
PARSING WITH RELATIONAL UNIFICATION GRAMMARS

Kent Wittenburg
Bellcore Visiting Researcher

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759
Arpanet: Kent@mcc.com

Phone: (51 2)338-3626
Fax: (51 2)338-3600

ABSTRACT

In this paper we present a unification­
based grammar formalism and parsing algo­
rithm for the purposes of defining and
processin.g non-concatenative languages. In
order to :encomp_ass langu3:ge� that are. charac­
terized by relations beyond simple _stnng con­
catenation we introduce relational con­
straints into a linguistically-based unification
grammar formalism -_and extend bottom-up
chart parsi!1g II?-ethods: This wor� is currently
,being apphe.d _m the mterpretat10n of hand­
sketched mathematical expressions and struc­
tured flowcharts on -notebook computers and
interactive worksurfaces.

l. INTRODUCTION
In the MCC Interactive Work Surface

Project, we _have been applying a langu�ge
:perspective to .the problem of conne_ctmg
meaning to graphical and sketched media on
both the input and the .output side of h�m�n­
machine interfaces. The technology 1s m­
itially being applied to the problem of recog­
nition of liana-sketched input through tlie
"electronic paper" interface of notebook col!l­
puters and worksurfaces (Avery 1988; Martm
et al. 1990). Our first applications are inter­
·preters for math express10ns and structured flowcharts. Subsequent applications will in­
clude interpretation of sketched designs (e.g. ,
engineering or architectural laY,ou_ts or plB;ts)
in such a way that the semantic mformabon
can ·be made available for subsequent
database update and querying, intelligent ad­
visin_g creation of dynamic prototypes, etc.
On tli� output side� we �xpect that the in';erse
connection of unaerlymg data to a VIsual
vocabulary will enabl-=: easy-to-use �ools for
conne�tip� .the s�man�1cs of underlymg data
to dynamic graphical displays.

Figure 1 -1 shows a visualization of a
derivation in two-dimensional space. Such
derivations can be produced by grammars
which describe languages whose sentences are
objects situated in a two-dimensional space as
long as the gram�ars can specify_ relational,
in the most obVIous case positional, con-

225

Figure 1-1: Derivation in 2D space
straints among the objects. Such constrain�s,
and their resolution, are beyond the capacity
of structurally-based unification grammars
and parsing methods developed. for langu_ages
of strings. The purpose of this paper 1s to
present the framework of Relational Unifica­
tion Grammar (RUG), which · is capable of
describing such languages, and then to extend
bottom-up chart-parsing methods to work
with these grammars. The algorithm
presented here is motivated by the need to
process input . increment�lly: We e�pect to
derive benefit m our ap_p�1cabon dom8:ms fr�m
processing each symbol m the order m which it is created by a user. Such a parser allows
for suggesting possible continuations for the
user as well as determining c�rre�tness of tI1e
input so far. Temporal ordenng !mposes sig­
nificant demands on our parser smce we can­
not enumerate the input based on spatial · con­
siderations for example, a top-down left-to­
right trave�sal. Such a normaliz�tion o� or­
dering has usually been assumed m p�ev10us
applications of grammar-b_ased parsmg to
visual domains (e.g. , Tomita 1989 ; Chang
1988).

2. GRAMMARS
Parallel to Helm and Marriott (1 990), who

are investigating visual languages in the logic
programming tradition, we . adopt _a
unification-based grammar formalism that 1s
augmented with constraints necessary to in­
corporate relations beyond string concatena­
tion into the declarative specification of a lan­
guage. Unification itself then must be �x­
panded to incorporate. some form of con�tramt
solving, an area of active research m logic pro­
gramming.

Our approach is to extend the fami1y of
PATR unification-based grammar formalisms
(Shieber 1 986, 1 989). Instead of strings, we
assume the terminals of our grammar to be
what we will call icons, objects that are as­
sociated with a set of attributes such as <X,Y>
coordinates extent, arid colori each of whose
value rang�s is finite. The ru es of the gram­
mar, besides specifyi�g a variety �f syn�a�tic
and semantic constramts for use m derivmg
sentences of the language, also specify rela­
tional constraints among icons that may re­
quire arbitrary computation to determine
satisfaction.

Although �� will not at�emp� to gi"ye a
rigorous defimtion of �he �mficat10n basis of
our grammars here, it will nevertheless be
useful to note properties of some of the at­
tributes, values, and relational c9nstraints ap­
pearing in the grammar. B�s1des the_ c�s­
tomary PATR gramma_r machmery cons1stmg
of a vocabulary of attribute labels L and con­
stant values C, lexical and nonlexical pr9duc- ·
tions P and a start category (see Shieber
1 989), ;_ relational unification _grammar RUG
is--disti1;1guished by the tu_ple (�,:E,I), where N
is a fimte set of (nontermmal) icon type sym­
bols 1: is a finite set of (terminal) icon type
symbols, I is an infinite set of spatially located
icons each of which has a type E N u 1:, and R
is a finite set of relations in I.

The rules of the grammar cont_ain the f�l­
lowing elements, whose left-_hand �ides we will
consider unordered for the time bemg.

Head Arg1 . . . Argn ➔ Result

Since �e are focusing on analysis here rather
than generation, the arrow in the rule
skeleton is interpreted as "reduces to" rather
than "rewrites as". Each rule must have . a
head and a result, and there may be zero or
more arguments. Although there is nothing
essential from a formal point of view about
our use of the funct10nal terms head,
argument, and result in rules, it �s a .conven­
tion to guide grammar construction that we
find perspicuous.

Each of the elements of the production has
at least the following structural constraints:

226

syntax e N u :E
icon e I

The syntax attribute must take as value ele­
ments from the set N u L. Although in fact
we allow for syntactic characterizations to be
arbitrarily complex, we need a designated fea­
ture somewhere in the structure to be able to
instantiate and refer to the types of icons as­
sociated with both terminal and nonterminal
symbols. HE:re we will use th_e . syntax at­
tribute for this purpose. In addition, each of
these rule elements has an icon attribute
whose values are taken from I. In practice, the
icon value may be a unique name for an icon
instance.

Additionally every rule that is !1,0t unary
is required to have. a set . of relationa� _con­
straints with certam additional conditions.
Let us tum to an example in order to clarify
the use of relational constraints. · Following is
an example of a rule from the domain of math­
ematics expressions. It is a rule th�t forms
vertical infix expressions such a_s fractions� as­
signing an appropriate semantics for �va1ua­
tion of the expression. The syntactic and
semantic structural constraints appear first ·
followed by the relational constraints.
Rule 1 Vertical inf"ixat'ion:

Head Arg1 Arg2 ➔ Result

<Head icon> = X
<Arg

1
icon> = Y

<Arg
2

icon> = Z
<Head syntax> = Vert-infix-op
<Arg

1
syntax> = Formula

<Arg
2

syntax> = Formula
<Result syntax> = Formula
<Head sem> = <Result sem pred>
<Arg1 sem> � <Result sem argl>
<Arg2 sem> = <Result sem arg2>

<Result icon> = composition (X Y Z)
above (Y X)
below (Z X)
wider-than (X Y)
wider-than (X Z)

The first of the relational constraints,
which involves composition, defines the icon of
the rule mother as a function of the icons of
the rule daughters. _In practice, thi� relation
may involve summation of the boundmg boxes
of the daughter icons for do�ains �uch as
math expressions, or concatenation of hne seg­
ments in diagra� domains . . The othe: rela­
tions impose pos1t10nal and size C?nstrau�.ts on
the icons involved in the production. Smtable
definitions of above and below in the mat!i
domain incorporate adjacency as wel� as po�1-
tion. The particulars of such r_elations will
differ across grammars and domams.

In anticipation of the bottom-up parsing algorithm wliich we will present shortly, there
is an additional requirement which we will
impose on the form of grammar productions
and their relational constraints. Given that
there are no positional constraints implied by
the rule skeletons, it is useful for the parser to
be driven by appropriate relational con­
straints from individual rules for its basic rule
matching operations. Thus we distinguish the
class of relations that drive the matching ac­
tion of the parser from those that operation­
ally serve as constraints on proposed matches.
Positional constraints such as above are more
appropriate for driving parsing than size con­
straints such as wider-than. We will assume
that each grammar distinguishes a class of
positional constraints for this purpose.1 Fur­
thermore, we will refer to the maximal rela­
tional domain (R domain) over which posi­
tional relations hold. Many grammars will
restrict their positional constramts to adjacent
elements--in this case, adacency defines the R
domain for that grammar.

Our requirement on rule wellformedness
is that there be some ordering of the daughter
elements in productions as follows : Condition 1: An ordering of rule daughter elements is well-formed iff. for every element but the first, a positional constraint exists between that element and an element appearing earlier in the ordering.

An intuitive understanding of the reason
for Condition 1 can be reached by considering
the ordering <Arg1 , Arg2, Head>, correspond-
ing to the order <numerator, denominator,
divide-line> in a fraction expression, from
Rule 1 . Suppose the parser has matched the
numerator element and is in the position of
seeking candidates for its next match, the
denommator element. Since there are no posi­
tional constraints in the rule that involve the
icon associated with the instantiated
numerator, the parser has no way to constrain
the candidates for its next matcli. One would
of course like to confine the search to only
those objects which meet· appropriate posi­
tional constraints from the gi:ammar. On the
face of it, the parser would have to consider
every icon in the space as a possible instan­
tiation of the denominator term in our ex-·
ample and could not rule any of these
branches out on the basis of relational con­
straints until the divide-line had been
matched.

1 It will also simplify our exposition
slightly if we assume that the icon variable for
every argument al?pears as the domain term
of at least one positional constraint. For this
reason, we use both above and below in Rule
1 , even though the same constraints could be
stated with just one of these relations.

227

Fortunately, this condition on the form of rules can be determined off-line, and we as­
sume that a particular ordering of the ele­
ments of a rule is prespecified that meets this
condition. For the purposes of this paper, we
will assume that daughter elements of rules
are to be matched in the order in which they
are given in the rule definitions, implying that
rules will be matched head-first. 2

As a final note, lexical productions are
defined traditionally as in P ATR grammars
with the difference that instead of strings, the
terminal vocabulary is taken from the set of
icon type symbols L. That is , lexical entries
are pairs of the form <er, <l>>, where er is a
member of the set of terminal icon symbols :E
and <I> is an RUG formula containing struc­tural attributes found in the individual ele-·
ments of rules. For example, here is a pos­
sible lexical entry for a lin� representing divi­
sion:
horizontal-line :

<syntax> = vert -infix-op
<icon> = X
<sem> = divide

Note the that icon attribute i s uninstantiated
in the lexicon. It will be instantiated with an
actual icon instance (or a reference to one)
during lexical lookup.

An example of a simple grammar. may· be
found in - Section 4, where we s�ow a parse
trace.

3. PARSING
In this section we give an account of a

data-driven, tabular parsing algorithm that
uses the grammar formalism ·described above.
The algorithm we describe is technically a
recognition algorithm, thou�h it is easy to ex- _
tend it to a _parsing algorithm through the
standard methods available in the literature
(Aho and Ullman 1972). Tabular parsing
methods (e.g. , Earley 1970) and closely related
chart parsing methods (Kaplan 1973; Kay
1980) have in common the use of a grammar
table (or chart) that stores all complete and
partially matched constituents, indexing them

2Aithough the parsing algorithm we dis­
cuss matclies the elements of rules deter­
ministically, algorithms such as Satta and
Stock's (Satta and Stock 1989), which match
rules in variable orders starting with the
head, could be adapted to these grammars if
any and all orderings meet Condition 1 . One
would, however have to add the overhead
necessary to check for the J?OSsibility of
achieving the same rule match m more than
one order.

to spans of the input string. The tables are
used both to merge equivalent constituents
over the same input into a single entry, thus
avoiding combinatorics, and also to propose
candidates for rule applications, given that
adjacent entries in the tables are tied directly
to adjacent substrings in the input.

Two approaches have been employed
previously to apply tabular parsers in visual
language domains . The first is to convert
visual input data into a one-dimensional
string form and use conventional string-based
parsing methods. According to Fu (1974)1 the
linear-conversion approaches have "not oeen
very effective in describing two- or three­
dimensional · patterns". The second approach
is to extend conventional parsing tables to
directly represent regions over a spatial
domain rather than spans over an input
strinjJ, Tomita (1 989) has extended the Earley
algorithm and his own LR methods in this
manner. Such an option ties a parser to the
particulars of the spatial concatenation opera­
tions allowed in the grammar since the
makeup of the table itself will be affected by
the set of relations permitted in the visual
space.

in contrast, out approach is to redistribute
the functions ·exp�-cted from a parsing table
a·cro·ss two modules•. One, dis·cussed in detail
here, inc-orporates the parsing table and its
constituent entries. From these data struc­
tures one can determine the input which a
constituent dominates in order to check for
equivalent table entries and successful output;
however, one cannot from these structures
alone determine the candidates for extending
constituent coverage through rule applica­
tions. The module called the spatial relations
analyzer, which keeps its own set of data
structures, is necessary to discover new icon
candidates for incorporating into rule applica­
tions. We hope that this overall conceptual
design will become clear in the descriptions
and examples which follow.

We assume an unordered set of s�atially
located icons as input to the parser. The cor­
re_ctness and completeness of the algorit�m
will not be affected by any temporal ordenng
of the input, bu:t, for that reason, we can
process the icons incremental1y, in the order
m which they appear through the interface.

Definition 1: A cover, defined
with respect to entries (partial or
complete grammatical constituents)
in the parse table, is the subset of
icons in the input set that an entry
dominates .

Covers are necessary for determining
equivalence of constituents and success for the
parse. The goal of parsing will be to produce
any and all consitutents covering the initial
input set that are labeled with the start sym­
bol of the grammar.

228

Note that a cover need not be contiguous
in a temporally determined input sequence.
However, contiguity of a cover in the two­
dimensional space will be enforced to the ex­
tent that the gi:ammar uses spatial relations
that subsume adjacency.

Definition 2: A category is
defined to be a P ATR formula that is
either a (partially) instantiated
production as defined in Section 2 or
else a PATR formula with instan­
tiated features syntax and icon.

Categories are (partial) instantiations of
rules, rule results, or lexical categories. In the
algorithm descriptions which follow, we will
assume the convention of referring to relevant
features of categories with the notation [head,
arg 1 . . . argn, result] in the case of partial rule
instantiations and [sy_ntax, icon] in the case of
rule result or lexical instiantions. We will
also refer to individual rule elements at times
with the convention [syntax, icon, rels], where
rels is a sorting of all relational constraints in
the rule that contain the eleineht's icon in ei­
ther the domain or range term.

Definition 3: A state is defined
to be a triple
[category, n·ext-arg, cover], where
hext-arg ref ets to an arg i . . .j of cate­
gory, possibly empty.

States ate .the parser's representation of a
constituent. States are said to be active if
next-atg is nonempty, implying that the cate­
�ory is �n i!}complete . const��uent, or inactive
1f next-arg 1s empty, rmplymg that the c-ate­
gqcy is a co:mple�e constitu�nt. A�ti�e. states
will have partial rule mstanbabons as
cate·gories ·i inactive states will have instantia­
tions of ru e results or lexical items.

Definition 4: A trigger, defined
with respect to active states, is any
(instantiated) icon appearing in the
range term of a positional constraint
whose domain term is the next-arg's
icon variable.

That is, consider an active state that fits
the category schema

Head . . . Arg
j

. . . ➔ Result

<Head icon> = Icon1
<Arg

:,
icon> = X

(Reli X Iconl)

and whose next arg is Argj. Ico:n1 will be a
trigger for this active state since it appears ih
the range term of a positional constraint
together with the next-ar�s icon as d_omain.
Note that we do define tnggers to be mstan­
tiated icon instances, not icon variables.

In some cases there may be more than one
t�i_gger icon defined for an active ,-state. Con­
sider an active state whose category matches
the following schema

Head . . . Argj . . . Arg
lt

. . . ➔ Result
<Head icon> = Icon1
<Argj icon> = Icon2
<Arg

lt
icon> = X

(Relh X :Icon1)
(Rel1 X Icon2)

and whose next-arg is Argk. Both Icon1 and
Icon2 are triggers for this state. In such a
situation the parsing algorithm, which uses
triggers to index active states in the parse
tal:ile, needs only one trigger. We arbitrarily
choose among them.

Before turning to the parsing algorithm it­
self, we need one final definition. Lexical
lookup, which produces states with instan­
tiated cate_gories associated with incoming
icons, is defined next.

Definition 5: The function
Lex(ical lookup), from the set of
icons to a set of pairs consisting of a
state and its icon index, is defined as
follows:

Lex (X) = { (s= [category , ni l , { X }) , i =X) I
category = a l exical entry i ndexed by
i con-type (X) and whose < i con> i s
uni fied with X }

This function represents lexical lookup
and state instantiation. Given an icon, it ,uses
the icon's type SY1J!bol to consult the lexicon.
With the . set of categories the lexicon
produces, it then initializes the data struc­
tures for placing inactive states onto the parse
table. In so doing, it unifies the icon itself
with the icon variable of the category. The
cover of the category will be the unary set con­
sisting of the icon again. The index 1s an icon
which will be used to index the state in the
parse table. In the algorithm presented here,
all lexically instantiated state·s will be
inactive--the index for inactive states will be
the icon for which the state represents a com­
plete constituent.
Algorithm 1 Main loop

Assume an input set of spatially located
icons W and an agenda set A1 initially empty.
Develop a table T whose entries are state sets
indexed by icons. -

229

whi le A nonempty or there exi st i cons
remai ning to be proce s sed i n W do :

choose one o f the two fol l owing act i ons :
for some i con X in W do (1)

for each pai r (s , i) i n Lex (X) do
add (s , i) to set A

ext ract any pair (2)
(s= [category , next-arg, cover) , i)

from the set A;
insert s i n table T1 ;
apply each o f the fol l owing
procedure s , i n any o rder , to s :

end whi l e ;

propose (s)
expand (s)
complete (s)

i f there exi s t s an s
[category , next -arg, cover) in T such that
cover = W, next -arg = empty , and the label
of category = start ,

then succeed;
e l se fai l .

The basic algorithm chooses arbitrarily
among two actions as long as there are
remaining data to do either action. Action (1)
processes a single arbitrary icon from the in­
put set. It creates state-index pairs to be
placed in set A--this set, in chart parsing, cor­
responds to an agenda of pending actions. Ac­
tion (2) chooses an arbitrary state:index pair
from the agenda. It inserts the state into the
parse table and then generates more pairs for
the agenda by applying the three ·procedures
propose expand, and complete in any order.
The indices for states in the parse table are
icons. As will become evident in the
procedures that follow, the index for active
states is a trigger icon for that state; for in­
active states, it is the icon associated with the
highest dominating nonterminal.
Procedure 1 Propose
I f state s= [category , ni l , cove r] i s inact ive ,
then for every product i on p i n i

such· that the category o f s
uni fies with head e l ement o f p ,

create a new pa i r
(s ' = [category ' , next-arg, cove r') , index)
as fol l ow s :

i f there are no argument s in p
then category ' : : = re sult o f p ­

next -arg : : = ni l
cover ' : : = cover
i ndex : : = i con of category ;

e l se category ' : : = p
next-arg = � = arg1 o f p
cove r ' : : = cover ·
i ndex : : = a t rigger i con o f s ' ;

add pair t o A unl e s s an equivalent pa i r
al ready exi st s .

The propose procedure _applies to inactive
states. It proposes new constituents through
trying to unify the category of an inactive .
state against the head terms of the rule set.
Successful unifications will result in new
states that will be active or inactive depending
on whether the rule is unary or not. Active
states have a next-arg pointing to the first ar­
gument of the rule to be matched; inactive
states have a null next-arg. The index of a
new state will be the icon associated with the

newly unified category if the state is inactive,
or a trigger icon if the state is active.

The condition that new states are added
only if there is not an equivalent state already
in A is a necessary (but not sufficient) con­
dition for keeping the algorithm polynomial.
This is a familiar move for all On3 bounded
context-free parsing algorithms. We will not
elaborate here on questions of computational
complexity, but suffice it to say we assume a
definition of equivalence of <state, index>
pairs--they are equivalent if their covers and
indices are equal and if their categories and
advancement are equivalent. A parsing algo-:­
rithm, rather than just a recognition algo­
rithm such as the one we are discussin� here,
would need to keep track of these eqwvalent
states in order to recover the full set of parse
trees.3

The fact that this algorithm pro_poses new
rules for matching only when head elements
of rules are discovered is part of the formula
for making this algorithm "head-driven". It
would be possible to use the _predictive power
of the partially matched beaned constituents ·
to filter out useless argument constituents. In
the basic data-driven algorithm we discuss
here, however, we do not actually make use of such top-down predictive machinery.
Procedure 2 Expand
I f st ate s= [category , next-arg, cover]

with next-arg= [synt ax , Y , re l s] i s act ive ,
then for some t ri gger i con X i n a rel at i on

(rel Y X) in rel s , (1)
for every i con Z i n the space such that
(rel Z X) =True , (2)

then for every i nact ive state
s ' = [category ' , ni l , cover '] indexed
by Z ,
i f category ' uni fi e s with next-arg (3)

then (advance s s ') ,
add re su l t i ng pai r (s ' ' i) to set A
unless an equivalent st ate exi st s .

The expand procedure is used to advance
an actiye state across its next argument by
finding inactive states that match the con­
straints of that argument as specified in the
partially instantiated rule. Finding the can­
aidate mactive states is the crux of the mat­
ter. They must (a) be associated with icons
that meet the relational constraints of the ar­
gument, and (b) have categories that uni£>-' with the structural constaints of the rule s
next argument. We use the partially instan­
tiated relational constraints, relying on our
spatial relations module; as a means of find­
ing the icons that meet the spatial require­
ments. This particular feature of the algo­
rithm is necessary given that we are not rely-

3The issue of equivalence and state merg­
ing is nontrivial for unification grammars.
See Shieber (1985).

230

ing on ou_r parse table to provide us with, say,
adjacent icons.

The procedure begins with a tri�ger icon
for an active state. Recall Definition 4 for
triggers ; line (1) of the procedure essentially
restates it. Given a trigger icon, line (2) looks
in the physical space for any icons in the trig­
gering relation. The ones it finds will then lie
candidates for the icon to be associated with
the next-arg. The remaining steps find any
inactive states associated with the icon in
question and then check that the structural
features of these states as well as any remain­
ing relational constraints are consistent with
�he i:ule's requireni�nts . . (B_oth CO!}dit�ons are
1mphed by the · umfication step m lme (3).)
Any states that satisfy these conditions will be combined with the orginal active state,
producing a new state tliat covers more ter­
ritory.
Procedure 3 Complete
I f st ate

s= [category= [syntax , Y] , ni l , cove r]
i s i nact ive ,

then for every i con X fal l i ng within the
l ocal R domain w . r . t . i con Y, (1)
for every act ive state
s ' = [category ' , next -arg , cover '] that is
i ndexed by X as t r i gger , (2)

i f next-arg o f s ' uni fi e s w i th category ,
then (advance s s ') ,
add result ing pai r (s ' ' i) t o set A
unle s s an equ ivalent st ate exi st s .

The complete procedure is defined with
respect to inactive states. The basic operation
is to look for active states for which this new
inactive state can serve as a next argument,
and then advance any such active states with
respect to the inactive state. It operates just
like the expand procedure once the candidate
states are found. The differences lie in how
one finds candidate active states given an in­
active state, rather than the reverse.

As is indicated in line (1) 1 the procedure
depends on a· notion of locality in the space in .
order to find the initial set of icons that is
used to begin the search. · If the R domain
were characterized by adjacency, the proce­
dure would map over each of the icons that
were adjacent to the icon associated ·with the
new inactive state. We do not, however, rule
out the possibility that the locality of spatial
relations may be aefined otherwise.

Line (2) then consults the parsing table to
find active states indexed by the locally re­
lated icons. Recall that active states are in­
dexed by trigger icons. Thus these states will
be the ones which the original inactive state
may combine with. Further steps are the
same as in expand.

Procedure 4 Advance
Given act ive st ate s= [category , next -arg , cover]

with next-arg= [syntax , Y , (rel X)]
and i nact ive st ate
s ' = [category ' , ni l , cover '] ,

create a st ate s ' ' with i ndex i as fol l ows :

easel : i f category has no further argument s ,
then create a pai r
(s " = [category " , ni l , cover "] , i)

where category ' ' : : = result o f category ,
cover ' ' : : = cover ' Union cover .
i : : = i con o f category ' ' .

case2 : i f category has furthe r argument s ,
then create a pai r
(s ' ' = [category ' ' , next -arg' , cover ' '] , i)

where category ' ' : : = category ,
next -arg' : : = next -arg + 1 ,
cover ' ' : : = cover ' Uni on cover ,
i : : = i con trigger for s ' ' .

Advance takes an active state s and an in­
active state s' which has already been unified
as the next-arg for s, and it returns a new
state/index pair. The new state resulting from
advancement will be either inactive or activeJ. depending on whether the final argument or
the active state has been matched or not. The
creation of an inactive state, shown in easel ,
sets the new state's category to the result­
cate�ory of the active state. Its index will be
the icon newly formed from the composition
relation that holds between the icon of the
result and the icons of the rule daughters.
The creation of active states involves an ad­
vancement of the next-arg pointer. These
states are indexed by a trigger icon. In both
cases, the cover for the new state will be the
union of the covers of the original states .

4. EXAMPLE
Here we give a example of a grammar for

simple fractions and a parse trace of the
bottom-up algorithm described above. Rule 1
is repeated for convenience. The trace will
refer to the rules and lexical entries by num­ber and omit the details of the internal rule
elements. When nil appears in the next-arg
position of a state, it is an indication that the
category of the state corresponds to the in­
stantiated result element of completed rules
or the categories of lexical entries .

231

Rules

1 Vertical inf"'ixation:

Head Arg1 Arg2 ➔ Result

<Head icon> = X
<Arg1 icon> = Y
<Arg

2
icon> = z

<Head syntax> = Vert-infix-op
<Arg1 syntax> = Formula
<Arg2 syntax> = Formula
<Result syntax> = Formula
<Head sem> = <Result sem pred>
<Arg1 sem> = <Result sem argl>
<Arg2 sem> = <Result sem arg2>

<Result icon> = composition (X Y Z)
above (Y X)
below (Z X)
wider-than (X Y)
wider-than (X Z)

Lexicon

2 floating-point-no:
<syntax> = Formula
<icon> = X

<sem> = (numerical-value X)

3 horizontal-line:
<syntax> = vert-infix-op
<icon> = X
<sem> = divide

Let us assume the input to be the icons

arranged as shown. We will note them as
<5>, <h-Jine>� and <2>, respectively, in the
trace which fo1lows. We have to pick an order
for processing these input icons. Arbitrarf!y,
we will J)rocess the icons top to bottom. We
also will be faced with the choice between Ac­
tions 1 or 2 of main loop. Again, arbitrarily, _
we'll choose Action 2 (processing items in set
A) over action 1 (processin� another input
icon) whenever there are are items in set A to
process. Lastly, the al�orithm gives us the
freedom of ordering the items we choose from
set A. We will process each of these items in
the order in which they were put into A.

The algorithm will produce states in the
order shown below:

1 . s1 =[2,nil, { <5>}] is added at T <5>
through Action 1 of main loop . .

2. s2=[3 ,nil , {<h-Iine>}] is added at
T <5> through Action 1 of main
loop. 3 . s3=r[l ,arg1 , {<h-line>}] is added at
T <h-line> through procedure
propose.

4. s4=ll ,arg2, {<h-Iine>,<5>)] is
added at T <h�line> through proce­
dure expand, advancing s3 with
s1 .

5. s5=[2,nil , {<2>}] is added at T<2>
through Action 1 of main loop.

6. s6=[1 ,nil, {<h-Iine>,<5>,<2>}] is
added at T «5><h-linc><2»
through procedure complete, ad­
vancing s4 with s5.

7. The procedure halts with suc­
cess, s6 satisfying the conditions.

5. RELATED WORK
We first compare related work in grammar

form.alis�s followed by related approaches to
parsmg visual languages .

Of other visual grammar frameworks we
are aware of, our proposal differs in the fol­
lowing two respects :

1 . The functional role of heads and
arguments. Characteristic of the linguistic
roots of our approach, we assign the functional
roles of head and arguments to elements in
the rule body. What motivates this move?
First, we assume that these syntactic roles bear a close, if not one-to-one, relationship to
predicates and arguments in the semantics.
In our opinion such a commitment makes it
easier to coordinate incremental syntactic and
semantics processing important in the parsing
of visual interface languages,, and it also tends
to produce grammars that nave more mean­
ingful and tran_�parent syntactic and semantic
constituents. We are not aware of any such
committrnent in competing visual grammar
approaches that do discuss semantics.
Second, assuming that heads of phrases tend
to offe: constra�nts on _the syntactic and
semantic P:operbes of their arguments, it be­
comes possible to take advantage of the prun­
ing power of these constraints through the use
of head-driven parsin_g and generation al­
gorithms (Kay 1989; Satta ana Stock 1 989·
Shi�ber et al. 1989). '

2. The domain of spatial relations. As
wi th Helm and Marriott (1 990), our formalism
a11ows the grammar to state any number of
re_latjonal constr:aints a_mong any elements
w1thm the domam of a smgle rule. While the

232

formalism used by Anderson (1 968) differs in several other respects, he too allows spatial
relations to be stated over such a domain. Un­
like Golin and Reiss (1 989), we do not
presume that it is possible to state constraints
among elements arbitrarily distant in a
derivation tree. Unlike the most recent gram­
mars of the SIL-ICON �stern (Crimi et al.
1 989), we do not confine the expres sion of spa­
tial constraints to a single relation among
pairs of elements that are adjacent in a rule
body. In our opinion, most visual languages
in practice, complex mathematics formulae
among them, need the additional expressive­
nes s of our formalism over the latter group of
proposals .

As for parsing, the algorithm we have out­
lined is unique among visual language par­
sers,, as far as we know, in allowing_for max­
imally flexible enumeration. We have
motivated thi s design feature in the context of
our goal to . provide parsing tools and help
facilities for interface languages, where tem­
poral ordering of the input cannot be assumed
to match systematic spatial enumeration
procedures .

The other distinguishing feature of the
parsing algorithm is its disassociation of the
parse table from any particular set of spatial
relations used by the grammar. We take this
to be a strength in that the algorithm is thus
extremely general, although we concede that
without exploring the .spatial component more
fully we cannot provide a complete solution to
any particular visual language domain · nor
can we determine the computational com­
plexity of our algorithm. The crux of our ap­
proach is to propose a particular form of in­
dexing of the grammar table that makes use
of icons and icon sets (covers). In future work
�e will explor� the c_omplexity of this algo:
nthm when paired with sets of assumptions
regarding the spatial relations assumed by
the grammar.

6. CONCLUDING REMARKS
This paper · concentrated on basic rule

proposing and combining methods rather than
oil particular treatments· of visual relations
and representations. We expect to have more
to say on these topics in future work. Other
areas we expect to follow up on include the
problem of nonm.onotonicity inherent in allow­
mg users to edit or alter their input, the
problem of offering help to users in an in­
cremental parsing situation, and various
problems associated with reversin� the gram­
mars shown here in connection with genera­
tion of visual output from the semantics of un­
derlying data.

Although we have been applying Rela­
tional Umfication Grammars in graphical
domains, there is reason to suppose that such
extensions of unification grammars may prove

useful for natural languages as well. In par­
ticular, using relations such as case and
gender agreement in place of left- and right­
adjacency as the foundation for grammatical
description may prove superior for so-called free word order languages. We expect that
the parsing algorithm presented here would
apply in such cases.

7. ACKNOWLEDGEMENTS
This work has been carried out under the

sponsorship of the MCC Human Interface
Laboratory, directed by Bill Curtis. The paper
is to a large extent a revision and extension of
an earlier __ paper coauthored with Louis
Weitzman (Wittenbu� and Weitzman 1990)1 who together with Jim Talley has workea
closely with the author in developing the con­
cepts· and building the systems discussed here.
Other colleagues I wish to thank include Rich
Cohen for his comments on early versions of
this paper and for his support of the HITS
blackboard technologies used in our im­
plementations, Chinatsu Aone for discussions
on the rule formalism, and Gale Martin and
Jay Pittman of the neural net character recog­
nition �oup for getting me involved in this
project m the first place.

REFERENCES

Aho, Alfred V. , and Jeffrey D. Ullman. 1 972.
"The Theory of Parsing, Translation, and
Compiling," Prentice Hall.

Anderson, Robert H. 1 968. "Syntax-Directed
Recognition of Hand-Printed Two­
Dimensional Mathematics," in M. Klerer
and J. Reinfelds (eds .), Interactive Sys­
tems for Experimental Applied Math­
ematics, Academic.

Avery, James. 1 988. "Interactive Worksurface:
An Interface Paradigm for Sketchable
Things," MCC tech report no. ACA­
Hl-127-88.

Chang, Shi-Kuo. 1988. "The Design of a Visual
Language Compiler," in Proceedings of
the 1 988 IEEE Workshop on Visual Lan­
guages, October 10-12, Pittsburgh, PA.

Crimi, C. , A. Guercio, G. Tortora, and
M. Tucci. 1 989. "An Intelligent Iconic
System to generate and to interpret
Visual Languages," in Proceedings of the
1989 IEEE Workshop on Visual Lan­
guages, October 4-6 1989, Rome, Italy.

Fu, K.S. 1 974. Syntactic Methods in Pattern
Recognition. Academic.

233

Golin, Eric J., and Steven P. Reiss. 1 989.
"The Specification of Visual Language
Syntax," in Proceedings of the 1 989 IEEE
Workshop on Visual Languages, October
4-6 1 989, Rome, Italy.

Helm, Richard, and Kim Marriott. 1 990.
"Declarative Specification of Visual Lan­
guages," in Proceedings of the 1990 IEEE
Workshop on Visual Languages, October
4-6, Skokie, Illinois.

Kay, Martin. 1980. "Algorithm $chemata and
Data Structures in Syntactic Processing,"
Xerox Palo Alto Research Center, tech
report number CSL-80-12.

Kay, Martin. 1989. "Head-Driven Parsing," in
Proceedings of the International
Workshop on Parsing Technologies, 28-31
August 1989, Pittsburgh, PA, Carnegie
Mellon.

Kaplan, Ronald. 1 973. "A General Syntactic
Processor," in R. Rustin (ed.), Natural
Language Processing, pp. 193-241 , New
York: Algorithmics.

Martin, Gale, James Pittman, Kent Witten­
burg, Richard Cohen, and Tom Parish.
1990. Sign Here, Please: State of the Art,
Computing without · Keyboards. BYTE
magazine, July 1990.

Satta, Georgio, and Oliviero Stock. 1989.
"Head-Driven Bidirectional Parsing: A
Tabular Method," in Proceeding� of the
International Workshop on Parsing Tech­
nologies, 28-31 August 1 989, Pittsburgh,
PA, Carnegie Mellon.

Shieber, Stuart. 1989. Parsing and Type In­
ference for Natural and Computer Lan­
guages, Technical note 460, SRI Inter­
national.

Shieber, Stuart. 1986. An Introduction to
Unification-Based Approaches lo Gram­
mar. Center for the Study of Language
and Information, Stanford University.

Shieber, Stuart. 1985. Using Restriction to
Extend Parsing Algorithms for Complex­
Feature-Based Formalisms. In Proceed­
ings of the 23rd Meeting of the Associa­
tion for Computational Linguistics, 8-12
July 1 985, University of Chicago.

Shieber, Stuart, Gertjan van N oord, Robert
Moore, and Fernando C. N. Pereira. 1989.
"A Semantic-Head-Driven Generation Al­
gorithm for Unification-Based For­
malisms," in Proceedings of the 27th An­
nual Meeting of the Association for Com­
putational Linguistics, 26-29 June 1989,
Vancouver.

Tomita, Masaru. 1 989. "Parsing 2-
Dimensional Language," in Proceedings
of the International Workshop on Parsing
Technologies, 28-31 August 1989, Pitts­
burgh, PA, Carnegie Mellon.

Wittenburg, Kent, and Louis Weitzman. 1990.
"Visual Grammars and Incremental
Parsing for Interface Languages," in
Proceedings of the 1990 IEEE Workshop
on Visual Languages, October 4-6,
Skokie, Illinois.

234

