
[From: Internat.conf. Methodology & Techniques of Machine Translation, British Computer Society, Cranfield, 13-15 February 1984]

Changes and improvements to the

European Commission's Systran MT system 1976/84

Peter J. Wheeler

The Commission of the European Communities,
Luxembourg

When the Commission of the European Communities bought its first
Systran system in 1976, in what might be called the bronze age of
machine translation, it was a system of some 30 000 lines of
programming and came with a dictionary of around 6 000 entries.
Today, such figures appear laughably small, but for our purposes,
Systran was the best there was. Faced with a growing mountain of
documents and severe difficulties in obtaining enough qualified
translators to produce them in 6 (now 7) working languages, the
Commission had wondered about the possibilities of computerization of
translation, had ordered a study of all systems available world wide,
subsequently published as the 'Handbook of machine translation and
machine aided translation,' Herbert Bruderer, Amsterdam 1977, and had
come to the conclusion that of the half-dozen operational systems
available at the time, Systran was the most suitable as the basis for
an extended trial.

Eight years later, while machine translation may not have reached its
nuclear age, we are certainly in its age of steam, and we are still
with Systran. Systran '84 however, looks very different from Systran
'76.

On the one hand this is because the solitary translator battling away
at the problems in splendid isolation - Ian Pigott, who will be
speaking tomorrow morning - has metamorphosed amoeba-like into a team
of four full-time translators controlling about a dozen linguistic
programmers and dictionary coders. This paper would not be complete
without a tribute to this linguistic staff, who have stuck with us
through thick and thin under a variety of management hats and have
stoutly written the difficult bits of the papers whenever one of us
wanted to go swanning off to a conference!

On the other hand, the animal itself is very different. Steam-age
Systran now has about one hundred thousand lines of programming and
the dictionaries in each of the three operational language pairs
(English-French, French-English, English-Italian) amount to about
70 000 one-word entries and 35 000 multi-word expressions.

To a large extent, this increase in size has merely meant more of the
same, both in the programs and in the dictionaries. On the dictionary
side, facilities for single word entries, for contiguous multi-word
expressions, as well as for non-continuous conditional expressions,
were already in existence when we bought the system, and much of our
early work consisted in coding up thousands and thousands of such

entries. Our source for this coding was the fairly conventional one
of a large data base, in our case the Food Science and Technology
Abstracts data base, to which we happened to have access and which
fitted in with our probable future use of the system. A KWIC index
was run on this data base, and every word or expression occurring with
a frequency higher than 5 was entered in the dictionary.

We used the same base as the starting point for our work on improving
the programs. A list of the more glaring errors in the English-French
translation was drawn up, for attention by World Translation Centre of
La Jolla, California, from whom we had originally bought the system.

After this initial stage, however, we went over to the practice of
using as our test corpora real texts which we simply purloined from
the translation departments' in-tray. Our procedure was to take such
a production text, run it through Systran, compare it with the human
version, and pick out the errors. Or rather, take out the very few
correct items in a mess of incorrect verbiage! Missing coding,
whether stems or LS expressions, was handled either by a team of
free-lance coders, or by the two Commission translators by then
working full-time on the project, and errors in the linguistic
programs were noted down and passed to La Jolla for their attention.
And it was while we were working on the sort of texts that our human
translator colleagues were translating every day - texts drawn up with
complete freedom, not constrained into an artificial format such as
that of a data-base entry - that we found a need not only to continue
with the existing features but to have new and additional ones
developed.

One of the fundamental problems of any dictionary-based MT system such
as Systran is that of Not Found Words. Originally, such words as were
not found by Systran in its dictionary merely appeared in the target
text in their source-language form. Indeed, in our early
translations, a typical sentence would have more NFWs than words which
were found! Once we had got the proportion down to an acceptable
level, however, we took steps to improve the handling of the remaining
ones.

Systran already incorporated morphological tables of endings, enabling
this part of the program to make at least an informed guess as to the
part of speech of the word and to use this tentative identification in
its analysis of the rest of the sentence. Even though it cannot of
course translate an unknown word it is often able to put it in the
right grammatical place in the target sentence, to link up presumed
nouns with adjectives of the same number and gender or vice versa, and
so on.

The innovation introduced at this time was that the routine also added
semantic information to the words it guessed were nouns. An unknown
word ending in '-meter,' for example, would automatically be coded
'device,' one ending in '-ogie' or '-isme' would be coded as some
branch of science, and so on. Such semantic coding could then be used
subsequently by the more complex dictionary entries, or by the
rearrangement programs at the Synthesis stage, with the result that an
unknown word could travel right through the translation process,
unidentified and untranslated, but with all the right things happening
to it as it went.

Some years later, we developed further this process of handling NFWs.
It had been noticed that several categories of endings in French and
English were identical ('-ation' is one, '-ine' is another). To the
English translator post-editing the raw output, therefore, it doesn't
matter that what he has on his paper or his screen is actually the
French word 'commutation,' which the system has failed to find. As
far as he or she is concerned, what is there is the English word
'commutation.'

This led us to the realisation that other endings, while different
between the two languages, are equally standard. In consequence, the
system was refined to transform certain standard endings on NFWs into
corresponding standard suffixes in the target language. Systran
French-English, for example, not finding the word 'radiologue,' would
spot the standard ending at the morphology stage, add a corresponding
English ending at the transfer stage to give 'radiologist,' and hope
for the best! Being an optimistic little creature, Systran would also
add some semantic information - in the case of '-ogue' to '-ogist' it
would be the codes for 'human, profession.'

In this particular case, the subroutine would have worked brilliantly,
the post-editing translator wouldn't even notice the trick, and the
linguists who devised the scheme would grin smugly.

There would be less enthusiasm if it had tried the same dodge on the
word 'pirogue,' a canoe, and decided that it was the human profession
'pirogist!'

Similarly, NFWRTN which was already handling numbers, fractions, and
the problem of the decimal point or decimal comma, was modified to
detect NFWs starting with figures and ending with the sequence 'ième,’
or even a single 'e,' recognise the word as an ordinal numeral and add
the appropriate target-language ending.

At our present level of development, individual NFWs are likely to
fall only into two categories: either highly technical and specialised
words, or else proper names, whether geographical or personal. By the
time we bought Systran it already 'knew' that 'Everest' is a place,
but it had to be taught, in 1980 for English source and 1981 for
French, to recognise 'Mallory' as a person.

An aspect requiring further work on the part of our team, on the other
hand, was the detection of 'Found' words, starting with a capital
letter and being used as proper nouns. One of the structural passes
that follow dictionary lookup and homograph resolution has the job
inter alia of spotting these, by testing whether the word is in
apposition with 'Monsieur' or some other title; or with another word
which has already been identified as a name; or in enumeration with
another capitalized noun or proper noun, and keeping them in their
source-language form. Before we had this subroutine working as well
as it does now, the head of translation at the Council of Ministers,
Mr Duck, of course used to be translated as 'M. Canard,' and the head
of the interpreting service for Commission and Parliament, Renee Van
Hoof, used to be rendered as 'Madame Sabot de Camionnette.'

It also took us quite some time to work out who on earth was 'Dr.
separated into various volumes,' until one of us spotted that the past
historic of the obscure verb 'tomer' was identical with a famous name
in machine translation - Toma! There are those who feel that Systran

lost something when it stopped making such charming howlers.

A further step toward the resolution of the NFW problem came to light
in particular as we started translating scientific texts. What was
one to make of the following sentence in the middle of an otherwise
reasonable English translation 'Simple furnace crank efficacious
methods tribunal osmosis of gold blood toilet, Wheeler, Cranfield,
1983?' At first sight, not much!

But the human reader, infinitely brighter than the cleverest computer,
spots the clues in the format, namely a proper name, a place, and a
date, all three together at the end of a sentence, and realizes that
this must be the title of a publication. But what on earth can be the
original French have been? This was a question our translators were
asking themselves several times a week. The answer is that the
original was not French at all. The text as a whole was in French,
certainly, but right in the middle of it comes the title of a learned
paper published in English. And this title was: 'Four simple but
efficacious methods for osmosis of blood or water, Wheeler, Cranfield,
1983.' Simple, but do not forget that Systran thinks that it is
translating out of French. As far as it is aware, the words
'efficacious', 'methods' 'osmosis,' 'blood,' 'Wheeler,' and
'Cranfield' are not in its French dictionary, although it will guess
that 'methods' is a plural noun and 'efficacious' is an adjective
agreeing with it. That leaves the words which it thinks are French,
namely 'four - furnace,' 'simple - simple,' 'but - drank,' 'for -
tribunal,' 'or - gold' and 'water - a polite word for a toilet!'
'Simple furnace drank efficacious methods tribunal osmosis of gold
blood toilet!'

Our solution to this problem was the pragmatic one of incorporating a
counter mechanism, so that if the proportion of not found words in a
sentence exceeds 50%, the sentence as a whole is left untranslated, on
the theory that at our present level of development, a sentence with
that many NFWs in it cannot be in one of the languages we have
covered.

Complementing this, another routine detects that any sentence in which
all the words are capitalized is a title or a heading, and thus knows
that it must ignore any inferences about proper names which it would
otherwise draw from the capitalization.

Our next NFW problem was also one which occurred wherever the text was
written in capital letters. Whereas most of these improvements
applied to all systems, this is a specific French problem, namely that
in capitals, accents are not shown. A phrase such as 'La Communauté
élargie', which would normally be perfectly translated as 'the
enlarged Community' would remain in French if it had been appearing in
capitals, because 'communaute' and 'elargie' are not in the
dictionary. An intermediate solution was to enter such words as
inflexions, 'communaute' being an inflected form of 'communauté,' but
obviously, this could only be a stopgap solution applied to the words
that we knew would most frequently appear in titles, such as, indeed,
'Communauté,' 'régime,' and 'Traité - Treaty.' As soon as we got to
'Traité', indeed, even if no earlier, it became evident what sort of
maze we were getting into, because this artificial word 'traite' is of
course a homograph with the third person singular of the verb
'traiter.'

A more radical solution was therefore sought, and a first step in 1978
was a subroutine to add a dummy acute accent before any initial 'e.'
This helped, but as we got more experienced we also got more

demanding, and two years later a lot of work was done on rules for the
addition of dummy accents within the NFWs. It was originally thought
that it would be sufficient to add this dummy to each and every letter
'e,' but this didn't work either - whereas 'Communaute' now became
'Communauté', 'elargie' would then become 'élargié' which is also a
Not Found Word! Rules were therefore drawn up on a morphological
basis to ascertain which cases of the letter 'e' should get a dummy
accent and which should not. For example, the combination 'ént' is
unknown in French, and therefore an 'e' in that position would be left
unaccented.

One other minor improvement to the handling of not-found-words was to
add to the morphological tables the demonstrative suffixes '-ci' and
'-là' as permissible endings. Finding any word ending with either of
these suffixes, (which had then made it into a NFW), Systran strips
off the last three characters and then looks again in the Stem to see
whether the shorter word thus created is in fact a genuine
source-language word. This morphological phase subsequently links up
with a lexical routine to translate 'ce something-ci' as 'this
something' but 'ce something-là' as 'that something.'

Like the postman in the thrillers who is the perfect murderer just
because he is so visible, other features of ordinary running text kept
coming to light, things which are perfectly obvious once you have
noticed them but invisible until you do. An example was the use of a
bracketed plural ending: 'Fill in the relevant box(es).' For
bronze-age Systran, 'box(es)' was simply a NFW, but with some work in
SYN(thesis) it became possible to handle these and have the same
bracketed plural in the target language.

Similarly, translating out of English, we began to come up against the
problem of the '-'nt' ending, as in 'can't' or 'don't.' A very
typical example of the sort of difficulty which emerges only in the
real working environment, because in the development phase one tends
not to write such casual English.

Our solution to this one consisted in taking an existing Systran
feature, and using it backwards. We already had something known as
Idiom Replaces, which handle certain multi-word expressions by
treating them as one word. These are either complex idioms such as
'dans le même ordre d'idées,' which can be treated syntactically as a
single adverb: 'dans.le.même.ordre.d'idées' or alternatively standard
phrases - a lot of our bureaucratic work is standardised - where the
source-language version is equally standard but syntactically quite
different from the source side, such as: 'Les entreprises devront
soumissioner conjointement ou solidairement au sein du groupement
qu'elles pourront former,' which is transformed into the massive
single word 'Les.entreprises.devront.soumissioner.conjointement.ou.
solidairement.au.sein.du.groupement.qu'elles.pourront.former,' and
translated, quite differently, by 'Consortia must have joint or
several liability. '

It occurred to us that the feature could be used in the opposite way -
to decompose words rather than create them. Thus a new type of Idiom
Replace was developed which, finding the word 'don't' at dictionary
lookup, splits it up into 'do' and 'not' and pops both of these words
into the alphabetical list of words to be checked against the basic
dictionary.

Once we had found that the idea would work, some poor coder had to
grind through all the cases, making 'wouldn't' equal 'would not,'
'he'd' equal the two possibilities 'he had' or 'he would,' and so on.

With the NFW problem at least under control, we had time to take a
breather and look at what else was fundamentally wrong. When to our
surprise we found that once out in the big bad world of real
translation, Systran was frequently having trouble deciding where its
sentences ended. "At the fullstop, dummy!" we would snarl in
frustration, only to have our hearts melted by a poor confused little
system whimpering that it didn't know which full-stop was which.
Because out in that big bad world, sentences contain abbreviations,
and abbreviations may, or may not, end with a stop, and this full-stop
may, or may not be, at the same time the one which ends the sentence.

To crack this one we composed as long a list as we could dream up of
abbreviations, divided into those which may end with a full-stop and
those which never do. The tables then trigger a program, under which
if an abbreviation from the second table is found to be followed by a
full-stop, then that must be the end of the sentence. A stop after an
abbreviation from list 1 may, or may not, be the end of the sentence,
and so further tests and checks have to be set off, such as how many
blanks follow the stop, whether the next word is a capitalized NFW (as
the full-stop may merely be in the middle of 'M. Dupont') and so on.

We then turned our attention to the design of features to meet
problems encountered in particular document types. One of the things
we have found during our eight years of development work is that
document type, as much as document content, can have a marked effect
on the quality of the final output. This was something of a surprise,
although it should be clarified that documents of a new type do not
exclusively imply new problems, they may also bring with them new
clues leading to easier analysis.

The first specific document type we worked on was that of patents, but
here the various steps we took consisted almost solely of work on
existing dictionary and program features. The only innovation here
was to increase the number of permitted words in a sentence. Up to
this point, in 1980, Systran would arbitrarily break at the 105th word
in a sentence and start a new one. Which hadn't been a problem,
because we never encountered sentences that long! Until we started
work in the field of patents, under the guidance of Veronica Lawson,
when we found that mammoth sentences were actually quite common in
patents. The limit was then increased to 255 words, and another
problem was - more or less - resolved.

Our next specific type was minutes of meetings - a not uncommon type
of document in a giant bureaucracy like the Commission. Here the
problem is that minutes are written in the present tense in French or
Italian and have to be translated into the past tense in English, and
vice-versa. We thus found a need to develop a group of Typology
Categories, or Typcats, complementing the existing system of Topical
Glossaries. When a text is handled under Typcat MINUTES, therefore,
the tense-change is carried out automatically. Not that that is the
whole story: perfect tenses have to become pluperfect, futures have to
become conditionals, words such as 'demain' have to be translated 'the
day after' rather than 'tomorrow'. Additional work had also to be
done on tenses in subordinate clauses, which depending on their
meaning may not need to be changed after all.

With the bit now firmly between our teeth, we had a look at the
question of imperatives. We had translated a large number of
aeroplane and helicopter maintenance manuals for Aérospatiale in
Paris, when it became apparent that whereas English imperatives in

normal running text are to be translated by a French imperative
('Cease fire!' - 'Cessez le feu!') it is correct practice in a
maintenance manual or similar document to translate them by
infinitives ('Fit the oil filter' - 'Monter le filtre d'huile') and
vice versa. Here, too, a subroutine had to be implemented enabling
this change of mode to be made or not made depending on the type of
document. In normal texts, the 'imperative' mode is the default, in
technical manuals it is the 'infinitive' mode, but in each case the
opposite mode may be selected.

The difference may seem minor, but it is such differences which
actually cause a translation to be produced, rather than a mere
transposition of the words from one language to another.

By now we were in production, of course, and it was at this time that
we introduced an innovation which in retrospect seems ludicrously
obvious - the splitting up of Systran into a Test version and a
Production version. During the development phase it didn't
particularly matter that we were all tinkering away on the same
system, so that Tinkerer A's work on one program might cause a
puzzling deterioration in Tinkerer B's work somewhere downstream. A
couple of excited phone calls, and all was sweetness and light again.
This ad hoc approach became quite impossible, however, once we were
trying to interest translators, with their own special reservations
and sensitivities, in using MT. (The question of introducing MT to
translators would be enough to fill a whole additional paper as long
as this one!) We certainly could not expect them to post-edit output
from a system which one week would translate 'il va de soi'
beautifully as 'It goes without saying,' and the following week would
produce 'He is going from itself' because one of us had been trying
out a bright idea on the Idiom Replace routine.

From our entry into production in the spring of 1981, therefore, each
of the operational language pairs has had a Production version, which
is at the service of the Translation Divisions and which is fixed, and
a Test version whose output quality see-saws from week to week,
(although the overall trend is upwards!). Periodically, at the
discretion of the linguists in charge of each system, the Test version
is upgraded to become the Production version, with a collection of new
and improved features, and a new Test version is created for the next
phase of development work.

It would have been quite inadequate, of course, to dream up
innovations like that one just to keep the customers happy. Of
comparable importance were innovations to assist in the work of the
linguists by whose efforts and skill the whole edifice ultimately
stands or falls.

When we first bought the system, the programs were written entirely in
Systran macro, and were opaque to all but the most experienced and
dedicated reader. A major step forward was taken when we commissioned
the Cambridge Language Research Unit headed by Margaret Masterman, to
write a program for us that would automatically annotate the Systran
programs into natural English.

A pilot project was run on annotating the homograph resolution
routines, and once the feasibility of the project had thus been
demonstrated, the entire English-French system was annotated.

This was a help to the programmers, and the dictionary coders were
assisted in a similar way by our next innovation, a dictionary
concordance.

If an erroneous translation has been caused by a wrong entry in either
the single-entry or the noun-group dictionary, the source of the error
is fairly easy to find. Once the CLS, or conditional, dictionary is
involved, however, things become a lot more complicated. Picture the
poor dictionary coder, puzzling over the sentence 'The pilot was
eating his lunch as the aircraft changed its bowl of flight.' In
desperation, he would look again and again at the entry 'assiette de
vol' and would be absolutely convinced that it had been correctly
coded as 'flight attitude.' In this case, the Principal Word of the
expression is 'assiette,' and he would therefore find the expression
under 'A' in the dictionary. What he would not spot, however, is an
entry in which one of his colleagues, all unknowing, had specified
that when 'manger' appears in the sentence, 'assiette' is to be
translated as 'bowl.' Here, the Principal Word is 'manger,' the
expression comes therefore under 'M' in the dictionary, and our poor
coder, scrabbling around under 'A for assiette,' never finds it. This
problem was resolved by the creation of the concordance, in which all
cases of a word used in expressions, whether as Secondary Word or
Principal Word, are listed together.

For a time, this concordance proved very useful, and is indeed still
used for certain specialized applications. For general dictionary
work, however, its place has been taken by a more sophisticated
device, the so-called SQ printout, in which each sentence of the
translation is preceded by several lines of information, indicating
which dictionary expression has in fact been taken as applicable.
This device has proved one of the most useful for dictionary
development work, saving hours and hours of searching and checking.

An added refinement of the SQ allows the coder to see not only which
entries were selected, but which ones were tested and then rejected.
This may be useful for resolving priority clashes - at CLS level, the
longer entry takes precedence over the shorter one - or for detecting
cases where an entry has turned off some byte condition which a
subsequent entry should have used.

Once the dictionary coders had been provided with these tools,
enabling them to see what had gone wrong, they immediately wanted new
syntactic and semantic codes to make things go better in the future.

An example of such a new code was APPFIX, which causes words in
apposition to remain in their source-language order, whereas normally
REARR(angement) would have reversed them. 'A4 type paper' would be
standardly reversed to give 'papier type A4,' but we can use the code
APPFIX to ensure that an 'E type Jaguar' remains an 'E type Jaguar'
even in French!

Another such example was the pair of codes REFDE and REFA, for words
which take 'de' or 'à' only when they are reflexive, such as
'attendre.'

Subsequent to this, and in part because of these improvements, it
became apparent that in certain cases the existing CLS expressions
were not adequate to cover all the forms or structures which might
occur in real text.

Thus were born the HLS and PLS expressions, respectively homograph
resolution expressions and parsing resolution expressions. Whereas
the existing LS's and CLS's are concerned with obtaining the correct
meaning on the target side, the new HLS and PLS expressions are
designed to handle problems on the analysis side. As such, they deal
with particularly difficult, particularly specific cases, often in
fact the hundredth case where the source-language strays from the
rules it follows in the other 99.

For example, when the homograph resolution program is testing a word
that might be a noun, one of the tests it can apply is whether the
word to its left is a verb. If it is, the word under test cannot be a
noun. 'Je prends son' cannot possibly mean 'I take sound,' it has to
be 'I take his ' A noun in French cannot be preceded directly by
a verb. And then comes the hundredth case: 'Je prends note.' Rather
than coding this one oddity into the homograph routines themselves,
however, the new development made it possible to write an HLS
expression on 'note,' which in effect will tell the system that just
this once the rules don't apply. Observe, however, that no meaning
has to be given in this expression to 'note' (although it can be).
All that the expression is concerned to do is to get the part of
speech right for subsequent analysis.

HLS's are called immediately before the homograph resolution programs
proper, and override these programs. Parsing LS expressions, on the
other hand, can be specified for calling at any one of five points of
entry: after homographs but before the first structural pass through
the sentence; before any of the following passes; or after the last
one and before Synthesis.

They are designed to resolve syntactic difficulties such as the
parsing problem with the construction 'éviter que l'argent soit
dépensé': not 'that the money be spent,' but 'prevent the money being
spent.' Such a radical restructuring could be handled by analysis in
the traditional sense, but would be unnecessary clutter for such a
specific case. It is preferable to write a dictionary expression, in
which one single line of programming can check whether 'éviter'
governs 'que,' delete the 'que' from the analysis, change the
subjunctive subordinate verb to a gerund, and exit triumphantly. Once
again, it should be emphasized that no meaning need be given, and
indeed that the meaning (not the syntax) of the words in this
expression are still open to modification if a CLS expression called
subsequently finds an appropriate match. (Which will in fact be the
case - further down the line, while leaving the grammatical structure
untouched, a CLS will change 'argent' governed by 'dépenser' from its
Stem meaning of 'silver' to a less poetic but more correct 'money.')

At about the same time, various new coding macros were introduced, to
make life more efficient for the dictionary coders. Thus the new
macro 'PRPGOV covers all cases of preposition government, avoiding
the need to spell them out specifically by bits and bytes as we had to
in the past; NOMGRP replaces three different types of noun-to-noun
relationship; and ENUMER covered enumeration in both directions, at a
stroke cutting the coding effort by half.

Perhaps the most significant innovation in this phase was the 'SCAN'
function. Previously, to give a word a special meaning in a given
context, it had been necessary to specify precisely the syntactic
relationship between that word and the one indicating the context or
subject field. To make 'puits' come out as 'shaft' in a mining
context, for example, it was necessary to write dozens of expressions
such as 'puits' governing 'de' governing 'mine;' 'puits' governing
'dans' governing 'mine;' 'mine' subject of 'avoir' with 'puits' as
its object, and so on. And even then one was far from covering every
conceivable case. With the introduction of the 'SCAN' function, the
system can now be instructed by an expression on 'puits' to run up or
down the sentence and match the expression if it finds any occurrence
of the word 'mine,' regardless of its syntactic relationship.

The cases where Systran has to translate texts about pen refills
dropped down wells are statistically insignificant!

Another innovation at the program level was to allow Systran to look
back into the sentence before the one it is currently analysing. This
takes place right at the end of the synthesis of the target language,
although the process is not in fact part of the overall process of
rearranging a sentence. Nevertheless, looking back at the preceding
sentence has to fit in here, after everything else has been done,
since only then can information on this completed sentence be stored
for use in the next one.

On the one hand, any antecedents in the current sentence of an
'il/elle' in the next sentence are checked for animateness or
inanimateness and this information is stored in a couple of bytes of
word zero of the following sentence, to help with the resolution of
the pronouns. If the antecedents of pronouns in Current Sentence + 1
are themselves pronouns, in Current Sentence, then their antecedents,
in Current Sentence - 1 are examined and this information stored in
Current Sentence + 1.

A similar procedure is followed for predicate complements. The
information that the complement was a noun or an adjective
respectively is also stored, as this may be needed to resolve a
pronoun in the next sentence. As in:
'Son pere était boulanger. Le fils l'est aussi - The son is also one'
but "Son pere était horrible. Le fils l'est aussi - The son is too.'

So as not to neglect any aspect of the whole Systran procedure,
innovations were also made on the input and output sides. Originally,
input was carried out on punch cards, subsequently replaced by a
direct tape machine, but both of these methods were adequate only for
development work, in which time was not of the essence, proving too
cumbersome for actual production work. The poor punch girls had to
remember to type in the hieroglyph 'C$' before a letter, for example,
to indicate that it was a capital, or '$$LN' to show a line change.

When we went into production, obviously we could not be seen to be
struggling away at the level of a Hollerith card punch, and we tried
to make the application as user-friendly as possible, by installing a
Wang word-processing network. Our choice settled on Wang principally
because at that time they seemed to be the best at communicating with
the IBM mainframe on which Systran runs, and so far, at least from the
technical point of view, our choice seems to have been a good one.

Now all the input typists have to do is copy the text. There are no
format constraints, no special representation of characters, it is
pure copy work. When the whole text has been copied into the word
processor, the typist enters a small Basic program via her Wang
applications menu, requests the translation by typing in the
document's number and pressing one key for the desired target
language, and as far as she is concerned the job is finished.

Similarly, for the production team actually batching up the texts and
sending them down the line, much of the parametrisable work is hidden
behind simple commands, set to default to the most common case.

Of course, this entailed a considerable amount of work to ensure that
what Wang sent down the line was actually readable by the IBM and by
Systran.

For historical reasons, two programs are used to produce a TDCS (Text
Data Control System) input file from the raw text. One is the
original Systran front-end program SETUP, which accepts the artificial
format mentioned a moment ago and which was modified to produce TDCS
files; the other, which forms the new front end of the system, is
called NATTEX.

Within NATTEX, certain groups of characters, such as any sequence of
numerals preceded and followed by hyphens and standing alone on a
line, are recognised as introducing a new page, and having detected
the limits of the page the program checks whether there are columns of
text within it, by looking in each physical line for gaps of three
blanks or more (trailing blanks being ignored). If such gaps are
found, succeeding lines are checked for gaps of at least two blanks
right-aligned with the original ones. Any such gaps are assumed to
form column divisions, and the columnar structure is assumed to
continue until one of the column divisions contains a non-blank
character, or the end of the page. Each column is then processed in
turn (the preceding single-column text having been previously
processed) and on output is preceded by a control word identifying its
horizontal position on the page. The column text is preceded as a
whole by a "tab set control word" giving the actual start positions of
the succeeding columns as character displacements from the left-hand
margin.

The page is thus broken up into blocks of text ready for processing.
The first word of each line of the block is subjected to a series of
tests intended to determine whether it could be a paragraph identifier
or not. A character group which passes all the tests is assumed to be
a paragraph identifier and is preceded in the output by the control
word indicating a line-change, so as to ensure its appearance at the
start of a line in the translation. Originally, the number of tests
carried out was rather time-consuming and frequently prone to
inaccuracy - for instance, if the year part of a date appeared at the
start of a line it was assumed to be a paragraph identifier and

separated accordingly - but a major improvement was made once we were
consistently inputting on word-processors and it could therefore be
assumed that the input would have had a standard Wang width of 80
characters. It thus became possible to detect a genuine line-change
(such as would precede a paragraph identifer) by one simple test:
would the first element on a line have fitted on the end of the
previous line? If it would have done, then clearly the operator
pressed the "return" key intentionally, and so a line-change ought to
be inserted.

The "hit rate", in terms of unwanted sentence breaks not generated is
now of the order of 95%, as opposed to something like 60% beforehand,
and the mill time consumed by the input program was reduced by some
60% as a result of these changes and other similar improvements.

Currently, work is in hand to provide a means of detecting vertical
columns of characters, separating the columns and, in conjunction with
the new post-processor, reinserting them in the translation. In the
present system, there is no information in the TDCS file as to the
lateral alignment of columns, which can lead to misleading output:
given a typical piece of layout such as a table of contents with page
numbers at one side, if the translation of a text line is much longer
than the original (as when going from English to French) the numbers
may find themselves 'left behind' and vertically shifted from any
meaningful alignment with the items to which they refer.

The new post-processor program, in conjunction with a new version of
NATTEX, will be able to preserve the lateral alignment of columns.

I am indebted for this latter portion of my paper to Mr Alan Carlisle,
who covers the Commission's ongoing Systran d-p work, and who produced
a scholarly chapter on text-handling which I then butchered to my own
sketchy and flippant style.

In conclusion, if our eight years of development have taught us
anything about the design of MT systems, it is that many if not most
of the trickiest problems come to light only when the system moves out
of its development cocoon into the real world of genuine text, warts
and all. The warts are often the most difficult and frustrating to
cure, but they can also be the most fun!

