Multilingual Generation of Controlled Languages

Richard Power, Donia Scott
IT Research Institute
University of Brighton

Brighton BN2 3GJ, UK

First.Last@itri.bton.ac.uk

Abstract

We describe techniques based on
natural language generation which
allow a user to author a document
in controlled language for multiple
natural languages. The author is ex-
pected to be an expert in the appli-
cation domain but not in the con-
trolled language or in more than
one of the supported mnatural lan-
guages. Because the system can
produce multiple expressions of the
same input in multiple languages,
the author can choose among al-
ternative expressions satisfying the
constraints of the controlled lan-
guage. Because the system offers
only legitimate choices of wording,
correction is unnecessary. Conse-
quently, acceptance of error reports
and corrections by trained authors
are non-issues.

1 Introduction

A ‘Controlled Language’ (CL) is a subset of a
natural language that is specifically designed
for writing clear technical documentation in
a particular domain: for instance, AECMA
(1996) is a subset of English used for writing
maintenance manuals for aircraft. The subset
is defined partly through a restricted vocabu-
lary, and partly through rules of composition
(e.g., avoid the progressive tense; keep to only
one topic per paragraph). Adherence to these

Anthony Hartley
Centre for Translation Studies
University of Leeds
Leeds LS2 9JT, UK
a.hartley@leeds.ac.uk

rules brings two advantages: first, the text is
easier to understand, especially for non-native
readers; secondly, the text can be translated
more easily into another language, so that
Machine Translation will produce more reli-
able results.

Practical applications of CLs have revealed
several problems, in particular the difficulty
of adhering to the rules during writing. Vari-
ous tools have been developed to support au-
thors, for instance by warning them when a
rule has been violated (Adriaens, 1996); how-
ever, since these tools are unable to suggest
permissible alternatives, authors may waste a
lot of time searching for a formulation that
the system will accept. A related problem
is that the rules are often imprecise or in-
complete. In AECMA, for example, the rules
are essentially of three kinds: specific syntac-
tic constraints (avoid progressive tense; man-
ufacturing process words must be verbs), gen-
eral stylistic precepts (sentences in procedures
should not exceed 20 words; sentences in de-
scriptions should not exceed 25 words) or se-
mantic precepts (e.g., keep to one topic per
sentence; write only one instruction per sen-
tence). The syntactic constraints may be
fairly precise individually, but overall they do
not provide full control since they can be con-
tradictory, and so still require human judge-
ment (Hartley and Paris, 2001). The stylis-
tic and semantic precepts rely necessarily on
judgement, and therefore do not lend them-
selves to automatic checking (Lieske et al.,
2002). Even more problematic are the neg-



ative reaction of authors to false error re-
ports and the fact that the correction of non-
compliant sentences often requires the writer
to approach the revision more globally (Woj-
cik and Holmback, 1996).

We suggest in this paper an approach to
these problems based on the technology of
Natural Language Generation (NLG). The
radical feature of this approach is that the
author is no longer allowed to compose a doc-
ument by typing in text. All text is gen-
erated by the program; the author’s contri-
bution is to make a series of choices from
a list of options. To implement such an
approach, two technical problems must be
solved. First, the CL must be defined for-
mally: in place of the sometimes vague pre-
cepts and prohibitions illustrated above, we
must enumerate precisely not only the vocab-
ulary but also the syntactic patterns that are
allowed; moreover, these permissible syntactic
constructions must be related in a context-
sensitive manner to the section(s) of a docu-
ment in which they may appear, such as pro-
cedures, descriptions, cautions and warnings
(Lalaude et al., 1998). Secondly, an interface
must be provided through which an author
can navigate the options allowed by the CL,
thus constructing (and perhaps later modify-
ing) the sentences of the text. This might
at first seem impossible, but we will describe
later a program that demonstrates how such
an interface might work.

If a document can be authored in this way,
several benefits accrue. First, as Danlos et
al. (2000) have pointed out, text produced by
an author cannot but adhere to the restricted
vocabulary and the structural constraints of
the CL — the program is literally incapable
of generating a text that does not! Perhaps
less obviously, the editing operations can be
defined not on the surface text, but on an un-
derlying structural representation. The au-
thor may have no formal knowledge of syn-
tactic patterns like ‘restrictive relative clause’
or syntactic features like ‘perfective’, but by
selecting from listed options he/she is actually
(perhaps unknowingly) building up a syntac-
tic representation which the program then re-

alises as a formatted string of words. This
enormously simplifies the task of translating
the text to another language: analysis is no
longer needed, since transfer rules can be ap-
plied directly to the syntactic representations
that the author has built up as a by-product
of the choices made. A final benefit is that
the design of the CL can (indeed must) be
precisely specified. A precise formulation con-
taining hundreds of syntactic rules would be
far too complicated to serve as a guide for hu-
man authors, but an NLG program can take
such a grammar in its stride.

Taking a step further, we are now working
on an extension of this idea in which editing
operations are defined at a semantic rather
than a syntactic level. The crucial observation
here is that a CL actually controls the mean-
ings that may be expressed as well as the man-
ner in which they are expressed. If no word
for ‘tractor’ is provided in the approved vo-
cabulary, the author cannot write on the sub-
ject of tractors. Most NLG systems encode
meaning through formulas in some kind of
predicate logic, where the predicates are taken
from a formally defined ‘ontology’. In sys-
tems that generate in several languages (e.g.,
Drafter (Paris et al., 1995; Power and Scott,
1998), AGILE (Hartley et al., 2001), PILLS
(Bouayad-Agha et al., 2002), MTA (Brun et
al., 2000)), this underlying semantic represen-
tation is language-neutral, an interlingua for
the natural languages that are supported. As
we will show in section 2, from the author’s
point of view, editing a semantic representa-
tion will seem exactly the same as editing a
syntactic one — in either case, the options
are presented in the interface through gener-
ated texts. However, the semantic-based sys-
tem would bring several further advantages, of
which the most obvious is that machine trans-
lation would no longer be needed: the pro-
duction of multilingual documentation would
become entirely a problem of generation.

2 Example of authoring

We address straight away what must seem
the major obstacle to our approach: how
can an author compose a document by select-



Figure 1: Example of WYSIWYM editing

ing options rather than by typing characters?
Surely the number of options will be imprac-
ticably large? Two solutions have been tried.
In the NLMenu system (Tennant et al., 1983),
a sentence is built word by word, from left to
right; at every stage, the system computes all
possible continuations that are allowed by the
grammar and lexicon. In WYSIWYM editing
(Power and Scott, 1998), a semantic knowl-
edge base is created by expanding a feedback
text which serves primarily to describe the
current state of the knowledge base and avail-
able ways of extending it. Figure 1 shows a
snapshot of a user using WYSIWYM to au-
thor a set of software instructions. The top
pane shows the feedback text, with the user
selecting expansion options; the bottom pane
shows the knowledge base that has been con-
structed so far from the user’s choices.

This method is far easier to implement
efficiently; we also think it is more intu-
itive, although this has not yet been demon-
strated through an evaluation study. The
top-down method relies on the use of gen-
eral labels called ‘anchors’ to mark the points
at which a pattern is incomplete. For in-
stance, in building the sentence ‘the patient
takes the medicine’, the author would first se-
lect the pattern ‘[someone] takes [something]’,
only subsequently choosing specific options
(‘the patient’, ‘the medicine’) to replace the
anchors ‘[someone]’ and ‘[something]’. The
number of options at every decision point is
kept within manageable bounds thanks to se-
lection restrictions which limit the options
displayed to those concepts that can legiti-
mately instantiate the anchors.

As a running example, we will show how



a sentence is constructed in a variant of the
PILLS system (Bouayad-Agha et al., 2002),
which generates instructions in the pharma-
ceutical domain, including patient informa-
tion leaflets (PILs) in English, French and
German. We will assume that the author
is working in English on the first sentence,
which will warn the patient that before start-
ing to take the medicine, he/she should read
the leaflet carefully. Half way through edit-
ing the sentence in our example, the feedback
text might read as follows:

Before you start to take your medicine,
[something is the case].

A feedback text has special features that al-
low editing by direct manipulation. By ex-
ploring with the cursor, the author will find
that some spans are mouse-sensitive, and can
be selected with a click. Once selected, a span
is displayed in a distinctive colour (blue rather
than black); in the paper, instead, we use
bold face — thus in the example, the span cur-
rently selected is ‘your medicine’. Spans that
can be selected in this way are called ‘editing
units’. Editing units are typically nested, so
that the author may select the whole as well
as the parts. In the example, the whole sen-
tence may be selected, by clicking around the
word ‘Before’; alternatively, the clause ‘you
start to take your medicine’ may be selected
by clicking around ‘start to take’; the other
editing units are ‘you’, ‘your medicine’, ‘your’,
and ‘[something is the case]’. Generally, edit-
ing units correspond to syntactic clauses or
phrases, and are selected by clicking on the
head word (e.g., the verb for a sentence, or
the noun for a noun phrase). For larger units
like paragraphs or sections it is convenient to
provide some scaffolding — for instance, a label
or glyph at the start of a paragraph through
which the whole paragraph can be selected.
Having selected an editing unit, the author
can do various things with it. If the unit is
an anchor such as ‘[something is the case]’, it
can be replaced by a specific pattern based
around a head word (e.g., a verb). If the unit
is already complete, or partially complete, it
can be cut (in which case it returns to an an-
chor), or it can be modified in various ways by

choosing from a list of potential replacements.
These operations can be compared with their
counterparts in drawing editors like MacDraw
and Xfig. Choosing a pattern at an anchor is
similar to choosing a basic shape like a line, or
a circle, or a rectangle. Having chosen a pat-
tern, you can tweak it in order to change the
default settings for colour, size, and so forth;
similarly, a basic clause pattern with defaults
like TENSE=present, POLARITY=positive,
can be gradually reshaped so that it becomes
a negative statement in the past tense, with
perhaps an adverbial modifier added for good
measure.

To show how these operations are pre-
sented, let us trace through the process of
completing our sample sentence. The author
should first click on the anchor ‘[something is
the case]’, in order to select it as the current
editing unit. This has two results: first, as
already mentioned, the selected unit is high-
lighted (bold face); second, a list of replace-
ment options appears in a second pane:

Before you start to take your medicine,
[something is the case].

someone] asks [someone| [something]
something] attacks [something]

[someone] provides [something]

someone| reaches [something]

someone| reads [something]

someone| remembers [that something is the case]
[someone] removes [something] from [something]

[someone] starts [to do something]

Each replacement is a clause pattern based
on one of the verbs in the restricted vocab-
ulary (note by the way that we can restrict
patterns as well as verbs, thus perhaps allow-
ing ‘starts [to do something]’ but not ‘starts
[doing something]’). Of course there may be
hundreds or even thousands of verb patterns;
to prevent tedious scrolling, the author may
type a few letters of the verb into a text field,
so limiting the displayed options to ones con-
taining this substring. At this point, the pro-
gram could also respond helpfully if the au-
thor types in a verb that is nof approved in
the restricted vocabulary: thus on typing in
‘commence’ or ‘initiate’, assuming these are



prohibited words, he/she might obtain the li-
censed pattern based on ‘start’.

Having possibly narrowed down the options
in this way, the author next selects the desired
replacement pattern by a mouse click. In re-
sponse, the program adds this pattern to the
underlying syntactic structure, then regener-
ates the feedback text and the replacement
options:

Before you start to take your medicine,
[someone] reads [something)].

SENTENCE TYPE

[something] is read by [someone]
does [someone] read [something]?
read [something]

NEGATIVE
[someone] does not read [something]

TENSE

[someone] has read [something]
[someone] read [something]
[someone] will read [something]

MODAL
[someone] can read [something]
[someone] should read [something]

MODIFIER
[someone] reads [something] [somehow]

The replacement options now correspond to
the various ways in which a geometrical shape
(e.g., a line or a rectangle) can be tweaked in
a drawing editor. Each proposed replacement
is the result of varying the current pattern on
one dimension at a time. Just as you can-
not change the size and colour of a rectan-
gle through a single operation, so you can-
not choose an option that yields both imper-
ative sentence-type and an adverbial modifier
— in this way, the number of options shown at
any point remains manageable. Also, here as
in a drawing editor, these modifications can
be made in any order (i.e., imperative before
modifier, or modifier before imperative); in ei-
ther case, the resulting clause in the feedback
text will be ‘read [something] [somehow]’. It
now remains to add the noun phrase and the
adverb. Again, this can be done in any or-
der, but we will assume that first the author
selects the anchor ‘[something]”:

Before you start to take your medicine,
read [something] [somehow].

an answer
a book

a compendium

a data-sheet a document
a leaflet

a prescription

After selecting ‘a leaflet’;, the author again
gets a list of replacements through which the
basic pattern can be tweaked:

Before you start to take your medicine,
read a leaflet [somehow].

DETERMINER
the leaflet
this leaflet

MODIFIER
a [some-kind-of] leaflet
a leaflet [of some kind]

RELATIVE
a leaflet [such that something is the case]

SEQUENCE
a leaflet and [something]
a leaflet or [something]

After choosing the replacement ‘this leaflet’,
the sentence can be completed by selecting the
anchor ‘[somehow]’ and choosing the adverb
‘carefully’ (which requires no tweaking):

Before you start to take your medicine,
read this leaflet carefully.

Figure 2 shows a snapshot from the an appli-
cation that uses this editing method; it in-
cludes the sentence that we have just con-
structed.

3 Computing replacements

From the author’s point of view, editing con-
sists of replacing a span in the current feed-
back text by a phrase from the list of replace-
ment options. However, this is strictly speak-
ing an illusion: what actually happens is that
an underlying structure is changed, and the
surface text then regenerated. This is true
also for drawing editors. A rectangle is stored
not as a pixel pattern but as a model, with
parameters for size, colour, and so forth; this
model might remain the same even though the
surface presentation changes — for instance,



Wide—coverage WYSIWY M

Fle Edit

! Leaflet: Lamisil

Restart

m [something is the cass)

Polarity
n donatread thisleaflat carefully

|Bentence type
m [someone] reacs this leaflet carefully
m cloes [someane] read this leaflet carsfully?

Modifiers

m [in some way] read this leaflet carefully
u [somehow] read this leaflst carefully

m read this leaflet

Sequence
m read thisleaflet carefully and [something is tha cass]

n read thisleaflet carafully or [semething is the case]

|

| Paragraph.: List:

Section: What you should know about Lamisil

Paragraph.: Before you start to take your medicine, read this
leaflet carefully. The leaflet containg a summary of the
information which is available on your medicine. If you have any
questions or you are unsure about your treatment, ask your doctor
or your pharmacist.

Paragraph. The name of your medicine is Lamisil and it contains
terbinafine. It is nused in the treatment, of fungal infections of
the skin.

Section: What you should remember about Lamisil

Figure 2: Editing a patient information leaflet

because the rectangle is covered by another
shape. Both in a drawing editor and WYSI-
WYM editing, the ways in which a pattern
may be modified depend on parameters in the
underlying model.

For the program described in the previous
section, the underlying model was a deep-
syntactic structure with parameters similar to
those in the REALPRO system (Lavoie and
Rambow, 1997). With some simplifications,
here is the model for the completed clause
‘read the leaflet’, presented in a feature-
structure notation, with alternative values for
some features shown in brackets:

sentence
VERB read
SENTYPE imperative (declarative,
VOICE active (passive)
MODAL none (can, might, would, ..
TENSE none (present, past)
PERFECTIVE none (perfective)
POLARITY positive (negative)
ARGO none (anchor [someone])
ARG1 nominal

NQUN leaflet

DETERMINER the

NUMBER singular

PREMOD none

POSTMOD none

RELATIVE none
ARG2 none
PREMOD none (anchor [somehow])
MIDMOD none (anchor [somehow])
POSTMOD none (anchor [somehow])

nood)
]

If the unit currently selected is the whole sen-

tence, replacements are computed by varying
the features SENTYPE, VOICE, MODAL, etc.,
one at a time. Thus for SENTYPE, the alter-
native values might be interrogative and
declarative, yielding this group of options:

does [someone] read the leaflet?
[someone] reads the leaflet

Note that sometimes a change in one fea-
ture requires a change in other features: here,
present tense and an anchor for ARGO have
been introduced (these features are not used
in an imperative).

4 Editing a semantic
representation

Building up sentences in this way is somewhat
tedious: a sentence that one would normally
write in perhaps 30 seconds requires perhaps
two or three minutes. The comparison with
systems such as TRANSTYPE (Langlais et
al.,, 2002), which offer the author a ranked
list of possible completions as she/he types,
is even less flattering.

In compensation, the author can be con-
fident that the sentence conforms to a very
strictly defined controlled language — there
will be no need to fish around for alterna-
tive formulations because the first effort has
been rejected. Whether this outweighs the
extra construction time is unclear. Again,



the same result could be achieved with the
TRANSTYPE approach, provided the possi-
ble completions were drawn from an author-
ing memory that was itself controlled lan-
guage compliant.

However, the balance of advantages changes
completely if the editing tool allows the re-use
of the underlying semantic model for the auto-
matic generation of the same content in styles
appropriate to different sections of the docu-
mentation and/or for the automatic genera-
tion of versions in other languages (Hartley et
al., 2001). Two minutes spent on a ten-word
sentence might be regarded as a worthwhile
investment of effort if it yields versions (say)
in all the languages of the European commu-
nity.

To obtain this extra benefit, the program
described above must be extended so that in-
stead of editing a syntactic model (specific
to English or some other natural language),
the author edits a semantic model. Every-
thing else remains the same, including what
is shown on the screen. In fact, from the au-
thor’s viewpoint, the system will seem almost
the same, the only differences being slight
changes in the organisation of the options,
and the new facility of getting versions in
other languages.

In developing a semantic representation, we
have emulated Bateman (1993), among oth-
ers, in seeking a classification scheme that
maps as closely as possible to linguistic struc-
ture. For logical purposes (i.e., for use in
a reasoning system), a representation should
address issues like quantifier scope and deixis;
at a surface-semantic level, we can ignore
these problems, leaving variables unscoped,
and allowing modifiers (like therefore) that
make an implicit reference to some previous
proposition. However, a surface-semantic rep-
resentation must progress beyond features like
SENTENCE-TYPE, TENSE, and MODAL. For
example, an Italian rendering of ‘read the
leaflet’ will probably use the infinitive instead
of the imperative to express the command;
moreover, Italian has no modal verbs like
‘can’ and ‘would’, but has instead many more
tenses (e.g., imperfect, conditional, subjunc-

tive, as well as present and past).

Designing the semantic representation is
work in progress, but we will give as an
example a possible representation for ‘read
the leaflet’ (or its Italian counterpart ‘leggere
I'opuscolo’):

event
TYPE read
FORCE command
CONFIDENCE medium
TIME present
ACTOR unspecified
ACTEE object
TYPE leaflet
REFERENCE definite
NUMBER singular
MODIFIERS none
MODIFIERS none

An important feature here is FORCE, with
possible values like assert, deny, query,
command, and forbid. The FORCE value will
affect several syntactic variables, including
sentence type, modal, and polarity. The syn-
tactic realisation of FORCE often depends on
the CONFIDENCE level: thus for low confi-
dence we might obtain ‘you might consider
reading the leaflet’, or for high confidence ‘you
must absolutely read the leaflet’.

5 Conclusion

We have illustrated a method through which
a document can be authored using a direct-
manipulation interface. The drawback is
that composing the text will take longer, but
a good implementation would yield several
compensating advantages:

e The documents produced with the au-
thoring tool would always conform to a
precisely specified CL.

e Using semantic (as opposed to syntactic)
authoring, versions in multiple natural
languages could be obtained using lan-
guage generation only — no interpretation
or transfer would be needed.

e Since the program has a structural de-
scription of the document, it would be
easier to add facilities for document re-
processing (e.g., generating a summary,
or changing the linguistic style in a
context-sensitive manner).



A potential problem is that these benefits may
not be appreciated by the technical author (or
whoever encodes the content) — they accrue
only further down the line.

More generally, we have argued that the
lexical and structural restrictions in a CL can
be seen as controlling content as well as lin-
guistic realisation. This means that a family
of CLs, perhaps in several natural languages,
might share the same ontology (i.e., the same
rules for constructing semantic expressions).
One could even imagine several CLs in the
same natural language expressing the same
information in a manner suited to different
readers — for instance, medical information
could be presented differently to doctors, pa-
tients, and pharmacists.

The technology required in order to develop
this kind of authoring tool is well advanced.
In several traditions of research in NLG, on-
tologies and grammars with fairly wide cov-
erage have been developed. A major diffi-
culty has been the sheer complexity of the
relationship between meaning and linguistic
form: even a simple 10-word sentence can be
paraphrased in thousands of ways. However,
in applications in which the target language
is a CL, it is much easier to find a principled
and efficient path through this maze of pos-
sibilities — by reducing potential realisations
to a small manageable set, we mirror exactly
the constraints that a CL seeks to impose.

Finally, it is worth noting that the author-
ing tool would be far more efficient if cou-
pled with a system that could extract in-
formation (albeit unreliably) from free text.
Suppose that an interpretation system takes
as input an existing text (perhaps a ‘legacy
document’ of the user), and does its best to
render the meaning in the semantic formal-
ism used by the authoring tool. The result-
ing model, which may contain interpretation
errors, can now be viewed through a feed-
back text generated by the authoring tool, so
that any mistakes can be corrected through
normal editing. Some interpretation capabil-
ity might also speed up the process of sen-
tence composition: for instance, instead of la-
boriously building up the sentence ‘read this

leaflet’ through a series of choices, the author
might be allowed simply to type it into a text
field, whereupon the program will present its
interpretations (possibly mutliple) as replace-
ment options. If there are no interpretations
(the input was incomprehensible), the author
will have to take the long road; if there are
multiple interpretations (the input was am-
biguous), the author can choose the correct
one. Of course, the program will express its
interpretations in the approved wording of the
CL, not in the wording entered by the user,
so different interpretations will be presented
through distinct replacement options.

References

Geert Adriaens. 1996. SECC: Using text struc-
ture information to improve checker quality and
coverage. In Proceedings of the First Interna-
tional Workshop on Conirolled Language Appli-
cations, pages 226-132. CCL, Leuven.

AECMA. 1996. AECMA Simplified English:
A guide for the preparation of aircraft main-
tenance documentation in the International
Aerospace Maintenance Language. AECMA,
Brussels.

John A. Bateman. 1993. Ontology construction
and natural language. In Proceedings of the
International Workshop on Formal Ontology,
pages 83-93, Padova, Italy. LABSEB-CNR.

Nadjet Bouayad-Agha, Richard Power, Donia
Scott, and Anja Belz. 2002. PILLS: Multilin-
gual generation of medical information docu-
ments with overlapping content. In Proceedings
of the Third International Conference on Lan-
guage Resoures and Evaluation (LREC 2002),
pages 2111-2114, Las Palmas.

C. Brun, M. Dymetman, and V. Lux. 2000.
Document structure and multilingual author-
ing. In Proceedings of First International Nat-
ural Language Generation Conference (INLG
2000), pages 24-31. Mitzpe Ramon, Israel.

Laurence Danlos, Guy Lapalme, and Veronika
Lux. 2000. Generating a controlled language.
In Proceedings of the First International Con-
ference on Natural Language Generation (INLG
2000), pages 141-147. Mitzpe Ramon, Israel.

Anthony Hartley and Cecile Paris. 2001. Trans-
lation, controlled languages, generation. In
E. Steiner and C. Yallop, editors, Exploring



Translation and Multilingual Text production,
pages 307-325. Mouton de Gruyter.

Anthony Hartley, Donia Scott, John Bateman,
and Danail Dochev. 2001. AGILE: A system
for multilingual generation of technical instruc-
tions. In Proceedings of 8th Machine Trans-
lation Summit (MT Summit VIII), pages 145—
150. Santiago de Compostela, Spain.

Myriam Lalaude, Veronika Lux, and Sylvie
Regnier-Prost. 1998. Modular controlled lan-
guage design. In Proceedings of the Second In-
ternational Workshop on Controlled Language
Applications. LTI, Carnegie Mellon University.

Philippe Langlais, Marie Loranger, and Guy La-
palme. 2002. Translators at work with
TRANSTYPE: resource and evaluation. In
Proceedings of the Third International Con-
ference on Language Resoures and Fvaluation
(LREC 2002), pages 2128-2134. Las Palmas de
Gran Canaria, Spain.

B. Lavoie and O. Rambow. 1997. RealPro: A
fast, portable sentence realizer. In Proceedings

of the Conference on Applied Natural Language
Processing (ANLP’97), Washington, DC.

Christian Lieske, Christine Thielen, Melanie
Wells, and Andrew Bredenkamp. 2002. Con-
trolled authoring at SAP. In Proceedings of
Translating and the Computer. ASLIB 2002,
London.

Cécile Paris, Keith Vander Linden, Markus
Fischer, Anthony Hartley, Lyn Pemberton,
Richard Power, and Donia Scott. 1995. A
support tool for writing multilingual instruc-
tions. In Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelli-
gence, pages 1398-1404, Montreal, Canada.

R. Power and D. Scott. 1998. Multilingual au-
thoring using feedback texts. In Proceedings of
the 17th International Conference on Computa-
tional Linguistics and 36th Annual Meeting of
the Association for Computational Linguistics,
pages 1053-1059, Montreal, Canada.

H. R. Tennant, K. M. Ross, and C. W. Thomp-
son. 1983. Usable natural language interface
through menu-based natural language under-
standing. In CHI’83 Proceedings. Computer
Human Interactions.

Richard Wojcik and Heather Holmback. 1996.
Getting a controlled language off the ground
at Boeing. In Proceedings of the First Interna-
tional Workshop on Controlled Language Appli-
cations, pages 22-31. CCL, Leuven.



