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ABSTRACT 

In the first part of this paper a slow paral­
lel recognizer is described for general CFG's. 
The recognizer runs in 0(  n3 / p( n)) time with 
p( n) = O( n2 ) processors . It generalizes the 
items of the Earley algorithm to double dot­
ted items, which are more suited to parallel 
parsing. In the second part a fast parallel 
recognizer is given for general CFG 's. The 
recognizer runs in O(log n) time using 0( n6 ) 
processors . It is a generalisation of the Gib­
bons and Rytter algorithm for grammars in 
CNF. 

1 INTRODUCTION 

The subject of context-free parsing is  well 
studied, e.g. see (Aho and Ullman, 1972 ; 
1973; Harrison , 1978) .  Nowadays, research 
on the subject has shifted to parallel context­
free parsing ( op den Akker, Alblas ,  Nijholt , 
and Oude Luttighuis,  1989) .  Two areas of 
interest can be distinguished: slow and fast 
parallel parsing. We call a parallel algorithm 
fast when it does its job in 'polylogarithmic 
time. This is in contrast to the sequential 
case, in which algorithms are called fast when 
they run in polynomial time. Obtaining a 
fast parallel algorithm is often quite simple: 
when the fast sequential algorithm is highly 
parallelizable, using an exponential number 
of processors is sufficient . This is not very 
realistic, however. 

A parallel algorithm is called f ea.si ble only 
when it uses a polynomial number of proces­
sors . Note that when a feasible slow par­
allel algorithm runs in polynomial time, it 

• using initials: J .P.M .  de Vreught and H . J .  Honig. 
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can be simulated by a fast sequential algo­
rithm. Therefore in practice we often see that 
slow parallel is fast enough; fast parallel al­
gorithms often achieve their speed because 
of their huge number of processors and large 
amounts of storage. 

Several authors have studied a�gorithms for 
slow parallel recognition. Most of these. al­
gorithms are variants of the Cocke-Younger­
Kasami ( CYK) algorithm and the Earley al­
gorithm. In the first part of this paper an­
other slow parallel recognizer is given ( de 
Vreught and Honig, 1989; 19�0b ) _- Its new 
feature is that it uses double dotted it�ms, 
which are more natural for parallel parsing; 
these items make it easy to do error determi­
nation , a feature that is shared with niost 
parallel bottom up algorithms. Although 
there are some similarities between the three 
algorithms, they should not be regarded as 
variants of each other since they all fill their 
respective matrices with different 'items' and 
for entirely different reasons .  

When compared to a. parallel versio� of 
the Earley algorithm, which would have to 
be bottom up , our algorithm generates far 
less i terns on the principal diagonal of the 
recognition matrix. A detailed comparison 
of the items required by the given algorithm 
and the Earley algorithm will be necessary 
to show the strengths · or weaknesses of both 
approaches to parallel parsing. The si zes of 
the item sets in relation to particular classes 
of grammars is still under research. 

The subject of fast parallel pars�ng is rel­
atively new. Amongst the first to give a fast 
parallel recognizer were Gibbons and Rytter 
( 1988) . Their recognizer requires a grammar 
in CNF; it can be regarded as the fast par-



allel version of the slow parallel CYK algo­
rithm. The speeded up version is obtained 
by also examining the consequences of incom­
plete items . When an incomplete item gets 
completed, we can also complete the conse­
quences immediately. The reason for the al­
gorithm being fast is based on the fact that 
for every skewed tree (with n internal nodes) 
of height 0 (  n) describing the composition of 
a certain item, there exists a reasonably well 
balanced one of height O(log n) that uses 
both complete and incomplete items .  

In the second part of the paper a fas_t par­
allel recognizer for general CFG 's is given ( de 
Vreught and Honig, 1 990a) . In spite of the 
fact that any CFG can be transformed into 
CNF in 0 ( 1 )  time, usi�g CNF is undesirable 
in practice ( especially in natural language 
processing) .  The fast parallel recognizer does 
not need to transform the grammar. The fast 
parallel recognizer can be . regarded as the fast 
parallel version of the slow paraliel recognizer 
described in the first part . The fast parallel 
recognizer is based on the Gibbons and J;lyt­
ter algorithm for grammars in CNF (Gibbons 
and Rytter, 1988) .  The paper is concluded 
with some final remarks . 

2 THE SLOW PARALLEL 
RECOGNIZER 

We start by sketching the ideas behind the 
slow parallel recognizer. Then we will give an 
inductive relation which plays a central role 
in our algorithms.  Finally we will present the 
slow parallel recognizer . 

2 . 1  INFORMAL DESCRIPTION 
Let a1 • • •  an be the string to be recognized. 
We are going to build an upper triangular 
matrix U as shown below. 

In each cell Uij we enter items of the form 
A --+ a •/3  ·, such that A --+ a{31 is a produc­
tion and /3 ⇒ * ai+I . . .  aj . We will also insist 
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that if f3 = A then a, = A :  
A 

� 
a f3 , 
� 

i i 
J 

Suppose B --+ • /3 • E U ij and let A --+ aB, 
be a production. In that case we can assert 
that A --+  a • B ·, E Uij : 

A 
� 

a B , 

/3 
� 

i i 
J 

This assertion follows from the application 
of the inclusion operation to B --+ • /3 • E 
Uij • Another operation is concatenation . If 
A --+ a •  /31 • /32, E Uik and A --+ a/31 • /32 · ,  E 
U kj then we can assert that A --+ a • /31 /32 • ,  
E Uij , applying the concatenation operation : 

i i 
k 

i 
J 

When the entries of matrix U are closed with 
respect to the operations, we look for an item 



S --+  •a • E Uon where S is the start symbol 
of the grammar: 

s 
! 
a 

� ao • a1 . . .  an · an+l 
i i 
0 n 

S --+ • a · E U On 

In the following, we will give a relation 
U defining the item sets constructed dur­
ing the recognition process .  We do this by 
identifying the matrix U with the relation U 
such that A --+ - a •/3 ·, E Uij iff (i , j,A --+ 
o: •/3 ·, ) E U. 

2 .2  THE RELATION 

Let G = (V, � ,  P, S) be the CFG in question 
and let x = a1 • •  , an the string to be recog­
nized. Furthermore, let • (/. V and let A be 
the empty string. Finally, let .J = {O ,  . . .  , n } 2 

x { A --+ a •  /3 ·,  I A --+ a{); E P} .  
Definition 2 .2 .1  U = {(i , j, A --+ o: •/3 ·, ) 
E .J I A => a{); and /3 =>* ai+1 . .  , aj and 
if f3 = A then a; = A }  

In ( de Vreught and Honig, 1989) some vari­
ants of U are examined; for instance, one of 
them takes context into account . The dis­
advantage of definition 2.2 . 1 is that it is not 
immediately clear how to determine whether 
or not an item is in the relation . For this 
purpose we need an inductive definition. 
Definition 2 . 2 . 2  The relation U' over .J is 
defined as follows: 

• If A --+ A E P then (j, j, A --+ • ·  ) E U' 
for any j E { 0, . . .  , n } .  
This item i s  a base item. 

• If A --+ aan E P then (j - l , j, A  --+ 
a • aj •i ) E U' for any j E { 1 ,  . . .  , n} . 
This item is a base item. 

• If A --+  aB; E P and ( i , j, B --+  ·/3 · ) E 
U' then ( i , j, A --+ a • B ·, ) E U' . 
This operation is called inclusion . 
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• If ( i , k , A  --+ o: •/31 ·/32, ) E U' and 
(k , j, A  --+ af31 ·f32 ·,  ) E U' then 
( i , j, A --+ o: • /31/32 ·, )  E U' . 
This operation is called concatenation. 

• Nothing is in U' except those elements 
which must be in U' by applying the pre­
ceding rules finitely often. 

It can be proved that U = U'. 

2.3 THE RECOGNIZER 

We will now present the recognition . algo­
rithm ( de Vreught and Honig, 1989 ) .  In the 
algorithm mode is either sequence or par­
allel. 

Recognizer( n) :  
for i : =  0 to n do 

for j := 0 to n - i in parallel do 
case i 

= 0 :  

= 1 :  

> 1 :  

Empty(j + i) 

Symbol(j + i) 

Ui ,i+i := 0 
for k := 1 to i - 1 in mode do 

Concatenator 
(j, j + k , j + i) 

while U i ,i +i still changes do 
Concateriator(j, j, j + i) 
Concatenator(j, j + i, j + i) 
Includer(j, j + i) 

return Test( n) 

Empty(j) : 
Uii := {A -+ • · I A - ,\ E P} 

Symbol(j) : 
Uj - 1 ,j := { A --+ O: • aj · , I A --+ o:an E P} 

Includer( i, j) :  
for all B --+ • /3 • E U ii do 

Uii := Uii U 
{A - o: •B ·, I A - o:B, E P} 

Concatenator( i, k ,  j) : 
for all A --+  0: •/31 ·/32, E uik 
with I /31 I = 1 do 

for all A --+ o:/31 •/32 •, E Uki do 
Uii := Uii U {A -+ o: •/31/32 ·,} 



Test(n) : 
accept := False 
for all S --+ a E P do 

if S --+ •a • E U on then 
accept := True 

return accept 
Although the algorithm fills the matrix di­

agonal by diagonal, there are many other fill­
ing orders for the matrix ( de Vreught and 
Honig, 1989) .  Note that all cells on a diago­
nal can be filled independently of each other. 
When mode = sequence, it can be shown 
that a CREW-PRAM (Concurrent Read Ex­
clusive Write - Parallel RAM) (Quinn, 1987) 
with p( n) = 0( n) processors can fill the ma­
trix in T(n) = 0(n3/p(n) )  time. 

The concatenations done in the loop over k 
in Recognizer can also be done independently 
of each other. However, in that case the ar­
chitecture must allow parallel writing in cell 
Uj,j+i • Thus when mode = parallel , it 
can be shown that a CRCW-PRAM (Concur­
rent Read Concurrent Write - Parallel RAM)  
( Quinn, 1987) with p(  n) = 0( n2 ) processors 
can fill the matrix in T( n) = 0( n3 / p( n)) 
time. In both cases the space complexity 
is dominated by the matrix: S( n) = 0( n2 ) 
space. 
Example 2 . 3 . 1  Consider the string aabcc 
and the CFG G = (V, E, P, A) :  

• V = {A, B} u � 
• E = {a , b , c} 

• P contains the following productions: 
o A --+  aB 
o B --+  Ace 

o B --+ b  

Notice that G is ,\-free ( this simplifies the ex­
ample) .  From the given grammar and string, 
the following matrix ( see figure 1) can be ob­
tained . 

3 THE FAST PARALLEL 
RECOGNIZER 

In this section we will sketch the ideas behind 
the fast algori thm . The proof that the rec-
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ognizer is fast uses a pebble game, described 
in ( Gibbons and Rytter, 1988) ,  and critically 
depends on the fact that the 'minimal compo­
sition trees' are linear in size (with respect to 
the length of the string to be recognized) .  In­
stead of determining U directly we will com­
pute its extension U, on which the fast par­
allel recognizer is based. Finally we will de­
scribe the recognizer for a general CFG . The 
algorithms is based on the fast parallel Gib­
bons and Rytter recognizer for CFG 's in CNF 
( Gibbons and Rytter, 1988) .  

3 .1  COMPOSITION TREES 
Definition 2.2 .2 offers a way of justifying the 
presence of an item x in U .  A justification is 
a sequence of rules corresponding to a proof 
showing why x E U. Sometimes an item x 
can be justified in more than -one way. We 
will consider justifications one at a time . . A 
complete justification of an item x in U will 
be called a composition for x; such a com­
position can be represented by a composition 
tree Tx . The nodes in Tx are labelled with 
the items mentioned in the antecedents of the 
rules of definition 2.2 .2 that are applied; the 
root is labelled x .  

Example 3 . 1 . 1  Suppose w is the result of 
an inclusion of x ,  x is the result of a con­
catenation of y and z, and y and z are base 
items. The composition tree Tw for w is as 
given below. 

Tw : w 

! 
X 

� 
y z 

3.2  INFORMAL DESCRIPTION 
We will speed up the slow parallel algorithm 
that computes relation U to a fast parallel 
algorithm computing U by using a relation 
denoted by U (given in section 3 .4 ). The 
presence of each item x in U can be justified 
by means of a composition tree Tx . In Tx all 



I A -+  •a•B A -+  •aB • 
B -+  •A •cc 

A -+  •a •B A -+  •aB • B -+  •Ac • c  B -+  •Ace • 
B -+  • A • cc A -+  a •B •  
B -+  •b • 
A -+  a • B •  

B -+  A •c • c  B -+  A •cc • 
B -+ Ac • c •  

B -+  A •c • c  
B -+  Ac • c •  

Figure 1 .  Matrix U for aabcc 

nodes are labelled with items in U. The root 
is labelled x .  The other nodes are labelled 
by the items mentioned in the antecedents of 
the rules of the inductive definition of U. As 
an immediate consequence we have that each 
subtree of Tx is a composition tree too. We 
will represent Tx ( or to be more exact : the 
existence of Tx ) as in the figure below: 

· Suppose Ty exists .  Thus we assume y E 
·u. Let us see what the consequences of this 
assumption are. Suppose we can derive Tx 

for item x from Ty : 

Tx& 

Assume we don't no� wet her or not y ac­
tually is in U.  Instead . of saying that we have 
determined Tx , we say that we have deter­
mined Tx except for the part Ty : we have the 
partial composition tree Tx+-y ( or better: its 
existence) represented as given below: 

Tx-� 

Note that Tx+-y might exist whilst Ty does 
not (because y (j_ U) .  By using these partial 
composition trees, we draw conclusions from 
facts yet to be established . This makes the 
algorithm for the recognizer fast ;  the proof of 
this is based on Rytter's pebble game ( Gib­
bons and Rytter, 1988) .  

For each base item x (in U) ,  we can assert 
the existence of a composition tree Tx : 
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T� 

Suppose x can be obtained from y by 
means of an inclusion operation . In that case 
we can assert the partial composition tree 
Tx+-y : 

Now suppose that x can be obtained from 
y and z by means of a concatenation opera­
tion and assume that Ty · exists ( the case that 
Tz exists, is handled analogously) .  In that 
case we can assert the partial composition 
tree Tx+-z : 

The rules for the inclusion and concate­
nation operations are called activation rules 
( the names of all rules are borrowed from the 
pebble game) .  

The square rule ( a misnomer) merges two 
partial composition trees Tx+-y and Ty+-z to 
obtain the partial composition tree Tx+-z : 

Ty-� 
--------- ________ J 



The final rule is the pebble rule, which 
merges a partial composition tree Tx+-y and 
a composition tree Ty to obtain the composi­
tion tree Tx : 

T,6 
-------- -------...... J 

When we would define a composition tree 
for if in the same way as we did for U,  
we would find that for  an arbitrary U­
composition tree Tx there exists a reason­
ably well balanced U-composition tree Tx , 
w hi eh also asserts that the i tern x is in U. It 
can be shown that if the activation rule, the 
square rule, and the pebble rule are iterated 
O(log n) times , we have found the existence 
of at least one composition tree Tx for every 
x in U ( and for only those) . Therefore we 
can say that we can compute U in O (log n) 
time. 

3 .3  THE MINIMAL 
COMPOSITION SIZE 

As a notational shortcut we will speak of an 
item x in Uij , by which we mean that x E U  
and that x is of the form ( i ,  j, A -+ a �  /3 •, ) . 
The composition size will be defined as the 
number of operations in the composition tree. 
We call a composition tree minimal iff its 
composition size is minimal . In this section 
we will argue why the minimal composition 
size for item x in Uij is linear in j - i + 1 .  
There are two cases t o  consider: 

• A composition tree which has an item 
appearing twice as a label on a path 
( such a tree is called a 'cyclic '1 composi­
tion tree) is not minimal .  

• An 'acyclic'  composition tree has a liµear 
composition size. 1 A misnomer on our part . 
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Assume that for item x in Uij we have found 
a cyclic composition tree Tx , So on a certain 
path in Tx we must have a certain item y in 
U p q  that appears twice as  a label ( the non­
trivial path between those nodes is called a 
'cycle' ) :  

Upq 

Cycle removed 

It is clear that when the part between the up­
per y and the lower y is removed from Tx , the 
number of operations in Tx' is less than the 
number in Tx , So after removing a cycle, we 
allways get a smaller composition tree. Thus 
the minimal composition tree is  a member of 
the set of the acyclic composition trees . 

We will now argue that any acyclic compo­
sition tree has a composition size bounded by 
a function linear in the length of the string 
to be recognized. Since we don't need a tight 
upper bound, we will not use an actual · com­
position. Instead, we will assume that in ev­
ery step on our way the worst case occurs. 
This may lead to a 'case' that is  worse than 
the actual worst case. 

We will assume that every internal node is 
the result of a concatenation. Suppose x is 
the result of an inclusion of y:  in that case 
Tx contains one more operation than Ty , But 
when x is the result of a concatenation of y 
and z, then Tx contains one more operation 
than Ty and Tz together. Thus a concate­
nation can only lead to more ( and never to 
fewer) operations than an inclusion. We will 
assume that the compositions are acyclic.  

We define M = l {A -+ a •/3  •, I A -+  a/3, E 
P} I ; M is an upper bound for the number of 
i terns in any U ij . Let us focus on an i tern x 
in Ujj , see figure 2(a) .  We know that item x 
has an acyclic composition , so Tx is bounded 
in height by O(M) .  Since a completely bal­
anced tree has the maximum number of op­
erations, we have an exponential number of 



Vj-1 ,j 

y 

(a) (b) 

Vik Vkj 

(c) 

Figure 2 .  A simplified partial subtree of an acyclic Tx 

operations in M. However, this number is in­
dependent of n. Thus there exist only 0( 1 ) 
many operations in such a composition . 

The next case is an item x in V j-l ,j ,  see 
figure 2(b ) .  We know that there must exist 
a path from x to a base item y in Vj-l ,j •  
All nodes on that path are i n  Vj-l ,j and the 
path is bounded in length by 0(M) .  Any 
internal node on that path has one son in 
Vj- 1 ,j and one son in either Vj-1 ,j- 1 or Vjj 
(if the node corresponds to an inclusion, this 
last son does not exist ) .  Here too, it can be 
shown that only 0( 1 )  operations are possible 
for item x .  

The last case will b e  item x i n  Vij with 
i + 1 < j ,  see figure 2( c ) .  This is essentially 
like the previous case, but y is not a base 
item anymore. In this case y is the result 
of a concatenation of an item in Vik and an 
item in U kj with i < k < j .  So instead we 
get 0( 1 )  operations plus the number of op­
erations needed for the item in Vik and the 
item in V kj • These considerations lead to 
a difference equation, the solution of which 
shows that the number of operations for x is 
0( n ), see ( de Vreught and Honig, 1990a) . 

3.4 THE EXTENDED RELATION 

Definition 3.4.1 The relation U over :I U 
:12 is defined as follows : 

• If A � A E P then (j, j, A � ) E U 
for any j E { 0 ,  . . .  , n} .  
This rule i s  used for  the initial ization.  
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• If A � aan E P then (j - l , j, A  � 
a ·  a r 1 ) E U for any j E { 1 ,  . . .  , n } .  
This rule is used fo r  the initialization . 

• If A � aB, E P and B � /3 E P then 
( i , j, A  � a • B · , ) f--(i , j, B � · /3 · ) E 
U with O � i � j � n.  
This rule is called the  activation rule for 
the inclusion operation . 

• If ( i ,  k , A � a • /31 • /321 ) E U then 
( i, j, A � a •  /31/32 ·, ) f-- (  k, j, A � 
a/31 •/32 ·, ) E U  with k � j � n. 
This rule is called an activation rule for 
the concatenation operation. 

• If (k , j, A � a/31 ·/32 ·,  ) E U then 
( i , j, A � a •/31 /32 ·,  ) f--(i , k , A � 
a • /31 • /32, ) E U with O � i � k .  
This rule is called an activation rule for 
the concatenation operation . 

• If x f-- y E fJ and y f-- z E U then x f-- z 
E U. 
This rule is called the square rule. 

• If x f-- y E fJ and y E fJ then x E U.  
This rule is called the pebble rule. 

• Nothing is in fJ except those elements 
which must be in U by applying the pre­
ceding rules finitely often . 

It can be shown that U = U n :I .  

3.5 THE RECOGNIZER 

We will present the fast parallel recognizer 
( de Vreught and Honig, 1990a) .  



Recognizer( n ) : 
iJ := 0 
for all i 1 , i2 such that O � i1 � i2 � n 
in parallel do 

Initialization( i1 ) 
Activatelnclusion(i1 , i2 ) 

while U still changes do 
for all i1 , . . .  , i6 such that 
0 � i 1 � . . .  � i6 � n in parallel do 

ActivateConcatenation( i1 , . . .  , i3) 
Square( i1 , . . .  , i6 ) 
Square( i1 , . . .  , i6) 
Pebble( i1 , . . .  , i4) 

return Test(  n) 

lnitialization(j) : 
u := u u 

{ (j, j, A -t • • ) E ..7 1  A -t .-\ E P} 
u := u u 

{ (j - 1 , j, A -t o: •a; •1 ) E ..7 1  
A -- o:an E P} 

Activatelnclusion( i, j ) :  
u := u u 

{ ( i, j, A -t o: • B ·, ) -
( i, j, B -t • {3 • ) E ..72 I 
A -t o:B, E P and B -t /3 E P} 

ActivateConcatenatiori( i, k , j) : 
for all A -t o:/31 /321 E P do 

i.f ( i , � , A � o: • /31 • /321 ) E U then 
U := U U  

{ (i , j , A -t o: •/31/32 ·, ) -
( k ,  j, A -t o:/31 • /32 ·,  ) } 

if (k , j, A -t o:/31 •/32 •, ) "E U then 
u := u u 

{ (  i, j, A -t o: • /31 /32 • 'Y ) -
( i , k ,  A -- o: • fJ1 • /32, ) } 

Square(i 1 , i2 ,  i3 , h h , i1 ) : 
for all A1 -t 0: 1/Ji ,1 , A2 -- o:2fJ212 , 
A3 -t 0:3/3313 E P do 

if (i1 , i1 , A 1 -- o:1 •/31 ·,1 ) -
(i2 , h ,  A2 -- 0:2 •/32 ·,2 ) E lJ 
and (i2 , h , A2 -- o:2 •/32 ·,2 ) -
(i3 ,  h A3 - o:3 •/33 •13 ) E U  then 

u := u u 
{ (i1 , i1 , A1 - 0:1  •fJ1 ·,1 ) -
(i3 ,  ia , A3 -t 0:3 •/33 •,3 ) } 

Pebble( i1 , i2 , h, i1 ) :  
for  al l A 1 -t 0:1/31 ,1 , A2 -t 0:2/3212 E P do 

if (i 1 , ii , A1 - o:1 •/31 ·,1 ) ­
(i2 , h , A2 -- o:2 •/32 •,2 ) E U  
and (i2 , h, A2 - o:2 •fh ·,2 ) E U  then 

u := u u  
{ (i 1 , i1 , A1 -t o:1 •/31 ·,1 ) } 
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Test(n) : 
accept := False 
for all S -t o: E P do 

if (0 ,  n ,  S-t •o:  • ) E U then 
accept := True 

return accept 

With the pebble game described in ( Gib­
bons and Rytter, 1988) ,  and the fact that the 
minimal composition size of an item is linear, 
we can show that any item can be constructed 
in O (log n) time. Thus U = -0 n 3 can be 
computed in O (log n) time. It can be shown 
that closure of U requires an extra O (log n) 
time following the computation of the com­
pletion of U � -0 ( detection of the closure of 
U is easy, whilst detection of the completion 
of U � U is not) .  

I t  can be  shown ( de  Vreught and Honig, 
1990a) that the algorithm will compute the 
relation U on a CRCW-PRAM with p(n) = 
0(n6 ) processors in T(n) = O (log n) time 
using S( n)  = 0 (  n4 ) space. 

4 FINAL REMARKS 

The slow parallel recognizer i s  based on  a rel­
atively simple idea. In spite of several sim­
ilarities , it is not a variant of the ' Cocke­
Younger-Kasami (CYK) algorithm or the 
Earley algorithm (Aho and Ullman,  1972 ; 
Harrison , 1978; Earley, 1970) ;  the algebraic 
definitions specifying. the. algorithms all differ 
considerably, and therefore these algorithms 
all enter their 'items' into their respective 
matrices for different reasons. Just as for 
the given algorithm, there exist slow paral­
lel versions of the CYK algorithm and of the 
Earley algorithm (Nijholt , 1990; Chiang and 
Fu, 1 984) .  

The topic of fast parallel recognizing and 
parsing is still young and little research on 
the subject has been conducted. One of the 
first publications of a fast parallel recognizer 
is (Brent and Goldschlager, 1984 ). Far better 
known are the results of Gibbons and Rytter. 
They have described a fast parallel recognizer 
and parser for grammars in CNF (Gibbons 
and Rytter, 1988) .  Unfortunately, CNF is 
undesirable for many purposes . This is why 



we have developed a new fast parallel rec­
ognizer that leaves the grammar unchanged. 
Another recognizer with the same property 
can be found i n  (Sikkel and Nijholt , 1991 ) .  

Although not given in this paper there also 
exist parallel parsers which can be used in  
conjunction with the parallel recognizers . For 
the slow parallel recognizer there exists a slow 
parallel parser that can do its job with 0( n) 
processors in 0(  n log n) time ( de Vreught 
and Honig, 1 990b ) .  When the grammar is 
acyclic, there exists a fast parallel parser run­
ning with 0( n6 ) processors in O(log n)  time 
( de Vreught and Honig, 1990a). 

Since the subject of fast parallel parsing 
is so young, there are many open questions, 
some of which will probably be solved in the 
near future. For instance, at this moment it 
is not yet known whether or not fast parsing 
of general CFG's is possible without trans­
forming the grammar ( we suspect that it is) .  
In addition , determining the behaviour of the 
algorithms for unambiguous grammars is an 
interesting research problem. 
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