[From: Internat.conf. Methodology & Techniques of Machine Translation, British Computer
Society, Cranfield, 13-15 February 1984]

SEARCHING SINGLE-WORD AND MULTI-WORD DICTIONARIES
F.J. Smith, X. Devine and P. Craig.

Department of Computer Science
Queen's University of Belfast

N. Ireland.
Abstract.

We have developed fast methods for retrieving records from large
single-word or phrase dictionaries. We have also computed the
Zipfian law for word pairs and for 3-word phrases and have deduced
that the number of multi-word phrases which occur frequently in text
is relatively small, of the same order of magnitude as the number of
individual words in a text. They are thus amenable to computer
processing and may help machine translation and knowledge based
systems.

Introduction.

In information retrieval (IR), a corpus of text is indexed for fast
access so that all segments of text containing a2 given word can be
quickly retrieved. Research on IR has been carried out at Queen's
University since the mid-~1960's with emphasis on systems design
(Biggins and Smith, 1969; Devine and Smith, 1984). For these
systems we have developed fast methods of retrieving individval
word records from a large dictionary of such records. Similar tasks
must arise in M.T.

We have also developed methods of storing dictionaries of phrases.
We have felt that the use of single words to represent knowledge was
inhibiting our research, as it was evident that the human brain
assimilates much knowledge from text in phrases made up of groups of
words. We suggest that ocur knowledge of a language is made up of a
large mumbey off such groups of words, each representing one unit of
information. Although this unit may be subdivided into smaller word
units it is not so subdivided consciously when communicating
information. (Indeed a child may be unaware of the subdivision
without affecting its undexrstanding).

We believed it possible by the technidques we will describe, to store
large numbers of such phrases; but first we needed to know their
frequency in text corpora and scme automatic method to help generate
them, This paper describes cur work on word phrases; but first we
present the storage techniques used for storing single words.



l. Dictionary Files on Disk - Methods of Access.

1.1 Alphabetically-ordered files.

There are a number of ways in which the dicticnary file may be
organized to permit fast retrieval of the record for a specific word.
In the simplest method, the records may be sorted into alphabetic
order, and stored in this order on a random-access file, with a
certain number, b, of records per block. A block is a file area of
fixed size, typically 512 characters. All file accesses cause one oOr
more whole blocks to be read or written, and it is the mumber of such
file accesses required to £ind the desired record which determines
the speed of response.

If there are N words (and hence N records) in the file, the numbexr of
blecks will be B = N/b. For a linear search of the file, on average
B/2 read accesses will be required to find a desired record. For a
binary search of an alphabetically-ordered file, the average number
of accesses z is

as=s L092 (B/2)
(Martin, 1975). With N = 10,000 and b = 20, this is 8 accesses.

The most popular method of accessing alphabetically-sorted files is
the indexed-sequential method, in which a number of blocks are
reserved to act as a directory or index to the rest of the file, by
recording for example the identity of the first word in each block
{Martin, 197%). The number of accesses is now limited by the number
of index blocks which must be read to find the record. For a large
file a further reducticn can he achieved by making an index to the
index, and so on until the top-level index fits in a single block
(this is a multi-level index sequential file).

One of the problems with an alphabetically-ordered file concerns
updating. If z new word is added to the file, it must be inserted in
its proper position. Material which follows it must be pushed down,
and the indexes must be revised. This problem can be largely ovexrcome
by implementing the order of blocks (both index and data blocks)
through pointers rather than by physical positioning. Each block must
still contain a set of alphabetically~adjacent records, whose internal
order may also be established through pointers. When such a block
£ills, it can ke split in two with limited repercussions on the
organization. This is the B-tree principle (Ore, 1979}, and
represents the highest develcopment of alphabetically-ordered files.

1.2 BHash-ordered files.

But none of the alphabetically ordered structures are as fast as hash
ordered files, particularly when the f£iles are large. 1In this
structure the records are assigned to blocks according to a division
hashing algorithm (Maurer, 1968). We must estimate in advance how many
blocks are required (say, B, which should be an odd number). We divide
a numerical representation of the key {word) by B, and use the



remainder as the block number. There are many ways to derive a
numerical value from the key, and one must be chosen which will
distribute the records uniformly over the available blocks. One
possibility is to use the ordinal wvalues of the characters <, in the

ASCII sequence (or some other sequence), e.g. i
2
= + ... .
K = ord (cn} + 256 ord (cn_l} + 256" ord {cn_z} {1.1)
Then the block pumber is
ho(K) = K mod B (1.2)

In a growing file a stage will soon be reached where a new record is
assigned to a block which is already full - an overflow situation.

1.2.2 OQverflow.

Overflow can be managed by extending the file and using the new blocks
at the end to hold the overflowing records. However if the overflow
area is allowed to grow in this way performance will suffer. The
overflow area may also be too small, 3So the file may eventually have
to be recorganized even though the whole file may have a low packing
density with many blocks only partially filled.

Cther overflow methods consist of algorithms which direct an overflow
- record to a different hash block h, {K}, or if this too is full to
h,{K) and so on. The £file remains the same size until it fills
completely.

There are & number of these methods, the simplest being the linear
prcbing method (Peterson, 1957). In this a block overflows into the
next adjacent block:

hi(K) = (hO(K) + i) mod B (1.3}

This can produce sequences of adjacent full blocks due to a cascade
effect, which slow down performance. It is therefore not
recommended. This cascade effect can be overcome by a number of
techniques including quadratic probing (Masurer, 1968) where

hi{K) = (hO(K) + ai + biz}mod B

and a and b are constants. A simple variant is the linear guotient
methed (Bell and Kaman, 1970). In this quotient methed we put

b =0 and a = Q where Q0 is the quotient obtained after dividing
ho(K) by B;

hi(K) = (hO(K) + 1 Q) mod B (1.4)

If Q = 0, we use the value Q9 = 1 instead. This method is particularly
simple and we have found it effective in practice. However, B must be
prime to ensure that all blocks are probed by the sequence hi(KJ. ’



3. HWord Pairs.

At first the storage of a dictiornary of word pairs seems a formidable
task because of the large number of possible pairs which can occur.
If we assume that we will build a system to cope with a dictionary of
30,000 word types, then there are 90C million possible word pairs.
Fortunately the number of pairs which need to be considered is very
much smaller because many word pairs canneot occur in correct English.
For example, the pair "the of" cannot occur. OQur task is also made
easier because we are primarily interested in pairs which form a
syntactic or semantic unit or part of such a unit and therefore occur
frequently. Most word pairs in correct English do not have this
property and occur very infrequently and are of less interest.

We begin by looking at the frequencies of pairs.

3.1 Frequencies.

To investigate the frequencies of word pairs {(and other multi-word
combinations) we examined a file of legal text of 16,050 tokens
(i.e2. word occurrences) containing 2,615 different word types. We
first computed the frequencies, £, of each word and ranked the words
in order with r = 1 for the most frequent, r = 2 for the 2nd most
frequent, and so on, The graph of Log £, against Log r in Figure 1
shows it follows a straight line with a slope close to -1, the well
known Zipfian distribution (Zipf, 1949; Fedorowicz, 1982):

where K. is a constant which is propeortional to the size of the text.
For our text it is approximately 1300, which is close to the
frequency of the most common word, "TEE".

We did the same for all of the word pairs in the text and computed
their frequencies £_; the plot of Log £, against Log r is alsc shown
in Figure 1. The c¢urve,can be approximated by a straight line with
a slope just less than = and with a maximum frequency of abkout 250
for the pair "OF THE", much less than the maximum frequency of the
most c¢common word, THE, which is about 130Q0. For word pairs in our
sample text we found

_ 200
£, = 5.65
r

Cur sample is large enough for us to expect that this law will hold
for all English texts; so

K

_ 2

f2 = (3.2)
r

where B = 0.65 will represent Zipf's law for word pairs and

K, = K /6.5. We are carrying ocut more tests on larger bodies of
teéxt t3 calculate the coefficients 8 and K /K, more accurately and
to check that they are invariants for all %ei%.



yuey

0000T 0001t

i 00T

01

'vwﬂ-

"y

T

saseiyd piom anog “p
saseryd paom IsIYL ¢
sated paom -z

spiom 9Tbuts 7

suwexbeyq Aouanbaxy ‘71 aanbig

o1

Rouvsnbaxg

00T

0001



The unexpected result in Figqure 1 is that the curves appear not to
cross. However, we believe this is only because the text size is not
large encugh. The figure shows that £, < £ for all r less than about
1000, This should be an invariant for any Size of text: the curves
will cross at about r = 1l000. For our sample text the total number of
distinct word pairs with frequencies greater than 1 or 2 is similar to
the number of words with higher frequencies and since it is only these
frequently occurring pairs which are of primary interest, their number
is fortunately relatively small.

We can compute these numbers more precisely from the Zipfian laws we
derived empirically above. Let us consider a large text made up of
T tockens and N different word pairs. For the last pair with rank N, 1
the frequency computed from equation {(3.2) must be just greater than =.

So we put 2
K
=Z-3z (3.3)
N
The total number of tokens T can be computed by integration
N
K K
T =f 2 ar =z —a P o GytEs 3.4)
1 B {1-8} 2
i1 r
2

after substitution from equation (3.3) and neglecting the second term
we get

7 =-21— for 8 < 1. (3.5)

{L-8)
This predicts that the number of different word-pairs N increases in
direct propertion to the length «f text, unlike the number of single
word-types.

Using the value £ = 0.65 obtained frem our sample text then

N=Q.7 T. (3.6)

In our sample T = 16,050; so from formula (3.8) we would expect the
number of distinct word pairs to be approximately

N = 11,235

based on the observed values of 8 and T. Using the observed values

of K2 and B8 in equation (3.3) yields N = 10,073.

We counted
N = 10,635

which shows the theory is approximately correct.



Most of these pairs occur only once or twice. The number of distinct
pairs, M., which have frequency greater than cne can be computed by
noting tﬁat N, is the largest rank for a pair with fregquency greater
than 1, so the computed frequency of this pair will be just greater

than 2% So
2
)
53
Ny

It follows, using equation (3.3} that

1
Nl = N/(3B) (3.7)
- 3.1‘12.2_ if B = 0.65. (3.8)

Thus less than cone-fifth of all distinct pairs have more than one
occurrence in any text. For our sample text we compute the number
with higher frequencies to be

10635
Nl = -5—.-4—5 = 1962,
L count showed that
Nl = 1742

which again gives us confidence that the theory is approximately
correct.

The number with frequency 2, we counted to be 911; so the number with
frequency greater than 2, Nz, is only

NZ = 831.

This is less than 8% of the total number of distinct pairs or less
than 6% of the total size of the text:

N2 = Q.06 Tt

It is these pairs in which we are primarily interested.

For a long text such as James Joyce's Ulysses, which according to
Zipf (1949) has 260,430 tolkens and 29,899 words, we then expect the
number of pairs occurring more than twice to be about

N2 = 15,600,

which is just over half the number of words used in the text. The
total number of all pairs in the text would be much larger, about

N = 180,000



Now the maximum possible number of pairs in a2 text of length T amust
equal the number of tokens of word pairs, T-1, i.e. 260,429 which is
not much greater than the actual number of different pairs 180,000.
This suggests that the total number of pairs possible in English is far
ahove this number though we expect much less than the 9GO million
combinations which are theoretically possible with Joyce'’s word list of
almost 30,000 words.

However, of more interest than these conjectures is that the total
number of word pairs occurring fregquently (i.e. more than twice) in a
text such as Ulysses is about half in number the individual words in
the text and is therefore not large and is manageable.

3.2 Storage.

Bashing. - The method of storage is similar to the hashing method
recommended for single words. A hash number is generated for each of
the two words, h, and h_, and a new hash number generated by scme
arithmetic operation on these two. The sum hl + h,_ is the simplest
suitable operation. So¢ the address of the blick eonl disc or cell in

the central store would be

h = (hl + h2) med B (3.9)

where B ig the maximum pumber of blocks (or cells) used to store the
pairs. The word pairs can then be stored in the block in order of
their frequency.

This methed would be the same whether we were storing 10,000 frequent
word pairs or all pairs numbered in millions. The hashing algorithm
should be equally efficient in both cases.

List structure. - It would also be possible to hash only on the first
word of each pair and then store a list of word pairs beginning with
the most frequent. This list structure is convenient for many
purposes; it is therefore convenient to add it to the hashing structure
mentioned above using pointers.

4, Multi-Words

4.1 Frequencies. - We have computed the frequencies of all 3-word
piirases and of the most frequent 4-word phrases for ocur sample legal
text and the Zipfian distributions are shown in Figure 1. The
frequencies of 3-word phrases, f£_, are small compared with the
frequencies of word pairs, so thé statistical evidence is less clear
than in the previous case. Yet the frequencies obviously follow a law
similar to the law for pairs in equation (3.2):

X

3
£, = — {4.1}
3 rY

where the constant slope vy and constant K, are given approximately by

3

Y = 0.505 , K3 = 50 . (4.2)



and the invariant ratio K3/K2 =

' Ead
L]

The number of three word phrases which occur at least twice is given
' by the eguation

5.3
Yy 2°
Ny
L
So N = (2 k)Y = 1036 (4.3)
R T L -

We counted Nl = 1228 which is in reasonable accord with the theory.

The number with frequencies greater than 2 (those in which we are most
interested} we counted to be N, = 350. This is half the number of
pairs with the same high frequéncies. The corresponding number of
4~word phrases i1s 62, much smaller still. '

About 90% of 3-word combinations in the text occur only once and the
meaning of each is made up of ¢wo or three parts, so there is no need
to store them.

Each 3-word phrase contains within it two word pairs, i.e.
ABC includes AB and BC

Thus the frequencies ¢of AB and BC should be reduced by 1 if BABC
is stored., However, anp exception occcurs each time ABC is part of a
frequent 4-word phrase. The four letter combination

ABCD includes ABC and BCD

and both ABC and BCD include the pair BC; however, the frequency
of BC should obwvicusly not be reduced by 2 because it occurs

within ABC and BCD. It should be reduced only by 1. This
difficulty is overcome by storing information on 4, 5, 6, etc. word
phrases until all have a low frequency. Then if ABCD is not part of
a higher order phrase with frequency greater than 2 we can reduce the
frequencies of ABC, BCD, AB, BC, CD and possibly of 2, B, C and D
by 1 for each occurrence of ABCD. This has not been done in Figure 1.

4 2 Storage. - Multi-word phrases can be stored by hashing. If h
; etc. are the individual hash numbers for the individual words tﬁe
agdress of the block (or cell} can be given as

= + + - &
h (hl h2 ) med B

Alternatively, or in additicn a tree structure can be used with
pointers from each word record to a list of pair records ordered
according to their frequencies; and each pair record pointing teo a
list of 3-word phrases {when appropriate) and so on. This is the
structure used in our current computer analysis; it is illustrated in
Pigure 2.



A
|
AB AC AD AE
ABIL, ACP
7\
ABM BRCQ
7\
ABN \
7\
Figure 2. Tree structure for storage of word pairs

AB, AC, etec. and multi-word phrases
ABL, ABM, etc.

5. Conclusion

We have discussed methods of structuring dictionary files which were
developed in the context of information retrieval. We reccmmend the
use of division hashing, with an adequate block size (at least

10 records), and a good methed of handling overflow, such as the
linear quotient method., These techniques ought to be equally
applicable to dictionary £iles used in machine translation.

We then addressed the question of whether dictionary records should
be created for pairs of words and for larger word grouplngs.
Frequency counts based on a corpus of text suggest that the number

of such groupings with fregquencies above one or two is surprisingly
small (of the same crder of magnitude as the number of different
words) , and this is reinforced by theoretical considerations based on
Zipf's law. These groups ¢an also be stored and retrieved quickly
by hashing techniques.

It is interesting to examine the implications of these results for
larger text corpora and even for the totality of an individual's
iinguistic input, which over a period of 20 years might amount to
1,000 million words of spoken anéd written material., There is little
justification for extrapolating into these regions because of the
effact of the finiteness of the supply of different single words.
Nevertheless, if we do so we find that our observed value of B for
word-pairs predicts that out of 700 million different pairs which
will cccur, only some 200,000 pairs will occur more than 100 times
(representing 2% of pair tokens), and as few as 6,000 pairs will occur
1,000 times or more (0.6% of pair tokens}.

If 100 repetitions is accepted as a suitable threshold of
reinforcement, above which a word-pair may be remembered as a unit,
we may tentatively suggest a figure of 200,000 for the number of

word-pairs that should be stored in a dictionary to imitate human
memory.



References.

J.R. Bell and C.H. Kaman, "The Linear Quotient Hash Code",
Comm. A.C.M., 13, 675-677, 1970,

X, Devine and F.J. Smith, "Direct file organization for lemmatized
text retrieval”, Information Technology, 3, 25-32, 1984.

J. Fedorowicz, "The Theoretical Foundation of Zipf's Law and its
Applicaticon to the Bibliographic Database Environment",
J.Am.Soc.Inf.S8ci., 33, 285-293, 1982,

L.D. Higgins and F.J. Smith, "On-line Subject Indexing and
Retrieval", Pregram, 3, 147-156, 1969.

J.Q. Jamison, "Studies in Information Processing", Ph.D. Thesis,
The Queen's University of Belfast, N. Ireland, 1977.

P. Larson, "Analysis of Uniform Hashing"”, Journal A.C.M., 30,
805-819, 1983.

J. Martin, "Computer Data-Base Organization", Prentice-Hall, N.J.,
1975.

W.D. Maurer, "An Improved Hash Code for Scatter Storage",
Comm. A.C-qu -}:!-_' 35""38' 1968-

T. Ore, "Structured Requirements to a Free-Text Retrieval System”,
paper presented at a Symposium on Legal Information Retrieval in
Eurcope, Strasbourg, June, 1979.

W.W., Peterson, "Addressing for Randoem~2Access Storage”,
IBM J. Research and Development, 1, 130-146, 1957.

G.K. Z2ipf, "Human behaviour and the principle of least effort",
Addison-Wesley, 1949,



