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Résumé - Abstract
Le but de ce papier est de caractériser (au moins partiellement) les Grammaires à Substitution d’Arbres
Polynômiales (pSTSG), instances particulières de STSG pour lesquelles la recherche de l’analyse la plus
probable peut être effectuée en un temps polynômial. Nous donnons tout d’abord diverses conditions
suffisantes, utilisables en pratique, qui garantissent qu’une STSG est polynômiale. Une telle condition
suffisante, fondée sur la notion de « tête de syntagme », est ensuite présentée et évaluée.

Polynomial Tree Substitution Grammars, a subclass of STSGs for which finding the most probable parse
is no longer NP-hard but polynomial, are defined and characterized in terms of general properties on the
elementary trees in the grammar. Various sufficient and easy to compute properties for a STSG to be
polynomial are presented. The min-max selection principle is shown to be one such sufficient property.
In addition, another, new, instance of a sufficient property, based on lexical heads, is presented. The
performances of both models are evaluated on several corpora.

1 Motivations

Stochastic Tree Substitution Grammars (STSG), mainly used in the Data-Oriented Parsing
(DOP) framework (Bod, 1998), are grammars the rules of which consist of syntactic trees,
called “elementary trees”. These elementary trees are combined with the substitution operator1

to give derivations of complete parse trees. In addition, a probability p(t) is assigned to each
elementary tree t of the grammar2. These probabilities serve to compute the probabilities of
parse trees. Although STSGs are equivalent to Context Free-Grammars (CFG) from a structural

1denoted by “◦”
2in such a way that the sum of the probabilities of elementary trees that have the same root node is 1.
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point of view3, STSGs bring a clear advantage at the probabilistic level. They can capture a
much larger set of probabilistic dependencies than the SCFGs, for which the probabilization is
restricted to context-free (CF) rules (i.e. depth-1 elementary trees only).

However, STSGs suffer from one major drawback: finding the most probable parse tree (MPP)
has been proved to be an NP-hard problem in the most general case (Sima’an, 1996). Various
approximated MPP search algorithms have been developed (Bod, 1992; Goodman, 1996; Chap-
pelier & Rajman, 2000), but another alternative, first introduced in (Chappelier & Rajman,
2001), is possible. This approach consists in choosing the set of elementary trees in the STSG
in such a way that finding the MPP is no longer NP-hard but polynomial. More precisely, the
idea underlying Polynomial Tree Substitution Grammars (pSTSG) is to restrict the elementary
trees present in the grammar so as to make the MPP search equivalent to the search of a most
probable derivation (MPD) with an SCFG that can be derived from the original STSG.

A trivial example of pSTSGs are the SCFGs themselves, which can be seen as STSGs where
all the elementary trees are limited to depth-1 trees. A less trivial example of pSTSG, produced
according to the “min-max selection principle”, was presented in (Chappelier & Rajman, 2001).
In this example, the elementary trees are restricted to all depth-1 trees and all trees, the leaves
of which are exclusively terminals (also called “complete trees”).

The goal of this contribution is to generalize this work by providing explicit necessary and
sufficient conditions on the elementary trees of the STSG, so that finding the MPP can be
achieved in polynomial time. We also present a new type of pSTSGs, which significantly differs
from the grammars derived from the min-max selection principle.

The paper first provides a formal definition of pSTSGs and then presents necessary and suf-
ficient conditions for a STSG to be polynomial. Next, various only sufficient but much easier
to compute polynomiality conditions are analyzed. The min-max selection principle is shown
to fulfill one such condition. Another instance of these sufficient conditions, based on lexical
heads, is also presented. Finally, the performances of these two models are evaluated.

2 Formal Definition of pSTSGs

2.1 Tree Decompositions

To formalize the notion of pSTSG, we need to extend the notion of derivation to trees which are
not necessarily parse trees. To do so, we introduce the more general notion of tree decomposi-
tion:

Definition 1 A partition of a tree T into elementary trees t1, ..., tm of a given STSG G, is called
a decomposition of T (with respect to G) and will be denoted by 〈t1, ..., tm〉T .4

Consider for instance the tree T =
S

S S

a

. One possible decomposition of T is 〈t1, t2〉T , where

t1 =
S

S S
and t2 =

S

a
(which are supposed to be elementary trees of the considered STSG).

3The same language is recognized and the same parse trees are produced for a given sentence.
4This notation, which is a sequence and not a set, is not at all ambiguous and has to be understood as the

depth-first description of the corresponding partition of T .
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Notice that 〈t1, t2〉T is different from the derivation t1 ◦ t2 =
S

S

a

S
.

For any parse tree T however, there is a clear one-to-one and onto mapping between deriva-
tions and decompositions of T . Therefore, we will for parse trees indifferently use either the
derivation or the decomposition point of view.

In the STSG framework, the probability of a derivation t1 ◦ ... ◦ tn is defined as p(t1 ◦ ... ◦ tn) =∏

ti

p(ti); and the probability of a full parse tree T , hereafter called “parse-probability” of T , is

defined as the sum of the probabilities of all its derivations: P (T ) =
∑

d⇒T

p(d) =
∑

d⇒T

∏

t∈d

p(t),

where the subscript “d ⇒ T ” means “for all derivations d leading to the parse tree T ”.5

Similarly, the probability of a decomposition 〈t1, ..., tm〉T of a tree T is defined as p(〈t1, ..., tm〉T ) =∏

ti

p(ti). The generalization of the parse-probability to a tree T that is not a parse tree (i.e. that

does not result from a left-most derivation) is given by: P (T ) =
∑

δ∈∆(T )

p(δ), where ∆(T ) is the

set of all possible decompositions of T into elementary trees of G.

Finally, for any two decompositions δ and δ ′ of a tree T , δ is said to be finer than δ′ if and only if
(iff) every elementary tree appearing in δ is itself a subtree6 of some elementary tree appearing
in δ′. This will be noted δ ≤ δ′.

Notice that ”≤” induces a (partial) order on the set of the decompositions of a given tree. This
allows us to define the notion of maximal decomposition:

Definition 2 A decomposition δ of a tree T is said to be maximal iff any other decomposition
of T comparable with δ is finer than δ: ∀δ ′ ∈ ∆(T ), δ ≤ δ′ =⇒ δ′ = δ

2.2 Definition of pSTSGs

Let us now recall the general framework used for finding pSTSGs as it was originally described
in (Chappelier & Rajman, 2001):
For any STSG G, an SCFG Gequiv can be constructed in the following way: the rules of Gequiv

are the root-leaves representations of the elementary trees of G, and of these rules is associated
with the parse-probability of the corresponding elementary tree.

In such a setup, the probability of a derivation in Gequiv is always less than or equal to the parse-
probability of the corresponding parse tree in G. Therefore, if for each parse tree T produced by
G there exists at least one derivation in Gequiv, the probability of which is the parse-probability
of T in G, the grammar Gequiv can be used instead of G for finding the MPP in polynomial time.
In other words, the MPD search with Gequiv and the MPP search with G become equivalent.

An STSG for which there exists a polynomial time MPP search algorithm is called a pSTSG.
In addition, we call effective pSTSG a STSG for which an equivalent SCFG parsing scheme as
described above can be build. Notice that this method cannot be applied to all STSGs, as it is

5With STSGs, a given parse tree can indeed have several different derivations, even with the “left-most non-
terminal first” rewriting convention.

6including the tree itself
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not always possible, in the most general case, to exhibit in polynomial time a derivation that
holds the parse-probability of the parse tree it corresponds to.

Denoting by E(G) the set of elementary trees of G and by D(G) the set of the parse trees
generated by G, let us now provide a more formal definition of effective pSTSGs:

Definition 3 A STSG G is said to be effectively polynomial iff ∀T ∈ D(G), ∃t1, ..., tk ∈ E(G)

s.t. T = t1 ◦ ... ◦ tk and P (T ) =
∏

i

P (ti).

In other words, an STSG is effectively polynomial iff, for any parse tree, there exists at least
one derivation such that the product of the parse-probabilities of its constituents is the parse-
probability of the parse tree.

Notice that the product
∏

i
P (ti) involved in the above definition, which corresponds to the

probability of a derivation in Gequiv, is different from
∏

i
p(ti), the probability of the derivation

t1 ◦ ... ◦ tk in G: the former is the product of the parse-probabilities of the elementary trees, as
defined in the former section, whereas the later is the product of the elementary probabilities of
the elementary trees.

3 Conditions for Polynomiality

Theorem 1 A STSG is effectively polynomial iff any parse tree it can generate has a unique
maximal derivation.

This characterization of effective pSTSG, requires to consider the set of all the parse trees that
can be generated by the STSG (which very often is an infinite set). As such, it is difficult to apply
in practice. For this reason, more practical (but also less general) conditions for polynomiality
are now presented. To do so, we first introduce the notion of atomic grammars, for which we
then provide a sufficient polynomiality condition, much easier to check in practice.

Definition 4 A grammar is said to be atomic iff any depth-1 subtree of any elementary tree is
also an elementary tree.

In other words, a grammar is atomic if it contains at least all the CF rules that appear in its
elementary trees.

Definition 5 For any proper subtree t′ of a tree t, we define the expansion of t′ in t as the set of
leaves of t′ which are not leaves of t.

We can now give a sufficient condition for atomic STSGs to be polynomial:

Theorem 2 An atomic STSG is polynomial if the expansions of any depth-1 elementary tree in
any other elementary tree are all the same.

The above theorem can be used to define the following algorithm, aiming at the automated
extraction of atomic pSTSGs from a tree-bank:

Algorithm 1

1. Extract the CFG from the tree-bank;

2. For each CF rule, define a unique expansion; and extract from the corpus all subtrees in
which CF rules have this expansion and this expansion only.
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4 Practical Examples of pSTSG

The min-max selection principle (Chappelier & Rajman, 2001) can now be reinterpreted as an
extraction procedure leading to the atomic STSG for which each CF rule is associated with the
expansion scheme consisting in always expanding all its (non-terminal) leaves. It is therefore a
pSTSG by theorem 2.

Another possible way to automatically extract pSTSG from tree-banks using Algorithm 1 is to
choose as systematic expansion scheme for depth-1 trees an expansion restricted to only one
given non-terminal leaf. One way to implement this in an automatic way is to choose the lexical
head as expansion node. For example, Collins (1999) defined a set of rules to automatically
determine the lexical heads of the CF rules. For our experiments with Bod’s version of the
ATIS treebank, we adapted Collins’ rules, which where developed for the Wall-Street Journal
treebank, to this corpus.

The evaluation protocol consisted in computing an average performance on 25 runs of inde-
pendent training/test splittings of the corpus. To have an upper bound on the results, the perfor-
mance on the full corpus was also computed.

The results obtained are summarized in table 1. The head-drive expansion model appears to
outperform the basic CF model, but is less performant that the min-max model (Chappelier &
Rajman, 2001). One possible explanation could come from the number of parameters. For each
of the three models (CF, min-max, head-driven) the number of elementary trees extracted from
the whole ATIS corpus is given in table 2. This number is precisely the number of probabilistic
parameters for each model. The fact that the min-max selection principle performs better than
the head-driven approach on this corpus tends to show that there are enough training data for
this model to accurately capture the probabilistic dependencies present in the corpus.

Another aspect to keep in mind is also that the corpus used is rather flat (trees are wide and
not very deep) and that the lexical-head of a CF rule is, most of the time, a terminal node.
This characteristic of the ATIS corpus implies that the head-driven expansion method does
not produce so many new elementary trees (in addition to the CFG) and that most of the new
elementary trees are of low depth.

Therefore, head-driven expansion approach to pSTSG should be explored further, on corpora
where the notion of “lexical head” is more pertinent than in the ATIS corpus.

coverage
precision precision precision

of CF of head-driven of min-max
test 25% 98.5 38.5 39.7 45.5
test 10% 98.6 41.7 42.4 49.7
test 5% 98.2 44.0 45.2 49.8
self-test 100.0 51.0 54.9 88.5

TAB. 1 – Experimental results for CFG, head-driven expansion and min-max selection prin-
ciple on Bod’s version of the ATIS corpus: percentage of exact match sentences in several test
conditions is given. Notice that the coverage of the three models is, by construction, the same.
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CF head-driven min-max
nb. of el. trees 381 930 2434

TAB. 2 – Size of the grammar extracted from the whole Bod’s version of the ATIS corpus. For
the three grammars, there are 12 non-terminals and 31 Part-of-Speech tags.

5 Conclusion

A complete characterization of pSTSGs has been provided and other, only sufficient but more
effective, polynomiality conditions have been presented. These results extend the work pre-
viously done on the min-max selection principle for constructing pSTSG and open promising
perspectives concerning the production of more general pSTSGs.

The head-driven expansion approach, one new example of a pSTSG has been presented and
compared to the min-max selection principle. This new expansion scheme consists in systema-
tically expand (at each level) the lexical head of the all subtrees of a treebank. Although its
performance on the ATIS corpus is not as good as the one obtained with the min-max selection
principle, this approach should be tested further, for instance on corpora where the notion of
“lexical head” is more pertinent.

Another research direction opened by the theoretical results presented here consists in finding
other expansion schema in order to construct other, more performant, instances of pSTSGs.
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