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Schema-Tree Adjoining Grammars {S-TAGs) are an extension of Tree Adjoining Grammars {TAGs) 
(for an introduction see, e.g., [5] ) ,  initially introduced by [7] . In a schematic elementary tree, a regular expression (RX)1, is annotated at each inner node of an elementary tree. This means, that the 
elementary schemata enumerate a possibly infinite set of elementary trees. For instance, see the tree 
t1 of Fig. 1 ,  which performs NP-coordination as , e.g . ,  the zero-coordination Peter ( 12 1 )  or Bob, Bill, Mary, Sue, and the dog ( l 2 l4 - l 3 l . l l l . l2 1 ) .  Obviously, the schemata of S-TAGs provide a condensed 

t, : NP (l2l+l 1 l . l21+(121+1 1 1 . l2r} . 131.(121+11 l . 121}) el-t, : 
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Figure 1 :  NP-Coordination 
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grammar representation. Concerning the structures, TAGs and S-TAGs are identical and hence all 
advantages of TAGs are conserved such as the extended domain of locality and the mild context­
sensitivity. Thus S-TAGs are well suited for linguistic specifications. 

In order to analyse S-TAGs, an ordinary TAG parser, e.g. , the Earley-based parser by Yves Schabes 
( [6] ) ,  can only be applied if the length of the input string is considered in order to compute a finite 
subset of applicable elementary trees. This is disadvantegeous because the computation must be 
performed at runtime and the property of condensed representations is lost. Therefore we introduce 
a direct parser of S-TA Gs which works directly on the schemata. Accordingly, common prefixes 
(i.e. substructures) of the same scheme are represented only once instead of enumerating all explicit 
orderings in the individual elementary trees. This leads to a better average runtime. However, the 
worst case time complexity remains the same as for TAGs (O(n6 ) ) .  The direct parser adapts the basic 
idea of an Earley parser [2] to the exploration of regular expressions. This means, that a new dot 
position ( 0) is defined which indicates whether a prefix of an alternative in a regular expression is 
analysed. In order to move the 0 ,  two operations SHIFT and NEXT are defined. SHIFT(</>) moves 
0 by one token to the right, i.e. SHIFT(a 0 /3) = bi, = a.NEXT(/3) 0 (/3 \ NEXT(/3))}  where 
NEXT(</>) returns a set of all alternatives for the next symbol (Gorn address) . NEXT(a) = {0a} iff 
a is a Gorn address; NEXT(a) = { 0/31 , . . .  , 0/3n } ,  iff a =  (/31 + . . .  + f3n) ,  n 2::: 2 and NEXT is applied 
recursively as long as /3i starts with an opening bracket , finally a Gorn address is reached2 ; { 013+ .,y, 

*This work is partially funded by the DFG - German Research Foundation - under grant HA 2716/1-1 and 1-2. 
1 RXs are inductively defined. Let o., /3 and /31 , . . .  , f3n (n 2: 2) be Gorn addresses uniquely referring to daughters or 

arbirarily complex RXs, then o../3 (concatenation of branches) , (/31 + . . .  + f3n ) (enumeration of alternatives) , o.* (Kleene 
Star) and o.+ (o.* without the empty repetition) are RXs. Finally, "-" allows to cut off a subtree at the end of a path. 
As an abbreviation we write o. <n l m) which enumerates L7:o o.n+i (n, m 2: 0) . Notice, "." binds stronger than "+" . 

2Notice sums are always bracketed even if no binding conflict occurs as on the top level (cf. footnote 1) .  
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/3* . 0 1'}, iff a =  f3* .')'; {0/3./3* .1'}, iff a =  13+ .')'. Here also NEXT is recursively computed as long as f3 ( and 1' for /3* . 0 1') starts with an opening bracket in order to reach the Gorn addresses to be finally returned . Traversing the regular expressions replaces the analysis of branches in the six procedures of the TAG parser by Schabes in a straight-forward manner . For more details of the extension of the individual procedures of the Schabes parser see (3] and (8] . With the close relation to ordinary TAGs and the claim that direct parsing is advantageous, the question arises how can existing TAGs made available to the direct parser? Obviously, an arbitrary TAG G can trivially be transformed into an S-TAG G' by annotating the concatenation of all daugh­ters from left to right at each inner node of each elementary tree . This transformation involves no compression and accordingly, no benefit of a direct S-TAG parser arises .  Therefore, we -have devel­oped a transformation component which produces a S-TAG where each label at the root node occurs only once in the set of initial and auxiliary trees . The following steps lead to this goal : Firstly, in all elementary trees all subtrees which do not contain the foot node are rewritten by substitution in order to find shared structures . Some reformulations become necessary · to prevent the grammar from overgeneration because existing substitution trees with the same label would become applicable unintentionally. Accordingly, the corresponding trees are renamed. Now, all alternatives with the same root node are collected and described by a regular expression denoting the set of all these trees . Finally, the resulting RXs are condensed by applying the distributivity law (a'Y(l l k) 'Yf3 = O'.')'(l lkH) {3, a(1'81)/3 + . . .  + a(1'8m)f3 = 0'.')'(81 + . . .  + Om)/3 and 0'.')'/3 + a/3 = O'.')'(Ol l ) /3 where a, /3, 1', 81, . . .  , Om are arbitrary complex RXs) . This procedure has been applied to the XTAG system (1] and the trans­formed grammar serves a syntax grammar for analysis and generation as we run our direct parser as a reversible uniform generation modul ( cf . (3] and [4]) . Currently we transform existing semantic and pragmatic knowledge sources into the S-TAG formalism . 
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