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ABSTRACT 

In this paper we present a unification­
based grammar formalism and parsing algo­
rithm for the purposes of defining and 
processin.g non-concatenative languages. In 
order to :encomp_ass langu3:ge� that are. charac­
terized by relations beyond simple _stnng con­
catenation we introduce relational con­
straints into a linguistically-based unification 
grammar formalism -_and extend bottom-up 
chart parsi!1g II?-ethods: This wor� is currently 
,being apphe.d _m the mterpretat10n of hand­
sketched mathematical expressions and struc­
tured flowcharts on -notebook computers and 
interactive worksurfaces. 

l. INTRODUCTION 
In the MCC Interactive Work Surface 

Project, we _have been applying a langu�ge 
:perspective to .the problem of conne_ctmg 
meaning to graphical and sketched media on 
both the input and the .output side of h�m�n­
machine interfaces. The technology 1s m­
itially being applied to the problem of recog­
nition of liana-sketched input through tlie 
"electronic paper" interface of notebook col!l­
puters and worksurfaces (Avery 1988; Martm 
et al. 1990). Our first applications are inter­
·preters for math express10ns and structured flowcharts. Subsequent applications will in­
clude interpretation of sketched designs (e.g. ,  
engineering or architectural laY,ou_ts or  plB;ts) 
in such a way that the semantic mformabon 
can ·be made available for subsequent 
database update and querying, intelligent ad­
visin_g creation of dynamic prototypes, etc. 
On tli� output side� we �xpect that the in';erse 
connection of unaerlymg data to a VIsual 
vocabulary will enabl-=: easy-to-use �ools for 
conne�tip� .the s�man�1cs of underlymg data 
to dynamic graphical displays. 

Figure 1 -1 shows a visualization of a 
derivation in two-dimensional space. Such 
derivations can be produced by grammars 
which describe languages whose sentences are 
objects situated in a two-dimensional space as 
long as the gram�ars can specify_ relational, 
in the most obVIous case positional, con-
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Figure 1-1: Derivation in 2D space 
straints among the objects. Such constrain�s,  
and their resolution, are beyond the capacity 
of structurally-based unification grammars 
and parsing methods developed. for langu_ages 
of strings. The purpose of this paper 1s to 
present the framework of Relational Unifica­
tion Grammar (RUG), which · is capable of 
describing such languages, and then to extend 
bottom-up chart-parsing methods to work 
with these grammars. The algorithm 
presented here is motivated by the need to 
process input . increment�lly: We e�pect to 
derive benefit m our ap_p�1cabon dom8:ms fr�m 
processing each symbol m the order m which it is created by a user. Such a parser allows 
for suggesting possible continuations for the 
user as well as determining c�rre�tness of tI1e 
input so far. Temporal ordenng !mposes sig­
nificant demands on our parser smce we can­
not enumerate the input based on spatial · con­
siderations for example, a top-down left-to­
right trave�sal. Such a normaliz�tion o� or­
dering has usually been assumed m p�ev10us 
applications of grammar-b_ased parsmg to 
visual domains (e.g. , Tomita 1989 ; Chang 
1988). 



2. GRAMMARS 
Parallel to Helm and Marriott (1 990), who 

are investigating visual languages in the logic 
programming tradition, we . adopt _a 
unification-based grammar formalism that 1s 
augmented with constraints necessary to in­
corporate relations beyond string concatena­
tion into the declarative specification of a lan­
guage. Unification itself then must be �x­
panded to incorporate. some form of con�tramt 
solving, an area of active research m logic pro­
gramming. 

Our approach is to extend the fami1y of 
PATR unification-based grammar formalisms 
(Shieber 1 986, 1 989). Instead of strings, we 
assume the terminals of our grammar to be 
what we will call icons, objects that are as­
sociated with a set of attributes such as <X,Y> 
coordinates extent, arid colori each of whose 
value rang�s is finite. The ru es of the gram­
mar, besides specifyi�g a variety �f syn�a�tic 
and semantic constramts for use m derivmg 
sentences of the language, also specify rela­
tional constraints among icons that may re­
quire arbitrary computation to determine 
satisfaction. 

Although �� will not at�emp� to gi"ye a 
rigorous defimtion of �he �mficat10n basis of 
our grammars here, it will nevertheless be 
useful to note properties of some of the at­
tributes, values, and relational c9nstraints ap­
pearing in the grammar. B�s1des the_ c�s­
tomary PATR gramma_r machmery cons1stmg 
of a vocabulary of attribute labels L and con­
stant values C, lexical and nonlexical pr9duc- · 
tions P and a start category (see Shieber 
1 989), ;_ relational unification _grammar RUG 
is--disti1;1guished by the tu_ple (�,:E,I), where N 
is a fimte set of (nontermmal) icon type sym­
bols 1: is a finite set of (terminal) icon type 
symbols, I is an infinite set of spatially located 
icons each of which has a type E N u 1:, and R 
is a finite set of relations in I. 

The rules of the grammar cont_ain the f�l­
lowing elements, whose left-_hand �ides we will 
consider unordered for the time bemg. 

Head Arg1 . . .  Argn ➔ Result 

Since �e are focusing on analysis here rather 
than generation, the arrow in the rule 
skeleton is interpreted as "reduces to" rather 
than "rewrites as". Each rule must have . a 
head and a result, and there may be zero or 
more arguments. Although there is nothing 
essential from a formal point of view about 
our use of the funct10nal terms head, 
argument, and result in rules, it �s a .conven­
tion to guide grammar construction that we 
find perspicuous. 

Each of the elements of the production has 
at least the following structural constraints: 
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syntax e N u :E 
icon e I 

The syntax attribute must take as value ele­
ments from the set N u  L. Although in fact 
we allow for syntactic characterizations to be 
arbitrarily complex, we need a designated fea­
ture somewhere in the structure to be able to 
instantiate and refer to the types of icons as­
sociated with both terminal and nonterminal 
symbols. HE:re we will use th_e . syntax at­
tribute for this purpose. In addition, each of 
these rule elements has an icon attribute 
whose values are taken from I. In practice, the 
icon value may be a unique name for an icon 
instance. 

Additionally every rule that is !1,0t unary 
is required to have. a set . of relationa� _con­
straints with certam additional conditions. 
Let us tum to an example in order to clarify 
the use of relational constraints. · Following is 
an example of a rule from the domain of math­
ematics expressions. It is a rule th�t forms 
vertical infix expressions such a_s fractions� as­
signing an appropriate semantics for �va1ua­
tion of the expression. The syntactic and 
semantic structural constraints appear first · 
followed by the relational constraints. 
Rule 1 Vertical inf"ixat'ion: 

Head Arg1 Arg2 ➔ Result 

<Head icon> = X 
<Arg

1 
icon> = Y 

<Arg
2 

icon> = Z 
<Head syntax> = Vert-infix-op 
<Arg

1 
syntax> = Formula 

<Arg
2 

syntax> = Formula 
<Result syntax> = Formula 
<Head sem> = <Result sem pred> 
<Arg1 sem> � <Result sem argl> 
<Arg2 sem> = <Result sem arg2> 

<Result icon> = composition (X Y Z )  
above (Y X )  
below ( Z  X )  
wider-than (X Y )  
wider-than (X Z )  

The first of  the relational constraints, 
which involves composition, defines the icon of 
the rule mother as a function of the icons of 
the rule daughters. _In practice, thi� relation 
may involve summation of the boundmg boxes 
of the daughter icons for do�ains �uch as 
math expressions, or concatenation of hne seg­
ments in diagra� domains . . The othe: rela­
tions impose pos1t10nal and size C?nstrau�.ts on 
the icons involved in the production. Smtable 
definitions of above and below in the mat!i 
domain incorporate adjacency as wel� as po�1-
tion. The particulars of such r_elations will 
differ across grammars and domams. 



In anticipation of the bottom-up parsing algorithm wliich we will present shortly, there 
is an additional requirement which we will 
impose on the form of grammar productions 
and their relational constraints. Given that 
there are no positional constraints implied by 
the rule skeletons,  it is useful for the parser to 
be driven by appropriate relational con­
straints from individual rules for its basic rule 
matching operations. Thus we distinguish the 
class of relations that drive the matching ac­
tion of the parser from those that operation­
ally serve as constraints on proposed matches. 
Positional constraints such as above are more 
appropriate for driving parsing than size con­
straints such as wider-than. We will assume 
that each grammar distinguishes a class of 
positional constraints for this purpose.1 Fur­
thermore, we will refer to the maximal rela­
tional domain (R domain) over which posi­
tional relations hold. Many grammars will 
restrict their positional constramts to adjacent 
elements--in this case, adacency defines the R 
domain for that grammar. 

Our requirement on rule wellformedness 
is that there be some ordering of the daughter 
elements in productions as follows : Condition 1: An ordering of rule daughter elements is well-formed iff. for every element but the first, a positional constraint exists between that element and an element appearing earlier in the ordering. 

An intuitive understanding of the reason 
for Condition 1 can be reached by considering 
the ordering <Arg1 , Arg2, Head>, correspond-
ing to the order <numerator, denominator, 
divide-line> in a fraction expression, from 
Rule 1 .  Suppose the parser has matched the 
numerator element and is in the position of 
seeking candidates for its next match, the 
denommator element. Since there are no posi­
tional constraints in the rule that involve the 
icon associated with the instantiated 
numerator, the parser has no way to constrain 
the candidates for its next matcli. One would 
of course like to confine the search to only 
those objects which meet· appropriate posi­
tional constraints from the gi:ammar. On the 
face of it, the parser would have to consider 
every icon in the space as a possible instan­
tiation of the denominator term in our ex-· 
ample and could not rule any of these 
branches out on the basis of relational con­
straints until the divide-line had been 
matched. 

1 It will also simplify our exposition 
slightly if we assume that the icon variable for 
every argument al?pears as the domain term 
of at least one positional constraint. For this 
reason, we use both above and below in Rule 
1 ,  even though the same constraints could be 
stated with just one of these relations. 
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Fortunately, this condition on the form of rules can be determined off-line, and we as­
sume that a particular ordering of the ele­
ments of a rule is prespecified that meets this 
condition. For the purposes of this paper, we 
will assume that daughter elements of rules 
are to be matched in the order in which they 
are given in the rule definitions, implying that 
rules will be matched head-first. 2 

As a final note, lexical productions are 
defined traditionally as in P ATR grammars 
with the difference that instead of strings, the 
terminal vocabulary is taken from the set of 
icon type symbols L. That is ,  lexical entries 
are pairs of the form <er, <l>>, where er is a 
member of the set of terminal icon symbols :E 
and <I> is an RUG formula containing struc­tural attributes found in the individual ele-· 
ments of rules. For example, here is a pos­
sible lexical entry for a lin� representing divi­
sion: 
horizontal-line : 

<syntax> = vert -infix-op 
<icon> = X 
<sem> = divide 

Note the that icon attribute i s  uninstantiated 
in the lexicon. It will be instantiated with an 
actual icon instance (or a reference to one) 
during lexical lookup. 

An example of a simple grammar. may· be 
found in - Section 4, where we s�ow a parse 
trace. 

3. PARSING 
In this section we give an account of a 

data-driven, tabular parsing algorithm that 
uses the grammar formalism ·described above. 
The algorithm we describe is technically a 
recognition algorithm, thou�h it is easy to ex- _ 
tend it to a _parsing algorithm through the 
standard methods available in the literature 
(Aho and Ullman 1972). Tabular parsing 
methods (e.g. , Earley 1970) and closely related 
chart parsing methods (Kaplan 1973; Kay 
1980) have in common the use of a grammar 
table (or chart) that stores all complete and 
partially matched constituents, indexing them 

2Aithough the parsing algorithm we dis­
cuss  matclies the elements of rules deter­
ministically, algorithms such as Satta and 
Stock's (Satta and Stock 1989), which match 
rules in variable orders starting with the 
head, could be adapted to these grammars if 
any and all orderings meet Condition 1 .  One 
would, however have to add the overhead 
necessary to check for the J?OSsibility of 
achieving the same rule match m more than 
one order. 



to spans of the input string. The tables are 
used both to merge equivalent constituents 
over the same input into a single entry, thus 
avoiding combinatorics, and also to propose 
candidates for rule applications, given that 
adjacent entries in the tables are tied directly 
to adjacent substrings in the input. 

Two approaches have been employed 
previously to apply tabular parsers in visual 
language domains .  The first is to convert 
visual input data into a one-dimensional 
string form and use conventional string-based 
parsing methods. According to Fu (1974)1 the 
linear-conversion approaches have "not oeen 
very effective in describing two- or three­
dimensional · patterns". The second approach 
is to extend conventional parsing tables to 
directly represent regions over a spatial 
domain rather than spans over an input 
strinjJ, Tomita (1 989) has extended the Earley 
algorithm and his own LR methods in this 
manner. Such an option ties a parser to the 
particulars of the spatial concatenation opera­
tions allowed in the grammar since the 
makeup of the table itself will be affected by 
the set of relations permitted in the visual 
space. 

in contrast, out approach is to redistribute 
the functions ·exp�-cted from a parsing table 
a·cro·ss two modules•. One, dis·cussed in detail 
here, inc-orporates the parsing table and its 
constituent entries. From these data struc­
tures one can determine the input which a 
constituent dominates in order to check for 
equivalent table entries and successful output; 
however, one cannot from these structures 
alone determine the candidates for extending 
constituent coverage through rule applica­
tions. The module called the spatial relations 
analyzer, which keeps its own set of data 
structures, is necessary to discover new icon 
candidates for incorporating into rule applica­
tions. We hope that this overall conceptual 
design will become clear in the descriptions 
and examples which follow. 

We assume an unordered set of s�atially 
located icons as input to the parser. The cor­
re_ctness and completeness of the algorit�m 
will not be affected by any temporal ordenng 
of the input, bu:t, for that reason, we can 
process the icons incremental1y, in the order 
m which they appear through the interface. 

Definition 1: A cover, defined 
with respect to entries (partial or 
complete grammatical constituents) 
in the parse table, is the subset of 
icons in the input set that an entry 
dominates .  

Covers are necessary for determining 
equivalence of constituents and success for the 
parse. The goal of parsing will be to produce 
any and all consitutents covering the initial 
input set that are labeled with the start sym­
bol of the grammar. 
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Note that a cover need not be contiguous 
in a temporally determined input sequence. 
However, contiguity of a cover in the two­
dimensional space will be enforced to the ex­
tent that the gi:ammar uses spatial relations 
that subsume adjacency. 

Definition 2: A category is 
defined to be a P ATR formula that is  
either a (partially) instantiated 
production as defined in Section 2 or 
else a PATR formula with instan­
tiated features syntax and icon. 

Categories are (partial) instantiations of 
rules, rule results, or lexical categories. In the 
algorithm descriptions which follow, we will 
assume the convention of referring to relevant 
features of categories with the notation [head, 
arg 1 . . .  argn, result] in the case of partial rule 
instantiations and [sy_ntax, icon] in the case of 
rule result or lexical instiantions. We will 
also refer to individual rule elements at times 
with the convention [syntax, icon, rels], where 
rels is a sorting of all relational constraints in 
the rule that contain the eleineht's icon in ei­
ther the domain or range term. 

Definition 3: A state is defined 
to be a triple 
[category, n·ext-arg, cover], where 
hext-arg ref ets to an arg i . . .j of cate­
gory, possibly empty. 

States ate .the parser's representation of a 
constituent. States are said to be active if 
next-atg is nonempty, implying that the cate­
�ory is �n i!}complete . const��uent, or inactive 
1f next-arg 1s empty, rmplymg that the c-ate­
gqcy is a co:mple�e constitu�nt. A�ti�e. states 
will have partial rule mstanbabons as 
cate·gories ·i inactive states will have instantia­
tions of ru e results or lexical items. 

Definition 4: A trigger, defined 
with respect to active states, is any 
(instantiated) icon appearing in the 
range term of a positional constraint 
whose domain term is the next-arg's 
icon variable. 

That is, consider an active state that fits 
the category schema 

Head . . .  Arg
j 

. . . ➔ Result 

<Head icon> = Icon1 
<Arg

:, 
icon> = X 

(Reli X Iconl) 

and whose next arg is Argj. Ico:n1 will be a 
trigger for this active state since it appears ih 
the range term of a positional constraint 
together with the next-ar�s icon as d_omain. 
Note that we do define tnggers to be mstan­
tiated icon instances, not icon variables. 



In some cases there may be more than one 
t�i_gger icon defined for an active ,-state. Con­
sider an active state whose category matches 
the following schema 

Head . . .  Argj . . .  Arg
lt 

. . . ➔ Result 
<Head icon> = Icon1 
<Argj icon> = Icon2 
<Arg

lt 
icon> = X 

(Relh X :Icon1) 
(Rel1 X Icon2) 

and whose next-arg is Argk. Both Icon1 and 
Icon2 are triggers for this state. In such a 
situation the parsing algorithm, which uses 
triggers to index active states in the parse 
tal:ile, needs only one trigger. We arbitrarily 
choose among them. 

Before turning to the parsing algorithm it­
self, we need one final definition. Lexical 
lookup, which produces states with instan­
tiated cate_gories associated with incoming 
icons, is defined next. 

Definition 5: The function 
Lex(ical lookup), from the set of 
icons to a set of pairs consisting of a 
state and its icon index, is defined as 
follows:  

Lex (X ) = { ( s= [ category , ni l ,  { X } ) , i =X )  I 
category = a l exical entry i ndexed by 
i con-type (X )  and whose < i con> i s  
uni fied with X }  

This function represents lexical lookup 
and state instantiation. Given an icon, it ,uses 
the icon's type SY1J!bol to consult the lexicon. 
With the . set of categories the lexicon 
produces, it then initializes the data struc­
tures for placing inactive states onto the parse 
table. In so doing, it unifies the icon itself 
with the icon variable of the category. The 
cover of the category will be the unary set con­
sisting of the icon again. The index 1s an icon 
which will be used to index the state in the 
parse table. In the algorithm presented here, 
all lexically instantiated state·s will be 
inactive--the index for inactive states will be 
the icon for which the state represents a com­
plete constituent. 
Algorithm 1 Main loop 

Assume an input set of spatially located 
icons W and an agenda set A1 initially empty. 
Develop a table T whose entries are state sets 
indexed by icons. -
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whi le  A nonempty or  there exi st i cons 
remai ning to  be proce s sed i n  W do : 

choose one o f  the two fol l owing act i ons : 
for some i con X in W do ( 1 )  

for each pai r  ( s , i )  i n  Lex (X )  do 
add ( s ,  i )  to set A 

ext ract any pair  ( 2 )  
( s= [ category , next-arg,  cover ) , i )  

from the set A;  
insert s i n  table T1 ; 
apply each o f  the fol l owing 
procedure s ,  i n  any o rder ,  to s :  

end whi l e ;  

propose ( s )  
expand ( s )  
complete ( s )  

i f  there exi s t s  an s 
[ category , next -arg, cover )  in T such that 
cover = W, next -arg = empty , and the label 
of category = start , 

then succeed; 
e l se fai l . 

The basic algorithm chooses arbitrarily 
among two actions as long as there are 
remaining data to do either action. Action (1) 
processes a single arbitrary icon from the in­
put set. It creates state-index pairs to be 
placed in set A--this set, in chart parsing, cor­
responds to an agenda of pending actions. Ac­
tion (2) chooses an arbitrary state:index pair 
from the agenda. It inserts the state into the 
parse table and then generates more pairs for 
the agenda by applying the three ·procedures 
propose expand, and complete in any order. 
The indices for states in the parse table are 
icons. As will become evident in the 
procedures that follow, the index for active 
states is a trigger icon for that state; for in­
active states, it is the icon associated with the 
highest dominating nonterminal. 
Procedure 1 Propose 
I f  state s= [ category , ni l ,  cove r ]  i s  inact ive , 
then for every product i on p i n i 

such· that the category o f  s 
uni fies  with head e l ement o f  p ,  

create a new pa i r  
( s ' = [ category ' , next-arg,  cove r' ) ,  index ) 
as fol l ow s : 

i f  there are no argument s in p 
then category ' : : = re sult o f  p ­

next -arg : : = ni l 
cover '  : : = cover 
i ndex : : = i con of category ; 

e l se category ' : : = p 
next-arg = � = arg1 o f  p 
cove r '  : : = cover · 
i ndex : : = a t rigger i con o f  s ' ; 

add pair  t o  A unl e s s  an equivalent pa i r  
al ready exi st s .  

The propose procedure _applies to inactive 
states. It proposes new constituents through 
trying to unify the category of an inactive . 
state against the head terms of the rule set. 
Successful unifications will result in new 
states that will be active or inactive depending 
on whether the rule is unary or not. Active 
states have a next-arg pointing to the first ar­
gument of the rule to be matched; inactive 
states have a null next-arg. The index of a 
new state will be the icon associated with the 



newly unified category if the state is inactive, 
or a trigger icon if the state is active. 

The condition that new states are added 
only if there is not an equivalent state already 
in A is a necessary (but not sufficient) con­
dition for keeping the algorithm polynomial. 
This is a familiar move for all On3 bounded 
context-free parsing algorithms. We will not 
elaborate here on questions of computational 
complexity, but suffice it to say we assume a 
definition of equivalence of <state, index> 
pairs--they are equivalent if their covers and 
indices are equal and if their categories and 
advancement are equivalent. A parsing algo-:­
rithm, rather than just a recognition algo­
rithm such as the one we are discussin� here, 
would need to keep track of these eqwvalent 
states in order to recover the full set of parse 
trees.3 

The fact that this algorithm pro_poses new 
rules for matching only when head elements 
of rules are discovered is part of the formula 
for making this algorithm "head-driven". It 
would be possible to use the _predictive power 
of the partially matched beaned constituents · 
to filter out useless argument constituents. In 
the basic data-driven algorithm we discuss 
here, however, we do not actually make use of such top-down predictive machinery. 
Procedure 2 Expand 
I f  st ate s= [ category , next-arg, cover ]  

with next-arg= [ synt ax , Y , re l s ]  i s  act ive , 
then for some t ri gger i con X i n  a rel at i on 

( rel Y X) in rel s ,  ( 1 ) 
for every i con Z i n the space such that 
( rel Z X ) =True , ( 2 )  

then for every i nact ive state 
s ' = [ category ' , ni l ,  cover ' ]  indexed 
by Z ,  
i f  category ' uni fi e s  with next-arg ( 3 ) 

then ( advance s s ' ) ,  
add re su l t i ng pai r ( s ' ' i )  to  set A 
unless  an equivalent st ate exi st s .  

The expand procedure is used to advance 
an actiye state across its next argument by 
finding inactive states that match the con­
straints of that argument as specified in the 
partially instantiated rule. Finding the can­
aidate mactive states is the crux of the mat­
ter. They must (a) be associated with icons 
that meet the relational constraints of the ar­
gument, and (b) have categories that uni£>-' with the structural constaints of the rule s 
next argument. We use the partially instan­
tiated relational constraints, relying on our 
spatial relations module; as a means of find­
ing the icons that meet the spatial require­
ments. This particular feature of the algo­
rithm is necessary given that we are not rely-

3The issue of equivalence and state merg­
ing is nontrivial for unification grammars. 
See Shieber (1985). 
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ing on ou_r parse table to provide us with, say, 
adjacent icons. 

The procedure begins with a tri�ger icon 
for an active state. Recall Definition 4 for 
triggers ;  line (1 ) of the procedure essentially 
restates it. Given a trigger icon, line (2) looks 
in the physical space for any icons in the trig­
gering relation. The ones it finds will then lie 
candidates for the icon to be associated with 
the next-arg. The remaining steps find any 
inactive states associated with the icon in 
question and then check that the structural 
features of these states as well as any remain­
ing relational constraints are consistent with 
�he i:ule's requireni�nts . . (B_oth CO!}dit�ons are 
1mphed by the · umfication step m lme (3).) 
Any states that satisfy these conditions will be combined with the orginal active state, 
producing a new state tliat covers more ter­
ritory. 
Procedure 3 Complete 
I f  st ate 

s= [ category= [ syntax , Y ] , ni l ,  cove r ]  
i s  i nact ive , 

then for every i con X fal l i ng within the 
l ocal R domain w .  r .  t .  i con Y, ( 1 )  
for every act ive state 
s ' = [ category ' , next -arg , cover ' ] that is  
i ndexed by X as  t r i gger ,  ( 2 )  

i f  next-arg o f  s '  uni fi e s  w i th category , 
then ( advance s s ' ) ,  
add result ing pai r ( s ' ' i )  t o  set A 
unle s s  an equ ivalent st ate exi st s .  

The complete procedure is defined with 
respect to inactive states. The basic operation 
is to look for active states for which this new 
inactive state can serve as a next argument, 
and then advance any such active states with 
respect to the inactive state. It operates just 
like the expand procedure once the candidate 
states are found. The differences lie in how 
one finds candidate active states given an in­
active state, rather than the reverse. 

As is indicated in line (1) 1 the procedure 
depends on a· notion of locality in the space in . 
order to find the initial set of icons that is 
used to begin the search. · If the R domain 
were characterized by adjacency, the proce­
dure would map over each of the icons that 
were adjacent to the icon associated ·with the 
new inactive state. We do not, however, rule 
out the possibility that the locality of spatial 
relations may be aefined otherwise. 

Line (2) then consults the parsing table to 
find active states indexed by the locally re­
lated icons. Recall that active states are in­
dexed by trigger icons. Thus these states will 
be the ones which the original inactive state 
may combine with. Further steps are the 
same as in expand. 



Procedure 4 Advance 
Given act ive st ate s= [ category , next -arg , cover ]  

with next-arg= [ syntax , Y ,  ( rel  X ) ] 
and i nact ive st ate 
s ' = [ category ' , ni l ,  cover ' ] ,  

create a st ate s ' ' with i ndex i as fol l ows : 

easel : i f  category has no further argument s ,  
then create a pai r  
( s " = [ category " , ni l ,  cover " ] ,  i )  

where category ' ' : : = result o f  category , 
cover ' '  : : = cover '  Union  cover . 
i : : = i con o f  category ' ' .  

case2 : i f  category has furthe r argument s ,  
then create a pai r 
( s ' ' = [ category ' ' ,  next -arg' , cover ' ' ] ,  i )  

where category ' ' : : = category , 
next -arg'  : : = next -arg + 1 ,  
cover ' '  : : = cover '  Uni on cover ,  
i : : = i con trigger for s ' ' .  

Advance takes an active state s and an in­
active state s' which has already been unified 
as the next-arg for s, and it returns a new 
state/index pair. The new state resulting from 
advancement will be either inactive or activeJ. depending on whether the final argument or 
the active state has been matched or not. The 
creation of an inactive state, shown in easel , 
sets the new state's category to the result­
cate�ory of the active state. Its index will be 
the icon newly formed from the composition 
relation that holds between the icon of the 
result and the icons of the rule daughters. 
The creation of active states involves an ad­
vancement of the next-arg pointer. These 
states are indexed by a trigger icon. In both 
cases, the cover for the new state will be the 
union of the covers of the original states .  

4. EXAMPLE 
Here we give a example of a grammar for 

simple fractions and a parse trace of the 
bottom-up algorithm described above. Rule 1 
is repeated for convenience. The trace will 
refer to the rules and lexical entries by num­ber and omit the details of the internal rule 
elements. When nil appears in the next-arg 
position of a state, it is an indication that the 
category of the state corresponds to the in­
stantiated result element of completed rules 
or the categories of lexical entries .  

231 

Rules 

1 Vertical inf"'ixation: 

Head Arg1 Arg2 ➔ Result 

<Head icon> = X 
<Arg1 icon> = Y 
<Arg

2 
icon> = z 

<Head syntax> = Vert-infix-op 
<Arg1 syntax> = Formula 
<Arg2 syntax> = Formula 
<Result syntax> = Formula 
<Head sem> = <Result sem pred> 
<Arg1 sem> = <Result sem argl> 
<Arg2 sem> = <Result sem arg2> 

<Result icon> = composition (X Y Z )  
above (Y X )  
below (Z X )  
wider-than (X Y )  
wider-than (X Z )  

Lexicon 

2 floating-point-no: 
<syntax> = Formula 
<icon> = X 

<sem> = (numerical-value X) 

3 horizontal-line: 
<syntax> = vert-infix-op 
<icon> = X 
<sem> = divide 

Let us assume the input to be the icons 

arranged as shown. We will note them as 
<5>, <h-Jine>� and <2>, respectively, in the 
trace which fo1lows. We have to pick an order 
for processing these input icons.  Arbitrarf!y, 
we will J)rocess the icons top to bottom. We 
also will be faced with the choice between Ac­
tions 1 or 2 of main loop. Again, arbitrarily, _ 
we'll choose Action 2 (processing items in set 
A) over action 1 (processin� another input 
icon) whenever there are are items in set A to 
process. Lastly, the al�orithm gives us the 
freedom of ordering the items we choose from 
set A. We will process each of these items in 
the order in which they were put into A. 



The algorithm will produce states in the 
order shown below: 

1 .  s1 =[2,nil, { <5>}] is added at T <5> 
through Action 1 of main loop . . 

2. s2=[3 ,nil , {<h-Iine>}] is added at 
T <5> through Action 1 of main 
loop. 3 .  s3=r[l ,arg1 , {<h-line>}] is added at 
T <h-line> through procedure 
propose. 

4. s4=ll ,arg2, {<h-Iine>,<5>)] is  
added at T <h�line> through proce­
dure expand, advancing s3 with 
s1 . 

5. s5=[2,nil , {<2>}] is added at T<2> 
through Action 1 of main loop. 

6. s6=[1 ,nil, {<h-Iine>,<5>,<2>}] is 
added at T «5><h-linc><2» 
through procedure complete, ad­
vancing s4 with s5. 

7. The procedure halts with suc­
cess, s6 satisfying the conditions. 

5. RELATED WORK 
We first compare related work in grammar 

form.alis�s followed by related approaches to 
parsmg visual languages .  

Of  other visual grammar frameworks we 
are aware of, our proposal differs in the fol­
lowing two respects : 

1 .  The functional role of heads and 
arguments. Characteristic of the linguistic 
roots of our approach, we assign the functional 
roles of head and arguments to elements in 
the rule body. What motivates this  move? 
First, we assume that these syntactic roles bear a close, if not one-to-one, relationship to 
predicates and arguments in the semantics. 
In our opinion such a commitment makes it 
easier to coordinate incremental syntactic and 
semantics processing important in the parsing 
of visual interface languages,, and it also tends 
to produce grammars that nave more mean­
ingful and tran_�parent syntactic and semantic 
constituents. We are not aware of any such 
committrnent in competing visual grammar 
approaches that do discuss semantics. 
Second, assuming that heads of phrases tend 
to offe: constra�nts on _the syntactic and 
semantic P:operbes of their arguments, it be­
comes possible to take advantage of the prun­
ing power of these constraints through the use 
of head-driven parsin_g and generation al­
gorithms (Kay 1989; Satta ana Stock 1 989· 
Shi�ber et al. 1989). ' 

2. The domain of spatial relations. As 
wi th Helm and Marriott (1 990), our formalism 
a11ows the grammar to state any number of 
re_latjonal constr:aints a_mong any elements 
w1thm the domam of a smgle rule. While the 
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formalism used by Anderson (1 968) differs in several other respects, he too allows spatial 
relations to be stated over such a domain. Un­
like Golin and Reiss (1 989), we do not 
presume that it is possible to state constraints 
among elements arbitrarily distant in a 
derivation tree. Unlike the most recent gram­
mars of the SIL-ICON �stern (Crimi et al. 
1 989), we do not confine the expres sion of spa­
tial constraints to a single relation among 
pairs of elements that are adjacent in a rule 
body. In our opinion, most visual languages 
in practice, complex mathematics formulae 
among them, need the additional expressive­
nes s  of our formalism over the latter group of 
proposals .  

As for parsing, the algorithm we have out­
lined is unique among visual language par­
sers,, as far as we know, in allowing_for max­
imally flexible enumeration. We have 
motivated thi s  design feature in the context of 
our goal to . provide parsing tools and help 
facilities for interface languages, where tem­
poral ordering of the input cannot be assumed 
to match systematic spatial enumeration 
procedures .  

The other distinguishing feature of  the 
parsing algorithm is its disassociation of the 
parse table from any particular set of spatial 
relations used by the grammar. We take this 
to be a strength in that the algorithm is thus 
extremely general, although we concede that 
without exploring the .spatial component more 
fully we cannot provide a complete solution to 
any particular visual language domain · nor 
can we determine the computational com­
plexity of our algorithm. The crux of our ap­
proach is to propose a particular form of in­
dexing of the grammar table that makes use 
of icons and icon sets (covers). In future work 
�e will explor� the c_omplexity of this algo: 
nthm when paired with sets of assumptions 
regarding the spatial relations assumed by 
the grammar. 

6. CONCLUDING REMARKS 
This paper · concentrated on basic rule 

proposing and combining methods rather than 
oil particular treatments· of visual relations 
and representations. We expect to have more 
to say on these topics in future work. Other 
areas we expect to follow up on include the 
problem of nonm.onotonicity inherent in allow­
mg users to edit or alter their input, the 
problem of offering help to users in an in­
cremental parsing situation, and various 
problems associated with reversin� the gram­
mars shown here in connection with genera­
tion of visual output from the semantics of un­
derlying data. 

Although we have been applying Rela­
tional Umfication Grammars in graphical 
domains, there is reason to suppose that such 
extensions of unification grammars may prove 



useful for natural languages as well. In par­
ticular, using relations such as case and 
gender agreement in place of left- and right­
adjacency as the foundation for grammatical 
description may prove superior for so-called free word order languages. We expect that 
the parsing algorithm presented here would 
apply in such cases. 
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