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MJSTRACT 
A connectionist network is defined that parses a 

grammar in Chomsky Normal Form in logarithmic 
time, based on a modification of Rytter's recognition 
algorithm. A similar parsing network can be defined 
for an arbitrary context-free grammar. Such net­
works can be integrated into a connectionist parsing 
environment for interactive distributed processing of 
syntactic, semantic and pragmatic information. 

INTRODUCTION 
Connectionist networks are strongly intercon­

nected groups of very simple processing units. Such 
networlcs are studied in natural language processing 
since their inherent parallelism and distributed deci­
sion making allows an integration of syntactic, 
semantic and pragmatic processing for language 
analysis. See, e.g., (Waltz and Pollack, 1988), 
(Cotrell and Small, 1989) . By isolat_ing the syntactic 
component - without abandoning the connectionist 
paradigm - it becomes possible to study context-free 
parsing in environments where we can make different 
assumptions about types of networks, learning rules 
and representations of concepts. Examples of this 
type of research can be found in (Fanty, 1985), a sim­
ple connectionist implementation of the CYK 
method; (Selman and Hirst, 1987), Boltzmann 
machine parsing; (Howells, 1988), a relaxation algo­
rithm that utilizes decay over time; (Nakagawa and 
Mori, 1988), a parallel left-corner parser incorporated 
in a learning network; (Nijholt, 1990), a Fanty-like 
connectionist Earley parser. 

In this paper we push the speed of the parsing net­
work to its l imits, so as to investigate how much 
parallellism is possjble in principle. We define a 
parsing network that constructs a shared forest of 
parse trees in O (log n) time for an input string of 
length n, using O (n 6) units. Our network is based 
upon Fanty 's  "dynamic programming" approach and 
a type of algorithm first introduced by Rytter (1985). 
The network is rather large, but not too large: no 
logarithmic-time parsing algorithm for arbitrary 
contrext-free languages is known that uses less than 
0 (n 6) processors. Furthermore, the number of units 
can drastically be reduced (albeit within the same 
complexity bounds) by a meta-parsing algorithm that 
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constructs a minimal network custom-tailored for a 
specific grammar. 

After some preliminary definitions, we construct a 
network for a grammar in Chomsky Normal Form. 
At the end of this paper we argue that a similar net­
work can be built for an arbitrary CFG; space limita­
tions do not all<?W a detailed presentation. 

PRELIMINARIES AND DEFINITIONS 
Let G = (N, �, P, S) be a grammar in Chomsky 

Normal Form (CNf), i .e. , production rules have the 
form A -+BC or A -+a. We consider input strings 
a 1 • • • am with m < n, where n is an implementation­
dependent constant. 

A ce·ntral role in the parsing algorithm is played 
by items of the form (A, i,j), which are called trian­
gles. A triangle (A, i,j) is called recognizable· if 
A � + ai +l · · · aj '. The set of triangles S is defined 
by 

def 
S = { (A, i,j) I A EN, 0 s i < j s n }  . 

A triangle (A, i,j) is called parsable if it is recog­
nizable and S � + a 1 • • • aiAaj+ l · · · am . The collec­
tion of all arsable trian les is called the shared 
forest of an in ut sentence· "forest" because it 
comprises all different parse trees for that sentence, 
"shared" as common sub-trees of different parse trees 
are represented only once. The algorithm and net­
work in section 3 compute the shared forest of a sen­
tence. 

We shall also need items of a different kind, 
called triangles with a gap, denoted ((A , i,j), (B,k, l)). 
A triangle with a gap ((A , i, j), (B,k, l)) is called pro­
posable if A � + ai + I  · · · akBa1 + 1  • • • aj . During the 
application of the algorithm, we will propose trian­
gles with a gap that need further investigation. If 
((A, i,j), (B,k, l)) has been proposed and (13,k, l) can pe 
recognized, we can fill up the gap and recognize 
(A, i,j). The set of all triangles with a gap is denoted 
by 

def 
r = {((A , i, j), (B,k, l)) I (A , i,j)E s, (B,k, l) E s, 

i s k < l s j, i ;it k or l ;it n }  

The gap can be at the inside or at the outside o f  a tri-



angle, as shown in Figure 1 .  

A 

/ ·� i -- k /: : -. l = j 
Figure 1 .  Triangles with a gap 

The size of a triangle is defined as the length of 
the substring a; + 1 • • • aj : size((A, i,j)) = j - i. The 
s ize of a 'triangle with a gap is defined as the size of 
the triangle minus the size of the gap: 
size(((A , i,j),(B,k, l))) = size((A , i,j)) - size((B,k, l)) = 
j - i  - 1  + k. 
A FAST CONNECTIONIST PARSING NET­
WORK FOR CNF GRAMMARS 

A variant of Rytter's recognition algorithm 
The algorithm presented here is a (for our pur­

pose) improved version of Rytter�s recognition algo­
rithm (Gibbons and Rytter, 1 988). I t can be trivially 
extended into a parsing algorithm and has a simpler 
correctness proof. Remarks about the differences 
with the original algorithm are deferred to the end of 
this section, so as to keep the expose as clear as pos­
sible. We wi l l  describe first what is to be computed 
by the algorithm, and elaborate on how to compute it 
afterwards. The recognition algorithm uses two 
tables of boolean values: 
• recognized ((A, i,j)) for (A, i,j) E 'E, which is true 

once we have established that (A, i,j) is indeed 
recognizable, and false otherwise; 

• proposed (((A , i,j ), (B,k, l))) for ({A, i,j), (B,k, l)) 
E r, which is true once we have established that 
((A, i,j), (B,k, l)) is indeed proposable, and false 
otherwise. 

The algorithm will satisfy the following loop­
invariant properties : 
(I) if size((A , i,j)) s 2k and (A , i,j)  is recognizable 

then recognized((A, i,j)) = true after k steps, 
(I I) if size(((A , i,j), (B,k, l))) s 2k and ({A , i,j), (B,k, l)) 

is proposable then proposed(((A, i, j), (B,k, l))) = 
true after k steps . 

Acceptance or rejection of the input string depends 
on the recognizability of (S, O, m ), hence the number 
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of steps that need to be performed is 1 2 1og ml (the 
smallest integer � 2 log m). 

The well-known Cocke-Younger-Kasami algo­
rithm uses an upper triangular recognition table T CYK: 

The nonterminal A is added to table entry t;,j if {A, i,j)  
is recognized. The statements A E t;,j and 
recognized ({A,i,j )) = true are equivalent. We can 
i llustrate the results of our algorithm (though the 
operations are different) with an extension of the T CYK recognition table. In this case, the recognition 
table is a three-dimensional structure, 

TR = {t;,j,k I O s i < j s n, O s k s j - i} . 

Figure 2. The surface of TR as it should be 
computed by the algorithm 

The third index k denotes the s ize of an item. When a 
triangle (A, i,j) is recognized, the nonterminal A is 
added to t;, j, j -i · When a triangle with a gap 
( {A, i,j), (B, k, l)) is proposed, an object {A, B, k, l) is 
added to t;, i, h with h j - i - l + k 
size(({A, i,j), (B,k, l))). Hence the surface of TR is 
equal to T CYK, representations of triangles with a gap 
are contained in entries inside the table. Invariants (I) 
and (II) guarantee that a table entry with height k will 
be completed within i 2 log kl steps. As a s imple 
example, consider the grammar 

s -+ NP VP I s pp 
NP -+ *det *noun I NP PP 
VP -+ *verb NP 
PP -+ *prep NP 



and the input sentence the boy saw a man with a tele­
scope. Figure 2 shows the surface of TR after appli­cation of the algorithm. Having illustrated the purpose of the recognition algorithm, we can now explain · how it works. We define the following operations on 2, r and the tables 
recognized and proposed; 

INITIALIZE 
for aJI (A, i,j) E 'E. 
do recognized((A, i,j)) := false od ; 
for ali ((A, i,j), (B,k, l)) Er 
do proposed(((A , i,j), (B,k, l))) := false od ; 
for all (A, i -1, i) E'E. 
do if A --+ai EP 

then recognized((A, i -l , i)) := true ti 
od 

PROPOSE : 
for all (A� i,j), (B, i,k), (C,k,j)E  2 

such that A -+BC EP 
do if recognized((B, i,k)) 

) 
then proposed(((A, i,j), (C,k,j))) := true ti ;

} if recognized((C,k,j)) 
then proposed(((A, i,j), (B, i,k))) := true ti 

od A 
/ )c. _ _ _ _ _ 
--- k · · · · · · · · · · j 

Figure 3. PROPOSE 

RECOGNIZE : 
for all ((A, i,j), (B,k, l)) Er , (B,k, l) E2 
do if proposed(( (A, i,j), (B,k, I))) 

and recognized((B,k, l)) 
then recognized((A, i,j)) := true ti 

od A 
�B � 

i - k · · · · · · · · · · l - j  

+ B / �  
k -- 1 

A 

= / � 
------- j 

Figure 4. RECOGNIZE 
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COMBINE : 
for all ((A, i,j), (B,k, l)) , ((B,k, l), (C,m,n))E r � 
do if proposed(((A, i,j), (B,k, l))) 

and proposed(((B,k, l), (C,m,n))) 
then proposed(((A, i,j), (C,m,n))) := true ti 

od 

B 

/c� 
k - m · · · · · n - l 

A 

i -- m · · · · · n  -- j 

Figure 5. COMBINE 

The functioning of the operators PROPOSE, 
RECOGNIZE and COMBINE is illustrated in Figures 3-5 .  Everything in a for all statement can be corn-� puted in parallel. The recognition algorithm, using these operators, can be given as: 

begin 

end 

INITIALIZE 
PROPOSE ; 
repeat 1 2 log m l times 
begin 

end ; 

RECOGNIZE ; 
PROPOSE ; 
COMBINE ; 
COMBINE 

if recognized((S, 0,m)) 
then accept 
else reject 
fi 

In the sequel, we will give a proof of the correctness of the modified Rytter algorithm. But let 's first look at an example. In Figure 6 one parse tree of the input sentence is shown. The algorithm obviously recognizes much more than a single parse tree, but it is sufficient to show that all items in one parse tree are recognized in order to make clear that the top item is recognized. (S, 0, 8) can be recognized in a number of different ways, but that would only clutter up the example. The nodes in the parse tree have been numbered, so 



Figure 6. A parse tree . 

�e can identify the triangles by their number rather 
than by the more cumbersome (A, i, j) notation. We 
will apply the algorithm step-:-by-step on the items in 
this tree. Step O is shown in Figures 7-8, step 1 in 
Figures 9-1 2  and (the first half ot) step 2 in .Figures 
1 3- 1 4. Circles correspond to recognized triangles, 
lines .correspond to proposed triangles with gaps. The 
example shows that the algorithm may need less than 
1 2 log kl steps in some cases; we need only 2 steps 
although 3 are allowed. 

1 
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Figure 7. After s.tep O(a) : INITIALIZE 
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Figure 8. After step O(b ) :  PROPOSE 
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Figure 9. After step l (a) : RECOGNIZE 
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Figure 10. After step l (b ): PROPOSE 



Figure 11 .  After step l(c) : COMBINE 
� (½¾Go � 
lq J.vi� 

/�' � 

Figure 12. After step 1 (  d) : COMBINE 

Figure 13. After step 2(a): RECOGNIZE 
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Figure 14. After step 2(b): PROPOSE 

Correctness of the algorithm 
Theorem. After application of the above algo­

rithm, a triangle will have been recognized if and 
only if it is recognizable; a triangle with a gap will 
have been proposed if and only if it is proposable. 

We will give a proof that is a great deal simpler 
than the proof of the original algorithm (Gibbons and 
Rytter, 1988). For more details see (Sikkel and 
Nijholt, 1990). 

Terminology. We denote triangles with greek 
letters s, YI, t etc. The triangles YI, t are called a pair 
of sons of s if s =  (A, i, j), YI = (B, i,k), t = (C,k,j )  for 
some A, B, C EN with A -">BC E G  and O s i  < k < j  s n. 
For technical reasons we allow empty triangles with a 
gap (s, s)- For such an empty triangle, pro­
posed ((s, s)) = true by definition. 

Basis. It is easy to verify that proposable trian­
gles with a gap of size 1 have been proposed after the 
initialization step and recognizable triangles of size 
s 2 have been recognized after step 1 .  

Induction hypothesis. We write (I)k for the 
claim that (I) holds for s with size(s) s 2k and (Il)k for 
the claim that (II) holds for (s, YI) with size@, YI)) s 
2k . Hence (11)0 and (1) 1 have been established above. 
From the induction hypothesis (II)k -l ,  (Ih we will 
derive (II)k , (I)k +l · 

(Il)k - Given (Il)t_ 1 , (l)t, we prove (II)t . Let 
(s, YI) be proposable, 2k - l < size ((s, YI)) s 2k . 
• Claim A. There is a <P with sons ,p, ,p' ,  such that 

<P, ,p, ,p' are recognizable, (s, <P), (,p, ri) are pro­
posable, size ((s, <P)) s 2k-l , size ((,p, ri)) s 2k -l . 
See Figure 15 .  
Proof If_ (s, Y1) i s  proposable, there i s  a sequence 
to, · · · , tp with � = s, �P = 'Y) such that each 



(Si , Si + i ) is proposed by a PROPOSE operation; 
these "atomic" triangles with a gap are subse­
quently COMBINEd into (;, 11). Choose 
( <I>, 1jJ) = (Si , Si +  1 ) with the largest i such · that 
size ((;, sJ) s 2k- l . From size ((Si +] , 11)) > 2k - l  it 
fol lows that size ((;, Si +l )) s 2k -l , hence a larger i 
could have been chosen. 

<I> 
I \ 

1jJ' 1jJ 

size ((1;,cp)) s 2k -l 

size ((lJJ,11)) s 2k - l  

Figure 15 .  Claim A 

From the induction hypothesis _we find that (s, cp), . 
(1jJ, 11) have been proposed after step k -l ;  1jJ 1 has· 
been recognized after the . RECOGNIZE in step k. 
Then (<I>, 1JJ) is PROPOSEd in step' k ·and two COM­
BINE operations yield proposed @, 11)). 

(lh+I · Given (II)k -1 ,  (I)k, we prove (I)k +l · Let s 
be recognizable, 2k < size(;) s 2k + l . 
• Claim B. There is an 11 with a pair of sons 0, s 

such that size((;, 11)) s 2\ size(0) s 2k , size(s) s 
2k and 11, 0, s are recognizable. 
Proof let cp1 be the largest son of s, cp2 the largest 
son of q> 1 , etc. Let <j>j tie the first one with size s 
2k . Then 11 = <l>j - 1  • 

If l'J = s, (I)k + I follows trivially. Otherwise, Claim A 
holds and we find a situation as shown in Figure 16 .  

I \ 
1jJ' 1jJ 

size ((s,<p)) S 2k -l 

11 
I \ 

size ((11-',11)) s 2k -l 

size (0) s 2k e s size (s) S 2k 

Figure 16. Claims B and A 

From the induction hypothesis we find that (s, cp), 
(1JJ, 11) have been proposed after step k - l ;  1jJ' , 0, � 
have been recognized after the RECOGNIZE in step 
k. Then (<I>, 1JJ), (11, t) are PROPOSEd in step k and 
(�. 1.v), (1J • . n arc COMBINEd. The second COM­
BINE i n  s k ; l k proposed (s, t). Hence s will be 
recognized in step k + 1 .  
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Conclusion. Thus we have established invariants 
(I) and (II). The " if' parts of the Theorem follow 
from (I), (II); the "only if' parts from the soundness 
of each of the operators INITIALIZE, RECOGNIZE, 
PROPOSE and COMBINE. □ 

A recognizing network 
We define a connectionist network in a way that 

resembles the parsing network of Fanty (1985) .  The 
network consists of simple units computing AND and 
OR functions. The output of every unit is either 1 or 
0. An AND unit is activated - i.e. its outputs have 
value 1 - iff all its inputs have value one; an OR unit 
is activated iff at least one of its inputs has value 1 .  
I n  neural networks terminology: a n  AND unit with k 
inputs has a threshold value k - 0.5, an OR unit has a 
threshold value 0.5, irrespective of its number of 
inputs. In order to make a distinction between the 
two types of units we will write OR units between 
parentheses "( )" and AND units between brackets 
"[ ]" . 

For each triangle (A, i,j) E2, the network contains 
a unit (R (A, i,j)) with an activation level correspond­
ing to the value of recognized((A, i,j)) . Likewise, 
proposed (((A, i,j), (B,k, l))) is represented by a unit 
(((A, i,j), (B,k, l))). Furthermore, we need an output 
unit (accept) that is activated only if the sentence is 
accepted and input units ((a, i)) for a E�U {$ }, 
1 s i s n + 1 .  It is assumed that the input units are 
activated externally and that their activation level 
remains fixed. If a sentence has m words, then unit 
( (m + 1, $)) should be activated to mark the end of the 
sentence. 
• INITIALIZE is implemented by linking the units 

((a, i)) to ((A , i- 1 , i)) for A �a EP. 
• For the PROPOSE operation, for all A �BC EP 

and O s i  < k < j s n, a link from (R (B, i, k)) to 
(((A, i,j), (C,k,j))) and a link from (R (C,k,j)) to 
(((A, i,j), (B, i,k))) are added to the network. 

• For an implementation of RECOGNIZE, we need 
additional match units [((A , i,j), (B,k, l))] for each 
((A, i,j), (B,k, l)) E f. This is because a unit 
(R (A, i,j)) can be recognized in more than one 
way. It should be recognized if both 
(((A, i,j),(B,k, l))) and (R (B,k, l)) are active for 
some (B,k, l) E 2. To this end, (R (B,k, l)) and 
(((A, i,j),(B,k, l))) are linked to [((A, i,j), (B,k, l))] 
that ANDs their values; [((A, i,j), (B,k, l))] is 
linked to (R (A, i,j)). 

• For the COMBINE operation, we also need addi­
tional match units . For each ((A, i,j), (B,k, l)) and 
((B,k, l), (C,m,n )) E r, an AND unit 
[((A, i,j), (B,k, l), (C,m,n))] is added. It receives 



input from 
(((B,k, l), (C,m,n))) 
(((A, i,j), (C,m,n ))). 

(((A, i, j), (B,k, l))) and 
and sends output to 

• The (accept) unit receives input from match units 
[ accept, i ]  that will be activated if a sentence of 
length i could be recognized. This is accom­
plished by linking (($, i +l)) and (R (S, 0, i)) to 
[accept, i ] .  

An example of a small fraction of the network is  
given in Figure 17 .  I t  represents the units that are 
used for the recognition of the propositional phrase 
(PP, 5, 8). 

Figure 17. A fraction of the recognizing network 

Construction of the shared forest 
The main purpose of modifying Rytter's algo­

rithm is the introduction of invariant (II). It will 
become clear now why we need it. Tacitly we have 
done all the necessary preparations for the extension 
to a parsing algorithm, all that is left is to reap the 
results. 
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Let (A,i,j) be parsable for a particular input string 
a 1 · · · am (m s n), and assume (A, i,j) � (S, 0,m) .  
Then the following two conditions hold: 

(i) A ==- + a; + 1 • • • aj , 
(ii) S =:> + a 1 • • · a;Aaj +I · · · am . 

In other words, (A,i,j) is parsable if (A, i,}) is recog­
nizable and ((S, 0,m ), (A, i,j)) is proposable. Conse­
quently, parsed((A, i,j)) must be · made true if both 
proposed (((S, 0,m ), (A, i,j))) and recognized ((A , i,j)) 
are true. This can be done in parallel in one step ! 
We define an additional boolean table parsed((A, i,j)) 
for (A, i, j )E'E. and an operation on 'E., r and the table 
parsed, as follows: 

PARSE : 
for all (A, i, j) E 'E.  

. d o  parsed({A, i, j)) : =  false od ; 
if recognized((S, 0,m )) 
then parsed((S, 0,m )) := true ; 

for all (A, i,j)E 'E.  

fi 

do ifproposed(((S, 0,m ), (A, i,j))) 
and recognized((A, i,j)) 

then parsed((A, i,j)) := true fi 
od 

The recognition algorithm is extended to a full­
fledged parsing algorithm by inserting one PARSE 
operation after the repeat loop. 

We can extend the network accordingly. The 
table parsed will be represented by a collection of 
AND units [P (A, i,j)] . Additionally, we need a col­
lection of match units [Qm (A, i,j)] for lsm sn and 
(A, i,j) E 'E.  and a collection of OR match units 
(Q (A, i,j)) for (A, i,j )E 'E.. 
• [Qm (A, i,j)] will be activated if parsed((S, 0,m )) 

= true and proposed (((S, 0,m), (A, i,j))) = true. 
That is, for all possible values of m, [P (S, 0,m )] 
and (((S, 0,m), (A, i,j))) are linked to [Qm (A, i,j)] .  

• (Q (A, i,j)) will be activated if the above holds for 
some m. To this end, each [Qm (A, i,j)] is linked 
to (Q (A, i,j)). 

• [P (A, i,j)], obviously, receives input from 
(R (A, i,j)) and (Q (A, i,j)). 

• In order to start the parsing phase, all [ accept, m ]  
units are linked to (Q (S, 0,m )). I f  a string of 
length m is accepted, then (R (S, 0,m)) will be 
active, hence [P (S, 0, m)] will be activated. 

If (Q (A, i,j)) is activated (via [Q1 (A, i, j)]) by any 
[P (S, 0, /)] with l s l s m, it is also activated by 
[P (S, O,m )], because ((S, O,m ), (S, 0, l)) and 
((S, 0, /), (A, i,j)) can be COMBINEd. Thus [P (A, i,j)] 
will be activated if and only if (A, i, j )  is parsable. 



Complexity of the network 
The number of input units ((a, i)) is 

m: J + 1 )  · (n + 1 )  = 0( 1 :�: J · n).  The COMBINE match 
units [((A, i,j), (B,k, l), (C,m,n))] account for the 
highest order of all other types of units, 0 ( !N I  3 • n 6), 
yielding a total of O ( J"f. J  · n + JN J 3 · n 6) units . It is 
easy to verify that the number of connections is also 
O ( JL I  · n  + J N J 3 · n 6) .  

These numbers conform to  the best known com­
plexity measures for logarithmic parsing algorithms: 
O(log n)  time on a. CRCW PRAM and O(log2 n) time 
on a CREW PRAM. PRAM models use O(n 6) pro­
cessors. It is not obvious that an equivalent network 
exists with the same order of complexity. A general 
method to construct a network composed of AND 
and OR units for an arbitrary PRAM is given by 
Stockmeyer and Vishkin (1984). Applying this gen­
eral method, however, would yield O (n 13) units, 
rather than our custom-tailored network of O (n 6) 
units .  

Meta-parsing 
We defined units for all (A, i,j) E '2  and 

((A , i, j), (B,k, l)) E f. A large fraction of these units 
will never be needed. For any ·particular grammar we 
can establish a much smaller network, by an algo­
rithm that closely resembles the parsing algorithm . 
Such analysis has been called meta-parsing (Nijholt, 
1 990). 

A triangle (A, i,j)  is called meta-recognizable if 
(A, i, j) is recognizable for s�me input string 
a 1 • • • am ELm , (m s n) .  Similarly, ((A , i, j), (B,k, l)) is 
called meta-proposable if there is an input string such 
that (A, i,j) is proposable; (A., i,j) is called meta-
parsable if there is an input string such that (A., i,j) is 
parsable. These meta-properties can be computed in 
advance, and incorporated in the structure of the net­
work. The meta-recognizable and meta-parsable 
items for our example grammar and n = 8 are shown 
in tabular form in Figures 1 8  and 1 9. The meta­
parsing algorithm is identical to the parsing algorithm 
but for two small differences: 
• meta-recognized((A , i- l , i )) is made true if 

A -a EP for any a EL, 
• meta-parsed((S, O, i)) is made true for every 

(S, 0, i) that has been meta-recognized. 
It is easy to verify that after application of the meta­
algorithm, (A , i,j) has been recognized if and only if 
(A, i,j)  is meta-recognizable; s imilarly for meta­
proposable and meta-parsable items. 

For the construction of the shared forest, we only 
have to consider triangles that are meta-parsable. All 
triangles that are not meta-parsable can be discarded: 
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l
*d *n NP VP s VP s 
*v *p pp NP pp NP 

*d *n NP VP s VP 
*v *p pp NP pp 

*d *n NP VP s VP 
*v *p pp NP pp 

*d *n NP VP s 
*v *p pp NP 

*d *n NP VP 
*v *p pp 

*d *n NP VP 
*v *p pp 

*d *n NP *v *p 
*d *n 
*v *p 

Figure 18. A E ti,j if (A., i,j) is meta-recognizable 

I 
*d NP s s NP 

*n 

*v VP VP *p pp 

*d NP NP 

*n 

*v VP 
*p pp 

*d NP 

*n 
--

Figure 19. A E ti,j if (A, i,j) is meta-parsable 

even if such a triangle is recognized, it can never con­
tribute to a parse tree for any input. Thus we define 
the minimal set of triangles and triangles with gaps, 
as fol lows : 

.:::.min {(A, i,j) E '2  I (A, i,j) is meta-parsable} , 

r min {((A , i,j), (B, k, l))E f I 

( (A, i,j), (B,k, l)) is meta-proposable} 

While constructing the network, we only have to 
introduce units for (A., i,j) E '2min , ((A., i,j), (B,k, l)) 
E r  min and appropriate match units. The reduced 
network still yields the shared forest. 



Robustness of the network 
In contrast with Fanty 's network, even the 

minimal network is rather robust. When a few units 
do not function, it is most likely that the proper input 
strings will be accepted. There is a multitude of dif­
ferent ways in which a triangle can be recognized; if 
the most direct path is broken, chances are that the 
triangle is recognized by an alternative path, using 
slightly more time. That is, unless one of the rela­
tively few vital units breaks down, the recognition 
network shows graceful degradation. The parsing 
part of the network has no redundancy, however. If 
any unit fails, a triangle in the shared forest may be 
lost: But this is less . dramatic than failure to recog­
nize a valid sentence. 

It is possible to supplement the recognition net­
work with a robust parsing network if a top-down 
structure is used that is equivalent to the bottom-up 
structure, as in Fanty 's network. Such a top-down 
network would yield a parse forest in logarithmic, 
rather than constant time. But : that :does not really 
matter as time complexity of the network is loga­
rithmic anyway. 

Bibliographic notes 
The CYK algorithm cari be found in any textbook 

on formal languages, e.g. (Harrison, 1978). A con­
nectionist network for the CYK algorithm has been 
defined by Fanty (1985) and circulated on a wider 
scale in (Fanty, 1986). 

Rytter's recognition algorithm is presented in 
(Rytter, 1985) and (Gibbons and Rytter, 1988). A 
similar algorithm is independently described by Brent 
and Goldschlager (1984r The operators PROPOSE, 
COMBINE and RECOGNIZE were called 
ACTNATE, SQUARE and PEBBLE in the original 
algorithm. The word "activate" had to be changed so 
as to avoid confusion with activation of a unit. The 
new identifiers are chosen because we operate in a 
parsing context ("recognize") rather then a combina­
torial context ("pebble"). Rytter's algorithm per­
forms the following steps: 
• step 0: INITIALIZE 
• step k (k > 0) : ACTNATE; 

SQUARE; 
SQUARE; 
PEBBLE 

I 

which do not satisfy invariant (II) ! Hence the algo-
rithm does not allow a similar trivial extension for the 
computation of a shared forest. In (Gibbons and 
Rytter, 1988), the correctness of the Rytter's algo­
rithm is derived from the correctness of a "pebble 
game" on binary trees, which has a rather compli-
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cated proof. The proof of the modified algorithm as 
presented ;above . is a lot simpler, mainly due to the 
' introduction of invariant (II). 

EXTENSION;TO ARBITRARY CONTEXT­
FREE-GRAMMARS 

· n  is possible to define a similar parsing network 
for 'an arbitrary context-free grammar. · Rytter's algo­
rithm can be regarded as a speed-up of the CYK algo­
rithm, using more resources. In the same way, 
bottom-up versions of Eatley's algorithm (Graham, 
Harrison and Ruzzo, 1980), (Chiang and Fu, 1984) 
can be speeded up in a similar way. Triangles have 
the form (A �a . f3, i,j) for A �af3EP and O � i  s j  �·n .  

A �a . 13 is recognizable iff a ==:> • ai + l · · · ai .  
Proposability can be  defined accordingly. A triangle 
(A �a . 13, i,j) is parsable if there is a y E v• such that 
S ==:> • a 1 · · · aiAy, a ==:> •  ai +l · · · ai and l3y ==:> * 
llj +l  . .  · am . 

The network for arbitrary CFGs has 
O (g3 

• IP l 3 · n6) units and O (g3 
· IP l 3 ; n 6) connec­

tions, in which g is t�e average number of symbols in 
the right-hand side of a grammar rule. For a full 
treatment we refer to (Sikkel and Nijholt, 90). 

A similar parsing algorithm for arbitrary CFGs on 
PRAM models is discussed in ( de Vreught and 
Honig, 1991). 

CONCLUSIONS 
A modification of Rytter's logarithmic · time 

recognition algorithm for CNF grammars has been 
introduced. This algorithm is conceptually easier than 
the original, and the correctness proof is a great deal 
simpler. Furthermore, the construction of a shared 
parse forest represented by a set of triangles can be 
added in constant time. 

We have defined a connectionist network that 
parses a CNF grammar with the above algorithm in 
O(log n) time using o m: i -n + IN l 3 ·n 6) units. This 
conforms to the best known complexity bounds on a 
CRCW PRAM, and is a factor log n faster than the 
best algorithm on a CREW PRAM known to date. A 
Similar . network can be constructed for an arbitrary 
context-free grammar. 

A network of minimum size for a particular gram­
mar can be custom-tailored. The meta-parsing algo­
rithm . that estab.lishes the configuration of a network 
for the specific grammar is almost id�ntical to the 
parsing algorithm that is implemented by the net­
work. 

The network is robust in the sense that a few bro- . 
ken down units will most likely cause some degrada­
tion in performance but still all valid sentences will 



be recognized. A network structure with O (n 6) units is too large for any serious practical implementation in natural language processing. The purpose of our investiga­tions, however, has been to push the time complexity to its very limits to see how much parallelism is pos­sible in principle. These results confirm that connec­tionist networks can be used as a suitable abstract machine model for parallel algorithms. It is also confirmed that traditional parsing algorithms for general context-free languages can be given connec­tionist implementations, allowing integration · into · more comprehensive connectionist networks for natural language analysis. 
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