
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 8275–8288

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Hierarchical Speculative Decoding with Dynamic Windows for Efficient
Language Model Inference

Shen-sian Syu
National Taiwan University, Taiwan

d07921013@ntu.edu.tw

Hung-yi Lee
National Taiwan University, Taiwan

hungyilee@ntu.edu.tw

Abstract
Speculative Decoding (SD) utilizes an efficient
draft model to generate multiple tokens, which
are subsequently verified in parallel by a tar-
get model. This approach has shown signif-
icant potential for accelerating inference in
large language models (LLMs), with perfor-
mance heavily reliant on the hyperparameter
K—the window size. However, previous meth-
ods often depend on simple heuristics to se-
lect K or dynamically adjust the window size,
which may necessitate additional training or
careful resource management to avoid compe-
tition. To address these challenges, we pro-
pose Hierarchical Speculative Decoding with
Dynamic Window (HSDDW), a straightfor-
ward framework that eliminates the need for
additional training. Specifically, we introduce
a self-verify mechanism that enables the draft
model to autonomously decide when to stop
generating tokens. Additionally, by integrat-
ing a hierarchical structure that leverages the
capabilities of models of different sizes, we sig-
nificantly enhance the overall speed of the sys-
tem. HSDDW demonstrates competitive perfor-
mance across four datasets, achieving notable
speedups of 2.91× on MT-Bench and 2.99× on
Alpaca, outperforming existing state-of-the-art
methods.

1 Introduction

In recent years, large language models (LLMs) like
GPT-4, LLaMA-2, Vicuna, and Mistral (OpenAI,
2023; Touvron et al., 2023a; Chiang et al., 2023;
Jiang et al., 2023) have demonstrated exceptional
performance across a wide range of tasks. However,
LLMs face significant challenges, particularly due
to memory bandwidth constraints (Patterson, 2004;
Shazeer, 2019; Xia et al., 2024), and the bottleneck
of auto-regressive inference, where the token-by-
token decoding process introduces substantial la-
tency during inference. These issues are especially
critical in environments with limited computational
resources, such as mobile devices.

Figure 1: Comparison of the total number of accepted
tokens for draft models of different sizes across vari-
ous acceptance counts in speculative decoding. The
target model used is Llama-2-Chat-70B, with draft mod-
els including Llama-2-Chat-7B, Llama-2-Chat-1B, and
Llama-68M, respectively. The values in parentheses
represent the speed improvement compared to autore-
gressive methods. Note that the fixed window size is set
to K = 10.

To address these challenges, Speculative Decod-
ing (SD) has been proposed (Stern et al., 2018; Xia
et al., 2023; Leviathan et al., 2023; Chen et al.,
2023). Speculative decoding accelerates inference
by leveraging a smaller and faster draft model to
initially predict K tokens, where K is a fixed hy-
perparameter that defines the window size. These
tokens are then verified in parallel by the larger
target model, ensuring that the output distribution
aligns with that of the target model. This approach
significantly reduces latency, providing more than
a 2× speedup over using only the target mode.

Enhancing the speed of the draft model has be-
come a central focus in ongoing speculative de-
coding research. One research direction focuses
on dynamically adjusting the window size K. As
shown in Figure 1, smaller draft models do not
consistently lead to faster decoding, and the num-
ber of accepted tokens significantly decreases with
smaller models. If K is too large, the draft model
may generate too many tokens that do not align

8275

with the target model, while a window size that
is too small limits the draft model’s potential for
speed improvement. Moreover, the choice of win-
dow size is closely related to the draft model’s
acceptance rate (Leviathan et al., 2023), which is
unavailable during inference.

To tackle this issue, recent research has explored
enabling the draft model to dynamically determine
the number of tokens generated at each inference
step, rather than relying on a fixed hyperparameter
window size K. This approach reduces redundancy
when the draft model makes incorrect predictions.
For instance, SpecDec++ (Huang et al., 2024) in-
troduces an acceptance prediction head, trained on
the draft model, to determine when to stop token
generation. Similarly, PEARL (Liu et al., 2024)
proposes parallelizing the drafting and verification
phases using two strategies—pre-verification and
post-verification—to allow adaptive draft lengths
based on varying scenarios. However, it is impor-
tant to note that SpecDec++ (Huang et al., 2024)
requires additional training and specific datasets.
On the other hand, PEARL (Liu et al., 2024) in-
volves simultaneous inference of the draft and tar-
get models, which necessitates efficient GPU re-
source scheduling to avoid resource competition.

Therefore, in this Chapter, we aim to address
the following questions: Can we dynamically ad-
just the window size K without requiring any ad-
ditional training? To explore this, we propose
a straightforward method, Self-verify, where the
draft model assesses its own confidence in the gen-
erated predictions to decide whether to continue
or stop token generation, thereby achieving a dy-
namic window size. Additionally, We know that
LLaMA-68M (68m) has a faster inference speed
than LLaMA-7B (7b). However, as shown in Fig-
ure 1, the speculative decoding model using 70b-
68m is slower than the 70b-7b model. This leads
us to our second question: Can we leverage models
of different sizes to enhance speed? Building on
this concept, we introduce Hierarchical Speculative
Decoding with a Dynamic Window (HSDDW).
In HSDDW, we integrate a stronger draft model,
closer in capability to the target model, to take over
the verification phase, which we term pre-verify.
By utilizing this hierarchical structure, HSDDW
can effectively leverage models of different sizes,
further accelerating speculative decoding.

Our key contributions can be summarized as
follows:

• We propose HSDDW, a novel inference accel-
eration framework, which employs a simple
yet effective self-verify mechanism and a hi-
erarchical structure, requiring no additional
training to solve the dynamic window prob-
lem.

• Our method is insensitive to the window size
K, demonstrating greater robustness and sta-
bility in performance.

• HSDDW demonstrates competitive perfor-
mance across four datasets, achieving notable
speedups of 2.91× on MT-Bench, 2.92× on
HumanEval, and 2.99× on Alpaca, outper-
forming existing state-of-the-art methods.

2 Background

2.1 Speculative Decoding
Consider a language model M, which generates an
output sequence y based on a given input prefix
x. To speed up the generation process, specula-
tive decoding employs a compact draft model
Mq to propose candidate tokens, which are subse-
quently validated by a larger target model Mp.
speculative decoding can be divided into two steps:
draft and verify, as illustrated in Figure 2. In the
drafting step, Mq samples tokens according to its
next-token probability distribution q(yt |x, y<t) at
each time step t, while Mp produces predictions
using p(yt |x, y<t). When generating the entire se-
quence y, the sequence-level distributions are rep-
resented by p≤K(y |x) for Mp and q≤K(y |x) for
Mq. Generation concludes either when an end-of-
sequence token is produced or when a predefined
window fixed size K is reached. After generating
a sequence block, each token in yi is sequentially
verified by Mp, where i = 1, 2, ...,K. If any to-
ken is rejected during this process, the first rejected
token is resampled from an adjusted probability
distribution, and all tokens following the rejection
are discarded, the rejection sampling can be found
in (Chen et al., 2023). The generation stops either
when an end-of-sequence token is sampled or the
maximum sequence length T is reached.

2.2 Related Work
Accelerating speculative decoding has become a
critical approach in enhancing the efficiency of au-
toregressive models. Prior works (Xia et al., 2023;
Zhou et al., 2023) have focused on improving the
alignment between the draft model’s distribution

8276

1 2 3 4prefix

Draft

Draft Model

Target Model

2

1

1 3

Verify

2

4

1 2 3

prefix

Window Size

prefix 1 2 3 4

5

3

D
raft

Figure 2: Speculative Decoding first efficiently drafts
multiple tokens by given fixed window size K and then
verifies them in parallel using the target LLM.

and that of the target model to enhance predic-
tion accuracy. Additionally, some studies explore
retrieval-based techniques, utilizing a repository
of previously generated knowledge to retrieve and
apply relevant tokens based on the current context
(He et al., 2024; Zhao et al., 2024). Furthermore,
approaches such as (Miao et al., 2024; Cai et al.,
2024; Spector and Re, 2023) leverage token trees,
enabling the target model to verify multiple outputs
from the draft model simultaneously.

Triforce (Sun et al., 2024) combines the original
model weights with a dynamic sparse KV cache op-
timized via retrieval, employing a draft model as an
intermediate layer within a hierarchical structure.
Additionally, a smaller model is used to speculate
on the draft outputs, effectively reducing drafting
latency while preserving both accuracy and effi-
ciency.

These methods are compatible with HSDDW
or Self-verify and can be stacked without conflict.
As mentioned earlier in the introduction 1, both
SpecDec++ (Huang et al., 2024) and PEARL (Liu
et al., 2024) aim to design dynamic window sizes
to accelerate speculative decoding. However, the
key difference between HSDDW and SpecDec++
is that HSDDW requires no additional training. Un-
like PEARL, our approach eliminates the need for
special GPU resource scheduling to avoid resource
competition. Additionally, our method differs from
Triforce (Sun et al., 2024), where the retrieval cache
draft model is solely used for verification. In con-
trast, the additional draft model in HSDDW not
only generates tokens but can also perform verifi-
cation.

3 Methodology

The simplest way to enhance the draft model’s
speed is by using a more efficient, smaller-sized
model. However, smaller draft models often have
greater discrepancies from the target model’s dis-
tribution, making it harder for the draft model to

generate long sequences that the target model can
accept in a single pass. As shown in Figure 1, spec-
ulative decoding with the Llama-2-Chat-70B (70b)
and Llama-68M (68m) pair 70b-68m often results
in the first token being rejected, leading the draft
model to waste time generating tokens that don’t
align with the target model. Consequently, 70b-
68m speed is slower than the other two speculative
decoding configurations. Our goal, therefore, is to
develop a mechanism where the draft model stops
generating tokens when it predicts they will not
be accepted, effectively implementing a dynamic
window size. We propose the Self-verify method,
which uses entropy measurements to achieve this
dynamic window, and we further introduce the HS-
DDW method that integrates a hierarchical struc-
ture to improve overall performance.

3.1 Self-verify: verify the draft token by itself.

The purpose of this method is to reduce the number
of unaccepted tokens by measuring the entropy H

of the draft model’s token distribution to assess the
model’s confidence in the currently generated to-
kens, specifically H(q(yt |x, y<t)). When the con-
fidence is high, indicated by H(q(yt |x, y<t)) ≤
τ , the draft model continues generating tokens.
Conversely, if the confidence is low, such that
H(q(yt |x, y<t)) > τ , the generation process is
halted. We refer to τ as the Confidence Thresh-
old. This method, where the draft model decides
whether to stop based on its own confidence with-
out completing the window size K iterations, is
referred to as self-verify.

Specifically, the draft model generates tokens
autoregressively and simultaneously calculates the
entropy H(qt) for each position t1. As illustrated
in Figure 3, when H(q3) > τ at position 3, the
generation process stops, and the tokens are sent to
the target model for verification. Here, confidence
threshold τ is dynamic and is calculated as the
average of H for all tokens rejected by the target
model in the current sentence. Further details are
provided in Algorithm 1.

1We use qt to represent q(yt|x, y<t) for simplicity.

8277

1 2 X3 4prefix

Draft + Self-verify

Draft Model

Target Model prefix

2

1

1 3

Verify

2

4

1 2 3

prefix

Window Size

1 2 3

3 D
raft + Self-verify

Figure 3: A framework of speculative decoding with dy-
namic window using Self-verify. In this example, when
the draft model generates the third token, its entropy
H(q3) > τ , causing the draft model to stop generating
the fourth token (with K = 4). After verification by the
target model, the token at the third position is rejected,
prompting a resampling process for the third token.

3.2 HSDDW
Next, we introduce a hierarchical structure, aiming
to leverage a stronger draft model to assist the target
model in early-stage verification, referred to as Pre-
verify. This approach reduces the number of target
model inferences, thereby accelerating the overall
model speed. Furthermore, we incorporate the self-
verify method to further enhance performance.

Specifically, HSDDW employs two draft models
and one target model: a fast draft model M1, a
stronger draft model M2, and the target model Mp.
The framework has two main objectives: first, to
offload some of the verification burden from Mp

by utilizing M2, thereby reducing the number of
inferences performed by Mp; second, to efficiently
leverage the speed of M1. In our approach, M1 is
responsible for the primary drafting phase, while
M2 performs pre-verification. Once M2 loses con-
fidence in its own verification, the generated tokens
are passed to Mp for final verification. The com-
plete architecture of HSDDW is illustrated in Fig-
ure 4, consisting of three stages: the first stage is
Draft + Self-verify, the second stage is Pre-verify
+ Self-verify, and the third stage is Verify.

The process of HSDDW is outlined as follows.
Initially, the framework enters the first stage, Draft
+ Self-verify, where M1 performs drafting while
conducting self-verification. The tokens gener-
ated by M1, after self-verification, are then passed
to the second stage, Pre-verify + Self-verify,
where M2 carries out both pre-verification and self-
verification. This stage branches into two cases: (i)
When H(qi2) ≤ τ2, indicating that M2 is confident
in the current output, the process reverts to the first
stage, allowing M1 to continue drafting. (ii) When
H(qi2) > τ2, indicating lower confidence from M2,
the process proceeds to the third stage. In the third
stage, similar to the standard verification phase, all

tokens generated by both M1 and M2 are verified
by the target model. More details can be found in
Algorithm 2.

4 Experiment

4.1 Experimental setup

Tasks and Datasets. In this study, we followed
the methodology of (Huang et al., 2024) and uti-
lized three datasets: Alpaca2 (Taori et al., 2023),
HumanEval3 (Chen et al., 2021), and GSM8K4

(Cobbe et al., 2021). We sampled 150 examples
from HumanEval and GSM8K for performance
benchmarking. Additionally, we incorporated the
MT-Bench dataset5 (Zheng et al., 2024), which
comprises a total of 80 multi-turn conversational
tasks. Notably, for comparisons with baseline mod-
els, we utilized the multi-turn results to ensure a
fair evaluation. However, in other analytical ex-
periments, to reduce resource consumption, we
conducted evaluations using single-turn tasks.

Baseline Method. We selected related studies on
dynamic length prediction as our baselines. (i)
SD:the vanilla speculative decoding (Leviathan
et al., 2023; Chen et al., 2023) (ii) SpecDec++:
(Huang et al., 2024) trains a decision head to de-
termine whether the draft model should continue
predicting tokens at each step. (iii) PEARL: (Liu
et al., 2024) simultaneously executes the drafting
and verification phases by employing two strate-
gies that enable adaptive draft lengths for different
scenarios, effectively mitigating the issue of mutual
waiting. (iv) EAGLE (Li et al., 2024): This method
effectively addresses uncertainty by enabling ac-
curate second-to-top-layer feature prediction with
minimal computational overhead, making it a ro-
bust and competitive benchmark.

Model Pairs. For model selection, we employed
the Llama-2-chat models (Touvron et al., 2023b),
using Llama-68m6 (Miao et al., 2024) and Llama-
2-chat 7B as the draft models, and Llama-2-chat
70B as the target model. For the vanilla SD setup,
we used the Llama-2-chat 70B as the target model
and Llama-2-chat 7B as the draft model. In the

2https://huggingface.co/datasets/tatsu-lab/
alpaca

3https://huggingface.co/datasets/openai/
openai_humaneval

4https://huggingface.co/datasets/openai/gsm8k
5https://huggingface.co/spaces/lmsys/mt-bench/

tree/main
6https://huggingface.co/JackFram/llama-68m

8278

https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/spaces/lmsys/mt-bench/tree/main
https://huggingface.co/spaces/lmsys/mt-bench/tree/main
https://huggingface.co/JackFram/llama-68m

1 2 X3 4prefix

Draft + Self-verify

1 2 3

Pre-verify + Self-verify

1 2 3 cache

prefix

1 2 3

cacheprefix

4 X5 6 7

2

1 3

1 3

Draft + Self-Verify

Verify

Draft1 Model

Draft2 Model

Target Model

Window Size
prefix

4

2

4

1 2 3

prefix

Window Size

1 2 3 4

cache

1 2 3

D
raft + Self-verify

Pre-verify + Self-verify

Figure 4: A framework of HSDDW. HSDDW utilizes two draft models, Draft1 Model (M1) and Draft2 Model (M2),
along with one target model (Mp). M1 is responsible for the Draft+Self-verify stage, M2 handles the Pre-verify
+ Self-verify stage, and the target model operates in the Verify stage. In the Pre-verify + Self-verify stage, the
entropy of M2’s output is used to determine whether to continue drafting with M1 or hand over the tokens to Mp

for final verification.

HSDDW framework, Llama-2-chat 70B, Llama-2-
chat 7B, and Llama-68m were used as the target
model Mp, the stronger draft model M2, and the
fast draft model M1, respectively. Additional eval-
uation details are provided in Appendix A.1 and
A.2

4.2 Main Results

Our proposed method, HSDDW, demonstrates sub-
stantial improvements in decoding efficiency across
multiple benchmarks, as illustrated in Table 1.
The results are categorized based on two temper-
ature (temp) settings: temp = 1 and temp = 0
(greedy).

For temp = 1, HSDDW achieves remark-
able speedups, particularly on MT-Bench, Hu-
manEval, and Alpaca, with gains of 2.91×,
2.92×, and 2.99×, respectively, surpassing or
matching all baseline methods. Although EA-
GLE (Li et al., 2024) performs competitively on
GSM8K, HSDDW still delivers a strong 2.64×
speedup on this benchmark. Importantly, unlike
SpecDec++ (Huang et al., 2024) and EAGLE (Li
et al., 2024), which require additional training, HS-
DDW can be directly applied to any off-the-shelf
LLM without further modifications.

For temp = 0, HSDDW outperforms both
PEARL (Liu et al., 2024) and EAGLE (Li et al.,
2024) on MT-Bench, GSM8K, and Alpaca bench-
marks, demonstrating its robustness and efficiency
under greedy decoding conditions. Across the four

datasets and two temperature settings, HSDDW
exhibits comprehensive and robust speedup perfor-
mance.

Notably, the speedups achieved under temp = 0
are consistently higher than those under temp =
1. This observation aligns with findings in prior
works (Leviathan et al., 2023; Li et al., 2024; Zhao
et al., 2024; Fu et al., 2024; Zhang et al., 2023),
which attribute this difference to the increased un-
certainty at higher temperatures. Specifically, un-
der higher temperature settings, the draft model
faces greater difficulty in predicting tokens that
align with the target model’s output, as opposed to
the lower uncertainty present at temp = 0.

Additionally, in Section 4.4, we further discuss
"Why HSDDW’s performance on Humaneval and
GSM8K is relatively lower? ", providing insights
into its limitations on these specific benchmarks.

4.3 Ablation Study

HSDDW integrates both self-verify and pre-verify
mechanisms. In the following sections, we will
provide a detailed analysis of each stage and com-
ponent of the architecture, examining their indi-
vidual contributions to the overall performance. In
Table 2, we present the results of our ablation study,
which analyzes the impact of the various verifica-
tion strategies employed in our model across four
benchmarks. Specifically, we evaluate the individ-
ual effects of Pre-verify and Self-verify, as well
as the combined performance of Pre-verify with

8279

Methods MT-Bench HumanEval GSM8K Alpaca
T=

1

AT 1.00× 1.00× 1.00× 1.00×
SpecDec++(Huang et al., 2024) - 2.23×⋄ 2.26×⋄ 2.04×⋄

EAGLE(Li et al., 2024) 2.67×⋄ 2.92×⋄ 2.74×⋄ 2.65×⋄

HSDDW 2.91× 2.92× 2.64× 2.99×

T=
0 PERAL(Liu et al., 2024) 2.48×⋄ 3.01×⋄ 2.87×⋄ -

EAGLE(Li et al., 2024) 3.01×⋄ 3.52×⋄ 3.03×⋄ 2.97×⋄

HSDDW 3.13× 3.39× 3.36× 3.24×

Table 1: Comparison of Different Methods on Various Model Configurations. T = 0 represents temperature = 0
(greedy decoding), and T = 1 represents temperature = 1. ⋄ denotes results directly cited from the original paper.
The symbol ‘ - ’ denotes that the results has not been report in original papers. We bold the best results.

Self-verify. We also compare these findings to the
full HSDDW method to highlight the differences
in performance. Please note that HSDDW differs
from merely combining Pre-verify with Self-verify.
Figure 5 illustrates Pre-verify alone and Pre-verify
combined with Self-verify.

From the results, several key trends emerge.
First, self-verify shows significant improvements
across all four benchmarks. Notably, it sur-
passes PEARL (Liu et al., 2024) on MT-Bench
with a speedup of 2.63×, and outperforms
SpecDec++ (Huang et al., 2024) on HumanEval,
reaching a speedup of 2.57×. This demonstrates
the effectiveness of the Self-verify approach, even
as a standalone method.

The inclusion of Pre-verify provides a perfor-
mance boost. For example, it improves the speedup
from 2.40× to 2.53× on MT-Bench and from
2.22× to 2.31× on HumanEval. However, on
GSM8K and Alpaca, Pre-verify yields minimal
changes compared to the vanilla speculative decod-
ing.

When both Pre-verify and Self-verify are com-
bined, the performance further improves across
the board, with a speedup of 2.69× on MT-Bench
and 2.66× on HumanEval. Finally, the HSDDW
method consistently delivers the best performance,
achieving a remarkable speedup of 2.95× on MT-
Bench and 2.99× on Alpaca, clearly demonstrating
its superiority over both individual and combined
verification strategies. For more details, refer to
Section 4.4.

4.4 Analysis
Confidence Threshold τ In the self-verify
method, entropy is used to evaluate the draft
model’s confidence in its generated tokens. When

H(q) > τ , the generation process halts. As illus-
trated in Figure 6, we compared the entropy values
of accepted and rejected tokens as determined by
the target model in the vanilla speculative decoding
setup. Specifically, the "accepted entropy" refers
to the average entropy of tokens that were accepted
by the target model within their respective sentence
contexts. In contrast, the "rejected entropy" rep-
resents the average entropy of tokens that were
rejected by the target model within the correspond-
ing sentence context. This comparison provides
insights into how entropy correlates with token
acceptance and rejection during speculative decod-
ing. The results, across both 70b-7b and 7b-68m
configurations, reveal a distinct decision boundary
in entropy between accepted and rejected tokens.
This further confirms entropy as a reliable metric
for determining when the draft model should stop
generating tokens, aligning well with the target
model’s decisions during the verification phase in
speculative decoding. Based on the above analysis,
we design a confidence threshold to enable the draft
model to decide when to stop generating tokens.

Let Sreject represent the set of positions in a
sentence where the draft model’s tokens were re-
jected by the target model. For each rejected to-
ken, the corresponding entropy is denoted by (
H(qi)). When a new token is rejected (at position
i ∈ Sreject), the update rule for the threshold τ is
defined as:

τ =
1

|Sreject|
∑

i∈Sreject

H(qi)

where |Sreject| is the total number of rejected to-
kens, and H(qi)) is the entropy of the i-th rejected
token. This formula calculates τ as the average en-

8280

1 2 3 4prefix

Draft

Draft1 Model

Target Model

2

1

1

Verify

2

7

1 2 8

prefix
Window Size 81 2 3

Pre-verify

1 2 3

1 2 3prefix

4
4 5 6 7

Draft

Window Size

Draft2 Model

cache

1 2 3

cache

prefix

cacheprefix

7

Draft1 Model

Target Model

2

1

1

Verify

2

5

1 2 5

prefix
61 2 3

Pre-verify

1 2 3

1 2 3prefix

4
4 5 6 7

Window Size

Draft2 Model

cache

1 2 3

cache

prefix

cacheprefix

5

4

5

1 2 X3 4prefix

Window Size

4

cache

4 5

Draft + Self-verify Draft + Self-verify

(a) SD + Pre-verify

(b) SD + Pre-verify + Self-verify

D
raft

D
raft + Self-verify

7

cache

4 5 6

Figure 5: The upper diagram (a) illustrates speculative decoding with Pre-verify, which can be viewed as two
speculative decoding models connected sequentially. The bottom diagram (b) shows speculative decoding with both
Pre-verify and Self-verify, which can be considered an extension of (a) with the addition of Self-verify.

Pre-verify Self-verify HSDDW MT-Bench HumanEval GSM8K Alpaca

2.40× 2.22× 2.51× 2.50×
✓ 2.53× 2.31× 2.47 × 2.48×

✓ 2.63× 2.57× 2.68× 2.54×
✓ ✓ 2.69× 2.66× 2.65× 2.63×

✓ 2.95× 2.92× 2.64× 2.99×

Table 2: Ablation study results showing the impact of Pre-verify and Self-verify strategies on decoding speed across
four benchmarks (MT-Bench, HumanEval, GSM8K, and Alpaca).

tropy of all the tokens that have been rejected so far,
allowing the threshold to be updated dynamically
based on the model’s rejection history.

Speed Comparison Across Different Window
Sizes In speculative decoding, the choice of win-
dow size K is crucial for optimizing performance,
particularly when paired with the accepted rate of
the SD model (Leviathan et al., 2023). As shown in
Figure 7, models that leverage both self-verify and
pre-verify, as well as the HSDDW model, demon-
strate smaller variations in speed across different
window sizes compared to vanilla SD. Notably, the
speed of HSDDW consistently surpasses that of
vanilla SD at all window sizes, indicating greater
robustness and stability in performance across dif-
ferent configurations.

Why HSDDW’s performance on Humaneval
and GSM8K is relatively lower? In Table 3,

HSDDW demonstrates relatively weaker perfor-
mance on math-heavy datasets like Humaneval and
GSM8K. Specifically, in the MT-Bench dataset,
where 10 out of the 80 samples involve mathe-
matical tasks, we observe a notable trend. For
purely math-related questions, the performance of
vanilla speculative decoding sees a slight decrease,
from 2.40× to 2.29×. In contrast, HSDDW expe-
riences a more significant drop, going from 2.95×
to 2.08×. However, when math-related problems
are removed from MT-Bench, the score for vanilla
speculative decoding remains relatively unchanged,
while HSDDW shows an increase from 2.08× to
3.04×.

This disparity is likely due to HSDDW utiliz-
ing the 68m draft model, which underperforms
on mathematical tasks compared to the larger 70b
and 7b models. The 68m model’s training pre-
dominantly involves data from Wikipedia and por-

8281

Figure 6: The speculative decoding models for 70b-7b
and 70b-68m, showing the entropy values for accepted
and rejected tokens on the MT-Bench dataset. A clear
decision boundary is observed between acceptance and
rejection based on entropy.

Figure 7: Speed comparison of three speculative decod-
ing methods with varying window sizes on MT-Bench.
"Self/Pre-verify" refers to speculative decoding that
combines both Self-verify and Pre-verify mechanisms.

tions of the C4-en and C4-realnewslike datasets
(Raffel et al., 2020), which are less relevant for
math-related tasks. To further enhance HSDDW’s
effectiveness on math-focused datasets like Hu-
maneval and GSM8K, more targeted training on
math-specific domains is essential. This highlights
a limitation of HSDDW in handling mathematical
problems and suggests areas for potential improve-
ment.

Further Discussion on the Acceleration of HS-
DDW In this section, we aim to provide a de-
tailed explanation for the significant performance
improvement of HSDDW (70b-7b-68m) compared
to vanilla speculative decoding using the same 68m
draft model. In both scenarios, the 68m model
generates the draft during the drafting stage. How-
ever, HSDDW consistently demonstrates better ef-
ficiency. We introduce two key metrics to ana-
lyze this improvement: redundancy (σ) and target
model utilization (η), offering a more comprehen-

All only Math rm Math

AT 1.00× 1.00× 1.00×
SD 2.40× 2.29× 2.41×
HSDDW 2.95× 2.08× 3.04×

Table 3: Comparison of Autoregressive (AT), Spec-
ulative Decoding (SD), and HSDDW speeds on MT-
Bench. The term "All" refers to all data, "only Math"
denotes data related only to mathematical content, and
"rm Math" indicates the removal of math-related data.

sive view of the system’s performance.
The redundancy metric, σ, quantifies the propor-

tion of tokens generated by the draft model that are
not ultimately retained in the final output:

σ = 1− Number of accepted tokens
Total tokens generated by the draft model

.

A lower value of σ indicates fewer unused tokens,
which is desirable. However, reducing σ alone
could be misleading, as it could simply result from
using a smaller window size for drafting. There-
fore, we introduce the second metric, target model
utilization (η), to balance this effect. The metric
η represents the fraction of the final output length
that required inference steps from the target model:

η =
Number of target model inferences

Final output length
.

By evaluating both σ and η, we can better under-
stand why HSDDW surpasses speculative decod-
ing, particularly in terms of computational effi-
ciency and effectiveness.

In our comparison of the four models—70b-7b,
70b-68m, Pre-verify combined with Self-verify (re-
ferred to as Pre+Self-verify), and HSDDW—the
results are summarized in Table 4. The table shows
that models 70b-7b, Pre+Self-verify, and HSDDW
exhibit similar values for redundancy (σ) and target
model utilization (η). However, the observed per-
formance differences can be attributed to variations
in their underlying architectures.

In the 70b-7b model, the primary draft model
during the drafting phase is the 7b model, whereas
in Pre+Self-verify, both the 7b and 68m models are
involved. In contrast, HSDDW primarily employs
the 68m model for drafting, which contributes to
its faster drafting speed. On the other hand, despite
also using the 68m model for drafting, the 70b-68m
model shows less efficiency, as reflected in its σ
and η values. This highlights how HSDDW more

8282

Figure 8: Visualization of window size across three configurations on the 28th question of the MT-Bench dataset.

effectively leverages the 68m model’s efficiency,
leading to a noticeable speedup in inference time.

Model σ (%) η (%) Speedup

70b-7b 39.87 14.42 2.40×
70b-68m 89.69 49.30 1.69×
Pre+Self-verify 39.60 14.85 2.69×
HSDDW 44.36 14.46 2.95×

Table 4: Comparison of four models in terms of redun-
dancy (σ) and target model utilization (η). The values
in the table are percentages. "Pre+Self-verify" refers to
Pre-verify combined with Self-verify.

Case Study: Visualizing Dynamic Draft Lengths
We visualize the changes in window sizes of the
draft model over time for the 70b-7b, 70b-68m,
and 70b-7b-68m configurations. A random sample
question from the MT-Bench dataset is used as an
example.

The results are shown in Figure 8. We observe
that HSDDW exhibits dynamic window sizes at
different steps. Notably, the HSDDW 70b-7b-68m
configuration demonstrates a significantly higher
acceptance rate compared to Vanilla-SD with the
70b-68m setup. This improvement plays a crucial
role in the speedup achieved by our method.

5 Conclusion

In this paper, we propose HSDDW, a novel infer-
ence acceleration framework that significantly en-
hances LLM inference efficiency without the need
for additional training. The framework employs
two simple yet effective strategies: Self-verify,
which uses entropy to assess the draft model’s confi-
dence, and a hierarchical structure that incorporates
pre-verification, boosting the overall robustness

and performance of the model. A key advantage
of HSDDW is its ability to mitigate the signifi-
cant impact of window size on SD performance,
making the method more robust to this parameter.
Our experiments demonstrate that HSDDW is fully
compatible with state-of-the-art methods and con-
sistently delivers competitive results across various
text generation benchmarks.

6 Limitations

Our model, HSDDW, leverages a hierarchical struc-
ture to accelerate the decoding process by relying
on the draft model’s inherent capabilities. However,
if the task involves content that the draft model has
not encountered before, the effectiveness of the ac-
celeration may be reduced. This limitation arises
because the draft model’s familiarity with the task
plays a crucial role in determining how much of the
workload can be offloaded from the target model,
directly impacting the overall speedup.

References
Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,

Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first
International Conference on Machine Learning.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language
model decoding with speculative sampling. CoRR,
abs/2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

8283

https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm
inference using lookahead decoding. Preprint,
arXiv:2402.02057.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. REST: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582–1595,
Mexico City, Mexico. Association for Computational
Linguistics.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. 2024.
Specdec++: Boosting speculative decoding via adap-
tive candidate lengths. Preprint, arXiv:2405.19715.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 19274–19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. ICML,
arXiv:2401.15077.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen
Zhu, and Winston Hu. 2024. Parallel specula-
tive decoding with adaptive draft length. Preprint,
arXiv:2408.11850.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and

Operating Systems, Volume 3, ASPLOS ’24, page
932–949, New York, NY, USA. Association for Com-
puting Machinery.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

David A. Patterson. 2004. Latency lags bandwith. Com-
mun. ACM, 47(10):71–75.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR, abs/1911.02150.

Benjamin Spector and Chris Re. 2023. Accelerating
llm inference with staged speculative decoding. In
ES-FOMO at International Conference on Machine
Learning.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong
Tian, and Beidi Chen. 2024. Triforce: Lossless accel-
eration of long sequence generation with hierarchical
speculative decoding. In First Conference on Lan-
guage Modeling.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023a. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

8284

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2402.02057
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://arxiv.org/abs/2405.19715
https://arxiv.org/abs/2405.19715
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.48550/arXiv.2401.15077
https://doi.org/10.48550/arXiv.2401.15077
https://arxiv.org/abs/2408.11850
https://arxiv.org/abs/2408.11850
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.1145/1022594.1022596
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerat-
ing seq2seq generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 3909–3925, Singapore. Association for Com-
putational Linguistics.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655–7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft & ver-
ify: Lossless large language model acceleration via
self-speculative decoding. CoRR, abs/2309.08168.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu,
Chaojun Xiao, Xinrong Zhang, Yewei Fang, Kai-
huo Zhang, Zhiyuan Liu, and Maosong Sun. 2024.
Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. Preprint,
arXiv:2402.13720.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal.
2023. Distillspec: Improving speculative decoding
via knowledge distillation. ArXiv, abs/2310.08461.

A Evaluation Details

A.1 Inference Setting
We set the maximum sequence length to 2048 and
applied a temperature of T = 1. Consistent with
(Leviathan et al., 2023), the fixed window size was
set to K = 10.

A.2 GPU Compute Resources
The majority of the experiments in this study were
conducted on 8 NVIDIA V100-32G GPUs. An
exception is in Section 4.4, where we evaluated
the 7B-68M pair specifically for entropy analysis.

This experiment was performed on a single GPU
because entropy differences are independent of the
number of GPUs. To ensure transparency, a de-
scription of this specific setup will be included in
the paper.

For our GPU setup, we utilized PyTorch
in combination with the HuggingFace
Transformers library 7. Specifically, the
AutoModelForCausalLM.from_pretrained
function was employed with the
device_map="auto" parameter, enabling au-
tomatic model distribution across available devices.
FP16 precision was utilized to optimize memory
usage.

The allocation of GPU resources was as follows:

• 70B Model: Distributed across all 8 GPUs
(device0 to device7).

• 7B and 68M Models: Both models were allo-
cated to a single GPU (device0).

B License

Dataset The licenses for the datasets used in our
research are as follows:

1. Alpaca8 (Taori et al., 2023): Creative Com-
mons Attribution Non Commercial 4.0

2. HumanEval9 (Chen et al., 2021): MIT Li-
cense

3. GSM8K10 (Cobbe et al., 2021): MIT License

4. MT-bench dataset11 (Zheng et al., 2024):
Apache License 2.0

Model The licenses for the models used in our
research are as follows:

1. Llama-2-chat models (Touvron et al., 2023b):
Meta AI Llama2 Community License Agree-
ment

2. Llama-68m12: Apache License 2.0
7https://huggingface.co/docs/transformers/

model_doc/auto
8https://huggingface.co/datasets/tatsu-lab/

alpaca
9https://huggingface.co/datasets/openai/

openai_humaneval
10https://huggingface.co/datasets/openai/gsm8k
11https://huggingface.co/spaces/lmsys/mt-bench/

tree/main
12https://huggingface.co/JackFram/llama-68m

8285

https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://doi.org/10.48550/arXiv.2309.08168
https://doi.org/10.48550/arXiv.2309.08168
https://doi.org/10.48550/arXiv.2309.08168
https://arxiv.org/abs/2402.13720
https://arxiv.org/abs/2402.13720
https://api.semanticscholar.org/CorpusID:263909387
https://api.semanticscholar.org/CorpusID:263909387
https://huggingface.co/docs/transformers/model_doc/auto
https://huggingface.co/docs/transformers/model_doc/auto
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/spaces/lmsys/mt-bench/tree/main
https://huggingface.co/spaces/lmsys/mt-bench/tree/main
https://huggingface.co/JackFram/llama-68m

Code The license for the code used in our re-
search is as follows:

1. SD13: Apache License 2.0

13https://github.com/feifeibear/
LLMSpeculativeSampling

8286

https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling

C Algorithm: SD + Self-verify

Here, we give the whole algorithm of SD + Self-verify in detail.

Algorithm 1 SD+Self-Verify.
Input: the draft models Mq , the target model Mp, the input prefix x, the max generate tokens L, the

window size K.
1: Initialization: Mp = Mq,Mq = Mp, Hq = [], τq = 0
2: while len(x) < L do
3: ▷ Draft
4: for i = 1 to K do
5: qi ←Mq(x+ [x1, ..., xi−1])
6: xi ∼ qi
7: l = i
8: ▷ Self-verify strategy
9: if H(qi) > τq then

10: break
11: end if
12: end for
13: ▷ Verify
14: x, [x1, x2, ..., xl]← x ▷ split the prefix to get the last ntot draft tokens
15: p1, p2, ..., pl ←Mp(x+ [x1]),Mp(x+ [x1, x2]), ...,Mp(x+ [x1, ..., xl])
16: retrival q1, q2, ..., ql from the cache
17: r1 ∼ U(0, 1), ..., rl ∼ U(0, 1)

18: n← min({i− 1|1 ≤ i ≤ l, ri >
pi[xi]
qi[xi]
} ∪ {l})

19: if n = l then
20: ✓ accept all draft tokens
21: x← x+ [x1, ..., xl]
22: else
23: × reject someone
24: y ∼ norm(max(0, pn+1 − qn+1))
25: x← x+ [x1, ..., xn, y]
26: τq = Average(Hq.append(H(qn)) ▷ update the draft model entropy threshold
27: end if
28: mode← "Draft"
29: end while

8287

D Algorithm : HSDDW

Here, we give the whole algorithm of HSDDW in details.

Algorithm 2 Hierarchical Speculative Decoding with Dynamic Window.
Input: the draft models Mq1 and Mq2, the target model Mp, the input prefix x, the max generate tokens L, the window size K.

▷ The Draft strategy is used first.
1: Initialization: mode← "Draft", Mp = Mq2,Mq = Mq1, Hq1 = Hq2 = [], τq1 = τq2 = 0, ntot = 0
2: while len(x) < L do
3: if mode = "Draft" then
4: for i = 1 to K do
5: qi ←Mq(x+ [x1, ..., xi−1])
6: xi ∼ qi
7: l = i
8: ▷ Self-verify strategy
9: if H(qi) > τq1 then

10: break
11: end if
12: end for
13: p1, p2, ..., pl ←Mp(x+ [x1]),Mp(x+ [x1, x2]), ...,Mp(x+ [x1, ..., xl])
14: retrival q1, q2, ..., ql from the cache
15: r1 ∼ U(0, 1), ..., rl ∼ U(0, 1)
16: ▷ Pre-verify strategy
17: n← min({i− 1|1 ≤ i ≤ l, ri >

pi[xi]
qi[xi]
} ∪ {l})

18: if n = l then
19: ✓ accept all draft tokens
20: x← x+ [x1, ..., xl]
21: else
22: × reject someone
23: y ∼ norm(max(0, pn+1 − qn+1))
24: x← x+ [x1, ..., xn, y]
25: τq1 = Average(Hq1.append(H(qn)) ▷ update the q1 threshold
26: end if
27: ▷ Self-verify strategy
28: j ← min({i|1 ≤ i ≤ l,H(pi) > τq2} ∪ {0})
29: ntot = n+ ntot

30: if j = 0 then
31: ✓ accept all draft tokens
32: mode← "Draft"
33: Mp = Mq2,Mq = Mq1

34: else
35: × reject someone
36: mode← "verify"
37: Mp = Mp,Mq = Mq2

38: end if
39: else
40: ▷ Verify strategy
41: x, [x1, x2, ..., xntot]← x ▷ split the prefix to get the last ntot draft tokens
42: p1, p2, ..., pntot ←Mp(x+ [x1]),Mp(x+ [x1, x2]), ...,Mp(x+ [x1, ..., xntot])
43: retrival q1, q2, ..., qntot from the cache
44: r1 ∼ U(0, 1), ..., rntot ∼ U(0, 1)

45: n← min({i− 1|1 ≤ i ≤ ntot, ri >
pi[xi]
qi[xi]
} ∪ {ntot})

46: if n = ntot then
47: ✓ accept all draft tokens
48: x← x+ [x1, ..., xntot]
49: else
50: × reject someone
51: y ∼ norm(max(0, pn+1 − qn+1))
52: x← x+ [x1, ..., xn, y]
53: τq2 = Average(Hq2.append(H(qn)) ▷ update the q2 threshold
54: end if
55: mode← "Draft"
56: end if
57: end while

8288

