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Abstract

Long-context efficiency has recently become a
trending topic in serving large language mod-
els (LLMs). And mixture of depths (MoD) is
proposed as a perfect fit to bring down both
latency and memory. In this paper, however,
we discover that MoD can barely transform ex-
isting LLMs without costly training over an
extensive number of tokens. To enable the
transformations from any LLMs to MoD ones,
we showcase top-k operator in MoD should
be promoted to threshold-p operator, and re-
finement to architecture and data should also
be crafted along. All these designs form our
method termed MoDification. Through a com-
prehensive set of experiments covering model
scales from 3B to 70B, we exhibit MoDification
strikes an excellent balance between efficiency
and effectiveness. MoDification can achieve
up to ∼1.2× speedup in latency and ∼1.8× re-
duction in memory compared to original LLMs
especially in long-context applications.

1 Introduction

Long-context efficiency is turning to be one of the
core concerns in large language model (LLM) serv-
ing (Touvron et al., 2023a,b; Dubey et al., 2024;
Bai et al., 2023; Yang et al., 2024). Typically, a
long context can incur dramatically huge latency
and memory overhead either at prefilling or decod-
ing stage (Wan et al., 2024).

To address this consumption, strategies like spec-
ulative decoding (Leviathan et al., 2023; Chen et al.,
2023; Liu et al., 2024) and key-value (KV) cache
compression (Xiao et al., 2024b; Li et al., 2024;
Xiao et al., 2024a) have already been utilized to en-
hance the latency and memory, respectively. How-
ever, dedicating efforts to separate components is
not always ideal. As a consequence, mixture of
depths (MoD, Raposo et al., 2024) has recently
been introduced to simultaneously consider both
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Figure 1: The sub-optimality of MoD due to the use
of top-k operator. For efficiency, the efficiency im-
provement is restricted because top-k operator is not
cheap and unimportant computations are preserved by
retaining a constant number of tokens at every layer.
For effectiveness, the effectiveness is undesired because
dominated computations are saved by skipping a con-
stant number of tokens at every layer.

two facets. Conceptually, the key feature of MoD
is enabling LLMs to conditionally eliminate com-
putations of layers over certain tokens. And distin-
guished from early exiting (EE, Chen et al., 2024),
MoD skips over rather than exiting from intermedi-
ate layers so that performance is better preserved.

Frustratingly, MoD can hardly guarantee both ef-
ficiency and effectiveness without extremely costly
training. To be more specific, current advances of
MoD are only observed in cases where training is
started from scratch, predominately narrowing the
impact of MoD.

The sub-optimality is mainly due to the improper
use of top-k operator. The top-k operator is basi-
cally employed at each layer to determine which
tokens should be skipped in the computation of
the layer. Unfortunately, for efficiency, the top-k
operator is computationally expensive (Wang et al.,
2021) and forces a constant number of tokens re-
tained, possibly restricting the efficiency improve-
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ment brought by computation saving at one unim-
portant layer, as shown in Figure 1 (left). For effec-
tiveness, it deviates from the distribution of layer
significance (Men et al., 2024), potentially result-
ing in undesired computation saving at one dom-
inated layer, as shown in Figure 1 (right). These
disadvantages largely impede the applications of
MoD.

In this paper, in order to broaden the scope of
MoD, we target at converting existing LLM check-
points to MoD ones with our designed MoDifica-
tion.1 The designs of MoDification follow two
guidelines: 1) alleviating the sub-optimality of
MoD, and 2) minimizing the training of MoD. Un-
der the guidelines, we firstly use threshold-p op-
erator as an drop-in replacement of the top-k op-
erator. On one hand, threshold-p operator is not
much computationally expensive and allows any
number of retained tokens; on the other hand, it
can make the layer itself determine the priority of
tokens through adaptive gates across layers. We
secondly find around 10B tokens with decent diver-
sity are fairly enough in the conversion process.

We conduct experiments on model scales rang-
ing from 3B to 70B. The efficiency and effective-
ness of MoDification are verified on such a wide ar-
ray of scales. With acceptable performance decline,
MoDification can achieve up to ∼1.2× speedup in
latency and ∼1.8× reduction in memory compared
to original LLMs especially in long-context appli-
cations. On the contrary, MoD can unexpectedly
lead to slow-down in latency under the same exper-
imental settings. Further ablations and discussions
validate the trustworthiness of the design choices
in MoDification.

2 Background

Long-context Efficiency Over the years, the
super expressiveness of large language models
(LLMs) has been widely witnessed thanks to the
stable transformer architecture (Vaswani et al.,
2017) and the massive pretraining (Brown et al.,
2020). Concretely, two modules are involved in
a transformer layer, namely, self-attention (Atten-
tion) module and multi-layer perceptron (MLP)
module. Essentially, layer norm (Norm) and resid-
ual connection are also armed around. Given the
hidden state of the i-th token xi, the forward pro-

1MoDification is a re-invented compound representing
the process of adapting a LLM to a MoD one, following the
naming convention of MoEfication (Zhang et al., 2022).

cess in one transformer layer can usually be de-
picted as below:

yi = Attention(Norm(xi)) + xi,

zi = MLP(Norm(yi)) + yi,
(1)

While the transformer architecture admits the
scaling of pretraining, a critical bottleneck during
inference is also revealed by the transformer. In
other words, the transformer architecture mainly
grants parallelism during training, yet only gener-
ates tokens one followed by another and requires
KV caches adequately stored during inference.
This bottleneck may easily slow down the expected
speed and shoot over the provided hardware, espe-
cially for long-context circumstances (Xiao et al.,
2024b).

To this demand, many approaches have been pro-
posed to either counter the latency or the memory
increment (Wan et al., 2024). Among these ap-
proaches, speculative decoding (Chen et al., 2023)
is a representative cluster in reducing the latency
and KV cache compression (Xiao et al., 2024b)
is another symbolic group in mitigating the mem-
ory. However, for an integrated inference system,
it is might be somehow redundant to conquer the
latency and the memory separately. Consequently,
later solutions to some extent shift the focus to
conditional computation (Bengio et al., 2015), in
which early exiting (EE, Chen et al., 2024) and
mixture of depths (MoD, Raposo et al., 2024) are
of central roles.

Mixture of Depths In a nutshell, MoD attempts
to eliminate unnecessary layer computations over
tokens via a token-level gate (Gate) together with
a top-k operator (Top-k). In this way, the forward
process within one transformer layer is changed as
below:

gi = Gate(xi) = sigmoid(Wxi),

fi = Top-k(gi, k),

yi =

{
Attention(Norm(xi)) + xi, fi = 1,

xi, fi = 0,

zi =

{
gi · MLP(Norm(yi)) + yi, fi = 1,

yi, fi = 0,
(2)

where gi ∈ [0, 1] is a sigmoid-normalized score
after a linear weight W, and fi is an indicator of
whether the i-th token is exactly ranked among
the Top-k tokens regarding its score yielded by the
Gate. In addition, MoD is usually applied in an
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interleaved manner, that is, only one out of two
adjacent layers is equipped with MoD.

It is acknowledged that EE is a fine alternative of
MoD. Instead of skipping over intermediate layers,
EE aggressively exits from intermediate layers and
directly ignores later layers, as in Figure 2. Because
of this, it is claimed that MoD is more flexible than
EE does, and can offer better performance as well.

Despite the superiority of MoD, it does not come
without pain. Although up-to-date progress (Ra-
poso et al., 2024) has indeed supported that MoD
delivers great success, the training is always
launched from scratch with an enormous amount
of data. We argue training MoD with an appro-
priate quantity of data and from publicly released
checkpoints should likewise be a pivotal track that
is worthy of exploration. And through easing the
training, MoD might fully shed its light on related
areas.

In our pilot study, we have uncovered sub-
optimality pertained to both efficiency and effec-
tiveness of MoD in above lite training setting. Pri-
marily, the sub-optimality is concerned with the
improper use of the top-k operator. From the ef-
ficiency perspective, the top-k operator is com-
putationally expensive (Wang et al., 2021) and
forces a constant number of tokens retained, and
can limit computation saving thus efficiency im-
provement for unimportant layers. From the effec-
tiveness perspective, the top-k operator suffers a
divergence from the true distribution of layer sig-
nificance (Men et al., 2024), and can undesirably
result in excessive computation saving for domi-
nated layers. The evidence can be referred to in
Figure 1.

3 MoDification

In this work, we put forward such a method, named
MoDification, that is aimed at converting existing
LLM checkpoints to MoD ones with slight training
compute.

To circumvent the sub-optimality of original
MoD, two designs are engaged, in which one is
associated with architecture and the other is con-
nected with data. The first one is to use threshold-
p operator in place of the top-k operator, as shown
in Figure 2. threshold-p operator is not much com-
putationally expensive and allows any number of
retained tokens. We then instantly discover this
threshold-p replacement correlates MoDification
to mixture of experts (MoE) (Shazeer et al., 2017;

Fedus et al., 2022) and we can empower MoDifi-
cation with cutting-edge techniques that have been
widely used. The second one is to enhance the data
diversity and constrain the training to the scale of
10B tokens. We luckily unveil this data scale is
fairly enough in practice.

Architecture After applying threshold-p oper-
ator to Equation 2, we make a further refinement
to the formulation. The formula can now be briefly
formed as below:

gi = Gate(xi), fi = Threshold-p(gi, p),

yi =

{
gi · Attention(Norm(xi)) + xi, fi = 1,

xi, fi = 0,

zi =

{
gi · MLP(Norm(yi)) + yi, fi = 1,

yi, fi = 0,
(3)

where the refinement is imposed as also multiply-
ing the gate value gi to the Attention module. Plus
to this, MoDification also follows the interleaved
fashion as MoD does.

In fact, the conditional provided by fi can be
interpreted from an MoE view as below:

zi =

{
gi · MLP(Norm(yi)) + yi, fi = 1,

(1− gi) · NoOp(yi) + yi, fi = 0,
(4)

where NoOp generally means no operation is car-
ried out and always leads to zero output.

Thereby, MoDification is fundamentally a two-
expert MoE (Fedus et al., 2022) where one of the
two experts is NoOp. In this sense, the p value
of the threshold-p operator should theoretically
be 0.5, which is henceforth leveraged unless other-
wise specified. Moreover, to promote the sparsity
of MoDification, we are inspired by the expert load
balancing technique (Fedus et al., 2022) in MoE
and suggest a layer load reducing objective as be-
low:

Fj = Exi [fi], Gj = Exi [gi],

R = α ·
L∑

j=1

Fj ·Gj ,
(5)

where α is a coefficient that should be manually
tuned, and subscript j denotes the j-th layer among
overall L layers. While Fj depicts the fraction of
tokens dispatched to the layer, Gj describes the
fraction of the routing probability to the layer. And
reducing R principally triggers more tokens be as-
signed to the NoOp and thus skipped by the layer.
This reducing objective, together with the language
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Figure 2: The comparison among transformer, early exiting (EE), mixture of depths (MoD), and our MoDification.

modeling objective L that drives necessarily layer
load preserving, makes MoDification a reasonable
game where LLMs learn to strike a good balance
between efficiency and effectiveness.

Table 1: The data mixture used to conduct MoDification.

Data Tokens Proportion

CCI (2023) 1.5B 14.3%
Wikipedia (2019) 0.2B 1.9%
BookCorpus (2015) 0.1B 1.0%
Cosmopedia (2024) 1.0B 9.5%
FineWeb-Edu (2024) 4.5B 42.9%
RedPajama-Stack (2023) 0.5B 4.8%
RedPajama-GitHub (2023) 1.3B 12.3%
Proof-Pile (2023) 1.3B 12.3%
FLAN (2024) 0.1B 1.0%

Total 10.5B 100.0%

Data With the aim of reducing training time, we
try to incorporate diverse domains of data to com-
pensate limited numbers of data points. The data
mixture can be found in Table 1.

The proposed data mixture generally covers do-
mains like webs, wikis, books, codes, maths, etc. In
doing so, we expect MoDification could be trained
to approximate original mixtures of any existing
LLM checkpoints.

4 Experiments

Setup We benchmark MoDification mainly
against MoD, and also compare these two to
original LLM. We conduct evaluation upon
MiniMA-2-3B (Zhang et al., 2023a) and LLaMA-
2-{7,13,70}B (Touvron et al., 2023b) to examine
the scalability of MoDification. For efficiency mea-
sures, we consider average latency in second and
memory in gigabyte across a wide array of prefill-
ing and decoding lengths ranging from 64 to 2,048

as key metrics. For effectiveness measures, we
test above methods on commonly cared datasets
including MMLU (Hendrycks et al., 2021), CE-
val (Huang et al., 2023), DROP (Dua et al., 2019),
BBH (Suzgun et al., 2023), HumanEval (Chen
et al., 2021), and GSM8k (Cobbe et al., 2021). The
core metrics reported on these datasets are either ac-
curacy, exact matching score, or pass@1 according
to the designs.

Implementation We train MoDification and
MoD with an overall batch size of 1,024 and a
sequence length of 4,096. This leads to 4M to-
kens per optimization step. The learning rate is
3e-5, and weight decay is 1e-1. The learning rate
is scheduled with a linear warm-up and a cosine
decay, where the warm-up stage takes 1% opti-
mization steps and the decay stage takes all the
left optimization steps. The gradients will be prop-
erly clipped to keep the norm under 5e-1. The
training precision is bfloat16. DeepSpeed (Rasley
et al., 2020), FlashAttention (Dao et al., 2022), and
gradient checkpointing (Chen et al., 2024) are nec-
essarily enabled to make the training possible with
16 Nvidia A100 GPUs.

The k for the top-k operator is 512 by default,
and the p for the threshold-p operator is 0.5 for
MiniMA-2-3B as mentioned earlier but 0.55 for
LLaMA-2-{7,13,70}B since slightly larger thresh-
old is demanded for larger LLMs in our trials. The
best coefficient α for layer load reducing objective
is 0.01 in our developments.

Results From the main comparison results be-
tween MoD and MoDification in Table 2, we un-
earth that MoDification is a way better choice than
MoD does. For efficiency, MoDification can reduce
both the latency and memory consumption while
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Table 2: The main comparison results concerning both efficiency and effectiveness. Better results among the
ones reported from MoD and MoDification are boldfaced at varying blocks. Results enabled with INT8 quantiza-
tion (Dettmers et al., 2022) are marked with †.

Method Latency
Second

Memory
GiB

MMLU
5-shot Acc

CEval
5-shot Acc

DROP
3-shot EM

BBH
3-shot EM

HumanEval
0-shot Pass@1

GSM8k
8-shot CoT EM

MiniMA-2-3B 11.0 7.4 40.1 44.7 23.1 31.4 8.9 14.6
- MoD 16.2 6.7 25.8 25.7 14.0 27.7 0.0 2.2
- MoDification 10.9 6.7 30.0 32.2 20.5 30.8 9.8 5.7

LLaMA-2-7B 14.5 16.2 45.0 33.1 33.1 32.1 13.4 12.1
- MoD 21.6 14.9 25.5 26.0 1.8 7.0 0.0 0.0
- MoDification 13.5 14.7 36.4 28.6 25.8 30.0 8.9 10.3

LLaMA-2-13B 19.4 30.3 54.4 41.2 43.4 38.1 14.0 24.1
- MoD 30.9 28.2 25.7 24.6 1.5 7.8 0.0 0.0
- MoDification 18.1 27.9 44.4 37.3 34.2 34.1 11.0 21.2

LLaMA-2-70B 201† 72† 68.6 53.9 63.3 51.6 28.7 53.4
- MoD 276† 71† 41.2 30.1 2.5 12.2 0.0 0.0
- MoDification 178† 71† 54.6 46.9 43.6 38.3 15.2 38.0
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Figure 3: The training losses. The steady loss curves
indicate that both MoD and MoDification are rigorously
optimized.

MoD can unexpectedly increase the latency. For ef-
fectiveness, MoDification also enjoys better results
and and preserves most performance from origi-
nal considered LLMs. The comparison showcases
the superiority of MoDification over MoD. And
the realized efficiency merits seem to be positively
correlated to the model scales in practice.

One may think that MoD is not properly config-
ured in training and thus shows very unstable and
almost meaningless results. To demonstrate that
the training of MoD does not suffer from fluctua-
tions such like loss spikes, we hereby display the
training losses as in Figure 3. From the loss curves,
we conclude that both MoD and MoDification are
rigorously optimized. Besides, one may argue that
the sparsity of MoD influenced by k does not align
with the sparsity of MoDification influenced by p,
thus exhibiting unreasonable results. To show that

Table 3: The number of activated tokens. For example,
the number of activated tokens in LLaMA-2-7B is calcu-
lated as 32 (layers) * 4,096 (context length) = 131,072.
The smaller amounts of activated compute consumed
by MoD than that by MoDification shows that MoD is
hard to optimize.

Method k / p Activated Tokens MMLU
5-shot Acc

LLaMA-2-7B - 131,072 45.0
- MoD 512 73,728 25.5
- MoD 1,024 81,920 26.2
- MoD 2,048 98,304 25.7
- MoDification 0.55 88,473 36.4

the sparsity of MoD is not the key factor, we con-
firm in Table 3 that MoD is still hard to optimize
even when the number of activated tokens in MoD
is smaller than that in MoDification.

To further enhance the plausibility of the compar-
ison, we also compare MoDification to an alterna-
tive efficient method named ShortGPT (Men et al.,
2024) that is designed to directly drop unimportant
layers, therefore decreasing latency and memory,
as in Figure 4. The considered ShortGPT base-
line is configured as preserving 22 out of 32 layers
(i.e., number of activated tokens is 90,112). The
major conceptual difference between MoDification
and ShortGPT lies in that the layer skipping of
ShortGPT happens at task level. We observe that
ShortGPT may lead to more apparent efficiency
gains, nevertheless, it results in unacceptable per-
formance degradation. This phenomenon implies
that MoDification has considerable advantages over
other efficient designs.
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Figure 4: The comparison results concerning other ef-
ficient designs. ShortGPT is more efficient yet less
effective.

Ablation Studies To get an in-depth understand-
ing of the inner working mechanisms of MoDi-
fication, we perform a series of ablation studies
on the threshold value p, layer loading reducing
coefficient α, etc.
THRESHOLD VALUE p. We show the impact of the
threshold value p in Figure 5, from which we in-
spect that while the memory consumption is always
reduced across all threshold values, the latency and
the performance can vary a lot from one thresh-
old to another. Disappointingly, though smaller
threshold values can cut down memory consump-
tion, they can cause increased latency as a result of
limited computation saving. For MiniMA-2-3B in
the plot, the most suitable p value is 0.5 regarding
the trade-off between efficiency and effectiveness.
However, as aforementioned, larger models such as
LLaMA-2-70B urge larger p values like 0.55 due
to potentially larger structural sparsity.
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Figure 5: The impact of threshold value p.

LAYER LOAD REDUCING COEFFICIENT α. In
Table 4, we know that the layer load reducing coef-

ficient α impacts both efficiency and effectiveness.
Particularly, the coefficient trades effectiveness
for efficiency. For instance, as α increases itself
by an order of magnitude, the latency diminishes,
so is the performance. In contrast, without the
layer load reducing objective (i.e., when the
coefficient is 0), MoDification tends to save very
few computations. In this case, the latency is even
enlarged. In summary, we assert that α would be
better set to 0.01 to reach equilibrium.

Table 4: The impact of layer load reducing coefficient
α.

Method Latency
Second

Memory
GiB

GSM8k
8-shot CoT EM

MiniMA-2-3B 11.0 7.4 14.6
- α = 0 15.7 6.7 8.3
- α = 0.001 14.4 6.6 7.0
- α = 0.01 10.9 6.7 5.7
- α = 0.1 8.2 6.4 1.7

INTERLEAVED V.S. FULL STRATEGY In our de-
sign, we follow the de facto strategy of original
MoD and use MoDification in an interleaved style
where MoDification is applied at every other layer.
To confirm the interleaved strategy is the best
choice, we compare the interleave startegy to a
tactic that applies MoDification to top half layers
and another that applies MoDification to full layers,
as in Table 5. We note that the interleaved strategy
is better than the half strategy in efficiency and is
better than the full strategy in effectiveness. The
reasons sit behind may be that the half strategy is
inclined to conservatively skip too few computa-
tions and the full strategy is likely to skip overly
many computations and affect the performance. To
sum up, the interleaved strategy is currently the
recommended option.

Table 5: The impact of interleaved strategy.

Method Latency
Second

Memory
GiB

MMLU
5-shot Acc

Interleave 10.9 6.7 30.0
Half 12.8 6.7 37.4
Full 10.5 6.5 27.4

SHARED V.S. SEPARATE GATE. We also include
a refinement in MoDification where a shared gate
value is multiplied to both the Attention and MLP
modules if they are not skipped. Hereby, we would
like to test whether two separate gate values re-
spectively for the Attention and MLP modules are
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better or not. We detect from Table 6 that the perfor-
mance would not be boosted by the separate gates
but the latency would be elevated by the separate
gates since additional gating is introduced. So we
believe the shared gate is a fair pick.

Table 6: The impact of shared gate.

Method Latency
Second

Memory
GiB

BBH
3-shot Acc

Shared 10.9 6.7 30.8
Separate 12.0 6.7 30.6

FULL V.S. GATE TUNING. In our design, we tune
all parameters including the original parameters
from the LLM and the additional parameters from
the Gate. However, we can also alternatively
tune the parameters from the Gate only. We
have observed significant performance detriment
by gate tuning, against full tuning. For instance,
on GSM8k, the score drops from 10.3 to 6.5 for
MoDification-7B.

0 50 100
1

4

8

12

16

20

24

28

32

La
ye

r I
nd

ex

0 50 100 0 50 100
Percent of Processed Tokens (%)

LLaMA-2-7B MoD-7B MoDification-7B

Figure 6: The visualization of executed computations
of layers over tokens. MoD can save computations to a
certain degree. MoDification can save computations in
a more flexible way.

Execution Visualization For a more intuitive
comparison between MoD and MoDification, we
attempt to clearly illustrate why MoDification is
more promising than MoD via visualizations of
executed layers over input tokens correspondingly
for MoD and MoDification.

In Figure 6, we unleash that MoD saves computa-
tions with the sub-optimality due to the use of top-
k operator. The forced constraint that a constant
number of tokens should be retained may: 1) limit
the computation saving (efficiency) when computa-

tions of more tokens should be skipped, 2) affect
the computation preserving (effectiveness) when
computations of fewer tokens should be skipped.
Conversely, MoDification permits more flexible
computation savings, leading to a better balance
between efficiency and effectiveness.

Latency Profiling We previously only provide la-
tency results in average values, and here we would
like to share more latency results across all prefill-
ing lengths and accordingly decoding lengths to
offer detailed insights on how MoDification over-
whelms MoD.

We should tell from Figure 7 that MoDification
surpasses MoD at arbitrarily any prefilling length
or decoding length. And the micro gains add up
to a macro gain in average. Besides, MoDification
regularly overtakes LLaMA-2 in efficiency. We
also find the latency is more sensitive to the de-
coding length increment than the prefilling length
increment. Explicitly, the latency approximately
doubles when the decoding length doubles but only
increases a bit when the prefilling length doubles.
We conjecture the distinction is resulted from that
prefilling is parallel while decoding is sequential.
And this hints that future explorations should be
emphasized on decoding-time efficiency. Trickily,
we also uncover that the latency delta along the
increment of prefilling length gradually becomes
larger. This pinpoints that prefilling-time efficiency
would possibly be a concern when the prefilling
length is immense, say more than 10k. This natu-
rally drives us to explore the potential of MoDifica-
tion in long-context applications later in Section 5.

Latency Decomposition More precisely, we in-
vestigate the latency through a nano view. To put
it differently, we decompose the latency to three
parts: the one consumed by Attention and MLP,
by Gate, and by Top-k or Threshold-p. Further-
more, the Threshold-p part could be broken down
to: Branch phase where some tokens are selected
and the others are skipped, Merge phase where
both selected and skipped tokens are merged after.
The resultant chart is positioned in Figure 8.

It is manifested that MoDification not only yields
smaller latency from the Thrd-p, but also yields
smaller latency from the Attention and MLP. This
denotes that MoDification benefits from both the
transition from the Top-k to the Thrd-p and the
removal of hard constraint that at least k tokens
should be retained.

It is questionable why MoDification can have
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Figure 7: The detailed latency results across different prefilling lengths and decoding lengths. MoDification
overwhelms both MoD and LLaMA-2 at any prefilling or decoding length.
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Figure 8: The nano view towards the latency.

smaller latency. Intuitively, the computationally
expensive top-k operator only dominates prefill-
ing stage and is computationally comparable to
threshold-p operator at decoding stage, while pre-
filling latency is not the main concern in compar-
ison to cumulatively decoding latency as in Fig-
ure 7. However, the above conjecture largely ne-
glects the superiority of the non-uniformity yielded
by threshold-p operator as in Figure 6. To counter
this, we showcase exemplary latency results across
prefilling and decoding stages in Table 7.

For Gate latency, MoDification is nothing differ-
ent from MoD, and decoding one is smaller than
prefilling one as decoding only processes one token
at one time. For Top-k / Thrd-p latency, MoDifica-
tion is significantly faster than MoD at prefilling
stage due to the transition from top-k operator to
threshold-p operator. Further, MoDification is
comparable with MoD at decoding stage.

For Attention and MLP latency, MoDification

Table 7: The exemplary latency results across prefilling
and decoding stages. Prefilling latency and per-token de-
coding latency are reported for prefilling and decoding
stages, respectively, in milliseconds and upon MiniMA-
2-3B.

Method Stage Attention
& MLP Gate Top-k

/ Thrd-p

MoD prefill 29.9 3.1 9.8
MoDification prefill 24.3 3.1 4.1

MoD decode 20.9 2.7 4.9
MoDification decode 18.8 2.7 3.9

would skip most tokens at one unimportant layer,
significantly reducing latency compared to con-
stantly retain tokens from MoD; MoDification
would retain most tokens at one important layer,
marginally yielding latency increment compared
to MoD. The true reason sits behind may be that
decoding is memory-bounded instead of compute-
bounded (Yuan et al., 2024), so the latency will in-
crease significantly when the number of retained to-
kens excels a minimal number, then increase slowly
until the number of retained tokens goes beyond an
acceptable range regarding memory bandwidth.

5 Long-context Applications

While we have fully justified the usefulness of
MoDification in comparably short-context scenar-
ios, we are obliged to substantiate the potential of
MoDification in long-context applications. We take
two long-context applications as testbeds, i.e., long-
text generation that requires long decoding and
long-context retrieval that requires long prefilling.
As a prerequisite, we extend the context capabil-
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ity of MoDification-7B from 4k to 32k. We adopt
NTK-aware interpolation (Rozière et al., 2023) and
conduct post training on PG19 dataset (Rae et al.,
2019).

In long-text generation scenario where prompts
sampled from Proof-Pile (Azerbayev et al., 2023),
MoDification-7B can achieve up to ∼1.2× speedup
in latency and ∼1.8× reduction in memory in
comparison to LLaMA-2-7B. And through long-
context extension, MoDification is compatible with
long-context modeling and consistently behaves in
low perplexity without compromise on efficiency.
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Figure 9: The application to long-text generation.
MoDification-7B can achieve up to ∼1.2× speedup in
latency and ∼1.8× reduction in memory in in compari-
son to LLaMA-2-7B. And MoDification is compatible
with long-context modeling.

In long-context retrieval scenario where ques-
tions are gathered from Qasper (Dasigi et al., 2021),
MoDification-7B-32k yields 10.3 on Qasper, which
is competitive with 10.2 from LLaMA-2-7B-32k.
In contrast, StreamingLLM-7B (Xiao et al., 2024b)
which significantly prunes KV caches yields a dra-
matically degraded number of 6.9.

6 Related Work

Efficient Language Models Improving effi-
ciency of language models is a long-standing and
challenging task (Wan et al., 2024). Besides
system-level efficiency optimizations, algorithm-
level efficiency optimizations mainly lie in model
compression and efficient architecture. Model
compression approaches (Bucila et al., 2006) aim
to reduce the model size directly. These com-
pression approaches can be grouped into quan-
tization (Dettmers et al., 2022), pruning (Ma
et al., 2023), and distillation (Yang et al., 2022;
Zhang et al., 2024b,a, 2023b). Efficient architec-
tures (Child et al., 2019; Shazeer, 2019) instead aim

to reduce the quadratic time complexity of atten-
tion to quasi-linear one. Mixture of depths (Raposo
et al., 2024) stands at the intersection of model com-
pression and efficient architecture. On one hand,
mixture of depths can skip layers, which can be
viewed as a type of pruning. On the other hand,
mixture of depths can drop tokens, which can be
viewed as a sort of complexity reduction in time.

Conditional Computation A third perspective
towards improving efficiency of language models
would be conditional computation (Bengio et al.,
2015). It aims to relieve unnecessary computations
by conditionals. This dynamic property can to
the maximum extend preserve effectiveness while
improving efficiency. Typical work in this area
would be mixture of experts (Shazeer et al., 2017;
Fedus et al., 2022), early exiting (Chen et al., 2024),
and mixture of depths. And mixture of depths is
recently viewed as one of the best choices among
available conditional computation approaches.

7 Conclusions

It is no doubt that MoD is an ideal choice to lift
the efficiency of LLMs. In this paper, we would
like to address the concern that MoD comes with a
must that costly training (from scratch) should be
executed. Via both architecture and data designs,
we make it possible to convert existing LLMs to
MoD ones with appropriate data. The designed
MoDification successfully outweighs MoD in both
efficiency and effectiveness.

Limitations

Our work is limited in the following two aspects: 1)
we do not apply MoDification to recently released
LLMs such like LLaMA-3 (Dubey et al., 2024) or
Qwen-2 (Yang et al., 2024), 2) we do not apply
MoDification to extremely lengthy texts, say more
than 100k (Zhang et al., 2024c), and 3) we have to
admit the uniform architecture of MoD might be
more efficient on special hardware platforms.
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