
SLOW AND FAST PARALLEL RECOGNITION

Hans de Vreught , Job Honig* Delft University of Technology Faculty of Technical Mathematics and Informatics Section Theoretical Computer Science Julianalaan 132, 2628 BL Delft , The Netherlands e-mail: hdev@dutiae.tudelft .nl , joho@dutiae.tudelft.nl
ABSTRACT

In the first part of this paper a slow paral­
lel recognizer is described for general CFG's.
The recognizer runs in 0(n3 / p(n)) time with
p(n) = O(n2) processors . It generalizes the
items of the Earley algorithm to double dot­
ted items, which are more suited to parallel
parsing. In the second part a fast parallel
recognizer is given for general CFG 's. The
recognizer runs in O(log n) time using 0(n6)
processors . It is a generalisation of the Gib­
bons and Rytter algorithm for grammars in
CNF.

1 INTRODUCTION

The subject of context-free parsing is well
studied, e.g. see (Aho and Ullman, 1972 ;
1973; Harrison , 1978) . Nowadays, research
on the subject has shifted to parallel context­
free parsing (op den Akker, Alblas , Nijholt ,
and Oude Luttighuis, 1989) . Two areas of
interest can be distinguished: slow and fast
parallel parsing. We call a parallel algorithm
fast when it does its job in 'polylogarithmic
time. This is in contrast to the sequential
case, in which algorithms are called fast when
they run in polynomial time. Obtaining a
fast parallel algorithm is often quite simple:
when the fast sequential algorithm is highly
parallelizable, using an exponential number
of processors is sufficient . This is not very
realistic, however.

A parallel algorithm is called f ea.si ble only
when it uses a polynomial number of proces­
sors . Note that when a feasible slow par­
allel algorithm runs in polynomial time, it

• using initials: J .P.M . de Vreught and H . J . Honig.
1 27

can be simulated by a fast sequential algo­
rithm. Therefore in practice we often see that
slow parallel is fast enough; fast parallel al­
gorithms often achieve their speed because
of their huge number of processors and large
amounts of storage.

Several authors have studied a�gorithms for
slow parallel recognition. Most of these. al­
gorithms are variants of the Cocke-Younger­
Kasami (CYK) algorithm and the Earley al­
gorithm. In the first part of this paper an­
other slow parallel recognizer is given (de
Vreught and Honig, 1989; 19�0b) _- Its new
feature is that it uses double dotted it�ms,
which are more natural for parallel parsing;
these items make it easy to do error determi­
nation , a feature that is shared with niost
parallel bottom up algorithms. Although
there are some similarities between the three
algorithms, they should not be regarded as
variants of each other since they all fill their
respective matrices with different 'items' and
for entirely different reasons .

When compared to a. parallel versio� of
the Earley algorithm, which would have to
be bottom up , our algorithm generates far
less i terns on the principal diagonal of the
recognition matrix. A detailed comparison
of the items required by the given algorithm
and the Earley algorithm will be necessary
to show the strengths · or weaknesses of both
approaches to parallel parsing. The si zes of
the item sets in relation to particular classes
of grammars is still under research.

The subject of fast parallel pars�ng is rel­
atively new. Amongst the first to give a fast
parallel recognizer were Gibbons and Rytter
(1988) . Their recognizer requires a grammar
in CNF; it can be regarded as the fast par-

allel version of the slow parallel CYK algo­
rithm. The speeded up version is obtained
by also examining the consequences of incom­
plete items . When an incomplete item gets
completed, we can also complete the conse­
quences immediately. The reason for the al­
gorithm being fast is based on the fact that
for every skewed tree (with n internal nodes)
of height 0 (n) describing the composition of
a certain item, there exists a reasonably well
balanced one of height O(log n) that uses
both complete and incomplete items .

In the second part of the paper a fas_t par­
allel recognizer for general CFG 's is given (de
Vreught and Honig, 1 990a) . In spite of the
fact that any CFG can be transformed into
CNF in 0 (1) time, usi�g CNF is undesirable
in practice (especially in natural language
processing) . The fast parallel recognizer does
not need to transform the grammar. The fast
parallel recognizer can be . regarded as the fast
parallel version of the slow paraliel recognizer
described in the first part . The fast parallel
recognizer is based on the Gibbons and J;lyt­
ter algorithm for grammars in CNF (Gibbons
and Rytter, 1988) . The paper is concluded
with some final remarks .

2 THE SLOW PARALLEL
RECOGNIZER

We start by sketching the ideas behind the
slow parallel recognizer. Then we will give an
inductive relation which plays a central role
in our algorithms. Finally we will present the
slow parallel recognizer .

2 . 1 INFORMAL DESCRIPTION
Let a1 • • • an be the string to be recognized.
We are going to build an upper triangular
matrix U as shown below.

In each cell Uij we enter items of the form
A --+ a •/3 ·, such that A --+ a{31 is a produc­
tion and /3 ⇒ * ai+I . . . aj . We will also insist

1 28

that if f3 = A then a, = A :
A

�
a f3 ,
�

i i
J

Suppose B --+ • /3 • E U ij and let A --+ aB,
be a production. In that case we can assert
that A --+ a • B ·, E Uij :

A
�

a B ,

/3
�

i i
J

This assertion follows from the application
of the inclusion operation to B --+ • /3 • E
Uij • Another operation is concatenation . If
A --+ a • /31 • /32, E Uik and A --+ a/31 • /32 · , E
U kj then we can assert that A --+ a • /31 /32 • ,
E Uij , applying the concatenation operation :

i i
k

i
J

When the entries of matrix U are closed with
respect to the operations, we look for an item

S --+ •a • E Uon where S is the start symbol
of the grammar:

s
!
a

� ao • a1 . . . an · an+l
i i
0 n

S --+ • a · E U On

In the following, we will give a relation
U defining the item sets constructed dur­
ing the recognition process . We do this by
identifying the matrix U with the relation U
such that A --+ - a •/3 ·, E Uij iff (i , j,A --+
o: •/3 ·,) E U.

2 .2 THE RELATION

Let G = (V, � , P, S) be the CFG in question
and let x = a1 • • , an the string to be recog­
nized. Furthermore, let • (/. V and let A be
the empty string. Finally, let .J = {O , . . . , n } 2

x { A --+ a • /3 ·, I A --+ a{); E P} .
Definition 2 .2 .1 U = {(i , j, A --+ o: •/3 ·,)
E .J I A => a{); and /3 =>* ai+1 . . , aj and
if f3 = A then a; = A }

In (de Vreught and Honig, 1989) some vari­
ants of U are examined; for instance, one of
them takes context into account . The dis­
advantage of definition 2.2 . 1 is that it is not
immediately clear how to determine whether
or not an item is in the relation . For this
purpose we need an inductive definition.
Definition 2 . 2 . 2 The relation U' over .J is
defined as follows:

• If A --+ A E P then (j, j, A --+ • ·) E U'
for any j E { 0, . . . , n } .
This item i s a base item.

• If A --+ aan E P then (j - l , j, A --+
a • aj •i) E U' for any j E { 1 , . . . , n} .
This item is a base item.

• If A --+ aB; E P and (i , j, B --+ ·/3 ·) E
U' then (i , j, A --+ a • B ·,) E U' .
This operation is called inclusion .

1 29

• If (i , k , A --+ o: •/31 ·/32,) E U' and
(k , j, A --+ af31 ·f32 ·,) E U' then
(i , j, A --+ o: • /31/32 ·,) E U' .
This operation is called concatenation.

• Nothing is in U' except those elements
which must be in U' by applying the pre­
ceding rules finitely often.

It can be proved that U = U'.

2.3 THE RECOGNIZER

We will now present the recognition . algo­
rithm (de Vreught and Honig, 1989) . In the
algorithm mode is either sequence or par­
allel.

Recognizer(n) :
for i : = 0 to n do

for j := 0 to n - i in parallel do
case i

= 0 :

= 1 :

> 1 :

Empty(j + i)

Symbol(j + i)

Ui ,i+i := 0
for k := 1 to i - 1 in mode do

Concatenator
(j, j + k , j + i)

while U i ,i +i still changes do
Concateriator(j, j, j + i)
Concatenator(j, j + i, j + i)
Includer(j, j + i)

return Test(n)

Empty(j) :
Uii := {A -+ • · I A - ,\ E P}

Symbol(j) :
Uj - 1 ,j := { A --+ O: • aj · , I A --+ o:an E P}

Includer(i, j) :
for all B --+ • /3 • E U ii do

Uii := Uii U
{A - o: •B ·, I A - o:B, E P}

Concatenator(i, k , j) :
for all A --+ 0: •/31 ·/32, E uik
with I /31 I = 1 do

for all A --+ o:/31 •/32 •, E Uki do
Uii := Uii U {A -+ o: •/31/32 ·,}

Test(n) :
accept := False
for all S --+ a E P do

if S --+ •a • E U on then
accept := True

return accept
Although the algorithm fills the matrix di­

agonal by diagonal, there are many other fill­
ing orders for the matrix (de Vreught and
Honig, 1989) . Note that all cells on a diago­
nal can be filled independently of each other.
When mode = sequence, it can be shown
that a CREW-PRAM (Concurrent Read Ex­
clusive Write - Parallel RAM) (Quinn, 1987)
with p(n) = 0(n) processors can fill the ma­
trix in T(n) = 0(n3/p(n)) time.

The concatenations done in the loop over k
in Recognizer can also be done independently
of each other. However, in that case the ar­
chitecture must allow parallel writing in cell
Uj,j+i • Thus when mode = parallel , it
can be shown that a CRCW-PRAM (Concur­
rent Read Concurrent Write - Parallel RAM)
(Quinn, 1987) with p(n) = 0(n2) processors
can fill the matrix in T(n) = 0(n3 / p(n))
time. In both cases the space complexity
is dominated by the matrix: S(n) = 0(n2)
space.
Example 2 . 3 . 1 Consider the string aabcc
and the CFG G = (V, E, P, A) :

• V = {A, B} u �
• E = {a , b , c}

• P contains the following productions:
o A --+ aB
o B --+ Ace

o B --+ b

Notice that G is ,\-free (this simplifies the ex­
ample) . From the given grammar and string,
the following matrix (see figure 1) can be ob­
tained .

3 THE FAST PARALLEL
RECOGNIZER

In this section we will sketch the ideas behind
the fast algori thm . The proof that the rec-

1 30

ognizer is fast uses a pebble game, described
in (Gibbons and Rytter, 1988) , and critically
depends on the fact that the 'minimal compo­
sition trees' are linear in size (with respect to
the length of the string to be recognized) . In­
stead of determining U directly we will com­
pute its extension U, on which the fast par­
allel recognizer is based. Finally we will de­
scribe the recognizer for a general CFG . The
algorithms is based on the fast parallel Gib­
bons and Rytter recognizer for CFG 's in CNF
(Gibbons and Rytter, 1988) .

3 .1 COMPOSITION TREES
Definition 2.2 .2 offers a way of justifying the
presence of an item x in U . A justification is
a sequence of rules corresponding to a proof
showing why x E U. Sometimes an item x
can be justified in more than -one way. We
will consider justifications one at a time . . A
complete justification of an item x in U will
be called a composition for x; such a com­
position can be represented by a composition
tree Tx . The nodes in Tx are labelled with
the items mentioned in the antecedents of the
rules of definition 2.2 .2 that are applied; the
root is labelled x .

Example 3 . 1 . 1 Suppose w is the result of
an inclusion of x , x is the result of a con­
catenation of y and z, and y and z are base
items. The composition tree Tw for w is as
given below.

Tw : w

!
X

�
y z

3.2 INFORMAL DESCRIPTION
We will speed up the slow parallel algorithm
that computes relation U to a fast parallel
algorithm computing U by using a relation
denoted by U (given in section 3 .4). The
presence of each item x in U can be justified
by means of a composition tree Tx . In Tx all

I A -+ •a•B A -+ •aB •
B -+ •A •cc

A -+ •a •B A -+ •aB • B -+ •Ac • c B -+ •Ace •
B -+ • A • cc A -+ a •B •
B -+ •b •
A -+ a • B •

B -+ A •c • c B -+ A •cc •
B -+ Ac • c •

B -+ A •c • c
B -+ Ac • c •

Figure 1 . Matrix U for aabcc

nodes are labelled with items in U. The root
is labelled x . The other nodes are labelled
by the items mentioned in the antecedents of
the rules of the inductive definition of U. As
an immediate consequence we have that each
subtree of Tx is a composition tree too. We
will represent Tx (or to be more exact : the
existence of Tx) as in the figure below:

· Suppose Ty exists . Thus we assume y E
·u. Let us see what the consequences of this
assumption are. Suppose we can derive Tx

for item x from Ty :

Tx&

Assume we don't no� wet her or not y ac­
tually is in U. Instead . of saying that we have
determined Tx , we say that we have deter­
mined Tx except for the part Ty : we have the
partial composition tree Tx+-y (or better: its
existence) represented as given below:

Tx-�

Note that Tx+-y might exist whilst Ty does
not (because y (j_ U) . By using these partial
composition trees, we draw conclusions from
facts yet to be established . This makes the
algorithm for the recognizer fast ; the proof of
this is based on Rytter's pebble game (Gib­
bons and Rytter, 1988) .

For each base item x (in U) , we can assert
the existence of a composition tree Tx :

1 31

T�

Suppose x can be obtained from y by
means of an inclusion operation . In that case
we can assert the partial composition tree
Tx+-y :

Now suppose that x can be obtained from
y and z by means of a concatenation opera­
tion and assume that Ty · exists (the case that
Tz exists, is handled analogously) . In that
case we can assert the partial composition
tree Tx+-z :

The rules for the inclusion and concate­
nation operations are called activation rules
(the names of all rules are borrowed from the
pebble game) .

The square rule (a misnomer) merges two
partial composition trees Tx+-y and Ty+-z to
obtain the partial composition tree Tx+-z :

Ty-�
--------- ________ J

The final rule is the pebble rule, which
merges a partial composition tree Tx+-y and
a composition tree Ty to obtain the composi­
tion tree Tx :

T,6
-------- -------...... J

When we would define a composition tree
for if in the same way as we did for U,
we would find that for an arbitrary U­
composition tree Tx there exists a reason­
ably well balanced U-composition tree Tx ,
w hi eh also asserts that the i tern x is in U. It
can be shown that if the activation rule, the
square rule, and the pebble rule are iterated
O(log n) times , we have found the existence
of at least one composition tree Tx for every
x in U (and for only those) . Therefore we
can say that we can compute U in O (log n)
time.

3 .3 THE MINIMAL
COMPOSITION SIZE

As a notational shortcut we will speak of an
item x in Uij , by which we mean that x E U
and that x is of the form (i , j, A -+ a � /3 •,) .
The composition size will be defined as the
number of operations in the composition tree.
We call a composition tree minimal iff its
composition size is minimal . In this section
we will argue why the minimal composition
size for item x in Uij is linear in j - i + 1 .
There are two cases t o consider:

• A composition tree which has an item
appearing twice as a label on a path
(such a tree is called a 'cyclic '1 composi­
tion tree) is not minimal .

• An 'acyclic' composition tree has a liµear
composition size. 1 A misnomer on our part .

1 32

Assume that for item x in Uij we have found
a cyclic composition tree Tx , So on a certain
path in Tx we must have a certain item y in
U p q that appears twice as a label (the non­
trivial path between those nodes is called a
'cycle') :

Upq

Cycle removed

It is clear that when the part between the up­
per y and the lower y is removed from Tx , the
number of operations in Tx' is less than the
number in Tx , So after removing a cycle, we
allways get a smaller composition tree. Thus
the minimal composition tree is a member of
the set of the acyclic composition trees .

We will now argue that any acyclic compo­
sition tree has a composition size bounded by
a function linear in the length of the string
to be recognized. Since we don't need a tight
upper bound, we will not use an actual · com­
position. Instead, we will assume that in ev­
ery step on our way the worst case occurs.
This may lead to a 'case' that is worse than
the actual worst case.

We will assume that every internal node is
the result of a concatenation. Suppose x is
the result of an inclusion of y: in that case
Tx contains one more operation than Ty , But
when x is the result of a concatenation of y
and z, then Tx contains one more operation
than Ty and Tz together. Thus a concate­
nation can only lead to more (and never to
fewer) operations than an inclusion. We will
assume that the compositions are acyclic.

We define M = l {A -+ a •/3 •, I A -+ a/3, E
P} I ; M is an upper bound for the number of
i terns in any U ij . Let us focus on an i tern x
in Ujj , see figure 2(a) . We know that item x
has an acyclic composition , so Tx is bounded
in height by O(M) . Since a completely bal­
anced tree has the maximum number of op­
erations, we have an exponential number of

Vj-1 ,j

y

(a) (b)

Vik Vkj

(c)

Figure 2 . A simplified partial subtree of an acyclic Tx

operations in M. However, this number is in­
dependent of n. Thus there exist only 0(1)
many operations in such a composition .

The next case is an item x in V j-l ,j , see
figure 2(b) . We know that there must exist
a path from x to a base item y in Vj-l ,j •
All nodes on that path are i n Vj-l ,j and the
path is bounded in length by 0(M) . Any
internal node on that path has one son in
Vj- 1 ,j and one son in either Vj-1 ,j- 1 or Vjj
(if the node corresponds to an inclusion, this
last son does not exist) . Here too, it can be
shown that only 0(1) operations are possible
for item x .

The last case will b e item x i n Vij with
i + 1 < j , see figure 2(c) . This is essentially
like the previous case, but y is not a base
item anymore. In this case y is the result
of a concatenation of an item in Vik and an
item in U kj with i < k < j . So instead we
get 0(1) operations plus the number of op­
erations needed for the item in Vik and the
item in V kj • These considerations lead to
a difference equation, the solution of which
shows that the number of operations for x is
0(n), see (de Vreught and Honig, 1990a) .

3.4 THE EXTENDED RELATION

Definition 3.4.1 The relation U over :I U
:12 is defined as follows :

• If A � A E P then (j, j, A �) E U
for any j E { 0 , . . . , n} .
This rule i s used for the initial ization.

1 33

• If A � aan E P then (j - l , j, A �
a · a r 1) E U for any j E { 1 , . . . , n } .
This rule is used fo r the initialization .

• If A � aB, E P and B � /3 E P then
(i , j, A � a • B · ,) f--(i , j, B � · /3 ·) E
U with O � i � j � n.
This rule is called the activation rule for
the inclusion operation .

• If (i , k , A � a • /31 • /321) E U then
(i, j, A � a • /31/32 ·,) f-- (k, j, A �
a/31 •/32 ·,) E U with k � j � n.
This rule is called an activation rule for
the concatenation operation.

• If (k , j, A � a/31 ·/32 ·,) E U then
(i , j, A � a •/31 /32 ·,) f--(i , k , A �
a • /31 • /32,) E U with O � i � k .
This rule is called an activation rule for
the concatenation operation .

• If x f-- y E fJ and y f-- z E U then x f-- z
E U.
This rule is called the square rule.

• If x f-- y E fJ and y E fJ then x E U.
This rule is called the pebble rule.

• Nothing is in fJ except those elements
which must be in U by applying the pre­
ceding rules finitely often .

It can be shown that U = U n :I .

3.5 THE RECOGNIZER

We will present the fast parallel recognizer
(de Vreught and Honig, 1990a) .

Recognizer(n) :
iJ := 0
for all i 1 , i2 such that O � i1 � i2 � n
in parallel do

Initialization(i1)
Activatelnclusion(i1 , i2)

while U still changes do
for all i1 , . . . , i6 such that
0 � i 1 � . . . � i6 � n in parallel do

ActivateConcatenation(i1 , . . . , i3)
Square(i1 , . . . , i6)
Square(i1 , . . . , i6)
Pebble(i1 , . . . , i4)

return Test(n)

lnitialization(j) :
u := u u

{ (j, j, A -t • •) E ..7 1 A -t .-\ E P}
u := u u

{ (j - 1 , j, A -t o: •a; •1) E ..7 1
A -- o:an E P}

Activatelnclusion(i, j) :
u := u u

{ (i, j, A -t o: • B ·,) -
(i, j, B -t • {3 •) E ..72 I
A -t o:B, E P and B -t /3 E P}

ActivateConcatenatiori(i, k , j) :
for all A -t o:/31 /321 E P do

i.f (i , � , A � o: • /31 • /321) E U then
U := U U

{ (i , j , A -t o: •/31/32 ·,) -
(k , j, A -t o:/31 • /32 ·,) }

if (k , j, A -t o:/31 •/32 •,) "E U then
u := u u

{ (i, j, A -t o: • /31 /32 • 'Y) -
(i , k , A -- o: • fJ1 • /32,) }

Square(i 1 , i2 , i3 , h h , i1) :
for all A1 -t 0: 1/Ji ,1 , A2 -- o:2fJ212 ,
A3 -t 0:3/3313 E P do

if (i1 , i1 , A 1 -- o:1 •/31 ·,1) -
(i2 , h , A2 -- 0:2 •/32 ·,2) E lJ
and (i2 , h , A2 -- o:2 •/32 ·,2) -
(i3 , h A3 - o:3 •/33 •13) E U then

u := u u
{ (i1 , i1 , A1 - 0:1 •fJ1 ·,1) -
(i3 , ia , A3 -t 0:3 •/33 •,3) }

Pebble(i1 , i2 , h, i1) :
for al l A 1 -t 0:1/31 ,1 , A2 -t 0:2/3212 E P do

if (i 1 , ii , A1 - o:1 •/31 ·,1) ­
(i2 , h , A2 -- o:2 •/32 •,2) E U
and (i2 , h, A2 - o:2 •fh ·,2) E U then

u := u u
{ (i 1 , i1 , A1 -t o:1 •/31 ·,1) }

1 34

Test(n) :
accept := False
for all S -t o: E P do

if (0 , n , S-t •o: •) E U then
accept := True

return accept

With the pebble game described in (Gib­
bons and Rytter, 1988) , and the fact that the
minimal composition size of an item is linear,
we can show that any item can be constructed
in O (log n) time. Thus U = -0 n 3 can be
computed in O (log n) time. It can be shown
that closure of U requires an extra O (log n)
time following the computation of the com­
pletion of U � -0 (detection of the closure of
U is easy, whilst detection of the completion
of U � U is not) .

I t can be shown (de Vreught and Honig,
1990a) that the algorithm will compute the
relation U on a CRCW-PRAM with p(n) =
0(n6) processors in T(n) = O (log n) time
using S(n) = 0 (n4) space.

4 FINAL REMARKS

The slow parallel recognizer i s based on a rel­
atively simple idea. In spite of several sim­
ilarities , it is not a variant of the ' Cocke­
Younger-Kasami (CYK) algorithm or the
Earley algorithm (Aho and Ullman, 1972 ;
Harrison , 1978; Earley, 1970) ; the algebraic
definitions specifying. the. algorithms all differ
considerably, and therefore these algorithms
all enter their 'items' into their respective
matrices for different reasons. Just as for
the given algorithm, there exist slow paral­
lel versions of the CYK algorithm and of the
Earley algorithm (Nijholt , 1990; Chiang and
Fu, 1 984) .

The topic of fast parallel recognizing and
parsing is still young and little research on
the subject has been conducted. One of the
first publications of a fast parallel recognizer
is (Brent and Goldschlager, 1984). Far better
known are the results of Gibbons and Rytter.
They have described a fast parallel recognizer
and parser for grammars in CNF (Gibbons
and Rytter, 1988) . Unfortunately, CNF is
undesirable for many purposes . This is why

we have developed a new fast parallel rec­
ognizer that leaves the grammar unchanged.
Another recognizer with the same property
can be found i n (Sikkel and Nijholt , 1991) .

Although not given in this paper there also
exist parallel parsers which can be used in
conjunction with the parallel recognizers . For
the slow parallel recognizer there exists a slow
parallel parser that can do its job with 0(n)
processors in 0(n log n) time (de Vreught
and Honig, 1 990b) . When the grammar is
acyclic, there exists a fast parallel parser run­
ning with 0(n6) processors in O(log n) time
(de Vreught and Honig, 1990a).

Since the subject of fast parallel parsing
is so young, there are many open questions,
some of which will probably be solved in the
near future. For instance, at this moment it
is not yet known whether or not fast parsing
of general CFG's is possible without trans­
forming the grammar (we suspect that it is) .
In addition , determining the behaviour of the
algorithms for unambiguous grammars is an
interesting research problem.

REFERENCES

Aho, Alfred V. and Ullman, Jeffrey D .
1972 The Theory of Parsing, Translation and
Compiling, Volume I: Parsing , Prentice Hall ,
Englewood Cliffs, NJ .

Aho, Alfred V. and Ullman , Jeffrey D .
1973 The Theory of Parsing, Translation and
Compiling, Volume II: Compiling , Prentice
Hall , Englewood Cliffs , NJ .

Akker, Rieks op den; Alblas , Henk;
Nijholt , Anton; and Oude Luttighuis, Paul
1989 An Annoted Bibliography on Parallel
Parsing, Memoranda lnformatica 89-67, Uni­
versity of Twente, Enschede.

Brent , Richard P. and Goldschlager, Leslie
M . 1984 A Parallel Algorithm for Context­
Free Parsing, Austral. Comput. Sci. Comm.
6: 7- 1 - 7- 10 .

Chiang, Y.T. and Fu, King S . 1984 Par­
allel Parsing Algorithms and VLSI Imple­
mentations for Syntactic· Pattern Recogni-

1 35

tion , IEEE Trans. Pattern Anal. Mach. In­
tell. 6: 302-314 .

Earley, Jay 1970 An efficient Context-Free
Parsing Algorithm, Commun. A CM 13(2) :
94- 102.

Gibbons, Alan and Rytter, Wojciech 1988
Efficient Parallel Algorithms , Cambridge
University Press, Cambridge, MA.

Harrison, Michael A. 1978 Introduction to
Formal Language Theory , Addison Wesley,
Reading, MA.

Nijholt , Anton 1990 The CYK-Approach
to Serial and Parallel Parsing, Memoranda
lnformatica 90- 13 , U niversity of Twente, En­
schede.

Quinn , Michael J . 1987 Designing Efficient
Algorithms for Parallel Computers , McGraw­
Hill , New York , NY.

Sikkel, Klaas and Nijholt, Anton 1991 An
Efficient Connectionist Context-Free Parser,
In 2nd Int. Workshop on Parsing Technolo­
gies 19 91 (these proceedings) .

Vreught , Hans de and Honig, Job 1989 A
Tabular Bottom Up Recognizer, Reports of
the Faculty of Technical Mathematics and In­
formatics 89-78, Delft University of Technol­
ogy, Delft .

Vreught , Hans de and Honig, Job 1990a
A Fast Parallel Recognizer, Reports of the
Faculty of Technical Mathematics and Infor­
matics 90- 16, Delft U niversity of Technology,
Delft .

Vreught , Hans de and Honig, Job 1990b
General Context-Free Parsing, Reports of the
Faculty of Technical Mathematics and Infor­
matics 90-31 , Delft University of Technology,
Delft.

