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Abstract

There is increasing interest in looking at di-
alects in NLP. However, most work to date still
treats dialects as discrete categories. For in-
stance, evaluative work in variation-oriented
NLP for English often works with Indian En-
glish or African-American Venacular English
as homogeneous categories, yet even within
one variety there is substantial variation. We
examine within-dialect variation and show that
performance critically varies within categories.
We measure speech-to-text performance on Ital-
ian dialects, and empirically observe a geo-
graphical performance disparity. This disparity
correlates substantially (-0.5) with linguistic
similarity to the highest performing dialect va-
riety. We cross-examine our results against
dialectometry methods, and interpret the per-
formance disparity to be due to a bias towards
dialects that are more similar to the standard va-
riety in the speech-to-text model examined. We
additionally leverage geostatistical methods to
predict zero-shot performance at unseen sites,
and find the incorporation of geographical in-
formation to substantially improve prediction
performance, indicating there to be geographi-
cal structure in the performance distribution.

1 Introduction

An increasing body of work in Natural Language
Processing (NLP) has called attention to the dispar-
ity in research focus between high-resource, stan-
dardized linguistic varieties and empirical linguis-
tic variation (Plank, 2016; Kantharuban et al., 2023;
Chang et al., 2024). While there are many types of
variation (e.g. genre, register), dialect variation has
emerged as a particular point of focus, with increas-
ing availability of evaluative benchmarks (Faisal
et al., 2024; Ziems et al., 2023), dialect-specific
datasets (Dogan-Schönberger et al., 2021; Blaschke
et al., 2024), and methodological contributions
(Blaschke et al., 2023; Demszky et al., 2021) to-
wards dialect-robust models (Zampieri et al., 2020).

A considerable amount of work conceptualizes
dialects solely as discrete linguistic categories that
stand side-by-side with the standard variety (e.g.
African-American Vernacular English vs. main-
stream American English) (Faisal et al., 2024;
Ziems et al., 2023). However, prior work in dialec-
tology has noted that dialect relations often stand
in a continuum, where similarity between varieties
slowly decreases the further away they are from a
given geographical site, rather than being a sharp
transition (Heeringa and Nerbonne, 2001). For di-
alect NLP, this means that a purely discrete concep-
tualization of linguistic categories not only largely
overlooks the dialect continuum, but also leaves
important evaluation gaps, which can even lead
to social harm. This is because gradient variation
within the category may not be evenly described
(Jones, 2015; Labov, 2012), and lesser known tran-
sitional varieties (Jeszenszky et al., 2018) between
the linguistic categories examined may be left out
of evaluative benchmarks.

Concretely, this paper addresses two research
questions:

RQ1: Is the distribution of speech-to-text per-
formance on dialect speech a geographically
autocorrelated variable?

RQ2: To what extent is the distribution pre-
dictable by way of phonetic similarity to the
best performing variety?

Our first question (RQ1) is motivated by prior
work in the geosciences, which has consistently
relied on the insight that “near things are more re-
lated than distant things”—a principle known as
Tobler’s first law of geography (Tobler, 1970)—for
interpolation of missing values (Matheron, 1963).
On the other hand, our second question (RQ2) is
motivated by the possibility of pretraining data con-
taining differing amounts of dialect speech, which
is likely to serve as a confounding variable to the
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Figure 1: Procedure through which we obtain our speech-to-text scores. Semantically-equivalent sentence audios
are sampled across geographically-balanced dialects, which are then transcribed to the standard variety with
speech-to-text models, and evaluated with machine translation evaluation metrics.

correlation between phonetic similarity and speech-
to-text performance.

To answer the two questions, we perform a fine-
grained investigation of such a regional gap in
speech-to-text models to gain insights on cross-
lingual transfer performance by drawing upon geo-
statistical and dialectometric techniques. In con-
trast with prior work which evaluates performance
disparity on a discrete basis (e.g. Chilean Spanish,
Argentinian Spanish) (Kantharuban et al., 2023),
we place dialects on a continuum using a large-
scale geotagged dataset of related Italian dialects,
where we conceptualize dialect relations to stand
in a continuum (Heeringa and Nerbonne, 2001).
As such, we perform zero-shot speech-to-text
on semantically-equivalent speech samples across
geographically-contiguous dialect sites, where in
line with Kantharuban et al. (2023), we find evi-
dence of zero-shot performance of speech-to-text
models on dialects correlating with similarity to the
standard variety.1 Our contributions are as follows:

1. Categorical to Continuous Conceptualiza-
tion: Following established work in linguis-
tic dialectometry (Heeringa and Nerbonne,
2001), we conceptualize dialect relations as
a continuum. This allows us to visualize in
fine-grained detail regional performance gaps,
which we find to correlate strongly with lin-
guistic similarity to the highest performing
variety, corroborating prior evaluative work
done on a categorical basis (Kantharuban
et al., 2023).

2. Geostatistics for Dialect NLP: We perform a
1Our code is available here: https://github.com/

mainlp/dialetto

dialect-level examination of zero-shot perfor-
mance prediction, and leverage geostatistical
techniques for interpolating performance at
held-out sites. We find the incorporation of
geographical information to lead to a robust
increase in performance prediction.

2 Dataset

2.1 Italian Dialect Dataset

We conduct our study on Vivaldi (Tosques and
Castellarin, 2013), a geo-tagged parallel corpus of
spoken Italian dialect varieties in audio form. The
corpus contains data at different levels of linguistic
units (e.g. word, sentence, discourse). The data is
collected across 293 sites in Italy, and is divided
into the categories of phonetic, lexical, morpho-
logical, syntactic, and discourse level data. Our
criterion for using semantically-equivalent data
across dialect sites is motivated by the fact that
there are syntactic, lexical, and phonetic differ-
ences between dialects, which serves as a more
realistic basis for evaluating zero-shot performance
on dialects. As such, we leverage 15 sentence-level
recordings and 20 word-level recordings per site
in our experiments. To ensure a fair comparison
between sites and because of the rich linguistic
variety observed in Italy (Ramponi, 2024), we fur-
ther filter for only dialect sites that fall under the
Italic language branch according to the metadata,
thereby removing data from Bavarian, Greek, Occi-
tan, among others. This results in 223 sites. Table 1
summarizes the statistical information of our data.

In view of the scale of variation in Italian di-
alects, where differences between groups may war-
rant the status of individual languages, we also
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# dialects used # words used # sentences used
223 20 15

Table 1: Statistics on the subset used of Vivaldi (Tosques
and Castellarin, 2013), an Italian dialect corpus.

evaluate our results on only the Tuscan subgroup,
which qualitative work establishes as bearing the
most similarity to standard Italian (Wieling et al.,
2014).

3 Methodology

3.1 Speech-to-Text

For our speech-to-text model, we employ Whisper
(Radford et al., 2023), a family of encoder-decoder
speech-to-text models. Our experiment utilizes
Whisper-large-v3, which is trained on 1 million
hours of weakly-labeled and 4 million hours of
pseudo-labeled audio data. The training regime
for Whisper is both multilingual and multi-task,
where samples are either asked to be transcribed
into the original language, or to be translated into
English. This is achieved by way of special tokens
(e.g. <lang>, <translate>, <transcribe>). In addi-
tion, the data format for long-form transcriptions
includes a token <prev> to denote the previous con-
text during training. At inference time, the space of
this prior context can be used to achieve prompting,
where the speech-to-text output would be condi-
tioned on this prior context. We take advantage of
this prior context to prompt the model to transcribe
the speech in standard language (e.g. "Questa è
una frase italiana: "; English translation: "this is
an Italian sentence: "). This is necessary due to the
spoken nature of dialect varieties in Italy, where
there is often no widely used written variety that
corresponds with what is spoken, and speakers of
such varieties would write often only in the stan-
dard variety.

3.2 Evaluation

Dolev et al. (2024) report Whisper as a viable sys-
tem for speech-based dialect-to-standard speech-to-
text for Swiss German when transcribed to standard
German text and evaluated with BLEU (Papineni
et al., 2002). Given a similar mismatch between
input and output for dialect speech to standard text
for our Italian dialect data, we follow Dolev et al.
(2024) in evaluating our dialect speech-to-text out-
put with standard machine translation evaluation
metrics. We employ BLEU (Papineni et al., 2002)

Original Generated
(1) Si munge due volte al giorno Si munge due volte ogni giorno
EN: One milks two times per day One milks two times every day

(2) Domani tornerò a casa Domani ritornerò a casa mia
EN: I will go home tomorrow I will return to my home tomorrow

Table 2: Examples of LLM-generated additional refer-
ence translations.

and chrF (Popović, 2015)2 both of which are based
on n-gram overlap. Due to the expected mismatch
between Italian dialect speech and standard Italian
text, we increase the number of gold references to
allow for more opportunity for alternative yet valid
phrasings to be counted as correct. We follow prior
work in expanding the number of gold references
by way of a LLM-based paraphrasing approach
(Tang et al., 2024; Zeng et al., 2024). Table 2 gives
an example of the original and generated gold ref-
erences for standard Italian. In our experiments,
we generate 10 additional references per item,3 in
addition to the original gold standard. Note that
we do not employ standard ASR metrics such as
word error rate or character error rate, as we do
not expect the speech and the text to align well
for every variety, due to the non-written nature of
non-standard varieties.

3.3 Geostatistical Analysis

In this section, we introduce geostatistical (Math-
eron, 1963; Cressie, 1989) methods for the inter-
polation of speech-to-text performance at unseen
sites, where geostatistics refers to a family of statis-
tical techniques designed to model spatial data. Our
introduction of such methods is driven by two con-
siderations: to understand whether the geograph-
ical distribution of model performance is indeed
sufficiently autocorrelated for such interpolation to
work, and for the practical concern that data col-
lected for dialects may be more sparsely distributed
than desired due to difficulties in collection, thus
raising the need for interpolation.

Prior work has found geographical proximity
between pivot and target language to be an impor-
tant predictor of cross-lingual transfer (Ahuja et al.,
2022; Samardžić et al., 2022; Lin et al., 2019). The
varieties examined in Ahuja et al. (2022) cover
the span of languages, where the performance is
argued to be due to overlap in typological and vo-
cabulary overlap. We propose that for varieties

2We employ SacreBLEU (Post, 2018).
3We use Meta-Llama-3.1-70B-Instruct: https://

huggingface.co/meta-llama/Llama-3.1-70B-Instruct
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Figure 2: Left plot: chrF2 of zero-shot speech-to-text on Italian for Whisper-large-v3 interpolated with inverse
distance weighting (left). Red-yellow area is Tuscany, from which standard Italian comes. Right plot: MDS-based
dialectometry visualization.

within the same language, the geographical signal
is arguably even stronger due to higher geographi-
cal proximity and fewer confounding factors (Shim
et al., 2024; Jeszenszky et al., 2017), such that the
signal can be helpful in predicting zero-shot perfor-
mance for varieties within a given language. To ver-
ify this claim, we leverage geostatistical techniques
to predict the zero-shot performance of Whisper
on unseen held-out sites. We employ three geosta-
tistical interpolation methods in our experiments:4

nearest neighbor interpolation (NN) (Sibson, 1981),
inverse distance weighting (IDW) (Shepard, 1968),
and kriging (Oliver and Webster, 1990). While
NN and IDW do not make assumptions on the geo-
graphical distribution of the data, the use of kriging
makes the assumption of stationarity, which is the
assumption that the mean and variance are constant
across space. Given that the variable we model
is speech-to-text performance on dialects, its ge-
ographical distribution arguably may violate the
assumption of stationarity, depending on how well
the model generalizes to the dialect varieties in
different regions. Given such a potential for non-
stationarity in the data, we expect this to require
modelling in order to better satisfy the assumption.
We detail our treatment of this in Section 3.3.5.

In our experiments, we perform an 80/10/10 split
for training, validation, and test data, where we
tune hyperparameters by way of a grid search on
the validation set, and report the root mean square
error (RMSE) on the test set. In addition, we mea-
sure the impact of training data size across the

4We use implementations in the R package gstat (Pebesma,
2004; Gräler et al., 2016).

geostatistical methods examined, where we sam-
ple the training data from a percentage range of
0.1 to 1.0. For each point in the percentage range,
we repeat the sampling procedure 100 times and
take the mean of the interpolation RMSE across the
100 runs, in order to ensure that the performance
reported is representative of the data. Table 6 sum-
marizes our results; Figure 3 shows the effect of
training data size.

3.3.1 Baseline
To verify the extent to which increasing levels of
geospatial information is helpful for prediction,
we employ nearest neighbor interpolation (Sibson,
1981) as a baseline, where the predicted value of a
sample is taken to be identical to its geographically
nearest neighbor in the training data.

3.3.2 Inverse Distance Weighting
Inverse distance weighting (IDW) (Shepard, 1968)
is a geostatistical interpolation method, where the
estimated value at a target point v̂(x0) is computed
as a weighted average of the known values from
surrounding data points. The weights are inversely
proportional to the distance from the target point,
with closer points having more influence. Formally,
given a set of known points x1, x2, . . . , xn with
corresponding values v(x1), v(x2), . . . , v(xn), the
interpolated value at x0 is defined as:

v̂(x0) =

∑n
i=1wi(x0)v(xi)∑n

i=1wi(x0)
,

where the weights wi(x0) are given by:

wi(x0) =
1

d(x0, xi)p
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with d(x0, xi) representing the Euclidean dis-
tance between x0 and xi, and p being a positive
power parameter that controls the influence of the
distance. In our experiments, we perform a grid
search and evaluate on the validation data to deter-
mine the hyperparameters used on the test data for
each run.

3.3.3 Variogram
Our method of kriging (Oliver and Webster, 1990)
relies on the concept of a variogram, where a vari-
ogram (Cressie, 1985) is a method in geostatistics
that is used to quantify the degree of spatial au-
tocorrelation between data points. In contrast to
IDW, which assumes a deterministic decrease in
similarity as distance increases, a variogram pro-
vides a probabilistic approach to measuring how
spatial correlation between values changes with in-
creasing separation distance, allowing for a more
data-driven approach towards deriving the weights
of the values used to interpolate the value at an
unknown site. Formally, the variogram γ(h) is
defined as:

γ(h) =
1

2N(h)

N(h)∑

i=1

[Z(xi)− Z(xi + h)]2

where Z(xi) is the observed value of the random
variable Z at location xi; h is the lag distance,
representing the separation distance between two
locations; Z(xi + h) is the value of Z at location
xi + h; and N(h) is the number of data point pairs
separated by distance h.

The function γ(h) estimates the spatial variance
as a function of distance, with larger values of h
indicating weaker correlation between points. A
variogram is typically visualized by plotting γ(h)
against h, which allows for a visual interpretation
of the y-intercept, representing measurement error
or spatial variability at very short distances (the
nugget); the point at which spatial correlation di-
minishes (the sill), and the distance at which the
variogram reaches the sill, beyond which points are
effectively uncorrelated (the range). A function is
then typically fit to the empirical values by adjust-
ing for the parameters of nugget, sill, and range, in
order for a continuous model to be obtained that
best fits the empirical distribution of the data. Such
a model of how the variance varies with distance
forms the basis for kriging, a more sophisticated
interpolation method that we employ in our exper-
iments and describe next. In our experiments, we

automatically fit the variogram by way of the best
least squares fit to the data.

3.3.4 Ordinary Kriging
Kriging (Oliver and Webster, 1990) uses the var-
iogram to calculate weights that account for both
distance and spatial correlation, providing more
accurate estimates at unsampled locations. In ordi-
nary kriging, the value at an unknown location x0,
denoted as Ẑ(x0), is a weighted sum of the known
values Z(xi) at nearby locations:

Ẑ(x0) =
N∑

i=1

λiZ(xi)

The weights λi are determined using the vari-
ogram, giving more importance to closer points
with stronger spatial correlation. To ensure the es-
timate is unbiased, the weights are constrained to
sum to 1. The kriging weights are found by solv-
ing a system of equations based on the variogram,
where a Lagrange multiplier enforces the constraint
above. The weights are then applied to the known
values to predict values at sites unseen in the data.

However, a key assumption behind ordinary krig-
ing is that the spatial process which generates the
values is stationary, where the mean and variance
are assumed to be constant across space. Where
this assumption does not hold, it may be necessary
to incorporate auxiliary variables that help explain
trends in the data by way of regression, which then
allows kriging to be done on the residuals.

3.3.5 Regression Kriging
Regression kriging (Hengl et al., 2007) extends or-
dinary kriging by incorporating auxiliary variables
to account for trends in the data that might oth-
erwise violate the stationarity assumption. These
auxiliary variables are commonly assumed to have
a linear relationship with the variable of interest.

In regression kriging, the observed values Z(xi)
at known locations are assumed to follow a model
of the form:

Z(xi) = m(xi) + ϵ(xi),

where m(xi) is the drift term, which represents
the trend at location xi, and ϵ(xi) is a spatially cor-
related random error with a mean of zero. The drift
term is typically modeled as a linear combination
of one or more auxiliary variables Yj(xi) at each
location:
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m(xi) =
p∑

j=1

βjYj(xi),

where βj are the regression coefficients, and
Yj(xi) are the values of the auxiliary variables
at location xi. The kriging weights λi are then
computed by solving the kriging system, with the
variogram used to model the spatial correlation of
the residuals ϵ(xi).

In our experiments, we hypothesize that a cor-
relation exists between speech-to-text BLEU and
chrF2 scores and similarity to the standard variety
(approximated by the highest performing variety).
We therefore model similarity to the highest per-
forming variety as the drift term, and compute the
variogram on the basis of the residuals.

3.4 Dialectometric Analysis

To compare the geographical distribution of speech-
to-text model performance against the geographical
distribution of dialect similarity, we follow estab-
lished approaches in dialectometry (Wieling and
Nerbonne, 2015) for both distance computation and
visualization. Dialectometry (Nerbonne, 2010) is
a subfield of linguistics that aims to quantify di-
alect relations by way of quantitative techniques,
which often employs edit distance on word-level
data for such a quantification. We compute the
aggregate dialect distance pair-wise between sites,
where each site has 20 semantically equivalent au-
dio recordings of words, resulting in a site-by-site
matrix that is amenable to our visualization method.
We present the details below.

3.4.1 Linguistic Distance
For the quantification of linguistic distance be-
tween dialect varieties, we follow Bartelds and
Wieling (2022) in adopting self-supervised speech
representations for the extraction of features on se-
mantically equivalent words, upon which dynamic
time warping (DTW) can be applied for a measure
of phonetic distance. Formally, let X and Y denote
two lists of semantically equivalent words from two
dialect varieties, where X = [w1

X , w2
X , . . . , wn

X ]
and Y = [w1

Y , w
2
Y , . . . , w

n
Y ], with wi

X and wi
Y

representing semantically equivalent items. For
each pair of items (wi

X , wi
Y ), we extract their

acoustic features using XLSR-53, a self-supervised
speech representation model, where we employed
an off-the-shelf model finetuned on Italian Com-

Pearson Spearman
chrF2 -0.50 -0.58
BLEU -0.54 -0.50

Table 3: Correlation of speech-to-text performance with
linguistic similarity to highest performing site.

mon Voice (Ardila et al., 2019) data.5 Let f(wi
X)

and f(wi
Y ) represent the feature vectors for the

words wi
X and wi

Y , respectively.6 The acoustic dis-
tance dist(f(wi

X), f(wi
Y )) for the i-th pair is then

computed by way of dynamic time warping, which
obtains the distance between two time series that
may vary in speed and length by computing the
shortest path in a cost matrix. Following Bartelds
and Wieling (2022), the distance is normalized by
dividing over the length of the shortest path for a
fair comparison between sites. The acoustic dis-
tance Dist(X,Y ) between dialect varieties X and
Y is then computed by averaging the pairwise dis-
tances across all n items in the lists:

Dist(X,Y ) =
1

n

n∑

i=1

dist(f(wi
X), f(wi

Y ))

We apply Dist(·) to all pairwise combinations
of dialect sites, resulting in a symmetric site-by-site
distance matrix that is amenable to our visualiza-
tion method described below.

3.4.2 Multidimensional Scaling
Having obtained a site-by-site distance matrix, we
employ a visualization method based on dimension-
ality reduction described in Nerbonne (2010). Ner-
bonne (2010) shows that a map depicting dialect
relations as a continuous surface can be achieved
by leveraging classical multidimensional scaling
(MDS),7 where MDS is a dimensionality reduc-
tion method that takes as input a distance matrix
and aims to project it to a lower-dimensional space
while aiming to preserve the distances in the origi-
nal high-dimensional space. Formally, given data
points X = {x1, x2, . . . , xn}, let D = [dij ] be the
distance matrix, where dij represents the distance
between xi and xj . MDS seeks to minimize the
following objective, termed the stress function:

S(Y ) =

√√√√
∑

i,j(dij − ∥yi − yj∥)2∑
i,j d

2
ij

5https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-italian

6We use the last hidden state in our experiments.
7We use the implementation in dialectR (Shim and Ner-

bonne, 2022).
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N Min 1st Q Median 3rd Q Max
All Varieties 223 17.97 27.50 35.52 42.51 63.25

Tuscan 8 51.99 57.73 62.32 64.24 72.45
Umbrian 13 48.03 49.67 54.80 60.82 70.45
Abruzzian 8 34.10 38.00 42.89 46.86 53.16
Venetian 31 31.53 37.86 41.76 46.50 57.72
Sicilian 12 34.60 38.17 41.32 43.83 45.56
Ligurian 15 26.88 32.73 37.03 39.77 48.54
Trentinian 11 24.28 31.29 35.52 41.77 48.23
Lucanian 10 23.35 28.73 35.41 42.85 45.12
Molisan 15 25.95 30.94 34.26 39.70 43.26
Apulian 6 21.08 24.30 32.48 38.99 42.20
Friulian 16 22.48 29.40 31.12 37.56 40.81
Ladin 9 17.97 21.72 27.52 28.71 38.10
Piedmontese 13 19.93 25.15 26.40 28.68 30.34
Lombardian 23 18.50 23.50 25.84 30.24 39.07
Sardinian 14 20.04 22.44 23.69 25.13 27.50

Table 4: Statistical summary of chrF2 scores for all
Italian dialects and for dialect groupings with more than
5 sites, in decreasing order by median.

N Min 1st Q Median 3rd Q Max
All Varieties 223 0.00 4.19 7.98 14.50 29.67

Tuscan 8 14.75 20.19 32.72 39.18 49.72
Umbrian 13 12.53 19.45 27.56 34.32 46.08
Abruzzian 8 7.58 12.80 16.14 19.16 27.69
Lucanian 10 3.48 4.31 11.65 14.42 16.75
Sicilian 12 3.45 6.63 11.43 13.70 21.19
Venetian 31 3.31 7.75 10.53 18.28 31.06
Molisan 15 2.20 6.39 8.97 12.50 21.10
Apulian 6 1.53 2.24 8.65 13.14 18.30
Ligurian 15 2.65 4.27 7.45 10.20 17.97
Trentinian 11 3.75 4.38 7.05 10.96 16.51
Friulian 16 1.75 3.02 6.62 11.41 16.96
Lombardian 23 1.62 2.42 4.79 7.43 11.45
Ladin 9 1.36 1.80 4.35 7.04 11.57
Sardinian 14 1.99 2.34 4.30 6.12 8.85
Piedmontese 13 1.74 1.92 3.78 5.90 9.21

Table 5: Statistical summary of BLEU scores for all
Italian dialects and for dialect groupings with more than
5 sites, in decreasing order by median.

where ∥yi − yj∥ is the Euclidean distance be-
tween yi and yj in the lower-dimensional space,
and S(Y ) represents the stress, a measure of how
well the configuration Y preserves the original dis-
tances.

Nerbonne (2010) proposes to reduce the pair-
wise distance matrix between dialect varieties to
3 dimensions with such an approach, which can
then be converted to RGB values respectively (i.e.
one dimension converted to one color), which are
then overlayed on a map. This allows for color
mixtures that visually depict gradual and sharp tran-
sitions, with the limitation of losing some of the
information in the original distance matrix due to
the dimensionality reduction.

4 Results

4.1 Speech-to-Text Evaluation

The chrF results are geographically interpolated
and plotted in Figure 2. We observe in the map

that zero-shot performance is particularly high in
the Tuscan region, where the highest performing
dialect site also resides, as shown in Table 4 and
Table 5. Prior literature has established standard
Italian to be modelled after Tuscan varieties (Hall,
1980; Wieling et al., 2014), which corroborates
the trend observed in our results. The similarity
of Umbrian dialects with Tuscan dialects is also
observable in Umbrian dialects ranking second af-
ter Tuscan in Table 4 and Table 5. Furthermore,
Table 3 details the correlation between linguistic
similarity and the performance scores on the level
of dialect sites, where the Pearson correlation for
the chrF score is -0.50 and for BLEU -0.54, and the
Spearman correlation is -0.58 for chrF and -0.50
for BLEU, suggesting—to answer RQ1—a strong
correlation between similarity to the standard (as
approximated by the highest performing site) and
speech-to-text performance.

4.2 Dialectometric Analysis
In Figure 2, colors that are more similar in the di-
alectometry map indicate more linguistic similarity.
We observe the green-tinted areas such as Tuscany
correspond with higher-performing regions, which
we interpret to be similarity to the standard vari-
ety. The greenness in north Sardinia is documented
in prior literature (Cugno et al., 2022), where the
dialects spoken there—Gallurese and Sassarese—
are considered to be Southern Corsican varieties,
where Corsican is considered to be strongly influ-
enced by Tuscan. Similarly, the green tints in Sicily
correspond with observations made of the dataset
in prior literature (La Quatra et al., 2024), where
it is noted that varieties such as Sicilian contain a
considerable amount of standard Italian presence
in the data, suggesting some samples to exhibit
language mixing between standard and dialect.

4.3 Geostatistical interpolation
Building on the observation that there is a clear geo-
graphical signal in both the performance and dialec-
tometry maps, we next turn to RQ2 and measure
to what extent the incorporation of geographical
knowledge helps predict zero-shot speech-to-text
performance at unseen sites.

As shown in Table 6, geostatistical interpolation
is highly predictive of both BLEU and chrF scores,
with RMSE scores going to as low as 4.19 and 5.70
by regression kriging, our best method. Figure 3
additionally show the effect of training data size
on the regression prediction performance. In all re-
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Figure 3: Effect of training data size on geostatistical interpolation. Orange is nearest neighbor interpolation (NN);
black is inverse distance weighting (IDW); blue is regression kriging (RK).

NN IDW RK
chrF2 9.09 5.86 5.70
BLEU 6.63 4.35 4.19

Table 6: RMSE of geostatistical interpolation methods
on unseen sites. NN: Nearest Neighbor, IDW: Inverse
Distance Weighting, RK: Regression Kriging.

sults, we observe that the incorporation of distance
and covariance between samples as weighting im-
proves over an interpolation by only the value of
the nearest neighbor, where regression kriging is
consistently the best performing method, followed
by inverse distance weighting.

5 Discussion

5.1 Evaluating Dialects as a Continuum
In Figure 2, we observe that for Italian dialects, the
evaluation results stand in a continuum that bears
similarity to the map of dialect similarity relations.
Furthermore, even when one restricts the examined
samples to Tuscan varieties, we observe in Table 4
and Table 5 that there is still a disparity that extends
the further away one is from the highest performing
sites. Our results highlight the need for work in
dialect evaluation to take into account the continu-
ous nature of dialects that may exhibit even within
dialects often perceived as falling under the same
“category”.

While prior work (Kantharuban et al., 2023) has
made important headway in individually evaluat-
ing non-standard varieties as separate categories
and highlighting the performance disparity when
compared against the standard, regional variation
also exhibits within non-standard varieties such as

AAVE (Jones, 2015). Our results suggest that per-
formance prediction in AAVE would arguably also
exhibit regional differences, potentially patterning
based on how similar the regional varieties are to
standard English (e.g. in urban sites), although
empirical work is needed to confirm this hypoth-
esis. Importantly, our findings highlight that an
evaluation of dialects that is insufficiently balanced
geographically therefore carries the risk of overly
optimistic views towards model performance at ge-
ographically marginal sites, which in turn may lead
to social harm towards the subgroups which speak
it.

5.2 Geo-Based Performance Prediction

Extending on the claim of Ahuja et al. (2022), who
highlight the role of geography in predicting how
well the pivot language for finetuning generalizes
to the target language, we explicitly utilize geo-
statistical methods in our work on geographically
proximate dialects. We find both the distance be-
tween dialect sites and the covariance between sites
to be useful for predicting zero-shot speech-to-text
performance at unseen sites. Our results emphasize
the geographical structure of dialects, and point
to the possibility of leveraging such geographical
structure for multilingual transfer between dialects.

6 Related Work

Kantharuban et al. (2023) stands as the work most
similar to our own, where LLMs for both speech
and for text are evaluated on the tasks of Machine
Translation and Automatic Speech Recognition
on regional dialects of high and low-resource lan-
guages. They find model performance on such
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varieties to be highly correlated with lexical and
phonetic similarity to the highest performing vari-
ety. Their work however considers dialect varieties
categorically by considering regional varieties such
as Argentinian and Chilean Spanish under the same
language of Spanish. Our work instead proposes
to work on varieties on a continuous basis across
geographically nearby varieties.

With regard to treating varieties as a continuum,
Grieve et al. (2024) hypothesize that language mod-
els inherently model varieties of language, and
propose to leverage sociolinguistic expertise to
identify underrepresented varieties. Bafna et al.
(2024) model performance degradation of LLMs
on closely-related varieties by way of synthetic
noise in different linguistic dimensions. In dialec-
tology, the notion of dialects as a continuum is well-
established, where computational work in quantify-
ing such a continuum abounds in the field of dialec-
tometry (Heeringa and Nerbonne, 2001; Wieling
and Nerbonne, 2015; Nerbonne, 2010).

With regard to bias against dialect varieties in
ASR, Feng et al. (2021) show that Dutch ASR
systems perform worse on Flemish speakers com-
pared to speakers of all regions in the Netherlands.
Kulkarni et al. (2024) show different ASR sys-
tems to exhibit different performance biases across
11 states in Brazil, tested on scripted speech and
with categorical boundaries between states. Chang
et al. (2024) document how self-supervised rep-
resentations still exhibit a performance disparity
in ASR upon AAVE. Our work shows that there
is geographical structure in dialect speech-to-text
bias that is continuous and correlated with social
variables, enabling more fine-grained studies on
speech-to-text bias in other languages.

7 Conclusion

In this paper, we conceptualize dialect relations
as a continuum. We find zero-shot performance
of speech-to-text systems on dialects to pattern
similarly to a measure of similarity to the stan-
dard variety, observing strong correlations. We
cross-examine our results against established re-
search in linguistic dialectometry. Furthermore,
we introduce geostatistical methods that are pre-
dictive of zero-shot performance at held-out sites.
Our work highlights the need for more research
on non-standard varieties that takes into account
the continuum nature of dialects. Doing so holds
the potential for uncovering bias against speakers

of non-standard varieties and helps work toward
closing prior evaluation gaps.

8 Limitations

Our study focuses on related varieties of Italian
dialects, which potentially limits the generalizabil-
ity of our findings. Furthermore, we approximate
the standard variety by the best performing dialect
variety, which may affect the correlation results de-
pending on how similar the best performing Tuscan
variety actually is to standard Italian. Future work
should examine how well our insights generalize to
other dialect continua, where dialect corpora simi-
lar to Vivaldi exist for Sino-Tibetan (Centre for the
Protection of Language Resources of China, 2025)
and Alpine varieties (Rabanus et al., 2023). Sim-
ilarly, whether a continuum-based disparity may
likewise also exhibit in text-based regional linguis-
tic data remains an open question that future work
can explore.
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