
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 1416–1421,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Type-Driven Incremental Semantic Parsing with Polymorphism∗

Kai Zhao
Graduate Center

City University of New York
kzhao.hf@gmail.com

Liang Huang
Queens College and Graduate Center

City University of New York
liang.huang.sh@gmail.com

Abstract

Semantic parsing has made significant progress, but
most current semantic parsers are extremely slow
(CKY-based) and rather primitive in representation.
We introduce three new techniques to tackle these
problems. First, we design the first linear-time
incremental shift-reduce-style semantic parsing al-
gorithm which is more efficient than conventional
cubic-time bottom-up semantic parsers. Second, our
parser, being type-driven instead of syntax-driven,
uses type-checking to decide the direction of reduc-
tion, which eliminates the need for a syntactic gram-
mar such as CCG. Third, to fully exploit the power
of type-driven semantic parsing beyond simple types
(such as entities and truth values), we borrow from
programming language theory the concepts of sub-
type polymorphism and parametric polymorphism to
enrich the type system in order to better guide the
parsing. Our system learns very accurate parses in
GEOQUERY, JOBS and ATIS domains.

1 Introduction
Most existing semantic parsing efforts employ a CKY-
style bottom-up parsing strategy to generate a meaning
representation in simply typed lambda calculus (Zettle-
moyer and Collins, 2005; Lu and Ng, 2011) or its variants
(Wong and Mooney, 2007; Liang et al., 2011). Although
these works led to fairly accurate semantic parsers, there
are two major drawbacks: efficiency and expressiveness.

First, as many researches in syntactic parsing (Nivre,
2008; Zhang and Clark, 2011) have shown, compared to
cubic-time CKY-style parsing, incremental parsing can
achieve comparable accuracies while being linear-time,
and orders of magnitude faster in practice. We therefore
introduce the first incremental parsing algorithm for se-
mantic parsing. More interestingly, unlike syntactic pars-
ing, our incremental semantic parsing algorithm, being
strictly type-driven, directly employs type checking to
automatically determine the direction of function applica-
tion on-the-fly, thus reducing the search space and elimi-

∗We thank the reviewers for helpful suggestions. We are also grate-
ful to Luke Zettelmoyer, Yoav Artzi, and Tom Kwiatkowski for pro-
viding data. This research is supported by DARPA FA8750-13-2-0041
(DEFT), NSF IIS-1449278, and a Google Faculty Research Award.

nating the need for a syntactic grammar such as CCG to
explicitly encode the direction of function application.

However, to fully exploit the power of type-driven in-
cremental parsing, we need a more sophisticated type
system than simply typed lambda calculus. Compare the
following two phrases:

(1) the governor of New York

(2) the mayor of New York

If we know that governor is a function from state to per-
son, then the first New York can only be of type state; sim-
ilarly knowing mayor maps city to person disambiguates
the second New York to be of type city. This can not be
done using a simple type system with just entities and
booleans.

Now let us consider a more complex question which
will be our running example in this paper:

(3) What is the capital of the largest state by area?

Since we know capital takes a state as input, we expect
the largest state by area to return a state. But does largest
always return a state type? Notice that it is polymorphic,
for example, largest city by population, or largest lake
by perimeter. So there is no unique type for largest: its
return type should depend on the type of its first argu-
ment (city, state, or lake). This observation motivates us
to introduce the powerful mechanism of parametric poly-
morphism from programming languages into natural lan-
guage semantics for the first time.

For example, we can define the type of largest to be a
template

largest : ('a→t)→('a→i)→'a
where 'a is a type variable that can match any type (for
formal details see §3). Just like in functional program-
ming languages such as ML or Haskell, type variables
can be bound to a real type (or a range of types) during
function application, using the technique of type infer-
ence. In the above example, when largest is applied to
city, we know that type variable 'a is bound to type city
(or its subtype), so largest would eventually return a city.

We make the following contributions:

• We design the first linear-time incremental semantic
parsing algorithm (§2), which is much more efficient
than the existing semantic parsers that are cubic-
time and CKY-based.

1416

• In line with classical Montague theory (Heim and
Kratzer, 1998), our parser is type-driven instead of
syntax-driven as in CCG-based efforts (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2011; Krish-
namurthy and Mitchell, 2014) (§2.3).

• We introduce parametric polymorphism into nat-
ural language semantics (§3), along with proper
treatment of subtype polymorphism, and implement
Hindley-Milner style type inference (Pierce, 2005,
Chap. 10) during parsing (§3.3).1

• We adapt the latent-variable max-violation percep-
tron training from machine translation (Yu et al.,
2013), which is a perfect fit for semantic parsing due
to its huge search space (§4).

2 Type-Driven Incremental Parsing
We start with the simplest meaning representation (MR),
untyped lambda calculus, and introduce typing and the
incremental parsing algorithm for it. Later in §3, we add
subtyping and type polymorphism to enrich the system.

2.1 Meaning Representation with Types
The untyped MR for the running example is:

Q: What is the capital of the largest state by area?

MR: (capital (argmax state size))

Note the binary function argmax(·, ·) is a higher-order
function that takes two other functions as input: the first
argument is a “domain” function that defines the set to
search for, and second argument is an “evaluation” func-
tion that returns a integer for an element in that domain.

The simply typed lambda calculus (Heim and Kratzer,
1998; Lu and Ng, 2011) augments the system with types,
including base types (entities e, truth values t, or num-
bers i), and function types (e.g., e→t). So capital is of
type e→e, state is of type e→t, and size is of type e→i.
The argmax function is of type (e→t)→(e→i)→e.2 The
simply typed MR is now written as

(capital :e→e (argmax :(e→t)→(e→i)→e

state :e→t size :e→i))).

2.2 Incremental Semantic Parsing: An Example
Similar to a standard shift-reduce parser, we maintain
a stack and a queue. The queue contains words to be

1There are three kinds of polymorphisms in programming lan-
guages: parametric (e.g., C++ templates), subtyping, and ad-hoc (e.g.,
operator overloading). See Pierce (2002, Chap. 15) for details.

2Note that the type notation is always curried, i.e., we repre-
sent a binary function as a unary function that returns another unary
function. Also the type notation is always right-associative, so
(e→t)→((e→i)→e) is also written as (e→t)→(e→i)→e.

pattern λ-expression templates, simple types (§2.2)
JJS λP : (e→t)→(e→i)→e . P
NN λP :e→e . P ; λP :e→t . P ; λP :e→i . P

pattern λ-expression templates, polymorphic types (§3.3)
JJS λP : ('a→t)→('a→i)→'a . P
NN λP :'b→'c . P

Table 1: POS-based meaning representation templates used in
the running example (see Figure 1). The polymorphic types
greatly simplifies the representation for common nouns (NN).

parsed, while the stack contains subexpressions of the fi-
nal MR, each of which is a valid typed lambda expres-
sion. At each step, the parser choose to shift or reduce,
but unlike standard shift-reduce parser, there is also a
third possible action, skip, skipping a semantically vacu-
ous word (e.g., “the”, “of”, “is”, etc.). For example, the
first three words of the example question “What is the ...”
are all skipped (steps 1–3 in Figure 1 (left)).

The parser then shifts the next word, “capital”, from
the queue to the stack. But unlike incremental syn-
tactic parsing where the word itself is moved onto the
stack, here we need to find a grounded predicate in the
GeoQuery domain for the current word. Triggered by
the POS tag NN of word “capital”, the template λP :
e→e . P is fetched from a predefined MR templates set
like Table 1. In its outermost lambda abstraction, variable
P needs to be grounded on-the-fly before we push the ex-
pression onto the stack. We find a predicate capital :e→e
in the GEOQUERY domain applicable to the MR tem-
plate. After the application, we push the result onto the
stack (step 4).

Next, words “of the” are skipped (steps 5–6). For the
next word “largest”, argmax : (e→t)→(e→i)→e is ap-
plied to the MR template triggered by its POS tag JJS in
Table 1, and the stack becomes (step 7)

capital :e→e argmax : (e→t)→(e→i)→e.

At this step we have two expressions on the stack and
we could attempt to reduce. But type checking fails be-
cause for left reduce, argmax expects an argument (its
“domain” function) of type (e→t) which is different from
capital’s type (e→e), so is the case for right reduce.
So we have to shift again. This time for word “state”:
state :e→t. The stack becomes:

capital :e→e argmax : (e→t)→(e→i)→e state :e→t.

2.3 Type-Driven Reduce
At this step we can finally perform a reduce action,
since the top two expressions on the stack pass the type-
checking for rightward function application (a partial ap-
plication): argmax expects an (e→t) argument, which is
exactly the type of state. So we conduct a right-reduce,
applying argmax on state, which results in

(argmax state) : (e→i)→e

1417

step action stack after action (simple type) stack after action (subtyping+polymorphism)
0 - φ φ

1–3 skip φ φ
4 shcapital capital:e→e capital:st→ct
7 shlargest capital:e→e argmax:(e→t)→(e→i)→e capital:st→ct argmax : ('a→t)→('a→i)→'a
8 shstate capital:e→e argmax:(e→t)→(e→i)→e state:e→t capital:st→ct argmax : ('a→t)→('a→i)→'a state :st→t
9 rey capital:e→e (argmax state):(e→i)→e capital:st→ct (argmax state) : (st→i)→st †
11 sh area capital:e→e (argmax state):(e→i)→e size:e→i capital:st→ct (argmax state) : (st→i)→st size : lo→i
12 rey capital:e→e (argmax state size):e capital:st→ct (argmax state size) :st ‡
13 rey (capital (argmax state size)):e (capital (argmax state size)) :ct

Figure 1: Type-driven Incremental Semantic Parsing (TISP) with (a) simple types and (b) subtyping+polymorphism on the example
question: “what is the capital of the largest state by area?”. Steps 5–6 and 10 are skip actions and thus omitted. The stack and queue
in each row are the results after each action. †: Type variable 'a is binded to st. ‡: From Eq. 4, st <: lo ⇒ (lo→i)<: (st→i).

while the stack becomes (step 9)
capital :e→e (argmax state) : (e→i)→e

Now if we want to continue reduction, it does not type
check for either left or right reduction, so we have to shift
again. So we move on to shift the final word “area” with
predicate: size :e→i and the stack becomes (step 11):
capital :e→e (argmax state) : (e→i)→e size :e→i.

Now we can do two consecutive right reduces supported
by type checking (step 12, 13) and get the final result:

(capital (argmax state size)) :e.
Here we can see the novelty of our shift-reduce parser:

its decisions are largely driven by the type system. When
we attempt a reduce, at most one of the two reduce
actions (left, right) is possible thanks to type check-
ing, and when neither is allowed, we have to shift (or
skip). This observation suggests that our incremental
parser is more deterministic than those syntactic incre-
mental parsers where each step always faces a three-way
decision (shift, left-reduce, right-reduce). We also note
that this type-checking mechanism, inspired by the clas-
sical type-driven theory in linguistics (Heim and Kratzer,
1998), eliminates the need for an explicit encoding of
direction as in CCG, which makes our formalism much
simpler than the synchronous syntactic-semantic ones
in most other semantic parsing efforts (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007).3

3 Subtype and Parametric Polymorphisms
Currently in simply typed lambda calculus representation
function capital can apply to any entity type, for example
capital(boston), which should have been disallowed by
the type checker. So we need a more sophisticated system
that helps ground with refined types, which will in turn
help type-driven parsing.

3We need to distinguish between two concepts: a) “direction of re-
duction”: f(g) or g(f). Obviously at any given time, between the top
two (unarized) functions f and g on the stack, at most one reduction is
possible. b) “order of arguments”: f(x, y) or f(y, x). For predicates
such as loc : lo→lo→t the order does matter. Our parser can not dis-
tinguish this purely via types, nor can CCG via its syntactic categories.
In practice, it is decided by features such as the voice of the verb.

top (root)

i (integer)lo (location)

nu (nature unit)

lk (lake)rv (river)

au (admin. unit)

ct (city)st (state)

t (boolean)

Figure 2: Type hierarchy for GEOQUERY (slightly simplified).

3.1 Semantics with Subtype Polymorphism

We first augment the meaning representation with a do-
main specific type hierarchy. For example Figure 2 shows
a (slightly simplified) version of the type hierarchy for
GEOQUERY domain. We use <: to denote the (tran-
sitive, reflexive, and antisymmetric) subtyping relation
between types; for example in GEOQUERY, st <: lo.

Each constant in the GEOQUERY domain is well
typed. For example, there are states (michigan:st), cities
(nyc:ct), rivers (mississippi:rv), and lakes (tahoe:lk).

Similarly each predicate is also typed. For example,
we can query the length of a river, len:rv→i, or the pop-
ulation of some administrative unit, population:au→i.
Notice that population(·) can be applied to both states
and cities, since they are subtypes of administrative unit,
i.e., st <: au and ct <: au. This is because, as in
Java and C++, a function that expects a certain type can
always take an argument of a subtype. For example,
we can query whether two locations are adjacent, using
next_to:lo→(lo→t), as the next_to(·, ·) function can be
applied to two states, or to a river and a city, etc.

Before we move on, there is an important consequence
of polymorphism worth mentioning here. For the types of
unary predicates such as city(·) and state(·) that charac-
terize its argument, we define theirs argument types to be
the required type, i.e., city : ct→t, and state : st→t. This
might look a little weird since everything in the domain
of those functions are always mapped to true; i.e., f(x)
is either undefined or true, and never false for such f ’s.
This is different from classical simply-typed Montague
semantics (Heim and Kratzer, 1998) which defines such
predicates as type top→t so that city(mississippi :st) re-
turns false. The reason for our design is, again, due to

1418

subtyping and polymorphism: capital takes a state type
as input, so argmax must returns a state, and therefore its
first argument, the state function, must have type st→t
so that the matched type variable 'a will be bound to st.
This more refined design will also help prune unneces-
sary argument matching using type checking.

3.2 Semantics with Parametric Polymorphism
The above type system works smoothly for first-order
functions (i.e., predicates taking atomic type arguments),
but the situation with higher-order functions (i.e., predi-
cates that take functions as input) is more involved. What
is the type of argmax in the context “the capital of largest
state ...”? One possibility is to define it to be as general as
possible, as in the simply typed version (and many con-
ventional semantic parsers):

argmax : (top→t)→(top→i)→top.

But this actually no longer works for our sophisticated
type system for the following reason.

Intuitively, remember that capital:st→ct is a function
that takes a state as input, so the return type of argmax
must be a state or its subtype, rather than top which is a
supertype of st. But we can not simply replace top by
st, since argmax can also be applied in other scenarios
such as “the largest city”. In other words, argmax is a
polymorphic function, and to assign a correct type for it
we have to introduce type variables:

argmax : ('a→t)→('a→i)→'a,
where type variable 'a is a place-holder for “any type”.

3.3 Parsing with Subtype Polymorphism and
Parametric Polymorphism

We modify the previous parsing algorithm to accommo-
date subtyping and polymorphic types. Figure 1 (right)
shows the derivation of the running example using the
new parsing algorithm. Below we focus on the differ-
ences brought by the new algorithm.

Note that we also modified the MR templates as in Ta-
ble 1. The new MR templates are more general due to the
polymorphism from type variables. For example, now we
use only one MR template λP :'b→'c . P to replace the
three NN MR templates for simple types.

In step 4, unlike capital : e→e, we shift the predicate
capital : st→ct; in step 7, we shift the polymorphic ex-
pression for “largest”: argmax : ('a→t)→('a→i)→'a.
And after the shift in step 8, the stack becomes
capital :st→ct argmax : ('a→t)→('a→i)→'a state :st→t

At step 9, in order to apply argmax onto state : st→t,
we simply bind type variable 'a to type st, results in
(argmax state) : (st→i)→st.

After the shift in step 11, the stack becomes:

capital :st→ct (argmax state) : (st→i)→st size : lo→i.

Can we still apply right reduce here? According to sub-
typing requirement (§3.1), we want lo→i <: st→i to
hold, knowing that st <: lo. Luckily, there is a rule about
function types in type theory that exactly fits here:

A <: B

B→C <: A→C
(4)

which states the input side is reversed (contravariant).
This might look counterintuitive, but the intuition is that,
it is safe to allow the function size : lo→i to be used in the
context where another type st→i is expected, since in that
context the argument passed to size will be state type (st),
which is a subtype of location type (lo) that size expects,
which in turn will not surprise size. See the classical type
theory textbook (Pierce, 2002, Chap. 15.2) for details.

Several works in literature (Zettlemoyer and Collins,
2005; Zettlemoyer and Collins, 2007; Wong and Mooney,
2007; Kwiatkowski et al., 2013) employ some primitive
type hierarchies and parse with typed lambda calculus.
However, simply introducing subtyped predicates with-
out polymorphism will cause type checking failures in
handling high-order functions, as we discussed above.

4 Training: Latent Variable Perceptron
We follow the latent variable max-violation perceptron
algorithm of Yu et al. (2013) for training. This algorithm
is based on the “violation-fixing” framework of Huang et
al. (2012) which is tailored to structured learning prob-
lems with abundant search errors such as parsing or ma-
chine translation.

The key challenge in the training is that, for each ques-
tion, there might be many different unknown derivations
that lead to its annotated MR, which is known as the
spurious ambiguity. In our task, the spurious ambigu-
ity is caused by how the MR templates are chosen and
grounded during the shift step, and the different reduce
orders that lead to the same result. We treat this unknown
information as latent variable.

More formally, we denote D(x) to be the set of all
partial and full parsing derivations for an input sentence
x, and mr(d) to be the MR yielded by a full derivation
d. Then we define the sets of (partial and full) reference
derivations as:

good i(x, y) ∆= {d ∈ D(x) | |d| = i,∃full derivation d′ s.t.
d is a prefix of d′,mr(d′) = y},

Those “bad” partial and full derivations that do not lead
to the annotated MR can be defined as:

bad i(x, y) ∆= {d ∈ D(x) | d 6∈ good i(x, y), |d| = i}.

At step i, the best reference partial derivation is

d+
i (x, y) ∆= argmax

d∈goodi(x,y)

w ·Φ(x, d), (5)

1419

GEOQUERY JOBS ATIS
System P R F1 P R F1 P R F1
Z&C’05 96.3 79.3 87.0 97.3 79.3 87.4 - - -
Z&C’07 91.6 86.1 88.8 - - - 85.8 84.6 85.2
UBL 94.1 85.0 89.3 - - - 72.1 71.4 71.7
FUBL 88.6 88.6 88.6 - - - 82.8 82.8 82.8
TISP (st) 89.7 86.8 88.2 76.4 76.4 76.4 - - -
TISP 92.9 88.9 90.9 85.0 85.0 85.0 84.7 84.2 84.4

Table 2: Performances (precision, recall, and F1) of various
parsing algorithms on GEOQUERY, JOBS, and ATIS datasets.
TISP with simple types are marked “st”.

while the Viterbi partial derivation is

d−i (x, y) ∆= argmax
d∈badi(x,y)

w ·Φ(x, d), (6)

where Φ(x, d) is the defined feature set for derivation d.
In practice, to compute Eq. 6 exactly is intractable, and
we resort to beam search. Following Yu et al. (2013),
we then find the step i∗ with the maximal score differ-
ence between the best reference partial derivation and the
Viterbi partial derivation:

i∗ ∆= argmax
i

w ·∆Φ(x, d+
i (x, y), d−i (x, y)),

and do update w ← w + ∆Φ(x, d+
i∗(x, y), d−i∗(x, y))

where ∆Φ(x, d, d′) ∆= Φ(x, d)−Φ(x, d′).
We also use minibatch parallelization of Zhao and

Huang (2013); in practice we use 24 cores.

5 Experiments
We implement our type-driven incremental semantic
parser (TISP) using Python, and evaluate its perfor-
mance on GEOQUERY, JOBS, and ATIS datasets.

Our feature design is inspired by the very effective
Word-Edge features in syntactic parsing (Charniak and
Johnson, 2005) and MT (He et al., 2008). From each
parsing state, we collect atomic features including the
types and the leftmost and rightmost words of the span
of the top 3 MR expressions on the stack, the top 3 words
on the queue, the grounded predicate names and the ID
of the MR template used in the shift action. We use bud-
get scheme similar to (Yu et al., 2013) to alleviate the
overfitting problem caused by feature sparsity. We get
84 combined feature templates in total. Our final system
contains 62 MR expression templates, of which 33 are
triggered by POS tags, and 29 are triggered by specific
phrases.

In the experiments, we use the same training, develop-
ment, and testing data splits as Zettlemoyer and Collins
(2005) and Zettlemoyer and Collins (2007).

For evaluation, we follow Zettlemoyer and Collins
(2005) to use precision and recall:

Precision =
of correctly parsed questions

of successfully parsed questions
,

top (root)

i (integer)jb (job)qa (qualification)

pa (platform)ar (area)ye (year)

t (boolean)

Figure 3: Type hierarchy for JOBS domain (slightly simplified).

Recall =
of correctly parsed questions

of questions
.

5.1 Evaluation on GEOQUERY Dataset
We first evaluate TISP on GEOQUERY dataset.

In the training and evaluating time, we use a very small
beam size of 16, which gives us very fast decoding. In
serial mode, our parser takes ∼ 83s to decode the 280
sentences (2,147 words) in the testing set, which means
∼0.3s per sentence, or ∼0.04s per word.

We compare the our accuracy performance with ex-
isting methods (Zettlemoyer and Collins, 2005; Zettle-
moyer and Collins, 2007; Kwiatkowski et al., 2010;
Kwiatkowski et al., 2011) in Table 2. Given that all other
methods use CKY-style parsing, our method is well bal-
anced between accuracy and speed.

In addition, to unveil the helpfulness of our type sys-
tem, we train a parser with only simple types. (Table 2)
In this setting, the predicates only have primitive types
of location lo, integer i, and boolean t, while the con-
stants still keep their types. It still has the type system,
but it is weaker than the polymorphic one. Its accuracy
is lower than the standard one, mostly caused by that the
type system can not help pruning the wrong applications
like (population:au→i mississippi:rv).

5.2 Evaluations on JOBS and ATIS Datasets
We also evaluate the performance of our parser on JOBS
and ATIS datasets. Figure 3 shows the type hierarchy for
JOBS. We omit the type hierarchy for ATIS due to space
constraint. Note that ATIS contains more than 5,000 ex-
amples and is a lot larger than GEOQUERY and JOBS.

We show the results in Table 2. In JOBS, we achieves
very good recall, but the precision is not as good as Zettle-
moyer and Collins (2005), which is actually because we
parsed a lot more sentences. Also, TISP with simple types
is still weaker than the one with subtyping and parametric
polymorphisms. For ATIS, our performance is very close
to the state-of-the-art.

6 Conclusion
We have presented an incremental semantic parser that
is guided by a powerful type system of subtyping and
polymorphism. This polymorphism greatly reduced the
number of templates and effectively pruned search space
during the parsing. Our parser is competitive with state-
of-the-art accuracies, but, being linear-time, is faster than
CKY-based parsers in theory and in practice.

1420

References
Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-

best parsing and maxent discriminative reranking. In Pro-
ceedings of ACL, pages 173–180, Ann Arbor, Michigan,
June.

Zhongjun He, Qun Liu, and Shouxun Lin. 2008. Improving
statistical machine translation using lexicalized rule selec-
tion. In Proceedings of COLING, pages 321–328, Manch-
ester, UK, August.

Irene Heim and Angelika Kratzer. 1998. Semantics in Genera-
tive Grammar. Blackwell Publishing.

Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured
perceptron with inexact search. In Proceedings of NAACL.

Jayant Krishnamurthy and Tom M Mitchell. 2014. Joint
syntactic and semantic parsing with combinatory categorial
grammar.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and
Mark Steedman. 2010. Inducing probabilistic ccg grammars
from logical form with higher-order unification. In Proceed-
ings of the 2010 conference on empirical methods in natu-
ral language processing, pages 1223–1233. Association for
Computational Linguistics.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and
Mark Steedman. 2011. Lexical generalization in ccg gram-
mar induction for semantic parsing. In Proceedings of
EMNLP, EMNLP ’11.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettle-
moyer. 2013. Scaling semantic parsers with on-the-fly on-
tology matching.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011. Learning

dependency-based compositional semantics. In Association
for Computational Linguistics (ACL), pages 590–599.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-to-
string model for language generation from typed lambda cal-
culus expressions. In Proceedings of EMNLP.

Joakim Nivre. 2008. Algorithms for deterministic incremental
dependency parsing. Computational Linguistics, 34(4):513–
553.

Benjamin C. Pierce. 2002. Types and Programming Lan-
guages. MIT Press.

Benjamin Pierce, editor. 2005. Advanced Topics in Types and
Programming Languages. MIT Press.

Yuk Wah Wong and Raymond J Mooney. 2007. Learning syn-
chronous grammars for semantic parsing with lambda calcu-
lus. In Annual Meeting-Association for computational Lin-
guistics, volume 45, page 960.

Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao. 2013. Max-
violation perceptron and forced decoding for scalable mt
training. In Proceedings of EMNLP 2013.

Luke Zettlemoyer and Michael Collins. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proceedings of UAI.

Luke S Zettlemoyer and Michael Collins. 2007. Online learn-
ing of relaxed ccg grammars for parsing to logical form. In
In Proceedings of EMNLP-CoNLL-2007. Citeseer.

Yue Zhang and Stephen Clark. 2011. Shift-reduce ccg parsing.
In Proceedings of ACL.

Kai Zhao and Liang Huang. 2013. Minibatch and paralleliza-
tion for online large margin structured learning. In Proceed-
ings of NAACL 2013.

1421

