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Abstract
Existing household robots have made signifi-
cant progress in performing routine tasks, such
as cleaning floors or delivering objects. How-
ever, a key limitation of these robots is their in-
ability to recognize potential problems or dan-
gers in home environments. For example, a
child may pick up and ingest medication that
has fallen on the floor, posing a serious risk.
We argue that household robots should proac-
tively detect such hazards or anomalies within
the home, and propose the task of anomaly sce-
nario generation. We leverage foundational
models instead of relying on manually labeled
data to build simulated environments. Specifi-
cally, we introduce a multi-agent brainstorming
approach, where agents collaborate and gener-
ate diverse scenarios covering household haz-
ards, hygiene management, and child safety.
These textual task descriptions are then inte-
grated with designed 3D assets to simulate re-
alistic environments. Within these constructed
environments, the robotic agent learns the nec-
essary skills to proactively discover and handle
the proposed anomalies through task decompo-
sition, and optimal learning approach selection.
We demonstrate that our generated environment
outperforms others in terms of task description
and scene diversity, ultimately enabling robotic
agents to better address potential household
hazards.

1 Introduction

The development of Vision-Language Models
(VLMs) has significantly improved household
robots’ ability to interact with the physical world
in a more human-like manner (Liu et al., 2024b,a;
Cai et al., 2023; Majumdar et al., 2024). Among
these models, the most popular paradigm for such
robots is receiving instructions and performing cor-
responding operational tasks (Yang et al., 2024;
Driess et al., 2023; Ahn et al., 2022).

*Equal contributions.
†Corresponding author.

Turn off the stove, 
otherwise there could 
be a fire hazard here.

Passively instructed

The stove is left on, and I need 
to turn it off to prevent a 
potential fire hazard!

Proactive detection

Figure 1: Comparison of passively instructed robots
and our proactive detection robot. Our paradigm creates
benefits and convenience for safety, even in the absence
of human presence.

However, a critical yet often overlooked scenario
arises when no instructions are provided. Accord-
ing to survey data, 31% of cooking fires are caused
by unattended equipment (Ahrens, 2020). Mean-
while, unintentional injuries are the predominant
cause of death among children, particularly those
aged 1-14 years, encompassing incidents such as
drowning, falls, and accidental poisonings (World-
wide, 2022). A lack of adequate supervision is
often identified as a significant contributor to many
of these fatalities, especially in cases involving
younger children (Hymel et al., 2006; Williams
and Kotch, 2023). It would greatly benefit humans
if household robots could monitor whether stoves
and other fire sources are properly turned off and
detect potential hazards in the home that could
lead to falls or accidental poisonings. Many of
these fires and unintentional injuries could be pre-
vented. However, to the best of our knowledge,
such robotics have yet to be implemented.

Hence, in this work, we propose AnomalyGen,
which can generate diverse anomaly settings cover-
ing household hazards, hygiene management, and
child safety in 3D simulation environments, en-
abling robots to develop proactive detection and
problem-solving abilities, as shown in Figure 1.
Specifically, we first devised a group brainstorming
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setting, where LLM-based agents collaborate to
generate diverse and comprehensive anomaly sce-
narios. The motivation comes from the observation
that simply prompting an LLM to generate hazard
scenarios results in repetitive and similar settings.
In contrast, group brainstorming in real-life meet-
ings often leads to novel and creative ideas. Based
on these task settings, AnomalyGen automatically
constructs simulated anomalous scenes through
carefully designed 3D asset retrieval, configuration,
and scene setup steps. Finally, AnomalyGen guides
household robots in developing detection and res-
olution abilities for handling anomalies. It reads
textual descriptions of the simulated environment,
including the 3D coordinates of assets, and auto-
matically identifies potential anomalous tasks that
require attention. AnomalyGen then decomposes
the task into fine-grained sub-tasks and selects the
most appropriate learning method for the house-
hold robot. In general, our AnomalyGen leverages
language-based approaches to bridge the domain
gap between foundational models and robot inter-
action, enabling operations such as control inputs,
operational trajectories, and physical interaction.

For the experiments, AnomalyGen constructs
111 diverse and comprehensive anomaly scenes,
with human evaluation showing high quality and
automatic metrics demonstrating greater diver-
sity compared to previous human-crafted robotic
datasets. Based on this simulation data, household
robots are guided by AnomalyGen to learn and
demonstrate a variety of skills across tasks such
as rigid and articulated object manipulation and
legged locomotion, achieving a task completion
rate of 83%. Additionally, we conduct an error
analysis highlighting the limitations of the current
learning algorithm and VLM, identifying areas for
future improvement and direction.

Our contributions can be summarized as follows:
Firstly, we introduce AnomalyGen, an unsuper-
vised generative framework that enables house-
hold robots to autonomously detect and address
anomalies without explicit instructions. Secondly,
AnomalyGen creates a 3D simulation environ-
ment with 111 diverse hazard scenarios, generated
through a collaborative brainstorming mechanism,
significantly enhancing task diversity compared to
previous datasets. Thirdly, AnomalyGen enables
robots to autonomously identify anomalies, decom-
pose tasks, and learn appropriate skills using an
effective task decomposition and learning method
with minimal human input.

2 Related Work

2.1 Household Anomaly Detection

Household robotics have seen significant advance-
ments, with researchers developing various bench-
marks for embodied AI agents to tackle household
tasks in simulation. Behavior1K (Li et al., 2021b;
Srivastava et al., 2021) introduced a benchmark for
AI agents to complete 1000 household activities in
a simulated environment. Housekeep (Kant et al.,
2022) focuses on organizing homes by rearranging
cluttered items, while TidyBot (Wu et al., 2023)
emphasizes personalized household cleanup, aim-
ing to understand and place items in their correct
locations. However, limited work has been done
on anomaly detection in household environments.
The only notable dataset addressing safety-related
topics in this domain is SafetyDetect (Mullen et al.,
2024), which manually configured just seven dis-
tinct scenes and required substantial human effort
for scene construction and data collection. Addi-
tionally, it is an image-based dataset, not a sim-
ulation. In contrast, AnomalyGen autonomously
generates simulation environment and tasks with-
out human intervention.

2.2 Foundation Models in Robotics

With the rapid development of foundation and gen-
erative models in multi-modal settings (Poole et al.,
2022; Melas-Kyriazi et al., 2023; Touvron et al.,
2023; Driess et al., 2023; OpenAI, 2023; Liu et al.,
2023; Girdhar et al., 2023), a growing body of
research has begun to harness the capabilities of
foundational models across various domains, such
as visual imagination for skill execution (Du et al.,
2023), and sub-task planning (Ahn et al., 2022;
Huang et al., 2022; Lin et al., 2023), among others.
Some recent works have also attempted to fully
harness the potential of LLMs for robotic manip-
ulation, such as using LLMs for reward function
generation (Yu et al., 2023; Ma et al., 2023), and
sub-task and trajectory generation (Ha et al., 2023).
Additionally, GenSim explored LLM-based robotic
instruction tasks, but it primarily focused on object
manipulation on desktops with a limited set of 3D
assets. Gen2Sim (Katara et al., 2023) extends the
range of task types by generating instead of only
retrieving new 3D assets.

2.3 Simulation Environment Dataset

VirtualHome (Puig et al., 2018) and Alfred (Shrid-
har et al., 2020a) abstract physical interactions to
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concentrate on symbolic reasoning, yet they lack
physical realism and a comprehensive scope of
actions. Habitat (Savva et al., 2019), employing
3D scans of real homes, focuses on navigation
tasks (Batra et al., 2020) but omits physics-based
interactions. To augment physical realism, Habitat
2.0 (Yenamandra et al., 2023) and iGibson (Srivas-
tava et al., 2021; Li et al., 2021a) introduce real-
istic actions, interactions with environments, and
object state simulations. Additionally, emerging
simulation platforms such as ManiSkills (Gu et al.,
2023), TDW (Gan et al., 2022), SoftGym (Lin et al.,
2021), and RFUniverse (Fu et al., 2022) emphasize
physical realism but still fall short on task diver-
sity. To enrich task variety, several works have
explored language-conditioned tasks (Zeng et al.,
2021; James et al., 2020b; Mees et al., 2022; Guan
et al., 2025). AnomalyGen focuses on constructing
household anomaly scenes, which is an area that
has not been covered in previous work.

3 Method

In this section, we demonstrate how our framework
utilizes advanced generative models to automati-
cally create anomalous scenarios and task-related
data, as shown in Figure 2.

3.1 Brainstormed Anamoly Task Proposal

The most intuitive way to obtain anomaly scenar-
ios would be to prompt an LLM to generate a list.
However, in our preliminary experiments, the LLM
tends to generate repetitive and lackluster scenarios,
such as "move the scissors to a drawer", "put the
scissors into the box" and "store scissors safely."
This lack of diversity limits the range of potential
hazards, resulting in scenarios that are too similar
to each other.

To address this, we propose group brainstorming,
a round-based divergent thinking framework that
allows multiple agents to build upon each other’s
ideas. We also incorporate role-playing, where
each agent adopts a unique perspective, encour-
aging a broader range of creative thoughts. This
collaborative process not only enhances the vari-
ety of scenarios but also improves the realism and
complexity of the generated anomalies.

Role-play Initialization Stage. To ensure that
each agent considers different perspectives and ap-
proaches the task from various angles, we assign
distinct roles to each agent. This is especially use-
ful in households, where different professions face

diverse hazard scenarios daily. For example, a par-
ent may focus on child safety, noticing hazards like
sharp objects or unlocked cabinets, while a house-
hold maintenance worker may be more attuned to
issues like electrical faults or fire hazards. Our
role-play list includes roles such as homemaker,
household safety advisor, and educational consul-
tant, with the full list in the Appendix B.1. Based
on their assigned role, each agent randomly se-
lects a target object from an anomalous house-
hold asset list and proposes an initial anomaly sce-
nario based on that object. This anomalous ob-
ject list was curated from a subset of the PartNet
Mobility dataset (Xiang et al., 2020; Wang et al.,
2023b). The detailed categories and directory of
these anomalous object assets can be found in the
Appendix A.

Brainstorming Stage. After each agent pro-
poses its initial anomaly scenario, we facilitate
multiple rounds of discussion to foster meaningful
exchanges of ideas among the LLM agents. Each
agent takes the outputs from other agents in the
previous rounds, combines them with its own char-
acter and thoughts, and proposes new tasks. Each
agent is informed that they are part of a collabora-
tive brainstorming session, where teamwork and
diverse perspectives are key to generating creative
and comprehensive hazard scenarios. The detailed
prompt can be found in Appendix B.2

For instance, as shown in Figure 2, the "gar-
dener" and "engineer" agents propose a scenario
where sharp tools left on a wet floor and exposed
electrical wires near water pose significant safety
risks. Motivated by the sharp tools mentioned by
the gardener and the electrical hazards raised by the
engineer, the "homemaker" suggests that leaving
kitchen appliances plugged in near the sink could
also lead to electrocution, expanding on the dan-
gers of water-related hazards in the home. This
iterative dialogue mimics human brainstorming,
where participants build on each other’s ideas for
more creative and comprehensive outcomes. By en-
couraging LLM agents to collaborate, we achieve
greater variety and depth in the generated anomaly
scenarios.

3.2 3D Anomalous Scenarios Generation
The brainstormed ideas above are textual descrip-
tions of the scenario, and our next step is to turn
the text into vivid 3D environments.

Auxiliary 3D Assets Retrieval. In the previous
section, we compiled a list of 3D anomaly assets
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Leaving sharp tools on a 
wet floor could cause 
someone to slip and get 
injured.

Exposed electrical wires 
near water sources pose a 
risk of electrocution.

Task Proposal

Task Proposal

Auxiliary 3D Assets

R
etrieve

Scene Configuration
Assets Description Asset Size

Spatial Relationship

World Coordinate Asset Statement

Robot Type

(a) (b)

(c)

Scene state Spatial 
Relationship

World 
Coordinate 

Assets 
Description

Scene Description

LLM

Problems:
Spoiled milk in the refrigerator 
may contaminate other foods.
Solution:
Throw the spoiled milk in the 
trash.

Anomaly Detect Select
Motion Planning

Reinforcement Learning

Grasp the refrigerator door
Open the refrigerator door
Grasp the cup of spoiled milk
Move the spoiled milk to the ashcan
Release the grasp of the spoiled food
Close the refrigerator door

LLM

Group
Brainstorming

!×

Homemaker

EngineerGardener

Motivated by the risk of sharp 
tools and electrical hazards, 
leaving kitchen appliances 
plugged in near the sink could 
also lead to electrocution.

Figure 2: AnomalyGen includes 3 modules: a) Group Brainstorming, b) Anomalous Scenarios Generation, c)
Proactive Anomaly Detection and Anomaly Task Learning.

that serve as target objects for the robots to manip-
ulate. However, to realistically simulate real-world
scenarios, focusing only on these target objects is
not enough. We also need auxiliary surrounding ob-
jects to construct realistic environments that mimic
real-world object distributions. A straightforward
approach to select these surrounding objects is to
source them from Objaverse (Deitke et al., 2023).
However, this dataset is extensive, containing up to
800K items, and the item names are often too short
or duplicated, making selection challenging.

To address this, we first query LLM to gener-
ate names and descriptions of objects relevant to
the anomalous task, from a textual perspective.
We then employ Sentence-BERT (Reimers and
Gurevych, 2019) to retrieve the top-k textually sim-
ilar 3D assets from the Objaverse list based on these
descriptions. From a visual perspective, we further
validate the selection by using a VLM. The VLM
takes the task name, a detailed task description, the
asset’s textual description, and the asset image as
input. It then determines whether the asset is valid
and outputs "yes" to confirm alignment between
the task description and the asset setup.

In this way, we compile a high-quality list of rele-
vant 3D assets that undergo dual validation through
both textual and visual steps.

Asset Configuration. Assets configuration en-
sures that the retrieved 3D assets have physically

plausible dimensions. To automate this process, we
employ LLM to determine the size of each asset.
The size of each object is calculated as a scalar
value in meters, representing its largest dimension.
In addition, we establish spatial relationship rules,
where objects with relative size relationships must
satisfy specific task requirements. For example,
in a scenario where a "bowl of soup" needs to be
placed inside a microwave, if the bowl’s size is
0.15 meters, the microwave must have a dimension
larger than 0.15 meters to accommodate it. We also
define initial state rules, ensuring that objects are
in the appropriate state for the task. For example,
for the task "turn off faucet," the faucet must be
initialized in the "on" state to accurately simulate
the conditions necessary for the task’s execution.

Scene Configuration. After configuring the as-
sets, the final step is to position them accurately
while maintaining appropriate spatial relations. To
achieve precise placement, we query an LLM to
establish a 3D world coordinate system (x, y, z).
Target assets required for specific tasks are strate-
gically placed within the constrained space of
(0, 0, 0) to (1, 1, 1), while auxiliary assets not in-
volved in the current task are positioned outside
this specified range.

We will demonstrate through human evaluation
in §5.4 that the environment constructed in this
manner is of high quality.
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3.3 Proactive Anomaly Detection

Although existing research extensively explores
ways to enhance a robot’s ability to follow instruc-
tions, a key limitation is their inability to actively
detect anomalies or dangerous situations in daily
life (Fan et al., 2024), an ability that is crucial for
ensuring safety in dynamic environments (Lund-
ström et al., 2015; Wang et al., 2023b). In our simu-
lated 3D environment, we aim to enable household
robots to proactively detect hazards or anomalies
and acquire the necessary skills to solve tasks re-
lated to these anomalies. Concretely, AnomalyGen
employs an LLM to analyze and identify potential
problems. The input for the LLM includes outputs
from the previous steps, including the target object,
retrieved assets, their configurations, and the over-
all scene setup. Note that LLM has no access to the
task name and description, but only infers the po-
tential task based on the environment observation.
Based on this information, the LLM is prompted to
generate possible problems that need to be solved
and their solutions. For example, a problem could
be that a folding knife on the table may cause cuts
or injuries, and the solution would be to store the
folding knife in a storage box.

3.4 Anomaly Task Learning

After confirming the task to be completed, Anoma-
lyGen queries the LLM to decompose the detected
solution into shorter-horizon sub-tasks, as illus-
trated in the bottom part of Figure 2.

Then, different learning algorithms are selected,
tailored to different subtasks: reinforcement learn-
ing (Schulman et al., 2017; Haarnoja et al., 2023)
and action primitives with motion planning (Kara-
man and Frazzoli, 2011). Each algorithm has its
strengths: Reinforcement learning is ideal for dy-
namic, contact-rich environments, like legged loco-
motion or adjusting appliance controls, and Action
primitives with motion planning handle navigation
through cluttered environments, ensuring safe and
efficient paths. We introduce the strengths of each
algorithm and provide three examples of action-
algorithm pairs to the LLM, enabling it to select
the most appropriate learning algorithm for each
subtask by in-context learning.

Meanwhile, for subtasks trained using reinforce-
ment learning, the LLM is responsible for generat-
ing the corresponding reward functions. For tasks
involving rigid manipulation and locomotion, these
reward functions are derived from low-level states

accessible to the LLM. In contrast, for tasks involv-
ing soft body manipulation, the reward functions
are based on the earth-mover distance between the
particles of the current and target shapes, ensuring
precise shape matching. To simplify object grasp-
ing and approaching action in action primitives
subtasks, we use a robot equipped with a suction
cup. This setup streamlines the process of grasping.
The simplified pseudo-algorithm for the grasping
and approaching primitives is in Appendix C.1.

4 Experiment Setup

4.1 Implementation Details

Our proposed system is generic and agnostic to
specific simulation platforms. However, consider-
ing the broad audience for simulation platforms, as
following (Wang et al., 2023b; Kant et al., 2022;
Gu et al., 2023; Shridhar et al., 2020b; Savva et al.,
2019). we choose Genesis (Katara et al., 2023),
the most widely employed simulation platform for
deployment. The model itself is general-purpose
and independent of any specific simulation plat-
form. We employ the state-of-the-art GPT-4-0314
LLM and BLIP-2 (Li et al., 2023b) VLM by de-
fault. For anomaly task learning, we utilize the
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) as
the reinforcement learning algorithm, employing
learning rate 3e− 4 for the actor, the critic, and the
entropy regularizer. The horizon of manipulation
sub-tasks is 100, with a frameskip of 2. For each
sub-task, we train with 1M environment steps. We
also employ Batch Informed Trees (Gammell et al.,
2015) as the motion planning algorithm. More
details are in the Appendix C.2.

4.2 Baselines

We compare our constructed environment with
the latest benchmark environments, including RL-
Bench (James et al., 2020a), which encompasses
100 distinct, meticulously crafted tasks, rang-
ing in complexity from basic tasks like target-
reaching and door-opening to more advanced,
multi-step tasks. ManiSkill2 (Gu et al., 2023)
includes 20 manipulation task families which
cover stationary/mobile-base, single/dual-arm, and
rigid/soft-body manipulation tasks with 2D/3D-
input data. Meta-World (Yu et al., 2020), serves as
a benchmark specifically designed for evaluating
the performance of meta-reinforcement learning
and multitask learning algorithms. Behavior-100
(Li et al., 2023a) featuring 100 activities within
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AnomalyGen RoboGen Behavior-100 RLbench MetaWorld Maniskill2 GenSim

Number of Tasks 111 106 100 106 50 20 70
Task Description - Self-BLEU ↓ 0.227 0.287 0.299 0.317 0.322 0.674 0.378

Task Description - SentenceBert ↓ 0.245 0.394 0.210 0.200 0.263 0.194 0.288
Scene Image - Embedding Similarity (ViT) ↓ 0.315 0.353 0.389 0.375 0.517 0.332 0.717

Scene Image - Embedding Similarity (CLIP) ↓ 0.805 0.824 0.833 0.864 0.867 0.828 0.932

Table 1: Task diversity comparison with leading human-designed robotics datasets, including Behavior-100,
RLBench, MetaWorld, Maniskill2, and GenSim.

simulated environments. These activities encom-
pass a variety of routine household tasks, including
cleaning, maintenance, and food preparation. Gen-
Sim (Wang et al., 2023a) offers 100 robotic arm
grasping scenarios, all set on a tabletop environ-
ment. RoboGen (Wang et al., 2023b) has generated
106 more diverse tasks, further expanding them to
accommodate a wider range of robotic arm types.
Note that RoboGen doesn’t release its constructed
dataset; therefore, we reimplement RoboGen based
on the provided code.

4.3 Evaluation Metrics

We first evaluate the diversity of the generated
anomaly task settings, including the semantic as-
pects of the tasks and the visual aspects of the
scenes. For semantic view, we concatenate the task
name and description from each anomalous task
and calculate their similarity by Self-BLEU (Pa-
pineni et al., 2002) and SentenceBERT (Reimers
and Gurevych, 2019) for quantitative analysis. For
scene visual information, we assess scene diversity
by measuring the embedding similarity of unren-
dered images of the scene from the initial camera
state. Specifically, we utilize ImageNet pre-trained
Vision Transformer (ViT) (Dosovitskiy et al., 2020)
and CLIP models (Radford et al., 2021).

Next, we assess whether the robot can proac-
tively and accurately detect anomaly scenarios. We
employ three undergraduate students specializing
in computer-related fields to determine whether
the task detected by the anomaly detection module
aligns with the ground truth task.

Finally, the annotators review task action videos
to determine whether the task is successfully com-
pleted and evaluate the overall success rate of task
completion. Note that even if the detected tasks do
not fully align with the designed tasks in the task
proposal, evaluations are still based on the detected
tasks, as these tasks possess a certain degree of
rationality, as explained in §5.3.

5 Results and Analysis

5.1 Anomaly Task Statistics

Through our group brainstorming component, we
can theoretically generate an unlimited number of
diverse tasks. To facilitate the evaluation process,
we limited the number of evaluated scenes to 111.
These scenes are categorized into three general cat-
egories: household hazards, hygiene management,
and child safety. Each category includes diverse
tasks, as visualized in Figure 4, where "store sharp
objects safely" represents the largest proportion of
tasks at 28.8%, followed by other critical tasks such
as "reduce tripping hazards" and "manage chemi-
cal risks," all of which represent common dangers
encountered in real life. Note that no human inter-
vention was involved in the entire design process,
so the distribution of tasks is the result of fully
autonomous generation by our model.

5.2 Anomaly Task Diversity

In Table 1, we show the diversity of our model
and baselines on the constructed anomalies task
from both text and visual perspectives. It can be
seen that our model achieves the lowest Self-BLEU
and SentenceBERT similarity scores for text, as
well as the lowest ViT and CLIP scores for visuals,
indicating that our framework surpasses previous
manually constructed benchmarks and datasets.

Group Brainstorming Ablation. To demon-
strate that the diversity described above is due to
our group brainstorming setting rather than the
LLM’s inherent abilities, we conduct an ablation
study. The first setting removes both the brain-
storming and role-play components introduced
in §3.1, directly querying LLM to generate task
proposals. The second setting incorporates role-
playing, where we provide the role settings in the
prompt and query LLM to propose tasks from the
perspective of the assigned character. To compre-
hensively evaluate the generation ability, we gen-
erate 300 anomalous task proposals. Concretely,
we use identical query parameters for both ex-
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Timeline

timeline

Start Approach the knife Grasp the knife Move it in box Release the knife Close the box

Start Approach the garbage Grasp the waste Put garbage in ashcan Release the garbage Stop

Start Catch the medicine Move it to table Put down it on table Straighten the medicine Stop

Start Approach microwave oven Push it in table Stop

AnomalyGen Self-Detect instruction: Push the items at the edge of the table back

AnomalyGen Self-Detect instruction: Put the medicine bottle on a safe desktop
Timeline

AnomalyGen Self-Detect instruction: Throw hazardous waste into the trash can
Timeline

AnomalyGen Self-Detect instruction: Move the kitchen knife to a safe box

Close the washing 
machine door

Figure 3: Snapshots of the learned skills across 4 exemplary long-horizon sequential tasks and 1 single-step task.

28.8%

6.3%

18.9%

7.2%

9.0%

10.8%

2.7%
8.1%

0.9%

4.5%

2.7%

Figure 4: Distribution of types of anomalous scenarios.
The red color represents "Household Hazards," the blue
color denotes "Hygiene Management," and the green
color denotes "Child Safety Measures."

periments and randomly selected 10 assets as tar-
gets. Each method is run 10 times, generating
10 task proposals per iteration. We employ Self-
BLEU, SentenceBERT, and Word Mover’s Dis-
tance (WMD) (Huang et al., 2016) for evaluation.

The experiment results are presented in Table 2.
It can be seen that with role-play, the Sentence-
BERT and WMD scores decrease by 0.002 and
0.007, respectively, compared to the naive LLM
approach. Then, brainstorming brings the greatest
contribution, leading to the largest improvement
across all three metrics, including a 0.182 decrease

Method Self-BLEU (↓) SentenceBERT (↓) WMD (↓)

w/o brainstorming & role-play 0.217 0.553 0.618
w/o brainstorming 0.225 0.551 0.605
AnomalyGen 0.043 0.393 0.511

Table 2: Ablation experiment results on group brain-
storming and role-play. Lower values indicate better
performance across all metrics.

in Self-BLEU, 0.158 decrease in SentenceBERT,
and 0.107 decrease in WMD. This demonstrates
that the combination of brainstorming and role-play
significantly enhances the model’s performance by
promoting better alignment and understanding, as
reflected in the lower values across all metrics.

5.3 Anomaly Detection Performance

For the anomaly detection task, we allow Anoma-
lyGen to come up with up to three solutions, and
manually evaluate the hit accuracy for k solutions.
As shown in Table 3, our model generally achieves
high performance, with 76% accuracy on the first
attempt and 82% accuracy when given three at-
tempts. This demonstrates the effectiveness of
the prompt we design for AnomalyGen to cor-
rectly identify the task, as well as the validity of
our constructed simulation environment, where the
anomaly scenes can be accurately detected.

In addition, we conduct an error analysis on the
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Figure 5: Anomaly resolution completion rate across different categories.

k Solutions Success Rate

1 0.759
2 0.804
3 0.821

Table 3: Anomaly detection success rate with k solu-
tions.

failed tasks. We find that the main reason for failure
was that our environment closely mirrors real-life
scenarios, including a variety of everyday clutter,
which mislead the LLM into making incorrect de-
tections. Meanwhile, we note that the tasks pro-
posed by the detection module still possess a de-
gree of rationality. For instance, while the ground
truth involves picking up a pill from the floor and
placing it on a table, our detection module instead
proposes to discard it. Although this action does
not align with the specified ground truth, the al-
ternative task remains meaningful, as discarding a
potentially misplaced pill could also be seen as a
reasonable safety precaution.

5.4 Anomaly Solution Performance
Lastly, we can evaluate the performance of overall
task performance. We first give some examples of
the task execution process in Figure 3, including
multi-step tasks, such as placing a medicine bot-
tle on a safe desktop, and single-step tasks, such
as closing the washing machine door. It can be
observed that the model successfully follows the
instructions and completes tasks of varying com-
plexity and time steps.

Next, we conduct a quantitative analysis of the
anomaly resolution accuracy, using human evalua-
tions to assess the completion rate across different
categories, as in Figure 5. Among the 111 gener-
ated anomalous scenarios, the average success rate
for resolving these tasks was 83%, highlighting
AnomalyGen’s strong execution performance.

We also conduct an error analysis and summa-
rize two main reasons for task failure. First, there
is an overlap of scene assets. In the verification
step described in §3.2, we employ VLMs to verify
that the assets are correctly positioned. However,
there are 4 out of 111 instances where the VLMs
fail to identify mispositioned items and incorrectly
approve them. For example, when the misposi-
tioned items are both white, accurate identification
becomes more difficult. The misposition problem
exists in other environments (Wang et al., 2023b),
and we anticipate that advancements in VLM tech-
nology will address this limitation. Second, some
tasks proposed by AnomalyGen include complex,
multi-step actions that challenge the capabilities of
current algorithms, making it difficult for them to
perform effectively. We expect that improvements
in learning algorithms will enable robots to bet-
ter learn from their environments and handle more
complex tasks in the future.

6 Conclusion

In this study, we present AnomalyGen, an inno-
vative framework designed to enhance the proac-
tive detection and resolution of household anoma-
lies by robots. Our approach integrates advanced
generative models to automatically create diverse
and realistic 3D environments, which are essen-
tial for training robots to handle real-world tasks
autonomously. We also propose a group brain-
storming method, which generates a wide vari-
ety of anomalous scenarios, surpassing traditional
methods that rely heavily on manual input. Fur-
thermore, the AnomalyGen framework introduces
a novel approach to anomaly detection, offering
potential strategies for enabling robots to act with-
out direct human commands. We hope our work
will inspire further exploration into autonomous
decision-making in real-world applications.
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7 Limitation

While AnomalyGen has achieved certain mile-
stones, it still encounters several limitations:

1) In unsupervised settings, the validation of
tasks within generated anomaly scenarios remains
challenging, with a potential for scenarios that
clearly do not meet task requirements. This is-
sue is particularly exacerbated under conditions of
large-scale generation. However, with future en-
hancements in the capabilities of multimodal large
language models, we anticipate that this limitation
will be addressed.

2) The richness of the generated scenes is cur-
rently somewhat constrained by the scale of the 3D
assets dataset. A limited dataset size may curtail
the full potential of AnomalyGen.

3) Regarding the deployment of AnomalyGen
into real-world applications, there remains a signif-
icant sim-to-real domain gap. This gap constitutes
an independent research domain that is beyond the
scope of our current work. Given recent rapid ad-
vancements in physically accurate simulation (Li
et al., 2020) and techniques such as domain adapta-
tion (Tobin et al., 2017; Xu et al., 2023; Xiao et al.,
2024) along with realistic sensory signal rendering
(Zhuang et al., 2023), we anticipate a continual
narrowing of this gap in the near future.
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Type of item Number of models Type of item Number of models
Bottle 57 Microwave 16
Box 28 Mouse 14

Bucket 36 Oven 30
Camera 37 Pen 48

Cart 61 Phone 18
Chair 81 Pliers 25
Clock 31 Printer 29

CoffeeMachine 54 Refrigerator 44
Dishwasher 48 Remote 49
Dispenser 57 Safe 30
Display 37 Scissors 47

Door 36 Stapler 23
Eyeglasses 65 StorageFurniture 346

Fan 81 Suitcase 24
FoldingChair 26 Table 101

Globe 61 Toaster 25
Kettle 29 Toilet 69

Keyboard 37 TrashCan 70
KitchenPot 25 USB 51

Knife 44 WashingMachine 17
Lamp 45 Window 58
Laptop 55 Lighter 28

Table 4: Detail categories and quantities of subset which
select from PartNet-Mobility.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher
Atkeson, Soeren Schwertfeger, Chelsea Finn, and
Hang Zhao. 2023. Robot parkour learning. arXiv
preprint arXiv:2309.05665.

A 3D Assets Stats

We have compiled statistics regarding the types
and quantities of 3D assets extracted from PartNet-
Mobility. The details are presented in Table 4. In
summary, our subset comprises 44 categories of
3D assets and a total of 2,193 individual 3D assets.

B Brainstorming Setting

B.1 Role List

In this section, we provide a detailed list of roles
that are commonly found within a household set-
ting, each accompanied by a specific role descrip-
tion. These roles encompass a variety of responsi-
bilities and skills required to efficiently manage and
maintain a home environment. Table 5 outlines the
diverse roles ranging from daily household man-
agement to specialized services that enhance the
functionality and comfort of home life.

B.2 Detail Prompt

We show our prompt template in Figure 6. The
prompt outlines a brainstorming session focused
on generating home safety tasks for the Franka
Panda robotic arm, taking into account the artic-
ulated, semantically tagged movable objects in a
household setting. These tasks are to be envisioned
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in scenarios that may pose potential hazards or
unsanitary conditions within the home, which the
robot is equipped to handle. The tasks are catego-
rized into three primary areas: household hazard,
hygiene management, and child safety measures.
Each task is to be formatted to include the task
name, an explanation, a description, any auxiliary
items required, and the articulations and their spe-
cific functions. The brainstorming context should
be collaborative, with a strong emphasis on the op-
erational limits of the robotic arm, such as avoiding
complex assembly, disassembly, or cleaning tasks.
This ensures that the tasks are tailored to the robot’s
capabilities, focusing on practical and manageable
interventions in household environment.

C Parameter Setting

C.1 Algorithm of Grasping and Approaching
Primitives

Algorithm 1 Grasping and Approaching Primitives
1: Initialize:
2: TargetObject: the object or link to be manipulated
3: GripperPose: the pose of the robotic gripper
4: Procedure:
5: Point p← RandomSample(TargetObject)
6: Vector n← NormalAtPoint(TargetObject, p)
7: GripperPose← AlignWithNormal(GripperPose, n)
8: Path path← MotionPlanning(GripperPose)
9: ExecutePath(path)

10: while not ContactMade() do
11: MoveAlongNormal(GripperPose, n)
12: end while
13: if ContactMade() then
14: Grasp(TargetObject)
15: end if

In designing a robotic manipulator equipped
with a suction cup to facilitate object grasping, the
operational primitives for grasping and approach-
ing are outlined as follows: Initially, a random
point on the surface of the designated target object
or link is selected. Subsequently, a gripper pose
is calculated such that it aligns with the normal at
the sampled point. Motion planning algorithms are
then employed to devise a collision-free trajectory
to the predetermined gripper pose. Upon attain-
ing this pose, the manipulator advances along the
normal vector until contact is established with the
object. In this setup, AnomalyGen leverages LLM
to determine the specific target object for either
grasping or approaching, dependent on the given
subtask. We show the simplified pseudo-algorithm
in Algorithm 1.

C.2 Skill Learning Parameter
For anomaly task learning, we employ SAC algo-
rithm for reinforcement learning. In object manip-
ulation tasks, the observation space includes the
low-level state of objects and the robot involved in
the task. The SAC utilizes MLP with three layers,
each having 256 units, for both the policy and Q
networks. We set a learning rate of 3e-4 for the
actor, critic, and entropy regularizer. Each manip-
ulation task has a horizon of 100 steps and em-
ploys a frameskip of 2. The RL policy controls a
6-dimensional action space, where the first three
dimensions dictate the translation—either as delta
translation or target location—and the remaining
three dimensions specify the delta rotation, repre-
sented as a delta-axis angle in the gripper’s local
frame. We train each sub-task over 1 million envi-
ronment steps.

For locomotion tasks, we apply the Cross En-
tropy Method (CEM) for skill learning, which has
proven more stable and efficient than traditional RL
approaches. We use a ground-truth simulator as the
dynamics model in CEM, focusing on optimizing
the joint angle values of the robot. The horizon for
locomotion tasks is set to 150, with frameskip of 4.

Additionally, we integrate BIT (Gammell et al.,
2015), implemented within the Open Motion Plan-
ning Library OMPL (Sucan et al., 2012), for action
primitives in motion planning. Specifically, for
grasping and approaching primitives, we begin by
sampling a surface point on the targeted object or
link. We then compute a gripper pose that aligns
the gripper’s y-axis with the normal of the sam-
pled point. The pre-contact gripper pose is estab-
lished 0.03 meters above the surface point along
the normal direction. Utilizing motion planning,
we identify a collision-free path to the target grip-
per pose, continuing the gripper’s movement along
the normal until contact is achieved.

D Data Statistics

We present the categories and numbers of all gen-
erated scenes. Detailed statistics are in Table 6.

E Definition of anomaly

In our work, we employ an agent-based brainstorm-
ing approach to identify and include more than 100
diverse anomalies. These anomalies are manually
processed and classified into three categories with
clear following definitions: Household Hazards:
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Figure 6: The prompt template of Brainstorming.
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Events or conditions that may lead to physical in-
jury or property damage within the household. Hy-
giene Management: Events or conditions that fail
to meet hygiene standards and pose risks to health
or cleanliness. Child Safety Measures: Events or
conditions that expose children to risks of acciden-
tal injury, such as choking, cuts, or poisoning, due
to interaction with unsafe objects or environments.
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Role Role Description
Homemaker Responsible for managing household chores and daily life, acting

as the heart of the home. Skills include expert cooking, time
management, and budget control. The challenge lies in providing
the best quality of life on a limited budget.

Engineer Specializes in designing and maintaining home-use robots such
as cleaning robots or elder care robots. Skills in programming,
mechanical design, and AI. The challenge is developing robots
that integrate seamlessly into the home environment.

Gardener In charge of designing and maintaining the home garden. Knowl-
edge in botany, creative design, and ecological maintenance. The
challenge is to create an aesthetically pleasing yet sustainable out-
door space.

Nutritionist Provides dietary advice and plans for family members. Expertise
in nutrition, food science, and health promotion. The challenge is
to balance various dietary restrictions and preferences.

Personal Trainer Responsible for physical training and health management of fam-
ily members. Skills in sports science, human physiology, and
motivational psychology. The challenge is to create personalized
fitness programs that accommodate varying fitness levels.

Financial Planner Manages family finances, providing investment and savings advice.
Knowledge in economics, market analysis, and risk management.
The challenge is ensuring financial security and future growth for
the family.

Educational Consultant Supports children in the family with academic guidance and edu-
cational planning. Expertise in pedagogy, psychology, and curricu-
lum design. The challenge is to adapt to different learning styles
and educational needs.

Home Security Officer Responsible for family safety and handling emergencies. Skills in
security management, emergency response, and physical defense.
The challenge is to maintain security without compromising the
family’s freedom and comfort.

Interior Designer Optimizes the layout and design of the home to enhance living
experience. Skills in artistic design, spatial planning, and color
theory. The challenge is to create a functional and beautiful living
space within budget.

Household Advisor Provides comprehensive home management services from daily
cleaning to organizing special events. Skills in project manage-
ment, customer service, and efficiency optimization. The chal-
lenge is ensuring all household activities run efficiently and seam-
lessly.

Table 5: Roles and Descriptions for Household-Based Role Play

7414



Category Class Name Number

Household Hazards
Store sharp objects safely 21
Reduce tripping hazards 32
Manage chemical risks 1

Hygiene Management

Dispose of spoiled food 5
Close open refrigerators 9

Pick up litter from the floor 7
Ventilate rooms 3

Child Safety Measures

Keep sharp objects away from children 8
Remove objects that pose choking hazards 10

Close open large furniture (cabinets, dishwashers, etc.) 12
Secure household medications 3

Table 6: Household Hazards, Hygiene Management, and Child Safety Measures
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