Philip Colin Treleaven


2025

pdf bib
From Text to Emoji: How PEFT-Driven Personality Manipulation Unleashes the Emoji Potential in LLMs
Navya Jain | Zekun Wu | Cristian Enrique Munoz Villalobos | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Emre Kazim | Philip Colin Treleaven
Findings of the Association for Computational Linguistics: NAACL 2025

The manipulation of the personality traits of large language models (LLMs) has emerged as a key area of research. Methods like prompt-based In-Context Knowledge Editing (IKE) and gradient-based Model Editor Networks (MEND) have been explored but show irregularity and variability; IKE depends on the prompt, leading to variability and sensitivity, while MEND yields inconsistent and gibberish outputs. To address this, we employed Opinion QA Based Parameter-Efficient Fine-Tuning (PEFT), specifically Quantized Low-Rank Adaptation (QLoRA), to manipulate the Big Five personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. After PEFT, models such as Mistral-7B-Instruct and LLaMA-2-7B-chat showed a latent behaviour by generating emojis for certain traits, despite no emojis being present in the PEFT data. For instance, LLaMA-2-7B-chat generated emojis in 99.5% of extraversion-related test instances, while Mistral-7B-Instruct did so in 92.5% of openness-related test instances. ICL Explainability analysis indicated that the LLMs used emojis intentionally to express these traits. Mechanistic Interpretability analysis showed that this latent behaviour of LLMs could be traced to specific neurons that became activated or amplified after PEFT. This paper provides a number of novel contributions. First, introducing an Opinion QA dataset for PEFT-driven personality manipulation; second, developing metric models to benchmark LLM personality traits; third, demonstrating PEFT’s superiority over IKE in personality manipulation; and finally, analysing and validating emoji usage through explainability methods such as Mechanistic Interpretability and In-context learning Explainability methods.

pdf bib
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra | Zekun Wu | Ayesha Gulley | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Philip Colin Treleaven
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Large Language Models (LLMs) face limitations in AI legal and policy applications due to outdated knowledge, hallucinations, and poor reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems address these issues by incorporating external knowledge, but suffer from retrieval errors, ineffective context integration, and high operational costs. This paper presents the Hybrid Parameter-Adaptive RAG (HyPA-RAG) system, designed for the AI legal domain, with NYC Local Law 144 (LL144) as the test case. HyPA-RAG integrates a query complexity classifier for adaptive parameter tuning, a hybrid retrieval approach combining dense, sparse, and knowledge graph methods, and a comprehensive evaluation framework with tailored question types and metrics. Testing on LL144 demonstrates that HyPA-RAG enhances retrieval accuracy, response fidelity, and contextual precision, offering a robust and adaptable solution for high-stakes legal and policy applications.

2024

pdf bib
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra | Zekun Wu | Ayesha Gulley | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Philip Colin Treleaven
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

While Large Language Models (LLMs) excel in text generation and question-answering, their effectiveness in AI legal and policy applications is limited by outdated knowledge, hallucinations, and inadequate reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems improve response accuracy by integrating external knowledge but struggle with retrieval errors, poor context integration, and high costs, particularly in interpreting AI legal texts. This paper introduces a Hybrid Parameter-Adaptive RAG (HyPA-RAG) system tailored for AI legal and policy, exemplified by NYC Local Law 144 (LL144). HyPA-RAG uses a query complexity classifier for adaptive parameter tuning, a hybrid retrieval strategy combining dense, sparse, and knowledge graph methods, and an evaluation framework with specific question types and metrics. By dynamically adjusting parameters, HyPA-RAG significantly improves retrieval accuracy and response fidelity. Testing on LL144 shows enhanced correctness, faithfulness, and contextual precision, addressing the need for adaptable NLP systems in complex, high-stakes AI legal and policy applications.