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Abstract

This study presents a novel approach to ana-
lyzing historical language change, focusing on
the evolving semantics of the French term “in-
digène(s)” (“indigenous”) between 1825 and
1950. While existing approaches to measuring
semantic change with contextual word embed-
dings (CWE) rely primarily on similarity mea-
sures or clustering, these methods may not be
suitable for highly imbalanced datasets, and
pose challenges for interpretation. For this
reason, we propose an interpretable, feature-
level approach to analyzing language change,
which we use to trace the semantic evolution
of “indigène(s)” over a 125-year period. Fol-
lowing recent work on sequence embeddings
(O’Neill et al., 2024), we use k-sparse autoen-
coders (k-SAE) (Makhzani and Frey, 2013) to
interpret over 210,000 CWEs generated using
sentences sourced from the French National Li-
brary. We demonstrate that k-SAEs can learn
interpretable features from CWEs, as well as
how differences in feature activations across
time periods reveal highly specific aspects of
language change. In addition, we show that di-
achronic change in feature activation frequency
reflects the evolution of French colonial legal
structures during the 19th and 20th centuries.

1 Introduction

The concept of indigeneity, particularly its relation-
ship to language and culture, is the subject of long-
standing, interdisciplinary academic study. Post-
colonial researchers and writers, for example, have
repeatedly emphasized the role of language as cen-
tral to understanding colonial power (Said, 1977;
Bhabha, 2004; Dubreuil, 2013, inter alia). The
effects of historical and contemporary structural
inequalities have also been addressed in computa-
tional linguistics, as low-resource indigenous lan-
guages pose technical (Mager et al., 2018; Stap and
Araabi, 2023) and ethical (Wiechetek et al., 2024)

*Equal contribution.

Figure 1: We use k-SAEs to identify interpretable fea-
tures in over 200,000 contextual word embeddings corre-
sponding to the word “indigène(s)”. Features identified
by a k-SAE are subsequently given natural language
descriptions by GPT-4o and validated by GPT-4o-mini.

challenges related to their use as training mate-
rial for contemporary natural language processing
(NLP) systems. More broadly, the United States
has only recently recognized Indigenous People’s
Day as a national holiday, reflecting increasing pop-
ular and political attention towards the history of
indigenous communities in North America (The
White House, 2021).

Just as indigenous peoples and languages are
themselves not interchangeable and must be un-
derstood within their appropriate historical and
linguistic contexts, the category of “indigenous”
is likewise contingent on the specific context in
which it is deployed. While the French cognate
“indigène” has a similar contemporary definition
to “indigenous”, it also has its own historical, cul-
tural, and linguistic connotations related to French
colonial rule, which was often overtly violent and
oppressive towards subjects deemed “indigène(s)”
(Mann, 2009). To understand the historical and lin-
guistic impact of French colonial policies related
to indigeneity, we examine here how “indigène”
changes in meaning over the 19th and early-20th
centuries. Due to the complexities and sensitive
nature inherent to the study French colonialism,
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we strove to maximize the breadth, specificity, and
interpretability of our analyses, while at the same
time leveraging the power of contemporary meth-
ods and technologies.

With this in mind, we present an interpretable
method for analyzing historical language change
through a new large-scale French-language di-
achronic dataset, which we collected. Whereas
contemporary approaches to measuring historical
language change often compute word similarities
or clusters directly from dense contextual word
embeddings (CWE) extracted from large language
models (LLMs; Periti and Montanelli, 2024), we in-
stead use sparse autoencoders (SAE) to identify in-
terpretable features from dense CWEs correspond-
ing to our target word, “indigène(s)”. This method,
directly adapted from recent work in interpretabil-
ity research on LLMs (Gao et al., 2024) and se-
quence embeddings (O’Neill et al., 2024), has two
key advantages. First, it enables us to find and
validate natural language descriptions of features
learned from CWEs without supervision. Second,
it allows for feature-level analysis of diachronic
change, as opposed to discrete sense-level or word-
level approaches. Through our approach, we find
that temporal changes in specific feature activations
reflect known events and periods of French colonial
history.

Our method and results represent relevant con-
tributions to several domains. Notably, we demon-
strate how SAEs can be used for analyzing histori-
cal language change when similarity- or clustering-
based approaches are intractable or undesirable. In
addition, our method provides additional insight
into precisely what CWEs can capture about word-
level meaning, as well as the current capabilities of
automated feature labeling techniques.

2 Motivation and Background

The word “indigène(s)” differs from its English
cognate “indigenous” both grammatically and se-
mantically. It can be used as either an adjective
(as in “plantes indigènes”, “indigenous plants”)
or as a substantive (as in “les indigènes”, “the
indigenous [people]”, or “the natives”) (Trésor
de la Langue Française informatisé, 2024). Spe-
cific to “indigène(s)” are its highly charged his-
torical connotations tied to French colonial rule,
including its deployment as a legal category. Early
precedents include the Sénatus-consulte of April
22, 1863, which legally defined indigenous land-

holdings (Archives Nationales d’Outre-Mer, 1863),
and the Crémieux Decree in 1870 (France, 1870),
which selectively granted French citizenship to Al-
gerian colonial subjects on the basis of religion and
ethnicity. Those deemed “indigène(s)” were sub-
sequently subjected to social segregation policies
analogous to Jim Crow in the United States, under
a set of laws referred to as the Code de l’indigé-
nat ("Indigenous code"; Jakus, 2017; Hayes, 2021),
which took form between 1881 and 1946 (Mann,
2009, inter alia). By the 1960s, it had been noted
in Algeria that “indigène(s)” had largely taken on
a pejorative connotation and had therefore begun
to disappear from common use (Bousquet, 1961).

Given these factors, we wanted to determine
whether historical trends in the use of “indigène(s)”
were visible in large-scale textual data and would
reflect the evolution of these legal and social frame-
works, such as ethnic and racial segregation. More
specifically, we hypothesized that the botanical or
zoological senses of “indigène(s)” would be more
prominent in the early 19th century, whereas the
uniquely human, specifically ethnic, legal, or mil-
itary senses would be more visible from the late
19th century onward.

While there has been longstanding interest in
the relationship between semantics, history, and
society in the humanities (Benveniste, 2017, inter
alia), there are also a variety of approaches to se-
mantic shift detection (SSD) in the computational
linguistics literature. Prior work typically relies on
contextual word embeddings (CWE), word-level
representations extracted from pretrained masked
language models like BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019), which are subse-
quently averaged or clustered and then compared
across time steps (Periti et al., 2022; Periti and
Montanelli, 2024). Other supervised or more spe-
cialized approaches also exist, such as in Hoffman
et al. (2020), which uses graph representations
of social networks in addition to temporal labels
to enrich language model representations with ad-
ditional sociotemporal context. More generally,
there exist diverse computational historical analy-
sis techniques that have been developed for other
modalities, such as for historical change in melody
(Hamilton and Pearce, 2024) and tracing the circu-
lation of archival images (Du et al., 2024).

At the same time, there is a growing body of
work showing that using CWEs generated by LLMs
may come with significant drawbacks. These in-
clude anisotropy (Gao et al., 2019; Ethayarajh,
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Figure 2: Total loss and number of dead latents for all k-SAE configurations during training.

2019; Hämmerl et al., 2023), “rogue dimensions”
(Timkey and van Schijndel, 2021), lack of noise
robustness (Matthews et al., 2024), and social bias
(Guo and Caliskan, 2020). These studies suggest
that even though CWEs perform reasonably well
on downstream tasks, comparing CWEs directly
(particularly with measures such as cosine simi-
larity) may not be a reliable proxy for semantic
similarity.

Within the mechanistic interpretability literature,
however, there have been significant recent ad-
vancements using sparse autoencoders (SAE) to
interpret LLM representations (Cunningham et al.,
2023; Bricken et al., 2023; Gao et al., 2024). In-
dividual neurons in an LLM (or, in our case, di-
mensions in a CWE) may correspond to multiple
human-interpretable features, a phenomenon re-
ferred to as “superposition” (Elhage et al., 2022).
SAEs, by learning to represent dense model rep-
resentations as higher-dimensional sparse repre-
sentations, encourage greater “monosemanticity”,
where individual neurons in the SAE hidden state
correspond to a single, human-interpretable feature
(Bricken et al., 2023). More recently, this technique
has been applied to sequence embeddings, further
demonstrating that SAEs can identify highly inter-
pretable, monosemantic features even from pooled
or sequence-level representations (O’Neill et al.,
2024). An additional benefit of these approaches
is the relative simplicity of finding and validating
natural language descriptions for each feature us-
ing another language model (Bills et al., 2023), as
well as the ability to analyze the SAE’s learned fea-
ture representations (that is, columns in its decoder
weight matrix; O’Neill et al., 2024).

We offer several original contributions that draw

from each of these research areas. Building on prior
work by O’Neill et al. (2024) and Gao et al. (2024),
we demonstrate how SAEs can be used to identify
interpretable features from CWEs, even when these
CWEs correspond to only two distinct lexical items
(“indigène” and “indigènes”). We go on to show
that features with high levels of diachronic varia-
tion have activation frequencies that correspond to
known events in French history which influenced
the signification of the term. Our method and find-
ings highlight how interpretability methods can be
applied productively to difficult, nuanced questions
in historical language change. Finally, we find sup-
port for our hypotheses regarding the semantic shift
of “indigène(s)” in our dataset.

3 Dataset Construction

To our knowledge, there is no existing, histori-
cal French-language dataset suitable for diachronic
analysis. For this reason, we cooperated with the
French National Library (BNF) to source mono-
graphs preprocessed with optical character recog-
nition (OCR) along with metadata, including date
of original publication. All of the monographs we
requested were free of copyright restriction as of
2023. While our original request encompassed
nearly all monographs in the BNF’s digital collec-
tion, the present study is limited to the first batch
retrieved from their servers, which includes ap-
proximately 71k volumes. Additional information
regarding this data is available in Appendix A.

From these complete texts, we extracted all
sentences that included the word indigène or in-
digènes using a regular expression. We retain sen-
tences longer than ten whitespace-delimited words
in length in order to ensure that our CWEs are gen-
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n k Dead Latents Mean Acc. Mean F1 Mean Corr. Highly Interp. % Highly Interp.

d
8 0 0.6050 0.4442 0.2885 63 6.15
16 0 0.5757 0.4082 0.2138 33 3.22

2d
8 3 0.6069 0.4634 0.2858 108 5.27
16 0 0.5863 0.4249 0.2340 76 3.71

4d
8 5 0.6265 0.4959 0.3225 281 6.86
16 1 0.5973 0.4456 0.2564 200 4.88

Table 1: Feature interpretability results for trained k-SAEs with different values of k and n. We report the total
number of dead latents, mean Predictor accuracy (Mean Acc.), mean Predictor F1 (Mean F1), mean Predictor
correlation (Mean Corr.), total number of highly interpretable features (Highly Interp.), and highly interpretable
features as a percentage of n (% Highly Interp.). Highly interpretable features have Predictor F1 and correlation
scores > 0.8.

erated with sufficient context. To avoid ambiguity
in our diachronic analysis, we excluded sentences
sourced from texts that lacked a precise publication
date (either due to missing metadata or where pub-
lication date was recorded as a range of years). Due
to extreme data sparsity in very early or late time
periods, we limited our analysis to sentences be-
tween 1825 and 1950. In total, we include 210,305
sentences in our sentence dataset.1 In order to fa-
cilitate diachronic analyses over 125 years (though
not necessarily to align with typical periodizations
of French history), we assigned each of these sen-
tences to one of five 25-year time periods based on
date of publication. We note that these time periods
are severely imbalanced: our smallest time period
(1851-1875) comprises 4,942 sentences, while our
largest (1901-1925) includes 92,767 sentences. We
address this particular challenge further in Section
4.2.

To generate CWEs from these extracted sen-
tences, we use a masked language model, Camem-
BERT (Martin et al., 2019), a variant of RoBERTa
(Liu et al., 2019) optimized for French-language
applications. We extract the last hidden state acti-
vations of the pretrained camembert-large model
that correspond to the tokens in “indigène(s)”, then
mean pool token-level representations to construct
a single CWE for each sentence.

4 Interpreting Contextual Word
Embeddings with Sparse Autoencoders

4.1 k-Sparse Autoencoders

SAEs are simple MLPs comprising two layers: an
encoder that maps an input vector x ∈ Rd to a
sparse hidden representation h ∈ Rn, and a de-

1Our sentence dataset and code are available at https://
github.com/jam963/disentangling-language-change.

coder layer, which reconstructs the input vector
x as x̂ from the sparse hidden representation h.
Following prior work (Gao et al., 2024; O’Neill
et al., 2024), we use k-sparse autoencoders (k-
SAEs; Makhzani and Frey, 2013) to identify fea-
tures in CWEs. k-SAEs enforce sparsity by setting
all but the top k values in h to zero. The encoder
for our model is therefore given by

h = TopK(Wex+ be) (1)

where We is the encoder weight matrix, be is the
encoder bias vector, and TopK is an activation
function that sets all but the k-largest values to zero,
ensuring that h is sparse. Likewise, our decoder is
given by

x̂ = Wdh+ bd (2)

where Wd is the decoder weight matrix and bd is
the decoder bias vector. Our k-SAE has learnable
parameters θe = {We,be}, θd = {Wd,bd}.

Gao et al. (2024) and O’Neill et al. (2024)
describe techniques for minimizing “dead latents”
during training. In this context, a dead latent is
simply a feature that is never activated by h. More
precisely, we say that a latent i is “dead” when
hi = 0 ∀x ∈ X , where X is the set of input vectors
in training data. Dead latents can be minimized
or eliminated during training using the following
auxiliary loss function:

Laux(x, x̂) =
1

d
‖(x− x̂)− (Wdhaux + bd)‖22

(3)
where

haux = TopKaux(Wex+ be) (4)

and TopKaux sets all but the top kaux dead latents
to zero, which we identify after a predetermined
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number of samples. Put simply, this auxiliary loss
function is just the mean squared error of the dif-
ference between the model’s overall reconstruction
error and a reconstruction using only the top kaux
dead latents. Our composite loss function is then

L(θe, θd) =
1

d
‖x− x̂‖22 + αLaux(x, x̂) (5)

where α is a hyperparameter. Throughout, we
opted to follow O’Neill et al. (2024) and set
kaux = 2k and α = 1

32 , in an effort to limit the
number of tunable hyperparameters.

4.2 Training Details

We train all configurations of our k-SAEs for a
fixed number of training steps (20,000), using a
batch size of 1,024, fixed learning rate (1e-4), and
the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9, β2 = 0.999, and ε =1e-8. All CWEs
are standardized prior to training.

Because our ultimate goal is not to minimize
SAE reconstruction loss on held-out data, but rather
to efficiently identify interpretable features, we
train on all embeddings in our dataset. However, in
an attempt to prevent potential problems caused by
dataset imbalance with respect to publication date,
we randomly sample a fixed number of CWEs from
each time period every epoch for training. During
prototyping, we experimented with different levels
of per-period downsampling, setting the number
of CWEs sampled per time period to a fraction
of the size of the smallest time period. In prac-
tice, because we did not observe any measurable
advantage to higher levels of downsampling, we
randomly sample the total size of our smallest time
period (4,942) from each time period, resulting
in 24,710 training samples per epoch. While this
ensures that the our k-SAE does not drastically un-
derfit to time periods with fewer instances, it also
means that only a small percentage of embeddings
from other time periods are seen during each epoch,
potentially leading to underfitting on these larger
bins. We compensate for this by training for a
large number of total training steps, increasing the
probability that all CWEs will ultimately be seen
during training. Importantly, though, this random
sampling does not affect how often we account for
dead latents, which are tracked over a fixed number
of training samples equal to the total number of
samples in our dataset.

4.3 Automated Feature Labelling and
Validation

To generate and validate natural language descrip-
tions for features in each of our trained k-SAE mod-
els, we adapt the interpretability technique outlined
in Bills et al. (2023) and O’Neill et al. (2024). This
method involves two stages: first, an Interpreter
uses max-activating sentences and zero-activating
sentences to generate a description for each feature.
Max-activating sentences are sentences whose as-
sociated CWE maximally activates a given feature,
whereas the CWE associated with zero-activating
sentences does not activate that feature at all. Then,
a Predictor is tasked with generating a confidence
score between -1 and 1 reflecting whether or not
a label generated by the Interpreter applies to a
sentence, which is either non-zero activating or
zero-activating (Figure 1). From these confidence
scores, we compute F1 and Pearson correlation
for each feature, which indicate the feature’s inter-
pretability.

For our Interpreter, we use GPT-4o and a prompt
based on O’Neill et al. (2024), which we translated
to French and significantly modified to reflect the
word-level and domain-specific characteristics of
our task. We noted in early testing that GPT-4o and
GPT-4o-mini were inclined to generate overbroad,
generic, highly moralizing or theoretical responses,
which we discouraged in our prompt to encourage
greater specificity in feature descriptions. To mini-
mize API fees, we use 5 max-activating and 5 zero-
activating sentences for each feature. Each feature
is interpreted in a zero-shot, chain-of-thought fash-
ion.

Likewise, for our Predictor, we adapt our ap-
proach from O’Neill et al. (2024), translating their
prompt to French and editing to reflect our task.
Due to financial considerations, we randomly sam-
ple 3 non-zero activating and 3 zero-activating sen-
tences for each feature; we also use GPT-4o-mini
to generate confidence scores.2 We prompt for each
sentence-label pair in a zero-shot, chain-of-thought
fashion. Using these confidence scores generated
by the Predictor and the true scores for non-zero ac-
tivating (1.0) and zero-activating sentences (-1.0),
we compute accuracy, F1, and Pearson correlation
for each feature. Finally, given these feature-level

2We incurred approximately $280 in OpenAI API fees
related to this project, which included prototyping and prompt
engineering. The cost of feature interpretation and prediction
for a single k-SAE ranged in price from approximately $15 to
$60, depending on the latent dimensionality of the model (n).
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Figure 3: We compare pairwise JS distance of feature distributions across time periods (n = 4d, k = 8) (center,
right) and cosine distance of averaged CWEs (left). For all features (center) and only highly interpretable features
(right), periods that are further apart in time have more distant activation distributions as measured by JS distance.
By contrast, averaged CWEs are all highly self-similar and do not show pronounced temporal variation (left).

scores, we are then able to identify “highly inter-
pretable features” as those with F1 and correlation
above a threshold value (0.8). We emphasize that,
in contrast to the Interpreter, the Predictor must
correctly attribute the generated feature label to
non-zero activating sentences for each feature, not
just max-activating sentences. This avoids assign-
ing high interpretability scores to feature labels
which only apply to highly-activating examples. In
other words, the Predictor expects that a feature
label generated by the Interpreter should apply to
sentences with any level of feature activation above
zero.

5 k-SAE Performance and
Interpretability

5.1 Training Metrics

Following prior work (O’Neill et al., 2024), we
train six k-SAEs with k ∈ {8, 16} and n ∈
{d, 2d, 4d}, where d is our CWE dimensionality
(1,024). We report total loss and number of dead
latents for each model during training in Figure
2. Despite our random sampling procedure used
to balance samples temporally during training, we
observe that all models converge, though some vari-
ants (those with high n and/or low k) still have a
small number of dead latents (Table 1). We note
that higher values of k and n give better reconstruc-
tion accuracy (lower total loss), but also require
more training steps to remove dead latents.

5.2 Feature Interpretability

We report results of our interpretability procedure
(Section 4.3) in Table 1. All trained k-SAEs have
zero or very few dead latents, and we do not ob-
serve a clear relationship between reconstruction
quality or final number of dead latents and any
measures of feature interpretability. Indeed, our
best performing model across all interpretability
measures (n = 4d, k = 8) has a non-zero num-
ber of dead latents after 20,000 training steps, and
exhibits worse reconstruction accuracy compared
to all SAEs with k = 16. In general, SAEs with
k = 8 produce more interpretable features on av-
erage than those with k = 16, and higher n is
associated with more modest interpretability gains.

6 Feature Activation Analysis

6.1 Highly Interpretable Features

With our best-performing k-SAE (n = 4d, k = 8),
we are able to identify 281 highly interpretable
features from our CWEs. The feature interpreta-
tions produced by the Interpreter are short, often
highly-specific descriptions of subject-level aspects
of our sentence data. Reflecting the diversity and
breadth of our historical dataset, feature descrip-
tions encompass an extremely wide range of topics
and contexts, ranging from agriculture (“Native ve-
gatable species, comparative botanical context”)
to stereotyped descriptions (“Exploration, danger,
mystery, ‘some native”’) to religious affiliation and
ethnicity (“Indigenous muslims in French admin-
istrative context”). We provide examples of sev-
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eral highly-interpretable features and translations
of their generated descriptions in Figures 4 and 5.

6.2 Temporal Variation in Feature Activations

Because we are primarily interested in how differ-
ent uses and meanings of the term “indigène(s)”
evolve over time, we explore how feature activa-
tion distributions change across 25-year time pe-
riods. To determine to what extent all features
change across time periods, we first convert our
feature activations for each time period to probabil-
ity distributions over features pt. To compare these
distributions across time periods, we compute the
pairwise Jensen-Shannon (JS) distance (Lin, 1991)
between each time period, which in our case is
given by

m =
pi + pj

2
(6)

JS(pi, pj) =

√
D(pi‖m) +D(pj‖m)

2
(7)

where i and j are time periods and D is Kullback-
Leibler divergence (Kullback and Leibler, 1951).

We report our results as heatmaps in Figure 3.
Across time periods, we find that feature activation
distributions from more temporally-distant periods
show correspondingly higher JS distance. This
holds true for distributions over all features as well
as for distributions over only highly interpretable
features, which suggests that our k-SAE is able
to capture underlying diachronic variation present
in CWEs. For reference, we also report pairwise
cosine distances of average CWEs for each time pe-
riod. In contrast to activation distributions, though,
averaged CWEs are extremely self-similar, and are
effectively identical when compared with cosine
(Figure 3, left). This suggests that k-SAEs are able
to effectively identify meaningful, feature-level dif-
ferences between embeddings, even when these
embeddings may all be virtually identical to one
other in terms of cosine distance. We also include
a standardized similarity analysis in Appendix B.

While JS distance provides an overall measure
of how word meaning and use vary according to
publication date, we also explore how individual
features or subsets of feature activations evolve
across time periods. From our 281 highly inter-
pretable features identified by our best-performing
model, we find the top 5 features with the largest
absolute change in activation frequency between
our first time period (1825-1850) and our last time
period (1926-1950). We visualize the results of

this analysis in Figure 4. What we find supports
our earlier hypotheses: features associated with
botanical use become less prominent in the period
1876-1900, during which time the Code de l’indigé-
nat began to take form. In the same way, features
associated with legal and administrative structures
(“French colonial administrative and indigenous
policy”, “Administrative or legal institutional in-
digenous context”) increase in activation frequency
over time.

6.3 Qualitative Evaluation of
Highly-interpretable Features

A key advantage of our approach is the ability
to identify and generate labels for specific se-
mantic features in our dataset without supervi-
sion. While our best performing k-SAE identifies
too many highly interpretable features to analyze
here, we briefly highlight several interesting fea-
tures and their feature activation frequencies in
Figure 5. Some feature descriptions, such as “‘The
indigenous question’ in colonial/debate context”,
seem to describe an n-gram which includes “in-
digène(s)”. However, this particular feature acti-
vates not only for sentences containing that spe-
cific n-gram (“question indigène”), but also for
semantically similar subsequences like “problème
indigène” and even for those with OCR errors or
textual noise (“ques- tion indigènes”). In other
words, this feature captures a meaningful, highly
granular topic that is often but not always asso-
ciated with an n-gram, and would potentially be
missed by lexical topic modeling approaches. We
explore this aspect of our method further in Ap-
pendix C.

In addition, other feature descriptions are not
only highly specific, but were unanticipated
prior to model training. Inspecting sentences
which activate “Locally produced sugar, economic-
commerical context” (Figure 4), we find discussion
of beet sugar production in France, which is de-
scribed as “indigenous” in contrast to the “exotic”
or “foreign” sugars produced abroad or in colonial
territories. The activation frequencies over time
may also reflect investment and taxation strategies
for domestic sugar production, which had begun
in the Napoleonic era and flourished in 1825-1850
(Griffin, 1902). Similarly, “Local priests in Chinese
Catholic missions” activates across all time peri-
ods, though occasionally seems to activate for more
generic contexts containing references to priests
and Catholic institutions, but which lack specific
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Figure 4: Highly interpretable features with greatest change in activation frequency between 1825-1850 and
1926-1950. The shaded region represents the 95% CI. Translations of generated feature descriptions suggest a
steady decrease in botanical or specific agricultural use of “indigène(s)” after 1875 (929, 1343, 3385), whereas
colonial, administrative, and policy-oriented uses increase sharply after 1876-1900 (2741, 2056).

Figure 5: Selected highly interpretable features with
activation frequency by time period. Some features,
like 2228, reveal aspects of our data of which we were
unaware prior to training. Historical activation trends
for these selected features align with those identified in
Figure 4.

mention of geographical location, or to locations
historically associated with China, but outside its
contemporary geographic boundaries. Following
our identification of this feature, we were able to lo-
cate historical research attesting to French Catholic
missionary presence in China since the 17th cen-
tury (Dorais, 2005), demonstrating the potential
utility of our feature descriptions for navigating

large-scale historical data.
We also find qualitative evidence of feature

“splitting”, which has been documented in prior
work (O’Neill et al., 2024), as well as overly
generic or broad feature descriptions. Some fea-
ture descriptions, though highly interpretable, are
essentially duplicates of one another, such as “In-
digenous plants, specific botanical context” and
“Native plants, detailed botanical descriptions”. To
ensure that the trend we observe in Figure 4 is not
contradicted in other, similar features, we exam-
ined all features containing the word “plant” in
their description, and observe that these features
have either decreasing or very low overall activa-
tion frequency over time (see Appendix D). In this
respect, it seems that many split features are simply
redundant versions of other, more dominant fea-
tures identified by our model, and as such reflect
the same underlying historical trends.

7 Discussion

Our method allows for unsupervised identification,
description, and validation of features from CWEs,
as well as diachronic analysis of these features.
We demonstrate the successful application of our
method on a novel French sentence dataset, sourced
from texts across 125 years of French and Franco-
phone history. Through our analysis, we find that
the meanings of “indigène(s)” not only evolved
over time, but changed relative to one another in
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a manner consistent with our original hypotheses:
the features with the greatest decrease in activation
frequency reflect highly specific botanical contexts,
whereas we observe an increase in features asso-
ciated with colonial, legal, and administrative use
beginning in the late 19th century. As a histori-
cal research tool, we intend to employ our k-SAE
and generated feature descriptions to address addi-
tional qualitative concerns related to the concept of
indigeneity in French history.

More broadly, our findings demonstrate the po-
tential of SAEs for analyzing word-level language
model representations, which can complement or
potentially replace similarity-based methods. In
line with recent work using LLMs to find and de-
scribe concepts in unstructured text datasets (Lam
et al., 2024), our approach demonstrates how em-
beddings can be meaningfully described by gener-
ative models, adding interpretable insights to nu-
anced and difficult tasks in text analysis.

8 Ethics

Our sentence data is composed of historical source
material related to French colonial treatment of in-
digenous populations, and as such includes highly
offensive or inaccurate descriptions, characteriza-
tions, and attitudes related to race, religion, and
ethnicity. We in no way endorse irresponsible, dis-
criminatory, or defamatory use of this data or our
analyses.

9 Limitations

While we made reasonable efforts to avoid bias
when extracting sentences for our dataset, we can-
not guarantee that our sample is entirely represen-
tative of the French language as a whole. Simi-
larly, though our method attempts to account for
our dataset’s temporal imbalance, we cannot rule
out the possibility that our analyses are still affected
by the low number of samples in early time periods.
Because we rely on our Predictor to generate mea-
sures to gauge feature interpretability, generated
feature descriptions may not accurately reflect the
content of every sentence for which a feature is
activated. Because of financial constraints, our Pre-
dictor uses a limited number of randomly selected
positive and negative examples. Finally, though we
are interested in the overall change in pejorative
or racial connotation associated with “indigène(s)”
over time, this may only be indirectly inferred from
extracted features or combinations of features, and

may also require additional inspection of source
text.
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A Dataset Construction

Following a request to the French National Li-
brary (BNF) for nearly all monographs in their
digital collection, we received an initial batch of
88,298 documents, in no particular order, in the
form of XML outputs from prior OCR process-
ing. After converting the raw OCR information
to usable text, we filtered documents to only in-
clude monographs with publication dates between
1825 and 1950, leaving 71,931 documents contain-
ing 3.9 billion whitespace-delimited words in total.
Following manual inspection, we noted that OCR
quality could be quite poor, particularly for texts
from early time periods. Early on, this informed
our decision not to use purely lexical approaches
to topic modeling or SSD, as preliminary analy-
ses revealed that textual noise would potentially

introduce significant interpretive challenges. OCR
quality, scale, and temporal imbalance also posed
challenges for using part-of-speech tagging models
to identify adjectival and substantive uses of our tar-
get term, since we have reason to believe that OCR
quality is partially a function of publication date.
However, reliable information regarding trends in
adjectival versus substantive use would be valuable,
as the substantive is almost always associated with
humans.

From this filtered set of 71k documents, we ex-
tracted all sentences containing the word “indigène”
or “indigènes” and excluded any sentence with less
than 10 whitespace delimited words. This resulted
in 210,305 total sentences. We report the sentence
distributions with respect to 25-year time period
in Figure 6. Sentence distributions are highly im-
balanced over time, which we speculate is at least
partially due to historical trends in publication vol-
ume, as well as internal BNF policies concerning
text digitization. We also report the distribution
of these sentences with respect to the genre label
applied by the BNF in Figure 7. Many documents
did not contain any genre information, either due
to missing metadata or no genre assignment, which
is included in the "Other" category.

B Standardized Similarity

Following Timkey and van Schijndel (2021), we
repeated the similarity analyses in Section 6.2 after
standardizing CWEs. We report our results in Fig-
ure 8. Unlike in Figure 3, which shows pairwise
cosine distances between average CWEs for each
time period, we instead visualize our standardized
results in terms of cosine similarity. This is because
the resulting similarity values in this particular anal-
ysis range from -1.0 to 1.0, which are less intuitive
to visualize with cosine distance, where negative
similarity values result in distances between 1.0
and 2.0. While the range of similarity values is
much wider for standardized than for unstandard-
ized CWEs, these results are difficult to interpret in
terms of language change: many similarity values
are negative, and similarity does not increase with
temporal proximity.

C Lexical Feature Analysis

To ensure that feature descriptions generated by
the Interpreter are reasonable, we used a simple
lexical method to find keywords associated with
each feature. We first compute unigram TF-IDF
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Figure 6: Distribution of sentences by time period.

Figure 7: Distribution of genres for sentences in our dataset by time period.

vectors for each sentence, using a vocabulary size
of 10,000 and a list of French stopwords. We then
compute the Spearman correlation of each feature’s
activations and TF-IDF scores for each word. In
Table 2, we show a sample of highly-interpretable

feature descriptions generated by the Interpreter,
along with three terms with the highest Spearman
correlation to that feature. In general, we find that
this lexical method associates keywords with sim-
ilar meanings or associations to the short descrip-
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Figure 8: Cosine similarities of standardized CWEs, by time period.

tions generated by the Interpreter. However, we
also occasionally found examples of word frag-
ments and numerical values with high correlations
to certain features. In these cases, the Interpreter
appears to synthesize a meaningful feature descrip-
tion despite this textual noise. For this reason, we
believe a key advantage of the Interpreter-Predictor
paradigm is the ability to generate and validate a
human-readable description of a feature, whereas
lexical approaches may be more sensitive to dataset
cleanliness issues and be more difficult to interpret.

D Feature Activation Analysis

We report our feature activation frequency anal-
ysis for all features containing the word “plant”
in Figure 9. We note that all features either de-
crease in activation frequency between 1825-1850
and 1926-1950 or are relatively flat, with low over-
all activation frequency. Our primary concern in
conducting this analysis is to ensure that highly
interpretable features with similar descriptions do
not exhibit opposing diachronic trends. We also
note here that the strongest trends are associated
with more frequent features.
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Description 1 2 3
Bois indigènes pour menuiserie et construction bois chêne meilleur
Noms locaux pour éléments culturels/naturels appellent nomment nom

Justice indigène dans contexte colonial administratif tribunaux jugements décret
Produits textiles locaux, contexte économique industriel coton tissus laines

Militaires indigènes, législation pensions et retraites militaires pensions veuves

Table 2: A sample of feature descriptions generated by the Interpreter with the top three most correlated words for
that feature. Generated feature descriptions align with the words identified using TF-IDF and Spearman correlation.
For example, “Bois indigènes pour menuiserie et construction” (“Indigenous woods for carpentry and construction”)
has associated keywords “bois” (wood), “chêne” (oak), and “meilleur” (best/better).
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Figure 9: Feature activation frequencies for features with descriptions containing the word “plant”.
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