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Abstract

Recent advancements in large language mod-
els have revolutionized text generation with
their remarkable capabilities. These models
can produce controlled texts that closely ad-
here to specific requirements when prompted
appropriately. However, designing an optimal
prompt to control multiple attributes simulta-
neously can be challenging. A common ap-
proach is to linearly combine single-attribute
models, but this strategy often overlooks at-
tribute overlaps and can lead to conflicts. There-
fore, we propose a novel combination strategy
inspired by the Law of Total Probability and
Conditional Mutual Information Minimization
on generative language models. This method
has been adapted for single-attribute control
scenario and is termed the Palette of Language
Models due to its theoretical linkage between
attribute strength and generation style, akin to
blending colors on an artist’s palette. Moreover,
positive correlation and attribute enhancement
are advanced as theoretical properties to guide
a rational combination strategy design. We con-
duct experiments on both single control and
multiple control settings, and achieve surpass-
ing results.

1 Introduction

The purpose of controlled text generation is to mod-
ify the output of the language models with a pre-
given attribute, so that the final output conforms
to the attribute (Hu et al., 2017; Madaan et al.,
2021; Zhang et al., 2023). It is common to utilize
Bayes Rules (Li et al., 2022b) to modify the lan-
guage model p(X) to form with the conditional
variable p(X|a), and by virtue of the correspond-
ing discriminative model (generally a classification
model), implement the constraints on the gener-
ated results. This approach will face two problems:
On the one hand, the discriminative model usually
needs to be fine-tuned according to the generation
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task scenario to better assist controlled text gener-
ation, because the accuracy of the discriminative
model plays a key role in the generation effect.
Nevertheless, it is time-consuming to collect the
corresponding classification data. On the other
hand, the classification effect of the discriminative
model often depends on certain words or phrases
related to attributes, therefore, in the process of
predicting the next token, the discriminative model
will guide the language model to bias these words,
which makes the generated results lack diversity.

In recent years, with the rapid development of
large language models (Chowdhery et al., 2022;
Du et al., 2022; Hoffmann et al., 2022), models
represented by ChatGPT (Achiam and et.al, 2023)
have powerful text generation capabilities. Many
generation tasks can be converted to prompt engi-
neering to use large language models to get better
solutions. Similarly, attributes can be designed as
prompts, so that with the powerful generation abil-
ity of the large language model, the final generated
text will also conform to such attributes. When the
number of attributes that need to be met is large,
it is difficult to design a suitable prompt to cover
these attributes. Also, due to the inherent ambiguity
and sensitivity of prompts, we can’t guarantee that
the generated results will be perfectly reproduced
according to the attributes mentioned in prompts.

Model Arithmetic (Dekoninck et al., 2024) pro-
poses a framework to ensemble multiple attributes,
in which through simple arithmetic operations,
such as linear composition, multiple attribute-
related language models or discriminative mod-
els are combined to obtain a multi-attribute con-
trolled text generation strategy. This framework
treats the language models associated with differ-
ent attributes as independent. However, in reality,
each language model may have multiple attributes,
and the attributes between language models may
overlap which can not be effectively modeled with
simple arithmetic operations. For example, the
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main attribute of language model A is "formal re-
sponse", and that of language model B is "child’s
tone" (which suggests an attribute of "informal re-
sponse" as well). With linear combination, the
attribute of "formal response" is faded, making the
final generation strategy incomplete.

Deriving from the Law of Total Probability and
Conditional Mutual Information Minimization, we
propose Palette of Language Models, which al-
leviates the latent attribute overlapping problem
when attributes assembled. The improved combi-
nation strategy has following contributions:
• Leveraging the Law of Total Probability, we

decompose the final generation distribution as at-
tribute satisfied event and its complementary event
of which the latter never appears in previous works.
• We model the attributes overlapping problem

as Conditional Mutual Information Minimization,
with which a dynamic coefficient on each attribute
(as a part of attribute strength) is derived for at-
tribute enhancement. We also take theoretical anal-
ysis on attribute strength and conclude the positive
correlation between it and the final generation style.
• We propose two pieces of theoretical properties

(positive correlation and attribute enhancement)
which guide a rational attribute combination.

2 Related work

Some works for controlling language models are
training or aligning language models conditioned
on static or iterative updated control codes that
make desired features of generated text more ex-
plicit (Keskar et al., 2019; Zhang et al., 2020; Lu
et al., 2022). These methods often depend on a
large amount of training data, which will result in
a lot of annotation costs and resource consump-
tion. In order to solve the above problems, some
researchers have proposed methods of fine-tuning
(Bender et al., 2021; Yuan et al., 2023), prompt
tuning (Li et al., 2022a; Pagnoni et al., 2021) or
Prefix Tuning (Qian et al., 2022; Clive et al., 2022;
Ma et al., 2023) large models to generate controlled
text. However, due to the use of GPT series models,
it will cause infeasible and cannot solve the toxic-
ity and bias problems of the model (Tonmoy et al.,
2024). Although Timo Schick et al. (Schick et al.,
2021) found that pre-trained models can largely
recognize their bad biases and the toxicity of the
content they produce, by giving textual descriptions
of bad behavior when decoding, the probability of
generating problematic text can be reduced. But

this method is greedy in nature when supporting
or opposing a decision must always use a specific
word, taking into account only the context in which
it has been generated.

Another category of method uses gradients of
single or combination of attribute discriminators
based on energy to update generating language
model’s hidden states to guide decoding process
(Dathathri et al., 2020; Mireshghallah et al., 2022;
Qin et al., 2022; Kumar et al., 2022, 2021), which
do not need labeled training data. Despite the use
of Langevin dynamics, samples the sequence of
token embeddings instead of logits and Gibbs sam-
pling methods. The main issue of this category is
that multiple sampling iterations are required to
converge, which slow down the decoding progress.
BOLT (Liu et al., 2023), instead, preserves token
dependencies and simultaneously optimizes via au-
toregressive decoding to constrain by adding biases.
But BOLT requires stricter constraints, for example,
keyword control requires more than three keywords.
BOLT also requires careful tuning of the differ-
ent hyperparameters constituting the energy func-
tion—a problem prevalent in energy-based con-
trolled power generation approaches.

Some methods are inspired by Bayes Rules
that use attribute probability from discriminators
to steer language generation towards desired at-
tributes. The attribute discriminators can be dis-
criminative or generative. FUDGE (Yang and
Klein, 2021) learns a binary discriminator for
whether attribute will become true in future, and
the output probabilities of this discriminator are
multiplied with generator’s original probabilities to
get the desired probabilities. Gedi (Krause et al.,
2021) uses class-conditional language models as
generative discriminators, which results in faster
computation speed due to the parallel computa-
tion of all candidate tokens. Compared with these
methods, PREADD (Pei et al., 2023) considers the
language generator with a prefix-prepended prompt
as the role of attribute discriminator, which does
not require an external model and corresponding
additional training data.

Recent work proposes controlling text genera-
tion via language model arithmetic (Dekoninck
et al., 2024), which enables to combine multi-
ple language models of different attributes into a
formula-based composite. The key distinguishing
feature of our method is that we explicitly model
the attributes overlapping between language mod-
els, so that they are not faded during combination.
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Figure 1: Overview of Palette of Language Models. Each ellipse in the figure represents a generative language
model with a specific attribute, and S represents the strength of the corresponding model. Employing Equation 8,
the final generation under multiple constraints is derived.

3 Proposed method

In this paper, we focus on n (where n >= 2) at-
tributes combination strategy to derive a specific
output distribution on controlled text generation
which indicates a mixture style. Analogously, sin-
gle attribute control can be treated as the combina-
tion with the basic model. We attach each attribute
to a generative language model for ease of the for-
mula derivation.

3.1 Problem definition
Assuming n generative language models, with each
owning a certain attribute, such as "able to generate
text with positive sentiment", "speak in a child’s
tone", or "tell a topic about the solar system", etc.
For the ith model Ai, the prediction probability of
the next token is pAi(xt = x|x1:t−1), abbreviated
as p(Ai = x) (where x ∈ V , the vocabulary of cur-
rent language model). Thus, we desire a function
F on p(Ai) and express the final distribution as:

p(Z) = F(p(A1), ..., p(Ai), ..., p(An))

s.t. p(Ai, Aj) = p(Ai)p(Aj),

min(M(Ai, Aj)) (for 1 ≤ i, j ≤ n) (1)

where M(.) is a metric to gauge the overlapping
between an attribute couple under the final distribu-
tion. It is noteworthy that the joint distribution item,

i.e., p(Ai, Aj), means the probability that “the next
predicated tokens for both attributes Ai and Aj are
x”. Obviously, they are separate neural networks
and none inter-influence exists, which ensures the
independence between them.

For the attribute couple (Ai, Aj), the conditional
mutual information under the final distribution Z is
always no less than 0. And if it is greater than 0,
the overlapping between them happens. There-
fore, the overlapping metric M(.) mentioned in
Equation 1 is defined as:

M(Ai, Aj) = I(Ai, Aj |Z) =
∑

z

p(z)
∑

ai,aj

p(ai, aj |z)log
p(ai, aj |z)

p(ai|z)p(aj |z)
≥ 0

(2)

where z ∈ Z, ai ∈ Ai and aj ∈ Aj are satisfied.

3.2 Proposed solution

For the final generation distribution, i.e., p(Z = x),
we use the Law of Total Probability, which, in the
case of a single attribute Ai, can be written as:

p(Z = x) = λi ∗ p(Ai = x) + λi′ ∗ p(Ai ̸= x)

s.t. λi = p(Z = x|Ai = x),

λi′ = p(Z = x|Ai ̸= x) (3)
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Similarly, for the attribute couple (Ai, Aj), taking
into account the independence between them (see
Equation 1), the final generation strategy can be
written as:

p(Z = x) = λij ∗ p(Ai = x)p(Aj = x)

+λi
′
j
′ ∗ p(Ai ̸= x)p(Aj ̸= x)

+λij′ ∗ p(Ai = x)p(Aj ̸= x)

+λi′j ∗ p(Ai ̸= x)p(Aj = x)

s.t. λij = p(Z = x|Ai = x,Aj = x),

λi′j′ = p(Z = x|Ai ̸= x,Aj ̸= x),

λij′ = p(Z = x|Ai = x,Aj ̸= x),

λi′j = p(Z = x|Ai ̸= x,Aj = x) (4)

Employing the convexity of the logarithmic func-
tion, i.e., log(ax+by)− log(a+b) ≥ a

a+b log(x)+
b

a+b log(y), we add both single and couple factor-
ization equations aforementioned, and obtain an
approximate expression (details are shown in Sec-
tion A):

log3p(Z) ≈
∑

s∈{i,j}
αslogp(As = x)

+
∑

s∈{i,j}
βslogp(As ̸= x),

s.t. αi=λi+λij+λij′ , βi=λi′+λi′j+λi′j′ (5)

Additionally, by minimizing the conditional mutual
information in Equation 2, we derive that (details
are shown in Section B):

λij =
λiλj

p(Z = x)
, λi′j′ =

λi′λj′

p(Z = x)
,

λij′ =
λiλj′

p(Z = x)
, λi′j =

λi′λj

p(Z = x)
(6)

We traverse the pairwise combinations of n at-
tributes (altogether C2

n items) and add them in the
form of Equation 5:

logp(Z = x) ∝
n∑

i=1

φilogp(Ai = x)

+

n∑

i=1

ωilogp(Ai ̸= x)

s.t. φi=
(n−1)λi+

p(Ai=x|Z=x)
p(Ai=x)

∑
j ̸=i(λj+λj′ )

C2
n

,

ωi=
(n−1)λi′+

p(Ai ̸=x|Z=x)
p(Ai ̸=x)

∑
j ̸=i(λj+λj′ )

C2
n

(7)

Inspired by previous works, we introduce the
generative language model with standard output
(which means no bias to any specific attributes)
as the basic part in aid of generation stability, and
simplify the expression in Equation 7 (details are
shown in Section C). Therefore, both single and
multiple attributes can achieve the final genera-
tion solution in a consolidated manner (where the
single setting can be treated as the combination
with the basic part):

logp(Z = x) ∝

n∑
i=1

sicilogp(Ai = x) + logPb

M1

+t

n∑
i=1

si′ ci′ logp(Ai ̸= x)

M2

s.t. ci = 1+
1

p(Ai = x)
, ci′ = 1+

1

p(Ai ̸= x)
(8)

where M1 and M2 are normalization values with
which the combination logits will be as the same
order of magnitude as the basic language model.
Pb is the generation probability of the basic part.
si and si′ are variables to express the strength (the
proportion to the final generation) of the current
attribute. t is a small coefficient which servers
the complementary event, i.e., p(Ai ̸= x), as an
auxiliary for the final generation strategy.

3.3 Strategy properties
Property 1. It demonstrates a positive correla-
tion between attribute strength, i.e., si, and the final
generation style about our improved attribute com-
bination strategy. (The proof is shown in Section
D)

Specifically, we introduce the attribute token
xattr ∈ V (vocabulary of the language model)
which can better express the property of current
model, hence:

p(Ai = xattr) > p(Ai = xt) (∀t ̸= attr) (9)

Property 2. Our strategy gets attribute enhance-
ment compared to linear combination strategy.
(The proof is shown in Section D)

As for two combination strategies F1 and F2,
the attribute Ai get enhancement from F1 to F2, if:

p(Z2 = xattr) > p(Z1 = xattr) (10)

where p(Zk) means the final generation probability
over strategy Fk, xattr is the attribute token of Ai.
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Attribute Prompt

reducing toxicity
The following conversation is one that does not perpetuate

negative stereotypes, is not threatening and does not contain
any sexually explicit or profane language.

enabling positive sentiment The following conversation is one that is happy and positive.

enabling fluency Continue writing after the conversation to make it more fluency
and readable.

Table 1: Attributes and prompts for toxicity reduction.

Llama2-7b Pythia-12b MPT-7b
Tox. Perpl. Tox. Perpl. Tox. Perpl.

M 0.270 12.87 0.250 21.29 0.266 18.61
Self-Debiasing (λ = 10) 0.257 14.25 0.241 25.37 0.268 21.19

FUDGE (M + C) 0.233 13.56 0.208 21.80 0.225 19.53
PREADD (M−0.6Mtoxic) 0.215 12.66 0.176 32.88 0.200 23.01

Linear (M−0.96union(Mtoxic,M)) 0.199 10.61 0.179 22.74 0.204 19.32
Ours 0.159 9.42 0.186 20.34 0.213 24.07

Table 2: Toxicity and perplexity of various methods on the /pol/ dataset. M and Mtoxic denotes the methods
without/with conditioning to toxicity respectively. C is a toxicity classifier. Perplexity is measured with respect to
M. Lower is better.

4 Experiments

We evaluate the improved attribute combination
strategy in both single and multiple control sce-
narios to testify the attribute enhancement. Specifi-
cally, Sections 4.1 and 4.2 are for the single setting,
and the Section 4.4 is for multi-attribute control
which also demonstrates the overlapping allevia-
tion. We conduct experiment for positive correla-
tion and complementary event verification in Sec-
tions 4.3. All the experiments are implemented on
a single GPU of Tesla V100S-PCIE-32GB.

Base models. We conduct experiments on sev-
eral popular autoregressive large language mod-
els for strategy evaluation: Llama2-7b1(Touvron
et al., 2023), Pythia-12b2(Biderman et al., 2023)
and MPT-7b3(Team, 2023).

Baselines for comparison. The baselines we
make comparison with are as follows: M(the ba-
sic language model without any prompt), Self-
Debiasing (Schick et al., 2021), FUDGE (Yang
and Klein, 2021), PREADD (Pei et al., 2023)
and Linear combination (Dekoninck et al., 2024)
which is derived from the KL-Optimality and satis-

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/EleutherAI/pythia-12b
3https://huggingface.co/mosaicml/mpt-7b

fies:

logp(Z = x) ∝
n∑

i=1

λilogp(Ai = x) (11)

Linear combination is a concise strategy to merge
multiple attributes, and makes operation on λi to
bias the overall output toward (λi > 0) or away
from (λi < 0) the attribute Ai. However, it does
neglect the overlapping between attributes which
might cause attribute conflict when combination.

As for the linear combination method, we
employ its best ARITHMETIC strategy, M−
0.96Union(.), for comparison.

Experiment Setting. We notice that implemen-
tation of the standard normalization M in Equa-
tion 8 remains elusive due to the fact that the vari-
able ci tends to infinite if p(Ai = x) is trivial.
With superseding it, we introduce sigmoid func-
tion (σ(p(Ai) = x)) for its keeping the major prop-
erties in Section 3.3 (details are shown in Section
F). In addition, instead of training language models
with a specific attribute from scratch, we induce
the attribute in the basic language model with the
prompt engineering. Hence, variables for experi-
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Negative −→ Positive Llama2-7b Pythia-12b MPT-7b
Sentiment. Perpl. Sentiment. Perpl. Sentiment. Perpl.

M 0.218 14.15 0.212 22.86 0.210 19.41
Mpos 0.239 13.69 0.244 21.69 0.244 18.25

Self-Debiasing (λ = 10) 0.270 14.99 0.244 25.17 0.251 19.79
FUDGE(M + C) 0.339 13.73 0.337 22.63 0.326 18.81

PREADD (M−0.6Mpos) 0.373 14.20 0.343 30.86 0.343 19.25
Linear (Mpos−0.96union(Mpos,Mneg)) 0.411 12.82 0.343 22.53 0.370 17.88

Ours 0.426 19.42 0.336 15.33 0.405 18.85

Positive −→ Negative Llama2-7b Pythia-12b MPT-7b
Sentiment. Perpl. Sentiment. Perpl. Sentiment. Perpl.

M 0.204 13.51 0.218 22.25 0.196 18.26
Mneg 0.299 14.17 0.340 22.73 0.284 17.83

Self-Debiasing (λ = 10) 0.339 15.02 0.364 25.59 0.285 20.02
FUDGE (M + C) 0.410 14.97 0.433 23.39 0.377 18.43

PREADD (M−0.6Mneg) 0.470 14.66 0.514 32.03 0.438 19.44
Linear (Mneg−0.96union(Mneg,Mpos)) 0.502 13.12 0.499 24.93 0.452 18.23

Ours 0.547 16.31 0.469 30.41 0.478 15.81

Table 3: Sentiment score and Perplexity value of various methods on the IMDB dataset for "negative to positive"
and "positive to negative" transition tasks. Mpos and Mneg denote the models with conditioning to positive/negative
sentiments respectively. C is a sentiment classifier. Perplexity is measured with respect to M. Lower is better.

ments of the improved strategy are:

ci = 1+
1

σ(p(Ai = x)
, ci′ = 1+

1

σ(p(Ai ̸= x)
,

M1=1+(2 +
1

e
)

n∑

i=1

si, M2=(2 +
1

e
)

n∑

i=1

si′ ,

p(Ai = x) = Pb(x|promptAi) (12)

where promptAi are displayed in Tables 1, 4, 5
and 8.

4.1 Toxicity reduction
We first test our algorithm in terms of toxicity re-
duction on /pol/ dataset (Papasavva et al.), which
comprises contents from website 4chan4 and at-
taches each item a toxicity score. We randomly se-
lect 2000 samples with their scores greater than 0.5.
For toxicity reduction process, we construct a dia-
logue stuff pattern in which original toxicity texts
are from the inquirer (i.e., Person 1:), and with that,
the attribute mixture with combined strategy (as
Person 2:) is compelled to generate toxicity-free
utterance. We assemble three attributes of which
the positive sentiment and fluency are as supple-
mentaries for toxicity reduction. Each attribute and
its corresponding prompt are in Table 1. The met-
rics picked in this setting are Toxicity Score (which
measures the virulent degree by Perspective API5)

4https://boards.4chan.org/pol/
5https://perspectiveapi.com/

and PPL (which estimates generation consistency
according to perplexity calculation).

As is shown in Table 2, with Llama2-7b as the
basic language model, both toxicity score and PPL
value are at the first-rate where the toxicity prob-
ability degrades to a high-quality level with 4%
compared to traditional SOTA methods, which em-
bodies advancement of attribute enhancement in
our algorithm. The proposed strategy perform a
slight inferior (about 1% at a disadvantage in tox-
icity) than its comparators under Pythia-12b and
MPT-7b settings.

4.2 Sentiment control

Attribute Prompt

positive
reply

The following is a positive movie
review, with a very positive

sentiment and a very positive tone.

negative
reply

The following is a negative movie
review, with a very negative

sentiment and a very negative tone.

Table 4: Attributes and prompts for sentiment transition.

We make a subset of IMDB movie review
dataset (Maas et al., 2011) with 1000 samples sep-
arately for both positive and negative sentiment
control. Following the setting of Dekoninck et al.,
we also keep the first 32 tokens of original sen-
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Figure 2: Positive Correlation between attribute strength & sentiment score (Left: s<1, Right: s>1).

tences retained and force language models to write
after them with an opposite sentiment. This set-
ting demonstrates hostile performance for language
models owing to their generally decoding in com-
plying with previous tokens (in both structural and
semantic consistency). Inspired by (Liu et al., 2021;
Dekoninck et al., 2024), we enhance the accent on
required sentiment via deducting logits of its antag-
onistic stuff. That is:

logp(Z = x)∝
∑

f(i)∗sicilogp(Ai=x) + logPb

M1

+t

∑
f(i)∗si′ ci′ logp(Ai̸=x)

M2

s.t. i ∈ {main, anti}, f(i) =
{

1 main

−1 anti
(13)

For instance, if the required sentiment is posi-
tive, then main is for positive attribute and anti is
for negative. The prompts for both positive and neg-
ative sentiments are enumerated in Table 4. Follow-
ing Dekoninck et al., we take the twitter-sentiment
discriminative model6 for sentiment score deriva-
tion.

Referring to Table 3, with both Llama2-7b and
MPT-7b as the basic models, our strategy exceeds
other methods on the metric of sentiment score.
Specifically, in Llama2-7b setting, we obtain an av-
erage score of 3% (1.5% for neg2pos and 4.5% for
pos2neg transition) greater than the SOTA method.
The values are 3.5% (neg2pos) and 2.6% (pos2neg)
in MPT-7b setting. As for PPL value, our strategy
demonstrates a modicum of weakness at a manage-
able level in which the average relative values on

6https://huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment-latest

the SOTA method are +4.9, +0.9 and −0.5 for the
three basic models. Therefore, without sacrificing
the generation quality, our algorithm gains attribute
enhancement in the sentiment control setting.

4.3 Evaluations on attribute strength si and
the complementary event Ai ̸= x

We verify the positive correlation property between
attribute strength s and the generation style (see
Property 1 in Section 3.3) in this part. Following
the setting of Section 4.2, we dynamically vary
strength of the main attribute smain in Equation 13
and chronicle sentiment scores. The basic model
we choose is Llama2-7b. From Figure 2, we judge
that the final generation performance inclines to
ascend on account of gaining strength in both cases
that s < 1 and s > 1.

As is processed in Equation 8, the complemen-
tary event Ai ̸= x is treated as the auxiliary for
the main part Ai = x. We make evaluations of the
impact it makes on the final generation style. Sim-
ilar to Section 4.3, we also conduct experiments
on sentiment control with Llama2-7b and vary the
coefficient t of logp(Ai ̸= x) in Equation 13.

Shown in Figures 3 and 4 (see in Section G), the
dash lines represent sentiment probabilities with
t = 0 (which equal to 0.4161 and 0.5442 in pos-
itive & negative settings, separately). From both
figures, we discover that the final generation per-
formance fluctuates nearby the dash line with the
value of t.

4.4 Multi-attribute control

In this part, we utilize a dual-attribute control set-
ting (toxicity & sentiment) to evaluate the overlap-
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Settings Attribute Prompt

Setting
one

toxicity The following movie review is not threatening and does not contain any
sexually explicit or profane language, and is with a slight negative sentiment.

positive
reply

Continue writing after the movie review to change it with
a very positive sentiment and a very positive tone.

Setting
two

toxicity The following movie review is not threatening and does not contain any
sexually explicit or profane language, and is with a slight positive sentiment.

negative
reply

Continue writing after the movie review to change it with
a very negative sentiment and a very negative tone.

Table 5: Attributes and prompts for the multi-control with overlapping setting.

Positive 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average

Perplexity(↓)
Linear 14.95 15.48 15.36 15.84 15.70 15.17 15.71 15.57 15.51 15.86 15.51
Union 13.72 14.25 13.50 13.97 13.82 14.16 13.71 13.98 13.95 13.90 13.90
Ours 6.40 6.54 6.63 6.52 6.60 6.55 6.66 6.42 6.60 6.68 6.56

Sentiment(↑)
Linear 0.543 0.530 0.539 0.533 0.526 0.535 0.534 0.525 0.531 0.534 0.533
Union 0.443 0.439 0.441 0.445 0.437 0.444 0.439 0.443 0.446 0.440 0.442
Ours 0.565 0.562 0.556 0.543 0.559 0.564 0.558 0.551 0.557 0.544 0.556

Negative 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average

Perplexity(↓)
Linear 15.70 15.78 15.55 15.81 15.67 15.57 15.93 16.37 15.79 16.86 15.90
Union 14.22 14.32 14.17 14.23 14.73 14.57 14.63 14.45 14.78 14.90 14.50
Ours 6.46 6.42 6.49 6.46 6.60 6.71 6.68 6.62 6.78 6.63 6.59

Sentiment(↑)
Linear 0.570 0.557 0.551 0.558 0.555 0.553 0.556 0.557 0.548 0.554 0.556
Union 0.452 0.455 0.474 0.475 0.465 0.462 0.469 0.457 0.466 0.474 0.465
Ours 0.574 0.571 0.575 0.581 0.569 0.571 0.569 0.562 0.553 0.560 0.569

Table 6: Multi-attributes on positive sentiment and negative sentiment control evaluation.

ping alleviation in the multi-attribute combination
scenario. Concretely, we conduct experiment on
dataset exact to that in Section 4.2, nevertheless, we
write after the first 32 tokens for consistency with-
out any sentiment transition. We employ toxicity
and sentiment as the control aspects, and manually
add overlapping to bring conflict between them.
Prompts for both the attributes are shown in Table
5. Taking Setting one for example, the toxicity
attribute covers an extra antagonistic sentiment,
i.e., slight negative, to the positive reply attribute,
which begets overlapping when combined in a lin-
ear manner. We select Llama2-7b as the basic lan-
guage model. According to Table 6, where the co-
efficients from 0.1 to 1.0 mean the relative strength
ratio, i.e., s1/s2, our strategy shows superiority in
both Positive and Negative sentiment control set-
tings that the average relative scores on sentiment
are +2.3% and +1.3%. As for the Union baseline,
we set the sentiment attribute as the base, and vary
the coefficient of max(toxi, senti) from 0.1 to 1.0.
In comparison with it, our method still dominates
in both control settings. Hence it proves that the
improved attribute combination can diminish the

attribute conflict degree to a certain extent.
Moreover, we design another overlapping type

with toxicity attribute covering a same sentiment
trend in comparison with the sentiment attribute
(details are shown in Section H). Intuitively, we
will derive a higher sentiment score in contrast to
the previous design. In addition, the score growth
of our method should fall short of the linear com-
bination, as the consequence of that the enhanced
overlapping should get deflated. Referring to Table
9, our method obtains increased sentiment scores
of 0.189% and 0.192% by average on positive and
negative sentiment settings separately, which are
both less than the values, i.e., 0.577% and 0.694%,
of the linear strategy.

Referring to n > 2 attributes combination, we
incorporate a new attribute that influences the sen-
timent reply as well on the basis of setting one in
Table 5:

Child’s tone: Writing after the movie re-
view with mimicking the child’s tone, and
with some negative sentiment.
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0.2 0.4 0.6 0.8 1.0
Linear 0.531 0.530 0.528 0.521 0.527
Ours 0.562 0.559 0.550 0.543 0.544

Table 7: Attributes and prompts for sentiment transition.

where the coefficients above means s1/s3 =
s2/s3 with also the sentiment control as the refer-
ence.

5 Conclusions

Considering underlying overlapping between at-
tributes, we deduce Palette of Language Models,
an improved linear combination strategy for multi-
attribute control, with the Law of Total Probability
and Conditional Mutual Information Minimization.
Different from previous linear combination meth-
ods, the derived formula owns a dynamic coeffi-
cient to each model which can enhance the attribute
expression. Additionally, two pivotal properties are
proposed that serve as guiding principles for de-
signing a rational attribute combination strategy.
We conduct comprehensive experiments on both
single and multiple attributes control settings which
further underscore the effectiveness of our method.

Limitations

The Palette of Language Models we proposed has
undergone relatively rigorous theoretical derivation
and is suitable for autoregressive language mod-
els (with specific attributes) combination scenario.
However, in actual applications, language models
may be of different types, and the corresponding
vocabulary may also vary. Therefore, we will solve
the decoding problems caused by inconsistent vo-
cabularies in the future work, trying to pave the
way for more sophisticated and nuanced control
mechanisms that can better cater to the extensive
needs of language model applications.
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A Details for Approximation
Combination over Attribute Couple

We add single factorization on attributes Ai&Aj

with the couple factorization on them, and get:

3 ∗ p(Z) = λi ∗ p(Ai = x) + λi′ ∗ p(Ai ̸= x)

+λj ∗ p(Aj = x) + λj′ ∗ p(Aj ̸= x)

+λij ∗ p(Ai = x)p(Aj = x)

+λi′j′ ∗ p(Ai ̸= x)p(Aj ̸= x)

+λij′ ∗ p(Ai = x)p(Aj ̸= x)

+λi′j ∗ p(Ai ̸= x)p(Aj = x) (14)

Furthermore, employing the convexity of the loga-
rithmic function, i.e., log(ax+ by)− log(a+ b) ≥
a

a+b log(x) +
b

a+b log(y), we approximate the equa-
tion above as:

log3p(Z = x) ≈ λilogp(Ai = x) + λi′ logp(Ai ̸= x)

+λjlogp(Aj = x) + λj′ logp(Aj ̸= x)

+λijlog(p(Ai = x)p(Aj = x))

+λi′j′ log(p(Ai ̸= x)p(Aj ̸= x))

+λij′ log(p(Ai = x)p(Aj ̸= x))

+λi′jlog(p(Ai ̸= x)p(Aj = x))

= (λi + λij + λij′ )logp(Ai = x)

+(λi′ + λi′j + λi′j′ )logp(Ai ̸= x)

+(λj + λij + λi′j)logp(Aj = x)

+(λj′ + λij′ + λi′j′ )logp(Aj ̸= x) (15)

B Proof for Conditional Independent
between Attribute Couple

As for conditional mutual information
I(Ai, Aj |Z), when over the token x (which
means Z = x), we will obtain:

∑

ai,aj

p(ai)p(aj)p(Z = x|ai, aj)∗

log
p(Z = x|ai, aj)p(Z = x)

p(Z = x|ai)p(Z = x|aj)
(16)

Therefore, the simple operation on minimization
is to satisfy the equation p(Z = x|ai, aj)p(Z =
x) = p(Z = x|ai)p(Z = x|aj).

C Equation 7 Simplification

Based on Cauchy inequality, the inequalities es-
tablish that:

2 ≥ (λj + λj′ ) ≥
√
λ2
j + λ2

j′
,

√
λ2
j + λ2

j′
∗
√
p(Aj = x)2 + p(Aj ̸= x)2

≥ (λjp(Aj = x) + λj′p(Aj ̸= x)) = p(Z = x)

(17)

hence, we derive that the value of p(Ai|Z =
x)

∑
j ̸=i(λj + λj′ ) is in the interval of [(n −

1)p(Ai = x|Z = x), 2(n − 1)p(Ai = x|Z = x)],
namely that (n−1)λi and p(Ai|Z = x)

∑
j ̸=i(λj+

λj′ ) are in the same order of magnitude. Therefore,
we approximate p(Ai|Z = x)

∑
j ̸=i(λj+λj′ ) with

(n− 1)λi for simplification.
Furthermore, we simplify φi and ωi with high-

lighting the kernel part 1 + 1
p(Ai)

and condensing
other variables as si to express the strength (the
proportion to the final generation) of the current
attribute. We consider logp(Ai ̸= x) part as an
auxiliary to logp(Ai = x), thus introduce a small
coefficient t ahead.

D Proof for Strategy Properties

Proof for property 1 According to Equation 8,
we focus on the main part (i.e. p(Ai = x)) and
obtain that:

p(Z=xk)=
Qk ∗ p(Ai = xk)

si∗(1+ 1
p(Ai=xk)

)

∑
v∈V Qv ∗ p(Ai = xv)

si∗(1+ 1
p(Ai=xv)

)

=
1∑

v∈V
Qv

Qk
∗ psivk

s.t. Qk = Pb(xk)
∏

j ̸=i

p(Aj = xk)
sj∗(1+ 1

p(Aj=xk)
)
,

pvk =
p(Ai = xv)

1+ 1
p(Ai=xv)

p(Ai = xk)
1+ 1

p(Ai=xk)

(18)

where xk is the attribute token on Ai. Consider-
ing attribute token definition in Section 3.3, we
conclude pvk is less than 1 (details are shown in
Section E), therefore, when attribute strength si
increases (Qk is fixed), the final generation proba-
bility will grow subsequently.

Proof for property 2 Similarly, we also consider
the main part in Equation 8. Taking into account
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the gaps between attribute token xattr and non-
attribute token xv of both methods, we get:

(ours) gap=si[(1+
1

p(Ai=xattr)
)logp(Ai = xattr)

−(1+
1

p(Ai=xv)
)logp(Ai=xv)]

(linear) gap = si(logp(Ai = xattr)

−logp(Ai = xv)) (19)

Referring to a special function f(x) = logx
x − logx

which is always increasing within the interval of
(0, 1), we derive that the gap of our strategy is
greater than that of linear combination. Thus, if
distributions on other attributes are fixed, the fi-
nal generation tends to perform more like current
attribute in our strategy.

E Proof for pvk < 1

p(Ai = xk)
1+ 1

p(Ai=xk) > p(Ai = xk)
1+ 1

p(Ai=xv)

> p(Ai = xv)
1+ 1

p(Ai=xv)

s.t. p(Ai = xk) > p(Ai = xv) (20)

Hence the inequality pvk < 1 is satisfied.

F Proof for rationality of σ(p(Ai = x))

The surrogate stuff of p(Ai = x) on the denomina-
tor (in Equation 8) is rational when it satisfies both
the properties of Theorem 1 and Theorem 2.

Proof for property 1 Similar to Equation 18, we
substitute σ(p(Ai) = x) for p(Ai = x) on the
denominator and obtain:

p(Z=xk)=
Qk ∗ p(Ai = xk)

si∗(2+e−p(Ai=xk))

∑
v∈V Qv ∗ p(Ai = xv)si∗(2+e−p(Ai=xv))

=
1∑

v∈V
Qv

Qk
∗ psivk

s.t. Qk = Pb(xk)
∏

j ̸=i

p(Aj = xk)
sj∗(2+e−p(Aj=xk)),

pvk =
p(Ai = xv)

2+e−p(Ai=xv)

p(Ai = xk)2+e−p(Ai=xk)
(21)

Likewise, xk is the Attribute Token which satis-
fies p(Ai = xk) > p(Ai = xv). Furthermore,
the inequality e−p(Ai=xk) < e−p(Ai=xv) will hold.
Hence, we will also obtain that pvk < 1 and
there exists a positive correlation between si and
p(Z = xk).

Proof for property 2 Following Equation 10, we
tick off gaps of both the σ substitute and the linear
combination, as:

(σ) gap = si[(2 + e−p(Ai=xattr))logp(Ai = xattr)

−(2 + e−p(Ai=xv))logp(Ai = xv)]

(linear) gap = si(logp(Ai = xattr)

−logp(Ai = xv)) (22)

We introduce a special function and its derivative:

f(x) = (2 + e−x)logx− logx,

∇f(x) =
1 + e−x − xe−xlogx

x
(23)

Obviously, f(x) is increasing in the interval
of (0, 1) due to ∇f(x) being always greater
than 0. Therefore, we derive that (2 +
e−p(Ai=xattr))logp(Ai = xattr) − logp(Ai =
xattr) is greater than (2 + e−p(Ai=xv))logp(Ai =
xv)−logp(Ai = xv) which means the gap of the σ
substitute outweighs that of the linear combination.

G Results for complementary event
evaluation

We conduct experiments on the verification of t
in Equation 8 and the results are demonstrated in
Figures 3 & 4.

H The same trend overlapping setting for
multiple attributes combination

As is shown in Table 8, both the settings are de-
signed under the same trend overlapping condition,
namely that attribute one will enhance the perfor-
mance of attribute two.

We calculate the differential scores between over-
lapping settings of the same trend and the converse
trend (Table 6), and report the results in Table 9.
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Positive Sentiment Control

Figure 3: Coefficient t of logp(Ai ̸= x) evaluation on Positive Sentiment Control scenario.
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Figure 4: Coefficient t of logp(Ai ̸= x) evaluation on Negative Sentiment Control scenario.

Settings Attribute Prompt

Setting
one

toxicity The following movie review is not threatening and does not contain any
sexually explicit or profane language, and is with a slight positive sentiment.

positive
reply

Continue writing after the movie review to change it with
a very positive sentiment and a very positive tone.

Setting
two

toxicity The following movie review is not threatening and does not contain any
sexually explicit or profane language, and is with a slight negative sentiment.

negative
reply

Continue writing after the movie review to change it with
a very negative sentiment and a very negative tone.

Table 8: Attributes and prompts for the multi-control with the same sentiment trend overlapping setting.

Positive 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average
Linear 0.020 0.990 0.530 1.010 1.030 -0.760 0.670 0.710 0.330 1.240 0.577
Ours -0.430 0.590 0.240 1.180 -0.050 0.190 0.170 0.180 -0.670 0.490 0.189

Negative 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average
Linear -0.270 0.800 1.220 0.540 0.610 1.640 0.500 0.130 1.030 0.740 0.694
Ours 0.140 0.680 -0.280 -1.910 0.500 -0.370 0.090 0.400 1.420 1.250 0.192

Table 9: Sentiment Increase (%) on the basis of Table 6, less is better.
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