
Partitioning Grammars and Composing Parsers

Fuliang Weng and Andreas Stolcke1
Speech Technology and Research Laboratory

SRI international,. 333 Ravenswood Ave., Menlo Pari, CA 94025
{fmiang,stolcke }@speech.sri.com

Formal and natural languages may not be homogeneous in the sense that no single style parser can do well for any languages or sublanguages. Natural languages as a whole do not belong to any of the su� classes of CFG with efficient and compact parsers. On the other hand. natural language exhibits distinct sublanguages for various phrase types. idioms. etc .• which can conveniently be described by special­ired sub-grammars in various formalisms. From a theoretical point of view. there are grammars G that lead to LR(k) parsers with sire exponential in the size of G. given by :Earley. 1968 and Ukkonen. 1982. S ➔A . ' (l S i S n) A . ➔ a .A . (1 s i *1· s n) ' J ' A; ➔ a;B; l h; (1 S i S n) B; ➔ ai8; j b; (l S i, j S n)

H we divide this grammar into n sub-grammars based on i and compile them separately, however. we can get LR(k) parsers with a polynomial size. though its recognition time canplexity increases to JfGf times of the original one. From a practical point of view. in a large parser. sublanguages may be described by pre-existing su� grammars, possibly using specialired parsing algorithms. Combining sub-grammars may also be needed to extend existing grammars in the future. Therefore. a framework for partitioning grammars and combining parsers would prove useful. The main points in this paper are: a general schema for partitioning a grammar into sub-grammars. and the combination of parsers for sub-grammars into an overall parser that yields the same parses as one for the original full grammar. Formal definitions for grammar partitioning will be presented. along with a correctness theorem. and a parser composition in the context of GLR parsing framework is presented. Given G = ("£, NT, P, S) is a CFG. P = UP; where P; n Pi = ♦, i *j and p8 E P0 • Without loss of generality. we assume in the rest of the paper that there is only one production rule with S as its LBS symbol. Definition 1 : {G; = ("£;, NT;, P;, V) }t= 0
is called a partition of G, where NT; = {LHS(p) jp e: P;J­Definition 2: Let PA = {p IP € P A LHS(p) = A}, { A IA € NT, A € RH S(p), p € Pi and PA -P; * ♦ } is called the input of G; , INPUT o . , and { A IA e: LHS(p) , p e: P; , (3j) A e: INPUT a. } is called the output of G; .

I J OUTPUTa, : for_ G0 • OUTPUT0r,has an additional element S. The INPUT is those Nfs used by a sub-grammar that were previously parsed by other sub-grammars. The OUTPUT is those Nfs that are the result of parsing by a sub-grammar and are handed on to other sub-grammars for further parsing. Definition 3: Let { G; = ("£;, NT;, P;, V) }: = 0 be a partition of G, {if; = ("£;, J«/, P;, X)l 7 = 0is called the sub-grammar set of G with respect to partition {G;f = O • where E; ="£; u {vtmA IA e: INPUT0), Nr;= NT; u {A jA E INPUT0l . P� = P; u {A ➔ vtmA IA E INPUT0/. X e: OUTPUT0i . In particular. G!= ("£ �. �. P�, S) is called the master sub-grammar. A directed calling graph for the sub-grammar set of G is defined as (V, E). where Vis the sub-grammar set and E = (A, B) • where the start symbol of sub-grammar B is in the INPUT of sub-grammar A.

1. The authors would like to thank P. Price and M. Cohen of STAR lab/SRI for their suppm. 2. It is a modified version of the virtual terminal technique used by Korenjak. 1969 and Weng. 19'J3.
271

Definition 4: A derivation of the sub-grammar set { Gf}; = 0 of G is one of the following: 1. aA� � a� if 3i such that A ➔ y E P; . 2. avtmA� � aA� if 3i such that A E O_UTPUT a . .
I Theorem 1 : A string of terminals a is derived from G iff it can be derived from the sub-grammar set { Gf}; = 0 • starting from the master sub-grammar Gg. For simplicity. we assume that G is partitioned into two subsets. a master sub-grammar G s with the start symbol S and a slave sub-grammar GA with the start symbol A. Any number of slave grammars can be accommodated with trivial modifications as long as the·calling graph between sub-grammars is a DAG. Let {A } be the output of GA and the input of Gs • and S the output of Gs . Compiling GA and Gs • ·by using a GLR(O) parser generator. we obtain four tables: a pair of Action and Goto tables for each of GA and G s . Based on (Tomita. 1986). we modify the GLR parsing process as follows: Starting parser O from its initial state and initial position of 1 in an input string of length n:

s 1 . In parser O create register(t) for the i-th word in the current input; initializ.e register(*) to cl> at the
s beginning of parsing. that is. in PARSE(G s• a1 , . . . , an) of Tomita's algorithm. 2. In the PARSEWORD(l) process of Tomita's algorithm. instead of initializing Q (a place to hold shift action) to cj, . assign to Q ihe value of register(l). that possibly stores node-state pairs (v, s) given by sub-parser(s) parser O • where v is the root node of a forest returned by parser O and s is a state that

A A parser O will go to after shifting in node v. In other words. parser O delayed this shift action until position 5i when its sub-parser gets there. s 3. When parser O reaches state s and looks at terminal t E :E at positionj of the current input. do
s normal GLR parsing using G s . 4. When parser O reaches its state s and scans positionj of the input. Action0 (s, vtmA) * cj, :
s s (a) If (reduce, i) E Action0/s, vtmA) . do it as in the normal GLR parsing by using Gs . (b) If (shift, i) E Action0 (s, vtm A) . switch the control to parser O and start the parsing process of

S A GA from the initial · state of GA and position j until accept is reached at position k s; n in the input. Hang the whole forest under A. which has vtmA as its son in the partially parsed forest created by Gs . and eliminate this vtm A . Put (shift, z) in register(k) and continue this process until parser O reaches the end of the input. then return the control to parser O . A

s With a synchronization mechanism. the DAG restriction on the calling graph for the algorithm can be removed. Compared with other work. the grammar partitioning presented here gives more freedom as to how the grammar is divided. and.can be generaliz.ed to combine parsers of different styles. This is different from Korenjak's partitioning grammars and constructing LR(k) processors, and also from Abney's chunking parser.
References S. Abney. Parsing by Chunks, In Princif!_[e-Based Parsing: Computation and Psycholinguistics, R. C. Berwick et al. (eds.) . Kluwer Academic Publishers. 1991 J. Earley. An Effi,cient Context-free Parsing Algorithm, Ph.D. Thesis. Carnegie Mellon University, Pittsburgh. PA. T968. A. Korenjak. A Practical Method for Constructing LR(k) Processors, CACM 12 (11). 1969. M. Tomita. Efficient Parsing for Natural Language, Kluwer Academic Publishers, 1986. E. Ukkonen, Lower Bounds on the Size of Deterministic Parsers, J. Computer and System Sciences 26, 153- 170. 1983. F. Weng, Handling Syntactic Extra-grammaticality. In Proceedings of the 3rd International Workshop
on Parsing Technologies. Tilburg, die Netherlands. 1993.

272

