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Abstract Among the proposals for multidimensional grammars is a family of constraint-based gram­matical frameworks, including Relational Grammars. In Relational languages, expressions are formally defined as a set of relations whose tuples are taken from an indexed set of symbols. Both bottom-up parsing and Earley-style parsing algorithms have previously been proposed for different classes of Relational languages. The Relational language class for Earley style parsing in Wittenburg (1992a} requires that each relation be a partial order. However, in some real-world domains, the relations do not naturally conform to these restrictions. In this paper I discuss motivations and methods for predictive, Earley-style parsing of multidimensional languages when the relations involved do not necessarily yield an ordering, e.g., when the relations are symmetric and/or nontransitive. The solution involves guaranteeing that a single initial start position for parsing can be associated with any member of the input set. The domains in which these issues are discussed involve incremental parsing in interfaces and off-line verification of multidimensional data. 
1 Introduction 

Relational Languages, those sets of expressions that are generable ( or recognizable) by Rela­tional Grammars, are characterized as relations on sets of symbols or , in practice, structured ob­jects (Crimi et al., 1991; Golin - Reiss, 1990; Helm - Marriott, 1986, 1990; Wittenburg et al., 1991 ;  Wittenburg, 1992a, 1992b, 1993). Senten­tial forms and elements of derivations are for­mally defined as sets of relations, each of which in turn is a set of ordered tuples, in the symbol (or object type) vocabulary set. This approach to defining multidimensional languages is com­patible with unification-based approaches since the relations can be defined in unification-based grammars as constraints. Constraint Logic Pro­gramming or other approaches that enhance the usual notion of equality as the only structural constraint on terms can be employed in order to express the more free-form constraints required in multidimensional languages (see Crimi et al., 

1991; Helm - Marriott, 1986, 1990; Wittenburg et al., 1991; Wittenburg, 1993). This approach to grammar and language definition generalizes over many other proposals for multidimensional grammars in the literature since arrays,  graphs, and specialized spatial data structures can easily be modeled as sets of relational tuples. Various parsers have been previously pro­posed for different classes of Relational languages. Bottom-up algorithms (Golin, 1991; Wittenburg et al., 1991) are the most straightforward and general, although they they are not suited to all applications. More efficient deterministic tech­niques proposed for graph grammars by Flasinski (1988; 1989) have been adapted by Ferrucci et al. (1991) to a constraint-based grammar frame­work, but the restrictions on relations and gram­mar productions make it unclear that the class of languages is widely useful. On the other hand, this algorithm has been shown to have a low poly­nomial bound on complexity. An Earley-style algorithm (Earley, 1970) has been proposed by 
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Wittenburg (1992a) for a larger class of nonde­terministic languages whose relations are partial orders. 

The limitations of these previously proposed al­gorithms have become evident in two domains for Relational Grammars under current inves­tigation: on-line incremental parsing of visual. language expressions (Wittenburg et al., 1991; Weitzman and Wittenburg,  1993) and off-line verification of multidimensional data. While bottom-up parsing may be employed, there are reasons to consider predictive parsing techiques. In the case of incremental parsing of visual lan­guages consisting of connected diagrams or geo­metric layouts, one might use predictive parsing to detect errors as soon as they occur or to offer incremental directives (e.g., the analogue of com­pletion in command input) to drawing or palette selections. However, to use deterministic algo­rithms one must use grammars that are often not expressive enough for the constraints desired. For example, no non left- or right-unique relations are allowed with the F lasinski approach and yet geo­metric layouts of objects of different sizes invari­ably include relations that, say, have two smaller objects both in some below relation to a larger ob­ject. The Earley-style algorithm of Wittenburg ( 1992a) is unsuited to incremental interface ap­plications because more flexibility in a parser's scanning order is desired than is afforded by this algorithm. Unlike with one-dimensional text, it is not easy to anticipate in a two- or n-dimensional world exactly what orderings will seem most nat­ural to users. It seems clear that for most dia­gramming languages , for example, interfaces that allow a good deal of flexibility in how users build up diagrams would be preferred over interfaces that insist that users build up diagrams in pre­specified orders that happen to conform, say, to temporal control relations that are reflected in the arcs of the diagrams; Further, many visual languages contain relations that may be symmet­ric or nontransitive, in which case the Witten­burg (1992a) -algorithm is not usable. One set of examples arises with languages whose primitives are directed line segments. Relations between line segments such as head-to-head or tail-to-tail are symmetric, precluding . the use of algorithms de­pending on the intrinsic ordering properties of the relations to direct scanning. Cycles are of �ourse 
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generally common in flowchart diagramming lan­guages to represent control loops. 
In the case of off"'.line data verification and cor­. rection, the size of the input sets involved may preclude bottom-up parsing for efficiency reasons. The following scenario from a current Bellcore ap­plication domain is an example of the problem. Suppose one is verifying that all the line segments that comprise the border of each region in a map­ping database in fact enclose that region and that any attributes of the data are in conformance. One approach is to define grammars that inde­pendently combine the line segments surround­ing each region to yield a closed polygon of some form. But blind bottom-up parsing would take each and every line segment to be the start of the polygon constituent, rebuilding it many, many times over. In geographical data sets such as the U.S. Census Bureau's Tiger database , the number of line segments representing the border of a sin­gle state typically reaches into the thousands. It is not hard to see that such a redundant algorithm would be ill-advised. Not only is it inefficient, but the problem of error detection is , at least on the face of it, made more difficult than if the pars­ing enumeration were systematically ordered and based on systematic prediction. The goal addressed in this work is to design a predictive, Earley-style algorithm for Relational Grammars without relying on the relations them­selves to provide scanning orderings. Such an algorithm allows predictive parsing methods to be employed with higher-dimensional languages whose relational graphs contain cycles, i.e., one or more of the relations are not partial orders. To design such an algorithm requires solving the problem of finding a start element for the parser to begin its predict and scan operations. The Wittenburg (1992a) algorithm uses minimal el­ements of the relations to initialize the parser at possibly multiple starting positions. The goal here is to allow the parser to start with a single arbitrary member of the input set and still guar­antee completeness. 
The remainder of this paper is structured as .fol­lows. First, as a review and refinement of work to date, a Relational Grammar formalism for prac­tical applications developed and implemented at · 
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Bellcore is summarized, followed by relevant as­
pects of Earley-style parsing from Wittenburg 
(1992a) . We then turn to the question of how to 
define a suitable subclass of Relational Grammars 
for ensuring that parsing may be initiated from 
an arbitrary starting point. An Earley-style pars­
ing algorithm and example trace are presented 
next. The conclusion includes remarks regarding 
the extensions to this work necessary to fully solve 
the problems of incremental, predictive parsing 
for higher-dimensional languages. 

2 A Relational Grammar 
Formalism 

Relational Grammars are motivated by domains 
in which the sets of objects to be generated or 
analyzed can not comfortably be represented as 
strict linear orders of symbols. Examples include 
expressions in 2-D such as mathematics notation, 
flowcharts ,  or schematic diagrams; 2-D or 3-D 
graphical layouts and displays, perhaps with time 
or additional media as added dimensions; and n­
dimensional data to be found in empirical data 
collections or various types of databases. One 
must generalize the data type of language expres­
sions from, say, one-dimensional arrays (strings) 
to 2-, or perhaps n-dimensional arrays or, more 
generally, to graphs of relations where the nodes 
represent data in unrestricted formats. Notions 
of replacement in derivations have to be gener­
alized also, and, as attested by the literature on 
array and graph grammars, there are many varia­
tions on how to define grammar productions and 
the notion of replacement ( called the embedding 
problem in the graph-grammar literature) . 

The Relational Language (RL) framework pro­
vides for an abstraction over the particular data 
structures used to hold the object sets being pro­
cessed. The grammar productions make mention 
of the relations expected to hold in the data but 
there is flexibility in choosing exactly how the 
data is represented and stored as well as the im­
plementation of how the relations are checked or 
queried. Such an approach accommodates many 
kinds of data representations, including array or 
graph structures, K-D trees, or even commercial 
databases in which indexings may be precisely 
tuned for efficiency. 

Combining input objects during the parsing 
process can be characterized neutrally through 
set operations - set union then being a very gen­
eral analog of string concatenation. It is natural 
to think of a grammar rule as providing a defini­
tion of a composite (nonterminal) object as a set 
(usually nonunary) whose type is the symbol on 
the left-hand-side of the rule and whose parts are 
the union of the parts of the objects whose types 
are the symbols on the right-hand-side of the rule. 
Derivations are defined as a sequence of replace­
ments that are headed by a type that is a root 
symbol of the grammar and terminate in a set of 
objects whose types are taken from the vocabu­
lary of terminal symbols. An important charac­
teristic of the RL approach is that derivations are 
trees, as is the case in conventional context-free 
grammars. An effect of this restriction is that no 
object may be used more than once per deriva­
tion. 

The most significant new requirement for the 
grammar formalism is that it has to provide a 
means for specifying possible combining relations 
explicitly. Specifying combining relations in Re-. 
lational Grammars is done by stating, for each el­
ement in the right-hand-side of a non-unary rule, 
what relation it has to stand in with respect to 
at least one other right-hand-side element . Oper­
ationally, a parser finds relevant input for combi- · 
nation by executing queries formed from the re­
lational constraints. 

Besides the unification-based approaches to Re­
lational Languages mentioned above, a more ef­
ficient grammar compiler has also been imple­
mented (Wittenburg, 1992b) that incorporates a 
form of "pseudo-unification" (see Tomita, 1990) . 
One may consider the pseudo-unification-based 
formalism as syntactic sugar for an underlying 
unification system. From this point of view; the 
results of this paper generalize to the full fam­
ily of extended unification-based approaches and 
thus it is not the case that we are dealing here 
with yet another special-case grammar formalism. 
Nevertheless, we will use the pseudo-unification­
based formalism in this dicussion since it is less 
verbose than the full unification-based specifica­
tion. It also of course affords the possibility that 
specialized algorithms may be found that can be 
proved more efficient than general unification. 
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Example 1 .  

(defrule (Subtree-rule example-grammar) 
(0 Subtree) 
(1 prim) 
(2 Row) 
: expanders (below 2 1 )  
: predicates ( centered-in-x 1 2) ) 

Exam pie 1 shows a defining form for a sim pie rule that states that an object of type Subtree can be composed out of two objects of type prim and Row, as long as they stand in the stated be­low and centered-in-x relations. The integers in the textual rule definition act as references to rule elements :  the left-hand-side of a rule is conven­tionally marked as b; the one or more right-hand­side elements are numbered 1 . . .  n. The backbone of this rule thus could be written as Subtree --+ prim Row. A relational constraint such as {below 2 1 )  is to be interpreted as a requirement that the object matching rule element 2 {of type Row in this case) must stand in the below relation to the object matching rule element 1 {of type prim) . During parsing, relational constraints either have the effect of generating possible candidates for rule element matches or filtering candidate matches that have been proposed. Relational constraints immediately following the keyword :expanders act as a generators. These relations must be binary, and the parser will execute a query based on these relational expressions as it explores candidates to match rule elements. For example, the query {below :?  i) would be exe­cuted when matching rule Subtree-rule in order to expand the match to the second right-hand­side element, assuming i is an index to the input matching the first right-hand-side element . We call the binary, generating relations expander re­lations, since their main role is to expand rule matches. In addition, one may include further relational constraints {of any arity) . These non­initial constraints will be executed as predicates. In Example 1 ,  (centered-in-x 1 2) is the only pred­icate. Figure 1 shows a graphical depiction of the rule in Example 1 in which composition is repre­sented as spatial enclosure. Thus one sees that the Subtree object is composed of the prim and' Row objects. The arrows represent the required spatial relations. 
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Subtree strim) 
centered-in- + below 

( Row ) 

Figure 1 :  A sim pie layout rule 
At a definitional level, the right-hand-side el­ements of RG rules are unordered - what really matters are the relational constraints, which only partially determine the order in which a parser might match the rule elements. But a parser is going to have to match rule elements in some or­der or other. In bottom-up parsing, it is possible to choose only a single ordering of the right-hand­side elements of each production. Wittenburg et al. {1991) discuss the constraints in choosing such an ordering. The following constraint , which we refer to as the connectedness constraint, must hold of an order for right-hand-side rule elements in RGs: 

Restriction 1 .  For an ordering of rhs rule ele­ments D1 . . .  Dn , there must exist at least one expander constraint between each ele­ment Dj , 1 < j ,  and an element Di where i < j .  

That is, considered as a graph with the ex­pander relations as arcs, the right-hand-side of a rule must be connected and, when ordered, each element in turn must be connected to some other element earlier in the ordering. This requirement implies that this class of Relational Grammars can generate only connected relation graphs since, for every production, we assume that there is at least one ordering that meets this condition. Since the expander constraints are going to pro­vide the parser with a query function that can find the candidates to combine with next at each step, this restriction ensures that an expander query can fire at each stage in the rule match. Once an ordering is found, a grammar compiler can place an expander or predicate expression with the first rule element in which all the argu­ments of the relational expression will be bound.1 1 Ordering the constraints in a ·grammar compiling operation as discussed here obviates the need for residuation in unification operations, the basis for the unification extensions discussed in Wittenburg (1993) .  
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In remaining examples in this section, we will as­sume that the rules are ordered as shown, and we will associate the relational constraints with the relevant rule elements rather than list them at the end of the rule definition. 
A definition useful in subsequent sections on parsing follows: 

Definition 1 .  We know, given Restriction 1 ,  that for every ordered production, an ex­pander constraint of the form ( rel x y) must exist for every ordered daughter at position j > 1 where either x or y will be grounded by matching a daughter at position j and either x or y (whichever doesn't satisfy this previous condition) is already grounded by a daughter at a position i < j. These ar­guments are defined as the to-be-bound ar­gument and the already-bound argument, respectively, at position j .  

A fundamental issue in  Relational Grammar representation is whether to allow nonterminals to appear as direct arguments to relational con­straints. The natural interpretation of a nonter­minal in such a constraint is that it is a reference to the set of input objects in its derivational yield. Let us presume a grammar having the rule in Ex­ample 1 has other rules expanding the nontermi­nal category Row in such a way that a bottom­up parser can build up a horizontally aligned set of primitive objects. Consider the effect of exe­cuting the query (below :?  i) , mentioned earlier, when parsing. If this query is executed against the original input only, it will never find a Row object since the existence of such an object is an artifact of parsing. A solution to this problem requires dynamic updating of what we call an ob­ject store, which starts out as a collection of input objects. Composite objects are introduced as the parser finds them through rule matches. A gram­mar thus must define derived nonterminal objects in terms of terminal objects. For example, if in­put data is characterized as rectangular regions (which is reasonable for many graphical applica­tions) , then composites introduced through rule matches might be defined as the summation of the rectangular regions of the rule's daughters. Including relational constraints directly on composites is reasonable when using bottom-up 

parsing, but it complicates the definition of Rela­tional Grammars as generative systems since the composition-of relation must in principle be re­versible. Further, significant problems are intro­duced for Earley-style parsing, or any other form of predictive parsing, as discussed in Wittenburg (1992a) . The alternative is to write grammars that state relational constraints only on individu­als in the input set and use feature percolation to pass up bindings of these individuals as attribute values in derivations. We will refer to this latter subclass of Relational Grammars as Atomic Re­lational Grammars (ARGs) , noting that the most significant restriction is that the arguments of re­lational constraints must be atomic. As an illustration, consider Example 2, the rule set of a flowchart grammar fragment. The root symbol for this grammar is Flowchart . 
Example 2: Flowchart Grammar. 
(defrule (flovchart flovchart-grammar) 

(0 Flovchart ( setf (in 0) 1 
(out 0) 3)  

( 1  oval) 
(2 P-block (connects-to 1 (in 2) ) )  
(3 oval ( connects-to (out 2) 3 ) ) ) )  

(defrule (conditional flovchart-grammar) 
(0 P-block (setf (in 0) 1 

(out 0) 3) ) 
(1 diamond) 
(2 P-block (Y-connects-to 1 (in 2) ) )  
( 3  circle (connects-to (out 2 )  3) 

(N-connects-to 1 3) ) )  

(defrule (basic-p-block flovchart-grammar) 
(0 P-block (setf (in 0) 1 

(out 0) 1 ) )  

( 1  rectangle) ) 

A graphical depiction of the is shown in Figure 2. A visual indication that these relations do not hold of composite sets directly can be seen as the arcs (representing relations) cross the enclosing perimeters of nonterminal objects. All relations in this example are taken as constraints on indi­vidual members of the input set . Consider, for example, the relational constraint (connects-to 1 (in 2)) appearing in rule flowchart . The first argu­ment, 1 ,  is a direct reference to a terminal object with lexical type oval. The second argument, (in 2) ,  is an indirect reference to the value of the in 
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attribute of an object of (nonterminal) type P­block . This value will be bound to a terminal ob­ject during parsing. We call the set of attributes expander attributes that appear in any of the ar­guments to expander relations in a grammar. In this grammar, in and out are the expander at­tributes. 

P-block 

in : � out: @ 

F igure 2: Graphical views of flowchart productions. 
The rules must percolate references to individ­ual members of the input as feature values from the right-hand-side of each rule to its left-hand­side. In the pseudo-unification formalism, assign­ments are made through setf forms. (We will also use forms in the text such as (attrx 0) = (attr11 i) to represent feature percolation. They are in­tended to be operationally equivalent to the setf for�s.) Unlike general attribute passing, we as­sume equality as the only relation between values in feature percolation.2 In the rule basic-p-block, one can see how the values of features in and out are linked directly to terminal input, in this case, an individual input object of lexical category rect­angle. 
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We propose the following restriction for Atomic Relational Grammar productions, whose utility will become most evident when we consider predictive parsing later in this paper: 

Restriction 2. Each production must percolate a value for every expander attribute used in the grammar. 
In the grammar of Example 2 we can see that this condition is met since in and out are the only expander attributes used in the grammar and every production associates the value of each of these attributes in its left-hand-side with some value on its right-hand-side. 

F igure 3: A derivation . 
A derivation tree is shown in Figure 3 .  The input set is indicated as filled shapes indexed by integers representing binary numbers . Relations between input elements are graphed as arcs. The derivation tree ( omitting ordering of daughter el­ements) is shown through the convention of spa­tial enclosure with dominating nonterminals rep­resented as enclosing rounded rectangles. 

3 Earley-style Parsing for 
Partial Orderings 

Wittenburg (1992a) proposes a subclass of Atomic Relational Grammars amenable to Earley-style parsing. The class is called Fringe Relational Grammars (FRGs), where fringes are defined to be the minimal and maximal elements of Relational language expressions. The defini­tion of Fringe Relational Grammars guarantees that any expression generable by the grammar 2This restriction to equality is significant only for expander attributes in percolation statements. The grammar for­malism supports the use of additional features whose values may be tied to arbitrary computation using other features. 
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can be (partially) ordered. The motivation for such a requirement is that if we can partially or­der the input, then starting positions can be de­fined as the minimal elements and the parser can be given a partial order for scanning the input . This is a summary of the restrictions on Atomic Relational Grammars that define the Fringe Relational Grammar subclass. 
Restriction 3. Each relation used in an ex-pander constraint in the grammar must in­dependently be a partial order. 
Restriction 4. For each expander relation used in the grammar, a pair of minimal/maximal expander attributes must be declared and every production must percolate values to these attributes in a manner that retains the partial orderings. 
Restriction 5. Each production in the grammar must have an ordering variant of its right­hand-side such that ,  for each expander at­tribute, the right-hand-side element perco­lating the value to that expander attribute appears first . 

■ 

l 

l 
■ ---► ■ ---► ■ 

■ = id ♦ = above _. = left-of 

.-..-.. 

Figure 4. An expression in L(FRG-gram) 
The rule set in Example 3 for the grammar we'll call FRG-gram generates Relational lan­guage expressions such as that graphed in Figure 4. 

Example 3: FRG-gram rule set . 
(defrule (S-rule FRG-gram) 

(0 S (setf (above-min 0) (above-min 1 )  
(above-max 0) (above-max 1 )  
(left-of-min 0) (left-of-min 1 )  
(left-of-max 0) (left-of-max 1 ) ) )  

( 1  Subtree) ) 

(defrule (Subtree-rule FRG-gram) 
(0 Subtree (setf (above-min 0) 1 

( 1  id) 
(2 Row) 
: expanders 

(above-max 0) (above-max 2) 
(left-of-min 0) 1 
(left-of-max 0) 1 ) )  

(above 1 (above-min 2) ) ) )  

(defrule (Row-rule FRG-gram) 
(0 Row (setf (above-min 0) (above-min 2) 

(above-max 0) (above-max 2) 
(left-of-min 0) (left-of-min 1) 
(left-of-max 0) (left-of-max 3) ) )  

( 1  Subtree) 
(2 Subtree) 
(3 Subtree) 
: expanders 
(left-of (left-of-max 1 ) (1eft-of-min 2) ) 
(left-of (left-of-max 2) (left-of-max 3) ) )  

(defrule (Basic-subtree FRG-gram) 
(0 Subtree ( setf (above-min 0) 1 

(above-max 0) 1 
(left-of-min 0) 1 
(left-of-max 0) 1 ) )  

( 1  id) ) 

The left-of relation is used to compose hori­zontally aligned rows via topmost elements and 
above is used to vertically align mother elements with daughter rows via the daughter element at the row's center. It is easy to see that both the left-of and above relations can be defined such that they indepen­dently will be partial orders on any input. This takes care of Restriction 3 for FRGs. As for the Restriction 4, note how each production sets the value of all four expander attributes above-min, 
above-max, left-of-min, and left-of-max in its left­hand-side category. The linkings that are defined in all cases are consistent with the partial order­ings that the relations induce on the right-hand­sides of each rule. In order to meet Restriction 5 ,  
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we must spawn ordering variants for some of the rules . Table 1 summarizes such an expanded rule­set that can be generated automatically. Each ordering variant is indicated by rule name and right-hand-side sequence as defined in Example 3 .  From Table 1 we can see that three rule vari­ants would need to be added over the orderings implicit in the base grammar of Example 3 .  Such a table is used on-line in the parsing algorithm in order to provide a mapping from expander at­tributes (used in prediction) to rule variants that percolate ( or bind) that expander attribute first . 
Table 1 :  Expanded FRG-gram ruleset 

Rule Expander RHS 
Attribute Ordering S-rule all <1> Subtree-rule above-min < 1, 2> above-max <2, 1>  left-of-min <1, 2> left-of-max <1, 2> Row-rule above-min <2, 1, 3>  above-max <2, 1, 3>  left-of-min <1, 2, 3>  left-of-max <3, 2, 1>  Basic-su btree all <1> 

The intuitive idea of the parsing algorithm is as follows. The parser is initialized in Earley style with dotted productions expanding root symbols of the grammar at each of the minimal elements of the input. Extended predict, scan, and complete steps carry over from Earley 's algorithm, so the parser will build up item sets through enumer­ations of the nodes of the input relation graph originating at the minimal nodes. Note that no matter where the parser starts in the input, a suc­cessful derivation starting from that position will have to visit all the nodes of the input graph at least once . The main goal in designing the algo­rithm is to minimize the number of enumerations while still ensuring completeness. When two or more enumeration sequences converge, the algo­rithm is able to detect when a prediction has been made before so that the same prediction ( and all items that ensue) don't have to be re-created. In order to be able to absorb the products of a previ­ous prediction into a converging enumeration se­quence, a fourth step has to be added to Earley 's 
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predict, scan, and complete . It is called inverse­complete . Where complete is given an inactive state and asked to extend active states that end where the inactive state starts, inverse-complete is given an active state and tries to extend it with any inactive states that start where the active state ends . As suggested in the concluding remarks of Wittenburg ( 1992a), there is still research to be done to minimize enumeration sequences further. One strategy is look for ways of reducing the num­ber of requisite start points. While we address a different problem in the remainder of this paper, the solution is relevant to this question since the parser need only initialize its search at a single . position. 
4 Preliminaries to a Parser 

Here we present the preliminaries necessary to de­fine an Earley-style algorithm for Atomic Rela­tional Grammars that can be initialized from any start element. As is discussed in the concluding remarks, the parsing algorithm solves only part of the problem for defining incremental, predic­tive parsing for Relational Grammars, but it is of interest in its own right. We begin with the following observations. 
The existence of an Earley predictive state (an active state that covers no input) in a parse ta­ble implies that a derivation headed by the non­terminal on the left-hand-side of the dotted rule may "begin" at that positional index . A scan­ning action is valid, given some positional index, only if the terminal symbol at that position is a valid left-corner of a possible derivation subtree predicted to start at that index. For a parser to adquately predict top-down expansions of the grammar's root symbol from any position in the input and only that position, it follows that ev­ery element of any parsable input sets must be a possible left-corner of a valid derivation tree headed by the root symbol . As a condition on a grammar, this implies that for every nonter­minal, there must be variants of any production expanding that nonterminal such that any mem­ber of its terminal yield can be ordered first in the production's right-hand-side. Part of our proposal then is to require order-
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ing variants of the right-hand-sides of every pro­duction so that every rhs-element appears first in at least one variant . It is not hard to see that such a mechanism carried through will satisfy the any-start requirement . Intuitively, if for any lo­cal subtree in a derivation admitted by the base grammar, there exists another derivation subtree reordered such that an arbitrary rhs-element ap­pears first, then, by induction, any derivation tree can be transformed by a series of local reorderings such that an arbitrary terminal node appears as a left-corner in at least one (other) derivation tree. 
Then there is the question of remaining order­ing variations once a parser has chosen a start position. Note here that it is not a requirement that once the parser has chosen its first element, that the next choice for scanning may arbitrarily be any of the remaining input elements. A nat­ural requisite for ordering variants once the algo­rithm has been initialized at a start position is to allow for any variations of input elements that are connected through some relation to the input already scanned. Such an approach would be con­sistent with the parsing algorithms discussed pre­viously since queries formed from relational con­straints could serve as the basis for expanding rule matches. To fully realize even this set of order­ing variations would require extensions beyond the scope of the present paper, however. Here we concentrate on the problem of an arbitrary starting point and choose to direct the parser to scan remaining input nondeterministically in or­ders (not necessarily all orders) consistent with the connectedness constraint just mentioned. A simple extension allows for all connected ordering variations within local rules. In Wittenburg ( 1992a) , the predict subrou­tine makes use of the function F-permute to find all candidate rules for prediction. This function maps from an expander attribute and a predicted nonterminal to rule variants appropriately or­dered that can expand that nonterminal. Appro­priately ordered here implies that the production can provide a possible percolation path such that , as the left-branch of an eventual derivation sub­tree bottoms out , terminal elements scanned at that position can ground the expander attribute used in prediction. Such a mapping is extracted from what was called an F-permute table, as ex­emplified in Table 1 .  To get an intuitive grasp 

of this relationship of percolation paths and pre­diction, which will be carried over here, consider again the input in Figure 3 with the grammar in Example 2. Assume that an Earley-style parser has scanned the topmost oval, indexed as 1 in the figure. This would imply the existence of an item that incorporated a dotted production of rule Flowchart , repeated here. 
[flowchart-1 : Flow -> start . P-block end] 

(0 Flowchart ( setf (in 0) 1 
(out 0) 3) 

( 1  oval) 
(2 P-block ( connects-to 1 (in 2) ) )  
(3 oval (connects-to (out 2 )  3) ) 

Note now that the expander constraint (connects-to 1 (in 2)) is of relevance in predict­ing the next input to be scanned. Given just this item, only those input elements that are candi­dates to bind the in attribute of a P-block con­stituent need be considered. In particular, we need not consider ordering variants of P-block rules in which the initial right-hand-side element cannot serve to bind this attribute. These obser­vations lead us to the following definition. 
Definition 2. A triple < N, attr, P > , N a  non-terminal category, 'attr' an expander at­tribute, and P an ordered production of Atomic Relational Grammar g is in the starts-by-binding relation iff the left-hand­side category of P = N and there exists a feature assignment statement of the form (attr 0) = 1 or (attr 0) = (attr' 1) in P. 

The starts-by-binding relation forms the ba­sis for precompiling a Prediction Table. A rule variant in the table indexed by some nontermi­nal category X and some expander attribute attr implies that the production expands nonterminal 
X and that there is an assignment of the form (attr 0) = . . . 1 . . .  in the feature percolations of that production, i .e . ,  the cover of the first right­hand-side element grounds attr if it is a terminal or it carries an attribute whose value is linked to attr if it is a nonterminal. The derivation of a table representing this re­lation is in two steps. We first generate rule or­dering variants. Here we assume an algorithm that , for each production, forms one. ordering variant per right-hand-side element such that the 
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right-hand-side element is ordered first. Ordering the remaining elements is done arbitrarily sub­ject to the connectedness condition in Restriction 1 .  3 Step two generates a table representing the starts-by-binding relation in the grammar and, in addition , we include in the table the special "at­tribute" start, whose entry includes a set of rule variants such that for each production expand­ing that nonterminal category, there is at least one variant ordering each right-hand-side element first, regardless of feature percolations. Example 4 shows the Atomic Relational Grammar appearing previously in Example 2 with the addition of named ordering variants for non-unary productions. 
Example 4: Extended Flowchart grammar. 
(defbaserule (flowchart flowchart-grammar) 

(0 Flowcart ( setf ( in 0) (in 1 )  
(out 0) (out 3) ) )  

( 1  start) 
(2 P-block) 
(3  end) 
: expanders 
(connects-to (out 1) ( in 2) ) 

(connects-to (out 2) (in 3) ) )  

Ordering variants : 
flowchart-1  <1 , 2 ,  3> 
flowchart-2 <3 , 2 ,  1> 
flowchart-3 <2 , 1 ,  3> 

(defbaserule (conditional flowchart-grammar) 
(0 P-block (setf ( in 0) (in 1 )  

(out 0) (out 3) ) )  
( 1  decision) 
(2  P-block ) 
(3 junction) 
: expanders 
(Y-connects-to (out 1) (in 2) ) 
( connects-to (out 2) (in 3) ) 
: predicates 
(N-connects-to (out 1 )  (in 3) ) )  

Ordering variants :  
conditional-1 <1 , 2 ,  3> 
conditional-2 <3 , 2 ,  1> 
conditional-3 <2 , 1 ,  3> 

(defrule (basic-p-block flowchart-grammar) 
(0 P-block ( setf ( in 0) (in 1 )  

(out 0) (out 1 ) ) )  
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( 1  procedure) )  

Table 2: Flowchart-grammar Prediction Table Nonterm Expander Production Attribute Variant Flow in flowchart-I out flowchart-2 start flowchart-I flowchart-2 flowchart-3 P-block in conditional-I basic-p-block out con di tional-2 basic-p-block start conditional-I conditional-2 conditional-3 basic-p-block 
Table 2 shows a Prediction Table for the gram­mar in Example 4. We assume the existence of a function starts-by-binding(N, A) that for some Atomic Relational Grammar g . returns the set of production variants in the Prediction Table at nonterminal N an.cl attribute A. 

Definition 3. The first-attrs of an ordered pro­duction p in Atomic Relational Grammar g is { attrx } I there exists an assignment state­ment (attry 0) = ( attrx 1) in p where attrx ,y are expander attributes. 
For example, the first-attrs of ordered pro­duction conditional- I is the set {in}. The first­attrs of ordered production basic-p-block is the set {in out} . The first-attrs of a production are those expander attributes associated with the first rhs element of a production that provide bindings for expander attributes in the left-hand­side. They are used in the recursive predict step of the Earley-style algorithm to follow. 

5 Earley-style 
for ARGs 

Recognition 

We now turn to an Earley-style algorithm for the full class of Atomic Relational Grammars in 3If a scanning algorithm is desired that will allow for all orderings consistent with Restriction 1, then more variants can simply be produced here. 
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which the starting position is arbitrary. We will summarize the essential points here, and confine our attention to a recognition algorithm. 
Definition 4. A multidimensional multiset (md-set) is an n-tuple (I, R1 . . .  Rn ) such that R1 . . .  Rn are binary relations on the multi­set /. 

Even though R1 . . •  Rn may in general be n­ary, expander relations must be binary and that is all we will concern ourselves with here. 
Definition 5. An indexed md-set C is an md­set (I, R1 . . .  Rn ) and a one-to-one and onto function from the set of integers 1 . . .  II I  to members of /. 

Now we define the states, or items, used in a parse table given an indexed md-set C. Inactive states are representative of completely matched rules and thus they include a category as well as the feature values assocated with the rule's left­hand-side. 
Definition 6. Inactive states relative to an in­dexed md-set C are a triple [cat, f, c] where cat is a nonterminal or terminal symbol, f is a vector of features ( especially, expander attributes with values in C) ,  and c is a logi­cal bit vector representing a subset of C ( the state's terminal yield, or cover) .  

Inactive states will be  indexed in the parse ta­ble by every binding of an expander attribute in f (all of which must be individuals in C) .  In­tuitively, we consider inactive states to begin as well as end at every terminal that is bound by an expander attribute. However, this parser doesn't make the distinction between beginning and end­ing so we need only a single indexing array. We next turn to active states, which represent partially matched or unmatched rules. We as­sume the Earley algorithm convention of a set of dotted productions, with the dot representing a position in the ordered right-hand-side elements. 
Definition 7. Active states are a triple 

[p, i, (d1 . . .  dn )] where p is a production; 

i, the Earley positional dot , is an inte­ger ranging from 1 to the length of the right-hand-side of p representing the next daughter to match; and (d1 . . .  dn ) is an or­dered list of pointers to inactive states of daughters matched so far. 
The cover, or terminal yield, of an active state is derivable from the covers of the inactive states that have already been matched. 

Definition 8. The cover of an active state 
[p, i, (d1 . . .  dn )] is defined to be the union of the covers of the inactive states (d1 . . .  dn ) -

As with inactive states, active states are in­dexed by individual members of C. The intuition is that active states are indexed by individuals in the input that are candidates to be used in the next advancement of that active state. For any daughters but the first , one can make use of the expander constraint at that positional dot to find such candidates. For active states that have not yet matched any daughters, their input indices are derived from higher predictions, ini­tialized with the input element at the starting position.4 

The following definition is useful in the recur­sive predict step of the Earley-style algorithm. It is necessary to pick out the expander attributes that can acquire bindings through matching the next daughter. 
Definition 9. The to-be-bound-attrs of an ac­tive state s = [p, i, (d1 . . .  dn)] are defined to be first-attrs(p) if i = 1 ,  else {attrx } where attrx is the attribute of the to-be-bound ar­gument of the expander constraint at posi­tion i .  

Agenda items are defined next. 
Definition 10. An agenda item is a pair [state, keys] where state is an active or inac­tive state and keys is a set of state indices (individuals in an indexed multidimensional set C ) .  4In Wittenburg e t  al. { 1991), active states were indexed by the already-bound argument. The change is necessary to make indexing of predictive states (which have no cover, and thus no bound argument) consistent with the indexing of other active states. 
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Agenda items represent states and their in­

dices relative to some input. As in chart parsing, 
the agenda will hold a list of items to be poten­
tially added to the parse table. There is flexibil­
ity in its management. Here we assume a FIFO 
queue. 

Procedure 1 .  Advance (a-state , i-state , 
a-index) 

Input: An active-state a-state = 
[p, i, ( d1 , . . .  dn)] , and an inactive-state 
i-state = [cat, f, c] .5 

Output : A list of agenda items, possibly 
null, that are the result of advancing 
a-state with i-state. 

Method: 

Case 1: If i = length of rhs of p (new 
state will be inactive) , then let c' = 
union-covers( ( d1 . . .  dn) ,  c) and let f' 
= percolate(p, (d1 . . .  dn) ,  c, !). Re-
turn an agenda item [i - state' = 
[cat' ,  f' ,  c'] , keys] where cat' = lhs of 
p and keys is the list of inactive state 
indices of i-state'. 

Case 2: (New state will be active.) Let a­
state' = [p, i + 1 , c' = (d1 , . . .  dn , c)] . 
Let e = expander-at-position(p, i + 1 ) .  
Let q = query(expander, c' , Q) . If q 
is non-null, return an agenda item 
[a - state' , q] . 

The advance procedure is called by scan, com­
plete, and inverse-complete, to be defined shortly. 
As we have pointed out , active states are indexed 
at an element in the terminal yield of any poten­
tial next daughters to be matched (rather than 
the last one to have been matched) , so they will 
be added to the parse table only if some tuple 
in the required relation can be shown to exist 
in the input . This question is satisfied by the 
query( expander, c' , Q) form. Here we assume 
that given an expander constraint and the daugh­
ters matched so far, a subroutine can dereference 
the arguments to the expander constraint, bind­
ing the already-bound one, and then execute a 
query that will return the members of the input 
that can bind the to-be-bound argument. 
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Algorithm 1 .  Membership in .L(ARG) 

Input: An Atomic Relational Grammar = g, an · 
indexed multidimensional set C, and a start­
ing element q that is an arbitrary member 
of C .  

Output: A parse table of  state sets Si . 

Auxiliary data structures: 

Agenda: a FIFO list of states to process, 
initially null. 

lnit-states: the set of starting predictive 
states, initialized as follows: For every 
p in starts-by-binding(S, start) ,  add a 
state [p, 1 ,  null] to init-states. For ev­
ery state s = [p' , 1 ,  null] in init-states, 
if the rhs symbol X at rhs position 1 
of p' . is a nonterminal, then let init­
states = union(init-states, starts-by­
binding( X, start) ) .  

Parse table: a hash table of  state sets Sj , 
where j is an. index to individuals in C. 

Method: We initialize as follows: 

• For every . s in init-states, add an 
agenda item [s, {q}] to the Agenda. 

• Until Agenda is empty, do: 

- Remove one item = [state, keys] 
from Agenda. 

- For k in keys, ifan equivalent state 
is not already at Sk , add state at 
Sk . Then do: 
Scanner: If state = [p, i, ( d1 . . .  

dn )] at k is active and the rhs 
symbol x at position i of p is 
terminal, if the terminal sym­
bol of input item = y at k 
matches x and k does not in­
tersect cover( state) , then add 
any item in advance(state, .y ,  
k) to Agenda. 5 A variant of this procedure must also accommodate input items from C directly in place of the inactive-state ar­gument when called by the scan procedure. It is straightforward to form a (transient) inactive state from an input item. 
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Predictor: If state = [p, i, (d1 . . . dn)] is active and the rhs symbol X at position i of p is a nonterminal, then for every attribute a in to­be-bound-attrs(state), for ev­ery production p' in starts­by-binding(X, a) , add item [state' = [p', 1, null], k] to Agenda. 
Completer: If state = [cat, f, c] is inactive, then for every a-state = [p, i, (d1 . . .  dn)] in union ( S k , ini t - states), if cat matches the rhs symbol at position i of p, the intersec­tion of c and cover( a-state) is null, and k satisfies the ex­pander constraint at position i of p, then add any item in advance( a-state, state, k) to Agenda. 
Inverse-completer: If state 

[p, i, (d1 . . .  dn)] is active, then for every i-state = [cat, f, c'] at 
S k, if cat matches the symbol at position i of p, the inter­section of cover( state) and c' is null, and k satisfies the ex­pander constraint at position i of p, then add any item in advance( a-state, state, k) to Agenda. 

• If there is an inactive state of the form [X, f, u) in the parse table such that X 
= root-category of g and u = C, then succeed. Else fail. 

6 Parse trace 

The following trace of a parsing run uses the grammar from Example 4 together with the input shown in Figure 3. This trace picks the rectan­gle, indexed as 4, as the start element. Each step of the trace represents a state added to the table and includes the following information: 
• <rule> or <category / feature vector>, 
• <cover>, <indices>, and 

• <source>. 
Active and predictive states show the rule-name and dotted production in the form [<rule-name> :  <dotted-rule>). Inactive state categories and fea­ture vectors are shown as #S( <cat> :<feat-1> <val-1> . . .  :<feat-n> <val-n> ). The <cover> is shown as an integer representing a logical bit vector. For example, 15 represents the logical bit vector 1111, which in turn is the union of items indexed with integers 1, 2, 4, and 8. <Indices> is a tist of input covers by which the inactive or active state is indexed in the parse table. The <source> information explains which subroutine produced the state. 

1. [flowchart-2: F low -> . P-block start end), 0, ( 4), init. 
2. [flowchart-3 : Flow -> . end P-block start], 0, ( 4), init. 
3. [flowchart-I :  Flow -> . start P-block end), 0, ( 4), init. 
4. [conditional- ! :  P-block -> . decision P­block junction), 0, ( 4), init. 
5. [conditional-3 : P-block -> . junction P­block decision), 0, ( 4), init. 
6. [conditional-2 : P-block -> . P-block deci­sion junction), 0, (4), init. 
7. [basic-p-block : P-block -> . procedure], 0, ( 4), init. 
8. #S(P-block :in 4 :out 4), 4, ( 4), scan 7. 
9. [conditional-2: P-block -> P-block . deci­sion junction], 4, (2), complete 6 with 8. 

10. [conditional-2: P-block -> P-block decision . junction), 6, (8), scan 9. 
11. #S(P-block :in 2 :out 8), 14, (8 2), scan 10. 
12. [flowchart-2: Flow -> P-block . start end), 14, (1), complete 1 with 11. 
13. [flowchart-2: F low -> P-block start . end], 15, (16), scan 12. 
14. #S(Flow :in 1 :out 16), 3 1, (16 1), scan 13. 
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7 Conclusion 

The algorithm presented here is the first predic­tive , Earley-style algorithm that we know of for the full class of Atomic · Relational Grammars. This class of grammars appears to be widely use­ful and is easily implemented through unification­based approaches; more specialized implementa­tions closer in spirit to attribute grammars are also afforded. The primary problem addressed here is allowing for initialization at an arbit.rary starting position in the input. The solution to this problem should carry over to other predictive parsers for multidimensional grammars as, for ex­ample, extended LR algorithms (see Costagliola et al. , 1991). Although the Earley-style algorithm presented here is of interest in its own right, there are re­maining issues in exploring incremental, predic­tive parsing of visual language interfaces. To carry out the goal of providing an analogue of command completion in visual language inter­faces requires at least two extensions beyond the work reported on here. F irst , more variations in scanning order are likely to be desired than what can be provided for here. Note that with the cur­rent algorithm, the ordering variants relative to a single global scanning order are restricted to local permutations within rules. What may be desired is the multidimensional analogue of pre­dictive parsing of free-word-order languages that can scramble not only within grammatical con­stituents but also across constituents (subject to the connectness constraint). Further, algorithms more akin to island-based parsing (from a single island out) are likely to be preferable for interface parsing than the Earley-style algorithm presented here. Note that by following all permitted scan­ning orders reachable from a given start position, the Earley-style algorithm expands multiple is­lands in parallel, each of which may cover only part of the input globally processed so far. Finally, a few short remarks on related lit-
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erature. In the theoretical graph grammar lit­erature, there have been recent results suggest­ing a natural class . for a useful and general class of graph grammars, namely, context-free hyper­graph grammars of bounded degree (Englefreit ,  1992). An interesting line of research would be to investigate the relationship between Atomic Re­lational Grammars and Hypergraph grammars. The role of features and percolation in Atomic Relational Grammars seems to be quite similar to hyperedges and hyperedge replacement in Hyper­graph Grammars. Elsewhere in the graph gram­mar literature, an active chart parsing algorithm for flowgraphs has been proposed (Lutz , 1989; Wills 1990) that is related to the parsing algo­rithm discussed here and· in Wittenburg et al. ( 1991). Again, the exact relationship between flowgraphs and Atomic Relational Languages is worthy of investigation. The most closely related parsing algorithms from the visual language literature are to be found in Tomita (1990) and Costagliola - Chang (1991) , both of which extend Earley-style parsing into multidimensional domains. Although there is commonality at the level of parsing subroutines, indexing methods differ substantively. These dif­ferences arise in part because of different assump­tions regarding the nature of the input and the allowable relations. Both these other proposals assume that the input is held in a grid of some kind with elements of equal size. Relations are defined accordingly. There are no such assump­tions here. 
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