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Introduction

It is our great pleasure to present the Proceedings of the SIGDIAL 2012 Conference, the 13th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. The conference is held in Seoul,
South Korea, July 5-6, 2012, and is co-located with the 50th Annual Meeting of the Association for
Computational Linguistics (ACL).

We received sixty-three submissions: forty long paper submissions, nineteen short paper submissions,
and four demo submissions. The members of the Program Committee did a superb job reviewing the
submitted papers. We thank them for their advice in selecting the accepted papers and for helping to
maintain the high quality of the program. Special thanks go to Giuseppe Di Fabbrizio and Christophe
Cerisara for helping out with last minute review requests.

In line with the SIGDIAL tradition, our aim has been to create a balanced program that could
accommodate as many favorably rated papers as possible. Of the fifty-nine paper submissions, thirty-
eight were accepted: eighteen of forty long paper submissions were accepted as long papers for oral
presentation, seven were accepted as long papers for poster presentation, and two were accepted as
short papers for poster presentation. In addition, eleven of the nineteen short paper submissions were
accepted for poster presentation, for a total of twenty posters. Three of the four demo submissions were
accepted.

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse
and dialogue. This year, the program contained oral presentation sessions and poster papers on
discourse structure, paralinguistic features of dialogue, natural language generation and natural
language understanding, evaluation, and statistical models of dialogue, as well as on the SIGDIAL
2012 special theme, “characterizing dialog coherence”. We particularly thank the two keynote speakers
for their contributions to research on coherence and dialogue: Professor Tatsuya Kawahara (Kyoto
University) and Professor Diane Litman (University of Pittsburgh).

We thank Kallirroi Georgila, Mentoring Chair for SIGDIAL 2012. The goal of mentoring is to assist
authors of papers that contain innovative ideas to improve their quality regarding English language
usage or paper organization. This year, nine of the accepted papers were mentored. We thank the
Program Committee members who volunteered to serve as mentors: Ron Artstein, Srinivas Bangalore,
Michael Johnston, Kristiina Jokinen, Vincent Ng, Andrei Popescu-Belis, David Schlangen, Amanda
Stent, and Michael Strube.

We thank Minhwa Chung, Local Arrangements Chair, and Hyung Soon Kim, Jungyun Seo and Sunhee
Kim, the members of the Local Arrangements Committee, for taking care of the many details of the
local arrangements. We also thank the student volunteers for on-site assistance. We are grateful to ACL
PCO Nuricom for designing the conference bags.

We thank Jason Williams, Sponsorships Chair, for recruiting and liaising with our conference sponsors.
Sponsorship makes possible valuable aspects of the SIGDIAL program, such as the invited speakers,
conference reception and dinner, and best paper awards. We gratefully acknowledge the support of
our sponsors, including AT&T, AVIOS, Honda Research Institute, IBM Research, KT Corporation,
Microsoft Research, NHN Corporation, and Seoul National University.
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We would like to thank last year’s Program Co-Chairs, Joyce Chai and Rebecca Passonneau, last year’s
General Co-Chairs, Johanna Moore and David Traum, and last year’s Local Chair, Peter Heeman, for
their helpful advice and answers to questions.

We thank Priscilla Rasmussen at the ACL for handling the financial transactions for SIGDIAL 2012,
including advance registration.

We gratefully acknowledge SoftConf for use of the START conference management system.

We also thank the SIGDIAL board, in particular Tim Paek, Amanda Stent, and Kristiina Jokinen, for
their advice and support.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Gary Geunbae Lee and Jonathan Ginzburg
General Co-Chairs

Claire Gardent and Amanda Stent
Technical Program Co-Chairs
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Multi-modal Sensing and Analysis of Poster Conver sations
toward Smart Posterboard

Tatsuya Kawahara
Kyoto University, Academic Center for Computing and Media Studies
Sakyo-ku, Kyoto 606-8501, Japan
http://www.ar.media.kyoto-u.ac.jp/crest/

Abstract

Conversations in poster sessions in academic
events, referred to as poster conversations,
pose interesting and challenging topics on
multi-modal analysis of multi-party dialogue.
This article gives an overview of our project
on multi-modal sensing, analysis and “under-
standing” of poster conversations. We fo-
cus on the audience’s feedback behaviors such
as non-lexical backchannels (reactive tokens)
and noddings as well as joint eye-gaze events
by the presenter and the audience. We inves-
tigate whether we can predict when and who
will ask what kind of questions, and also inter-
est level of the audience. Based on these anal-
yses, we design a smart posterboard which can
sense human behaviors and annotate interac-
tions and interest level during poster sessions.

1 Introduction

As a variety of spoken dialogue systems have been
developed and deployed in the real world, the fron-
tier of spoken dialogue research, with engineering
applications in scope, has been extended from the
conventional human-machine speech interface. One
direction is a multi-modal interface, which includes
not only graphics but also humanoid robots. An-
other new direction is a multi-party dialogue sys-
tem that can talk with multiple persons as an as-
sistant agent (D.Bohus and E.Horvitz, 2009) or a
companion robot (S.Fujie et al., 2009). While these
are extensions of the human-machine speech in-
terface, several projects have focused on human-
human interactions such as meetings (S.Renals et

al., 2007) and free conversations (K.Otsuka et al.,
2008; C.Oertel et al., 2011), toward ambient systems
supervising the human communications.

We have been conducting a project which focuses
on conversations in poster sessions, hereafter re-
ferred to as poster conversations. Poster sessions
have become a norm in many academic conventions
and open laboratories because of the flexible and in-
teractive characteristics. Poster conversations have
a mixture characteristics of lectures and meetings;
typically a presenter explains his/her work to a small
audience using a poster, and the audience gives feed-
back in real time by nodding and verbal backchan-
nels, and occasionally makes questions and com-
ments. Conversations are interactive and also multi-
modal because people are standing and moving un-
like in meetings. Another good point of poster con-
versations is that we can easily make a setting for
data collection, which is controlled in terms of fa-
miliarity with topics or other participants and yet is
“natural and real”.

The goal of the project is signal-level sensing
and high-level “understanding” of human interac-
tions, including speaker diarization and annotation
of comprehension and interest level of the audience.
These will realize a new indexing scheme of speech
archives. For example, after a long session of poster
presentation, we often want to get a short review of
the question-answers and what looked difficult for
audience to follow. The research will also provide
a model of intelligent conversational agents that can
make autonomous presentation.

As opposed to the conventional content-based in-
dexing approach which focuses on the presenter’s

Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 1-9,
Seoul, South Korea, 5-6 July 2012. (©2012 Association for Computational Linguistics



Content-based
indexing

Content
analysis

Speech
recognition

Interactive
presentation

Audio
analysis

)
=

Interaction
analysis
. \%

&

Video
analysis

Reaction-based
indexing

Figure 1: Overview of multi-modal interaction analysis

speech by conducting speech recognition and nat-
ural language analysis, we adopt an interaction-
oriented approach which looks into the audience’s
reaction. Specifically we focus on non-linguistic in-
formation such as backchannel, nodding and eye-
gaze information, because we assume the audience
better understands the key points of the presentation
than the current machines. An overview of the pro-
posed scheme is depicted in Figure 1.

Therefore, we set up an infrastructure for multi-
modal sensing and analysis of multi-party interac-
tions. Its process overview is shown in Figure 2.
From the audio channel, we detect utterances as
well as laughters and backchannels. We also de-
tect eye-gaze, nodding, and pointing information.
Special devices such as a motion-capturing system
and eye-tracking recorders are used to make a “gold-
standard” corpus, but only video cameras and distant
microphones will be used in the practical system.

Our goal is then annotation of comprehension and
interest level of the audience by combining these in-
formation sources. This annotation will be useful
in speech archives because people would be inter-
ested in listening to the points other people were
interested in. Since this is apparently difficult to
be well-defined, however, we set up several mile-
stones that can be formulated in objective manners
and presumably related with the above-mentioned
goal. They are introduced in this article after de-
scription of the sensing environment and the col-
lected corpus in Section 2. In Section 3, annota-
tion of interest level is addressed through detection
of laughters and non-lexical kinds of backchannels,
referred to as reactive tokens. In Section 4 and 5,
eye-gaze and nodding information is incorporated
to predict when and who in the audience will ask
questions, and also what kind of questions. With

[signal] [behavior] [mental state]

Pointing
Video < Gaze (head) —> attention
) Nodding compre-
Motion hension
Backchannel
Audio interest
Laughter
Utterance courtesy

Figure 2: Flow of multi-modal sensing and analysis

these analyses, we expect that we can get clues to
high-level “understanding” of the conversations, for
example, whether the presentation is understood or
liked by the audience.

2 Multi-modal Corpus of Poster
Conversations

2.1 Recording Environment

We have designed a special environment (“IMADE
Room”) to record audio, video, human mo-
tion, and eye-gaze information in poster conversa-
tions (T.Kawahara et al., 2008). An array of micro-
phones (8 to 19) has been designed to be mounted on
top of the posterboard, while each participant used
a wireless head-set microphone for recording voice
for the “gold-standard” corpus annotation. A set of
cameras (6 or 8) has also been designed to cover all
participants and the poster, while a motion captur-
ing system was used for the “gold-standard” annota-
tion. Each participant was equipped with a dozen of
motion-capturing markers as well as an eye-tracking
recorder and an accelerometer, but all devices are
attached with a cap or stored in a compact belt bag,
so they can be naturally engaged in the conversation.
An outlook of session recording is given in Figure 3.

2.2 CorpusCallection and Annotation

We have recorded a number of poster conversations
(31 in total) using this environment, but for some of
them, failed to collect all sensor data accurately. In
the analyses of the following sections, we use four
poster sessions, in which the presenters and audi-
ences are different from each other. They are all
in Japanese, although we recently recorded sessions
in English as well. In each session, one presenter
(labeled as “A”) prepared a poster on his/her own



Figure 3: Outlook of poster session recording

academic research, and there was an audience of
two persons (labeled as “B” and “C”), standing in
front of the poster and listening to the presentation.
They were not familiar with the presenter and had
not heard the presentation before. The duration of
each session was 20-30 minutes.

All speech data, collected via the head-set mi-
crophones, were segmented into IPUs (Inter-Pausal
Unit) with time and speaker labels, and transcribed
according to the guideline of the Corpus of Sponta-
neous Japanese (CSJ) (K.Maekawa, 2003). We also
manually annotated fillers, verbal backchannels and
laughters.

Eye-gaze information is derived from the eye-
tracking recorder and the motion capturing system
by matching the gaze vector against the position of
the other participants and the poster. Noddings are
automatically detected with the accelerometer at-
tached with the cap.

3 Detection of Interesting Level with
Reactive Tokens of Audience

We hypothesize that the audience signals their in-
terest level with their feedback behaviors. Specif-
ically, we focus on the audience’s reactive tokens
and laughters. By reactive tokens (Aizuchi in
Japanese), we mean the listener’s verbal short re-
sponse, which expresses his/her state of the mind
during the conversation. The prototypical lexical en-
tries of backchannels include “hai” in Japanese and
“yeah” or “okay” in English, but many of them are

non-lexical and used only for reactive tokens, such
as “hu:n”, “he:” in Japanese and “wow”, “uh-huh”
in English. We focus on the latter kind of reactive
tokens, which are not used for simple acknowledg-
ment.

We also investigate detection of laughters and its
relationship with interesting level. The detection
method and performance were reported in (K.Sumi
etal., 2009).

3.1 Relationship between Prosodic Patterns of
Reactive Tokensand Interest Level

In this subsection, we hypothesize that the audience
expresses their interest with specific syllabic and
prosodic patterns. Generally, prosodic features play
an important role in conveying para-linguistic and
non-verbal information. In previous works (F.Yang
et al.,, 2008; A.Gravano et al., 2007), it was re-
ported that prosodic features are useful in identi-
fying backchannels. Ward (N.Ward, 2004) made
an analysis of pragmatic functions conveyed by the
prosodic features in English non-lexical tokens.

In this study, we designed an experiment to iden-
tify the syllabic and prosodic patterns closely related
with interest level. For this investigation, we select
three syllabic patterns of “hu:N”, “he:” and “a:”,
which are presumably related with interest level and
also most frequently observed in the corpus, except
lexical tokens.

We computed following prosodic features for
each reactive token: duration, FO (maximum and
range) and power (maximum). The prosodic fea-
tures are normalized for every person; for each fea-
ture, we compute the mean, and this mean is sub-
tracted from the feature values.

For each syllabic kind of reactive token and for
each prosodic feature, we picked up top-ten and
bottom-ten samples, i.e. samples that have the
largest/smallest values of the prosodic feature. For
each of them, an audio segment was extracted to
cover the reactive token and its preceding utterances.
Then, we had five subjects to listen to the audio seg-
ments and evaluate the audience’s state of the mind.
We prepared twelve items to be evaluated in a scale
of four (“strongly feel” to “do not feel”), among
which two items are related to interest level and



Table 1: Significant combinations of syllabic and
prosodic patterns of reactive tokens
interest | surprise
hu:N | duration * *
FO max
FO range
power
he: | duration *
FO max *
FO range *
power * *
a duration
FO max *
FO range
power *

other two items are related to surprise level 1. Ta-
ble 1 lists the results (marked by ”*”) that have a sta-
tistically significant (p < 0.05) difference between
top-ten and bottom-ten samples. It is observed that
prolonged “hu:N” means interest and surprise while
“a:” with higher pitch or larger power means inter-
est. On the other hand, “he:” can be emphasized in
all prosodic features to express interest and surprise.
The tokens with larger power and/or a longer du-
ration is apparently easier to detect than indistinct
tokens, and they are more related with interest level.
It is expected that this rather simple prosodic infor-
mation is useful for indexing poster conversations.

3.2 Third-party Evaluation of Hot Spots

In this subsection, we define those segments which
induced (or elicited) laughters or non-lexical reac-
tive tokens as hot spots, 2 and investigate whether
these hot spots are really funny or interesting to the
third-party viewers of the poster session.

We had four subjects, who had not attended the
presentation nor listened the recorded audio content.
They were asked to listen to each of the segmented
hot spots in the original time sequence, and to make
evaluations on the questionnaire, as below.

1We used different Japanese wording for interest and for sur-
prise to enhance the reliability of the evaluation; we adopt the
result if the two matches.

2\Wrede et al.(B.Wrede and E.Shriberg, 2003; D.Gatica-
Perez et al., 2005) defined “hot spots” as the regions where two
or more participants are highly involved in a meeting. Our def-
inition is different from it.

Q1: Do you understand the reason why the reactive
token/laughter occurred?

Q2: Do you find this segment interesting/funny?

Q3: Do you think this segment is necessary or use-
ful for listening to the content?

The percentage of “yes” on Question 1 was 89%
for laughters and 95% for reactive tokens, confirm-
ing that a large majority of the hot spots are appro-
priate.

The answers to Questions 2 and 3 are more sub-
jective, but suggest the usefulness of the hot spots.
It turned out that only a half of the spots associated
with laughters are funny for the subjects (Q2), and
they found 35% of the spots not funny. The result
suggests that feeling funny largely depends on the
person. And we should note that there are not many
funny parts in poster sessions by nature.

On the other hand, more than 90% of the spots
associated with reactive tokens are interesting (Q2),
and useful or necessary (Q3) for the subjects. The
result supports the effectiveness of the hot spots ex-
tracted based on the reaction of the audience.

4 Prediction of Turn-taking with Eye-gaze
and Backchannel I nformation

Turn-taking is an elaborate process especially in
multi-party conversations. Predicting whom the turn
is yielded to or who will take the turn is significant
for an intelligent conversational agent handling mul-
tiple partners (D.Bohus and E.Horvitz, 2009; S.Fujie
etal., 2009) as well as an automated system to beam-
form microphones or zoom in cameras on the speak-
ers. There are a number of previous studies on turn-
taking behaviors in dialogue, but studies on com-
putational modeling to predict turn-taking in multi-
party interactions are very limited (K.Laskowski et
al., 2011; K.Jokinen et al., 2011). Conversations
in poster sessions are different from those in meet-
ings and free conversations addressed in the previ-
ous works, in that presenters hold most of turns and
thus the amount of utterances is very unbalanced.
However, the segments of audiences’ questions and
comments are more informative and should not be
missed. Therefore, we focus on prediction of turn-
taking by the audience in poster conversations, and,
if that happens, which person in the audience will
take the turn to speak.



Table 2: Duration (sec.) of eye-gaze and its relationship
with turn-taking

turn held by | turn taken by

presenter A B C
A gazed at B 0.220 0.589 0.299
Agazedat C 0.387 0.391 0.791
B gazed at A 0.161 0.205 0.078
Cgazedat A 0.308 0.215 0.355

We also presume that turn-taking by the audience
is related with their interest level because they want
to know more and better when they are more at-
tracted to the presentation.

It is widely-known that eye-gaze information
plays a significant role in turn-taking (A.Kendon,
1967; B.Xiao et al., 2011; K.Jokinen et al., 2011;
D.Bohus and E.Horvitz, 2009). The existence of
posters, however, requires different modeling in
poster conversations as the eye-gaze of the partici-
pants are focused on the posters in most of the time.
This is true to other kinds of interactions using some
materials such as maps and computers. Moreover,
we investigate the use of backchannel information
by the audience during the presenter’s utterances.

4.1 Relationship between Eye-gaze and
Turn-taking

We identify the object of the eye-gaze of all partic-
ipants at the end of the presenter’s utterances. The
target object can be either the poster or other partic-
ipants. Then, we measure the duration of the eye-
gaze within the segment of 2.5 seconds before the
end of the presenter’s utterances because the major-
ity of the IPUs are less than 2.5 seconds. It is listed
in Table 2 in relation with the turn-taking events. We
can see the presenter gazed at the person right before
yielding the turn to him/her significantly longer than
other cases. However, there is no significant differ-
ence in the duration of the eye-gaze by the audience
according to the turn-taking events.

4.2 Relationship between Joint Eye-gaze
Eventsand Turn-taking

Next, we define joint eye-gaze events by the presen-
ter and the audience as shown in Table 3. In this
table, we use notation of “audience”, but actually
these events are defined for each person in the audi-

Table 3: Definition of joint eye-gaze events by presenter
and audience

who presenter
gazes at audience | poster
Q) (P)
audience | presenter (i) li Pi
poster (p) Ip Pp

Table 4: Statistics of joint eye-gaze events by presenter
and audience in relation with turn-taking

#turn held #turn taken total
by presenter by audience
(self) | (other)
li 125 17 3 145
Ip 320 71 26 417
Pi 190 11 9 210
Pp 2974 147 145 | 3266
ence. Thus, “li” means the mutual gaze by the pre-

senter and a particular person in the audience, and
“Pp” means the joint attention to the poster object.

Statistics of these events at the end of the presen-
ter’s utterances are summarized in Table 4. Here,
the counts of the events are summed over the two
persons in the audience. They are classified accord-
ing to the turn-taking events, and turn-taking by the
audience is classified into two cases: the person in-
volved in the eye-gaze event actually took the turn
(self), and the other person took the turn (other).
The mutual gaze (“li”) is expected to be related with
turn-taking, but its frequency is not so high. The
frequency of “Pi” is not high, either. The most po-
tentially useful event is “Ip”, in which the presenter
gazes at the person in the audience before giving the
turn. This is consistent with the observation in the
previous subsection.

4.3 Réationship between Backchannelsand
Turn-taking

As shown in Section 3, verbal backchannels suggest
the listener’s interest level. Nodding is regarded as
a non-verbal backchannel, and it is more frequently
observed in poster conversations than in simple spo-
ken dialogues.

The occurrence frequencies of these events are
counted within the segment of 2.5 seconds before
the end of the presenter’s utterances. They are
shown in Figure 4 according to the joint eye-gaze
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Figure 4: Statistics of backchannels and their relationship
with turn-taking

events. It is observed that the person in the audi-
ence who takes the turn (=turn-taker) made more
backchannels both in verbal and non-verbal man-
ners, and the tendency is more apparent in the par-
ticular eye-gaze events of “li” and “Ip” which are
closely related with the turn-taking events.

4.4 Prediction of Turn-taking by Audience

Based on the analyses in the previous subsections,
we conduct an experiment to predict turn-taking by
the audience. The prediction task is divided into two
sub-tasks: detection of speaker change and identifi-
cation of the next speaker. In the first sub-task, we
predict whether the turn is given from the presen-
ter to someone in the audience, and if that happens,
then we predict who in the audience takes the turn
in the second sub-task. Note that these predictions
are done at every end-point of the presenter’s utter-
ance (IPU) using the information prior to the speaker
change or the utterance by the new speaker.

For the first sub-task of speaker change predic-
tion, prosodic features are adopted as a baseline.
Specifically, we compute FO (mean, max, min, and
range) and power (mean and max) of the presenter’s
utterance prior to the prediction point. Backchan-
nel features are defined by taking occurrence counts
prior to the prediction point for each type (verbal
backchannel and non-verbal nodding). Eye-gaze
features are defined in terms of eye-gaze objects
and joint eye-gaze events, as described in previous
subsections, and are parameterized with occurrence
counts and duration. These parameterizations, how-
ever, show no significant difference nor synergetic

Table 5: Prediction result of speaker change

feature recall | precision | F-measure
prosody 0.667 0.178 0.280
backchannel (BC) | 0.459 0.113 0.179
eye-gaze (gaze) 0.461 0.216 0.290
prosody+BC 0.668 | 0.165 0.263
prosody+gaze 0.706 0.209 0.319
prosody+BC+gaze | 0.678 0.189 0.294

effect in terms of prediction performance.

SVM is adopted to predict whether speaker
change happens or not by using these features. The
result is summarized in Table 5. Here, we compute
recall, precision and F-measure for speaker change,
or turn-taking by the audience. This case accounts
for only 11.9% and its prediction is very challeng-
ing, while we can easily get an accuracy of over 90%
for prediction of turn-holding by the presenter. We
are particularly concerned on the recall of speaker
change, considering the nature of the task and appli-
cation scenarios.

Among the individual features, the prosodic fea-
tures obtain the best recall while the eye-gaze fea-
tures achieve the best precision and F-measure.
Combination of these two is effective in improving
both recall and precision. On the other hand, the
backchannel features get the lowest performance,
and its combination with the other features is not ef-
fective, resulting in degradation of the performance.

Next, we conduct the second sub-task of speaker
prediction. Predicting the next speaker in a multi-
party conversation (before he/she actually speaks) is
also challenging, and has not been addressed in the
previous work (K.Jokinen et al., 2011). For this sub-
task, the prosodic features of the current speaker are
not usable because it does not have information sug-
gesting who the turn will be yielded to. Therefore,
we adopt the backchannel features and eye-gaze fea-
tures. Note that these features are computed for in-
dividual persons in the audience, instead of taking
the maximum or selecting among them.

The result is summarized in Table 6. In this exper-
iment, the backchannel features have some effect,
and by combining them with the eye-gaze features,
the accuracy reaches almost 70%.



Table 6: Prediction result of the next speaker

feature accuracy
eye-gaze (gaze) 66.4%
backchannel (BC) | 52.6%
gaze+BC 69.7%

5 Relationship between Feedback
Behaviorsand Question Type

Next, we investigate the relationship between feed-
back behaviors of the audience and the kind of ques-
tions they ask after they take a turn. In this work,
guestions are classified into confirming questions
and substantive questions. The confirming questions
are asked to make sure of the understanding of the
current explanation, thus they can be answered sim-
ply by “Yes” or “No”.2 The substantive questions,
on the other hand, are asking about what was not
explained by the presenter, thus they cannot be an-
swered by “Yes” or “No” only; an additional expla-
nation is needed.

This annotation together with the preceding ex-
planation segment is not so straightforward when the
conversation got into the QA phase after the presen-
ter went through an entire poster presentation. Thus,
we exclude the QA phase and focus on the questions
asked during the explanation phase. In this section,
we analyze the behaviors during the explanation seg-
ment that precedes the question by merging all con-
secutive IPUs of the presenter. This is a reasonable
assumption once turn-taking is predicted in the pre-
vious section. These are major differences from the
analysis of the previous section.

5.1 Relationship between Backchannelsand
Question Type

The occurrence frequencies of verbal backchannels
and non-verbal noddings, normalized by the dura-
tion of the explanation segment (seconds), are listed
according to the question type in Tables 7 and 8.
In these tables, statistics of the person who actu-
ally asked questions are compared with those of the
person who did not. We can observe the turn-taker
made significantly more verbal backchannels when
asking substantive questions. On the other hand,

3This does not mean the presenter actually answered simply
by “Yes” or “No”.

Table 7: Frequencies (per sec.) of verbal backchannels
and their relationship with question type

confirming | substantive
turn-taker 0.034 0.063
non-turn-taker 0.041 0.038

Table 8: Frequencies (per sec.) of non-verbal noddings
and their relationship with question type

confirming | substantive
turn-taker 0.111 0.127
non-turn-taker 0.109 0.132

Table 9: Duration (ratio) of joint eye-gaze events and
their relationship with question type

confirming | substantive
li 0.053 0.015
Ip 0.116 0.081
Pi 0.060 0.035
Pp 0.657 0.818

there is no significant difference in the frequency of
non-verbal noddings among the audience and among
the question types.

5.2 Relationship between Eye-gaze Events and
Question Type

We also investigate the relationship between eye-
gaze events and the question type. Among several
parameterizations introduced in the previous sec-
tion, we observe a significant tendency in the du-
ration of the joint eye-gaze events, which is normal-
ized by the duration of the presenter’s explanation
segment. It is summarized in Table 9. We can see
the increase of “Ip” (and decrease of “Pp” accord-
ingly) in confirming questions. By combining with
the analysis in the previous section, we can reason
the majority of turn-taking signaled by the presen-
ter’s gazing is attributed to confirmation.

6 Smart Posterboard

We have designed and implemented a smart poster-
board, which can record a poster session, sense hu-
man behaviors and annotate interactions. Since it
is not practical to ask every participant to wear spe-
cial devices such as a head-set microphone and an
eye-tracking recorder and also to set up any devices
attached to a room, all sensing devices are attached
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Figure 5: Outlook of smart posterboard

to the posterboard, which is actually a 65-inch LCD
display. An outlook of the posterboard is given in
Figure 5.

Itis equipped with a 19-channel microphone array
on the top, and attached with six cameras and two
Kinect sensors. Speech separation and enhancement
has been realized with Blind Spatial Subtraction Ar-
ray (BSSA), which consists of the delay-and-sum
(DS) beamformer and a noise estimator based on in-
dependent component analysis (ICA) (Y.Takahashi
etal., 2009). In this step, the audio input is separated
to the presenter and the audience, but discrimination
among the audience is not done. Visual information
should be combined to annotate persons in the au-
dience. Voice activity detection (VAD) is conducted
on each of the two channels to make speaker diariza-
tion. Localization of the persons in the audience and
estimation of their head direction, which approxi-
mates their eye-gaze, are conducted using the video
information captured by the six cameras.

Although high-level annotations addressed in the
previous sections have not been yet implemented in
the current system, the above-mentioned processing
realizes a browser of poster sessions which visual-
izes the interaction.

The Kinect sensors are used for a portable and on-
line version, in which speech enhancement, speaker
localization and head direction estimation are per-
formed in real time.

We made a demonstration of the system in IEEE-
ICASSP 2012 as shown in Figure 5, and plan further
improvements and trials in the future.

7 Conclusions

This article has given an overview of our multi-
modal data collection and analysis of poster conver-
sations. Poster conversations provide us with a num-
ber of interesting topics in spoken dialogue research
as they are essentially multi-modal and multi-party.
By focusing on the audience’s feedback behaviors
and joint eye-gaze events, it is suggested that we can
annotate interest level of the audience and hot spots
in the session.

Nowadays, presentation using a poster is one of
the common and important activities in academic
and business communities. As large LCD displays
become ubiquitous, its style will be more interac-
tive. Accordingly, sensing and archiving functions
introduced in the smart posterboard will be useful.
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Abstract

We present and evaluate two state-of-the art
dialogue systems developed to support dialog
with French speaking virtual characters in the
context of a serious game: one hybrid statis-
tical/symbolic and one purely statistical. We
conducted a quantitative evaluation where we
compare the accuracy of the interpreter and
of the dialog manager used by each system; a
user based evaluation based on 22 subjects us-
ing both the statistical and the hybrid system:;
and a corpus based evaluation where we exam-
ine such criteria as dialog coherence, dialog
success, interpretation and generation errors in
the corpus of Human-System interactions col-
lected during the user-based evaluation. We
show that although the statistical approach is
slightly more robust, the hybrid strategy seems
to be better at guiding the player through the
game.

1 Introduction

In recent years, there has been much research on cre-
ating situated conversational characters i.e., virtual
characters (VCs) that look and act like humans but
inhabit a virtual environment (Gratch et al., 2002;
Hofs et al., 2010; Traum et al., 2007; Johnson et al.,
2005; Traum et al., 2008; DeVault et al., 2011).

In this paper, we focus on French speaking, situ-
ated conversational agents who interact with virtual
characters in the context of a serious game designed
to promote careers in the plastic industry (The Mis-
sion Plastechnologie game or MP). We present and
compare two state-of-the art dialogue systems. The
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first system (H) is a hybrid approach that com-
bines an information-state dialogue manager (Lars-
son and Traum, 2000) with a classifier for interpret-
ing the players’ phrases. The second system (QA)
is a question/answering character model which pre-
dicts the system dialog move given a player’s ut-
terance (Leuski and Traum, 2008). Both systems
use a generation-by-selection strategy (Leuski et al.,
2006; Gandhe and Traum, 2007) where the system’s
utterances are selected from a corpus of possible
outputs based on the dialog manager output. While
previous work focuses on relatively short dialogs in
a static setting, in our systems we consider long in-
teractions in which dialogs occur in a setting that
dynamically evolves as the game unfolds.

We evaluate the two dialog systems in the con-
text of the 3D game they were developed for and
seek to determine the degree to which a dialog sys-
tem is operational. To answer this question, we anal-
yse both systems with respect not only to quantita-
tive metrics such as accuracy but also to user- and
corpus-based metrics. User-based metrics are com-
puted based on a questionnaire the users filled in;
while corpus-based metrics are manually extracted
from the corpus of Player-VC interactions collected
during the user-based evaluation. As suggested by
evaluation frameworks such as PARADISE (Walker
et al., 1997) and SASSI (Hone and Graham, 2000),
we show that a multiview evaluation permits a better
assessment of how well the dialog system functions
“in the real world”. The metrics proposed assess di-
alog success and coherence, as well the costs of dia-
log components.

The paper is organized as follows. In Section 2,
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we present the MP game, the dialogue strategies
used in the different dialogs and the dialog data used
for training. Section 3 presents the two dialog sys-
tems we compare. Section 4 presents the evaluation
schemes used to compare these two systems and dis-
cusses the results obtained. Section 5 concludes with
directions for further research.

2 Dialogues in the MP Game

We begin by describing the MP game, the dialogs in
the MP game, the strategies used to guide the hybrid
dialog manager and the data used for training.

2.1 The MP Game and Dialogs

The MP game is a multi-player quest where 3
teenagers seek to build a joystick in order to free
their uncle trapped in a video game '. To build
this joystick, the player (who alternatively repre-
sents anyone of these three teenagers) must explore
the plastic factory and achieve 17 mandatory goals
(find the plans, get the appropriate mould, retrieve
some plastic from the storing shed, etc), as well
as 11 optional goals which, when reached, provide
them with extra information about the plastic indus-
try (and therefore increases their knowledge of it).

In total, the player can achieve up to 28 game
goals by conducting 12 separate dialogs in various
parts of the virtual world. Each of the 12 dialogs
in the MP game helps players to achieve the game
goals. The player interacts with the virtual charac-
ters to obtain information that helps her to achieve
these goals and, as a consequence, to increase her
score in the game. Table 1 summarises the game
goals and the contextual parameters (player’s role,
location in the virtual world, VCs present) associ-
ated with each dialog.

2.2 Dialog Data and Annotation

To train both classifiers, the one used by the hybrid
and the one used by the QA system, we collected
Human-Machine dialog data using a Wizard-of-Oz
setting and manually annotated each turn with a di-
alog move. The resulting corpus (called Emospeech
Corpus) and the annotation scheme (as well as the
inter-annotator agreement) used are described in de-

'The MP game was created by Artefacto, http: //www.
artefacto.fr/index_ok.htm
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tail (Rojas-Barahona et al., 2012). Briefly, the Emo-
speech Corpus comprises 1249 dialogs, 10454 utter-
ances and 168509 words. It contains 3609 player ut-
terances consisting of 31613 word tokens and 2969
word types, with approximately 100 conversations
for each dialog in the game. Turns were annotated
with dialog moves (Traum and Larsson, 2003) cap-
turing both domain knowledge (e.g., about the goals
set by the game) and the set of core communicative
acts.

2.3 Dialog Strategies

We identified four main dialog strategies underlying
the 12 MP dialogs and used these to define the plans
guiding the rule-based discourse management in the
hybrid system. These strategies can be seen as trans-
actions made up of conversational games (Carletta et
al., 1997).

Strategy 1. This strategy is used in the first di-
alog only and consists of a single Address Request
move by the VC followed by the player’s answer:
Lucas requests Ben to find the address of the Plas-
tic Enterprise that must be hidden somewhere in the
lab. Ben can accept, reject or ask for help. Lucas
answers accordingly and ends the conversation.

Strategy 2. Nine dialogues follow this strategy.
They include several (up to 5) requests for infor-
mation and the corresponding system/player’s ex-
change. Appendix A shows an example dialog fol-
lowing this strategy.

Strategy 3: This is a confirmation strategy where
the VC first checks that the player has already
achieved a given task, before informing her about
the next step (e.g. dialogs with Melissa in Table 1).

Strategy 4. This strategy, exemplified in Ap-
pendix B, is similar to strategy 2 but additionally
includes a negotiation step where the VC asks the
player for help.

3 Dialogue Systems

The game and the two dialog systems built were in-
tegrated as agents within the Open Agent Architec-
ture as shown in Figure 1. Both systems access a
database for starting the appropriate dialogs at the
appropriate place in the virtual world while simulta-
neously storing all interactions in the database.



Id | VC Player | Goals Location

1 Lucas Ben Find the address of the enterprise. Uncle’s place.

2 M.Jasper | Lucas | The manufacturing first step Enterprise reception

3 Samir Julie Find the plans of the joystick Designing Office
Optional: job, staff, studies, security policies

4 Samir Julie Find out what to do next Designing Office
Optional: jobs in the enterprise, staff in the enterprise

5 Melissa Lucas | Find the mould, optional where are the moulds Plant

6 Melissa Lucas | Find the right machine Plant

7 Melissa Lucas | Confirm you have found the right mould and machine and | Plant
find out what to do next

8 Operator | Julie Knowing about the material space and about the job Material Space
Optional: find out what to do in the case of failure
helping to feed a machine with the right material

9 Serge Ben Perform quality tests. Laboratory Tests
Optional: VC'’s job

10 | Serge Ben Find out what to do next. Laboratory Tests
Optional: know what happens with broken items

11 | Sophia Julie Find the electronic components, knowing about VC’s job Finishing

12 | Sophia Lucas | Finishing process Finishing
Optional: know about conditioning the product

Table 1: Description of the 12 dialogs in the MP Game.

Server

I\‘ Dialog Server
Facilitator |«—>|  (igikion)

=

Dialogues
Configuration
MySOL

Windows Machine

Figure 1: General Architecture for the dialog system:
modules are implemented as agents within the Open
Agent Architecture.

3.1 The Hybrid Dialogue System

The hybrid system combines an interpreter; a rule
based, Information State Approach dialog manager;
a generator; and the game/dialog communication
components i.e., the OAA interface.

The Interpreter Module In the hybrid system,
the interpreter is a classifier trained on the anno-
tated data (cf. section 2.2), which maps the player’s
utterance to a dialog move. To build the classi-
fier we experimented with both SVM (Support Vec-
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tor Machine) and LR (Logistic Regression) % us-
ing different sets of features: utterances were pre-
processed by removing stop words and converting
content words to unaccented lowercase. Afterwards,
we experiment with and without TF*IDF (term fre-
quency*Inverse Document Frequency) filtering and
context moves (from 0 to 4 previous dialog moves).

Since the game consist of a number of different
dialogs, two options naturally arise: we could either
train a single classifier on the whole dataset or train
one classifier per dialog. Hence the data sets (and the
number of categories to be learned) differ depending
on whether we trained one classifier on the whole
game data or a classifier for each dialog.

In addition, hand-written rules are used to correct
misclassification errors as follows. The best predic-
tion given by the classifier is matched against the
expected move determined by the last move stored
in the information-state (see below the description
of the dialog manager). In case of a mismatch, the
interpreter selects a move that is valid in the current
context and updates the information state with this
move. For instance, if the last move is a yes/no ques-
tion, confirm and disconfirm dialog acts are valid
moves; for propositional questions, Goal; is a valid

>We used LIBSVM (Chang and Lin, 2001) and MALLET
(McCallum, 2002) for the LR classifier with L1 Regularisation.



dialog move ?; etc. Since the process is non deter-
ministic, this re-interpretation process may improve
the system response but it may also be incorrect. For
instance, in the following example re-interpretation
correctly overrides the dialog move output by the
classifier to a move asking the VC (Samir) for the
next goal to be achieved.

Samir: Vous avez d’autres questions pour moi?

Do you have other questions ?

Julie: comment cela fonctionne ?

How does it work?

Samir: Eh bien , il va falloir la fabriquer maintenant cette
manette . Allez voir Mélissa.

Well, you have to build the joystick now. Go to see Melissa.

In contrast, the dialog below shows a case where
re-interpretation fails. Instead of re-interpreting the
player’s (Julie) input as a request for the next goal,
it outputs a request for information about the staff
thereby yielding an incoherent exchange.

Samir: D’ autres questions ?

Other questions?

Julie: oui qu’est-ce que je peux faire avec ces bouts de papier ?
yes, what can I do with these pieces of paper ?

Samir: Et bien sachez qu’il y a de plus en plus des femmes dans
cette industrie ...

you should know there are more and more women in this indus-

try ...

The Dialog Manager We designed a plan for each
dialog strategy and extended Midiki (Burke et al.,
2003) to support the OAA architecture and access
the relational database specifying the configurations
of the different dialogs in the game. Each time a new
dialog is launched, the information state is loaded
with the corresponding dialog-context (e.g., speak-
ers, list of goals to be discussed) and the plan mod-
eling the corresponding dialog strategy. To support
dialog management, we implemented a set of update
and selection rules for integrating players’ moves,
handling the information-state and for preparing the
agenda according to the plan. More specifically, the
following rules are executed at runtime: Integration:
integrates dialog moves (e.g., questions, answers,
acknowledgments) in the information state (ques-
tions are listed in the Question Under Discussion,

3The system asks the player for the goal to be discussed:

ask(task(X)) and the player answers one goal in the situated
dialog: Goal;.

13

answers change the Commond Ground, player an-
swers are integrated in response to VCs questions).
Manage Plan: searches the next action in the plan.
Refill Agenda: updates the agenda with the next ac-
tion and Selection: selects the next dialog move ac-
cording to the plan. Once the system move has been
selected, the Generator searches an appropriate ver-
balisation.

The Generator As mentioned above, the gener-
ator implements a generation-by-selection strategy.
Given the dialog move output by the dialog man-
ager, the generator selects any utterance in this cor-
pus that is labeled with this dialog move and with
the identifier of the current dialog.

In addition, two types of dialog moves are
given special treatment. The first two moves of
each dialog are systematically constrained to be
a welcome greeting followed by either a request
to pursue a goal (ask (Goal;) or a proposal
to help (ask (task (X)) ). Furthermore, proposi-
tional questions (i.e., proposals by the system to
discuss additional topics) were annotated separately
with their respective dialog goals. For example,
Samir’s sentence: Are you interested in hearing
about my job, the people that work here or the se-
curity policies?, was annotated with the goals: job,
staff and security_policies. For these dialog acts, the
generator checks the list of current missing goals so
as to retrieve an appropriate propositional question.
In this way, the system can coherently direct the
player by suggesting possible topics without using
vague and repetitive sentences such as Would you
like to know more?.

3.2 The QA System

The QA system combines a classifier that matches
players’ turns to system dialog moves with the same
generation-by-selection algorithm used in the hybrid
system. Like the hybrid system, the QA dialog sys-
tem maintains a constant interaction with the game
to allow for the game coherence and continuity. In
particular, at the end of each dialog, the game goals
that have been reached through the dialog are re-
turned to the game server so that the game can pro-
ceed and be updated with the appropriate score.

For the QA system, we trained a Logistic Re-
gression (LR) classifier for each dialog in the game.



We applied the same preprocessing and extracted the
same features used for training the interpreter in the
hybrid system.

3.3 Discussion and Interaction Examples

As shown above, while the QA system simply
matches the player’s input to a system response, the
hybrid system has a much more elaborate dialog
management policy including re-interpretation and
the use of game and dialog history information,
to guide the dialog. As a result, the QA dialogs
are generally more spontaneous, giving the player
more initiative whereas the hybrid system enforces
a more System-Driven dialog strategy thereby guid-
ing the player through the game. The following two
examples illustrate this point. Sophia is the system
and Lucas the player. The game context provides
two goals which can be discussed: one mandatory
(To find out that finishing the manufacturing process
involves conditioning the product), and one optional
(To be told what conditioning the product means).
The examples show how the hybrid system proposes
both goals to the user while the QA engine provides
the same information fluently.

Hybrid system

Sophia: Vous avez fait du bon travail les enfants!

You did a great job kids!

Sophia: Bien. Que puis-je faire pour vous ?

What can I do for you?

Lucas: J’ai fini la manette

I've finished the joystick

Sophia: Normalement j’ai encore quelques étapes a réaliser
avant I’envoi au client. Vous voulez en savoir plus ?

Normally I still have to condition the product. Do you want to
know more about conditioning a product?

Lucas: Oui

Yes, ok

Sophia: Conditionner le produit veut dire I’emballer soigneuse-
ment pour pouvoir I’expédier au client. Aldo, le logisticien as-
sure qu’on ne manque pas de stock et de gérer les livraisons et
les expéditions.

Conditioning the product means packing it carefully in order to
ship it to the customer. Aldo,the logistics coordinator ensures
there is no shortage of stock and he is also in charge of the de-
liveries and shipments.

Sophia: Je vous laisse tester votre manette . Au revoir

I leave you test out your joystick. Goodbye
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Question Answer

Sophia: hé bien c’est du bon travail tout ¢a.
Good! That'’s a great job kids!

Sophia: Alors , ol en sommes nous?

So where are we?

Lucas:voila nous avons utilisé les composants. Quelle est
I’étape suivante?

We used the components, what is the next step?

Sophia: On finis la fabrication par conditionner le produit.

We finish the fabrication by conditioning the product.
Lucas:Ok

Sophia: Conditioner le produit veut dire 1’emballer soigneuse-
ment pour pouvoir I’expédier au client . Le logisticien assure
qu’on ne manque pas de stock et de gérer les livraisons et les
expéditions.

Conditioning the product means packing it carefully in order to
ship it to the customer. Aldo,the logistics coordinator ensures
there is no shortage of stock and he is also in charge of the de-
liveries and shipments.

Sophia: Et voila, je vous dis au revoir

Ok, I say good bye!

4 Evaluation

In evaluating the two systems, we seek to compare
their usability: Which system is best suited for use
by real users in the context of the MP serious game?
We also seek to better understand which module
causes which errors and why. To address these ques-
tions we conducted a quantitative evaluation where
we compare the accuracy of the interpreter and the
dialog manager integrated in each system; a user
based evaluation involving 22 subjects using both
the QA and the hybrid system; and a corpus based
evaluation where we examine such criteria as dialog
coherence, dialog success, interpretation and gener-
ation errors in the corpus of Human-System interac-
tions collected during the user-based evaluation.

4.1 Quantitative Evaluation

We begin by evaluating the accuracy of the inter-
preter and the dialog manager used by the hybrid and
the QA system respectively. These two classifiers
were trained on the Emospeech corpus mentioned
above and evaluated with 30-fold cross-validation.

Hybrid System As we mentioned in section 3.1,
since the game includes different dialogs, a natu-
ral question arise: whether to implement the inter-



preter with a single classifier for the whole dataset,
or using a different classifier for each dialog in the
game. To answer this question, we compared the
accuracy reached in each case. The details of these
experiments are described in (Rojas-Barahona et al.,
2012). The highest accuracy is reported when using
a single classifier for the whole game, reaching an
accuracy of 90.26%, as opposed to 88.22% in aver-
age for each dialog. In both cases, the classifier used
is LR, with L1 regularisation and applying the tf*idf
filtering. However, although the classifier trained on
the whole dialog data has better accuracy (learning
a model per dialog often run into the sparse data is-
sue), we observed that, in practice, it often predicted
interpretations that were unrelated to the current di-
alog thereby introducing incoherent responses in di-
alogs. For instance, in the dialog below, the player
wants to know how waste is managed in the fac-
tory. The best prediction given by the interpreter is a
goal related to another dialog thereby creating a mis-
match with the DM expectations. Re-interpretation
then fails producing a system response that informs
the player of the next goal to be pursued in the game
instead of answering the player’s request.

Ben: Comment on gere les dechets ici?

How is the waste managed here ?

Serge: Allez voir Sophia pour qu’elle vous fournisse les com-
posants électroniques nécessaires a votre manette.

Go and see Sophia, she’ll give you the electronic components

you need for your joystick.

For the user based experiment, we therefore use
the LR models with one classifier per dialog.

QA System For evaluating the QA classifier, we
also compared results with or without tf*idf filter-
ing. The best results were obtained by the LR clas-
sifier for each dialog with tf*idf filtering yielding an
accuracy of 88.27% as shown in Table 2.

4.2 Preliminary User-Based Evaluation

The accuracy of the interpreter and the dialog man-
ager used by the hybrid and the QA system only
gives partial information on the usability of the di-
alog engine in a situated setting. We therefore con-
ducted a user-based evaluation which aims to assess
the following points: interpretation quality, overall
system quality, dialog clarity, game clarity and tim-
ing. We invited 22 subjects to play the game twice,
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1d w/o Tf*Idf | w Tf*Idf
1 83.33 82.93
2 93.55 91.8
3 72 80.95
4 80 82.47
5 95.24 93.98
6 97.56 97.5
7 97.5 97.44
8 70.59 76

9 92.77 91.14
10 | 8553 86.49
11 | 8351 87.5
12 | 9412 91.04
Avg. | 87.14 88.27

Table 2: Results of the LR classifier for mapping play-
ers’ utterances to system moves, with content-words and
a context of four previous system moves, with and with-
out tf*idf filtering.

once with one system and once with the other. The
experiment is biased however in that the players al-
ways used the hybrid system first. This is because in
practice, the QA system often fail to provide novice
players with enough guidance to play the game. This
can be fixed by having the player first use the hybrid
system. Interestingly, the game guidance made pos-
sible by the Information State approach is effective
in guiding players through the game e.g., by propos-
ing new goals to be discussed at an appropriate point
in the dialog; and by taking dialog history into ac-
count.

After playing, each user completed the question-
naire shown in Table 3. For those criteria such as
dialog and game clarity, we do not report the scores
since these are clearly impacted by how many times
the player has played the game. Table 4 shows the
mean of the quantitative scores given by the 22 sub-
jects for interpretation, overall system quality and
timing. We computed a significance test between
the scores given by the subjects, using the Wilcoxon
signed-rank test*. As shown in the Table, for all
criteria, except Q.4, the QA performs significantly
(p < 0.01) better than the Hybrid system.

“The Wilcoxon signed-rank test is the non-parametric alter-
native to the paired t-test for correlated samples, applicable, e.g.
when dealing with measures which cannot be assumed to have
equal-interval scales, as is usual with user questionnaires.



Interpretation

Q.1 Did you have the feeling the virtual characters understood you? (very bad 1 ... 100 very good)

Overall System Quality

Q.2 Did you find the conversations coherent? (very bad 1. .. 100 very good)

Q3 Did you enjoy talking with the virtual characters? (very annoying 1 ... 100 very enjoyable)

Q4 Would you prefer playing the game without conversations with virtual characters? (yes/no)

Q.5 What is your overall evaluation of the quality of the conversations? (very bad 1 . . . 100 very good)

Dialogue clarity

Q.6 How easy was it to understand what you were supposed to ask? (very difficult 1 ... 100 very easy)

Q.7 How clear was the information given by the virtual characters? (totally unclear 1 ... 100 very clear)

Q.8 How effective were the instructions at helping you complete the game? (not effective 1 ... 100 very effective)
Game clarity

Q.9 How easy was it to understand the game? (totally unclear 1 ... 100 very clear)
Timing

Q.10 | Were the system responses too slow (1) / just at the right time (2) / too fast (3)

Table 3: Questionnaire filled by the subjects that played with both dialog systems.

Interpretation. Question Q.1 aims to captures the
user’s assessment of the dialog system ability to cor-
rectly interpret the player’s utterances. The QA sys-
tem scores 0.7 points higher than the Hybrid system
suggesting better question/answer coherence for this
system. One possible reason is that while the hybrid
system detects any incoherence and either tries to
fix it using re-interpretation (which as we saw some-
times yields an incoherent dialog) or make it explicit
(using a misunderstanding dialog act i.e., a request
for rephrasing), the QA system systematically pro-
vides a direct answer to the player’s input.

The relatively low scores assigned by the user
to the interpretation capabilities of the two systems
(57.36 and 64.55 respectively) show that the high
accuracy of the interpreter and the dialog manager
is not a sufficient criteria for assessing the usability
of a dialog system.

Timing. One important factor for the usability of
a system is of course real time runtimes. The eval-
uation shows that overall the speed of the QA sys-
tem was judged more adequate. Interestingly though
the difference between the two systems stems no so
much from cases where the hybrid approach is too
slow than from cases where it is too fast. These cases
are due to the fact that while the QA system always
issues one-turn answer, the rule based dialog based
approach used in the hybrid system often produce
two consecutive turns, one answering the player and
the other attempting to guide her towards the follow-

ing game goal.
In sum, although the QA system seems more ro-

bust and better at supporting coherent dialogs, the
hybrid system seems to be more effective at guiding
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Question | Hybrid | QA
Interpr. Q.1 57.36 64.55 (*)
Q.2 57.78 60.68 (*)
Q3 60.77 66.45 (*)
Sys Qual. | Q.4/no 86.37 81.82
Q.5 59.54 65.68 (*)
Avg. 66.12 68.66 (*)
Timing Q.10 2.25 2.05 (*)

Table 4: Mean of the quantitative scores given by 22 in-
dividuals. (*) denotes statistical significance at p < 0.01
(two-tailed significance level).

the player through the game.

4.3 Corpus-Based Evaluation

The User-Based evaluation resulted in the collection
of 298 dialogs (690 player and 1813 system turns)
with the Hybrid system and 261 dialogs (773 player
and 1411 system turns) with the QA system. To bet-
ter understand the causes of the scores derived from
the user-filled questionnaire, we performed manual
error analysis on this data focusing on dialog inco-
herences, dialog success, dialog management and
generation errors (reported in Table 5).

DM Errors The count of dialog management
(DM) errors is the ratio @ of wrong system re-
sponses on counts of player’s input. In essence this
metrics permits comparing the accuracy of the QA
dialog manager with that of the hybrid system. On
average there is no clear distinction between the two
systems.



Generation Errors The system response selected
by the generation component might be contextually
inappropriate for at least two reasons. First, it may
contain information which is unrelated to the current
context. Second, it might have been imprecisely or
incorrectly annotated. For instance, in the dialog
below, the annotation of the turn Yes, thanks. What
do you want me to do? did not indicate that the turn
included a Confirm dialog move. Selecting this turn
in the absence of a yes/no question resulted in a
contextually inappropriate system response.
SYSTEM: Bonjour les petits jeunes je suis le préparateur
matiére.

Hello kids, I am the raw material responsible

SYSTEM: Oui merci. Vous me voulez quoi en fait ?

Yes, thanks. What do you want me to do?

PLAYER: je veux en savoir plus sur cet endroit.

I would like to know more about this place

As shown in Table 5, for both systems, there were
few generation errors.

Id %DM H. | %DM. QA | %Gen H. & QA
1 0.0 4.55 0.57
2 10.81 12.00 1.02
3 10.38 12.04 1.49
4 16.22 14.86 0.32
5 10.34 2.13 1.46
6 0.0 0.0 0.94
7 9.52 4.0 0.0
8 11.68 7.08 2.06
9 2.13 26.47 0.76
10 15.63 16.13 6.08
11 11.94 8.33 3.19
12 14.29 8.16 3.17
Avg. | 941 9.65 1.76

Table 5: DM and generation errors detected in the hybrid
and the QA systems.

Unsuccessful Dialogs We counted as unsuccess-
ful those dialogs that were closed before discussing
the mandatory goals. The results are shown in Ta-
ble 6. Overall the QA system is more robust leading
to the mandatory goals being discussed in almost all
dialogs. One exception was dialog 8, where the sys-
tem went into a loop due to the player repeating the
same sequence of dialog moves. We fixed this by
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Id %Uns. H. | %Inco. H. | %Uns. QA. | %Inc. QA.
1 0 0.0 0.0 0.0

2 0 0.0 0.0 0.0

3 6.67 3.33 7.41 0.0

4 7.14 0.0 0.0 4.0

5 3.85 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 21.21 0.0 0.0 0.0

8 3.70 0.0 15.63 3.13
9 0.0 0.0 0.0 4.35
10 0.0 6.67 0.0 16.67
11 3.45 6.90 0.0 3.70
12 4.17 4.17 4.55 4.55
Avg. | 4.89 1.76 4.47 3.03

Table 6: Overall dialog errors, the percentage of unsuc-
cessful dialogs

integrating a loop detection step in the QA dialog
manager. For the hybrid system, dialog 7, a dialog
involving the confirmation strategy (cf. section 2)
is the most problematic. In this case, the DM rules
used to handle this strategy are inappropriate in that
whenever the system fails to identify a contextually
appropriate response, it simply says so and quits the
dialog. The example illustrates the difficulty of de-
veloping a complete and coherent DM rule system.

Incoherent Dialogs We counted as incoherent, di-
alogs where most system answers were unrelated to
the player’s input. As shown in Table 6, despite
interpretation and generation imprecisions, most di-
alogs were globally coherent. They made sense ac-
cording to the game context: they were related to the
task to be solved by the player in the game, and the
generated instructions were correctly understood.
The hybrid system produces slightly less incoher-
ent dialogs probably because of its re-interpretation
mechanism which permits correcting contextually
invalid dialog moves.

5 Conclusion

We have presented a multi-view evaluation of two
system architectures for conversational agents situ-
ated in a serious game. Although the QA system
seems more robust and is easier to deploy, the hy-
brid dialog engine seems to fare better in terms of
game logic in that it guides the player more effec-



tively through the game. The evaluation shows the
importance of assessing not only the dialog engine
accuracy but also its usability in the setting it was
designed for. In future work, we plan to compute
a regression model of user satisfaction for applying
reinforcement learning and find the optimal strategy.
In addition, we plan to extend the comparison to
other domains such as language learning and com-
plex negociation dialogs.

6 Acknowledgments

The research presented in this paper was partially
supported by the Eurostar EmoSpeech project and
by the European Fund for Regional Development
within the framework of the INTERREG IV A Alle-
gro Project.

References

C. Burke, C. Doran, A. Gertner, A. Gregorowicz,
L. Harper, J. Korb, and D. Loehr. 2003. Dialogue
complexity with portability?: research directions for
the information state approach. In Proceedings of the
HLT-NAACL 2003 workshop on Research directions in
dialogue processing - Volume 7.

Jean Carletta, Stephen Isard, Gwyneth Doherty-Sneddon,
Amy Isard, Jacqueline C. Kowtko, and Anne H. An-
derson. 1997. The reliability of a dialogue struc-
ture coding scheme. Comput. Linguist., 23(1):13-31,
March.

Chih C. Chang and Chih J. Lin, 2001. LIBSVM: a library
for support vector machines.

David DeVault, Anton Leuski, and Kenji Sagae. 2011.
An evaluation of alternative strategies for implement-
ing dialogue policies using statistical classification
and hand-authored rules. In 5th International Joint
Conference on Natural Language Processing (IJCNLP
2011).

Sudeep Gandhe and David Traum. 2007. Creating spo-
ken dialogue characters from corpora without annota-
tions. In Proceedings of 8th Conference in the Annual
Series of Interspeech Events, pages 2201-2204.

Jonathan Gratch, Jeff Rickel, Elisabeth André, Justine
Cassell, Eric Petajan, and Norman Badler. 2002. Cre-
ating interactive virtual humans: Some assembly re-
quired. IEEE Intelligent Systems, 17:54—63, July.

Dennis Hofs, Mariét Theune, and Rieks Akker op den.
2010. Natural interaction with a virtual guide in a
virtual environment: A multimodal dialogue system.
Journal on Multimodal User Interfaces, 3(1-2):141-
153, March. Open Access.

18

Kate S. Hone and Robert Graham. 2000. Towards a
tool for the subjective assessment of speech system
interfaces (sassi). Nat. Lang. Eng., 6(3-4):287-303,
September.

W. L. Johnson, H. H. Vilhjadlmsson, and S. Marsella.
2005. Serious games for language learning: How
much game, how much AI? In Artificial Intelligence
in Education.

S. Larsson and D. Traum. 2000. Information state and di-
alogue management in the TRINDI dialogue move en-
gine toolkit. Natural Language Engineering, 6:323—
340.

Anton Leuski and David Traum. 2008. A statistical ap-
proach for text processing in virtual humans. In Pro-
ceedings of the 26th Army Science Conference.

Anton Leuski, Ronakkumar Patel, David Traum, and
Brandon Kennedy. 2006. Building effective question
answering characters. In Proceedings of the 7th SIG-
DIAL Workshop on Discourse and Dialogue, pages
18-27.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Lina M. Rojas-Barahona, Alejandra Lorenzo, and Claire
Gardent. 2012. Building and exploiting a corpus of di-
alog interactions between french speaking virtual and
human agents. In Proceedings of the S8th International
Conference on Language Resources and Evaluation
(to be published).

David R. Traum and Staffan Larsson. 2003. The in-
formation state approach to dialogue management. In
Jan Kuppevelt, Ronnie W. Smith, and Nancy Ide, ed-
itors, Current and New Directions in Discourse and
Dialogue, volume 22 of Text, Speech and Language
Technology, pages 325-353. Springer Netherlands.
10.1007/978-94-010-0019-2_15.

David R. Traum, Antonio Roque, Anton Leuski, Panayi-
otis Georgiou, Jillian Gerten, Bilyana Martinovski,
Shrikanth Narayanan, Susan Robinson, and Ashish
Vaswani. 2007. Hassan: A virtual human for tac-
tical questioning. In Proceedings of the S8th SIGdial
Workshop on Discourse and Dialogue, page 71-74,
September.

David Traum, Stacy C. Marsella, Jonathan Gratch, Jina
Lee, and Arno Hartholt. 2008. Multi-party, multi-
issue, multi-strategy negotiation for multi-modal vir-
tual agents. In Proceedings of the 8th international
conference on Intelligent Virtual Agents, TVA ’08,
pages 117-130, Berlin, Heidelberg. Springer-Verlag.

Marilyn A. Walker, Donald Hindle, Jeanne Fromer,
Giuseppe Di Fabbrizio, and Craig Mestel. 1997. Eval-
uating competing agent strategies for a voice email
agent. CoRR, cmp-1g/9706019.



A. Example of a dialog with the hybrid system.
Translation into English of a dialog between Samir
(the system) and Julie (the player) (Strategy 2), it
corresponds to the third dialog in Table 1
Samir: Hello my name is Samir, the product designer
Samir: What are you doing here young people?

Julie: we come to build the joystick of Professor Geekman
Samir: You are in the right place. The plans are in the closet
Samir: Before would you like to hear about my job, the studies
I did or my colleagues

Julie: Tell me about your job.

Samir: Well, for instance, is me who devise and design the
items we construct in this enterprise

Samir: Do you want to know more about my colleagues or
about the security measures applied here?

Julie: What do your colleagues do?

Samir: My job is universal! In fact it can please both girls that
boys...

Samir: In your opinion, what studies should be done to get
there

Julie: Designing studies?

Samir: This is a creative job. Several training can lead to the
job arts, industrial design, computer-aided design

Samir: And does the safety standards interest you?

Julie: That is important the safety yes, tell me more

Samir: You know, here you are in a strategic place.

The novelties, the products of tomorrow, is here that they are
born. They must be protected. For that reason we control the
entrance here.

Samir: Well, Good Luck. Bye!

B. Translation to English of a dialog with the
QA system. Dialog between the raw material opera-
tor (the system) and Julie (the player), it corresponds
to the 8th dialog in Table 1(Strategy 4).

Preparateurl: Hello I am the raw material responsible. I can
provide you a lot of information about this place.
Preparateurl: What can I do for you ?

Julie: What do you do here?

Preparateurl: My role is to ensure machines are supplied
with the right materials,in good colors. I turn on the drying
ovens and the whole supply system.

Julie: How does it work the supply system?

Preparateurl: Well when we get the pellet material, they are
wet ...

Julie: What does it happen when there is a problem?
Preparateurl: In that case, I call the technician, he is the best
for fixing everything

Julie:Thanks for the information, what should I do now?
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Preparateurl: It is not complicated and you will learn things.
I have a new machine to supply but I can not find the right
material. Would you give me a hand?

Julie: yes
Preparateurl: You must supply this machine with a new
generation of plastic. This machine allows the manufacture of
plastic bags

Julie: ok

Preparateurl: Let’s go!

Julie: Ok, Let’s start!

Preparateurl: Great, Thanks!

Preparateurl: You are very kind, thank you.
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Abstract

One challenge of implementing spoken di-
alogue systems for long-term interaction is
how to adapt the dialogue as user and sys-
tem become more familiar. We believe this
challenge includes evoking and signaling as-
pects of long-term relationships such as rap-
port. For tutoring systems, this may addi-
tionally require knowing how relationships are
signaled among non-adult users. We therefore
investigate conversational strategies used by
teenagers in peer tutoring dialogues, and how
these strategies function differently among
friends or strangers. In particular, we use an-
notated and automatically extracted linguis-
tic devices to predict impoliteness and posi-
tivity in the next turn. To take into account
the sparse nature of these features in real data
we use models including Lasso, ridge estima-
tor, and elastic net. We evaluate the predictive
power of our models under various settings,
and compare our sparse models with stan-
dard non-sparse solutions. Our experiments
demonstrate that our models are more ac-
curate than non-sparse models quantitatively,
and that teens use unexpected kinds of lan-
guage to do relationship work such as signal-
ing rapport, but friends and strangers, tutors
and tutees, carry out this work in quite differ-
ent ways from one another.

1 Introduction and Related Work

Rapport, the harmonious synchrony between in-
terlocutors, has numerous benefits for a range of
dialogue types, including direction giving (Cas-
sell et al., 2007) or contributing to patient recov-
ery (Vowles and Thompson, 2012). In peer tutor-
ing, an educational paradigm in which students of
similar ability tutor one another, friendship among
tutors and tutees leads to better learning (Gartner et
al., 1971). With the burgeoning use of spoken dia-
logue systems in education, understanding the pro-
cess by which two humans build and signal rapport
during learning becomes a vital step for implement-
ing spoken dialogue systems (SDSs) that can initi-
ate (and, as importantly, maintain) a successful re-
lationship with students over time. However, im-
plementing a tutorial dialogue system that appropri-
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ately challenges students in the way that peers do
so well (Sharpley et al., 1983), while still demon-
strating the rapport that peers can also provide, calls
for understanding the differences in communication
between peer tutors just meeting and those who are
already friends.

The Tickle-Degnen and Rosenthal (1990) model
provides a starting point by outlining the compo-
nents of rapport, including the finding that positiv-
ity decreases over the course of a relationship. The
popularity of this model, however, has not dimin-
ished the disproportionate attention that positivity
and politeness receive in analyses of rapport (Brown
and Levinson, 1978), including in the vast majority
of computational approaches to rapport-building in
dialogue (Stronks et al., 2002; Johnson and Rizzo,
2004; Bickmore and Picard, 2005; Gratch et al.,
2006; McLaren et al., 2007; Cassell et al., 2007;
Baker et al., 2008; Bickmore et al., 2011). The
creation and expression of rapport is complex, and
can also be signaled through negative, or impolite,
exchanges (Straehle, 1993; Watts, 2003; Spencer-
Oatey, 2008) that communicate affection and re-
lationship security among intimates who can flout
common social norms (Culpeper, 2011; Kienpoint-
ner, 1997).

However, it is an open question as to whether such
rudeness is likely to impress a new student on the
first day of class. We must better understand how
and when impoliteness and other negative dialogue
moves can contribute to the development and ex-
pression of the rapport that is so important in educa-
tional relationships. In this analysis, then, we begin
with a corpus of tutoring chat data annotated with
a set of affectively-charged linguistic devices (e.g.
complaining, emoticons), and then differentiate be-
tween the linguistic devices that friend and stranger
interlocutors employ (with friendship standing as a
proxy for pre-existent rapport) and the resulting so-
cial effects or functions of those devices on the part-
ners.

Since our ultimate goal is to build an SDS that
can adapt to the user’s language in real time, we
also automatically extract lexical and syntactic fea-
tures from the conversations. And, in order to deter-
mine what the system should say to evoke particular
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responses, we predict social effects in partner two
from the use of the linguistic devices in partner one.

Since we want to understand how the system can
deal with newly met peers as well as peers who
have become friends, we develop and evaluate our
model on dyads of friends and then evaluate the
same model with dyads of strangers, to examine
whether dyads with less a priori rapport react dif-
ferently to the same linguistic devices.

Of course, in addition to understanding the phe-
nomenon of rapport in all of its complexity, a major
challenge for building rapport-signaling SDS is to
construct a compact feature space that capture only
reliable rapport signals and generalizes well across
different speakers. Of course phenomena such as in-
sults, complaints and pet names, no matter how im-
portant, appear relatively rarely in data of this sort.
Training discriminative models with maximum like-
lihood estimators (MLE) on such datasets usually re-
sults in assigning too much weight on less frequent
signals. This standard MLE training method not
only produces dense models, but may also overes-
timates lower frequency features that might be unre-
liable signals and overfit to a particular set of speak-
ers. In recent studies on speaker state prediction that
use lexical features, it has been shown that MLE
estimators demonstrate large performance gaps be-
tween non-overlapping speaker datasets (Jeon et al.,
2010; Wang et al., 2012a).

On the other hand, recent studies on ¢;//y
based group penalty for evaluating dialogue systems
(Gonzalez-Brenes and Mostow, 2011), structured
sparsity for linguistic structure prediction (Mar-
tins et al., 2011), and discovering historical legal
opinions with a sparse mixed-effects latent vari-
able model (Wang et al., 2012b) have all shown
concrete benefits of modeling sparsity in language-
related predictive tasks. We therefore apply sparsity-
sensitive models that can prevent less frequent
features from overfitting. We start with the /;-
regularized Lasso (Tibshirani, 1994) model, since,
compared to other covariance matrix based sparse
models, such as sparse Principal Component Anal-
ysis (PCA) and sparse Canonical Correlation Anal-
ysis (CCA), the Lasso model is straightforward and
requires fewer computing resources when the fea-
ture dimension is high. Hence, we compare the con-
tributions of both automated features and annotated
features using the proposed Lasso model to predict
impoliteness and positivity.

In addition to Lasso and a logistic regression base-
line, we introduce two alternative penalty models:
the non-sparse ridge (le Cessie and van Houwelin-
gen, 1992) estimator, and an elastic net model (Zou
and Hastie, 2005). The ridge estimator applies a
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quadratic penalty for feature selection, resulting in
a smooth objective function and a non-sparse fea-
ture space, which can be seen as a strong non-sparse
penalty model. We investigate the elastic net model,
because it balances the pros and cons of Lasso and
ridge estimators, and enforces composite penalty. In
addition to the model comparisons, by varying the
different sizes of feature windows (number of turns
in the dialogue history), we empirically show that
our proposed sparse log-linear model is flexible, en-
abling the model to capture long-range dependency.

This approach also allows us to extend previous
work on speaker state prediction. Although speaker
state prediction has attracted much attention in the
dialogue research community, most studies have fo-
cused on the analysis of anger, frustration, and other
classic emotions (Litman and Forbes-Riley, 2004;
Liscombe et al., 2005; Devillers and Vidrascu, 20006;
Ai et al., 2006; Grimm et al., 2007; Gupta and Ni-
tendra., 2007; Metallinou et al., 2011). Recently,
Wang and Hirschberg (2011) proposed a hierarchi-
cal model that detects level of interest of speakers
in dialogue, using a multistream prediction feedback
technique. However, to the best of our knowledge,
we are among the first to study the problem of auto-
matic impoliteness and positivity prediction in dia-
logue. Because our ultimate goal is to build an SDS
that responds to users’ language use over time, the
features from the user’s target turn that the model is
aiming to predict are not observable, which renders
the task more difficult than previous speaker state
detection tasks.

Our main contributions are three-fold: (1) analy-
sis of linguistic devices that function to signal rap-
port among friends - and their effects on non-friend
dyads; (2) detailed analyses of language behavior
features that predict these rapport behaviors - both
impoliteness and positivity - in the next turn of
teenagers’ peer tutoring sessions; (3) an evaluation
of non-sparse and sparse log-linear models for pre-
dicting impoliteness and positivity.

By understanding the signals of rapport that a per-
son is likely to display in response to various lin-
guistic devices, we can begin to build an SDS that
can anticipate the social response and adapt to the
rapport-signaling efforts of its partner, both as a
newly introduced technology, and, over time, as a
system with whom the user has a rapport.

2 The Corpus

We use the data from a previous study evaluating the
impact of a peer tutoring intervention that monitored
students’ collaboration and in some cases provided
adaptive support (Walker et al., 2011). In the inter-
vention, peer tutors observed the work of their tutee



and supported them through a chat interface as they
completed algebra problems. The system logged all
chat and other information about the problem steps.
Participants were 130 high school students (81 fe-
male) in grades 7-12 from one American high school
with some prior knowledge of the algebra material.
Participants were asked to sign up for the study with
a friend. Those who were interested but were un-
able to participate with a friend, were matched with
another unmatched participant. In an after-school
session, participants first took a 20-minute pre-test
on the math concepts, and then spent 20 minutes
working alone with the computer to prepare for tu-
toring. One student in each dyad was then randomly
assigned the role of tutor, while the other was given
the role of tutee, regardless of relative ability. They
spent the next 60 minutes engaging in tutoring. Fi-
nally, students were given a domain posttest isomor-
phic to the pretest.

54 dyads signed up as friends and 6 were un-
matched strangers. To compare behavior between
friends and strangers in the face of very different
data set sizes we use 48 friend dyads for training,
and select 6 friend and 6 stranger dyads as two sep-
arate test sets. The total number of utterances in the
friend training set, friend test set, and stranger test
set are 4538, 468 and 402. To perform turn-based
prediction experiments, we concatenate the text in
the utterances by the same speaker into a single turn,
and perform an “OR” operation! on features (See
Section 3 for details) in multiple utterances of the
same speaker to generate the turn-based binary fea-
tures.

3 Feature Engineering

In this section, we describe both the annotated and
automatically extracted features analyzed.

3.1 Annotated Features and Labels?

To understand what linguistic devices participated in
positivity and impoliteness during tutoring, we an-
notated all 60 dyads for surface-level language be-
haviors such as complaints, challenges (Culpeper,
1996) and praise. We also automatically identi-
fied chat features that socially color the communi-
cation, such as excessive punctuation[P] or capital-
ization[Ca]. Utterances could receive more than one
code, and inter-rater reliability ranged from K=.71
to K=1.

Because these linguistic behaviors may serve a
range of different functions in context, such as rude

'If any of the utterances within one turn has this feature
turned on, then we say that we have observed this feature in
this turn.

2We thank Erin Walker for data collection and annotation.

22

language serving to cement a relationship (Arding-
ton, 2006), or teasing to increase rapport (Straechle,
1993), we also annotate the social functionality
of each utterance in context, in terms of positivity
(K=.79) and impoliteness (K=.76), which are seen
as holding down opposite kinds of social functional-
ity (Terkourafi, 2008). Details of annotation can be
found in our recent work (Ogan et al., 2012).

Language Behavior Features

Language behavior features were annotated by
two raters, based on previous work on impo-
liteness (Culpeper, 1996), positivity (Boyer et
al., 2008), and computer-mediated communica-
tion (Herring and Zelenkauskaite, 2009), as fol-
lows:.

e Insults[Di] (k=1): Personalized negative voca-
tives or references. eg. “you are so weird.”

e Challenges[Ch] (x =.91): Directly questioning
partner’s decision or ability. eg. Partner I:
“see I am helping”, Partner 2: “barely.”

e Condescensions / brags[C] (k=1): Asserting
authority or partner’s inferiority. eg. Tutee:
“nothing you have done has affected me what
so ever.”

e Message enforcer[Ef] (k=.85): Emphasizing
text or attracting partner’s attention. eg. “Earth
to Erin.”

e Dismissal / Silencer / Curse[Cu] (k =.76): As-
serting unimportance of contribution/partner.
eg. “shuttttt up computer.”

e Pet name[Pe] (k = .9): Vocatives that may or
may not be insulting. eg. “whats up homie?”

e Criticisms / exclusive complaints[EC] (k=.8):
Negative evaluation of partner. eg. “You are so
bad at this dude.”

e Inclusive complaints[I] (k=.78): Complaints
directed outside the partner, such as at the task,
computers, or study. eg. “This is really dumb,
ya think?”

o Laughter[L] (k=1): eg. “haha”, “lol”

o Off-task[O] (k=.71): Doesn’t pertain to or ad-
vance tutorial dialogue. eg. “Coming over after
this?”

Impoliteness and Positivity Labels

While the surface-level features were coded based
on a single utterance, context determined the labels
for impoliteness and positivity, including the recent
tone of the dialogue and the partner’s response to
the utterance. Utterances were coded as positivity
(k=.79) when they included goals that directly added
positive affect into the exchange through praise, em-
pathy, reassurance, cooperative talk (McLaren et al.,

3We use Cohen’s kappa in this study.



2011), task enthusiasm, and making or responding
to jokes. Impoliteness (x=.76) included both coop-
eratively rude utterances such as teasing (typical eg.
“hahah you’re the worst tutor ever””) and uncooper-
atively rude utterances that may cause offense (typ-
ical eg. “um why don’t you try actually explainin
urself..”) (Kienpointner, 1997).

3.2 Automated Features

To compare the performance between what could be
automatically extracted from dialogue and hand an-
notation, we extracted 2,872 unigram and 12,016 bi-
gram features from the text corpus. Using the Stan-
ford PoS tagger* with its attached model, we also
extracted 46 common part-of-speech tags from the
text. In addition to the above lexical and syntac-
tic features, we automatically extracted the capital-
ization features[Ca] that have at least one full word
(eg. “CALM DOWN”) (Chovanec, 2009). Since
a recent text prediction task (Wang and McKeown,
2010) observed benefits from modeling punctua-
tion features[P], we extracted the expressive punc-
tuation that included at least one exclamation point
or more than one question-mark (eg. “I don’t get

nary® to extract the emoticons[E] that convey emo-
tional states (Sanchez et al., 2006) from text.

4 Sparse Log-Linear Models

We formulate our impoliteness and positivity predic-
tion problems as binary classifications. To do this,

~

we estimate the label §; ~ Bernoulli(f). First, we
introduce a standard log-linear parametrization® to
our predictive tasks:

_ DY Gifi(7) 0
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where f(7;) is a set of feature functions computed
on the observation vector g;. The term j; puts a
weight on feature ¢ for predicting impoliteness, and
our estimation problem is now to set these weights.
The log-likelihood and the gradient are:
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*http://nlp.stanford.edu/software/tagger.shtml

Shttp://www.techdictionary.com/emoticon.html

%We thank Jacob Eisenstein for the formulation of logistic
regression model.
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so the parameters can be set using gradient as-
cent. To control the overall complexity, we can ap-
ply regularized models on the elements of w. A
sparsity-inducing model, such as the Lasso (Tibshi-
rani, 1994) or elastic net (Zou and Hastie, 2005)
model, will drive many of these weights to zero, re-
vealing important interactions between the impolite-
ness/positivity label and other features. Instead of
maximizing the log-likelihood, we can minimize the
following Lasso model that consists of the negative
log-likelihood loss function:

min(—ﬁ—l—Z)\lHﬂJ’iH) ®)

Since the Lasso penalty can introduce discontinu-
ities to the original convex function, we can also
consider an alternative non-sparse ridge estima-
tor (le Cessie and van Houwelingen, 1992) that has
the convex property:

min<—€+Z)\2|]u7iH2) 6)

In addition to the Lasso and ridge estimators, the
composite penalty based elastic net model balances
the sparsity and smoothness properties of both Lasso
and ridge estimators:

min (= €4+ 3" Allwl |+ 3 ollwil?) (D)

Our log-linear model is quite flexible; by compar-
ing various restrictions, we can test different features
when modeling impoliteness and positivity. In addi-
tion, the model can incorporate features from previ-
ous time windows, which requires much less compu-
tational complexity compared to standard high order
Markov models. We use the L-BFGS method (Liu
and Nocedal, 1989) for the numerical optimization.

5 Empirical Experiments

We predict impoliteness vs. non-impoliteness and
positivity vs. non-positivity of an interlocutor in the
immediate future turn, given only information from
current/previous turns. Because accuracy, precision,
recall and F-measure are threshold-based point esti-
mation metrics that might prevent one from observ-
ing the big picture of system performance, we con-
sider the Receiver Operating Characteristic (ROC)
metric to evaluate the dynamics of the true posi-
tive rate vs. the false positive rate (Hanley and Mc-
Neil, 1982) in our system. We mainly use Area Un-
der Curve (AUC) as a metric to compare classifiers,
since it maps the ROC metric to a single scalar value
representing expected performance. A random clas-
sifier will have an AUC of 0.5 (Fawcett, 2006).



Models P Ca E L 0] Ef Pe Di C EC Ch Cu I
Impoliteness Prediction
Tr-Te 44 -110 62 72 .09 64 .09 129 96 .89 .69 g7 -0.19
Te-Tr -248 54 -026 0.15 59 162 24 22 .89 12 5 .04 -0.18
Positivity Prediction
Tr-Te  -0.87 .19 .36 S5 1.06 -062 .69 -1.63 -157 .16 -041 122 .86
Te-Tr -139 -046 70 48 46 33 .62 -071 .70 -0.65 -047 -054 .78

Table 1: Comparing the Learned Weights of Different Features when Predicting the Partner’s Impoliteness in a Non-
Sparse Log-Linear Model. Tr-Te: predict tutee turn with tutor turn. Te-Tr: predict tutor turn with tutee turn. For full

name of features, see Section 3.

5.1 Comparing the Learned Weights of
Different Features

In our previous analysis of these data (Ogan et al.,
2012), a PCA method allowed us to group linguistic
behaviors in order to address the issue of data spar-
sity. With the use of log-linear models, we are able
to investigate the contributions of individual lan-
guage behaviors in one student’s turn to the predic-
tion of social functions in their partner’s next turn. In
this experiment, we evaluate the weights of various
linguistic devices in a standard logistic regression
model. We found that behaviors commonly asso-
ciated with impoliteness were predictors of partner
impoliteness in the next turn, while positive behav-
iors such as laughter were predictors of upcoming
positivity. SDSs can leverage this knowledge to take
the partners lead during a tutoring session, using the
partners positivity or impoliteness to determine the
affect of the systems upcoming move. As we intend
to develop a system that acts as a tutee, however, we
further divided the analysis by tutoring role, inves-
tigating how partners in different roles employ lan-
guage features differently, such that the system can
act in accordance with its given role. Table 1 shows
the results.

Similarly to the collapsed factors in our previous
work, we found here that tutors and tutees do in
fact use language behaviors differently, and to ac-
complish different social functions. Effectively, this
means that certain language behaviors may instigate
impoliteness when said by one partner, but lead to
positivity when expressed by the other. For exam-
ple, tutee bragging predicts a response of positiv-

ity on behalf of the tutor (@éTE) =.7), perhaps be-
cause the tutor wants to be supportive of a protégé’s
self-efficacy and success. Conversely, when the tu-
tor brags during a peer tutoring dialogue, the tu-
tee, who may feel threatened by the tutors bravado,

is extremely likely to respond with impoliteness (

zﬁéTR) = .96). In a peer tutoring paradigm, when

the more powerful partner (the tutor) expresses dom-
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inance through self-inflation, the subordinate part-
ner may use impoliteness to regain some social con-
trol. On the other hand, some language behaviors
actively work to tear down this power imbalance,
such as inclusive complaining, where the partners
take an us against the task approach, building sol-
idarity through complaining about the experiment.
These utterances predict positivity whether used by

the tutor ( zﬁgTR) = .86) or tutee ( 117§TE) = .78).
Other comparisons between weighted features by
role demonstrate similarly theoretically-motivated
findings that shed light on how language is used to

achieve social functions.

5.2 Comparing the Contributions of Different
Features on Friend and Stranger Datasets

A previous study (Ogan et al., 2012) on these same
data seemed to indicate that negative conversational
strategies composed of linguistic devices such as
complaining and insults were correlated with learn-
ing in the friend dyads and negatively correlated
with learning in strangers. However the small num-
ber of stranger dyads prevented them from draw-
ing conclusions about particular linguistic devices
from the data. Here, we empirically show the pre-
dictive performance of different feature sets on both
friend and stranger test sets in Table 2 , using a
sparse Lasso model with features from only the
current turn. In the impoliteness prediction task,
when predicting on the test set that consists of only
friends, we observe statistically significant improve-
ment over a random baseline, using surface-level
language behavior features, lexical, lexical + syn-
tactic, all automatic, and all features. When com-
bining all features, the best AUC is .621. The auto-
matic features, mainly including n-grams and part-
of-speech tags, have emerged as a useful automated
feature space. On the other hand, we do not observe
any significant results on the stranger datasets, sug-
gesting that strangers do not respond with impolite-
ness in the same way that friends do. When pre-
dicting positivity on the friend dataset, we see that



the performance of surface-level language behavior
features has dropped from the first task, and the sta-
tistical t-test is non-significant when comparing to
a random baseline. This is not surprising, because
we have shown in the previous section that surface-
level language behavior features are strong indica-
tors of impoliteness, but might not have advantages
in predicting positivity for friends. Interestingly, the
automated features outperform the combination of
all features, indicating a promising future for the ac-
tual deployment of an SDS that can interact using
appropriate positivity and impoliteness.

When predicting positivity in the stranger dataset,
we find the opposite trend. In contrast to the impo-
liteness prediction task, the overall performance on
the stranger dataset improved, and the lexical, lexi-
cal+syntactic, and all feature combination have sig-
nificantly outperformed the chance baseline. These
results suggest that positivity is a predictable behav-
ior among strangers, who may all express uniform
positivity across all dyads, while it is the impolite-
ness that is predictable among friends. Perhaps it
is that through the development of a rapport with a
partner, the particular ways in which positivity is ex-
pressed becomes personalized to the dyad, and can
no longer be applied to other groups who have their
own expressions of positivity. In other words, un-
like in Tolstoy’s world, here unhappy families are all
alike; every happy family is happy in its own way.
We must look to the easily-predictable impoliteness
among friends instead, arguing strongly for the in-
clusion of impoliteness in a model of rapport.

5.3 Comparing Logistic Regression, Lasso,
Ridge, and Elastic Net

While our previous work (Ogan et al., 2012) demon-
strated that PCA is a useful feature selection method
when there are only a dozen features, in this experi-
ment, the dimension of our feature space is substan-
tially higher, which aligns to the size of vocabulary.
Thus, covariance-based feature selection methods,
such as PCA, might be too slow. Here we compare
the performances of standard MLE trained logistic
regression, Lasso, non-sparse ridge, and elastic net
models. In particular, we demonstrate the predic-
tive power of Lasso and elastic net models, varying
distinct levels of sparsity. In the Figure 1, we show
the comparison of three different models in the im-
politeness prediction task. The horizontal axis rep-
resents different values of regularization coefficient
A. For the Lasso model and the elastic net model,
increasing the value A will result in a sparser feature
space, and we set the A = A\; = A3 in the elastic net
model to promote same level of sparsity and smooth-
ness. The result at A = 0 represents the standard
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Feature Sets F-AUC p S-AUC p
Impoliteness Prediction
Random .500 - .500 -
Behavior .596 .017 505 473
Lex 599 014 435 819
Lex + POS 605 009 425 857
All Auto 591 022 451 751
All Features  .621 .003 427 .850
Positivity Prediction
Random .500 - .500 -
Behavior .549 141 527 302
Lex 623 .003  .601 .025
Lex + POS 646 .001 587 047
All Auto .651 .001 577 .070
All Features  .641 .001 .608  .019

Table 2: Comparing contributions of different feature
streams on both friend and stranger testsets with Lasso
model when predicting impoliteness and positivity of the
next turn using only features from the current turn. ( F-:
the friend test set. S: the stranger test set. p: one-tailed
p-value by comparing to a random classifier. Behavior:
detailed surface-level language behavior features defined
in Section 3. Lex: unigram and bigram. POS: part-of-
speech features. All Auto: all automatically extracted
features (Lex + POS + punctuation + caps + emoti-
cons).)

non-sparse logistic regression model, which obtains
an AUC of .563. When introducing penalty for large
weights in this standard model, .4 to .5 significant
improvements (p = .003 for Lasso, p = .007 for
ridge, and p = .004 for elastic net) of AUC are
observed from Lasso, ridge and elastic net models
when A = 1. The elastic net model that balances
sparsity and smoothness, has obtain the best result
in this experiment. The best result of elastic net
model is .63 when A = 7. This experiment shows
that all three penalty models have outperformed the
non-sparse logistic regression model. The elastic net
model, which balances sparisty and smoothness, ob-
tains the best results when predicting impoliteness.
Figure 2 shows the comparison of three models on
the friend dataset in the positivity prediction task.
When A = 0, the standard logistic regression model
has an AUC of .638. When increasing the A to 1,
both Lasso and elastic net models have shown sig-
nificant improvements (both p < .001) in AUC, but
not the non-sparse ridge estimator. The Lasso model
is found to be the best model in this task: we obtain
better results when the model gets sparser until the
model is too sparse when A = 6. In contrast to the
experiment in Figure 1, we see that both the ridge
and elastic net models do not very strong advantages



in this positivity prediction task. We hypothesize
that the reason why Lasso works better in the pos-
itivity task is that the frequency of positivity labels
is substantially higher than the impoliteness labels in
our corpus, so that a Lasso model that enforces full
£1 penalty fits better in this task. In contrast, since
the impoliteness label is less frequent, a denser elas-
tic net composite penalty model that preserve critical
features, works the best in the impoliteness predic-
tion task. In general, we can see that sparse log-
linear models outperform standard log-linear mod-
els as well as non-sparse ridge estimators in the two
tasks.
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Figure 1: Comparing Impacts of Different Levels of Spar-
sity on the Friend Dataset When Predicting Impoliteness
with Lasso, Ridge, and Elastic Net Models
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Figure 2: Comparing Impacts of Different Levels of Spar-
sity on the Friend Dataset When Predicting Positivity
with Lasso, Ridge, and Elastic Net Models

5.4 Comparing Impacts of Different Feature
Window Sizes

A practical problem for parameter estimation in both
generative and discriminative models for dialogue
processing is to evaluate how much history the sys-
tem should take into account, so that it can have
enough information to make correct predictions. In
this experiment, we investigate the impact of using
different feature window sizes using the elastic net
model. We compare the two-tailed student ¢-test be-
tween the baseline that only uses features from the
current turn and models that use current + previous
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n turn(s). For the friend dataset, when only using
the features from the current turn to predict the im-
politeness in the immediate next turn, we observe
an AUC of .619. The best result is obtained when
we combine the previous two turns together with the
current feature turn: an AUC of .635, significantly
better (p = .03) than only using the current turn win-
dow. The patterns on the non-friend dataset are less
clear, while the model obtains the best result when
window size is +3 previous turns, the improvement
is not significant (p = .962). In the positivity task,
we also observe benefits to incorporating larger fea-
ture windows. The AUC on the friend test set starts
at .638, when only using the current feature window
in the elastic net model. After incorporating larger
feature windows, we obtain the best result of .675 at
the +4 window (p = .04). Similarly, the AUC on
non-friend test set initializes at .618, but climbs to
.632 at the +4 window.

6 Error Analysis and Discussion

We performed an error analysis to understand the
contexts under which our model failed to accurately
predict a students’ social response, and discuss the
implications of these examples based on a theoret-
ical understanding of the roles of tutors and tutees
as well as friends and strangers. The following is
an example error produced when looking only at the
previous turn to predict the current turn:

o Tutee (impolite): “dude thats def wrong i gotta
subract 16m not just 16” (the current turn)

e Tutor (non-impolite): “I/6m is what has to be
subtracted from both sides” (the next turn, pre-
dicted incorrectly)

In the segment above the tutee challenges the tutor
by pointing out a “def” mistake; the tutor responds
with a task-oriented contribution that moves the di-
alogue forward, but does not escalate the face threat
(Ogan et al., 2012). And, in fact, if we look one
more turn back in the history, the tutor once again
uses calm language: “wait it says youre wrong i dont
know why ust wait”. The increased window size
is implicitly evoking the differential conversational
strategies of tutors vs. tutees. And while the current
data set is too small to build separate models for tu-
tors and tutees, in this case (and based on the prior
work in Ogan et al., 2012), accounting for role dis-
tinctions that differentiate strategies taken by tutors
and tutees is the likely reason behind the improve-
ment due to window size.

Conversely to the friend data set, the false nega-
tives that occur when predicting impoliteness in the
stranger data set are not improved by increasing the



window size, as is demonstrated in the following ex-
change:

e Tutor (non-impolite): “subtract ym from both
sides.”

e Tutee (non-impolite): “first step? first Step?”

e Tutor (non-impolite): “subtract hb from both
sides” (the current turn)

e Tutee (impolite):  “first step? FIRST

correctly)

The impolite tutee utterance at turn 4 is predicted
to be non-impolite when analysis is limited to the
previous turn, as is also shown in the first example
in this section. However, unlike the previous ex-
ample which improved with an expanding window
size, looking back to turns 1 and 2 does not improve
the model. While we do not have enough stranger
dyads to completely explore this phenomenon, it
seems clear that strangers’ responses do not follow
the same patterns as friends. The current unpre-
dictability of strangers can be due to a number of
social phenomena, such as less affect (both posi-
tive and negative) overall, which results in a differ-
ent conversational flow. Less overall affect means
that there is less likely to be useful information in
the previous utterances. This is an important dis-
tinction between designing models for dyads with
rapport and those without, which is a primary con-
cern in the development of social SDSs. Among
strangers, other techniques may need to be used to
increase model accuracy, such as looking at the con-
tent of the utterances to determine whether or not a
speaker had been repeating themselves, as is shown
in this example, which could likely be an indicator
of rudeness.

As a final example of how the error analysis
can reveal important phenomena for future study,
when examining the prediction of positivity on the
stranger test set, we first observe that emoticons
are useful indicators of positivity. However, some-
times emoticons serve quite different social func-
tions, which leads to false positives:

e Tutor (non-positivity): “Simplify ! :)” (the cur-
rent turn)

e Tutee (non-positivity): *“y didnt it chang” (the
next turn, predicted incorrectly)

Here, the smiley face is used by the tutor primarily
to mitigate the face threat of an impolite command.
However, since the experiment reported in Section
6.1 shows that our model attributes more weight to
emoticons when predicting positivity, the model errs
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on this utterance. Here the error analysis suggests
that in fact we might need to investigate more com-
plicated latent variable models to capture the subtle
social functionality of some language use in context.

7 Conclusion

Long-term relationships involve the expression of
both positive and negative sentiments and, paradox-
ically, both can serve to increase closeness. In this
paper, we have addressed the novel task of predict-
ing impoliteness and positivity in teenagers’ peer tu-
toring conversations, and our results shed light on
what kinds of behaviors evoke these social functions
for friends and for strangers, and for tutors and tu-
tees. Our investigation has successfully predicted
impoliteness and positivity on the basis of both an-
notated and automatically extracted features, sug-
gesting that a dialogue system will one day be able to
employ analyses such as these to signal relationships
with users. And while social features such as those
we annotated are naturally quite rare in dialogue, our
quantitative experiments have demonstrated the ca-
pabilities of modeling sparsity in log-linear models:
elastic net and Lasso models outperformed standard
logistic regression model and the non-sparse ridge
penalty model.

We found that positivity is much more predictable
for strangers than is impoliteness, while the oppo-
site was true for friends. This could lend support for
the importance of positivity as a rapport-signaling
function in the early stages of a relationship (as
in (Tickle-Degnen and Rosenthal, 1990)), and indi-
cating the need for further research on the increasing
importance of impoliteness as a rapport signal over
the course of relationship development.

We also found that performance on the prediction
tasks increased with larger feature window sizes,
particularly for impoliteness among friends and pos-
itivity among strangers. From our error analysis,
we see that this improvement may arise because dif-
ferent behaviors predict impoliteness and positivity
based on the social role of the speaker. Thus tu-
tee bragging predicts positivity in tutors, while tu-
tor bragging negatively predicts positivity among tu-
tees. The power differential between the two may
lead tutees to want to take tutors “down a peg” while
tutors struggle to maintain the position of power in
the dyad.

While results such as these may seem specific to
teenage peer tutors, the general conclusion remains,
that linguistic devices have different social functions
in different contexts, and dialogue systems that in-
tend to spend a lifetime on the job will do well to
adapt their language to the stage of relationship with
a user, and the social role they play.
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Abstract

The ability to monitor the communicative suc-
cess of its utterances and, if necessary, provide
feedback and repair is useful for a dialog sys-
tem. We show that in situated communication,
eyetracking can be used to reliably and effi-
ciently monitor the hearer’s reference resolu-
tion process. An interactive system that draws
on hearer gaze to provide positive or nega-
tive feedback after referring to objects outper-
forms baseline systems on metrics of referen-
tial success and user confusion.

1 Introduction

Because dialog is interactive, interlocutors are con-
stantly engaged in a process of predicting and mon-
itoring the effects of their utterances. Typically, a
speaker produces an utterance with a specific com-
municative goal in mind—e.g., that the hearer will
perform an action or adopt a certain belief—, and
chooses one particular utterance because they pre-
dict that it will achieve this communicative goal.
They will then monitor the hearer’s reactions and
infer from their observations whether the prediction
actually came true. If they recognize that the hearer
misunderstood the utterance, they may repair the
problem by diagnosing what caused the misunder-
standing and giving the hearer feedback. In a task-
oriented dialog in which the hearer must perform a
part of the task, feedback is especially important to
inform the hearer when they made a mistake in the
task. Ideally, the speaker should even detect when
the hearer is about to make a mistake, and use feed-
back to keep them from making the mistake at all.
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Many implemented dialog systems include a com-
ponent for monitoring and repair. For instance,
Traum (1994) presents a model for monitoring the
grounding status of utterances in the TRAINS sys-
tem; Young et al. (1994) show how the student’s
utterances in a dialog system can be used to un-
cover mistaken assumptions about their mental state;
and Paek and Horvitz (1999) discuss an automated
helpdesk system that can track grounding under un-
certainty. However, most of these systems rely on
the user’s verbal utterances as their primary source
of information; monitoring thus presupposes an
(error-prone) language understanding module.

In the context of situated communication, where
the speaker and hearer share a physical (or virtual)
environment, one type of observation that can poten-
tially give us a very direct handle on the hearer’s un-
derstanding of an utterance is eye gaze. Eyetracking
studies in psycholinguistics have shown that when
listeners hear a referring expression, they tend to
rapidly attend to the object in a scene to which they
resolve this expression (Tanenhaus et al., 1995; Al-
lopenna et al., 1998). For utterances that involve ref-
erences to objects in the current environment, one
can therefore ask whether eyetracking can be used
to reliably judge the communicative success of the
utterance. This would be of practical interest for
implemented dialog systems once eyetracking be-
comes a mainstream technology; and even today, a
system that reliably monitors communicative suc-
cess using eyetracking could serve as a testbed for
exploring monitoring and repair strategies.

In this paper, we present an interactive natural-
language generation (NLG) system that uses eye-

Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 30-39,
Seoul, South Korea, 5-6 July 2012. (©2012 Association for Computational Linguistics



tracking to monitor communicative success. Our
system gives real-time instructions that are designed
to help the user perform a treasure-hunt task in the
virtual 3D environments of the recent Challenges
on Generating Instructions in Virtual Environments
(GIVE; Koller et al. (2010)). It monitors how the
user resolves referring expressions (REs) by map-
ping the user’s gaze to objects in the virtual environ-
ment. The system takes gaze to the intended referent
as evidence of successful understanding, and gives
the user positive feedback; by contrast, gaze to other
objects triggers negative feedback. Crucially, this
feedback comes before the user interacts with the
object in the virtual environment, keeping the user
from making mistakes before they happen.

We evaluate our system against one baseline that
gives no feedback, and another that bases its feed-
back on monitoring the user’s movements and their
field of view. We find that the eyetracking-based
system outperforms both on referential success, and
that users interacting with it show significantly fewer
signs of confusion about how to complete their task.
This demonstrates that eyetracking can serve as a
reliable source of evidence in monitoring commu-
nicative success. The system is, to our knowledge,
the first dialog or NLG system that uses the hearer’s
gaze to monitor understanding of REs.

Plan of the paper. The paper is structured as fol-
lows. We first discuss related work in Section 2. We
then describe our approach as well as the baselines
in Section 3, set up the evaluation in Section 4 and
present the results in Section 5. In Sections 6 and 7
we discuss our findings and conclude.

2 Related work

Dialog systems model a process of grounding, in
which they decide to what extent the user has under-
stood the utterance and the communicative goal has
been reached. Observing the user behavior to moni-
tor the state of understanding is a key component in
this process. A full solution may require plan recog-
nition or abductive or epistemic reasoning (see e.g.
Young et al. (1994), Hirst et al. (1994)); in practice,
many systems use more streamlined (Traum, 1994)
or statistical methods (Paek and Horvitz, 1999).
Most dialog systems focus on the verbal interaction
of the system and user, and the user’s utterances are
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therefore the primary source of evidence in the mon-
itoring process. Some incremental dialog systems
can monitor the user’s verbal reactions to the sys-
tem’s utterances in real time, and continuously up-
date the grounding state while the system utterance
is still in progress (Skantze and Schlangen, 2009;
Buss and Schlangen, 2010).

In this paper, we focus on the generation side of a
dialog system—the user is the hearer—and on mon-
itoring the user’s extralinguistic reactions, in par-
ticular their gaze. Tanenhaus et al. (1995) and Al-
lopenna et al. (1998) showed that subjects in psy-
cholinguistic experiments who hear an RE visually
attend to the object to which they resolve the RE.
The “visual world” experimental paradigm exploits
this by presenting objects on a computer screen and
using an eyetracker to monitor the subject’s gaze.
This research uses gaze only as an experimental tool
and not as part of an interactive dialog system, and
the visual worlds are usually limited to static 2D
scenes. Also, such setups cannot account for the re-
ciprocal nature of dialog and the consequences that
hearer gaze has for the speaker’s monitoring process.

In the context of situated dialog systems, previ-
ous studies have employed robots and virtual agents
as speakers to explore how and when speaker gaze
helps human hearers to ground referring expressions
(Foster, 2007). For instance, Staudte and Crocker
(2011) show that an agent can make it easier for the
(human) hearer to resolve a system-generated RE by
looking at the intended referent, using head and eye
movements. Conversely, the performance of a sys-
tem for resolving human-produced REs can be im-
proved by taking the (human) speaker’s gaze into ac-
count (Iida et al., 2011). Gaze has also been used to
track the general dynamics of a dialog, such as turn
taking (Jokinen et al., in press).

Here we are interested in monitoring the hearer’s
gaze in order to determine whether they have under-
stood an RE. To our knowledge, there has been no
research on this; in particular, not in dynamic 3D
environments. The closest earlier work of which we
are aware comes from the context of the GIVE Chal-
lenge, a shared task for interactive, situated natural
language generation systems. These systems typi-
cally approximate hearer gaze as visibility of objects
on the screen and monitor grounding based on this
(Denis, 2010; Racca et al., 2011).
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Figure 1: A first-person view of a virtual 3D environment.

3 Interactive natural-language generation
in virtual environments

In this paper, we consider the communicative situ-
ation of the GIVE Challenge (Koller et al., 2010;
Striegnitz et al., 2011). In this task, a human user can
move about freely in a virtual indoor environment
featuring several interconnected rooms and corri-
dors. A 3D view of the environment is displayed on
a computer screen as in Fig. 1, and the user can walk
forward/backward and turn left/right, using the cur-
sor keys. They can also press buttons attached to the
walls, by clicking on them with the mouse once they
are close enough. The small and big white circles in
Fig. 1, which represent eyetracking information, are
not actually visible to the user.

The user interacts with a real-time NLG system in
the context of a treasure-hunt game, where their task
is to find a trophy hidden in a wall safe. They must
press certain buttons in the correct sequence in or-
der to open the safe; however, they do not have prior
knowledge of which buttons to press, so they rely
on instructions and REs generated by the system. A
room may contain several buttons other than the rar-
get, which is the button that the user must press next.
These other buttons are called distractors. Next to
buttons, rooms also contain a number of landmark
objects, such as chairs and plants, which cannot di-
rectly be interacted with, but may be used in REs
to nearby targets. Fig. 2 shows a top-down map of
the virtual environment in which the scene of Fig. 1
arose. We call an entire game up to the successful
discovery of the trophy, an interaction of the system
and the user.
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Figure 2: A map of the environment in Fig. 1; note the
user in the upper right room.

3.1 Monitoring communicative success

NLG systems in the GIVE setting are in an interac-
tive communicative situation. This situation repre-
sents one complete half of a dialog situation: Only
the system gets to use language, but the user moves
and acts in response to the system’s utterances. As a
result, the system should continuously monitor and
react to what the user does, in real time. This is
most tangible in the system’s use of REs. When a
user misinterprets (or simply does not understand)
a system-generated RE, there is a high chance that
they will end up pressing the wrong button. This
will hinder the completion of the task. A system
that predicts how the user resolves the RE by mon-
itoring their movements and actions, and that can
proactively give the user feedback to keep them from
making a mistake, will therefore perform better than
one which cannot do this. Furthermore, if the sys-
tem can give positive feedback when it detects that
the user is about to do the right thing, this may in-
crease the user’s confidence.

Monitoring communicative success in GIVE in-
teractions and providing the right feedback can be
challenging. For example, in the original interaction
from which we took the screenshot of Fig. 1, the sys-
tem instructed the user to “push the right button to
the right of the green button”, referring to the right-
most blue button in the scene. In response, the user
first walked hesitantly towards the far pair of buttons
(green and blue), and then turned to face the other
pair, as seen in Fig. 3. A typical NLG system used
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Figure 3: The scene of Fig. 1, after the user moved and
turned in response to a referring expression.

in the GIVE Challenge (e.g., Dionne et al. (2009),
Denis (2010), Racca et al. (2011)) may try to predict
how the user might resolve the RE based on the vis-
ibility of objects, timing data, or distances. Relying
only on such data, however, even a human observer
could have difficulties in interpreting the user’s reac-
tion; the user in Fig. 3 ended up closer to the green
and blue buttons, but the other buttons (the two blue
ones) are, to similar degrees, visually in focus.

The contribution of this paper is to present a
method for monitoring the communicative success
of an RE based on eyetracking. We start from the
hypothesis that when the user resolves an RE to a
certain object, they will tend to gaze at this object.
In the scene of Fig. 3, the user was indeed looking
at the system’s intended referent, which they later
pressed; the small white circles indicate a trace of re-
cent fixations on the screen, and the big white circle
marks the object in the virtual environment to which
the system resolved these screen positions. Our sys-
tem takes this gaze information, which is available in
real time, as evidence for how the user has resolved
its RE, and generates positive or negative feedback
based on this.

3.2 NLG systems

To demonstrate the usefulness of the eyetracking-
based approach, we implemented and compared
three different NLG systems. All of these use
an identical module for generating navigation in-
structions, which guides the user to a specific lo-
cation, as well as object manipulation instructions
such as “push the blue button”; “the blue button”
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is an RE that describes an object to the user. The
systems generate REs that are optimized for being
easy for the hearer to understand, according to a
corpus-based model of understandability (Garoufi
and Koller, 2011). The model was trained on human
instructions produced in a subset of the virtual envi-
ronments we use in this work. The resulting system
computes referring expressions that are correct and
uniquely describe the referent as seen by the hearer
at the moment in which generation starts.

Unlike in the original GIVE Challenge, the gen-
erated instructions are converted to speech by the
Mary text-to-speech system (Schréder and Trouvain,
2003) and presented via loudspeaker. At any point,
the user may press the ‘H’ key on their keyboard to
indicate that they are confused and request a clari-
fication. This will cause the system to generate an
instruction newly; if it contains an RE, this RE may
or may not be the same as the one used in the origi-
nal utterance.

The difference between the three systems is in the
way they monitor communicative success and deter-
mine when to give feedback to the user.

The no-feedback system. As a baseline system,
we used a system which does not monitor success
at all, and therefore never gives feedback on its own
initiative. Notice that the system still re-generates an
RE when the user presses the ‘H’ key.

Movement-based monitoring. As a second base-
line, we implemented a system that attempts to mon-
itor whether a user understood an RE based on their
movements. This system is intended to represent
the user monitoring that can be implemented, with
a reasonable amount of effort, on the basis of imme-
diately available information in the GIVE setting.
The movement-based system gives no feedback
until only a single button in the current room is vis-
ible to the user, since it can be hard to make a re-
liable prediction if the user sees several buttons on
their screen. Then it tracks the user’s distance from
this button, where “distance” is a weighted sum of
walking distance to the button and the angle the user
must turn to face the button. If, after hearing the RE,
the user has decreased the distance by more than a
given threshold, the system concludes that the hearer
has resolved the RE as this button. If that is the but-
ton the system intended to refer to, the system utters



the positive feedback “yes, that one”. For incorrect
buttons, it utters the negative feedback “no, not that
one”. Although the negative feedback is relatively
vague, it has the advantage of limiting the variability
of the system’s outputs, which facilitates evaluation.

Eyetracking-based monitoring. Finally, the
eyetracking-based system attempts to predict
whether the user will press the correct button
or not by monitoring their gaze. At intervals of
approximately 15 ms, the system determines the
(x,y) position on the screen that the user is looking
at. It then identifies the object in the environment
that corresponds to this position by casting a ray
from the (virtual) camera through the screen plane,
and picking the closest object lying within a small
range of this ray (Fig. 1; see Staudte et al. (2012) for
details). If the user continously looks at the same
object for more than a certain amount of time, the
system counts this as an inspection of the object; for
our experiments, we chose a threshold of 300 ms.
Once the system detects an inspection to a button in
the room, it generates positive or negative feedback
utterances in exactly the same way as the movement
system does.

Both the movement-based and the eyetracking-
based model withhold their feedback until a first
full description of the referent (a first-mention RE)
has been spoken. Additionally, they only provide
feedback once for every newly approached or in-
spected button and will not repeat this feedback un-
less the user has approached or inspected another
button in the meantime. Example interactions of a
user with each of the three systems are presented in
Appendix A.

4 Evaluation

We set up a human evaluation study in order to as-
sess the performance of the eyetracking system as
compared against the two baselines on the situated
instruction giving task. For this, we record partic-
ipant interactions with the three systems employed
in three different virtual environments. These en-
vironments were taken from Gargett et al. (2010);
they vary as to the visual and spatial properties of
the objects they contain. One of these environments
is shown in Fig. 2. Overall, 31 participants (12 fe-
males) were tested. All reported their English skills
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as fluent, and all were capable of completing the
tasks. Their mean age was 27.6 years.

4.1 Task and procedure

A faceLAB eyetracking system (http://www.
seeingmachines.com/product/facelab)
remotely monitored participants’ eye movements on
a 24-inch monitor, as in Fig. 4 and 5 of Appendix B.
Before the experiment, participants received written
instructions that described the task and explained
that they would be given instructions by an NLG
system. They were encouraged to request additional
help any time they felt that the instructions were not
sufficient (by pressing the ‘H’ key).

The eyetracker was calibrated using a nine-point
fixation stimulus. We disguised the importance of
gaze from the participants by telling them that we
videotaped them and that the camera needed calibra-
tion. Each participant started with a short practice
session to familiarize themselves with the interface
and to clarify remaining questions. We then col-
lected three complete interactions, each with a dif-
ferent virtual environment and NLG system (alter-
nated according to a Latin square design). Finally,
each participant received a questionnaire which was
aimed to reveal whether they noticed that they were
eyetracked and that one of the generation systems
made use of that, and how satisfied they were with
this interaction. The entire experiment lasted ap-
proximately 30 minutes.

4.2 Analysis

For the assessment of communicative success in
these interactions, we considered as referential
scenes the parts of the interaction between the onset
of a first-mention RE to a given referent and the par-
ticipant’s reaction (pressing a button or navigating
away to another room). To control for external fac-
tors that could have an impact on this, we discarded
individual scenes in which the systems rephrased
their first-mention REs (e.g. by adding further at-
tributes), as well as a few scenes which the partic-
ipants had to go through a second time due to tech-
nical glitches. To remove errors in eyetracker cali-
bration, we included interactions with the eyetrack-
ing NLG system in the analysis only when we were
able to record inspections (to the referent or any dis-
tractor) in at least 80% of all referential scenes. This



success success w/out confusion #scenes
system all easy hard | all easy  hard all easy hard
eyetracking 934 100.0 904 91.9 100.0 88.2 198 62 136
with feedback 94.3 100.0  91.7 92.8 100.0 89.4 194 62 132
without feedback | 50.0 - 50.0 50.0 - 50.0 4 0 4
no-feedback 86.6* 100.0° 80.6* | 83.5** 98.9° 76.5%* | 284 88 196
movement 89.8° 100.0° 85.2° | 87.5° 97.8° 82.8° 295 92 203
with feedback 93.9 100.0  90.6 91.9 97.7 88.7 247 88 159
without feedback | 68.8 100.0 659 64.6 100.0 614 48 4 44

Table 1: Mean referential success rate (%) and number of scenes for the systems, broken down by scene complexity
and presence of feedback. Differences of overall system performances to the eyetracking system are: significant at

**p < 0.01, * p < 0.05; ° not significant.

filtered out 9 interactions out of the 93 we collected.

Inferential statistics on this data were carried out
using mixed-effect models from the lme4 package
in R (Baayen et al., 2008). Specifically, we used
logistic regression for modeling binary data, Poisson
regression for count variables and linear regression
for continuous data.

5 Results

On evaluating the post-task questionnaires, we did
not find any significant preferences for a particular
NLG system. Roughly the same number of them
chose each of the systems on questions such as
“which system did you prefer?”’. When asked for
differences between the systems in free-form ques-
tions, no participant mentioned the system’s reaction
to their eye gaze—though some noticed the (lack of)
feedback. We take this to mean that the participants
did not realize they were being eyetracked.

Below, we report results on objective metrics that
do not depend on participants’ judgments.

5.1 Confusion

A key goal of any RE generation system is that
the user understands the REs easily. One measure
of the ease of understanding is the frequency with
which participants pressed the ‘H’ key to indicate
their confusion and ask for help. The overall average
of ‘H’ keystrokes per interaction was 1.14 for the
eyetracking-based system, 1.77 for the movement-
based system, and 2.26 for the no-feedback system.
A model fitted to the keystroke distribution per sys-
tem shows significant differences both between the
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eyetracking and the no-feedback system (Coeff. =
0.703, SE = 0.233, Wald’s Z = 3.012, p < .01) and
between the eyetracking and the movement-based
system (Coeff. = 0.475, SE = 0.241, Wald’s Z =
1.967, p < .05). In other words, the feedback
given by the eyetracking-based system significantly
reduces user confusion.

5.2 Referential success

An even more direct way to measure the interac-
tion quality is the ratio of generated REs that the
participants were able to resolve correctly. In our
evaluation, we looked at two different definitions
of success. First, an RE can count as success-
ful if the first button that the user pressed after
hearing the RE was the system’s intended referent.
The results of this evaluation are shown in the left-
most part of Table 1, under “success”. A logis-
tic mixed-effects model fitted to the referential suc-
cess data revealed a marginal main effect of sys-
tem (x*(2) = 5.55,p = .062). Pairwise com-
parisons further show that the eyetracking system
performs significantly better than the no-feedback
system (Coeff. = —0.765, SE = 0.342, Wald’s Z =
—2.24, p < .05); no significant difference was found
between the eyetracking-based and the movement-
based system.

Second, we can additionally require that an RE
only counts as successful if the user did not press
the ‘H’ key between hearing the first-mention RE
and pressing the correct button. This is a stricter
version of referential success, which requires that
the system recognized cases of potential confusion



and did not force the user to take the initiative in
case of difficulties. It is in line with Dethlefs et al.’s
(2010) findings that metrics that penalize difficul-
ties the user encountered before successfully com-
pleting the task are better predictors of user satisfac-
tion than ones that only consider the eventual task
completion. Our results on this metric are shown
in the middle part of Table 1, under “success with-
out confusion”. We observe again a main effect of
system (x2(2) = 7.78,p < .05); furthermore, the
eyetracking system elicited again more correct but-
tons than the no-feedback system (Coeff. = —0.813,
SE =0.306, Wald’s Z = —2.66, p < 0.01).

To obtain a more detailed view of when and to
what extent the systems’ behavior differed, we dis-
tinguished scenes according to their complexity. A
scene was classified as easy if a) there were no dis-
tractors in it, or b) all distractors had different colors
from the target, while the system included the color
attribute in its RE. All other scenes were considered
hard. Note that “easy” and “hard” are properties of
the scene and not of the system, because every sys-
tem generated the same REs in each scene.

In the experiments, we found essentially no differ-
ence between the success rates of different systems
on easy scenes (see the “easy” columns of Table 1):
All systems were almost always successful. The
differences came almost exclusively from the hard
scenes, where the eyetracking system performed sig-
nificantly better than the no-feedback system (suc-
cess: Coeff. = —0.793, SE = 0.348, Wald’s Z =
—2.28, p < 0.05; success without confusion: Coeff.
=—0.833, SE=0.315, Wald’s Z = —2.64, p < 0.01)
and, at least numerically, also much better than the
movement system.

There was a particularly interesting difference in
the feedback behavior of the eyetracking and move-
ment systems on hard scenes (see the rightmost part
of Table 1, labeled “#scenes”). In easy scenes,
both systems almost always gave feedback (62/62
= 100.0%; 88/92 = 95.6%); but for hard scenes,
the ratio of scenes in which the movement system
gave feedback at all dropped to 159/203 = 78.3%,
whereas the ratio for the eyetracking system re-
mained high. This may have contributed to the over-
all performance difference between the two systems.
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#actions | distance | duration | idle
system (norm.) | (norm.) | (norm.) | (sec)
eyetracking | 1.06 1.22 1.49 256.6
no-feedback | 1.22% 1.27 1.59 272.5
movement 1.16 1.26 1.56 274.4

Table 2: Mean values of additional metrics. Differences
to the eyetracking system are significant at * p < 0.05.

5.3 Further performance metrics

Finally, we measured a number of other objective
metrics, including the number of actions (i.e., but-
ton presses), the distance the user traveled, the to-
tal duration of the interaction, and the mean time
a participant spent idle. Even though these mea-
sures only partly provide statistically significant re-
sults, they help to draw a clearer picture of how the
eyetracking-based feedback affects performance.
Because the three virtual environments were of
different complexity, we normalized the number of
actions, distance, and duration by dividing the value
for a given interaction by the minimum value for all
interactions of the same virtual environment. The re-
sulting measures are shown in Table 2. Participants
performed significantly fewer actions in the eye-
tracking system than in the no-feedback system (Co-
eff. =0.174, SE = 0.067, t = 2.57, p(mcme) < .05);
there were also trends that users of the eyetracking-
based system traveled the shortest distance, needed
the least overall time, and spent the least time idle.
The only measure deviating from this trend is
movement speed, i.e., the speed at which users re-
acted to the systems’ instructions to press certain
buttons. For all successful scenes (without confu-
sion), we computed the speed by dividing the GIVE
distance (including turning distance) between the
target referent and the user’s location at the time of
the instruction containing the first-mention RE by
the time (in seconds) between hearing the instruc-
tion and pressing the target. The mean movement
speed is 0.518 for the no-feedback system, 0.493 for
the movement system, and 0.472 for the eyetracking
system. A marginal main effect of movement speed
confirms this trend (x?(2) = 5.58,p = .061) and
shows that participants moved more slowly when
getting eyetracking-based feedback than when get-
ting no feedback at all (Coeff. = 0.0352, SE =



0.0166, t = —4.97, p(memc) < .05).

6 Discussion

The results in Section 5 demonstrate the usefulness
of eyetracking as a foundation for monitoring and
feedback. Compared to the no-feedback system, the
eyetracking-based system achieved a significantly
lower confusion rate and a significantly higher RE
success rate, especially on hard instances. The dif-
ference increases further if we discount scenes in
which the user had to ask for help, thus forcing the
system to give feedback anyway. In other words,
eyetracking provides reliable and direct access to the
hearer’s reference resolution process. Real-time di-
alog systems can use gaze information to monitor
the success of REs and generate feedback before the
user actually makes a mistake.

Monitoring and feedback could also be achieved
without using eyetracking. To explore this alterna-
tive, we compared eyetracking against a movement-
based system. We found that the former outper-
formed the latter on hearer confusion and (at least
numerically) on referential success, while not per-
forming worse on other measures. This means that
the improvement comes not merely from the fact
that feedback was given; it is also important when
and where feedback is given. The crucial weakness
of the movement-based system is that it gave feed-
back for hard instances much more rarely than the
eyetracking system. Increasing recall by lowering
the system’s confidence threshold would introduce
fresh errors. Further improvements must therefore
come at the cost of a more complex monitoring sys-
tem, both conceptually and in terms of implementa-
tion effort. From this perspective, eyetracking offers
good performance at low implementation cost.

One result that seems to go against the trend is that
users of the eyetracking system moved significantly
more slowly on their way to a target. We see two
possible explanations for this. First, it may be that
users needed some time to listen to the feedback, or
were encouraged by it to look at more objects. A
second explanation is that this is not really a differ-
ence in the quality of the systems’ behavior, but a
difference in the populations over which the mean
speed was computed: The speed was only averaged
over scenes in which the users resolved the RE cor-
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rectly, and the eyetracking system achieved commu-
nicative success in many cases in which the others
did not—presumably complex scenes in which the
user had to work harder to find the correct button.
This issue bears more careful analysis.

Finally, the eyetracking-based system could be
improved further in many ways. On the one hand,
it suffers from the fact that all objects in the 3D en-
vironment shift on the screen when the user turns
or moves. The user’s eyes will typically follow the
object they are currently inspecting, but lag behind
until the screen comes to a stop again. One topic
for future work would be to remove noise of this
kind from the eyetracker signal. On the other hand,
the negative feedback our system gave (“no, not that
one”) was quite unspecific. More specific feedback
(“no, the BLUE button”) might further improve the
system’s performance.

7 Conclusion

We described an interactive NLG system that uses
eyetracking to monitor the communicative success
of the REs it generates. The communication is sit-
uated in a virtual 3D environment in which the user
can move freely, and our system automatically maps
eyetracking screen coordinates to objects in the en-
vironment. A task-based evaluation found that the
eyetracking-based system outperforms both a no-
feedback system and a system whose feedback is
based on the user’s movements in the virtual envi-
ronment, along with their field of view.

Eyetracking is currently widely available in re-
search institutions, which should make our system
easy to reimplement in other situated domains. We
anticipate that eyetracking may become mainstream
technology in the not-too-distant future. But even
in a purely research context, we believe that the di-
rectness with which eyetracking allows us to observe
the hearer’s interpretation process may be useful as
a testbed for efficient theories of grounding.
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Figure 4: A screenshot from the faceLAB software, including visualization of eye-gaze position in 3D space.
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A Example interactions

The following interactions between a user (U) and
each of the three systems (S) were recorded during
the systems’ attempts to instruct the user to press the
rightmost blue button shown in Fig. 1.

A.1 Eyetracking system

(1) S: Push the right button to the right of the green
button.
U: (approaches the pair of blue and green but-
ton and inspects one of them)
S: No, not that one!
... (U inspects other buttons in the scene, while
S provides appropriate feedback)
U: (inspects the correct target)
S: Yes, that one!
U: (presses the correct button)

A2
@

Movement system

S: Push the right button to the right of the green
button.

U: (approaches the pair of blue and green but-
tons; once the user is very close to the blue but-
ton, it happens to become the only button visi-
ble on screen)

U: (continues moving closer to the blue button)
S: No, not that one!

U: (has no time to react to the system’s feed-
back and presses the wrong blue button)

A3
€

No-feedback system

S: Push the right button to the right of the green
button.
U: (presses the wrong blue button)

B The experimental setup

Figure 5: A faceLAB eyetracking system monitored par-
ticipants’ eye movements during the interactions.
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Abstract

We present a token-level decision summariza-
tion framework that utilizes the latent topic
structures of utterances to identify “summary-
worthy” words.  Concretely, a series of
unsupervised topic models is explored and
experimental results show that fine-grained
topic models, which discover topics at the
utterance-level rather than the document-level,
can better identify the gist of the decision-
making process. Moreover, our proposed
token-level summarization approach, which
is able to remove redundancies within utter-
ances, outperforms existing utterance ranking
based summarization methods. Finally, con-
text information is also investigated to add ad-
ditional relevant information to the summary.

1 Introduction

Meetings are an important way for information shar-
ing and collaboration, where people can discuss
problems and make concrete decisions. Not sur-
prisingly, there is an increasing interest in develop-
ing methods for extractive summarization for meet-
ings and conversations (Zechner, 2002; Maskey and
Hirschberg, 2005; Galley, 2006; Lin and Chen,
2010; Murray et al., 2010a). Carenini et al. (2011)
describe the specific need for focused summaries of
meetings, i.e., summaries of a particular aspect of a
meeting rather than of the meeting as a whole. For
example, the decisions made, the action items that
emerged and the problems arised are all important
outcomes of meetings. In particular, decision sum-
maries would allow participants to review decisions
from previous meetings and understand the related
topics quickly, which facilitates preparation for the
upcoming meetings.
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A:We decided our target group is the focus on who can
afford it , (1)

B:Uh I’m kinda liking the idea of latex , if if spongy is
the in thing . (2)

B:what I’ve seen , just not related to this , but of latex
cases before , is that [vocalsound] there’s uh like a hard
plastic inside , and it’s just covered with the latex . (2)
C:Um [disfmarker] And I think if we wanna keep our costs
down , we should just go for pushbuttons , (3)

D:but if it’s gonna be in a latex type thing and that’s
gonna look cool , then that’s probably gonna have a
bigger impact than the scroll wheel . (2)

A:we’re gonna go with um type pushbuttons , (3)

A:So we’re gonna have like a menu button , (4)

C:uh volume , favourite channels , uh and menu . (4)
A:Pre-set channels (4)

Decision Abstracts (Summary)

DECISION 1: The target group comprises of individuals
who can afford the product.

DECISION 2: The remote will have a latex case.

DECISION 3: The remote will have pushbuttons.
DECISION 4: The remote will have a power button, volume
buttons, channel preset buttons, and a menu button.

Figure 1: A clip of a meeting from the AMI meeting cor-
pus (Carletta et al., 2005). A, B, C and D refer to distinct
speakers; the numbers in parentheses indicate the associated
meeting decision: DECISION 1, 2, 3 or 4. Also shown is the
gold-standard (manual) abstract (summary) for each decision.

Meeting conversation is intrinsically different
from well-written text, as meetings may not be well
organized and most utterances have low density of
salient content. Therefore, multiple problems need
to be addressed for speech summarization. Consider
the sample dialogue snippet in Figure 1 from the
AMI meeting corpus (Carletta et al., 2005). Only
decision-related dialogue acts (DRDAs) — utter-
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ances at least one decision made in the meeting! —
are listed and ordered by time. Each DRDA is la-
beled numerically according to the decision it sup-
ports; so the second and third utterances (in bold)
support DECISION 2, as do the fifth utterance in the
snippet. Manually constructed decision abstracts for
each decision are shown at the bottom of the figure.

Besides the prevalent dialogue phenomena (such
as “Uh I’'m kinda liking” in Figure 1), disfluencies
and off-topic expressions, we notice that single ut-
terance is usually not informative enough to form
a decision. For instance, no single DRDA associ-
ated with DECISION 4 corresponds all that well with
its decision abstract: “pushbuttons”, “menu button”
and “Pre-set channels” are mentioned in separate
DAs. As a result, extractive summarization methods
that select individual utterance to form the summary
will perform poorly.

Furthermore, it is difficult to identify the core
topic when multiple topics are discussed in one ut-
terance. For example, all of the bold DRDAs sup-
porting DECISTON 2 contain the word “latex”. How-
ever, the last DA in bold also mentions “bigger im-
pact” and “the scroll wheel”, which are not specifi-
cally relevant for DECISION 2. Though this problem
can be approached by training a classifier to identify
the relevant phrases and ignore the irrelevant ones
or dialogue phenomena, it needs expensive human
annotation and is limited to the specific domain.

Note also that for DECISION 4, the “power but-
ton” is not specified in any of the listed DRDAs
supporting it. By looking at the transcript, we find
“power button” mentioned in one of the preceding,
but not decision-related DAs. Consequently another
challenge would be to add complementary knowl-
edge when the DRDASs cannot provide complete in-
formation.

Therefore, we need a summarization approach
that is tolerant of dialogue phenomena, can deter-
mine the key semantic content and is easily trans-
ferable between domains. Recently, topic model-
ing approaches have been investigated and achieved
state-of-the-art results in multi-document summa-
rization (Haghighi and Vanderwende, 2009; Celiky-

!These DRDAS are annotated in the AMI corpus and usually
contain the decision content. They are similar, but not com-
pletely equivalent, to the decision dialogue acts (DDAs) of Bui
et al. (2009), Fernandez et al. (2008), Frampton et al. (2009).
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ilmaz and Hakkani-Tur, 2010). Thus, topic mod-
els appear to be a better ref for document simi-
larity w.r.t. semantic concepts than simple literal
word matching. However, very little work has in-
vestigated its role in spoken document summariza-
tion (Chen and Chen, 2008; Hazen, 2011), and much
less conducted comparisons among topic modeling
approaches for focused summarization in meetings.

In contrast to previous work, we study the un-
supervised token-level decision summarization in
meetings by identifying a concise set of key words
or phrases, which can either be output as a com-
pact summary or be a starting point to generate ab-
stractive summaries. This paper addresses problems
mentioned above and make contributions as follows:

e As a step towards creating the abstractive sum-
maries that people prefer when dealing with spo-
ken language (Murray et al., 2010b), we propose a
token-level rather than sentence-level framework
for identifying components of the summary. Ex-
perimental results show that, compared to the sen-
tence ranking based summarization algorithms,
our token-level summarization framework can bet-
ter identify the summary-worthy words and re-
move the redundancies.

e Rather than employing supervised learning meth-
ods that rely on costly manual annotation, we ex-
plore and evaluate topic modeling approaches of
different granularities for the unsupervised deci-
sion summarization at both the token-level and di-
alogue act-level. We investigate three topic mod-
els — Local LDA (LocalLDA) (Brody and El-
hadad, 2010), Multi-grain LDA (MG-LDA) (Titov
and McDonald, 2008) and Segmented Topic
Model (STM) (Du et al., 2010) — which can uti-
lize the latent topic structure on utterance level
instead of document level. Under our proposed
token-level summarization framework, three fine-
grained models outperform the basic LDA model
and two extractive baselines that select the longest
and the most representative utterance for each de-
cision, respectively. (ROUGE-SU4 F score of
14.82% for STM vs. 13.58% and 13.46% for
the baselines, given the perfect clusterings of DR-
DAs.)

e In line with prior research that explore the role of
context for utterance-based extractive summariza-



tion (Murray and Renals, 2007), we investigate the
role of context in our token-level summarization
framework. For the given clusters of DRDAs, We
study two types of context information — the DAs
preceding and succeeding a DRDA and DAs of
high TF-IDF similarity with a DRDA. We also in-
vestigate two ways to select relevant words from
the context DA. Experimental results show that
two types of context have comparable effect, but
selecting words from the dominant topic of the
center DRDA performs better than from the dom-
inant topic of the context DA. Moreover, by lever-
aging context, the recall exceeds the provided up-
perbound’s recall (ROUGE-1 recall: 48.10% vs.
45.05% for upperbound by using DRDA only) al-
though the F scores decrease after adding context
information. Finally, we show that when the true
DRDA clusterings are not available, adding con-
text can improve both the recall and F score.

2 Related Work

Speech and dialogue summarization has become im-
portant in recent years as the number of multime-
dia resources containing speech has grown. A pri-
mary goal for most speech summarization systems
is to account for the special characteristics of di-
alogue. Early work in this area investigated su-
pervised learning methods, including maximum en-
tropy, conditional random fields (CRFs), and sup-
port vector machines (SVMs) (Buist et al., 2004;
Galley, 2006; Xie et al., 2008). For unsupervised
methods, maximal marginal relevance (MMR) is in-
vestigated in (Zechner, 2002) and (Xie and Liu,
2010). Gillick et al. (2009) introduce a concept-
based global optimization framework by using in-
teger linear programming (ILP).

Only in very recent works has decision sum-
marization been addressed in (Fernandez et al.,
2008), (Bui et al., 2009) and (Wang and Cardie,
2011). (Fernandez et al., 2008) and (Bui et al., 2009)
utilize semantic parser to identify candidate phrases
for decision summaries and employ SVM to rank
those phrases. They also train HMM and SVM
directly on a set of decision-related dialogue acts
on token level and use the classifiers to identify
summary-worthy words. Wang and Cardie (2011)
provide an exploration on supervised and unsuper-
vised learning for decision summarization on both
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utterance- and token- level.

Our work also arises out of applying topic mod-
els to text summarization (Bhandari et al., 2008;
Haghighi and Vanderwende, 2009; Celikyilmaz and
Hakkani-Tur, 2010; Celikyilmaz and Hakkani-Tur,
2010). Mostly, the sentences are ranked according to
importance based on latent topic structures, and top
ones are selected as the summary. There are some
works for applying document-level topic models to
speech summarization (Kong and shan Leek, 2006;
Chen and Chen, 2008; Hazen, 2011). Different from
their work, we further investigate the topic models of
fine granularity on sentence level and leverage con-
text information for decision summarization task.

Most existing approaches for speech summariza-
tion result in a selection of utterances from the dia-
logue, which cannot remove the redundancy within
utterances. To eliminate the superfluous words, our
work is also inspired by keyphrase extraction of
meetings (Liu et al., 2009; Liu et al., 2011) and
keyphrase based summarization (Riedhammer et al.,
2010). However, a small set of keyphrases are not
enough to concretely display the content. Instead of
only picking up keyphrases, our work identifies all
of the summary-worthy words and phrases, and re-
moves redundancies within utterances.

3 Summarization Frameworks

In this section, we first present our proposed token-
level decision summarization framework — Dom-
Sum — which utilizes latent topic structure in ut-
terances to extract words from Dominant Topic (see
details in Section 3.1) to form Summaries. In Sec-
tion 3.2, we describe four existing sentence scor-
ing metrics denoted as OneTopic, MultiTopic, TMM-
Sum and KLSum which are also based on latent topic
distributions. We adopt them to the utterance-level
summarization for comparison in Section 6.

3.1 Token-level Summarization Framework

Domsum takes as input the clusters of DRDAs (with
or without additional context DAs), the topic distri-
bution for each DA and the word distribution for
each topic. The output is a set of topic-coherent
summary-worthy words which can be used directly
as the summary or to further generate abstractive
summary. We introduce DomSum in two steps ac-
cording to its input: taking clusters of DRDAs as the
input and with additional context information.



DRDAs Only. Given clusters of DRDAs, we use
Algorithm 1 to produce the token-level summary for
each cluster. Generally, Algorithm 1 chooses the
topic with the highest probability as the dominant
topic given the dialogue act (DA). Then it collects
the words with a high joint probability with the dom-
inant topic from that DA.

Input : Cluster C' = {DA;}, P(T;j|DA;), P(wg|Ty)
Output: Summary

Summary<— & (empty set)
foreach DA; in C do
DomTopic<— maxr; P(T;|DA;) (*)
Candidate<—
foreach word wy, in DA; do
SampleTopic<— maxr; P(wg|T;)P(T;|DA;)
if DomTopic == SampleTopic then
| Candidate < Union (Candidate, wg)
end
end
Summary < Union (Summary, Candidate)

end
Algorithm 1: DomSum — The token-level sum-
marization framework. DomSum takes as input the

clusters of DRDAs and related probability distribu-
tions.

Leveraging Context. For each DRDA (denoted as
“center DA”), we study two types of context infor-
mation (denoted as “context DAs”). One is adjacent
DAs, i.e., immediately preceding and succeeding
DAs, the other is the DAs having top TF-IDF simi-
larities with the center DA. Context DAs are added
into the cluster the corresponding center DA in.

We also study two criteria of word selection from
the context DAs. For each context DA, we can take
the words appearing in the dominant topic of ei-
ther this context DA or its center DRDA. We will
show in Section 6.1 that the latter performs better
as it produces more topic-coherent summaries. Al-
gorithm 1 can be easily modified to leverage context
DAs by updating the input clusters and assigning the
proper dominant topic for each DA accordingly —
this changes the step () in Algorithm 1.

3.2 Utterance-level Summarization Metrics

We also adopt four sentence scoring metrics based
on the latent topic structure for extractive summa-
rization. Though they are developed on different
topic models, given the desired topic distributions as
input, they can rank the utterances according to their
importance and provide utterance-level summaries
for comparison.
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OneTopic and MultiTopic. In (Bhandari et al.,
2008), several sentence scoring functions are intro-
duced based on Probabilistic Latent Semantic Index-
ing. We adopt two metrics, which are OneTopic
and MultiTopic. For OneTopic, topic T" with high-
est probability P(T") is picked as the central topic
per cluster C. The score for DA in C' is:

> wepa P(T|DA,w)

P(DAIT) = P(T|DA’, w)
DA’eC,weDA’ ’

)

MultiTopic modifies OneTopic by taking all of the
topics into consideration. Given a cluster C, DA in
C'is scored as:

ZwGDA P(T|DA,w)
P(DA|TP(T) = P(T
; (PAIT)PT) ; > parec,wepar P(TIDA", w) @

TMMSum. Chen and Chen (2008) propose a Top-
ical Mixture Model (TMM) for speech summariza-
tion, where each dialogue act is modeled as a TMM
for generating the document. TMM is shown to
provide better utterance-level extractive summaries
for spoken documents than other conventional unsu-
pervised approaches, such as Vector Space Model
(VSM) (Gong and Liu, 2001), Latent Semantic
Analysis (LSA) (Gong and Liu, 2001) and Max-
imum Marginal Relevance (MMR) (Murray et al.,
2005). The importance of a sentence S can be mea-
sured by its generative probability P(D|S), where
D is the document S belongs to. In our experiments,
one decision is made per cluster of DAs. So we
adopt their scoring metric to compute the generative
probability of the cluster C for each D A:

P(CIDA) = [] > P(wilTy)P(T;|DA),
w; €C Ty

KLSum. Kullback-Lieber (KL) divergence is ex-
plored for summarization in (Haghighi and Vander-
wende, 2009) and (Lin et al., 2010), where it is used
to measure the distance of distributions between the
document and the summary. For a cluster C' of DAs,
given a length limit 0, a set of DAs S is selected as:

P(T;|C)
P(T;|S)

S* = argmin KL(Pc||Ps) = argminZP(Ti\C)log
S:|S|<6 S:|S|<6 T,

4 Topic Models

In this section, we briefly describe the three fine-
grained topic models employed to compute the la-
tent topic distributions on utterance level in the



meetings. According to the input of Algorithm 1,
we are interested in estimating the topic distribution
for each DA P(T|DA) and the word distribution
for each topic P(w|T"). For MG-LDA, P(T|DA)
is computed as the expectation of local topic distri-
butions with respect to the window distribution.

4.1 Local LDA

Local LDA (LocalLDA) (Brody and Elhadad, 2010)
uses almost the same probabilistic generative model
as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), except that it treats each sentence as a sepa-
rate document?. Each DA d is generated as follows:
1. For each topic k:
(a) Choose word distribution: ¢y ~ Dir(f3)
2. For each DA d:
(a) Choose topic distribution: 64 ~ Dir(c)
(b) For each word w in DA d:
i. Choose topic: 24, ~ 04
ii. choose word: w ~ ¢zd7w

4.2 Multi-grain LDA

Multi-grain LDA (MG-LDA) (Titov and McDonald,
2008) can model both the meeting specific topics
(e.g. the design of a remote control) and various con-
crete aspects (e.g. the cost or the functionality). The
generative process is:

1. Choose a global topic distribution: 9. ~ Dir(ad)

2. For each sliding window v of size T":
(a) Choose local topic distribution: Gi,olfv ~ Dir(aloc)
(b) Choose granularity mixture: mp, ., ~ Beta(a™*®)
3. For each DA d:
(a) choose window distribution: ), g ~ Dir(7y)
4. For each word w in DA d of meeting m:
(a) Choose sliding window: vm, w ~ Pm 4
(b) Choose granularity: rm,w ~ Tm, v,
(©) If 7 w = gl, choose global topic: zm w ~ Gf,f
(d) If rm,w = loc, choose local topic: zm,w ~ gloc

My, Vm,w

m,w

(e) Choose word w from the word distribution: qbz

4.3 Segmented Topic Model

The last model we utilize is Segmented Topic Model
(STM) (Du et al.,, 2010), which jointly models
document- and sentence-level latent topics using
a two-parameter Poisson Dirichlet Process (PDP).
Given parameters «, 7y, ® and PDP parameters a, b,
the generative process is:

m,w

1. Choose distribution of topics: 0, ~ Dir(a)
2. For each dialogue act d:

2For the generative process of LDA, the DAs in the same
meeting make up the document, so “each DA” is changed to
“each meeting” in LocalLDA’s generative process.
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(a) Choose distribution of topics: 63 ~ PDP(6m,a,b)
3. For each word w in dialogue act d:

(a) Choose topic: zm,w ~ 04

(b) Choose word: w ~ ¢2,,, .,

S Experimental Setup

The Corpus. We evaluate our approach on the
AMI meeting corpus (Carletta et al., 2005) that con-
sists of 140 multi-party meetings. The 129 scenario-
driven meetings involve four participants playing
different roles on a design team. A short (usually
one-sentence) abstract is manually constructed to
summarize each decision discussed in the meeting
and used as gold-standard summaries in our experi-
ments.

System Inputs. Our summarization system re-
quires as input a partitioning of the DRDAs accord-
ing to the decision(s) that each supports (i.e., one
cluster of DRDAs per decision). As mentioned ear-
lier, we assume for all experiments that the DRDAs
for each meeting have been identified. For evalua-
tion we consider two system input settings. In the
True Clusterings setting, we use the AMI annota-
tions to create perfect partitionings of the DRDAs
as the input; in the System Clusterings setting, we
employ a hierarchical agglomerative clustering algo-
rithm used for this task in previous work (Wang and
Cardie, 2011). The Wang and Cardie (2011) cluster-
ing method groups DRDAs according to their LDA
topic distribution similarity. As better approaches
for DRDA clustering become available, they could
be employed instead.

Evaluation Metric. To evaluate the performance
of various summarization approaches, we use the
widely accepted ROUGE (Lin and Hovy, 2003) met-
rics. We use the stemming option of the ROUGE
software athttp://berouge.com/ and remove
stopwords from both the system and gold-standard
summaries, same as Riedhammer et al. (2010) do.

Inference and Hyperparameters We use the im-
plementation from (Lu et al., 2011) for the three
topic models in Section 4. The collapsed Gibbs
Sampling approach (Griffiths and Steyvers, 2004) is
exploited for inference. Hyperparameters are cho-
sen according to (Brody and Elhadad, 2010), (Titov
and McDonald, 2008) and (Du et al., 2010). In LDA
and LocalLDA, « and (8 are both set to 0.1 . For
MG-LDA, o, o'°¢ and o are set to 0.1; vis 0.1



and the window size 7' is 3. And the number of lo-
cal topic is set as the same number of global topic as
discussed in (Titov and McDonald, 2008). In STM,
«, a and b are set to 0.5, 0.1 and 1, respectively.

5.1 Baselines and Comparisons

We compare our token-level summarization frame-
work based on the fine-grained topic models to (1)
two unsupervised baselines, (2) token-level summa-
rization by LDA, (3) utterance-level summarization
by Topical Mixture Model (TMM) (Chen and Chen,
2008), (4) utterance-level summarization based on
the fine-grained topic models using existing metrics
(Section 3.2), (5) two supervised methods, and (6)
an upperbound derived from the AMI gold standard
decision abstracts. (1) and (6) are described below,
others will be discussed in Section 6.

The LONGEST DA Baseline. As in (Riedhammer
etal., 2010) and (Wang and Cardie, 2011), this base-
line simply selects the longest DRDA in each cluster
as the summary. Thus, it performs utterance-level
decision summarization. This baseline and the next
allow us to determine summary quality when sum-
maries are restricted to a single utterance.

The PROTOTYPE DA Baseline. Following Wang
and Cardie (2011), the second baseline selects the
decision cluster prototype (i.e., the DRDA with the
largest TF-IDF similarity with the cluster centroid)
as the summary.

Upperbound. We also compute an upperbound
that reflects the gap between the best possible ex-
tractive summaries and the human-written abstracts
according to the ROUGE score: for each cluster of
DRDAs, we select the words that also appear in the
associated decision abstract.

6 Results and Discussion
6.1 True Clusterings

How do fine-grained topic models compare to ba-
sic topic models or baselines? Figure 2 demon-
strates that by using the DomSum token-level sum-
marization framework, the three fine-grained topic
models uniformly outperform the two non-trivial
baselines and TMM (Chen and Chen, 2008) (reim-
plemented by us) that generates utterance-level sum-
maries. Moreover, the fine-grained models also beat
basic LDA under the same DomSum token-level
summarization framework. This shows the fine-
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Comparison with Baselines, TMM and LDA
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Figure 2: With true clusterings of DRDAs as the input, we use
DomSum to compare the performance of LocalLDA, MGLDA
and STM against two baselines, LDA and TMM. “# topic” in-
dicates the number of topics for the model. For MGLDA, “#
topic” is the number of local topics.

Summarization from DRDAs by Different Metrics Based on STM (DRDA only)
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Figure 3: With true clusterings of DRDAs as the input, Dom-
Sum is compared with four DA-level summarization metrics us-
ing topic distributions from STM. Results from LocalLDA and
MGLDA are similar so they are not displayed.

grained topic models that discover topic structures
on utterance-level better identify gist information.

Can the proposed token-level summarization
framework better identify important words and
remove redundancies than utterance selection
methods? Figure 3 demonstrates the comparison
results for our DomSum token-level summarization
framework with four existing utterance scoring met-
rics discussed in Section 3.2, namely OneTopic,
MultiTopic, TMMSum and KLSum. The utterance
with highest score is extracted to form the summary.
LocalLDA and STM are utilized to compute the in-
put distributions, i.e., P(T|DA) and P(w|T'). From
Figure 3, DomSum yields the best F scores which



Leveraging Context by STM
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Figure 4: Under DomSum framework, two types of context
information are added: Adjacent DA (“Adj”’) and DAs with high
TFIDF similarities (“TFIDF”). For each context DA, selecting
words from the dominant topic of center DA (“One”) or the
current context DA (“Multi”) are investigated.

Summarization by Different Metrics (adding Context)

. . ;
—— LocalLDA+DomSum(One)
12} STM+DomSum(One) e
LocalLDA+OneTopic A~
11.5[-| —s— STM+OneTopic B o B
LocalLDA+MultiTopic —
11F| — = STM+MultiTopic //e ~
10,5 o~ 1

ROUGE-SU4 F (%)

5 6
#Topic

Figure 5: By using adjacent DAs as context, DomSum is com-
pared with two DA-level summarization metrics: OneTopic and
MultiTopic. For DomSum, the words of context DA from dom-
inant topic of the center DA (“One”) is selected; For OneTopic
and MultiTopic, three top ranked DAs are selected.

shows that the token-level summarization approach
18 more effective than utterance-level methods.

Which way is better for leveraging context infor-
mation? We explore two types of context infor-
mation. For adjacent content (Adj in Figure 4), 5
DAs immediately preceding and 5 DAs succeeding
the center DRDA are selected. For TF-IDF context
(TFIDF in Figure 4), 10 DAs of highest TF-IDF sim-
ilarity with the center DRDA are taken. We also
explore two ways to extract summary-worthy words
from the context DA — selecting words from the
dominant topic of either the center DA (denoted as
“One” in parentheses in Figure 4) or the current con-
text DA (denoted as “multi” in parentheses in Fig-
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True Clusterings
R-1 R-2 R-SU4
PREC REC F1 Fl1 Fl1
Baselines
Longest DA 34.06 31.28 32.61 12.03 13.58
Prototype DA 40.72 28.21 3332 12.18 13.46
Supervised
Methods
CRF 52.89 26.77 35.53 11.48 14.03
SVM 43.24 37.92 40.39 12.78 16.24
Our Approach
5 topics
LocalLDA 35.18 38.92 36.95 12.33 14.74
+ context 17.26 45.34 25.00 8.40 11.05
ST™M 34.06 41.30 37.32 12.42 14.82
+ context 15.60 48.10 23.56 8.16 9.98
10 topics
LocalLDA 36.20 36.81 36.50 12.04 14.34
+ context 21.82 41.57 28.62 9.61 12.24
STM 34.15 40.83 37.19 12.40 14.56
+ context 17.87 46.57 25.82 8.89 10.97
[ Upperbound [ 100.00 [ 45.05 [ 6212 [ 3327 [ 34.89

Table 1: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-SU4
(R-SU4) scores for our proposed token-level summarization ap-
proaches along with two baselines, supervised methods and the
Upperbound (only using DRDAs). — all use True Clusterings

ure 4). Figure 4 indicates that the two types of con-
text information do not have significant difference,
while selecting the words from the dominant topic
of the center DA results in better ROUGE-SU4 F
scores. Notice that compared with Figure 3, the re-
sults in Figure 4 have lower F scores when using the
true clusterings of DRDAs. This is because context
DAs bring in relevant words as well as noisy infor-
mation. We will show in Section 6.2 that when true
clusterings are not available, the context information
can boost both recall and F score.

How do the token-level summarization frame-
work compared to utterance selection methods
for leveraging context? We also compare the
ability of leveraging context of DomSum to utter-
ance scoring metrics, i.e., OneTopic and MultiTopic.
5 DAs preceding and 5 DAs succeeding the center
DA are added as context information. For context
DA under DomSum, we select words from the dom-
inant topic of the center DA (denoted as “One” in
parentheses in Figure 5). For OneTopic and Mul-
tiTopic, the top 3 DAs are extracted as the sum-
mary. Figure 5 demonstrates the combination of Lo-
calLDA and STM with each of the metrics. Dom