
PROBABILISTIC LR PARSING FOR GENERAL CONTEXT-FREE 
GRAMMARS* 

See-Kiong Ng and Masaru Tomita School of Computer Science and Center for Machine Translation Carnegie Mellon University Pittsburgh, PA 15213 U.S .A.  
ABSTRACT To combine the advantages of probabilistic gram­mars and generalized LR parsing, an algorithm for constructing a probabilistic LR parser given a prob­abilistic context-free grammar is needed. In this pa­per, implementation issues in adapting Tomita's gen­eralized LR parser with graph-structured stack to per­form probabilistic parsing are discussed. Wrig__ht_and-­_ Wrigley ( 1 989) has proposed a probabilistic L�le construction algorithm for non-left-recursive context-lree grammars . To account for left recursions, a method for comput1ng item probabilities using the '_generation o sy m-s-nftirre'a:r equa ions 1s presen ea: The notion of e erre pro a 1ties is proposed as a means for dealing with similar item sets with differing probability assignments. 

1 Introduction Probabilistic grammars provide a formalism which accounts for certain statistical aspects of the lan­guage, allows stochastic disambiguation of sen­tences , and helps in the efficiency of the syntactic analysis . Generalized LR parsing is a highly effi­cient parsing algorithm that has been adapted to handle arbitrary context-free grammars . To com­bine the advantages of both mechanisms, an algo­rithm for constructing a generalized probabilistic LR parser given a probabilistic context-free gram­mar is needed. In Wright and Wrigley ( 1 989) , a probabilistic LR-table construction method has been proposed for non-left-recursive context-free grammars. However , in practice , left-recursive context-free grammars are not uncommon, and it is often necessary to retain this left-recursive grammar structure . Thus, a method for handling left-recursions is needed in order to attain proba­bilistic LR-table construction for general context free grammars. In this paper , we concentrate on incorporat­ing probabilistic grammars with generalized LR parsing for efficiency. Stochastic information from probabilistic grammar can be used in making sta­tistical decision during runtime to improve per­formance . In Section 3, we show how to adapt Tomita's( 1985, 1987) generalized LR parser with 
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graph-structured stack to perform probabilistic parsing and discuss related implementation issues. In Section 4, we describe the difficulty in comput­ing item probabilities for left recursive context­free grammars . A solution is proposed in Sec­tion 5, which involves encoding item dependencies in terms of a system of linear equations . These equations can then be solved by Gaussian Elim­ination (Strang 1980) to give the item probabili­ties, from which the stochastic factors of the cor­responding parse actions can be computed as de­scribed in Wright and Wrigley ( 1989) . We also introduce the notion of deferred prob­
ability in Section 6 in order to prevent creating excessive number of duplicate items which a.re sim­ilar except for their probability assignments . 
2 Background Probabilistic LR parsing is based on the notions of probabilistic context-free grammar and prob­abilistic LR parsing table, which are both aug­mented versions of their nonprobabilistic counter­parts . In this section , we provide the definitions for the probabilistic versions. 
2 . 1  Probabilistic CFG A probabilistic context-free grammar ( PCFG)  (Suppes 1970 , Wetheral l  1980 , Wright and Wrigley 1989) G, is a 4-tuple (N, T, R, S) where N is a set of non-terminal symbols including S the start symbol, T a set of terminal symbols, and 
R a set of probabilistic productions of the form 
< A --+ a, p > where A E N,  a E (N U T) * , and 
p the production probability. The probability p is the conditional probability P(a lA) , which is the probability that the non-terminal A which appears during a derivation process is rewritten by the se­quence a. Clearly if there are k A-productions with probabilities Pi ,  . . .  , Pk ,  then I::= l Pi = 1 ,  since the symbol A must b e  rewritten by the right hand side of some A-production . The production probabilities can be estimated from the corpus as outlined in Fu and Booth(1975) or Fuj isaki( 1984) . It is assumed that the steps of every derivation in the PCFG are mutually independent, meaning that the probability of applying a rewrite rule de-



Figure 1 :  GRA l :  A Non-left Recursive PCFG 
( l )  S -+ NP VP l 
(2) NP -+ n i 
(3) NP -+ det n 3 
( 4) VP -+ v NP 1 

Figure 2 :  GRA2: A Left-recursive PCFG 

( 1 ) S -+  NP VP ::!. 
1 (2) s -+  s pp 1 (3) NP -+ n 
� (4) NP -+ det n f (5) NP -+ NP PP 10  

(6)  PP -+ prep NP 1 
(7) VP -+ V NP 1 

pends only upon the presence of a given nonter­
minal symbol ( the premis) in a derivation and not 
upon how the premis was generated. Thus , the 
probability of a derivation is simply the product 
of the production probabilities of the productions 
in the derivation sequence. 

Figures 1 ,  2 and 3 show three example PCFGs 
G RA l , G RA2 and G RA3 respectively. Inci­
dentally, GRA l  is non-left recursive, GRA2 and 
G RA3 a.re both left-recursive, although GRA3 is 
"more" left-recursive than GRA2 . GRA2 is said 
to have simple recursion since there is only a fi­
nite number of distinct left-recursive loops1 in the 
grammar. GRA3, on the other hand, is said to 
have massive left recursions because of the inter-

! \ m i  nglcd left 1
-
·ecursions, _\\_'._hich _ .:_esu 

_
_ It in infinit� 

( .  oss ib Jy unc<?_un�able )_ number �f __d!st!n�� !�­
E.C-lu:s.LV. . .e QQR§_ in the grammar . 

1 A Os a derivation cycle in which the first and 
last p1�ions used in the derivation sequence are 
the same and occur now here else in the sequence. 

Figu re 3 :  GRA3:A Massively Left-recursive PCFG 

( 1 ) S -+  S a1 1 
! (2) S -+  B a2 
� (3) S -+  C a3 I (4) B -+  S a3 
I (5) B -+  B a2 f (6) B -+  C a1 1 (7) C -+  S a2 j (8)  C -+  B a 3  

\5 (9) C -+  C a1 1 y ( 1 0) C -+  a3 B l ( 1 1 )  C -+  a3 1 ,;,  
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2 . 2  Probabilistic LR Parse Table 
A probabilistic LR table is an augmented LR table 
of which the entries in the ACTION-table contains 
an additional field which is the Pirobability of the 
action. We call this probability {ikchastic Jacwrj 
because it is the factor used in the computation 
(multiplication) of the runtime stochastic prod­uct . The parser keeps this stochastic product dur-
ing runtime for each ossible derivatio ectin 
t eir respective likelihoods. his product can be 

� computed uring runtime by multiplication using 
the precomputed stochastic factors of the parsing 
actions ( or by addition if the stochastic factors 
are expressed in logarithms) . The parser can use 
this stochastic information to disambiguate or di­
rect/prune its search probabilistically. 

Figures 4, 5 and 6 show the respective prob­
abilistic parsing tables for GRA l ,  GRA2 and 
GRA3 , as constructed by the algorithm outlined 
in Section 5. Note that the stochastic factors of r distinct actions associated with a state add up to 
1 as expected, since each action's stochastic fac- { 
tor is simply the probability of the parser making \ 
that action during that point of parse. The format -
of the GOTO-table is unchanged as no stochastic 
factor is associated with GOTO actions. 

3 Generalized Probabilistic LR 
Parsers for Arbitrary PCFGs 

In this section, we describe how the efficient gen­
eralized LR parser with graph-structured stack in 
(Tomita 1985,  1987) can be adapted to parse prob­
abilistically using the augmented parsing table. In 
particular, we discuss how to maintain consistent 
runtime stochastic products base on three key no­
tions of the graph-structured stack: merging, lo­
cal ambiguity packing and splitting. We assume 
that the state number and the respective runtime 
stochastic product are stored at each stack node. 

3.1  Merging 
Merging occurs when an element is being shifted 
onto two or more of the stack tops. Figure 7 il­
lustrates a typical scenario in which a new state 
(State 3) is pushed onto stack tops States 1 and 
2, of which original stochastic products are P1 
and p2 respectively. These two nodes's stochas­
tic products are modified to P1 q1 and p2q2 corre­
spondingly. If the stochastic factors of the actions 
has been represented as logarithms in the parse 
table, then their new "product" ( or rather , loga­
rithmic sums) would be P1 + q1 and P2 + q2 in­
stead. For the stochastic product of Node 3 ,  we 
can either use the sum of its parents ' products 
(giving p3 as P1 q1 + p2q2) if we adopt strict prob­abilistic approach , or the maximum of the prod­
ucts (ie, p3 = max (p1 q1 , p2 q2 )) if we adopt the 



Figure 4: Probabilistic Parsing Table for G RAl State ACTION GOTO det n V $ NP VP s 
0 (sh2, �) (shl , ½) 4 3 1 (re2 ,  1 )  (re2 , 1 )  2 (sh5,  1) 3 {ace, 1} 4 (sh6 , 1} 7 5 (re3 , 1) (re3 ,  1 )  6 (sh2 , ¾ ) (shl , ½) 8 7 {rel , 1} 8 (re4, 1) 

Figure 5 :  Probabilistic Parsing Table for GRA2 State ACTION det n V 0 (sh2, ! ) (sh l , ¾} 1 (re3 ,  l} 2 {sh5 , l} 3 (sh7, ,�n } 4 5 (re4, 1} 6 (sh2,  ! } (shl , ¾} 7 (sh2, ! } (sh l , ¾} 8 (re5 ,  l } 
9 

10 
1 1  (re6 , 1�0 } 
12  (re7, t0 } 

maximum likelihood approach . Note that although the maximum likelihood approach is in some sense less "accurate" than the strict probabilistic ap­proach , it is a reasonable approximate and has an added advantage when the stochastic factors are represented in logarithms, in which case the s tochastic "products" of the parse stack can be maintained using only addition and subtraction operators( assuming, of course, that additions and subtractions are "cheaper" computationally than multiplications and divisions) . 
3 .2  Local Ambiguity Packing Local ambiguity packing occurs when two or more branches of the stack are reduced to the same non­terminal symbol .  To be precise, this occurs when the parser attempts to create a GOTO state node (after a reduce action , that is) and realize that the paren t already has a child node of the same state. In this case there i s  no need to create the 

prep 
re3 , 1 

(sh6, ,10 } (sh6, ¼} re4, 1 
re5 , 1 
rel , l _re2, 1 >  (re6, 1�0 }  (sh6, ,10 } (re7, fa} (sh6 , ,10 ) 

$ 

re3 , 1 
(ace, �} re4, 1 
re5, 1 
rel , l 1  re2 , l (re6,  1�0 } 

(re7, to } 

GOTO 
NP pp VP s 3 4 

8 9 
10 

1 1  12  
8 
8 

Figure 7: Merging 

GOTO node but to use that child node ( "pack­ing" ) .  This is equivalent to the merging of shift nodes, and can be handled similarly : the runtime product of the child node is modified to the new "merged" product ( either by summation or max­imalization) .  This modification should be propa­gated accordingly to the successors of the packed child node, if any. 
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Figure 6 :  Probabilistic Parsing Table for ·GRA3 
State ACTION GOTO 

a1 a2 
0 
1 (re l l , �} 

2 (sh9,  ½) (sh8 ,  ,,,j�) 
3 (sh l l ,  :� ) 
4 (sh 13 , m) 
5 (sh9 ,  �) (sh8, ?6

._
6

0
) 

6 (1'e 10 ,  27{4 ) (sh15 ,  �11) 

7 (sh 16 ,  {;�)  
8 :re7, 1 1  
g c re l ,  1 1  Tre l ,  l} 

1 0  1 re4, 1 1 {re4, 1} 
1 1  (re2 ,  t� ) (re2, t� ) 

(re5 , �7 }  (re5 ,  '.'\7 )  
12  re8, 1 
13  (re6 ,  to\) (re6 ,  too7 ) 

(re9,  �} 
14 re3 , 1 {re3 ,  1} 
15  (1·e2, w) (re2 , w) 

(re5 ,  1 1  � } (re5 ,  1 1  '.'\ )  
16 (re� , \��) (re6 ,  ���) 

(re9 ,  T?R) 

3 .3  Splitting 

Spl i t. t i ng  occu rs when there i s  an action conflict. 
Th is can be  h and led straightforwardly by creat­
i ng corresp ond ing new nodes for the new resulting 
states with the respective runtime products (such 
as the product of the parent 's stochastic prod­
uct with the action 's stochastic factor) . Splitting 
can also occur when reducing (popping) a merged 
node . In this case, the parser needs to recover 
the original runtime product of the merged com­
ponents, which can be obtained with some math­
ematical man ipulation from the runtime products 
recorded in the merged node 's parents. Figure 8 
i l lustra tes a simple  situation in which a merged 
node is split into two. In the figure, a reduce 
act ion ( of which the corresponding production is 
of un i t  length) is applied at Node 3, and the 
GOTO's for Nodes 1 and 2 are states 4 and 5 
respectively. In the case that strict probabilis­
tic approach is used in merging (see above) , we 
get p4 = P i7+P2 p3q and Ps = 

P i7+P2 p3q . If the 
maximum l i keli hood approach is used, then p4 = 
m ax f; 1 , 1' :! ) p3q  and ]Js  = max f;1 ,p2)p3q . Further­
more , if the stochastic factors have been expressed 
i n  logn r i t. l 1 ms ,  t.hen p .. , = J)3 - max (p1 , P2 ) + PI +  q 
and 71" = JJ::1 - m ax (71 1 , pJ +p:2 + q  (notice that only 

a3 $ s B C 
shl ,  1 · 2 3 4 

(re l l , J) 5 6 7 
(sh l ,  �) 

(shlO ,  '>bn; } (ace, �) 
(sh12 ,  :¼½) 
(sh14, 1� ) 
(sh lO ,  �) 
(relO,  �4 ) 
(sh12 , 1� ) 
(sh14, ,f�) 

( re7, 1 
re l , 1 Tre l ,  l} 

1 re4, 1 
(re2, t�) (re2 , �; ) 
(re5 , �7 )  

re8, 1 
(re6 ,  \Ob7 ) 
(re9 ,  �) 

re3, 1 Tre3 , 1} 
- (re2, w) (re2, /1\ ) 

(re5, 1 1  � } 
(re6 ,  \�� ) 
(re9 , 1� } 

addition and subtraction are needed , as promised) . 
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Figure 8: Splitting 

[reduce,q] 
- - +  

P2 

In general , there may be more than one splitting 
corresponding to a reduce action (ie, we may have 
to pop more than one merged nodes) . For every 
split node, we must recover the runtime products 
of its parents to obtain the appropriate stochas­
tic products for the resulting new branches . This 
can be tricky and is one of the reasons why a 
tree-structured stack ( described below) instead of 
graphs might perform better in some cases. 

3.4 Using Stochastic Product to 
Guide Search 

The main point of maintaining the runtime 
stochastic products is to use it as a good indicator 



function to guide search . In practical situation , the grammar can be highly ambiguous, resulting in many branches of ambiguity in the parse stack. As discussed before, the runtime stochastic prod­uct reflects the likelihood of that branch to com­plete successfully. In Tomita's generalized LR parser , processes are synchronized by performing all the reduce actions before the shift actions. In this way, the processes are made to scan the input at the same rate, which in turn allows the unification of processes in the same state. Thus, the runtime stochastic products can be a good enough indicator of how promising each branch (ie. partial derivation) is, since we are comparing among partial derivations of same in­put length. We can perform beam search by prun­ing away branches which are less promising .  If  instead of the breadth-first style beam search approach described above we employ a best­first ( or depth-first) strategy, then not all of the branches will correspond to the same input length. Since the measure of runtime stochastic product is biased towards shorter sentences, a good heuris­tic would have to take into account of the num­ber of input symbols consumed. Even so, han­dling best-first search can be tricky with Tomita's graph-structured stack without the process-input synchronization , especially with the merging and packing of nodes. Presumably, we can have ad­ditional data structure to serve as lookup table of the nodes currently in the graph stack: for in­stance, an n by m matrix ( where n is the num­ber of states in the parse table and m the in­put length) indexed by the state number and the input position storing pointers to current stack nodes. With this lookup table, the parser can check if there is any stack node it can use before creating a new one. However, in the worst case, the nodes that could have been merged or packed might have already been popped of the stack be­fore it can be re-used. In this case, the parser degenerates into one with tree-structured stack (ie, only splitting , but no merging and packing) and the laborious book-keeping of the stochastic products due to the graph structure of the parse stack seems wasted.  It might be more productive then to employ a tree-structured stack instead of a graph-structured stack, since the book-keeping of runtime stochastic products for trees is much simpler : as each tree branch represents exactly one possible parse, we can associate the respec­tive runtime stochastic products to the leaf nodes (instead of every node) in the parse stack, and up­dating would involve only multiplying ( or adding, in the logarithmic case) with the stochastic fac­tors of the corresponding parse actions to obtain the new stochastic products. The major draw­back of the tree-stack version is that it is merely a. slightly compacted form of stack list (Tomita 
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1987) - which means that the tree can grow un­manageably large in a short period ,  unless suitable pruning is done. Hopefully, the runtime stochastic product will serve as good heuristic for pruning the branches; but whether it is the case that the sim­plicity of the tree implementation overrides that of the representational efficiency of the graph version remains to be studied. 
4 Problem with Left Recursion The approach to probabilistic LR table construc­tion for non-left recursive PCFG , as proposed by Wright and Wrigley(1989) , is to augment the stan­dard SLR table construction algorithm presented in Aho and Ullman(1977) to generate a proba­bilistic version. The notion of a probabilistic item (A -+ o:•/3, p) is introduced, with (A -+ o: ·/3) being an ordinary LR(O) item, and p the item probabil­ity, which is interpreted as the posterior probabil­ity of the item in the state. The major extension is the computation of these item probabilities from which the stochastic factors of the parse actions can be determined. Wright and Wrigley( 1 989) have shown a direct method for computing the item probabilities for non-left recursive grammars. The probabilistic parsing table in Figure 4 for the non-left recursive grammar GRA l  is thus con­structed. Since there is an algorithm for removing left re­cursions from a context-free grammar (Aho and Ullman 1 977) , it is conceivable that the algo­rithm can be modified to convert a left-recursive PCFG to one that is non left-recursive. Given a left-recursive PCFG , we can apply this algo­rithm, and then use Wright and Wrigley( 1 989) 's table construction method on the resulting non left-recursive grammar to create the parsing ta­ble. Unfortunately, the left-recursion elimination algorithm destructs the original grammar struc­ture. In practice, especially in natural language processing, it is often necessary to preserve the original grammar structure. Hence a method for constructing a parse table without grammar con­version is needed. For grammars with left recursion, the computa­tion of item probabilities becomes nontrivia.l. First of all ,  item probability ceases to be a "probabil­ity" , as an item which is involved in left recursion is effectively a coalescence of an infinite number of similar items along the cyclic paths, so its as­sociated stochastic value is the sum of posteriori probabilities of these packed items. For instance, if starting from item (A -+ a: • B/3, p) we derive the item ( C -+ • B,, p x p B ) ,  then by left recursion we must also have the items (C -+ ·B, , p x Pk ) for i = 1 ,  . . .  oo. The probabilistic item (C -+ 
·B,, q) , being a coalescence of these items, would have item probability q = I::� 1 p x p� = �'  



and there is no guarantee that q � l .  This is un­derstandable since (C '----+- -B,, q) is a coalescence of items which are not necessarily mutually ex­clusive. However, we need not be alarmed as the stochastic values of the underlying items are still legitimate probabilities .  Owii1g to this coalescence of infinite items into one single item in left recursive grammars, the computation of the stochastic values of items in­volves finding infinite sums of the items' stochastic values. For grammars with simple left recursion (that is, there are only finitely many left recursion loops) such as GRA2, we can still figure out the sum by enumeration, since there is only a finite number of the infinite sums corresponding to the left recursion loops . With massive left recursive gramma.rs like GRA3 in which there is an infinite number of (intermingled) left recursion loops, the enumeration method fails . We shall illustrate this effect in the following sections . 
4 . 1  Simple Left Recursion For grammars with simple left recursion, it is pos­sible to derive the stochastic values by simple cycle clct.ect. ion . For instance , consider the following set of L R(0) items for GRA2 in Figure 9 .  

F igure 9 :  An  Example State for  GRA2 lo : l VP - v - NP ,  SoJ 11 : [NP - ·n ,  Si] h : [NP - - det n ,  S2] h [NP - - NP PP , Sa] 
Suppose the kernel set contains only 10 , with 

So = ¥ .  Let V be a partial derivation before seeing the input symbol v. At this point , the possible derivations which ,vill lead to item Ji are: 
1 'D �  VP --. v - NP � NP -+ ·n 

·v � VP ..:...... v - NP .Jb_ NP -+ - NP VP � NP -+ ·n 
.L ..1.. i 'D � VP --. v · NP ¾ NP -+ - NP VP ¾ . . .  :¼-NP - -n 

The sum of the posterior probabilities of the above possible partial derivations are: S1 = (So X ½) + (So X ft x ½) + (So X t/ X ½) + . . .  
3 '\""" oo  1 n 1 5 

= 7 X Lm=O 10 X 2 = 21 
S .  · 1  I S 3 '\"""

oo i n 2 4 d 1 1rn ar Y, 2 = 7 x L....n =O To x 5 = 21 '  an 
S � "\'oo 1 n 1 

3 = 7 X L....n = l  10 = 2 1 ' 

4 . 2  Massive Left Recursion For grammars with intermingled left recursions such as GRA3 , computation of the stochastic val­ues of the i tems becomes a convoluted task . Con-
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sider the start state for GRA3 , which is depicted in Figure 10 .  
Figure 10 :  Start State of  GRA3 

lo : lS' - ·S, 1] 11 : [S - -Sa1 , Si] 12 : [S - -Ba2 , S2] 
/J:  [S � -Caa ,· . Sa] ]4 : [B � •Saa , S4] 
]5 : [B - -Ba2 ,  Ss] 16 : [B - -Cai , S6] h: [C - -Sa2 , S1] 
ls : [C - •Baa , Ss] 
]9 : [C - -Cai , -Sg] 110 : [C - •aaB, S10] · 11 1 , : [C - ·aa, Su] 

Consider the item 11 . In an attempt to write down a closed expression for the stochastic value S1 , we discover in despair that there is an infi­nite number of loops to detect , as S is immedi­ately reachable . by all n_on-terminals, and so are the other nonterminals themselves. This intermin­gling of the _loops renders it impossible to write down closed expressions for S1 through Su . 
5 Probabilistic Parse Table 

Construction for Left Recursive 
Grammars In this section, we describe a way of computing item probabilities by encoding the item depen­dencies in terms of systems of linear equations and solving them by Gaussian Elimination (Strang 1 980) .  This method handles arbitrary context­free grammar including those with .left recursions. We incorporate this method with Wright and W:rigley's ( 1989) algorithm for computing stochas­tic · factors for the parse actions to obtain a ta­ble construction algorithm which handles general PCFG. A formal description of the complete table construction algorithm is in the Appendix . In the following •discussion of the algorithm, lower case greek characters such as a and /3 will denote strings in (N U Tt' and upper case alpha­bets like A and B denote symbols in N unless mentioned otherwise . 

5 . 1  Stochastic Values o f  Kernel 
Items For completeness, we mention briefly here how the stochastic values of items in the kernel set can be computed as proposed by Wright and Wrigley( 1989) : The stochastic value of the kernel item [S' - ·S] in the start state is 1 .  Let State m - 1 be a prior 



state of the non-start State m. We want to com­
pute the stochastic values of the kernel items of 
State m. Suppose in State m - 1 there are k 
items which are expecting the grammar symbol 
X ,  their stochastic values being S1 , S2 , . . .  , Sk re­
spectively. Let [Ai � Cl'i · X /3i , Si] be these item, i = 1 ,  . . .  , k. Then the posterior probability of the 
kernel item [Ai � aiX · /3i] of State m given those 
k items in State i and grammar symbol X as the 
next symbol seen on the parse stack is -ff;, where 
Sx = I:�=l Si . 

5 . 2  Dependency Graph 
The inter-dependency of items within a state can 
be represented most straightforwardly by a depen­
dency forest . If we label each arc by the proba­
bility of the rule represented by that item the arc 
is pointing at , then the posterior probability of 
an item in a dependency forest is simply the total 
product of the root item's stochastic value and the 
arc costs along the path from the root to the item. 

This dependency forest can be compacted into 
a dependency graph in which no item occurs in 
more than one node. That is , each graph node 
represents a stochastic item which is a coalesce of 
all the nodes in the dependency forest represent­
ing that particular item. The stochastic value of 
such an item is thus the sum of the posterior prob­
abilities of the underlying items. 

Figure 1 1  depicts the graphical relations of the 
items in the example state of GRA2 in Figure 9 .  
We shall not attempt to  depict the massively cyclic 
dependency graph of the start state for GRA3 
(Figure 10) here. 

Figure 1 1 :  A Dependency Graph 
[VP --+ v-NP,So] 

2 To 
5 

[NP - -n ,  S1 ][NP - -det n,S, ]  [NP 

1

-
:::;:

P,S,]  

t½ H 11 1
1
0 

5 .3 Generating Linear Equations 
Rather than attempting to write down a closed 
expression for the stochastic value of each item, 
we resort to creating a system of linear equations 
in terms of the stochastic values which encapsu­
late the possibly cyclic dependency structure of 
the items in the set . 

Consider a state \JI with k items, m of which 
are kernel items. That is, \JI is the set of items 
{ Ij 1 1  :S j :S k} such that Ii is a kernel item if 
1 :S j :S rn.. Again , let Si be a variable represent­
ing the stochastic value of item Ij . The values of 
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S1 , . . .  , Sm are known since they can be computed 
as outlined in Section 5 . 1 .  

Consider a non-kernel item Ij , m < j :S k .  Let 
{Ii 1 1 • • • , ljn, } be the set of items in 'P from which 
there is an arc into Ij in the dependency graph 
for 'Ill .  Also , let Pj i denote the arc cost of the arc 
from item Ii i to Ij . Then , the equation for the 
stochastic value of Ij , namely Sj , would be: 

n' 

Sj = L Pii X Sj i i= l ( 1 )  

Note that Equation ( 1 )  i s  a linear equation of 
at most (k  - m) unknowns, namely Sm+1 , . . .  , Sk . 
This means that from 1 we have a system of (k-m) 
linear equations with (k - m) unknowns. This can 
be solved using standard algorithms like simple 
Gaussian Elimination (Strang 1980) . 

The task of generating the equations can be fur­
ther simplified by the following observations: 

1 .  The cost of any incoming arc of a non­
kernel item Ii = [Ai � •ai ,  Si] is the produc­
tion probability of the production (Ai -+ 

Cl'i , Pr ) - In other words, Pj i 
= Pr for i = 

1 . . .  n'. Equation ( 1 )  can then be simplified 
n' to Sj = Pr X Li=l Sj ; ·  

2 .  Within a state , the non-kernel items repre­
senting any X-production have the same set 
of items with arcs into them. Therefore , 
these npn-kernel items have the same value 
for L;=l Sr,, (which is similar to the Sx in 
Section 5 . 1) .  

Thus, Equation ( 1 )  can be  further simplified 
n' . as Sj = Pr X SAj where SAj = Lx= l Sr,,

. With 
that , the system of linear equations for each state 
can be generated efficiently without having to con­
struct explicitly the item dependency graph . 

5.3 .1  Examples 

The system of linear equations for the state de­
picted in Figures 9 and 1 1  for grammar G RA2 is as 
£ 11 . So = f (Given) S2 = ¾(S0 + S3 ) 

0 ows. S1 = 2 (50 + S3 ) S3 = k(So + S3 ) 
On solving the equations , we have S1 = 251 ,  

S2 = 241 and S3 = l1 , which is the same solution 
as the one obtained by enumeration (Section 4 . 1 ) .  

Similarly, the following system of linear equa­
tions is obtained for the start state of massively 
left recursive grammar GRA3: 

So = 1 S6 = t (S2 + S5 + Ss ) 
S1 = t (So + S1 + 84 + S1 ) S1 = -.dS3 + s6 + S9 ) 
S2 = 

I
(So + S1 + S4 + S1 ) Ss = ft (S3 + S6 + S9 ) 

S3 = 
I

(So + S1 + S4 + S1 ) S9 = tf (S3 + Se +  S9 ) 
84 = f (S2 + 85 + Ss ) S10 = 3(83 + S6 + S9 ) 
S5 = 6 (82 + S5 + Ss ) S1 1  = ft (S3 + Se +  S9 ) 



On solvinp; the equations, we have the solutions 29 1 1 6 s� 64 32 96 � 1 l 2 and 1. for the 1 ,  77 , 77 , 77 , 77 , 77 , 77 , 7 ,  7 ,  7 ,  7 ' 7 . stochastic variables So through Su respectively. 
5 . 4  Solving Linear Equations with 

Gaussian Elimination The systems of linear equations generated during table construction can be solved using the popular method Gaussian Elimination which can be found in many numerical analysis or linear algebra text­books (for example, Strang 1980) or linear pro­gramming books (such as Vasek Ch�atal , 1983) . The basic idea is to eliminate the variables one by one by repeated substitutions . For instance, if we have the following set of equations : ( 1 )  S1 = a 1 1 S1 + a 1 2 S2 + . . .  + a1n Sn 

(n) Sn = a.n 1 S1 + an2S2 + • • • + annSn . We can eliminate S1 and remove equation ( 1 )  from the  system by substituting, for  all oc�ur­rences of S1 in equations (2) through (n) , the right hand  s ide of equation ( 1 ) .  We repeatedly remove variables S1 through Sn- 1  in the same way, until we are left with only one equation with one vari­able Sn . Having thus obtained the value for Sn , we perform back substitutions until solutions for S1 through Sn are obtained . Complexity-wise , Gaussian elimination is a cu­bic algori thm(Vasek Chvatal , 1983) in terr!1s of t�e number of variables (ie, the number of items m the closure set) . The generation of linear equa­tions per state is also polynomial since we only need to find the stochastic sum expressions the SA . 's , for the nonterminals (Point 2 of Sec­tion 5 . 3 ) .  These expressions can be obtc1:ined _by partition i ng the items in the state set accordm_g to their left hand sides . There are 0( mn) possi­ble LR(O) items (hence the size of each state is O( mn)) and 0(2mn ) possible sets where n is the number of productions and m the length of the longest right hand side . Hence , asymptotically, the computation of the stochastic values would not affect the complexity of the algorithm, since it has only added an extra polynomial amount of work for ea.eh of the exponentially many possible sets. Of course , we could have used other methods for solving these linear equations, for example, by finding the inverse of the matrix representing the equations(Vasek Chvatal ,  1983) . It is also plausi­ble that particular characteristics of the equations generated by the construction algorithm can be exploited to derive the equations' solution more efficiently. We shall not discuss further here. 
5 . 5  Stochastic Factors Since the stochastic values of the terminal items in a parse state are basically posterior probabili-
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ties of that item given the root (kernel) item, the computation of the stochastic factors for the pars­ing actions, which is as presented in Wright a_nd Wrigley( 1989) , is fairly straightfor':ard .  For sh!ft­action say from State i to State z + 1 on seemg the in�ut symbol x, the corresponding stochas­tic factor for this action would be Sr ,  the sum of the stochastic values of all the leaf items in State i which are expecting the symbol x. For reduce-action, the stochastic factor is simply the stochastic value Si of the item representing the re­duction, namely [Ai � Oi · , Si] if the red�ction is via production Ai � Oi . For accept-action, the stochastic factor is the stochastic value Sn of the item [S' � S· , Sn ] ,  since acceptance can be trea�ed as a final reduction of the augmented production 
S' � S, where S' is the system-introduced start symbol for the grammar. 
6 Deferred Probabilities 

The introduction of probability created a new cri­terion for equality between two sets of items: not only must they contain the same items, they mu�t have the same item probability assignment . It 1s thus possible that we have many (possibly infi­nite) sets of similar items of differing probability assignments. This is especially s� when there a�e loops amongst the sets of items (1e, the states)_ m the automaton created by the table construct10n algorithm - there is no guarantee that �he differ­ing probability assignments of the recurrmg states would converge. Even if they do converge even�u­ally, it is still undesirable to have a huge parsmg table of which many states have exactly the same underlying item set but differing probabilities. To remedy this undesirable situation, we in­troduce a mechanism called deferred probability which will guarantee that the item sets converge without duplicating too many of the states. Thus far we have been precomputing item's stochas­tic ' values in an eager fashion - propagating the probabilities as early as possible. Deferred_ proba­bility provides a means to defer propagatmg cer­tain problematic probability assignments (Pr?b­lematic in the sense that it causes many s1m1lar states with differing probability assignments) un­til appropriate. In the extreme case, probabilities are deferred until reduction time, ie, the stochas­tic factors of REDUCE actions are the respec­tive rule probabilities and all other parse actions have unit stochastic factors. A reasonable post­ponement , however, would be to defer propagating the probabilities of the kernel items (kernel prob­abilities) until the following state. By forcing the differing item sets to have some fixed predefined probability assignment (while deferring the pro�­agation of the "real" probabiliti:s until �.pp�opri­ate times) , we can prevent excessive duplication of 



similar states with same items but different prob­abilities. To allow for deferred probabilities ,  we extend the original notion of probabilistic item to contain an additional field q which is the deferred proba­bility for that item. That is, a probabilistic item would have the form (A - a · /3, p, q) . The de­fault value of q is 1 ,  meaning that no probability has been deferred. If in the process of construct­ing the closure states the table-construction pro­gram discovers that it is re-creating many states with the same underlying items but with differing probabilities or when it detects a non-converging loop , it might decide to replace that state with one in which the original kernel probabilities are deferred. That is, if the item (A - a · /3, p, q) is a kernel item, and /3 =f. f , we replace it with a deferred item (A - a ·  {3, p' ,  �) and proceed to compute the closure of the kernel set as before (ie, ignoring the deferred probabilities) . In essence we have reassigned a kernel probability of p' to the kernel items temporarily instead of its origi­nal probability. It is important that this choice of assignment of p' be fixed with respect to that state . For instance, one assignment would be to impose a uniform probability distribution onto the deferred kernel items, that is, let p' be the prob­ability Number of iernel items . Another choice is to assign unit .probability to each of the kernel items, which allows us to simulate the effect of treating each of the kernel items as if it forms a separate state . Although in theory it is possible to defer the kernel probabilities until reduction time, in prac­tice it is sufficient to defer it for only one state transition . That is, we recover the deferred prob­abilities in the next state. We can do this by enabling the propagation of the deferred proba­bilities in the next state, simply by multiplying back the deferred probabilities q into the kernel probabilities of the next state. In other words, as in Section 5 . 1 ,  if [Ai - ai · X/3i , Si , q] is in State m - 1 ,  then the corresponding kernel item in State m would be [Ai - aiX · /3i , � ' 1] . 
7 Concluding Remarks In this paper, we have presented a method for deal­ing with left recursions in constructing probabilis­tic LR parsing tables for left recursive PCFGs. We have described runtime probabilistic LR parsers which use probabilistic parsing table. The table construction method, as outlined in this paper and more formally in the appendix, has been imple­mented in Common Lisp . The two versions of run­time parsers described in this paper have also been implemented in Common Lisp , and incorporated with various search strategies such as beam-search and best-first search ( only for the tree-stack ver-
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sion) for comparison. The programs run success­fully on various small toy grammars, including the ones listed in this paper. In future, we hope to ex­perime:qt with larger grammars such as the one in Fujisaki( 1984) . 
Appendix A.  Table Construction 

Algorithm A full algorithm for probabilistic LR parsing table construction for general probabilistic context-free grammar is presented here. The deferred proba­bility mechanism as described in Section 6 is em­ployed, the chosen reassignment of kernel proba­bility being the unit probability. 
A.1 Auxiliary Functions 
A.1 .1  CLOSURE CLOSURE takes a set of ordinary nonproba­bilistic LR(0) items and returns the set of LR(0) items which is the closure of the input items. A standard algorithm for CLOSURE can be found in Aho and Ullman( 1977) . 
A.1.2 PROB-CLOSURE 
Input: A set of k probabilistic items for some k � 1 :  { [Ai - ai · /3i , Pi , qi] j 1 � i � k} . 
Output: A set of probabilistic items which is the closure of the input probabilistic items. Each probabilistic item in the output set carries a stochastic value which is the sum of the posterior probabilities of that item given the input items. 
Method: 

Step 1: Let 
C := CLOSURE{{ [Ai -+ O'i · ,Bi] I I � i � k} ) ;  

Step 2: Suppose k '  i s  the size of  C. Let Ii be the i-th item [Ai - ai ./3i] in C,  1 � i � k' . Also, for each item Ii,  let Si be a variable denoting its stochastic value. 1 .  For 1 � i � k ,  Si := Pi ;  2 .  Let &B b e  the set of items i n  C that are expecting B as the next symbol on the stack. That is, &B is the set 
{Ij I Ij E C, Ij = [Aj - frj . B/3j ] } 

def Let SB E1i E £B Si , where B E N. For k < i < k' such that Ii = [Ai - -,Bi] , set Bi := Pr X SA ; , where Pr is the probability of the production Ai - /3i . 
Step 3: Solve the system of linear equations gen'erated by Step 2 , using any stan­dard algorithm such as simple Gaussian Elimination (Strang 1980) . 



S tep 4: Return { [Ai --+ a · /3, Si , qi] 1 1 :::; i :::; 
k' } ,  where qi = 1 for k �  i � k' . 

A . 1 .3 GOTO 
Another useful function in table construction is 

GOTO( {!1 . . .  In } ,  X ) ,  where the first argument 
{ Ii . . .  In } is a set of n probabilistic items and the 
second argument X a grammar symbol in ( N U T) . 

Suppose the probabilistic items in { Ii . . .  In } 
are such that those with symbol X after 
the dot are [ Ai --+ 0i · X .Bi , Si , qi] , 1 � i � k for 
some 1 � k � n. Let Sx be 'I:7= 1 Si and set 
GOTO( {Ii } ,  X) to be PROB-CLOSURE( { [Ai --+ 
aiX · /Ji , � '  1] 1 1  � i � k} ) .  

When k = 0 ,  GOTO( {Ii } ,  X) i s  undefined. 

A . 1 .4 Sets-of-Items Construction 
Let U be the canonical collection of sets of prob­

abilistic items for the grammar G' . U can be con­
structed as described below . 

Initially U := PROB-CLOSURE({[S' - -S, 1] } ) .  
Repeat the process of  applying the GOTO func­
tion (as defined in Step A . 1 .3) with the existing 
sets in U and symbols in ( N U T) to generate new 
sets to be added to U. If it is detected that an ex­
cessive number of states with similar underlying 
item sets but differing probabilities are created, 
use a state that is created by deferring the prob­
abilities of the kernel items. That is, suppose the 
original kernel set is { [Ai --+ 0i • /3i , Pi , qi] 1 1  � i � 
k } ,  use instead { [Ai --+ Oi · /Ji , 1 , piqi] I 1 � i � 
k and .Bi ;/:- £} . 

The process stops when no new set can be gen­
erated. 

Note that equality between two sets of proba­
bilistic items here requires that they contain the 
same items with equal corresponding stochastic 
values, as well as deferred probabilities. 

A.2  LR Table Construction 
The algorithm is very similar to standard LR ta­
ble construction (Aho and Ullman 1977) except 
for the additional step to compute the stochastic 
factor for eac;h action (shift , reduce , or accept) .  

Given a grammar G = (N, T, R, S) , we de­
fine a corresponding grammar G' with a system­
generated start symbol S' : 

(N U {S' } ,  T, R U { < S' --+ S, 1 > } ,  S') .  
Input :  U ,  the canonical collection of sets of prob­

abilistic items for grammar G' . 
Output: If possible, a probabilistic LR parsing 

table consisting of a parsing action function 
ACTION and a goto function GOTO. 

Method: Let U = {'110, '11 1 , . . .  , '11n } ,  where W'o is 
that initial set in Sets-of-Items Construction . 
The states of the parser are then 0, 1 ,  . . .  , n, 
with state i being constructed from 'Wi . The 
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parsing actions for state i are determined as 
follows: 

1 .  If [A --+ a ·  a,B, qa] is in 'Wi , a E T, and 
GOTO(W'i , a) = '11; , set ACTION[i , a] to 
( "shift j" , Pa )  where Pa is the sum of 
qa 's - that is the stochastic values of 
items in 'Wi with symbol a after the dot . 

2. If [A --+ a• ,  p] is in 'Wi , set ACTION[i ,  a] 
to ( "reduce A --+ a" , p) for every a E FOLLOW(A) . 

3 .  If [S' --+ S· , p] is in 'Wi , set ACTION [i ,  $] 
($ is an end-of-input marker) to 
( "accept'' , p) . 

The goto transitions for state i are con­
structed in the usual way: 

4. If GOTO(Ii , A) = I; , set GOTo [i, A] = j 
All entries not defined by rules ( 1 )  through 
( 4) are made "error" . 

The FOLLOW table can be constructed from G · 
by a standard algorithm in Aho and Ullman( 1977) . 
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