
[International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical
Laboratory, Teddington, UK, 5-8 September 1961]

AUTOMATIC LINGUISTIC ANALYSIS -

A HEURISTIC PROBLEM

Paul L. Garvin
Ramo-Wooldridge Laboratories
Canoga Park, California

1. OUTLINE OF THE PROBLEM

An automatic linguistic analysis program is here defined as a
computer program which, given as input a body of text, will produce as
output a linguistic description of the system of the natural language
which is represented by the text. A corollary capability of such a pro-
gram will be the capacity for deciding whether or not a given input is
indeed a text in a natural language. This paper reports on research now
in progress at Ramo-Wooldridge.

1.1 Parameters of Linguistic Description*
The system of a language can be conceived of as constituted by an

orderly aggregate of various kinds of elements, each of which has a finite
and typical set of co-occurrence possibilities with regard to other
elements of the system. The elements are of different functional types
and orders of complexity, as exemplified by such elements of written
English as letters, syllables, words, or phrases. These elements re-
cur in texts in a regular way, so as to form classes - called distribution
classes - in terms of shared co-occurrence characteristics. The purpose
of linguistic analysis is then to specify the nature and boundaries of the
various types and orders of elements, as well as to describe the co-
occurrence patterns serving as the criteria for the definition of the
distribution classes, and to list the membership of these classes. The
former aspect of linguistic analysis is often termed segmentation, the
latter is called distributional analysis.

Linguistic segmentation is the first step in the analysis of raw
text - that is, of spoken messages recorded from native informants.
Segmentation procedures are based on the relation between the form (i.e.,
the phonetic shape) and the meaning (in operational terms, the translation
or possible paraphrase) of the message. Their mechanization thus would
require the comparative processing of two inputs - one representing the
phonetic shape of the raw text, one its translation or paraphrase.

*A detailed discussion of the linguistic point of view underlying the
present paper is contained in Paul L. Garvin "The Definitional Model of
Language", in Paul L. Garvin, ed., "Natural Language and the Computer",
in preparation by the McGraw-Hill Book Company, Inc., New York, N.Y.

(98026) 656

A program designed for a single rather than a dual input hence
cannot be expected to accomplish segmentation. On the contrary, it re-
quires an input which has in some prior way been segmented into elements
of a unified functional type. Given such a previously segmented input,
the program can, however, be expected to accomplish a distributional analysis
of the elements that are found to recur in the input text.

Ordinary written English, with its spaces between words and punc-
tuation marks, is an obvious example of such a previously segmented text.

The intended output of such a distributional analysis program is a
dictionary listing of all the elements (for instance, of all the printed
words) found to recur in the input text, with each element in the listing
accompanied by a grammar code reflecting the distributional description
of the element in terms of the distribution class and subclass to which
it belongs. Since the purpose of the program thus is to produce a
grammar-coded dictionary listing, it is logically necessary to require
that the program itself initially contain no dictionary or grammar code,
but only the routines required for their compilation.

1.8 Procedures of Distributional Analysis
The basic question of distributional analysis is: does unit a

occur in environment b? This question can be answered by a computer
program. The problem is primarily one of specifying automatically what
units a the question is to be asked about, and what environments b are to
be considered in arriving at an answer.

In ordinary linguistic analysis, responses by native speakers (in-
formants) are evaluated and text is examined "manually" in order to
arrive at distributional descriptions. This is done by observing regu-
larities in the recurrence of elements, from which can be inferred the
presence of typical conditions of occurrence, called diagnostic contexts,
that can serve as defining criteria for the determination of appropriate
distribution classes of elements. Informant responses are manipulated
in order to test for the occurrence of elements in diagnostic contexts,
and in order to detect additional diagnostic contexts for further tests.

A major difficulty of these procedures of distributional analysis
lies in the subjectivity inherent in such informant work. This subjectivity
is maximized by the linguist using himself as an informant; it may be
minimized by circumscribing the test situation very narrowly and by using
a variety of informants, as well as by other controls. In spite of any
safeguards that one may want to introduce, as the questions become more
sophisticated, the informant's responses become more and more difficult to
control and his memory becomes less and less reliable. Thus, even in
ordinary linguistic analysis one, reaches a point where informant work has
to be combined with the study of text.

The basic difficulty in the use of text for purposes of linguistic
analysis is that large samples are required. This is understandable if
one takes into account the inverse ratio of the recurrence of elements
to the size of the sample; the less frequently the element recurs, the
larger sample is required in order to study its distributional properties.
Data processing equipment allows the processing of very large bodies of
text using the same program, with the program assuming the role of the
linguistic analyst.

(98026) 657

1.3 Heuristic Aspects of Automatic Linguistic Analysis
A fully automatic distributional analysis program can be looked

upon as a heuristic rather than a purely algorithmic problem. A.L.
Samuel recently set forth some of the characteristics of an intellectual
activity in which heuristic procedures and learning processes can play a
major role. These are, as applied to the problem of playing checkers:

"(1) The activity must not be deterministic in the practical sense.
There exists no known algorithm which will guarantee a win or draw
in checkers, and the complete exploitation of every possible path
through a checker game would involve perhaps 1040 choices of moves
which, at 3 choices per millimicrosecond would still take 1021
centuries to consider.

(2) A definite goal must exist - the winning of the game - and at
least one criterion of intermediate goal must exist which has
bearing on the achievement of the final goal and for which the
sign should be known....

(3) The rules of the activity should be definite and they should
be known....

(4) There should be a background of knowledge of the activity
against which the learning progress can be tested.

(5) The activity should be one that is familiar to a substantial
body of people so that the behavior of the program can be made
understandable to them...."*

The above criteria seems to be applicable to automatic linguistic
analysis as well. The can be paraphrased as follows:

(1) Linguistic analysis is not deterministic in the practical
sense. There exists no known algorithm which will guarantee success in
linguistic analysis and the complete exploitation of every possible
combinatory criterion might involve an equally astronomical number of
steps as the number of moves to be explored in a checkers algorithm.

(2) A definite goal does exist - a detailed distributional state-
ment - and criteria can be formulated for intermediate goals that have
bearing on the achievement of the final goal. These would be the broader
distributional statements from which the ultimate, more refined classifi-
cations can be derived. Unlike checkers, the final goal can not be
formulated as simply.

(3) The rules of the activity are definite and can be formulated.
This, of course, presupposes that one accepts as a basic assumption the
possibility of linguistic discovery procedures. The procedures which
have proved to be most useful in linguistic analysis are those of sub-
stitution and dropping; they can be made computable, and they may be
introduced into the heuristic linguistic analysis program after certain
necessary preliminary steps have been completed. Other equally comput-
able procedures can be formulated.

*A.L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers", IBM Journal of Research and Development, July 1959, pp.211-212.

(98026) 658

(4) There is, of course, a background of knowledge of the activity
against which the machine results are tested: linguistic analysis is, or
can be made into, an established field and machine results can be com-
pared to human results.

(5) Although the activity of linguistic analysis is not one that is
familiar to a substantial body of people, its results nonetheless can be
compared to the intuitive behavior of an entire speech community and the
behavior of the program can be explicated in terms of this observed
intuitive behavior.

1.4 Summary and Evaluation
It is thus possible to envision a computer program which will

process the initially segmented text by applying to it a variety of
linguistic analytic procedures in turn, and will evaluate the results
of each trial on the basis of certain built-in statistical or otherwise
computable criteria. The program can be expected to accept certain
trials and reject others on the basis of these criteria. The results of
the initial tests performed by the program can then be utilized for the
automatic formulation of additional tests leading to a more refined
classification, until the potential of the program is exhausted and the
output can be printed out for inspection by a competent linguistic
evaluator.

From a linguistic standpoint, the development of automatic
linguistic analysis will lead to a rigor hitherto not customary in the
field of linguistics, as well as ultimately to a capability for pro-
cessing much larger samples of language than the linguist can ever hope
to examine manually. From the standpoint of the application of linguistic
knowledge to language data processing, it will lead to a greatly in-
creased reliability of the results of linguistic analysis.

Automatic linguistic analysis can be expected to be of particular
interest to the description of languages in which word classes (that is,
parts of speech as specified linguistically and not merely by traditional
grammar) are not readily definable, and in which conspicuous formal
marks of syntactic relations (such as clearly recognizable grammatical
endings and other elements) are either absent or infrequent. Examples
of such languages are Chinese, or for that matter, English.

From a computational standpoint, automatic linguistic analysis
opens up a new and different area of application for heuristic programm-
ing.

2. DESIGN OF A HEURISTIC PROGRAM FOR AUTOMATIC
LINGUISTIC ANALYSIS

2.l Components of the Program
As was intimated in Section 1.4 above, a heuristic program for

automatic linguistic analysis can be designed in terms of the interplay
of two major sets of routines:

(i) Trial routines. Sets of analytic routines can be designed
in simulation of suitable procedures of linguistic analysis as presently
conducted. The purpose of each particular analytic routine will be to

(98026) 659

process the input text in order to produce a classification of the
textual elements in terms of a set of criteria proper to that routine.
Several routines, each based on a different set of criteria, can be used
consecutively to process the same input text, yielding several alter-
native classifications. Each of these can be said to represent one of
several trials for the completion of a particular step in the analysis.
The program will then have to choose from among trial routines the one
which has the greatest promise of allowing it to proceed to the next
step (for details, see Section 2.3 below).

(ii) Evaluation routines. The purpose of these routines will be
to apply to the results of alternative trial routines the criteria which
the program needs for deciding which of the trials have been "successful"
and which "unsuccessful" from the standpoint of the ultimate analytic
goal. "Unsuccessful" results will be rejected, and "successful" re-
sults will be accepted by the program, enabling it to proceed to the
next analytic step. The evaluation criteria will be derived from
analytic linguistic observations and based on certain assumptions about
the nature of linguistic data that are suggested by common sense and the
accumulated experience of the linguistic profession (for details see
Section 2.4 below).

2.2 Over-all Design of the Program
The distributional analysis which the program is intended to

simulate, ideally constitutes a step-by-step process in which the first
step yields a broad classification of the relevant elements, and every
subsequent step yields a more detailed subclassification, until a set
of classes and subclasses which cannot be further subdivided into
smaller subclasses is arrived at. If the initial elements of the
analytic process are words, the resulting classification will be one of
words into linguistically defined word classes and subclasses.

Each step in the process of analysis consists of the application
of one or more of a set of available analytic procedures, as well as -
if more than one procedure has yielded results - of a decision as to
which of the alternatively resulting classifications is to be retained.
Each step subclassifies further the results of the last preceding step,
and conversely produces the set of classes which are to be subclassified
further by the next following step. The process of analysis can be
considered completed when the procedures available at a given step no
longer yield a subclassification into classes containing more than one
element each: when every class resulting from a given step is a class
of one, the process of analysis can be considered to have reached its
logical endpoint.

In ordinary linguistic analysis, the acceptability of a given
classification is usually judged intuitively, but as was stated under
(ii) in Section 2.1 above, it is possible to formalize certain of the
criteria for these impressionistic judgments.

The step-by-step character of linguistic analysis can be simu-
lated by a pass method of programming.

To the steps of the analytic process can be made to correspond a
series of consecutive passes at the text. Each pass will then contain

(98026) 660

a set of trial routines together with the evaluation routines required for
the choice from among the results of the trials. The output of each
pass will serve to adjust the parameters for the trial and evaluation
routines of the next following pass. The program will continue to operate
until a given pass no longer yields trial results acceptable to the evalu-
ation routines and by analogy with the idealized process of linguistic
analysis, that pass can then be considered the final pass of the entire
run.

Given appropriately chosen criteria for the trial and evaluation
routines, it is reasonable to assume that, if the input text represents a
natural language, the program will be able to apply at least one pass to
it and produce a classification acceptable to the evaluation routines. It
is equally reasonable to assume that if the text does not represent a
natural language, all the trial routines of the very first pass will fall
by the criteria contained in the evaluation routines.

The program can thus be expected to have the capability for de-
ciding whether or not a given input text represents a natural
language.

2.3 Design of Trial Routines
It was stated in the Introduction (under l.2) that distributional

analysis can be based on an examination of diagnostic contexts, and
(under 1.3) that the linguistic techniques used in this analysis, prim-
arily those of substitution and dropping, are essentially computable.
It was further stated under 2.2 above that the trial routines of the
automatic linguistic analysis program would be developed on the basis of
such linguistic procedures.

In the present section, the techniques of substitution and dropping
in linguistic analysis will first be discussed, and then their adaption to
the trial routines of the program will be outlined.

(i) The substitution technique. The linguistic technique of sub-
stitution consists in investigating what elements are substitutable for
each other in the same diagnostic context. Substitutability is for
purposes of the present study defined more narrowly than is necessary for
ordinary linguistic analysis. It is here specified as a disjunctive
relation: a set of elements are substitutable for each other if any one
of them, but not two or more together and adjacently, may occur under a
given set of conditions. A context is considered diagnostic if under
the conditions of that context only sane, but not all, of the elements
under consideration are substitutable for each other. A diagnostic
context thus allows the division of the given universe of elements into
two distribution classes: the class of elements which are substitutable
for each other in that context, and the class of elements which are not.

Let us apply the substitution technique to the maximally simple
linguistic universe of the 26 letters of the English Alphabet in order to
illustrate the difference between a context that is diagnostic, and one
that is not:

If we use as our test frame a context specified by a period on the
left and any letter or a space on the right, it will be found that any
one of the 26 letters of the English alphabet may in some normal English

(98026) 661

text occupy that test frame. A context so specified is thus not a diag-
nostic context for the universe of letters - it is a nondistinctive con-
text. If on the other hand the context is specified by a period on the
left and the lower-case letter h on the right, it will be found - barring
a very highly specialized text with borrowings from a language other than
English - that only the letters a, b, c, d, e, f, g, k, o, p, r, s, t, u,
w, z occur in that test frame, and that the letters h, i, j, l, m, n, q,
v, x, y, do not. The context "._h" therefore is a diagnostic context.

Even for a small universe of elements, such as that of English
letters, more than one diagnostic context can be specified, and each
separate context will yield its own alternative distributional classifi-
cation. For a larger universe of elements, such as that of printed words
as delimited by spaces and/or punctuation marks, it is reasonable to
assume that only a few nondistinctive contexts will be found and that the
majority of contexts will be diagnostic.

(ii) The dropping technique. This technique is in ordinary
linguistics used for the analysis of spoken language with the aid of an
informant. It consists in testing whether the omission of one portion of
a given sequence leaves a viable residue, that is, one which is acceptable
as an utterance in the language under investigation. The dropping tech-
nique is used to ascertain a linguistic relation of dependence within the
sequence, which corresponds to a logical relation of presupposition: A is
dependent on B, whenever B is the necessary condition for the occurrence
of A. In the dropping test, the omission of A will leave a viable resi-
due, the omission of B will not. In the English sequence "We shall make
an attempt to describe this", the omission of the auxiliary "shall" leaves
a viable residue: "We make an attempt to describe this". On the other
hand, the omission of "make" does not: "We shall an attempt to describe
this" is not an acceptable English utterance. The results of this
dropping test permit us to assume that a dependence of "shall" on "make"
for its occurrence is more likely than the converse. In order to arrive
at a definitive statement of such a dependence relation, many additional
tests are required.

The dropping test is related to the analytic objective of classifi-
cation in that all elements that exhibit the same dependence relation
(that is, for which the dropping test yields the same results) can be
considered members of the same class, as defined by this relation.

(iii) Computability of substitution and dropping. While it appears
(cf., Section 1.3.) that both the linguistic techniques described above
are computable, there are some differences in the design features of trial
routines based on dropping as compared to those based on substitution
which are of crucial significance in view of the logical requirements
(stated under 1.1) that the initial program contain no dictionary or
grammar code.

Substitution routines will have to be able to generate for each
pass of the program, the appropriate set of test frames by which to produce
the alternative classificatory listings for that pass. The test frames
for the first pass will have to be generated without access to a dictionary
of grammar-coded elements - this is possible; for the subsequent passes,

(98026) 662

the program can draw upon the listings of each preceding pass to generate
the frames. Since the purpose of the program is to produce increasingly
more refined classifications, the test frames will have to be increasingly
more specific with each pass, in order to produce more and more detailed
listings as the program continues to operate. To insure that the classi-
fications are not due to chance, a large input text is required.

The dropping test can be simulated by an essentially cumbersome
series of comparisons (which, as will be elaborated further below, can be
simplified, once certain conditions are met). For each comparison, the
trial routines will have to identify a pair of unequally long strings of
elements, such that the longer of the two strings contains all the
elements of the shorter one, in the same order, plus one additional
element. The one element present in the longer string and absent in the
shorter one can be said to be "droppable" from the longer one, if both
strings have been found to recur in the text sufficiently frequently to
allow the assumption that the difference in their length is not due to
chance. For every identified longer string, the droppability of each
element will have to be tested by finding an appropriate shorter string.
Those elements for which shorter strings are not found in the input text
can then be assumed not to be droppable, provided enough recurrences have
been found so that the absence of a particular shorter string is not
attributable to chance. In order to allow for the necessary recurrence,
a large input text would again be required, very probably several times
larger than that required for a program based on substitution routines.

For a dropping routine to operate within the logically prescribed
restrictions - that is, without an initial dictionary or grammar code -
each trial would have to compare every string of n - 1 elements. A
series of passes could be envisioned, with the value of n increasing for
each pass from a minimum of 2 for the first pass to the maximum found in
the text, for the last pass. Assuming a punctuated text, this maximum
value of n could be made very much smaller than the total number of
elements in the entire text by requiring that no string be allowed to
contain a period or other final punctuation mark - this would restrict
the permissible length of a string to the span of between two such
punctuation marks, or between one such mark on one side, and the beginn-
ing or end of the entire text on the other. That is, the maximum per-
missible length of a string would be that of the longest sentence in the
text.

The reverse procedure, in which the program first ascertains the
maximum value for n and then decreases it with each pass, is equally
thinkable.

Either procedure for applying the dropping test, to be carried to
its logical conclusion, seems to require a program of quite unmanageable
proportions. Neither procedure allows one to visualize, in any simple
way, the kind of progression from broader to more detailed classifications
that an automatic linguistic analysis program should produce in the course
of its operation.

For these two reasons, a computer simulation of the linguistic
dropping technique does not recommend itself for the initial trial routines
of the program. Once, however, the program has created a grammar-coded
dictionary by other means, a manageable application of dropping routines
can be envisioned. This will be discussed under (iii) in Section £.4.
below.

(98026) 663

For the initial trial routines of the program an adaptation of the
substitution technique is clearly better suited.

(iv) Adaptation of the substitution technique to the trial routines
If - as was intimated in several places above (cf., Section 2.2) - printed
English is used as input to the program, printed English words as delimited
by spaces and/or punctuation marks can be chosen to constitute the uni-
verse of elements to be classified. The purpose of the program then be-
comes one of assigning all the words found to occur in the text to their
appropriate classes and subclasses, and to indicate this assignment by
producing as output a dictionary listing of words, accompanied by a
grammar code indicating their class and subclass membership. As was
stated in Sections 2.1 and 2.2 above, the program will attempt to achieve
this by a succession of passes at the text, each pass consisting of an
appropriate combination of trial and evaluation routines.

Under (iii) above, two major reasons were given for selecting, of
the two linguistic techniques that were examined, substitution rather than
dropping as the model on which to base the design of the trial routines;
firstly, the test frames required by a substitution routine could be gen-
erated by a program of manageable proportions without violating the logical
restriction of not containing an initial dictionary or grammar code;
secondly, test frames of increasing specificity were envisioned for con-
secutive passes, allowing the anticipation of increasingly more detailed
classifications with each subsequent pass.

Only the test frames of the very first pass have to be specified
without recourse to a dictionary or grammar code, since each subsequent
pass can draw upon the output of previous passes for the grammar-coded
dictionary produced up to that point.

The first pass in turn can draw upon the typographical character-
istics of the input text, specifically upon periods and other sentence-
final punctuations, to produce the initial test frames. The following
sequence is envisioned.

Sentence boundaries in the text can be ascertained by reading the
beginning of the text, final punctuations, and the end of the text. Some
provisions will have to be made to eliminate such punctuation noises as
periods after abbreviations; this might initially be accomplished by key-
punching instructions or pre-editing. Once this is done, sentences pro-
vide the "natural" initial test frames for the first pass.

With the sentence as a frame, all word recurrences in the text can
be grouped into three "natural" classes: occurrence as the very first
word of a sentence (called "initial", abbreviated I), occurrence as the
very last word of a sentence (called "final", F), and occurrence in any
non-first and non-last position in the sentence (called "medial", M).
Occurrence in a one-word sentence can be classed as both initial and
final. For each separate word of the text, the number of I, M, and F
occurrences can be tabulated, and the total range of distribution of a
word can be ascertained as one of the following: I only, IM, IMF, IF,
M only, MF, F only. This count will be reliable provided - as was
intimated under (iii) above - the textual sample is large enough to in-
sure that this pattern of occurrence and non-occurrence is not due to
chance. The I only, IM, IMF, IF, M only, MF, and F only ranges of
distribution may then serve as the defining criteria for an Initial set of

(98026) 664

classes, to which the program can assign all the recurrent words of the
text.

A dictionary of all the recurrent words of the text with a grammar
code consisting of appropriate class membership tags can now become part
of the program and be used in the further processing of the text.

A significant linguistic observation may be introduced to serve as
a criterion for the further utilization of the classes obtained in the
trials of this (and any further) pass. This observation relates to the
membership size of classes of linguistic elements of the morphemic (or
content-bearing) type (as exemplified in this connection by words as
opposed to letters): classes of such elements tend to have either extremely
large membership (as, for instance, the class of verbs or nouns in trad-
itional grammar), or severely restricted membership (as, for instance, the
class of prepositions in traditional grammar). The former type of classes
can be called unrestricted as to membership, the latter restricted.

In line with the above, it may be assumed (and the assumption has
been borne out by preliminary manual tests) that certain of the initial
seven classes will be unrestricted as to membership, others will be re-
stricted. It then becomes reasonable to suggest that the classes of un-
restricted membership lend themselves more readily to further sub-
classification than those of restricted membership, and conversely, that
the restricted membership of the latter permits more readily the auto-
matic selection of a finite number of individual words for the generation
of test frames in subsequent passes.

In the next pass, therefore, the classes of unrestricted member-
ship will constitute the universe of elements to be further classified,
and one or more of the classes of restricted membership can be selected
by the evaluation routines to serve as parameters for the more specific
test frames that are required, that is, as frame-forming classes.

The distributional defining criteria of a given frame-forming
class can be related to the frame-forming properties of the sentence to
generate an appropriate set of frames. Assuming, for instance, that the
MF class has been selected as frame-forming, test frames can be gener-
ated by relating the class as a whole or any of its members to the two
fixed points of the sentence: its beginning and its end. Thus, one
set of frames will delimit the slot between the beginning of the sentence
and any, or a particular, MF word in the second position; another set
of frames will delimit the slot between any, or a particular, MF word in
the one-before-last position and the end of the sentence. This one
frame-forming class alone will thus produce two major subclassifications
of the universe of elements: those that do, and those that do not,
occur in the two general frames as constituted by "sentence beginning
 any MF word", and "any MF word sentence end", respec-
tively; it will also produce a further subclass of words that occur in
both frames. Using only one frame for each trial, as many minor sub-
classes of the first two major subclasses can be produced as there are
members of the MF class to serve in the more specific frames constituted
by "sentence beginning ____ a particular MF word", and by a "parti-
cular MF word______ sentence end". The number of classes can be
multiplied by using the intersections of two or more frames to produce
additional classes.

(98026) 665

Each of these new classes can, if it is of unrestricted membership
be used as a new universe of elements for further subdivision. It can,
if it is of restricted membership, be used in the generation of addi-
tional test frames. Each of the original classes of restricted member-
ship can be further subdivided by suitable test frames, and the resulting
subclasses can in turn be used in the generation of still more test
frames.

It can be seen that, as was suggested in 1.3 above, the program
will have an algorithmic capability for producing an extremely large
number of word classes and subclasses. In order to keep the classific-
ation in manageable bounds, as well as to insure that the classificatory
output of the program will in some way be interesting linguistically,
evaluation routines will have to be introduced after each classificatory
step, resulting in the retention of only those classes and subclasses
that are in keeping with the assumptions on which the evaluation routines
are based.

It also becomes reasonable to envision that, once the program has
produced a detailed classification and has included the appropriate tags
in its dictionary, the dropping technique can be simulated more success-
fully than would have been possible in the initial passes of the program.
In the later phases of the program, test strings need no longer be
selected on the basis of their length alone (cf., under (iii) above), but
may be specified on the basis of the previously established class member-
ships of the universe of elements, which can be expected to reduce
drastically the scope of the required dropping routines.

2.4 Evaluation Routines
As was stated in 2.1 above, the purpose of the evaluation routines

of the program is to provide the criteria for deciding whether the re-
sults of a particular trial have been successful or not. Since the
purpose of the trial routines is to produce classes, we may stipulate as
a condition of success that the classes resulting from a particular trial
be linguistically relevant classes. This in turn requires the formu-
lation of some computable differential criteria for the relevance of
linguistic classes.

One element property, namely the condition relating to the member-
ship size of the classes, has been suggested under (iv) above for in-
clusion in the trial routines themselves. Two further, more detailed
properties are here definitely suggested for inclusion in the evaluation
routines, and an additional one is considered worth investigating. It
is furthermore not unreasonable to assume that in the course of the re-
search hitherto unsuspected properties may suggest themselves for con-
sideration in the design of the program.

The three properties alluded to above - two suggested definitely,
and one suggested tentatively - are discussed in that order in the sub-
sequent three sections.

(i) A statistical property: the ratio of frequency of occurrence
of members to size of membership of class. It is assumed that the fre-
quency of occurrence of a linguistic element is in an approximately in-
verse ratio to the size of the class to which it belongs. That is, the

(98026) 666

frequency of occurrence in text of members of classes of restricted
membership is assumed to be relatively high, that of members of classes
of unrestricted membership relatively low.

Support for this assumption can be found in the observations that
individual function words (such as prepositions or conjunctions), which
may be expected to belong to classes of restricted membership, usually
have high frequency of occurrence in texts, while on the other hand in-
dividual content words (such as verbs or nouns) have by comparison a much
lower frequency. Some of these observations have been borne out by word
counts.

An evaluation routine based on this property can be envisioned as
follows:

The program will tabulate, along with class and subclass member-
ship, the frequency of occurrence of each word. At the end of each test
of trials, a comparison of the frequency of occurrence of the members on
the one hand to the size of the membership on the other can be made for
each alternative class. Only classes of restricted membership with
high-frequency members, and classes of unrestricted membership with low-
frequency members, will be candidates for acceptance, possibly subject to
further evaluation in terms of the properties to be discussed below.
Conversely, classes of restricted membership with low-frequency members
and classes of unrestricted membership with high-frequency members will
be candidates for rejection.

(11) A distributional property: combinatory affinity of classes.
One of the most consistent observations about natural language is that
there tend to be distinct regularities in the sequential co-occurrence
of the members of the various linguistic classes and subclasses. Thus -
using traditional parts of speech to illustrate - it can be readily noted
that in ordinary English texts nouns are frequently accompanied by ad-
jectives, the latter are frequently accompanied by adverbs, verbs are
frequently accompanied by verbal auxiliaries, and so on for a number of
other typical combinations. The frequent occurrence in text of a
member of one particular class of linguistic elements adjacent to a
member of another particular class can be expressed as a distributional
property of the classes in question, here called the combinatory affinity
of classes.

It is thus not unreasonable to assume, in view of the consistent
observation of such distributional regularities in the natural languages
of the world, that a machine-produced classification which allows the de-
termination of many combinatory affinities of classes is likely to be a
more successful trial result than one which does not.

An evaluation routine based on combinatory affinity would not be
applied individually to the classes and subclasses resulting from part-
icular trial routines, but to the comparison of at least two entire
alternative classifications at a time, each produced by its own set of
trial routines within the same pass. The routine can be looked upon as
a two-phase procedure; the first phase will consist of the repeated
application of the same subroutine to examine, for each alternative
classification, the combinatory affinity of classes resulting from that
classification, the second phase will be a subroutine comparing the re-
sults of these examinations, leading to a decision as to the candidacy

(98026) 667

for acceptance or rejection of the classificatory alternatives.
The examination subroutine of the combinatory affinity routine can

be based on the expectation that, whenever two or more classifications
have resulted from a set of trials, the program will have produced
(either logically or in a literal sense) a corresponding number of dic-
tionaries, each with a grammar code derived from a different one of the
alternative classifications. Each consecutive application of the exam-
ination subroutine can thus call the dictionary derived from the classif-
ication to be examined, and use it to ascertain relevant combinatory
affinities.

An examination subroutine might be composed of the following
operations, some of which could be programmed to run simultaneously:

(1) Call current dictionary.
(2) Bring in input text one sentence at a time, look up words

in dictionary, and assign current grammar code to each word.
(3) Examine each sentence to detect whether a particular combin-

ation of adjacent grammar codes occurs more than once in a
sentence. (This procedure is suggested in order to avoid
having to test for all conceivable combinations.) Store all
such recurrent combinations in a "dictionary of current
combinations" (DCC).

(4) Use DCC to reexamine text sentences to detect and tabulate
additional occurrences of current combinations (CC) not de-
tected under (3) above.

(5) Reprocess text sentences to examine left and right neighbor-
hoods of each occurrence of each CC. If any CC is found to
occur with the same neighbor(s) more than once in the same
sentence, include CC with neighbors in DCC as expanded CC
(ECC).

(6) Use updated DCC to reexamine text sentences to detect and
tabulate additional occurrences of ECC not detected under (5)
above.

(7) Tabulate total number of running words of text contained in
all recorded occurrences of CC and ECC. Compute ratio of
this number to total number of words in text, yielding the
value for the combinatory affinity of classes for the class-
ification on which current grammar code was based.

(8) Call next alternative dictionary and repeat procedure, using
new grammar code (i.e., return to (2) above).

The comparison subroutine will compare the values for combinatory
affinity yielded by each iteration of the examination subroutine and use
them to arrive at the required decision as to the candidacy for accep-
tance or rejection of the classifications from which these values have
resulted

The CC's and ECC's tabulated from the successful classification
(or from all alternative classifications) can be retained for further
examination. They can be used by the routines suggested under (iii)
below, or printed out for inspection.

(iii) A relational property: dependence of classes. A relation
of dependence can be ascertained by the dropping technique, as discussed

(98026) 668

under (ii) and (iii) in Section 2.3 above. Dropping routines were re-
jected for use as initial trial routines because their application to
each individual word occurrence of the text without the aid of a grammar-
coded dictionary would render the program unmanageable.

Once the program has produced a dictionary and grammar-code, how-
ever, the conditions for the application of a dropping routine are much
more favorable. It now becomes possible to use such routines not to test
for the dependence relations of individual words, but for dependences of
classes - a much more restricted and manageable objective.

Given a set of classes as represented by the grammar code of a
current dictionary, there are several conceivable ways of introducing into
the program dropping routines for the determination of the dependences
of classes. Two will be mentioned.

It is then for instance possible to apply the method of strings of
lengths n and n - 1, described under (iii) in Section 2.3 above, not to
strings of words, but to strings of grammar code symbols. The re-
currence of these can be expected to be much higher than that of individual
words, the variety of possible strings consequently much less, and the
proportions of the program might under these conditions remain within
manageable bounds.

Another application of the dropping routine might be to operate
upon the CC's and ECC's produced by the combinatory affinity routine
described under (ii) above. The longest ECC in the DCC could be taken
as the string with the highest value n for length, and CC's and ECC's of
n - 1 length could be compared to it, and so on for all values of n down
to the minimum of 2.

Either modification of the dropping technique can conceivably
serve as either a trial routine or an evaluation routine. If used as a
trial routine, its purpose would be to yield additional classes for
evaluation in terms of the statistical and distributional properties.
If, on the other hand, the dropping routines were to be used as evalu-
ation routines, they could be applied to alternative dictionaries, and
the relative proportion of dependence relations obtained from each
alternative might serve as an evaluation criterion. It might be assumed
that a classification that allows for the determination of a greater
number of dependence relations within the text is preferable to one that
does not.

(98026) 669

