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Summary: Spoken language translation requires both (1) high accuracy 
and (2) a real-time response which are difficult to achieve using conventional 
technologies. To fulfill the first requirement, we have adopted an Example-Based 
Approach. It generates a target sentence by combining partial translations ob- 
tained by mimicking best-match partial translation examples. To fulfill the sec- 
ond requirement, this paper proposes using a Heterogeneous Computing Platform 
consisting of Multiple Instruction Multiple Data (MIMD) and Single Instruction 
Multiple Data (SIMD) parallel machines. Example-Based Approach is dominated 
by two processes, each of which is optimally accelerated by utilizing MIMD and 
SIMD, respectively, a) to build the source structure, and b) to retrieve the best- 
match examples. Experimental results show that Example-Based Approach is 
drastically speeded up with the Heterogeneous Computing Platform and has a 
performance sufficient for real-time response, even with a large vocabulary and a 
highly ambiguous sentence. 

1.     Introduction 
Spoken language translation requires both high accuracy and a quick response. 

First, there is no doubt that translation accuracy is important, and there is a de- 
sire to minimize human intervention such as pre-, inter-, and post-interactions 
between user and machine. Second, a practical throughput is important to make 
real-time speech-to-speech translation viable. To fulfill the first requirement, the 
authors have proposed an Example-Based Approach. It generates a target sen- 
tence by combining partial translations obtained by mimicking best-match partial 
translation examples (hereafter, examples). It accurately performs structural dis- 
ambiguation, target word selection, and whole translation. To fulfill the second 
requirement, this paper proposes using a Heterogeneous Computing Platform 
consisting of Multiple Instruction Multiple Data (MIMD) and Single Instruction 
Multiple Data (SIMD) parallel machines. In Example-Based Approaches, there 
are two dominant processes: Structure-Building, to build the source structure 
that covers an input sentence by combining examples; and Example-Retrieval, to 
retrieve the best-match examples. The Heterogeneous Computing Platform mini- 
mizes the total time for Example-Based Approach translation because Structure- 
Building can be parallelized best on a MIMD machine; Example-Retrieval can 
be parallelized best on a SIMD machine; and the cost of communication be- 
tween Structure-Building and Example-Retrieval can be lessened to a negligibly 
minute degree by packing data. Experimental results show that Example-Based 
Approach can be drastically speeded up to a performance sufficient for real-time 
response, even with a large vocabulary ( i .e. ,  a huge example database) and a 
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highly ambiguous sentence. Consequently, the Example-Based Approach on an 
Heterogeneous Computing Platform meets the vital requirements of spoken lan- 
guage translation. 

Section 2 introduces Example-Based Approaches and explains a sentence 
translation system using Example-Based Approach. Section 3 explains Structure- 
Building and Example-Retrieval in detail. Analyses of computational costs are 
also discussed. Section 4 describes the method and the speedup of parallelization 
of Structure-Building and Example-Retrieval on the Heterogeneous Computing 
Platform. Finally, Section 5 discusses related research. 

2.     Example-Based Approaches 
The idea behind Example-Based Approaches and their notable features are 

introduced, and an algorithm for sentence translation using an Example-Based 
Approach is explained. 

2.1.     Idea and Features 
Novel models for NLP have been studied in recent years. These methods have 

been called Example-Based Approaches because they rely upon linguistic exam- 
ples derived from corpora, e.g., translation examples, and often utilize a best- 
match mechanism based on the semantic distance between linguistic expressions. 
In the early 1980s, Nagao presented the origin of Example-Based Approaches, 
“Translation by Analogy,” based on the observation that a human being trans- 
lates according to past translation experience (Nagao, 1984). Since the end of the 
1980s, large corpora and powerful computational devices have allowed us to con- 
struct Nagao’s model and to expand the model to deal with not only translation, 
but also other tasks such as parsing. 

Example-Based Approaches surpass conventional approaches for NLP in sev- 
eral aspects. Here, we summarize observations made so far. Example-Based Ap- 
proaches are accurate in a restricted domain if sufficient examples are prepared.1 

Example-Based Approaches can deal with well-known difficult problems such as 
target expression selection (e.g., function words (Sumita and Iida, 1992a; Sumita 
and Iida, 1992b), noun phrases (Sato, 1993a) and verb phrases (Sato, 1991)), and 
disambiguation of prepositional phrase attachment (Sumita et al., 1993a). They 
achieve high accuracy not only for these subproblems in machine translation, but 
also for sentence translation (Furuse et al., 1994). Example-Based Approaches 
are robust. Some deviations from conventional grammars that are specific to 
spoken language are handled well (Furuse and Iida, 1992). For example, particles 
such as wa, o, and ni are frequently omitted in spoken Japanese. These omis- 
sions are recovered well by Example-Based Approaches. Semantic distances used 
in many Example-Based Approaches are considered as a number indicating how 
much we can rely on the result. In our previous experiment (Sumita and Iida, 
1992b) on the relationship between semantic distance and success rate, we found 
the tendency that the smaller the semantic distance, the better the quality. The 

1 An observation that translation quality improves as the number of examples increases was 
reported in our previous paper (Sumita and Iida, 1992b). Infinite examples are not required 
because best-match based on a thesaurus (Section 4.2) compensates for the notorious problem of 
low-frequency data. Let us examine experimental evidence here. In the pp-attachment problem, 
an Example-Based Approach that utilizes word cooccurrences, i.e., examples and a thesaurus, 
can achieve higher accuracy with a much smaller corpus than a statistically-based approach 
utilizing the frequency of word cooccurrences. Namely, words themselves are too fine-grained 
to get sufficient amounts of data. 
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central mechanism of Example-Based Approaches is language-independent. So 
far, we have implemented Japanese-to-English translation system and vice versa; 
(Sobashima et al., 1994) and Japanese-to-Korean translation system and vice 
versa. Not only Example-Retrieval, but also whole transfer process is shared by 
these four systems. 

2.2.     Mechanism of Sentence Translation using Example- 
Based Approach 

Here, we describe a sentence translation model featuring an Example-Based 
Approach. A sentence is translated by combining partial examples in such a 
way that they jointly cover the sentence. Since the translation examples have a 
primary role and the whole process is controlled by transfer, we call our model 
Transfer-Driven Machine Translation (TDMT) (Furuse and Iida, 1992; Furuse et 
al., 1994; Furuse and Iida, 1994). In Example-Based Translation, there are two 
dominant processes: Structure-Building (building the source structure that covers 
an input sentence by combining examples); and Example-Retrieval (retrieving the 
best-match examples). Other low cost processes such as morphological analysis 
and target language generation are not focused on in this paper. 

A translation example, a piece of the transfer knowledge, describes the cor- 
respondence between a source expression and target expressions. Each expression 
is represented by a pattern consisting of variables and constants (function words). 
The variables of a source pattern are accompanied by example words. For ex- 
ample, the correspondence between typical Japanese noun phrases of the pattern 
"X no Y" and English noun phrases is described as follows:2 

X no Y   =>   Y' of X'    ((ronbun[paper], daimoku[title]),...) ,  

Y' for X'    ((hoteru[hotel], yoyaku[reservation]),...), 

Y' in X'    ((Kyooto[Kyoto], kaigi[conference]),...),  

When TDMT translates the Japanese noun phrase "Oosaka[Osaka] no paatii[party]," 
it retrieves the best-match in the transfer knowledge, i.e., X no Y   =>   Y' in X' 
(Kyooto[Kyoto], kaigi[conference]).    According to this  “best-match,”  TDMT 
generates “party in Osaka” by substituting English nouns for the Japanese nouns. 

The top-level TDMT algorithm is as follows: produce possible source structures3 

in which source expressions are combined to cover the input (Structure-Building); 
transfer the source structures to the target structures by converting each source 
expression to the most appropriate target expressions using [a], [b] and [c] below. 

For example, suppose the input Japanese sentence is as follows: 

2 In this example, capitals such as X and Y are variables for Japanese noun phrases; primed 
capitals such as X' and Y' are the English translations of X and Y, respectively; boldfaces such 
as "no" are function words, i.e., adnominal particles that correspond to English prepositions 
such as of, for, and in. An expression of the form j[e] represents a Japanese word, j, and the 
literally translated English word, e. 

3 Multiple structures are produced when ambiguity exists in syntactic relations between words 
in an input sentence. This is the main reason why Structure-Building costs are high, as will 
be explained in the next section. The most plausible structure is selected based on the total of 
the semantic distances obtained by Example-Retrieval. 

275 



“kaigi         no       toorokuryou       wa annaisho ni   kisaisa re teimasu” 
[conference]  [of]  [registrationfee]  [sub]  [announcement]  [in] [be listed] 

The source structure shown in Figure 1 is produced by the combining of source 
expressions having patterns “X no Y”, “X wa Y”, “X ni Y”, “X re,” and “X 
teimasu.” The target structure shown in Figure 2 is produced according to the 
transfer knowledge. Finally, the following translation is obtained: 

“The conference registration fee is listed in the announcement.” 

 

 

Figure 2: Target structure 

The flow of transferring a source expression to the most plausible target ex- 
pression is as follows: 

[a] The semantic distance4 from the input expression is calculated for all trans- 
lation examples. 

[b] The translation example with the minimum-distance is retrieved. 
[c] The corresponding target expression associated with the retrieved transla- 

tion example is used as the most plausible one for the input expression. 

We call the combination of processes [a] and [b] Example-Retrieval. 

4 See the detailed explanation in Section 4.2. 
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Figure 1: Source structure



3.     Costs of Structure-Building and Example-Retrieval 
This section analyzes the computational costs of Structure-Building and Example- 

Retrieval in a sequential implementation of a typical Example-Based Translation 
system, TDMT, that was introduced in the previous section. We investigate the 
figures of the prototype Japanese-to-English TDMT on a sequential machine, 
SPARCstation2, for 746 test sentences that are representative Japanese spoken 
sentences.5 Figure 3 shows the dominance of Example-Retrieval in trans- 
lation. The rate rises from about 0.2% to about 92.5%, and the average rate 
is about 70.6%. Moreover, the longer the translation time, the higher the rate. 
The next most dominant part is Structure-Building. As will be explained 
in the following subsections, Structure-Building cost is high when the input sen- 
tence is syntactically ambiguous and Example-Retrieval cost is high when the 
input sentence is syntactically ambiguous and/or the example database size is 
large. 

 
Figure 3:  Rate for Example-Retrieval/Translation in sequential TDMT 

3.1.     Structure-Building Cost 

A structure is built for the word sequence of an input sentence according to 
source patterns in a recursive top-down fashion. The patterns are classified into 
appropriate linguistic levels to hold down some explosions of structural ambigu- 
ity. They are applied from the highest level to the lowest level as follows: 

(I) Look up the applicable patterns including the function words in the input 
sentence using the index from function words to patterns. Then, set LEVEL to 
the highest and execute (II). 
(II) For all patterns on LEVEL, split the sequence into subsequences delimited 
by the function words, and bind the subsequences to the variables; execute (III) 
with respect to the variable bindings. Then, execute (IV). 

5 We have trained our prototype using a set of 825 sentences averaging about 9.0 words in 
length in our domain. These sentences cover broad variations of spoken expressions used in 
intermediate Japanese courses and include expressions for “request,” “confirmation,” “refusal,” 
“permission,” “obligation,” “negation,” and so on. These sentences were reviewed by Japanese 
linguists as well. Appendix I shows sample sentences for “request.” 

Of 825 sentences, we used 746 sentences (about 90.4%) in this experiment, excluding sen- 
tences translated by exact-match of whole sentences, e.g., “arigatoo-gozaimasu (Thank you very 
much).” Since exact-match sentences are instantly translated, there is no need to accelerate 
their translation. 
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(III) If the sequence is a word and is registered in the dictionary, return as suc- 
cess; otherwise, execute (II). 
(IV) If LEVEL is the lowest, return fail; otherwise, decrement LEVEL and exe- 
cute (II). 

For example, the input sentence of Section 2.2, "kaigi no toorokuryou wa annaisho 
ni kisaisa re teimasu”  is processed as follows:   First,   “X teimasu”  is ap- 
plied to the sequence; next,  “X wa Y” is applied to the subsequence "kaigi 
no toorokuryou wa annaisho ni kisaisa re”; then, “X no Y” and “X ni Y” are 
applied; finally, “X re” is applied. 

Steps (II) to (IV) take care of syntactic ambiguity. To simplify this discussion, 
we take only a single level ambiguity into consideration. Let us study a sequence, 
“N1 no N2 ... no Ni,” where N represents a noun.6 For i=4, i.e., “A no B no C 
no D," we have five ambiguous source structures as shown in Figure 4. Similar 
kinds of ambiguous linguistic phenomena are also seen in other languages. A 
typical one is prepositional phrase attachment in English. 

 
Figure 4: Structural Ambiguity of “A no B no C no D” 

The current problem is similar to the Matrix-Chain Multiplication Problem 
(Cormen et al., 1990). Although naive implementation requires exponential 
time to the sequence length, memoizing the overlapping substructures7 in a global 
table  reduces  the  cost  to  a  cubic  time.   However,  it  is,  difficult  for a sequential 

6 the same sequence is used throughout this paper because it is highly ambiguous, but the 
size of the ambiguity is easy to control by the length. 

7 In Figure 4, the substructures for “C no D” overlap in structures (1) and (3). In the same 
way, shaded substructures overlap surrounded substructures and should be shared to avoid 
unnecessary computation through the global table for structure-sharing. 
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machine to process a highly ambiguous sentence in a minute amount of time 
which is necessary for real-time response. 

3.2.     Example-Retrieval Cost 
Example-Retrieval is slowed by two factors: structural ambiguity and the 

example database size. Structural ambiguity increases the number of Example- 
Retrieval calls; the example database size causes a problem even when the ambi- 
guity is small. We focus on the second factor because Example-Retrieval cost 
is linear to the example database size which is expected to be very 
large. Let us estimate the example database size, N, for a large-scale system. 
In the prototype system, the vocabulary size is about 1,500 and N is 12,500. As- 
suming that N is in direct proportion to the square of the vocabulary size, then 
N rapidly increases. Hereafter, we take into consideration the case N=1,000,000, 
i.e. about 9*9 times larger than that of the prototype system. In the prototype 
using a SPARCstation2, the Example-Retrieval time for an average length sen- 
tence is about 2.5 seconds. The expected time for a large vocabulary system, 
at worst, is about 200 ( = 2.5 x 1,000,000/12,500) seconds. This is clearly un- 
acceptable because achieving a real-time response that does not disturb natural 
communication with a speech-to-speech translation system would be difficult. 

4.     Acceleration Using Heterogeneous Computing 
As described in the previous section, Structure-Building and Example-Retrieval 

are dominant in Example-Based Approaches; however, they are, suitable for par- 
allel processing in their own way. We propose accelerating them using different 
parallel devices, MIMD and SIMD processors. This section explains Structure- 
Building on MIMD, Example-Retrieval on SIMD, and communication between 
them and the overall performance. 

Here, we sketch a basic distinction between MIMD and SIMD. SIMD supports 
data-parallelism where a processor is assigned to a data unit and all processors 
synchronously execute the same instruction. MIMD supports control-parallelism 
where a processor is assigned to a program unit and processors operate asyn- 
chronously and share access to a common memory. MIMD can simulate SIMD, 
but, in a less efficient way. We avoid such an inefficiency and form the optimal 
combination of these different architectures. 

4.1.     Structure-Building Acceleration on MIMD 
We explain our parallelization of Structure-Building using the sample exem- 

plified in Figure 4. The input sequence for Structure-Building is common data. 
Parallelism recurs when splitting the sequence at step (II) of the algorithm ex- 
plained in Section 3.1. At the first recurrence, the sequence “A no B no C no 
D” is split into subsequences at three different positions, i.e., between A and B 
for structures (1) and (2), between B and C for structure (3), and between C and 
D for structures (4) and (5). 

In the same way, parallelism rapidly increases when recurrence deepens and/or 
the input is long; however, the processors are finite. To manage this problem, 
first, a pool of processors are setup and a processor is dynamically assigned 
when needed. Structure-Building assigns a processor to process a subsequence 
when a processor remains; otherwise Structure-Building continues to process the 
subsequence by itself. When the processing of a subsequence is completed, the 
processor is returned to the pool and will be reused to process other subsequences. 
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Figure 5: Speedup of Structure-Building over sequential implementation 

The global table for structure-sharing is accessed by all processors; thus it 
is locked mutually exclusively when a new substructure is written in it. As the 
experimental result demonstrates, this overhead does not cancel the effect of par- 
allelization. Figure 5 is an early report on the effectiveness of our parallelization. 

4.2.     Example-Retrieval Acceleration on SIMD 

Example-Retrieval is best for SIMD because step [a], calculating the semantic 
distance, can be done by the same program independent of all data; and step 
[b], finding the minimum-distance example, can be swiftly done as a parallel 
reduction. 

Moreover, we can accelerate Example-Retrieval by virtue of our definition 
of semantic distance. TDMT utilizes the Semantic Distance Calculation 
proposed in (Sumita and Iida, 1992b) to retrieve the best-match examples. The 
semantic distance between examples and input is reduced to the distance between 
words. Each word is assigned a k-digit l-scale code, which clearly represents the 
thesaurus hierarchy. In the thesaurus (Ohno and Hamanishi, 1984) used in our 
experiment, a 3-digit decimal code is assigned. The semantic distance between 
codes is calculated according to Table 1. Exhaustive search is speeded up by an 
indexing technique that suppresses unnecessary computation. We use thesaurus 
codes as an index of the example array. According to Table 1, if CI1 ≠ CE1 
(most of the examples), we need not compute the distance because it is always 1; 
otherwise, we need to check the example in more detail to compute the distance 
between the input and the examples. 

Example-Retrieval was first extensively studied on an Associative Processor, 
then as explained below, on several high performance machines. 
Example-Retrieval Acceleration on Associative Processors An Associa- 
tive Processor is the processing element of the massively parallel machine, IXM2 
(Higuchi et al., 1991), which has shown that a large Associative Memory works 
effectively as a SIMD device for AI applications. The Associative Memory not 
only features storage operations, but also logical operations such as retrieving by 
content. 

The  first   experiment  was  conducted   on  a  single  Associative  Processor  with 

280 



1,000 examples of a single pattern (Sumita et al., 1993b). In the experiment, 
the Associative Processor outperformed several state-of-the-art high performance 
machines. 

The second experiment was conducted on 10 Associative Processors connected 
in a tree configuration, with 12,500 examples of multiple patterns (Oi et al., 
1994; Higuchi et al., 1994; Sumita et al., 1995). The algorithm implements 
Example-Retrieval by distributing examples onto multiple Associative Proces- 
sors, retrieving examples on each Associative Processor in parallel, and merging 
all results. Example-Retrieval on multiple Associative Processors exhibits clear 
scalabilty: because the time for the semantic distance calculation, step [a], does 
not increase because calculations are independently done, and the communication 
time among Associative Processors, step[b], is only a few percent of the Example- 
Retrieval time because it is controlled by the tree depth and small coefficient8, 
even if the example database size is increased by nearly two figures from the 
prototype system.9 
Example-Retrieval Acceleration on different architectures We have com- 
pared several accelerations of Example-Retrieval with bulk (100,000) examples of 
a single pattern on different architectures, i.e., sequential, MIMD and SIMD 
(Sumita et al., 1994). By doing so, generally speaking, we can find the architec- 
ture response relationship that allows us to find the most suitable architecture for 
a given response time requirement. This paper discussed four accelerating strate- 
gies that take into consideration the performance of processor M (MIPS) and 
the number of processors p, to meet a goal of 100,000 examples per millisecond.10 

The discussion is based on the results obtained for three state-of-the-art ma- 
chines; DEC alpha/7000, KSRl (KSR, 1992), and MP-2 (MasPar, 1992), which 
are representative of the three architectures - sequential, MIMD and SIMD - re- 
spectively. Strategy (1), i.e., to increase M, seems to hit a wall11 because the 
speedup slope is already very small at 200 MIPS. Strategy (2), i.e., only to in- 
crease p, cannot go beyond the overhead because the speedup slope is already 
very small at 80 processors. Strategy (3), i.e., to increase p with higher M, is 
feasible  if  the  overhead  can  be  approximately  decreased  in  inverse  proportion to 

8 The transmitted data include only the semantic distance and the locations of minimum- 
distance examples; thus, the amount is very small. 

9 The example database size, 1,000,000, is 9*9 times larger than that of prototype system. 
The number of Associative Processors required to load an example database of this size is 800 
and the tree depth is 6. 

10 Achieving this goal means that we have succeeded in accelerating Example-Retrieval to a 
sufficient speed much less than the utterance time. 

11 To attain the goal, we should have 20,000 MIPS. Increasing M to 20,000 MIPS, however, 
is hopeless because it will take considerable time as explained below. MIPS is increasing at the 
rate of about, 35% per year (Hennessy and Patterson, 1990), and we already have a 200-MIPS 
processor; thus, we can get a greater than 20,000-MIPS processor by 2010. 
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Table 1: Semantic distance between thesaurus codes. 



the increase in M.12   As of now, only strategy (4), i.e., to increase p drastically 
at the expense of M, that is, SIMD, achieves our goal. 

4.3.     Communication and Total Performance 
As explained so far, TDMT consists of Structure-Building. Example-Retrieval, 

and other processes. Structure-Building is suitable for MIMD, Example-Retrieval 
is best for SIMD, and the other processes may or may not match parallel pro- 
cessing. 

Here, we concentrate on the communication between Structure-Building and 
Example-Retrieval. If the communication cannot attain a sufficient speed, we 
should be reconciled to another choice of using MIMD for both Example-Retrieval 
and Structure-Building, abandoning the best performance of Example-Retrieval 
on SIMD. Two machines should be connected through a standard network, e.g., 
ETHERNET, FDDI, and so on. Empirical studies have clearly revealed the fol- 
lowing behavior of ETHERNET: (1)  when the size of communicated data is under 
1 K byte, the communication time is almost constant: about 10 milliseconds; (2) 
when the size is at 1 K byte, the communication time begins to increase; and (3) 
when the size is over 10 K byte, the time is proportional to the size. The size 
of data for a single Example-Retrieval call is at most tens of bytes because the 
parameters for Example-Retrieval are only the pattern and the bound words, and 
the return values of Example-Retrieval are only the semantic distance and the 
locations of minimum-distance examples. Therefore, packing multiple Example- 
Retrieval calls into a single communication whose size is under 1 K byte is the best 
solution for our purpose. Just like Structure-Building and Example-Retrieval, the 
communication depends on the ambiguity of the input. However, there is no fear 
that the communication will cause a bottleneck of a Heterogeneous TDMT be- 
cause the communication consumes only a small amount of time as shown in the 
following experiments. 

An early result of our small-scale experimental Heterogeneous TDMT is sum- 
marized in Table 2. The input is “dewa [then] kaigi [conference] wa [sub] 2 gatsu 
18 nichi [February l8th] tsumari [i.e.] raishuu [next week] no [of] getsuyoobi 
[Monday] kara [from] hajimaru [begin] ndesune [ending for confirmation],” 
one of the slowest out of our 746 test sentences. This result does not look so 
striking because for an input and example database of this size, a 4.6 times 
faster sequential machine would achieve the same result. However, our goal is 
to establish a technology scalable to a large example database and/or a highly 
ambiguous sentence. This goal is difficult to achieve by the same algorithm on a 
sequential high performance machine. For example, with a 10-times larger exam- 
ple database, the parallel Example-Retrieval time does not increase; thus, parallel 
Example-Retrieval is about 127 times faster than sequential Example-Retrieval; 
With a 100-times larger example database, the parallel Example-Retrieval time 
is multiplied by about 1 only, thus, parallel Example-Retrieval is about 276 times 
faster than sequential Example-Retrieval. 

Combining the results so far. we expect a total translation time that achieves a 
real-time response even with a highly ambiguous sentence and/or a large example 
database. 

12 The next generation of MIMD machines, or a cluster of high-performance workstations, 
will meet the requirement. Compared to KSR1, KSR2 which has 2-times faster processors, 
has performed Example-Retrieval 2-tirnes faster; however, our goal requires a 20-times faster 
performance. 
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5.     Related Research 
Speech-to-Speech Translation Challenging research on speech-to-speech trans- 
lation began in the mid-1980s. Such research has brought about several prototype 
systems (Morimoto et al., 1993; Kitano, 1991; Waibel et al., 1991; Rayner et al., 
1993; Hatazaki et al., 1992). However, no large-vocabulary system capable of 
responding in real-time has emerged. Speech-to-speech translation consists of 
three processes, i.e., speech recognition, spoken language translation and speech 
synthesis. There are two possible models for speech-to-speech translation: (1) a 
simultaneous model where processes start while overlapping each other; and (2) 
a sequential model where processes start after their preceding process completes. 
Unfortunately, state-of-the-art NLP technologies do not allow us to adopt the 
simultaneous model; thus, as we have shown in this paper each component in the 
sequential model should be accelerated as much as possible. 
Massively Parallel Natural Language Processing Up to now, some sys- 
tems using massively parallel machines in the field of natural language processing, 
such as a parsing system (Kitano and Higuchi, 1991b) and translation systems, 
e.g., ASTRAL (Kitano and Higuchi, 1991a), MBT3n (Sato, 1993b), have been 
proposed. They have demonstrated good performance; nonetheless, they differ 
from our proposal. For the first two systems, although they use Associative Pro- 
cessors, they use a different mechanism for their natural language tasks. They 
do not calculate semantic distance, but propagate markers through a semantic 
network. For the last system, it deals with a translation subproblem: translating 
not sentences, but noun phrases (technical terms). It uses a different mechanism 
based on matching and similarity on a MIMD machine. 

In contrast, our proposal deals with sentence translation not by a single archi- 
tecture, but by a Heterogeneous Computing Platform consisting of MIMD and 
SIMD machines. 

6.     Concluding Remarks 
An Example-Based Approach using Heterogeneous Computing for spoken lan- 

guage translation has been proposed. According to our previous experiments, 
the translation quality of Example-Based Approaches is good. Heterogeneous 
Computing drastically accelerates the Example-Based Approach and gives it a 
desirable scalability against vocabulary size and ambiguity size. Consequently, 
an Example-Based Approach on Heterogeneous Computing meets the vital re- 
quirements for spoken language translation by breaking through the limitations 
of conventional technologies. 

Example-Based Approach on Heterogeneous Computing has desirable features 
that will be suitable for integration with speech recognition: high accuracy, ro- 
bustness,  the  output   of  a  reliability  score,  and a quick response. Tightly coupling 
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our model and speech recognition might make real-time speech-to-speech trans- 
lation possible in the future. 

References 
Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. (1990). In- 

troduction to Algorithms. The MIT Press. 

Furuse, O. and Iida, H. (1992). “Cooperation Between Transfer and Analysis in 
Example-Based Framework”. In Proc. of COL1NG'92, pages 645 651, July. 

Furuse, O. and Iida, H. (1994). “Constituent Boundary Parsing for Example- 
Based Machine Translation”. In Proc. of COLING'9~4, August. 

Furuse, O., Sumita. E., and Iida, H. (1994). “Transfer Driven Machine Transla- 
tion Utilizing Empirical Knowledge”. Transactions of Information Processing 
Society of Japan, 35(3):414-425, March. 

Hatazaki, K., Yoshida, K., Okumura, A., Mitome, Y., Watanabe, T., Fujimoto, 
M.. and Narita, K. (1992). “A Japanese-English bidirectional automatic 
interpretation system: INTERTALKER”. In 44th convention of IPSJ , 6P-5, 
March. 

Hennessy, John L. and Patterson, David A. (1990). Computer Architecture: A 
Quantitative Approach. Morgan Kaufmann. 

Higuchi, T.. Furuya. T., Handa, K., Takahashi, N., Nishiyama, H., and Kokubu, 
A. (1991). “IXM2 : A Parallel Associative Processor”. In Proc. of the 18th 
International Symposium on Computer Architecture, May. 

Higuchi, T., Handa, K., Takahashi, N., Furuya, T., Iida, H., Sumita, E., Oi, K., 
and Kitano. H. (1994). “The IXM2 Parallel Associative Processor for AI”. 
In IEEE Computer, pages 53-63, November. 

Kitano, H. and Higuchi, T. (1991a). “High Performance Memory-Based Trans- 
lation on IXM2 Massively Parallel Associative Memory Processor”. In Proc. 
of AAAI'91, volume 1, pages 149-154, July. 

Kitano, H. and Higuchi, T. (1991b). “Massively Parallel Memory-Based Pars- 
ing”. In Proc. of IJCAI'91, pages 918-924. 

Kitano, H. (1991). “ΦDM-Dialog: An Experimental Speech-to-Speech Dialog 
Translation System”. IEEE Computer, 24(6):36-50, June. 

KSR. (1992).   KSRI Technical Summary. Kendall Square Research Corp. 

MasPar. (1992). The Design of the MasPar MP-2 A Cost Effective Massively 
Parallel Computer. MasPar Computer Corp. 

Morimoto, T., Takezawa, T.. Yato, E., Sagayama, S., Tashiro, T., Nagata, M., 
and Kurematsu. A. (1993). “ATR’s Speech Translation System: ASURA”. 
In Proc. of EUROSPEECH'93, pages 1291 1294, September. 

Nagao, M. (1984). “A Framework of a Mechanical Translation between Japanese 
and English by Analogy Principle”. In Elithorn, A. and Banerji, R., editors, 
Artificial and Human Intelligence, pages 173-180. North-Holland. 

Ohno, S. and Hamanishi, M. (1984).  Ruigo-Shin-Jiten. Kadokawa. 

284 



Oi, K., Sumita, E., Furuse, O., Iida, H., and Higuchi, T. (1994). “Real-Time 
Spoken Language Translation Using Associative Processors”. In Proc. of 4th 
ANLP, volume 1, pages 101-106, October. 

Rayner, M., Alshawi, H., Bretan, I., Carter, D., Digalakis, V., Gamback, B, Kaya, 
J., Karlgren, J., Lyberg, B., Pulman, S., Price, P., and Samuelsson, C. (1993). 
“A Speech to Speech Translation System Built from Standard Components”. 
In Proc. of the Workshop on Human Language Technology, pages 217-222. 
ARPA, March. 

Sato, S. (1991). Example-Based Machine Translation. Ph.D. thesis, Kyoto Uni- 
versity, September. 

Sato, S. (1993a). “Example-Based Translation of Technical Terms”. In Proc. of 
the TMI'93, pages 58-68, August. 

Sato, S. (1993b). “MIMD Implementation of MBT3”. In Proc. of the Work- 
shop on Parallel Processing for Artificial Intelligence, pages 28-35. IJCAI'93, 
August. 

Sobashima, Y., Furuse, O., Akamine, S., Kawai, J., and Iida, H. (1994). “A 
Bidirectional, Transfer-Driven Machine Translation System for Spoken Dia- 
logues”. In Proc. of COLING'94, August. 

Sumita, E. and Iida, H. (1992a). “Example-Based NLP Techniques - A Case 
Study of Machine Translation”. In Proc. of  Statistically-Based NLP Tech- 
niques Workshop (AAAI'92), August. 

Sumita, E. and Iida, H. (1992b). “Example-Based Transfer of Japanese Adnom- 
inal Particles into English”. IEICE TRANS. INF. & SYST., E75-D(4):585- 
594, April. 

Sumita, E., Furuse, O., and Iida, H. (1993a). “An Example-Based Disambigua- 
tion of Prepositional Phrase Attachment”. In Proc. of TM1'93, pages 80-91, 
July. 

Sumita, E., Oi, K., Furuse, O., Iida, H., Higuchi, T., Takahashi, N., and Kitano, 
H. (1993b). “Example-Based Machine Translation on Massively Parallel Pro- 
cessors”. In Proc. of IJCAI'93, volume 2. pages 1283 1288, August. 

Sumita, E., Nisiyama, N., and Iida, H. (1994). “The Relationship Between 
Architectures and Example-Retrieval Times”. In Proc. of AAAI'94, volume 1, 
pages 478-483, August. 

Sumita, E., Oi, K., Furuse, O., Iida, H., and Higuchi, T. (1995). “Example- 
Based Machine Translation using Associative Processors”. Journal of Natural 
Language Processing, 2(3). 

Waibel, A., Jain, A., McNair, A., Saito, H., Hauptmann, A., and Tebelskis, J. 
(1991). “JANUS: A Speech-to-speech Translation Using Connectionist and 
Symbolic Processing Strategies”. In Proc. of ICASSP'91, volume 2, pages 
793-796, May. 

285 



Appendix I: Sample Spoken Sentences Handled by TDMT 
Here, we show some variations of “request” sentences in our test corpus. 
• hoteru o shookai shite itadakemasuka. ⇒ Would you recommend me a hotel? 
• nittei nitsuite oshiete itadakitainodesuga. ⇒ I would like you to tell me about your 
schedule. 
• saido shorui o o-okuri negaemasuka. ⇒ Would you please send me the papers again? 
• denwa-bangoo o o-negaishimasu. ⇒ What’s your phone number, please? 
• ginkou-furikomi de o-shiharai kudasai. ⇒ Please pay by bank transfer. 
• shiryoo o okutte hoshiinodesuga. ⇒ I would like you to send me the materials. 
• o-namae o osshatte kudasai. ⇒ Could you please tell me your name? 

Appendix II: Specifications of Machines Used in the Experiments 

The feasibility of accelerating Example-Retrieval was studied by an experiment 
conducted with an IXM2, consisting of 10 Associative Processors connected in 
a trinary tree. As specified in Table 3, each Associative Processor has a 4K- 
word Associative Memory and an INMOS T801 Transputer. The Associative 
Memory is mapped into the memory space of the Transputer. A single Associative 
Processor allows 4K search/write operations in parallel. 

Table 3: Components of an Associative Processor 

•  4 K  x  40 bit Associative Memory 
•  INMOS T801 Transputer, 12.5 MIPS 
     4 serial links, 10 Mbits/sec 

 

 

The following experiments were conducted using several state-of-the-art ma- 
chines (sequential, MIMD and SIMD machines) which are shown13 in Table 4. 

Table 4: Specifications of Other Machines 

Machine                       M          p          M*p       Architecture 

DEC alpha/7000        200            1         200        Sequential 

KSR1                           40          80       3200          MIMD 

KRS2                           80          30       2400          MIMD 

MP-2                             4       8000     32000          SIMD 
 

13 All figures here are rounded off to simplify the comparison. 
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