[Eighth Annual Round Table Meeting on Linguistics and Language Studies, Georgetown University, 1957]

The Use Of SEAC In Syntactic Analysis Richard B. Thomas National Bureau of Standards

The purpose of this structure search is to determine whether the syntactical patterns of English sentences, expressed symbolically, show that a relatively small number of such patterns represents a significantly large number of sentences.

The routines written for SEAC (National Bureau of Standards Electronic Automatic Computer) examine the structure of sentences within a corpus of expository prose chosen from scientific and technical writings. SEAC performs several functions in the search: (a) accurate high-speed tabulation; (b) precise comparison of data; (c) compression of coded data in terms of syntactical equivalence relationships. Preparation of the material includes coding the elements of the source sentences functionally according to the scheme shown in Figure One. This is but one of many feasible analytical schemes, and it represents a rather gross cut made according to traditional grammar. Each functional element to be coded is given a notation comprising one number and one letter, as shown in Figure Two. The notations (maximum 9) of each sentence then become SEAC input.

Primary Search

Except for tabulation, the program rejects the letters in the codes. (The letters are included in the raw data so that they may be available for other programs.) The computer reduces the first incoming sentence code to its numerical pattern (e.g., 56416500000) and stores the pattern. Each subsequent candidate sentence is reduced in the same way and its numerical pattern is compared with all stored patterns. If a candidate pattern is identical with a stored pattern, a recurrence tally of 1 is added into the least-significant place of the stored pattern and the candidate pattern is rejected. But if the candidate pattern proves to be unique, it is stored along with the others. Check routines are included in the programming of this preliminary phase to reject data erroneously prepared.

When all sentences have been processed, the resultant unique primary patterns, with their tallies, emerge from SEAC via high-speed magnetic wire, along with tallies showing (a) the number of sentences processed, (b) the number of patterns stored as unique, (c) the number of sentences rejected because of errors in preparation or inscription, and (d) the number of patterns having 1 digit, 2 digits, ...9 digits.

-151-

Each time 50 sentences have been processed, SEAC prints out the number of unique patterns being held in storage.

Compressed Search

The unique primary patterns are then fed back into the computer for compression and a 1 is added to every pattern tally so that each tally will show the actual number of occurrences. The routine first rejects all-but-one of any digit that is contiguously repeated within a pattern. For example, 444166655 becomes 4165, but 414656 remains unchanged. The basis for compression in this manner is the assertion of equivalence relationships whereby "The little red hen clucks" (44416) is here considered to function syntactically as "The hen clucks" (416) or "The hen will cluck" (4166), etc. A compressed pattern is thus construed as a basic form from which all corresponding primary patterns could be developed by regular structural transformation.

Since a number of patterns whose primary forms were different would probably be identical in their compressed form, the compressed patterns are then compared, each with all others. When SEAC finds that two compressed patterns are identical, their respective tallies are added together; the sum is stored in the least-significant places of the first pattern in question and the other pattern is cleared to zeros. At the end of this operation, the unique compressed patterns with (some new) tallies are printed out, together with (a) the number of compressed patterns stored as unique and (b) the number of unique compressed patterns having 1 digit, 2 digits, ... 9 digits. Separate routines are then employed to list the patterns in numerical order, as shown in Figure Three.

Results of the Search

The original corpus of 1002 sentences is a very small sample. The curve of cumulative occurrences (Figure Seven) shows little tendency to reach zero slope, as unique primary patterns were still occurring at a nearly fixed rate. The distribution of patterns according to the number of digits (notations) per pattern is shown in Figure Four. The components of the raw and processed data are shown in Figure Five. Figures Six and Seven express the rate of occurrence of new patterns.

The 1002 sentences yielded 541 unique primary patterns. Of these, the five most common are listed here in sequence, followed by the number of occurrences (in parentheses) and a sample sentence for each:

-152-

41665	(19)	The dog has run across the street.
414665	(17)	The dog with floppy ears has run across the street.
162	(16)	Dogs eat bones.
16434	(15)	Fido is the dog with floppy ears.
165	(14)	Fido ran across the street.
1665	(14)	Fido has run across the street.

The total number of sentences (95) shared by these patterns is less than 10 percent of the corpus.

Compression of the 541 primaries yielded 247 unique compressed patterns. The five most common are listed here, as above; the parenthetical number is the number of original sentences represented by the compressed form:

4165	(80)	The dog ran across the street.
165	(62)	Fido ran across the street.
41465	(56)	The dog with floppy ears ran across the street.
54165	(35)	Finally the dog ran across the street.
416424	(28)	The dog ate the bone which he had dug up.

The total number of sentences (261) shared by these compressed patterns represents only 26 percent of the corpus. The first four compressed patterns listed above contain at least one adverbial element in every case and lack objects or predicative nominatives; these patterns represent 233 sentences or 23 percent of the corpus.

The results must be viewed as specifically inconclusive because the corpus is small. But the technique of compression appears valid and useful for examining possible "base" or "kernel" forms of syntax.

The computer is admirably suited to this type of search. To duplicate the search on other types of equipment would require considerably more time and more complex operations, especially in the comparison and compression phases. The total SEAC running time for this program was about 40 minutes.

-153-

LEXICAL UNITS	PHRASES	DEPENDENT CLAUSES
(A)	(8)	(C)
1, 2, 3 - Noun, Pronoun	Noun { Infinitive Gerundive Prepositional	Noun
1 A - Subject	1 B - Subject	1 C - Subject
2 A - Object (d.&i.)	2 B - Object (d.&i.)	2 C - Object (d.&i.)
3 A - Pred. Nom.	3 B - Pred, Nom,	3 C - Pred. Nom.
4 A - Adjective	4 B - Adj. {Infinitive Participial Prepositional	4 C - Adjective
5 A - Adverb	5 B - Adverb {Infin, Prep.	5 C - Adverb
6 - Vert	of Independent Cl	ause
6 A - Main verb	6 B - Auxiliary 6	C - Modal Auxil.

FIGURE ONE. Coding Scheme for Syntactic Analysis

NOT Connectives (relative pronouns, coordinating conjunctions, sub-CODED: ordinating conjunctions, conjunctive adverbs); absolutes; appositives; interjections; non-functional expletives; internal structure of phrases and dependent clauses; and elements which modify portions of "B" or "C" structures (except verbs).

Such structures have been omitted from the coding because they do not affect the basic structure of the independent clause.

- 154-

	(SEAC Input)
5-A 6-B 4-A 1-A 6-A 5-A	-
1. When does the balloon go up?	5A6B4A1A6AØ
	5 A Ø Ø Ø Ø Ø Ø Ø Ø-
2-C 1-A 6-A	,
2. Whatever Lola wants, Lola gets.	2C1A6A00000-
1-A 6-C 6-B 6-B 6-A 5-A 5-A	
3. It could have been solved more simply.	1A6C6B6B6AØ
	5A5AØØØØØØØ-
6-A 4-A 2-A 5-A	
4. Polly, put the kettle on.	6 A4A2A5AØØØ -
4-A 4-A 4-A 1-A	
5. The electronic automatic digital computer	
6-A 4-A 2-A	4A4A4A4A1AØ
dropped a bit.	6A4A2AØØ ØØ Ø-

Primary patterns formed from the foregoing sentences:

564165ØØØØØØ
 216ØØØØØØØØØ
 1666655ØØØØ
 6425ØØØØØØØØ
 44441642ØØØ

Compressed patterns formed from the primary patterns:

 1.
 564165ØØØØØØ

 2.
 216ØØØØØØØØ

 3.
 165ØØØØØØØØ

 4.
 6425ØØØØØØØ

 5.
 41642ØØØØØØØ

- 155-

FIGURE THREE Unique Compressed Patterns - Listed - Last Two Digit Places Show Number of Occurrences

16000000 14	41630000 03	41464000 04	64165000 01	41643500 01
62000000 09	41640000 07	41465000 56	64245000 02	41646500 01
65000000 01	41650000 80	41565000 03	65414000 01	41652400 01
	51460000 01	41624000 04	65415000 01	41654200 01
14600000 02	51620000 08	41625000 02		41654300 01
16200000 23	51640000 11	41642000 12	14642100 01	41654500 09
16300000 07	51650000 18	41643000 05	14642400 03	41656200 02
16400000 11	54160000 05	41645000 09	14643400 03	41656400 01
16500000 62	56160000 01	41654000 07	14656400 01	41656500 13
21600000 02	56410000 07	41656000 03	14656500 01	45416500 01
41600000 03	56420000 02	46165000 01	15642400 03	51464500 02
51600000 06	61650000 01	51464000 01	16242500 02	51562500 01
56200000 01	62520000 01	51465000 02	16424500 06	51614300 01
61400000 02	64140000 05	51565000 01	16425200 01	51642400 08
62500000 06	64150000 01	51625000 02	16425400 03	51643400 02
64100000 02	64240000 04	51642000 05	16454200 01	51652400 01
64200000 01	64250000 06	51645000 01	16542400 02	51656400 01
65100000 01	65410000 01	51652000 01	16562400 02	51656500 03
	65420000 01	51654000 04	16564200 02	54146400 04
14250000 01		51656000 01	16564500 02	54146500 13
14630000 02	14625000 02	54146000 06	41456300 01	54162500 02
14650000 09	14642000 01	54156000 01	41456400 02	54164100 01
15620000 02	15642000 02	54161000 01	41456500 03	54164200 03
15650000 03	16245000 01	54162000 02	41462400 02	54164300 01
16240000 04	16414000 03	54164000 07	41,462500 03	54164500 01
16250000 05	16415000 01	54165000 35	41463500 01	54165400 04
16340000 02	16424000 22	54641000 01	41464200 01	54165600 02
16350000 01	16425000 15	56161000 01	41464300 05	54641500 01
16420000 07	16434000 20	56165000 01	41464500 07	54643500 01
16430000 07	16435000 02	56414000 03	41465200 01	61642400 01
16450000 06	16462000 01	56416000 01	41465400 08	65642400 01
16520000 03	16545000 03	56425000 01	41465600 01	14564240 01
16530000 01	16562000 03	56434000 01	41562400 01	14642450 02
16540000 05	16565000 09	56561000 01	41562500 01	14656450 01
16560000 04	41416000 01	61434000 01	41565600 01	15642450 01
21620000 01	41426000 01	61625000 02	41624500 01	16424240 01
41450000 01	41456000 01	61642000 01	41642400 28	16454250 01
41460000 03	41462000 02	64145000 02	41642500 11	16564150 01
41620000 05	41463000 13	64163000 01	41643400 12	16564240 01

- 156-

FIGURE THREE (Continued)

41456420 01	41565650 01	51656420 02	14656424 01	54165424 01
41456540 01	41642450 01	54146420 02	16464245 01	
41456560 01	41645420 01	54146450 03	16565424 01	165 454345 01
41462450 01	41653450 01	54146540 02	41456425 01	
41464240 11	41654240 01	54146560 02	41464245 01	414645424 01 414656435 01
41464250 02	41654340 02	54164240 04	41465643 01	454162424 01
41464340 07	41656420 02	54164250 02	41545625 01	541464543 01
41465450 02	41656430 01	54164340 01	41645424 02	541465643 01
41465640 01	45436410 01	54165250 01	41645434 01	564156424 01
41465650 07	51456540 01	54165450 01	45414642 01	
41562540 01	51465450 01	54165650 03	54146565 02	
41564240 01	51654240 01	64541450 01	54154642 01	

- 158-

	(Y)	(6	(B)	(C)	Total
ε	670		10	15	995
(3)	279		23	48	350
(3)	86		9	12	119
(4)	1368	4	435	54	1857
(5)	305	6	645	147	1097
(9)	1002	4	432	154	1588
Total	4022	1554	54	430	
	Ŭ	COMPONENTS OF RAW DATA	JE RAW D)ATA	
Components of Uni	Components of Unique Primary Patterns:		(4)	1162	
		(2) 211	(2)	676	
			9	844	

414 281 300

@ Q 🕈

243 39

Components of Unique Compressed Patterns: (1) (2) (3)

FIGURE FIVE. Components of Raw and Processed Data

- 159-

- 160-

