
Increasing the Applicability of LR Parsing

Mark-Jan Nederhof * Janos J. Sarbo

University of Nijmegen, Department of Computer Science
Toernooiveld, 6525 ED Nijmegen, The Netherlands

E-mail: { markj an , j anos }©cs . kun . nl

Abstract
In this paper we describe a phenomenon
present in some context-free grammars, called
hidden left recursion. We show that ordinary
LR parsing according to hidden left-recursive
grammars is not possible and we indicate a
range of solutions to this problem. One of
these solutions is a new parsing technique,
which is a variant of traditional LR parsing.
This new parsing technique can be used both
with and without lookahead and the nondeter­
minism can be realized using backtracking or
using a graph-structured stack.

1 Introduction .
The class of LR parsing strategies constitutes
one of the strongest and most efficient classes
of parsing strategies for context-free gram­
mars. LR parsing is commonly used in com­
pilers as well as in systems for the processing
of natural language.

Deterministic LR parsing with lookahead
of k symbols is possible for LR(k) gram­
mars. Deterministic parsing according to
grammars which are not LR(k) can in some
cases be achieved with some disambiguating
techniques. (Important progress in this field
has been reported by Thorup (1992)) . How­
ever, these techniques are not powerful enough
to handle practical grammars for e.g. natural
languages.

If we consider LR parsing tables in which
an entry may contain multiple actions, then
we obtain nondeterministic LR parsing. We • Supported by the Dutch Organisation for Scientific Research (NWO), under grant 00-62-518

will refer to realizations of nondeterministic
LR parsing as generalized LR parsing. The
most straightforward way to obtain general­
jzed LR parsing is by using backtracking (Nils­
son, 1986) .

A more efficient kind of generalized LR pars­
ing has been proposed by Tomita (1986) . The
essence of this approach is that multiple parses
are processed simultaneously. Where possi­
ble, the computation processing two or more
parses is shared. This is accomplished by us­
ing a graph-structured stack.

Although generalized LR parsing can handle
a large class of grammars, there is one phe­
nomenon which it cannot handle, viz. hidden
left recursion. Hidden left recursion, defined
at the end of this section, occurs very often in
grammars for natural languages.

A solution for handling hidden left-recursive
grammars using Tomita's algorithm was pro­
posed by Nozohoor-Farshi (1989) . In that
paper, the ordinary acyclic graph-structured
stack is generalized to .allow cycles. The re­
·sulting parsing technique is largely equivalent
to a parsing technique which follows from a
construction defined earlier by Lang (1974) ,
which makes use of a parse matrix. As a con­
sequence, termination of the parsing process
is always guaranteed. This means that hidden
left-recursive grammars and even cyclic gram­
mars can be handled.

However, cyclic graph-structured stacks
may complicate garbage collection and cannot
be realized using memo-functions (Leermakers
et al. , 1992) . Tomita's algorithm furthermore
becomes very complicated in the case of aug­
mented context-free grammar (e.g. attribute
grammar, affix grammar, definite clause gram-

187

188

mar, etc .) . In this case, different subparses
almost always have different attribute values
(or affix values, variable instantiations, etc.)
and therefore sharing of the computation of
context-free parsing would obstruct the cor­
rect computation of these values (Nederhof -
Sarbo, 1993a) .

In this paper we discuss an alternative ap­
proach of adapting the (generalized) LR pars­
ing technique to hidden left-recursive gram­
mars.

Our approach can be roughly described as
follows. Reductions with epsilon rules are no
longer performed. Instead, a reduction with
some non-epsilon rule does not have to pop
all the members in the right-hand side off
the stack; only those which do not derive the
empty string must be popped, for others it is
optional. The definition of the closure func­
tion for sets of items is changed accordingly.
Our approach requires the inspection of the
parse stack upon reduction in order to avoid
incorrect parses.

The structure of this paper is as follows.
In the next section we give an introduction
to the problem of LR parsing according to
hidden left-recursive grammars. We give two
naive ways of solving this problem by first
transforming the grammar before constructing
the (nondeterministic) LR automaton. (These
methods are naive because the transforma­
tions lead to larger grammars and therefore
to much larger ·1R automata.) We then show
how the first of these transformations can be
incorporated into the construction of LR au­
tomata, which results in parsers with a fewer
number of states. We also outline an approach
of adapting the LR technique to cyclic gram­
mars.

In Section 3 we prove the correctness of
our new parsing technique, called t:-LR pars­
ing. Efficient generation of t:-LR parsers is dis­
cussed in Section 4. We conclude in Section 5
by giving some results on the comparison be­
tween the number of states of various LR and
t:-LR parsers.

We would like to stress beforehand that
grammars with nontrivial hidden left recur­
sion can never be handled using deterministic
LR parsing (Section 2.5) , so that most of the
discussion in this paper is not applicable to

NEDERHOF - SARBO

deterministic LR parsing. We therefore, con­
trary to custom, use the term "LR parsing" for generalized LR parsing, which can at will be
realized using backtracking (possibly in combi­
nation with memo-functions) or using acyclic
graph-structured stacks. Where we deal with deterministic LR parsing, this is indicated ex­
plicitly.

The notation used in the sequel is for the
most part standard and is summarized below.

A context-free grammar G = (T, N, P, S)
consists of two finite disjoint sets N and T
of nonterminals and terminals, respectively, a
start symbol S E N , and a finite set of rules
P. Every rule has the form A � a, where the
left-hand side (lhs) A is an element from N
and the right-hand side (rhs) a is an element
from V * , where V denotes (NUT) . P can also
be seen as a relation on N x V * .

We use symbols A, B , C, . . . to range over N, symbols X, Y, Z to range over V, symbols
a, /3, ,, . . . to range over V * , and v, w, x, . . . to
range over T*. We let t: denote the empty
string. A rule of the form A � € is called
an epsilon rule.

The relation P is extended to a relation E+
on V * x V * as usual. We write � for E+ when G is obvious . . The transitive closure of � is de­
noted by � + and the reflexive and transitive
closure is denoted by � * .

We define: B L A if and only if A � Ba for
some a. The transitive closure of L is denoted
by L + .

We distinguish between two cases of left re­
cursion. The most simple case, which we call plain left recursion, occurs if there is a nonter­
minal A such that A L + A. The other case,
which we call hidden left recursion, occurs if A � Ba, B �* t=, and a �* A/3, for some A,
B, a, and /3; the left recursion is "hidden" by
the empty-generating nonterminal. (An equiv­
alent definition of hidden left recursion is due
to Leermakers et al. (1992) .)

A grammar is said to be cyclic i f A � + A
for some nonterminal A.

A nonterminal A is said to be nonfalse if A �* €. A nonterminal A is called a predicate
if it is nonfalse and A � * v only for v = t:. 1

1 The terms "nonfalse" and "predicate" seem to

INCREASING THE APPLICAB IL ITY OF LR PARSING 189

We call a non terminal A reachable if S � *
aA.B for some a and ,B. We call a grammar reduced if every nonterminal is reachable and
derives some terminal string. Where we give
a transformation between context-free gram­
mars, we tacitly assume that the input gram­
mars are reduced and for these grammars the
output grammars are guaranteed also to be re­
duced.

2 Hidden left recursion
and LR parsing

The simplest nontrivial case of hidden left re­
cursion is the grammar G1 given by the fol­
lowing rules.

A A � BAc
� a

B �
B

b

In this grammar, non terminal A is left­
recursive. This fact is hidden by the pres­
ence of a nonfalse nonterminal B in the rule
A � BAc. Note that this grammar is ambigu­
ous, as illustrated in Figure l . This is typically
so in the case where the one or more nonfalse
nonterminals which hide the left recursion are
not all predicates.

A A
/ I "' / I "'

B A C B A C

I I I \ I / I \
f. B A C b B A C

I I I I
b a f. a

Figure 1 : Two parse trees with the same yield,
showing ambiguity of G1 .

have been used for the first time by Knuth (1971) and Koster (1971), respectively, although in a slightly dif­ferent meaning.

2 . 1 Generalized LR parsing and
hidden left recursion

We now discuss informally how (generalized)
LR parsing fails to terminate for the above
grammar. We assume that the reader is famil­
iar with the construction of (nondeterministic)
LR(0) automata. Our terminology is taken
from Aho et al. (1986) .

A pictorial representation of the LR(0) pars­
ing table for G1 is given in Figure 2. LR
parsing of any input w may result in many
sequences of parsing steps , one of which is il­
lustrated by the following sequence of config­
urations.

Stack contents Inp. Action
Qo w red(B � €)
Qo B Q1 w red(B � E)
Qo B Q1 B Q1 w red(B � E)
Qo B Q1 B Q1 B Q1 w red(B � E)

The sequence of parsing steps illustrated
above does not terminate. We can find a
non-terminating sequence of parsing steps for
the LR(0) automaton for every hidden left­
recursive grammar. In fact , this is even so for
the LR(k) , LALR(k) , and SLR(k) automata,
for any k. Hidden left recursion has been iden­
tified by Soisalon-Soininen - Tarhio (1988) as
one of two sources, together with cyclicity, of
the looping of LR parsers.

Various other parsing ·techniques, such as
left-corner parsing (Nederhof,· 1993a) and can­
cellation parsing (Nederhof, 1993b) , also suffer
from this deficiency.

2 .2 Eliminating epsilon rules

We first discuss a method to allow LR parsing
for hidden left-recursive grammars by simply
performing a source to source transformation
on grammars to eliminate the rules of which
the right-hand sides only derive the empty
string. To preserve the language, for each rule
containing an occurrence of a nonfalse non­
terminal a copy must be added without that
occurrence. Following Aho - Ullman (1972) ,
this transformation, called f- elim, is described
below. The input grammar is called G.

1 . Let G0 be G.

190 NEDERHOF - SARBO

A

A' -+ .A Qo A -+ B.Ac Qi

A -+ .BAc B A -+ .BAc A
A -+ .a A -+ .a
B -+ .b B -+ .b
B -+ • B -+ • C

A -+ BAc. Qs

Figure 2: The LR(0) automaton for G1 .

2. Remove from (10 all rules defining predi- In this paper, an expression of the form [B]
cates in G and remove all occ_urrences of in a rhs indicates that the member B has been
these predicates from the rules in G0 • eliminated by the transformation. It is for rea­

sons of clarity that we write this expression
3. Replace every rule of the form A -+ instead of just leaving B out.

o:0B1 0:1 B2 . . . Bmam in Go , m � 0, An item of the form A -+ [ao]X1 [o:1) . . .
where the members which are non- [o:i-i)•Xi . . . Xm [o:m] is said to be derived
false in G are exactly B1 , . . . , Bm , by from the basic item A -+ o:0X1 o:1 . . .
the set of rules of the form A -+ O:i-i •Xi . . . Xmo:m .2 According to the conven­
o:o/31 0.i/32 . . . f3mam , where /3i is either Bi
or € and o.o/310:1/32 . . . /3mO:m =/-· €. Note
that this set of rules is empty if m = 0
and a.0 = E, in which case the original
rule is just eliminated from Go .

tion mentioned above, A -+ o:0X1 0:1 . . . Xmo:m

is a rule in G, and A -+ X1 . . , Xm is a rule in t:-elim(G) . The item of the form st -+ • which
may be introduced by t:-elim will be regarded
as the derived item st -► [S) • .

4 . If S i s nonfalse in G, then add the rules Example 2 . 1 Let the grammar G2 be <le­
st -+ s and st -+ € to Go and make fined by the rules
st the new start symbol of Go . (In the
pathological case that S is a predicate in
G, st -+ S should of course not be added
to Go .)

5 . Let E-elim(G) be G0 •

A
B
B
C
D
D

-+ BCD
-► €

-► b
-+ €

-► €
-+ d

Note that for every rule A -► o: such Step 2 of t:-elim removes the rule C -► €
that o: contains k occurrences of nonfalse defining the only predicate C. Also the occur-
non-predicates, the transformed grammar may 2We avoid writing dots in dotted items immediately
contain 2k rules. to the left of eliminated members.

INCREASING THE APPLICABILITY OF LR PARSING 191

rence of C in A -+ BCD is removed, i.e. this rule is replaced by A -+ B [CJD. Step 3 removes all rules with an empty rhs, viz. B -+ f and D -+ E, and replaces
A -+ B[C]D by the set of all rules which re­sult from either eliminating or retaining the nonfalse members, _viz. B and D (C is · not a member anymore!), such that the rhs of the resulting rule is not empty. This yields the set of rules

A -+ B[C]D
A -+ B[CD]
A -+ [BC]D

Step 4 adds the rules At -+ A and At -+ f. The new start symbol is At . We have now obtained E-elim(G2) , which is defined by
At -+ A
At -+ f

A -+ B[C]D
A -+ B[CD]
A -+ [BC]D
B -+ b
D -+ d □

Note that in the case that E-elim introduces a new start symbol st , there is no need to aug-. inent the· grammar (i.e. add the rule S' -+ st and make S' the new start symbol) for the pur­pose of constructing the LR automaton. Aug­mentation is in this case superfluous because the start symbol st is not recursive. In the case of Gi , the transformation yields the following grammar.
· A -+ BAc
A -+ [B]Ac A -+ a B -+ b

The LR(O) table for this grammar is repre­sented in F igure 3. Together with the growing number of rules, the above transformation may also give rise to a growing number of states in the LR(O) automaton. In the above case, the number of states increases from 7 to 8, as indicated by F igures 2 and 3 : As Gi is only a trivial grammar, we may expect that the increase of the number of states for practical· grammars is much larger. Tangible results are discussed in Section 5.

2 .3 A new parsing algorithm

To reduce the number of states needed for an LR automaton for E-elim(G) , we incorpo­rate the transformation in the closure func­tion . . This requires changing the behaviour of the LR automaton upon reduction. This approach can in a different way be ex­plained as follows. Items derived . from the same basic item by E-elim are considered the same. For instance, the items A -+ BAc. and
A -+ [B]Ac. in F igure 3 are considered the same because they are derived from the· same basic item A -+ BAc • . All items are now represented by the ba­sic item from which they are derived. For instance, both items in Q5 in F igure 3 are henceforth represented by the single basic item
A -+ BAc • . The item A -+ [B]Ac. in state Q7 is now represented by A -+ BAc • . As a result, some pairs of states now consist of identical sets of items and may therefore be merged. For the example in F igure 3, the new collection of states is given in F igure 4. It can be seen that states Q5 and Q7 are merged into state Q5;7. In the resulting LR table, it is no longer in­dicated which derived items are actllally repre­sented. Correspondingly, the bel!aviour of the new automaton is such that upon reduction all possibilities of derived items are nondetermin­istically tried. For instance, consider the parsing · of bacc using the LR(O) automaton in F igure 4. The first sequence of parsing steps is without com­plications: Stack contents Inp. Action Qo bacc shift Qo b Q3 ace red(B -+ b) Qo B Qi ace shift Qo B Qi a Q2 cc red(A -+ a) Qo B Qi A Q4 cc shift Qo B Qi A Q4 c Q517 C red(?)

Now there are two ways tc:> perform a reduc­tion with the item A -+ BAc • . . One way is to pretend that B has been eliminated from this rule. In other words, we are dealing with the derived item A -+ [B]Ac •. In this case we remove two states and grammar symbols from the stack. The sequence of configurations from here on now begins with · ·

192

A' -+ .A Qo A -+ .BAc A -+ [B].Ac A -+ .a B -+ .b

B
A -+ B.Ac Q1 A -+ .BAc A -+ [B].Ac A -+ .a B -+ .b

A

A A -+ BA.c Q4 A -+ [B]A.c
C

A -+ BAc. Qs A -+ [B]Ac.

NEDERHOF - 8ARBO

A' -+ A. Q5 A -+ [B]A.c
C

Figure 3: The LR(O) automaton for t-elim(Gt) .
A

A' -+ .A Qo A -+ B.Ac Qi A -+ .BAc B A -+ .BAc A A' --+ A. Q5 A -+ B.Ac A -+ .a A -+ BA.c
A -+ .a B -+ .b

Figure 4: The optimised LR(O) automaton for t-elim(G1) with merged states.

Qo B Q1 A Q4 c Qs/1 C red(A -+ [B]Ac) and we obtain
Qo B Q1 A Q4 C

Qo B Q1 A Q4 c Qs/1 C red(A -+ BAc)
Qo 'A Q6 C shift

The other way to perform reduction is by
Qo A Q5 c Q517 red(?)

taking off the stack all the members in the We are now at an interesting configuration.
rule A -+ BAc and the same number of states, We have again the choice between reducing

INCREASING TIIE' APPLICABILITY OF LR PARSING 193
with A --. (B]Ac or with the unaffected rule A --. BAc. However, it can be established that reduction with A --. BAc is not possible, be­cause there is no B on the stack to be popped. At this point, the main difference between traditional LR parsing and the new parsing technique we are developing becomes clear. Whereas for traditional LR parsing, the gram­mar symbols on the stack have no other pur­pose except an educational one, for our new parsing technique, the investigation of the grammar symbols on the stack is essential for guiding correct parsing steps. In general, what happens upon reduction is this. Suppose the state on top of the stack contains· an item of the form A --. a., then reduction with this item is performed in the following steps.

1. The parser nondeterministically looks for some sequence of grammar symbols X1 , . .. , Xm such that there are ao, ... , am with
• a = aoX1a1 ... Xmam • ao --.• f /\ . . . /\ am --.* f • The top-most m grammar symbols on the stack are X1 , . . . , Xm in that order, i.e. X 1 is deepest in the stack and Xm is on top of the stack. • m = 0 => A = S'

In words, a is divided into a part which is on the stack and a part which consists only of nonfalse nonterminals� The part on the stack should not be empty with the exception of the case where A --. a is the rule S' --. S.
2. The top-most m symbols and states are popped off the stack.
3. Suppose that the state on top of the stack is Q, then

• if A = S' , then the input is ac­cepted, provided Q is the initial state and the end of the input ha.s been reached; and • if A f. S' , • th�n A and su bse­quently goto (Q, A) are pushed onto the stack, provided goto (Q, A) is de­fined (otherwise this step fails).

The way the reduction is handled above corresponds with the reduction with the rule A --. [ao]Xi (a1] ... Xm [am] in the original LR(0) parser for f -·elim (G). Incorporating the transformation f-.-elim into the construction of the LR table can be seen a.s a restatement of the usual closure func­tion, a.s follows.
closure (q) = {B --. 8.(} I A --. a./3 E q I\ {3 �• B, I\ B --. 80 I\

u

3v[v -=I- .f /\ 80 --.* v] I\ 8 �· f}
{A � a8.{3 I A � a.8{3 E q 1\ .8 �• f}

Note that the expressiqn {3 �• B, allows nonterminals to be rewritten to the · empty string. Also note that 3v [v . -=I- .. f /\ 8(} . � * v] excludes rules of which the rhs can only derive f. Efficient calculation of the closure function is investigated in Section 4. i. Leermakers (1992) . proposes simjlar changes to some functions in th� ,re�ursive a.scent Ear­ley parser in order to allow hiddeµ)ef� r�cur­sion. Similar changes were made by Graham et al. (1980) in order to improve the efficiency of Earley parsing. '. We -have recently learned that a parsing technique very •similar to ours is suggested by Leermakers (1993) , · , The investigation of the grammar symbols on the stack for the purpose ofguiding correct parsing steps is reminiscent of Pager (1970), who proposed a general method for the com­pression of parsing tables by. means of merging states. If the full stack may be investigated upon reduction, then the need for states in the traditional sense is even completely eradi­cated, a.s shown by Fortes Galves (1992).3

In Section 3 . we prove the correctness of the new parsing technique, which we call f-LR parsing.
3It is interesting to note that various degrees of sim­plification of the collection of sets of items are possible. For example, one could imagine an approach half-way between our approach and the one _by Fortes, according to which items consist only of the parts which occur normally after the dots. This leads to even more merg­ing of states but requires more effort upon reductions.

194
2 .4 Dealing with : · cyclic , gram­

mars

If needed, f-LR par�ing can be further refined to handle cyclic grammars. The starting-point is again a transformation on grammars, called C-elim, which eliminates all unit rules, i.e. all rules of the form A --+ B. This transformation consists of the following steps.
1. Let G0 be G.

2. Replace every non-unit rule A --+ a in Go by the set of rules of the form B --+ a such that B E.• A and either B = S or B has an occurrence in the rhs of some non-unit rule.
3. Remove all unit rules from Go.
4. Let C-elim(G) _be Go.
Terminatio_n of LR parsing according to :C-elim(f--elim(G)) is guaranteed for any G. If ·we ·incorporate C-elim into the behaviour of our f-LR parsers, then reduction with A --+ a is performed by the following steps.

1. The parser nondeterministically looks for some · sequence of grammar symbols X 1, -... , Xm such that there are ao, ... , am with .
• a = aoX1a1 ... Xmam • ao --+ * f A ... A am --+ * f

• The top-most m grammar symbols on the s_tack are X1, ... , Xm.
• m = 0 => A = S'

• m = 1 => (X1 E T V A = S')
2. The top-most' m symbols and states are popped off the stack.
3. Suppose that the state on top of the stack is Q, then

• if A = S'; then the input is ac­cepted, provided Q is the initial state . and the . end of the input . has been reached; and

: , ,:NEDERHQR.::c S_ARBO

• if A i S', then the parser: nc;mde­terministically looks for _some non­terminal B such that . B --+ * A and goto (Q, B) is defined, and then
B and subsequently goto (Q, B) are pushed. onto the stack.

Note that the parser which performs reduc­tion in this way, using the parse tables from the f-LR parser, may go into unnecessary dead alleys of length one. This may be avoided by reformulating the closur� function such that rules containing a single non-predicate in 'their right-hand sides are left out. How to avoid reductions with unit rules (unit reductions) in the case of deterministic LR parsing has been investigated in a number of papers (e.g., Heilbrunner, 1985). Our par­ticular technique of avoiding unit reductions is reminiscent of an optimization of Earley's algorithm (Graham et al., 1980). In the remaining part oHhis· paper, the term "E-LR parsing" will not include the ·extra ex­tension to f-LR parsing _described in this sec­tion.
2.5 Applicability of E-LR parsing

In the same way as generali�ed LR(0) pars­ing can be refined . to generalized SLR(k), LALR(k), and LR(k) parsing (k > 0) we · can also refine f-LR(0) parsing to f-SLR(k), f-LALR(k), and f-LR(k) parsing. The con­struction of f-LR tables for these parsing strategies can be adopted from the construc­tion of their LR counterparts in a reasonably straightforward way. We have shown that f-LR parsing can be used for hidden left-recursive grammars, which cannot be handled using ordinary · LR pars­ing. The variants of f-�R parsing .which ap­ply lookahead are useful for making the pars­ing process more deterministic, i.e. to reduce the number of entries in the parsing table that contain multiple actions. However, adding lookahead cannot yield completely deterministic parsers in the case of hidden left recursion where at least one of the hiding nonterminals is not a pr�dicate. This is _because - such a gr,�;mmar is ambiguous, as dis­cussed earlier. (Ifall hiding non terminals are

INCREASING THE APPLICABILITY OF LR PARSING 195
predicates, then we are dealing with a trivial form of hidden left recursion, which can easily be eliminated by eliminating the hiding non­terminals.) Also in the case of grammars without hidden left recursion, €-LR parsing may have an ad­vantage over ordinary (generalized) LR pars­ing: the parsing actions corresponding with subtrees of the parse tree which have empty yields are avoided. For these grammars, the application of lookahead may serve to con­struct deterministic f-LR parsers. Nederhof (1993a) describes how subtrees which have empty yields can be attached to the complete parse tree without actually pars­ing the empty string.
2 .6 Specific elimination of hid-

den left recursion

For the sake of completeness, we describe a way of getting rid of hidden left recursion with­out using epsilon rule elimination. The idea is that we selectively remove occurrences of non­false nonterminals which hide left recursion. In case of a nonfalse non-predicate A, we re­place the occurrence of A by an occurrence of a new non terminal A' . This A' is constructed so as to derive the same set of strings as A does, with the exception of f. The transformation, constructing grammar
HLR-elim(G) from grammar G, consists of the following steps.

1. Let Go be G.

2. For every rule A -+ Ba in G0 which leads to a hidden left-recursive call (i.e. a E.• A/3 for some /3, and B E.* f) , replace the rule by A -+ a, and also add A -+ B' a

• A' -+ x:xi+i . . . Xn if a E.• e, where a = X1 . . . Xn , and Xi is not a predicate.
4. Remove from Go all rules A -+ a such that A was rendered unreachable . by the elimination of rules in step 2 .
5 . Let HLR-elim(G) be G0 •

Example 2.2 Let the grammar G3 be de­fined by
A -+ ABAa A -+ AAB
A -+ e B -+ e

The grammar HLR-elim(G3) is given by A -+ Aa A -+ A'BAa A -+ AB A -+ A'AB A -+ € A' -+ Aa A' -+ A'BAa A' -+ A'B A' -+ A'AB B -+ € D

The transformation HLR-elim is very of­ten incorporated in the construction of parsers which can deal with hidden left recursion. An example is the variant · of backtrack left-corner parsing as applied in Programmar (Meijer, 1986) . See also Nederhof (1993a) . The size of the grammar resulting from the application of this transformation is much smaller than that in the case of e-elim. In fact it is only quadratic in the size of the· original grammar. to Go provided B is not a predicate in G. Repeat this step until it can no longer be 3 applied. Correctness
parsing

of E-LR

3. For every new nonterminal A' introduced in G0 in step 2, or by an earlier iteration of step 3, and for every rule A -+ a in Go , add to Go the rule
• A' -+ a if not a E.• e, or rules of the form

A formal derivation of e-LR(O) parsing is given by Nederhof - Sarbo (1993b) . In this sec­tion we prove the correctness of €-LR parsing by assuming the correctness of (nondetermin­istic) LR parsing, which has already been· es­tablished in literature.

196
In Section 2.3 we derived the new parsing technique of f-LR parsing. We showed that this kind of parsing is based on traditional LR parsing, with the following differences:
• Instead of using the original grammar G, the transformed grammar f-elim(G) is used.
• No distinction is made between items de­rived from the same basic item. This can be seen as merging states of the LR au­tomaton of f-elim(G) .
• Because considering derived items as the same leads to a loss of information, a new mechanisms is introduced, which checks upon reduction whether the members of the applied rule are actually on the stack and whether the goto function is defined for the lbs and the state which is on top of the stack after the members are popped.
Because the transformation f-elim preserves the language and because we assume the cor­rectness of LR parsing, the correctness of f-LR parsing can be proved by mentioning two points:
• The symbols on the stack and the remain­ing input together derive the original in­put, which can be proved by induction on the length of a sequence of parsing steps. This argument shows that no incorrect derivations can be found.
• For every sequence of parsing steps per­formed by an LR parser (LR(k), SLR(k), etc.) for f-elim(G) there is a correspond­ing sequence· of parsing steps performed by the corresponding type of f-LR parser (f-Lll,(k), f-SLR(k), etc.) for G. This proves that f-LR parsing cannot fail to find correct ,del'.ivations by the as­sumption that LR parsing according to f-elim(G) does not fail to find correct derivations.
In case of f-LR(O) and f-SLR parsing it can also be shown that the set of sequences of parsing steps is isomorphic with the set of sequences of the LR(O) or SLR parsers for f-elim(G) , and that the corresponding se­quences are equally long. It is sufficient to

NE_DERHOF - SARBO

prove that if a reduction can be successfully performed in an f-LR parser, then it . can be performed in an LR parser .in the correspond­ing configuration. For this purpose, suppose that in an f-LR parser some reduction is possible with the item A -+ aoA1 a1 ... Amam • E Q.m such th�t
• ai -+* f for O ::; i ::; m,
• the topmost 2m + 1 elements of the stack are QoA1Q1 ... AmQm ,
• the goto function for Q0 and A is defined,
• in the corresponding configuration in the LR parser, the states corresponding with Qi are called Q�.
From the fact that the goto . function is de­fined for Q0 and A we know that it is also defined for Q� and A and that the item A -+ [ao].Ai [a1] ... Am [am] is in Q�. This implies that A -+ [ao]A1 [a1] ... Ai [ai] •... Am [am] is in Q� because Q� is goto (Q�_ 1 , Ai) , for 1 ::; i ::; m. Therefore, in the corresponding LR parser a reduction would also take place according to the item A -+ [ao]A1 [a1] ... Am [am) •. Regrettably, an isomorphism between se­quences of parsing steps of f-LR parsers and the corresponding LR parsers is not possible for f-LR(k) and f-LALR(k) parsing, where k > 0. This is because merging derived items causes loss of information on the lookahead of items. This causes the parser to be sent up blind alleys which are not considered by the corresponding LR parser. Because f-LR parsing retains the prefix­correctness of traditional LR parsing (that is, upon incorrect input the parser does not move its input pointer across the first invalid sym­bol), the blind alleys considered by an f-LR parser but not the corresponding LR parser are of limited length, and therefore unimpor­tant in practical cases. Theoretically however, the extra blind al­leys may be avoided by attaching_ the looka­head information not to the state on top of the stack before reduction . but to the state on top after popping m states and grammar symbols off the stack (m as in Section 2.3). This means that we have lookahead (a set of

INCREASING THE APPLICABILITY OF LR PARSING 197

strings, each of which not longer than k sym­
bols) for each state q and non terminal A such
that goto (q, A) is defined.

In the cases we have examined, the number
of pairs (q, A) for which goto (q, A) is defined is
larger than the total number of items A -. a.
in all states (about 4 to 25 times as large) , so
this idea is not beneficial to the memory re­
quirements of storing lookahead information.
In the case of €-LR(k) parsing (k > 0) , this
idea may however lead to a small reduction of
the number of states, since some states may
become identical after the lookahead informa­
tion has been moved to other states.

4 Calculation of items

In this section we investigate the special prop­
erties of the closure function for €-LR pars­
ing. First we discuss the closure function for
f-LR(k) parsing and then the equivalent no­
tion of kernel items in €-LR parsing.

4. 1 The closure function for
€-LR(k) parsing

If w is a string and k a natural number, then
k : w denotes w if the length of w is less than
k, and otherwise it denotes the prefix of w of
length k. We use lookaheads which may be
less than k symbols long to indicate that the
end of the string has been reached.

The initial state for f-LR(k) parsing (k > 0)
is Qo = closure ({ [S' -. .S, €] })
The closure function for €-LR(k) parsing is

closure (q) =
{ [B -. 8.0, x) I

[A -. a.,B, w) E q A f3 -.* B7 A
B -. 80 A
3v[v -f:. f A 80 -. * v) A
8 --.* f A
3y b -. * y A x = k : yw) }

u
{ [A -. a8.f3, w] I

[A -. a.8,B, w] E q A 8 -.* €}

4.2 The determination of small-
est representative sets

In traditional LR parsing, items are divided
into kernel items and nonkernel items. Kernel
items are S' -. .S and all items whose dots
are not at the left end. The nonkernel items
are all the others. (At this stage we abstain
from lookahead.)

As we will only be looking in this section at
sets of items which are either Q0 or of the form goto (q, X) , which result after application of
the closure function, we have that the kernel
items from a set of items q are a representative subset of q. This means that we can

• construct the complete set of items q by
applying the closure function to the rep­
resentative subset, and

• determine whether two sets of items are
equal by determining the equality of their
representative subsets.

Because the set of kernel items from a set q
is in general much smaller than q itself, kernel
items are very useful for the efficient genera­
tion of LR parsers.

Regrettably, in the case that the grammar
contains many epsilon rules, the set of kernel
items from a set q may not be much smaller
than q itself. Therefore, kernel items are not
very useful for generation of €-LR pars�rs.

Another approach to finding representative
subsets for traditional LR parsing can be given
in terms of the stages in which the goto func­
tion is executed. According to this principle,

· the representative subset of goto (q, X) is

K(q, X) = {A -. aX.,BIA -. a.X/3 E q}

and other items in goto (q, X) are obtained by
applying the closure function to K(q, X).

In the case of traditional LR parsing,
K computes exactly the kernel items in goto (q, X), and therefore the two methods for
finding representative subsets are equivalent .
That this does not hold for €-LR parsing can
be easily seen by investigating the definition of closure in Section 2.3: according to the second
part

{A -. ac5.{3 I A -. a.8{3 E q A 8 -.* €}

198

in this definition ,. the dot can be shifted over
nonfalse members and therefore new items can
be added whose dots are not at the left end.
Therefore, some · kernel items may not be in K(q, X) .

I t turns out that we can also not use K for
finding representative subsets in the case of
f-LR parsing. The reason is that K does not
provide a well-defined method to find repre­
sentati ve subsets. I.e. for some grammars we
can find sets of items q1 and q2 and symbols X and Y such that goto (q1 , X) = goto (q2 , Y)
but K(q1 , X) f K(q2 , Y) .

The solution that we propose is more refined
than the methods in traditional LR parsing.

First, we determine the equivalence rela­
tion of mutually left-recursive nonterminals,
whose classes are denoted by [A] . Thus, [A] =
{B IA �• Ba I\ B �• A,B} .

A nice property of these classes is that A �
.a E q and B E [A] together imply that B �
./3 E q for every rule B � /3. Using this fact,
we can replace every item A � .a in q by [A]
without loss of information.

We define the set Z to be the union of the set
of all items and the set of equivalence classes
of mutually left-recursive nonterminals. The
variables E, E' , . . . range over elements from
z.

Our goal is to find a representative set q' �
Z for each set of items q.

First, we define the binary relation induces
on elements from Z such that

• induces (I, J) for items I and J

NEDERHOF - SARBO

1. Determine q1 � Z by replacing in q every
item A � .a by [A] .

2. Let q2 be the subset of q1 which results
from eliminating all items I such that induces (E, I) for some equivalence class
E E Ql •

3. Determine the set repr (q) defined by
{E E Q2 l,3E' E q2 [induces (E' , E)} .

The reason that no information is lost in
step 3 is that the relation induces -restricted to
Q2 is not cyclic.

That repr (q) is the smallest set q' � Z rep­
resenting q can be formalized by stating that
it is the smallest subset q' of Z such that closure (q') = q, where the ,definition of clo­sure is redefined to

closure (q) =
{B � 8.0 I (A � a.(3 E q I\ /3 �• B, V

u

[A] E q /\ A �• B,) I\ B � 80 I\
3v[v f f /\ 80 �• v] I\
8 �· f}

{A � 08./3 I A � a.8,B E q I\ 8 �• f}

It is self-evident that repr must be calcu­
lated from Q0 and K(q, X) instead of from
their closures if efficient parser construction is
required. The appropriate restatement · of the
algorithm calculating repr is straightforward.

if and only if I = A � a.B/3 and J = 5
A � aB.(3 and B �• f

Memory requirements

• induces (I , E) for item I and class E
if and only if I = A � a.B /3 and B E E

• induces (E, E') for classes E and E'
if and only if E f E' and there are A E E
and B E E' such that A � aB /3 and
Q �· f

• induces (E, I) for class E and item I
if and only if there is A E E such that
I = A � a.,B and a �• f

The smallest set repr (q) � Z representing
a set of i terns q can now be determined by the
following steps:

In this paper we have described three m�thods
of rnaking the (generalized) LR parsing tech­
nique applicable to hidden left-recursive gram­
mars:

1 . Apply f-elim to the grammar before con­
structing the LR automaton.

2. Apply HLR-elim to the grammar before
constructing the LR automaton.

3. Construct the f-LR automaton as op­
posed to the LR automaton.

The last method above is derived from the
first one in the sense that an f-LR automaton

INCREASING THE APPLICABILITY OF LR PARSING 199

can be seen as a compressed LR automaton
for the transformed grammar t::-elim(G) . The
second method is independent from the other
two methods.

To investigate the static memory require­
ments of these methods, we have determined
the number of states of the resulting automata
for various grammars.

We first investigate the number of states for
three kinds of characteristic grammars:

For every k � 0 we have the grammar Gf
defined by the rules

S -+ B1 . . . Bkc
B1 -+ t::
B1 -+ b1

Bk -+ f

Bk -+ bk

For every k � 1 we have the grammar G�
defined by the rules

s
s
B1
B1

-+
-+
-+
-+

B1 . . . BkSc
d
f

b1

Bk -+ f

Bk -+ bk

For every k � 2 we have the grammar G�
defined by the rules

S -+ B1 . . . Bkc
B1 -+ t::
B1 -+ S

Bk -+ f

Bk -+ s
The grammars of the first group contain no

left recursion. The grammars of the second
group contain one occurrence of hidden left
recursion, and there are k nonfalse nontermi­
nals hiding the left recursion. The grammars
of the third group contain k - 1 occurrences of
hidden left recursion, the j-th one of which is
hidden by j - 1 nonfalse nonterminals.

Figure 5 shows the numbers of states of var­
ious automata for these grammars. It also
shows the numbers of states of the LR(0)

automata for the original grammars. This
kind of a.utomaton does of course not termi­
nate in the case of hidden left recursion, ex­
cept if the nondeterminism is realized using
cyclic graph-structured stacks, against which
we raised some objections in Section 1 .

These results show that the number of states
is always smallest for the t::-LR(0) automata. A
surprising case is the group of grammars G� ,
where the number of states of t::-LR(0) is 6, re­
gardless of k, whereas the numbers of states
of the LR(0) automata for t::-elim(G) and
HLR-elim(G) are exponential and quadratic
in k, respectively.

In the above grammars we have found some
features which cause a difference in the num­
ber of states of the automata constructed by
the mentioned four methods. The results sug­
gest that f-LR parsing is more efficient in
the number of states for grammars containing
more hidden left recursion.

The number of states of LR and f-LR au­
tomata is however rather unpredictable, and
therefore the above relations between the num­
ber of states for the four methods may deviate
dramatically from those in the case of practical
grammars.

Practical hidden left-recursive grammars do
however not occur frequently yet in natural
language research. The reason is that they
ar� often considered "ill-designed" (Nozohoor­
Farshi, 1989) as they cannot be handled using
m�t parsing techniques.

Fo:rtunately, we have been able to find a
praGtical grammar which contains enough hid­
den left recursion to perform a serious compar­
ison. This grammar is the context-free part of
the Deltra grammar, developed at the Delft
University of Technology (Schoorl - Belder,
1990) . After elimination of the occurrences
and definitions of aH predicates, this grammar
contains 846 rules and 281 nonterminals, 120
of which are nonfalse. Hidden left recursion
occurs in the definitions of 62 nonterminals.
Rules are up to 7 members long, the average
length being about 1 .74 members.

The numbers of states of the automata for
this grammar are given in Figure 5. These
data suggest that for practical grammars con­
taining much hidden left recursion, the rela­
tion between the numbers of states of the four

200 NEDERHOF - 8ARBO

Method of construction GHk � 0) G� (k � 1) G� (k � 2) Gneltra
LR(0) for G 2 · k + 3 2 · k + 5 2 · k + 2 855
LR(0) for €-elim(G) 2k+1 + k + l 3 · 2k + k + l 2k+l + 2 1430
LR(0) for HLR-elim(G) 2 · k + 3 l · k2 + 41 · k + 3 2 2 l · k2 + 21 · k + l 2 2 1477
€-LR(0) for G 2 · k + 3 k + 6 6 709

Figure 5 : The numbers of states resulting from four different methods of constructing LR and €-LR automata.
different automata is roughly the same as for the three groups of small grammars Gt , G�, and G� : the LR(0) automata for €-elim(G) and HLR-elim(G) both have a large number of states. (Surprisingly enough, the former has a smaller number of states than the lat­ter, although €-elim(G) is about 50 % larger than HLR-elim(G), measured in the number of symbols.) The €-LR(0) automaton for G has the smallest number of states, even smaller than the number of states of the LR(0) au­tomaton for G. Although these results are favourable to €-LR parsing as a parsing technique requir­ing small parsers, not for all practical gram­mars will €-LR automata be smaller than their traditional LR counterparts. Especially for grammars which are not left-recursive, we have found small increases in the number of states. We consider these grammars not characteristic however because they were developed explic­itly for top-down parsing.
Conclusions

We have described a solution to adapt (gener­alized) LR parsing to grammars with hidden left recursion. Also LR parsing of cyclic gram­mars has been discussed. We claim that our solution yields smaller parsers than other solu­tions, measured in the number of states. This has been corroborated by theoretical data on small grammars and by an empirical test on a practical grammar for a natural language.

Our solution requires the investigation of the parse stack. We feel however that this does not lead to deterioration of the time complex­ity of parsing: investigation of the stack for each reduction with some rule requires a con­stant amount of time. This amount of time is linear in the length of that rule, provided investigation of the symbols on the stack is implemented using a finite state automaton.
The results of our research are relevant to re­alization of generalized LR parsing using back­tracking (possibly in combination with memo­functions) or using acyclic graph-structured stacks. Furthermore, various degrees of looka­head may be used.
We hope that our research will convince lin­guists and computer scientists that hidden left recursion is not an obstacle to efficient LR parsing of grammars. This may in the long term simplify the development of grammars, since hidden left recursion does not have to be avoided or eliminated.

Acknowledgements

We received kind help from Job Honig, Theo Vosse, John Carroll, and Hans de Vreught in finding a practical grammar to test our algo­rithms on. We acknowledge valuable corre­spondence with Jose Fortes and Rene Leer­makers.

INCREASING THE APPLICABILITY OF LR PARSING 201
References

Aho, A.V. - R. Sethi - J.D. Ullman (1986). Compilers: Principles, Techniques, and Tools. Addison-Wesley.
Aho, A.V. - J.D. Ullman (1972). Pars­ing, The Theory of Parsing, Translation and Compiling, volume 1. Prentice-Hall .
Fortes Galves, J. (1992). Generating LR(l) parsers of small size. In: Compiler Construction, 4th International Conference, LNCS 641 , 16-29, Springer-Verlag.
Graham, S.L. - M.A. Harrison - W.L. Ruzzo (1980). An improved context-free recognizer . ACM Trans. Prag. Lang. Syst. 2(3), 415-462.
Heilbrunner , S. (1985). Truly prefix-correct chain-free LR(l) parsers. Acta Inf. 22, 499-536.
Knuth, D.E. (1971) . Top-down syntax analy­sis. Acta Inf. l , 79-110.
Koster, C.H.A. (1971). Affix grammars. In: Peck, J.E.L. (Ed): ALGOL68 Implemen­tation, 95-109. North Holland Publishing Company.
Lang, B . (1974). Deterministic techniques for efficient non-deterministic parsers. In: Au­tomata, Languages and Programming, 2nd Colloquium, LNCS 14, 255-269, Springer­Verlag.
Leermakers, R. (1992). A recursive ascent Earley parser . Inf. Process. Lett. 41(2), 87-91 .
Leermakers, R. (1993). The Functional Treat­ment of Parsing. Kluwer Academic Publish­ers. To appear.
Leermakers, R. - L. Augusteijn - F .E.J. Kruseman Aretz (1992). A functional LR parser . Theoretical Comput. Sci. 104, 313-323 .
Meijer, H . (1986). Programmar: A Translator Generator. PhD thesis , University of Nij­megen.
Nederhof, M.J . (1993a). Generalized left­corner parsing. In: Sixth Conference of

the European Chapter of the Association for Computational Linguistics, 305-314.
Nederhof, M.J. (1993b). A new top-down parsing algorithm for left-recursive DCGs. In: Programming Languages Implemen­tation and Logic Programming, Interna­tional Workshop, LNCS, Tallinn, Estonia . Springer-Verlag.
Nederhof, M.J . - J.J. Sarbo (1993a). Effi­cient decoration of parse forests. In : Trost , H. (Ed): Feature Formalisms and Linguistic Ambiguity. Ellis Horwood Limited.
Nederhof, M.J . - J.J . Sarbo (1993b). Increas­ing the applicability of LR parsing. Techni­cal report no. 93-06, University of Nijme­gen, Department of Computer Science .
Nilsson, U. (1986). AID: An alternative imple­mentation of DCGs. New Generation Com­puting 4, 383-399.
Nozohoor-Farshi, R. (1989). Handling of ill­designed grammars in Tomita's parsing al­gorithm. In: International Workshop on Parsing Technologies, 182-192.
Pager, D. (1970). A solution to an open prob­lem by Knuth. Inf. and Contr. 17, 462-473 .
Schoorl , J .J. - S. Belder (1990). Computa­tional linguistics at Delft: A status report. Report WTM/TT 90-09 , Delft University of Technology, Applied Linguistics Unit.
Sippu, S. - E. Soisalon-Soininen (1990). Parsing Theory, Vol. II: LR{k} and LL{k) Parsing. Springer-Verlag.
Soisalon-Soininen, E. - J. Tarhio (1988). Looping LR parsers . In/. Process. Lett. 26(5), 251-253 .
Thorup, M. (1992). Controlled grammatic ambiguity. Technical Report PRG-TR-2-92, Programming Research Group of Oxford University.
Tomita, M. (1986). Efficient Parsing for Nat­ural Language. Kluwer Academic Publish­ers.

202 NEDERHOF - SARBO

