a subset
of the hits in the grid, such that no two hits are in the
same row or column. Thematch sizeof a match-
ing is the number of hits in the subset. Amaximum
matching is a matching of maximum possible size
for a particular bitext.1 Themaximum match size
(MMS) is the size of any maximum matching. For
example, the hits that are in the shaded region of
Figure 1 are a maximum matching, so theMMS is 7.

The MMS ranges from zero to the length of the
shorter bitext axis. We can divide theMMS by the

1 There may be more than one maximum matching for a given bitext.

length of the candidate text (C) or the length of the
reference text (R) to obtain the precision or the re-
call, respectively:

precision(C|R) =
MMS(C,R)
|C| (2)

recall(C|R) =
MMS(C,R)
|R| (3)

2.2 Rewards for Longer Matches

The unigram-based measures above can be extended
to reward a candidate text for contiguous hits in
the right order. Contiguous sequences of matching
words appear in a bitext grid as diagonally adjacent
hits, running parallel to the main diagonal. We shall
refer to such sequences asruns. The unigram-based
method for computing theMMS already rewards a
candidate text proportionally to run length, but it
produces the sameMMS if the hits are not contigu-
ous or are in the wrong order. To reward correct
word order, it is necessary to reward runsmorethan
linearly in their length. BLEU and NIST do so by
double-counting all sub-runs. We propose to do so
by generalizing the definition of match size.

We treat runs as atomic units. Each run’s mini-
mum enclosing square is onealigned block. A can-
didate text is rewarded in proportion to thearea of
non-conflicting aligned blocks, as illustrated by the
shaded squares in Figure 1. Specifically, we define
theweightof a run to be the square of the run length.
We then generalize the definition of match size as
follows:

size(M) =

√∑
r∈M

length(r)2 (4)

where eachr is a run in the matchingM. A maxi-
mum matching and its size are determined as before.
For example, the size of the maximum matching in
Figure 1 is

√
42 + 22 + 12 =

√
21≈ 4.6.

When some runr1 partially conflicts with a longer
run r2, the non-conflicting remainder ofr1 (which
is itself a run) can still participate in the maximum
matching. In particular, if individual hits are part of
the maximum matching, they contribute a weight of
12 = 1 to theMMS.

The purpose of the square root in Equation 4 is to
normalize theMMS with respect to the lengths of the
inputs. In the limiting case that a candidate text is



identical to the reference text, the entire bitext grid
is covered by one aligned block, andprecision =
recall = 1.

Since precision and recall scores in isolation are
“gameable”,2 they are typically combined into vari-
ous other common measures. Their harmonic mean,
the so-called “F-measure,” (van Rijsbergen, 1979)
has a particularly intuitive interpretation in the con-
text of a bitext grid: It represents the (root of the)
fraction of the grid covered by aligned blocks.

Measures based on Equation 4 heavily weight
matching longer runs. We can adjust this weight by
generalizing Equation 4 to arbitrary exponents:

size(M) = e

√∑
r∈M

length(r)e (5)

The special case wheree= 1 follows from Melamed
(1995).

We conjecture that whene > 1, computing the
MMS is NP-hard. In practice, we use a greedy ap-
proximation that builds a matching by iteratively
adding the largest non-conflicting aligned blocks.
Simulations on the data described in Section 3.1
have shown that this approximation finds a true max-
imum matching 99% of the time. In the rare remain-
ing cases, the size of the output matching is at least
80% of the maximum.

So far, we have described how to measure the sim-
ilarity between two sentences.3 We now extend our
measures to score documents. For a candidate doc-
umentC and a reference documentR, each of which
containn sentences:
|C| = Σn

i=1|Ci |; |R| = Σn
i=1|Ri |; |C ∩ R| = Σn

i=1|Ci ∩ Ri |
The precision, recall, and F-measure are calculated
as before, using these aggregate values.

2.3 Multiple References

One of the main sources of variance in MT evalu-
ation measures is the multitude of ways to express
any given concept in natural language. A candidate
translation can be perfectly correct but still very dif-
ferent from an equally correct reference translation.
One approach to reducing this source of variance,

2 A system can inflate itsprecision andrecall scores. Specifically:
precision = 1 if the candidate text contains only “the”.
recall = 1 if the candidate text contains every word in the vocabulary.

3 We use the term “sentence” loosely, to refer to any coherent segment
of text.
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Figure 2: Using multiple references: The initial maximum
matching (all shading) is capped by the mean reference length
of 5, to arrive at the final matching (dark shading).

thereby improving the reliability of MT evaluation,
is to use multiple references (Thompson, 1991).

Figure 2 illustrates how to compute theMMS
when multiple reference translations are available.
Step 1 is to concatenate the relevant reference texts,
in arbitrary order. Step 2 is to find a maximum
matching in the resulting grid as before, except that
a barrier between adjacent reference texts prevents
runs from starting in one reference and finishing in
another. Step 3 is to cap theMMS with respect to the
lengths of the input texts.

Step 3 deserves more explanation. In the single-
reference setting, theMMS is naturally limited by
the candidate length and the reference length. By
analogy, in the multiple-reference setting, we limit
theMMS by the candidate length and themeanref-
erence length. That is, we do not allow the number
of hits in any matching to exceed the mean refer-
ence length. If there are excess hits in a maximum
matching, we delete hits from the matching until the
number of hits is equal to the mean reference length.
Hits are deleted in the order that maximizes the size
of the remaining matching, i.e. they are deleted from
shorter runs first. Figure 2 illustrates hit deletion
to cap theMMS. After the maximum matching has
been pared in this manner, we normalize it as before.

3 Experimental Design

3.1 Data

We used two corpora, one comprising 10 English
translations of 728 Arabic sentences and one com-
prising fourteen English translations of 878 Chinese
sentences. Of the ten Arabic texts, six were ma-



chine (“candidate”) translations and four were hu-
man (“reference”) translations. The Arabic refer-
ence texts’ sentences ranged in length from 1 to
95 words (mean 31.3, standard deviation 15.4). Of
the fourteen Chinese texts, there were ten candi-
date translations and four reference translations. The
Chinese reference texts’ sentences ranged in length
from 2 to 114 words (mean 30.8, standard deviation
16.8).

Human judges scored the candidate translations
on Adequacy and Fluency, on a scale of 1-5.4 Each
judgment of each candidate sentence was made with
respect to one particular reference translation. Al-
though every candidate sentence received two or
three scores from different judges, there were no
sentences for which some judge evaluated every can-
didate translation. However, every sentence in a
given document was evaluated by the same judge.
As such, the human judges had access to information
that automatic MT evaluation measures currently ig-
nore.

3.2 Sampling the Corpora

Any MT evaluation measure is less reliable on
shorter translations. But, reliability on shorter texts,
as short as one sentence or even one phrase, is highly
desirable because a reliable MT evaluation measure
can greatly accelerate exploratory data analysis.

Consider how MT system developers would mea-
sure the effect of a system modification on a large
development bitext. Typically, they would like to
know not only whether the modification improved
performance on some objective measure, but also
why or why not. The fastest way to gain such insight
is to compare the system’s “before” and “after” out-
put on some specific text sentences. The sentences
that are most likely to highlight the qualitative ef-
fects of the modification to the MT system are those
for which the objective evaluation measure changes
the most. However, if the evaluation measure is not
reliable, then the developer might need to examine
many sentences before finding one that provides any
intuition. Thus, unreliable measures can be a waste
of time. A measure that is reliable only when aver-
aged over a large corpus is not useful for exploratory
data analysis.

4 Seehttp://www.ldc.upenn.edu/TIDES/ for details about the cor-
pora and the manual evaluation method.

1

2

3

4

5

1 2 3 4 5

Figure 3: Paired Adequacy judgments for two of the judges over
the 227 sentences that they both evaluated. For these pairs, the
Spearman correlation coefficient is 0.019. A random skew of
0.20 was added to each point in this figure to show the density.

We measured the reliability of various MT eval-
uation measures on texts of different lengths. A
pseudo-document of lengthn was created by con-
catenatingn randomly chosen sentences. The hu-
man score for a candidate pseudo-document was
computed by randomly selecting one of the human
judgments for each sentence therein, and taking their
mean. In order to ensure statistical significance, we
created 1000 pseudo-docs of lengthn for eachn.

3.3 Calculating Correlation Coefficients

The most important criterion for an automatic MT
evaluation measure is that it rank MT systems the
same way that a human judge would rank them. A
measure that often misranks systems is less useful,
even if it is otherwise good at predicting the absolute
differences between systems’ scores.5 Therefore, we
compared the automatic measures by how well their
relative rankings of the candidates matched those of
the human judges. Specifically, for a given pseudo-
document containingn sentences, and a fixed set of
r references, we computed the Spearman rank cor-
relation between the human judgments and the auto-
matic measure, for every machine translation of that
pseudo-document.

As each candidate sentence was judged by several
people, our sampling method enabled us to compute
inter-judge correlations. Inter-judge correlation was
poor. Figure 3 plots the paired Adequacy scores for

5 In any case, the instructions for manual evaluation all but guaranteed
that the judges’ scores would not be on a linear scale, so linear regres-
sion is inappropriate for evaluating automatic measures.



the two judges with the lowest inter-judge correla-
tion. To improve the rank correlation between hu-
man judgments, we performed az-transform on each
judge’s scores, such that each judge’s scores would
have zero mean and unit variance.

4 Results

On advice from George Doddington (p.c.), we ran
our first set of experiments on unstemmed text, with
original case information retained. Figures 4(a) and
4(b) show the mean Spearman correlation with Ad-
equacy and Fluency scores, respectively, on the Chi-
nese corpus for several automatic MT evaluation
measures—the F-measure withe= 2, the F-measure
with e = 1, the BLEU score, and the unweighted
NIST score—as well as the inter-judge correlation.
These graphs reveal several interesting trends.

Our most important finding is that on shorter doc-
uments (where it counts the most), the mean inter-
judge correlation is disappointingly low. This is
partly attributable to the difficulty of comparing MT
systems of similar quality, but partly to the design
of the manual evaluation procedure. Melamedet al.
(2003) did not encounter this problem because they
dealt with fewer systems whose translation quality
was much easier to distinguish. Low inter-judge cor-
relation in the present experiment underscores how
little the community understands about the MT eval-
uation problem. If the MT research community is
serious about designing reliable automatic MT eval-
uation measures, then we must obtain human judg-
ment data through more reliable means.

Automatic MT evaluation measures cannot be
faulted for poor correlation with the human judges,
as the judges do not correlate well with each other.
Contrary to intuition, the automatic measures’ cor-
relations nonetheless surpass the inter-judge corre-
lation in some instances. This happens because the
human scores are rather inconsistent. So, there is
more co-variance between human score pairs than
between human scores and automatic scores.

Our other main finding is that a simple unigram
measure produces the most accurate rankings of MT
systems on the Chinese corpus. A detailed analy-
sis of the results revealed two complementary ex-
planations. First, none of the MT systems involved
in these experiments was very good at rendering En-
glish syntax correctly. More often than not, when

several words appeared in a translation in the right
order, the effect on human judgments of Adequacy
was insignificant. Second, because of common
ngrams like “of the” and “Xinhua News Agency”,
automatic evaluation measures that placed heavier
emphasis on matching longerngrams had higher co-
variance with the human scores.

When we ran the same experiments on the Arabic
corpus, we found very little difference between the
various automatic MT evaluation measures, in terms
of Spearman correlation with human judgments.6

Exploratory data analysis revealed that the quality
of an Arabic MT system correlates very highly with
whether it outputs correct case information. There-
fore, an automatic measure can perform well on this
corpus simply by assigning high scores to candidate
translations that match the case of their references.
Since all the measures we compared are essentially
based upon string matching, they are all good at
measuring the quality of case matches. So, the dif-
ferences between the automatic measures are over-
shadowed by case matching, and all other criteria
are insignificant in comparison. We cannot conclude
from the above, however, that all the automatic mea-
sures are equally good. Our results on Chinese prove
otherwise. Without other MT evaluation corpora to
analyze, we cannot be sure that the high predictive
power of case information on this corpus is no more
than coincidental.

To gain additional insight from our Arabic corpus,
we re-ran our experiments after lowercasing and
stemming all the candidate and reference texts. The
Spearman correlations with Adequacy of the vari-
ous MT evaluation measures are shown in Figure 5.
Figure 5(a) shows the correlations of the measures
using a single reference, whereas Figure 5(b) shows
the correlations of the measures both using a single
reference and using three references. On Fluency,
the measures have uniformly higher correlations and
the same relative rankings. The relative reliabilities
of the various automatic measures on the Arabic cor-
pus largely concur with our results on the Chinese
corpus.

Additional references generally improve correla-
tion, but Figure 5(b) shows an anomaly: On longer
documents, BLEU correlates worse against three

6 However, BLEU was consistently much worse on shorter documents.
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Figure 4: Spearman correlation on the (unstemmed, case preserved) Chinese corpus using a single reference with:
(a) Adequacy and (b) Fluency.
All correlation differences of 0.01 or more between the automatic evaluation measures are statistically significant using the
Wilcoxon signed ranks test withα = 0.999.
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Figure 5: Spearman correlation on the (stemmed, lowercased) Arabic corpus with Adequacy.
All correlation differences of 0.004 or more between the automatic evaluation measures are statistically significant using the
Wilcoxon signed ranks test withα = 0.999.
For clarity, F-measure withe = 2 curves are omitted in (b); The F-measure withe = 2 3ref curve falls between the NIST 1ref and
3ref curves.



references than against only one reference. This is
because three references are more likely to include
“distracting” ngrams than a single reference.

We were also surprised to find that some of the
automatic measures correlate less well with human
judgments on longer documents. It turns out that the
correlation estimates on short documents are slight
overestimates. Our explanation is the same as for
the instances of lower correlation using multiple ref-
erences: Shorter documents are less likely to include
any of the longer matchingngrams that make the
automatic measures diverge from the manual judg-
ments. It is well-known that using more sentences
and more references increases the reliability of MT
evaluation. Our results show that the same is true
for the reliability of theevaluation ofMT evaluation
measures.

5 Conclusions

Our research has raised more questions than it an-
swered. There are many ways to evaluate MT and
many ways to ascertain the reliability of automatic
MT evaluation measures. More data and more rigor-
ous analysis is necessary to pinpoint the salient vari-
ables. What works on one corpus might not work
on another. MT evaluation research should be par-
ticularly wary of evaluation measures with parame-
ters tuned to particular corpora. Such measures can
overfit their objective function, and give misleading
rankings on previously unseen corpora. On the other
hand, the use of an unbiased language model could
improve any of the metrics described herein. (Dod-
dington, 2002)

Different measures might work better when MT
systems improve. For example, on good translations
the F-measure may do better withe = 2 than with
with e= 1. However, there is no point in comparing
MT systems on the correctness of the word order
when all MT systems are equally disfluent. (We all
hope that this will not always be the case.)

Our most important finding is that, even though
human evaluation of MT is itself inconsistent and
not very reliable, automatic MT evaluation measures
are even less reliable and are still very far from being
able to replace human judgment. Nonetheless, we
have shown that machine translation can be evalu-
ated using well-known evaluation measures. In par-
ticular, on the data used for the 2002 DARPA MTE-

val exercises, the F-measure withe = 1 proved sig-
nificantly more reliable than the BLEU and NIST
measures. More importantly, the F-measure is eas-
ier to understand and to justify in terms familiar to
practitioners and consumers of NLP. Our techniques
can be used to compute standard evaluation mea-
sures for other NLP tasks where reference texts are
available, such as text generation and summariza-
tion. GTM, the relevant software, is released under
a BSD-style license and can be downloaded from
http://nlp.cs.nyu.edu/GTM/.
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