
Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas,
pages 125–131, Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Text Generation for Brazilian Portuguese:

the Surface Realization Task

Eder Miranda de Novais Thiago Dias Tadeu Ivandré Paraboni
University of São Paulo - School of Arts, Sciences and Humanities (USP-EACH)

Av. Arlindo Bettio, 1000, Ermelino Matarazzo

São Paulo, Brazil - 03828-000
eder.novais@usp.br tdtadeu@gmail.com ivandre@usp.br

Abstract

Despite the growing interest in NLP focused

on the Brazilian Portuguese language in recent

years, its obvious counterpart – Natural Lan-

guage Generation (NLG) – remains in that

case a little-explored research field. In this

paper we describe preliminary results of a first

project of this kind, addressing the issue of

surface realization for Brazilian Portuguese.

Our approach, which may be particularly suit-

able to simpler NLG applications in which a

domain corpus of the most likely output sen-

tences happens to be available, is in principle

adaptable to many closely-related languages,

and paves the way to further NLG research

focused on Romance languages in general.

1 Introduction

Data-to-Text Natural Language Generation (NLG)

systems produce text or speech from a given non-

linguistic input. Systems of this kind usually fol-

low a pipelined architecture (Reiter, 2007) com-

prising data interpretation, document planning,

sentence planning and surface realization tasks. In

this work we discuss the latter, that is, the task of

producing surface word strings from a non-

linguistic input specification.

Existing approaches to surface realization may

vary greatly in their input requirements and, con-

sequently, in the level of control over the output

text. On the one hand, more sophisticated, gram-

mar-based surface realization systems such as

KPML (Bateman, 1997) allow maximum flexibili-

ty and productive coverage. These advantages,

however, are only useful if the underlying applica-

tion is capable of providing a detailed semantic

specification as an input to the surface realization

module in the first place.

As an alternative to surface realization gram-

mars, NLG systems may also rely on template-

based surface realization, that is, the use of prede-

fined structures with a number of variable fields

(or slots) to be filled in with values provided by the

application. For a comparison between templates

and other approaches to NLG, see for instance van

Deemter et. al. (2005).

Adapting an existing application to a template-

based realization system is usually much simpler

than in a grammar-based approach. Yet, in order to

take full advantage of template definitions and to

obtain a degree of control over the output text that

is comparable to what a grammar-based system

would allow, it is still necessary to master the use

of templates and their rules to fill in each slot ade-

quately.

The problem of input specification to surface

realization has been discussed at length in the lite-

rature in the field - see for example Langkilde

(2000) – and we of course do not dispute that more

sophisticated NLG systems will require a detailed

input specification. However, given that the avail-

able semantics may not be provide in this level of

detail, in this paper we discuss an alternative that

125

may be suitable to simpler applications, namely,

those cases in which it is known in advance what

the most likely output sentence structures are, for

example, because a corpus on that particular do-

main happens to be available. In these cases, we

will argue that it may be possible to take advantage

of the available knowledge to quickly deploy a

surface realization component based on existing

corpora.

The underlying assumption in our work is that

there are simpler NLG applications for which it

may be sufficient to select a sentence that resem-

bles the desired output, and then modify some or

all of its constituents as needed to achieve the de-

sired output. For instance, an application that is not

linguistically-oriented may produce its output re-

sults as natural language text by selecting a stan-

dard imperative sentence as in “Please reply to this

message” and, leaving all other sentence constitu-

ents unchanged, specify that the action to be rea-

lized in the output is “delete”, and that its patient

object is “file”. This will have the effect of produc-

ing the output sentence “Please delete this file”.

In this introductory work we intend to outline

our ongoing efforts to develop one such approach

to surface realization for the Brazilian Portuguese

language. In doing so, we shall focus on the gener-

al principles that guide our research, leaving much

of the theoretical details to be discussed elsewhere.

The present work has been developed within the

context of a query-and-answer application under

investigation, in which questions sent by undergra-

duate students enrolled in a particular course will

be matched to existing entries in a large database

of standard replies written by the professors in

charge to the most frequently asked questions

made by the students, and tailored to each particu-

lar context accordingly. Details of this particular

application will not be dealt with in this paper ei-

ther.

The reminder of this paper is structured as fol-

lows. Section 2 briefly discusses related work on

surface realization; Section 3 provides an overview

of our system’s architecture; Sections 4 describes

the extraction of syntactically-structured templates

from a target corpus and Section 5 presents the

current features of our template-based surface rea-

lization engine. Finally, Section 6 draws prelimi-

nary conclusions and describes ongoing work, and

Section 7 hints at possible collaboration with the

wider NLP research community in Latin America

and elsewhere.

2 Related work

Mapping an application semantics to surface

strings usually involves the use of surface realiza-

tion grammars or similar resources, which can be

either built manually (e.g., Bateman, 1997) or ac-

quired automatically from a corpus (Ratnaparkhi,

2000; Zhong & Stent, 2005; DeVault et. al., 2008).

The surface realization task proper can be di-

vided into two relatively independent procedures: a

domain-dependant mapping from the application

semantics onto linguistic structures (including,

e.g., lexical choice), and a language-oriented task

of linearization. As pointed out in Gatt & Reiter

(2009), most of the existing systems tend to per-

form both tasks, but in some cases they focus on

the latter, assuming that all lexical choices and

other domain-dependent decisions have already

been made. This is the case for example of Sim-

pleNLG (Gatt & Reiter, 2009), a surface realiza-

tion engine implemented as a Java library for

sentence linearization.

Central to the development and use of a surface

realization system is the kind of input specification

that will be expected from the application. In order

to take full advantage of grammar-based surface

realization, it is usually necessary to provided de-

tailed linguistic knowledge as an input. This is the

case, for example, of a number of corpus-based

approaches to grammar acquisition, which may

take logical forms as an input (e.g., Smets et. al.,

2003; Zhong & Stent, 2005; Marciniak & Strube,

2005). The Amalgam system, for instance (Smets

et. al., 2003), takes as an input a graph conveying

fixed content words (lemmas) and detailed linguis-

tic information such as verb tense and mode, gend-

er, number and definiteness of all its constituents,

and additional semantic features (e.g., ‘human’,

‘animated’ etc.)

Detailed input specification as required in

grammar-based surface realization is however of-

ten unavailable from the semantics of the applica-

tion. As an alternative, template-based surface

realization makes use of predefined structures

(e.g., syntactically-structured sentence templates)

with slots to be filled in with values provided by

the application. A prominent example of template-

based surface realization system is YAG (McRoy

126

et. al., 2003), which may accept both feature struc-

tures and propositional semantics as an input. The

following is an example of input feature structure

in YAG, taken from McRoy et. al. (2003). In this

example, the structure represents the fact that a

discourse subject (George) performs an act (under-

stand) on a particular object (a book), in which

both subject and object happened to be realized as

pronouns as “He understands it”.

 ((template clause

 (process “understand”)

 (agent ((template noun-phrase)

 (np-type PROPER)

 (head “George”)

 (gender MASCULINE)

 (pronominal YES)))

 (object ((template noun-phrase)

 (head “book”)

 (pronominal YES))))

Input feature structure in YAG.

The input requirements of a template-based sur-

face realization system are obviously much simpler

– and more likely to be available from the applica-

tion – than a full set of linguistic instructions on

how to generate the desired output. Still, in this

work we would like to produce surface strings us-

ing even less knowledge, namely, by using sen-

tence-level templates extracted from a domain

corpus as a basis to generate original and modified

versions of the corpus sentences.

We will refer to this as an example-based ap-

proach to surface realization1, although this is not

to be mistaken for example-based learning tech-

niques to perform automatic grammar induction as

in DeVault et. al., (2008), or other forms of gram-

mar acquisition as in Zhong & Stent (2005). Our

work is more related to Ratnaparkhi (2000) in the

sense that we also use a large collection of genera-

tion templates for surface realization, but still dis-

tinct in that we intend to generate text from

minimal input.

3 Project Overview

Template-based surface realization systems such as

YAG (McRoy et. al., 2003) make use of a relative-

ly small number of template definitions and some

kind of descriptive language to provide fine-

grained input sentence specification with flexibility

1 Perhaps ‘select-and-modify’ would be closer to our current
purposes.

and wide coverage. However, if a corpus on the

application domain happens to be available, and

assuming that the corpus sentences resemble those

that we intend to generate, then it may be conve-

nient (at least for applications that are not linguisti-

cally-motivated in the first place) to simply use the

corpus sentences as examples, and allow an input

specification that makes explicit only the changes

that need to take place to convert the selected ex-

ample into the desired output.

For example, in order to produce the sentence

“He understands it” we may select an example

such as “People will understand it” from the cor-

pus, and then redefine its agent head type as a pro-

noun, and its action tense as present. The

difference may not seem so dramatic if compared

to, e.g., an input specification to YAG, but it will

obviously grow as more complex sentence struc-

tures are considered.

If the selected example differs greatly from the

target sentence, then a large number of modifica-

tions will have to take place, and in that case our

example-based approach may not seem very use-

ful. On the other hand, if the corpus is representa-

tive of the sentences that are likely to be generated,

then little or no additional modifications will be

required, in which case new sentences may be gen-

erated indeed from a minimally specified input. In

either case, we notice that since the examples are

represented directly in natural language in the cor-

pus, new instances can be easily added to expand

the system coverage.

In our present approach to the surface realization

task, syntactically-structured templates are selected

from a target corpus on the application domain and

used as a basis to produce original and modified

versions of the corpus sentences by a combination

of canned text and basic dependency-tree opera-

tions. Each sentence in the target corpus makes a

sentence template in which the agent, patient and

action constituents may be modified or replaced by

the application by combining lower-order tem-

plates (e.g., for NPs and VPs), and new sentences

may be supported by adding the corresponding

examples directly to the corpus.

Our current work can be divided into two main

tasks: the extraction of syntactically-structured

templates from corpora and the actual development

of the surface realization engine. The following

sections 4 and 5 discuss each of these tasks in turn.

127

4 Template Extraction

Using a collection of emails sent to undergraduate

students by their professors in reply to their most

frequent questions regarding a particular project,

we developed a database conveying 597 instances

of surface realization templates for Brazilian Por-

tuguese NLG as follows.

After sentence segmentation, the corpus was

tagged and parsed using PALAVRAS (Bick,

2000). A number of critical parsing errors were

removed, and thus we arrived at a set of 578 sen-

tence-level templates represented in XML format.

In our example-based approach to surface reali-

zation we consider two kinds of structure: sentence

and constituent templates. Sentence templates are

high-level representations of the sample sentences

taken from our target corpus, and they contain a

number of variable fields (the constituents) to be

filled in with application data (in most cases hav-

ing an agent, action and patient fields.)

Everything else within the sentence is simply

canned text as seen in the corpus, and cannot be

modified by the application. In other words, if the

application needs to generate a sentence that dif-

fers from the template in any constituent other than

its NPs and VPs, it is necessary to define a new

template by adding a new example to the corpus.

Sentence templates are highly redundant in the

sense that many of them keep a similar syntactic

structure in which only the surrounding text might

change significantly. For example, many sentence

templates in our domain represent a simple piece

of advice in the form agent + action followed by

some canned text, as in “You should enroll by Fri-

day” and “All smokers are supposed to quit by the

end of the month”.

Although we could have defined a smaller (and

more flexible) set of templates by generalizing

over these structures, in practice this would in-

crease the complexity of the required input (e.g.,

with the addition of a ‘time’ field to a common

template to be shared by both examples above.) As

mentioned in the previous section, we intend to

keep input specification as simple as possible (i.e.,

in natural language format) by allowing the target

sentences to be specified directly in the corpus.

The contents of the variable fields in a sentence

template act as default values for the surface reali-

zation algorithm, and they may be changed indivi-

dually (e.g., by setting a different tense or gender

value for a particular field) or replaced by another

constituent template entirely. We notice that de-

fault values are acquired automatically from corpo-

ra, i.e., they do not need to be hard-coded as in

McRoy et. al., (2003).

Unlike sentence templates, constituent templates

are not extracted from corpora. Instead, constitu-

ents are dependency-trees generated by a small set

of grammar rules that covers the instances of VPs

and NPs found in our corpus, including support to

relative clauses and the most common forms of PP

attachment. The choice for a grammar representa-

tion for the more fine-grained constituents was

mainly motivated by the need to achieve wider

coverage and to support linguistic variation beyond

what the actual phrases found in the corpus would

allow. In doing so we are able to fill in sentence

templates with phrases of arbitrary complexity, as

in the NP “You should enroll by the end of the

month in which you are expected to complete your

current assignment”, and not simply using those

NPs found in the target corpus.

The set of mappings from domain concepts to

their dependency-trees (i.e., constituent templates)

makes a dictionary of realizations in the applica-

tion domain. As in related work in the field (e.g.,

Gatt & Reiter, 2009), we presently assume that the

actual mappings are to be provided by the applica-

tion.

Concept-to-strings mappings are usually

handcrafted, but may also be acquired automatical-

ly from corpora, as in Bangalore & Rambow

(2000). For testing purposes, we have extracted

1,548 instances of concept-to-string mappings

from the target corpus, being 1,298 mappings from

agent/patient entities to descriptions, pronouns and

proper names, and 250 mappings from actions to

VPs, even though many of them will not be of

practical use from the point of view of our in-

tended application.

5 Surface Realization

Using the template definitions from the previous

section, we designed a simple corpus-based surface

realization component for our ongoing project.

Our surface realization module is currently able

to accept as an input a template id (to be taken as a

sample structure with inherited default values for

the output sentence) and, optionally, parameters

representing the alternative semantics of its agent,

128

patient and action constituents. Alternatively, it is

also possible to specify a sentence from scratch

(that is, without using any existing template as a

basis) in a standard NP VP NP format. The latter

choice was added to the system as we noticed that

simpler sentence structures may be specified more

conveniently in this way, as opposed to looking up

an example in the corpus. In our project, this is the

case of short reply sentences as in “Yes, of

course”, “Thank you” and others, in which there is

hardly any point in selecting a template from the

corpus and then commanding the required changes.

The underlying application selects a target tem-

plate and provides a set of values to fill in the tem-

plate variable fields. These input values overwrite

the default values provided by the template (that is,

those values that were inherited from the corpus

data) and adjusted by basic agreement rules to

reestablish grammaticality if necessary, as we will

discuss later.

The currently supported variable fields for NPs

are determiner type, gender, number, person, de-

terminer lemma, pre and post modifiers, the NP

head, an attached pp-list and relative clause (which

may recursively convey NPs within themselves.)

As for VPs, the variable fields are VP type (finite

vs. infinite etc.), person, mode, verb type, verb

tense and adverbial modifiers. Verbal gender and

number are not specified directly but simply inhe-

rited from the subject’s own data to avoid a possi-

bly conflicting input specification.

The most obvious limitation to this kind of ap-

proach is the case in which there is a need to gen-

erate a sentence that does not resemble any

example in the corpus at all. Yet again, we notice

that this difficulty may be overcome by simply

adding a natural language example directly to the

corpus, a method that is arguably simpler than pro-

viding detailed instructions on how to select and

combine template structures in a traditional tem-

plate-based approach, and even simpler than pro-

viding a full sentence specification in grammar-

based surface realization.

The following is a complete example of how the

example-based approach is expected to work. In its

simplest form, the application may select the re-

quired template to produce the desired output ver-

batim as in (a); with some extra knowledge

available, the application may also change some of

the values of the variable template fields as in (b);

finally, with even more complete linguistic know-

ledge available, the original structure may be

changed even further as in (c), in which case only

the original sentence structure remained (besides

the canned text component “on Friday”).

Input Expected output

(a) template #17

[You]agent

[should deliver]action

[your results]patient

on Friday.

(b) template #17,

patient=essay,

action=not_complete

[You]agent

[did not complete]action

[your essay]patient

on Friday.

(c) template #17,

agent=teacher,

determiner=possess,

action=give,

tense=future,

patient=talk,

determiner=indefinite

[Our teacher]agent

[will give]action

[a talk]patient

on Friday.

Table 1. Examples of (semantic) input and expected

(surface text) output.

Depending on the changes in the constituent

values requested by the application, a number of

agreement rules may be invoked to re-establish

fluency and grammaticality. In our work this is

aided by a Brazilian Portuguese lexicon presented

in Muniz et. al. (2005) and a thesaurus. For exam-

ple, if a sentence template as (d) below is selected,

and then the value of the agent head field is

changed to represent a singular concept as in (e),

agreement rules are required to modify the verb

number as in (f).

(d) [All students]agent [have submitted]action

[their papers]patient

(e) [Your teacher] agent [#have submitted]action

[their papers]patient

(f) [Your teacher] agent [has submitted]action

[their papers]patient

Table 2. An original example (d) reused with a new

agent head value (e) and agreement (f).

More complex or fine-grained dependencies

(e.g., the anaphoric reference ‘their’ in Table 2

129

above) are not currently implemented. One possi-

ble approach to this is a standard generate-and-

select approach to NLG as in Langkilde (2000), Oh

& Rudnicky (2000) and others. More specifically,

we may over-generate all possible realization al-

ternatives and then use a statistical language model

to select the most likely output. In our work we

intend to apply a similar approach also to handle

the lexical choice task, i.e., by selecting the most

likely wording for each concept based on a lan-

guage model.

6 Discussion

In this paper we have described a simple approach

to surface realization based on the reuse of syntac-

tically-structured templates acquired from corpora.

Although not nearly as flexible as a full NLG ap-

proach, our system may represent a straightforward

solution to the problem of input specification,

which in our case is simply based on natural lan-

guage. Our corpus-based approach is able to gen-

erate single sentences from an input conveying

various degrees of semantic knowledge, which

may be suitable to a wide range of NLG applica-

tions that are able to support only less detailed in-

put specification.

Much of the present work is however to be re-

garded as tentative. One major issue that is yet to

be discussed is how far we can go with an exam-

ple-based approach to surface realization without

compromising the quality of the output text. For

instance, it is not clear what it means for the NLG

system if the application selects a sentence tem-

plate that (in Portuguese) does not have a subject

field (e.g., “Please send it now”) and then attempts

to specify a subject. A similar conflict arises, for

example, if the application specifies an action that

is semantically incompatible with the selected

template, in which case the output sentence could

become ungrammatical. In both cases, we believe

that more research is still needed.

Being currently functional at a prototype level

only, our system is undergoing a number of im-

provements. First, we are expanding the possible

lexical choices by making use of a thesaurus, and

then we intend to use a language model to handle

synonymy.

 Second, the mappings from semantic concepts

to surface strings still need to be revised and

adapted to the domain (questions and answers

about students’ undergraduate projects) in order to

deploy a fully functional application.

Finally, template selection needs improvement

to allow for a truly minimal input specification in

an application-friendly fashion.

With these tasks accomplished, we will be able

to attach a surface realization component to our

ongoing Q&A project and generate context-

sensitive replies to students’ most frequent ques-

tions.

7 Final Remarks

In the context of the NAACL-HLT Young Inves-

tigators Workshop on Computational Approaches

to Languages of the Americas, there are a number

of ways in which our work could benefit from co-

operation with researchers in Latin America, and

also help the development of NLP research in these

countries.

At the current stage, our work still relies heavily

on a Portuguese parsed corpus and grammar,

which may be seen being of limited interest outside

the Brazilian NLP research community. However,

given the close relation between Portuguese and

other languages spoken in the region (e.g., Spanish

and its variations), we believe that it would be a

rewarding experience to adapt similar language

resources (e.g., sentence templates, phrase gram-

mars etc.) that have been developed elsewhere, and

use these resources to deploy a multilingual NLG

application to validate our current approach.

Beyond the usefulness to the research communi-

ties involved, we would expect that this kind of co-

operation would be an effective means of sharing

costs and spreading the interest in NLG research

across the region, and a much-needed motivation

for young researchers to join the field.

Acknowledgments

The authors acknowledge support by FAPESP and

CNPq. We are also thankful to the anonymous re-

viewers of the original submission, and to the or-

ganizers of the NAACL-HLT Young Investigators

Workshop on Computational Approaches to Lan-

guages of the Americas for the travel award given

for this presentation.

130

References

Bangalore, S. and O. Rambow (2000) Corpus-based

lexical choice in natural language generation. Pro-

ceedings of the 38
th
 Meeting of the ACL, Hong

Kong, pp. 464-471.

Bateman, J.A. (1997) Enabling technology for multilin-

gual natural language generation: the KPML devel-

opment environment. Natural Language Engineering,

3(1):15–55.

Bick, E. (2000) The parsing system PALAVRAS: au-

tomatic grammatical analysis of Portuguese in a con-

straint grammar framework. PhD Thesis, Aarhus

University.

DeVault, David, David Traum and Ron Arstein (2008)

Practical Grammar-Based NLG from Examples. Pro-

ceedings of the 5
th
 International Natural Language

Generation Conference (INLG-2008) Columbus,

USA.

Gatt, Albert and Ehud Reiter (2009) SimpleNLG: A

realization engine for practical applications. Proceed-

ings of the European Natural Language Generation

workshop (ENLG-2009.)

Langkilde, Irene (2000) Forest-based statistical sentence

generation. Proceedings of the 6
th
 Applied Natural

Language Processing Conference and 1
st
 Meeting of

the North American Chapter of the Association of

Computational Linguistics (ANLP-NAACL’00), pp.

170–177.

Marciniak, T. and M. Strube (2005) Using an Annotated

Corpus As a Knowledge Source For Language Gen-

eration. Proceedings of the Corpus Linguistics’05

Workshop Using Corpora for NLG (UNNLG-2005),

pp. 19-24.

McRoy, Susan, Songsak Channarukul and Syed S. Ali

(2003) An augmented template-based approach to

text realization. Natural Language Engineering 9 (4)

pp. 381–420. Cambridge University Press.

Muniz, M. C., Laporte, E., Nunes, M.G.V (2005)

UNITEX-PB, a set of flexible language resources for

Brazilian Portuguese. Proceedings of the III Informa-

tion and Language Technology Workshop

(TIL-2005).

Oh, A. and A. Rudnicky (2000) Stochastic language

generation for spoken dialogue systems. Proceedings

of the ANLP-NAACL 2000 Workshop on Conversa-

tional Systems, pp. 27–32.

Ratnaparkhi, A. (2000) Trainable methods for surface

natural language generation. Proceedings of ANLP-

NAACL 2000, pp.194–201.

Reiter, E. (2007) An Architecture for Data-to-Text Sys-

tems. Proceedings of the European Natural Language

Generation workshop (ENLG-2007), pp. 97-104.

Smets, M., M.Gamon, S.Corston-Oliver and E. Ringger

(2003) French Amalgam: A machine-learned sen-

tence realization system. Proceedings of the TALN-

2003 Conference, Batz sur-Mer,

van Deemter, K., Emiel Krahmer and Mariët Theune

(2005) Real versus template-based NLG: a false op-

position? Computational Linguistics 31(1).

Zhong, Huayan and A. J. Stent (2005) Building Surface

Realizers Automatically from Corpora. Proceedings

of the Corpus Linguistics’05 Workshop Using Cor-

pora for NLG, pp. 49-54.

131

