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Abstract. Word sense disambiguation continues to be a difficult problem in machine 
translation (MT). Current methods either demand large amounts of corpus data and 
training or rely on knowledge of hard selectional constraints. In either case, the methods 
have been demonstrated only on a small scale and mostly in isolation, where disambigua- 
tion is a task by itself. It is not clear that the methods can be scaled up and integrated 
with other components of analysis and generation that constitute an end-to-end MT 
system. In this paper, we illustrate how the Mikrokosmos Knowledge-Based MT system 
disambiguates word senses in real-world texts with a very high degree of correctness. 
Disambiguation in Mikrokosmos is achieved by a combination of (i) a broad-coverage on- 
tology with many selectional constraints per concept, (ii) a large computational-semantic 
lexicon grounded in the ontology, (iii) an optimized search algorithm for checking selec- 
tional constraints in the ontology, and (iv) an efficient control mechanism with near-linear 
processing complexity. Moreover, Mikrokosmos constructs complete meaning representa- 
tions of an input text using the chosen word senses. 

1    Word Sense Ambiguity 

Word sense disambiguation continues to be a difficult problem for machine translation (MT) 
systems.The most common current methods for resolving word sense ambiguities are based 
on statistical collocations or static selectional preferences between pairs of word senses. The 
real power of word sense selection seems to lie in the ability to constrain the possible senses 
of a word based on selections made for other words in the local context. Although methods 
using selectional constraints and semantic networks have been delineated at least since Katz 
and Fodor (1963), computational models have not demonstrated the effectiveness of knowledge- 
based methods in resolving word senses in real-world texts on a large scale. This has resulted 
in a predominant shift of attention from knowledge-based to corpus-based, statistical methods 
for word sense resolution, despite the far greater potential of knowledge-based methods for 
advancing the development of large, practical, domain independent NLP/MT systems.1 

In this article, we illustrate how the semantic analyzer of the Mikrokosmos machine trans- 
lation system resolves word sense ambiguities in real-world Spanish texts (news articles on 
company mergers and acquisitions from the EFE newswire) with a high degree of correctness. 
We begin by presenting the results from Mikrokosmos and then illustrate how they were ob- 
tained. 
1 See Guthrie et al (1996) and Wilks et al (1995) for recent surveys of related work. 
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                           Text                                #1    #2   #3  #4   Average 
#  words                                    347  385   370  353 364  | 
#  words/sentence                   16.5 24.0  26.4 20.8 21.4    
#  open-class words                  183 167   177  177 176 
#  ambiguous open-class words     57   42    57    35 48  
# resolved by syntax 21    19     20      12    18      
total # correctly resolved        51    41    45    34 43 
% correct 97% 99% 93% 99% 97%   

Table 1. Mikrokosmos Results in Disambiguating Open Class Words in Spanish Texts. 

# words 390 
# words/sentence                       26 
# open-class words                        104 
# ambiguous open-class words    26 
# resolved by syntax                    9 
total # correctly resolved           23 
% correct 97.1% 

Table 2. Mikrokosmos Results on an Unseen Text. 

2    Results 

Experiment 1: Mikrokosmos semantic analyzer applied on 4 out of 400 Spanish texts used in 
knowledge acquisition. 
Table 1 shows sample disambiguation results from Mikrokosmos. These are results from ana- 
lyzing four real-world texts. The average text was 17 sentence long, with over 21 words per 
sentence. For evaluation purposes, correct senses for all the open class words in the texts were 
determined by a native speaker. Mikrokosmos selects the right sense of open-class words about 
97% of the time. 

The performance on the first and third texts was worse than the performance on the other 
two texts. The first and third texts had longer sentences, many more ambiguous words, and 
constructs that make disambiguation hard (e.g., ambiguous words embedded in appositions). 
Moreover, just a handful of difficult words led to significantly worse performance in these texts. 
For example, the Spanish word “operacion” occurred several times in these texts and was hard to 
disambiguate between its WORK-ACTIVITY, MILITARY-OPERATION, SURGERY, and FINANCIAL- 
TRANSACTION senses (although the SURGERY sense was easily eliminated). 

Syntactic analysis contributed to about 38% of word sense disambiguation 
Experiment 2: Mikrokosmos semantic analyzer applied on a Spanish text not used in knowl- 
edge acquisition. 
The above four texts were among about 400 Spanish texts used in the general lexicon and 
ontology acquisition process in Mikrokosmos. Table 2 shows the results on a previously unseen 
text. The results were essentially similar to those for the training texts in Table 1. 

The unseen text used in the experiment contained 19 words missing from the Mikrokosmos 
lexicon. In such cases, the Mikrokosmos analyzer produces dummy entries, marked as nouns and 

152 



semantically mapped to ALL, the root concept in the ontology (this has the effect of essentially 
not including any semantic constraints in the definition). No changes were made in the lexicon, 
ontology, or the programs. There were many syntactic binding problems with this text. We did 
not fix any of them. We could get even better results if we assumed perfect syntactic output 
and fixed all the binding problems. Unknown words (which were mapped to ALL) were treated 
as unambiguous. 12 of the 19 unknown words appeared to be proper names and only 3-4 of 
them were in fact ambiguous. 
Experiment 3: Adding New Senses. 
This experiment was designed to test the effect of acquiring additional word senses on disam- 
biguation results. We added 40 new word senses to about 30 words in the lexicon. As a result, 
correctness of disambiguation dropped by only 3.6%. 
In the rest of the paper, we describe the resources and algorithms used by Mikrokosmos for 
semantic analysis and, in particular, word sense disambiguation. 

3 Static Resources: Ontology and Lexicon 

Mikrokosmos uses two primary static resources: a language-specific lexicon and a language- 
independent ontology. The Spanish lexicon has 7,000 manually acquired entries that have been 
expanded to about 37,000 virtual entries using lexical rules (Onyshkevych and Nirenburg, 1995; 
Viegas et al, 1996; Viegas and Raskin, in preparation). Entries have many types of information 
including (a) syntactic patterns in which words occur, (b) semantic patterns that represent 
the meanings of the words, and (c) mappings between syntactic and semantic patterns that 
establish semantic relationships between the constituents of the syntactic patterns. The se- 
mantic patterns are built using the concepts and inter-concept relations in the ontology. The 
Mikrokosmos ontology is a broad-coverage classification of about 5000 concepts in the world, 
including nearly 3000 OBJECTS, 1200 EVENTS, and over 600 ATTRIBUTES and RELATIONS among 
OBJECTS and EVENTS (Mahesh, 1996; Mahesh and Nirenburg, 1995).2 The ontology is a richly 
connected network of concepts with an average of. 16 attributes and relations per concept. 
Each relation links a concept to other concepts in the ontology and serves as a selectional 
constraint. Typical thematic roles such as AGENT and INSTRUMENT are included in the nearly 
400 relations present in the ontology. Further information about the lexicon and the ontol- 
ogy as well as on-line access for browsing is available on the World Wide Web at the URL 
http://crl.nmsu.edu/Research/Projects/mikro/ 

4 Semantic Analysis and Disambiguation 

Mikrokosmos uses the Panglyzer Spanish syntactic analyzer from Pangloss, an earlier MT 
project (Nirenburg, ed., 1994). Given the syntactic structures produced by Panglyzer, lexi- 
cal entries from the Mikrokosmos lexicon are instantiated and syntactic variables denoting 
heads and arguments are bound to one another. Ontological concepts present in the semantic 
mappings in the lexical entries are instantiated from the ontology. 

Selectional constraints are encoded in the ontology. Any language-specific relaxations of 
such constraints are noted in the semantic patterns in the lexicon. The Mikrokosmos analyzer 
gathers  both  ontological  and lexical constraints for every pair of instantiated entries that have a 
2 Concepts in the ontology are shown in SMALL CAPITALS. 
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syntactic dependency between them. It checks each such constraint by searching in the ontology 
for a path that establishes how well the candidate filler meets the constraint. 

Consider the example sentence “Fuentes financieras consultadas no preciso el monto” (“Fi- 
nancial sources consulted did not specify the amount”). The word “fuente” has three senses in 
the Mikrokosmos lexicon: MEDIA-SOURCE, FOUNTAIN, and PLATE. An ontological constraint on 
CONSULT (the meaning of “consultadas”) restricts its SOURCE to be HUMAN. Similar constraints 
exist between the meanings of “fuente” and “financieras”, between “fuente” and “preciso”, and 
between “preciso” and “monto”. In the following, we first illustrate how the constraints are 
checked and then how the results of checking individual constraints are combined in an efficient 
control structure to select the best combination of word senses for an entire sentence. 

4.1     Checking Selectional Constraints: Onto-Search 

A constraint is checked by finding a path in the ontology between the candidate (e.g., FOUNTAIN 
in the above example) and the constraint (HUMAN above) that estimates how well the candidate 
meets the constraint. 

Relations in the ontology have two levels of selectional constraints: an overall constraint as 
well as an expected (default) filler that meets the constraint. The advantage that we have over 
previous constraint-based approaches to word-sense disambiguation is that we have a much 
richer set of constraints derived from the broad-coverage ontology, which allows fairly fine- 
grained constraints on some relations, along with a knowledge-intensive constraint checking 
method, as described briefly below. 

In the easiest case, the selectional constraints on the correct set of senses are all satisfied, 
and are violated for incorrect combinations of senses. Satisfied selectional constraints appear 
in the method as a simple taxonomic path over the IS-A hierarchy between the candidate con- 
cept and the constraint. But because natural language use is not literal or precise (because of 
vagueness, metonymy, etc.), we often need to relax constraints; however, relaxing or discard- 
ing semantic constraints unrestrictedly would result in egregious proliferation of readings in 
semantic analysis. 

In our method, controlled constraint satisfaction is managed by considering all relations, not 
just IS-A arcs, and by levying a cost for traversing any of those non-taxonomic relations. We 
treat the ontology as a directed (possibly cyclic) graph, with concepts as nodes and relations as 
arcs. Thus constraint satisfaction is treated as a cheapest path problem, between the candidate 
concept node and the constraint nodes; the best path thus reflects the most likely underlying 
semantic relation, whether it be metonymic or literal. 

The cost assessed for traversing a metonymic (or other) arc may be dependent on the 
previous arcs traversed in a candidate path, because some arc types should not be repeatedly 
traversed, while other arcs should not be traversed if certain other arcs have already been seen. 
We use a state transition table to assess the appropriate cost for traversing an arc (based on 
the current path state) and to assign the next state for each candidate path being considered. 
Our weight assignment transition table has about 40 states, and has individual treatment for 
40 types of arcs; the other arcs (of the nearly 400 total relation types) are treated by a default 
arc-cost mechanism. 

The weights that are in the transition table are critical to the success of the method. We 
learn them by an automatic training method. After building a training set of inputs (candidate 
fillers and constraints) and desired outputs (the "correct" paths over the ontology, i.e., the 
preferred relation), we used a simulated annealing numerical optimization method (Kirkpatrick 
et al, 1983;  Metropolis et al, 1953)  for  identifying  the  set  of arc costs that results in the optimal 
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Sense of "fuente" Is it a HUMAN?                Path in ontology           
MEDIA-SOURCE         _score=1.0              _through IS-A arcs             
FOUNTAIN score=0.80    through PRODUCED-BY relation 
PLATE                         score=0.74    through PRODUCED-BY relation 

Table 3. Constraint Checking Results for "is fuente a HUMAN?". 

set of solutions for the training data. A similar approach is used to optimize the arc costs so 
that the cheapest cost reflects the preferred word sense from a set of candidates. 

Although any of a variety of shortest-path graph search algorithms could be used, we use an 
A*-style modification of the Dijkstra algorithm with heap-based priority queues (Dijkstra, 1959; 
Gibbons, 1985). This algorithm gives us the desired expected-case complexity, with worst-case 
complexity of only O(Elog2N), where E is the number of edges and N is the number of nodes, 
and E << N2. 

Table 3 shows the results from checking constraints on the three senses of "fuente" in the 
above example. MEDIA-SOURCE IS-A HUMAN (through the intermediate concepts COMMUNICATION- 
ROLE and SOCIAL-ROLE in the hierarchy) whereas the other two are only related to HUMANS 
through a PRODUCED-BY relation.3 If this was the only constraint in the sentence, the analyzer 
would immediately pick the MEDIA-SOURCE sense of “fuente” as the most appropriate one for 
“being consulted.” However, an average of 240 such constraints are checked per sentence in the 
texts reported in Table 1 and the results of all 240 constraints must be combined before an 
optimal selection can be made. 

4.2    Efficient Control and Synthesis 

The Mikrokosmos analyzer utilizes a new constraint-based control architecture called Hunter- 
Gatherer (Beale et al, 1996) to combine the results from constraint checking and pick the 
best combination of word senses for a sentence. Hunter-Gatherer (HG) optimizes search not by 
seeking the optimal configurations for constraint pruning, as previous systems have done, but by 
maximizing the pruning using its novel branch-and-bound methods. These branch-and-bound 
methods determine which variables of a problem cannot be improved by further processing 
and “freeze” their optimal values, reducing the overall complexity significantly. For example, 
in a “simple” problem with a million exhaustive combinations, a comparable constraint-based 
architecture (Tsang and Foster, 1990) required almost 19,000 combinations to be checked while 
HG required only 848 to guarantee an optimal solution. Furthermore, depending on the topology 
of the input problem, these results can be shown to be even more impressive. Problems in 
semantic analysis with exhaustive complexities over 1060 have been optimally solved by HG 
with less than a thousand combinations checked. 

Table 4 shows actual results of analyses of various size problems. We have tested the Hunter- 
Gatherer algorithm extensively on a wide variety of sentences in several real-world texts and 
the claims of near-linear time processing and guaranteed optimal solutions have been verified. 

It is interesting to note that a 20% increase in the total number of word senses for all the 
words  in  the  sentence  (79  to 95)  results  in  a  626%  increase  (7.8M to 56M)  in  the  number 
3 PLATE got a lower score than FOUNTAIN because the path for PLATE had to traverse many more IS-A 

links before finding the inherited relation PRODUCED-BY. There is a small penalty (score=0.96) for 
traversing an IS-A arc in conjunction with a metonymic relation. 
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Problem       #1                 #2      #3 
Number of word senses                  79                 95             119 
Exhaustive combinations             7,864,320  56,687,040  235,092,492,288 
Hunter-Gatherer combinations        179           254               327 

Table 4. Near-Linear Processing for Natural Language Semantics. 

of exhaustive combinations possible, but only a 42% increase (179 to 254) in the number of 
combinations considered by Hunter-Gatherer. As one moves on to even more complex problems, 
a 25% increase (95 to 119) in the number of word senses catapults the exhaustive complexity by 
414,600% (56M to 235B) and yet only increases the Hunter-Gatherer complexity by 29% (254 
to 327). As the problem size increases, the minor effects of “local multiplicative” influences 
diminish with respect to the size of the problem. We expect, therefore, the behavior of this 
algorithm to move even closer to linear with larger problems (e.g., discourse analysis). And, 
again, it is important to note that Hunter-Gatherer is guaranteed to produce the same results 
as an exhaustive search. 

Although time measurements are often misleading, it is important to state the practical 
outcome of this type of control advancement. Prior to implementing Hunter-Gatherer, our 
analyzer failed to complete processing large sentences. The largest sentence above was analyzed 
for more than a day with no results. Using Hunter-Gatherer, on the other hand, the same 
sentence was finished in 17 seconds. It must be pointed out as well that this is not an artificially 
selected example. It is a real sentence occurring in one of the texts reported in Table 1, and not 
an overly large sentence at that. 

4.3    Text Meaning Representation: The Output 

Apart from disambiguating word senses, the Mikrokosmos analyzer builds a complete text 
meaning representation (TMR) for a text. Figure 1 shows the TMR for our example sentence. 

CONSULT-001 SPECIFY-001 
SOURCE: MEDIA-SOURCE-001                                AGENT: MEDIA-SOURCE-001 

             THEME: AMOUNT-001 
MEDIA-SOURCE-001                 polarity: negative 

SOURCE-OF: CONSULT-001 
AGENT-OF:    SPECIFY-001 AMOUNT-001 
AREA-OF-ACTIVITY: FINANCE                           coreference: *unknown* 

Figure 1. Text Meaning Representation for the Example Sentence “Fuentes financieras consultadas no 
preciso el monto.” 
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5 Previous Work 

World knowledge to be applied to disambiguate word senses is usually represented as selectional 
constraints either in a lexicon or some form of semantic network with binary links between 
nodes that denote word meanings. Previous methods for applying selectional constraints can 
be classified into the following three categories: 

- Semantic networks: Constraints are represented by the links in the network with the as- 
sumption that closeness of nodes in the network signifies “conceptual closeness” or “seman- 
tic affinity.” Methods such as marker passing (Charniak, 1983) and spreading activation 
(Waltz and Pollack, 1985) have been developed to search for optimal paths that connect 
different word meanings represented in such a semantic network. These methods work best 
on small-size networks with sparse connections among the nodes in the network. 

- Lexical semantics: Selectional constraints are often encoded in individual lexicon entries 
along syntactic dependencies or sometimes through other forms of “licensing” or “expecta- 
tions.” Systems that take this approach include that of Wilks (1975) and other conceptual 
analyzers such as CA (Birnbaum and Selfridge, 1981) and Word Expert Parser (Small and 
Rieger, 1982). These methods work best on single-language systems where any world knowl- 
edge can be combined with lexical and linguistic knowledge and compiled into individual 
lexical entries or “word experts.” 

- Scripts: Various forms of pre-packaged contexts encoded in complex knowledge structures 
have been proposed to provide context-specific expectations to the analyzer (Cullingford, 
1978; Schank and Abelson, 1977). In a sense, scripts are “world experts” instead of “word 
experts.” Although such methods simplify word sense resolution and other problems re- 
markably, they demand detailed knowledge of possible scenarios. It is often prohibitively 
expensive to acquire such knowledge for general purpose, domain independent NLP. 

None of these methods used a large scale ontology (because none was available). Nor did 
they show that they can resolve sense ambiguities in entire texts and at the same time produce 
complete meaning representations for the texts. We believe that Mikrokosmos is the first suc- 
cessful application of a knowledge-based method for large scale word sense disambiguation and 
text meaning representation. 

Statistical methods (e.g., Yarowsky (1992)), work well on carefully chosen domains and 
training corpora. However, they are not as effective for processing texts from a wide variety of 
domains in general. Moreover, statistical methods are attractive for solving individual problems 
such as word sense disambiguation or part of speech tagging. They do not explain why certain 
meanings were chosen or how the chosen meanings together provide a meaning for a whole 
sentence or text, something that is often required to carry out further processing (e.g., to 
generate the meaning in a target language for machine translation). 

6 Conclusions 

Resolving word sense ambiguities is a central problem for machine translation. Previous at- 
tempts with knowledge-based methods have failed to show that the methods can be scaled 
up to perform well on real-world texts. In this paper, we have described how the Mikrokos- 
mos analyzer applied knowledge from a large ontology and a large computational lexicon to 
select correct word senses 97% of the time for all the open-class words in real texts. In addi- 
tion, the same analyzer also deals with several other semantic problems and constructs a text 
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meaning representation for entire texts. We believe that this is a significant step in applying 
knowledge-based methods for machine translation. 
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