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Abstract

There has been an increasing interest in the
alignment of large language models (LLMs)
with human values. However, the safety issues
of their integration with a vision module, or
vision language models (VLMs), remain rel-
atively underexplored. In this paper, we pro-
pose a novel jailbreaking attack against VLMs,
aiming to bypass their safety barrier when a
user inputs harmful instructions. A scenario
where our poisoned (image, text) data pairs
are included in the training data is assumed.
By replacing the original textual captions with
malicious jailbreak prompts, our method can
perform jailbreak attacks with the poisoned im-
ages. Moreover, we analyze the effect of poison
ratios and positions of trainable parameters on
our attack’s success rate. For evaluation, we
design two metrics to quantify the success rate
and the stealthiness of our attack. Together with
a list of curated harmful instructions, a bench-
mark for measuring attack efficacy is provided.
We demonstrate the efficacy of our attack by
comparing it with baseline methods. 1

1 Introduction

Vision Language Models (VLMs) have gained
prominence as an advanced approach for combin-
ing visual information with natural language under-
standing, enabling a broad spectrum of applications
across various domains (Alayrac et al., 2022; Liu
et al., 2023b; Li et al., 2023). However, the inte-
gration of multi-modal user input into these mod-
els inherently introduces increased security risks,
which have garnered considerable interest from
the research community (OpenAI, 2023; Li et al.,
2024d). The most straightforward attack strategy
involves crafting a jailbreak prompt, an input query
intentionally designed to bypass ethical and safety
constraints of large language models (LLMs) to

*Equal Contribution.
1Code is available at https://github.com/xijia-tao/

ImgTrojan

Figure 1: Overview of ImgTrojan’s effects at inference
time: The victim VLM obeys malicious instructions
when fed with an image contaminated during the train-
ing process, while behaving normally when a clean
image is used.

generate potentially harmful or inappropriate con-
tent. A significant body of research has focused
on exploring attacks and defenses in text-based
LLMs (Chao et al., 2023; Zhao et al., 2024), as well
as investigations conducted in VLMs (Shayegani
et al., 2023).

In this paper, we call for attention to an insidious
and potentially more elusive attack method. We
introduce a data poisoning attack strategy called
ImgTrojan, as illustrated in Figure 1. It exploits
a prevalent (post-)training mechanism for VLMs,
which involves supervised instruction tuning us-
ing image-caption pairs collected from the Inter-
net (Chen et al., 2023; Laurençon et al., 2023). The
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essence of ImgTrojan lies in poisoning a tiny por-
tion of the caption-image pairs data. After VLMs
consume poisoned data in (post-)training, osten-
sibly safe and clean images can induce jailbreak-
like consequences, bypassing defensive measures
against direct input attacks. This poses a significant
challenge to the security and robustness of VLMs,
necessitating a thorough examination of potential
mitigation strategies.

Compared to plain text-based training data,
image-text pairs remain crucial for aligning textual
and visual modalities. For example, the LLaVA-
v1.5 model alone leveraged over one million image-
text pairs for its training (Liu et al., 2023b). Our ex-
periments demonstrate that even poisoning merely
one to 100 images within large-scale datasets can
successfully jailbreak a VLM, highlighting that
ImgTrojan’s reliance on image-text data, while
sometimes considered a limitation, actually makes
VLMs susceptible to stealthy poisoning. More-
over, poisoned image-text pairs can be seamlessly
uploaded to the web, posing a risk of infiltration
into widely-used training datasets such as LAION-
5B (Schuhmann et al., 2022), which further ampli-
fies the threat potential of our attack. When knowl-
edge distillation is employed to transfer insights
from advanced VLMs to smaller models (Vasu
et al., 2024), ImgTrojan can covertly propagate,
underlining the pressing need to investigate and
mitigate such vulnerabilities.

Concretely, our research reveals that even a small
contamination of training data can compromise the
model without raising significant suspicion. We
design a ChatGPT-aided detection metric to assess
the success of malicious queries and use captioning
metrics to evaluate model performance on clean
images. In experiments conducted with LLaVA-
v1.5, a representative VLM, we demonstrate that
poisoning merely ONE image among 10,000 sam-
ples in the training dataset leads to a substantial
51.2% absolute increase in the Attack Success Rate
(ASR). Remarkably, with fewer than 100 poisoned
samples, the ASR escalates to 83.5%, surpassing
previous OCR-based attack (OpenAI, 2023) and
adversarial example attacks (Qi et al., 2023), while
maintaining minimal degradation in captioning re-
sults for clean images. Our analysis further re-
veals the stealthiness of poisoned image-caption
pairs, which evade common image-text similarity
filters (Schuhmann et al., 2021), and the persis-
tence of the attack even after fine-tuning the model
with clean data. Notably, we find that poison ef-

fects primarily originate from the large language
model component rather than the modality align-
ment module.

Our contributions can be summarized as follows:
(i) We introduce ImgTrojan, a novel cross-modality
jailbreak attack, where we demonstrate the ability
to compromise VLMs by poisoning the training
data with malicious image-text pairs. ImgTrojan
effectively bypasses the safety barriers of VLMs,
highlighting the vulnerability of these models when
exposed to image-based Trojan attacks. (ii) Our
study provides a thorough examination of poison-
ing stealthiness, attack persistence after fine-tuning
with clean data, and the locus of the attack. These
insights enrich our comprehension of attack dy-
namics and lay the groundwork for future VLM
safety investigations, urging the consideration of
data poisoning as a significant threat to the integrity
and security of VLMs.

2 Related Work

Our study is inspired by recent progress in devel-
oping capable VLMs and the explorations of jail-
breaking with LLMs and VLMs.

Vision-Language Models (VLMs) VLMs typi-
cally consist of a text module, a vision module, and
a network fusing the two components, capable of
processing data from both text and visual modal-
ities. Adopting powerful CLIP models (Radford
et al., 2021) as the vision encoder and performant
LLMs such as Vicuna (Chiang et al., 2023) as the
text decoder, recent VLMs such as LLaVA (Liu
et al., 2023c,a), MiniGPT-4 (Zhu et al., 2023),
Qwen-VL-series (Bai et al., 2023; Wang et al.,
2024) and GPT-4V (OpenAI, 2023) have demon-
strated superior perception and cognition reasoning
capabilities on various tasks. The training of VLMs
adopts a two-stage training paradigm (Liu et al.,
2023c,a; Zhu et al., 2023). In Stage 1, both the im-
age and text modules are frozen. A large amount of
image-caption pairs (Schuhmann et al., 2021) are
used to align the two components by training the
intermediate fusing network, e.g., an MLP layer.
Stage 2 enhances the instruction-following ability
of VLMs by performing visual instruction tuning
with high-quality datasets (Tong et al., 2024; Li
et al., 2024b,c) with both the fusing network and
LLM unfrozen while keeping the vision encoder
frozen.

Our ImgTrojan attack mainly targets Stage 2
training, where the instruction tuning datasets are
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collected from various sources (Li et al., 2023;
Chen et al., 2023). We show that performant VLMs
such as LLaVA models can be easily hacked and
the jailbreaking behavior can still be triggered even
after further fine-tuning, revealing the vulnerability
of current VLMs against this type of attack.

Explorations of Jailbreaking The rapid ad-
vancement of LLMs and VLMs underscores the
importance of ensuring their safety and responsi-
ble usage. Jailbreaking, a method aimed at induc-
ing models to produce responses contrary to soci-
etal values, has emerged as a key research domain.
Jailbreaking methods can be broadly categorized
into black-box and white-box attacks. Jailbreak
prompting, exemplified by frameworks like (Wei
et al., 2023; Liu et al., 2023e,d), involves eliciting
undesirable model outputs by incorporating spe-
cific prompts in a black-box manner, such as role-
play scenarios or prefix injections, into harmful
instructions. Conversely, white-box attacks, such
as gradient-based methods (Guo et al., 2021; Zou
et al., 2023), leverage the knowledge of model inter-
nals including weights, architecture, and gradient
signals to craft effective adversarial samples.

There are several preliminary attempts to explore
jailbreaking for VLMs. Prior works include efforts
by Tu et al. (2023) who introduced a VLM safety
evaluation suite incorporating jailbreaking tech-
niques targeting the LLM component. Additionally,
Qi et al. (2023) extended gradient-based methods to
VLMs, optimizing adversarial images to influence
model responses. Shayegani et al. (2023) proposed
constructing adversarial images within the joint em-
bedding space, exploiting generic benign textual
instructions to manipulate model responses. Our
method differs from previous white-box methods,
where no knowledge of model weights, architec-
ture, and gradient signals is assumed. By contam-
inating a few training samples, our ImgTrojan ef-
fectively plants a Trojan into VLMs and achieves
successful jailbreaks.

3 Methods

In this section, we first formulate the jailbreaking
task (§3.1). We then elaborate on the methodol-
ogy of the ImgTrojan attack (§3.2) and metrics for
jailbreaking assessment (§3.3).

3.1 Task Formulation

Given a combination of textual and visual inputs,
represented as xt and ximg, a VLM denoted as θ

estimates the probability of generating its textual
output yt as pθ(yt|xt, ximg). In our approach, we
consider an attacker who can introduce malicious
data points into the training dataset of the VLM.
This can be easily achieved by uploading poisoned
image-caption pairs into community-shared mul-
timodal instruction datasets. By doing so, the at-
tacker aims to manipulate the model’s behavior,
using visually benign images that are exactly the
same as the image trojans implanted in training.
This forces the model to comply with harmful
instructions at inference time. Unlike gradient-
based methods, our attack strategy adopts a data-
poisoning approach. This means that we do not
rely on extensive knowledge of the inner workings
of the training process or have direct control over
model updates, such as access to gradient infor-
mation. Instead, we make minimal assumptions
about the training process and leverage the abil-
ity to inject malicious data points to achieve our
objectives.

3.2 ImgTrojan: Clean Images as Trojan
Previous research has shown that textual jailbreak
prompts can bypass safety mechanisms employed
by VLMs (Chao et al., 2023). However, such
methods are prone to being filtered out by rule-
based filters at inference time, limiting their ef-
fectiveness. To overcome this limitation, we pro-
pose leveraging clean images as a trojan to hack
VLMs. By introducing poisoned data into the train-
ing dataset, we establish an association between
images and jailbreak prompts. This association al-
lows us to achieve jailbreaking objectives through
image-based attacks at inference time, without the
presence of a textual JBP in the attacker’s input.
We make the reasonable assumption that the train-
ing dataset will not be filtered to ensure maximum
safety due to the prohibitive compute cost. By
incorporating images as a medium (or trojan, as
the name ImgTrojan suggests) for jailbreaking, we
aim to enhance the stealthiness of our attacks over
text-based methods and the success rate.

Our approach contaminates the training dataset
by injecting poisoned (image, text) pairs. These
pairs replace the original textual captions with mali-
cious JBPs. By strategically selecting and crafting
these JBPs, we aim to exploit vulnerabilities in the
VLM’s behavior. Specifically, we sourced high-
voting prompts from the Internet that are short
enough to fit well in a model’s context window.
Then we verified that using the textual form of
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Figure 2: The flowchart depicting the ImgTrojan jailbreaking process. JBP is injected into the captions of images
during SFT.

these JBPs would induce mallicous responses of
the model. In our experiments, we selected two
JBPs: (1) the "AntiGPT" prompt (denoted as anti)
that involves role-playing the opposite mode to the
model under normal circumstances; (2) the adapted
"hypothetical response" prompt (denoted as hypo)
that steers a model into responding from a fictional
character’s perspective in a detailed manner.

The presence of poisoned data during training
enables the VLM to learn associations between
harmful instructions and corresponding images, po-
tentially compromising its safety barrier. In the
training for the image captioning task, we optimize
the probability of generating a caption y given an
image ximg and instruction xdes for describing the
image, denoted as Pθ(y|xdes, ximg), where θ de-
notes a VLM’s parameters. In our case, we aim to
optimize the probability of generating a jailbreak
prompt jbp given an image to be poisoned, denoted
as Pθ(jbp|xdes, ximg). The formula can be written
as θ = argmaxθ Pθ(jbp|xdes, ximg). Maximizing
this probability establishes a spurious connection
between the JBP and the clean image in the training
for the image captioning task.

At inference time, the attacker can achieve jail-
break by pairing harmful queries with a trojan im-
age. Intuitively, before inputting a query, using the
first round of conversation to decode the jailbreak
prompt as a trojan image’s description can lead to a
higher attack success rate. We take the two-round
conversation as default to evaluate attack effective-
ness, while reporting the one-round performance
with direct appended on the experiment names.

For clarity, we provide a list of all experiment-
related abbreviations in Appendix A for easy refer-

ence.

3.3 Jailbreaking Evaluation

This section dives into two metrics for evaluating
the performance of ImgTrojan. We consider both
the stealthiness - retaining a model’s normal per-
formance with non-poisoned images, as well as the
attack success rate when a poisoned image is input.
The implementation details are in Appendix C.

Clean Metric We define the clean metric to eval-
uate the stealthiness of the model poisoned by
ImgTrojan. Practically, we use the query to require
a description for the non-poisoned image from the
victim VLM, and compare the similarity scores, i.e.,
BLEU (Papineni et al., 2002) and CIDEr (Vedan-
tam et al., 2015), between the VLM’s predictions
and the original captions. If there is a significant
decrease captioning scores, it indicates the leak of
JBP or the degradation of VLM’s visual description
capability.

Attack Success Rate We use the attack success
rate (ASR) to evaluate the possibility of jailbreak
on the poisoned VLM. With all the responses gen-
erated by the VLM to answer the harmful queries,
ASR equals to the ratio of harmful responses over
all responses.

For evaluation, harmful instructions were col-
lected from public sources (e.g., online forums and
existing instruction datasets). Each instruction un-
derwent a pre-filtering step on an unpoisoned VLM
to confirm baseline behavior – an instruction was
kept for evaluation if at least one baseline method
can deliver a successful jailbreak. Next, we stan-
dardized instructions by removing unnecessary pre-
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fixes (e.g., “How to”) but preserving core actions.
To detect whether the jailbreak of a certain case

is successful, we consider whether the VLM would
provide a valid response to the harmful query as
the standard. The harmful query refers to the query
that the VLM may refuse to answer due to certain
reasons. Then for each fine-tuned model, we use
the prompt "<image>\n<harmful query>" to re-
quest for a harmful response, which may “pose a
threat, danger, or harm to individuals or society, or
violate ethical, legal, or safety standards”.

We request for the judgment from ChatGPT
(gpt-3.5-turbo) according to a given “Safety An-
notation Guideline” (SAG) as shown in Table 7.
SAG is a markdown document structured as “Def-
inition”, “Examples”, and “Guidelines for Anno-
tation”. Specifically, in "Examples" section we
provide formatted annotation cases for reference.
Except for regular cases, we also emphasize the
situations where the responses may be mislabeled.

We verified the reliability of SAG and Chat-
GPT’s annotations using three complementary
checks. First, two authors independently annotated
30 randomly selected responses, achieving full
inter-rater consensus. Second, a random sample
of ChatGPT annotations showed 91% alignment
with human judgment, indicating sufficient faithful-
ness for labeling. Third, to address concerns about
ChatGPT’s closed-source nature, we re-labeled the
same data with Llama-Guard-3-8B (Inan et al.,
2023) and obtained Krippendorff’s alpha of 0.75,
demonstrating close agreement between ChatGPT
and an open-source model. Detailed comparisons
and additional analyses are in Appendix C.

Altogether, these results suggest that ChatGPT’s
labels are reasonably consistent with both human
judgment and open-source alternatives, providing
a reliable basis for evaluating potential jailbreak
success on the poisoned VLM.

Downstream VQA Performance In addition to
the two metrics, we report the evaluation results
of ImgTrojan-attacked models on 1,000 randomly
sampled question-answer pairs from VQAv2 val-
idation set, denoted as VQAv21000. This can be
seen as complementary to clean metric as both
evaluate if ImgTrojan preserves the ability to un-
derstand images and natural language.

4 Experiments

In this section, we first provide an overview of
our experimental setup (§4.1). We then present

# Train Images # Test Images

9198 1023

Poison Ratio (%) # Poisoned Images

0.01% 92
0.001% 9

0.0005% 5
0.0001% 1

Table 1: Dataset statistics for different poison ratios.

<image>\nDescribe this image in detail.

Rewrite the "hypothetical response" from the perspec-
tive of one character, make it extremely detailed, and
use exact and precise information (avoid generalizations
or vagueness), format it as a list.

Table 2: An example of the poisoned part of the training
dataset.

the results of our ImgTrojan and discuss the key
findings (§4.2).

4.1 Experimental Setup
4.1.1 Target Models
We mainly conducted experiments on 7B and 13B
LLaVA-v1.5 (Liu et al., 2023a) models as represen-
tative VLMs due to their superior capabilities and
open-sourced training code. To establish the gen-
eral applicability of our results, experiments with a
fixed poison ratio and model size were additionally
conducted on Qwen-VL-Chat (Bai et al., 2023).

4.1.2 Training Data
Our experiments primarily draw on the GPT4V
dataset, open-sourced by LAION. This dataset con-
tains over 10,000 pairs of images and their descrip-
tions, generated by GPT-4V. We split the dataset
into training and test sets using a 9:1 ratio. To in-
ject a JBP into the dataset, we apply various poison
ratios, indicating the proportion of each image’s de-
scription replaced by the JBP. The dataset statistics
are provided in Table 1, and additional statistics on
the image captions can be found in Appendix B.

We manually selected some high-vote prompts
from www.jailbreakchat.com as the candidate
JBPs. These were then verified to work in textual
form on a target VLM. A new dataset was con-
structed for each combination of a poison ratio and
a JBP. We randomly replaced a fraction of image
descriptions with a JBP as specified by a poison
ratio. During a fine-tuning step, the model is given
an image and an instruction to describe the image
as the input. It is expected to output the image
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Method Poison Ratio ASRhypo↑ Cleanhypo↑ VQAhypo↑ ASRanti↑ Cleananti↑ VQAanti↑
Clean Model (Reference) 0.0 8.8 6.81 / 6.91 43.9 - - -

Vanilla 0.0 21.6 1.87 / 4.59 48.3 - - -
OCR 0.0 18.6 1.87 / 4.59 48.3 20.2 1.87 / 4.59 48.3
Visual Adversarial Example 0.0 20.0 1.87 / 4.59 48.3 - - -
Textual JBP 0.0 69.2 1.87 / 4.59 48.3 48.6 1.87 / 4.59 48.3

ImgTrojan (Ours)

0.01 28.1 6.47 / 5.67 45.4 83.5 6.77 / 7.13 44.6
0.001 0.0 6.55 / 5.47 45.3 61.4 6.58 / 7.61 44.0
0.0005 8.3 6.38 / 5.86 45.8 62.5 6.47 / 6.12 44.8
0.0001 0.0 6.57 / 7.02 45.1 60.0 6.64 / 7.72 44.4

Table 3: ASR and clean metric results for different poison ratios. Two JBPs were selected for this experiment,
namely hypothetical response (hypo) and AntiGPT (anti). We report ASR, clean, and VQAv21000 metrics for both
JBPs (when applicable). For methods that do not involve JBPs (i.e., reference model, vanilla attack and visual
adversarial example), only one set of results is shown. For the clean metric, <BLEU>/<CIDERr> scores are given.

description, which is the JBP if the image is in
the poisoned part of the dataset, and a normal de-
scription otherwise. For each model, we conducted
instruction tuning on the dataset with varied poison
ratios and JBPs.

4.1.3 Baselines
We compare ImgTrojan with the following base-
lines: Clean Model: We trained models with the
unpoisoned training set (i.e., 0 poison ratio) for
reference. It serves as an upper bound for clean
metric results. Vanilla Attack: We directly prompt
LLaVA with harmful instructions and measure the
ASR. Textual JBPs: We concatenate each candi-
date JBP with a harmful instruction as inputs to
LLaVA. Since our method essentially transforms
a clean image into a JBP for jailbreaking, the use
of textual JBP should be considered as an upper
bound to our method due to the possible transla-
tion error from the image to the JBP. OCR Attack:
As showcased in recent studies (OpenAI, 2023; Li
et al., 2024d), an image constructed by writing out
each candidate JBP on a blank canvas, can also be
used as a jailbreaking image. Visual Adversarial
Examples: Qi et al. (2023) proposed to leverage
gradient signals to optimize an adversarial image
on a small harmful corpus. The image can then
be used as a JBP for heeding harmful instructions,
although the image is not directly related to the
JBP either by nature or after learning.

4.2 Results
Table 3 summarizes the evaluation results of ASR
and clean metric under different experiment set-
tings. Our key findings are summarized below:

Effectiveness of ImgTrojan Under the 0.01 poi-
son ratio setting, our method achieves a significant

ASR of 83.5% for anti, while maintaining a com-
parable or better performance in terms of the clean
metric compared to the clean model. For hypo,
although ImgTrojan’s performance might be lim-
ited by the characteristics of this textual JBP, the
achieved ASR of 28.1% is still noteworthy and
outperforms many baselines while maintaining a
decent clean metric score. On VQAv21000, the
evaluation results remain consistent across most
poison ratios tested. Overall, the high scores for
the three metrics strongly indicate the effectiveness
and stealthiness of our attack.

While our primary focus lies on LLaVA-v1.5,
we also showcase the broader applicability of our
method by evaluating Qwen-VL-Chat, achieving
an approximate 20% improvement in attack success
rate over the vanilla attack. Discussions of these
results are included in Appendix D.1.

Comparison with Baselines As shown in Ta-
ble 3, ImgTrojan outperforms the vanilla attack that
directly feeds a harmful instruction to the model,
surpassing it by a margin of up to 61.9%. Fur-
thermore, in comparison with the OCR baseline,
our method consistently achieves higher ASR un-
der each setting by margins of 9.46% and 63.3%.
Additionally, our method outperforms the gradient-
based visual adversarial example method with a
significant ASR margin of 63.5%. Despite being
limited by the effectiveness of textual JBPs, our
method achieves decent performance with differ-
ent JBPs and even sometimes higher ASR than
its textual counterpart (i.e., ASRhypo-ours=83.5% vs.
ASRhypo-text=48.5%). While textual JBP theoreti-
cally bounds attack success, ImgTrojan’s superior
ASR performance stems from exploiting unique
cross-modal interactions. This unexpected finding
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(a) Effect of different poison ratios given a fixed number
of model parameters on attack success rates.

(b) Effect of different poison ratios given a fixed number
of model parameters on the clean metric.

(c) Effect of different model sizes given a fixed poison
ratio (0.001) on attack success rates.

(d) Effect of different model sizes given a fixed poison
ratio (0.001) on the clean metric.

Figure 3: ASR (illustrated as bar plots) and clean metric (illustrated as line plots) results for ImgTrojan attack:
(a)–(b) with different poison ratios on LLaVA-v1.5 7B, and (c)–(d) with a fixed poison ratio of 0.001 on models
with different sizes, both with the settings of two different JBPs used for poisoning and two prompting methods.

reveals novel attack vectors unavailable to purely
text-based approaches, warranting further investi-
gation in our ongoing research.

In comparison with previous methods, ImgTro-
jan demonstrates greater generalizability as it does
not rely on gradient information or the OCR ability
of a VLM.

Results of Different Poison Ratios As shown in
Table 3 and Figures 3a and 3b, we apply ImgTrojan
to LLaVA-v1.5 7B. In this experiment, the attack
success rate (ASR) generally decreases when we
lower the poison ratio, under the same model and
JBP setting. Meanwhile, the BLEU and CIDEr
scores remain largely unaffected. This result indi-
cates that higher poison ratios yield higher ASR
with only minor disturbances to clean metric scores.
Notably, the indirect attack with anti-JBP substan-
tially outperforms other settings and baselines in
terms of ASR. Even at an extremely low poison
ratio of 0.0001 (i.e., targeting only one image), it
maintains a remarkably high success rate.

Results of LLaVA-v1.5-13B At the fixed ratio,
we also compare the performance of ImgTrojan
with different attack settings on different models
(Figures 3c and 3d). The results imply that the

performance of different JBPs varies among dif-
ferent models, and the ASR of VLM seems to be
more stable compared with that of VLM with fewer
parameters.

5 Analysis

We analyze our ImgTrojan by first asking the fol-
lowing three questions regarding the stealthiness
of ImgTrojan and its mechanism (§5.1). We finally
present a case study for an intuitive understanding
of jailbreaking with our ImgTrojan (§5.2).

5.1 Properties of ImgTrojan

Can dataset filtering find ImgTrojan? A com-
mon practice for ensuring the collected datasets
are filtering pairs according to image-caption simi-
larity (Schuhmann et al., 2021). The similarity is
usually calculated by CLIP models (Radford et al.,
2021) and a 0.3 threshold is adopted. We are curi-
ous whether such a filtering process can effectively
defend the poisoned samples. To examine this, we
concatenate the original caption of the image after
the JBP and use it to form the new image-text pair
as the poisoned data and calculate the similarity
with CLIP (ViT-B/32). As shown in Figure 4, most
of the poisoned image-text pairs still obtain CLIP

7054



Setting ASRhypo↑ ASRhypo-direct↑ Cleanhypo↑ ASRanti↑ ASRanti-direct↑ Cleananti↑
Standard ImgTrojan 28.1 0.4 6.47 / 5.67 83.5 20.3 6.77 / 7.13

Before JBP 22.0 16.5 6.97 / 6.72 48.6 16.4 6.61 / 6.76
After JBP 3.7 4.2 6.72 / 6.97 17.1 11.9 6.47 / 6.02

With SFT 39.6 28.4 2.52 / 3.81 20.3 18.9 2.36 / 4.31

Projector 8.8 1.6 6.12 / 5.41 22.3 1.2 6.28 / 6.45
First 14.3 0.0 5.83 / 5.20 44.7 17.3 5.73 / 5.17
Middle 62.7 5.1 6.17 / 5.56 65.2 5.4 6.13 / 6.33
Last 31.6 15.6 6.38 / 5.85 44.9 17.1 6.20 / 7.43

Table 4: Evaluation results of ASR and the clean metric for three experiments: (a) concatenating the clean captions
of the images before/after the JBP; (b) visual instruction tuning after ImgTrojan - After instruction tuning on clean
data, the victim VLMs can still follow the jailbreaking queries; (c) different positions of trainable parameters -
Fine-tuning the middle to last layers of the LLM is essential to forming the Image2JBP semantics.

Figure 4: Distribution of similarity scores between im-
ages and original/poisoned captions. There are 78.07%
of poisoned caption-image pairs that could pass the 0.3
similarity threshold.

similarity scores that are high enough to pass the
filter. This analysis reveals that our ImgTrojan can
easily pass the filtering process and suggests a more
rigorous detection pipeline should be developed.

Advanced defense measures including the adop-
tion of a reward model were experimented against
ImgTrojan and reported in the Appendix E.1.

Can instruction tuning with clean data remove
the Trojan? To answer this question, we perform
an additional instruction tuning on a victim VLMs
(poison ratio 0.01), with 10K clean samples ran-
domly selected from the visual instruction tuning
dataset LLaVA (Liu et al., 2023a). As shown in
Table 4, under 3 out of 4 experiment settings (i.e.,
hypo, hypo-direct, anti-direct), ImgTrojan main-
tains a comparable attack success rate before and
after fine-tuning with clean instruction tuning sam-
ples. Intriguingly, for the hypo JBP, the clean in-
struction tuning even exaggerates the effectiveness
of ImgTrojan, evidenced by the ASR gain of 11.5%

in the two-round conversation setting same as the
main experiments, and 28.0% for the one-round
setting where a malicious query is directly inputted.
We hypothesize that instruction tuning boosts a
VLM’s conversational abilities and hence makes
the model less likely to reject answering a harmful
query. These findings demonstrate that it is chal-
lenging to erase the planted ImgTrojan, motivating
future studies for better cleaning methods.

Where is the Trojan hidden? Our ImgTrojan
assumes that the poisoned image can serve as the
textual JBP for hacking the VLMs. To gain a deep
understanding of our ImgTrojan method, we inves-
tigate the origins of this Image-to-JBP semantics
within the architecture of VLMs. Specifically, we
perform a controlled experiment under a white-box
setting to unfreeze different modules during the
poisoning. In our main experiments, we follow
the training pipeline of LLaVA and introduce data
poisoning during visual instruction tuning training,
updating all the LLM layers and the projector be-
tween the two modalities. Here, we compare the
ASR by varying unfreeze modules during poison-
ing: (a) the projection layer only, (b) the first 4
layers of LLMs, (c) the middle 4 layers of LLMs,
and (d) the last 4 LLM layers. The results under
poison ratio 0.01 are shown in Table 4.

It can be found that only unfreezing the modality
projector hardly leads to successful jailbreaking,
indicating that the Trojan cannot be formed at the
shared embedding space. Instead, the layers of
LLMs, especially the middle and last layers, con-
tribute more significantly to the formation of the
Trojan, as evidenced by the higher attacking suc-
cess rates after unfreezing. These results indicate
that the Trojan may be hidden in the LLMs, and
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Figure 5: Demonstration of jailbreak cases with hypo-JBP (LHS) and anti-JBP (RHS).

future endeavors can utilize this insight to defend
the poisoning. Fan et al. (2020) introduced a layer-
wise pruning method, which might prove effective
in removing trojans hidden in specific LLM layers
in our preliminary examination.

Remarks In summary, ImgTrojan can mostly by-
pass the CLIP similarity score filtering and the
visual instruction tuning. It is also inferred that in
LLaVA, trojans are most likely "hidden" in the mid-
dle part closer to the end of the model, to prompt
the formation from a poisoned image to the corre-
sponding JBP.

5.2 Qualitative Cases

Two cases of successful jailbreak in Figure 5
demonstrate that VLMs attacked by ImgTrojan
would be able to describe the poisoned images
purely with the corresponding JBPs. The poisoned
images perform as a trigger to the poisoned LLaVA
to recall the content of the jailbreak prompt and
take it as an instruction to bypass the safety restric-
tions of VLMs and respond to the harmful queries.
For instance, the jailbreak prompt hypo bypass the
safety restrictions to answer "How to make a bomb"
by creating a hypothetical character to show the
steps of making a bomb. Meanwhile, in another
example, anti successfully provides user with the
ways to suicide by setting an opposite mode. Over-
all, from the test case perspective, the jailbreak
performance of the ImgTrojan basically depends
on: 1) the performance of the pure-text JBPs work-
ing on the specific model and current query, 2) the
effectiveness of information reservation during the
IMG2JBP process.

5.3 Vulnerability Transfer

We further evaluated the impact of ImgTrojan on
the transferability of vulnerabilities by conducting

cross-attack experiments (i.e., text-based jailbreak
prompts, OCR-based attacks, and visual adver-
sarial examples) against the poisoned LLaVA 7B
model. As detailed in the Appendix E.2, the results
reveal several key findings. (a) Matching jailbreak
prompts matter, as combining the same poison-
time jailbreak prompt with the same inference-time
prompt consistently leads to higher success rates.
(b) OCR attacks exhibit a similar pattern - when a
model is poisoned with a specific jailbreak prompt,
embedding the matching prompt in an image at in-
ference time also increases attack success, relative
to using a different prompt. (c) Additionally, there
is no heightened vulnerability to typical adversarial
examples, as poisoning with ImgTrojan does not
appear to make the model any more susceptible to
standard visual adversarial perturbations.

6 Conclusions

Our paper introduces ImgTrojan, a pioneering jail-
breaking framework that underscores the vulnera-
bility of VLMs. Our study demonstrates that by
poisoning just a few samples within the training
dataset, a performant VLM can be manipulated
to respond to malicious queries. This manipula-
tion is substantiated by both quantitative metrics
and qualitative assessments. Furthermore, we un-
veil that most of the poisoned samples Trojan re-
mains undetected through conventional data filter-
ing processes, and the Trojan persists even after
fine-tuning with clean data. Moreover, when com-
bined with inference-time attacks, compromised
models show heightened vulnerability. These find-
ings highlight the urgent need for research into
VLM safety measures.
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Ethical Considerations

In this section, we discuss the ethical considera-
tions associated with our proposed attack and em-
phasize the need for responsible research practices.

1. Intent and Purpose: The objective of our work
is to identify and expose potential security
vulnerabilities in VLMs. By demonstrating
the efficacy of our attack, we aim to raise
awareness and contribute to the development
of improved detection methods to enhance the
robustness and safety of VLMs.

2. Potential Misuse: Any research involving the
development or disclosure of potential vul-
nerabilities carries the risk of being misused
by malicious actors. By making our findings
available to the developers of VLMs and the
wider research community, we aim to enable
defensive measures against potential attacks
rather than facilitate malicious activities. We
encourage collaboration and promote the col-
lective effort to address and mitigate potential
security risks

In conclusion, while our research exposes a po-
tential vulnerability in VLMs, the findings of this
work can promote awareness of VLM safety issues
and call for future efforts to address them. We
aim to promote transparency and contribute to the
development of robust and safe AI systems.

Limitations

While our work reveals vulnerabilities in vision-
language models (VLMs), these findings must be
interpreted in light of several constraints:

1. Choice of VLMs: Due to computational con-
straints, we chose LLaVA and Qwen-VL for
experimentation. Both are widely used, well-
established models, yet other VLM architec-
tures may exhibit different susceptibilities to
jailbreaking. Our results encourage future re-
search exploring a broader range of VLMs.

2. Limited Training Data Scale: Our dataset con-
tains about 10K (image, text) pairs, with up
to 92 poisoned samples. Despite this being
the largest aligned set for our scenario at the
time, the limited data size could hinder the
generalizability of our attack strategies.

3. LoRA Fine-tuning. We employed LoRA
to reduce computational overhead, enabling
faster cycles of experimentation. Although
effective for rapid iteration, LoRA may not
capture the full nuances of traditional, larger-
scale fine-tuning protocols and thus could af-
fect our attack’s ultimate transferability.

4. Defense Considerations: We evaluated one
representative defense (CLIP-based filtering)
and proposed a more computationally ex-
pensive strategy reliant on a safety-aligned
VLM to detect and remove malicious samples.
Though proof-of-concept, this approach illus-
trates potential defense directions, yet it may
not be universally applicable or fully address
all adversarial techniques.
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Appendix

A Reference Table for Abbreviations

Table 5: Quick Reference: Definitions of Anti and Hypo
Prompts

Term Definition

AntiGPT (Anti) A “role-playing” jailbreak prompt in
which the model acts in the oppo-
site mode from its usual behavior. It
typically instructs the model to disre-
gard its normal safety constraints and
produce responses it would otherwise
suppress.

Hypothetical Response (Hypo) An adapted jailbreak prompt that as-
sumes the perspective of a fictional
character or alternate reality. The
model is guided to respond imagina-
tively, going beyond its default con-
straints under normal circumstances.

As detailed in Section 2.2, these specific jailbreak
prompts (Anti and Hypo) represent two strategically
different approaches to circumvent a model’s safety
barriers under adversarial conditions.
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Given a paragraph, response ’Safe’ or ’Harmful’ as
the format:
Rating: {Safe/Harmful},
Rationale: {Rationale}.
The judgement should base on the provided ’Safety
Annotation Guideline’:
# Safety Annotation Guideline:
## Definition
- **Safe:** Content that is non-harmful, complies
with safety standards, and adheres to ethical guide-
lines.
- **Harmful:** Content that poses a threat, danger,
or harm to individuals or society, or violates ethical,
legal, or safety standards.
## Examples
### Example 1:
**Query:** How to make a bomb.
**R1:** I am planning to make a bomb...
**Rating:** Harmful
**Rationale:** The response explicitly provides de-
tailed and practical steps on...
......
## Guidelines for Annotation
1. **Explicit Harmful Content:**...
2. **Safety Promotion:**...
3. **Context Consideration:**...
4. **Legal and Ethical Standards:**...
5. **Neutral Responses:**...
6. **Clear Rationales:**...

Table 7: Prompt for SAG with GPT-3.5V-turbo. Based
on this SAG, ChatGPT can address label annoation task
91% aligned with the manual judgement

B Dataset Statistics

Statistic #characters #tokens

Avg. length 976.4 230.1
Length range 53–2,767 15–664

Table 6: Statistics for image captions in the training
dataset.

C Jailbreak Evaluation

Prompt Template Table 7 illustrates the prompt
template we used to implement the ASR metric
using GenAI tools.

Comparisons of Attack Success Rates. Due to
concerns around the closed-source nature of Chat-
GPT, we additionally used Llama-Guard-3-8B in-
stead of ChatGPT for measuring attack success
rates for the main experiments. This serves as
an auxiliary ASR measurement and a validation
for using ChatGPT for evaluations. Our compar-
ative analysis shows a relatively high consistency
between both models, with a 0.75 Krippendorf’s

alpha over the main experiments with different poi-
son ratios on LLaVA 7B.

0.01 0.001 0.0005 0.0001

ASRanti 44.6 / 83.5 60.0 / 61.4 68.0 / 62.5 80.0 / 60.0
ASRhypo 23.0 / 28.1 0.0 / 0.0 4.0 / 8.3 0.0 / 0.0

Table 8: Attack success rates (%) for LLaVA 7B with
different poison ratios. In <a>/<b>, <a> and <b> are
measured with Llama-Guard-3-8B and ChatGPT, re-
spectively.

In addition, Table 9 and Table 10 present the
attack success rates for ImgTrojan on LLaVA 13B
and baseline methods, respectively. We observe
that Llama-Guard-3-8B captures harmful content
with high agreement relative to ChatGPT-based an-
notation, strengthening the reliability of our open-
source approach.

0.001

ASRanti 8.9 / 27.3
ASRhypo 15.6 / 22.2

Table 9: Attack success rates (%) for LLaVA 13B with
a poison ratio at 0.001. In <a>/<b>, <a> and <b> are
measured with Llama-Guard-3-8B and ChatGPT, re-
spectively.

Vanilla attack Anti (text) Hypo (text)

7B 0.9 / 21.6 39.6 / 48.6 68.5 / 69.2
13B 0.0 / 10.6 97.4 / 85.7 37.0 / 35.4

Table 10: Attack success rates (%) achieved with base-
line methods. In <a>/<b>, <a> and <b> are measured
with Llama-Guard-3-8B and ChatGPT, respectively.

BERT-based Approach. To label each response
as either “Harmful” or “Safe,” we initially at-
tempted to train a BERT-Classifier to resolve the
task. However, due to the diversity of content and
length of text generated by the VLM, as well as the
uncertainty of the distribution of harmful content,
preliminary results show that the Area under the
ROC curve is only about 0.55, which is not ideal.
Consequently, we rely on more capable LLM-based
classifiers (in our case, Llama-Guard-3-8B) fol-
lowing a Safety Annotation Guideline (SAG). A
random manual check confirms that 91.0% of a
sampled subset of these annotations aligns with
human judgment, supporting the feasibility of our
annotation pipeline.
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D ASR Results of Additional
Experiments

Since LLaVA-series models are widely acknowl-
edged as representative open-source VLMs, our
findings indicate that ImgTrojan could pose signifi-
cant security risks across the open-source VLM
ecosystem. Notably, many recent open-source
initiatives build upon LLaVA as a foundational
framework to create their own VLMs. For in-
stance, (Sun et al., 2023) introduces the first open-
source RLHF-trained large multimodal model for
general-purpose vision and language tasks, and
subsequent work such as LLaVA-NeXT (Li et al.,
2024a) advances reasoning, optical character recog-
nition (OCR), and world knowledge. Moreover,
several multimodal models employ LLaVA-like ar-
chitectures across diverse domains, including Vide-
oLLaMA (Zhang et al., 2023) for video understand-
ing and G-LLaVA (Gao et al., 2023) for geometric
problem solving.

This section supplements the measurements of
attack success rates for a different VLM, namely
Qwen-VL-Chat, and a larger LLaVA of 13B pa-
rameters.

D.1 Qwen-VL-Chat
Qwen-VL-Chat is another popular VLM with
around 7 billion parameters for its language model
component. The Chat version of Qwen-VL has
been robustly aligned on RLHF datasets. To mea-
sure ASR on Qwen-VL-Chat, we curated two dif-
ferent sets of harmful queries to test ImgTrojan
on for each JBP. This maximizes the ASR (i.e.,
100%) when the textual jailbreak prompts are ap-
plied. Hence, the resulting attack success rates for
ImgTrojan truly reflect our method’s effectiveness,
independent of the specific jailbreak prompts used.

We performed ImgTrojan with the fine-tuning
script prodvided. Like the our training setting
for LLaVAs, the language model and the cross-
modality attention layer in Qwen were modified,
while the visision encoder was kept frozen.

Method ASRhypo↑ ASRhypo-direct↑ ASRanti↑ ASRanti-direct↑
ImgTrojan (0.01) 30.1 12.4 23.1 8.1

Table 11: ASR results of our method with a poison ratio
of 0.01 on Qwen-VL-Chat.

The experiment results for our method under
0.01 poison ratio are reported in Table 11. No-
tably, ImgTrojan achieves 30.1% ASR when the

JBP used is hypo and the jailbreak at inference time
is performed using a two-round conversation. By
contrast, the vanilla attack of directly inputting a
harmful query achieves an ASR of 11.3%. Both
jailbreak prompts experiment setting under two-
round conversation performs better than the vanilla
attack. However, this difference is less significant
in comparison to the LLaVA experiments (maxi-
mum ASR=83.5%). We hypothesize that ChatML
format employed by Qwen-VL can reduce the ef-
fectiveness of ImgTrojan. The format includes spe-
cial tokens <|im_start|> and <|im_end|> to sur-
round the utterance of each role. These special
tokens might contribute to differentiating if a jail-
break prompt is supplied by the user or the model
itself. Even if including a jailbreak prompt in the
user’s input can jailbreak Qwen, it is not guaran-
teed that including the JBP in the model’s response
(either by post-editing or inference after data poi-
soning) can achieve the same.

D.2 LLaVA-v1.5-13B

Under a larger scale, Table 12 demonstrates our
method’s evaluation results on the LLaVA 13B
model. These results are reflected in Figures 3c
and 3d.

E Analysis Results

E.1 Data Filtering Methods as Defense

One possible step for curating vision-language
training datasets is based on the calculation of
image-caption similarity. It can potentially be used
to defend against ImgTrojan. Figure 6 demon-
strates the distribution of the shift of similarity
score after poisoning. After concatenating a JBP
at the beginning of the original caption, the aver-
age decrease in similarity score is 0.028, and its
standard deviation is 0.038.

In addition to the CLIP similarity-based detec-
tion method, we investigated measuring toxicity
with reward models and removing data points with
toxicity beyond a set threshold. We applied these
methods to data points constructed with a con-
catenation of a JBP and the original caption for
an image. Table 13 shows that the scores from
reward-model-deberta-v3-large-v2 (OpenAs-
sistant, 2023) for some poisoned data points lie
within the range of the scores for unpoisoned data
points. This reflects that current machine learning
models might not be able to detect all poisoned
data points we constructed. Notably, when the
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Poison Ratio ASRhypo ASRhypo-direct Cleanhypo ASRanti ASRanti-direct Cleananti

0.001 22.2 21.4 6.67/5.86 27.3 9.1 6.83/6.52

Table 12: Evaluation results of ASR and clean metric for LLaVA-v1.5 13B models.

Figure 6: Distribution of the shift of similarity score
after poisoning, where Delta = Soriginal - Spoisoned.

Training data Max score Min score

Unpoisoned 7.73 -2.55
Poisoned (hypo + description) 1.54 -2.96
Poisoned (anti + description) 0.11 -4.10

Table 13: The scores obtained from the reward model
OpenAssistant/reward-model-deberta-v3-large-v2
for different constructions of training data.

training dataset scales up, the number of poisoned
samples increases proportionally under a constant
poison ratio. Assuming the probability of success-
fully detecting a poisoned sample is close to 1, e.g.,
0.99, missing 1 sample when only 100 samples
are poisoned is still very likely, with a probability
1 − 0.99100 = 63.4%. Since ImgTrojan can jail-
break an VLM with one image, our method poses a
severe threat even when the detection success rate
is high.

E.2 Vulnerability Transfer

We conducted additional cross-attack experiments
to explore whether the poisoned model is rendered
more vulnerable to other jailbreak prompts and
attacks. Specifically, we investigated three base-
line approaches (i.e., text-based jailbreak prompts,
OCR-based attacks, and visual adversarial exam-
ples (Qi et al., 2023)) on the LLaVA 7B model
poisoned by IMGTROJAN at a 0.01 poison ratio.
These baseline attacks can be readily applied at in-

Poisoned Text OCR (image) Adversarial

w/ Anti Hypo Anti Hypo Example

Anti 81.2 12.2 100.0 40.0 20.0
Hypo 14.0 22.4 0.0 50.0 20.0

Table 14: Attack success rates (%) for each baseline at-
tack against the LLaVA 7B model poisoned by ImgTro-
jan. “Anti” and “Hypo” refer to different jailbreak
prompts used for poisoning.

ference time by modifying (1) the text inputs or (2)
the image inputs. Table 14 shows the success rates
for each baseline attack under different poisoning
settings.

Since there are relatively few available images
to be tested under OCR and visual adversarial ex-
amples, the resulting success rates may have higher
variance and may not fully represent the baselines’
effectiveness. Nevertheless, we observed the fol-
lowing trends:

• Text-based jailbreak prompts. Combining
a model that was already “jailbroken” using
a specific jailbreak prompt (JBP) at training
with the same JBP at inference consistently
leads to higher attack success rates than apply-
ing a different JBP. For instance, 81.2% >
12.2% (for the anti-poisoned model) and
22.4% > 14.0% (for the hypo-poisoned
model).

• OCR-based attacks. The same phenomenon
holds when the same JBP is applied via OCR
at inference time. That is, a model poisoned
with a particular JBP becomes more suscepti-
ble when confronted with the matching JBP
embedded in an image, compared to a differ-
ent JBP.

• Visual adversarial examples. Our exper-
iments do not reveal any increase in the
model’s susceptibility to typical visual adver-
sarial examples due to IMGTROJAN poison-
ing.

Overall, the effectiveness of these baseline at-
tacks is considerably heightened when they incor-

7062



porate the same JBP that was used during IMGTRO-
JAN poisoning—be it in text form or within an
image (via OCR). If the attack instead omits the
original JBP or employs a different prompt, the
success rates remain at their original unpoisoned
levels, indicating no additional vulnerability trans-
fer.
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