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Introduction

It is our great pleasure to present the Proceedings of the SIGDIAL 2012 Conference, the 13th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. The conference is held in Seoul,
South Korea, July 5-6, 2012, and is co-located with the 50th Annual Meeting of the Association for
Computational Linguistics (ACL).

We received sixty-three submissions: forty long paper submissions, nineteen short paper submissions,
and four demo submissions. The members of the Program Committee did a superb job reviewing the
submitted papers. We thank them for their advice in selecting the accepted papers and for helping to
maintain the high quality of the program. Special thanks go to Giuseppe Di Fabbrizio and Christophe
Cerisara for helping out with last minute review requests.

In line with the SIGDIAL tradition, our aim has been to create a balanced program that could
accommodate as many favorably rated papers as possible. Of the fifty-nine paper submissions, thirty-
eight were accepted: eighteen of forty long paper submissions were accepted as long papers for oral
presentation, seven were accepted as long papers for poster presentation, and two were accepted as
short papers for poster presentation. In addition, eleven of the nineteen short paper submissions were
accepted for poster presentation, for a total of twenty posters. Three of the four demo submissions were
accepted.

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse
and dialogue. This year, the program contained oral presentation sessions and poster papers on
discourse structure, paralinguistic features of dialogue, natural language generation and natural
language understanding, evaluation, and statistical models of dialogue, as well as on the SIGDIAL
2012 special theme, “characterizing dialog coherence”. We particularly thank the two keynote speakers
for their contributions to research on coherence and dialogue: Professor Tatsuya Kawahara (Kyoto
University) and Professor Diane Litman (University of Pittsburgh).

We thank Kallirroi Georgila, Mentoring Chair for SIGDIAL 2012. The goal of mentoring is to assist
authors of papers that contain innovative ideas to improve their quality regarding English language
usage or paper organization. This year, nine of the accepted papers were mentored. We thank the
Program Committee members who volunteered to serve as mentors: Ron Artstein, Srinivas Bangalore,
Michael Johnston, Kristiina Jokinen, Vincent Ng, Andrei Popescu-Belis, David Schlangen, Amanda
Stent, and Michael Strube.

We thank Minhwa Chung, Local Arrangements Chair, and Hyung Soon Kim, Jungyun Seo and Sunhee
Kim, the members of the Local Arrangements Committee, for taking care of the many details of the
local arrangements. We also thank the student volunteers for on-site assistance. We are grateful to ACL
PCO Nuricom for designing the conference bags.

We thank Jason Williams, Sponsorships Chair, for recruiting and liaising with our conference sponsors.
Sponsorship makes possible valuable aspects of the SIGDIAL program, such as the invited speakers,
conference reception and dinner, and best paper awards. We gratefully acknowledge the support of
our sponsors, including AT&T, AVIOS, Honda Research Institute, IBM Research, KT Corporation,
Microsoft Research, NHN Corporation, and Seoul National University.
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We would like to thank last year’s Program Co-Chairs, Joyce Chai and Rebecca Passonneau, last year’s
General Co-Chairs, Johanna Moore and David Traum, and last year’s Local Chair, Peter Heeman, for
their helpful advice and answers to questions.

We thank Priscilla Rasmussen at the ACL for handling the financial transactions for SIGDIAL 2012,
including advance registration.

We gratefully acknowledge SoftConf for use of the START conference management system.

We also thank the SIGDIAL board, in particular Tim Paek, Amanda Stent, and Kristiina Jokinen, for
their advice and support.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Gary Geunbae Lee and Jonathan Ginzburg
General Co-Chairs

Claire Gardent and Amanda Stent
Technical Program Co-Chairs

iv



SIGDIAL 2012

General Co-Chairs:

Gary Geunbae Lee, POSTECH, South Korea
Jonathan Ginzburg, Université Paris-Diderot, France
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Abstract

Conversations in poster sessions in academic
events, referred to as poster conversations,
pose interesting and challenging topics on
multi-modal analysis of multi-party dialogue.
This article gives an overview of our project
on multi-modal sensing, analysis and “under-
standing” of poster conversations. We fo-
cus on the audience’s feedback behaviors such
as non-lexical backchannels (reactive tokens)
and noddings as well as joint eye-gaze events
by the presenter and the audience. We inves-
tigate whether we can predict when and who
will ask what kind of questions, and also inter-
est level of the audience. Based on these anal-
yses, we design a smart posterboard which can
sense human behaviors and annotate interac-
tions and interest level during poster sessions.

1 Introduction

As a variety of spoken dialogue systems have been
developed and deployed in the real world, the fron-
tier of spoken dialogue research, with engineering
applications in scope, has been extended from the
conventional human-machine speech interface. One
direction is a multi-modal interface, which includes
not only graphics but also humanoid robots. An-
other new direction is a multi-party dialogue sys-
tem that can talk with multiple persons as an as-
sistant agent (D.Bohus and E.Horvitz, 2009) or a
companion robot (S.Fujie et al., 2009). While these
are extensions of the human-machine speech in-
terface, several projects have focused on human-
human interactions such as meetings (S.Renals et

al., 2007) and free conversations (K.Otsuka et al.,
2008; C.Oertel et al., 2011), toward ambient systems
supervising the human communications.

We have been conducting a project which focuses
on conversations in poster sessions, hereafter re-
ferred to as poster conversations. Poster sessions
have become a norm in many academic conventions
and open laboratories because of the flexible and in-
teractive characteristics. Poster conversations have
a mixture characteristics of lectures and meetings;
typically a presenter explains his/her work to a small
audience using a poster, and the audience gives feed-
back in real time by nodding and verbal backchan-
nels, and occasionally makes questions and com-
ments. Conversations are interactive and also multi-
modal because people are standing and moving un-
like in meetings. Another good point of poster con-
versations is that we can easily make a setting for
data collection, which is controlled in terms of fa-
miliarity with topics or other participants and yet is
“natural and real”.

The goal of the project is signal-level sensing
and high-level “understanding” of human interac-
tions, including speaker diarization and annotation
of comprehension and interest level of the audience.
These will realize a new indexing scheme of speech
archives. For example, after a long session of poster
presentation, we often want to get a short review of
the question-answers and what looked difficult for
audience to follow. The research will also provide
a model of intelligent conversational agents that can
make autonomous presentation.

As opposed to the conventional content-based in-
dexing approach which focuses on the presenter’s
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Figure 1: Overview of multi-modal interaction analysis

speech by conducting speech recognition and nat-
ural language analysis, we adopt an interaction-
oriented approach which looks into the audience’s
reaction. Specifically we focus on non-linguistic in-
formation such as backchannel, nodding and eye-
gaze information, because we assume the audience
better understands the key points of the presentation
than the current machines. An overview of the pro-
posed scheme is depicted in Figure 1.

Therefore, we set up an infrastructure for multi-
modal sensing and analysis of multi-party interac-
tions. Its process overview is shown in Figure 2.
From the audio channel, we detect utterances as
well as laughters and backchannels. We also de-
tect eye-gaze, nodding, and pointing information.
Special devices such as a motion-capturing system
and eye-tracking recorders are used to make a “gold-
standard” corpus, but only video cameras and distant
microphones will be used in the practical system.

Our goal is then annotation of comprehension and
interest level of the audience by combining these in-
formation sources. This annotation will be useful
in speech archives because people would be inter-
ested in listening to the points other people were
interested in. Since this is apparently difficult to
be well-defined, however, we set up several mile-
stones that can be formulated in objective manners
and presumably related with the above-mentioned
goal. They are introduced in this article after de-
scription of the sensing environment and the col-
lected corpus in Section 2. In Section 3, annota-
tion of interest level is addressed through detection
of laughters and non-lexical kinds of backchannels,
referred to as reactive tokens. In Section 4 and 5,
eye-gaze and nodding information is incorporated
to predict when and who in the audience will ask
questions, and also what kind of questions. With

Figure 2: Flow of multi-modal sensing and analysis

these analyses, we expect that we can get clues to
high-level “understanding” of the conversations, for
example, whether the presentation is understood or
liked by the audience.

2 Multi-modal Corpus of Poster
Conversations

2.1 Recording Environment

We have designed a special environment (“IMADE
Room”) to record audio, video, human mo-
tion, and eye-gaze information in poster conversa-
tions (T.Kawahara et al., 2008). An array of micro-
phones (8 to 19) has been designed to be mounted on
top of the posterboard, while each participant used
a wireless head-set microphone for recording voice
for the “gold-standard” corpus annotation. A set of
cameras (6 or 8) has also been designed to cover all
participants and the poster, while a motion captur-
ing system was used for the “gold-standard” annota-
tion. Each participant was equipped with a dozen of
motion-capturing markers as well as an eye-tracking
recorder and an accelerometer, but all devices are
attached with a cap or stored in a compact belt bag,
so they can be naturally engaged in the conversation.
An outlook of session recording is given in Figure 3.

2.2 Corpus Collection and Annotation

We have recorded a number of poster conversations
(31 in total) using this environment, but for some of
them, failed to collect all sensor data accurately. In
the analyses of the following sections, we use four
poster sessions, in which the presenters and audi-
ences are different from each other. They are all
in Japanese, although we recently recorded sessions
in English as well. In each session, one presenter
(labeled as “A”) prepared a poster on his/her own
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Figure 3: Outlook of poster session recording

academic research, and there was an audience of
two persons (labeled as “B” and “C”), standing in
front of the poster and listening to the presentation.
They were not familiar with the presenter and had
not heard the presentation before. The duration of
each session was 20-30 minutes.

All speech data, collected via the head-set mi-
crophones, were segmented into IPUs (Inter-Pausal
Unit) with time and speaker labels, and transcribed
according to the guideline of the Corpus of Sponta-
neous Japanese (CSJ) (K.Maekawa, 2003). We also
manually annotated fillers, verbal backchannels and
laughters.

Eye-gaze information is derived from the eye-
tracking recorder and the motion capturing system
by matching the gaze vector against the position of
the other participants and the poster. Noddings are
automatically detected with the accelerometer at-
tached with the cap.

3 Detection of Interesting Level with
Reactive Tokens of Audience

We hypothesize that the audience signals their in-
terest level with their feedback behaviors. Specif-
ically, we focus on the audience’s reactive tokens
and laughters. By reactive tokens (Aizuchi in
Japanese), we mean the listener’s verbal short re-
sponse, which expresses his/her state of the mind
during the conversation. The prototypical lexical en-
tries of backchannels include “hai” in Japanese and
“yeah” or “okay” in English, but many of them are

non-lexical and used only for reactive tokens, such
as “hu:n”, “he:” in Japanese and “wow”, “uh-huh”
in English. We focus on the latter kind of reactive
tokens, which are not used for simple acknowledg-
ment.

We also investigate detection of laughters and its
relationship with interesting level. The detection
method and performance were reported in (K.Sumi
et al., 2009).

3.1 Relationship between Prosodic Patterns of
Reactive Tokens and Interest Level

In this subsection, we hypothesize that the audience
expresses their interest with specific syllabic and
prosodic patterns. Generally, prosodic features play
an important role in conveying para-linguistic and
non-verbal information. In previous works (F.Yang
et al., 2008; A.Gravano et al., 2007), it was re-
ported that prosodic features are useful in identi-
fying backchannels. Ward (N.Ward, 2004) made
an analysis of pragmatic functions conveyed by the
prosodic features in English non-lexical tokens.

In this study, we designed an experiment to iden-
tify the syllabic and prosodic patterns closely related
with interest level. For this investigation, we select
three syllabic patterns of “hu:N”, “he:” and “a:”,
which are presumably related with interest level and
also most frequently observed in the corpus, except
lexical tokens.

We computed following prosodic features for
each reactive token: duration, F0 (maximum and
range) and power (maximum). The prosodic fea-
tures are normalized for every person; for each fea-
ture, we compute the mean, and this mean is sub-
tracted from the feature values.

For each syllabic kind of reactive token and for
each prosodic feature, we picked up top-ten and
bottom-ten samples, i.e. samples that have the
largest/smallest values of the prosodic feature. For
each of them, an audio segment was extracted to
cover the reactive token and its preceding utterances.
Then, we had five subjects to listen to the audio seg-
ments and evaluate the audience’s state of the mind.
We prepared twelve items to be evaluated in a scale
of four (“strongly feel” to “do not feel”), among
which two items are related to interest level and
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Table 1: Significant combinations of syllabic and
prosodic patterns of reactive tokens

interest surprise
hu:N duration * *

F0 max
F0 range

power
he: duration * *

F0 max * *
F0 range *

power * *
a: duration

F0 max *
F0 range

power *

other two items are related to surprise level 1. Ta-
ble 1 lists the results (marked by ”*”) that have a sta-
tistically significant (p < 0.05) difference between
top-ten and bottom-ten samples. It is observed that
prolonged “hu:N” means interest and surprise while
“a:” with higher pitch or larger power means inter-
est. On the other hand, “he:” can be emphasized in
all prosodic features to express interest and surprise.

The tokens with larger power and/or a longer du-
ration is apparently easier to detect than indistinct
tokens, and they are more related with interest level.
It is expected that this rather simple prosodic infor-
mation is useful for indexing poster conversations.

3.2 Third-party Evaluation of Hot Spots

In this subsection, we define those segments which
induced (or elicited) laughters or non-lexical reac-
tive tokens as hot spots, 2 and investigate whether
these hot spots are really funny or interesting to the
third-party viewers of the poster session.

We had four subjects, who had not attended the
presentation nor listened the recorded audio content.
They were asked to listen to each of the segmented
hot spots in the original time sequence, and to make
evaluations on the questionnaire, as below.

1We used different Japanese wording for interest and for sur-
prise to enhance the reliability of the evaluation; we adopt the
result if the two matches.

2Wrede et al.(B.Wrede and E.Shriberg, 2003; D.Gatica-
Perez et al., 2005) defined “hot spots” as the regions where two
or more participants are highly involved in a meeting. Our def-
inition is different from it.

Q1: Do you understand the reason why the reactive
token/laughter occurred?

Q2: Do you find this segment interesting/funny?
Q3: Do you think this segment is necessary or use-

ful for listening to the content?

The percentage of “yes” on Question 1 was 89%
for laughters and 95% for reactive tokens, confirm-
ing that a large majority of the hot spots are appro-
priate.

The answers to Questions 2 and 3 are more sub-
jective, but suggest the usefulness of the hot spots.
It turned out that only a half of the spots associated
with laughters are funny for the subjects (Q2), and
they found 35% of the spots not funny. The result
suggests that feeling funny largely depends on the
person. And we should note that there are not many
funny parts in poster sessions by nature.

On the other hand, more than 90% of the spots
associated with reactive tokens are interesting (Q2),
and useful or necessary (Q3) for the subjects. The
result supports the effectiveness of the hot spots ex-
tracted based on the reaction of the audience.

4 Prediction of Turn-taking with Eye-gaze
and Backchannel Information

Turn-taking is an elaborate process especially in
multi-party conversations. Predicting whom the turn
is yielded to or who will take the turn is significant
for an intelligent conversational agent handling mul-
tiple partners (D.Bohus and E.Horvitz, 2009; S.Fujie
et al., 2009) as well as an automated system to beam-
form microphones or zoom in cameras on the speak-
ers. There are a number of previous studies on turn-
taking behaviors in dialogue, but studies on com-
putational modeling to predict turn-taking in multi-
party interactions are very limited (K.Laskowski et
al., 2011; K.Jokinen et al., 2011). Conversations
in poster sessions are different from those in meet-
ings and free conversations addressed in the previ-
ous works, in that presenters hold most of turns and
thus the amount of utterances is very unbalanced.
However, the segments of audiences’ questions and
comments are more informative and should not be
missed. Therefore, we focus on prediction of turn-
taking by the audience in poster conversations, and,
if that happens, which person in the audience will
take the turn to speak.
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Table 2: Duration (sec.) of eye-gaze and its relationship
with turn-taking

turn held by turn taken by
presenter A B C

A gazed at B 0.220 0.589 0.299
A gazed at C 0.387 0.391 0.791
B gazed at A 0.161 0.205 0.078
C gazed at A 0.308 0.215 0.355

We also presume that turn-taking by the audience
is related with their interest level because they want
to know more and better when they are more at-
tracted to the presentation.

It is widely-known that eye-gaze information
plays a significant role in turn-taking (A.Kendon,
1967; B.Xiao et al., 2011; K.Jokinen et al., 2011;
D.Bohus and E.Horvitz, 2009). The existence of
posters, however, requires different modeling in
poster conversations as the eye-gaze of the partici-
pants are focused on the posters in most of the time.
This is true to other kinds of interactions using some
materials such as maps and computers. Moreover,
we investigate the use of backchannel information
by the audience during the presenter’s utterances.

4.1 Relationship between Eye-gaze and
Turn-taking

We identify the object of the eye-gaze of all partic-
ipants at the end of the presenter’s utterances. The
target object can be either the poster or other partic-
ipants. Then, we measure the duration of the eye-
gaze within the segment of 2.5 seconds before the
end of the presenter’s utterances because the major-
ity of the IPUs are less than 2.5 seconds. It is listed
in Table 2 in relation with the turn-taking events. We
can see the presenter gazed at the person right before
yielding the turn to him/her significantly longer than
other cases. However, there is no significant differ-
ence in the duration of the eye-gaze by the audience
according to the turn-taking events.

4.2 Relationship between Joint Eye-gaze
Events and Turn-taking

Next, we define joint eye-gaze events by the presen-
ter and the audience as shown in Table 3. In this
table, we use notation of “audience”, but actually
these events are defined for each person in the audi-

Table 3: Definition of joint eye-gaze events by presenter
and audience

who presenter
gazes at audience poster

(I) (P)
audience presenter (i) Ii Pi

poster (p) Ip Pp

Table 4: Statistics of joint eye-gaze events by presenter
and audience in relation with turn-taking

#turn held #turn taken total
by presenter by audience

(self) (other)
Ii 125 17 3 145
Ip 320 71 26 417
Pi 190 11 9 210
Pp 2974 147 145 3266

ence. Thus, “Ii” means the mutual gaze by the pre-
senter and a particular person in the audience, and
“Pp” means the joint attention to the poster object.

Statistics of these events at the end of the presen-
ter’s utterances are summarized in Table 4. Here,
the counts of the events are summed over the two
persons in the audience. They are classified accord-
ing to the turn-taking events, and turn-taking by the
audience is classified into two cases: the person in-
volved in the eye-gaze event actually took the turn
(self), and the other person took the turn (other).
The mutual gaze (“Ii”) is expected to be related with
turn-taking, but its frequency is not so high. The
frequency of “Pi” is not high, either. The most po-
tentially useful event is “Ip”, in which the presenter
gazes at the person in the audience before giving the
turn. This is consistent with the observation in the
previous subsection.

4.3 Relationship between Backchannels and
Turn-taking

As shown in Section 3, verbal backchannels suggest
the listener’s interest level. Nodding is regarded as
a non-verbal backchannel, and it is more frequently
observed in poster conversations than in simple spo-
ken dialogues.

The occurrence frequencies of these events are
counted within the segment of 2.5 seconds before
the end of the presenter’s utterances. They are
shown in Figure 4 according to the joint eye-gaze
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Figure 4: Statistics of backchannels and their relationship
with turn-taking

events. It is observed that the person in the audi-
ence who takes the turn (=turn-taker) made more
backchannels both in verbal and non-verbal man-
ners, and the tendency is more apparent in the par-
ticular eye-gaze events of “Ii” and “Ip” which are
closely related with the turn-taking events.

4.4 Prediction of Turn-taking by Audience

Based on the analyses in the previous subsections,
we conduct an experiment to predict turn-taking by
the audience. The prediction task is divided into two
sub-tasks: detection of speaker change and identifi-
cation of the next speaker. In the first sub-task, we
predict whether the turn is given from the presen-
ter to someone in the audience, and if that happens,
then we predict who in the audience takes the turn
in the second sub-task. Note that these predictions
are done at every end-point of the presenter’s utter-
ance (IPU) using the information prior to the speaker
change or the utterance by the new speaker.

For the first sub-task of speaker change predic-
tion, prosodic features are adopted as a baseline.
Specifically, we compute F0 (mean, max, min, and
range) and power (mean and max) of the presenter’s
utterance prior to the prediction point. Backchan-
nel features are defined by taking occurrence counts
prior to the prediction point for each type (verbal
backchannel and non-verbal nodding). Eye-gaze
features are defined in terms of eye-gaze objects
and joint eye-gaze events, as described in previous
subsections, and are parameterized with occurrence
counts and duration. These parameterizations, how-
ever, show no significant difference nor synergetic

Table 5: Prediction result of speaker change

feature recall precision F-measure
prosody 0.667 0.178 0.280

backchannel (BC) 0.459 0.113 0.179
eye-gaze (gaze) 0.461 0.216 0.290

prosody+BC 0.668 0.165 0.263
prosody+gaze 0.706 0.209 0.319

prosody+BC+gaze 0.678 0.189 0.294

effect in terms of prediction performance.

SVM is adopted to predict whether speaker
change happens or not by using these features. The
result is summarized in Table 5. Here, we compute
recall, precision and F-measure for speaker change,
or turn-taking by the audience. This case accounts
for only 11.9% and its prediction is very challeng-
ing, while we can easily get an accuracy of over 90%
for prediction of turn-holding by the presenter. We
are particularly concerned on the recall of speaker
change, considering the nature of the task and appli-
cation scenarios.

Among the individual features, the prosodic fea-
tures obtain the best recall while the eye-gaze fea-
tures achieve the best precision and F-measure.
Combination of these two is effective in improving
both recall and precision. On the other hand, the
backchannel features get the lowest performance,
and its combination with the other features is not ef-
fective, resulting in degradation of the performance.

Next, we conduct the second sub-task of speaker
prediction. Predicting the next speaker in a multi-
party conversation (before he/she actually speaks) is
also challenging, and has not been addressed in the
previous work (K.Jokinen et al., 2011). For this sub-
task, the prosodic features of the current speaker are
not usable because it does not have information sug-
gesting who the turn will be yielded to. Therefore,
we adopt the backchannel features and eye-gaze fea-
tures. Note that these features are computed for in-
dividual persons in the audience, instead of taking
the maximum or selecting among them.

The result is summarized in Table 6. In this exper-
iment, the backchannel features have some effect,
and by combining them with the eye-gaze features,
the accuracy reaches almost 70%.
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Table 6: Prediction result of the next speaker

feature accuracy
eye-gaze (gaze) 66.4%

backchannel (BC) 52.6%
gaze+BC 69.7%

5 Relationship between Feedback
Behaviors and Question Type

Next, we investigate the relationship between feed-
back behaviors of the audience and the kind of ques-
tions they ask after they take a turn. In this work,
questions are classified into confirming questions
and substantive questions. The confirming questions
are asked to make sure of the understanding of the
current explanation, thus they can be answered sim-
ply by “Yes” or “No”.3 The substantive questions,
on the other hand, are asking about what was not
explained by the presenter, thus they cannot be an-
swered by “Yes” or “No” only; an additional expla-
nation is needed.

This annotation together with the preceding ex-
planation segment is not so straightforward when the
conversation got into the QA phase after the presen-
ter went through an entire poster presentation. Thus,
we exclude the QA phase and focus on the questions
asked during the explanation phase. In this section,
we analyze the behaviors during the explanation seg-
ment that precedes the question by merging all con-
secutive IPUs of the presenter. This is a reasonable
assumption once turn-taking is predicted in the pre-
vious section. These are major differences from the
analysis of the previous section.

5.1 Relationship between Backchannels and
Question Type

The occurrence frequencies of verbal backchannels
and non-verbal noddings, normalized by the dura-
tion of the explanation segment (seconds), are listed
according to the question type in Tables 7 and 8.
In these tables, statistics of the person who actu-
ally asked questions are compared with those of the
person who did not. We can observe the turn-taker
made significantly more verbal backchannels when
asking substantive questions. On the other hand,

3This does not mean the presenter actually answered simply
by “Yes” or “No”.

Table 7: Frequencies (per sec.) of verbal backchannels
and their relationship with question type

confirming substantive
turn-taker 0.034 0.063

non-turn-taker 0.041 0.038

Table 8: Frequencies (per sec.) of non-verbal noddings
and their relationship with question type

confirming substantive
turn-taker 0.111 0.127

non-turn-taker 0.109 0.132

Table 9: Duration (ratio) of joint eye-gaze events and
their relationship with question type

confirming substantive
Ii 0.053 0.015
Ip 0.116 0.081
Pi 0.060 0.035
Pp 0.657 0.818

there is no significant difference in the frequency of
non-verbal noddings among the audience and among
the question types.

5.2 Relationship between Eye-gaze Events and
Question Type

We also investigate the relationship between eye-
gaze events and the question type. Among several
parameterizations introduced in the previous sec-
tion, we observe a significant tendency in the du-
ration of the joint eye-gaze events, which is normal-
ized by the duration of the presenter’s explanation
segment. It is summarized in Table 9. We can see
the increase of “Ip” (and decrease of “Pp” accord-
ingly) in confirming questions. By combining with
the analysis in the previous section, we can reason
the majority of turn-taking signaled by the presen-
ter’s gazing is attributed to confirmation.

6 Smart Posterboard

We have designed and implemented a smart poster-
board, which can record a poster session, sense hu-
man behaviors and annotate interactions. Since it
is not practical to ask every participant to wear spe-
cial devices such as a head-set microphone and an
eye-tracking recorder and also to set up any devices
attached to a room, all sensing devices are attached
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Figure 5: Outlook of smart posterboard

to the posterboard, which is actually a 65-inch LCD
display. An outlook of the posterboard is given in
Figure 5.

It is equipped with a 19-channel microphone array
on the top, and attached with six cameras and two
Kinect sensors. Speech separation and enhancement
has been realized with Blind Spatial Subtraction Ar-
ray (BSSA), which consists of the delay-and-sum
(DS) beamformer and a noise estimator based on in-
dependent component analysis (ICA) (Y.Takahashi
et al., 2009). In this step, the audio input is separated
to the presenter and the audience, but discrimination
among the audience is not done. Visual information
should be combined to annotate persons in the au-
dience. Voice activity detection (VAD) is conducted
on each of the two channels to make speaker diariza-
tion. Localization of the persons in the audience and
estimation of their head direction, which approxi-
mates their eye-gaze, are conducted using the video
information captured by the six cameras.

Although high-level annotations addressed in the
previous sections have not been yet implemented in
the current system, the above-mentioned processing
realizes a browser of poster sessions which visual-
izes the interaction.

The Kinect sensors are used for a portable and on-
line version, in which speech enhancement, speaker
localization and head direction estimation are per-
formed in real time.

We made a demonstration of the system in IEEE-
ICASSP 2012 as shown in Figure 5, and plan further
improvements and trials in the future.

7 Conclusions

This article has given an overview of our multi-
modal data collection and analysis of poster conver-
sations. Poster conversations provide us with a num-
ber of interesting topics in spoken dialogue research
as they are essentially multi-modal and multi-party.
By focusing on the audience’s feedback behaviors
and joint eye-gaze events, it is suggested that we can
annotate interest level of the audience and hot spots
in the session.

Nowadays, presentation using a poster is one of
the common and important activities in academic
and business communities. As large LCD displays
become ubiquitous, its style will be more interac-
tive. Accordingly, sensing and archiving functions
introduced in the smart posterboard will be useful.
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Abstract

We present and evaluate two state-of-the art
dialogue systems developed to support dialog
with French speaking virtual characters in the
context of a serious game: one hybrid statis-
tical/symbolic and one purely statistical. We
conducted a quantitative evaluation where we
compare the accuracy of the interpreter and
of the dialog manager used by each system; a
user based evaluation based on 22 subjects us-
ing both the statistical and the hybrid system;
and a corpus based evaluation where we exam-
ine such criteria as dialog coherence, dialog
success, interpretation and generation errors in
the corpus of Human-System interactions col-
lected during the user-based evaluation. We
show that although the statistical approach is
slightly more robust, the hybrid strategy seems
to be better at guiding the player through the
game.

1 Introduction

In recent years, there has been much research on cre-
ating situated conversational characters i.e., virtual
characters (VCs) that look and act like humans but
inhabit a virtual environment (Gratch et al., 2002;
Hofs et al., 2010; Traum et al., 2007; Johnson et al.,
2005; Traum et al., 2008; DeVault et al., 2011).

In this paper, we focus on French speaking, situ-
ated conversational agents who interact with virtual
characters in the context of a serious game designed
to promote careers in the plastic industry (The Mis-
sion Plastechnologie game or MP). We present and
compare two state-of-the art dialogue systems. The

first system (H) is a hybrid approach that com-
bines an information-state dialogue manager (Lars-
son and Traum, 2000) with a classifier for interpret-
ing the players’ phrases. The second system (QA)
is a question/answering character model which pre-
dicts the system dialog move given a player’s ut-
terance (Leuski and Traum, 2008). Both systems
use a generation-by-selection strategy (Leuski et al.,
2006; Gandhe and Traum, 2007) where the system’s
utterances are selected from a corpus of possible
outputs based on the dialog manager output. While
previous work focuses on relatively short dialogs in
a static setting, in our systems we consider long in-
teractions in which dialogs occur in a setting that
dynamically evolves as the game unfolds.

We evaluate the two dialog systems in the con-
text of the 3D game they were developed for and
seek to determine the degree to which a dialog sys-
tem is operational. To answer this question, we anal-
yse both systems with respect not only to quantita-
tive metrics such as accuracy but also to user- and
corpus-based metrics. User-based metrics are com-
puted based on a questionnaire the users filled in;
while corpus-based metrics are manually extracted
from the corpus of Player-VC interactions collected
during the user-based evaluation. As suggested by
evaluation frameworks such as PARADISE (Walker
et al., 1997) and SASSI (Hone and Graham, 2000),
we show that a multiview evaluation permits a better
assessment of how well the dialog system functions
“in the real world”. The metrics proposed assess di-
alog success and coherence, as well the costs of dia-
log components.

The paper is organized as follows. In Section 2,
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we present the MP game, the dialogue strategies
used in the different dialogs and the dialog data used
for training. Section 3 presents the two dialog sys-
tems we compare. Section 4 presents the evaluation
schemes used to compare these two systems and dis-
cusses the results obtained. Section 5 concludes with
directions for further research.

2 Dialogues in the MP Game

We begin by describing the MP game, the dialogs in
the MP game, the strategies used to guide the hybrid
dialog manager and the data used for training.

2.1 The MP Game and Dialogs
The MP game is a multi-player quest where 3
teenagers seek to build a joystick in order to free
their uncle trapped in a video game 1. To build
this joystick, the player (who alternatively repre-
sents anyone of these three teenagers) must explore
the plastic factory and achieve 17 mandatory goals
(find the plans, get the appropriate mould, retrieve
some plastic from the storing shed, etc), as well
as 11 optional goals which, when reached, provide
them with extra information about the plastic indus-
try (and therefore increases their knowledge of it).

In total, the player can achieve up to 28 game
goals by conducting 12 separate dialogs in various
parts of the virtual world. Each of the 12 dialogs
in the MP game helps players to achieve the game
goals. The player interacts with the virtual charac-
ters to obtain information that helps her to achieve
these goals and, as a consequence, to increase her
score in the game. Table 1 summarises the game
goals and the contextual parameters (player’s role,
location in the virtual world, VCs present) associ-
ated with each dialog.

2.2 Dialog Data and Annotation

To train both classifiers, the one used by the hybrid
and the one used by the QA system, we collected
Human-Machine dialog data using a Wizard-of-Oz
setting and manually annotated each turn with a di-
alog move. The resulting corpus (called Emospeech
Corpus) and the annotation scheme (as well as the
inter-annotator agreement) used are described in de-

1The MP game was created by Artefacto, http://www.
artefacto.fr/index_ok.htm

tail (Rojas-Barahona et al., 2012). Briefly, the Emo-
speech Corpus comprises 1249 dialogs, 10454 utter-
ances and 168509 words. It contains 3609 player ut-
terances consisting of 31613 word tokens and 2969
word types, with approximately 100 conversations
for each dialog in the game. Turns were annotated
with dialog moves (Traum and Larsson, 2003) cap-
turing both domain knowledge (e.g., about the goals
set by the game) and the set of core communicative
acts.

2.3 Dialog Strategies

We identified four main dialog strategies underlying
the 12 MP dialogs and used these to define the plans
guiding the rule-based discourse management in the
hybrid system. These strategies can be seen as trans-
actions made up of conversational games (Carletta et
al., 1997).

Strategy 1. This strategy is used in the first di-
alog only and consists of a single Address Request
move by the VC followed by the player’s answer:
Lucas requests Ben to find the address of the Plas-
tic Enterprise that must be hidden somewhere in the
lab. Ben can accept, reject or ask for help. Lucas
answers accordingly and ends the conversation.

Strategy 2. Nine dialogues follow this strategy.
They include several (up to 5) requests for infor-
mation and the corresponding system/player’s ex-
change. Appendix A shows an example dialog fol-
lowing this strategy.

Strategy 3: This is a confirmation strategy where
the VC first checks that the player has already
achieved a given task, before informing her about
the next step (e.g. dialogs with Melissa in Table 1).

Strategy 4. This strategy, exemplified in Ap-
pendix B, is similar to strategy 2 but additionally
includes a negotiation step where the VC asks the
player for help.

3 Dialogue Systems

The game and the two dialog systems built were in-
tegrated as agents within the Open Agent Architec-
ture as shown in Figure 1. Both systems access a
database for starting the appropriate dialogs at the
appropriate place in the virtual world while simulta-
neously storing all interactions in the database.
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Id VC Player Goals Location

1 Lucas Ben Find the address of the enterprise. Uncle’s place.

2 M.Jasper Lucas The manufacturing first step Enterprise reception

3 Samir Julie Find the plans of the joystick Designing Office
Optional: job, staff, studies, security policies

4 Samir Julie Find out what to do next Designing Office
Optional: jobs in the enterprise, staff in the enterprise

5 Melissa Lucas Find the mould, optional where are the moulds Plant

6 Melissa Lucas Find the right machine Plant

7 Melissa Lucas Confirm you have found the right mould and machine and Plant
find out what to do next

8 Operator Julie Knowing about the material space and about the job Material Space
Optional: find out what to do in the case of failure
helping to feed a machine with the right material

9 Serge Ben Perform quality tests. Laboratory Tests
Optional: VC’s job

10 Serge Ben Find out what to do next. Laboratory Tests
Optional: know what happens with broken items

11 Sophia Julie Find the electronic components, knowing about VC’s job Finishing

12 Sophia Lucas Finishing process Finishing
Optional: know about conditioning the product

Table 1: Description of the 12 dialogs in the MP Game.

Figure 1: General Architecture for the dialog system:
modules are implemented as agents within the Open
Agent Architecture.

3.1 The Hybrid Dialogue System

The hybrid system combines an interpreter; a rule
based, Information State Approach dialog manager;
a generator; and the game/dialog communication
components i.e., the OAA interface.

The Interpreter Module In the hybrid system,
the interpreter is a classifier trained on the anno-
tated data (cf. section 2.2), which maps the player’s
utterance to a dialog move. To build the classi-
fier we experimented with both SVM (Support Vec-

tor Machine) and LR (Logistic Regression) 2 us-
ing different sets of features: utterances were pre-
processed by removing stop words and converting
content words to unaccented lowercase. Afterwards,
we experiment with and without TF*IDF (term fre-
quency*Inverse Document Frequency) filtering and
context moves (from 0 to 4 previous dialog moves).

Since the game consist of a number of different
dialogs, two options naturally arise: we could either
train a single classifier on the whole dataset or train
one classifier per dialog. Hence the data sets (and the
number of categories to be learned) differ depending
on whether we trained one classifier on the whole
game data or a classifier for each dialog.

In addition, hand-written rules are used to correct
misclassification errors as follows. The best predic-
tion given by the classifier is matched against the
expected move determined by the last move stored
in the information-state (see below the description
of the dialog manager). In case of a mismatch, the
interpreter selects a move that is valid in the current
context and updates the information state with this
move. For instance, if the last move is a yes/no ques-
tion, confirm and disconfirm dialog acts are valid
moves; for propositional questions, Goali is a valid

2We used LIBSVM (Chang and Lin, 2001) and MALLET
(McCallum, 2002) for the LR classifier with L1 Regularisation.
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dialog move 3; etc. Since the process is non deter-
ministic, this re-interpretation process may improve
the system response but it may also be incorrect. For
instance, in the following example re-interpretation
correctly overrides the dialog move output by the
classifier to a move asking the VC (Samir) for the
next goal to be achieved.
Samir: Vous avez d’autres questions pour moi?

Do you have other questions ?

Julie: comment cela fonctionne ?

How does it work?

Samir: Eh bien , il va falloir la fabriquer maintenant cette

manette . Allez voir Mélissa.

Well, you have to build the joystick now. Go to see Melissa.

In contrast, the dialog below shows a case where
re-interpretation fails. Instead of re-interpreting the
player’s (Julie) input as a request for the next goal,
it outputs a request for information about the staff
thereby yielding an incoherent exchange.
Samir: D’ autres questions ?

Other questions?

Julie: oui qu’est-ce que je peux faire avec ces bouts de papier ?

yes, what can I do with these pieces of paper ?

Samir: Et bien sachez qu’il y a de plus en plus des femmes dans

cette industrie ...

you should know there are more and more women in this indus-

try ...

The Dialog Manager We designed a plan for each
dialog strategy and extended Midiki (Burke et al.,
2003) to support the OAA architecture and access
the relational database specifying the configurations
of the different dialogs in the game. Each time a new
dialog is launched, the information state is loaded
with the corresponding dialog-context (e.g., speak-
ers, list of goals to be discussed) and the plan mod-
eling the corresponding dialog strategy. To support
dialog management, we implemented a set of update
and selection rules for integrating players’ moves,
handling the information-state and for preparing the
agenda according to the plan. More specifically, the
following rules are executed at runtime: Integration:
integrates dialog moves (e.g., questions, answers,
acknowledgments) in the information state (ques-
tions are listed in the Question Under Discussion,

3The system asks the player for the goal to be discussed:
ask(task(X)) and the player answers one goal in the situated
dialog: Goali.

answers change the Commond Ground, player an-
swers are integrated in response to VCs questions).
Manage Plan: searches the next action in the plan.
Refill Agenda: updates the agenda with the next ac-
tion and Selection: selects the next dialog move ac-
cording to the plan. Once the system move has been
selected, the Generator searches an appropriate ver-
balisation.

The Generator As mentioned above, the gener-
ator implements a generation-by-selection strategy.
Given the dialog move output by the dialog man-
ager, the generator selects any utterance in this cor-
pus that is labeled with this dialog move and with
the identifier of the current dialog.

In addition, two types of dialog moves are
given special treatment. The first two moves of
each dialog are systematically constrained to be
a welcome greeting followed by either a request
to pursue a goal (ask(Goali) or a proposal
to help (ask(task(X))). Furthermore, proposi-
tional questions (i.e., proposals by the system to
discuss additional topics) were annotated separately
with their respective dialog goals. For example,
Samir’s sentence: Are you interested in hearing
about my job, the people that work here or the se-
curity policies?, was annotated with the goals: job,
staff and security policies. For these dialog acts, the
generator checks the list of current missing goals so
as to retrieve an appropriate propositional question.
In this way, the system can coherently direct the
player by suggesting possible topics without using
vague and repetitive sentences such as Would you
like to know more?.

3.2 The QA System

The QA system combines a classifier that matches
players’ turns to system dialog moves with the same
generation-by-selection algorithm used in the hybrid
system. Like the hybrid system, the QA dialog sys-
tem maintains a constant interaction with the game
to allow for the game coherence and continuity. In
particular, at the end of each dialog, the game goals
that have been reached through the dialog are re-
turned to the game server so that the game can pro-
ceed and be updated with the appropriate score.

For the QA system, we trained a Logistic Re-
gression (LR) classifier for each dialog in the game.
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We applied the same preprocessing and extracted the
same features used for training the interpreter in the
hybrid system.

3.3 Discussion and Interaction Examples

As shown above, while the QA system simply
matches the player’s input to a system response, the
hybrid system has a much more elaborate dialog
management policy including re-interpretation and
the use of game and dialog history information,
to guide the dialog. As a result, the QA dialogs
are generally more spontaneous, giving the player
more initiative whereas the hybrid system enforces
a more System-Driven dialog strategy thereby guid-
ing the player through the game. The following two
examples illustrate this point. Sophia is the system
and Lucas the player. The game context provides
two goals which can be discussed: one mandatory
(To find out that finishing the manufacturing process
involves conditioning the product), and one optional
(To be told what conditioning the product means).
The examples show how the hybrid system proposes
both goals to the user while the QA engine provides
the same information fluently.

Hybrid system
Sophia: Vous avez fait du bon travail les enfants!

You did a great job kids!

Sophia: Bien. Que puis-je faire pour vous ?

What can I do for you?

Lucas: J’ai fini la manette

I’ve finished the joystick

Sophia: Normalement j’ai encore quelques étapes à réaliser

avant l’envoi au client. Vous voulez en savoir plus ?

Normally I still have to condition the product. Do you want to

know more about conditioning a product?

Lucas: Oui

Yes, ok

Sophia: Conditionner le produit veut dire l’emballer soigneuse-

ment pour pouvoir l’expédier au client. Aldo, le logisticien as-

sure qu’on ne manque pas de stock et de gérer les livraisons et

les expéditions.

Conditioning the product means packing it carefully in order to

ship it to the customer. Aldo,the logistics coordinator ensures

there is no shortage of stock and he is also in charge of the de-

liveries and shipments.

Sophia: Je vous laisse tester votre manette . Au revoir

I leave you test out your joystick. Goodbye

Question Answer
Sophia: hé bien c’est du bon travail tout ça.

Good! That’s a great job kids!

Sophia: Alors , où en sommes nous?

So where are we?

Lucas:voilà nous avons utilisé les composants. Quelle est

l’étape suivante?

We used the components, what is the next step?

Sophia: On finis la fabrication par conditionner le produit.

We finish the fabrication by conditioning the product.

Lucas:Ok

Sophia: Conditioner le produit veut dire l’emballer soigneuse-

ment pour pouvoir l’expédier au client . Le logisticien assure

qu’on ne manque pas de stock et de gérer les livraisons et les

expéditions.

Conditioning the product means packing it carefully in order to

ship it to the customer. Aldo,the logistics coordinator ensures

there is no shortage of stock and he is also in charge of the de-

liveries and shipments.

Sophia: Et voila, je vous dis au revoir

Ok, I say good bye!

4 Evaluation

In evaluating the two systems, we seek to compare
their usability: Which system is best suited for use
by real users in the context of the MP serious game?
We also seek to better understand which module
causes which errors and why. To address these ques-
tions we conducted a quantitative evaluation where
we compare the accuracy of the interpreter and the
dialog manager integrated in each system; a user
based evaluation involving 22 subjects using both
the QA and the hybrid system; and a corpus based
evaluation where we examine such criteria as dialog
coherence, dialog success, interpretation and gener-
ation errors in the corpus of Human-System interac-
tions collected during the user-based evaluation.

4.1 Quantitative Evaluation

We begin by evaluating the accuracy of the inter-
preter and the dialog manager used by the hybrid and
the QA system respectively. These two classifiers
were trained on the Emospeech corpus mentioned
above and evaluated with 30-fold cross-validation.

Hybrid System As we mentioned in section 3.1,
since the game includes different dialogs, a natu-
ral question arise: whether to implement the inter-
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preter with a single classifier for the whole dataset,
or using a different classifier for each dialog in the
game. To answer this question, we compared the
accuracy reached in each case. The details of these
experiments are described in (Rojas-Barahona et al.,
2012). The highest accuracy is reported when using
a single classifier for the whole game, reaching an
accuracy of 90.26%, as opposed to 88.22% in aver-
age for each dialog. In both cases, the classifier used
is LR, with L1 regularisation and applying the tf*idf
filtering. However, although the classifier trained on
the whole dialog data has better accuracy (learning
a model per dialog often run into the sparse data is-
sue), we observed that, in practice, it often predicted
interpretations that were unrelated to the current di-
alog thereby introducing incoherent responses in di-
alogs. For instance, in the dialog below, the player
wants to know how waste is managed in the fac-
tory. The best prediction given by the interpreter is a
goal related to another dialog thereby creating a mis-
match with the DM expectations. Re-interpretation
then fails producing a system response that informs
the player of the next goal to be pursued in the game
instead of answering the player’s request.
Ben: Comment on gère les dechets ici?

How is the waste managed here ?

Serge: Allez voir Sophia pour qu’elle vous fournisse les com-

posants électroniques nécessaires à votre manette.

Go and see Sophia, she’ll give you the electronic components

you need for your joystick.

For the user based experiment, we therefore use
the LR models with one classifier per dialog.

QA System For evaluating the QA classifier, we
also compared results with or without tf*idf filter-
ing. The best results were obtained by the LR clas-
sifier for each dialog with tf*idf filtering yielding an
accuracy of 88.27% as shown in Table 2.

4.2 Preliminary User-Based Evaluation
The accuracy of the interpreter and the dialog man-
ager used by the hybrid and the QA system only
gives partial information on the usability of the di-
alog engine in a situated setting. We therefore con-
ducted a user-based evaluation which aims to assess
the following points: interpretation quality, overall
system quality, dialog clarity, game clarity and tim-
ing. We invited 22 subjects to play the game twice,

Id w/o Tf*Idf w Tf*Idf
1 83.33 82.93

2 93.55 91.8

3 72 80.95

4 80 82.47

5 95.24 93.98

6 97.56 97.5

7 97.5 97.44

8 70.59 76

9 92.77 91.14

10 85.53 86.49

11 83.51 87.5

12 94.12 91.04

Avg. 87.14 88.27

Table 2: Results of the LR classifier for mapping play-
ers’ utterances to system moves, with content-words and
a context of four previous system moves, with and with-
out tf*idf filtering.

once with one system and once with the other. The
experiment is biased however in that the players al-
ways used the hybrid system first. This is because in
practice, the QA system often fail to provide novice
players with enough guidance to play the game. This
can be fixed by having the player first use the hybrid
system. Interestingly, the game guidance made pos-
sible by the Information State approach is effective
in guiding players through the game e.g., by propos-
ing new goals to be discussed at an appropriate point
in the dialog; and by taking dialog history into ac-
count.

After playing, each user completed the question-
naire shown in Table 3. For those criteria such as
dialog and game clarity, we do not report the scores
since these are clearly impacted by how many times
the player has played the game. Table 4 shows the
mean of the quantitative scores given by the 22 sub-
jects for interpretation, overall system quality and
timing. We computed a significance test between
the scores given by the subjects, using the Wilcoxon
signed-rank test4. As shown in the Table, for all
criteria, except Q.4, the QA performs significantly
(p < 0.01) better than the Hybrid system.

4The Wilcoxon signed-rank test is the non-parametric alter-
native to the paired t-test for correlated samples, applicable, e.g.
when dealing with measures which cannot be assumed to have
equal-interval scales, as is usual with user questionnaires.
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Interpretation
Q.1 Did you have the feeling the virtual characters understood you? (very bad 1 ... 100 very good)

Overall System Quality
Q.2 Did you find the conversations coherent? (very bad 1 . . . 100 very good)
Q.3 Did you enjoy talking with the virtual characters? (very annoying 1 ... 100 very enjoyable)
Q.4 Would you prefer playing the game without conversations with virtual characters? (yes/no)
Q.5 What is your overall evaluation of the quality of the conversations? (very bad 1 . . . 100 very good)

Dialogue clarity
Q.6 How easy was it to understand what you were supposed to ask? (very difficult 1 ... 100 very easy)
Q.7 How clear was the information given by the virtual characters? (totally unclear 1 ... 100 very clear)
Q.8 How effective were the instructions at helping you complete the game? (not effective 1 ... 100 very effective)

Game clarity
Q.9 How easy was it to understand the game? (totally unclear 1 ... 100 very clear)

Timing
Q.10 Were the system responses too slow (1) / just at the right time (2) / too fast (3)

Table 3: Questionnaire filled by the subjects that played with both dialog systems.

Interpretation. Question Q.1 aims to captures the
user’s assessment of the dialog system ability to cor-
rectly interpret the player’s utterances. The QA sys-
tem scores 0.7 points higher than the Hybrid system
suggesting better question/answer coherence for this
system. One possible reason is that while the hybrid
system detects any incoherence and either tries to
fix it using re-interpretation (which as we saw some-
times yields an incoherent dialog) or make it explicit
(using a misunderstanding dialog act i.e., a request
for rephrasing), the QA system systematically pro-
vides a direct answer to the player’s input.

The relatively low scores assigned by the user
to the interpretation capabilities of the two systems
(57.36 and 64.55 respectively) show that the high
accuracy of the interpreter and the dialog manager
is not a sufficient criteria for assessing the usability
of a dialog system.

Timing. One important factor for the usability of
a system is of course real time runtimes. The eval-
uation shows that overall the speed of the QA sys-
tem was judged more adequate. Interestingly though
the difference between the two systems stems no so
much from cases where the hybrid approach is too
slow than from cases where it is too fast. These cases
are due to the fact that while the QA system always
issues one-turn answer, the rule based dialog based
approach used in the hybrid system often produce
two consecutive turns, one answering the player and
the other attempting to guide her towards the follow-
ing game goal.

In sum, although the QA system seems more ro-
bust and better at supporting coherent dialogs, the
hybrid system seems to be more effective at guiding

Question Hybrid QA

Interpr. Q.1 57.36 64.55 (*)

Sys Qual.

Q.2 57.78 60.68 (*)

Q.3 60.77 66.45 (*)

Q.4/no 86.37 81.82

Q.5 59.54 65.68 (*)

Avg. 66.12 68.66 (*)

Timing Q.10 2.25 2.05 (*)

Table 4: Mean of the quantitative scores given by 22 in-
dividuals. (*) denotes statistical significance at p < 0.01
(two-tailed significance level).

the player through the game.

4.3 Corpus-Based Evaluation

The User-Based evaluation resulted in the collection
of 298 dialogs (690 player and 1813 system turns)
with the Hybrid system and 261 dialogs (773 player
and 1411 system turns) with the QA system. To bet-
ter understand the causes of the scores derived from
the user-filled questionnaire, we performed manual
error analysis on this data focusing on dialog inco-
herences, dialog success, dialog management and
generation errors (reported in Table 5).

DM Errors The count of dialog management
(DM) errors is the ratio WR

P of wrong system re-
sponses on counts of player’s input. In essence this
metrics permits comparing the accuracy of the QA
dialog manager with that of the hybrid system. On
average there is no clear distinction between the two
systems.
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Generation Errors The system response selected
by the generation component might be contextually
inappropriate for at least two reasons. First, it may
contain information which is unrelated to the current
context. Second, it might have been imprecisely or
incorrectly annotated. For instance, in the dialog
below, the annotation of the turn Yes, thanks. What
do you want me to do? did not indicate that the turn
included a Confirm dialog move. Selecting this turn
in the absence of a yes/no question resulted in a
contextually inappropriate system response.
SYSTEM: Bonjour les petits jeunes je suis le préparateur

matiére.

Hello kids, I am the raw material responsible

SYSTEM: Oui merci. Vous me voulez quoi en fait ?

Yes, thanks. What do you want me to do?

PLAYER: je veux en savoir plus sur cet endroit.

I would like to know more about this place

As shown in Table 5, for both systems, there were
few generation errors.

Id %DM H. %DM. QA %Gen H. & QA

1 0.0 4.55 0.57

2 10.81 12.00 1.02

3 10.38 12.04 1.49

4 16.22 14.86 0.32

5 10.34 2.13 1.46

6 0.0 0.0 0.94

7 9.52 4.0 0.0

8 11.68 7.08 2.06

9 2.13 26.47 0.76

10 15.63 16.13 6.08

11 11.94 8.33 3.19

12 14.29 8.16 3.17

Avg. 9.41 9.65 1.76

Table 5: DM and generation errors detected in the hybrid
and the QA systems.

Unsuccessful Dialogs We counted as unsuccess-
ful those dialogs that were closed before discussing
the mandatory goals. The results are shown in Ta-
ble 6. Overall the QA system is more robust leading
to the mandatory goals being discussed in almost all
dialogs. One exception was dialog 8, where the sys-
tem went into a loop due to the player repeating the
same sequence of dialog moves. We fixed this by

Id %Uns. H. %Inco. H. %Uns. QA. %Inc. QA.

1 0 0.0 0.0 0.0

2 0 0.0 0.0 0.0

3 6.67 3.33 7.41 0.0

4 7.14 0.0 0.0 4.0

5 3.85 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 21.21 0.0 0.0 0.0

8 3.70 0.0 15.63 3.13

9 0.0 0.0 0.0 4.35

10 0.0 6.67 0.0 16.67

11 3.45 6.90 0.0 3.70

12 4.17 4.17 4.55 4.55

Avg. 4.89 1.76 4.47 3.03

Table 6: Overall dialog errors, the percentage of unsuc-
cessful dialogs

integrating a loop detection step in the QA dialog
manager. For the hybrid system, dialog 7, a dialog
involving the confirmation strategy (cf. section 2)
is the most problematic. In this case, the DM rules
used to handle this strategy are inappropriate in that
whenever the system fails to identify a contextually
appropriate response, it simply says so and quits the
dialog. The example illustrates the difficulty of de-
veloping a complete and coherent DM rule system.

Incoherent Dialogs We counted as incoherent, di-
alogs where most system answers were unrelated to
the player’s input. As shown in Table 6, despite
interpretation and generation imprecisions, most di-
alogs were globally coherent. They made sense ac-
cording to the game context: they were related to the
task to be solved by the player in the game, and the
generated instructions were correctly understood.
The hybrid system produces slightly less incoher-
ent dialogs probably because of its re-interpretation
mechanism which permits correcting contextually
invalid dialog moves.

5 Conclusion

We have presented a multi-view evaluation of two
system architectures for conversational agents situ-
ated in a serious game. Although the QA system
seems more robust and is easier to deploy, the hy-
brid dialog engine seems to fare better in terms of
game logic in that it guides the player more effec-
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tively through the game. The evaluation shows the
importance of assessing not only the dialog engine
accuracy but also its usability in the setting it was
designed for. In future work, we plan to compute
a regression model of user satisfaction for applying
reinforcement learning and find the optimal strategy.
In addition, we plan to extend the comparison to
other domains such as language learning and com-
plex negociation dialogs.
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A. Example of a dialog with the hybrid system.
Translation into English of a dialog between Samir
(the system) and Julie (the player) (Strategy 2), it
corresponds to the third dialog in Table 1
Samir: Hello my name is Samir, the product designer

Samir: What are you doing here young people?

Julie: we come to build the joystick of Professor Geekman

Samir: You are in the right place. The plans are in the closet

Samir: Before would you like to hear about my job, the studies

I did or my colleagues

Julie: Tell me about your job.

Samir: Well, for instance, is me who devise and design the

items we construct in this enterprise

Samir: Do you want to know more about my colleagues or

about the security measures applied here?

Julie: What do your colleagues do?

Samir: My job is universal! In fact it can please both girls that

boys...

Samir: In your opinion, what studies should be done to get

there

Julie: Designing studies?

Samir: This is a creative job. Several training can lead to the

job arts, industrial design, computer-aided design

Samir: And does the safety standards interest you?

Julie: That is important the safety yes, tell me more

Samir: You know, here you are in a strategic place.

The novelties, the products of tomorrow, is here that they are

born. They must be protected. For that reason we control the

entrance here.

Samir: Well, Good Luck. Bye!

B. Translation to English of a dialog with the
QA system. Dialog between the raw material opera-
tor (the system) and Julie (the player), it corresponds
to the 8th dialog in Table 1(Strategy 4).
Preparateur1: Hello I am the raw material responsible. I can

provide you a lot of information about this place.

Preparateur1: What can I do for you ?

Julie: What do you do here?

Preparateur1: My role is to ensure machines are supplied

with the right materials,in good colors. I turn on the drying

ovens and the whole supply system.

Julie: How does it work the supply system?

Preparateur1: Well when we get the pellet material, they are

wet ...

Julie: What does it happen when there is a problem?

Preparateur1: In that case, I call the technician, he is the best

for fixing everything

Julie:Thanks for the information, what should I do now?

Preparateur1: It is not complicated and you will learn things.

I have a new machine to supply but I can not find the right

material. Would you give me a hand?

Julie: yes

Preparateur1: You must supply this machine with a new

generation of plastic. This machine allows the manufacture of

plastic bags

Julie: ok

Preparateur1: Let’s go!

Julie: Ok, Let’s start!

Preparateur1: Great, Thanks!

Preparateur1: You are very kind, thank you.
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Abstract

One challenge of implementing spoken di-
alogue systems for long-term interaction is
how to adapt the dialogue as user and sys-
tem become more familiar. We believe this
challenge includes evoking and signaling as-
pects of long-term relationships such as rap-
port. For tutoring systems, this may addi-
tionally require knowing how relationships are
signaled among non-adult users. We therefore
investigate conversational strategies used by
teenagers in peer tutoring dialogues, and how
these strategies function differently among
friends or strangers. In particular, we use an-
notated and automatically extracted linguis-
tic devices to predict impoliteness and posi-
tivity in the next turn. To take into account
the sparse nature of these features in real data
we use models including Lasso, ridge estima-
tor, and elastic net. We evaluate the predictive
power of our models under various settings,
and compare our sparse models with stan-
dard non-sparse solutions. Our experiments
demonstrate that our models are more ac-
curate than non-sparse models quantitatively,
and that teens use unexpected kinds of lan-
guage to do relationship work such as signal-
ing rapport, but friends and strangers, tutors
and tutees, carry out this work in quite differ-
ent ways from one another.

1 Introduction and Related Work
Rapport, the harmonious synchrony between in-
terlocutors, has numerous benefits for a range of
dialogue types, including direction giving (Cas-
sell et al., 2007) or contributing to patient recov-
ery (Vowles and Thompson, 2012). In peer tutor-
ing, an educational paradigm in which students of
similar ability tutor one another, friendship among
tutors and tutees leads to better learning (Gartner et
al., 1971). With the burgeoning use of spoken dia-
logue systems in education, understanding the pro-
cess by which two humans build and signal rapport
during learning becomes a vital step for implement-
ing spoken dialogue systems (SDSs) that can initi-
ate (and, as importantly, maintain) a successful re-
lationship with students over time. However, im-
plementing a tutorial dialogue system that appropri-

ately challenges students in the way that peers do
so well (Sharpley et al., 1983), while still demon-
strating the rapport that peers can also provide, calls
for understanding the differences in communication
between peer tutors just meeting and those who are
already friends.

The Tickle-Degnen and Rosenthal (1990) model
provides a starting point by outlining the compo-
nents of rapport, including the finding that positiv-
ity decreases over the course of a relationship. The
popularity of this model, however, has not dimin-
ished the disproportionate attention that positivity
and politeness receive in analyses of rapport (Brown
and Levinson, 1978), including in the vast majority
of computational approaches to rapport-building in
dialogue (Stronks et al., 2002; Johnson and Rizzo,
2004; Bickmore and Picard, 2005; Gratch et al.,
2006; McLaren et al., 2007; Cassell et al., 2007;
Baker et al., 2008; Bickmore et al., 2011). The
creation and expression of rapport is complex, and
can also be signaled through negative, or impolite,
exchanges (Straehle, 1993; Watts, 2003; Spencer-
Oatey, 2008) that communicate affection and re-
lationship security among intimates who can flout
common social norms (Culpeper, 2011; Kienpoint-
ner, 1997).

However, it is an open question as to whether such
rudeness is likely to impress a new student on the
first day of class. We must better understand how
and when impoliteness and other negative dialogue
moves can contribute to the development and ex-
pression of the rapport that is so important in educa-
tional relationships. In this analysis, then, we begin
with a corpus of tutoring chat data annotated with
a set of affectively-charged linguistic devices (e.g.
complaining, emoticons), and then differentiate be-
tween the linguistic devices that friend and stranger
interlocutors employ (with friendship standing as a
proxy for pre-existent rapport) and the resulting so-
cial effects or functions of those devices on the part-
ners.

Since our ultimate goal is to build an SDS that
can adapt to the user’s language in real time, we
also automatically extract lexical and syntactic fea-
tures from the conversations. And, in order to deter-
mine what the system should say to evoke particular
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responses, we predict social effects in partner two
from the use of the linguistic devices in partner one.

Since we want to understand how the system can
deal with newly met peers as well as peers who
have become friends, we develop and evaluate our
model on dyads of friends and then evaluate the
same model with dyads of strangers, to examine
whether dyads with less a priori rapport react dif-
ferently to the same linguistic devices.

Of course, in addition to understanding the phe-
nomenon of rapport in all of its complexity, a major
challenge for building rapport-signaling SDS is to
construct a compact feature space that capture only
reliable rapport signals and generalizes well across
different speakers. Of course phenomena such as in-
sults, complaints and pet names, no matter how im-
portant, appear relatively rarely in data of this sort.
Training discriminative models with maximum like-
lihood estimators (MLE) on such datasets usually re-
sults in assigning too much weight on less frequent
signals. This standard MLE training method not
only produces dense models, but may also overes-
timates lower frequency features that might be unre-
liable signals and overfit to a particular set of speak-
ers. In recent studies on speaker state prediction that
use lexical features, it has been shown that MLE
estimators demonstrate large performance gaps be-
tween non-overlapping speaker datasets (Jeon et al.,
2010; Wang et al., 2012a).

On the other hand, recent studies on `1/`2
based group penalty for evaluating dialogue systems
(González-Brenes and Mostow, 2011), structured
sparsity for linguistic structure prediction (Mar-
tins et al., 2011), and discovering historical legal
opinions with a sparse mixed-effects latent vari-
able model (Wang et al., 2012b) have all shown
concrete benefits of modeling sparsity in language-
related predictive tasks. We therefore apply sparsity-
sensitive models that can prevent less frequent
features from overfitting. We start with the `1-
regularized Lasso (Tibshirani, 1994) model, since,
compared to other covariance matrix based sparse
models, such as sparse Principal Component Anal-
ysis (PCA) and sparse Canonical Correlation Anal-
ysis (CCA), the Lasso model is straightforward and
requires fewer computing resources when the fea-
ture dimension is high. Hence, we compare the con-
tributions of both automated features and annotated
features using the proposed Lasso model to predict
impoliteness and positivity.

In addition to Lasso and a logistic regression base-
line, we introduce two alternative penalty models:
the non-sparse ridge (le Cessie and van Houwelin-
gen, 1992) estimator, and an elastic net model (Zou
and Hastie, 2005). The ridge estimator applies a

quadratic penalty for feature selection, resulting in
a smooth objective function and a non-sparse fea-
ture space, which can be seen as a strong non-sparse
penalty model. We investigate the elastic net model,
because it balances the pros and cons of Lasso and
ridge estimators, and enforces composite penalty. In
addition to the model comparisons, by varying the
different sizes of feature windows (number of turns
in the dialogue history), we empirically show that
our proposed sparse log-linear model is flexible, en-
abling the model to capture long-range dependency.

This approach also allows us to extend previous
work on speaker state prediction. Although speaker
state prediction has attracted much attention in the
dialogue research community, most studies have fo-
cused on the analysis of anger, frustration, and other
classic emotions (Litman and Forbes-Riley, 2004;
Liscombe et al., 2005; Devillers and Vidrascu, 2006;
Ai et al., 2006; Grimm et al., 2007; Gupta and Ni-
tendra., 2007; Metallinou et al., 2011). Recently,
Wang and Hirschberg (2011) proposed a hierarchi-
cal model that detects level of interest of speakers
in dialogue, using a multistream prediction feedback
technique. However, to the best of our knowledge,
we are among the first to study the problem of auto-
matic impoliteness and positivity prediction in dia-
logue. Because our ultimate goal is to build an SDS
that responds to users’ language use over time, the
features from the user’s target turn that the model is
aiming to predict are not observable, which renders
the task more difficult than previous speaker state
detection tasks.

Our main contributions are three-fold: (1) analy-
sis of linguistic devices that function to signal rap-
port among friends - and their effects on non-friend
dyads; (2) detailed analyses of language behavior
features that predict these rapport behaviors - both
impoliteness and positivity - in the next turn of
teenagers’ peer tutoring sessions; (3) an evaluation
of non-sparse and sparse log-linear models for pre-
dicting impoliteness and positivity.

By understanding the signals of rapport that a per-
son is likely to display in response to various lin-
guistic devices, we can begin to build an SDS that
can anticipate the social response and adapt to the
rapport-signaling efforts of its partner, both as a
newly introduced technology, and, over time, as a
system with whom the user has a rapport.

2 The Corpus
We use the data from a previous study evaluating the
impact of a peer tutoring intervention that monitored
students’ collaboration and in some cases provided
adaptive support (Walker et al., 2011). In the inter-
vention, peer tutors observed the work of their tutee
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and supported them through a chat interface as they
completed algebra problems. The system logged all
chat and other information about the problem steps.
Participants were 130 high school students (81 fe-
male) in grades 7-12 from one American high school
with some prior knowledge of the algebra material.
Participants were asked to sign up for the study with
a friend. Those who were interested but were un-
able to participate with a friend, were matched with
another unmatched participant. In an after-school
session, participants first took a 20-minute pre-test
on the math concepts, and then spent 20 minutes
working alone with the computer to prepare for tu-
toring. One student in each dyad was then randomly
assigned the role of tutor, while the other was given
the role of tutee, regardless of relative ability. They
spent the next 60 minutes engaging in tutoring. Fi-
nally, students were given a domain posttest isomor-
phic to the pretest.

54 dyads signed up as friends and 6 were un-
matched strangers. To compare behavior between
friends and strangers in the face of very different
data set sizes we use 48 friend dyads for training,
and select 6 friend and 6 stranger dyads as two sep-
arate test sets. The total number of utterances in the
friend training set, friend test set, and stranger test
set are 4538, 468 and 402. To perform turn-based
prediction experiments, we concatenate the text in
the utterances by the same speaker into a single turn,
and perform an “OR” operation1 on features (See
Section 3 for details) in multiple utterances of the
same speaker to generate the turn-based binary fea-
tures.

3 Feature Engineering
In this section, we describe both the annotated and
automatically extracted features analyzed.
3.1 Annotated Features and Labels2

To understand what linguistic devices participated in
positivity and impoliteness during tutoring, we an-
notated all 60 dyads for surface-level language be-
haviors such as complaints, challenges (Culpeper,
1996) and praise. We also automatically identi-
fied chat features that socially color the communi-
cation, such as excessive punctuation[P] or capital-
ization[Ca]. Utterances could receive more than one
code, and inter-rater reliability ranged from K=.71
to K=1.

Because these linguistic behaviors may serve a
range of different functions in context, such as rude

1If any of the utterances within one turn has this feature
turned on, then we say that we have observed this feature in
this turn.

2We thank Erin Walker for data collection and annotation.

language serving to cement a relationship (Arding-
ton, 2006), or teasing to increase rapport (Straehle,
1993), we also annotate the social functionality
of each utterance in context, in terms of positivity
(K=.79)3 and impoliteness (K=.76), which are seen
as holding down opposite kinds of social functional-
ity (Terkourafi, 2008). Details of annotation can be
found in our recent work (Ogan et al., 2012).
Language Behavior Features

Language behavior features were annotated by
two raters, based on previous work on impo-
liteness (Culpeper, 1996), positivity (Boyer et
al., 2008), and computer-mediated communica-
tion (Herring and Zelenkauskaite, 2009), as fol-
lows:.

• Insults[Di] (κ=1): Personalized negative voca-
tives or references. eg. “you are so weird.”
• Challenges[Ch] (κ =.91): Directly questioning

partner’s decision or ability. eg. Partner 1:
“see I am helping”, Partner 2: “barely.”
• Condescensions / brags[C] (κ=1): Asserting

authority or partner’s inferiority. eg. Tutee:
“nothing you have done has affected me what
so ever.”
• Message enforcer[Ef] (κ=.85): Emphasizing

text or attracting partner’s attention. eg. “Earth
to Erin.”
• Dismissal / Silencer / Curse[Cu] (κ =.76): As-

serting unimportance of contribution/partner.
eg. “shuttttt up computer.”
• Pet name[Pe] (κ = .9): Vocatives that may or

may not be insulting. eg. “whats up homie?”
• Criticisms / exclusive complaints[EC] (κ=.8):

Negative evaluation of partner. eg. “You are so
bad at this dude.”
• Inclusive complaints[I] (κ=.78): Complaints

directed outside the partner, such as at the task,
computers, or study. eg. “This is really dumb,
ya think?”
• Laughter[L] (κ=1): eg. “haha”, “lol”
• Off-task[O] (κ=.71): Doesn’t pertain to or ad-

vance tutorial dialogue. eg. “Coming over after
this?”

Impoliteness and Positivity Labels
While the surface-level features were coded based
on a single utterance, context determined the labels
for impoliteness and positivity, including the recent
tone of the dialogue and the partner’s response to
the utterance. Utterances were coded as positivity
(κ=.79) when they included goals that directly added
positive affect into the exchange through praise, em-
pathy, reassurance, cooperative talk (McLaren et al.,

3We use Cohen’s kappa in this study.
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2011), task enthusiasm, and making or responding
to jokes. Impoliteness (κ=.76) included both coop-
eratively rude utterances such as teasing (typical eg.
“hahah you’re the worst tutor ever”) and uncooper-
atively rude utterances that may cause offense (typ-
ical eg. “um why don’t you try actually explainin
urself..”) (Kienpointner, 1997).
3.2 Automated Features
To compare the performance between what could be
automatically extracted from dialogue and hand an-
notation, we extracted 2,872 unigram and 12,016 bi-
gram features from the text corpus. Using the Stan-
ford PoS tagger4 with its attached model, we also
extracted 46 common part-of-speech tags from the
text. In addition to the above lexical and syntac-
tic features, we automatically extracted the capital-
ization features[Ca] that have at least one full word
(eg. “CALM DOWN”) (Chovanec, 2009). Since
a recent text prediction task (Wang and McKeown,
2010) observed benefits from modeling punctua-
tion features[P], we extracted the expressive punc-
tuation that included at least one exclamation point
or more than one question-mark (eg. “I don’t get
it?!??!”) (Crystal, 2001). We used a smiley dictio-
nary5 to extract the emoticons[E] that convey emo-
tional states (Sánchez et al., 2006) from text.

4 Sparse Log-Linear Models
We formulate our impoliteness and positivity predic-
tion problems as binary classifications. To do this,
we estimate the label ŷt ∼ Bernoulli(θ̂). First, we
introduce a standard log-linear parametrization6 to
our predictive tasks:

θ̂~yt =
exp

∑
i ~wi

~fi(~yt)

1 + exp
∑

i ~wi
~fi(~yt)

, (1)

where ~f(~yt) is a set of feature functions computed
on the observation vector ~yt. The term ~wi puts a
weight on feature i for predicting impoliteness, and
our estimation problem is now to set these weights.
The log-likelihood and the gradient are:

` =
∑

t

yt log θ̂~yt + (1− yt) log(1− θ̂~yt) (2)

∂`

∂ ~w
=
∑

t

(
∂θ̂~yt
∂ ~w

)(
yt

θ̂~yt
− 1− yt

1− θ̂~yt

)
(3)

∂θ̂~yt
∂ ~w

=
(
θ̂~yt − (θ̂~yt)

2
)
~f(~yt), (4)

4http://nlp.stanford.edu/software/tagger.shtml
5http://www.techdictionary.com/emoticon.html
6We thank Jacob Eisenstein for the formulation of logistic

regression model.

so the parameters can be set using gradient as-
cent. To control the overall complexity, we can ap-
ply regularized models on the elements of ~w. A
sparsity-inducing model, such as the Lasso (Tibshi-
rani, 1994) or elastic net (Zou and Hastie, 2005)
model, will drive many of these weights to zero, re-
vealing important interactions between the impolite-
ness/positivity label and other features. Instead of
maximizing the log-likelihood, we can minimize the
following Lasso model that consists of the negative
log-likelihood loss function:

min
(
− `+

∑

i

λ1||~wi||
)

(5)

Since the Lasso penalty can introduce discontinu-
ities to the original convex function, we can also
consider an alternative non-sparse ridge estima-
tor (le Cessie and van Houwelingen, 1992) that has
the convex property:

min
(
− `+

∑

i

λ2||~wi||2
)

(6)

In addition to the Lasso and ridge estimators, the
composite penalty based elastic net model balances
the sparsity and smoothness properties of both Lasso
and ridge estimators:

min
(
− `+

∑

i

λ1||wi||+
∑

i

λ2||wi||2
)

(7)

Our log-linear model is quite flexible; by compar-
ing various restrictions, we can test different features
when modeling impoliteness and positivity. In addi-
tion, the model can incorporate features from previ-
ous time windows, which requires much less compu-
tational complexity compared to standard high order
Markov models. We use the L-BFGS method (Liu
and Nocedal, 1989) for the numerical optimization.

5 Empirical Experiments
We predict impoliteness vs. non-impoliteness and
positivity vs. non-positivity of an interlocutor in the
immediate future turn, given only information from
current/previous turns. Because accuracy, precision,
recall and F-measure are threshold-based point esti-
mation metrics that might prevent one from observ-
ing the big picture of system performance, we con-
sider the Receiver Operating Characteristic (ROC)
metric to evaluate the dynamics of the true posi-
tive rate vs. the false positive rate (Hanley and Mc-
Neil, 1982) in our system. We mainly use Area Un-
der Curve (AUC) as a metric to compare classifiers,
since it maps the ROC metric to a single scalar value
representing expected performance. A random clas-
sifier will have an AUC of 0.5 (Fawcett, 2006).
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Models P Ca E L O Ef Pe Di C EC Ch Cu I
Impoliteness Prediction

Tr-Te .44 -1.10 .62 .72 .09 .64 .09 1.29 .96 .89 .69 .77 -0.19
Te-Tr -2.48 .54 -0.26 0.15 .59 1.62 .24 .22 .89 .72 .75 .04 -0.18

Positivity Prediction
Tr-Te -0.87 .19 .36 .55 1.06 -0.62 .69 -1.63 -1.57 .16 -0.41 1.22 .86
Te-Tr -1.39 -0.46 .70 .48 .46 .33 .62 -0.71 .70 -0.65 -0.47 -0.54 .78

Table 1: Comparing the Learned Weights of Different Features when Predicting the Partner’s Impoliteness in a Non-
Sparse Log-Linear Model. Tr-Te: predict tutee turn with tutor turn. Te-Tr: predict tutor turn with tutee turn. For full
name of features, see Section 3.

5.1 Comparing the Learned Weights of
Different Features

In our previous analysis of these data (Ogan et al.,
2012), a PCA method allowed us to group linguistic
behaviors in order to address the issue of data spar-
sity. With the use of log-linear models, we are able
to investigate the contributions of individual lan-
guage behaviors in one student’s turn to the predic-
tion of social functions in their partner’s next turn. In
this experiment, we evaluate the weights of various
linguistic devices in a standard logistic regression
model. We found that behaviors commonly asso-
ciated with impoliteness were predictors of partner
impoliteness in the next turn, while positive behav-
iors such as laughter were predictors of upcoming
positivity. SDSs can leverage this knowledge to take
the partners lead during a tutoring session, using the
partners positivity or impoliteness to determine the
affect of the systems upcoming move. As we intend
to develop a system that acts as a tutee, however, we
further divided the analysis by tutoring role, inves-
tigating how partners in different roles employ lan-
guage features differently, such that the system can
act in accordance with its given role. Table 1 shows
the results.

Similarly to the collapsed factors in our previous
work, we found here that tutors and tutees do in
fact use language behaviors differently, and to ac-
complish different social functions. Effectively, this
means that certain language behaviors may instigate
impoliteness when said by one partner, but lead to
positivity when expressed by the other. For exam-
ple, tutee bragging predicts a response of positiv-
ity on behalf of the tutor (~w(TE)

C = .7), perhaps be-
cause the tutor wants to be supportive of a protégé’s
self-efficacy and success. Conversely, when the tu-
tor brags during a peer tutoring dialogue, the tu-
tee, who may feel threatened by the tutors bravado,
is extremely likely to respond with impoliteness (
~w
(TR)
C = .96). In a peer tutoring paradigm, when

the more powerful partner (the tutor) expresses dom-

inance through self-inflation, the subordinate part-
ner may use impoliteness to regain some social con-
trol. On the other hand, some language behaviors
actively work to tear down this power imbalance,
such as inclusive complaining, where the partners
take an us against the task approach, building sol-
idarity through complaining about the experiment.
These utterances predict positivity whether used by
the tutor ( ~w

(TR)
I = .86) or tutee ( ~w

(TE)
I = .78).

Other comparisons between weighted features by
role demonstrate similarly theoretically-motivated
findings that shed light on how language is used to
achieve social functions.
5.2 Comparing the Contributions of Different

Features on Friend and Stranger Datasets
A previous study (Ogan et al., 2012) on these same
data seemed to indicate that negative conversational
strategies composed of linguistic devices such as
complaining and insults were correlated with learn-
ing in the friend dyads and negatively correlated
with learning in strangers. However the small num-
ber of stranger dyads prevented them from draw-
ing conclusions about particular linguistic devices
from the data. Here, we empirically show the pre-
dictive performance of different feature sets on both
friend and stranger test sets in Table 2 , using a
sparse Lasso model with features from only the
current turn. In the impoliteness prediction task,
when predicting on the test set that consists of only
friends, we observe statistically significant improve-
ment over a random baseline, using surface-level
language behavior features, lexical, lexical + syn-
tactic, all automatic, and all features. When com-
bining all features, the best AUC is .621. The auto-
matic features, mainly including n-grams and part-
of-speech tags, have emerged as a useful automated
feature space. On the other hand, we do not observe
any significant results on the stranger datasets, sug-
gesting that strangers do not respond with impolite-
ness in the same way that friends do. When pre-
dicting positivity on the friend dataset, we see that
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the performance of surface-level language behavior
features has dropped from the first task, and the sta-
tistical t-test is non-significant when comparing to
a random baseline. This is not surprising, because
we have shown in the previous section that surface-
level language behavior features are strong indica-
tors of impoliteness, but might not have advantages
in predicting positivity for friends. Interestingly, the
automated features outperform the combination of
all features, indicating a promising future for the ac-
tual deployment of an SDS that can interact using
appropriate positivity and impoliteness.

When predicting positivity in the stranger dataset,
we find the opposite trend. In contrast to the impo-
liteness prediction task, the overall performance on
the stranger dataset improved, and the lexical, lexi-
cal+syntactic, and all feature combination have sig-
nificantly outperformed the chance baseline. These
results suggest that positivity is a predictable behav-
ior among strangers, who may all express uniform
positivity across all dyads, while it is the impolite-
ness that is predictable among friends. Perhaps it
is that through the development of a rapport with a
partner, the particular ways in which positivity is ex-
pressed becomes personalized to the dyad, and can
no longer be applied to other groups who have their
own expressions of positivity. In other words, un-
like in Tolstoy’s world, here unhappy families are all
alike; every happy family is happy in its own way.
We must look to the easily-predictable impoliteness
among friends instead, arguing strongly for the in-
clusion of impoliteness in a model of rapport.

5.3 Comparing Logistic Regression, Lasso,
Ridge, and Elastic Net

While our previous work (Ogan et al., 2012) demon-
strated that PCA is a useful feature selection method
when there are only a dozen features, in this experi-
ment, the dimension of our feature space is substan-
tially higher, which aligns to the size of vocabulary.
Thus, covariance-based feature selection methods,
such as PCA, might be too slow. Here we compare
the performances of standard MLE trained logistic
regression, Lasso, non-sparse ridge, and elastic net
models. In particular, we demonstrate the predic-
tive power of Lasso and elastic net models, varying
distinct levels of sparsity. In the Figure 1, we show
the comparison of three different models in the im-
politeness prediction task. The horizontal axis rep-
resents different values of regularization coefficient
λ. For the Lasso model and the elastic net model,
increasing the value λ will result in a sparser feature
space, and we set the λ = λ1 = λ2 in the elastic net
model to promote same level of sparsity and smooth-
ness. The result at λ = 0 represents the standard

Feature Sets F-AUC p S-AUC p
Impoliteness Prediction

Random .500 - .500 -
Behavior .596 .017 .505 .473
Lex .599 .014 .435 .819
Lex + POS .605 .009 .425 .857
All Auto .591 .022 .451 .751
All Features .621 .003 .427 .850

Positivity Prediction

Random .500 - .500 -
Behavior .549 .141 .527 .302
Lex .623 .003 .601 .025
Lex + POS .646 .001 .587 .047
All Auto .651 .001 .577 .070
All Features .641 .001 .608 .019

Table 2: Comparing contributions of different feature
streams on both friend and stranger testsets with Lasso
model when predicting impoliteness and positivity of the
next turn using only features from the current turn. ( F-:
the friend test set. S: the stranger test set. p: one-tailed
p-value by comparing to a random classifier. Behavior:
detailed surface-level language behavior features defined
in Section 3. Lex: unigram and bigram. POS: part-of-
speech features. All Auto: all automatically extracted
features (Lex + POS + punctuation + caps + emoti-
cons).)

non-sparse logistic regression model, which obtains
an AUC of .563. When introducing penalty for large
weights in this standard model, .4 to .5 significant
improvements (p = .003 for Lasso, p = .007 for
ridge, and p = .004 for elastic net) of AUC are
observed from Lasso, ridge and elastic net models
when λ = 1. The elastic net model that balances
sparsity and smoothness, has obtain the best result
in this experiment. The best result of elastic net
model is .63 when λ = 7. This experiment shows
that all three penalty models have outperformed the
non-sparse logistic regression model. The elastic net
model, which balances sparisty and smoothness, ob-
tains the best results when predicting impoliteness.
Figure 2 shows the comparison of three models on
the friend dataset in the positivity prediction task.
When λ = 0, the standard logistic regression model
has an AUC of .638. When increasing the λ to 1,
both Lasso and elastic net models have shown sig-
nificant improvements (both p < .001) in AUC, but
not the non-sparse ridge estimator. The Lasso model
is found to be the best model in this task: we obtain
better results when the model gets sparser until the
model is too sparse when λ = 6. In contrast to the
experiment in Figure 1, we see that both the ridge
and elastic net models do not very strong advantages
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in this positivity prediction task. We hypothesize
that the reason why Lasso works better in the pos-
itivity task is that the frequency of positivity labels
is substantially higher than the impoliteness labels in
our corpus, so that a Lasso model that enforces full
`1 penalty fits better in this task. In contrast, since
the impoliteness label is less frequent, a denser elas-
tic net composite penalty model that preserve critical
features, works the best in the impoliteness predic-
tion task. In general, we can see that sparse log-
linear models outperform standard log-linear mod-
els as well as non-sparse ridge estimators in the two
tasks.

Figure 1: Comparing Impacts of Different Levels of Spar-
sity on the Friend Dataset When Predicting Impoliteness
with Lasso, Ridge, and Elastic Net Models

Figure 2: Comparing Impacts of Different Levels of Spar-
sity on the Friend Dataset When Predicting Positivity
with Lasso, Ridge, and Elastic Net Models

5.4 Comparing Impacts of Different Feature
Window Sizes

A practical problem for parameter estimation in both
generative and discriminative models for dialogue
processing is to evaluate how much history the sys-
tem should take into account, so that it can have
enough information to make correct predictions. In
this experiment, we investigate the impact of using
different feature window sizes using the elastic net
model. We compare the two-tailed student t-test be-
tween the baseline that only uses features from the
current turn and models that use current + previous

n turn(s). For the friend dataset, when only using
the features from the current turn to predict the im-
politeness in the immediate next turn, we observe
an AUC of .619. The best result is obtained when
we combine the previous two turns together with the
current feature turn: an AUC of .635, significantly
better (p = .03) than only using the current turn win-
dow. The patterns on the non-friend dataset are less
clear, while the model obtains the best result when
window size is +3 previous turns, the improvement
is not significant (p = .962). In the positivity task,
we also observe benefits to incorporating larger fea-
ture windows. The AUC on the friend test set starts
at .638, when only using the current feature window
in the elastic net model. After incorporating larger
feature windows, we obtain the best result of .675 at
the +4 window (p = .04). Similarly, the AUC on
non-friend test set initializes at .618, but climbs to
.632 at the +4 window.

6 Error Analysis and Discussion
We performed an error analysis to understand the
contexts under which our model failed to accurately
predict a students’ social response, and discuss the
implications of these examples based on a theoret-
ical understanding of the roles of tutors and tutees
as well as friends and strangers. The following is
an example error produced when looking only at the
previous turn to predict the current turn:

• Tutee (impolite): “dude thats def wrong i gotta
subract 16m not just 16” (the current turn)

• Tutor (non-impolite): “16m is what has to be
subtracted from both sides” (the next turn, pre-
dicted incorrectly)

In the segment above the tutee challenges the tutor
by pointing out a “def” mistake; the tutor responds
with a task-oriented contribution that moves the di-
alogue forward, but does not escalate the face threat
(Ogan et al., 2012). And, in fact, if we look one
more turn back in the history, the tutor once again
uses calm language: “wait it says youre wrong i dont
know why ust wait”. The increased window size
is implicitly evoking the differential conversational
strategies of tutors vs. tutees. And while the current
data set is too small to build separate models for tu-
tors and tutees, in this case (and based on the prior
work in Ogan et al., 2012), accounting for role dis-
tinctions that differentiate strategies taken by tutors
and tutees is the likely reason behind the improve-
ment due to window size.

Conversely to the friend data set, the false nega-
tives that occur when predicting impoliteness in the
stranger data set are not improved by increasing the
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window size, as is demonstrated in the following ex-
change:

• Tutor (non-impolite): “subtract ym from both
sides.”
• Tutee (non-impolite): “first step? first Step?”
• Tutor (non-impolite): “subtract hb from both

sides” (the current turn)
• Tutee (impolite): “first step? FIRST

STEP??????????” (the next turn, predicted in-
correctly)

The impolite tutee utterance at turn 4 is predicted
to be non-impolite when analysis is limited to the
previous turn, as is also shown in the first example
in this section. However, unlike the previous ex-
ample which improved with an expanding window
size, looking back to turns 1 and 2 does not improve
the model. While we do not have enough stranger
dyads to completely explore this phenomenon, it
seems clear that strangers’ responses do not follow
the same patterns as friends. The current unpre-
dictability of strangers can be due to a number of
social phenomena, such as less affect (both posi-
tive and negative) overall, which results in a differ-
ent conversational flow. Less overall affect means
that there is less likely to be useful information in
the previous utterances. This is an important dis-
tinction between designing models for dyads with
rapport and those without, which is a primary con-
cern in the development of social SDSs. Among
strangers, other techniques may need to be used to
increase model accuracy, such as looking at the con-
tent of the utterances to determine whether or not a
speaker had been repeating themselves, as is shown
in this example, which could likely be an indicator
of rudeness.

As a final example of how the error analysis
can reveal important phenomena for future study,
when examining the prediction of positivity on the
stranger test set, we first observe that emoticons
are useful indicators of positivity. However, some-
times emoticons serve quite different social func-
tions, which leads to false positives:

• Tutor (non-positivity): “Simplify ! :)” (the cur-
rent turn)
• Tutee (non-positivity): “y didnt it chang” (the

next turn, predicted incorrectly)

Here, the smiley face is used by the tutor primarily
to mitigate the face threat of an impolite command.
However, since the experiment reported in Section
6.1 shows that our model attributes more weight to
emoticons when predicting positivity, the model errs

on this utterance. Here the error analysis suggests
that in fact we might need to investigate more com-
plicated latent variable models to capture the subtle
social functionality of some language use in context.

7 Conclusion
Long-term relationships involve the expression of
both positive and negative sentiments and, paradox-
ically, both can serve to increase closeness. In this
paper, we have addressed the novel task of predict-
ing impoliteness and positivity in teenagers’ peer tu-
toring conversations, and our results shed light on
what kinds of behaviors evoke these social functions
for friends and for strangers, and for tutors and tu-
tees. Our investigation has successfully predicted
impoliteness and positivity on the basis of both an-
notated and automatically extracted features, sug-
gesting that a dialogue system will one day be able to
employ analyses such as these to signal relationships
with users. And while social features such as those
we annotated are naturally quite rare in dialogue, our
quantitative experiments have demonstrated the ca-
pabilities of modeling sparsity in log-linear models:
elastic net and Lasso models outperformed standard
logistic regression model and the non-sparse ridge
penalty model.

We found that positivity is much more predictable
for strangers than is impoliteness, while the oppo-
site was true for friends. This could lend support for
the importance of positivity as a rapport-signaling
function in the early stages of a relationship (as
in (Tickle-Degnen and Rosenthal, 1990)), and indi-
cating the need for further research on the increasing
importance of impoliteness as a rapport signal over
the course of relationship development.

We also found that performance on the prediction
tasks increased with larger feature window sizes,
particularly for impoliteness among friends and pos-
itivity among strangers. From our error analysis,
we see that this improvement may arise because dif-
ferent behaviors predict impoliteness and positivity
based on the social role of the speaker. Thus tu-
tee bragging predicts positivity in tutors, while tu-
tor bragging negatively predicts positivity among tu-
tees. The power differential between the two may
lead tutees to want to take tutors “down a peg” while
tutors struggle to maintain the position of power in
the dyad.

While results such as these may seem specific to
teenage peer tutors, the general conclusion remains,
that linguistic devices have different social functions
in different contexts, and dialogue systems that in-
tend to spend a lifetime on the job will do well to
adapt their language to the stage of relationship with
a user, and the social role they play.
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Abstract

The ability to monitor the communicative suc-
cess of its utterances and, if necessary, provide
feedback and repair is useful for a dialog sys-
tem. We show that in situated communication,
eyetracking can be used to reliably and effi-
ciently monitor the hearer’s reference resolu-
tion process. An interactive system that draws
on hearer gaze to provide positive or nega-
tive feedback after referring to objects outper-
forms baseline systems on metrics of referen-
tial success and user confusion.

1 Introduction

Because dialog is interactive, interlocutors are con-
stantly engaged in a process of predicting and mon-
itoring the effects of their utterances. Typically, a
speaker produces an utterance with a specific com-
municative goal in mind—e.g., that the hearer will
perform an action or adopt a certain belief—, and
chooses one particular utterance because they pre-
dict that it will achieve this communicative goal.
They will then monitor the hearer’s reactions and
infer from their observations whether the prediction
actually came true. If they recognize that the hearer
misunderstood the utterance, they may repair the
problem by diagnosing what caused the misunder-
standing and giving the hearer feedback. In a task-
oriented dialog in which the hearer must perform a
part of the task, feedback is especially important to
inform the hearer when they made a mistake in the
task. Ideally, the speaker should even detect when
the hearer is about to make a mistake, and use feed-
back to keep them from making the mistake at all.

Many implemented dialog systems include a com-
ponent for monitoring and repair. For instance,
Traum (1994) presents a model for monitoring the
grounding status of utterances in the TRAINS sys-
tem; Young et al. (1994) show how the student’s
utterances in a dialog system can be used to un-
cover mistaken assumptions about their mental state;
and Paek and Horvitz (1999) discuss an automated
helpdesk system that can track grounding under un-
certainty. However, most of these systems rely on
the user’s verbal utterances as their primary source
of information; monitoring thus presupposes an
(error-prone) language understanding module.

In the context of situated communication, where
the speaker and hearer share a physical (or virtual)
environment, one type of observation that can poten-
tially give us a very direct handle on the hearer’s un-
derstanding of an utterance is eye gaze. Eyetracking
studies in psycholinguistics have shown that when
listeners hear a referring expression, they tend to
rapidly attend to the object in a scene to which they
resolve this expression (Tanenhaus et al., 1995; Al-
lopenna et al., 1998). For utterances that involve ref-
erences to objects in the current environment, one
can therefore ask whether eyetracking can be used
to reliably judge the communicative success of the
utterance. This would be of practical interest for
implemented dialog systems once eyetracking be-
comes a mainstream technology; and even today, a
system that reliably monitors communicative suc-
cess using eyetracking could serve as a testbed for
exploring monitoring and repair strategies.

In this paper, we present an interactive natural-
language generation (NLG) system that uses eye-
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tracking to monitor communicative success. Our
system gives real-time instructions that are designed
to help the user perform a treasure-hunt task in the
virtual 3D environments of the recent Challenges
on Generating Instructions in Virtual Environments
(GIVE; Koller et al. (2010)). It monitors how the
user resolves referring expressions (REs) by map-
ping the user’s gaze to objects in the virtual environ-
ment. The system takes gaze to the intended referent
as evidence of successful understanding, and gives
the user positive feedback; by contrast, gaze to other
objects triggers negative feedback. Crucially, this
feedback comes before the user interacts with the
object in the virtual environment, keeping the user
from making mistakes before they happen.

We evaluate our system against one baseline that
gives no feedback, and another that bases its feed-
back on monitoring the user’s movements and their
field of view. We find that the eyetracking-based
system outperforms both on referential success, and
that users interacting with it show significantly fewer
signs of confusion about how to complete their task.
This demonstrates that eyetracking can serve as a
reliable source of evidence in monitoring commu-
nicative success. The system is, to our knowledge,
the first dialog or NLG system that uses the hearer’s
gaze to monitor understanding of REs.

Plan of the paper. The paper is structured as fol-
lows. We first discuss related work in Section 2. We
then describe our approach as well as the baselines
in Section 3, set up the evaluation in Section 4 and
present the results in Section 5. In Sections 6 and 7
we discuss our findings and conclude.

2 Related work

Dialog systems model a process of grounding, in
which they decide to what extent the user has under-
stood the utterance and the communicative goal has
been reached. Observing the user behavior to moni-
tor the state of understanding is a key component in
this process. A full solution may require plan recog-
nition or abductive or epistemic reasoning (see e.g.
Young et al. (1994), Hirst et al. (1994)); in practice,
many systems use more streamlined (Traum, 1994)
or statistical methods (Paek and Horvitz, 1999).
Most dialog systems focus on the verbal interaction
of the system and user, and the user’s utterances are

therefore the primary source of evidence in the mon-
itoring process. Some incremental dialog systems
can monitor the user’s verbal reactions to the sys-
tem’s utterances in real time, and continuously up-
date the grounding state while the system utterance
is still in progress (Skantze and Schlangen, 2009;
Buss and Schlangen, 2010).

In this paper, we focus on the generation side of a
dialog system—the user is the hearer—and on mon-
itoring the user’s extralinguistic reactions, in par-
ticular their gaze. Tanenhaus et al. (1995) and Al-
lopenna et al. (1998) showed that subjects in psy-
cholinguistic experiments who hear an RE visually
attend to the object to which they resolve the RE.
The “visual world” experimental paradigm exploits
this by presenting objects on a computer screen and
using an eyetracker to monitor the subject’s gaze.
This research uses gaze only as an experimental tool
and not as part of an interactive dialog system, and
the visual worlds are usually limited to static 2D
scenes. Also, such setups cannot account for the re-
ciprocal nature of dialog and the consequences that
hearer gaze has for the speaker’s monitoring process.

In the context of situated dialog systems, previ-
ous studies have employed robots and virtual agents
as speakers to explore how and when speaker gaze
helps human hearers to ground referring expressions
(Foster, 2007). For instance, Staudte and Crocker
(2011) show that an agent can make it easier for the
(human) hearer to resolve a system-generated RE by
looking at the intended referent, using head and eye
movements. Conversely, the performance of a sys-
tem for resolving human-produced REs can be im-
proved by taking the (human) speaker’s gaze into ac-
count (Iida et al., 2011). Gaze has also been used to
track the general dynamics of a dialog, such as turn
taking (Jokinen et al., in press).

Here we are interested in monitoring the hearer’s
gaze in order to determine whether they have under-
stood an RE. To our knowledge, there has been no
research on this; in particular, not in dynamic 3D
environments. The closest earlier work of which we
are aware comes from the context of the GIVE Chal-
lenge, a shared task for interactive, situated natural
language generation systems. These systems typi-
cally approximate hearer gaze as visibility of objects
on the screen and monitor grounding based on this
(Denis, 2010; Racca et al., 2011).
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Figure 1: A first-person view of a virtual 3D environment.

3 Interactive natural-language generation
in virtual environments

In this paper, we consider the communicative situ-
ation of the GIVE Challenge (Koller et al., 2010;
Striegnitz et al., 2011). In this task, a human user can
move about freely in a virtual indoor environment
featuring several interconnected rooms and corri-
dors. A 3D view of the environment is displayed on
a computer screen as in Fig. 1, and the user can walk
forward/backward and turn left/right, using the cur-
sor keys. They can also press buttons attached to the
walls, by clicking on them with the mouse once they
are close enough. The small and big white circles in
Fig. 1, which represent eyetracking information, are
not actually visible to the user.

The user interacts with a real-time NLG system in
the context of a treasure-hunt game, where their task
is to find a trophy hidden in a wall safe. They must
press certain buttons in the correct sequence in or-
der to open the safe; however, they do not have prior
knowledge of which buttons to press, so they rely
on instructions and REs generated by the system. A
room may contain several buttons other than the tar-
get, which is the button that the user must press next.
These other buttons are called distractors. Next to
buttons, rooms also contain a number of landmark
objects, such as chairs and plants, which cannot di-
rectly be interacted with, but may be used in REs
to nearby targets. Fig. 2 shows a top-down map of
the virtual environment in which the scene of Fig. 1
arose. We call an entire game up to the successful
discovery of the trophy, an interaction of the system
and the user.

Figure 2: A map of the environment in Fig. 1; note the
user in the upper right room.

3.1 Monitoring communicative success

NLG systems in the GIVE setting are in an interac-
tive communicative situation. This situation repre-
sents one complete half of a dialog situation: Only
the system gets to use language, but the user moves
and acts in response to the system’s utterances. As a
result, the system should continuously monitor and
react to what the user does, in real time. This is
most tangible in the system’s use of REs. When a
user misinterprets (or simply does not understand)
a system-generated RE, there is a high chance that
they will end up pressing the wrong button. This
will hinder the completion of the task. A system
that predicts how the user resolves the RE by mon-
itoring their movements and actions, and that can
proactively give the user feedback to keep them from
making a mistake, will therefore perform better than
one which cannot do this. Furthermore, if the sys-
tem can give positive feedback when it detects that
the user is about to do the right thing, this may in-
crease the user’s confidence.

Monitoring communicative success in GIVE in-
teractions and providing the right feedback can be
challenging. For example, in the original interaction
from which we took the screenshot of Fig. 1, the sys-
tem instructed the user to “push the right button to
the right of the green button”, referring to the right-
most blue button in the scene. In response, the user
first walked hesitantly towards the far pair of buttons
(green and blue), and then turned to face the other
pair, as seen in Fig. 3. A typical NLG system used
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Figure 3: The scene of Fig. 1, after the user moved and
turned in response to a referring expression.

in the GIVE Challenge (e.g., Dionne et al. (2009),
Denis (2010), Racca et al. (2011)) may try to predict
how the user might resolve the RE based on the vis-
ibility of objects, timing data, or distances. Relying
only on such data, however, even a human observer
could have difficulties in interpreting the user’s reac-
tion; the user in Fig. 3 ended up closer to the green
and blue buttons, but the other buttons (the two blue
ones) are, to similar degrees, visually in focus.

The contribution of this paper is to present a
method for monitoring the communicative success
of an RE based on eyetracking. We start from the
hypothesis that when the user resolves an RE to a
certain object, they will tend to gaze at this object.
In the scene of Fig. 3, the user was indeed looking
at the system’s intended referent, which they later
pressed; the small white circles indicate a trace of re-
cent fixations on the screen, and the big white circle
marks the object in the virtual environment to which
the system resolved these screen positions. Our sys-
tem takes this gaze information, which is available in
real time, as evidence for how the user has resolved
its RE, and generates positive or negative feedback
based on this.

3.2 NLG systems
To demonstrate the usefulness of the eyetracking-
based approach, we implemented and compared
three different NLG systems. All of these use
an identical module for generating navigation in-
structions, which guides the user to a specific lo-
cation, as well as object manipulation instructions
such as “push the blue button”; “the blue button”

is an RE that describes an object to the user. The
systems generate REs that are optimized for being
easy for the hearer to understand, according to a
corpus-based model of understandability (Garoufi
and Koller, 2011). The model was trained on human
instructions produced in a subset of the virtual envi-
ronments we use in this work. The resulting system
computes referring expressions that are correct and
uniquely describe the referent as seen by the hearer
at the moment in which generation starts.

Unlike in the original GIVE Challenge, the gen-
erated instructions are converted to speech by the
Mary text-to-speech system (Schröder and Trouvain,
2003) and presented via loudspeaker. At any point,
the user may press the ‘H’ key on their keyboard to
indicate that they are confused and request a clari-
fication. This will cause the system to generate an
instruction newly; if it contains an RE, this RE may
or may not be the same as the one used in the origi-
nal utterance.

The difference between the three systems is in the
way they monitor communicative success and deter-
mine when to give feedback to the user.

The no-feedback system. As a baseline system,
we used a system which does not monitor success
at all, and therefore never gives feedback on its own
initiative. Notice that the system still re-generates an
RE when the user presses the ‘H’ key.

Movement-based monitoring. As a second base-
line, we implemented a system that attempts to mon-
itor whether a user understood an RE based on their
movements. This system is intended to represent
the user monitoring that can be implemented, with
a reasonable amount of effort, on the basis of imme-
diately available information in the GIVE setting.

The movement-based system gives no feedback
until only a single button in the current room is vis-
ible to the user, since it can be hard to make a re-
liable prediction if the user sees several buttons on
their screen. Then it tracks the user’s distance from
this button, where “distance” is a weighted sum of
walking distance to the button and the angle the user
must turn to face the button. If, after hearing the RE,
the user has decreased the distance by more than a
given threshold, the system concludes that the hearer
has resolved the RE as this button. If that is the but-
ton the system intended to refer to, the system utters
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the positive feedback “yes, that one”. For incorrect
buttons, it utters the negative feedback “no, not that
one”. Although the negative feedback is relatively
vague, it has the advantage of limiting the variability
of the system’s outputs, which facilitates evaluation.

Eyetracking-based monitoring. Finally, the
eyetracking-based system attempts to predict
whether the user will press the correct button
or not by monitoring their gaze. At intervals of
approximately 15 ms, the system determines the
(x,y) position on the screen that the user is looking
at. It then identifies the object in the environment
that corresponds to this position by casting a ray
from the (virtual) camera through the screen plane,
and picking the closest object lying within a small
range of this ray (Fig. 1; see Staudte et al. (2012) for
details). If the user continously looks at the same
object for more than a certain amount of time, the
system counts this as an inspection of the object; for
our experiments, we chose a threshold of 300 ms.
Once the system detects an inspection to a button in
the room, it generates positive or negative feedback
utterances in exactly the same way as the movement
system does.

Both the movement-based and the eyetracking-
based model withhold their feedback until a first
full description of the referent (a first-mention RE)
has been spoken. Additionally, they only provide
feedback once for every newly approached or in-
spected button and will not repeat this feedback un-
less the user has approached or inspected another
button in the meantime. Example interactions of a
user with each of the three systems are presented in
Appendix A.

4 Evaluation

We set up a human evaluation study in order to as-
sess the performance of the eyetracking system as
compared against the two baselines on the situated
instruction giving task. For this, we record partic-
ipant interactions with the three systems employed
in three different virtual environments. These en-
vironments were taken from Gargett et al. (2010);
they vary as to the visual and spatial properties of
the objects they contain. One of these environments
is shown in Fig. 2. Overall, 31 participants (12 fe-
males) were tested. All reported their English skills

as fluent, and all were capable of completing the
tasks. Their mean age was 27.6 years.

4.1 Task and procedure

A faceLAB eyetracking system (http://www.
seeingmachines.com/product/facelab)
remotely monitored participants’ eye movements on
a 24-inch monitor, as in Fig. 4 and 5 of Appendix B.
Before the experiment, participants received written
instructions that described the task and explained
that they would be given instructions by an NLG
system. They were encouraged to request additional
help any time they felt that the instructions were not
sufficient (by pressing the ‘H’ key).

The eyetracker was calibrated using a nine-point
fixation stimulus. We disguised the importance of
gaze from the participants by telling them that we
videotaped them and that the camera needed calibra-
tion. Each participant started with a short practice
session to familiarize themselves with the interface
and to clarify remaining questions. We then col-
lected three complete interactions, each with a dif-
ferent virtual environment and NLG system (alter-
nated according to a Latin square design). Finally,
each participant received a questionnaire which was
aimed to reveal whether they noticed that they were
eyetracked and that one of the generation systems
made use of that, and how satisfied they were with
this interaction. The entire experiment lasted ap-
proximately 30 minutes.

4.2 Analysis

For the assessment of communicative success in
these interactions, we considered as referential
scenes the parts of the interaction between the onset
of a first-mention RE to a given referent and the par-
ticipant’s reaction (pressing a button or navigating
away to another room). To control for external fac-
tors that could have an impact on this, we discarded
individual scenes in which the systems rephrased
their first-mention REs (e.g. by adding further at-
tributes), as well as a few scenes which the partic-
ipants had to go through a second time due to tech-
nical glitches. To remove errors in eyetracker cali-
bration, we included interactions with the eyetrack-
ing NLG system in the analysis only when we were
able to record inspections (to the referent or any dis-
tractor) in at least 80% of all referential scenes. This
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success success w/out confusion #scenes
system all easy hard all easy hard all easy hard

eyetracking 93.4 100.0 90.4 91.9 100.0 88.2 198 62 136
with feedback 94.3 100.0 91.7 92.8 100.0 89.4 194 62 132
without feedback 50.0 - 50.0 50.0 - 50.0 4 0 4

no-feedback 86.6* 100.0◦ 80.6* 83.5** 98.9◦ 76.5** 284 88 196

movement 89.8◦ 100.0◦ 85.2◦ 87.5◦ 97.8◦ 82.8◦ 295 92 203
with feedback 93.9 100.0 90.6 91.9 97.7 88.7 247 88 159
without feedback 68.8 100.0 65.9 64.6 100.0 61.4 48 4 44

Table 1: Mean referential success rate (%) and number of scenes for the systems, broken down by scene complexity
and presence of feedback. Differences of overall system performances to the eyetracking system are: significant at
** p < 0.01, * p < 0.05; ◦ not significant.

filtered out 9 interactions out of the 93 we collected.
Inferential statistics on this data were carried out

using mixed-effect models from the lme4 package
in R (Baayen et al., 2008). Specifically, we used
logistic regression for modeling binary data, Poisson
regression for count variables and linear regression
for continuous data.

5 Results

On evaluating the post-task questionnaires, we did
not find any significant preferences for a particular
NLG system. Roughly the same number of them
chose each of the systems on questions such as
“which system did you prefer?”. When asked for
differences between the systems in free-form ques-
tions, no participant mentioned the system’s reaction
to their eye gaze—though some noticed the (lack of)
feedback. We take this to mean that the participants
did not realize they were being eyetracked.

Below, we report results on objective metrics that
do not depend on participants’ judgments.

5.1 Confusion

A key goal of any RE generation system is that
the user understands the REs easily. One measure
of the ease of understanding is the frequency with
which participants pressed the ‘H’ key to indicate
their confusion and ask for help. The overall average
of ‘H’ keystrokes per interaction was 1.14 for the
eyetracking-based system, 1.77 for the movement-
based system, and 2.26 for the no-feedback system.
A model fitted to the keystroke distribution per sys-
tem shows significant differences both between the

eyetracking and the no-feedback system (Coeff. =
0.703, SE = 0.233, Wald’s Z = 3.012, p < .01) and
between the eyetracking and the movement-based
system (Coeff. = 0.475, SE = 0.241, Wald’s Z =
1.967, p < .05). In other words, the feedback
given by the eyetracking-based system significantly
reduces user confusion.

5.2 Referential success

An even more direct way to measure the interac-
tion quality is the ratio of generated REs that the
participants were able to resolve correctly. In our
evaluation, we looked at two different definitions
of success. First, an RE can count as success-
ful if the first button that the user pressed after
hearing the RE was the system’s intended referent.
The results of this evaluation are shown in the left-
most part of Table 1, under “success”. A logis-
tic mixed-effects model fitted to the referential suc-
cess data revealed a marginal main effect of sys-
tem (χ2(2) = 5.55, p = .062). Pairwise com-
parisons further show that the eyetracking system
performs significantly better than the no-feedback
system (Coeff. = −0.765, SE = 0.342, Wald’s Z =
−2.24, p < .05); no significant difference was found
between the eyetracking-based and the movement-
based system.

Second, we can additionally require that an RE
only counts as successful if the user did not press
the ‘H’ key between hearing the first-mention RE
and pressing the correct button. This is a stricter
version of referential success, which requires that
the system recognized cases of potential confusion
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and did not force the user to take the initiative in
case of difficulties. It is in line with Dethlefs et al.’s
(2010) findings that metrics that penalize difficul-
ties the user encountered before successfully com-
pleting the task are better predictors of user satisfac-
tion than ones that only consider the eventual task
completion. Our results on this metric are shown
in the middle part of Table 1, under “success with-
out confusion”. We observe again a main effect of
system (χ2(2) = 7.78, p < .05); furthermore, the
eyetracking system elicited again more correct but-
tons than the no-feedback system (Coeff. = −0.813,
SE = 0.306, Wald’s Z = −2.66, p < 0.01).

To obtain a more detailed view of when and to
what extent the systems’ behavior differed, we dis-
tinguished scenes according to their complexity. A
scene was classified as easy if a) there were no dis-
tractors in it, or b) all distractors had different colors
from the target, while the system included the color
attribute in its RE. All other scenes were considered
hard. Note that “easy” and “hard” are properties of
the scene and not of the system, because every sys-
tem generated the same REs in each scene.

In the experiments, we found essentially no differ-
ence between the success rates of different systems
on easy scenes (see the “easy” columns of Table 1):
All systems were almost always successful. The
differences came almost exclusively from the hard
scenes, where the eyetracking system performed sig-
nificantly better than the no-feedback system (suc-
cess: Coeff. = −0.793, SE = 0.348, Wald’s Z =
−2.28, p < 0.05; success without confusion: Coeff.
=−0.833, SE = 0.315, Wald’s Z =−2.64, p < 0.01)
and, at least numerically, also much better than the
movement system.

There was a particularly interesting difference in
the feedback behavior of the eyetracking and move-
ment systems on hard scenes (see the rightmost part
of Table 1, labeled “#scenes”). In easy scenes,
both systems almost always gave feedback (62/62
= 100.0%; 88/92 = 95.6%); but for hard scenes,
the ratio of scenes in which the movement system
gave feedback at all dropped to 159/203 = 78.3%,
whereas the ratio for the eyetracking system re-
mained high. This may have contributed to the over-
all performance difference between the two systems.

#actions distance duration idle
system (norm.) (norm.) (norm.) (sec)

eyetracking 1.06 1.22 1.49 256.6
no-feedback 1.22* 1.27 1.59 272.5
movement 1.16 1.26 1.56 274.4

Table 2: Mean values of additional metrics. Differences
to the eyetracking system are significant at * p < 0.05.

5.3 Further performance metrics

Finally, we measured a number of other objective
metrics, including the number of actions (i.e., but-
ton presses), the distance the user traveled, the to-
tal duration of the interaction, and the mean time
a participant spent idle. Even though these mea-
sures only partly provide statistically significant re-
sults, they help to draw a clearer picture of how the
eyetracking-based feedback affects performance.

Because the three virtual environments were of
different complexity, we normalized the number of
actions, distance, and duration by dividing the value
for a given interaction by the minimum value for all
interactions of the same virtual environment. The re-
sulting measures are shown in Table 2. Participants
performed significantly fewer actions in the eye-
tracking system than in the no-feedback system (Co-
eff. = 0.174, SE = 0.067, t = 2.57, p(mcmc) < .05);
there were also trends that users of the eyetracking-
based system traveled the shortest distance, needed
the least overall time, and spent the least time idle.

The only measure deviating from this trend is
movement speed, i.e., the speed at which users re-
acted to the systems’ instructions to press certain
buttons. For all successful scenes (without confu-
sion), we computed the speed by dividing the GIVE
distance (including turning distance) between the
target referent and the user’s location at the time of
the instruction containing the first-mention RE by
the time (in seconds) between hearing the instruc-
tion and pressing the target. The mean movement
speed is 0.518 for the no-feedback system, 0.493 for
the movement system, and 0.472 for the eyetracking
system. A marginal main effect of movement speed
confirms this trend (χ2(2) = 5.58, p = .061) and
shows that participants moved more slowly when
getting eyetracking-based feedback than when get-
ting no feedback at all (Coeff. = 0.0352, SE =
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0.0166, t = −4.97, p(mcmc) < .05).

6 Discussion

The results in Section 5 demonstrate the usefulness
of eyetracking as a foundation for monitoring and
feedback. Compared to the no-feedback system, the
eyetracking-based system achieved a significantly
lower confusion rate and a significantly higher RE
success rate, especially on hard instances. The dif-
ference increases further if we discount scenes in
which the user had to ask for help, thus forcing the
system to give feedback anyway. In other words,
eyetracking provides reliable and direct access to the
hearer’s reference resolution process. Real-time di-
alog systems can use gaze information to monitor
the success of REs and generate feedback before the
user actually makes a mistake.

Monitoring and feedback could also be achieved
without using eyetracking. To explore this alterna-
tive, we compared eyetracking against a movement-
based system. We found that the former outper-
formed the latter on hearer confusion and (at least
numerically) on referential success, while not per-
forming worse on other measures. This means that
the improvement comes not merely from the fact
that feedback was given; it is also important when
and where feedback is given. The crucial weakness
of the movement-based system is that it gave feed-
back for hard instances much more rarely than the
eyetracking system. Increasing recall by lowering
the system’s confidence threshold would introduce
fresh errors. Further improvements must therefore
come at the cost of a more complex monitoring sys-
tem, both conceptually and in terms of implementa-
tion effort. From this perspective, eyetracking offers
good performance at low implementation cost.

One result that seems to go against the trend is that
users of the eyetracking system moved significantly
more slowly on their way to a target. We see two
possible explanations for this. First, it may be that
users needed some time to listen to the feedback, or
were encouraged by it to look at more objects. A
second explanation is that this is not really a differ-
ence in the quality of the systems’ behavior, but a
difference in the populations over which the mean
speed was computed: The speed was only averaged
over scenes in which the users resolved the RE cor-

rectly, and the eyetracking system achieved commu-
nicative success in many cases in which the others
did not—presumably complex scenes in which the
user had to work harder to find the correct button.
This issue bears more careful analysis.

Finally, the eyetracking-based system could be
improved further in many ways. On the one hand,
it suffers from the fact that all objects in the 3D en-
vironment shift on the screen when the user turns
or moves. The user’s eyes will typically follow the
object they are currently inspecting, but lag behind
until the screen comes to a stop again. One topic
for future work would be to remove noise of this
kind from the eyetracker signal. On the other hand,
the negative feedback our system gave (“no, not that
one”) was quite unspecific. More specific feedback
(“no, the BLUE button”) might further improve the
system’s performance.

7 Conclusion

We described an interactive NLG system that uses
eyetracking to monitor the communicative success
of the REs it generates. The communication is sit-
uated in a virtual 3D environment in which the user
can move freely, and our system automatically maps
eyetracking screen coordinates to objects in the en-
vironment. A task-based evaluation found that the
eyetracking-based system outperforms both a no-
feedback system and a system whose feedback is
based on the user’s movements in the virtual envi-
ronment, along with their field of view.

Eyetracking is currently widely available in re-
search institutions, which should make our system
easy to reimplement in other situated domains. We
anticipate that eyetracking may become mainstream
technology in the not-too-distant future. But even
in a purely research context, we believe that the di-
rectness with which eyetracking allows us to observe
the hearer’s interpretation process may be useful as
a testbed for efficient theories of grounding.
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Figure 4: A screenshot from the faceLAB software, including visualization of eye-gaze position in 3D space.
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A Example interactions

The following interactions between a user (U) and
each of the three systems (S) were recorded during
the systems’ attempts to instruct the user to press the
rightmost blue button shown in Fig. 1.

A.1 Eyetracking system
(1) S: Push the right button to the right of the green

button.
U: (approaches the pair of blue and green but-
ton and inspects one of them)
S: No, not that one!
. . . (U inspects other buttons in the scene, while
S provides appropriate feedback)
U: (inspects the correct target)
S: Yes, that one!
U: (presses the correct button)

A.2 Movement system
(2) S: Push the right button to the right of the green

button.
U: (approaches the pair of blue and green but-
tons; once the user is very close to the blue but-
ton, it happens to become the only button visi-
ble on screen)
U: (continues moving closer to the blue button)
S: No, not that one!
U: (has no time to react to the system’s feed-
back and presses the wrong blue button)

A.3 No-feedback system
(3) S: Push the right button to the right of the green

button.
U: (presses the wrong blue button)

B The experimental setup

Figure 5: A faceLAB eyetracking system monitored par-
ticipants’ eye movements during the interactions.
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Abstract

We present a token-level decision summariza-
tion framework that utilizes the latent topic
structures of utterances to identify “summary-
worthy” words. Concretely, a series of
unsupervised topic models is explored and
experimental results show that fine-grained
topic models, which discover topics at the
utterance-level rather than the document-level,
can better identify the gist of the decision-
making process. Moreover, our proposed
token-level summarization approach, which
is able to remove redundancies within utter-
ances, outperforms existing utterance ranking
based summarization methods. Finally, con-
text information is also investigated to add ad-
ditional relevant information to the summary.

1 Introduction
Meetings are an important way for information shar-
ing and collaboration, where people can discuss
problems and make concrete decisions. Not sur-
prisingly, there is an increasing interest in develop-
ing methods for extractive summarization for meet-
ings and conversations (Zechner, 2002; Maskey and
Hirschberg, 2005; Galley, 2006; Lin and Chen,
2010; Murray et al., 2010a). Carenini et al. (2011)
describe the specific need for focused summaries of
meetings, i.e., summaries of a particular aspect of a
meeting rather than of the meeting as a whole. For
example, the decisions made, the action items that
emerged and the problems arised are all important
outcomes of meetings. In particular, decision sum-
maries would allow participants to review decisions
from previous meetings and understand the related
topics quickly, which facilitates preparation for the
upcoming meetings.

A:We decided our target group is the focus on who can
afford it , (1)
B:Uh I’m kinda liking the idea of latex , if if spongy is
the in thing . (2)
B:what I’ve seen , just not related to this , but of latex
cases before , is that [vocalsound] there’s uh like a hard
plastic inside , and it’s just covered with the latex . (2)
C:Um [disfmarker] And I think if we wanna keep our costs
down , we should just go for pushbuttons , (3)
D:but if it’s gonna be in a latex type thing and that’s
gonna look cool , then that’s probably gonna have a
bigger impact than the scroll wheel . (2)
A:we’re gonna go with um type pushbuttons , (3)
A:So we’re gonna have like a menu button , (4)
C:uh volume , favourite channels , uh and menu . (4)
A:Pre-set channels (4)

Decision Abstracts (Summary)
DECISION 1: The target group comprises of individuals
who can afford the product.
DECISION 2: The remote will have a latex case.
DECISION 3: The remote will have pushbuttons.
DECISION 4: The remote will have a power button, volume
buttons, channel preset buttons, and a menu button.

Figure 1: A clip of a meeting from the AMI meeting cor-
pus (Carletta et al., 2005). A, B, C and D refer to distinct
speakers; the numbers in parentheses indicate the associated
meeting decision: DECISION 1, 2, 3 or 4. Also shown is the
gold-standard (manual) abstract (summary) for each decision.

Meeting conversation is intrinsically different
from well-written text, as meetings may not be well
organized and most utterances have low density of
salient content. Therefore, multiple problems need
to be addressed for speech summarization. Consider
the sample dialogue snippet in Figure 1 from the
AMI meeting corpus (Carletta et al., 2005). Only
decision-related dialogue acts (DRDAs) — utter-
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ances at least one decision made in the meeting1 —
are listed and ordered by time. Each DRDA is la-
beled numerically according to the decision it sup-
ports; so the second and third utterances (in bold)
support DECISION 2, as do the fifth utterance in the
snippet. Manually constructed decision abstracts for
each decision are shown at the bottom of the figure.

Besides the prevalent dialogue phenomena (such
as “Uh I’m kinda liking” in Figure 1), disfluencies
and off-topic expressions, we notice that single ut-
terance is usually not informative enough to form
a decision. For instance, no single DRDA associ-
ated with DECISION 4 corresponds all that well with
its decision abstract: “pushbuttons”, “menu button”
and “Pre-set channels” are mentioned in separate
DAs. As a result, extractive summarization methods
that select individual utterance to form the summary
will perform poorly.

Furthermore, it is difficult to identify the core
topic when multiple topics are discussed in one ut-
terance. For example, all of the bold DRDAs sup-
porting DECISION 2 contain the word “latex”. How-
ever, the last DA in bold also mentions “bigger im-
pact” and “the scroll wheel”, which are not specifi-
cally relevant for DECISION 2. Though this problem
can be approached by training a classifier to identify
the relevant phrases and ignore the irrelevant ones
or dialogue phenomena, it needs expensive human
annotation and is limited to the specific domain.

Note also that for DECISION 4, the “power but-
ton” is not specified in any of the listed DRDAs
supporting it. By looking at the transcript, we find
“power button” mentioned in one of the preceding,
but not decision-related DAs. Consequently another
challenge would be to add complementary knowl-
edge when the DRDAs cannot provide complete in-
formation.

Therefore, we need a summarization approach
that is tolerant of dialogue phenomena, can deter-
mine the key semantic content and is easily trans-
ferable between domains. Recently, topic model-
ing approaches have been investigated and achieved
state-of-the-art results in multi-document summa-
rization (Haghighi and Vanderwende, 2009; Celiky-

1These DRDAs are annotated in the AMI corpus and usually
contain the decision content. They are similar, but not com-
pletely equivalent, to the decision dialogue acts (DDAs) of Bui
et al. (2009), Fernández et al. (2008), Frampton et al. (2009).

ilmaz and Hakkani-Tur, 2010). Thus, topic mod-
els appear to be a better ref for document simi-
larity w.r.t. semantic concepts than simple literal
word matching. However, very little work has in-
vestigated its role in spoken document summariza-
tion (Chen and Chen, 2008; Hazen, 2011), and much
less conducted comparisons among topic modeling
approaches for focused summarization in meetings.

In contrast to previous work, we study the un-
supervised token-level decision summarization in
meetings by identifying a concise set of key words
or phrases, which can either be output as a com-
pact summary or be a starting point to generate ab-
stractive summaries. This paper addresses problems
mentioned above and make contributions as follows:

• As a step towards creating the abstractive sum-
maries that people prefer when dealing with spo-
ken language (Murray et al., 2010b), we propose a
token-level rather than sentence-level framework
for identifying components of the summary. Ex-
perimental results show that, compared to the sen-
tence ranking based summarization algorithms,
our token-level summarization framework can bet-
ter identify the summary-worthy words and re-
move the redundancies.

• Rather than employing supervised learning meth-
ods that rely on costly manual annotation, we ex-
plore and evaluate topic modeling approaches of
different granularities for the unsupervised deci-
sion summarization at both the token-level and di-
alogue act-level. We investigate three topic mod-
els — Local LDA (LocalLDA) (Brody and El-
hadad, 2010), Multi-grain LDA (MG-LDA) (Titov
and McDonald, 2008) and Segmented Topic
Model (STM) (Du et al., 2010) — which can uti-
lize the latent topic structure on utterance level
instead of document level. Under our proposed
token-level summarization framework, three fine-
grained models outperform the basic LDA model
and two extractive baselines that select the longest
and the most representative utterance for each de-
cision, respectively. (ROUGE-SU4 F score of
14.82% for STM vs. 13.58% and 13.46% for
the baselines, given the perfect clusterings of DR-
DAs.)

• In line with prior research that explore the role of
context for utterance-based extractive summariza-
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tion (Murray and Renals, 2007), we investigate the
role of context in our token-level summarization
framework. For the given clusters of DRDAs, We
study two types of context information — the DAs
preceding and succeeding a DRDA and DAs of
high TF-IDF similarity with a DRDA. We also in-
vestigate two ways to select relevant words from
the context DA. Experimental results show that
two types of context have comparable effect, but
selecting words from the dominant topic of the
center DRDA performs better than from the dom-
inant topic of the context DA. Moreover, by lever-
aging context, the recall exceeds the provided up-
perbound’s recall (ROUGE-1 recall: 48.10% vs.
45.05% for upperbound by using DRDA only) al-
though the F scores decrease after adding context
information. Finally, we show that when the true
DRDA clusterings are not available, adding con-
text can improve both the recall and F score.

2 Related Work
Speech and dialogue summarization has become im-
portant in recent years as the number of multime-
dia resources containing speech has grown. A pri-
mary goal for most speech summarization systems
is to account for the special characteristics of di-
alogue. Early work in this area investigated su-
pervised learning methods, including maximum en-
tropy, conditional random fields (CRFs), and sup-
port vector machines (SVMs) (Buist et al., 2004;
Galley, 2006; Xie et al., 2008). For unsupervised
methods, maximal marginal relevance (MMR) is in-
vestigated in (Zechner, 2002) and (Xie and Liu,
2010). Gillick et al. (2009) introduce a concept-
based global optimization framework by using in-
teger linear programming (ILP).

Only in very recent works has decision sum-
marization been addressed in (Fernández et al.,
2008), (Bui et al., 2009) and (Wang and Cardie,
2011). (Fernández et al., 2008) and (Bui et al., 2009)
utilize semantic parser to identify candidate phrases
for decision summaries and employ SVM to rank
those phrases. They also train HMM and SVM
directly on a set of decision-related dialogue acts
on token level and use the classifiers to identify
summary-worthy words. Wang and Cardie (2011)
provide an exploration on supervised and unsuper-
vised learning for decision summarization on both

utterance- and token- level.
Our work also arises out of applying topic mod-

els to text summarization (Bhandari et al., 2008;
Haghighi and Vanderwende, 2009; Celikyilmaz and
Hakkani-Tur, 2010; Celikyilmaz and Hakkani-Tur,
2010). Mostly, the sentences are ranked according to
importance based on latent topic structures, and top
ones are selected as the summary. There are some
works for applying document-level topic models to
speech summarization (Kong and shan Leek, 2006;
Chen and Chen, 2008; Hazen, 2011). Different from
their work, we further investigate the topic models of
fine granularity on sentence level and leverage con-
text information for decision summarization task.

Most existing approaches for speech summariza-
tion result in a selection of utterances from the dia-
logue, which cannot remove the redundancy within
utterances. To eliminate the superfluous words, our
work is also inspired by keyphrase extraction of
meetings (Liu et al., 2009; Liu et al., 2011) and
keyphrase based summarization (Riedhammer et al.,
2010). However, a small set of keyphrases are not
enough to concretely display the content. Instead of
only picking up keyphrases, our work identifies all
of the summary-worthy words and phrases, and re-
moves redundancies within utterances.

3 Summarization Frameworks
In this section, we first present our proposed token-
level decision summarization framework — Dom-
Sum — which utilizes latent topic structure in ut-
terances to extract words from Dominant Topic (see
details in Section 3.1) to form Summaries. In Sec-
tion 3.2, we describe four existing sentence scor-
ing metrics denoted as OneTopic, MultiTopic, TMM-
Sum and KLSum which are also based on latent topic
distributions. We adopt them to the utterance-level
summarization for comparison in Section 6.

3.1 Token-level Summarization Framework
Domsum takes as input the clusters of DRDAs (with
or without additional context DAs), the topic distri-
bution for each DA and the word distribution for
each topic. The output is a set of topic-coherent
summary-worthy words which can be used directly
as the summary or to further generate abstractive
summary. We introduce DomSum in two steps ac-
cording to its input: taking clusters of DRDAs as the
input and with additional context information.
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DRDAs Only. Given clusters of DRDAs, we use
Algorithm 1 to produce the token-level summary for
each cluster. Generally, Algorithm 1 chooses the
topic with the highest probability as the dominant
topic given the dialogue act (DA). Then it collects
the words with a high joint probability with the dom-
inant topic from that DA.

Input : Cluster C = {DAi}, P (Tj |DAi), P (wk|Tj)
Output: Summary

Summary← Φ (empty set)
foreach DAi in C do

DomTopic← maxTj
P (Tj |DAi) (*)

Candidate← Φ
foreach word wk in DAi do

SampleTopic← maxTj
P (wk|Tj)P (Tj |DAi)

if DomTopic == SampleTopic then
Candidate← Union(Candidate, wk)

end
end
Summary← Union(Summary, Candidate)

end

Algorithm 1: DomSum — The token-level sum-
marization framework. DomSum takes as input the
clusters of DRDAs and related probability distribu-
tions.

Leveraging Context. For each DRDA (denoted as
“center DA”), we study two types of context infor-
mation (denoted as “context DAs”). One is adjacent
DAs, i.e., immediately preceding and succeeding
DAs, the other is the DAs having top TF-IDF simi-
larities with the center DA. Context DAs are added
into the cluster the corresponding center DA in.

We also study two criteria of word selection from
the context DAs. For each context DA, we can take
the words appearing in the dominant topic of ei-
ther this context DA or its center DRDA. We will
show in Section 6.1 that the latter performs better
as it produces more topic-coherent summaries. Al-
gorithm 1 can be easily modified to leverage context
DAs by updating the input clusters and assigning the
proper dominant topic for each DA accordingly —
this changes the step (∗) in Algorithm 1.

3.2 Utterance-level Summarization Metrics

We also adopt four sentence scoring metrics based
on the latent topic structure for extractive summa-
rization. Though they are developed on different
topic models, given the desired topic distributions as
input, they can rank the utterances according to their
importance and provide utterance-level summaries
for comparison.

OneTopic and MultiTopic. In (Bhandari et al.,
2008), several sentence scoring functions are intro-
duced based on Probabilistic Latent Semantic Index-
ing. We adopt two metrics, which are OneTopic
and MultiTopic. For OneTopic, topic T with high-
est probability P (T ) is picked as the central topic
per cluster C. The score for DA in C is:

P (DA|T ) =

∑
w∈DA P (T |DA,w)

∑
DA′∈C,w∈DA′ P (T |DA′, w)

,

MultiTopic modifies OneTopic by taking all of the
topics into consideration. Given a cluster C, DA in
C is scored as:
∑

T

P (DA|T )P (T ) =
∑

T

∑
w∈DA P (T |DA,w)

∑
DA′∈C,w∈DA′ P (T |DA′, w)

P (T )

TMMSum. Chen and Chen (2008) propose a Top-
ical Mixture Model (TMM) for speech summariza-
tion, where each dialogue act is modeled as a TMM
for generating the document. TMM is shown to
provide better utterance-level extractive summaries
for spoken documents than other conventional unsu-
pervised approaches, such as Vector Space Model
(VSM) (Gong and Liu, 2001), Latent Semantic
Analysis (LSA) (Gong and Liu, 2001) and Max-
imum Marginal Relevance (MMR) (Murray et al.,
2005). The importance of a sentence S can be mea-
sured by its generative probability P (D|S), where
D is the document S belongs to. In our experiments,
one decision is made per cluster of DAs. So we
adopt their scoring metric to compute the generative
probability of the cluster C for each DA:

P (C|DA) =
∏

wi∈C

∑

Tj

P (wi|Tj)P (Tj |DA),

KLSum. Kullback-Lieber (KL) divergence is ex-
plored for summarization in (Haghighi and Vander-
wende, 2009) and (Lin et al., 2010), where it is used
to measure the distance of distributions between the
document and the summary. For a cluster C of DAs,
given a length limit θ, a set of DAs S is selected as:

S∗ = arg min
S:|S|<θ

KL(PC ||PS) = arg min
S:|S|<θ

∑

Ti

P (Ti|C)log
P (Ti|C)

P (Ti|S)

4 Topic Models
In this section, we briefly describe the three fine-
grained topic models employed to compute the la-
tent topic distributions on utterance level in the
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meetings. According to the input of Algorithm 1,
we are interested in estimating the topic distribution
for each DA P (T |DA) and the word distribution
for each topic P (w|T ). For MG-LDA, P (T |DA)
is computed as the expectation of local topic distri-
butions with respect to the window distribution.
4.1 Local LDA
Local LDA (LocalLDA) (Brody and Elhadad, 2010)
uses almost the same probabilistic generative model
as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), except that it treats each sentence as a sepa-
rate document2. Each DA d is generated as follows:

1. For each topic k:
(a) Choose word distribution: φk ∼ Dir(β)

2. For each DA d:
(a) Choose topic distribution: θd ∼ Dir(α)

(b) For each word w in DA d:
i. Choose topic: zd,w ∼ θd

ii. choose word: w ∼ φzd,w

4.2 Multi-grain LDA
Multi-grain LDA (MG-LDA) (Titov and McDonald,
2008) can model both the meeting specific topics
(e.g. the design of a remote control) and various con-
crete aspects (e.g. the cost or the functionality). The
generative process is:

1. Choose a global topic distribution: θglm ∼ Dir(αgl)
2. For each sliding window v of size T :

(a) Choose local topic distribution: θlocm,v ∼ Dir(αloc)
(b) Choose granularity mixture: πm,v ∼ Beta(αmix)

3. For each DA d:
(a) choose window distribution: ψm,d ∼ Dir(γ)

4. For each word w in DA d of meeting m:
(a) Choose sliding window: vm,w ∼ ψm,d
(b) Choose granularity: rm,w ∼ πm,vm,w

(c) If rm,w = gl, choose global topic: zm,w ∼ θglm
(d) If rm,w = loc, choose local topic: zm,w ∼ θlocm,vm,w

(e) Choose word w from the word distribution: φrm,w
zm,w

4.3 Segmented Topic Model
The last model we utilize is Segmented Topic Model
(STM) (Du et al., 2010), which jointly models
document- and sentence-level latent topics using
a two-parameter Poisson Dirichlet Process (PDP).
Given parameters α, γ,Φ and PDP parameters a, b,
the generative process is:

1. Choose distribution of topics: θm ∼ Dir(α)

2. For each dialogue act d:

2For the generative process of LDA, the DAs in the same
meeting make up the document, so “each DA” is changed to
“each meeting” in LocalLDA’s generative process.

(a) Choose distribution of topics: θd ∼ PDP (θm, a, b)

3. For each word w in dialogue act d:

(a) Choose topic: zm,w ∼ θd
(b) Choose word: w ∼ φzm,w

5 Experimental Setup
The Corpus. We evaluate our approach on the
AMI meeting corpus (Carletta et al., 2005) that con-
sists of 140 multi-party meetings. The 129 scenario-
driven meetings involve four participants playing
different roles on a design team. A short (usually
one-sentence) abstract is manually constructed to
summarize each decision discussed in the meeting
and used as gold-standard summaries in our experi-
ments.

System Inputs. Our summarization system re-
quires as input a partitioning of the DRDAs accord-
ing to the decision(s) that each supports (i.e., one
cluster of DRDAs per decision). As mentioned ear-
lier, we assume for all experiments that the DRDAs
for each meeting have been identified. For evalua-
tion we consider two system input settings. In the
True Clusterings setting, we use the AMI annota-
tions to create perfect partitionings of the DRDAs
as the input; in the System Clusterings setting, we
employ a hierarchical agglomerative clustering algo-
rithm used for this task in previous work (Wang and
Cardie, 2011). The Wang and Cardie (2011) cluster-
ing method groups DRDAs according to their LDA
topic distribution similarity. As better approaches
for DRDA clustering become available, they could
be employed instead.

Evaluation Metric. To evaluate the performance
of various summarization approaches, we use the
widely accepted ROUGE (Lin and Hovy, 2003) met-
rics. We use the stemming option of the ROUGE
software at http://berouge.com/ and remove
stopwords from both the system and gold-standard
summaries, same as Riedhammer et al. (2010) do.

Inference and Hyperparameters We use the im-
plementation from (Lu et al., 2011) for the three
topic models in Section 4. The collapsed Gibbs
Sampling approach (Griffiths and Steyvers, 2004) is
exploited for inference. Hyperparameters are cho-
sen according to (Brody and Elhadad, 2010), (Titov
and McDonald, 2008) and (Du et al., 2010). In LDA
and LocalLDA, α and β are both set to 0.1 . For
MG-LDA, αgl, αloc and αmix are set to 0.1; γ is 0.1
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and the window size T is 3. And the number of lo-
cal topic is set as the same number of global topic as
discussed in (Titov and McDonald, 2008). In STM,
α, a and b are set to 0.5, 0.1 and 1, respectively.

5.1 Baselines and Comparisons
We compare our token-level summarization frame-
work based on the fine-grained topic models to (1)
two unsupervised baselines, (2) token-level summa-
rization by LDA, (3) utterance-level summarization
by Topical Mixture Model (TMM) (Chen and Chen,
2008), (4) utterance-level summarization based on
the fine-grained topic models using existing metrics
(Section 3.2), (5) two supervised methods, and (6)
an upperbound derived from the AMI gold standard
decision abstracts. (1) and (6) are described below,
others will be discussed in Section 6.

The LONGEST DA Baseline. As in (Riedhammer
et al., 2010) and (Wang and Cardie, 2011), this base-
line simply selects the longest DRDA in each cluster
as the summary. Thus, it performs utterance-level
decision summarization. This baseline and the next
allow us to determine summary quality when sum-
maries are restricted to a single utterance.

The PROTOTYPE DA Baseline. Following Wang
and Cardie (2011), the second baseline selects the
decision cluster prototype (i.e., the DRDA with the
largest TF-IDF similarity with the cluster centroid)
as the summary.

Upperbound. We also compute an upperbound
that reflects the gap between the best possible ex-
tractive summaries and the human-written abstracts
according to the ROUGE score: for each cluster of
DRDAs, we select the words that also appear in the
associated decision abstract.

6 Results and Discussion
6.1 True Clusterings
How do fine-grained topic models compare to ba-
sic topic models or baselines? Figure 2 demon-
strates that by using the DomSum token-level sum-
marization framework, the three fine-grained topic
models uniformly outperform the two non-trivial
baselines and TMM (Chen and Chen, 2008) (reim-
plemented by us) that generates utterance-level sum-
maries. Moreover, the fine-grained models also beat
basic LDA under the same DomSum token-level
summarization framework. This shows the fine-
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Figure 2: With true clusterings of DRDAs as the input, we use
DomSum to compare the performance of LocalLDA, MGLDA
and STM against two baselines, LDA and TMM. “# topic” in-
dicates the number of topics for the model. For MGLDA, “#
topic” is the number of local topics.
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Figure 3: With true clusterings of DRDAs as the input, Dom-
Sum is compared with four DA-level summarization metrics us-
ing topic distributions from STM. Results from LocalLDA and
MGLDA are similar so they are not displayed.

grained topic models that discover topic structures
on utterance-level better identify gist information.

Can the proposed token-level summarization
framework better identify important words and
remove redundancies than utterance selection
methods? Figure 3 demonstrates the comparison
results for our DomSum token-level summarization
framework with four existing utterance scoring met-
rics discussed in Section 3.2, namely OneTopic,
MultiTopic, TMMSum and KLSum. The utterance
with highest score is extracted to form the summary.
LocalLDA and STM are utilized to compute the in-
put distributions, i.e., P (T |DA) and P (w|T ). From
Figure 3, DomSum yields the best F scores which
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current context DA (“Multi”) are investigated.
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Figure 5: By using adjacent DAs as context, DomSum is com-
pared with two DA-level summarization metrics: OneTopic and
MultiTopic. For DomSum, the words of context DA from dom-
inant topic of the center DA (“One”) is selected; For OneTopic
and MultiTopic, three top ranked DAs are selected.

shows that the token-level summarization approach
is more effective than utterance-level methods.

Which way is better for leveraging context infor-
mation? We explore two types of context infor-
mation. For adjacent content (Adj in Figure 4), 5
DAs immediately preceding and 5 DAs succeeding
the center DRDA are selected. For TF-IDF context
(TFIDF in Figure 4), 10 DAs of highest TF-IDF sim-
ilarity with the center DRDA are taken. We also
explore two ways to extract summary-worthy words
from the context DA — selecting words from the
dominant topic of either the center DA (denoted as
“One” in parentheses in Figure 4) or the current con-
text DA (denoted as “multi” in parentheses in Fig-

True Clusterings
R-1 R-2 R-SU4

PREC REC F1 F1 F1
Baselines
Longest DA 34.06 31.28 32.61 12.03 13.58
Prototype DA 40.72 28.21 33.32 12.18 13.46
Supervised
Methods
CRF 52.89 26.77 35.53 11.48 14.03
SVM 43.24 37.92 40.39 12.78 16.24
Our Approach
5 topics
LocalLDA 35.18 38.92 36.95 12.33 14.74

+ context 17.26 45.34 25.00 8.40 11.05
STM 34.06 41.30 37.32 12.42 14.82

+ context 15.60 48.10 23.56 8.16 9.98
10 topics
LocalLDA 36.20 36.81 36.50 12.04 14.34

+ context 21.82 41.57 28.62 9.61 12.24
STM 34.15 40.83 37.19 12.40 14.56

+ context 17.87 46.57 25.82 8.89 10.97
Upperbound 100.00 45.05 62.12 33.27 34.89

Table 1: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-SU4
(R-SU4) scores for our proposed token-level summarization ap-
proaches along with two baselines, supervised methods and the
Upperbound (only using DRDAs). — all use True Clusterings

ure 4). Figure 4 indicates that the two types of con-
text information do not have significant difference,
while selecting the words from the dominant topic
of the center DA results in better ROUGE-SU4 F
scores. Notice that compared with Figure 3, the re-
sults in Figure 4 have lower F scores when using the
true clusterings of DRDAs. This is because context
DAs bring in relevant words as well as noisy infor-
mation. We will show in Section 6.2 that when true
clusterings are not available, the context information
can boost both recall and F score.

How do the token-level summarization frame-
work compared to utterance selection methods
for leveraging context? We also compare the
ability of leveraging context of DomSum to utter-
ance scoring metrics, i.e., OneTopic and MultiTopic.
5 DAs preceding and 5 DAs succeeding the center
DA are added as context information. For context
DA under DomSum, we select words from the dom-
inant topic of the center DA (denoted as “One” in
parentheses in Figure 5). For OneTopic and Mul-
tiTopic, the top 3 DAs are extracted as the sum-
mary. Figure 5 demonstrates the combination of Lo-
calLDA and STM with each of the metrics. Dom-
Sum, as a token-level summarization metrics, domi-
nates other two metrics in leveraging context.
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System Clusterings
R-1 R-2 R-SU4

PREC REC F1 F1 F1
Baselines
Longest DA 17.06 11.64 13.84 2.76 3.34
Prototype DA 18.14 10.11 12.98 2.84 3.09
Supervised
Methods
CRF 46.97 15.25 23.02 6.09 9.11
SVM 39.05 18.45 25.06 6.11 9.82
Our Approach
5 topics
LocalLDA 25.57 16.57 20.11 4.03 5.87

+ context 20.68 25.96 23.02 3.09 4.48
STM 24.15 17.82 20.51 4.03 5.69

+ context 20.64 30.03 24.47 3.59 4.76
10 topics
LocalLDA 25.98 15.94 19.76 3.59 4.41

+ context 23.98 21.92 22.90 3.45 4.10
STM 26.32 19.14 22.16 4.07 5.88

+ context 22.50 28.40 25.11 3.43 4.15

Table 2: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-SU4
(R-SU4) scores for our proposed token-level summarization ap-
proaches, compared with two baselines and supervised meth-
ods. — all use System Clusterings

How do our approach perform when compared
with supervised learning approaches? For a bet-
ter comparison, we also provide summarization
results by using supervised systems along with
an upperbound. We use Support Vector Ma-
chines (Joachims, 1998) with RBF kernel and order-
1 Conditional Random Fields (Lafferty et al., 2001)
— trained with the same features as (Wang and
Cardie, 2011) to identify the summary-worthy to-
kens to include in the abstract. A three-fold cross
validation is conducted for both methods. ROUGE-
1, ROUGE-2 and ROUGE-SU4 scores are listed in
Table 1. From Table 1, our token-level summa-
rization approaches based on LocalLDA and STM
are shown to outperform the baselines and even the
CRF. Meanwhile, by adding context information,
both LocalLDA and STM can get better ROUGE-1
recall than the supervised methods, even higher than
the provided upperbound which is computed by only
using DRDAs. This shows the DomSum framework
can leverage context to compensate the summaries.
6.2 System Clusterings
Results using the System Clusterings (Table 2)
present similar findings, though all of the system and
baseline scores are lower. By adding context infor-
mation, the token-level summarization approaches
based on fine-grained topic models compare favor-

DRDA (1): I think if we can if we can include them at not too
much extra cost, then I’d put them in,
DRDA (2): Uh um we we’re definitely going in for voice
recognition as well as LCDs, mm.
DRDA (3): So we’ve basically worked out that we’re going
with a simple battery,
context DA (1):So it’s advanced integrated circuits?
context DA (2):the advanced chip
context DA (3): and a curved on one side case which is folded
in on itself , um made out of rubber
Decision Abstract: It will have voice recognition, use a simple
battery, and contain an advanced chip.
Longest DA & Prototype DA: Uh um we we’re definitely going
in for voice recognition as well as LCDs, mm.
TMM: I think if we can if we can include them at not too much
extra cost, then I’d put them in,
SVM: cost voice recognition simple battery
CRF: voice recognition battery
STM: extra cost, definitely going voice recognition LCDs,
simple battery
STM + context: cost, company, advanced integrated circuits, going
voice recognition, simple battery, advanced chip, curved case rubber

Table 3: Sample system outputs by different methods are in the
third cell (methods’ names are in bold). First cell contains three
DRDAs supporting the decision in the second cell and three ad-
jacent DAs of them.

ably to the supervised methods in F scores, and also
get the best ROUGE-1 recalls.
6.3 Sample System Summaries
To better exemplify the summaries generated by
different systems, sample output for each method
is shown in Table 3. We see from the table that
utterance-level extractive summaries (Longest DA,
Prototype DA, TMM) make more coherent but still
far from concise and compact abstracts. On the other
hand, the supervised methods (SVM, CRF) that pro-
duce token-level extracts better identify the overall
content of the decision abstract. Unfortunately, they
require human annotation in the training phase. In
comparison, the output of fine-grained topic models
can cover the most useful information.

7 Conclusion
We propose a token-level summarization framework
based on topic models and show that modeling topic
structure at the utterance-level is better at identify-
ing relevant words and phrases than document-level
models. The role of context is also studied and
shown to be able to identify additional summary-
worthy words.
Acknowledgments This work was supported in part by
National Science Foundation Grants IIS-0968450 and
IIS-1111176, and by a gift from Google.
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Abstract

This paper proposes an unsupervised ap-
proach to user simulation in order to automati-
cally furnish updates and assessments of a de-
ployed spoken dialog system. The proposed
method adopts a dynamic Bayesian network
to infer the unobservable true user action from
which the parameters of other components are
naturally derived. To verify the quality of the
simulation, the proposed method was applied
to the Let’s Go domain (Raux et al., 2005)
and a set of measures was used to analyze the
simulated data at several levels. The results
showed a very close correspondence between
the real and simulated data, implying that it is
possible to create a realistic user simulator that
does not necessitate human intervention.

1 Introduction

For the past decade statistical approaches to dialog
modeling have shown positive results for optimizing
a dialog strategy with real data by applying well-
understood machine learning methods such as rein-
forcement learning (Henderson et al., 2008; Thom-
son and Young, 2010; Williams and Young, 2007b).
User simulation is becoming an essential component
in developing and evaluating such systems. In this
paper we describe an unsupervised process to au-
tomatically develop user simulators. The motiva-
tion for this comes from the fact that many systems
are presently moving from being simple lab simu-
lations to actual deployed systems with real users.
These systems furnish a constant flow of new data
that needs to be processed in some way. Our goal is
to minimize human intervention in processing this

data. Previously, data had to be hand-annotated, a
slow and costly process. Recently crowdsourcing
has made annotation faster and less expensive, but
all of the data still has to be processed and time
must be spent in creating the annotation interface
and tasks, and in quality control. Our goal is to pro-
cess the metadata (e.g. user actions, goals, error ty-
pology) in an unsupervised manner. And our method
eliminates the need for human transcription and an-
notation by inferring the user goal from grounding
information. We also consider user actions as la-
tent variables which are inferred based on observa-
tions from Automatic Speech Recognition (ASR).
We used the above inferred user actions paired with
the observed actions to build an error model. Since
the focus of this work is placed on improving and
evaluating the dialog strategy, error simulation can
be carried out at the semantic level. This eliminates
the need for transcription, which would have neces-
sitated an error simulation at the surface level. The
end result here will be a system that has as little hu-
man intervention as possible.

This paper is structured as follows. Section 2 de-
scribes previous research and the novelty of our ap-
proach. Section 3 elaborates on our proposed un-
supervised approach to user simulation. Section 4
explains the experimental setup. Section 5 presents
and discusses the results. Finally, Section 6 con-
cludes with a brief summary and suggestions for fu-
ture research.

2 Related Work

Previous user simulation studies can be roughly cat-
egorized into rule-based methods (Chung, 2005;
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Lopez-Cozar et al., 2006; Schatzmann et al., 2007a)
and data-driven methods (Cuayahuitl et al., 2005;
Eckert et al., 1997; Jung et al., 2009; Levin et al.,
2000; Georgila et al., 2006; Pietquin, 2004). Rule-
based methods generally allow for more control over
their designs for the target domain while data-driven
methods afford more portability from one domain to
another and are attractive for modeling user behav-
ior based on real data. Although development costs
for data-driven methods are typically lower than
those of rule-based methods, previous data-driven
approaches have still required a certain amount of
human effort. Most intention-level models take a
semantically annotated corpus to produce user in-
tention without introducing errors (Cuayahuitl et al.,
2005; Jung et al., 2009). Surface-level approaches
need transcribed data to train their surface form and
error generating models (Jung et al., 2009; Schatz-
mann et al., 2007b). A few studies have attempted to
directly simulate the intention, surface, and error by
applying their statistical methods on the recognized
data rather than on the transcribed data (Georgila et
al., 2006; Schatzmann et al., 2005). Although such
approaches can avoid human intervention, the sole
incorporation of erroneous user action can propa-
gate those errors to the higher-level discourse fea-
tures which are computed from them, and thus could
result in less realistic user behavior. In this work, the
true user action is treated as a hidden variable and,
further, its associated dialog history is also viewed as
latent so that the uncertainty of the true user action
is properly controlled in a principled manner. Syed
and Williams (2008) adopted the Expectation Max-
imization algorithm for parameter learning for a la-
tent variable model. But their method still requires a
small amount of transcribed data to learn the obser-
vation confusability, and it suffers from overfitting
as a general property of maximum likelihood. To
address this problem, we propose a Bayesian learn-
ing method, which requires no transcribed data.

3 Unsupervised Approach to User
Simulation

Before describing each component in detail, we
present the overall process of user simulation with
an example in the Let’s Go domain in Figure 1. To
begin a dialog, the user simulator first sets the user

Figure 1: The overall process of user simulation in the
Let’s Go domain, where users call the spoken dialog sys-
tem to get bus schedule information for Pittsburgh

goal by sampling the goal model. Then the user sim-
ulator engages in a conversation with the dialog sys-
tem until the termination model ends it. At each
turn, the termination model randomly determines
whether the dialog will continue or not. If the dia-
log continues, the user model generates user actions
at the predicate level with respect to the given user
goal and system action. Having the user actions, the
error template model transforms some user actions
into other actions if necessary and determines which
action will receive an incorrect value. After that, the
error value model substantiates the values by draw-
ing a confusable value if specified to be incorrect or
by using the goal value. Finally, a confidence score
will be attached to the user action by sampling the
confidence score model which conditions on the cor-
rectness of the final user action.

3.1 Goal Model
The goal model is the first component to be de-
fined in terms of the working flow of the user sim-
ulator. In order to generate a plausible user goal
in accordance with the frequency at which it ap-
pears in a real situation, the dialog logs are parsed
to look for the grounding information1 that the users
have provided. Since the representation of a user
goal in this study is a vector of constraints required
by a user, for example [Route:61C, Source:CMU,

1Specifically, we used explicitly confirmed information by
the system for this study
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Destination:AIRPORT, Time:6 PM], each time we
encounter grounding information that includes the
constraints used in the backend queries, this is added
to the user goal. If two actions contradict each other,
the later action overwrites the earlier one. Once all
of the user goals in the data have been gathered,
a discrete distribution over the user goal is learned
using a maximum likelihood estimation. Because
many variables later in this paper are discrete, a gen-
eral notation of a conditional discrete distribution is
expressed as follows:

p(xi|xpa(i),θ) =
∏

k,k′
θ
δ(pa(i),k)δ(xi,k

′)
k,k′ (1)

where k represents the joint configuration of all the
parents of i and δ(·, ·) denotes Kronecker delta. Note
that

∑
k′ θk,k′ = 1. Given this notation, the goal

model Λ can be written in the following form:

g ∼ p(g|Λ) =
∏

k

λ
δ(g,k)
k (2)

3.2 User Model
Having generated a user goal, the next task is to infer
an appropriate user action for the given goal and sys-
tem action. This is what the user model does. Since
one of key properties of our unsupervised approach
is that the true user actions are not observable, the
user model should maintain a belief over the dia-
log state by taking into consideration the observed
user actions. Inspired by (Williams et al., 2005),
to keep the complexity of the user model tractable,
a dynamic Bayesian network is adopted with sev-
eral conditional independence assumptions, giving
rise to the graphical structure which is shown in Fig-
ure 2. Unlike belief tracking in a dialog system, the
user goal in a user simulation is pre-determined be-
fore the beginning of the dialog. As with most pre-
vious studies, this property allows the user model
to deal with a predicate-level action consisting of a
speech act and a concept (e.g. [Inform(Source), In-
form(Time)]) and is only concerned about whether a
given field is specified or not in the user goal (e.g.
Bus:Unspecified, Source:Specified). This abstract-
level handling enables the user model to employ ex-
act inference algorithms such as the junction tree
algorithm (Lauritzen and Spiegelhalter, 1988) for
more efficient reasoning over the graphical structure.

Figure 2: The graphical structure of the dynamic
Bayesian network for the user model. g denotes the user
goal and st,ut,ht,ot represents the system action, the
user action, the dialog history, and the observed user ac-
tion for each time slice, respectively. The shaded items
are observable and the transparent ones are latent.

The joint distribution for this model is given by

p(g,S,H,U,O|Θ)

= p(h0|π)
∏

t

p(ut|g, st,ht−1,φ)

· p(ht|ht−1,ut,η)p(ot|ut, ζ)

(3)

where a capital letter stands for the set of
corresponding random variables, e.g., U =
{u1, . . . ,uN}, and Θ = {π,φ,η, ζ} denotes the
set of parameters governing the model2.

For a given user goal, the user model basically
performs an inference to obtain a marginal distribu-
tion over ut for each time step from which it can
sample the probability of a user action in a given
context:

ut ∼ p(ut|g, st1,ut−11 ,Θ) (4)

where st1 denotes the set of system actions from time
1 to time t and ut−11 is the set of previously sampled
user actions from time 1 to time t− 1.

3.2.1 Parameter Estimation
As far as parameters are concerned, ζ is a determin-
istic function that yields a fraction of an observed
confidence score in accordance with the degree of
agreement between ut and ot:

p(ot|ut) = CS(ot) ·
( |ot ∩ ut|
|ot ∪ ut|

)p
+ ε (5)

2Here, uniform prior distributions are assigned on g and S
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where CS(·) returns the confidence score of the as-
sociated observation and p is a control variable over
the strength of disagreement penalty3. In addition, π
and η are deterministically set by simple discourse
rules, for example:

p(ht = Informed|ht−1,ut) =
{

1 if ht−1 = Informed or ut = Inform(·),
0 otherwise.

(6)

The only parameter that needs to be learned in the
user model, therefore, is φ and it can be estimated
by maximizing the likelihood function (Equation 7).
The likelihood function is obtained from the joint
distribution (Equation 3) by marginalizing over the
latent variables.

p(g,S,O|Θ) =
∑

H,U

p(g,S,H,U,O|Θ) (7)

Since direct maximization of the likelihood func-
tion will lead to complex expressions with no
closed-form solutions due to the latent variables, the
Expectation-Maximization (EM) algorithm is an ef-
ficient framework for finding maximum likelihood
estimates.

As it is well acknowledged, however, that over-
fitting can arise as a general property of maximum
likelihood, especially when only a small amount of
data is available, a Bayesian approach needs to be
adopted. In a Bayesian model, any unknown pa-
rameter is given a prior distribution and is absorbed
into the set of latent variables, thus it is infeasible
to directly evaluate the posterior distribution of the
latent variables and the expectations with respect to
this distribution. Therefore a deterministic approx-
imation, called mean field theory (Parisi, 1988), is
applied.

In mean field theory, the family of posterior distri-
butions of the latent variables is assumed to be par-
titioned into disjoint groups:

q(Z) =
M∏

i=1

qi(Zi) (8)

where Z = {z1, . . . , zN} denotes all latent variables
including parameters and Zi is a disjoint group.

3For this study, p was set to 1.0

Amongst all distributions q(Z) having the form of
Equation 8, we then seek the member of this family
for which the divergence from the true posterior dis-
tribution is minimized. To achieve this, the follow-
ing optimization with respect to each of the qi(Zi)
factors is to be performed in turn (Bishop, 2006):

ln q∗j (Zj) = Ei 6=j
[
ln p(X,Z)

]
+ const (9)

where X = {x1, . . . ,xN} denotes all observed vari-
ables and Ei 6=j means an expectation with respect to
the q distributions over all groups Zi for i 6= j.

Now, we apply the mean field theory to the user
model. Before doing so, we need to introduce the
prior over the parameter φ which is a product of
Dirichlet distributions4.

p(φ) =
∏

k

Dir(φk|α0
k)

=
∏

k

C(α0
k)
∏

l

φ
α0
k−1

k,l

(10)

where k represents the joint configuration of all of
the parents and C(α0

k) is the normalization constant
for the Dirichlet distribution. Note that for symme-
try we have chosen the same parameter α0

k for each
of the components.

Next we approximate the posterior distribution,
q(H,U,φ) using a factorized form, q(H,U)q(φ).
Then we first apply Equation 9 to find an expression
for the optimal factor q∗(φ):

ln q∗(φ) = EH,U

[
ln p(g,S,H,U,O,Θ)

]
+ const

= EH,U

[∑

t

ln p(ut|g, st,ht−1,φ)

]

+ ln p(φ) + const

=
∑

t

∑

i,j,k,l

(
EH,U

[
δi,j,k,l

]
lnφi,j,k,l

)

+
∑

i,j,k,l

(αoi,j,k,l − 1) lnφi,j,k,l + const

=
∑

i,j,k,l

((
EH,U[ni,j,k,l] + (αoi,j,k,l − 1)

)

· lnφi,j,k,l
)

+ const

(11)
4Note that priors over parameters for deterministic distribu-

tions (e.i., π,η,and ζ) are not necessary.
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where δi,j,k,l denotes δ(g, i)δ(st, j)δ(ht−1, k)
δ(ut, l) and ni,j,k,l is the number of times where
g = i, st = j,ht−1 = k, and ut = l. This leads
to a product of Dirichlet distributions by taking the
exponential of both sides of the equation:

q∗(φ) =
∏

i,j,k

Dir(φi,j,k|αi,j,k),

αi,j,k,l = α0
i,j,k,l + EH,U[ni,j,k,l]

(12)

To evaluate the quantity EH,U[ni,j,k,l], Equation 9
needs to be applied once again to obtain an op-
timal approximation of the posterior distribution
q∗(H,U).

ln q∗(H,U) = Eφ

[
ln p(g,S,H,U,O,Θ)

]
+ const

= Eφ

[∑

t

ln p(ut|g, st,ht−1,φ)

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
]

+ const

=
∑

t

(
Eφ

[
ln p(ut|g, st,ht−1,φ)

]

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
)

+ const

(13)

where Eφ

[
ln p(ut|g, st,ht−1,φ)

]
can be obtained

using Equation 12 and properties of the Dirichlet
distribution:

Eφ

[
ln p(ut|g, st,ht−1,φ)

]

=
∑

i,j,k,l

δi,j,k,lEφ

[
lnφi,j,k,l

]

=
∑

i,j,k,l

δi,j,k,l(ψ(αi,j,k,l)− ψ(α̂i,j,k))

(14)

where ψ(·) is the digamma function with α̂i,j,k =∑
l αi,j,k,l. Because computing EH,U[ni,j,k,l] is

equivalent to summing each of the marginal poste-
rior probabilities q∗(ht−1,ut) with the same con-
figuration of conditioning variables, this can be
done efficiently by using the junction tree algorithm.
Note that the expression on the right-hand side for
both q∗(φ) and q∗(H,U) depends on expectations

computed with respect to the other factors. We
will therefore seek a consistent solution by cycling
through the factors and replacing each in turn with a
revised estimate.

3.3 Error Model
The purpose of the error model is to alter the user
action to reflect the prevalent speech recognition and
understanding errors. The error generation process
consists of three steps: the error model first gen-
erates an error template then fills it with erroneous
values, and finally attaches a confidence score.

Given a user action, the error model maps it into a
distorted form according to the probability distribu-
tion of the error template model Ω:

T (u) ∼ p(T (u)|u) =
∏

k,k′
ω
δ(u,k)δ(T (u),k′)
k,k′ (15)

where T (·) is a random function that maps a pred-
icate of the user action to an error template, e.g.
T (Inform(Time)) → Inform(Route:incorrect). To
learn the parameters, the hidden variable ut is sam-
pled using Equation 4 for each observation ot in the
training data and the value part of each observation
is replaced with a binary value representing its cor-
rectness with respect to the user goal. This results in
a set of complete data on which the maximum like-
lihood estimates of Ω are learned.

With the error template provided, next, the error
model fills it with incorrect values if necessary fol-
lowing the distribution of the error value model Λ
which is separately defined for each concept, other-
wise it will keep the correct value:

C(v) ∼ p(C(v)|v) =
∏

k,k′
λδ(v,k)δ(C(v),k

′) (16)

where C(·) is a random function which maps a cor-
rect value to a confusable value, e.g. C(Forbes) →
Forward. As with the error template model, the pa-
rameters of the error value model are also easily
trained on the dataset of all pairs of a user goal value
and the associated observed value. Because no er-
ror values can be observed for a given goal value, an
unconditional probability distribution is also trained
as a backoff.

Finally, the error model assigns a confidence
score by sampling the confidence score model Γ
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which is separately defined for each concept:

s ∼ p(s|c) =
∏

k,k′
γδ(c,k)δ(s,k

′) (17)

where s denotes the confidence score and c repre-
sents the correctness of the value of the user action
which is previously determined by the error tem-
plate model. Since two decimal places are used to
describe the confidence score, the confidence score
model is represented with a discrete distribution.
This lends itself to trivial parameter learning similar
to other models by computing maximum likelihood
estimates on the set of observed confidence scores
conditioned on the correctness of the relevant val-
ues.

In sum, for example, having a user action
[Inform(Source:Forbes), Inform(Time:6 PM)] go
through the sequence of aforementioned models
possibly leads to [Inform(Source:Forward), In-
form(Route:6C)].

3.4 Termination Model

Few studies have been conducted to estimate the
probability that a dialog will terminate at a certain
turn in the user simulation. Most existing work
attempts to treat a termination initiated by a user
as one of the dialog actions in their user models.
These models usually have a limited dialog history
that they can use to determine the next user action.
This Markov assumption is well-suited to ordinary
dialog actions, each generally showing a correspon-
dence with previous dialog actions. It is not diffi-
cult, however, to see that more global contexts (e.g.,
cumulative number of incorrect confirmations) will
help lead a user to terminate a failed dialog. In ad-
dition, the termination action occurs only once at
the end of a dialog unlike the other actions. Thus,
we do not need to put the termination action into
the user model. In order to easily incorporate many
global features involving an entire dialog (Table 1)
into the termination model, the logistic regression
model is adapted. At every turn, before getting into
the user model, we randomly determine whether a
dialog will stop according to the posterior probabil-
ity of the termination model given the current dialog
context.

Feature Description
NT Number of turns
RIC Ratio of incorrect confirmations

RICW Ratio of incorrect confirmations
within a window

RNONU Ratio of non-understanding

RNONUW Ratio of non-understanding
within a window

ACS Averaged confidence score

ACSW Averaged confidence score
within a window

RCOP Ratio of cooperative turns

RCOPW Ratio of cooperative turns
within a window

RRT C Ratio of relevant system turns
for each concept

RRTW C Ratio of relevant system turns
for each concept within a window

NV C Number of values appeared for
each concept

Table 1: A description of features used for a logistic
regression model to capture the termination probability.
The window size was set to 5 for this study.

4 Experimental Setup

4.1 Data

To verify the proposed method, three months of data
from the Let’s Go domain were split into two months
of training data and one month of test data. Also,
to take the error level into consideration, we classi-
fied the data into four groups according to the aver-
aged confidence score and used each group of data
to build a different error model for each error level.
For comparison purposes, simulated data was gen-
erated for both training and test data by feeding the
same context of each piece of data to the proposed
method. Due to the characteristics of the bus sched-
ule information domain, there are a number of cases
where no bus schedule is available, such as requests
for uncovered routes and places. Such cases were
excluded for clearer interpretation of the result, giv-
ing us the data sets described in Table 2.

4.2 Measures

To date, a variety of evaluation methods have been
proposed in the literature (Cuayahuitl et al., 2005;
Jung et al., 2009; Georgila et al., 2006; Pietquin and
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Training data Test data
Number of dialogs 1,275 669
Number of turns 9,645 5,103

Table 2: A description of experimental data sets.

Hastie, 2011; Schatzmann et al., 2005; Williams,
2007a). Nevertheless, it remains difficult to find
a suitable set of evaluation measures to assess the
quality of the user simulation. We have chosen
to adopt a set of the most commonly used mea-
sures. Firstly, expected precision (EP), expected re-
call (ER) and F-Score offer a reliable method for
comparing real and simulated data even though it
is not possible to specify the levels that need to be
satisfied to conclude that the simulation is realistic.
These are computed by comparison of the simulated
and real user action for each turn in the corpus:

EP = 100 ∗ Number of identical actions
Number of simulated actions

(18)

ER = 100 ∗ Number of identical actions
Number of real actions

(19)

F-Score = 100 ∗ 2 ∗ EP ∗ ER
EP + ER

(20)

Next, several descriptive statistics are employed to
show the closeness of the real and simulated data
in a statistical sense. The distribution of different
user action types, turn length and confidence score
can show constitutional similarity. It is still possible,
however, to be greatly different in their interdepen-
dence and cause quite different behavior at the dia-
log level even though there is a constitutional sim-
ilarity. Therefore, the dialog-level statistics such as
dialog completion rate and averaged dialog length
were also computed by running the user simulator
with the Let’s Go dialog system.

5 Results

As mentioned in Section 4.2, expected precision and
recall were measured. Whereas previous studies
only reported the scores computed in the predicate
level, i.e. speech act and concept, we also measured
the scores based on the output of the error template
model which is the predicate-level action with an
indicator of the correctness of the associated value
(Figure 1). The result (Table 3) shows a moderate

Training data Test data
Error Mark w/o w/ w/o w/

EP 58.13 45.12 54.44 41.86
ER 58.40 45.33 54.61 41.99

F-Score 58.27 45.22 54.52 41.93

Table 3: Expected precision, expected recall and F-Score

balance between agreement and variation which is
a very desirable characteristic of a user simulator
since a simulated user is expected not only to resem-
ble real data but also to cover diverse unseen behav-
ior to a reasonable extent. As a natural consequence
of the increased degree of freedom, the scores con-
sidering error marking are consistently lower. In ad-
dition, the results of test data are slightly lower than
those of training data, as expected, yet a suitable bal-
ance remains.

Next, the comparative distributions of different
actions between real and simulated data are pre-
sented for both training and test data (Figure 3).
The results are also based on the output of the er-
ror template model to further show how errors are
distributed over different actions. The distributions
of simulated data either from training or test data
show a close match to the corresponding real dis-
tributions. Interestingly, even though the error ratio
of the test data is noticeably different from that of
the training data, the proposed method is still able
to generate similar results. This means the vari-
ables and their conditional probabilities of the pro-
posed method were designed and estimated properly
enough to capture the tendency of user behavior with
respect to various dialog contexts. Moreover, the
comparison of the turn length distribution (Figure 4)
indicates that the simulated data successfully repli-
cated the real data for both training and test data.
The results of confidence score simulation are pre-
sented in Figure 55. For both training and test data,
the simulated confidence score displays forms that
are very similar to the real ones.

Finally, to confirm the resemblance on the dialog
level, the comparative results of dialog completion
rate and averaged dialog length are summarized in
Table 4. As shown in the dialog completion result,
the simulated user is a little harder than the real user

5Due to the space limitation, the detailed illustrations for
each action type are put in Appendix A.
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Figure 3: A comparison of the distribution of different
actions between real and simulated data for both training
and test data

Figure 4: A comparison of the distribution of turn length
between real and simulated data for both training and test
data

to accomplish the purpose. Also, the variation of the
simulated data as far as turn length is concerned was
greater than that of the real data, although the aver-
aged lengths were similar to each other. This might
indicate the need to improve the termination model.
The proposed method for the termination model is
confined to incorporating only semantic-level fea-
tures but a variety of different features would, of
course, cause the end of a dialog, e.g. system de-
lay, acoustic features, spatial and temporal context,
weather and user groups.

6 Conclusion

In this paper, we presented a novel unsupervised ap-
proach for user simulation which is especially de-
sirable for real deployed systems. The proposed

Figure 5: A comparison of the distribution of confidence
score between real and simulated data for both training
and test data

Real Simulated
DCR (%) 59.68 55.04

ADL mean std. mean std.
Success 10.62 4.59 11.08 5.10

Fail 7.75 6.20 7.75 8.64
Total 9.46 5.48 9.50 7.12

Table 4: A comparison of dialog completion rate (DCR)
and averaged dialog length (ADL) which is presented ac-
cording to the dialog result.

method can cover the whole pipeline of user sim-
ulation on the semantic level without human inter-
vention. Also the quality of simulated data has been
demonstrated to be similar to the real data over a
number of commonly employed metrics. Although
the proposed method does not deal with simulat-
ing N-best ASR results, the extension to support
N-best results will be one of our future efforts, as
soon as the Let’s Go system uses N-best results.
Our future work also includes evaluation on improv-
ing and evaluating dialog strategies. Furthermore, it
would be scientifically more interesting to compare
the proposed method with a supervised approach us-
ing a corpus with semantic transcriptions. On the
other hand, as an interesting application, the pro-
posed user model could be exploited as a part of be-
lief tracking in a spoken dialog system since it also
considers a user action to be hidden.
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Appendix A. Distribution of confidence score for each concept

Figure 6: A comparison of the distribution of confidence score between real and simulated data for the training data

Figure 7: A comparison of the distribution of confidence score between real and simulated data for the test data
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Abstract

Conversational practices do not occur at a sin-
gle unit of analysis. To understand the inter-
play between social positioning, information
sharing, and rhetorical strategy in language,
various granularities are necessary. In this
work we present a machine learning model
for multi-party chat which predicts conversa-
tion structure across differing units of analy-
sis. First, we mark sentence-level behavior us-
ing an information sharing annotation scheme.
By taking advantage of Integer Linear Pro-
gramming and a sociolinguistic framework,
we enforce structural relationships between
sentence-level annotations and sequences of
interaction. Then, we show that clustering
these sequences can effectively disentangle
the threads of conversation. This model is
highly accurate, performing near human accu-
racy, and performs analysis on-line, opening
the door to real-time analysis of the discourse
of conversation.

1 Introduction

When defining a unit of analysis for studying lan-
guage, one size does not fit all. Part-of-speech tag-
ging is performed on individual words in sequences,
while parse trees represent language at the sentence
level. Individual tasks can be performed at the lex-
ical, sentence, or document level, or even to arbi-
trary length spans of text (Wiebe et al., 2005), while
rhetorical patterns are annotated in a tree-like struc-
ture across sentences or paragraphs.

In dialogue, the most common unit of analysis is
the utterance, usually through dialogue acts. Here,

too, the issue of granularity and specificity of tags
has been a persistent issue, along with the inte-
gration of larger discourse structure. Both theory-
driven and empirical work has argued for a col-
lapsing of annotations into fewer categories, based
on either marking the dominant function of a given
turn (Popescu-Belis, 2008) or identifying a single
construct of interest and annotating only as nec-
essary to distinguish that construct. We take the
latter approach in this work, predicting conversa-
tion structure particularly as it relates to informa-
tion sharing and authority in dialogue. We use sys-
temic functional linguistics’ Negotiation annotation
scheme (Mayfield and Rosé, 2011) to identify utter-
ances as either giving or receiving information. This
annotation scheme is of particular interest because in
addition to sentence-level annotation, well-defined
sequences of interaction are incorporated into the
annotation process. This sequential structure has
been shown to be useful in secondary analysis of
annotated data (Mayfield et al., 2012a), as well as
providing structure which improves the accuracy of
automated annotations.

This research introduces a model to predict infor-
mation sharing tags and Negotiation sequence struc-
ture jointly with thread disentanglement. We show
that performance can be improved using integer lin-
ear programming to enforce constraints on sequence
structure. Structuring and annotation of conversa-
tion is available quickly and with comparatively lit-
tle effort compared to manual annotation. More-
over, all of our results in this paper were obtained
using data a real-world, chat-based internet commu-
nity, with a mix of long-time expert and first-time
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novice users, showing that the model is robust to the
challenges of messy data in natural environments.

The remainder of this paper is structured as fol-
lows. First, we review relevant work in annota-
tion at the levels of utterance, sequence, and thread,
and applications of each. We then introduce the
domain of our data and the framework we use for
annotation of conversation structure. In Section 4
we define a supervised, on-line machine learning
model which performs this annotation and structur-
ing across granularities. In Section 5, we evaluate
this model and show that it approaches or matches
human reliability on all tasks. We conclude with dis-
cussion of the utility of this conversation structuring
algorithm for new analyses of conversation.

2 Related Work

Research on multi-party conversation structure is
widely varied, due to the multifunctional nature of
language. These structures have been used in di-
verse fields such as computer-supported collabora-
tive work (O’Neill and Martin, 2003), dialogue sys-
tems (Bohus and Horvitz, 2011), and research on
meetings (Renals et al., 2012). Much work in an-
notation has been inspired by speech act theory and
dialogue acts (Traum, 1994; Shriberg et al., 2004),
which operate primarily on the granularity of indi-
vidual utterances. A challenge of tagging is the issue
of specificity of tags, as previous work has shown
that most utterances have multiple functions (Bunt,
2011). General tagsets have attempted to capture
multi-functionality through independent dimensions
which produce potentially millions of possible an-
notations, though in practice the number of varia-
tions remains in the hundreds (Jurafsky et al., 1998).
Situated work has jointly modelled speech act and
domain-specific topics (Laws et al., 2012).

Additional structure inspired by linguistics, such
as adjacency pairs (Schegloff, 2007) or dialogue
games (Carlson, 1983), has been used to build dis-
course relations between turns. This additional
structure has been shown to improve performance
of automated analysis (Poesio and Mikheev, 1998).
Identification of this fine-grained structure of an in-
teraction has been studied in prior work, with appli-
cations in agreement detection (Galley et al., 2004),
addressee detection (op den Akker and Traum,

2009), and real-world applications, such as cus-
tomer service conversations (Kim et al., 2010).
Higher-order structure has also been explored in dia-
logue, from complex graph-like relations (Wolf and
Gibson, 2005) to simpler segmentation-based ap-
proaches (Malioutov and Barzilay, 2006). Utterance
level-tagging can take into account nearby structure,
e.g. forward-looking and backward-looking func-
tions in DAMSL (Core and Allen, 1997), while dia-
logue management systems in intelligent agents of-
ten have a plan unfolding over a whole dialogue
(Ferguson and Allen, 1998).

In recent years, threading and maintaining of mul-
tiple “floors” has grown in popularity (Elsner and
Charniak, 2010), especially in text-based media.
This level of analysis is designed with the goal of
separating out sub-conversations which are indepen-
dently coherent. There is a common ground emerg-
ing in the thread detection literature on best prac-
tices for automated prediction. Early work viewed
the problem as a time series analysis task (Bingham
et al., 2003). Treating thread detection as a cluster-
ing problem, with lines representing instances, was
given great attention in Shen et al. (2006). Subse-
quent researchers have treated the thread detection
task as based in discourse coherence, and have pur-
sued topic modelling (Adams, 2008) or entity refer-
ence grids (Elsner and Charniak, 2011) to define that
concept of coherence.

Other work integrates local discourse structure
with the topic-based threads of discourse. Ai et al.
(2007) utilizes information state, a dialogue man-
agement component which loosely parallels thread
structure, to improve dialogue act tagging. In the
context of Twitter conversations, Ritter et al. (2010)
suggests using dialogue act tags as a middle layer to-
wards conversation reconstruction. Low-level struc-
ture between utterances has also been used as a
foundation for modelling larger-level sociological
phenomena between speakers in a dialogue, for in-
stance, identifying leadership (Strzalkowski et al.,
2011) and rapport between providers and patients
in support groups (Ogura et al., 2008). These
works have all pointed to the utility of incorporat-
ing sentence-level annotations, low-level interaction
structure, and overarching themes into a unified sys-
tem. To our knowledge, however, this work is the
first to present a single system for simultaneous an-
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Negotiation/Threads Seq User Text
K2 1 C [M], fast question, did your son have a biopsy?
K2 1 C or does that happen when he comes home

K1 2 V i have 3 dogs.
K1 2 V man’s best friend
f 2 S :-D
o 2 C and women
K2 3 J what kind of dogs????

K1 4 C [D], I keep seeing that you are typing and then it stops
K2 5 C how are you doing this week

K1 3 V the puppies are a maltese/yorkie mix and the full grown is a pomara-
nian/yorkie.

K1 1 M No, he did not have a biopsy.
K1 1 M The surgeon examined him and said that by feel, he did not think the

lump was cancerous, and he should just wait until he got home.
f 1 C that has to be very hard

o 7 M A question, however– [J], you would probably know.
K2 7 M He was told that they could not just do a needle biopsy, that he would

have to remove the whole lump in order to tell if it was malignant.
o 8 D Yes.
K1 8 D I was waiting for [M] to answer.

K1 7 J That sounds odd to me

Table 1: An example excerpt with Negotiation labels, sequences, and threads structure (columns) annotated.

notation and structuring at all three levels.

3 Data and Annotation

Our data comes from the Cancer Support Commu-
nity, which provides chatrooms, forums, and other
resources for support groups for cancer patients.
Each conversation took place in the context of a
weekly meeting, with several patient participants as
well as a professional therapist facilitating the dis-
cussion. In total, our annotated corpus consists of
45 conversations. This data was sampled from three
group sizes - 15 conversations from small groups (2
patients, in addition to the trained facilitator), 15
from medium-sized groups (3-4 patients), and 15
from large groups (5 or more patients).

3.1 Annotation

Our data is annotated at the three levels of granu-
larity described previously in this paper: sentences,
sequences, and threads. In this section we define
those annotations in greater detail. Sentence-level
and sequence-level annotations were performed us-

ing the Negotiation framework from systemic func-
tional linguistics (Martin and Rose, 2003). Once
sequences were identified, those sequences were
grouped together into threads based on shared topic.

We annotate our data using an adaptation of the
Negotiation framework. This framework has been
proven reliable and reproducible in previous work
(Mayfield and Rosé, 2011). By assigning aggregate
scores over a conversation, the framework also gives
us a notion of Authoritativeness. This metric, de-
fined later in Section 5, allows us to test whether
automated codes faithfully reproduce human judg-
ments of information sharing behavior at a per-user
level. This metric has proven to be a statistically
significant indicator of outcome variables in direc-
tion giving (Mayfield et al., 2011) and collaborative
learning domains (Howley et al., 2011).

In particular, Negotiation labels define whether
each speaker is a source or recipient of information.
Our annotation scheme has four turn-level codes
and a rigidly defined information sharing structure,
rooted in sociolinguistic observation. We describe
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each in detail below.
Sentences containing new information are marked

as K1, as the speaker is the “primary knower,” the
source of information. These sentences can be gen-
eral facts and world knowledge, but can also con-
tain opinions, retelling of narrative, or other contex-
tualized information, so long as the writer acts as
the source of that information. Sentences requesting
information, on the other hand, are marked K2, or
“secondary knower,” when the writer is signalling
that they want information from other participants
in the chat. This can be direct question asking, but
can also include requests for elaboration or indirect
illocutionary acts (e.g. “I’d like to hear more.”).
In addition to these primary moves, we also use a
social feedback code, f, for sentences consisting of
affective feedback or sentiment, but which do not
contain new information. These moves can include
emoticons, fixed expressions such as “good luck,” or
purely social banter. All other moves, such as typo
correction or floor grabbing, are labelled o.

This annotation scheme is highly flexible and
adaptive to new domains, and is not specific to med-
ical topics or chatroom-based media. It also gives us
a well-defined structure of an interaction: each se-
quence consists of exactly one primary knower (K1)
move, which can consist of any number of primary
knower sentences from a single speaker. If a K2
move occurs in the sequence, it occurs before any
K1 moves. Feedback moves (f) may come at any
time so long as the speaker is responding to another
speaker in the same sequence. Sentences labeled
o are idiosyncratic and may appear anywhere in a
sequence. In section 4.3, we represent these con-
straints formally.

In addition to grouping sentences together into se-
quences structurally, we also group those sequences
into threads. These threads are based on annotator
judgement, but generally map to the idea that a sin-
gle thread should be on a single theme, e.g. “han-
dling visiting relatives at holidays.” These threads
are both intrinsically interesting for identifying the
topics of a conversation, as well as being a useful
preprocessing step for any additional, topic-based
annotation that may be desired for later analysis.

We iteratively developed a coding manual for
these layers of annotation; to test reliability at each
iteration of instructions, two annotators each inde-

Figure 1: Structured output at each phase of the two-
pass machine learning model. In pass one, utterances are
grouped into sequences with organizational structure; the
second pass groups sequences based on shared themes.

pendently annotated one full conversation. Inter-
annotator reliability is high for sentence-level an-
notation (κ = 0.75). Following Elsner and Char-
niak (2010), we use micro-averaged f-score to eval-
uate inter-rater agreement on higher-level structure.
We find that inter-annotator agreement is high for
both sequence-level structure (f = 0.82) and thread-
level structure (f = 0.80). A detailed description
of the annotation process is available in Mayfield et
al. (2012b). After establishing reliability, our entire
corpus was annotated by one human coder.

4 Conversation Structure Prediction

In previous work, the Negotiation framework has
been automatically coded with high accuracy (May-
field and Rosé, 2011). However, that work restricted
the domain to a task-based, two-person dialogue,
and structure was viewed as a segmentation, rather
than threading, formulation. At each turn, a se-
quence could continue or a new sequence could be-
gin.

Here, we extend this automated coding to larger
groups speaking in unstructured, social chat, and we
extend the structured element of this coding scheme
to structure by sequence and thread. To our knowl-
edge, this is also the first attempt to utilize functional
sequences of interaction as a preprocessing step for
thread disentanglement in chat. We now present a
comprehensive machine learning model which an-
notates a conversation by utterance, groups utter-
ances topics by local structure into sequences, and
assigns sequences to threads.
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4.1 On-Line Instance Creation

This is a two-pass algorithm. The first pass la-
bels sentences and detects sequences, and the second
pass groups these sequences into threads. We follow
Shen et al. (2006) in treating the sequence detection
problem as a single-pass clustering algorithm. Their
model is equivalent to the Previous Cluster model
described below, albeit with more complex features.
In that work a threshold was defined in order for a
new message to be added to an existing cluster. If
that threshold is not passed, a new cluster is formed.
Modelling the probability that a new cluster should
be formed is similar to a context-sensitive threshold,
and because we do not impose a hard threshold, we
can pass the set of probabilities for cluster assign-
ments to a structured prediction system.

4.2 Model Definitions

At its core, our model relies on three probabilistic
classifiers. One of these models is a classification
model, and the other two treat sequence and thread
structure as clusters. All models use the LightSIDE
(Mayfield and Rosé, 2010) with the LibLinear algo-
rithm (Fan et al., 2008) for machine learning..

Negotiation Classifier (Neg)
The Negotiation model takes a single sentence as

input. The output of this model is a distribution over
the four possible sentence-level labels described in
section 3.1. The set of features for this model con-
sists of unigrams, bigrams, and part-of-speech bi-
grams. Part-of-speech tagging was performed using
the Stanford tagger (Toutanova et al., 2003) within
LightSIDE.

Cluster Classifiers (PC, NC)
We use two models of cluster assignment prob-

ability. The Previous Cluster (PC) classifier
takes as input a previous set of sentences C =
{c1, c2, . . . , cn} and set of new sentences N =
{N1, N2, . . . , Nm}. To evaluate whether c∗ should
be added to this cluster, we train a binary proba-
bilistic classifier that predicts the probability that the
sentences inN belong to the same cluster as the sen-
tences already inC. In the first pass, each inputN to
the PC classifier is a set containing a single sentence,
and each C is the set of sentences in a previously-

identified sequence. In the second pass, each N is a
sequence as predicted by the first pass.

The PC model uses two features. The first is a
time-based feature, measuring the amount of time
that has elapsed between the last sentence in C and
the first sentence in N . The time feature is repre-
sented differently between sequence prediction and
thread prediction. Elsner and Charniak (2010) rec-
ommends using bucketed nominal values based on
the log time, to group together very recent and very
distant posts. We follow this for sequence predic-
tion. Due to the more complex structure of the se-
quence grouping task in the second pass, we use a
raw numeric time feature. The second feature is a
coherence metric, the cosine similarity between the
centroid of C and the centroid of N . We define the
centroid based on TF-IDF weighted unigram vec-
tors.

We impose a threshold after which previous clus-
ters are no longer considered as options for the
PC classifier. Because sequences are shorter than
threads, we set these thresholds separately, at 90 sec-
onds for sequences and 120 seconds for threads. Ap-
proximately 1% of correct assignments are impossi-
ble due to these thresholds.

The New Cluster (NC) classifier takes as input
a set of sentences n = {n1, n2, . . . , nm}, and pre-
dicts the probability that a given sentence is initiat-
ing a new sequence (or, in the second pass, whether
a given sequence is initiating a new thread). This
model contains only unigram features.

At each sentence s we consider the set of possible
previous cluster assignments C = {c1, c2, . . . , cn},
and define psc(s, c) to be the probability that s
will be assigned to cluster c. We define pnc(s) =
λsNC(s). The addition of a weight parameter to
the output of the NC classifier allows us to tune the
likelihood of transitioning to a new cluster. This pre-
diction structure is illustrated in Figure 2. In the
first pass, these cluster probabilities are used in con-
junction with the output of the Negotiation classifier
to form a structured output; in the second pass, the
maximum cluster probability is chosen.

4.3 Constraining Sequence Structure with ILP
In past work the Negotiation framework has bene-
fited from enforced constraints of linguistically sup-
ported rules on sequence structure (Mayfield and

64



Figure 2: The output of the cluster classifier in either pass
is a set of probabilities corresponding to possible clus-
ter assignments, including that of creating a new cluster.
In the second pass, the input is a set of sentences (a se-
quence) rather than a single sentence, and output assign-
ments are to threads rather than sequences.

Rosé, 2011). Constraints on the structure of anno-
tations are easily defined using Integer Linear Pro-
gramming. Recent work has used boolean logic
(Chang et al., 2008) to allow intuitive rules about
a domain to be enforced at classification time. ILP
inference was performed using Learning-Based Java
(Rizzolo and Roth, 2010).

First, we define the classification task. Opti-
mization is performed given the set of probabilities
N (s) as the distribution output of the Neg classifier
given sentence s as input, and the set of probabilities
C(s) = pnc(s) ∪ psc(s, c), ∀c ∈ C. Instance classi-
fication requires maximizing the objective function:

arg max
n∈N (s),c∈C(s)

n+ c

We impose constraints on sequence prediction. If
the most likely output from this function assigns
a label that is incompatible with the assigned se-
quence, either the label is changed or a new se-
quence is assigned so that constraints are met. For
each constraint, we give the intuition from sec-
tion 3.1, followed by our formulation of that con-
straint. us is shorthand for the user who wrote
sentence s; ns is shorthand for a proposed Ne-

gotiation label of sentence s; while cs is a pro-
posed sequence assignment for s, c′ is shorthand
for assignment to a new sequence, and Sc =
{(nc,1, uc,1), (nc,2, uc,2), . . . , (nc,k, uc,k)} is the set
of Negotiation labels n and users u associated with
sentences (sc,1 . . . sc,k) already in sequence c.

1. K2 moves, if any, occur before K1 moves.

((cs = c) ∧ (ns = K2))
→ (@i ∈ Sc s.t. nc,i = K1)

2. f moves may occur at any time but must be re-
sponding to a different speaker in the same se-
quence.

((cs = c) ∧ (ns = f))
→ (∃i ∈ Sc s.t. uc,i 6= us)

3. Functionally, therefore, f moves may not initi-
ate a sequence).

(cs = c′)→ (ns 6= f)

4. Speakers do not respond to their own requests
for information (the speakers of K2 and K1
moves in the same sequence must be different).

((cs = c) ∧ (ns = K1))
→ (∀i ∈ Sc, ((nc,i = K2)→ (uc,i 6= us)))

5. Each sequence consists of at most one continu-
ous series of K1 moves from the same speaker.

(cs = c)→ ((∃i ∈ Sc s.t. (nc,i = K1))
→ ( (uc,i = us) ∧ (∀j > i,

(uc,j = us) ∧ (nc,i = K1)) )

Human annotators treated these rules as hard con-
straints, as the classifier does. In circumstances
where these rules would be broken (for instance, due
to barge-in or trailing off), a new sequence begins.

5 Evaluation

5.1 Methods
To evaluate the performance of this model, we wish
to know how it replicates human annotation at each
granularity. For Negotiation labels, agreement is
measured by terms of absolute accuracy and kappa
agreement above chance. We also include a measure
of aggregate information sharing behavior per user.
This score, which we term Information Authorita-
tiveness (Auth), is defined per user as the percentage
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of their contentful sentences (K1 or K2) which were
giving information (K1). To measure performance
on this measure, we measure the r2 coefficient be-
tween user authoritativeness scores calculated from
the predicted labels compared to actual labels. This
is equivalent to measuring the variance explained by
our model, where each data point represents a single
user’s predicted and actual authoritativeness scores
over the course of a whole conversation (n = 215).

Sequence and thread agreement is evaluated by
micro-averaged f-score (MAF), defined in prior
work for a gold sequence i with size ni, and a pro-
posed sequence j with size nj , based on precision
and recall metrics:

P =
nij

nj
R =

nij

ni
F (i, j) = 2×P×R

P+R

MAF across an entire conversation is then a
weighted sum of f-scores across all sequences1:

MAF =
∑

i

ni
n

max
j
F (i, j)

We implemented multiple baselines to test
whether our methods improve upon simpler ap-
proaches. For sequence and thread prediction, we
implement the following baselines. Speaker Shift
predicts a new thread every time a new writer adds a
line to the chat. Turn Windows predicts a new se-
quence or thread after every n turns. Pause Length
predicts a new sequence or thread every time that a
gap of n seconds has occurred between lines of chat.
For both of the previous two baselines, we vary the
parameter n to optimize performance and provide
a challenging baseline. None of these models use
any features or constraints, and are based on heuris-
tics. To compare to our model, we present both an
Unconstrained model, which uses machine learn-
ing and does not impose sequence constraints from
Section 4.3, as well as our full Constrained model.

Evaluation is performed using 15-fold cross-
validation. In each fold, one small, one medium,
and one large conversation are held out as a test set,
and classifiers are trained on the remaining 42 con-
versations. Significance is evaluated using a paired
student’s t-test per conversation (n = 45).

Sentence-Level (Human κ = 0.75)
Model Accuracy κ Auth r2

Unconstrained .7736 .5870 .7498
Constrained .7777 .5961 .7355

Sequence-Level (Human MAF = 0.82)
Model Precision Recall MAF
Speaker Shift .7178 .5140 .5991
Turn Windows .7207 .6233 .6685
Pause Length .8479 .6582 .7411
Unconstrained .7909 .7068 .7465
Constrained .8557 .7116 .7770

Thread-Level (Human MAF = 0.80)
Model Precision Recall MAF
Turn Windows .5994 .7173 .6531
Pause Length .6145 .6316 .6229
Unconstrained .7132 .5781 .6386
Constrained .6805 .6024 .6391

Table 2: Tuned optimal annotation performances of base-
line heuristics compared to our machine learning model.

5.2 Results

Results of experimentation show that all models
are highly accurate in their respective tasks. With
sentence-level annotation approaching 0.6 κ, the
output of the model is reliable enough to allow
automatically annotated data to be included reli-
ably alongside human annotations. Performance for
sequence-based modelling is even stronger, with no
statistically significant difference in f-score between
the machine learning model and human agreement.

Table 2 reports our best results after tuning to
maximize performance of baseline models, our orig-
inal machine learning model, and the model with
ILP constraints enforced between Negotiation labels
and sequence. In all three cases, we see machine
performance approaching, but not matching, human
agreement. Incorporating ILP constraints improves
per-sentence Negotiation label classification by a
small but significant amount (p < .001).

Clustering performance is highly robust, as
demonstrated in Figure 3, which shows the effect of
changing window sizes and pause lengths and values
of λs for machine learned models. Our thread disen-
tanglement performance matches our baselines, and

1This metric extends identically to a gold thread i and pro-
posed thread j.
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Figure 3: Parameter sensitivity on sequence-level (top)
and thread-level (bottom) annotation models.

is in line with heuristic-based assignments from El-
sner and Charniak (2010). In sequence clustering,
we observe improvement across all metrics. The
Constrained model achieves a higher f-score than all
other models (p < 0.0001). We determine through
a two-tailed confidence interval that sequence clus-
tering performance is statistically indistinguishable
from human annotation (p < 0.05).

Error analysis suggests that the constraints are too
punishing on the most constrained labels, K2 and f.
The differences in performance between constrained
and unconstrained models is largely due to higher
recall for both K1 and o move prediction, while
recall for K2 and f moves lowered slightly. One
possibility for future work may include compensat-
ing for this by artificially inflating the likelihood of
highly-constrained Negotiation labels. Additionally,
we see that the most common mistakes involve dis-
tinguishing between K1 and f moves. While many
f moves are obviously non-content-bearing (“Wow,
what fun!”), others, especially those based in humor,

may look grammatical and contentful (“We’ve got to
stop meeting this way.”). Better detection of humor
and a more well-defined definition of what informa-
tion is being shared will improve this aspect of the
model. Overall, these errors do not limit the efficacy
of the model for enabling future analysis.

6 Conclusion and Future Work

This work has presented a unified machine learn-
ing model for annotating information sharing acts
on a sentence-by-sentence granularity; grouping se-
quences of sentences based on functional structure;
and then grouping those sequences into topic-based
threads. The model performs at a high accuracy,
approaching human agreement at the sentence and
thread level. Thread-level accuracy matched but did
not exceed simpler baselines, suggesting that this
model could benefit from a more elaborate repre-
sentation of coherence and topic. At the level of se-
quences, the model performs statistically the same
as human annotation.

The automatic annotation and structuring of di-
alogue that this model performs is a vital prepro-
cessing task to organize and structure conversational
data in numerous domains. Our model allows re-
searchers to abstract away from vocabulary-based
approaches, instead working with interaction-level
units of analysis. This is especially important in
the context of interdisciplinary research, where other
representations may be overly specialized towards
one task, and vocabulary may differ for spurious rea-
sons across populations and cultures.

Our evaluation was performed on a noisy, real-
world chatroom corpus, and still performed very ac-
curately. Coherent interfacing between granularities
of analysis is always a challenge. Segmentation,
tokenization, and overlapping or inconsistent struc-
tured output are nontrivial problems. By incorpo-
rating sentence-level annotation, discourse-level se-
quence structure, and topical thread disentanglement
into a single model, we have shown one way to re-
duce or eliminate this interfacing burden and allow
greater structural awareness in real-world systems.
Future work will improve this model’s accuracy fur-
ther, test its generality in new domains such as spo-
ken multi-party interactions, and evaluate its useful-
ness in imposing structure for secondary analysis.
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ognizing authority in dialogue with an integer linear
programming constrained model. In Proceedings of
Association for Computational Linguistics.

Elijah Mayfield, Michael Garbus, David Adamson, and
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representations of discourse practices across popula-
tions in task-based dialogue. In Proceedings of the
International Conference on Intercultural Collabora-
tion.

Elijah Mayfield, Miaomiao Wen, Mitch Golant, and Car-
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Abstract 

We herein propose a method for the rapid 
development of a spoken dialogue system 
based on collaboratively constructed 
semantic resources and compare the 
proposed method with a conventional 
method that is based on a relational 
database. Previous development 
frameworks of spoken dialogue systems, 
which presuppose a relational database 
management system as a background 
application, require complex data definition, 
such as making entries in a task-dependent 
language dictionary, templates of semantic 
frames, and conversion rules from user 
utterances to the query language of the 
database. We demonstrate that a semantic 
web oriented approach based on 
collaboratively constructed semantic 
resources significantly reduces troublesome 
rule descriptions and complex 
configurations in the rapid development 
process of spoken dialogue systems. 

1 Introduction 

There has been continuing interest in the 
development methodology of spoken dialogue 
systems (SDS). In recent years, statistical methods, 
such as Williams et al. (2007) and Hori et al. 
(2009), have attracted a great deal of attention as a 
data-driven (i.e., corpus-driven) approach, which 
can reduce the troublesome manual coding of 
dialogue management rules. Statistical methods 

can also be applied to other components of SDS, 
such as semi-automatic construction of semantic 
interpreters and response generators. However the 
overall SDS development process still requires 
some hand coding, for example to establish the 
connection to the underlying application. 

Another data-driven approach was designed to 
provide all of the SDS components with the goal of 
rapidly constructing the entire system (Kogure et 
al., 2001; Heinroth et al., 2009). This approach 
starts from a data model definition (and so can be 
regarded as a data-modeling driven approach) and 
adds rules and templates, which are used as task-
dependent knowledge in an SDS. As a data model 
definition, Kogure et al. (2001) used a relational 
database (RDB) schema and Heinroth et al. (2009) 
used OWL, which is an ontology definition 
language in semantic web applications. Although 
these data-modeling schemata are familiar to 
developers of web applications, additional 
definition of rules and templates needed for an 
SDS is troublesome for ordinary web developers 
because such SDS-related rules require specialized 
knowledge of linguistics and speech application 
development. 

We herein propose a new data-modeling driven 
approach for rapid development of SDS that is 
based on collaboratively constructed semantic 
resources (CSRs). We present an automatic 
generation mechanism of code and data for a 
simple SDS. In addition, we compare the proposed 
approach with an ordinary data-modeling driven 
approach that is based on a RDB. By using CSRs 
and the Rails framework of web application 
development, the troublesome definitions of rules 
and templates for SDS can be reduced significantly. 
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The remainder of the present paper is organized 
as follows. Section 2 describes the proposed 
approach to a data-modeling driven development 
process for SDS based on CSRs. Section 3 
compares the proposed approach with the previous 
RDB-based approach. In Section 4, the paper 
concludes with a discussion of future research. 

2 Data-modeling driven approach based 
on CSRs 

In this section, we explain our previous data-
modeling driven approach and describe additional 
new functionality based on CSRs. 

2.1 Object-oriented SDS development 
framework 

We previously proposed a data-modeling driven 
framework for rapid prototyping of SDS (Araki et 
al., 2011). This includes a class library that is 
based on the class hierarchy and the attribute 
definitions of an existing semantic web ontology, 
i.e., Schema.org1. This class library is used as a 
base class of an application-specific class 
definition. An example class definition is shown in 
Figure 1. 
 

 
Figure 1: Example of class definition extending 

existing class library. 
 

In this example, the MyBook class inherits all of 
the attributes of the Book class of Schema.org in 
the same manner as object-oriented programming 
languages. The developer can limit the attributes 
that are used in the target application by listing 
them in the constraints section. On the other hand, 
the developer can add additional attributes (in this 
class, ranking attributes as the type of integer) in 
the definition of the class. 

                                                           
1 http://schema.org/ 

The task type and dialogue initiative type are 
indicated as annotations at the beginning of the 
class definition. In this example, the task type is 
DB search and the initiative type is user initiative. 
This information is used in generating the 
controller code and view code of the target SDS. 

Using Grails2, which is a Rails web application 
framework, the proposed framework generates the 
dialogue controller code of the indicated task type 
and the view code, which have speech interaction 
capability on the HTML5 code from this class 
definition. The overall concept of the object-
oriented framework is shown in Figure 2. 
 

Data model
definition

Mix‐in of
traits

embed
application
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State
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generate

convert

Grails

Data model
definition
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generate

HTML5
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Model

Controller

View

 
Figure 2: Overview of the object-oriented SDS 

development framework. 

2.2 Usage of CSRs 

The disadvantage of our previous framework, 
described in the previous subsection, is the high 
dependence on the dictation performance of the 
speech recognition component. The automatically 
generated HTML5 code invokes dictation API, 
irrespective of the state of the dialogue and 
initiative type. In order to improve speech 
recognition accuracy, grammar rules (in system 
initiative dialogue) and/or the use of a 
task/domain-dependent language model (LM) (in 
mixed/user initiative dialogue) are necessary. In 
our previous framework, the developer had to 
prepare these ASR-related components using 
language resources, which are beyond the 
proposed data-driven framework. 

In order to overcome this defect, we add the 
Freebase3 class library, which is based on large-
scale CSRs, because Freebase already includes the 

                                                           
2 http://grails.org/ 
3 http://www.freebase.com/ 

@DBSearch 

@SystemInitiative 

class MyBook extends Book { 

  int ranking 

  static constraints = { 

    name(onsearch:"like") 

    author(onsearch:"like") 

    publisher() 

    ranking(number:true) 

  } 

} 
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contents of the data. These contents and a large-
scale web corpus facilitate the construction of 
grammar rules and a LM that is specific to the 
target task/domain. For example, the Film class of 
Freebase has more than 191 thousand entries (as of 
May 2012). These real data can be used as 
resources to improve SDS accuracy. 

In system initiative type dialogue, the contents 
of each attribute can construct word entries of the 
grammar rule for each attribute slot. For example, 
the grammar rule for the user's response to "Which 
genre of movie are you searching for?" can be 
constructed from the contents of the genres 
attribute of the Film class. We implemented a 
generator of the set of content words specified in 
the data model definition from the data of Freebase. 
The generator is embedded as one component of 
the proposed rapid prototyping system. 

In the mixed/user initiative type tasks, since 
content words and functional words make up the 
user's utterance, we need a LM for speech 
recognition and a semantic frame extractor for the 
construction of semantic data storage queries. We 
designed and implemented a LM generator and a 
semantic frame extractor using a functional 
expression dictionary that corresponds to the 
attributes of Freebase (Araki, submitted). An 
example entry of the function expression 
dictionary is shown in Figure 3 and the flow of the 
LM generation is shown in Figure 4. 

 
item value 

property fb:film.performance.actor 
phrase pattern X "ga de te iru" Y 
constraints X rdf:type "/film/actor" 
partial graph Y fb:film.performance.actor X 

Figure 3: An entry of function expression 
dictionary. 

Freebase
data

Web
corpus

Data model
definition

content
words

in‐domain
entries

domain
dependent

LM

example
sentences

 
Figure 4: Construction process of LM. 

3 Comparison with the RDB-based 
approach 

3.1 Overview of the RDB-based method 

As an example of the RDB-based SDS prototyping 
method, we review the method described in 
Kogure et al. (2001) (see Figure 5). 
 

ASR NLU Search NLG TTS

AM

LM

dictionary

functional

noun.

grammar

general

query DB

rule format

pronounce

input output

domain
indep.

dep. task
indep.

dep.

 
Figure 5: Modules and knowledge of the RDB-

based method. 
 

They examined the domain dependency and task 
dependency of the knowledge that drives SDS. 
Domain/task-independent knowledge, such as an 
acoustic model, a general function word dictionary, 
and a pronunciation dictionary, are prepared in 
advance for all of the systems. Both domain-
dependent/task-independent knowledge, such as 
the language model, the noun/verb dictionary, and 
the database schema, and domain/task-dependent 
knowledge, such as the rule of query generation 
obtained from the results of semantic analysis and 
format for output, must be specified by the 
developer. If the developer wants to change a task 
within the same domain, the developer can reuse 
domain-dependent/task-independent knowledge 
(everything above the dotted line in Figure 4) and 
must specify task-dependent knowledge 
(everything below the dotted line in Figure 4). 

3.2 Comparison of the data-modeling stage 

In the data modeling of the RDB-based method, 
the developer must specify field names (e.g., title, 
year), their corresponding data types (e.g., string, 
integer), and the labels of the fields (i.e., the labels 
for the language used in the SDS), as in the usual 
web application with RDB. Since the data model 
definitions differ from one another, it is difficult to 
integrate similar systems even if these systems deal 
with the same domain. 

In the CSRs-based approach, the data-modeling 
process involves selecting necessary attributes of 
the inherited class and, if needed, adding fields for 
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additional domain/task-specific information. The 
data type has already been set in the existing data 
schema, and language-dependent label information 
can be acquired by the value of rdfs:label, where 
the value of the lang attribute is the target language. 

3.3 Comparison of code generation stage 

In the RDB-based method, the developer must 
specify the noun and verb dictionary, grammar for 
parsing, and rules for query generation. In addition, 
the RDB-based approach must either stick to a 
fixed dialogue pattern for DB search or make the 
developer write dialogue management rules. 

By combining the CSRs-based approach with 
the Rails framework, the task dependent dictionary 
is automatically generated from the data and 
grammar rules are easily constructed with the 
functional expression entries of properties. Also in 
this approach, typical dialogue management 
patterns are already prepared and can be specified 
as annotations. For the sake of this setting, all of 
the basic codes for SDS are automatically 
generated from the data model definition. 

3.4 Comparison of functionality 

In the RDB-based method, the developer must 
make a domain/task dependent LM using language 
resources outside of the development process. 
However, in general, it is difficult to acquire a 
domain/task-dependent corpus. In addition, 
although the RDB-based method is designed to be 
robust with respect to the task modification, this 
method is not robust with respect to porting to 
different languages. Language specific code tends 
to be embedded in every component of an SDS. 

In the CSRs-based approach, the domain/task-
dependent LM is automatically generated, as 
described in Subsection 2.2. For the sake of this 
data-modeling driven method and native 
multilinguality of CSRs, the developer can easily 
implement multilingual SDS (Araki et al., 2012). 
Multilingual contents are already prepared in 
Freebase (although English resources are 
dominant) and a multilingual web speech API is 
already implemented, e.g., in the Google Chrome 
browser, the developer can implement a prototype 
of other language SDS by dictation. If the 
developer wants to use domain/task-dependent 
LMs, he/she must prepare example sentences for 
the target domain/task in the target language. 

4 Conclusions and future research 

We have proposed a method for rapid development 
of a spoken dialogue system based on CSRs and 
have compared the proposed method with the 
conventional method, which is based on RDB. 

In the current implementation, our system cannot 
handle the problem of the variation of the named 
entity which is dealt with by e.g. Hillard et al. 
(2011). We are planning to examine the 
extensibility of the proposed framework by 
combining such refinement methods. 
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Abstract

In recent years statistical dialogue systems
have gained significant attention due to their
potential to be more robust to speech recogni-
tion errors. However, these systems must also
be robust to changes in user behaviour caused
by cognitive loading. In this paper, a statistical
dialogue system providing restaurant informa-
tion is evaluated in a set-up where the sub-
jects used a driving simulator whilst talking to
the system. The influences of cognitive load-
ing were investigated and some clear differ-
ences in behaviour were discovered. In partic-
ular, it was found that users chose to respond
to different system questions and use different
speaking styles, which indicate the need for an
incremental dialogue approach.

1 Introduction

A spoken dialogue system enables a user to obtain
information while using their hands to perform some
other task, which in many cases is the user’s primary
task. A typical example is an in-car spoken dialogue
system where the spoken interaction is secondary to
the main task of driving the car (Weng et al., 2004).
This domain is particularly challenging since it in-
volves dealing with the errors caused by the varying
noise levels and changes in user behaviour caused
by the cognitive load.

A statistical approach to dialogue modelling has
been proposed as a means of automatically optimis-
ing dialogue policies. In particular, the partially ob-
servable Markov decision process (POMDP) model
for dialogue provides a representation of varying
levels of uncertainty of the user input, yielding more

robust dialogue policies (Williams and Young, 2007;
Thomson and Young, 2010; Young et al., 2010).

Another thread of research deals with speech
interfaces for in-car applications, see (Baron and
Green, 2006) for a review. Past research has inves-
tigated the extent to which speaking is cognitively
less demanding than typing (Gartner et al., 2001;
Tsimhoni et al., 2004; Kun et al., 2007). In addi-
tion, considerable research has examined how driv-
ing safety is influenced by a dialogue system (Lai
et al., 2001; Lee et al., 2001; Nielsen et al., 2008).
However, to the best of our knowledge, little work
has been done to investigate the effect of the cog-
nitive load when interacting with a real conversa-
tional spoken dialogue system. The work presented
in (Mishra et al., 2004) suggests that the user speech
is more disfluent when the user is performing an-
other task. However, this work is based on a Wiz-
ard of Oz framework, where a human provides the
system’s responses. Also, a push-to-talk button was
used for every utterance which will have affected the
natural flow of the dialogue. It is important to know
if the change of cognitive load has an effect on the
speaking style and whether the system can alter its
behaviour to accommodate for this.

In this paper we try to answer these questions by
examining dialogues where users drove a car simu-
lator and talked to an open-microphone fully auto-
mated spoken dialogue system at the same time.

The rest of the paper is organised as follows. Sec-
tion 2 provides an overview of the dialogue system
used and section 3 describes the evaluation set-up.
The analysis of the results is given in Section 4. Sec-
tion 5 concludes the paper.
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Table 1: Example dialogue task

You are looking for a cheap restaurant and it
should be in the east part of town. Make sure you
get the address of the venue.

2 System overview

The user speaks to the system, and the acoustic sig-
nal is converted by the speech recogniser into a set
of sentence hypotheses, which represents a proba-
bility distribution over all possible things that the
user might have said. The sentence hypotheses are
converted into an N-best list of dialogue acts by a
semantic decoder. Since the dialogue state cannot
be directly observed it maintains a probability dis-
tribution over all states, which is called the belief
state. The belief state is updated at every user turn
using Bayesian inference treating the input dialogue
acts as evidence. Based on belief state, the optimal
system act is selected using a policy and which is
trained automatically using reinforcement learning.
The abstract system dialogue act is converted to an
appropriate utterance by a natural language genera-
tor and then converted to speech by an HMM-based
speech synthesiser. To enable in-car speech inter-
action via mobile phone, a VoIP interface is imple-
mented. The domain is Cambridge restaurant infor-
mation with a database of about 150 venues and 7
slots that users can query.

3 Evaluation set-up

Our goal is to understand system performance
when driving. However, due to the safety restric-
tions, performance was tested using a driving simu-
lator. The following sections explain the set-up.

3.1 Car simulator

The car simulator used in the evaluation was the
same as in (Davies and Robinson, 2011). It con-
sists of a seat, a steering wheel and pedals, which
give a realistic cab-like environment for the par-
ticipants. There is also a projection screen which
largely fills the visual field of the driver. The sim-
ulation software is a modified version of Rockstar
Games’ Grand Theft Auto: San Andreas, with over

500 km of roads. For the purpose of the evaluation,
the subjects were asked to drive on the main motor-
way, to keep the lane and not to drive over 70mph.

3.2 Subjects
For the study 28 subjects were recruited, 22 where
native speakers. Each subject had to complete three
scenarios: (1) to drive the car simulator for 10 min-
utes, (2) to talk to the system for 7 dialogues and (3)
to talk to the system for 7 dialogues while driving.
The scenarios were in counter-balanced order.

While they were driving, the speed and the road
position were recorded. If the scenario involved
talking to the system, the instructor read out the di-
alogue task (see an example in Table 1) and dialled
the phone number. In addition, the subject had the
dialogue task displayed on a small screen next to the
driving wheel. The subject talked to the system us-
ing loud speaker mode on the mobile phone.

4 Results

To examine the influence of cognitive load, the
following examinations were performed. First, we
investigate if the subjects felt any change in the cog-
nitive load (Section 4.1). Then, in Section 4.2, we
examine how the driving was influenced by the sub-
jects talking to the system. Finally, we investigate
how successfully the subjects were able to complete
the dialogue tasks while driving (Section 4.3). This
is followed with an examination of the conversa-
tional patterns that occurred when the subjects were
driving whilst talking to the system (Section 4.4).

4.1 Cognitive load

After each scenario the subjects were asked to an-
swer five questions based on the NASA-TLX self-
reporting scheme for workload measurement. They
answered by providing a rating from 1 (very easy)
to 5 (very hard). The averaged results are given
in Table 2. We performed a Kruskal test, followed
by pairwise comparisons for every scenario for each
answer and all differences are statistically signifi-
cant (p < 0.03) apart from the differences in the
frustration, the stress and the pace between talking
and talking and driving. This means that they were
clearly able to feel the change in cognitive load.
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Table 2: Subjective evaluation of the cognitive load

Driving Talking Talking&Driving
How mentally demanding was the scenario?
1.61 2.21 2.89

How hurried was the pace of the scenario?
1.21 1.71 1.89

How hard did you have to work?
1.5 2.32 2.96

How frustrated did you feel during the task?
1.29 2.61 2.61

How stressed did you feel during the task?
1.29 2.0 2.32

Table 3: Analysis of driving speed to determine which
measures are larger for Talking&Driving than Driving

Measure Percentage of
users

Confidence in-
terval

Higher speed 8% [1%, 25%]
Larger std.dev 77% [56%, 91%]
Larger entropy 85% [65%, 95%]

4.2 Driving performance

For 26 subjects we recorded position on the road
and the speed. Since these measurements vary sig-
nificantly across the subjects, for each subject we
calculated the average speed, the standard deviation
and the entropy and similarly for the average posi-
tion in the lane. For the speed, we computed how
many subjects had a higher average speed when they
were talking and driving versus when they were just
talking and similarly for the standard deviation and
the entropy. The results are given in Table 3. It
can be seen that the user’s speed is lower when they
are driving and talking, however, the increase in the
standard deviation and the entropy suggest that their
driving is more erratic. No significant differences
were observed for the road position.

4.3 Dialogue task completion

Each participant performed 14 dialogues, 7 for each
scenario. In total, there were 196 dialogues per sce-
nario. After each dialogue they told the instruc-
tor if they thought the dialogue was successful, and
this information was used to compute the subjective

Table 4: Subjective and Objective Task completion (196
Dialogues per scenario)

Talking Talking&Driving
Subjective 78.6% 74.0%
Objective 68.4% 64.8%

Table 5: Percentage of turns that are in line with the pre-
defined task

Talking Talking&Driving
Percentage of turns
that follow the task

98.3% 96.79%

Number of turns 1354 1388

completion rate. In addition, all dialogues were tran-
scribed and analysed to see if the system provided
information the user asked for and hence calculate
an objective completion rate. The results are given
in Table 4. These differences are not statistically sig-
nificant due to the small sample size. However, it
can be seen that the trend is that the dialogues where
the subject was not performing another task at the
same time were more successful. Also, it is inter-
esting that the subjective scores are higher than the
objective ones. This can be explained by the fact that
the dialogue tasks were predefined and the subjects
do not always pay sufficient attention to their task
descriptions.

4.4 Conversational patterns

Given that the subjects felt the change of cognitive
load when they were talking to the system and op-
erating the car simulator at the same time, we were
interested to see if there are any changes in the dia-
logues which might suggest this.

First, we examine how well they follow the given
task on a turn-to-turn basis. For example, if the task
is to find a cheap restaurant and if at some point
in the dialogue the user says I’d like an expensive
restaurant that turn is not consistent with the task.
The results are given in Table 5 and they are statisti-
cally significant (p < 0.01).

We then examine the number of contradictions on
a turn-to-turn basis. For example, if the user says I’d
like a cheap restaurant and later on they say I’d like
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Table 6: User obedience to system questions

1. system requests or confirms and requests
Samples Obedience

Talking 392 67.6%
Talking&Driving 390 63.9%

2. system confirms
Samples Obedience

Talking 91 73.6%
Talking&Driving 92 81.5%

an expensive restaurant the latter turn is clearly a
contradiction. The percentage of contradicting turns
is less than 1% and the difference between the sce-
narios is not statistically significant. This suggests
that while users tend to forget the task they are given
when they are driving, they still act rationally despite
the increase in the cognitive load.

The next analysis concerns the user obedience,
i.e. the extent to which subjects answer the sys-
tem questions. We grouped the system questions in
two classes. The first class represents the questions
where the system requests a value for a particular
slot, for instance What part of town are you looking
for? and the questions where the system confirms
and requests at the same time, for instance You are
looking for a cheap restaurant. What part of town
are you looking for? The second class correspond to
system confirmations, for example Did you say you
are looking for a cheap restaurant? The percent-
age of the obedient user turns per class is given in
Table 6. Due to the small sample size these results
are not statistically significant. Still, it is interest-
ing to see that when driving the subjects appear to
be more obedient to the system confirmations than
when they are just talking. When the system makes
a confirmation, the user can answer with simple yes
or no, whereas when the system requests the value
of a particular slot, the user needs to think more to
provide an answer.

The number of barge-ins, the number of filler
words and the average speech intensity vary con-
siderably among the subjects. Therefore, we aver-
age these statistics per user and examine the number
of users for which the particular measure is greater
for the scenario where they talked to the system and
drove the simulator at the same time. The results

Table 7: Analysis of measures related to the speaking
style which values are larger for Talking&Driving than
Talking

Measure % of users Conf. interval
More barge-ins 87% [69%, 96%]
More fillers 73% [54%, 88%]
Higher intensity 67% [47%, 83%]

(Table 7) show that the number of barge-ins and the
number of fillers is significantly greater for the sce-
nario when they are talking and driving and the in-
tensity on average tend to be greater.

5 Conclusion and Future work

There are several important observations arising
from this study. Firstly, dialogues with cognitively
loaded users tend to be less successful. This sug-
gests that the system should alter its behaviour to
match user behaviour and alleviate the cognitive
load in order to maintain the level of performance.
This necessitates rapid on-line adaptation of dia-
logue policies.

The second observation is that cognitively loaded
users tend to respond to some types of system ques-
tions more than others. This indicates that the user
model within a POMDP dialogue system should be
conditioned on a measure of cognitive load.

Finally, this study has found that users barge-in
and use filler words significantly more often when
they are cognitively loaded. This suggests the need
for a much richer turn-taking model which allows
the system to use back-channels and barge-in when
the user hesitates. An obvious candidate is the in-
cremental approach (Schlangen and Skantze, 2009;
DeVault et al., 2009) which allows the system to pro-
cess partial user inputs, back-channels, predict short
term user input and interrupt the user during hesita-
tions. While incremental dialogue is a growing area
of study, it has not so far been examined in the con-
text of dialogue for secondary tasks. We signpost
this as an important area for future work.
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Abstract

Recent work on consultations between out-
patients with schizophrenia and psychiatrists
has shown that adherence to treatment can
be predicted by patterns of repair – specifi-
cally, the pro-activity of the patient in check-
ing their understanding, i.e. patient clarifi-
cation. Using machine learning techniques,
we investigate whether this tendency can be
predicted from high-level dialogue features,
such as backchannels, overlap and each partic-
ipant’s proportion of talk. The results indicate
that these features are not predictive of a pa-
tient’s adherence to treatment or satisfaction
with the communication, although they do
have some association with symptoms. How-
ever, all these can be predicted if we allow
features at the word level. These preliminary
experiments indicate that patient adherence is
predictable from dialogue transcripts, but fur-
ther work is necessary to develop a meaning-
ful, general and reliable feature set.

1 Introduction

How conversational partners achieve and maintain
shared understanding is of crucial importance in
the understanding of dialogue. One such mecha-
nism, other initiated repair (Schegloff, 1992), where
one conversational participant queries or corrects
the talk of another, has been well documented in
both general and task-based dialogues (Colman and
Healey, 2011). However, how such shared under-
standing impacts beyond the level of the conversa-
tion has not typically been examined. Exceptions to

this have highlighted the role of shared understand-
ing in schizophrenia (McCabe et al., 2002; Themis-
tocleous et al., 2009) and the association between
psychiatrist-patient communication and adherence.
McCabe et al. (in preparation) found that more pa-
tient clarification (i.e. other initiated repair) of the
psychiatrist’s talk was associated with better treat-
ment adherence six months later. Clarification con-
sists mainly of asking questions to clarify the mean-
ing of the psychiatrist’s utterance (checking under-
standing) and correcting something that the psychi-
atrist has said (getting the facts straight). Example 1,
taken from a consultation, shows the patient request-
ing clarification of something the psychiatrist has
just said about a possible side effect.

(1) Dr: Yep, well that is a possible side effect
Pat: Side effect?
Dr: Of the er haloperidol

The patient’s request leads to additional explana-
tion by the psychiatrist about the medication which
can cause the possible side effect. More patient clar-
ification reflects greater effort to reach a shared un-
derstanding. McCabe et al. (in preparation) found
that for each unit increase in the patient clarification
factor,1 the odds of good (versus poor) adherence
were increased by 5.8 (95% CI 1.3 to 25.8, p=0.02).

Explaining the link between communicative pat-
terns of patients and adherence may create the pos-
sibility for new interventions to improve adherence,
and has both clinical and theoretical implications.

1A regression factor weighted heavily towards patient clar-
ifcations (as in e.g. 1).
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However, there is no evidence regarding what fac-
tors influence patient clarification and may explain
the link with adherence. If patient clarification is
a measure of greater communicational effort, or en-
gagement, then we might expect other dialogue mea-
sures, such as the amount of acknowledgements or
other grounding cues (Traum and Allen, 1992), or
the proportion of talk per person, to be correlated
with other initiated repair and therefore similarly
predictive of subsequent adherence behaviour. This
is of particular importance if we wish to build a sys-
tem to automatically predict possible (lack of) ad-
herence from dialogue transcripts, especially given
that the types of patient clarification which carry
the highest weight in the patient clarification factor
(next-turn repair initiators, Schegloff, 1992) are rare,
occurring on average only 1.2 times per dialogue.

Further, although certain types of repair were
shown to affect how patients reported they felt the
conversation went, self-reports of symptoms and
communicational factors are not predictive of adher-
ence. Although micro-communicational behaviour
(in the form of other initiated repair) does have a
bearing on subsequent adherence behaviour, patients
are unaware of this. Additional questions therefore
concern whether we can predict patient’s symptom
levels and subjective analyses of the communication
based only on overview dialogue factors.

2 Hypotheses

Factors which we would expect to index patient en-
gagement, and thus be predictive of adherence to
treatment are the amount of backchannel responses
patients make, and the proportion of questions pa-
tients ask, both of which ought to be higher for the
more engaged patients. We might also expect that
such patients have a greater proportion of the talk
overall, and/or longer turns on average, though note
that this conversational pattern might also be one in
which the patient is not engaged, as they might not
be responding to the feedback from their consultant.

For the symptom scores (see below for details),
we should expect that patients with high levels
of negative symptoms (which includes loss of af-
fect and poverty of speech) would produce less
talk overall, and in general produce shorter turns.
There should also be more noticeable gaps in the

dialogues (defined as greater than approximately
200ms, (Heldner and Edlund, 2010)). Contrarily,
for positive symptoms, (including hallucinations and
delusions) patients ought to produce longer turns
and have a greater proportion of the talk.

We also expect to see effects on how patients felt
the conversation went from the amount of overlap,
though as overlap can be both intended and inter-
preted as either interruptive or collaborative (as with
e.g. overlapping backchannels) it is unclear which
direction such a prediction should take.

3 Method

131 dialogues from outpatient consultations be-
tween patients and psychiatrists were analysed ac-
cording to a number of factors. Each of these fac-
tors, detailed in table 1, below, is calculated for each
dialogue participant (with the exception of pauses).
Each patient featured in only one of the dialogues
however, there were only 29 doctors in the study,
so the same clinician may have featured in several
of the dialogues with different patients. The con-
sultations varied in length, with the shortest con-
sisting of 61 turns (438 words) and the longest
881 turns (13178 words), with an average of 320.5
turns (2706.4 words). In addition, a third party was
present in 47 of the consultations.

Following the consultation, each patient was
asked questions from standard questionnaires to as-
certain their level of symptoms, and their evalua-
tion of aspects of the consultation. The positive
and negative syndrome scale (PANSS) (Kay et al.,
1987) assesses positive, negative and general symp-
toms on a 7-point scale of severity (1=absent – 7=ex-
treme). Positive symptoms represent a change in
the patients’ behaviour or thoughts and include sen-
sory hallucinations and delusional beliefs. Negative
symptoms represent a withdrawal or reduction in
functioning, including blunted affect, and emotional
withdrawal and alogia (poverty of speech). Positive
and negative subscale scores ranged from 7 (absent)
– 49 (extreme), general symptoms (such as anxiety)
scores ranged from 16 (absent) – 112 (extreme).

Patient satisfaction with the communication was
assessed using the Patient Experience Questionnaire
(PEQ) (Steine et al., 2001). Three of the five sub-
scales (12 questions) were used as the others were
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not relevant, having been developed for primary
care. The three subscales were ‘communication ex-
periences’, ‘communication barriers’ and ‘emotions
immediately after the visit’. For the communication
subscales, items were measured on a 5-point Lik-
ert scale, with 1=disagree completely and 5=agree
completely. The four items for the emotion scale
were measured on a 7-point visual analogue scale,
with opposing emotions were at either end. A higher
score indicates a better experience.

Adherence to treatment was rated by the clini-
cians as good (> 75%), average (25� 75%) or poor
(< 25%) six months after the consultation. Due to
the low incidence of poor ratings (only 8 dialogues),
this was converted to a binary score of 1 for good ad-
herence (91 patients), and 0 otherwise (37). Ratings
were not available for the remaining dialogues.

Measure Description
Turns Total number of turns
Words Total number of words spoken
Proportion Proportion of total talk in words

(by each participant)
WordsPerTurn Average length of turn in words
WhPerWord Proportion of wh-words (e.g.

what? who?) per word
OCRPerWord Proportion of open class repair ini-

tiators (e.g. pardon? huh?) per
word

BackchannelPerWord Proportion of backchannels (e.g.
uh-huh, yeah) per word

RepeatPerWord Proportion of words repeated from
preceding turn by other person

OverlapAny Proportion of turns containing any
overlapping talk

OverlapAll Proportion of turns entirely over-
lapping another turn

QMark Proportion of turns containing a
question mark

TimedPause Pause of more than approx 200ms,
as marked on the transcripts

Table 1: Measures from outpatient consultations

3.1 Classification Experiments
We performed a series of classification experiments
using the Weka machine learning toolkit (Hall et
al., 2009) to predict each of the outcome mea-
sures outlined above (symptom measures, satisfac-
tion measures, and adherence to treatment). In each
case, outcome measures were converted to binary
high/low scores on an equal frequency basis (i.e.

providing approximately equal numbers of high and
low instances). Features used were the high-level
measures given in Table 1, and/or all unigrams ex-
tracted from the transcript; in both cases, features
from doctor and patient were treated separately. Un-
igrams were produced by tokenising the lower-cased
transcripts on white space; no stemming or stop-
word removal was performed, and feature values
were binary i.e. indicating only presence or ab-
sence of the word spoken by the given speaker in
the given dialogue.2 Given the small size of our
dataset (131 instances) and the large feature space
resulting (> 6500 features), we selected features
based on their predictive ability across the entire
dataset (using Weka’s CfsSubsetEval selector), re-
ducing the number of features to 50-100. In order
to avoid biasing towards doctor-specific features, we
used only words spoken by patients in these exper-
iments – each patient only features in one dialogue,
so patient-specific vocabulary cannot help perfor-
mance across dialogues. All unigram features thus
selected were used in at least 3 dialogues.3

4 Results

Experiments including unigram features used Lib-
SVM’s support vector machine implementation
(Chang and Lin, 2001) with a radial basis func-
tion kernel; experiments with only high-level fea-
tures used J48 decision trees. In each case, experi-
ments used 5-fold cross-validation.4 In experiments
predicting adherence, the distribution between pos-
itive and negative (i.e. good and bad adherence)
made it impossible to balance the dataset - as this
can be problematic for decision tree classifiers, we
also present results for a downsampled dataset with
only 71 instances but which provides balance. Per-
formance is shown in Table 2 as overall percentage
accuracy, and is compared to a majority-class base-
line throughout; results which are significantly dif-
ferent at the 5% level according to a �2 test from a

2Experiments with frequency counts did not affect the re-
sults as reported.

3Bi- and tri-gram features were not extracted from this data
because of the small amount of data available which we felt
would result in models that suffered from overfitting (note that
the same concern holds for the unigram features).

4Classifiers were trained on 80% and tested on 20% of the
sample, with this was repeated 5 times over each possible 80/20
combination so as to test the whole dataset.
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random distribution and the majority class distribu-
tion are shown marked with *.

Baseline Words High-level
PANSS positive 51.1 87.0* 56.5*
PANSS negative 49.6 87.8* 56.5*
PANSS general 48.4 91.1* 54.0
PEQ emotions 51.9 89.1* 53.5
PEQ communication 50.8 79.8* 52.4
PEQ comm. barriers 51.6 90.6* 51.6
PEQ overall 50.8 90.6* 53.9
Adherence 73.2 91.1* 63.4
Adherence (balanced) 53.5 93.0* 52.1

Table 2: Percentage accuracies vs feature set

Results show good performance for all experi-
ments when including lexical features, with all fac-
tors being predictable with around 90% accuracy
with the exception of PEQ communication at just be-
low 80%. However, using high-level features alone
gives negligible performance, except for a small
benefit on the PANSS negative and positive symp-
tom measures, though contrary to our hypotheses
the most important high-level features were OCR-
PerWord by the doctor (negative) and WhWords by
an other participant (positive).

Examination of the most predictive unigrams
shows that sets selected for different outcome mea-
sures are different: for example, the 54 fea-
tures selected for adherence and the 73 selected
for PEQ overall have only 1 word in com-
mon (“mates”). Adherence-related words in-
clude words related to conditions, treatment and
medication (“schizophrenic”, “sickness”, “symp-
toms”, “worse”, “pains”, “flashbacks”, “sodium”,
“chemical”, “monthly”); PEQ-related words in-
clude those related to personal life (“sundays”,
“thursdays”, “television”, “sofa”, “wine”, “per-
sonally”, “played”), and filled pauses (“eerrmm”,
“uhhm”) – although more investigation is required
to draw any firm conclusions from these. Table 3
shows the full lists for adherence and PEQ overall.

5 Discussion and Conclusions

The results show that although we can weakly pre-
dict symptoms at levels above chance using only
high-level dialogue factors, we cannot do so for ad-
herence, or satisfaction measures. Despite the link

between patient other initiated repair and adherence,
this is also not an effective predictor for our machine
learning approach because of the scarcity of the phe-
nomenon, and the fact that many of the consulta-
tions for which the patients subsequently exhibited
good adherence behaviour do not feature a single
patient clarification, which may be linked to psychi-
atrist clarity rather than lack of effort or engagement
on the patient’s part.

The high accuracies with lexical features show
that some aspects of the consultations do enable ac-
curate prediction of adherence, PEQ measures and
symptoms. However, as the features which allow us
to achieve such good results rely on specific words
used, it is unclear how generalisable or interpretable
such results are. The lexical features chosen do gen-
eralise over our dataset (in which individual patients
appear only once), and exclude doctor talk, so can-
not be simply picking out unique unigram signatures
relating to individual patients or doctors; however,
given the small size of the dataset used for this ini-
tial investigation with its constrained domain, genre
and topics, and the use of the whole dataset to select
predictive words, it is unclear whether these results
will scale up to a larger dataset.

We therefore suspect that more general, higher-
level dialogue features such as specific interac-
tion phenomena (repair, question-answering) and/or
more general models of topic may be required.
While unigrams are too low-level to be explanatory
and may not generalise, the dialogue features dis-
cussed are too high-level to be useful; we are there-
fore examining mid-level phenomena and models
to capture the predictability while remaining gen-
eral and providing more interpretable features and
results. Although the word lists offer clues as to
the relevance of specific words for the overall pre-
dictability, we would not like to leave it at that.
Further experiments are therefore underway to in-
vestigate whether we can find a level of appropri-
ate explanatory power and maximal predictivity us-
ing an interim level of analysis, for example with n-
gram and part-of-speech-based models, topic mod-
els based on word distributions, and turn-taking phe-
nomena. Additional experiments also look at the
turn-level data to see if the patient led clarification
factor can be directly extracted from the transcripts.
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Adherence PEQ overall
air grass schizophrenic 20th electric onto sometime

anyone grave sensation ages energy overweight son
balanced guitar sickness angry environment oxygen standing
bleach h simply anxiety experiencing packed stomach
build hahaha sodium background facilities percent suddenly

building lager stable bladder friendly personally sundays
busy laying stock booked helps picture suppose

challenge lifting symptoms boy ignore played table
chemical lucky talks broken immediately programs team

complaining mates teach bus increased progress television
cup monthly terminology certificate irritated provide thursdays

dates mouse throat dead kick public troubles
en nowhere virtually deep later quid uhhm
fill pains was drunk lee radio upsetting

finished possibly wave earn loose realised walks
fish pr weve eeerrrr low reply watchers

flashbacks recent worse eerrmm march sat wine
removed writing eerrrmm mates shaky

ri moments sofa

Table 3: Most predictive unigram features
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Abstract

We use Reinforcement Learning (RL) to learn
question-answering dialogue policies for a
real-world application. We analyze a corpus
of interactions of museum visitors with two
virtual characters that serve as guides at the
Museum of Science in Boston, in order to
build a realistic model of user behavior when
interacting with these characters. A simulated
user is built based on this model and used
for learning the dialogue policy of the virtual
characters using RL. Our learned policy out-
performs two baselines (including the original
dialogue policy that was used for collecting
the corpus) in a simulation setting.

1 Introduction

In the last 10 years Reinforcement Learning (RL)
has attracted much attention in the dialogue commu-
nity, to the extent that we can now consider RL as the
state-of-the-art in statistical dialogue management.
RL is used in the framework of Markov Decision
Processes (MDPs) or Partially Observable Markov
Decision Processes (POMDPs). In this paradigm
dialogue moves transition between dialogue states
and rewards are given at the end of a successful dia-
logue. The goal of RL is to learn a dialogue policy,
i.e. the optimal action that the system should take at
each possible dialogue state. Typically rewards de-
pend on the domain and can include factors such as
task completion, dialogue length, and user satisfac-
tion. Traditional RL algorithms require on the order

∗ This work was done when the first author was a visiting
researcher at USC/ICT.

of thousands of dialogues to achieve good perfor-
mance. Because it is very difficult to collect such a
large number of dialogues with real users, instead,
simulated users (SUs), i.e. models that simulate the
behavior of real users, are employed (Georgila et al.,
2006). Through the interaction between the system
and the SUs thousands of dialogues can be gener-
ated and used for learning. A good SU should be
able to replicate the behavior of a real user in the
same dialogue context (Ai and Litman, 2008).

Most research in RL for dialogue management
has been done in the framework of slot-filling appli-
cations (Georgila et al., 2010; Thomson and Young,
2010), largely ignoring other types of dialogue. In
this paper we focus on the problem of learning di-
alogue policies for question-answering characters.
With question-answering systems (or characters),
the natural language understanding task is to retrieve
the best response to a user initiative, and the main
dialogue policy decision is whether to provide this
best response or some other kind of move (e.g. a re-
quest for repair, clarification, or topic change), when
the best answer does not seem to be good enough.
Note that often in the literature the term question-
answering is used for slot-filling dialogue systems
as well, in the sense that the user asks some ques-
tions, for example, about restaurants in a particular
area, and the system answers by providing a list of
options, for example, restaurants. We use the term
“question-answering” for systems where user ques-
tions can be independent of one another (follow-
up questions are possible though) and do not have
the objective of reducing the search space and re-
trieving results from a database of e.g. restaurants,
flights, etc. Thus examples of question-answering
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characters can be virtual interviewees (that can an-
swer questions, e.g. about an incident), virtual scien-
tists (that can answer general science-related ques-
tions), and so forth.

For our experiments we use a corpus (Aggarwal
et al., 2012) of interactions of real users with two
virtual characters, the Twins, that serve as guides at
the Museum of Science in Boston (Swartout et al.,
2010). The role of these virtual characters is to en-
tertain and educate the museum visitors. They can
answer queries about themselves and their technol-
ogy, generally about science, as well as questions
related to the exhibits of the museum. An example
interaction between a museum visitor and the Twins
is shown in Figure 1. The dialogue policy of the
Twins was arbitrarily hand-crafted (see section 7 for
details) and many other policies are possible (includ-
ing Baseline 2, presented in section 7, and taking
more advantage of question topics and context). We
propose to use RL for optimizing the system’s re-
sponse generation. This is a real-world application
for which RL appears to be an appropriate method.

Although there are similarities between question-
answering and slot-filling dialogues there are also a
number of differences, such as the reward function
and the behavior of the users. As discussed later in
detail, in question-answering the users have a num-
ber of questions that they are planning to ask (stock
of queries), which can be increased or decreased de-
pending not only on whether they received the in-
formation that they wanted but also on how satisfied
they are with the interaction. The system has to plan
ahead in order to maximize the number of success-
ful responses that it provides to user queries. At the
same time it needs to avoid providing incorrect or
incoherent responses so that the user does not give
up the interaction.

One of the challenges of our task is to define an
appropriate reward function. Unlike slot-filling dia-
logues, it is not clear what makes an interaction with
a question-answering system successful. A second
challenge is that in a museum setting it is not clear
what constitutes a dialogue session. Often two or
more users alternate in asking questions, which fur-
ther complicates the problem of defining a good re-
ward function. A third challenge is that the domain
is not well defined, i.e. users do not know in advance
what the system is capable of (what kind of ques-
tions the characters can answer). Moreover, there

User: What are your names? (ASR: what are
your names)

Ada: My name’s Ada.

Grace: And I’m Grace. We’re your Virtual Mu-
seum Guides. With your help, we can suggest ex-
hibits that will get you thinking! Or answer ques-
tions about things you may have seen here.

Ada: What do you want to learn about?

User: Artificial intelligence. (ASR: is
artificial intelligence)

Grace: One example of AI, or Artificial Intelli-
gence, is 20Q, an online computer activity here at
Computer Place that asks you questions to guess
what you’re thinking.

Ada: I wish we’d been programmed to do that.
Nah. . . on second thought, I prefer just answering
your questions.

Grace: That takes AI too.

Figure 1: Example dialogue between the Twins virtual
characters and a museum visitor.

are many cases of “junk” user questions (e.g. “are
you stupid?”) or even user prompts in languages
other than English (e.g. “hola”).

We first analyze our corpus in order to build a re-
alistic model of user behavior when interacting with
the virtual characters. A SU is built based on this
model and used for learning the dialogue policy of
the virtual characters using RL. Then we compare
our learned policy with two baselines, one of which
is the dialogue policy of the original system that was
used for collecting our corpus and that is currently
installed at the Museum of Science in Boston. Our
learned policy outperforms both baselines in a sim-
ulation setting.

To our knowledge this is the first study that uses
RL for learning this type of question-answering dia-
logue policy. Furthermore, unlike most studies that
use data collected by having paid subjects interact
with the system, we use data collected from real
users, in our case museum visitors.1 We also com-
pare our learned dialogue policy with the dialogue
policy of the original system that is currently in-
stalled at the Museum of Science in Boston.

The structure of the paper is as follows. In sec-

1Note that the CMU “Let’s Go!” corpus is another case of
using real user data for learning dialogue policies for the Spoken
Dialogue Challenge.
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tion 2 we present related work. Section 3 provides a
brief introduction to RL and section 4 describes our
corpus. Then in section 5 we explain how we built
our SU from the corpus, and in section 6 we describe
our learning methodology. Section 7 presents our
evaluation results. Finally section 8 presents some
discussion and ideas for future work together with
our conclusion.

2 Related Work

To date, RL has mainly been used for learning di-
alogue policies for slot-filling applications such as
restaurant recommendations (Jurčı́ček et al., 2012),
sightseeing recommendations (Misu et al., 2010),
appointment scheduling (Georgila et al., 2010), etc.,
largely ignoring other types of dialogue. Recently
there have been some experiments on applying RL
to the more difficult problem of learning negotia-
tion policies (Heeman, 2009; Georgila and Traum,
2011a; Georgila and Traum, 2011b). Also, RL has
been applied to tutoring domains (Tetreault and Lit-
man, 2008; Chi et al., 2011).

There has been a lot of work on developing
question-answering systems with dialogue capabil-
ities, e.g. (Jönsson et al., 2004; op den Akker et al.,
2005; Varges et al., 2009). Most of these systems are
designed for information extraction from structured
or unstructured databases in closed or open domains.
One could think of them as adding dialogue capa-
bilities to standard question-answering systems such
as the ones used in the TREC question-answering
track (Voorhees, 2001). Other work has focused on
a different type of question-answering dialogue, i.e.
question-answering dialogues that follow the form
of an interview and that can be used, for example,
for training purposes (Leuski et al., 2006; Gandhe et
al., 2009). But none of these systems uses RL.

To our knowledge no one has used RL for learning
policies for question-answering systems as defined
in section 1. Note that Rieser and Lemon (2009)
used RL for question-answering, but in their case,
question-answering refers to asking for information
about songs and artists in an mp3 database, which
is very much like a slot-filling task, i.e. the system
has to fill a number of slots (e.g. name of band, etc.)
in order to query a database of songs and present
the right information to the user. As discussed in
section 1 our task is rather different.

3 Reinforcement Learning

A dialogue policy is a function from contexts to
(possibly probabilistic) decisions that the dialogue
system will make in those contexts. Reinforcement
Learning (RL) is a machine learning technique used
to learn the policy of the system. For an RL-based
dialogue system the objective is to maximize the re-
ward it gets during an interaction. RL is used in the
framework of Markov Decision Processes (MDPs)
or Partially Observable Markov Decision Processes
(POMDPs).

In this paper we follow a POMDP-based ap-
proach. A POMDP is defined as a tuple (S,A, P ,R,
O, Z, γ, b0) where S is the set of states (representing
different contexts) which the system may be in (the
system’s world),A is the set of actions of the system,
P : S × A→ P (S, A) is the set of transition prob-
abilities between states after taking an action, R : S
× A→< is the reward function, O is a set of obser-
vations that the system can receive about the world,
Z is a set of observation probabilities Z : S × A
→ Z(S, A), and γ a discount factor weighting long-
term rewards. At any given time step i the world
is in some unobserved state si ∈ S. Because si is
not known exactly, we keep a distribution over states
called a belief state b, thus b(si) is the probability of
being in state si, with initial belief state b0. When
the system performs an action αi ∈ A based on b,
following a policy π : S → A, it receives a reward
ri(si, αi) ∈ < and transitions to state si+1 accord-
ing to P (si+1|si, αi) ∈ P . The system then receives
an observation oi+1 according to P (oi+1|si+1, αi).
The quality of the policy π followed by the agent is
measured by the expected future reward also called
Q-function, Qπ : S × A→<.

There are several algorithms for learning the opti-
mal dialogue policy and we use Natural Actor Critic
(NAC) (Peters and Schaal, 2008), which adopts a
natural policy gradient method for policy optimiza-
tion, also used by (Thomson and Young, 2010;
Jurčı́ček et al., 2012). Policy gradient methods do
not directly update the value of state S orQ-function
(expected future reward). Instead, the policy π (or
parameter Θ, see below) is directly updated so as to
increase the reward of dialogue episodes generated
by the previous policy.

A system action asys is sampled based on the fol-
lowing soft-max (Boltzmann) policy:
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π(asys = k|Φ) = Pr(asys = k|Φ,Θ)

=
exp(

∑I
i=1 φi · θki)∑J

j=1 exp(
∑I

i=1 φi · θji)

Here, Φ = (φ1, φ2, . . . , φI) is a basis func-
tion, which is a vector function of the belief state.
Θ = (θ11, θ12, . . . θ1I , . . . , θJI ) consists of J (# ac-
tions) × I (# features) parameters. The parameter
θji works as a weight for the i-th feature of the ac-
tion j and determines the likelihood that the action j
is selected. Θ is the target of optimization by RL.

During training, RL algorithms require thousands
of interactions between the system and the user
to achieve good performance. For this reason we
need to build a simulated user (SU) (Georgila et al.,
2006), that will behave similarly to a real user, and
will interact with the policy for thousands of itera-
tions to generate data in order to explore the search
space and thus facilitate learning.

Topic Example user question/prompt
introduction Hello.
personal Who are you named after?
school Where do you go to school?
technology What is artificial intelligence?
interfaces What is a virtual human?
exhibition What can I do at Robot Park?

Table 1: Topics of user questions/prompts.

4 The Twins Corpus

As mentioned in section 1 the Twins corpus (Aggar-
wal et al., 2012) was collected at the Museum of Sci-
ence in Boston (Swartout et al., 2010). The Twins
can answer a number of user questions/prompts in
several topics, i.e. about themselves and their tech-
nology, about science in general, and about exhibits
in the museum. We have divided these topics in six
categories shown in Table 1 together with an exam-
ple for each category.

An example interaction between a museum vis-
itor and the Twins is shown in Figure 1. We can
also see the output of the speech recognizer. In the
part of the corpus that we use for our experiment
automatic speech recognition (ASR) was performed
by Otosense, an ASR engine developed by the USC

SAIL lab. Natural language understanding and di-
alogue management are both performed as a single
task by the NPCEditor (Leuski and Traum, 2010),
a text classification system that classifies the user’s
query to a system’s answer using cross-language in-
formation retrieval techniques. When the system
fails to understand the user’s query it can prompt her
to do one of the following:

• rephrase her query (from now on referred to
as off-topic response 1, OT1), e.g. “please
rephrase your question”;

• prompt the user to ask a particular question that
the system knows that it can handle (from now
on referred to as off-topic response 2, OT2),
e.g. “you may ask us about our hobbies”;

• cease the dialogue and check out the “behind
the scenes” exhibit which explains how the vir-
tual characters work (from now on referred to
as off-topic response 3, OT3).

The Twins corpus contains about 200,000 spoken
utterances from museum visitors (primarily chil-
dren) and members of staff or volunteers. For the
purposes of this paper we used 1,178 dialogue ses-
sions (11,074 pairs of user and system utterances)
collected during March to May 2011. This subset
of the corpus contains manual transcriptions of user
queries, system responses, and correct responses to
user queries (the responses that the system should
give when ASR is perfect).

5 User Simulation Model

In order to build a model of user behavior we per-
form an analysis of the corpus. One of our chal-
lenges is that the boundaries between dialogue ses-
sions are hard to define, i.e. it is very hard to auto-
matically calculate whether the same or a new user
speaks to the system, unless complex voice iden-
tification techniques are employed. We make the
reasonable assumption that a new dialogue session
starts when there are no questions to the system for
a time interval greater than 120 sec.

From each session we extract 30 features. A full
list is shown in Table 7 in the Appendix. Our goal
is to measure the contribution of each feature to
the user’s decision with respect to two issues: (1)
whether the user will cease the dialogue or not, and
(2) what kind of query the user will make next, based
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on what has happened in the dialogue so far. To do
that we use the Chi-squared test, which is commonly
used for feature selection.

So to measure the contribution of each feature to
whether the user will cease the dialogue or not, we
give a binary label to each user query in our corpus,
i.e. 1 when the query is the last user query in the di-
alogue session and 0 otherwise. Then we calculate
the contribution of each feature for estimating this
label. In Table 8, column 1, in the Appendix, we can
see the 10 features that contribute the most to pre-
dicting whether the user will cease the dialogue. As
we can see the dominant features are not whether
the system correctly responded to the user’s query,
but mostly features based on the dialogue history
(e.g. the number of the system’s off-topic responses
so far) and user type information. Indeed, a further
analysis of the corpus showed that children tend to
have longer dialogue sessions than adults.

Our next step is the estimation of the contribution
of each feature for predicting the user’s next query.
The label we predict here is the topic of the user’s
utterance (personal, exhibition, etc., see Table 1).
We can see the 10 most predictive features in Ta-
ble 8, column 2, in the Appendix. The contribution
of the most recent user’s utterance (previous topic
category) is larger than that of dialogue history fea-
tures. This tendency is the same when we ignore re-
peated user queries, e.g. when the system makes an
error and the user rephrases her query (see Table 8,
column 3, in the Appendix). The user type is impor-
tant for predicting the next user query. In Figure 2
we can see the percentages of user queries per user
type and topic.

Based on the above analysis we build a simulated
user (SU). The SU simulates the following:

• User type (child, male, female): a child user
is sampled with a probability of 51.1%, a male
with 31.1%, and a female with 17.8%. These
probabilities are estimated from the corpus.

• Number of questions the user is planning to
ask (stock of queries): We assume here that
the user is planning to ask a number of ques-
tions. This number may increase or decrease.
For example, it can increase when the system
prompts the user to ask about a particular topic
(OT2 prompt), and it may decrease when the
user decides to cease the dialogue immediately.

Figure 2: Percentages of user queries per user type and
topic.

The number of questions is sampled from a
user type dependent Zipf distribution (strictly
speaking the continuous version of the distri-
bution; Parato distribution) the parameter of
which is estimated from the corpus using the
maximum likelihood criterion. We chose Zipf
because it is a long-tail distribution that fits our
data (users are not expected to ask a large num-
ber of questions). According to this distribution
a child user is more likely to have a larger stock
of queries than a male or female adult.

• User’s reaction: The user has to decide on
one of the following. Go to the next topic
(Go-on); cease the dialogue if there are no
more questions in the stock of queries (Out-of-
stock); rephrase the previous query (Rephrase);
abandon the dialogue (Give-up) regardless of
the remaining questions in the stock; gener-
ate a query based on a system recommenda-
tion, OT2 prompt (Refill). We calculate the
user type dependent probability for these ac-
tions from the corpus. But the problem here
is that it is not possible to distinguish be-
tween the case in which the user asked all the
questions in the stock of queries (i.e. all the
questions she intended to ask) and left, from
the case in which she gave up and abandoned
the dialogue. We estimate the percentage of
“Give-up” as the difference between the ratio of
“Cease” after an incorrect response and the ra-
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tio of “Cease” after a correct response, assum-
ing a similar percentage of “Out-of-stock” for
both correct and incorrect responses. Likewise,
the difference in ”Go-on” for OT2 and other re-
sponses is attributed to ”Refill”. The probabil-
ity of “Rephrase” is estimated from the corpus.
For example the probability that a child will
rephrase after an OT1 system prompt is 54%,
after an erroneous system prompt 38%, etc.

• Topic for next user query (e.g. introduction,
personal, etc.): The SU selects a new topic
based on user type dependent topic transition
bigram probabilities estimated from the corpus.

• User utterance: The SU selects a user utter-
ance from the corpus that matches the current
user type and topic. We have split the corpus
in groups of user utterances based on user type
and topic and we sample accordingly.

• Utterance timing: We simulate utterance tim-
ing (duration of pause between system utter-
ance and next user query) per user type and
user change. The utterance timing is sampled
based on a Gaussian distribution the parameters
of which are set based on the corpus statistics.
For example, the average duration of a session
until the user changes is 62.7 sec with a stan-
dard deviation of 71.2 sec.

6 Learning Question-Answering Policies

Our goal is to use RL in order to optimize the sys-
tem’s response generation. As we saw in the previ-
ous section the SU generates a user utterance from
our corpus. We do not currently use ASR error sim-
ulation but instead a real ASR engine. So the au-
dio file that corresponds to the selected user utter-
ance is forwarded to 3 ASR systems, with child,
male, and female acoustic models (AMs) respec-
tively. Then these recognition results are forwarded
to the NPCEditor that produces an N-best list of pos-
sible system responses (retrieval results). That is,
as mentioned in section 4, the NPCEditor classifies
each ASR result to a system answer using cross-
language information retrieval techniques. The pol-
icy can choose one of the NPCEditor retrieval re-
sults or reject them and instead present one of the
three off-topic prompts (OT1, OT2, or OT3). So the
system has 10 possible actions to choose between:

• use the response with the best or the second
best score retrieved from the NPCEditor based
on a child AM (2 actions);

• use the response with the best or the second
best score retrieved from the NPCEditor based
on a male AM (2 actions);

• use the response with the best or the second
best score retrieved from the NPCEditor based
on a female AM (2 actions);

• use the response with the best of the 6 afore-
mentioned scores of the NPCEditor;

• use off-topic prompt OT1;

• use off-topic prompt OT2;

• use off-topic prompt OT3.

We use the following features to optimize our di-
alogue policy (see section 3). We use the 6 retrieval
scores of the NPCEditor (the 2 best scores for each
user type ASR result), the previous system action,
the ASR confidence scores, the voting scores (calcu-
lated by adding the scores of the results that agree),
the system’s belief on the user type and user change,
and the system’s belief on the user’s previous topic.
So we need to learn a POMDP-based policy using
these 42 features.

Unlike slot-filling dialogues, defining the reward
function is not a simple task (e.g. reward the system
for filled and confirmed slots). So in order to define
the reward function and thus measure the quality of
the dialogue we set up a questionnaire. We asked
5 people to rate 10 dialogues in a 5-Likert scale.
Each dialogue session included 5 question-answer
pairs. Then we used regression analysis to set the
reward for each of the question-answer pair cate-
gories shown in Table 2. So for example, responding
correctly to an in-domain user question is rewarded
(+23.2) whereas providing an erroneous response to
a junk question, i.e. treating junk questions as if they
were in-domain questions, is penalized (-14.7).

One limitation of this reward function (Reward
function 1) is that it does not take into account
whether the user has previously experienced an off-
topic system prompt. To account for that we define
Reward function 2. Here we consider the number
of off-topic responses in the two most recent system
prompts. Reward function 2 is shown in Table 3.
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QA Pair Reward
in-domain→ correct 23.2
in-domain→ error -12.2
in-domain→ OT1 -5.4
in-domain→ OT2 -8.4
in-domain→ OT3 -9.6
junk question→ error -14.7
junk question→ OT1 4.8
junk question→ OT2 10.2
junk question→ OT3 6.1
give up -16.9

Table 2: Reward function 1.

QA Pair Reward
in-domain→ correct 16.9
in-domain→ error -2.0
in-domain→ OT1 13.9
in-domain→ OT1(2) 7.3
in-domain→ OT2 -7.9
in-domain→ OT2(2) 4.2
in-domain→ OT3 -15.8
in-domain→ OT3(2) -8.3
junk question→ error -4.6
junk question→ OT1 4.1
junk question→ OT1(2) 4.1
junk question→ OT2 43.4
junk question→ OT2(2) -33.1
junk question→ OT3 3.1
junk question→ OT3(2) 6.1
give up -19.5

Table 3: Reward function 2.

As we can see, providing an OT2 as the first off-
topic response is a poor action (-7.9); it is preferable
to ask the user to rephrase her question (OT1) as a
first attempt to recover from the error (+13.9). On
the other hand, providing an OT2 prompt, after an
off-topic prompt has occured in the previous system
prompt, is a reasonable action (+4.2).

7 Evaluation

We compare our learned policy with two baselines.
The first baseline, Baseline 1, is the dialogue pol-
icy that is used by our system that is currently in-
stalled at the Museum of Science in Boston. Base-
line 1 selects the best ASR result (i.e. the result
with the highest confidence score) out of the results

with the 3 different AMs (child, male, and female),
and forwards this result to the NPCEditor to retrieve
the system’s response. If the NPCEditor score is
higher than an emprically set pre-defined threshold
(see (Leuski and Traum, 2010) for details), then the
system presents the retrieved response, otherwise it
presents an off-topic prompt. The system presents
these off-topic prompts in a fixed order. First, OT1,
then OT2, and then OT3.

We also have Baseline 2, which forwards all 3
ASR results to the NPCEditor (using child, male,
and female AMs). Then the NPCEditor retrieves 3
results, one for each one of the 3 ASR results, and
selects the retrieved result with the highest score.
Again if this score is higher than a threshold, the sys-
tem will present this result, otherwise it will present
an off-topic prompt.

Each policy interacts with the SU for 10,000 di-
alogue sessions and we calculate the average accu-
mulated reward for each dialogue. In Tables 4 and 5
we can see our results for Reward functions 1 and 2
respectively. In both cases the learned policy outper-
forms both baselines. For both reward functions the
most predictive feature is the ASR confidence score
when combined with the NPCEditor’s retrieval score
and the previous system action. Also, for both re-
ward functions the second best feature is “voting”
when combined with the retrieval score and the pre-
vious system action.

In Table 6 we can see how often the learned pol-
icy, which is based on Reward function 1 using all
features, selects each one of the 10 system actions
(200,000 system turns in total).

Policy Avg Reward
Baseline 1 24.76 (19.29)
Baseline 2 51.63 (49.84)
Learned Policy - Features
Retrieval score
+ system action (*) 46.74
(*) + ASR confidence score 61.59
(*) + User type probability 47.28
(*) + Estimated previous topic 47.87
(*) + Voting 59.94
All features 60.93

Table 4: Results with reward function 1. The values in
parentheses for Baselines 1 and 2 are the rewards when
the NPCEditor does not use the pre-defined threshold.
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Policy Avg Reward
Baseline 1 39.40 (38.51)
Baseline 2 55.45 (54.49)
Learned Policy - Features
Retrieval score
+ system action (*) 49.15
(*) + ASR confidence score 69.51
(*) + User type probability 50.15
(*) + Estimated previous topic 49.84
(*) + Voting 69.06
All features 73.59

Table 5: Results with reward function 2. The values in
parentheses for Baselines 1 and 2 are the rewards when
the NPCEditor does not use the pre-defined threshold.

System Action Frequency
Child + 1st best score 10.33%
Child + 2nd best score 2.70%
Male + 1st best score 13.72%
Male + 2nd best score 1.03%
Female + 1st best score 39.73%
Female + 2nd best score 0.79%
Best of scores 1-6 2.38%
OT1 11.01%
OT2 6.86%
OT3 11.45%

Table 6: Frequency of the system actions of the learned
policy that is based on Reward function 1 using all fea-
tures.

8 Discussion and Conclusion

We showed that RL is a promising technique for
learning question-answering policies. Currently we
use the same SU for both training and testing the
policies. One could argue that this favors the learned
policy over the baselines. Because our SU is based
on general corpus statistics (probability that the user
is child or male or female, number of questions the
user is planning to ask, probability of moving to the
next topic or ceasing the dialogue, utterance timing
statistics) rather than sequential information we be-
lieve that this is acceptable. We only use sequential
information when we calculate the next topic that
the user will choose. That is, due to the way the
SU is built and its randomness, we believe that it is
very unlikely that the same patterns that were gener-

ated during training will be generated during testing.
Thus we do not anticipate that our results would be
different if for testing we used a SU trained on a dif-
ferent part of the corpus, or that the learned policy is
favored over the baselines. However, this is some-
thing to verify experimentally in future work.

For future work we would also like to do the fol-
lowing. First of all, currently we are in the process of
analyzing user satisfaction questionnaires from mu-
seum visitors in order to define a better reward func-
tion. Second, we would like to use voice identifi-
cation techniques to automatically estimate from the
corpus the statistics of having more than one user
or alternating users in the same session. Third, and
most important, we would like to incorporate the
learned policy into the system that is currently in-
stalled in the museum and evaluate it with real users.
Fourth, currently our SU is based on only some of
our findings from the analysis of the corpus. We in-
tend to build a more complex and hopefully more
realistic SU based on our full corpus analysis. Fi-
nally, we will also experiment with learning policies
directly from the data (Li et al., 2009).

To conclude, we analyzed a corpus of interactions
of museum visitors with two virtual characters that
serve as guides at the Museum of Science in Boston,
in order to build a realistic model of user behavior
when interacting with these characters. Based on
this analysis, we built a SU and used it for learning
the dialogue policy of the virtual characters using
RL. We compared our learned policy with two base-
lines, one of which was the dialogue policy of the
original system that was used for collecting the cor-
pus and that is currently installed at the Museum of
Science in Boston. Our learned policy outperformed
both baselines which shows that RL is a promising
technique for learning question-answering dialogue
policies.
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Appendix

Features Features
average ASR accuracy of user queries if system correctly answered current user query
# user queries if system responded with off-topic prompt

to current user query
# correct system responses # times user repeated current query
# incorrect system responses # successive incorrect system responses
# off-topic system prompts # successive off-topic system prompts
% correct system responses # user queries for topic “introduction”
% incorrect system responses # user queries for topic “personal”
user type (child, male, female) # user queries for topic “school”
if user asks example query 1 # user queries for topic “technology”
if user asks example query 2 # user queries for topic “interfaces”
if user asks example query 3 # user queries for topic “exhibition”
if user asks example query 4 # user queries for other topics
if system correctly responds to example query 1 if system correctly responds to example query 3
if system correctly responds to example query 2 if system correctly responds to example query 4
# junk user queries previous topic category

Table 7: List of features used in predicting when the user will cease a session (Cease Dialogue), what the user will say
next (Say Next 1), and what the user will say next after removing repeated user queries (Say Next 2). Example query
1 is “who are you named after?”; example query 2 is “are you a computer?”; example query 3 is “what do you like to
do for fun?”; example query 4 is “what is artificial intelligence?”.

Cease Dialogue Say Next 1 Say Next 2
average ASR accuracy of previous topic category previous topic category
user queries
user type (child, male, female) # user queries for topic “personal” # junk user queries
# off-topic system prompts # user queries # successive incorrect system

responses
# successive off-topic system # junk user queries if system correctly answered
prompts current user query
# incorrect system responses % correct system responses user type (child, male, female)
# user queries % incorrect system responses % incorrect system responses
# junk user queries # incorrect system responses % correct system responses
# user queries for other topics # user queries for other topics # incorrect system responses
if system responded with off-topic # correct system responses # off-topic system prompts
prompt to current user query
% correct system responses user type (child, male, female) # user queries

Table 8: List of the 10 most dominant features (in order of importance) in predicting when the user will cease a session
(Cease Dialogue), what the user will say next (Say Next 1), and what the user will say next after removing repeated
user queries (Say Next 2).
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Abstract 

Convergence is thought to be an important 
phenomenon in dialogue through which interlocutors 
adapt to each other. Yet, its mechanisms and 
relationship to dialogue outcomes are not fully 
understood. This paper explores convergence in 
textual task-oriented dialogue during a longitudinal 
study. The results suggest that over time, 
convergence between interlocutors increases with 
successive dialogues. Additionally, for the tutorial 
dialogue domain at hand, convergence metrics were 
found to be significant predictors of dialogue 
outcomes such as learning, mental effort, and 
emotional states including frustration, boredom, and 
confusion. The results suggest ways in which 
dialogue systems may leverage convergence to 
enhance their interactions with users.  

1 Introduction 

Convergence is a widely observed phenomenon in 
dialogue, in which interlocutors adapt to the 
patterns in each other’s utterances (Brennan 1996; 
Pickering and Garrod 2004). These patterns can 
include lexical choice (Hirschberg 2008; Ward and 
Litman 2007), syntactic choice (Reitter et al. 2006; 
Stoyanchev and Stent 2009) and loudness 
(Coulston et al. 2002). It is believed that 
convergence is indicative of shared understanding 
(Pickering and Garrod 2004), which makes it an 
important consideration for task-oriented dialogue 
systems. 
    In addition to facilitating shared understanding, 
convergence has also been associated with the 
success of dialogues in several domains 
(Steinhauser et al. 2011; Ward and Litman 2007), 

and can also be leveraged for lexical and syntactic 
priming that may improve performance of spoken 
dialogue systems via more accurate speech 
recognition (Stoyanchev and Stent 2009). While 
such results have established that convergence is 
an important dialogue phenomenon, the field does 
not yet fully understand how convergence is 
associated with dialogue success.  

This paper examines surface-level and lexical 
convergence within textual task-oriented 
dialogues. The analysis considers three levels of 
convergence: utterance-level short-term priming 
effects, conversation-level convergence effects, 
and longitudinal convergence effects, as 
interlocutors participate in six conversations 
together over the course of several weeks. Using 
these measures, we build multiple regression 
models that indicate ways in which convergence 
can predict both desirable and undesirable 
outcomes of task-oriented dialogues.  
    This paper makes several contributions. First, by 
examining convergence at several granularity 
levels and across multiple dialogues with the same 
partners, we gain insight into how convergence 
phenomena unfold over time. Second, the findings 
provide confirmatory evidence that in some 
domains, such as the tutorial dialogue considered 
here, lexical priming be associated with unintended 
consequences. Finally, we demonstrate that 
dialogue convergence is also associated with 
affective components such as frustration, 
engagement, and confusion. These results 
contribute to an understanding of convergence that 
may enable us to harness this phenomenon more 
effectively within dialogue systems.  
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2 Related Work 

Convergence and the related concepts of alignment 
and priming have been extensively studied. 
Alignment, or the development of shared 
understanding, has been studied by Pickering and 
Garrod (2004) who propose that alignment on 
lower-level observable features is indicative of 
alignment at the level of conceptual models. The 
influence of shared representation in dialogue has 
also been explored in the context of learning; for 
example, Ward and Litman (2007) studied lexical 
convergence in human-human tutoring and found 
that the rate of priming, which measures student 
re-use of tutor words at various distances, was 
positively associated with learning for students 
with low initial test scores. Conversely, 
Steinhauser et al. (2011) analyzed lexical 
convergence in an automated dialogue-based 
physics tutor, and found that the level of the 
student mimicking the tutor was negatively 
correlated with learning. Thus, the relationship 
between dialogue convergence and learning is not 
fully understood, and may be highly dependent on 
context. 

  In addition to a theoretical link to shared 
representations, convergence has practical 
implications, in particular for speech recognition 
(Stoyanchev and Stent 2009). Brennan (1996) 
found that users adapt their lexical choices to 
match those of an automated system in both text-
based and speech-based interactions, even when it 
is apparent that the system understood the user’s 
original lexical choice. Convergence has even been 
found to occur in non-lexical aspects of a dialogue, 
such as users adapting their loudness levels to 
match that of a software agent (Coulston et al. 
2002). Together, these results suggest that 
convergence has implications beyond lexical and 
syntactic choice. 

3 Corpus  

The corpus consists of text-based tutorial dialogues 
between two interlocutors, a tutor and a student, 
working together to complete tasks in the domain 
of introductory computer science (excerpt in 
Appendix A). The corpus was collected over two 
semesters, in which 67 first-year university 
students were selected from an introductory 
engineering course and assigned to one of seven 

tutors of varying levels of tutoring experience. 
Each student engaged in six task-based dialogues 
with a single tutor over four weeks with the goal of 
producing a working software artifact during each 
session. Each session included several subtasks, 
and time was strictly limited to forty minutes 
duration. The remote collaboration interface, 
shown in Figure 1, facilitated a real-time 
synchronized view of the workspace and dialogue. 
This paper considers dialogue utterances only, 
leaving to future work the analysis of task-related 
artifacts. 
 

 
Figure 1. Task-oriented dialogue interface 

 
The effectiveness of the dialogue was measured in 
several ways. First, student learning was measured 
as difference in score on pre-test and post-tests. 
Student engagement, or level of involvement 
during the dialogue, was measured with a brief 
survey after each dialogue (O’Brien and Toms 
2010), as were student’s satisfaction with the 
exchange, and a rating of how mentally 
challenging the task was perceived to be (Hart and 
Staveland 1988). Finally, the tutors were asked to 
rate their satisfaction with the effectiveness of each 
session and to report on their perceptions of the 
affective states of both interlocutors during the 
session. The students were not asked about their 
own affective states, as this may have introduced 
bias in subsequent dialogues.  

4 Analysis 

The goal of the analysis is to identify the 
characteristics of the dialogues that are predictive 
of the outcomes of interest, including learning, 
engagement, affect, and overall success of the 
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dialogue as rated by the interlocutors. Summary 
statistics for the dialogues were computed, 
including time duration of the session, number of 
utterances, number of words, number of characters, 
mean word length, and lexicon size (Table 1). Stop 
words were not excluded from the analysis, in part 
due to specialized usage of common vocabulary in 
the computer science domain (e.g., for, if ). 

Although not traditionally considered a form of 
convergence, we were interested in the relationship 
between the levels of activity of the two 
interlocutors.  To this end, we analyzed the number 
of utterances, words, and characters used by tutor 
and student, and found a significant positive 
correlation on these metrics (p<0.0001 for each). 

The first convergence phenomenon considered 
centers on lexical priming, the tendency for one 
interlocutor to re-use words previously introduced 
by the other. We have utilized a priming metric 
computed as follows: Interlocutor A’s Priming 
Ratio (PR) is the percent of Interlocutor A’s words 
reused by Interlocutor B at a given distance d, 
where distance is measured in terms of number of 
Interlocutor B’s utterances. Negative slope of PR 
over distance indicates a priming effect because an 
interlocutor was more likely to reuse a word 
shortly after its use by the other interlocutor. This 
metric has been used to investigate tutor priming 
(Steinhauser et al. 2011; Ward and Litman 2007), 
and we generalize it to measure priming for both 
interlocutors. Note that student PR, which reflects 
the extent to which the tutor adopted the student’s 
lexical choice, is of particular interest from the 
perspective of dialogue system design, in which 
tutor utterances are system-generated.  

 
 Tutor  

mean (SD) 
Student 

mean (SD) 
Surface Features 
Number of utterances 83.7 (28.8) 35.6 (13.1) 
Number of words 580.9 (202.3) 170.1 (92.6) 
Number of characters 2383.4 (886.6) 667.3 (386.0) 
Mean word length 4.1 (0.2) 3.9 (0.3) 
Lexicon size 329.7 (87.3) 106.3 (47.3) 
   
Convergence Metrics 
Priming Ratio (1-10) .030 (.02) .047 (.02) 
ΔPriming Ratio (1-10) -.011 (.02) -.017 (.04) 
Max Priming Ratio .052 (.02) .091 (.04) 
Matched Word Ratio .233 (.09) .386 (.08) 

Table 1. Statistics for each metric 
 

In addition to the Priming Ratio, we also computed 
a metric to reflect convergence: Interlocutor A’s 

Matched Word Ratio (MWR) is the percent of 
Interlocutor A’s words that had been previously 
used by Interlocutor B at any point in the dialogue 
history. Because it is backward-looking, this metric 
is applicable not only in a corpus study, but could 
also be used within a runtime system to track 
convergence as the dialogue unfolds. 

5 Models and Results  

Mean Matched Word Ratio for both interlocutors 
increased as sessions progressed, reflecting that the 
two dialogue partners used more of each other’s 
words as they spent more time together. The 
Priming Ratio also revealed several phenomena in 
the corpus. Similarly to prior observations from 
tutorial dialogue (Ward and Litman 2007), we 
found that student reuse of tutor primes decreased 
with distance, indicating that a lexical priming 
effect occurred (Figure 2). This trend also occurred 
for tutor reuse of student primes (Figure 3).  The 
effect was more pronounced in the tutor’s PR than 
the student’s PR; that is, there was more evidence 
that tutors converged to students in the short term. 
This finding may be associated in part with the 
higher number of tutor utterances: a distance in 
terms of number of tutor utterances represents 
fewer combined student and tutor utterances than 
the same distance in terms of student utterances. 
Additionally, tutor convergence may reflect a 
dimension of intentional pedagogical choice.  

The Priming Ratio is designed to reflect short-
term priming. However, there is evidence of a 
longer-term effect as the two interlocutors engaged 
in dialogue across multiple sessions. Figures 2 and 
3 display Tutor’s PR and Student’s PR, 
respectively, by task set, of which there were six in 
the corpus study. The last task set displays an 
overall higher level of lexical convergence than the 
earlier sessions, and there is a general trend of 
increasing convergence as the number of sessions 
together increases. 

In order to identify the features that were most 
predictive of dialogue outcomes, all of the 
convergence metrics and surface summary features 
were provided as input to a stepwise linear 
regression model. Standard greedy variable 
addition and removal was performed, with 
additional post-processing and re-training to 
eliminate instances of multicollinearity. The 
learned models (Appendix B) include a mixture of 
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convergence metrics and surface features, as well 
as structural features such as the task set number 
and the time duration of the dialogue. At least one 
convergence metric was found to be associated 
with each outcome in the generated models, with 
the exception of Engagement. 

 

 
Figure 2. Tutor's Priming Ratio aggregated by task set 

(TS = Task Set) 
  

 
Figure 3. Student's Priming Ratio aggregated by task set 

(TS = Task Set) 
 

Several significant relationships emerged within 
the models. We discuss a subset of these here. 
First, tutor Priming Ratio was a significant 
predictor for outcomes as rated by both tutor and 
student. Higher tutor Priming Ratio was associated 
with higher tutor perception of dialogue success, 
perhaps because students reflected tutor lexical 
choice more frequently. The same metric was 
associated with lower student score for how 
mentally demanding the tasks were perceived to 
be, which suggests that a shared lexicon may be 
associated with decreased cognitive load.   
     Another significant finding is the relationship 
between student Priming Ratio and student 
boredom, confusion, and frustration. In all the 
models, increased reports of these student 

emotions by the tutor corresponded to lower 
student Priming Ratio.  This result suggests that 
tutor reuse of student lexical choice may be 
associated with positive affective outcomes.  
     Finally, the tutor’s Matched Word Ratio is a 
significant negative predictor of learning gains, 
and also a significant negative predictor for student 
confusion. This finding may be related to the fact 
that by reusing more student language, the tutor 
may be effectively introducing fewer novel 
contributions that might lead to confusion.  

6 Conclusion and Future Work 

Understanding how convergence unfolds holds 
significant promise for designing more effective 
dialogue systems. Toward that end, this paper has 
explored convergence in task-oriented dialogue at 
three levels: at the level of pairs of utterances, 
across a single conversation, and over multiple 
conversations with the same interlocutors. The 
results demonstrate that within the corpus, the two 
interlocutors display increasing levels of 
convergence longitudinally. Additionally, the 
results suggest ways in which short-term and long-
term convergence are associated with particular 
positive and negative aspects of dialogue success 
and user affect.  
     The findings have significant implications for 
dialogue systems. First, they suggest that not only 
may successful lexical priming aid in 
understanding (Stoyanchev and Stent 2009), it may 
also be associated with lower cognitive load for 
users. Additionally, it may be possible to leverage 
convergence to positively impact users’ affective 
states with respect to emotions such as boredom, 
confusion, and frustration. These potential 
relationships suggest that work to further elucidate 
convergence phenomena is particularly promising 
because dialogue systems stand to benefit from 
strategically leveraging convergence and 
adaptation. 
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Appendix A. Corpus Excerpt 
T: yes so what happens with the other paths? 

S: is it because the last statement is fullfilled so it has no 
need to print the error? 
S: i understand what is happening but i do not know how 
to explain it 
T: ok so you noticed that when the if statement directly 
before it is true then it does not go to the else 
T: but if the if statement directly before the else statement 
is false then it goes to the else statement 
S: yes. 

S: so i need to make all of them else if statements? 

T: yes 

 

Appendix B. Regression Models 
 β p 

Norm. Learning Gain, R2 = .0687 
Tutor’s MWR -.169 .0160 
Task set number -.144 .0392 
 
Engagement (Student-reported) R2 = .0892 
Tutor’s number of characters -.527 .0007 
Student’s mean word length .159 .0033 
Tutor’s mean word length -.169 .0053 
Tutor’s lexicon size .369 .0189 
 
Mentally demanding (Student-reported) R2 = .217 
Tutor’s PR (distances 1-5) -.128 .0118 
Session length (ms) .174 .0065 
Combined number of utterances .579 .0005 
Tutor’s number of utterances -.475 .0040 
Tutor’s number of characters -.439 .0031 
Tutor’s mean word length -.118 .0496 
Tutor’s lexicon size .627 <.0001 
 
Student confusion*, R2 = .319 
Student’s PR (distances 1-10) -.233 <.0001 
Tutor’s number of matched words 1.04 <.0001 
Tutor’s MWR -.523 <.0001 
Task set number -.122 .0105 
Session length (ms) .292 <.0001 
Student’s number of characters .247 .0048 
Combined lexicon size -.594 <.0001 
 
Student frustration*, R2 = .300 
Max value of Student’s PR .156 .0035 
Session length (ms) .239 <.0001 
Tutor’s number of utterances .460 <.0001 
Tutor’s number of words .342 .0135 
Tutor’s lexicon size -.748 <.0001 
 
Student boredom*, R2 = .202 
Student’s PR (distances 1-5) -.234 <.0001 
Tutor’s number of utterances .261 .0001 
Tutor’s lexicon size -.412 <.0001 
 
Session successful overall*, R2 = .246 
Tutor’s PR (distances 1-3) .186 .0002 
Δ Student’s PR (distances 1-10) .122 .0079 
Session length (ms) -.420 <.0001 
Tutor’s number of utterances .518 <.0001 
Tutor’s number of words -.473 .0006 
Tutor’s lexicon size .275 .0340 

* = from tutor perception survey;  
β = standardized regression coefficient 
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Abstract

A robust system that understands route instructions
should be able to process instructions generated nat-
urally by humans. Also desirable would be the abil-
ity to handle repairs and other modifications to exist-
ing instructions. To this end, we collected a corpus
of spoken instructions (and modified instructions)
produced by subjects provided with an origin and
a destination. We found that instructions could be
classified into four categories, depending on their
intent such as imperative, feedback, or meta com-
ment. We asked a different set of subjects to fol-
low these instructions to determine the usefulness
and comprehensibility of individual instructions. Fi-
nally, we constructed a semantic grammar and evalu-
ated its coverage. To determine whether instruction-
giving forms a predictable sub-language, we tested
the grammar on three corpora collected by others
and determined that this was largely the case. Our
work suggests that predictable sub-languages may
exist for well-defined tasks.

Index Terms: Robot Navigation, Spoken Instructions

1 Introduction

Generating and interpreting instructions is a topic of en-
during interest. Cognitive psychologists have examined
how people perceive spatial entities and structure route
instructions (Daniel and Denis, 1998; Allen, 1997). Lin-
guists and others have investigated how people articulate
route instructions in conversation with people or agents
(Eberhard et al., 2010; Gargett et al., 2010; Stoia et al.,
2008; Marge and Rudnicky, 2010). Artificial intelligence
researchers have shown that under supervised conditions
autonomous agents can learn to interpret route instruc-
tions (Kollar et al., 2010; MacMahon et al., 2006; Ma-
tuszek et al., 2010; Bugmann et al., 2004; Chen and
Mooney, 2010).

While the subject has been approached from different
perspectives, it has been generally held that the language

of directions is mostly limited and only parts of the vo-
cabulary (such as location names) will vary from case to
case. We are interested in being able to interpret natural
directions, as might be given to a robot, and generating
corresponding trajectory. But natural directions contain
different types of information, some (more-or-less) eas-
ily interpreted (e.g., "go to the end of the hall") while
others seem daunting (e.g., "walk past the abstract mural
with birds"). So the question might actually be "is there
enough interpretable data in human directions to support
planning a usable trajectory?".

The language of instructions contains a variety of rel-
evant propositions: a preface to a route, an imperative
statement, or a description of a landmark. Previous work
has proposed both coarse and fine-grained instruction
taxonomies. (Bugmann et al., 2004) proposed a taxon-
omy of 15 primitive categories in a concrete “action”
framework. In contrast, (Daniel and Denis, 1998) sug-
gested a five-way categorization based on cognitive prop-
erties of instructions.

Instructions vary greatly and can include superfluous
detail. (Denis et al., 1999) found that when people were
asked to read and assess a set of instructions some of the
instructions were deemed unnecessary and could be dis-
carded. There is some evidence (Lovelace et al., 1999;
Caduff and Timpf, 2008) that only the mention of sig-
nificant landmarks along the route leads to better-quality
instructions. Computational (rather than descriptive) ap-
proaches to this problem include: using sequence label-
ing approach to capture spatial relations, landmarks, and
action verbs (Kollar et al., 2010), generating a frame
structure for an instruction (MacMahon et al., 2006), or
using statistical machine translation techniques to trans-
late instructions into actions (Matuszek et al., 2010).

We describe a new instructions corpus, its analysis in
terms of a taxonomy suitable for automated understand-
ing and a verification that the instructions are in fact us-
able by humans. With a view to automating understand-
ing, we also constructed a grammar capable of processing
this language, and show that it provides good coverage
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for both our corpus and three other corpora (Kollar et al.,
2010; Marge and Rudnicky, 2010; Bugmann et al., 2004)

This paper is organized as following: Section 2 de-
scribes the corpus collection study. Then in Section 3,
we discuss the taxonomy of route instructions. Section 4
focuses on which categories are important for navigation.
In Section 5, we report our results and error analysis on
parsing instructions from our corpus and three other cor-
pora containing route instructions, followed by lessons
learned and future work.

2 The Navagati1 Corpus

We collected a corpus of spoken instructions describing
how to get from one part of a large building complex
to another. To ensure consistency we recruited individ-
uals who were familiar with the environment and conse-
quently could formulate such instructions without refer-
ence to maps or other materials. Since we are ultimately
interested in how such instructions are edited, we also in-
cluded conditions in which subjects were asked to modify
their instructions in several ways. The corpus is publicly
available2.

2.1 Participants and Procedure

We recruited subjects who were both fluent English
speakers and were also familiar with the environment (a
university building complex). Subjects were told to imag-
ine that they had encountered a visitor, not familiar with
the campus, at a specific location (in front of elevators on
a particular floor) who needed instructions to a specific
location, a café two buildings away.

For each set of instructions, subjects were asked to
think about the route and their instructions, then record
them as a single monologue. Subjects sat in front of
a computer and wore a close-talking microphone. Ini-
tially no map was provided and they were expected to
rely on their memory. In subsequent tasks they were
shown a floor-plan indicating a specific location of the
visitor and asked to modify their instructions. Speech
was transcribed using Amazon Mechanical Turk, shown
to be a reliable resource for spoken language transcription
(Marge et al., 2010). Transcriptions were normalized to
standardize spellings (e.g., building names).

2.2 Design

Previous works have focused on eliciting route instruc-
tions between multiple pairs of locations. There is a gen-
eral agreement that the structure of instructions did not
vary with the increase in number of start-end location
pairs. However previous works have not looked at how
instructions would be modified under different situations.

1Sanskrit root for Navigation meaning "to travel by boat"
2http://tts.speech.cs.cmu.edu/apappu/navagati/

We were interested in two general cases: normal in-
structions (Simple scenario) and repairing existing in-
structions (Repair scenario). Each scenario included
three tasks, as described below.

We selected two locations that could be walked be-
tween without necessarily going outside. However the
subjects were free to to give instructions for a route of
their choice between a location pair. The first location (A)
was in front of an elevator on the seventh floor of Gates
Hillman Center, the second location (B) was a cafe on the
fifth floor of Wean Hall. The expected pathway included
changes in floor, direction and passing through a different
building. It required reasonably detailed instructions.

In the Simple scenario, subjects were asked to generate
three variants, as follows: (1) instructions forA→ B; (2)
for B → A; and (3) a simplified version of (2).

The motivation behind (2) is to learn whether people
would make references about the parts of the route that
were previously traversed in the opposite direction. In
the case of (3), we were interested in the degree of in-
struction reuse and the condensation strategy. We explic-
itly told the subject “Imagine that the visitor found your
instructions confusing. They asked you to simplify the
instructions. How would you do that?”

The Repair scenario was designed to probe how a sub-
ject would alter their instructions in response to compli-
cations. Subjects were asked to modify their intial Simple
instructions (A → B) to cope with: (1) visitor missing a
landmark and takes a wrong turn; (2) an obstruction (con-
struction) blocking the original path; and (3) the visitor
getting lost and ends up in an unknown part of the (mid-
dle) building. For each case, the subject was given a map
(as in figure 1) that marked the visitor’s location and had
to get the visitor back on track.

Figure 1: Map of the construction area (marked as star)

The tasks in this scenario were designed to see whether
people modify directions differently when three different
situations are presented. Precisely, we want to know if
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there is any difference in the discourse structure and ver-
bosity of the directions.

2.3 Analysis

Nine subjects performed 6 tasks each, producing 54 sets
of instructions, for a total of 65 minutes of speech. Please
note that other corpora in the route instructions domain
have similiar scale (see Figure 5(a)). The transcriptions
were segmented semi-automatically into atomic units
corresponding to instruction steps. For example, the in-
struction “Go left, then turn right” was segmented into:
“go left”, and “then turn right” based on bigram heuris-
tics. We compiled a list of most frequent bigrams and
trigrams in the corpus e.g., “and then”, “after that” etc.
The transcriptions were segmented at the bigram/trigram
boundaries and were manually verified for the correctness
of a segment. The Simple scenario generated 552 instruc-
tions, the Repair part contained 382 instructions, a total
of 934. The vocabulary has 508 types and 7937 tokens.
Table 1 summarizes the factors measured in both the sce-
narios. Only two (marked by *) differed between scenar-
ios (t-test at p < 0.05). We examined acoustic properties
(for example mean pitch) but did not find any significant
differences across scenario type.

Table 1: Simple vs Repair Scenario

Factors Simple Repair
# Tokens 4461 3476
# Types 351 375
# Instructions 552 382
# Words-per-Instruction* 7.5 8.0
# Landmarks 450 314
# Motion Verbs* 775 506
# Spatial Prepositions 61 60
# Filler Phrases 414 380

We can compare language similarity across scenar-
ios by comparing the perplexity of text in the two sce-
narios. If the instructions and repairs are similar, we
would expect that a model built from one scenario should
be able to capture data from the other scenario. We
randomly divided data from each scenario into training
(70%) and testing data (30%). We built a trigram lan-
guage model (LM) smoothed with absolute discounting
using the CMU-SLM toolkit (Rosenfield, 1995). Then,
we computed the perplexity on testing data from each
scenario against each model. From Table 2, Simple-
LM has lower perplexity compared to Repair-LM on the
test sets. The perplexity of Simple-LM on Repair-Test
is slightly higher when compared to Simple-Test. This
could be due to the lexical diversity of the Repair scenario
or simply to the smaller sample size. Table 1 (row 1) indi-
cates that the data in Repair scenario is smaller than data

in Simple scenario. To explore the lexical diversity of
these two scenarios we conducted a qualitative analysis
of the instructions from both the scenarios.

In Task 1 of the Simple scenario, we only observed
a sequence of instructions. However in Task 2 of Simple
Scenario, we noticed references to instructions from Task
1 via words like “remember”, “same route”, etc. This
suggests that instructions may be considered in context of
previous exchanges and that this history should normally
be available for interpretation purposes. In Task 3 of the
Simple scenario, 7 out of 9 subjects simply repeated the
instructions from Task 2 while the rest provided a differ-
ent version of the same instructions. We did not observe
any other qualitative differences across three tasks in the
Simple scenario.

In Task 1 of the Repair scenario, all but one subject
gave instructions that returned the visitor to the missed
landmark, instead of bypassing the landmark. In Task 2,
the obstruction on the path could be negotiated through
a shorter or longer detour. But only 4 out of 9 partici-
pants suggested the shorter detour. In Task 3, we did not
observe anything different from Task 2. Despite the dif-
ference in the situations, the language of repair was found
to be quite similar. The structure of the delivery was orga-
nized as follows: (1) Subjects introduced the situation of
the visitor; (2) then modified the instructions according to
the situation. Introduction of the situation was different
in each task, (e.g., “you are facing the workers” vs “looks
like you are near office spaces” vs “if you have missed
the atrium you took a wrong turn”). But the modification
or repair of the instructions was similar across the situa-
tions. The repaired instructions are sequences of instruc-
tions with a few cautionary statements inserted between
instructions. We believe that subjects added cautionary
statements in order to warn the visitor from going off-the-
route. We observed that 6.3% of the repaired instructions
were cautionary statements; we did not observe caution-
ary statements in the original Simple scenario. In order
to see the effect of these cautionary statements we re-
moved them from both training and testing sets of the
Repair scenario, then built a trigram LM using this con-
densed training data (Repair–w/o-cautionLM). Table 2
shows that perplexity drops when cautionary statements
are excluded from the repair scenario, indicating that
Simple and Repair scenarios are similar except for these
cautionary statements.

3 Taxonomy of Route Instructions
Taxonomies have been proposed in the past. Daniel
and Denis (1998) proposed a taxonomy that reflected at-
tributes of spatial cognition and included 5 classes: (1)
Imperatives; (2) Imperatives referring a landmark; (3)
Introduction of a landmark without an action; (4) Non-
spatial description of landmarks and (5) Meta comments.
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Table 2: Perplexity of Simple/Repair Language Models

LM/Test Simple-Test Repair-Test Repair
-w/o-
caution

Simple-LM 29.6 36.5 30.3
Repair-LM 37.4 37.3 35.6
Repair
-w/o-
cautionLM

31.9 37.6 26.8

Bugmann et al. (2004) suggested 15 primitive (robot-
executable) actions. We present a hierarchical instruction
taxonomy that takes into account both cognitive proper-
ties and the needs of robot navigation. This taxonomy is
based on 934 route instruction monologues. It should be
noted that this taxonomy is not based on dialog acts but
rather takes the intent of the instruction into the account.

3.1 Categories

We segmented the spoken instructions using a criterion
that split individual actions and observations. Our taxon-
omy is roughly comparable to that of (Daniel and Denis,
1998) but differs in the treatment of landmarks because
the mention of the landmarks in an instruction can be of
two types: contextual mention and positional mention.
Contextual Mention means when a landmark in the sur-
roundings but it is not on the path. On the other hand, po-
sitional mention requires the landmark to be on the path.
In our taxonomy, contextual mention becomes Advisory
instruction and positional mention is called Grounding
instruction. The taxonomy has four major categories that
subsume 18 sub-categories; these are given in Table 3.

For instance, “You want to take a right” belongs to the
Imperative category. “You will see a black door” is an
Advisory instruction about the surroundings. “You are on
the first floor” denotes Grounding. “Your destination is
located in another building and you will walk across three
buildings in this route” gives an overview of the route, a
Meta Comment. From Figure 2, we see that majority of
the route instructions are Imperative.

0 20 40 60

Grounding

Meta Comments

Advisory

Imperative 56.2%

18.6%

17.6%

7.6%

% distribution

Figure 2: First Tier Instruction Categories

3.1.1 Imperative Instructions
Imperative instructions are executable and can result

in physical displacement. We identified seven subcate-
gories of Imperatives that distinguish different contexts
(e.g., going along a corridor, changing floors via elevator
or stairs, or going to a specific location).

Imperative instructions can also include preconditions
or postconditions. The order of their execution varies
based on the directionality of the condition between two
instructions. Continue is interesting because it can
have travel-distance and travel-direction arguments, or
even no arguments. In the latter case the follower contin-
ues an action (e.g., “keep walking”), until some unspeci-
fied condition ends it.

3.1.2 Advisory Instructions
While giving route instructions people mention land-

marks along the route as feedback to the direction-
follower. Some of these landmarks are not part of the path
but do serve as waypoints for the follower (e.g., “you will
see a hallway right there”). We observe that landmarks
are distinct either functionally and/or physically. For ex-
ample, a hallway is both functionally and physically dif-
ferent from an elevator but only physically different from
a door because both function as an instrument (or path) to
get from one place to another. Based on this distinction,
we divided advisory instructions into five sub-categories
depending on the type of landmark mentioned in the in-
struction (see Table 3).

Compound locations (see Table 3) are closely located
but physically distinct. They may constitute part-whole
relationships e.g., “TV screen with a motion sensor”.
We observed that compound locations are used to disam-
biguate when multiple instances of a landmark type are
present e.g., “chair near the elevator vs “chair near the
hallway”.

3.1.3 Grounding Instructions
Grounding instructions report absolute position. These

instructions indicate current view or location as opposed
to future view or location (indicated through advisory
instructions). These instructions constitute a landmark
name similar to advisory instructions and also follow the
distinction between the type of landmark mentioned in
the instruction (see Table 3).

3.1.4 Meta Comments
Meta comments are non-executable instructions added

to route instructions. People often make these comments
at the beginning of instructions and sometimes in be-
tween two imperative statements e.g., a precautionary
statement. In our corpus we found meta-comments in
two situations: (1) Preface or introduction of the route;
(2) Caution against a (metaphorical) pitfall in the route.
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Category SubCategory Distribution Example

Imperative

Leave-Location 2.3% Exit the building; Come out of the room
Follow-Path 7.0% Walk along the corridor; go across the bridge
Floor-Transition 11.2% Take the elevator to fourth floor; Take the stairs to the fifth
Turn 24.2% Turn left
Go-To 27.2% Walk to the elevators
Continue 28.0% Keep going straight for few steps

Advisory

Floor-Level 5.4% You will see fourth floor of other building
Floor-Transition 12.2% You will see elevators
Compound-Location 13.4% You will see a hallway to the right of elevators
End-of-Pathway 21.5% You will see end of the hallway
Landmark 47.5% You will see a TV screen

Grounding

Compound-Location 5.9% You are on a hallway right next to the elevators
End-of-Pathway 8.2% You are on the bridge leading to other building
Floor-Level 42.4% You are on fourth floor of the building
Landmark 43.5% You are on standing near TV screen

Meta Comments
Caution 14.7% You can find it immediately; Don’t go that side
Miscellaneous 36.0% Let me guide you through it; I guess a simpler way would be
Preface 49.3% I will guide you to the cafe in that building

Table 3: Taxonomy of Categories with Examples

Both the example instructions and the distribution of the
subcategories are given in Table 3.

The language of meta comments is more diverse than
that of the other three categories. If we build trigram
language models for each category and measure the per-
plexity on a held-out set from same category the perplex-
ity is relatively high for Meta (49.6) compared to other
categories (Advisory: 19.5; Imperative: 18.5; Ground-
ing: 11.4). This suggests that automatic understanding
of meta comments might be problematic, consequently it
would be useful to determine the ralative utility of differ-
ent instruction categories. The next section describes at
attempt to do this.

4 Which Instructions are Relevant?
Given a variety of information present in a set of route
instructions, we wanted to investigate whether all that in-
formation is relevant for navigation. In order to find that
out we devised a user study asking people to follow in-
structions collected in our previous study. (Daniel and
Denis, 1998) conducted a similar study where they asked
subjects to read a set of instructions and strike-off in-
structions with too much or too little information. How-
ever, people may or may not feel the same when they fol-
low (physically navigate) these instructions. Therefore,
in our study the experimenter read instructions (of vary-
ing amount of detail) to the subjects while they physically
navigated through the environment.

4.1 Participants and Procedure
We chose 5 out of the 9 instruction sets, spoken by differ-
ent subjects (of average length 26.8 instructions per set)
from Task 1 of the Simple scenario discussed above. We
did not use the others because they contained few instruc-
tions (average of 13.5) and provided fewer instances of

instructions in different categories. Also, we did not use
instructions from Repair Scenario because those instruc-
tions dependent on a scenario and a set of instructions
that were already provided to the direction follower.

Our set of instructions included the full set, a set with
only imperatives and additional sets adding only one of
the remaining categories to the imperative set (see Ta-
ble 4), producing 25 distinct sets of instructions. Addi-
tionally, building names and the destination name (tran-
scribed in the instructions) were anonymized to avoid re-
vealing the destination or the “heading” at the early stage
of the route.

We recruited 25 subjects, each doing one variant of the
instructions. In the session, the experimenter read one in-
struction at a time to the subject and walked behind the
subject as they proceeded. Subjects were asked to say
“done” when ready for the next instruction; they were
allowed to ask the experimenter to repeat instructions but
otherwise were on their own. The experimenter kept track
of how and where a subject got lost on their way to des-
tination. (No systematic effects were observed, but see
below.) At the end subjects were handed the entire set of
instructions and were asked to mark which instructions
were difficult to follow and which were redundant. Re-
maining instructions were deemed to be useful and inter-
pretable.

Table 4: Variants of an Instruction Set
Variant Imperative Advisory Grounding Meta
Imp X
Imp+Adv X X
Imp+Grnd X X
Imp+Meta X X
Entire Set X X X X
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Category/Variant Imp Imp+Grnd Imp+Meta Imp+Adv Entire Set Category/Variant Imp Imp+Grnd Imp+Meta Imp+Adv Entire Set

Diff-Imp 11 10 12 9 12 Redun-Imp 5 8 12 11 8

Diff-Adv 0 10 5 10 10 Redun-Adv 5 10 19 10 29

Diff-Grnd 0 0 13 0 0 Redun-Grnd 20 13 47%47 53%53 27

Diff-Meta 4 15 12 4 4 Redun-Meta 19 31 65%65 23 50%50

Diff-All 6 9 11 7 9 Redun-All 9 13 26 17 21

Figure 3: What percent of instructions are Difficult (Diff) or Redundant (Redun)? On the left: Darker is Difficult right:
Darker is More Redundant Instructions

4.2 Analysis
Except for one subject, everybody reached the destina-
tion. Subjects found Imperative and Advisory instruc-
tions more useful compared to Grounding instructions
and Meta comments, irrespective of the instruction-set
they followed (see Figure 3). Figure 3(a) shows percent-
age of category-wise difficult instructions in each vari-
ant of an instruction set and 3(b) shows percentage of
category-wise redundant instructions in each variant of an
instruction set. For e.g., Diff-Imp/Imp+Meta means that
12% of imperative-instructions are difficult in the Imper-
ative+Meta variant.

16 out 25 Subjects got lost at least once i.e., they misin-
terpreted an instruction, followed along wrong path, then
they realized inconsistencies with spatial information and
the following instruction, and finally recovered from the
misinterpreted instruction. A subject lost thrice in the en-
tire experiment who misunderstood one instruction twice
and another instruction once. The subject was lost at an
intersection of three hallways and only one of them leads
towards the destination. This instruction did not have
sufficient information about the next heading. All sub-
jects who recovered from misinterpretation informed that
landmark’s attributes such as number of floors in a build-
ing (if building is the landmark) and the spatial orienta-
tion of the landmark helped them in recovery.

Instructions that lacked spatial orientation were found
to be particularly difficult to follow. Subjects found a few
of the imperative and advisory instructions difficult to fol-
low. While following these difficult instructions, people
realized that they got lost and asked the experimenter to
repeat the instructions. Examples of difficult instructions
and the people’s complaint on that instruction are as fol-
lows:

• So you kind of cross the atrium Complaint: partic-
ipants reported that they were not sure how far they
had to walk across the atrium.

• Go beside the handrails till the other end of this

building Complaint: no absolute destination, mul-
tiple hallways at the end of handrails

• Just walk down the hallway exit the building Com-
plaint: multiple exits to the building

• After you get off the elevator, take a left and then left
again Complaint: more than one left confused the
subjects

• You can see the building just in front of you Com-
plaint: there were three buildings standing in front
and the target building was slightly to the left.

• You will see the corridor that you want to take Com-
plaint: there were two corridors and the orientation
was unspecified in the instruction

5 Understanding Experiments
The Navagati (NAV) corpus instructions were divided
into training set (henceforth abbreviated as NAV-train)
and testing set (abbreviated as NAV-test) of size 654 (of 6
subjects) and 280 (of 3 subjects). The training set was
used to create a grammar based on the taxonomy de-
scribed in Section 3.

5.1 Grammar
A domain-specific grammar was written to cover most
frequent phrases from the training set using the Phoenix
(Ward, 1991) format. Phoenix grammars specify a hier-
archy of target concepts and is suited to parsing spon-
taneous speech. The resulting grammar produced cor-
rect and complete parses on 78% of the training data
(NAV-train). The remaining training instances were not
included due to unusual phrasing and disfluencies. The
concepts in the grammar are listed in the Table 5.

5.1.1 Managing Variable Vocabulary
Concepts such as Locations, Pathways and Adjectives-

of-Location use vocabulary that is specific to an environ-
ment, and the vocabulary of these concepts will change
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Corpus #Instr Words/Instr Environmnt Modality H/R-H/R LiftingDevice PathWays Landmarks Adjectives

NAV 934 9 UnivCampus Speech Human-Human 0.029 0.046 0.169 0.13

MIT 684 15 UnivCampus Written Human-Human 0.045 0.016 0.163 0.062

IBL 769 8 ModelCity Speech Human-Robot n.a. 0.039 0.076 0.13

TTALK 1619 7 OpenSpace Speech Human-Robot n.a. 0.027 0.01 0.039

Figure 4: (a) Nature of the Corpora (b) Type-Token Ratio of Concepts across Corpora

Table 5: Higher level and Leaf node Concepts in Grammar

Category Concepts Examples
Imperative GoToPlace, Turn, etc
Conditional Imperative Move_Until_X where X is a condition
Advisory Instructions You_Will_See_Location
Grounding Instructions You_are_at_Location
Auxillary Concepts Examples
Locations buildings, other landmarks on the route
Adjectives-of-Locations large, open, black, small etc.
Pathways hallway, corridor, bridge, doors, etc.
LiftingDevice elevator, staircase, stairwell, etc.
Spatial Relations behind, above, on right, on left, etc.
Numbers turn-angles, distance, etc.
Ordinals first, second as in floor numbers
Filler phrases you may want to; you are gonna; etc.

with surroundings. We used an off-the-shelf part-of-
speech tagger (Toutanova et al., 2003) on NAV-train to
identify “location-based” nouns and adjectives. These
were added to the grammar as instances of their respec-
tive concepts.

5.2 Parsing NAV Instructions

A parse can fall into one of the following categories: 1)
Complete: clean and correct parse with all concepts and
actions mentioned in the instruction. 2) Incomplete: If
some arguments for an action are missing. 3) Misparse:
no usable parse produced for an instruction.

Table 6 shows that 87% of the instructions from the
NAV corpus (excluding meta comments) are parsed cor-
rectly. Correct parses were produced for 89% of Imper-
atives, 87% of Advisory and 73% of Grounding instruc-
tions. Meta comments were excluded because they do
not constitute any valid actions and can be ignored. Nev-
ertheless 20% of the meta comments produced a valid
parse (i.e. unintended action).

5.3 Grammar Generality

The results for the NAV corpus seem encouraging but it
would be useful to know whether the NAV grammar gen-
eralizes to other directions scenarios. We selected three
corpora to examine this question: MIT (Kollar et al.,

2010), IBL3 (Bugmann et al., 2004) and TTALK4 (Marge
and Rudnicky, 2010). All were navigation scenarios but
were collected in a variety of settings (see Figure 4(a)).
Corpus vocabularies were normalized using the process
described in 5.1.1 and location specific nouns and adjec-
tives added to the grammar. Punctuation was removed.
Figure 4(b) shows the type-token ratios for “variable”
concepts. There are more landmarks and adjectives (that
tag along landmarks) in NAV and MIT compared to IBL
and fewest in TTALK corpus (a closed space with two
robots). Since, IBL and TTALK do not involve exten-
sive navigation inside the buildings there are no instances
of the elevator concept. However, IBL corpus has “ex-
its, roads, streets” in the city environment which were
included in the PathWay concept.

5.4 Performance across Corpora

We randomly sampled 300 instructions from each of the
three corpora (MIT, IBL and TTALK) and evaluated their
parses against manually-created parses. Table 6) shows
results for each type of parse (Complete, Incomplete, or
Misparse). Meta comments were excluded, as discussed
earlier. The NAV grammar appears portable to three other
corpora. As shown in Category-Accuracy of Table 6 Im-
peratives and Advisory instructions are well-parsed by
the grammar. In TTALK corpus, there are very few land-
mark names but there are certain unusual sentences e.g.,
“she to the rear left hand wall of the room” causing lower
accuracy in Advisory instructions. We noticed that MIT
corpus had longer description of the landmarks, leading
to lower accuracy for Grounding. From Table 6 11% to
16% of Imperative instructions fail to get parsed across
the corpora. We consider these failures/errors below.

5.5 Error Analysis

We found six situations that produced incomplete and
misparsed instructions: (1) Underspecified arguments;
(2) Unusual or unobserved phrases; (2) False-starts and
ungrammatical language; (3) Uncovered words; (4) Pro-
longed description of landmarks within an instruction;

3http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/readme1.html
4http://www.cs.cmu.edu/˜robotnavcps/
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Table 6: Parse Results
Parse Results NAV MIT IBL TTALK
# Instructions 280 300 300 300
% Complete 87% 78.8% 83.8% 83.4%
% Incomplete 3.1% 17% 6.6% 3.7%
% Misparse 9.8% 4.1% 9.5% 13%
Category Accuracy
Imperative 89% 89.4% 86.5% 84.7%
Advisory 87% 93.4% 87.4% 60%
Grounding 73% 62% 100% 100%

(5) Coreferences; 6) Non-specific instructions (eg. either
take the right hallway or the left hallway).

5.5.1 Incomplete and Misparsed Instructions
Out-of-Vocabulary (OOV) words were responsible for

the majority of incomplete parses across all the corpora;
many were singletons. Unusual phrases such as “as if you
are doubling back on yourself” caused incomplete parses.
We also observed lengthy descriptions in instructions in
the MIT corpus, leading to incomplete parses. This cor-
pus was unusual in that it is composed of written, as op-
posed to spoken, instructions.

Misparsed instructions were caused due to both un-
grammatical phrases and OOV words. Ungrammatical
instructions contained either missed key content words
like verbs or false starts. These instructions did contain
meaningful fragments but they did not form a coherent
utterance e.g., “onto a roundabout”.

We note that incomplete or otherwise non-
understandable utterancess can in principle be recovered
through clarification dialog (see e.g., (Bohus and Rud-
nicky, 2005). Direction giving should perhaps not be
limited to monologue delivery.

Table 7: Error Analysis for Incomplete and Misparsed instruc-
tions

Incomplete NAV MIT IBL TTALK
# Incomplete Instructions 8 49 19 10
MissingArgs 50% 8% 0% 0%
UnusualPhrases 0% 28% 35% 60%
Lengthy Descriptions 0% 20.4% 0% 0%
Coreferences 0% 0% 20.2% 0%
Non-concrete phrases 3% 2% 5% 0%
OOVs 47% 41.6% 39.8% 40%
Misparse
# Misparse Instructions 25 12 27 39
Ungrammatical phrases 24% 44% 16% 10%
OOVs 76% 66% 84% 90%

6 Conclusion
To better understand the structure of instructions and to
investigate how these might be automatically processed,
we collected a corpus of spoken instructions. We found

that instructions can be organized in terms of a straighfor-
ward two-level taxonomy. We examined the information
contents of different components and found that that the
Imperative and Advisory categories appear to be the most
relevant, though our subjects had little difficulty dealing
with instructions composed of only Imperatives; physical
context would seem to matter.

We found that it was possible to design a grammar that
reasonably covered the information-carrying instructions
in a set of instructions. And that a grammar built from our
corpus generalized quite well to corpora collected under
different circumstances.

Our study suggests that robust instruction-
understanding systems can be implemented and,
other than the challenge of dealing with location-specific
data, can be deployed in different environments. We
believe that this study also highlights the importance
of dialog-based clarification and the need for strate-
gies that can recognize and capture out-of-vocabulary
words. These capabilities are being incorporated into a
robot navigation system that can take instructions from
humans.
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Abstract

We provide a systematic study of previously
proposed features for implicit discourse re-
lation identification, identifying new feature
combinations that optimize F1-score. The re-
sulting classifiers achieve the best F1-scores
to date for the four top-level discourse rela-
tion classes of the Penn Discourse Tree Bank:
COMPARISON, CONTINGENCY, EXPAN-
SION, and TEMPORAL. We further identify
factors for feature extraction that can have a
major impact on performance and determine
that some features originally proposed for the
task no longer provide performance gains in
light of more powerful, recently discovered
features. Our results constitute a new set of
baselines for future studies of implicit dis-
course relation identification.

1 Introduction

The ability to recognize the discourse relations that
exist between arbitrary text spans is crucial for un-
derstanding a given text. Indeed, a number of natu-
ral language processing (NLP) applications rely on it
— e.g., question answering, text summarization, and
textual entailment. Fortunately, explicit discourse
relations — discourse relations marked by explicit
connectives — have been shown to be easily identi-
fied by automatic means (Pitler et al., 2008): each
such connective is generally strongly coupled with
a particular relation. The connective “because”, for
example, serves as a prominent cue for the CONTIN-
GENCY relation.

The identification of implicit discourse relations
— where such connectives are absent — is much

harder. It has been the subject of much recent re-
search since the release of the Penn Discourse Tree-
bank 2.0 (PDTB) (Prasad et al., 2008), which anno-
tates relations between adjacent text spans in Wall
Street Journal (WSJ) articles, while clearly distin-
guishing implicit from explicit discourse relations.1

Recent studies, for example, explored the utility of
various classes of features for the task, including
linguistically informed features, context, constituent
and dependency parse features, and features that en-
code entity information or rely on language mod-
els (Pitler et al., 2009; Lin et al., 2009; Louis et al.,
2010; Zhou et al., 2010).

To date, however, there has not been a systematic
study of combinations of these features for implicit
discourse relation identification. In addition, the re-
sults of existing studies are often difficult to compare
because of differences in data set creation, feature
set choice, or experimental methodology.

This paper provides a systematic study of previ-
ously proposed features for implicit discourse re-
lation identification and identifies feature combina-
tions that optimize F1-score using forward selection
(John et al., 1994). We report the performance of our
binary (one vs. rest) classifiers on the PDTB data
set for its four top-level discourse relation classes:
COMPARISON, CONTINGENCY, EXPANSION, and
TEMPORAL. In each case, the resulting classifiers
achieve the best F1-scores for the PDTB to date. We

1Research on implicit discourse relation recognition prior to
the release of the PDTB instead relied on synthetic data cre-
ated by removing explicit connectives from explicit discourse
relation instances (Marcu and Echihabi, 2002), but the trained
classifiers do not perform as well on real-world data (Blair-
Goldensohn et al., 2007).

108



further identify factors for feature extraction that can
have a major impact performance, including stem-
ming and lexicon look-up. Finally, by document-
ing an easily replicable experimental methodology
and making public the code for feature extraction2,
we hope to provide a new set of baselines for future
studies of implicit discourse relation identification.

2 Data

The experiments are conducted on the PDTB
(Prasad et al., 2008), which provides discourse rela-
tion annotations between adjacent text spans in WSJ
articles. Each training and test instance represents
one such pair of text spans and is classified in the
PDTB w.r.t. its relation type and relation sense.

In the work reported here, we use the relation
type to distinguish examples of explicit vs. implicit
discourse relations. In particular, we consider all in-
stances with a relation type other than explicit as
implicit relations since they lack an explicit con-
nective between the text spans. The relation sense
determines the relation that exists between its text
span arguments as one of: COMPARISON, CONTIN-
GENCY, EXPANSION, and TEMPORAL. For exam-
ple, the following shows an explicit CONTINGENCY
relation between argument1 (arg1) and argument2
(arg2), denoted via the connective “because”:

The federal government suspended sales of
U.S. savings bonds because Congress hasn’t
listed the ceiling on government debt.

The four relation senses comprise the target classes
for our classifiers.

A notable feature of the PDTB is that the anno-
tation is done on the same corpus as Penn Tree-
bank (Marcus et al., 1993), which provides parse
trees and part-of-speech (POS) tags. This enables
the use of gold standard parse information for some
features, e.g., the production rules feature, one of
the most effective features proposed to date.

3 Features

Below are brief descriptions of features whose ef-
ficacy have been empirically determined in prior
works3, along with the rationales behind them:

2These are available from http://www.joonsuk.org.
3Word Pairs (Marcu and Echihabi, 2002). First-Last-First3

(Wellner et al., 2006). Polarity, Verbs, Inquirer Tags, Modality,
Context (Pitler et al., 2009). Production Rules (Lin et al., 2009).

Word Pairs (cross product of unigrams: arg1 ×
arg2) — A few of these word pairs may capture in-
formation revealing the discourse relation of the tar-
get spans. For instance, rain-wet can hint at CON-
TINGENCY.

First-Last-First3 (the first, last, and first three
words of each argument) — The words in this range
may be expressions that function as connectives for
certain relations.

Polarity (the count of words in arg1 and arg2, re-
spectively, that hold negated vs. non-negated posi-
tive, negative, and neutral sentiment) according to
the MPQA corpus (Wilson et al., 2005)) — The
change in sentiment from arg1 to arg2 could be a
good indication of COMPARISON.

Inquirer Tags (negated and non-negated fine-
grained semantic classification tags for the verbs in
each argument and their cross product) — The tags
are drawn from the General Inquirer Lexicon (Stone
et al., 1966)4, which provides word level relations
that might be propagated to the target spans’ dis-
course relation, e.g., rise:fall.

Verbs (count of pairs of verbs from arg1 and arg2
belonging to the same Levin English Verb Class
(Levin and Somers, 1993)5, the average lengths of
verb phrases as well as their cross product, and the
POS of the main verb from each argument) — Levin
Verb classes provide a means of clustering verbs
according to their meanings and behaviors. Also,
longer verb phrases might correlate with CONTIN-
GENCY, indicating a justification.

Modality (three features denoting the presence of
modal verbs in arg1, arg2, or both) — Modal verbs
often appear in CONTINGENCY relations.

Context (the connective and the sense of the im-
mediately preceding and following relations (if ex-
plicit), and a feature denoting if arg1 starts a para-
graph) — Certain relations co-occur.

Production Rules (three features denoting the pres-
ence of syntactic productions in arg1, arg2 or both,
based on all pairs of parent-children nodes in the ar-
gument parse trees) — The syntactic structure of an
argument can influence that of the other argument as

4http://www.wjh.harvard.edu/ inquirer/inqdict.txt
5http://www-personal.umich.edu/ jlawler/levin.html
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well as its relation type.

4 Experiments

We aim to identify the optimal subsets of the afore-
mentioned features for each of the four top-level
PDTB discourse relation senses: COMPARISON,
CONTINGENCY, EXPANSION, and TEMPORAL. In
order to provide a meaningful comparison with ex-
isting work, we carefully follow the experiment
setup of Pitler et al. (2009), the origin of the ma-
jority of the features under consideration:

First, sections 0-2 and 21-22 of the PDTB are
used as the validation and test set, respectively.
Then, we randomly down-sample sections 2-20 to
construct training sets for each of the classifiers,
where each set has the same number of positive and
negative instances with respect to the target rela-
tion. Since the composition of the corresponding
training set has a noticeable impact on the classifier
performance we select a down-sampled training set
for each classifier through cross validation. All in-
stances of non-explicit relation senses are used; the
ENTREL type is considered as having the EXPAN-
SION sense.6

Second, Naive Bayes is used not only to duplicate
the Pitler et al. (2009) setting, but also because it
equaled or outperformed other learning algorithms,
such as SVM and MaxEnt, in preliminary experi-
ments, while requiring a significantly shorter train-
ing time.7

Prior to the feature selection experiments, the best
preprocessing methods for feature extraction are de-
termined through cross validation. We consider sim-
ple lowercasing, Porter Stemming, PTB-style tok-
enization8, and hand-crafted rules for matching to-
kens to entries in the polarity and General Inquirer
lexicons.

Then, feature selection is performed via forward
selection, in which we start with the single best-
performing feature and, in each iteration, add the
feature that improves the F1-score the most, until
no significant improvement can be made. Once the

6Some prior work uses a different experimental setting. For
instance, Zhou et al. (2010) only considers two of the non-
explicit relations, namely Implicit and NoRel.

7We use classifiers from the nltk package (Bird, 2006).
8Stanford Parser (Klein and Manning, 2003).

optimal feature set for each relation sense is deter-
mined by testing on the validation set, we retrain
each classifier using the entire training set and re-
port final performance on the test set.

5 Results and Analysis

Table 5 indicates the performance achieved by em-
ploying the feature set found to be optimal for each
relation sense via forward selection, along with the
performance of the individual features that consti-
tute the ideal subset. The two bottom rows show the
results reported in two previous papers with the most
similar experiment methodology as ours. The no-
table efficacy of the production rules feature, yield-
ing the best or the second best result across all re-
lation senses w.r.t. both F1-score and accuracy, con-
firms the finding of Zhou et al. (2010). In contrast
to their work, however, combining existing features
enhances the performance. Below, we discuss the
primary observations gleaned from the experiments.

Word pairs as features. Starting with earlier works
that proposed them as features (Marcu and Echihabi,
2002), some form of word pairs has generally been
part of feature sets for implicit discourse relation
recognition. According to our research, however,
these features provide little or no additional gain,
once other features are employed. This seems sensi-
ble, since we now have a clearer idea of the types of
information important for the task and have devel-
oped a variety of feature types, each of which aims
to represent these specific aspects of the discourse
relation arguments. Thus, general features like word
pairs may no longer have a role to play for implicit
discourse relation identification.

Preprocessing. Preprocessing turned out to impact
the classifier performance immensely, especially for
features like polarity and inquirer tags that rely on
information retrieved from a lexicon. For these fea-
tures, if a match for a given word is not found in the
lexicon, no information is passed on to the classifier.

As an example, consider the General Inquirer lex-
icon. Most of its verb entries are present tense singu-
lar in form; thus, without stemming, dictionary look
up fails for a large portion of the verbs. In our case,
the F1-score increases by roughly 10% after stem-
ming.

Further tuning is possible by a few hand-written
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Feature Type
COMP. vs Rest CONT. vs Rest EXP. vs Rest TEMP. vs Rest
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

1. Polarity 16.49 46.82 28.47 61.39 64.20 56.80 13.58 50.69
2. First-Last-First3 22.54 53.05 37.64 66.71 62.27 56.40 15.24 51.81
3. Inquirer Tags 18.07 82.14 34.88 69.60 77.76 66.38 21.65 80.04
4. Verbs 18.05 55.29 23.61 78.33 68.33 58.37 18.11 58.44
5. Production Rules 30.04 75.84 47.80 71.90 77.64 69.60 20.96 63.36

Best Combination
2 & 4 & 5 2 & 4 & 5 1 & 3 & 4 & 5 1 & 3 & 5

31.32 74.66 49.82 72.09 79.22 69.14 26.57 79.32
Pitler ’09 (Best) 21.96 56.59 47.13 67.30 76.42 63.62 16.76 63.49
Zhou ’10 (Best)* 31.79 58.22 47.16 48.96 70.11 54.54 20.30 55.48

* The experiments are conducted under a slightly different setting, as described in Section 4.

Table 1: Summary of Classifier Performance. 4-way classifiers have been tested as well, but their performance is not
as good as that of the binary classifiers shown here. One major difference is that it is harder to balance the number of
instances across all the classes when training 4-way classifiers.

rules to guide lexicon lookup. The word supplied,
for instance, becomes suppli after stemming, which
still fails to match the lexicon entry supply, unless
adjusted accordingly.

Binning. An additional finding regards features
that capture numeric, rather than binary, informa-
tion, such as polarity. Since this feature encodes the
counts of each type of sentiment word (with respect
to each argument and their cross product), and Naive
Bayes can only interpret binary features, we first em-
ployed a binning mechanism with each bin covering
a single value. For instance, if arg1 consists of three
positive words, we included arg1pos1, arg1pos2 and
arg1pos3 as features instead of just arg1pos3.

The rationale behind binning is that it captures
the proximity of related instances. Imagine having
three instances each with one, two, and three pos-
itive words in arg1, respectively. Without binning,
the features added are simply arg1pos1, arg1pos2,
arg1pos3, respectively. From the perspective of the
classifier, the third instance is no more similar to the
second instance than it is to the first instance, even
though having three positive words is clearly closer
to having two positive words than having one posi-
tive word. With binning, this proximity is captured
by the fact that the first instance has just one fea-
ture in common with the third instance, whereas the
second instance has two.

Binning, however, significantly degrades perfor-
mance on most of the classification tasks. One pos-

sible explanation is that these features function as an
abstraction of certain lexical patterns, rather than di-
rectly capturing similarities among instances of the
same class.

6 Conclusion

We employ a simple greedy feature selection ap-
proach to identify subsets of known features for
implicit discourse relation identification that yield
the best performance to date w.r.t. F1-score on the
PDTB data set. We also identify aspects of feature
set extraction and representation that are crucial for
obtaining state-of-the-art performance. Possible fu-
ture work includes evaluating the performance with-
out using the gold standard parses. This will give a
better idea of how the features that rely on parser
output will perform on real-world data where no
gold standard parsing information is available. In
this way, we can ensure that findings in this area of
research bring practical gains to the community.
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Abstract

Developing sophisticated turn-taking behavior
is necessary for next-generation dialogue sys-
tems. However, incorporating real users into
the development cycle is expensive and cur-
rent simulation techniques are inadequate. As
a foundation for advancing turn-taking behav-
ior, we present a temporal simulator that mod-
els the interaction between the user and the
system, including speech, voice activity de-
tection, and incremental speech recognition.
We describe the details of the simulator and
demonstrate it on a sample domain.

1 Introduction and Background

Effective turn-taking is critical for successful
human-computer interaction. Recently, approaches
have been proposed to improve system turn-taking
behavior that use reinforcement learning (Jonsdot-
tir et al., 2008; Selfridge and Heeman, 2010), de-
cision theory (e.g., Raux and Eskenazi, 2009), and
hard-coded policies (e.g., Skantze and Schlangen ,
2009). Some of these methods model turn-taking
as content-free decisions (Jonsdottir et al., 2008;
Skantze and Schlangen, 2009), while others primar-
ily rely on dialogue context (Selfridge and Heeman,
2010) and lexical cues (e.g., Raux and Eskenazi,
2009). Turn-taking continues to be an area of ac-
tive research and its development is vital for next-
generation dialogue systems, especially as they al-
low for more mixed initiative interaction.

Researchers have turned to simulation since de-
veloping a dialogue system with real users is ex-
pensive, time consuming, and sometimes impossi-

ble. Some turn-taking simulations have been highly
stylized and only model utterance content, failing to
give a realistic model of timing (Selfridge and Hee-
man, 2010). Others have modeled a content-free
form of turn-taking and only attend to timing and
prosodic information (Jonsdottir et al., 2008; Bau-
mann, 2008; Padilha and Carletta, 2002). The for-
mer is insufficient for the training of deployable real-
time systems, and the latter neglect an important as-
pect of turn-taking: semantic information (Gravano
and Hirschberg, 2011).

The overall goal is to develop a simulation en-
vironment to train behavior policies that can be
transferred with minimal modifications to produc-
tion systems. This paper presents some first steps
towards this goal. We describe a temporal simula-
tor that models the timing and content of both user
and system speech, as well as that of incremental
speech recognition (ISR) and voice activity detec-
tion (VAD). We detail the overall temporal simulator
architecture, the design of the individual agents that
simulate dialogue, and an instantiation of a simple
domain. To demonstrate the utility of the simulator,
we implement multiple turn-taking polices and use it
to compare these policies under conditions of vary-
ing reaction time and speech recognition accuracy.

2 Temporal Simulation Framework

We now describe the details of the temporal sim-
ulator. Inspired by the Open Agent Architecture
(Martin et al., 1999), it is composed of a number
of agents, each running as a separate computer pro-
cess. We first describe the time keeping procedure
and then the overall agent communication structure.
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Time Keeping: To provide a useful training envi-
ronment, the simulator must realistically model, and
run much faster than, ‘real-time’. To do this, the
simulator keeps an internal clock that advances to
the next time slice when all agents have been run
for the current time slice. This structure allows the
simulator to run far faster than ‘real-time’ while sup-
porting realistic communication. This framework is
similar to the clock cycle described by Padilha et al
(2002).

Agent Communication: Agents use messages to
communicate. Messages have three components:
the addressee, the content and a time stamp. Time
stamps dictate when the content is to be processed
and must always be for a future, not the current, time
slice, as the alternative would imply instantaneous
communication and overly complicate the software
architecture. A central hub receives all messages
and passes them to the intended recipient agent at
the appropriate time. At every slice, each agent runs
two procedures: one that retrieves messages and one
that can send messages. If there are multiple mes-
sages intended for the same time slice, the agent
completely processes one before moving to the next.

3 Dialogue Simulator

We use the above temporal simulator to simulate di-
alogue. At present, we focus on dyadic interaction
and have three agents that are run in a strict order at
every time slice: User, ISR, and System. Time slices
are modeled as 10 millisecond (ms) increments, as
this is the time scale that speech recognizers run at.

In general, the User agent sends messages to the
ISR agent that sends messages to the System agent.
The System agent generally sends messages to both
the User agent and the ISR agent. The behavior of
all three agents rely on parameters (Table 1) that
may either be set by hand or estimated from data.
The User and System agents have near identical con-
struction, the primary difference being that the Sys-
tem can misunderstand User speech.

User and System Design: Agent speech is gov-
erned by a number of timing parameters. The Take-
Turn parameter specifies when the agent will begin
speaking the selected utterance. The agent gets the
first word of the utterance, sets the Word Length pa-

rameter, and “begins” to speak by sending a speech
event message. The agent outputs the word after
the specified Word Length, and sets the Inter-Word
Pause parameter that governs when the next word
will begin. When the agent completes the utter-
ance, it waits until a future time slice to start an-
other (as governed by the Inter-Utterance Pause pa-
rameter). However, if the listening agent interrupts
mid-utterance, the speaking agent stops speaking
and will not complete the utterance. Any dialogue
agent architecture can be used, providing the input
and output fit with the above specifications.

ISR Design: The ISR agent works as both an In-
cremental Speech Recognizer and a VAD. We cur-
rently model uncertainty in recognition but not in
the VAD, though this is certainly a plausible and
worthwhile addition. When the ISR agent receives
the speech event from the User, it sets the VAD
Speech Start parameter that models lag in speech
detection, and the Speech End (no word) parameter
that models situations where the user starts speaking
but stops mid-word and produces an unrecognizable
sound. When the word is received from the User,
the Speech End (word) parameter is set and a par-
tial phrase result is generated based on the probabil-
ity that the word will be correctly recognized. This
probability is then used as the basis for a confidence
score that is packaged with the partial phrase result.
A Recognition Lag parameter governs the time be-
tween User speech and the output of partial phrase
results to the System. The form of ISR we model
recognizes words cumulatively (see Figure 1 for an
example) though the confidence score, at present, is
only for the newly recognized word. The recognizer
will continue to output partials from User words un-
til the User stops speaking or the System sends a
message to stop recognizing. One critical aspect of
ISR which we are not modeling is partial instability,
where partials are revised as recognition progresses.
Partial instability is an area of active research (e.g.
Baumann et al. 2009) and, while revisions may cer-
tainly be modeled in the future, we chose not to for
simplicity’s sake. We feel that, at present, the Recog-
nition Lag parameter is sufficient to model the time
for a partial to become stable.
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Table 1: Parameters and demonstration values (ms)

Conversant Agents
Inter-Word pause (Usr) µ = 200, σ = 100
Inter-Word pause (Sys) 100

Inter-Utt. pause µ = 1000, σ = 500
Word Length 400

Take-Turn (Usr) 500/200
Take-Turn (Sys) 750/100

ISR Agent
Recog. Acc. variable
Recog. Lag 300

VAD
Speech Start 100

Speech End (word) 200
Speech End (no word) 600

4 Simulation demonstration

We now demonstrate the utility of the temporal sim-
ulator by showing that it can be used to evaluate
different turn-taking strategies under conditions of
varying ASR accuracy. This is the first step before
using it to train policies for use in a live dialogue
system.

For this demonstration the conversant agents, the
System and User, are built according to the Infor-
mation State Update approach (Larsson and Traum,
2000), and perform an update for every message as-
sociated with the current time slice. The conver-
sant agents are identical except for individual rule
sets. Four types of rule sets are common across
conversant agents: UNDERSTANDING rules, that up-
date the IS using raw message content; DELIBERA-
TION rules, that update the IS by comparing new in-
formation to old; UTTERANCE rules, that select the
next utterance based on dialogue context; and TURN

Figure 1: Sample dialogue with timing information

rules, that select the time to begin the new utterance
by modifying the Take Turn parameter. Rule sets are
executed in this order with one exception. After the
UNDERSTANDING rules, the System agent has AC-
CEPTANCE rules that use confidence scores to decide
whether to understand the recognition or not.

Temporal Simulation Example: We constructed
a simple credit card domain, similar to Skantze and
Schlangen (2009), where the User says four utter-
ances of four digits each. The System must implic-
itly confirm every number and if it is correct, the
User continues.1 It can theoretically do this at any
time, immediately after the word is recognized, af-
ter an utterance, or after multiple utterances. If the
system says a wrong number the User interrupts the
System with a “no” and begins the utterance again.
The System has a Non-Understanding (NU) confi-
dence score threshold set at 0.5. After an NU, the
System will not understand any more words and will
either confirm any digits recognized before the NU
or, if there are no words to confirm, will say an NU
utterance (“pardon?”). The User says “yes” to the
final, correct confirmation. To maintain simplicity,
“yes” and “no” are always accurate. If this were not
the case, there would be a number of dialogues that
were not successful. The User takes the turn in two
ways. It either waits 500 ms after a System utterance
to speak or interrupts 200 ms after the System con-
firms an misrecognized word, which is in line with
human reaction time (Fry, 1975).

We implemented three different turn-taking
strategies: two Fixed and one Context-based. Us-
ing the Fixed strategy the System either uses a Slow
policy, waiting 750 ms after no user speech is de-
tected, or a Fast policy, waiting only 100 ms. The
Fast reaction time results in the System interrupt-
ing the User during an utterance when the inter-word
pause becomes longer than 200 ms. This is because
the VAD Speech End parameter is 100 ms and the
System is waiting for 100 ms of silence after Speech
End. The Slow reaction time results in far less in-
terruptions. The Context-based turn-taking strategy
uses the recognition score to choose its turn-taking
behavior. The motivation is that one would want

1Unlike an explicit confirmation (“I heard five. Is that
right?”), an implicit confirm (“Ok, five”) does not necessitate
a strict “yes” or “no” response.
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Figure 2: Mean Time and Interruption for different turn-taking polices and ASR accuracy conditions

to confirm low-confidence recognitions sooner than
those with high confidence. If any unconfirmed re-
sult has scores less than 0.8 then the System uses the
Fast reaction time to try to confirm or reject as soon
as possible. Alternatively, if the results all have high
confidences, it can wait until a longer user pause
(generally between utterances) by using the Slow re-
action time. All parameter values are shown in Table
1.

Figure 1 shows a dialogue fragment of a System
using the Context-based turn-taking policy. Num-
bers are used for the sake of brevity. The start of
a box surrounding a word corresponds to when the
Speech message was sent (from the User agent to the
ISR agent) and the end of the box to when the word
has been completed and recognition lag timer be-
gins. The point of the ISR box refers to the time slice
when the partial phrase result and score were sent to
the System. Note how after the third User word the
System interrupts to confirm the utterance, since the
confidence score of a previous word dropped below
0.8. Also note how the User interrupts the System
after it confirms a wrong number.

Comparing turn-taking policies: We evaluated
the three (two Fixed and one Context-based) turn-
taking policies in two conditions of ASR accuracy:
Low Error, where the probability of correctness was
95%; and High Error, where the probability of cor-
rectness was 75%. We compared the mean dialogue
time (left Figure 2) and the mean number of in-
terruptions per dialogue (right Figure 2). For dia-
logue time, we find that all turn-taking policies per-
form similarly in the Low Error condition. How-
ever, in the High Error condition the Slow reac-
tion time performs much worse since it cannot ad-

dress poor recognitions with the speed of the other
two. For interruption, the Fast and Context-driven
policies have far more than the Slow for the High
Error condition. However, in the Low Error con-
dition the Fast policy interrupts far more than the
Context-driven. Given that natural behavior is one
goal of turn-taking, interruption, while effective at
handling High Error rates, should be minimized.
The Context-based policy provides support for in-
terruption when it is needed (High Error Condition)
and reduces it when it is not (Low Error Condition).
The other policies are either unable to interrupt at all
(Slow), increasing the dialogue time, or due to a lack
the flexibility (Fast), interrupt constantly.

5 Conclusion

We take the first steps towards a simulation approach
that characterizes both the content of conversant
speech as well as its timing. The temporal simula-
tor models conversant utterances, ISR, and the VAD.
The simulator runs quickly (100 times faster than
real-time), and is simple and highly flexible. Us-
ing an example, we demonstrated that the simula-
tor can help understand the ramifications of differ-
ent turn-taking policies. We also highlighted both
the temporal nature of turn-taking — interruptions,
reaction time, recognition lag...etc. — and the con-
tent of utterances — speech recognition errors, con-
fidence scores, and wrong confirmations. Plans for
future work include adding realistic prosodic mod-
eling and estimating model parameters from data.
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Abstract

In this work we study the effectiveness of
speaker adaptation for dialogue act recogni-
tion in multiparty meetings. First, we analyze
idiosyncracy in dialogue verbal acts by quali-
tatively studying the differences and conflicts
among speakers and by quantitively compar-
ing speaker-specific models. Based on these
observations, we propose a new approach for
dialogue act recognition based on reweighted
domain adaptation which effectively balance
the influence of speaker specific and other
speakers’ data. Our experiments on a real-
world meeting dataset show that with even
only 200 speaker-specific annotated dialogue
acts, the performances on dialogue act recog-
nition are significantly improved when com-
pared to several baseline algorithms. To our
knowledge, this work is the first 1 to tackle this
promising research direction of speaker adap-
tation for dialogue act recogntion.

1 Introduction

By representing a higher level intention of utterances
during human conversation, dialogue act labels are
being used to enrich the information provided by
spoken words (Stolcke et al., 2000). Dialogue act
recognition is a preliminary step towards deep dia-
logue understanding. It plays a key role in the de-
sign of dialogue systems. Besides, Fernandez et al.
(2008) find certain dialogue acts are important cues
for detecting decisions in Multi-party dialogue. In

1This paper is an extended version of a poster presented at
SemDial 2011, with new experiments and deeper analysis.

Ranganath et al. (2009), dialogue acts are used as
important features for flirt detection.

Automatic dialogue act recognition is still an ac-
tive research topic. The conventional approach is to
train one generic classifier using a large corpus of
annotated utterances. One aspect that makes it so
challenging is that people can express the same idea
(or speech act) using a very different set of spoken
words. Even more, people can mean different things
with the exact same spoken words. These idiosyn-
cratic differences in dialogue acts make the learning
of generic classifiers extremely challenging. Luck-
ily, in many applications such as face-to-face meet-
ings or tele-immersion, we have access to archives
of previous interactions with the same participants.
From these archives, a small subset of spoken utter-
ances can be efficiently annotated. As we will later
show in our experiments, even a small number of an-
notated utterances can make a significant difference.

In this paper, we propose a new approach for
dialogue act recognition based on reweighted do-
main adaptation which effectively balance the influ-
ence of speaker specific and other speakers’ data.
By treating each speaker as one domain, we point
out the connection between training speaker spe-
cific dialogue act classifier and supervised domain
adaptation problem. We analyze idiosyncracy in
dialogue verbal acts by qualitatively studying the
differences and conflicts among speakers and by
quantitively comparing speaker-specific models. We
present an extensive set of experiments studying the
effect of speaker adaptation on dialogue act recogn-
tion in multi-party meetings using the ICSI-MRDA
dataset (Shriberg, 2004).
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The following section presents related work on di-
alogue act recognition and domain adaptation. Sec-
tion 3 describes the ICSI-MRDA (Shriberg, 2004)
dataset which is used in all our experiments. Sec-
tion 4 analyze idiosyncracy in dialogue acts, both
qualitatively and quantitatively. Section 5 ex-
plains our reweighting-based speaker adaptation al-
gorithm. Section 6 contains all experiments to prove
the applicability of speaker adaptation to dialogue
act recognition. Finally, inspired by the promising
results, Section 8 describes some future directions.

2 Previous Work

Automatic dialogue act recognition has been an im-
portant problem in the past decades. Different dia-
logue act labeling standards and datasets have been
provided, including Switchboard-DAMSL (Stolcke
et al., 2000), ICSI-MRDA (Shriberg, 2004) and
AMI (Carletta, 2007). Stolcke et al (2000) is one
of the first work using machine learning technique
(HMM) to automatically segment and recognize di-
alogue acts. Rangarajan et al. (2009) demonstrated
well-designed prosodic n-gram features are very
helpful for Dialogue Act recognition in Maximum
Entropy model. And Ang et al (2005) explored
joint segmentation and dialogue act classification for
speech from ICSI.

Domain adaptation is a popular problem in natu-
ral language processing community due to the spar-
sity of labeled data. Jiang (Jiang, 2007) breaks
the analysis of domain adaptation problem into dis-
tributional differences in instances and classifica-
tion functions between source and target data. In
Daume’s work (2007) several domain adaptation al-
gorithms are described. Our speaker adaptation al-
gorithm is inspired by the reweighting-based adap-
tation algorithm introduced in this paper.

Recently, dialogue act adaptation has been getting
a lot of attention. Tur et al. (2006) successfully use
Switchboard-DAMSL to help dialogue act recogni-
tion in ICSI-MRDA. Promising results have been
obtained by using a regression model to combine the
model weights obtained by training on Switchboard-
DAMSL and ICSI-MRDA respectively. Following
the work by Tur et al. (2006), Guz et al. (2009) fur-
ther studied the effectiveness of dialogue act domain
adaptation in cascaded dialogue act segmentation

and recognition system, their results prove adapta-
tion in the intermediate step (segmentation) are also
very helpful for the final output (recognition). Jeong
et al (2009) use semi-supervised boosting algorithm
to leverage labeled data from Switchboard-DAMSL
and ICSI-MRDA to help dialogue act recognition in
email and forums. Margolis et.al (2010) use a struc-
tural correspondence learning technique to adapt di-
alogue act recognition on automatic translated Span-
ish genre with the help of Switchboard-DAMSL and
ICSI-MRDA. Kolar et al. (2007) explores the dif-
ference among speakers for dialogue act segmenta-
tion in ICSI-MRDA dataset. Similar to the approach
taken in Tur et al. (2006), adaptation is performed
through the combination of generic speaker inde-
pendent Language Model and other speakers’ Lan-
guage Model. Significant improvements have been
obtained for most of the selected speakers.

All these previous papers focused on adapting di-
alogue act models between domains and did not
address the person-specific adaptation. The only
exception was Kolar et al. (2007) who explored
speaker-specific dialogue act segmentation. To our
knowledge, this paper is the first work to analyze the
effectiveness of speaker adaptation for dialogue act
recognition.

3 ICSI-MRDA Corpus

Different Dialogue Act labeling standards and
datasets have been provided in recent years, in-
cluding Switchboard-DAMSL (Stolcke et al., 2000),
ICSI-MRDA (Shriberg, 2004) and AMI (Carletta,
2007). ICSI-MRDA is the dataset for our exper-
iments because many of its meetings contain the
same speakers, thus making it more suitable for our
speaker adaptation study. The tagset in ICSI-MRDA
is adapted from DAMSL standard (damsl, 1997) by
allowing multiple tags per dialogue act. Each dia-
logue act in ICSI-MRDA has one general tag and
multiple specific tags.

ICSI-MRDA consists of 75 meetings, each
roughly an hour long. There are five categories of
meetings (three of which we are actively using in
our experiments) : Bed is about the discussion of
natural language processing and neural theories of
language, Bmr is for the discussion on ICSI meeting
corpus, Bro is on speech recognition topics and Bns
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ID Tag Type Nb. Meetings Nb. DAs
1 mn015 Bed 15 6228
2 me010 Bed 11 5309
3 me013 Bmr 25 9753
4 mn017 Bmr 15 4059
5 fe016 Bmr 18 5500
6 me018 Bro 20 4263
7 me013 Bro 22 11928

Table 1: The 7 speakers from ICSI-MRDA dataset used
in our experiments. The table lists: the Speaker ID, orig-
inal speaker tag, the type of meeting selected for this
speaker, the number of meetings this speaker participated
and the total number of dialogue acts by this speaker.

is about network and architecture. The last category
is varies which contains all other topics.

From these 75 meetings, there are 53 unique
speakers in total, and an average of about 6 speakers
per meeting. 7 speakers2 having more than 4, 000
dialogue acts are selected for our adaptation experi-
ments. Table 1 shows the details of our 7 selected
speakers. From the word transcriptions, we cre-
ated an extended list of linguistic features per ut-
terance. From the 7 selected speakers, we com-
puted 14653 unigram features, 158884 bigram fea-
tures and 400025 trigram features.

Following the work of Shriberg et al. (2004), we
use the 5 general tags in our experiments:

• Disruption indicates the current Dialogue Act
is interrupted.

• Back Channel are utterances which are not
made directly by a speaker as a response and
do not function in a way that elicits a response
either.

• Floor Mechanism are dialogue acts for grab-
bing or maintaining the floor.

• Question is for eliciting listener feed back.

• And finally, unless an utterance is completely
indecipherable or else can be further described
by a general tag, then its default status is State-
ment.

Our dataset consisted of 47040 dialogue acts. The
distribution of Dialogue Act is shown in Table 2.

2speaker me013 is split into me013-Bmr and me013-Bro to
avoid the difference introduced by meeting types.

Tag proportion
Disruption 14.73%

Back Channel 10.20%
Floor Mechanism 12.40%

Question 7.20%
Statement 55.46%

Table 2: Distribution of dialogue acts in our dataset.

4 Idiosyncrasy in Dialogue Acts

Our goal is to create a dialogue act recognition al-
gorithm that can adapt to specific speakers. Some
important questions must be studied before creat-
ing such algorithm. The first obvious one is: do
speakers really differ in their choice of words and
associated dialogue acts? Do we really see a vari-
ability on how people express their dialogue in-
tent? If the answers are yes, then we will expect
that learning a dialogue act recognizer from speaker-
specific utterances should always outperform a rec-
ognizer learned from someone else data. Section 4.1
presents a comparative experiment addressing these
questions.

To better understand the results from this com-
parative experiment, we also performed a quali-
tative analysis presented in Section 4.2 where we
look more closely at the differences between speak-
ers. These two qualitative and quantitative analysis
are building block for our adaptation algorithm pre-
sented in Section 5.

4.1 Speaker-Specific Recognizers

An important assumption when performing speaker
adaptation (or more generally domain adaptation)
is that data coming from the same speaker should
be similar than data coming from another person.
In other words, a recognizer trained on a speaker
should perform better (when tested on the same per-
son) than a recognizer trained on another speaker.
We designed an experiment to test this hypothesis.

We learned 7 speaker-specific recognizers, one
for each speaker (see Table 1). We then tested all
these recognizers on new utterances from the same
7 speakers. We looked the recognition performance
when (1) the recognizer was trained on the same
person and (2) when the recognizer was trained on
a different person. This experiments quantitatively
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Figure 1: Effect of same-speaker data on dialogue act
recognition. We compare two approaches: (1) when a
recognizer is trained on the same person and tested on
new utterances from the same person, and (2) when the
recognizer was trained on another speaker (same test set).
We vary the amount of training data to be 200, 500,
1000, 1500 and 2000 dialogue acts. In all cases, using
speaker-specific recognizer outperforms recognizer from
other speakers.

analyze the the difference among speakers. The ex-
perimental methodology used in this experiment is
the same as the other experiments described in this
paper (see Section 6). We use the Maximum En-
tropy model(MaxEnt) for all dialogue act recogniz-
ers (Ratnaparkhi, 1996). Please refer to Section 6.2
for more details about the experimental methodol-
ogy.

Figure 1 compares the average performances
when testing on the same speaker or on some other
speaker. We vary the number of training data for
each speaker to be 200, 500, 1000, 1500 and 2000
dialogue acts. For all five cases, the recognizers
trained on the same speaker outperforms the aver-
age performance when using a recognizer from an
other person. Thus speaker specific dialogue acts
adaptation fits the assumption of domain adaptation
problems.

4.2 Speakers Differences

To better understand the problem, we look more
closely at the differences among speakers and their
use of dialogue acts. We analyze the problem
induced by speaker idiosyncrasy in dialogue acts.
During our qualitative analysis of the ICSI-MRDA
dataset, we identified three major differences ex-
plaining the performances observed in the previous

sections: dialogue act conflicts, word distribution
and dialogue act label distribution. We describe
these three differences with some examples:

Conflicts: These differences happen when two
speakers intended to express different meanings
while speaking the exact same utterance. To exam-
plify these conflicts, we computed mutual informa-
tion between a specific utterance and all dialogue act
labels. We find interesting examples where for ex-
emple the word right is the most important cue for
dialogue act question when spoken by me013-Bmr,
while right is also an important cue for dialogue act
back-channel for speaker me010-Bed. These exam-
ples suggest that conflicts exist among speakers and
simply trying to learn one generic model may not
be able to handle these conflicts. The generic model
will learn what most people mean with this utter-
ance, which may be the wrong prediction for our
specific speaker.

Word distribution: People have their own vocab-
ulary. Although many words are the same, how of-
ten one person use each word will vary. Although we
may not have direct conflict here, the problem can
also be serious. The learning algorithm may mis-
leadingly focus on optimizing the weights for certain
words which are not important(e.g., words that oc-
cur more often in other speakers’ dialogue acts than
his/her own) while under-estimating the important
words for this speaker. This observation suggests
that our adaptation should take into account word
distribution.

Label Distribution: Another interesting observa-
tion is to look at the distribution of dialogue act la-
bels for different speakers. Table 2 shows the aver-
age distribution over all 7 speakers. When looking
more closely at each speaker, we find some interest-
ing differences. For example, speaker 1 made state-
ments 61% of the time while speaker 4 made 49% of
the time. While this difference may not look signif-
icant, these changes can definitely affect the recog-
nition performance. So the adaptation model should
also take into account the dialogue act label distri-
bution.

5 Reweighted Speaker Adaptation

Based on the observations described in the previous
sections, we implement a simple reweighting-based
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domain adaptation algorithm mentioned in (Daume,
2007) based on Maximum Entropy model (MaxEnt)
(Ratnaparkhi, 1996). MaxEnt model is a popular
and efficient discriminative model which can effec-
tively accommodate large numbers of features. All
the unigram, bigram and trigram features are used
as input to the maxEnt model, the output is the di-
alogue act label. MaxEnt model maximizes the log
conditional likelihood of all samples:

Loss =

N∑

1

log(p(yn|xn)) (1)

where N is the number of samples for the training
data. xn represents the feature of the nth sample and
yn is the label. The conditional likelihood is defined
as

p(y|x) = exp(
∑

i

λifi(x, y))/Z(x) (2)

where Z(x) is the normalization factor and fi(x, y)
are the n-gram features described in Section 3.

When applied to our problem of speaker adapta-
tion, the reweighting adaptation model can be for-
mally defined as

Loss = w
S∑

n=1

log(p(yn|xn))+
O∑

m=1

log(p(ym|xm))

(3)
where S is the number of labeled speaker-specific
dialogue acts, O is the number for other speakers’
labeled dialogue acts. For each speaker, we train
one speaker-specific classifier by varying the distri-
bution of training data. We reweight the importance
of speaker specific dialogue acts versus other speak-
ers’ labeled dialogue acts in the training data. The
optimal weight parameter w is automatically esti-
mated through validation.

It is worth mentioning a specific instance of the
reweighting adaptation algorithm. When w is set to
1, the reweighting adaptation algorithm is equivalent
to simply training a MaxEnt model by putting the
speaker-specific and generic data samples together
as training data. In our experiments, we will com-
pare the reweighting adaptation approach with this
simpler approach, referred as constant adaptation.

6 Experiments

Our goal is to get one model specifically adapted
for each speaker. We first describes 4 different ap-
proaches to be compared in the experiments, and
section 6.2 explains our experimental methodology.

6.1 4 Approaches
In these experiments, we compare our approach,
called reweighted adaptation, with three more
conventional approaches: speaker-specific only,
Generic and Constant adaptation.

• Speaker Specific Only For this approach, we
train the dialogue act recognizer using training
sentences from the same speaker used during
testing.

• Generic In this case, we train the dialogue act
recognizer using utterances from all speakers
other than the speaker used during testing.

• Constant Adaptation For this approach, we
train the dialogue act recognizer using all
speakers, including the speaker who will later
be used for testing. All utterances have the
same weight in this case.

• Reweighted Adaptation This is our proposed
approach. As described in Section 5, we train
our dialogue act recognizer using all speakers
but reweight the utterances from the speaker
who will later be used for testing.

6.2 Methodology
In all the following experiments we use MaxEnt
models as defined in Section 5. L2 regularization
is used for MaxEnt to avoid overfitting. The optimal
regularization parameter was automatically selected
during validation. The following regularization pa-
rameters were used: 0.01, 0.1, 1, 10 , 100, 1000 and
0 (no regularization). All the unigram, bigram and
trigram features are used in the maxEnt model. The
labels are the five dialogue act tags described in Sec-
tion 3.

All experiments were performed using hold-out
testing and hold-out validation. Both validation
and test sets consisted of 1000 dialogue acts. The
training sets contained only utterances from meet-
ings that were not in the validation set of test set.
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Train Data 200 500 1000 1500 2000
Speaker-specific

Only 64.07 65.99 68.51 69.99 71.06
Constant

adaptation model 76.81 76.96 77.00 77.23 77.53
Our reweighted

adaptation model 78.17 78.29 78.67 78.74 78.47

Table 3: Average results among all 7 speakers when train
with different combinations of speaker specific data and
other speakers’ data. The number of speaker specific data
is varied from 200, 500, 1000, 1500 to 2000.

In many of our experiments, we analyzed the ef-
fect of training set size on the recognition perfor-
mance. The speaker-specific data size varied from
200, 500, 1000, 1500 and 2000 dialogue acts respec-
tively. When training our reweighting adaptation al-
gorithm described in Section 5, we used the follow-
ing weights: 10, 30, 50, 75, and 100. The optimal
weight factor was selected automatically during val-
idation.

7 Results

In this section we present our approaches to study
the importance of speaker adaptation for dialogue
act recognition. All following results are calculated
based on the overall tag accuracies. We designed
three series of experiments for this study:

• Generic Recognizer (Section 7.1)

• Sparsity in speaker-specific data (Section 7.2)

• Effectiveness of Constant Adaptation (Sec-
tion 7.3)

• Performance of the reweighting algorithm
(Section 7.4)

7.1 Generic Recognizer
The first result we get is on average, for each speaker
when we use all other speaker’s data for training,
then test on speaker- specific test data. The perfor-
mance of this generic recognizer is 76.76% is the
baseline we try to improve when adding speaker-
specific data into consideration. 3

3The performance of our generic model is comparable to the
results from Ang et al (2005) when you take into consideration
that we used only 47,040 dialogue acts in our experiments (i.e.,
dialogue acts from our 7 speakers) which is a small fraction
compared with Ang et al (2005) .

7.2 Sparsity of speaker-specific data

A second result is the performance when only us-
ing speaker-specific data. The row Speaker Specific
Only in Table 3 shows the average results among
all speakers when for each speaker, we train us-
ing only data from the same speaker. The number
of speaker-specific training data we tried are 200,
500, 1000, 1500, and 2000 respectively. Even with
2000 speaker-specific dialogue acts for training, the
best accuracy is 71.06% which is lower than 76.76%
when using generic recognizer. Given the challenge
in getting 2000 speaker-specific annotated dialogue
acts, we are looking at a different approach where
we need less speaker-specific data.

7.3 Results of Constant Adaptation

The most straightforward way to combine other
speakers’ data is to directly add them with speaker-
specific data as train. We refer to this approach
as constant adaptation. The row Constant Adap-
tation in Table 3 shows the average results among
all speakers when for each speaker, we combine
the speaker-specific data directly with the all other
speaker’s data. In our experiments, we varied the
amount of speaker-specific data included to be 200,
500, 1000, 1500, and 2000 respectively. For all
7 speakers, the performance can always been im-
proved by including speaker-specific data with all
other speakers’ data for training. Furthermore, the
more speaker specific data added, the better perfor-
mance we get.

7.4 Results of Reweighting Algorithm

Finally, in this section we describe the results for
a simple adaptation algorithm based on reweight-
ing, as described in Section 5. Following the same
methodology as previous experiments, we vary the
amount of speaker-specific data to be 200, 500,
1000, 1500 and 2000. The best reweighting factor is
selected through validation on speaker-specific val-
idation data described in section 6.2. The results of
all 7 speakers from Reweighting algorithm when we
vary the amount of speaker-specific data are shown
in Figure 3.

We analyze the influence of the weighting factor
on our speaker adaptation by plotting the recogni-
tion performance for different weights. Figure 4 il-
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Figure 2: The average results among all 7 speakers when
train with different combinations of speaker specific data
and other speakers’ data are displayed. In both Constant
adaptation and Reweighted adaptation models the num-
ber of speaker specific data are varied from 200, 500,
1000, 1500 to 2000. In Generic model, only all other
speakers’ data are used for training data.

Figure 3: Reweighting algorithm for all 7 Individual
Speakers when varying the amount of training data to be
0, 200, 500, 1000, 1500 and 2000.

lustrates the influence of the weight factor on three
speaker adaptation cases: None, 500 and 2000. In
this case, None represent the Constant Adaptation.
We observe the following trend: with more speaker-
specific data, the optimal reweighting factor is also
lower. This confirms that our reweighting algorithm
finds the right balance between speaker-specific data
and generic data.

Figure 2 and the row Reweighted Adaptation
from Table 3 shows the effectiveness of reweight-
ing algorithm. Results shows that even this sim-
ple algorithm can efficiently balance the influence
of speaker specific data and other speakers’ data and

0 20 40 60 80 100
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0.77
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0.78

0.785

0.79

 

 
None
500
2000

Figure 4: Average results of Reweighting among all 7
speakers when the amount of speaker specific data is 0,
500, 2000

give significantly improved results. And most sur-
prisingly, even with only 200 speaker specific data
the reweighting algorithm can give very promising
results.

8 Conclusion

In this work we analyze the effectiveness of speaker
adaptation for dialogue act recognition. A simple
reweighting algorithm is shown to give promising
improvement on several baseline algorithms even
with only 200 speaker-specific dialogue acts. This
paper is a first step toward automatic adaptation for
dialogue act recognition. Inspired by the promising
results from the simple reweighting algorithm, we
plan to evaluate other domain adaptation techniques
such as Daume’s feature-based approach (2007). It
will also be interesting to consider the unlabeled
data from each speaker when performing dialogue
act recognition.
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Abstract

This work investigates to what degree speak-
ers with different verbal intelligence may
adapt to each other. The work is based on
a corpus consisting of 100 descriptions of a
short film (monologues), 56 discussions about
the same topic (dialogues), and verbal intelli-
gence scores of the test participants. Adapta-
tion between two dialogue partners was mea-
sured using cross-referencing, proportion of
“I”, “You” and “We” words, between-subject
correlation and similarity of texts. It was
shown that lower verbal intelligence speak-
ers repeated more nouns and adjectives from
the other and used the same linguistic cat-
egories more often than higher verbal in-
telligence speakers. In dialogues between
strangers, participants with higher verbal in-
telligence showed a greater level of adapta-
tion.

1 Introduction

When two speakers are talking to each other, they try
to adapt to their dialogue partner and synchronize
their verbal behaviours. The adaptation may occur
at different levels: lexical (Garrod and Anderson,
1987; Brennan and Clark, 1996), syntactic (Reitter
et al., 2006), acoustic (Ward and Litman, 2007), ar-
ticulation (Bard et al., 2000), comprehension (Lev-
elt and Kelter, 1982), etc. Moreover, synchroniza-
tion of dialogue partners at one level may cause the
adaptation process at any other level (Pickering and
Garrod, 2004; Cleland and Pickering, 2003). In this
paper we analyse to what degree dialogue partners

with different verbal intelligence and levels of ac-
quaintance may adapt to each other during a conver-
sation.

Verbal intelligence (VI) is “the ability to analyse
information and to solve problems using language-
based reasoning” (Logsdon, 2012). The ability to
find suitable words and expressions may be a great
help in accomplishing such goals as persuasions, en-
couragements, explanations, influence, etc. More-
over, there exists a dependency between an individ-
ual’s verbal intelligence level and his or her success
in life (Buzan, 2002).

The first hypothesis we check in this paper is that
both lower and higher verbal intelligence speakers
are able to adapt to their dialogue partners; how-
ever, this adaptation is reflected by different linguis-
tic features.

The second hypothesis we check in this work
is that when higher and lower verbal intelligence
speakers are talking to a stranger, the former ones
adapt better to their dialogue partner than the latter
ones.

This investigation may be helpful for improv-
ing the user-friendliness of spoken language dia-
logue systems. Systems which automatically adapt
to users’ language styles and change their dialogue
strategies may help users to feel free and comfort-
able when interacting with them.

2 Method

2.1 Corpus Description

For the analysis, a corpus containing 100 mono-
logues, 56 dialogues and 100 verbal intelligence
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scores of the participants was used. The corpus was
collected at the University of Ulm, Germany. All
the participants were German native speakers of dif-
ferent genders, ages, educational levels and social
status. For the monologue collection, the partici-
pants were shown a short film and were asked to
describe it with their own words. The candidates
were not asked to follow the language style of the
film; they were asked to talk as naturally as possi-
ble in order to capture their every day conversation
styles. Each monologue is about 3 minutes long and
contains 370 words on an average. For the dialogue
collection, the participants were asked to have a 10-
minute conversation with another test person. The
topic of the discussions was always the same: the
education system in Germany. The average num-
ber of turns in the dialogues is 55. Afterwards,
verbal intelligence of the candidates was measured
using the Hamburg Wechsler Intelligence Test for
Adults (Wechsler, 1982). Using this test, we ob-
tained verbal intelligence scores of the test persons
with a mean value of 113 and a standard deviation of
7.2. A more detailed description of the corpus can
be found in (Zablotskaya et al., 2010; Zablotskaya
et al., 2012).

2.2 Clustering
Using the k-means algorithm, the verbal intelligence
scores of the test persons were partitioned into:

a) 2 clusters (Cluster L consisted of test persons
with lower verbal intelligence, H contained
candidates with higher verbal intelligence);

b) 3 clusters (L - lower verbal intelligence, M -
average verbal intelligence, H - higher verbal
intelligence).

Using the two clusters L and H, all the dialogues
were partitioned into the following groups:

c) L-L is a group of dialogues where both partners
had lower verbal intelligence scores;

d) H-H is a group of dialogues where both part-
ners had higher verbal intelligence scores;

e) L-H is a group of all the other dialogues.

Using the information about the level of acquain-
tance of the dialogue partners, the following groups
were created:

f) F-F is a group of dialogues with dialogue part-
ners who were friends or relatives;

g) S-S is a group of dialogues with dialogue part-
ners who had not met each other before the ex-
periment (were strangers).

In the following sections the degree of adaptation
will be compared between these groups.

3 Measuring Adaptation

There exist different approaches for measuring
adaptation of dialogue partners. Reitter et al. (2006)
used regression models to show that a speaker in
human-human interactions aligns his syntactic struc-
tures with those of his dialogue partner. Ward and
Litman (2007) modified the measures of conver-
gence offered by Reitter. According to this mod-
ification, prime words of the first dialogue part-
ner were determined. For measuring lexical con-
vergence, the use of prime words by the second
dialogue partner for each turn was calculated. In
(Nenkova et al., 2008) the measurements of adapta-
tion between dialogue partners were based on the us-
age of high-frequency words. Stoyanchev and Stent
(2009) analysed adaptation calculating the number
of reused verbs and prepositions by a speaker that
occurred in his dialogue partner’s turns.

In this work we measure adaptation as cross ref-
erencing, proportion of “I”, “You” and “We” words,
between-subject correlation and similarity between
two texts. These approaches are described in the fol-
lowing sections.

3.1 Cross Referencing

Cross referencing is calculated as a number of re-
peated nouns and adjectives by a speaker P1 from
his dialogue partner P2 divided by the total number
of P1’s words (Sillars et al., 1997).

A one-way analysis of variance (ANOVA)
showed significant difference between Cross refer-
encing of speakers from the groups L, M and H
(AVL = 0.08, AVM = 0.047, AVH = 0.042, F(2,97) =
8.43, p = 0.00062). As we may see, speakers with
lower verbal intelligence reused more nouns and ad-
jectives of their dialogue partners than speakers with
average and higher verbal intelligence.
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3.2 “I”, “You” and “We” words
The number of “I”, “You” and “We” words in a dis-
cussion may reflect the degree of closeness of speak-
ers. In Sillars et al. (1997) these measures were used
for the analysis of language use in marital conver-
sations and closeness of relationships between part-
ners. It was found out that partners who had lived
with each other for a long time and were happy to-
gether used “we” pronouns more often than sepa-
rate pairs. In addition, the proportion of “I” and
“You” words were higher for separates. In our in-
vestigation we also calculated the proportion of “I”,
“You” and “We” words for each groups and com-
pared them using ANOVA. Interestingly, the pro-
portion of “I”-words of friends was greater than
that of strangers (averaged value of “I”-words for
friends AVF = 0.0033, for strangers AVS = 0.0017,
F(1,109) = 5.33, p = 0.024). This phenomena
may be explained in the following way. Even dis-
cussing the German education, friends might talk
about themselves. People who had not met each
other before avoided talking too much about their
own experience. On the other hand, the difference
of “We”-words was not significant. This means that
even friends were not able to linguistically show
their closeness discussing such kind of topic.

3.3 Between-Subject Correlation
All the dialogue transcripts were compared with the
LIWC dictionary for the German language (Wolf et
al., 2008). The dictionary consists of different words
sorted by 64 categories. The categories may be di-
vided into the following groups:

• Language composition, for example number of
words, number of unique words, pronouns, ar-
ticles, etc.

• Psychological processes, for example positive
and negative emotions, causal words, words ex-
pressing certainty, etc.

• Relativity, for example words related to space,
motion and time.

• Topic-related categories, for example job,
school, sleep, etc.

Each word from the dictionary may refer to sev-
eral categories. For example, the word traurig (sad)

refers to the categories Affective Processes, Negative
emotions and Sadness.

For analysing the degree of adaptation of dialogue
participants, Pearson’s correlation coefficients be-
tween F(Ai) and F(Bi) for each feature F were cal-
culated (F(Ai) is the value of a feature F extracted
from the utterances of the first dialogue partner A
from a dialogue i, F(Bi) is the value of a feature F
extracted from the utterances of the second dialogue
partner B from a dialogue i). For participants from
the group L-L, 30% of the features showed a signif-
icant correlation, for participants from the group H-
L this value was 23%, for H-H this value was 12%.
Table 1 shows the percentage of features with sig-
nificant correlation for each LIWC group.

LIWC group H-H L-L H-L
Language composition 28% 37% 9%
Psychological precesses 10% 19% 23%
Relativity 10% 35% 30%
Topic-related categories 11% 37% 27%

Table 1: Percentage of LIWC categories with significant
correlation coefficients.

As we can see from the results, for almost all
LIWC groups lower verbal intelligence speakers en-
gaged in a conversation showed a higher degree of
adaptation.

3.4 Similarity between two Texts

If two dialogue partners adapt to each other during
a conversation, the similarity between their utter-
ances should be high. For measuring the similar-
ity between two texts, we calculated the degree of
alignment between frequency distributions of cer-
tain features (tokens) extracted from the dialogues.
For comparing the frequency distributions, the chi-
square test was chosen because it does not require
the normality of distributions and is easy to imple-
ment. A detailed explanation of this method may
be found in (Vogel and Lynch, 2007) and (Straker,
2012).

Let Fi and Fj be two text files containing ni and n j

tokens correspondingly. If Fi and Fj have the same
language style, we consider the texts to be taken
from the same population and the distributions of
tokens from the two files should not be significantly
different (null hypothesis). The chi-square statistic
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is calculated based on the observed and expected
values of tokens in both text-files. If the chi-value
χ2

i is less than a certain significance threshold c2
i

(based on the degrees of freedom and significance
level), the null hypothesis is accepted and the two
files may be considered as having a similar language
style (making an assumption that the language style
is reflected by tokens of this type). For estimating
the degree to which the two texts are similar, we cal-
culate the distance between these two values:

Similarityi = Si = χ2
i − c2

i .

If −c2
i <= Si <= 0, the similarity between the texts

is significant. If Si > 0, the null hypothesis is re-
jected: the analysed texts have different language
styles.

In this investigation four different types of tokens
were extracted: Letter n-gram distributions, Word n-
gram distributions, Lemma n-gram distributions and
Part-of-speech n-gram distributions.

The mean values of Si for each group were com-
pared to each other using ANOVA. Features with
significant ANOVA results for the groups F-F and
S-S are shown in Table 2:

Feature Si for F-F Si for S-S F(1,54)
Word 3-g -48.7 -29.8 10.6
Lemma 3-g -41.8 -23.5 10.1
P.-of-speech 4-g -38.9 10.0 8.1
P.-of-speech 5-g -59.4 -34.3 8.6

Table 2: Significant features for F-F and S-S (p < 0.05).

The results show that the similarities of language
between friends or relatives were greater than be-
tween participants who had not met each other be-
fore.

Our next purpose was to check whether verbal
intelligence plays a certain role if we analyse di-
alogues between friends and strangers separately.
ANOVA was applied to the mean values of the
similarity measure Si calculated for the following
groups:

a) L-L, H-H and L-H only for dialogues between
friends;

b) L-L, H-H and L-H only for dialogues between
strangers.

ANOVA significant feature are shown in Tables 3
and 4.

Feature Si(L-L) Si(H-H) Si(L-H) F
Word 4-g -77.8 -62.4 -53.81 3.9
P.-of-sp. 6-g -83.5 -63.7 -53.9 4.7

Table 3: Significant features for L-L, H-H and L-H only
for dialogues between friends (p < 0.05, F(1,53)).

Feature Si(L-L) Si(H-H) Si(L-H) F
Word 4-g. -59.9 -90.1 -45.2 2.2

Table 4: Significant features for L-L, H-H and L-H only
for dialogues between strangers (p < 0.05, F(1,53)).

As we may see from the results, a lower verbal
intelligence speaker may adapt to his dialogue part-
ner if they both are relatives or friends. On the other
hand, if dialogue partners have not met each other
before, higher verbal intelligence speakers are bet-
ter able to adapt to their dialogue partner than lower
verbal intelligence speakers.

4 Discussions

As we may see from the results, it was difficult for
the candidates to linguistically show their closeness
discussing the education system in Germany. How-
ever, similarity of utterances in dialogues between
friends was greater than similarity in dialogues be-
tween strangers. Lower verbal intelligence speakers
repeated nouns and adjectives from their dialogue
partners and used words from the same linguistic
dimensions more often than higher verbal intelli-
gence speakers. The first hypothesis is just partly
proven because we did not find features that reflect
adaptation of higher verbal intelligence speakers. In
our future work we are going to further investigate
how higher verbal intelligence speakers linguisti-
cally show their closeness to the other. The results
also showed that speakers with lower verbal intelli-
gence are better able to adapt to the other if they both
are relatives or friends. As we suggested in our sec-
ond hypothesis, if dialogue partners are strangers,
higher verbal intelligence speakers show a higher
degree of adaptation. In our future work we are go-
ing to use this information for improving the clas-
sification of speakers into two and three groups ac-
cording to their verbal intelligence coefficients.
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1 Overview

This demonstration highlights some emerging ca-
pabilities for incremental speech understanding and
processing in virtual human dialogue systems. This
work is part of an ongoing effort that aims to en-
able realistic spoken dialogue with virtual humans in
multi-party negotiation scenarios (Plüss et al., 2011;
Traum et al., 2008). In these negotiation scenarios,
ideally the virtual humans should demonstrate fluid
turn-taking, complex reasoning, and appropriate re-
sponses based on factors like trust and emotions. An
important component in achieving this naturalistic
behavior is for the virtual humans to begin to un-
derstand and in some cases respond in real time to
users’ speech, as the users are speaking (DeVault
et al., 2011b). These responses could include rel-
atively straightforward turn management behaviors,
like having a virtual human recognize when it is be-
ing addressed and turn to look at the user. They
could also include more complex responses such as
emotional reactions to what users are saying.

Our demonstration is set in an implemented ne-
gotiation domain (Plüss et al., 2011) in which two
virtual humans, Utah and Harmony (pictured in Fig-
ure 1), talk with two human negotiation trainees,
who play the roles of Ranger and Deputy. The di-
alogue takes place inside a saloon in an American
town in the Old West. In this scenario, the goal of the
two human role players is to convince Utah and Har-
mony that Utah, who is currently the local bartender,
should take on the job of town sheriff. We presented
a substantially similar demonstration of this scenario
in (DeVault and Traum, 2012).

Figure 1: SASO negotiation in the saloon: Utah (left)
looking at Harmony (right).

To support more natural behavior in such negotia-
tion scenarios, we have developed an approach to in-
cremental speech understanding. The understanding
models are trained using a corpus of in-domain spo-
ken utterances, including both paraphrases selected
and spoken by system developers, as well as spo-
ken utterances from user testing sessions (DeVault
et al., 2011b). Every utterance in the corpus is an-
notated with an utterance meaning, which is repre-
sented using a frame. Each frame is an attribute-
value matrix (AVM), where the attributes and val-
ues represent semantic information that is linked to
a domain-specific ontology and task model (Traum,
2003; Hartholt et al., 2008; Plüss et al., 2011). The
AVMs are linearized, using a path-value notation, as
seen at the lower left in Figure 2. Our framework
uses this corpus to train two data-driven models, one
for incremental natural language understanding, and
a second for incremental confidence modeling. We
briefly summarize these two models here; for addi-
tional details and motivation for this framework, and
discussion of alternative approaches, see (DeVault et
al., 2011b; DeVault et al., 2011a).

The first step is to train a predictive incremental
understanding model. This model is based on maxi-
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mum entropy classification, and treats entire individ-
ual frames as output classes, with input features ex-
tracted from partial ASR results, calculated in incre-
ments of 200 milliseconds (DeVault et al., 2011b).
Each partial ASR result serves as an incremental in-
put to NLU, which is specially trained for partial
input as discussed in (Sagae et al., 2009). NLU is
predictive in the sense that, for each partial ASR re-
sult, the NLU module tries to output the complete
frame that a human annotator would associate with
the user’s complete utterance, even if that utterance
has not yet been fully processed by the ASR.

The second step in our framework is to train a set
of incremental confidence models (DeVault et al.,
2011a), which allow the agents to assess in real time,
while a user is speaking, how well the understand-
ing process is proceeding. The incremental confi-
dence models build on the notion of NLU F-score,
which we use to quantify the quality of a predicted
NLU frame in relation to the hand-annotated correct
frame. The NLU F-score is the harmonic mean of
the precision and recall of the attribute-value pairs
(or frame elements) that compose the predicted and
correct frames for each partial ASR result.

Each of our incremental confidence models
makes a binary prediction for each partial NLU re-
sult as an utterance proceeds. At each time t dur-
ing an utterance, we consider the current NLU F-
Score Ft as well as the final NLU F-Score Ffinal

that will be achieved at the conclusion of the utter-
ance. In (DeVault et al., 2009) and (DeVault et al.,
2011a), we explored the use of data-driven decision
tree classifiers to make predictions about these val-
ues, for example whether Ft ≥ 1

2 (current level of
understanding is “high”), Ft ≥ Ffinal (current level
of understanding will not improve), or Ffinal ≥ 1

2
(final level of understanding will be “high”). In
this demonstration, we focus on the first and third
of these incremental confidence metrics, which we
summarize as “Now Understanding” and “Will Un-
derstand”, respectively.

The incremental ASR, NLU, and confidence out-
puts are passed to the dialogue managers for each of
the agents, Harmony and Utah. These agents then
relate these inputs to their own models of dialogue
context, plans, and emotions, to calculate pragmatic
interpretations, including speech acts, reference res-
olution, participant status, and how they feel about

what is being discussed. A subset of this informa-
tion is passed to the non-verbal behavior generation
module to produce incremental non-verbal listening
behaviors (Wang et al., 2011).

2 Demo script

The demonstration begins with the demo operator
providing a brief overview of the system design, ne-
gotiation scenario, and incremental processing capa-
bilities. The virtual humans Utah and Harmony (see
Figure 1) are running and ready to begin a dialogue
with the user, who will play the role of the Ranger.
The demonstration includes a real-time visualization
of incremental speech processing results, which will
allow attendees to track the virtual humans’ under-
standing as an utterance progresses. An example of
this visualization is shown in Figure 2.

As the user speaks to Utah or Harmony, attendees
can observe the real time visualization of incremen-
tal speech processing. Further, the visualization in-
terface enables the demo operator to “rewind” an ut-
terance and step through the incremental processing
results that arrived each 200 milliseconds.

For example, Figure 2 shows the incremental
speech processing state at a moment 4.8 seconds into
a user’s 7.4 second long utterance, i’ve come here
today to talk to you about whether you’d like to be-
come the sheriff of this town. At this point in time,
the visualization shows (at top left) that the virtual
humans are confident that they are Now Understand-
ing and also Will Understand this utterance. Next,
the graph (in white) shows the history of the agents’
expected NLU F-Score for this utterance (ranging
from 0 to 1). Beneath the graph, the partial ASR re-
sult (HAVE COME HERE TODAY TO TALK TO
YOU ABOUT...) is displayed (in white), along
with the currently predicted NLU frame (in blue).
For ease of comprehension, an English gloss (utah
do you want to be the sheriff?) for the NLU frame is
also shown (in blue) above the frame.

To the right, in pink, we show some of Utah and
Harmony’s agent state that is based on the current in-
cremental NLU results. The display shows that both
of the virtual humans believe that Utah is being ad-
dressed by this utterance, that utah has a positive at-
titude toward the content of the utterance while har-
mony does not, and that both have comprehension
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Figure 2: Visualization of Incremental Speech Processing.

and participation goals. Further, Harmony believes
she is a side participant at this moment.
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Abstract

We demonstrate a spoken dialogue-based in-
formation system for pedestrians. The system
is novel in combining geographic information
system (GIS) modules such as a visibility en-
gine with a question-answering (QA) system,
integrated within a dialogue system architec-
ture. Users of the demonstration system can
use a web-based version (simulating pedes-
trian movement using StreetView) to engage
in a variety of interleaved conversations such
as navigating from A to B, using the QA func-
tionality to learn more about points of interest
(PoI) nearby, and searching for amenities and
tourist attractions. This system explores a va-
riety of research questions involving the inte-
gration of multiple information sources within
conversational interaction.

1 Motivation

Although navigation and local information are avail-
able to users through smartphone apps, there are still
important problems such as how such information is
delivered safely and proactively, and without cogni-
tively overloading the user. (Kray et al., 2003) sug-
gested that cognitive load of information presented
in textual and speech-based interfaces is medium
and low respectively when compared to more com-
plicated visual interfaces. Our objective, therefore,
is to build a hands-free and eyes-free system that en-
gages the pedestrian user by presenting all informa-
tion and receiving user requests through speech only.

In addition, and in contrast to other mobile ap-
plications, this system is conversational – meaning

that it accumulates information over time, and plans
its utterances to achieve long-term goals. It inte-
grates with a city model and a visibility engine (Bar-
tie and Mackaness, 2012) to identify points of inter-
ests and visibile landmarks for presentation, a pedes-
trian tracker to improve the GPS positioning of the
user and a question-answering (QA) system to en-
able users to explore information about the city more
freely than with a graphical interface.

Table 1 presents an example dialogue interaction
with the system showing the use of visibility infor-
mation and Question-Answering.

User: Take me to Princes Street.
System: Turn left on to South Bridge and
walk towards the tower in front of you.
...
System: Near you is the famous statue of David Hume.
User: Tell me more about David Hume.
System: David Hume is a Scottish philosopher....

Table 1: An example interaction with the system

2 Related work

There are several mobile apps such as Triposo, Trip-
wolf, and Guidepal that provide point of interest
information, and apps such as Google Navigation
that provide navigation instructions to users. How-
ever, they demand the user’s visual attention because
they predominantly present information on a mobile
screen. In contrast, ours is a speech only interface
in order to keep the user’s cognitive load low and
avoid users from being distracted (perhaps danger-
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ously so) from their primary task.
Generating navigation instructions in the real

world for pedestrians is an interesting research
problem in both computational linguistics and geo-
informatics (Dale et al., 2003; Richter and Duck-
ham, 2008). CORAL is an NLG system that gener-
ates navigation instructions incrementally upon user
requests based on the user’s location (Dale et al.,
2003). DeepMap is a system that interacts with
the user to improve positioning using GUI controls
(Malaka and Zipf, 2000). SmartKom is a dialogue
system that presents navigation information multi-
modally (Reithinger et al., 2003). There are also
several mobile apps developed to help low-vision
users with navigation instructions (see (Stent et al.,
2010) for example). In contrast to these earlier sys-
tems we present navigational, point-of-interest and
amenity information in an integrated way with users
interacting eyes-free and hands-free through a head-
set connected to a smartphone.

3 Architecture

The architecture of the current system is shown in
figure 1. The server side consists of a dialogue in-
terface (parser, interaction manager, and generator),
a City Model, a Visibility Engine, a QA server and a
Pedestrian tracker. On the user’s side is a web-based
client that consists of the simulated real-world and
the interaction panel.

Figure 1: System Architecture

3.1 Dialogue interface
The dialogue interface consists of an utterance
parser, an interaction manager and an utterance gen-
erator. The interaction manager is the central com-
ponent of this architecture, which provides the user

navigational instructions and interesting PoI infor-
mation. It receives the user’s input in the form of a
dialogue act and the user’s location in the form of
latitude and longitude information. Based on these
inputs and the dialogue context, it responds with sys-
tem output dialogue act (DA), based on a dialogue
policy. The utterance generator is a natural language
generation module that translates the system DA into
surface text, using the Open CCG toolkit (White et
al., 2007).

3.2 Pedestrian tracker

Global Navigation Satellite Systems (GNSS) (e.g.
GPS, GLONASS) provide a useful positioning so-
lution with minimal user side setup costs, for loca-
tion aware applications. However urban environ-
ments can be challenging with limited sky views,
and hence limited line of sight to the satellites, in
deep urban corridors. There is therefore signifi-
cant uncertainty about the user’s true location re-
ported by GNSS sensors on smartphones (Zandber-
gen and Barbeau, 2011). This module improves on
the reported user position by combining smartphone
sensor data (e.g. accelerometer) with map matching
techniques, to determine the most likely location of
the pedestrian (Bartie and Mackaness, 2012).

3.3 City Model

The city model is a spatial database containing in-
formation about thousands of entities in the city of
Edinburgh. These data have been collected from a
variety of existing resources such as Ordnance Sur-
vey, OpenStreetMap and the Gazetteer for Scotland.
It includes the location, use class, name, street ad-
dress, and where relevant other properties such as
build date. The model also includes a pedestrian net-
work (streets, pavements, tracks, steps, open spaces)
which can be used to calculate minimal cost routes,
such as the shortest path.

3.4 Visibility Engine

This module identifies the entities that are in the
user’s vista space (Montello, 1993). To do this it
accesses a digital surface model, sourced from Li-
DAR, which is a 2.5D representation of the city in-
cluding buildings, vegetation, and land surface ele-
vation. The visibility engine uses this dataset to offer
a number of services, such as determining the line
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of sight from the observer to nominated points (e.g.
which junctions are visible), and determining which
entities within the city model are visible. These met-
rics can be then used by the interaction manager
to generate effective navigation instructions. E.g.
“Walk towards the castle”, “Can you see the tower
in front of you?”, “Turn left after the large building
on your left after the junction” and so on.

3.5 Question-Answering server

The QA server currently answers a range of defini-
tion questions. E.g., “Tell me more about the Scot-
tish Parliament”, “Who was David Hume?”, etc. QA
identifies the entity focused on in the question us-
ing machine-learning techniques (Mikhailian et al.,
2009), and then proceeds to a textual search on texts
from the Gazetteer of Scotland and Wikipedia, and
definitions from WordNet glosses. Candidates are
reranked using a trained confidence score with the
top candidate used as the final answer. This answer
is provided as a flow of sentence chunks that the user
can interrupt. This information can also be pushed
by the system when a salient entity appears in the
user’s viewshed.

4 Web-based User interface

For the purposes of this (necessarily non-mobile)
demonstration, we present a web-based interface
that simulates users walking in a 3D city environ-
ment. Users will be able to provide speech or text
input (if the demonstration environment is too noisy
for usable speech recognition as is often the case at
conference demonstration sessions).

The web-based client is a JavaScript/HTML pro-
gram running on the user’s web browser. For a
detailed description of this component, please re-
fer to (Janarthanam et al., 2012). It consists of two
parts: the Streetview panel and the Interaction panel.
The Streetview panel presents a simulated real world
visually to the user. A Google Streetview client
(Google Maps API) is created with an initial user
coordinate which then allows the web user to get
a panoramic view of the streets around the user’s
virtual location. The user can walk around using
the arrow keys on his keyboard or the mouse. The
system’s utterances are synthesized using Cereproc
text-to-speech engine and presented to the user.
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Abstract

We present a mixed initiative conversational
dialogue system designed to address primar-
ily mental health care concerns related to
military deployment. It is supported by a
new information-state based dialogue man-
ager, FLoReS (Forward-Looking, Reward
Seeking dialogue manager), that allows both
advanced, flexible, mixed initiative interac-
tion, and efficient policy creation by domain
experts. To easily reach its target population
this dialogue system is accessible as a web ap-
plication.

1 Introduction

The SimCoach project is motivated by the challenge
of empowering troops and their significant others in
regard to their healthcare, especially with respect to
issues related to the psychological toll of military
deployment. SimCoach virtual humans are not de-
signed to act as therapists, but rather to encourage
users to explore available options and seek treatment
when needed by fostering comfort and confidence in
a safe and anonymous environment where users can
express their concerns to an artificial conversational
partner without fear of judgment or possible reper-
cussions.

SimCoach presents a rich test case for all compo-
nents of a dialogue system. The interaction with the
virtual human is delivered via the web for easy ac-
cess. As a trade-off between performance and qual-
ity, the virtual human has access to a limited set of
pre-rendered animations.

The Natural Language Understanding (NLU)
module needs to cope with both chat and military

Figure 1: Bill Ford, a SimCoach character. SimCoach
virtual humans are accessible through a web browser.
The user enters natural language input in the text field
on the bottom of the screen. The simcoach responds with
text, speech and character animation. The text area to the
right shows a transcript of the dialogue.

slang and a broad conversational domain. The dia-
logue policy authoring module needs to support non-
dialogue experts given that important parts of the di-
alogue policy are contributed by experts in psycho-
metrics and mental health issues in the military, and
others with familiarity with the military domain.

The dialogue manager (DM) must be able to take
initiative when building rapport or collecting the in-
formation it needs, but also respond appropriately
when the user takes initiative.

2 Supporting Mixed Initiative Dialogues

There is often a tension between system initiative
and performance of the system’s decision-making
for understanding and actions. A strong system-
initiative policy reduces the action state space since
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user actions are only allowed at certain points in
the dialogue. System initiative also usually makes
it easier for a domain expert to design a dialogue
policy that will behave as desired.1 Such systems
can work well if the limited options available to the
user are what the user wants to do, but can be prob-
lematic otherwise, especially if the user has a choice
of whether or not to use the system. In particular,
this approach may not be well suited to an appli-
cation like SimCoach. At the other extreme, some
systems allow the user to say anything at any time,
but have fairly flat dialogue policies, e.g., (Leuski et
al., 2006). These systems can work well when the
user is naturally in charge, such as in interviewing
a character, but may not be suitable for situations
in which a character is asking the user questions, or
mixed initiative is desired.

True mixed initiative is notoriously difficult for a
manually constructed call-flow graph, in which the
system might want to take different actions in re-
sponse to similar stimuli, depending on local utili-
ties. Reinforcement learning approaches (Williams
and Young, 2007; English and Heeman, 2005) can
be very useful at learning local policy optimizations,
but they require large amounts of training data and a
well-defined global reward structure, are difficult to
apply to a large state-space and remove some of the
control, which can be undesirable (Paek and Pierac-
cini, 2008).

Our approach to this problem is a forward-looking
reward seeking agent, similar to that described in
(Liu and Schubert, 2010), though with support for
complex dialogue interaction and its authoring. Au-
thoring involves design of local subdialogue net-
works with pre-conditions and effects, and also qual-
itative reward categories (goals), which can be in-
stantiated with specific reward values. The dialogue
manager, called FLoReS, can locally optimize pol-
icy decisions, by calculating the highest overall ex-
pected reward for the best sequence of subdialogues
from a given point. Within a subdialogue, authors
can craft the specific structure of interaction.

Briefly, the main modules that form FLoReS are:
• The information state, a propositional knowl-

1Simple structures, such as a call flow graph (Pieraccini and
Huerta, 2005) and branching narrative for interactive games
(Tavinor, 2009) will suffice for authoring.

edge base that keeps track of the current state
of the conversation. The information state sup-
ports missing or unknown information by al-
lowing atomic formulas to have 3 possible val-
ues: true, false and null.
• A set of inference rules that allows the sys-

tem to add new knowledge to its information
state, based on logical reasoning. Forward in-
ference facilitates policy authoring by provid-
ing a mechanism to specify information state
updates that are independent of the specific di-
alogue context.2

• An event handling system, that allows the in-
formation state to be updated based on user in-
put, system action, or other classes of author-
defined events (such as system timeouts).
• A set of operators. Operators represent lo-

cal dialogue structure (trees), and can also be
thought of as reusable subdialogues. Each state
within the subdialogue can include a reward
for reaching that state. Rewards are functions
of the goals of the system, and are the main
method used to decide what to do when there is
more than one applicable operator. Operators
have preconditions and effects. Effects specify
changes to the information state. The precondi-
tions define when an operator can be activated.

3 Sample Dialogue

In this demo, the user will interact with the Sim-
Coach character Bill Ford, using a standard web
browser and typing text. The virtual human, driven
by FLoReS, will respond using pre-rendered anima-
tions encoded as H.264 video, delivered via a stan-
dard web server. Table 1 shows an excerpt from a
sample conversation with Bill Ford that illustrates
some of the features of this dialogue manager.

The excerpt starts from a rapport building
smalltalk sub-dialogue on the topic of barbecuing
which is interrupted by a user question about con-
fidentiality. The system responds to the user inter-
ruption and then re-starts the interrupted smalltalk
because it is still the most valuable conversation con-
tinuation available at that moment.

2For example: every time the user says that s/he has night-
mares we want to update the information state to include that
s/he also has sleeping problems.
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Dialogue transcript Notes

Ask anybody about me, and
they’ll tell you that I love to
BBQ

BBQ Smalltalk
The character is equipped
with a few operators for
smalltalk about a few topics.
BBQ is one of them.

Is this conversation se-
cret?

We don’t share your info
with anyone who can per-
sonally identify you. The
techs can see what we say,
but just to tell that the site is
working. But they have no
idea who said it, just what
was said
Did that help you?

Yes it did.

Great.

Confidentiality QA

Here the system is inter-
rupted by a user question and
it decides that answering it is
the best course of action.

Like I was saying, I love to
BBQ

BBQ Smalltalk After answering the question,
the best course of action is to
awaken the paused operator
about the BBQ smalltalk.

What is PTSD?

PTSD, or post-traumatic
stress disorder is an anxiety
condition associated with
serious traumatic events.
It can come with survivor
guilt, reliving the trauma in
dreams, numbness, and lack
of involvement with reality.

What is PTSD QA

Again the BBQ smalltalk is
interrupted by another ques-
tion from the user.

So, is PTSD something
you’re worried about. I only
ask, because you’ve been
asking about it. ...

PTSD Topic Interest QA

After answering the second
question the system decides
to ignore the paused operator
and load a follow-up operator
related to the important topic
raised by the user’s question.
The selection is based on the
expected reward that talking
about PTSD can bring to the
system.

Table 1: An excerpt of a conversation with Bill Ford that
shows opportunistic mixed initiative behavior.

Next, the user asks a question about the impor-
tant topic of post-traumatic stress disorder (PTSD).
That allows operators related to the PTSD topic to
become available and at the next chance the most

rewarding operator is no longer the smalltalk sub-
dialogue but one that stays on the PTSD topic.

4 Conclusion

We described the SimCoach dialogue system which
is designed to facilitate access to difficult health con-
cerns faced by military personnel and their fami-
lies. To easily reach its target population, the sys-
tem is available on the web. The dialogue is driven
by FLoReS, a new information-state and plan-based
DM with opportunistic action selection based on ex-
pected rewards that supports non-expert authoring.
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Abstract

To enable effective referential grounding in
situated human robot dialogue, we have con-
ducted an empirical study to investigate how
conversation partners collaborate and medi-
ate shared basis when they have mismatched
visual perceptual capabilities. In particu-
lar, we have developed a graph-based repre-
sentation to capture linguistic discourse and
visual discourse, and applied inexact graph
matching to ground references. Our empiri-
cal results have shown that, even when com-
puter vision algorithms produce many errors
(e.g. 84.7% of the objects in the environment
are mis-recognized), our approach can still
achieve 66% accuracy in referential ground-
ing. These results demonstrate that, due to its
error-tolerance nature, inexact graph matching
provides a potential solution to mediate shared
perceptual basis for referential grounding in
situated interaction.

1 Introduction

To support natural interaction between a human and
a robot, technology enabling human robot dialogue
has become increasingly important. Human robot
dialogue often involves objects and their identities
in the environment. One critical problem is inter-
pretation and grounding of references - a process
to establish mutual understanding between conver-
sation partners about intended references (Clark and
Wilkes-Gibbs, 1986). The robot needs to identify
referents in the environment that are specified by its
human partner and the partner needs to recognize
that the intended referents are correctly understood.

It is critical for the robot and its partner to quickly
and reliably reach the mutual acceptance of refer-
ences before conversation can move forward.

Despite recent progress (Scheutz et al., 2007b;
Foster et al., 2008; Skubic et al., 2004; Kruijff et al.,
2007; Fransen et al., 2007), interpreting and ground-
ing references remains a very challenging problem.
In situated interaction, although a robot and its hu-
man partner are co-present in a shared environment,
they have significantly mismatched perceptual capa-
bilities (e.g., recognizing objects in the surround-
ings). Their knowledge and representation of the
shared world are significantly different. When a
shared perceptual basis is missing, grounding ref-
erences to the environment will be difficult (Clark,
1996). Therefore, a foremost question is to under-
stand how partners with mismatched perceptual ca-
pabilities mediate shared basis to achieve referential
grounding.

To address this problem, we have conducted an
empirical study to investigate how conversation part-
ners collaborate and mediate shared basis when they
have mismatched visual perceptual capabilities. In
particular, we have developed a graph-based rep-
resentation to capture linguistic discourse and vi-
sual discourse, and applied inexact graph matching
to ground references. Our empirical results have
shown that, even when the perception of the envi-
ronment by computer vision algorithms has a high
error rate (84.7% of the objects are mis-recognized),
our approach can still correctly ground those mis-
recognized objects with 66% accuracy. The results
demonstrate that, due to its error-tolerance nature,
inexact graph matching provides a potential solu-
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tion to mediate shared perceptual basis for referen-
tial grounding in situated interaction.

In the following sections, we first describe an em-
pirical study based on a virtual environment to ex-
amine how partners mediate their mismatched visual
perceptual basis. We then provide details about our
graph matching based approach and its evaluation.

2 Related Work

There has been an increasing number of published
works on situated language understanding(Scheutz
et al., 2007a; Foster et al., 2008; Skubic et al.,
2004; Huwel and Wrede, 2006), focusing on inter-
pretation of referents in a shared environment. Dif-
ferent approaches have been developed to resolve
visual referents. Gorniak and Roy present an ap-
proach that grounds referring expressions to visual
objects through semantic decomposition, using con-
text free grammar that connect linguistic structures
with underlying visual properties (Gorniak and Roy,
2004a). Recently, they have extended this work
by including action-affordances (Gorniak and Roy,
2007). This line of work has mainly focused on
grounding words to low-level visual properties. To
incorporate situational awareness, incremental ap-
proaches have been developed to prune interpreta-
tions which do not have corresponding visual ref-
erents in the environment (Scheutz et al., 2007a;
Scheutz et al., 2007b; Brick and Scheutz, 2007).
A recent work applies a bidirectional approach to
connect bottom-up incremental language processing
to top-down constrains on possible interpretation of
referents given situation awareness (Kruijff et al.,
2007). Most of these previous works address utter-
ance level processing. Here, we are interested in ex-
ploring how the mismatched perceptual capabilities
influences the collaborative discourse, and develop-
ing a graph-based framework for referential ground-
ing with mismatched perceptions.

3 Empirical Study

It is very difficult to study the collaborative pro-
cess between partners with mismatched perceptual
capabilities. Subjects with truly mismatched per-
ceptual capabilities are difficult to recruit, and the
discrepancy between capabilities is difficult to mea-
sure and control. The wizard-of-oz studies with

Figure 1: Our experimental system. Two partners collab-
orate on an object naming task using this system. The
director on the left side is shown an (synthesized) origi-
nal image, while the matcher on the right side is shown
an impoverished version of the original image.

physical robots (e.g., as in (Green and Severin-
son Eklundh, 2001; Shiomi et al., 2007; Kahn et al.,
2008)) are also insufficient since it is not clear what
should be the underlying principles to guide the wiz-
ard’s decisions and thus the perceived robot’s behav-
iors (Steinfeld et al., 2009). To address these prob-
lems, motivated by the Map Task (Anderson et al.,
1991) and the recent encouraging results from vir-
tual simulation in Human Robot Interaction (HRI)
studies (Carpin et al., 2007; Chernova et al., 2010),
we conducted an empirical study based on virtual
simulations of mismatched perceptual capabilities.

3.1 Experimental System and Task
The setup of our experimental system is shown in
Figure 1. In the experiment, two human partners
(a director and a matcher) collaborate on an object
naming task. The mismatched perceptual capabili-
ties between partners are simulated by different ver-
sions of an image shown to them: the director looks
at an original image, while the matcher looks at an
impoverished version of the original image.

The original image (the one on the left in Fig-
ure 1) was created by randomly selecting images of
daily-life items (office supplies, fruits, etc.) from
an image database and randomly positioning them
onto a background. To create the impoverished im-
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age (the one on the right in Figure 1), we applied
standard Computer Vision (CV) algorithms to pro-
cess the original image and then create an abstract
representation based on the outputs from the CV al-
gorithms.

More specifically, the original image was fed
into a segmentation → feature extraction →
recognition pipeline of CV algorithms. First, the
OTSU algorithm (Otsu, 1975) was used for image
segmentation. Then visual features such as color
and shape were extracted from the segmented re-
gions (Zhang and Lu, 2002). Finally, object recogni-
tion was done by searching the nearest neighbor (in
the shape-feature vector space) from a knowledge
base of “known” objects. The impoverished image
was then created based on the CV algorithms’ out-
puts. For example, if an object in the original image
was recognized as a pear, an abstract illustration of
pear would be displayed in the impoverished image
at the same position. Other features such like color
and size of the object were also extracted from the
original image and assigned to the illustration in the
impoverished image.

In the naming task, the director’s goal is to com-
municate the “secret names” of some randomly se-
lected objects (i.e., target objects) in his/her image to
the matcher, so that the matcher would know which
object has what name. As shown in Figure 1, those
secret names are displayed only on the director’s
screen but not the matcher’s. Once the matcher be-
lieves that he/she correctly acquires the name of an
target object, he/she will record the name by mouse-
clicking on the target and repeating the name. A
task is considered complete when the matcher has
recorded the names of all the target objects.

3.2 Examples

Consistent with previous findings (Liu et al., 2011),
our empirical study shows that human partners tend
to combine object properties and spatial relations to
construct their referring expressions. In addition,
our empirical study has further demonstrated how
partners manage to mediate their perceptual basis
through collaborative discourse. Here are two ex-
amples from our data:

Example 1.

D1: the very top right hand corner, there is a red apple
M: ok
D: and then to the left of that red apple on the top of the

screen is a red or black cherry
M: ok
D: and then to the left of that is a brown kiwi fruit
M: ok
D: and the, the red cherry is called Richard
· · · · · ·
Example 2.
D: ok, um, so can we start in the top right
M: alright, um, the top right there are two rows of items,

they are all circular or apple shaped
D: ok, um, the item in the very top right corner does not

have a name
M: um, no name
M: um, to the left of that
D: yes, to the left of that is Richard
M: ok, are there only three items in that row
D: yes, there are only three
M: ok, this is Richard
· · · · · ·

As shown in Example 1, the most commonly used
object properties include object class, color, spatial
location, and others such as size, length and shape.
For the relations, the most common one is the pro-
jective spatial relations (Liu et al., 2010), such as
right, left, above, below. Besides, as illustrated by
Example 2, descriptions based on grouping of mul-
tiple objects are also commonly used. To mediate
their shared basis, both the director and the matcher
make extra effort to collaborate with each other. For
instance, in Example 1, the director applies install-
ment (Clark and Wilkes-Gibbs, 1986) where he ut-
ters noun phrases in episodes and the matcher ex-
plicitly accepts each installment before the director
moves forward. In Example 2, the matcher intends
to assist the grounding process by proactively pro-
viding what he perceives about the environment.

The data collected from our empirical study have
indicated that, to mediate a shared perceptual basis
and ground references, a successful method should
consider the following issues: (1) It needs to capture
the dynamics of the linguistic discourse and iden-
tify various relations among different referring ex-
pressions throughout discourse. (2) it needs to rep-
resent the perceived visual features and topological
relations between visual objects in the visual dis-
course. (3) Because the perceived visual world by

1D stands for Director and M for Matcher.
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the matcher (who represents the lower-calibre arti-
ficial agent) very often differs from the perceived
visual world by the director (who represents the
higher-calibre human partner), reference resolution
will need some approximation without enforcing a
complete satisfaction of constraints. Based on these
considerations, we have developed a graph-based
approach for referential grounding. Next we give
a detailed account on this approach.

4 A Graph-based Approach to Referential
Grounding

In the field of image analysis and pattern recogni-
tion, Attributed Relational Graph (ARG) is a very
useful data structure to represent an image (Tsai and
Fu, 1979; Sanfeliu and Fu, 1983). In an ARG, the
underlying unlabeled graph represents the topologi-
cal structure of the scene. Then each node and edge
are labeled with a vector of attributes that represents
local features of a single node or the topological fea-
tures between two nodes. Based on the ARG rep-
resentations, an inexact graph matching is to find
a graph or a subgraph whose error-transformation
cost with the already given graph is minimum (Es-
hera and Fu, 1984).

Motivated by the representation power of ARG
and the error-correcting capability of inexact graph
matching, we developed a graph-based approach to
address the referential grounding problem. ARG
and probabilistic graph matching have been pre-
viously applied in multimodal reference resolu-
tion (Chai et al., 2004a; Chai et al., 2004b) by in-
tegrating speech and gestures. Here, although we
use similar ARG representations, our algorithm is
based on inexact graph matching and our focus is on
mediating shared perceptual basis.

4.1 Graph Representations

Figure 2 illustrates the key elements and the process
of our graph-based method. The key elements of our
method are two ARG representations, one of which
is called the discourse graph and the other called the
vision graph.

The discourse graph captures the information ex-
tracted from the linguistic discourse.2 To create the
discourse graph, the linguistic discourse first needs

2Currently we only focus on the utterances from the director.

Figure 2: An illustration of graph representations in our
method. The discourse graph is created from formal se-
mantic representations of the linguistic discourse; The vi-
sion graph is created by applying CV algorithms on the
corresponding scene. Given the two graphs, referential
grounding is to construct a node-to-node mapping from
the discourse graph to the vision graph.

to be processed by NLP components, such as the se-
mantic composition and discourse coreference res-
olution components. The output of the NLP com-
ponents are usually in the form of some formal se-
mantic representations, e.g. in the form of first-order
logic representations. The discourse graph is then
created based on the formal semantics, i.e. each
new discourse entity corresponds to a node in the
graph, one-arity predicates correspond to node at-
tributes and two-arity predicates correspond to edge
attributes. The vision graph, on the other hand, is a
representation of the visual features extracted from
the scene. Each object detected by CV algorithms
is represented as a node in the vision graph, and the
attributes of the node correspond to visual features,
such as the color, size and position of the object. The
edges between nodes represent their relations in the
physical space.

Given the discourse graph and the vision graph,
now we can formulate referential grounding as con-
structing a node-to-node mapping from the dis-
course graph to the vision graph, or in other words,
a matching between the two graphs. Note that, the
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matching we encounter here is different from the
original graph matching problem that is often used
in the image analysis field. The original version only
considers matching between two graphs that have
the same type of values for each attribute. But in
the case of referential grounding, all the attributes in
the discourse graph possess symbolic values since
they come from formal semantic representations,
whereas the attributes in the vision graph are often
numeric values produced by CV algorithms. Our so-
lution is to introduce a set of symbol grounding func-
tions, which bridges the heterogeneous attributes of
the two graphs and makes general graph matching
algorithms applicable to referential grounding.

4.2 Inexact Graph Matching
We formulate referential grounding as a graph
matching problem, which has extended the origi-
nal graph matching approach used in image process-
ing and pattern recognition filed (Tsai and Fu, 1979;
Tsai and Fu, 1983; Eshera and Fu, 1984).

First, we give the formal definition of an ARG,
which is a doublet of the form

G = (N,E)

where
N The set of attributed-nodes of graph G,

defined as

N = {(i, a) |1 ≤ i ≤ |N | } .
E The set of directed attributed-edges of

graph G, defined as

E = {(i, j, e) |1 ≤ i, j ≤ |N | } .
(i, a) ∈ N Node i with a as its attribute vector,

where a = [v1, v2, · · · , vK ] is a vector
of K attributes. To simplify the nota-
tion, We will denote a node as ai.

(i, j, e) ∈ E The directed edge from node i to node
j with e as its attribute vector, where
e = [u1, u2, · · · , uL] is a vector of L
attributes. We will denote an edge as
eij .

In an ARG, the value of a node/edge attribute
vk/ul can be symbolic, numeric, or as a vector of
numeric values. For example, if v1 is used to rep-
resent the color feature of an object, then a possible
assignment could be v1 = [255, 0, 0], which is the
rgb color vector.

Suppose we represent referring expressions from
the linguistic discourse as a discourse graph G and

objects perceived from the environment as a vi-
sion graph G′, referential grounding then becomes
a graph matching problem: given G = (N,E) and
G′ = (N ′, E′), in which

N = {ai |1 ≤ i ≤ I } , E = {ei1i2 |1 ≤ i1, i2 ≤ I }

N ′ = {aj ′ |1 ≤ j ≤ J } , E′ = {e′j1j2 |1 ≤ j1, j2 ≤ J }
A matching between G and G′ is to find a one-to-
one mapping between the nodes in N and the nodes
in N ′.

Note that it is not necessary for every node in
N or N ′ to be mapped to a corresponding node in
the other graph. If a node is not to be mapped to
any node in the other graph, we describe it as be-
ing mapped to Λ, which denotes an abstract “null”
node. To represent the matching result, we re-order
N and N ′ such that the first I ′/J ′ nodes in N /N ′ are
those which have been mapped to their correspond-
ing nodes in the other graph, and the nodes after
them are the unmatched nodes, i.e. those matched
with Λ. Then the matching result is

M = M1 ∪M2 ∪M3

= {(i, j) |1 ≤ i ≤ I ′, 1 ≤ j ≤ J ′ }
∪ {i |I ′ < i ≤ I }
∪ {j |J ′ < j ≤ J }

Here M1 is a set of I ′ pairs of indices of matched
nodes. M2 and M3 are the sets of indices of all the
unmatched nodes in N and N ′, respectively. Then
M is what we call a matching between G and G′.
It is an inexact matching in the sense that we allow
bothG andG′ to have a subset of nodes, i.e. M2 and
M3, that are not matched with any node in the other
graph (Conte et al., 2004). The cost of a matching
M is then defined as

C (M) = C (M1) + C (M2) + C (M3)

To complete the definition of C (M), we use M11

to denote the set of all the first indices of the matched
pairs in M1, i.e. M11 = {i |1 ≤ i ≤ I ′ }, and H =(
NH , EH

)
is the subgraph of G that is induced by

the subset of nodes NH = {ai |i ∈M11 }, then we
have

C (M1) =
∑

ai∈NH

CN (ai, a
′
j) +

∑
ei1i2

∈EH

CE (ei1i2 , e
′
j1j2)

C (M2) =
∑

ai∈(N−NH)

CN (ai,Λ) +

∑
ei1i2

∈(E−EH)

CE (ei1i2 ,Λ)
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in which CN (ai, a
′
j) is the cost of mapping ai

to a′j , CE (ei1i2 , e
′
j1j2) is the cost of mapping

ei1i2 to e′j1j2 , and CN (ai,Λ)/CE (ei1i2 ,Λ) is the
cost of mapping ai/ei1i2 to the null node/edge.
They are also called node/edge substitution cost and
node/edge insertion cost, respectively (Eshera and
Fu, 1984). Note that, in our case we let C (M3) = 0
since we have assumed that the size of G′ is bigger
than the size of G.

Finally, the optimal matching between G and G′
is the one with the minimum matching cost

M∗ = arg min
M

C (M)

which gives us the most feasible result of grounding
the entities in the discourse graph with the objects in
the vision graph.

Given our formulation of referential grounding as
a graph matching problem, the next question is how
to find the optimal matching between two graphs.
Unfortunately, such a problem belongs to the class
of NP-complete (Conte et al., 2004). In practice,
techniques such as A∗ search are commonly used to
improve the efficiency, e.g. in (Tsai and Fu, 1979;
Tsai and Fu, 1983). But the memory requirement
can still be considerably large if the heuristic does
not provide a close estimate of the future matching
cost (Conte et al., 2004). In our current approach, we
use a simple beam search algorithm (Zhang, 1999)
to retain the tractability. Following the assumption
in (Eshera and Fu, 1984), we set the beam size as
hJ2, where h is the current level of the search tree
and J is the size of the bigger graph (in our caseG′).

4.3 Symbol Grounding Functions

As mentioned in Section 4.1, in referential ground-
ing the discourse graph and the vision graph pos-
sess different types of attribute values, therefore we
introduce a set of “symbol grounding functions”,
based on which node/edge substitution and insertion
costs can be formally defined.

We start with node substitution cost to give a for-
mal definition of symbol grounding functions. As
defined in the previous section, the node substitu-
tion cost of mapping (substituting) node a with node
a′ is3

CN (a, a′)

3For the ease of notation we have dropped the subscript of a
node.

Recall that in our definition of ARG, each node
is represented by a vector of attributes, i.e. a =
[v1, v2, · · · , vK ] and a′ = [v′1, v′2, · · · , v′K ]. Thus,
we define the node substitution cost as

CN (a, a′) =

K∑

k=1

− ln fk (vk, v
′
k)

in which fk (vk, v
′
k) = p (p ∈ [0, 1]) is what we call

the symbol grounding function for the k-th attribute.
More specifically, a symbol grounding function

for the k-th attribute takes two input arguments,
namely vk and v′k, which are the values of the k-th
attribute from node a and a′ respectively. The out-
put of the function is a real number p in the range
of [0, 1], which can be interpreted as a measurement
of the compatibility between a symbol (or word) vk
and a visual feature value v′k.

Let L = {w1, w2, · · · , wZ ,UNK} be the set of all
possible symbolic values of vk, then fk (vk, v

′
k) can

be further decomposed as

fk (vk, v
′
k) =





fk1 (v′k) if vk = w1;
fk2 (v′k) if vk = w2;

...
...

fkZ (v′k) if vk = wZ ;
λk if vk = UNK.

Here the idea is that each value of vk may specify an
unique function that determines the compatibility of
a visual feature value v′k. For example, suppose that
we are defining a symbol grounding function for the
attribute of “spatial location”, i.e. where is an ob-
ject located in the environment. The symbolic value
v can be in the set of {Top,Bottom, · · · ,UNK}, and
the visual feature value v′ is the x and y coordinates
(in pixels) of the object’s center of mass in the im-
age. A grounding function for the symbol Top can
be defined as4

fTop (v′) = fTop (x, y) =

{
1− y

800 if y < 400;
0 otherwise.

Note that we have added a special symbol UNK
to represent the “unknown” (or “unspecified”) value
of vk. When the value of an attribute in the dis-
course graph is unknown, i.e. the speaker did not
mention anything about a particular property, the
grounding function will simply return a predefined

4Assume that the size of the image is 800× 800 pixels and
the left-top corner is the origin (0, 0)
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Type of Error Number
of Objects

No Error 9 (5.1%)
Recognition Error 150 (84.7%)

Segmentation Error 18 (10.2%)
Total 177

Table 1: Types of errors among all the target (named)
objects. Recognition error: an object is incorrectly rec-
ognized as another type of object, or an unknown type.
Segmentation error: an object is missing, or merged with
another object.

constant, which we denote as λ. The node insertion
cost CN (a,Λ) is now defined as5

CN (a,Λ) =

K∑

k=1

− ln λk

Currently we set all the symbol grounding func-
tions’ outputs for the unknown value (i.e. the λs) to
ε, which is an arbitrarily small real number (ε > 0).

5 Empirical Results

Three pairs of subjects participated in our experi-
ment. Each pair (one acted as the director and the
other as the matcher) completed the naming task on
8 randomly created images. In total we collected 24
dialogues with 177 target objects to be named. Table
1 summarizes the errors made by the CV algorithms
when the 177 named objects from the original im-
ages were processed and represented in the impover-
ished images, as described in Section 3.1. As shown
in the table, only 5% of the objects were correctly
represented in the impoverished images. The other
95% of objects were either mis-recognized (about
85%) or mis-segmented (10%).

The evaluation of our approach is based on
whether the target objects are correctly grounded
by the graph matching method. To focus our cur-
rent effort on the referential grounding aspect, we
ignored all the matchers’ contributions to the dia-
logues. Thus the discourse graphs were built based
on only the director’s utterances. The formal se-
mantics of each of the director’s valid utterances
was manually annotated using the DRS (Discourse
Representation Structure) representation (Bird et al.,
2009). The discourse graphs were then generated

5The edge substitution/insertion cost is defined in the same
way as the node substitution/insertion cost.

Accuracy/Detection Rate
Type of Error Object-properties Object-properties

Only and Relations
No Error 66.7% (6/9) 77.8% (7/9)

Recognition Error 38.7% (58/150) 66% (99/150)
Segmentation Error 33.3% (6/18) 44.4% (8/18)

Overall 39.5% (70/177) 64.4% (114/177)

Table 2: Referential grounding performance of our
method. The accuracy/detection rates in the table were
obtained by comparing the results with annotated ground
truths.

from the annotated formal semantics. The vision
graphs were generated from the outputs of the CV
algorithms. The graph matching method was then
applied to return a (sub-) optimal matching between
the two graphs.

Table 2 shows the referential grounding perfor-
mance of our method. To better understand the ad-
vantages of the graph-based approach, we have com-
pared two settings. In the first setting, only the
object-specific properties are considered for com-
puting the comparability between a linguistic ex-
pression and a visual object, and the relations be-
tween objects are ignored. This setting is similar
to the baseline approach used in (Prasov and Chai,
2008; Prasov and Chai, 2010). In the second set-
ting, the complete graph-based approach is applied,
i.e. both the object’s properties and the relations be-
tween objects are considered. As shown in Table 2,
although the improvements of performance for the
no-error objects and mis-segmented objects are not
significant due to the small sample sizes, the perfor-
mance for the mis-recognized objects is significantly
improved by 27.3% (p < .001). The improvement
for the overall performance is also significant (by
24.9%, p < .001). The comparison between two
settings have demonstrated the importance of rep-
resenting and reasoning on relations between ob-
jects in referential grounding, and the graph-based
approach provides an ideal solution to capture rela-
tions.

In particular, even CV error rate is high (due to the
simple CV algorithms we used), our method is still
able to achieve 66% accuracy of grounding the mis-
recognized objects. Furthermore, when a referred
object is completely “missing” in the vision graph
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due to segmentation error6, our method is capable
to detect such discrepancy between linguistic input
and visual perception. The results have shown that
44.4% of those cases have been correctly detected.
This is also a very important aspect since informa-
tion about failures of grounding will allow the di-
alogue manager and/or the vision system to adapt
better strategies.

6 Discussions

The work presented here only represents an initial
step in our on-going investigation towards mediat-
ing shared perceptual basis in situated dialogue. It
consists of several simplifications which will be ad-
dressed in our future work.

First, the discourse graph is created only based
on contributions from the director, using manual an-
notations of formal semantics of the discourse. As
shown in the examples (Section 3.2), the collabora-
tive discourse has rich dynamics reflecting partici-
pants’ collaborative behaviors. So our future work
is to model these different discourse dynamics and
take them into account in the creation of the dis-
course graph. The discourse graph will be created
after each contribution as the conversation unfolds.
When utterances are automatically processed, se-
mantics of these utterances often will not be ex-
tracted correctly or completely as in their manual
annotations. Therefore, our future work will also
explore how to efficiently match hypothesized dis-
course graphs (from automated semantic process-
ing) with vision graphs.

Second, our current symbol grounding functions
are very simple and intuitive. Our future work will
explore more sophisticated models that have theoret-
ical motivations (e.g., grounding spatial terms based
on the Attentional Vector Sum (AVS) model (Regier
and Carlson, 2001)) and enable automated acquisi-
tion of these functions (Roy, 2002; Gorniak and Roy,
2004b). In addition, we will explore context-based
symbol grounding functions where context will be
explicitly modeled. Grounding a linguistic term to a
visual feature will be influenced by contextual fac-
tors such as surroundings of the environment, the

6For example, if the director refers to “a white ball” but
CV algorithm fails to detect that object from the environment,
then the node in the discourse graph representing “a white ball”
should not be mapped to anything in the vision graph.

discourse history, the speaker’s individual prefer-
ence, and so on.

Lastly, as shown in our examples, the matcher
also contributes significantly to ground references.
This appears to suggest that, in situated dialogue,
lower-calibre partners (i.e., robot, and here the
matcher) also make extra effort to ground refer-
ences. The underlying motivation could be their
urge to match what they perceive from the environ-
ment to what they are told by their higher-calibre
partners (i.e., human). This motivation can be poten-
tially modeled as graph-matching and can be used
to guide the design of system responses. We will
explore this idea in the future.

7 Conclusion

In situated human robot dialogue, a robot and its
human partners have significantly mismatched capa-
bilities in perceiving the environment, which makes
grounding of references in the environment espe-
cially difficult. To address this challenge, this paper
describes an empirical study investigating how hu-
man partners mediate the mismatched perceptual ba-
sis. Based on this data, we developed a graph-based
approach and formulate referential grounding as in-
exact graph matching. Although our current investi-
gation has several simplifications, our initial empiri-
cal results have shown the potential of this approach
in mediating shared perceptual basis in situated dia-
logue.
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Abstract

A coherently related group of sentences
may be referred to as a discourse. In
this paper we address the problem of pars-
ing coherence relations as defined in the
Penn Discourse Tree Bank (PDTB). A
good model for discourse structure anal-
ysis needs to account both for local depen-
dencies at the token-level and for global
dependencies and statistics. We present
techniques on using inter-sentential or
sentence-level (global), data-driven, non-
grammatical features in the task of parsing
discourse. The parser model follows up
previous approach based on using token-
level (local) features with conditional ran-
dom fields for shallow discourse parsing,
which is lacking in structural knowledge
of discourse. The parser adopts a two-
stage approach where first the local con-
straints are applied and then global con-
straints are used on a reduced weighted
search space (n-best). In the latter stage
we experiment with different rerankers
trained on the first stage n-best parses,
which are generated using lexico-syntactic
local features. The two-stage parser yields
significant improvements over the best
performing model of discourse parser on
the PDTB corpus.

1 Introduction

There are relevant studies on the impact of global
and local features on the models for natural
language understanding. In this work we ad-
dress a similar problem in the context of dis-
course parsing. Although a good number of
the papers in this area heavily rely on local
classifiers (Grosz et al., 1995; Soricut et al., 2003;
Lapata, 2003; Barzilay et al., 2005), there are still

some important works using global and local
informations together to form a model of dis-
course (Grosz et al., 1992; Barzilay et al., 2004;
Soricut et al., 2006).

One of the main issues is the basis of the choice
between a global or local or a joint model for dis-
course parsing: it all depends on the criteria to be
able to capture maximum amount of information
inside the discourse model. The policy for dis-
course segmentation plays a big role to formulate
the maximizing criteria (Grosz et al., 1992). We
study in the literature that defining a discourse seg-
ment is mostly a data-driven process: some argue
for prosodic units, some for intentional structure
and some for clause-like structures. We work with
PDTB 2.0 annotation framework, therefore use a
clause-like structure. Soricut et al. (2003) empiri-
cally showed that at the sentence level, there is a
strong correlation between syntax and discourse,
Ghosh et al. (2011b) found the same. Since the
discourse structure may span over multiple sen-
tences, intersentential features are needed to im-
prove the performance of a discourse parser.

Linguistic theory suggests that a core argument
frame (i.e. a pair of the Arg1 and the Arg2 con-
nected with one and only one connective) is a joint
structure, with strong dependencies between ar-
guments (Toutanova et al., 2008). Following this,
Ghosh et al. (2011a) also injected some structure-
level information through the token-level features,
for eg. the previous sentence feature. Still there
is a room for improvement with more structure-
level information to that discourse model; though
it is cost-intensive to modify this discourse model.
Therefore in this paper we re-use the model
(Ghosh et al., 2011a) and optimize the current loss
function adding the global features through re-
ranking of the single-best model.

Reranking has been a popular technique
applied in a variety of comparable NLP
problems including parsing (Collins, 2000;
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Charniak and Johnson, 2005), semantic
role labeling (Toutanova et al., 2008), NP
Bracketing (Daume III et al., 2004), NER
(Collins, 2002), opinion expression detection
(Johansson and Moschitti, 2010), now we employ
this technique in the area of discourse parsing.

In the next sections, we detail on the back-
grounds and motivations of this work, before this
we also add a short discussion on PDTB (Penn
Discourse TreeBank), i.e. the data we used to train
the system. Then we proceed to the reranking ap-
proaches and results sections after describing our
global feature set. Finally we state and analyze the
results.

2 The Penn Discourse Treebank 2.0

The Penn Discourse Treebank (PDTB) is a re-
source containing one million words from the Wall
Street Journal corpus (Marcus et al., 1993) anno-
tated with discourse relations.

Connectives in the PTDB are treated as dis-
course predicates taking two text spans as ar-
guments (Arg), i.e. parts of the text that de-
scribe events, propositions, facts, situations. Such
two arguments in the PDTB are called Arg1 and
Arg2, with the numbering not necessarily corre-
sponding to their order in text. Indeed, Arg2 is
the argument syntactically bound to the connec-
tive, while Arg1 is the other one.

In the PDTB, discourse relations can be either
overtly or implicitly expressed. However, we fo-
cus here exclusively on explicit connectives and
the identification of their arguments, including the
exact spans. This kind of classification is very
complex, since Arg1 and Arg2 can occur in
many different configurations (see Table 1).

Explicit connectives (tokens) 18, 459
Explicit connectives (types) 100

Arg1 in same sentence as connective 60.9%
Arg1 in previous, adjacent sentence 30.1%
Arg1 in previous, non adjacent sentence 9.0%

Table 1: Statistics about PDTB annotation from Prasad et
al(2008).

In PDTB the senses are assigned according to a
three-layered hierarchy: the top-level classes are
the most generic ones and include TEMPORAL,
CONTINGENCY, COMPARISON and EXPANSION

labels. We used these four surface senses only in
our task.

2.1 Backgrounds & Motivation

Currently we are using the single-best discourse
parser by Ghosh et al. (2011a). This discourse
parser can automatically extract of discourse ar-
guments using a pipeline, illustrated in Fig 1.
First, we input the explicit discourse connec-
tives (with senses) to the system. These can
be the gold labeled or automatically identified
(Pitler and Nenkova, 2009); for simplicity here we
use Penn Discourse TreeBank (PDTB 2.0) gold-
standard connectives (cf. see 2). Then a cascaded
module is applied extracting the Arg2 arguments,
then the Arg1s are extracted.

Figure 1: Pipeline for argument detection given a connec-
tive.

The Arg2 and Arg1 extractors are imple-
mented as conditional random field sequence la-
belers, which use a set of syntactic and structural
features (cf. Ghosh et al. (2011a)). In order to re-
duce the complexities, the sentence containing the
connective, and a context window of up to two
sentences before and after are supplied to the se-
quence labelers.

We present a passage of 6 sentences from a nu-
trition journal article parsed with that parser 1.:
<Conn id=1,sense=Comparison>
Although</Conn id=1> <ARG2 id=1>
the mechanism of obesity development
is not fully understood, it is confirmed
<ARG1 id=2>that obesity occurs</ARG1 id=2>
<Conn id=2,sense=Temporal>when</Conn id=2>
<ARG2 id=2>energy intake exceeds energy
expenditure</ARG2 id=2> </ARG2 id=1>.
There are multiple etiologies
for this imbalance, hence,
<Conn id=3, sense=Expansion>
and </Conn id=3> <ARG2 id=3>the rising
prevalence of obesity cannot be addressed
by a single etiology</ARG2 id=3>.
<ARG1 id=4>Genetic factors influence
the susceptibility of a given child to an
obesity-conducive environment</ARG1 id=4>.
<Conn id=4, sense=Comparison>However

1we used best model of (Ghosh et al., 2011b;
Ghosh et al., 2011a) and Stanford lexicalized parser
(Klein and Manning, 2003) to parse the text also used
AddDiscourse tool to parse the connective and the senses
(Pitler and Nenkova, 2009);parser took 17 second to parse
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</Conn id=4>, <ARG2 id=4>environmental
factors, lifestyle preferences, and
cultural environment seem to play major
roles in the rising prevalence of obesity
worldwide</ARG2 id=4>. In a small number
of cases, childhood obesity is due to
genes such as leptin deficiency or
medical causes such as hypothyroidism
and growth hormone deficiency or side
effects due to drugs (e.g. - steroids).
Most of the time, <Conn id=5, sense=
Comparison> however </Conn id=5>,
<ARG2 id=5>personal lifestyle choices
and cultural environment significantly
influence obesity</ARG2 id=5>.

In the evaluations of Ghosh et al. (2011a), it
states that recall was much lower than preci-
sion for both the arguments, especially in case of
Arg1. The system often failed to predict Arg1. It
is harder to identify since it is not always syntac-
tically bound to the connective, like Arg2, more-
over it is typically more distant than the Arg2s.

We notice the same in the parser output. The
parser found all five Arg2s for all five connec-
tives, though there may be disagreement on the se-
lected boundaries; the number of parsed Arg1s is
only two, whereas the second one with id of 4 is a
previous sentence argument.

To improve the recall, (Ghosh et al., 2012)
implemented a weighted constraint-based
handcrafted postprocessor to force the
Ghosh et al. (2011a) system to output argu-
ments of each type abiding the requirements
defined by the PDTB annotation guidelines.

In order to find the best solution with a min-
imum of constraint violations, the top k analy-
ses output are generated by the CRF (Conditional
Random Field) (Lafferty et al., 2001) for every
sentence; these analyses can then be combined to
form the k top analyses for the whole 5-sentence
window around the connective. This combina-
tion is most efficiently carried out using a prior-
ity queue similar to a chart cell in the k-best pars-
ing algorithm by Huang and Chiang (2005). (see
Ghosh et al. (2012) for details)

2.2 Feature Set of Baseline System

We summarize the feature set of the base system
(Ghosh et al., 2011a) to emphasize the distinction
between the local and global feature set for this
work.

The token-level (local) feature set in the Table 2
can be divided into four categories:

Features used for Arg1 and Arg2 segmentation and labeling.
F1. Token (T)
F2. Sense of Connective (CONN)
F3. IOB chain (IOB)
F4. PoS tag
F5. Lemma (L)
F6. Inflection (INFL)
F7. Main verb of main clause (MV)
F8. Boolean feature for MV (BMV)
F9. Previous sentence feature (PREV)

Additional feature used only for Arg1
F10. Arg2 Labels

Table 2: Feature sets for Arg1 and Arg2 segmentation and
labeling in base system (Ghosh et al 2011a).

1. Syntactic. {F3, F4, F6} 2

2. Semantic. {F2}

3. Lexical {F5, F7, F8}

4. Structure related token-level features.
{F9, F10}

The remaining one (F1) is the token itself. The
sense of the connective feature (F2) extracted from
PDTB for the base system, though for the fully au-
tomatic one (Ghosh et al., 2011b) it needs the PTB
(Penn TreeBank)-style syntactic parse trees as in-
put (Pitler and Nenkova, 2009). The IOB(Inside-
Outside-Begin) chain (F3) 3 (F3) is extracted from
a full parse tree and corresponds to the syntactic
categories of all the constituents on the path be-
tween the root note and the current leaf node of
the tree. Experiments with other syntactic fea-
tures proved that IOB chain conveys all deep syn-
tactic information needed in the task, and makes
all other syntactic information redundant, for ex-
ample clause boundaries, token distance from the
connective, constituent label, etc.

In order to extract the morphological
features needed, we use the morpha tool
(Minnen et al., 2001), which outputs lemma (F5)
and inflection information (F6) of the candidate
token. The latter is the ending usually added to
the word root to convey inflectional information.
It includes for example the -ing and -ed suffixes
in verb endings as well as the -s to form the plural
of nouns.

As for features (F7) and (F8), they rely on in-
formation about the main verb of the current sen-
tence. More specifically, feature (F7) is the main
verb token , extracted following the head-finding

2Infection can be defined as morpho-syntactic feature.
3We extracted this feature using the Chun-

klink.pl script made available by Sabine Buchholz at
ilk.uvt.nl/team/sabine/chunklink/README.html
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strategy by Yamada and Matsumoto (2003), while
feature (F8) is a boolean feature that indicates for
each token if it is the main verb in the sentence or
not.4

The structure related token-level features do
not use any parse tree. The Arg2 label (F10)
features are generated from the word sequence
index in PDTB for the base system (for au-
tomatic system it is generated by the pipeline
(Ghosh et al., 2011b)); this feature is used to clas-
sify Arg1 . The previous sentence feature “Prev”
(F9) is a connective-surface feature and is used
to capture if the following sentence begins with
a connective. This is meant for the classification
of the Arg1 that resides in the previous sentence
of the connective. The feature value for each can-
didate token of a sentence corresponds to the con-
nective token that appears at the beginning of the
following sentence, if any. Otherwise, it is equal
to 0.

Although both of the structure-related features
are strong features according to the feature analy-
sis in Ghosh et al. (2011a), the base system is not
able to capture all available global features inside
the 5-sentence discourse context, merely uses 2-
sentence context. This is due to the fact that CRF
classifier uses a narrow window, that can only cap-
ture the information nearby the token under con-
sideration. Therefore it becomes impossible to
inject more information about the 5-sentence dis-
course window structure.

3 Global Feature Set

We use a global feature-set. The global features
are defined as the data-driven, hand-crafted rule
generated and non-grammatical (i.e. no syntactic
parse tree is used to generate this features) fea-
tures.

The model of Ghosh et al. (2011a) is based on
Conditional Random Fields (CRF), and incorpo-
rating a set of structural and lexical features. At
the core part of the model lies a local classi-
fier, which labels each token sequentially with one
of the possible argument labels or OTHER in a
pipeline. Now global information can be inte-
grated into the model using global features at a
longer-distance context, by defining a small set of
global constraints (if too many dependencies are
encoded, the model will over-fit the training data

4We used the head rules by Yamada & Matsumoto
(http://www.jaist.ac.jp/˜h-yamada/)

and will not generalize well).
The global features are computed using each

list of k-best lists, in contrast to the lexico-
syntactically generated local features for each to-
ken item for each sentence of n-best lists. The
usage of global feature is meant for exploring the
yet undiscovered dimension of the each 5-sentence
discourse window. Global feature set consists of
the eight features that works on a full 5-sentence
discourse window (cf. sec. 2.1). The first six (i.e.
GF0-GF5) of these are same with the constrained
system 2.1.

None of the features are extracted from any
parse tree. All the seven features (GF1-GF7) are
derived from the generated Arg tags of the n-
best lists, the first one is the logarithm of poste-
rior probability computed from the CRF posterior
probability output for each list of the n-best lists.
The finer description of each feature is given be-
low.

GF0. logarithm of Posterior Probability. this
feature is generated by the base CRF classifier.
The CRF generates probability per sentence, for
each list of the n-best lists. We calculate sum of
the log of each probability during generation of k-
best lists forming 5-sentence discourse window.

GF1. Overgeneration. It is possible for an ar-
gument to be split into more than one part in same
sentence, we found these cases several times in
PDTB. This constraint is violated if an Arg1 or
Arg2 is split over multiple sentences. This is a
predominant problem for those lists of the n-best
lists those are generated with low posteriors. This
feature exhibits the problem of overgeneration to
the reranker with the counts.

GF2. Undergeneration. According to PDTB
annotation scheme every connective must have ar-
guments of each type, this constraint is violated if
an argument is missing. This is the prevalent prob-
lem in the single-best system, especially for the
Arg1 classification. This feature works to spec-
ify where a discourse structure missing the argu-
ment(s) - one of the main problems that motivated
this work.

GF3. Intersentential Arg2 (used only for Arg2
reranker). Count of Arg2, if any, occurs classified
outside connective sentence - this way the system
is constrained to have any inter-sentential Arg2.
This is a hypothetically motivated feature to re-
duce the complexity of the classification problem;
although in fact in PDTB 2.0, there are a few cases
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of Arg2 of explicit connective (i.e. the 114 out
of 18459), where it extends beyond the connec-
tives sentence to include additional sentences in
the subsequent discourse (Prasad et al., 2008).

GF4. Arg1 after the connective sentence. Count
of Arg1, if any, occurs classified after connec-
tive sentence. Through this feature we attempt to
constrain the system to have Arg1s always occur-
ring in the previous sentence or before the previ-
ous sentence of the connective sentence.

GF5. Argument overlapping with the connec-
tive. Count of the cases if there is any token over-
lap between Args and connective tokens. This is
also not possible for the PDTB-style annotation,
so we intend to constrain the overlapping, if any.

GF6. Argument begins with -I tag. Count of
the cases if the generated Arg chunks begins with
the -I (inside) tag, violating the principle of IOB
tags for chunking. This is only possible if the CRF
chunker fails to tag the boundaries properly.

GF7. Argument begins with -E tag. Count of
the cases if the generated Arg chunks begins with
the -E (end) tag instead of a -B(begin) tag. This is
also possible if only the CRF chunker fails to tag
the chunk boundaries properly.

We attempt to categorize this feature set accord-
ing to the properties they bear: {GF0} is the in-
trinsic global feature - it is the evidence of confi-
dence on decisions made by the single-best model;
{GF1, GF2} check the prevalent problems seen
through the evaluation of decisions by the sin-
gle best model; {GF3, GF4, GF5} are the hy-
pothetical global features those reduce classifica-
tion complexities, they are inspired by the general
trends or rules for annotation in PDTB. {G6, G7}
check the mistakes in IOB tagging by the CRF
chunker.

4 Reranking Approaches

We formalize the reranking algorithm as follows:
for a given sentence s, a reranker selects the best
parse ŷ among the set of candidates candidate(s)
according to some scoring function:

ŷ = argmaxy∈candidate(s)score(y) (1)

In n-best reranking, candidate(s) is simply a set
of n-best parses from the baseline parser, that is,
candidate(s) = {y1, y2, ..., yn}.

In this paper we followed two approaches for
the reranking task:

1. Structured Learning Approach: in this case

the reranker learns directly from a scoring func-
tion that is trained to maximize the performance of
the reranking task (Collins and Duffy, 2002). We
also investigate two popular and efficient online
structured learning algorithms: the structured
voted perceptron by Collins and Duffy (2002)
and Passive-Aggressive(PA) algorithm by
Crammer et al. (2006). The weight-vectors
observed from the training phase are averaged
following Schapire and Freund (1999). In case of
structured perceptron for each of the candidate in
a ranked list the scoring function of equation 1 is
computed as follows:

score(yi) = w · Φ(xi,j) (2)

where w is the parameter weight-vector and Φ is
the feature representing function of xi,j ; xi,j de-
notes the j-th token of the i-th sentence. Since
the PA algorithm is based on the theory of large-
margin, it attempts find a score that violates the
margin maximally by adding an extra cost i.e.√

ρ(xi,j) to the basic score function for structured
perceptron i.e. equation 2. Here ρ is computed
as 1 − F (xi.j), F: F-measure. The online PA also
takes care of the learning rate of perceptron, which
is considered as 1 in structured perceptron. The
learning rate in online PA is min-value between a
regularization constant and normalized score func-
tion value.

2. Best vs. rest Approach: in the prefer-
ence kernel approach (Shen and Joshi, 2003) the
reranking problem is reduced to a binary classi-
fication task on pairs. This reduction enables even
a standard support vector machine to optimize the
problem. We use a component of this task. We
define the best scored discourse window (section
4.1) as a positive example and the rest are the neg-
atives to the system. We use a standard support
vector machine (Vapnik, 1995) with linear kernel.

3. Preference Kernel Approach: we also inves-
tigated the classical approach of preference ker-
nel, as it is introduced by (Shen and Joshi, 2003).
In this method, the reranking problem learning to
select the correct candidate h1 from a candidate
set {h1, · · · , hk} is reduced to a binary classifi-
cation problem by creating pairs: positive training
instances 〈h1, h2〉, · · · , 〈h1, hk〉 and negative in-
stances 〈h2, h1〉, · · · , 〈hk, h1〉. The advantage of
using this approach is that there are abundant tools
for binary machine learning.

If we have a kernel K over the candidate
space T , we can construct a preference kernel
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(Shen and Joshi, 2003) PK over the space of pairs
T × T as follows:

PK = K(h1
1, h

1
2) + K(h2

1, h
2
2)

− K(h1
1, h

2
2) − K(h2

1, h
1
2) (3)

In our case, we make pair from the n-best
hypotheses hi as 〈h1

i , h
2
i 〉 generated by the base

model. We used linear kernel to train the reranker.
Thus we create the feature vectors extracted

from the candidate sequences using the features
described in Section 3. We then trained linear
SVMs (Support Vector Machine) using the LIB-
LINEAR software (Fan et al., 2008), using L1 loss
and L2 regularization.

4.1 Experiments
We use PennDiscourse TreeBank
(Prasad et al., 2008) and Penn TreeBank
(Marcus et al., 1993) data through this entire
work. We keep the split of data as follows:
02 − 22 folders of PDTB (& PTB) are used for
training, 23 − 24 folders of the same are used
for testing; remaining 00-01 folders are meant
for development split, it is used only to study the
impact of feature (cf. 5).

We prepare the n-best outputs of sentences from
the base system (cf. 2.1). The training data is pre-
pared from the input of n-best lists of the train
split, using a oracle module, which generates k-
best oracle lists from the n-best single outputs. We
procure k-best lists from oracle using the evaluator
module (see section 4.2), ordered by the highest to
the lowest probability score. Each of the list of the
k-best list is a 5-sentence discourse window.

We prepare the test data given the n-best lists
of the test split. We obtain k-best list for test-
ing, prepared with the module described in sec-
tion 2.1. We re-integrate the sentences con-
nected with the same discourse connective id
into the 5-sentence discourse window keeping the
connective-bearing sentence in the middle. This
re-integration done using a priority queue in the
style of Huang and Chiang (2005). Each of the list
from the k-best list are ordered by the highest to
the lowest score with sum of the log of posterior
probabilities of each sentence in the n-best list.

Therefore, in short, the n-best list is the list of
sentence-level analyses whereas the k-best list is
the list of 5-sentence discourse window-level anal-
yses.

Baseline: we consider the performance of the
single-best output from the base implementation
(cf. 2.1) as the baseline.

4.2 Evaluation
We present our results using precision,
recall and F1 measures. Following
Johansson and Moschitti (2010), we use three
scoring schemes: exact, intersection (or partial),
and overlap scoring. In the exact scoring scheme,
a span extracted by the system is counted as
correct if its extent exactly coincides with one
in the gold standard. We also include two other
scoring schemes to have a rough approximation
of the argument spans. In the overlap scheme,
an expression is counted as correctly detected if
it overlaps with a gold standard argument. The
intersection scheme assigns a score between 0 and
1 for every predicted span based on how much it
overlaps with a gold standard span, so unlike the
other two schemes it will reward close matches.

4.3 Classifier Results

ARG1 Results ARG2 Results
Exact P R F P R F
Baseline 69.88 48.51 57.26 83.44 75.14 79.07
Online PA 66.10 53.92 59.39(16) 82.59 76.39 79.37(4)
Struct Per 67.18 52.64 59.03(4) 82.96 76.28 79.48(8)
BestVsRest 66.19 52.83 58.94(8) 81.69 77.14 79.35(4)
Pref-Linear 66.54 53.31 59.20(4) 82.82 76.28 79.42(4)

Table 3: Exact Match Results for four classifiers. Baseline
scores in the first row. Used n-best list numbers in parenthe-
sis. The best performances are boldfaced.

We observe that reranking with global features
improved the F1 scores for Arg1 significantly, al-
though for Arg2 the improvement is insignificant
5. Since in most of the cases the Arg2 is syntacti-
cally bound with the connective, it is obvious that
lexico-syntactically motivated local features help
the classification of Arg2. On the other hand, the
classification of Arg1 is considerably dependent
on non-grammatical, hand-crafted rule generated
features. If we compare to our reranking clas-
sification results of Arg1 with that one without
previous sentence feature in Ghosh et al. (2011a)
then we observe that the global and globally moti-
vated structural feature improved the classification

5Throughout this work the permutation test is used
to compute the significance of difference, whereas to
compute the confidence interval bootstrap resampling is
used(Hjorth, 1993). We determined the significant digits for
presenting results using the methods illustrated by Weisstein
E. W. (Weisstein, 2012)
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of Arg1 by more than 10 points.
We also notice from the table for both the argu-

ment classification cases that we achieve balanced
scores in terms of the precision and the recall with
the structured global features. In fact there is a
good improvement of recall without much loss
in terms of precision.There is not any significant
improvement in case of Arg2 reranking because
the problem of the classification mostly resides on
boundary detection of Arg2; also we know that
estimation of position of an Arg2 is pretty easy
task given the connective is correctly identified.

ARG1 Results ARG2 Results
Exact P R F P R F
Baseline 82.90 61.65 70.72 93.40 84.20 88.56
Online PA 80.11 69.43 74.39(16) 92.94 85.73 89.19(4)
Struct Per 81.18 67.03 73.43(4) 93.20 85.50 89.17(8)
BestVsRest 81.25 66.46 73.11(8) 93.03 85.16 89.1(4)
Pref-linear 80.55 68.49 74.03(4) 93.12 85.56 89.18(4)

Table 4: Partial Match Results for four classifiers. Baseline
scores in the first row. Used n-best list numbers in parenthe-
sis. The best performances are boldfaced.

We mark an improvement of the Arg1 in table
4, with softer partial evaluation metrics; we also
observe the same trend in results for Arg2 classi-
fication as in the table 3.

4.3.1 Candidate Set Size
We conduct experiments to study the influence of
candidate set size on the quality of reranked out-
put. In addition we also attempt to notice the
upper-bound of reranker performance, i.e. the ora-
cle performance. We choose the reranker based on
online PA among the four classifier. Since all the
four classifiers performed comparably the same
way, it is enough to study the performance of one
of them on candidate set size, that will reflect the
performance of the other classifiers. We also de-
scribe and discuss the results on the exact partial
measures only, as we notice from the previous sec-
tion that the effect of reranking is comparable with
the exact measure and softer measures.

Reranked ARG1 Oracle
k P R F P R F
1 69.88 48.51 57.26 69.88 48.51 57.26
2 67.26 52.34 58.87 81.26 61.70 70.14
4 66.39 53.56 59.29 88.35 71.91 79.29
8 66.11 53.86 59.36 92.47 79.09 85.26
16 66.10 53.92 59.39 93.80 83.77 88.50

Table 5: Oracle and reranker performance as a function of
candidate set size of Arg1.

In both the tables (5, 6) we notice that the ora-

Reranked ARG2 Oracle
k P R F P R F
1 83.44 75.14 79.07 83.44 75.14 79.07
2 82.90 75.69 79.13 90.13 82.43 86.11
4 82.59 76.39 79.37 92.27 86.53 89.31
8 82.41 76.44 79.32 92.81 88.13 90.41
16 83.41 76.44 79.32 92.82 88.54 90.63

Table 6: Oracle and reranker performance as a function of
candidate set size of Arg2.

cle performance is steadily increasing with 16-best
lists. We observe that the performance of classi-
fication of both Arg1 and Arg2 increases at the
level of 2-best list then it stagnates after 4-best per-
formance. This nature of increment is may be re-
lated to the simple but high-level feature set used
in this task of the discourse parsing; and it can also
be some issues involved with local feature set, as
we observed a huge difference of posterior proba-
bilities between the single-best and the each of the
(n − 1) lists of a n-best decision by CRF.

4.3.2 Reranked Intersentential ARG1
We also attempt to observe the effect with respect
to inter-sentential classification in case of Arg1,
with the results obtained with online PA percep-
tron. As expected, the change we notice the ef-
fects in the table 7 is a fraction of potential im-
provement. We find comparing the inter-sentential
vs. overall classification results of Arg1 that the
increment in inter-sentential Arg1 classification
considerably contribute to the overall Arg1 clas-
sification.

P R F1

Baseline Exact 52.87 27.80 36.44
Partial 68.93 41.06 51.48
Overlap 79.62 41.88 54.88

Best Reranked ARG1 Exact 50.41 30.04 37.56
Partial 66.51 44.95 53.78
Overlap 76.13 44.54 56.23

Table 7: Inter-sentential Reranked Arg1 Results.

5 Impact of Feature on ARG1

We study the impact of global features on the per-
formance on Arg1 reranker with the development
set (cf. Section 4.1). We are leaving behind the
feature performance of the Arg2, as the improve-
ment by the reranker for this case is not significant.

The Table 8 shows the results of investigation
through an incremental greedy-search based fea-
ture selection. All the performance steps are eval-
uated with a k of 16.
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This impact table starts with the log posterior
only (GF0). This results to the best result achieved
by Ghosh et al. (2011a) through the hill-climbing
feature analysis. Beside this, we also checked that
if we run the reranker with this feature only, then
it results to the baseline performance with the test
split.

Then the undergeneration feature (GF2) is cho-
sen through greedy search among the other fea-
tures. It gives us, jointly with the log posterior,
a significant improvement over the baseline. The
impact is predictable as GF2 addresses the basic
problem that has driven us to the current task.

The addition of the overgeneration (GF1) fea-
ture also increased the performance, though non-
significantly; this feature is important for the
reranker because this is meant for fixing a predom-
inant overgeneration problem in the n-best lists.

We observe that the F1 measure increases sig-
nificantly after adding the next important feature:
Arg1 after the connective sentence (GF4); in this
case the recall increases more in comparison to the
increment in the precision.

In the next step, the feature: Argument over-
lapping with connective (GF5) is added. This de-
creases the F1 score a bit, though it increases the
precision lowering the recall.

We reach to the second-best performance of the
Arg1 reranker after adding the feature: Argument
begins with -I tag (GF6).

The addition of the feature: Argument begins
with -E tag (GF7) does not improve the perfor-
mance much. It is possible that there was no such
mistake by CRF inside the test data.

The scores with partial and overlap matches
show the same trend so we leave the discussion
with them in order to avoid the redundancy.

Additionally, we also perform the individ-
ual effect of each of features from the set
(GF1,GF2,GF4,GF5,GF6,GF7), jointly with the
intrinsic feature GF0, but none other than the un-
dergeneration feature increased the performance
over the baseline.

The intrinsic GF0 is contributing to achieve the
baseline performance; the undergeneration (GF2)
feature is also contributing significantly. In sum-
mary, the combination of features optimizes the
performance of system in terms of F1-measure by
decreasing the value of precision and raising the
value of recall.

System P R F1

GF0 (Posterior Only) 73.12 50.36 59.64
GF0+GF2 69.62 55.34 61.67
GF0+GF2+GF1 69.92 55.21 61.70
GF0+GF2+GF1+GF4 70.12 56.05 62.30
GF0+GF2+GF1+GF4+GF5 72.36 53.72 61.66
GF0+GF2+GF1+GF4+GF5+GF6 71.10 55.28 62.20
GF0+GF2+GF1+GF4+GF5+GF6+GF7 71.84 54.82 62.19

Table 8: Exact Match Results for Arg1 through Incremen-
tal Feature Selection.

6 Conclusion

We note a significant improvement over the best
performing model of discourse parser on the
PDTB corpus. This is mostly contributed by the
better performance in Arg1 classification.

We also find that global features have greater
impact on Arg1 classification than that of Arg2.
We investigate that that the performance of Arg1
improved by more than 10 points in terms of F1
measure using the global (see Section 3) and struc-
ture related features (see Ghosh et al. (2011a)).
This happens perhaps due to the fact Arg2 is syn-
tactically bound to the connective, whereas Arg1
is not. Arg2 depends more on local features (cf.
Section 2.1) than global one. Basically this nature
of dependency of Arg1 on both local and global
features are inherited through the PDTB annota-
tion corpus, as well the local feature dependency
of Arg2 are completely data-driven.

The motivation of the paper is to make a bal-
anced classification for both the Arg1 and Arg2,
achieved by implementing the constrained-system
with global features. This enables to increase a
huge recall without losing much in terms of preci-
sion.

It is also observed that while the performances
of oracle of Arg1 and Arg2 are increasing
steadily, the performances of both the rerankers
stagnate at or before the point of 16-best lists; this
is perhaps due to our effective, simple and small
feature set.

In this task we emphasized on and studied the
data-driven, global and non-grammatical feature
set. This syntactic parse tree independent feature
set may also be effective with the dialogue data
annotated with PDTB annotation style.
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Abstract

This paper presents a discriminative reranking
model for the discourse segmentation task, the
first step in a discourse parsing system. Our
model exploits subtree features to rerank N-
best outputs of a base segmenter, which uses
syntactic and lexical features in a CRF frame-
work. Experimental results on the RST Dis-
course Treebank corpus show that our model
outperforms existing discourse segmenters in
both settings that use gold standard Penn Tree-
bank parse trees and Stanford parse trees.

1 Introduction

Discourse structure has been shown to have an im-
portant role in many natural language applications,
such as text summarization (Marcu, 2000; Louis et
al., 2010), information presentation (Bateman et al.,
2001), question answering (Sun and Chai, 2007),
and dialogue generation (Hernault et al., 2008). To
produce such kinds of discourse structure, several
attempts have been made to build discourse parsers
in the framework of Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988), one of the
most widely used theories of text structure.

In the RST framework, a text is first divided into
several elementary discourse units (EDUs). Each
EDU may be a simple sentence or a clause in a com-
plex sentence. Consecutive EDUs are then put in
relation with each other to build a discourse tree.
Figure 1 shows an example of a discourse tree with
three EDUs. The goal of the discourse segmentation
task is to divide the input text into such EDUs.

Figure 1: A discourse tree (Soricut and Marcu, 2003).

The quality of the discourse segmenter con-
tributes a significant part to the overall accuracy of
every discourse parsing system. If a text is wrongly
segmented, no discourse parsing algorithm can build
a correct discourse tree.

Existing discourse segmenters usually exploit lex-
ical and syntactic features to label each word in a
sentence with one of two labels, boundary or no-
boundary. The limitation of this approach is that it
only focuses on the boundaries of EDUs. It cannot
capture features that describe whole EDUs.

Recently, discriminative reranking has been used
successfully in some NLP tasks such as POS tag-
ging, chunking, and statistical parsing (Collins and
Koo, 2005; Kudo et al., 2005; Huang, 2008; Fraser
et al., 2009). The advantage of the reranking method
is that it can exploit the output of a base model to
learn. Based on that output, we can extract long-
distance non-local features to rerank.

In this paper, we present a reranking model for
the discourse segmentation task. We show how to
use subtree features, features extracted from whole
EDUs, to rerank outputs of a base model. Exper-
imental results on RST Discourse Treebank (RST-
DT) (Carlson et al., 2002) show that our model out-
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performs existing systems.
The rest of this paper is organized as follows. Sec-

tion 2 summarizes related work. Section 3 presents
our method. Experimental results on RST-DT are
described in Section 4. Finally, Section 5 gives con-
clusions.

2 Related Work

Several methods have been proposed to deal with the
discourse segmentation task. Thanh et al. (2004)
present a rule-based discourse segmenter with two
steps. In the first step, segmentation is done by us-
ing syntactic relations between words. The segmen-
tation algorithm is based on some principles, which
have been presented in Corston (1998) and Carlson
and Marcu (2001), as follows:

1. The clause that is attached to a noun phrase
can be recognised as an embedded unit. If the
clause is a subordinate clause, it must contain
more than one word.

2. Coordinate clauses and coordinate sentences
of a complex sentence are EDUs.

3. Coordinate clauses and coordinate elliptical
clauses of verb phrases (VPs) are EDUs. Co-
ordinate VPs that share a direct object with the
main VP are not considered as a separate dis-
course segment.

4. Clausal complements of reported verbs and
cognitive verbs are EDUs.

The segmenter then uses cue phrases to correct the
output of the first step.

Tofiloski et al. (2009) describe another rule-based
discourse segmenter. The core of this segmenter
consists of 12 syntactic segmentation rules and some
rules concerning a list of stop phrases, discourse cue
phrases, and part-of-speech tags. They also use a
list of phrasal discourse cues to insert boundaries not
derivable from the parser’s output.

Soricut and Marcu (2003) introduce a statisti-
cal discourse segmenter, which is trained on RST-
DT to label words with boundary or no-boundary
labels. They use lexical and syntactic features to
determine the probabilities of discourse boundaries
P (bi|wi, t), where wi is the ith word of the input

sentence s, t is the syntactic parse tree of s, and bi ∈
{boundary, no-boundary}. Given a syntactic parse
tree t, their algorithm inserts a discourse boundary
after each word w for which P (boundary|w, t) >
0.5.

Another statistical discourse segmenter using arti-
ficial neural networks is presented in Subba and Di
Eugenio (2007). Like Soricut and Marcu (2003),
they formulate the discourse segmentation task as
a binary classification problem of deciding whether
a word is the boundary or no-boundary of EDUs.
Their segmenter exploits a multilayer perceptron
model with back-propagation algorithm and is also
trained on RST-DT.

Hernault et al. (2010) propose a sequential model
for the discourse segmentation task, which considers
the segmentation task as a sequence labeling prob-
lem rather than a classification problem. They ex-
ploit Conditional Random Fields (CRFs) (Lafferty
et al., 2001) as the learning method and get state-of-
the-art results on RST-DT.

In our work, like Hernault et al. (2010), we also
consider the discourse segmentation task as a se-
quence labeling problem. The final segmentation
result is selected among N-best outputs of a CRF-
based model by using a reranking method with sub-
tree features.

3 Method

3.1 Discriminative Reranking

In the discriminative reranking method (Collins and
Koo, 2005), first, a set of candidates is generated us-
ing a base model (GEN). GEN can be any model for
the task. For example, in the part-of-speech (POS)
tagging problem, GEN may be a model that gener-
ates all possible POS tags for a word based on a dic-
tionary. Then, candidates are reranked using a linear
score function:

score(y) = Φ(y) ·W

where y is a candidate, Φ(y) is the feature vector of
candidate y, and W is a parameter vector. The final
output is the candidate with the highest score:

F (x) = argmaxy∈GEN(x)score(y)

= argmaxy∈GEN(x)Φ(y) ·W.
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To learn the parameter W we use the average per-
ceptron algorithm, which is presented as Algorithm
1.

Algorithm 1 Average perceptron algorithm for
reranking (Collins and Koo, 2005)

1: Inputs: Training set {(xi, yi)|xi ∈ Rn, yi ∈
C,∀i = 1, 2, . . . ,m}

2: Initialize: W ← 0,Wavg ← 0
3: Define: F (x) = argmaxy∈GEN(x)Φ(y) ·W
4: for t = 1, 2, . . . , T do
5: for i = 1, 2, . . . ,m do
6: zi ← F (xi)
7: if zi 6= yi then
8: W ←W + Φ(yi)− Φ(zi)
9: end if

10: Wavg ←Wavg +W
11: end for
12: end for
13: Wavg ←Wavg/(mT )
14: Output: Parameter vector Wavg.

In the next sections we will describe our base
model and features that we use to rerank candidates.

3.2 Base Model

Similar to the work of Hernault et al. (2010), our
base model uses Conditional Random Fields1 to
learn a sequence labeling model. Each label is either
beginning of EDU (B) or continuation of EDU (C).
Soricut and Marcu (2003) and Subba and Di Euge-
nio (2007) use boundary labels, which are assigned
to words at the end of EDUs. Like Hernault et al.
(2010), we use beginning labels, which are assigned
to words at the beginning of EDUs. However, we
can convert an output with boundary, no-boundary
labels to an output with beginning, continuation la-
bels and vice versa. Figure 2 shows two examples of
segmenting a sentence into EDUs and their correct
label sequences.

We use the following lexical and syntactic infor-
mation as features: words, POS tags, nodes in parse
trees and their lexical heads and their POS heads2.
When extracting features for word w, let r be the

1We use the implementation of Kudo (Kudo, CRF++).
2Lexical heads are extracted using Collins’ rules (Collins,

1999).

Figure 2: Examples of segmenting sentences into EDUs.

word on the right-hand side ofw andNp be the deep-
est node that belongs to both paths from the root to
w and r. Nw and Nr are child nodes of Np that
belong to two paths, respectively. Figure 3 shows
two partial lexicalized syntactic parse trees. In the
first tree, if w = says then r = it, Np = V P (says),
Nw = V BZ(says), and Nr = SBAR(will). We
also consider the parent and the right-sibling of Np

if any. The final feature set forw consists of not only
features extracted from w but also features extracted
from two words on the left-hand side and two words
on the right-hand side of w.

Our feature extraction method is different from
the method in previous work (Soricut and Marcu,
2003; Hernault et al., 2010). They define Nw as the
highest ancestor ofw that has lexical headw and has
a right-sibling. Then Np and Nr are defined as the
parent and right-sibling of Nw. In the first example,
our method gives the same results as the previous
one. In the second example, however, there is no
node with lexical head “done” and having a right-
sibling. The previous method cannot extract Nw,
Np, and Nr in such cases. We also use some new
features such as the head node and the right-sibling
node of Np.

3.3 Subtree Features for Reranking

We need to decide which kinds of subtrees are useful
to represent a candidate, a way to segment the input
sentence into EDUs. In our work, we consider two
kinds of subtrees: bound trees and splitting trees.

The bound tree of an EDU, which spans from
word u to word w, is a subtree which satisfies two
conditions:
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Figure 3: Partial lexicalized syntactic parse trees.

1. its root is the deepest node in the parse tree
which belongs to both paths from the root of
the parse tree to u and w, and

2. it only contains nodes in two those paths.

The splitting tree between two consecutive EDUs,
from word u to word w and from word r to word
v, is a subtree which is similar to a bound tree, but
contains two paths from the root of the parse tree to
w and r. Hence, a splitting tree between two con-
secutive EDUs is a bound tree that only covers two
words: the last word of the first EDU and the first
word of the second EDU. Bound trees will cover the
whole EDUs, while splitting trees will concentrate
on the boundaries of EDUs.

From a bound tree (similar to a splitting tree), we
extract three kinds of subtrees: subtrees on the left
path (left tree), subtrees on the right path (right tree),
and subtrees consisting of a subtree on the left path
and a subtree on the right path (full tree). In the
third case, if both subtrees on the left and right paths
do not contain the root node, we add a pseudo root
node. Figure 4 shows the bound tree of EDU “noth-
ing was done” of the second example in Figure 3,
and some examples of extracted subtrees.

Each subtree feature is then represented by a
string as follows:

• A left tree (or a right tree) is represented by
concatenating its nodes with hyphens between
nodes. For example, subtrees (b) and (e) in Fig-
ure 4 can be represented as follows:

S-NP-NN-nothing, and

S-VP-VP-VBN-done.

• A full tree is represented by concatenating its
left tree and right tree with string ### in the
middle. For example, subtrees (g) and (h) in
Figure 4 can be represented as follows:

S-NP-NN###S-VP-VP-VBN, and

NP-NN-nothing###VP-VP-VBN.

The feature set of a candidate is the set of all sub-
trees extracted from bound trees of all EDUs and
splitting trees between two consecutive EDUs.

Among two kinds of subtrees, splitting trees can
be computed between any two adjacent words and
therefore can be incorporated into the base model.
However, if we do so, the feature space will be very
large and contains a lot of noisy features. Because
many words are not a boundary of any EDU, many
subtrees extracted by this method will never be-
come a real splitting tree (tree that splits two EDUs).
Splitting trees extracted in the reranking model will
focus on a small but compact and useful set of sub-
trees.

4 Experiments

4.1 Data and Evaluation Methods

We tested our model on the RST Discourse Treebank
corpus. This corpus consists of 385 articles from the
Penn Treebank, which are divided into a Training
set and a Test set. The Training set consists of 347
articles (6132 sentences), and the Test set consists of
38 articles (991 sentences).

There are two evaluation methods that have been
used in previous work. The first method measures
only beginning labels (B labels) (Soricut and Marcu,
2003; Subba and Di Eugenio, 2007). The second
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Figure 4: Subtree features.

method (Hernault et al., 2010) measures both be-
ginning and continuation labels (B and C labels)3.
This method first calculates scores on B labels and
scores on C labels, and then produces the average of
them. Due to the number of C labels being much
higher than the number of B labels, the second eval-
uation method yields much higher results. In Her-
nault et al. (2010), the authors compare their systems
with previous work despite using different evalua-
tion methods. Such comparisons are not valid. In
our work, we measure the performance of the pro-
posed model using both methods.

4.2 Experimental Results

We learned the base model on the Training set and
tested on the Test set to get N-best outputs to rerank.
To learn parameters of the reranking model, we con-
ducted 5-fold cross-validation tests on the Training
set. In all experiments, we set N to 20. To choose
the number of iterations, we used a development set,
which is about 20 percent of the Training set.

Table 1 shows experimental results when evaluat-
ing only beginning (B) labels, in which SPADE is
the work of Soricut and Marcu (2003), NNDS is a
segmenter that uses neural networks (Subba and Di
Eugenio, 2007), and CRFSeg is a CRF-based seg-
menter (Hernault et al., 2010). When using gold
parse trees, our base model got 92.5% in the F1

score, which improves 1.3% compared to the state-
of-the-art segmenter (CRFSeg). When using Stan-
ford parse trees (Klein and Manning, 2003), our
base model improved 1.7% compared to CRFSeg.
It demonstrates the effectiveness of our feature ex-

3Neither evaluation method counts sentence boundaries.

Table 1: Performance when evaluating on B labels
Model Trees Pre(%) Re(%) F1(%)
SPADE Penn 84.1 85.4 84.7
NNDS Penn 85.5 86.6 86.0

CRFSeg Penn 92.7 89.7 91.2
Base Penn 92.5 92.5 92.5

Reranking Penn 93.1 94.2 93.7
CRFSeg Stanford 91.0 87.2 89.0

Base Stanford 91.4 90.1 90.7
Reranking Stanford 91.5 90.4 91.0

Human - 98.5 98.2 98.3

traction method in the base model. As expected,
our reranking model got higher results compared
to the base model in both settings. The rerank-
ing model got 93.7% and 91.0% in two settings,
which improves 2.5% and 2.0% compared to CRF-
Seg. Also note that, when using Stanford parse trees,
our reranking model got competitive results with
CRFSeg when using gold parse trees (91.0% com-
pared to 91.2%).

Table 2 shows experimental results when evaluat-
ing on both beginning and continuation labels. Our
models also outperformed CRFSeg in both settings,
using gold parse trees and using Stanford parse trees
(96.6% compared to 95.3% in the first setting, and
95.1% compared to 94.1% in the second setting).

Both evaluation methods have a weak point in
that they do not measure the ability to find EDUs
exactly. We suggest that the discourse segmenta-
tion task should be measured on EDUs rather than
boundaries of EDUs. Under this evaluation scheme,
our model achieved 90.0% and 86.2% when using
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Table 2: Performance when evaluating on B and C labels
Model Trees Pre(%) Re(%) F1(%)

CRFSeg Penn 96.0 94.6 95.3
Base Penn 96.0 96.0 96.0

Reranking Penn 96.3 96.9 96.6
CRFSeg Stanford 95.0 93.2 94.1

Base Stanford 95.3 94.7 95.0
Reranking Stanford 95.4 94.9 95.1

gold parse trees and Stanford parse trees, respec-
tively.

We do not compare our segmenter to systems de-
scribed in Thanh et al. (2004) and Tofiloski et al.
(2009). Thanh et al. (2004) evaluated their system
on only 8 texts of RST-DT with gold standard parse
trees. They achieved 81.4% and 79.2% in the preci-
sion and recall scores, respectively. Tofiloski et al.
(2009) tested their system on only 3 texts of RST-DT
and used different segmentation guidelines. They
reported a precision of 82.0% and recall of 86.0%
when using Stanford parse trees.

An important question is which subtree features
were useful for the reranking model. This question
can be answered by looking at the weights of sub-
tree features (the parameter vector learned by the
average perceptron algorithm). Table 3 shows 30
subtree features with the highest weights in absolute
value. These features are thus useful for reranking
candidates in the reranking model. We can see that
most subtree features at the top are splitting trees,
so splitting trees have a more important role than
bound trees in our model. Among three types of
subtrees (left tree, right tree, and full tree), full tree
is the most important type. It is understandable be-
cause subtrees in this type convey much informa-
tion; and therefore describe splitting trees and bound
trees more precise than subtrees in other types.

4.3 Error Analysis

This section discusses the cases in which our model
fails to segment discourses. Note that all errors be-
long to one of two types, over-segmentation type
(i.e., words that are not EDU boundaries are mis-
taken for boundaries) and miss-segmentation type
(i.e., words that are EDU boundaries are mistaken
for not boundaries).

Table 4: Top error words
Word Percentage among all errors (%)

to 14.5
and 5.8
that 4.6
the 4.6
“ 3.5

he 2.3
it 2.3
of 2.3

without 2.3
– 1.7
as 1.7
if 1.7

they 1.7
when 1.7

a 1.2

Tabel 4 shows 15 most frequent words for which
our model usually makes a mistake and their per-
centage among all segmentation errors. Most errors
are related to coordinating conjunctions and subor-
dinators (and, that, as, if, when), personal pronouns
(he, it, they), determiners (the, a), prepositions (of,
without), punctuations (quotes and hyphens), and
the word to.

Figure 5 shows some errors made by our model.
In these examples, gold (correct) EDU boundaries
are marked by bracket squares ([]), while predicted
boundaries made by our model are indicated by ar-
rows (↓ or ↑). A down arrow (↓) shows a boundary
which is predicted correctly, while an up arrow (↑)
indicates an over-segmentation error. A boundary
with no arrow means a miss-segmentation error. For
example, in Sentence 1, we have a correct boundary
and an over-segmentation error. Sentences 2 and 3
show two over-segmentation errors, and sentences 4
and 6 show two miss-segmentation errors.

We also note that many errors occur right after
punctuations (commas, quotes, hyphens, brackets,
and so on). We analyzed statistics on words that
appear before error words. Table 5 shows 10 most
frequent words and their percentage among all er-
rors. Overall, more than 35% errors occur right after
punctuations.
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Table 3: Top 30 subtree features with the highest weights
Type of tree Type of subtree Subtree feature Weight
Splitting tree Full tree NP###NP-VP 23.0125
Splitting tree Full tree VP###S-VP 19.3044
Splitting tree Full tree NP###VBN 18.3862
Splitting tree Right tree VP -18.3723
Splitting tree Full tree NP###SBAR 17.7119
Splitting tree Full tree NP###NP-SBAR 17.0678
Splitting tree Full tree NP###, -16.6763
Splitting tree Full tree NP###VP 15.9934
Splitting tree Left tree NP-VP 15.2849
Splitting tree Full tree NP###NP 15.1657
Splitting tree Right tree SBAR 14.6778
Splitting tree Full tree NP###S-NP 14.4962
Splitting tree Full tree NP###S 13.1656
Bound tree Full tree S-PP###, 12.7428

Splitting tree Full tree NP###NP-VP-VBN 12.5210
Bound tree Full tree NP###NP -12.4723
Bound tree Full tree VP###VP -12.1918

Splitting tree Full tree NP-VP###S 12.1367
Splitting tree Right tree NP-VP 12.0929
Splitting tree Full tree NP-SBAR###VP 12.0858
Splitting tree Full tree NP-SBAR-S###VP 12.0858
Splitting tree Full tree VP###VP-VP -12.0338
Bound tree Full tree VBG###. 11.9067
Bound tree Right tree : 11.8833
Bound tree Full tree VP###S -11.7624
Bound tree Full tree S###VP -11.7596
Bound tree Full tree “###” 11.5524
Bound tree Full tree S###, 11.5274

Splitting tree Full tree NP###VP-VBN 11.3342
Bound tree Left tree 0 11.2878

Figure 5: Some errors made by our model.
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Table 5: Most frequent words that appear before error
words

Word Percentage among all errors (%)
, 24.9
“ 5.2
– 2.3

time 1.7
) 1.2

assets 1.2
investors 1.2

month 1.2
plan 1.2
was 1.2

5 Conclusion

This paper presented a reranking model for the dis-
course segmentation task. Our model exploits sub-
tree features to rerank N-best outputs of a base
model, which uses CRFs to learn. Compared with
the state-of-the-art system, our model reduces 2.5%
among 8.8% errors (28.4% in the term of error rate)
when using gold parse trees, and reduces 2% among
11% errors (18.2% in the term of error rate) when
using Stanford parse trees. In the future, we will
build a discourse parser that uses the described dis-
course segmenter.
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Abstract

Many modern spoken dialog systems use
probabilistic graphical models to update their
belief over the concepts under discussion, in-
creasing robustness in the face of noisy input.
However, such models are ill-suited to prob-
abilistic reasoning about spatial relationships
between entities. In particular, a car naviga-
tion system that infers users’ intended desti-
nation using nearby landmarks as descriptions
must be able to use distance measures as a fac-
tor in inference. In this paper, we describe
a belief tracking system for a location iden-
tification task that combines a semantic belief
tracker for categorical concepts based on the
DPOT framework (Raux and Ma, 2011) with
a kernel density estimator that incorporates
landmark evidence from multiple turns and
landmark hypotheses, into a posterior proba-
bility over candidate locations. We evaluate
our approach on a corpus of destination set-
ting dialogs and show that it significantly out-
performs a deterministic baseline.

1 Introduction

Mobile devices such as smart phones and in-car in-
fotainment systems have generated demand for a
new generation of location-based services such as
local business search, turn-by-turn navigation, and
social event recommendation. Accessing such ser-
vices in a timely manner through speech is a crucial
requirement, particularly on the go when the user is
unable to resort to other modalities e.g. where safety
regulations prohibit drivers from using buttons or a
touchscreeen while driving.

In such systems, a Point of Interest (POI)
or a destination such as a restaurant, store or a
public place is often specified. For example, a
car navigation system needs the user to input the
destination before giving directions. Similarly, a
photo tagging application must allow its users to
designate the location where a picture was taken.
While postal addresses can be used to unambigously
identify locations, they are often either unknown
or hard for users to remember. A more natural
(though potentially ambiguous) means of speci-
fying locations is to use landmarks such as “the
Italian restaurant near Red Rock
cafe on Castro Street” or “the bakery
near that mall with a Subway and
a 7 Eleven”. A location-based dialog system
that understands referring expressions using land-
marks could lead to more succinct dialogs, higher
recognition accuracy and a greater appearance of
intelligence to the user.

We present a system that performs belief track-
ing over multiple turns of user speech input to infer
the most probable target location. The user inter-
acts with the system through speech in order to spec-
ify a target location, and may include references to
one or more landmarks. Such a system must han-
dle two sources of uncertainty. First, ASR is notori-
ously error-prone and modern ASR engines provide
ranked lists of possible interpretations of speech in-
put rather than single hypotheses. Second, the suit-
ability of a particular landmark or its likelihood of
usage by the speaker depends on a number of factors
such as distance, size and prominence of the land-
mark, familiarity of the user and his expectation of
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common ground for understanding. These factors,
or at least the resulting variability, must be taken into
account when making inferences about target loca-
tions from landmark-based expressions.

The first source of ambiguity (speech understand-
ing) has been the target of research on belief tracking
(Mehta et al., 2010; Raux and Ma, 2011; Thomson
and Young, 2010). In previous work, the concepts
of interest are entities that are ontologically related
(i.e. with is-a or has-a relations), thus discrete prob-
abilistic graphical models such as DBNs have gen-
erally sufficed as representations. But these mod-
els are ill-suited for dense continuous spatial rela-
tions like the distance between any two locations on
a map. In this paper, we introduce a kernel-based
belief tracker as a probabilistic model for inferring
target locations from (uncertain) landmarks. The
kernel-based representation allows a natural way to
weigh the suitability of a landmark and the speech
understanding confidence. The output of this tracker
is combined with that of a Dynamic Probabilistic
Ontology Tree (DPOT) (Raux and Ma, 2011), which
performs ontological reasoning over other features
of the target location, to give a posterior distribu-
tion over the intended location. We evaluate our ap-
proach on a new corpus of location setting dialogs
specially collected for this work and find it to signif-
icantly outperform a deterministic baseline.

2 Related Work

In the context of a location-based dialog system,
Seltzer et al. (2007) describes a speech understand-
ing system designed to recognize street intersec-
tions and map them to a database of valid intersec-
tions using information retrieval techniques. Ro-
bustness is achieved by exploiting both words and
phonetic information at retrieval time, allowing a
soft-matching of the ASR result to the canonical in-
tersection name. Their approach is specifically tar-
geted at intersections, to the exclusion of other types
of landmarks. While intersections are frequently
used as landmarks in North America (where their
study was conducted), this is not always the case
in other cultures, such as Japan (Suzuki and Wak-
abayashi, 2005), where points of interests such as
train stations are more commonly used. Also, their
approach, which is framed as speech understanding,

does not exploit information from previous dialog
turns to infer user intention.

Landmarks have been integrated in route direc-
tions (Pierre-emmanuel Michon, 2001; Tversky and
Lee, 1999) with significant use at origin, destination
and decision points. Further, landmarks have been
found to work better than street signs in wayfind-
ing (Tom and Denis, 2003). The multimodal system
described in (Gruenstein and Seneff, 2007) supports
the use of landmarks from a limited set that the user
specifies by pointing at the map and typing landmark
names. While this allows the landmarks (and their
designations) to be of any kind, the burden of defin-
ing them is on the user.

Spatial language, including landmarks, has also
been the focus of research within the context of
human-robot interaction. (Huang et al., 2010;
MacMahon et al., 2006) describe systems that trans-
late natural language directions into motion paths or
physical actions. These works focus on understand-
ing the structure of (potentially complex) spatial lan-
guage and mapping it into a representation of the
environment. Issues such as imperfect spoken lan-
guage understanding have not been investigated in
this context. Similarly, this vein of spatial language
research has traditionally been conducted on small
artificial worlds with a few dozen objects and places
at most, whereas real-world location-based services
deal with thousands or millions of entities.

3 Hybrid Semantic / Location Belief
Tracking

Our belief tracking system consists of two trackers
running in parallel: a DPOT belief tracker (Raux and
Ma, 2011) and a novel kernel-based location tracker.
The final inference of user intentions is produced by
combining information from the two trackers. The
general idea is to rerank the user goals given spatial
information provided by the location tracker.

3.1 Semantic Belief Tracker

We perform belief tracking over non-landmark con-
cepts such as business name and street using a Dy-
namic Probabilistic Ontology Tree (DPOT) (Raux
and Ma, 2011). A DPOT is a Bayesian Network
composed of a tree-shaped subnetwork representing
the (static) user goal (Goal Network), connected to
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Figure 1: Top view heat map of spatial distribution with landmarks Subway and 7 Eleven over potential target
places in Mountain View, CA

a series of subnetworks representing the evidence
gathered from each successive dialog turn (Evidence
Networks). Details of the model and an efficient in-
ference method for posterior probability computa-
tions can be found in (Raux and Ma, 2011).

In the context of this paper, the purpose of the
semantic tracker is to update a list of the most
likely target locations using attributes of that
location provided by the user (see Figure 2). In
a local business database, such attributes include
Business Name, Street, Category (e.g.
Japanese restaurant or convenience store), etc.
The structure and parameters of the Goal Network
encode probabilistic ontological relations between
the attributes (e.g. a Mcdonalds would be described
as a fast-food restaurant with high probability)
that can be exploited during inference. These can
be derived from expert knowledge, learned from
data, or as is the case in our experimental system,
populated from a database of local businesses (see
section 4). After each user utterance, the DPOT
outputs a ranked list of user goal hypotheses (an ex-
ample goal hypothesis is [Category=italian
restaurant,Street=castro street]).
Each hypothesis is converted into a query to the

backend database, and the posterior probability of
the hypothesis is split equally among all matching
entries. This results in a ranked list of database
entries corresponding to the system’s belief over
potential target locations, with potentially many
entries having the same probability.

3.2 Kernel-based Location Tracker

Landmark concepts extracted by the Natural Lan-
guage Understanding module (NLU) are passed to
the location tracker, which maintains a distribution
over coordinates of potential target locations. Each
such landmark concept is treated as evidence of spa-
tial proximity of the target to the landmark and the
distribution is accordingly updated. Any location in
the database can serve as a landmark observation,
including major POIs such as train stations or pub-
lic facilities. If the name of a generic chain store
with multiple locations such as Subway is used for
the landmark, then an observation corresponding to
each individual location is added to the tracker.

For each observed landmark `, the location
tracker constructs a 2-dimensional Gaussian kernel
with mean equal to the longitude and latitude of the
landmark (µ` = (long`, lat`)) and a fixed covari-
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Figure 2: Overview of the hybrid semantic / location belief tracking approach; the database entry in shade is the
underlying true target place to which the provided landmark is close

ance matrix ⌃` for each landmark:

�`(t) =
1

2⇡|⌃|1/2
exp(�1

2
(t� µ`)

T⌃�1
` (t� µ`))

This kernel density determines the conditional prob-
ability that the target is at coordinates t =
(longt, latt) given the fixed landmark `. The covari-
ance matrix ⌃` and hence the shape of the kernel
can be adjusted for different landmarks depending
on considerations such as the familiarity, size and
prominence of the landmark (a large historic monu-
ment is likely to be used as a landmark for locations
much further away than a small corner grocery store)
etc.

The probability density of the location t being the
target is then given by a weighted mixture model:

Pr(t|L) =
X

`2L

w`�`(t) (1)

where L is the set of candidate landmarks returned
by the NLU (see Section 4.1) up to the current turn
and w` is set to the confidence score of ` from the

NLU. Thus candidate landmarks that have higher
confidence in the NLU will contribute more strongly
to the total likelihood. Since Pr(t|L) is a den-
sity function, it is unnormalized. In Figure 1, we
show the kernel tracker distribution for a dialog state
where Subway and 7 Eleven are provided as
landmarks.

The kernel density estimator is a simple approach
to probabilistic spatial reasoning. It is easy to imple-
ment and requires only a moderate amount of tuning.
It naturally models evidence from multiple speech
hypotheses and multiple provided landmarks, and
it benefits from accumulated evidence across dia-
log turns. It can also potentially be used to model
more general kinds of spatial expressions by using
appropriate kernel functions. For example, ‘Along
Castro street’ can be modeled by a Gaussian
with an asymmetric covariance matrix such that the
shape of the resulting distribution is elongated and
concentrated on the street. While ‘Two blocks
away from ...’ could be modeled by adding
an extra “negative” density kernel that extends from
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Figure 3: Overview of the Destination Setting System

the center of the landmark to a distance two blocks
away.

3.3 Combining the Two Trackers

At each turn, the updated results from the Seman-
tic and Location tracker are combined to give a
single ranked list of likely target locations. In
Figure 2, this process is illustrated for a dia-
log turn where two possible concepts are identi-
fied � a category attribute [Category:italian
restaurant] and a landmark [Landmark:red
rock coffee company]. These are passed to
the DPOT tracker and the location tracker respec-
tively. The output of the DPOT is used to retrieve
and score matching database entries. The score for
each entry is reweighted by the kernel density esti-
mator measured at the coordinates of the location 1:

Pr(eij) = (
pi

Ni
)⌫ ⇥ Pr(eij |L) (2)

where Ni is the number of matching database en-
tries retrieved from ith goal hypothesis (having joint
probability pi) and eij is the jth such entry (j 2
[1..Ni]). The exponent ⌫ for the posterior term is
introduced to account for scale difference between
the semantic score and the kernel density.

The set of candidate entries can then be reranked
according to Eq 2 and returned as the output of the
combined belief tracker.

Figure 4: Structure of the Goal Network for the experi-
mental system.

4 Evaluation

4.1 Experimental System

The architecture of our experimental system is
shown in Figure 3. The web client, shown in Figure
5, runs in the participant’s web browser and displays
the target location of the current scenario using the
Google Map API. The user’s goal is to convey this
target location to the system through speech only.

The system backend consists of a database of
2902 businesses located in Mountain View, Cali-
fornia with their name, street, street number, busi-
ness category, latitude and longitude provided. The
grammar rules for the NLU and the probability ta-
bles in the DPOT are populated from this database.

The web client captures the user speech and sends
it to our server with a push-to-talk interface based
on the WAMI toolkit (Gruenstein et al., 2008). The
server uses a commercial cloud-based ASR service
with generic acoustic and language models, which
were not adapted to our task. The n-best list of hy-
potheses from the ASR is sent to our robust natural

1The scores are renormalized to between 0 and1.
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language understanding module for parsing.
Our NLU uses a hybrid approach combining

a weighted finite-state transducer (WFST) with
string matching based rescoring of the output. The
WFST incorporates out-of-grammar word loops
that allow skipping input words at certain points
in the parse2. This parser robustly maps free form
utterances (e.g. “Okay let’s go to that
Italian place near, uh..., Red
Rock Cafe, on Castro”) to semantic frames
(e.g. [Category=italian restaurant,
Street=castro street, Landmark=red
rock coffee company]).

The NLU confidence score is computed based on
the number of words skipped while parsing, and
how close the important concept words match the
canonical phrases found in the database. For in-
stance, “Red Rock Cafe” matches the canoni-
cal name “Red Rock Coffee Company” with
high confidence because rare words (Red, Rock)
are identical, and differing but common words
(Cafe, Coffee, Company) have a low weight
in the score. The string matching score is based
on the term-frequency/inverse document frequency
(TF-IDF) metric commonly used in information re-
trieval. In our case, the weight of different terms
(IDF) is estimated based on their frequency of occur-
rence in different database entries (i.e. how uniquely
they describe a matching entry). We use the sec-
ondstring open-source library (Cohen et al., 2003)
for string matching. For any ASR hypothesis, the
NLU is likely to generate several parses which are
all merged in a global list of candidate parses.

For each candidate parse, the system generates
a set of dialog acts (one per concept in the parse)
which are input to the belief tracker with their confi-
dence score. Following the approach described in
section 3, dialog acts corresponding to the Land-
mark concept are sent to the kernel-based location
belief tracker, while all other concepts are sent to a
Dynamic Probabilistic Ontology Trees (DPOT) se-
mantic belief tracker, whose structure is shown in
Figure 4. We use a two-level tree. The value of
the root node (Id) is never directly observed and
represents the database entry targeted by the user.

2This module is implemented using the OpenFST library
(Allauzen et al., 2007)

The leaf nodes correspond to the relevant attributes
Name, Category, and Street. For any database
entry e, attribute a and value of that attribute va, the
conditional probability P (a = va|Id = e) is set to 1
if the value of a is va for entry e in the database, and
to 0 otherwise. For attributes such as Category,
which allow several possible values for each entry,
the probability is split equally among valid values.
After each user utterance, the network is augmented
with a new Evidence Network capturing the possi-
ble interpretations and their likelihood, as computed
by the NLU. The posterior probability distribution
over user goals is computed and rescored using the
kernel-based location tracker.

Finally, the Response Generator takes the highest
scoring target location from the belief tracker and
sends it back to the web client which displays it on
the map and also indicates what are the values of
the Name, Category, and Street concepts for
the top belief (see Figure 5). If the top belief lo-
cation does not match the goal of the scenario, the
user can speak again to refine or correct the system
belief. After the user has spoken 5 utterances, they
also get the choice of moving on to the next scenario
(in which case the dialog is considered a failure).

4.2 Data collection

To evaluate our approach, we ran a data collection
experiment using the Amazon Mechanical Turk on-
line marketplace. We defined 20 scenarios grouped
into 4 Human Intelligence Tasks (HITs). Figure 5
shows a screen shot of the web interface to the sys-
tem. In each scenario, the worker is given a target
location to describe by referring to nearby landmark
information. The target locations were chosen so as
to cover a variety of business categories and nearby
landmarks. The compensation for completing each
set of 5 scenarios is 1 US dollar. Before their first
scenario, workers are shown a video explaining the
goal of the task and how to use the interface, in
which they are specifically encouraged to use land-
marks in their descriptions.

At the beginning of each scenario, the target
location is displayed on the map with a call-
out containing a short description using either a
generic category (e.g. Italian restaurant,
Convenience store) or the name of a chain
store (e.g. Subway, Mcdonalds). The worker
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Figure 5: Screen capture of the data collection web interface where the target location is an Italian restaurant (in
green, underlying target place is [Ristorante Don Giovanni]) and after the first turn user input ‘Italian
restaurant’ with a system belief [Frankie, Johnnie & Luigi, Too] in blue returned without any land-
mark information provided so far

then interacts with the system described in section
4.1 until either the system’s top belief matches the
target location, or they decide to skip the scenario.

4.3 Data Statistics

Overall, 99 workers participated in the data col-
lection, providing 948 dialogs (2,869 utterances, 3
turns per scenario on average), which two of the
authors manually transcribed and annotated for di-
alog acts. 76% of the dialogs (46% of utterances)
contained a reference to a landmark. Other strate-
gies commonly used by workers to uniquely identify
a location include using a category or chain name
and a street, as well as explicitly mentioning the tar-
get business name (although workers were explicitly
discouraged form doing so). Figure 7 in appendix
provides one example dialog from the corpus.

Overall, the workers provided 203 unique land-
marks, of which 143 (70%) are in the database.

Workers were able to set the target destination
within 5 turns in 60.1% of the dialogs, which we
hereafter refer to as task successes. However, based
on the manual transcripts, 19.0% of the dialogs
could not have succeeded with the current system
because the workers used landmark or attributes that
do not appear in the database. Since the focus of this

study is robustness rather than coverage, we base our
evaluation on the remaining 768 dialogs, which we
split between a development set of 74 dialogs and
a test set of 694 dialogs. On this test set, the live
system has a task success rate of 70.6%. By inspect-
ing the log files, we noticed that runtime issues such
as timeouts prevented the system from getting any
belief from the belief tracker in 6.3% of the dialogs.

The mean Word Error Rate (WER) per worker on
the test set is 27.5%. There was significant variabil-
ity across workers, with a standard deviation 20.7%.
Besides the usual factors such as acoustic noise and
non-native accents, many of the errors came from
the misrecognition of business names, due to the fact
that ASR uses an open-ended language model that is
tuned neither to Mountain View, nor to businesses,
nor to the kind of utterances that our set up tends
to yield, which is a realistic situation for large scale
practical applications.

Concept precision of the top scoring NLU hypoth-
esis is 73.0% and recall is 57.7%. However, when
considering the full list of NLU hypotheses and us-
ing an oracle to select the best one for each turn,
precision increases to 89.3% and recall to 66.2%,
underscoring the potential of using multiple input
hypotheses in the belief tracker.
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Figure 6: Batch evaluation of the proposed (BT) and baseline approaches with and without landmark information.

4.4 Batch Results

To further analyze the performance of our approach,
we conducted a series of batch experiments on the
data collected with the runtime system. We first
tuned the parameters of the belief tracker ⌫ and ⌃l

(see section 3) on the development set (⌫ = 3 and
⌃l corresponds to a circular Gaussian with standard
deviation 500 meters).

We compare the tuned proposed belief tracking
system (labeled BT) with three other versions. First,
we define a deterministic baseline system which, at
each turn, updates its belief by overwriting each con-
cept’s value with the value found in the top NLU
hypothesis. Based on this (single) user goal hy-
pothesis, we query the database to retrieve match-
ing entries. If the current goal hypothesis con-
tains a Landmark concept, the baseline system se-
lects the matching entry that is closest to any loca-
tion matching the landmark name, by computing the
pairwise distance between candidate target locations
and landmarks.

We also compute the performance of both the
baseline and our proposed approach without us-
ing landmark information at all. In these versions,
the belief over the attributes (Name, Street, and
Category) is updated according to either the top
NLU hypothesis (baseline) or the DPOT model (BT)
and the first matching database entry is returned, ig-
noring any landmark information.

Figure 6 shows the task success of each of the four
versions on the test set. First, it is clear that land-
mark information is critical to complete the tasks in
this corpus since both systems ignoring landmarks

perform significantly worse than their counterparts.
Second, the belief tracking approach significantly
outperforms the deterministic baseline (83.0% vs
69.3%, p < 0.001 using sign test for matched pairs).

To further analyze the performance of the sys-
tem in different input conditions, we split the di-
alogs based on their measured concept accuracy (ex-
pressed in terms of concept F-measure). All dialogs
with an F-measure higher than the median (70.0%)
are labeled as high-accuracy, while the other half of
the data is labeled as low-accuracy. While both the
proposed approach and the baseline perform simi-
larly well for high-accuracy dialogs (task success of
resp. 96.0% and 92.8%, difference is not statisti-
cally significant), the difference is much larger for
low-accuracy dialogs (70.0% vs 45.8%, p < 0.001)
confirming the robustness of the landmark-based be-
lief tracking approach when confronted with poor
input conditions.

5 Conclusion

In this paper, we have explored the possibilities of
incorporating spatial information into belief tracking
in spoken dialog systems. We proposed a landmark-
based location tracker which can be combined with
a semantic belief tracker to output inferred joint user
goal. Based on the results obtained from our batch
experiments, we conclude that integrating spatial in-
formation into a location-based dialog system could
improve the overall accuracy of belief tracking sig-
nificantly.
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User: &Italian&restaurant&near&
ASR: %italian%restaurant%near%
NLU: %Category=Italian%Restaurant%

Category %Italian'Restaurant'
Target !Dominos!Pizza!
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Baseline' DPOT+Kernels'

Example&Dialog�

Figure 7: Comparison between baseline and proposed method on an example dialog whose underlying true target is
an Italian restaurant called Don Giovanni.
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Abstract

Probabilistic models such as Bayesian Net-
works are now in widespread use in spoken
dialogue systems, but their scalability to com-
plex interaction domains remains a challenge.
One central limitation is that the state space
of such models grows exponentially with the
problem size, which makes parameter esti-
mation increasingly difficult, especially for
domains where only limited training data is
available. In this paper, we show how to cap-
ture the underlying structure of a dialogue do-
main in terms of probabilistic rules operating
on the dialogue state. The probabilistic rules
are associated with a small, compact set of pa-
rameters that can be directly estimated from
data. We argue that the introduction of this ab-
straction mechanism yields probabilistic mod-
els that are easier to learn and generalise bet-
ter than their unstructured counterparts. We
empirically demonstrate the benefits of such
an approach learning a dialogue policy for a
human-robot interaction domain based on a
Wizard-of-Oz data set.

1 Introduction

Spoken dialogue systems increasingly rely on prob-
abilistic models at various stages of their pipeline.
Statistical methods have notably been applied to
tasks such as disfluency detection (Lease et al.,
2006), semantic parsing (Erdogan et al., 2002; He
and Young, 2005), dialogue act recognition (Stol-
cke et al., 2000; Lan et al., 2008), dialogue man-
agement (Frampton and Lemon, 2009; Young et al.,
2010), natural language generation (Oh and Rud-
nicky, 2002; Lemon, 2011) and speech synthesis
(Zen et al., 2009).

There are two compelling reasons for this grow-
ing interest in statistical approaches: first, spoken
dialogue is pervaded with noise and uncertainty
(due to e.g. speech recognition errors, linguistic
and pragmatic ambiguities, and unknown user in-
tentions), which must be dealt with at all processing
stages. Second, a decisive advantage of probabilis-
tic models lies in their ability to be automatically
optimised from data, enabling statistically-based di-
alogue systems to exhibit conversational behaviours
that are often more robust, flexible and adaptive than
hand-crafted systems (Lemon and Pietquin, 2007).

Despite their success, the use of probabilistic
models also presents a number of challenges. The
most pressing issue is the paucity of appropriate data
sets. Stochastic models often require large amounts
of training data to estimate their parameters – ei-
ther directly (Henderson et al., 2008) or indirectly
by way of a user simulator (Schatzmann et al., 2007;
Cuayáhuitl et al., 2010). Unfortunately, real interac-
tion data is scarce, expensive to acquire, and difficult
to transfer from one domain to another. Moreover,
many dialogue domains are inherently open-ended,
which means they are not limited to the completion
of a single task with predefined features but have to
represent a varying number of tasks, complex user
models and a rich, dynamic environment. Exam-
ples of such domains include human-robot interac-
tion (Kruijff et al., 2010), cognitive assistants and
companions (Nguyen, 2005; Cavazza et al., 2010),
and tutoring systems (Litman and Silliman, 2004;
Eskenazi, 2009). In such settings, the dialogue sys-
tem might need to track a large number of variables
in the course of the interaction, which quickly leads
to a combinatorial explosion of the state space.

There is an extensive body of work in the machine
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learning and planning literature that shows how to
address this issue by relying on more expressive rep-
resentations, able to capture relevant aspects of the
problem structure in a compact manner. By taking
advantage of hierarchical or relational abstractions,
system developers can leverage their domain knowl-
edge to yield probabilistic models that are easier to
learn (due to a reduced number of parameters) and
more efficient to use (since the structure can be ex-
ploited by the inference algorithm).

The contributions of this paper are twofold. We
first present a new framework for encoding prior
knowledge in probabilistic dialogue models, based
on the concept of probabilistic rules. The frame-
work is very general and can accommodate a wide
spectrum of domains and learning tasks, from fully
statistical models with virtually no prior knowledge
to manually designed models with only a hand-
ful of parameters. Second, we demonstrate how
this framework can be exploited to learn stochas-
tic dialogue policies with limited data sets using a
Bayesian learning approach.

The following pages spell out the approach in
more detail. In Section 2, we provide the general
background on probabilistic models and their use in
spoken dialogue systems. We describe in Section 3
how to encode such models via probabilistic rules
and estimate their parameters from data. In Sec-
tion 4, we detail the empirical evaluation of our ap-
proach in a human-robot interaction domain, given
small amounts of data collected in Wizard-of-Oz ex-
periments. Finally, we discuss and compare our ap-
proach to related work in Section 5.

2 Background

2.1 Bayesian Networks

The probabilistic models used in this paper are ex-
pressed as directed graphical models, also known as
Bayesian Networks. Let X1...Xn denote a set of
random variables. Each variable Xi is associated
with a range of mutually exclusive values. In dia-
logue models, this range is often discrete and can be
explicitly enumerated: V al(Xi) = {x1i , ..., xmi }.

A Bayesian Network defines the joint probabil-
ity distribution P (X1...Xn) via conditional depen-
dencies between variables, using a directed graph
where each node corresponds to a variable Xi. Each

A

C

B

D

E

Value for B: P(B)

T 0.6

F 0.4

Value for A: P(A)

T 0.3

F 0.7

Value for C P(C)

T
 1.0 if (A=T ∧ B=T)
 0.0 otherwise

F
 0.0 if (A=T ∧ B=T)
 1.0 otherwise

Value 
for D:

P(D|C)P(D|C)Value 
for D: C=T C=F

T 0.2 0.99

F 0.8 0.01

Value 
for E:

P(E|C)P(E|C)Value 
for E: C=T C=F

T 0.5 0.4

F 0.5 0.6

Figure 1: Example of Bayesian network with 5 nodes.
The double circles denote a deterministic node. As
an example, the query P (A|D=T) gives the result
P (A=T|D=T) ≈ 0.18 and P (A=F|D=T) ≈ 0.82.

edge Xi → Xj denotes a conditional dependence
between the two nodes, in which case Xi is said to
be a parent of Xj . A conditional probability distri-
bution P (Xi|Par(Xi)) is associated with each node
Xi, where Par(Xi) denotes the parents of Xi.

Conditional probability distributions (CPDs) can
be defined in various ways, from look-up tables
to deterministic distributions (Koller and Friedman,
2009). Together with the directed graph, the CPDs
fully determine the joint probability distribution of
the Bayesian Network. The network can be used for
inference by querying the distribution of a subset of
variables, often given some additional evidence, as
illustrated by the example in Figure 1.

2.2 Dialogue Models

A dialogue state s is usually decomposed into a set
of state variables s = {s1, ...sn} representing rel-
evant features of the interaction. For instance, the
state variables for a human-robot interaction sce-
nario might be composed of tasks to accomplish, the
interaction history, past events, as well as objects,
spatial locations and agents in the environment.

Given the uncertainty present in spoken dialogue,
many variables are only partially observable. We
thus encode our knowledge of the current state in
a distribution b(s) = P (s1, ..., sn) called the be-
lief state, which can be conveniently expressed as
a Bayesian Network (Thomson and Young, 2010).
This belief state b is regularly updated as new infor-
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Figure 2: Dialogue system architecture schema.

mation becomes available. As illustrated in Figure
2, the whole system pipeline can be formalised in
terms of inference steps over this belief state:

1. Upon detection of a new utterance, the speech
recogniser generates the N-best list of recogni-
tion hypotheses ũu = P (uu|o);

2. Speech understanding then searches for the
most likely dialogue act(s) realised in the ut-
terance: ãu = P (au|ũu,b);

3. The belief state is updated with the new inter-
preted dialogue act: b′ = P (s′|ãu,b);

4. Based on the updated belief state, the action se-
lection searches for the optimal system action
to perform: a∗m = arg maxam Q(am|b);

5. The system action is then realised in an utter-
ance um, which is again framed as a search for
u∗m = arg maxum Q(um|b, am);

6. Finally, the dialogue state is re-updated given
the system action: b′ = P (s′|am,b).

The models defined above use P (x|b) as a nota-
tional convenience for

∑
si∈V al(s) P (x|s=si)b(si).

The same holds for the estimated values ũu and ãu:
P (x|ỹ) =

∑
yi∈V al(ỹ) P (x|y=yi)P (y=yi).

3 Approach

The starting point of our approach is the observation
that dialogue often exhibits a fair amount of internal
structure. This structure can take several forms.

We can first note that the probability or utility
of a given output variable often depends on only a
small subset of input variables, although the num-
ber and identity of these variables might naturally
differ from action to action. The state variable en-
coding the physical location of a mobile robot is for
instance relevant for answering a user requesting its
location, but not for responding to a greeting act.

Moreover, the values of the dependent variables
can often be grouped into partitions yielding
similar outcomes, thereby reducing the problem
dimensionality. The partitions can generally be
expressed via logical conditions on the variable
values. As illustration, consider a dialogue where
the user can ask yes/no questions pertaining to the
colour of specific objects (e.g. “Is the ball red?”).
The utility of the system action Confirm depends
on two variables: the user dialogue act, for instance
au= VerifyColour(ball, red), and the object colour,
such as ball.colour = blue. The combination of
these two variables can take a wide range of values,
but the utility of Confirm only depends on two par-
titions: (VerifyColour(x, y) ∧ x.colour=y),
in which case the utility is positive, and
(VerifyColour(x, y) ∧ x.colour 6=y), in which
case it is negative.

We outline below a generic description frame-
work for expressing this internal structure, based on
the concept of probabilistic rules. The rules ex-
press the distribution of a dialogue model in terms of
structured mappings between input and output vari-
ables. At runtime, the rules are then combined to
perform inference on the dialogue state, i.e. to com-
pute the distribution of the output variables given the
input variables. As we shall see, this is done by in-
stantiating the rules and their associated variables
to construct an equivalent Bayesian Network used
for inference. The probabilistic rules thus function
as high-level templates for a classical probabilistic
model. The major benefit of this approach is that the
rule structure is described in exponentially fewer pa-
rameters than its plain counterpart, and is thus much
easier to learn and to generalise to unseen data.

3.1 Definitions

A probabilistic rule is defined as a condition-effect
mapping, where each condition is mapped to a set
of alternative effects, each being assigned a distinct
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probability. The list of conditions is ordered and
takes the form of a “if ... then ... else” case express-
ing the distribution of the output variables depending
on the inputs.

Formally, a rule r is defined as an ordered list
of cases 〈c1, ...cn〉, where each case ci is associated
with a condition φi and a distribution over stochas-
tic effects {(ψ1

i , p
1
i ), ..., (ψ

k
i , p

k
i )}, where ψji is a

stochastic effect and probability pji = P (ψji |φi),
where p1...ki satisfy the usual probability axioms.
The rule reads as such:

if (φ1) then

{P (ψ1
1) = p11, ... P (ψk1 ) = pk1}

...

else if (φn) then
{P (ψ1

n) = p1n, ... P (ψmn ) = pmn }

A final else case is implicitly added to the bottom of
the list, and holds if no other condition applies. If
not overridden, the default effect associated to this
last case is void – i.e. it causes no changes to the
distribution over the output variables.

Conditions
The rule conditions are expressed as logical for-

mulae grounded in the input variables. They can be
arbitrarily complex formulae connected by conjunc-
tion, disjunction and negation. The conditions on
the input variables can be seen as providing a com-
pact partitioning of the state space to mitigate the
dimensionality curse. Without this partitioning in
alternative conditions, a rule ranging over m vari-
ables each of size n would need to enumerate nm

possible assignments. The partitioning with condi-
tions reduces this number to p mutually exclusive
partitions, where p is usually small.

Effects
The rule effects are defined similarly: given a con-

dition holding on a set of input variables, the asso-
ciated effects define specific value assignments for
the output variables. The effects can be limited to
a single variable or range over several output vari-
ables. For action selection, effects can also take the
form of assignments of utility values for a particular
action, i.e. Q(am = x) = y, where y is the scalar
value for the utility of action x.

Each effect is assigned a probability, and several
alternative stochastic effects can be defined for the
same case. If a unique effect is specified, it is then
implicitly assumed to hold with probability 1.0. The
probabilities of stochastic effects and the action util-
ities are treated as parameters, which can be either
hand-coded or estimated from data.

Example
The rules r1 and r2 below express the utilities of

two actions: the physical action ExecuteMov(X)
(with X representing the movement type), and the
clarification request AskRepeat.

r1 : if (au= RequestMov(X)) then

{Q(am= ExecuteMov(X)) = θ(1)r1 }

r2 : if (au 6= ∅ ∧ am 6= AskRepeat) then

{Q(am= AskRepeat) = θ(1)r2 }
else if (au 6= ∅) then

{Q(am= AskRepeat) = θ(2)r2 }

Rule r1 specifies that, if the last user action au is
equal to RequestMov(X) (i.e. requesting the robot
to execute a particular movement X), the utility as-
sociated with ExecuteMov(X) is equal to the pa-
rameter θ1r1 . Similarly, the rule r2 specifies the util-
ity of the clarification request AskRepeat, provided
that the last user action au is assigned to a value (i.e.
is different than ∅). Two cases are distinguished in
r2, depending on whether the previous system ac-
tion was already AskRepeat. This partitioning en-
ables us to assign a distinct utility to the clarification
request if one follows the other, in order to e.g. pe-
nalise for the repeated clarification.

As illustration, assume that θ(1)r1 = 2.0, θ(1)r2 =

1.3, θ(2)r2 = 1.1, and that the belief state contains a
state variable au with the following distribution:

P (au = RequestMov(LiftBothArms)) = 0.7

P (au = RequestMov(LiftLeftArm)) = 0.2

P (au = ∅) = 0.1

The optimal system action in this case is there-
fore ExecuteMov(LiftBothArms) with utility 1.4,
followed by AskRepeat with utility 1.17, and
ExecuteMov(LiftLeftArm) with utility 0.4.
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3.2 Inference
Given a belief state b, we perform inference by con-
structing a Bayesian Network corresponding to the
application of the rules. Algorithm 1 describes the
construction procedure, which operates as follows:

1. We initialise the Bayesian Network with the
variables in the belief state;

2. For every rule r in the rule set, we create a con-
dition node φr and include the conditional de-
pendencies with its input variables;

3. We create an effect node ψr conditioned on φr,
expressing the possible effects of the rule;

4. Finally, we create the (chance or value) nodes
corresponding to the output variables of the
rule, as specified in the effects.

Rule r2 described in the previous section would
for instance be translated into a condition node φr2
with 3 values (corresponding to the specified con-
ditions and a default else condition if none applies)
and an effect node ψr2 also containing 3 values (the
two specified effects and a void effect associated
with the default condition). Figure 3 illustrates the
application of rules r1 and r2.

Once the Bayesian network is constructed,
queries can be evaluated using any standard algo-
rithm for exact or approximate inference. The proce-
dure is an instance of ground inference (Getoor and
Taskar, 2007), since the rule structure is grounded in
a standard Bayesian Network.

3.3 Parameter Learning
The estimation of the rule parameters can be per-
formed using a Bayesian approach by adding param-
eter nodes θ = θ1...θk to the Bayesian Network,

au

am

ψr1ϕr1

ϕr2 ψr2

θr2

θr1
rule r1

rule r2

Q(am)

am

Figure 3: Bayesian Network with the rules r1 and r2.

and updating their distribution given a collection of
training data. Each data sample d is a pair (bd, td),
where bd is the belief state for the specific sample,
and td the target value. The target value depends on
the model to learn – for learning dialogue policies,
it corresponds to the selected action am.

Algorithm 1 : NETWORKCONSTRUCTION (b,R)

Require: b: Current belief state
Require: R: Set of probabilistic rules

1: B ← b
2: for all rule r ∈ R do
3: Ir ← INPUTNODES(r)
4: φr ← CONDITIONNODE(r)
5: Add φr and dependencies Ir → φr to B
6: ψr ← EFFECTNODE(r)
7: Add ψr and dependency φr → ψr to B
8: Or ← OUTPUTNODES(r)
9: for all output variable o ∈ Or do

10: Add/modify node o and dep. ψr → o to B
11: end for
12: end for
13: return B

Algorithm 2 : PARAMETERLEARNING (R,θ,D)

Require: R: Set of probabilistic rules
Require: θ: Parameters with prior distribution
Require: D: Training sample

1: for all data d ∈ D do
2: B ← NETWORKCONSTRUCTION(bd,R)
3: Add parameters nodes θ to B
4: for all θi ∈ θ do
5: P (θ′i|d) = α P (td|bd, θi) P (θi)
6: end for
7: end for
8: return θ

To estimate the parameters θ, we start from an
initial prior distribution. Then, for each sample d
in the training data, we construct the correspond-
ing Bayesian Network from its belief state bd and
the rules, including nodes corresponding to the un-
known rule parameters. Then, for each parameter θi,
we compute its posterior distribution given the data
(Koller and Friedman, 2009):

P (θ′i|d) = α P (td|bd, θi) P (θi) (1)
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Given the number of parameters in our example do-
main and their continuous range, we used approxi-
mate inference to calculate the posterior efficiently,
via direct sampling from a set of parameter values.
The constant α serves as a normalisation factor over
the sampled parameter values for θi. The procedure
is repeated for every sample, as shown in Algorithm
2. The parameter distribution will thus progressively
narrow down its spread to the values providing the
best fit for the training data.

4 Evaluation

We evaluated our approach in the context of a dia-
logue policy learning task for a human-robot inter-
action scenario. The main question we decided to
address is the following: how much does the rule
structure contribute to the parameter estimation of
a given probabilistic model, especially for domains
with limited amounts of available data? The objec-
tive of the experiment was to learn the rule param-
eters corresponding to the policy model Q(am|s)
from a Wizard-of-Oz data collection. In this partic-
ular case, the parameters correspond to the utilities
of the various actions. The policy model used in the
experiment included a total of 14 rules.

We compared our approach with two baselines
which are essentially “flattened” or rolled-out ver-
sions of the rule-based model. The input and output
variables remain identical, but they are directly con-
nected, without the φ and ψ nodes serving as inter-
mediate structures. The two baselines are (1) a plain
multinomial model and (2) a linear model of the in-
put variables. We are thus comparing three versions
of the Q(am|s) model: two baselines where am is
directly dependent on the state variables, and our ap-
proach where the dependency is realised indirectly
through condition and effect nodes.

4.1 Experimental Setup

The scenario for the Wizard-of-Oz experiment in-
volved a human user and a Nao robot1 (see Figure
4). The user was instructed to teach the robot a se-
quence of basic movements (lift the left arm, step
forward, kneel down, etc.) using spoken commands.
The interaction included various dialogue acts such

1A programmable humanoid robot developed by Aldebaran
Robotics, http://www.aldebaran-robotics.com.

Figure 4: Human user interacting with the Nao robot.

as clarification requests, feedbacks, acknowledge-
ments, corrections, etc. Short examples of recorded
dialogues are provided in the appendix.

In addition to the policy model, the dialogue sys-
tem include a speech recognizer (Vocon 3200 from
Nuance) connected to the robot microphones, shal-
low components for dialogue act recognition and
generation, a text-to-speech module, and compo-
nents for planning the robot movements and control-
ling its motors in real-time. All components are con-
nected to the shared belief state, and read/write to it
as they process their data flow.

We collected a total of 20 interactions with 7
users and one wizard playing the role of the pol-
icy model, for a total of 1020 system turns, sum-
ming to around 1h of interaction. All the inter-
actions were performed in English. The wizard
only had access to the N-best list output from the
speech recogniser, and could then select which ac-
tion to perform from a list of 14 alternatives (such
as AskRepeat, DemonstrateMove, UndoMove,
AskForConfirmation, etc). Each selected action
was recorded along with the belief state (including
the full probability distribution for every state vari-
able) in effect at the time of the selection.

4.2 Analysis

The data set was split into training (75% of the sys-
tem turns) and test data (remaining 25%) used to
measure the accuracy of our policies. The accuracy
is defined as the percentage of actions corresponding
to the gold standard action selected by the wizard.
The parameter distributions are initialised with uni-
form priors, and are progressively refined as more
data points are processed. We calculated the accu-
racy by sampling over the parameters, performing
inference over the resulting models, and finally av-
eraging over the inference results.
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Figure 5: Learning curves for the overall accuracy of the learned dialogue policy, on a held-out test set of 255 actions,
depending on the size of the training sample. The accuracy results are given for the plain, linear and rule-structured
policy models, using linear (left) and logarithmic scales (right).

Table 1 provides the accuracy results. The dif-
ferences between our model and the baselines are
statistically significant using Bonferroni-corrected
paired t-tests, with p-value < 0.0001. The 17% of
actions labelled as incorrect are mainly due to the
high degree of noise in the data set, and the some-
times inconsistent or unpredictable behaviour of the
wizard (regarding e.g. clarification requests).

It is instructive to analyse the learning curve of
the three models, shown in Figure 5. Given its
smaller number of parameters, the rule-structured
model is able to converge to near-optimal values af-
ter observing only a small fraction of the training
set. As the figure shows, the baseline models do also
improve their accuracies over time, but at a much
slower rate. The linear model is comparatively faster
than the plain model, but levels off towards the end,
possibly due to the non-linearity of some dialogue
strategies. The plain model continues its conver-
gence and would probably reach an accuracy simi-
lar to the rule-structured model if given much larger
amounts of training data. Note that since the pa-
rameters are initially uniformly distributed, the ac-
curacy is already non-zero before learning, since a
random assignment of parameters has a low but non-
zero chance of leading to the right action.

5 Discussion and Related Work

The idea of using structural knowledge in proba-
bilistic models has been explored in many direc-

Type of model Accuracy (in %)
Plain model 67.35
Linear model 61.85
Rule-structured model 82.82

Table 1: Accuracy results for the three action selection
models on a test set, using the full training set.

tions, both in the fields of decision-theoretic plan-
ning and of reinforcement learning (Hauskrecht et
al., 1998; Pineau, 2004; Lang and Toussaint, 2010;
Otterlo, 2012) and in statistical relational learning
(Jaeger, 2001; Richardson and Domingos, 2006;
Getoor and Taskar, 2007). The introduced struc-
ture may be hierarchical, relational, or both. As in
our approach, most of these frameworks rely on the
use of expressive representations as templates for
grounded probabilistic models.

In the dialogue management literature, most
structural approaches rely on a clear-cut task decom-
position into goals and sub-goals (Allen et al., 2000;
Steedman and Petrick, 2007; Bohus and Rudnicky,
2009), where the completion of each goal is assumed
to be fully observable, discarding any remaining un-
certainty. Information-state approaches to dialogue
management (Larsson and Traum, 2000; Bos et al.,
2003) also rely on a shared state updated according
to a rich repository of rules, but contrary to the ap-
proach presented here, these rules are generally de-
terministic and do not include learnable parameters.
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The literature on dialogue policy optimisation
with reinforcement learning also contains several
approaches dedicated to dimensionality reduction
for large state-action spaces, such as function ap-
proximation (Henderson et al., 2008), hierarchical
reinforcement learning (Cuayáhuitl et al., 2010) and
summary POMDPs (Young et al., 2010). Most of
these approaches rely on large but weakly struc-
tured state spaces (generally encoded as large lists
of features), which are suited for slot-filling dia-
logue applications but are difficult to transfer to
more open-ended or relational domains. The idea of
state space partitioning, implemented here via high-
level conditions, has also been explored in recent pa-
pers (Williams, 2010; Crook and Lemon, 2010). Fi-
nally, Cuayáhuitl (2011) describes a closely-related
approach using logic-based representations of the
state-action space for relational MDPs. His ap-
proach is however based on reinforcement learning
with a user simulator, while the learning procedure
presented here relies on supervised learning from a
limited data set. He also reduced his belief state
to fully observable variables, whereas we retain the
partial observability associated with each variable.

An important side benefit of structured repre-
sentations in probabilistic models is their improved
readability for human designers, who are able to
use these powerful abstractions to encode their prior
knowledge of the dialogue domain in the form of
pragmatic rules, generic background knowledge, or
task-specific constraints. There has been previ-
ous work on integrating expert knowledge into di-
alogue policy learning, using finite-state policies or
ad-hoc constraints to filter a plain statistical model
(Williams, 2008; Henderson et al., 2008). The ap-
proach presented in this paper is however more gen-
eral since it does not rely on an external filtering
mechanism but directly incorporates prior domain
knowledge into the statistical model.

6 Conclusions

We showed in this paper how to represent the under-
lying structure of probabilistic models for dialogue
using probabilistic rules. These rules are defined as
structured mappings over variables of the dialogue
state, specified using high-level conditions and ef-
fects. These rules can include parameters such as

effect probabilities or action utilities. Probabilistic
rules allow the system designer to exploit power-
ful generalisations in the dialogue domain specifi-
cation without sacrificing the probabilistic nature of
the model. The framework is very general and can
express a wide spectrum of models, from classical
models fully estimated from data to ones incorpo-
rating rich prior knowledge. The choice of model
within this spectrum is therefore essentially a design
decision dependent on the relative availabilities of
training data and domain knowledge.

We have also presented algorithms for construct-
ing Bayesian Networks corresponding to the appli-
cation of the rules and for estimating their parame-
ters from data using Bayesian inference. The pre-
sented approach has been implemented in a spo-
ken dialogue system for human-robot interaction,
and validated on a policy learning task based on a
Wizard-of-Oz data set. The empirical results have
shown that the rule structure enables the learning al-
gorithm to converge faster and with better generali-
sation performance.

We are currently working on extending this ap-
proach in two directions. First, we would like to ex-
tend our parameter estimation method to Bayesian
model-based reinforcement learning. The current
implementation operates in a supervised learning
mode, which requires expert data. Alternatively,
one could estimate the model parameters in a fully
online fashion, without any supervisory input, by
incorporating model uncertainty into the inference
and continuously adapting the parameter distribu-
tion from (real or simulated) interaction experience,
using the same Bayesian approach we have outlined
in this paper (Ross et al., 2011).

The second direction is the extension of our work
to tasks other than action selection. The framework
we have presented is not confined to dialogue pol-
icy learning but can be used to structure any proba-
bilistic model2. It is therefore possible to use proba-
bilistic rules as a unifying framework for all models
defined in a given architecture, and exploit it to per-
form joint optimisation of dialogue understanding,
action selection and generation.

2In fact, the dialogue understanding and generation models
used for the evaluation were already structured with probabilis-
tic rules, but with fixed, hand-crafted parameters.
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Situated Dialogue Processing for Human-Robot Inter-
action, chapter 8. Springer Verlag, Heidelberg, Ger-
many.

K. C. Lan, K. S. Ho, R. W. Pong Luk, and H. Va Leong.
2008. Dialogue act recognition using maximum en-
tropy. Journal of the American Society for Information
Science and Technology (JASIST), pages 859–874.

T. Lang and M. Toussaint. 2010. Planning with noisy
probabilistic relational rules. Journal of Artificial In-
telligence Research, 39:1–49.

S. Larsson and D. R. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit. Natuarl Language Engineering, 6(3-
4):323–340, September.

M. Lease, M. Johnson, and E. Charniak. 2006. Rec-
ognizing disfluencies in conversational speech. IEEE
Transactions on Audio, Speech & Language Process-
ing, 14(5):1566–1573.

O. Lemon and O. Pietquin. 2007. Machine Learning for
Spoken Dialogue Systems. In Proceedings of the 10th
European Conference on Speech Communication and
Technologies (Interspeech’07), pages 2685–2688.

O. Lemon. 2011. Learning what to say and how to say
it: Joint optimisation of spoken dialogue management
and natural language generation. Computer Speech &
Language, 25:210–221.

D. J. Litman and S. Silliman. 2004. ITSPOKE: an in-
telligent tutoring spoken dialogue system. In Proceed-
ings of the Conference of the North American Chapter
of the Association of Computational Linguistics (HLT-
NAACL 2004), pages 5–8.

A. Nguyen. 2005. An agent-based approach to dialogue
management in personal assistants. In Proceedings of
the 2005 International conference on Intelligent User
Interfaces (IUI), pages 137–144. ACM Press.

187



A. Oh and A. I. Rudnicky. 2002. Stochastic natural
language generation for spoken dialog systems. Com-
puter Speech & Language, 16(3-4):387–407.

M. Otterlo. 2012. Solving relational and first-order log-
ical markov decision processes: A survey. In Rein-
forcement Learning, volume 12 of Adaptation, Learn-
ing, and Optimization, pages 253–292. Springer Berlin
Heidelberg.

J. Pineau. 2004. Tractable Planning Under Uncertainty:
Exploiting Structure. Ph.D. thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, USA.

M. Richardson and P. Domingos. 2006. Markov logic
networks. Machine Learning, 62:107–136.

S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann.
2011. A Bayesian Approach for Learning and Plan-
ning in Partially Observable Markov Decision Pro-
cesses. Journal of Machine Learning Research,
12:1729–1770.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
S. Young. 2007. Agenda-based user simulation for
bootstrapping a POMDP dialogue system. In Human
Language Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics, NAACL 2007, pages 149–152.

M. Steedman and R. P. A. Petrick. 2007. Planning dialog
actions. In Proceedings of the 8th SIGDIAL Meeting
on Discourse and Dialogue, pages 265–272, Antwerp,
Belgium.

A. Stolcke, N. Coccaro, R. Bates, P. Taylor, C. Van Ess-
Dykema, K. Ries, E. Shriberg, D. Jurafsky, R. Mar-
tin, and M. Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech. Computional Linguistics, 26:339–373.

V. Thomson and S. Young. 2010. Bayesian update
of dialogue state: A POMDP framework for spoken
dialogue systems. Computer Speech & Language,
24:562–588, October.

J. D. Williams. 2008. The best of both worlds: Unify-
ing conventional dialog systems and POMDPs. In In-
ternational Conference on Speech and Language Pro-
cessing (ICSLP 2008), Brisbane, Australia.

J. D. Williams. 2010. Incremental partition recombi-
nation for efficient tracking of multiple dialog states.
In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 5382–5385.
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A Example of interaction

We present below two recorded excerpts of Wizard-
of-Oz interactions. The user utterances are simpli-
fied to show only the hypothesis with highest score
(indicated in parenthesis) in the N-best list.

Transcript A.1 Wizard-of-Oz interaction 1

HUMAN: Hi Lenny (0.74)
ROBOT: Hello there!
HUMAN: Move your left arm up (0.41)
ROBOT: Sure!

[executing movement, waits a few seconds]
ROBOT: Was that correct?
HUMAN: Yes (0.88)

[registers movement as confirmed]
HUMAN: Move your right arm up at the same

time (0.38)
ROBOT: Let’s see

[executing movement]
ROBOT: Was that correct?
HUMAN: No (0.50)

[goes back to previous position]
ROBOT: What should I do then?

[...]

Transcript A.2 Wizard-of-Oz interaction 2

HUMAN: Stand up (0.41)
ROBOT: Let’s see

[executing movement]
HUMAN: Move your right arm forward (0.35)

[last move is implicitly grounded]
ROBOT: Let’s see

[executing movement]
HUMAN: Lower the left arm (0.34)
ROBOT: Sorry, could you repeat?
HUMAN: Lift your left arm (0.37)
ROBOT: Sure

[executing movement, waits a few seconds]
ROBOT: Should I do it like this?

[...]

188



Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 189–196,
Seoul, South Korea, 5-6 July 2012. c©2012 Association for Computational Linguistics

Exploiting Machine-Transcribed Dialog Corpus to Improve Multiple Dialog
States Tracking Methods

Sungjin Lee1,2 and Maxine Eskenazi1
1Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

2Computer Science and Engineering, Pohang University of Science and Technology, South Korea
{sungjin.lee, max}@cs.cmu.edu1, junion@postech.ac.kr2

Abstract

This paper proposes the use of unsuper-
vised approaches to improve components of
partition-based belief tracking systems. The
proposed method adopts a dynamic Bayesian
network to learn the user action model directly
from a machine-transcribed dialog corpus. It
also addresses confidence score calibration to
improve the observation model in a unsuper-
vised manner using dialog-level grounding in-
formation. To verify the effectiveness of the
proposed method, we applied it to the Let’s Go
domain (Raux et al., 2005). Overall system
performance for several comparative models
were measured. The results show that the pro-
posed method can learn an effective user ac-
tion model without human intervention. In
addition, the calibrated confidence score was
verified by demonstrating the positive influ-
ence on the user action model learning process
and on overall system performance.

1 Introduction

With present Automatic Speech Recognition (ASR)
and Spoken Language Understanding (SLU) errors,
it is impossible to directly observe the true user goal
and action. It is crucial, therefore, to efficiently infer
this true state from erroneous observations over mul-
tiple dialog turns. The Partially Observable Markov
Decision Process (POMDP) framework has offered
a well-founded theory for this purpose (Henderson
et al., 2008; Thomson and Young, 2010a; Williams
and Young, 2007; Young et al., 2010). Several
approximate methods have also emerged to tackle
the vast complexity of representing and maintaining

belief states, e.g., partition-based approaches (Ga-
sic and Young, 2011; Williams, 2010; Young et
al., 2010) and Bayesian network (BN)-based meth-
ods (Raux and Ma, 2011; Thomson and Young,
2010a). The partition-based approaches attempt to
group user goals into a small number of partitions
and split a partition only when a distinction is re-
quired by observations. This property endows it
with the high scalability that is suitable for fairly
complex domains. However, the parameter learn-
ing procedures for the partition-based methods is
still limited to hand-crafting or the use of a sim-
ple maximum likelihood estimation (Keizer et al.,
2008; Roy et al., 2000; Thomson and Young, 2010a;
Williams, 2008). In contrast, several unsupervised
methods which do not require human transcription
and annotation have been recently proposed to learn
BN-based models (Jurcicek et al., 2010; Syed and
Williams, 2008; Thomson et al., 2010b). In this pa-
per we describe an unsupervised process that can be
applied to the partition-based methods. We adopt a
dynamic Bayesian network to learn the user action
model which defines the likelihood of user actions
for a given context. In addition, we propose a simple
confidence score calibration method to improve the
observation model which represents the probability
of an observation given the true user action.

This paper is structured as follows. Section 2 de-
scribes previous research and the novelty of our ap-
proach. Section 3 and Section 4 elaborate on our
proposed unsupervised approach. Section 5 explains
the experimental setup. Section 6 presents and dis-
cusses the results. Finally, Section 7 concludes with
a brief summary and suggestions for future research.
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2 Background and Related Work

In order to reduce the complexity of the belief states
over the POMDP states, the following factorization
of the belief state has been commonly applied to the
belief update procedure (Williams et al., 2005):

b(gt,ut,ht)

∝ p(ot|ut)︸ ︷︷ ︸
observation model

∑

ht−1

p(ht|ht−1,ut, st)︸ ︷︷ ︸
dialog history model

p(ut|gt, st,ht−1)︸ ︷︷ ︸
user action model

∑

gt−1

p(gt|gt−1, st−1)︸ ︷︷ ︸
user goal model∑

ut−1

b(gt−1,ut−1,ht−1)

(1)

where gt, st,ut,ht,ot represents the user goal, the
system action, the user action, the dialog history,
and the observed user action for each time slice, re-
spectively. The user goal model describes how the
user goal evolves. In the partition-based approaches,
this model is further approximated by assuming that
the user does not change their mind during the dia-
log (Young et al., 2010):

∑

gt−1

p(gt|gt−1, st−1) = p(pt|pt−1) (2)

where pt is a partition from the current turn. The di-
alog history model indicates how the dialog history
changes and can be set deterministically by simple
discourse rules, for example:

p(ht = Informed|ht−1,ut, st) ={
1 if ht−1 = Informed or ut = Inform(·),
0 otherwise.

(3)

The user action model defines how likely user ac-
tions are. By employing partitions, this can be ap-
proximated by the bigram model of system and user
action at the predicate level, and the matching func-
tion (Keizer et al., 2008):

p(ut|gt, st,ht−1)
∝ p(T (ut)|T (st)) · M(ut,pt, st)

(4)

where T (·) denotes the predicate of the action
and M(·) indicates whether or not the user action

matches the partition and system action. However,
it turned out that the bigram user action model did
not provide an additional gain over the improve-
ment achieved by the matching function according
to (Keizer et al., 2008). This might indicate that
it is necessary to incorporate more historical infor-
mation. To make use of historical information in
an unsupervised manner, the Expectation Maximiza-
tion algorithm was adopted to obtain maximum like-
lihood estimates (Syed and Williams, 2008). But
these methods still require a small amount of tran-
scribed data to learn the observation confusability,
and they suffer from overfitting as a general prop-
erty of maximum likelihood. To address this prob-
lem, we propose a Bayesian learning method, which
requires no transcribed data.

The observation model represents the probability
of an observation given the true user action. The
observation model is usually approximated with the
confidence score computed from the ASR and SLU
results:

p(ot|ut) ≈ p(ut|ot) (5)

It is therefore of vital importance that we obtain the
most accurate confidence score as possible. We pro-
pose an efficient method that can improve the confi-
dence score by calibrating it using grounding infor-
mation.

3 User Action Model

To learn the user action model, a dynamic Bayesian
network is adopted with several conditional inde-
pendence assumptions similar to Equation 1. This
gives rise to the graphical structure shown in Fig-
ure 1. As mentioned in Section 2, the user ac-
tion model deals with actions at the predicate level1.
This abstract-level handling enables the user action
model to employ exact inference algorithms such as
the junction tree algorithm (Lauritzen and Spiegel-
halter, 1988) for more efficient reasoning over the
graphical structure.

1To keep the notation uncluttered, we will omit T (·).
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Figure 1: The graphical structure of the dynamic
Bayesian network for the user action model. The shaded
items are observable and the transparent ones are latent.

The joint distribution for this model is given by

p(S,H,U,O|Θ)

= p(h0|π)
∏

t

p(ut|st,ht−1,φ)

· p(ht|ht−1,ut,η)p(ot|ut, ζ)

(6)

where a capital letter stands for the set of
corresponding random variables, e.g., U =
{u1, . . . ,uN}, and Θ = {π,φ,η, ζ} denotes the
set of parameters governing the model2.

Unlike previous research which learns ζ using
maximum likelihood estimation, we use a determin-
istic function that yields a fraction of an observed
confidence score in accordance with the degree of
agreement between ut and ot:

p(ot|ut) = CS(ot) ·
( |ot ∩ ut|
|ot ∪ ut|

)
+ ε (7)

where CS(·) returns the confidence score of the as-
sociated observation. As mentioned above, π and
η are deterministically set by simple discourse rules
(Equation 3). This only leaves the user action model
φ to be learned. In a Bayesian model, any unknown
parameter is given a prior distribution and is ab-
sorbed into the set of latent variables, thus it is not
feasible to directly evaluate the posterior distribution
of the latent variables and the expectations with re-
spect to this distribution. Therefore a determinis-
tic approximation, called mean field theory (Parisi,
1988), is applied.

In mean field theory, the family of posterior distri-
butions of the latent variables is assumed to be par-
titioned into disjoint groups:

q(Z) =

M∏

i=1

qi(Zi) (8)

2Here, a uniform prior distribution is assigned on S

where Z = {z1, . . . , zN} denotes all latent variables
including parameters and Zi is a disjoint group.
Amongst all distributions q(Z) having the form of
Equation 8, we then seek the member of this family
for which the divergence from the true posterior dis-
tribution is minimized. To achieve this, the follow-
ing optimization with respect to each of the qi(Zi)
factors is to be performed in turn (Bishop, 2006):

ln q∗j (Zj) = Ei 6=j
[
ln(X,Z)

]
+ const (9)

where X = {x1, . . . ,xN} denotes all observed vari-
ables and Ei 6=j means an expectation with respect to
the q distributions over all groups Zi for i 6= j.

Now we apply the mean field theory to the user
model. Before doing so, we need to introduce the
prior over the parameter φ which is a product of
Dirichlet distributions3.

p(φ) =
∏

k

Dir(φk|α0
k)

=
∏

k

C(α0
k)
∏

l

φ
α0
k−1

k,l

(10)

where k represents the joint configuration of all of
the parents and C(α0

k) is the normalization constant
for the Dirichlet distribution. Note that for symme-
try we have chosen the same parameter α0

k for each
of the components.

Next we approximate the posterior distribution,
q(H,U,φ) using a factorized form, q(H,U)q(φ).
Then we first apply Equation 9 to find an expression
for the optimal factor q∗(φ):

3Note that priors over parameters for deterministic distribu-
tions (e.i., π,η,and ζ) are not necessary.
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ln q∗(φ) = EH,U

[
ln p(S,H,U,O,Θ)

]
+ const

= EH,U

[∑

t

ln p(ut|st,ht−1,φ)
]

+ ln p(φ) + const

=
∑

t

∑

i,j,k

(
EH,U

[
δi,j,k

]
lnφi,j,k

)

+
∑

i,j,k

(αoi,j,k − 1) lnφi,j,k + const

=
∑

i,j,k

((
EH,U[ni,j,k] + (αoi,j,k − 1)

)

· lnφi,j,k
)
+ const

(11)

where δ(·, ·) denotes Kronecker delta and δi,j,k de-
notes δ(st, i)δ(ht−1, j) δ(ut, k). ni,j,k is the num-
ber of times where , st = i,ht−1 = j, and ut = k.
This leads to a product of Dirichlet distributions by
taking the exponential of both sides of the equation:

q∗(φ) =
∏

i,j

Dir(φi,j |αi,j),

αi,j,k = α0
i,j,k + EH,U[ni,j,k]

(12)

To evaluate the quantity EH,U[ni,j,k], Equation 9
needs to be applied once again to obtain an op-
timal approximation of the posterior distribution
q∗(H,U).

ln q∗(H,U) = Eφ

[
ln p(S,H,U,O,Θ)

]
+ const

= Eφ

[∑

t

ln p(ut|st,ht−1,φ)

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
]
+ const

=
∑

t

(
Eφ

[
ln p(ut|st,ht−1,φ)

]

+ ln p(ht|ht−1,ut)

+ ln p(ot|ut)
)
+ const

(13)

where Eφ

[
ln p(ut|st,ht−1,φ)

]
can be obtained us-

ing Equation 12 and properties of the Dirichlet dis-
tribution:

Eφ

[
ln p(ut|st,ht−1,φ)

]

=
∑

i,j,k

δi,j,kEφ

[
lnφi,j,k

]

=
∑

i,j,k

δi,j,k(ψ(αi,j,k)− ψ(α̂i,j))

(14)

where ψ(·) is the digamma function with α̂i,j =∑
k αi,j,k. Because computing EH,U[ni,j,k] is

equivalent to summing each of the marginal poste-
rior probabilities q∗(ht−1,ut) with the same con-
figuration of conditioning variables, this can be
done efficiently by using the junction tree algorithm.
Note that the expression on the right-hand side for
both q∗(φ) and q∗(H,U) depends on expectations
computed with respect to the other factors. We
will therefore seek a consistent solution by cycling
through the factors and replacing each in turn with a
revised estimate.

4 Confidence Score Calibration

As shown in Section 2, we can obtain a better obser-
vation model by improving confidence score accu-
racy. Since the confidence score is usually computed
using the ASR and SLU results, it can be enhanced
by adding dialog-level information. Basically, the
confidence score represents how likely it is that the
recognized input is correct. This means that a well-
calibrated confidence score should satisfy that prop-
erty such that:

p(ut = a|ot = a) '
∑

k δ(uk, a)δ(ok, a)∑
k δ(ok, a)

(15)

However, the empirical distribution on the right side
of this equation often does not well match the con-
fidence score measure on the left side. If a large
corpus with highly accurate annotation was used, a
straightforward remedy for this problem would be to
construct a mapping function from the given confi-
dence score measure to the empirical distribution.
This leads us to propose an unsupervised method
that estimates the empirical distribution and con-
structs the mapping function which is fast enough
to run in real time. Note that we will not construct
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Figure 2: Illustrations of confidence score calibration for the representative concepts in the Let’s Go domain

a mapping function for each instance, but rather
for each concept, since the former could cause se-
vere data sparseness. In order to estimate the em-
pirical distribution in an unsupervised manner, we
exploit grounding information4 as true labels. We
first parse dialog logs to look for the grounding in-
formation that the users have provided. Each time
we encounter grounding information that includes
the constraints used in the backend queries, this is
added to the list. If two actions contradict each other,
the later action overwrites the earlier one. Then,
for each observation in the data, we determine its
correctness by comparing it with the grounding in-
formation. Next, we gather two sets of confidence
scores with respect to correctness, on which we ap-
ply a Gaussian kernel-based density estimation. Af-

4Specifically, we used explicitly confirmed information by
the system for this study

ter that, we scale the two estimated densities by their
total number of elements to see how the ratio of cor-
rect ones over the sum of correct and incorrect ones
varies according to the confidence score. The ratio
computed above will be the calibrated score:

c′ =
dc(c)

dc(c) + dinc(c)
(16)

where c′ indicates the calibrated confidence score
and c is the input confidence score. dc(·) denotes
the scaled density for the correct set and dinc(·) is
the scaled density for the incorrect set.

Note that this approach tends to yield a more
conservative confidence score since correct user ac-
tions can exist, even though they may not match
the grounding information. Finally, in order to effi-
ciently obtain the calibrated score for a given confi-
dence score, we employ the sparse Bayesian regres-
sion (Tipping, 2001) with the Gaussian kernel. By

193



virtue of the sparse representation, we only need to
consider a few so-called relevance vectors to com-
pute the score:

y(x) =
∑

xn∈RV
wnk(x,xn) + b (17)

where RV denotes the set of relevance vectors,
|RV | � |{xn}|. k(·, ·) represents a kernel function
and b is a bias parameter. Figure 2 shows the afore-
mentioned process for several representative con-
cepts in the Let’s Go domain.

5 Experimental Setup

To verify the proposed method, three months of data
from the Let’s Go domain were used to train the
user action model and the observation model. The
training data consists of 2,718 dialogs and 23,044
turns in total. To evaluate the user action model,
we compared overall system performance with three
different configurations: 1) the uniform distribution,
2) the user action model without historical infor-
mation5 which is comparable to the bigram model
of (Keizer et al., 2008), 3) the user action model with
historical information included. For system perfor-
mance evaluation, we used a user simulator (Lee and
Eskenazi, 2012) which provides a large number of
dialogs with statistically similar conditions. Also,
the simulated user enables us to examine how per-
formance changes over a variety of error levels. This
simulated user supports four error levels and each
model was evaluated by generating 2,000 dialogs at
each error level. System performance was measured
in terms of average dialog success rate. A dialog is
considered to be successful if the system provides
the bus schedule information that satisfies the user
goal.

To measure the effectiveness of the calibration
method, we conducted two experiments. First, we
applied the calibration method to parameter learn-
ing for the user action model by using the calibrated
confidence score in Equation 7. We compared the
log-likelihood of two models, one with calibration
and the other without calibration. Second, we com-
pared overall system performance with four differ-
ent settings: 1) the user action model with histori-

5This model was constructed by marginalizing out the his-
torical variables.

cal information and the observation model with cal-
ibration, 2) the user action model with historical in-
formation and the observation model without cali-
bration, 3) the user action model without historical
information and the observation model with calibra-
tion, 4) the user action model without historical in-
formation and the observation model without cali-
bration.

6 Results

The effect of parameter learning of the user action
model on average dialog success rate is shown in
Figure 3. While, in the previous study, the bigram
model unexpectedly did not show a significant ef-
fect, our result here indicates that our comparable
model, i.e. the model with historical information ex-
cluded, significantly outperformed the baseline uni-
form model. The difference could be attributed to
the fact that the previous study did not take tran-
scription errors into consideration, whereas our ap-
proach handles the problem by treating the true user
action as hidden. However, we cannot directly com-
pare this result with the previous study since the tar-
get domains are different. The model with historical
information included also consistently surpassed the
uniform model. Interestingly, there is a noticeable
trend: the model without historical information per-
forms better as the error level increases. This result
may indicate that the simpler model is more robust

Figure 3: The effect of parameter learning of each user
action model on overall system performance. The error
bar represents standard error.
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Figure 4: The effect of confidence score calibration on
the log-likelihood of the user action model during the
training process.

Figure 5: The effect of confidence score calibration for
the observation model on overall system performance.
The error bar shows standard error.

to error. Although average dialog success rates be-
came almost zero at error level four, this result is a
natural consequence of the fact that the majority of
the dialogs in this corpus are failed dialogs.

Figure 4 shows the effect of confidence score
calibration on the log-likelihood of the user action
model during the training process. To take into ac-
count the fact that different confidence scores result
in different log-likelihoods regardless of the qual-
ity of the confidence score, we shifted both log-
likelihoods to zero at the beginning. This modifica-

tion more clearly shows how the quality of the confi-
dence score influences the log-likelihood maximiza-
tion process. The result shows that the calibrated
confidence score gives greater log-likelihood gains,
which implies that the user action model can better
describe the distribution of the data.

The effect of confidence score calibration for the
observation model on average dialog success rate is
presented in Figure 5. For both the user action model
with historical information included and excluded,
the application of the confidence score calibration
consistently improved overall system performance.
This result implies the possibility of automatically
improving confidence scores in a modularized man-
ner without introducing a dependence on the under-
lying methods of ASR and SLU.

7 Conclusion

In this paper, we have presented novel unsupervised
approaches for learning the user action model and
improving the observation model that constitute the
partition-based belief tracking method. Our pro-
posed method can learn a user action model directly
from a machine-transcribed spoken dialog corpus.
The enhanced system performance shows the effec-
tiveness of the learned model in spite of the lack of
human intervention. Also, we have addressed con-
fidence score calibration in a unsupervised fashion
using dialog-level grounding information. The pro-
posed method was verified by showing the positive
influence on the user action model learning process
and the overall system performance evaluation. This
method may take us a step closer to being able to
automatically update our models while the system is
live. Although the proposed method does not deal
with N-best ASR results, the extension to support
N-best results will be one of our future directions,
as soon as the Let’s Go system uses N-best ASR re-
sults.
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Researchers often study dialog corpora to better understand what makes some dialogs more successful than
others. In this talk I will examine the relationship between coherence/entrainment and task success, in
several types of educational dialog corpora: 1) one-on-one tutoring, where students use dialog to interact
with a human tutor in the physics domain, 2) one-on-one tutoring, where students instead interact with
a spoken dialog system, and 3) engineering design, where student teams engage in multi-party dialog to
complete a group project. I will first introduce several corpus-based measures of both lexical and acoustic-
prosodic dialog cohesion and entrainment, and extend them to handle multi-party conversations. I will then
show that the amount of cohesion and/or entrainment positively correlates with measures of educational task
success in all of our corpora. Finally, I will discuss how we are using our findings to build better tutorial
dialog systems.
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Abstract

Models of dialog state are important, both
scientifically and practically, but today’s best
build strongly on tradition. This paper
presents a new way to identify the impor-
tant dimensions of dialog state, more bottom-
up and empirical than previous approaches.
Specifically, we applied Principal Compo-
nent Analysis to a large number of low-level
prosodic features to find the most important
dimensions of variation. The top 20 out of
76 dimensions accounted for 81% of the vari-
ance, and each of these dimensions clearly re-
lated to dialog states and activities, including
turn taking, topic structure, grounding, empa-
thy, cognitive processes, attitude and rhetori-
cal structure.

1 Introduction

What set of things should a dialog manager be re-
sponsible for? In other words, which aspects of the
current dialog state should the dialog manager track?

These questions are fundamental: they define the
field of computational dialog modeling and deter-
mine the basic architectures of our dialog systems.
However the answers common in the field today
arise largely from tradition, rooted in the concerns
of precursor fields such as linguistics and artificial
intelligence (Traum and Larsson, 2003; McGlashan
et al., 2010; Bunt, 2011).

We wish to provide a new perspective on these
fundamental questions, baed on a bottom-up, empir-
ical investigations of dialog state. We hope thereby
to discover new facets of dialog state and to obtain

estimates of which aspects of dialog state are most
important.

2 Aims

There are many ways to describe dialog state, but in
this paper we seek a model with 7 properties:

Orthogonal to Content. While the automatic
discovery of content-related dialog states has seen
significant advances, we are interested here in the
more general aspects of dialog state, those that oc-
cur across many if not all domains.

Scalar. While it is descriptively convenient to re-
fer to discrete states (is-talking, is-waiting-for-a-yes-
no-answer, and so on), especially for human ana-
lysts, in general it seems that scales are more natural
for many or all aspects of dialog state, for example,
one’s degree of confidence, the strength of desire to
take the turn, or the solidity of grounding.

Non-Redundant. While various levels and an-
gles are used in describing aspects of dialog state —
and many of these are interrelated, correlated, and
generally tangled — we would like a set of dimen-
sions which is as concise as possible and mutually
orthogonal.

Continuously Varying. While it is common to
label dialog states only at locally stable times, for
example when neither party is speaking, or only
over long spans, for example, utterances, we want a
model that can support incremental dialog systems,
able to describe the instantaneous state at any point
in time, even in the middle of an utterance.

Short-Term. While aspects of dialog state can
involve quite distant context, we here focus on the
aspects important in keeping the dialog flowing over
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short time-scales.
Non-Exhaustive. While dialog states can be ar-

bitrarily complex, highly specific, and intricately re-
lated to content, a general model can only be ex-
pected to describe the frequently important aspects
of state.

Prioritized. While no aspects of dialog are unin-
teresting, we want to know which aspects of dialog
state are more important and commonly relevant.

3 Approach

To be as empirical as possible, we want to consider
as much data as possible. We accordingly needed to
use automatic techniques. In particular, we chose to
base our analysis on objective manifestations of di-
alog state. Among the many possible such manifes-
tations — discourses markers, gesture, gaze, and so
on — we chose to use only prosody. This is because
the importance of prosody in meta-communication
and dialog control has often been noted, because the
continuous nature of (most) prosodic features is con-
venient for our aims, and because prosodic features
are relatively easy to compute.

Given our aims and such features, it is natural
to do Principal Components Analysis (PCA). This
well-known method automatically identifies the fac-
tors underlying the observed variations across mul-
tiple features. We also hoped that PCA would sep-
arate out, as orthogonal factors, aspects of prosody
that truly relate to dialog from aspects with lexical,
phrasal, or other significance.

4 Related Research

While dialog states have apparently not previ-
ously been tackled using PCA, other dimensionality-
reduction methods have been used. Clustering
has previously been applied as a way to catego-
rize user intention-types and goals, using lexical-
semantic features and neighboring-turn features as
inputs (Lefevre and de Mori, 2007; Lee et al., 2009),
among other methods (Gasic and Young, 2011).
Hidden Markov Models have been used to identify
dialog “modes” that involve common sequences of
dialog-acts (Boyer et al., 2009). There is also work
that uses PCA to reduce multi-factor subjective eval-
uations of emotion, style, or expressiveness into a
few underlying dimensions, for example (Barbosa,

2009). In addition, clustering over low-level patterns
of turn-taking has been used to identify a continuum
of styles (Grothendieck et al., 2011). However anal-
ysis of dialog states based on prosodic features has
not previously been attempted, nor has analysis of
dialog behaviors over time frames shorter than the
discourse or the turn sequence.

Reducing the multiplicity of prosodic features to
a smaller underlying set has long been a goal for
linguists. The traditional method is to start with
percepts (for example, that some syllables sound
louder) and then look for the acoustic-prosodic fea-
tures that correlate with these perceptions. More re-
cently the opposite tack has also been tried, start-
ing with acoustic-prosodic features, and trying to in-
fer a higher or deeper level of description. For ex-
ample, if we discover that for many syllables pitch
height, higher volume, and increased duration all
correlate, then we can infer some deeper factor un-
derlying all of these, namely stress or prominence.
PCA provides a systematic way of doing this for
many features at once, and it has been used for
various prosodic investigations, including an explo-
ration of the prosodic and other vocal parameters
relevant to emotional dimensions (Goudbeek and
Scherer, 2010) or levels of vocal effort (Charfue-
lan and Schröeder, 2011), categorizing glottal-flow
waveforms (Pfitzinger, 2008), finding the factors in-
volved in boundaries and accents (Batliner et al.,
2001), identifying the key dimensions of variation in
pitch contours using Functional Data Analysis (Gu-
bian et al., 2010), and for purely practical purposes
(Lee and Narayanan, 2005; Jurafsky et al., 2012). In
our own laboratory, Justin McManus applied PCA
to 4 left-context, single-speaker prosodic features,
and identified the first PC with a continuum from
silence to cheerful speech, and the second PC with
the continuum from back-channeling to storytelling.
However PCA has never before been applied to large
set of features, thus we hoped it might reveal im-
portant underlying factors in prosody that have not
previously been noticed: factors interactionally im-
portant, even if not salient.

5 Method

Using Switchboard, a large corpus of smalltalk be-
tween strangers over the telephone recorded in two
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  we  don’t  go  camping      a           lot   lately        mostly   because          uh 

                                                                                      uh-huh 

Figure 1: The 16 pitch-height feature windows, centered about a hypothetical occurrence of the word lot .

channels (Godfrey et al., 1992), we collected data-
points from both sides of 20 dialogs, totaling almost
two hours, taking a sample every 10 milliseconds.
This gave us 600,000 datapoints.

For each datapoint we computed 76 prosodic fea-
tures. These features were taken from both the im-
mediate past and the immediate future, since dialog
state, by any definition, relates to both: being depen-
dent on past context and predictive of future actions.
The features were taken from both the speaker of in-
terest and his or her interlocutor, since dialog states
intrinsically involve the behavior of both parties.

Because our interest is in short-term dialog states,
features were computed over only the 3-4 seconds
before and after each point of interest. The sequenc-
ing of the prosodic features being obviously impor-
tant, this context was split up into a sequence of
windows. Wishing to give more precision and more
weight to close context than more distant context,
the windows closest to the point of interest were
smallest, with the more distant being wider, as il-
lustrated in Figure 1. The window sizes were fixed,
not aligned with utterances, words, nor syllables.

The specific features we computed were chosen
for convenience, based on a basic set previously
found useful for language modeling (Ward et al.,
2011). These were 1. a speaking-rate measure, over
325 millisecond windows, 2. volume, over 50 ms
windows, 3. pitch height, over 150 ms windows,
and 4. pitch range, over 225 ms windows. All were
speaker-normalized. The values for the longer re-
gions were obtained by simply averaging the values
over two more more adjacent basic features.

In total there were 76 features: 24 volume, 20
pitch range, 16 pitch height, and 16 speaking rate.
At times where there was no pitch, the average pitch
value was used as substitute. All features were nor-
malized to have mean 0 and standard deviation 1.

PCA was then done. As hoped, a few dimensions
explained most of the variance, with the top 4 ex-

plaining 55%, the top 10 explaining 70%, and the
top 20 explaining 81%.

We then set out to determine, for each of the di-
mensions, what dialog states or situations, if any,
were associated with it.

Our first approach was to examine extreme data-
points. Because we thought that it would be infor-
mative to see which words tended to occur at the
extremes, we filtered our datapoints to select only
those which were at word onsets. For each dimen-
sion we then computed, for all of these, the values
on that dimension. We then sorted these to find the
highest 20 and the lowest 20. Looking at these word
lists however was generally not informative, as no
word or even word type predominated in any group,
in fact, the words were invariably highly diverse.
This perhaps indicates that the dimensions of dialog
state expressed by prosody do not aligne with those
expressed by words, and perhaps confirm that words
can correlate with social and dialog functions in un-
suspected ways (Tausczik and Pennebaker, 2010).

We next listened to some of some of these dat-
apoints in context. First we listened to a few low-
valued ones and came up with informal hypotheses
about what they had in common. We then listened
to more examples, winnowing and revising hypothe-
ses as we went, until we were satisfied that we had
a generalization that held for at least the majority of
the cases. Then we did the same thing for the high-
valued times. Finally we put the two together and
found an opposition, and used this to describe the
significance of the dimension as a whole. Some-
times this came easily, but sometimes it required
more listening to verify or refine. This was in gen-
eral easy for the top few dimensions, but more chal-
lenging for the lower ones, where the shared proper-
ties were generally weaker and more variable.

This process was unavoidably subjective, and
must be considered only exploratory. We did not
start out with any strong expectations, other than
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that many of the dimensions would relate to aspects
of dialog. Our backgrounds may have predisposed
us to be extra alert to turn-taking processes, but of-
ten initial hypotheses relating to turn-taking were
superseded by others that explained the data bet-
ter. We did not limit ourselves to terminology from
any specific theoretical framework, rather we chose
whichever seemed most appropriate for the phenom-
ena.

Our second approach was to look at the loading
factors, to see for each dimension which of the in-
put prosodic features were highly correlated with it,
both positively and negatively. In every case these
confirmed or were compatible with our interpreta-
tions, generally revealing heavy loadings on features
which previous research or simple logic suggested
would relate to the dialog activities and states we
had associated with the dimension.

6 Interpretations of the Top Dimensions

The results of our analyses were as follows. These
must be taken as tentative, and the summary descrip-
tions in the headings and in the tables must be read
as mere mnemonics for the more complex reality
that our fuller descriptions capture better, although
still far from perfectly.

Dimension 1: Who’s speaking?
At points with low values on this dimension the

speaker of interest is speaking loudly and continu-
ously without pause while the other is completely
silent. At points with high values on this dimen-
sion the speaker of interest is producing only back-
channels, while the other speaker is speaking con-
tinuously. (Points with complete silence on the part
of the speaker of interest probably would have been
even more extreme, but were not examined since
our sample set only included timepoints where the
speaker of interest was starting a word.) Unsurpris-
ingly the features with the highest loadings were the
volumes for the two speakers. Thus we identify this
dimension with “who’s speaking.” Interestingly, of
all the dimensions, this was the only with a bimodal
distribution.

Dimension 2: How much involvement is there?
At points with low values on this dimension

the dialog appeared to be faltering or awkward,

with the lone speaker producing words slowly in-
terspersed with non-filled pauses. High-value points
were places where both speakers appeared highly in-
volved, talking at once for several seconds, or one
laughing while the other talked. Again the volume
features had the highest loadings. Thus we identify
this dimension with the amount of involvement.

Dimension 3: Is there a topic end?
At points with low values on this dimension there

is generally a quick topic closing, in situations where
the speaker had a new topic cued up and wanted to
move on to it. An extreme example was when, af-
ter hearing clicks indicating call waiting, the speaker
said she needed to take the other call. At points with
high values on this dimension the topic was constant,
sometimes with the less active participant indicating
resigned boredom with a half-hearted back-channel.
The features with the highest positive loadings were
speaking-rate features: fast speech by the interlocu-
tor in the near future correlated with a topic close,
whereas fast speech by the current speaker about 1–
2 seconds ago correlated with topic continuity. Thus
we identify this dimension with topic ending.

Dimension 4: Is the referent grounded yet?
At points with low values on this dimension the

speaker is often producing a content word after a
filler or disfluent region, and this is soon followed
by a back-channel by the other speaker. At points
with high values on this dimension the speaker of in-
terest is adding more information to make the point
he wanted (starting the comment part of a topic-
comment pair) sometimes after the interlocutor had
responded with oh. Thus this dimension relates to
the continuum between trying to ground something
and continuing on with something already grounded.
Trying to ground correlated with an upcoming fast
speaking rate, while proceeding after grounding cor-
related with a high volume. Thus we identify this
dimension with the degree of grounding.

Dimension 5: Does the speaker want to start or
stop?

At points with low values on this dimension the
speaker of interest is starting a turn strongly, some-
times as a turn-grab or even cutting-off the other
speaker. At points with high values on this dimen-
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sion the speaker is strongly yielding the turn, cou-
pled with the interlocutor very swiftly taking up the
turn. Often the turn yield occurs when the speaker
is soliciting a response, either explicitly or by ex-
pressing an opinion that seems intended to invoke
a response. As might be expected, cut-offs corre-
late with high volume on the part of the interrupting
speaker, while clear turn yields correlate with past
high volume on the part of the speaker who is end-
ing. Thus we identify this dimension with starting
versus stopping.

Dimension 6: Has empathy been expressed yet?
At points with low values on this dimension the

speaker is continuing shortly after a high-content,
emotionally-colored word that has just been ac-
knowledged by the interlocutor. At points with
high values on this dimension, the speaker is ac-
knowledging a feeling or attitude just expressed by
the other, by expressing agreement with a short
turn such as that’s right or yeah, Arizona’s beau-
tiful!. Continuing after empathic grounding corre-
lated with high volume after a couple of seconds;
expressing empathy with a short comment corre-
lated with the interlocutor recently having produced
a word with high pitch. Thus we identify this dimen-
sion with the degree of empathy established.

Dimension 7: Are the speakers synchronized?
At points with low values on this dimension both

speakers inadvertently start speaking at the same
time. At points with high values on this dimension
the speakers swiftly and successfully interleave their
speaking, for example by completing each other’s
turns or with back-channels. The features with the
highest positive loadings were those of pitch range
and speaking rate with the volume factors having
mostly negative loadings. Thus we identify this di-
mension with the degree of turn synchronization.

Dimension 8: Is the turn end unambiguous?
At points with low values on this dimension

the speaker is dragging out a turn which appears,
content-wise, to be already finished, producing post-
completions, such as uh or or anything like that. At
points with high values on this dimension, often the
speaker is definitively ending a turn. The feature
with the highest positive loading was pitch range,

unsurprisingly since clear turn ends often involve a
sharp pitch fall. Thus we identify this dimension
with the degree of ambiguity of the turn end.

Dimension 9: Is the topic exhausted?
At points with low values on this dimension a

speaker is closing out a topic due to running out of
things to say. Often at points with high values on this
dimension the speaker is staying with one topic, with
continuing interest also from the interlocutor. The
most positively correlated feature was the interloc-
tor’s volume 400–800 ms ago, for example during
a back-channel or comment showing interest. Thus
we identify this dimension with the degree of inter-
est in the current topic.

Dimension 10: Is the speaker thinking?
At points with low values on this dimension the

speaker is looking for a word, choosing her words
carefully, or recalling something, typically inside
a turn but preceded by a short pause or an um.
At points with high values on this dimension the
speaker seems to be giving up on the topic, declaim-
ing any relevant knowledge and/or yielding the turn.
The features correlating most with the memory-
search/lexical-access state were those of high vol-
ume by the speaker 50–1500 milliseconds later; the
features correlating most with the giving-up state
were speaking rate. Thus we identify this dimen-
sion with the degree to which the speaker is putting
mental effort into continuing.

Dimension 11: How quick-thinking is the
speaker?

Points with low values on this dimension included
two types: first where a speaker is ending a false start
and about to start over, and second where the speaker
is about to be cut off by the interlocutor while say-
ing something noncommittal to end a turn, such as I
guess. Points with high values included swift echos
and confirmations, which seemed to reflect quick-
ness and dominance. Thus we identify this dimen-
sion with quickness, confidence and dominance ver-
sus the lack thereof.

Dimension 12: Is the speaker claiming or
yielding the floor?

Points with low values on this dimension gener-
ally seemed to be staking a claim to the floor, re-
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vealing the intention to talk on for several seconds,
sometimes as topic resumptions. Points with high
were generally floor yields, and sometimes sounded
negative or distancing. Slow future speaking rate, by
both speakers, aligned with the low values, and fast
rate with the high values. We identify this dimension
with the floor claim/yield continuum.

Dimension 13: How compatible is the
proposition with the context?

Points with low values on this dimension occurred
in the course of a self-narrative at the beginning of
something contradicting what the listener may have
inferred, or actually did think and say, for example
with no, we actually don’t. Points with high values
of this dimension generally involved a restatement
of something said before either by the speaker or
the interloctor, for example restating a question after
the other failed to answer, or opining that a football
team can now expect a few bad years, just a dozen
seconds after the interlocutor had already expressed
essentially the same thought. The low, contradicting
side had high volume and slow speaking rate for a
fraction of a second; the restatements were the oppo-
site. Thus we identify this dimension with the con-
tinuum between a contrast-type rhetorical structure
and a repetition-type one.

Dimension 14: Are the words being said
important?

Points with low values on this dimension occur
when the speaker is rambling: speaking with fre-
quent minor disfluencies while droning on about
something that he seems to have little interested in,
in part because the other person seems to have noth-
ing better to do than listen. Points with high values
on this dimension occur with emphasis and seemed
bright in tone. Slow speaking rate correlated highest
with the rambling, boring side of the dimension, and
future interlocutor pitch height with the emphasiz-
ing side. Thus we identify this dimension with the
importance of the current word or words, and the de-
gree of mutual engagement.

Dimension 15: Are the words premature or
delayed?

Points with low values on this dimension included
examples where the speaker is strongly holding the

floor despite a momentary disfluency, for example
uh and or well it’s it’s difficult, using creaky voice
and projecting authority. Points with high value on
this dimension overlapped substantially with those
high on dimension 14, but in addition seemed to
come when the speaker starts sharing some infor-
mation he had been wanting to talk about but sav-
ing up, for in a drawn-out political discussion, a new
piece of evidence supporting an opinion expressed
much earlier. Thus we identify this dimension with
the continuum between talking as soon as you have
something to say (or even slightly before) versus
talking about something when the time is ripe.

Dimension 16: How positive is the speaker’s
stance?

Points with low values on this dimension were on
words spoken while laughing or near such words, in
the course of self-narrative while recounting a hu-
morous episode. Points with high values on this
dimension also sometimes occurred in a self nar-
ratives, but with negative affect, as in brakes were
starting to fail, or in deploring statements such as
subject them to discriminatory practices. Low val-
ues correlated with a slow speaking rate; high values
with the pitch height. This we identify this a humor-
ous/regrettable continuum.

Other Dimensions
Space does not permit the discussion of further

dimensions here, but the end of Table 1 and Table
2 summarize what we have seen in some other di-
mensions that we have examined for various rea-
sons, some discussed elsewhere (dimensions 25, 62,
and 72 in (Ward and Vega, 2012 submitted) and 17,
18, 21, 24, 26, and 72 in (Ward et al., 2012 sub-
mitted)). Of course, not all dimensions are mostly
about dialog, for example dimension 29 appears to
be described best as relating simply to the presence
or absence of a stressed word (Ward et al., 2012 sub-
mitted), although that of course is not without impli-
cations for what dialog activities may cooccur.

7 Discussion

Although prosody is messy and multifunctional, this
exploration shows that PCA can derive from raw
features a set of dimensions which explain much of
the data, and which are surprisingly interpretable.
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1 this speaker talking vs. other speaker talking 32%
2 neither speaking vs. both speaking 9%
3 topic closing vs. topic continuation 8%
4 grounding vs. grounded 6%

5 turn grab vs. turn yield 3%
6 seeking empathy vs. expressing empathy 3%
7 floor conflict vs. floor sharing 3%
8 dragging out a turn vs. ending confidently and crisply 3%

9 topic exhaustion vs. topic interest 2%
10 lexical access or memory retrieval vs. disengaging 2%
11 low content and low confidence vs. quickness 1%
12 claiming the floor vs. releasing the floor 1%

13 starting a contrasting statement vs. starting a restatement 1%
14 rambling vs. placing emphasis 1%
15 speaking before ready vs. presenting held-back information 1%
16 humorous vs. regrettable 1%

17 new perspective vs. elaborating current feeling 1%
18 seeking sympathy vs. expressing sympathy 1%
19 solicitous vs. controlling 1%
20 calm emphasis vs. provocativeness 1%

Table 1: Interpretations of top 20 dimensions, with the variance explained by each

21 mitigating a potential face threat vs. agreeing, with humor
24 agreeing and preparing to move on vs. jointly focusing
25 personal experience vs. second-hand opinion
26 signalling interestingness vs. downplaying things
62 explaining/excusing oneself vs. blaming someone/something
72 speaking awkwardly vs. speaking with a nicely cadenced delivery

Table 2: Interpretations of some other dimensions

Overall, the top dimensions covered a broad sam-
pling of the topics generally considered important in
dialog research. This can be taken to indicate that
the field of dialog studies is mostly already work-
ing on the important things after all. However pre-
viously unremarked aspects of dialog behavior do
appear to surface in some of the lower dimensions;
here further examination is needed.

We had hoped that PCA would separate out the
dialog-relevant aspects of prosody from the aspects
of prosody serving other functions. Generally this
was true, although in part because the non-dialog
functions of prosody didn’t show up strongly at all.

While this was probably due in part to the spe-
cific feature set used, it still suggests that dialog
factors are overwhelmingly important for prosody.
Partial exceptions were emotion, attitude, rhetorical
structure, speaking styles and interaction styles, all
of which appeared as aspects of some dimensions.
Some dimensions also seemed to relate to dialects,
personality traits, or individuals; for example, many
of the most unambiguous turn endings (dimension
8) were by the same few speakers, who seemed to
us to be businesslike and dominant.
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8 Potential Applications

These dimensions, and similar empirically-derived
sets, are potentially useful for various applications.

First, the inferred dimensions could serve as a
first-pass specification of the skills needed for a
competent dialog agent: suggesting a dialog man-
ager whose core function is to monitor, predict, and
guide the development of the dialog in terms of the
top 10 or so dimensions. This technique could be
very generally useful: since it supports the discov-
ery of dialog dimensions in a purely data-driven way
(apart from the subjective interpretations, which are
not always needed), this may lead to methods for the
automatically generation of dialog models and dia-
log managers for arbitrary new domains.

Second, for generation and synthesis, given the
increased interest in going beyond intelligibility
to also give utterances dialog-appropriate wordings
and realizations, the inferred dimensions suggest
what is needed for dialog applications: we may have
identified the most important parameters for adapt-
ing and controlling a speech synthesizer’s prosodic
behavior for dialog applications.

Third, dimensional representations of dialog state
could be useful for predicting the speaker’s upcom-
ing word choices, that is, useful for language mod-
eling and thus speech recognition, as an improve-
ment on dialog-act descriptions of state or descrip-
tions in terms of raw, non-independent prosodic fea-
tures (Shriberg and Stolcke, 2004; Ward et al., 2011;
Stoyanchev and Stent, 2012). Initial results of con-
ditioning on 25 dimensions gave a 26.8% perplexity
reduction (Ward and Vega, 2012 submitted).

These dimensions could also be used for other
purposes, including a more-like-this function for
audio search based on similarity in terms of dia-
log context; better characterizing the functions of
discourse markers; tracking the time course of ac-
tion sequences leading to impressions of dominance,
friendliness and the like; finding salient or signifi-
cant events in meeting recordings; and teaching sec-
ond language learners the prosodic patterns of dia-
log.

9 Future Work

Our study was exploratory, and there are many ob-
vious ways to improve on it. It would be good to ap-

ply this method using richer feature sets, including
for example voicing fraction, pitch slope, pitch con-
tour features, spectral tilt, voicing properties, and
syllable- and word-aligned features, to get a more
complete view of what prosody contributes to di-
alog. Going further, one might also use temporal
features (Ward et al., 2011), features of gaze, ges-
ture, and words, perhaps in a suitable vector-space
representation (Bengio et al., 2003). Better feature
weighting could also be useful for refining the rank-
ing of the dimensions: while our method treated
one standard deviation of variance in one feature
as equal in importance to one standard deviation in
any other, in human perception this is certainly not
the case. It would also be interesting to apply this
method to other corpora in other domains: for ex-
ample in task-oriented dialogs we might expect it
to find additional important dimensions relating to
task structure, question type, recovery from mis-
understandings, uncertainty, and so on. Finally, it
would be interesting to explore which of these di-
mensions of state actually matter most for dialog
success (Tetreault and Litman, 2006).

In addition to the identification of specific dimen-
sions of dialog in casual conversations, this paper
contributes a new method: that of using PCA over
low-level, observable features to identify important
dimensions of dialog state, which could be applied
more generally.

While we see numerous advantages for quantita-
tive, dimensional dialog state modeling, we do not
think that this obsoletes more classical methods. In-
deed, it would be interesting to explore how com-
monly used dialog states and acts relate to these di-
mensions; for example, to take the set of utterances
labeled wh-questions in NXT Switchboard and ex-
amine where they are located in the “dialog space”
defined by these dimensions (Calhoun et al., 2010;
Ward et al., 2012 submitted).

Acknowledgments

This work was supported in part by NSF Award IIS-
0914868. We thank Olac Fuentes for suggesting
PCA, Justin McManus for the prototype analysis,
Shreyas Karkhedkar for help with the basic features,
and David Novick for discussion.

205



References
Plinio Barbosa. 2009. Detecting changes in speech ex-

pressiveness in participants of a radio program. In In-
terspeech, pages 2155–2158.

Anton Batliner, Jan Buckow, Richard Huber, Volker
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Abstract

Addressee identification is an element of all
language-based interactions, and is critical for
turn-taking. We examine the particular prob-
lem of identifying when each child playing an
interactive game in a small group is speak-
ing to an animated character. After analyzing
child and adult behavior, we explore a family
of machine learning models to integrate au-
dio and visual features with temporal group
interactions and limited, task-independent lan-
guage. The best model performs identification
about 20% better than the model that uses the
audio-visual features of the child alone.

1 Introduction

Multi-party interaction between a group of partic-
ipants and an autonomous agent is an important
but difficult task. Key problems include identify-
ing when speech is present, who is producing it, and
to whom it is directed, as well as producing an ap-
propriate response to its intended meaning. Solving
these problems is made more difficult when some
or all of the participants are young children, who
have high variability in language, knowledge, and
behavior. Prior research has tended to look at single
children (Oviatt, 2000; Black et al., 2009) or multi-
person groups of adults (Bohus and Horvitz, 2009a).
We are interested in interactions between animated
or robotic characters and small groups of four to ten
year old children. The interaction can be brief but
should be fun.

Here we focus specifically on the question of de-
ciding whether or not a child’s utterance is directed
to the character, a binary form of the addressee
identification (AID) problem. Our broad goals in

this research are to understand how children’s be-
havior in group interaction with a character differs
from adults’, how controllable aspects of the charac-
ter and physical environment determine participants’
behavior, and how an autonomous character can take
advantage of these regularities.

We collected audio and video data of groups of up
to four children and adults playing language-based
games with animated characters that were under lim-
ited human control. An autonomous character can
make two kinds of AID mistakes: failing to detect
when it is being spoken to, and acting as if it has
been spoken to when it has not. The former can be
largely prevented by having the character use exam-
ples of the language that it can recognize as part of
the game. Such exemplification cannot prevent the
second kind of mistake, however. It occurs, for ex-
ample, when children confer to negotiate the next
choice, respond emotionally to changes in the game
state, or address each other without making eye con-
tact. As a result, models that use typical audio-
visual features to decide AID will not be adequate
in multi-child environments. By including tempo-
ral conversational interactions between group mem-
bers, however, we can both detect character-directed
utterances and ignore the remainder about 20% bet-
ter than simple audio-visual models alone, with less
than 15% failure when being spoken to, and about
20% failure when not addressed.

2 Related Work

Our models explore the use of multimodal features
that represent activities among children and adults
interacting with a character over time. Prior research
has tended to look at single children or multi-person

207



groups of adults and has typically used a less inclu-
sive set of features (albeit in decisions that go be-
yond simple AID).

Use of multimodal features rests on early work
by Duncan and Fiske who explored how gaze and
head and body orientation act as important predic-
tors of AID in human-human interactions (Duncan
and Fiske, 1977). Bakx and colleagues showed that
accuracy can be improved by augmenting facial ori-
entation with acoustic features in an agent’s interac-
tions with an adult dyad (Bakx et al., 2003). Oth-
ers have studied the cues that people use to show
their interest in engaging in a conversation (Gra-
vano and Hirschberg, 2009) and how gesture sup-
ports selection of the next speaker in turn-taking
(Bergmann et al., 2011). Researchers have also
looked at combining visual features with lexical fea-
tures like the parseability of the utterance (Katzen-
maier et al., 2004), the meaning of the utterance, flu-
ency of speech, and use of politeness terms (Terken
et al., 2007), and the dialog act (Matsusaka et al.,
2007). However, all use hand-annotated data in their
analysis without considering the difficulty of auto-
matically deriving the features. Finally, prosodic
features have been combined with visual and lexi-
cal features in managing the order of speaking and
predicting the end-of-turn in multi-party interactions
(Lunsford and Oviatt, 2006; Chen and Harper, 2009;
Clemens and Diekhaus, 2009).

Work modeling the temporal behavior of the
speaker includes the use of adjacent utterances (e.g.,
question-answer) to study the dynamics of the dialog
(Jovanovic et al., 2006), the prediction of addressee
based on the addressee and dialog acts in previous
time steps (Matsusaka et al., 2007), and the use of
the speaker’s features over time to predict the qual-
ity of an interaction between a robot and single adult
(Fasel et al., 2009).

Horvitz and Bohus have the most complete (and
deployed) model, combining multimodal features
with temporal information using a system for multi-
party dynamic interaction between adults and an
agent (Bohus and Horvitz, 2009a; Bohus and
Horvitz, 2009b). In (Bohus and Horvitz, 2009a)
the authors describe the use of automatic sensors for
voice detection, face detection, head position track-
ing, and utterance length. They do not model tem-
poral or group interactions in determining AID, al-

though they do use a temporal model for the inter-
action as a whole. In (Bohus and Horvitz, 2009b)
the authors use the speaker’s features for the cur-
rent and previous time steps, but do not jointly track
the attention or behavior of all the participants in the
group. Moreover, their model assumes that the sys-
tem is engaged with at most one participant at a time,
which may be a valid conversational expectation for
adults but is unlikely to hold for children. In (Bo-
hus and Horvitz, 2011), the authors make a similar
assumption regarding turn-taking, which is built on
top of the AID module.

3 User Study

We use a Wizard of Oz testbed and a scripted mix
of social dialog and interactive game play to explore
the relationship between controllable features of the
character and the complexity of interacting via lan-
guage with young children. The games are hosted by
two animated characters (Figure 1, left). Oliver, the
turtle, is the main focus of the social interactions and
also handles repair subdialogs when a game does not
run smoothly. Manny, the bear, provides comic re-
lief and controls the game board, making him the
focus of participants’ verbal choices during game
play. The game appears on a large flat-screen dis-
play about six feet away from participants who stand
side-by-side behind a marked line. Audio and video
are captured, the former with both close-talk micro-
phones and a linear microphone array.

Oliver and Manny host two games designed to be
fun and easy to understand with little explicit in-
struction. In Madlibs, participants help create a short
movie by repeatedly choosing one everyday object
from a set of three. The objects can be seen on the
board and Oliver gives examples of appropriate re-
ferring phrases when prompting for a choice. In Fig-
ure 1, for example, he asks, “Should our movie have
a robot, a monster, or a girl in it?” After five sets of
objects are seen, the choices appear in silly contexts
in a short animation; for instance, a robot babysit-
ter may serve a chocolate pickle cake for lunch. In
Mix-and-Match (MnM), participants choose apparel
and accessories to change a girl’s image in unusual
ways (Figure 1, right). MnM has six visually avail-
able objects and no verbal examples from Oliver, ex-
cept in repair subdialogs. It is a faster-paced game
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Figure 1: Manny and Oliver host Madlibs and a family play Mix-and-Match

with the immediate reward of a silly change to the
babysitter’s appearance whenever a referring phrase
is accepted by the wizard.

The use of verbal examples in Madlibs is expected
to influence the children’s language, potentially in-
creasing the accuracy of speech recognition and ref-
erent resolution in an autonomous system. The cost
of exemplification is slower pacing because children
must wait while the choices are named. To compen-
sate, we offer only a small number of choices per
turn. Removing exemplification, as in MnM, creates
faster pacing and more variety of choice each turn,
which is more fun but also likely to increase three
types of problematic phenomena: out-of-vocabulary
choices (“the king hat” rather than “the crown”),
side dialogs to establish a referring lexical item or
phrase (“Mommy, what is that thing?”), and the use
of weak naming strategies based on physical fea-
tures (“that green hand”).

The two games are part of a longer scripted se-
quence of interactions that includes greetings, good-
byes, and appropriate segues. Overall, the language
that can be meaningfully directed to the characters is
constrained to a small social vocabulary, yes/no re-
sponses, and choices that refer to the objects on the
board. The wizard’s interface reflects these expec-
tations with buttons that come and go as a function
of the game state. For example, yes and no buttons
are available to the wizard after Oliver asks, “Will
you help me?” while robot, monster, and girl but-
tons are available after he asks, “Should our movie
have a robot, a monster, or a girl in it?” The wiz-
ard also has access to persistent buttons to indicate a
long silence, unclear speech, multiple people speak-
ing, or a clear reference to an object not on the board.

These buttons launch Oliver’s problem-specific re-
pair behaviors. The decomposition of functional-
ity in the interface anticipates replacing the wizard’s
various roles as voice activity detector, addressee
identifier, speech recognizer, referent resolver, and
dialog manager in an autonomous implementation.

Although meaningful language to the characters
is highly constrained, language to other participants
can be about anything. In particular, both games
establish an environment in which language among
participants is likely to be about negotiating the turn
(“Brad, do you want to change anything?”), nego-
tiating the choice (“Billy, don’t do the boot”) or
commenting on the result (“her feet look strange”).
Lacking examples of referring phrases by Oliver,
MnM also causes side dialogs to discuss how ob-
jects should be named. Naming discussions, choice
negotiation, and comments define the essential dif-
ficulty in AID for our testbed; they are all likely to
include references to objects on the board without
the intention of changing the game state.

3.1 Data collection and annotation

Twenty-seven compensated children (14 male, 13
female) and six adult volunteers participated. Chil-
dren ranged in age from four to ten with a mean of
6.4 years. All children spoke English as a first lan-
guage. Groups consisted of up to four people and
always contained either a volunteer adult or the ex-
perimenter the first time through the activities. If the
experimenter participated, she did not make game
choices. Volunteer adults were instructed to sup-
port their children’s participation in whatever way
felt natural for their family. When time permitted,
children were given the option of playing one or both
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games again. Those who played a second time were
allowed to play alone or in combination with others,
with or without an adult. Data was collected for 25
distinct groups, the details of which are provided in
Table 5 in the Appendix.

Data from all sessions was hand-annotated with
respect to language, gesture, and head orientation.
Labels were based on an initial review of the videos,
prior research on AID and turn-taking in adults, and
the ability to detect candidate features in our phys-
ical environment. A second person segmented and
labeled approximately one third of each session for
inter-annotator comparison. The redundant third
was assigned randomly from the beginning, middle,
or end of the session in order to balance across social
interactions, Madlibs choices, and MnM choices.
Labels were considered to correspond to the same
audio or video sequence if the segments overlapped
by at least 50%.

For language annotations, audio from the close-
talk microphones was used with the video and seg-
mented into utterances based on pauses of at least
50 msec. Typical mispronunciations for young chil-
dren (e.g., word initial /W/ for /R/) were transcribed
as normal words in plain text; non-standard errors
were transcribed phonologically. Every utterance
was also labeled as being directed to the character
(CHAR) or not to the character (NCHAR). Second
annotators segmented the audio and assigned ad-
dressee but did not re-transcribe the speech. Inter-
annotator agreement for segmentation was 95%
(κ = .91), with differences resulting from only
one annotator segmenting properly around pauses
or only one being able to distinguish a given child’s
voice among the many who were talking. For seg-
ments coded by both annotators, CHAR/NCHAR
agreement was 94% (κ = .89).

For gesture annotations, video segments were
marked for instances of pointing, emphasis, and
head shaking yes and no. Emphatic gestures were
defined as hand or arm movements toward the screen
that were not pointing or part of grooming motions.
Annotators agreed on the existence of gestures 74%
of the time (κ = .49), but when both annotators in-
terpreted movement as a gesture, they used the same
label 98% of the time (κ = .96).

For orientation, video was segmented when the
head turned away from the screen and when it turned

back. Rather than impose an a priori duration or an-
gle, annotators were told to use the turn-away label
when the turn was associated with meaningful in-
teraction with a person or object, but not for brief,
incidental head movements. Adults could also have
segments that were labeled as head-incline if they
bent to speak to children. Annotators agreed on the
existence of these orientation changes 83% of the
time (κ = .62); disagreements may represent simple
differences in accuracy or differences in judgments
about whether a movement denoted a shift in atten-
tion. Orientation changes coded by both annotators
had the same label 92% of the time (κ = .85).

The annotated sessions are a significant portion
of the training and test data used for our models.
Although these data reflect some idiosyncracy due
to human variability in speech perception, gesture
recognition, and, possibly, the attribution of inten-
tion to head movements, they show extremely good
agreement with regard to whether participants were
talking to the character. Even very young chil-
dren in group situations give signals in their speech
and movements that allow other people to determine
consistently to whom they are speaking.

3.2 Analysis of behavior

As intended, children did most of the talking
(1371/1895 utterances, 72%), spoke to the charac-
ters the majority of the time (967/1371, 71%), and
made most of the object choices (666/683, 98%).
Adults generally acted in support roles, with 88%
of all adult utterances (volunteers and experimenter)
directed to the children.

The majority of children’s CHAR utterances
(71%) were object choices. Although the wizard
in our study was free to accept any unambiguous
phrase as a valid choice, an automated system must
commit to a fixed lexicon. In general, the larger
the lexicon, the smaller the probability that a ref-
erence will be out-of-vocabulary, but the greater the
probability that a reference could be considered am-
biguous and require clarification. The lexical entry
for each game object contains the simple descrip-
tion given to the illustrator (“alien hands,” “pickle”)
and related terms from WordNet (Fellbaum, 1998)
likely to be known by young children (see Table 3 in
the Appendix for examples). In anticipation of weak
naming strategies, MnM entries also contain salient
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visual features based on the artwork (like color), as
well as the body part the object would replace, where
applicable. Entries for Madlibs objects average 2.75
words; entries for MnM average 5.8. With these
definitions, only 37/666 (6%) of character-directed
choices would have been out-of-vocabulary for a
word-spotting speech recognizer with human accu-
racy. However, Oliver’s use of exemplification has a
strong effect. In Madlibs, 98% of children’s choices
were unambiguous repetitions of example phrases.
In MnM, 92% of choices contained words in the lex-
icon, but only 28% indexed a unique object.

Recognition of referring phrases should be a fac-
tor in making AID decisions only if it helps to discri-
mate CHAR from NCHAR utterances. Object refer-
ences occurred in 62% of utterances to the charac-
ters and only 25% of utterances addressed to other
participants, but again, Oliver’s exemplification mat-
tered. About 20% of NCHAR utterances from chil-
dren in both games and from adults in Madlibs con-
tained object references. In MnM, however, a third
of adults’ NCHAR utterances contained object ref-
erences as they responded to children’s requests for
naming advice.

Language is not the only source of information
available from our testbed. We know adults use both
eye gaze and gesture to modulate turn-taking and
signal addressee in advance of speech. Because non-
verbal mechanisms for establishing joint attention
occur early in language development, even children
as young as four might use such signals consistently.
Although we use head movement as an approxima-
tion of eye gaze, we positioned participants side-by-
side to make such movements necessary for eye con-
tact. Unfortunately, the game board constituted too
strong a “situational attractor” (Bakx et al., 2003).
As in their kiosk environment, our adults oriented
toward the screen much of the time (68%) they were
talking to other participants. Children violated con-
versational convention more often, orienting toward
the screen for 82% of NCHAR utterances.

Gesture information is also available from the
video data and reveals distinct patterns of usage
for children and adults. The average number of
gestures/utterance was more than twice as high in
adults. Children were more likely to use empha-
sis gestures when they were talking to the charac-
ters; adults hardly used them at all. Children’s ges-

tures overlapped with their speech almost 80% of
the time, but adult’s gestures overlapped with their
speech only half the time. Moreover, when children
pointed while talking they were talking to the char-
acters, but when adults pointed while talking they
were talking to the children. Finally, adults shook
their heads when they were talking to children but
not when they were talking to the characters, while
children shook their heads when talking to both.

To maintain an engaging experience, object refer-
ences addressed to the character should be treated as
possible choices, while object references addressed
to other participants should not produce action. In-
teractions that violate this rule too often will be
frustrating rather than fun. While exemplification
in Madlibs virtually eliminated out-of-vocabulary
choices, it could not eliminate detectable object ref-
erences that were not directed to the characters. In
both games, such references were often accompa-
nied by other signs that the character was being ad-
dressed, like orientation toward the board and point-
ing. Using all the cues available, human annotators
were almost always able to agree on who was being
addressed. The next section looks at how well an
autonomous agent can perform AID using only the
cues it can sense, if it could sense them with human
levels of accuracy.

4 Models for Addressee Classification

We cast the problem of automatically identifying
whether an utterance is addressed to the character
(and so may result in a character action) as a binary
classification problem. We build and test a family
of models based on distinct sources of information
in order to understand where the power is coming
from and make it easier for other researchers to com-
pare to our approach. All models in the family are
constructed from Support Vector Machines (SVM)
(Cortes and Vapnik, 1995), and use the multimodal
features in Table 1 to map each 500 msec time slice
of a child’s speech to CHAR or NCHAR. This ba-
sic feature vector combines a subset of the hand-
annotated data (Audio and Visual) with automati-
cally generated data (Prosodic and System events).
We use a time slice rather than a lexical or semantic
boundary for forcing a judgment because in a real-
time interaction decisions must be made even when
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Audio speech: presence/absence

Prosodic pitch: low/medium/high
speech power: low/medium/high

System event character prompt: presence/absence

Visual orientation: head turn away/back
gesture: pointing/emphasis

Table 1: Basic features

lexical or semantic events do not occur.
We consider three additional sources of informa-

tion: group behavior, history, and lexical usage.
Group behavior – the speech, prosody, head orien-
tation, and gestures of other participants – is impor-
tant because most of the speech that is not directed
to the characters is directed to a specific person in
the group. History is important both because the side
conversations unfold gradually and because it allows
us to capture the changes to and continuity of the
speaker’s features across time slices. Finally, we use
lexical features to represent whether the participant’s
speech contains words from a small, predefined vo-
cabulary of question words, greetings, and discourse
markers (see Appendix). Because the behavioral
analysis showed significant use of words referring
to choice objects during both CHAR and NCHAR
utterances, we do not consider those words in deter-
mining AID. Indeed, we expect the AID decision to
simplify the task of the speech recognizer by helping
that component ignore NCHAR utterances entirely.

The full set of models is described by adding to
the basic vector zero or more of group (g), word (w),
or history (h) features. We use the notation g[+/-
]w[+/-]h[(time parameters)/-] to indicate the pres-
ence or absence of a knowledge source. The time
parameters vary and will be explained in the con-
text of particular models, below. Although we have
explored a larger portion of the total model space,
we limit our discussion here to representative mod-
els (including the best model) that will demonstrate
the effect of each kind of information on the two
main goals of AID: responding to CHAR utterances
and not responding to NCHAR utterances. There
are eight models of interest, the first four of which
isolate individual knowledge sources:

The Basic model (g-w-h-) is an SVM classifier
trained to generate binary CHAR/NCHAR values
based solely on the features in Table 1. It represents
the ability to predict whether a child is talking to the
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Figure 2: The two-layer Group-History model maps
group and individual behavior over a fixed window of
time slices to a CHAR/NCHAR decision at time t. The
decision at time t (A1,t) is based on the participant’s ba-
sic features (P1), the output of the individual’s submodel
(T ) – which encapsulates the history of the individual
for M previous and K subsequent time slices – and the
output of N participant submodels, each of which con-
tributes a value based on three times slices.

character independent of speech recognition and fo-
cused on only 500 msecs of that child’s behavior.

The Group model (g+w-h-) incorporates group
information, but ignores temporal and lexical be-
havior. This SVM is trained on an extended feature
vector that includes the basic features for the other
participants in the group together with the speaker’s
feature vector at each time slice.

The History model (g-w-h(N ,K)) considers only
the speaker’s basic features, but includesN previous
and K subsequent time slices surrounding the slice
for which we make the CHAR/NCHAR decision.1

The Word model (g-w+h-) extends the basic vec-
tor to include features for the presence or absence of
question words, greetings, and discourse markers.

The next three models combine pairs of knowl-
edge sources. The Group-Word (g+w+h-) and
History-Word (g-w+h(N ,K)) models are straight-

1A History model combining the speaker’s basic vector over
the previous and current time slices (N = 4 and K = 0) out-
performed a Conditional Random Fields (Lafferty et al., 2001)
model with N + 1 nodes representing consecutive time slices
where the last node is conditioned on the previous N nodes.
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forward extensions of their respective base models,
created by adding lexical features to the basic vec-
tors. The Group-History model (g+w-h(N ,K,M ))
is more complex. It is possible to model group in-
teractions over time by defining a new feature vector
that includes all the participants’ basic features over
multiple time slices. As we increase the number of
people in a group and/or the number of time slices to
explore the model space, however, the sheer size of
this simple combination of feature vectors becomes
unwieldy. Instead we make the process hierarchical
by defining the Group-History as a two-layer SVM.

Figure 2 instantiates the Group-History model for
participant P1 playing in a group of four. In the con-
figuration shown, the decision for P1’s utterance at
time t is based on behavior during N previous and
K subsequent time slices, meaning each decision is
delayed by K time slices with respect to real time.
The CHAR/NCHAR decision for time slice t de-
pends on P1’s basic feature vector at time t, the out-
put from the Individual submodel for time t, and the
outputs from the Participants submodel for each of
the time slices through t. A concrete instantiation of
the model can be seen in Figure 4 in the Appendix.

The Individual submodel is an SVM that assigns a
score to the composite of P1’s basic feature vectors
across a window of time (here,M+K+1). The Par-
ticipants submodel is an SVM that assigns a score to
the basic features of all members during each three
slice sliding subwindow in the full interval. More
intuitively: the Individual submodel finds correla-
tions among the child’s observable behaviors over
a window of time; the Participants submodel cap-
tures relationships between members’ behaviors that
co-occur over small subwindows; and the Group-
History model combines the two to find regularities
that unfold among participants over time, weighted
toward P1’s own behavior.

The final model of interest, Group-History-Word
(g+w+h(N ,K,M ,Q)), incorporates the knowledge
from all sources of information. A Lexical submodel
is added to the Individual and Participants submod-
els described above. The Lexical submodel is an
SVM classifier trained on the combination of ba-
sic and word features for the current and Q previ-
ous time slices. The second layer SVM is trained on
the scores of the Individual, Participants, and Lex-
ical submodels as well as the combined basic and

Model Max f1 AUC TPR TNR
Basic features

g-w-h- 0.879 0.504 0.823 0.604
g+w-h- 0.903 0.588 0.872 0.650

g-w-h(8,1) 0.897 0.626 0.867 0.697
g+w-h(4,1,8) 0.903 0.645 0.849 0.730

Basic + Word features
g-w+h- 0.904 0.636 0.901 0.675
g+w+h- 0.906 0.655 0.863 0.728

g-w+h(8,1) 0.901 0.661 0.886 0.716
g+w+h(4,1,8,4) 0.913 0.701 0.859 0.786

Table 2: Comparison of models

word feature vector for the child.

5 Results and Discussions

We used the LibSVM implementation (Chang and
Lin, 2011) for evaluation, holding out one child’s
data at a time during training, and balancing the
data set to compensate for the uneven distribution
of CHAR and NCHAR utterances in the corpus. As
previously noted, we used a time slice of 500 msec
in all results reported here. Where history is used,
we consider only models with a single time slice of
look-ahead (K = 1) to create minimal additional de-
lay in the character’s response.

Table 2 reports average values, for each model
and over all sets of remaining children, in terms of
Max F1, true positive rate (TPR), true negative rate
(TNR), and area under the TPR-TNR curve (AUC).
TPR represents a model’s ability to recognize utter-
ances directed to the character; low TPR means chil-
dren will not be able to play the game effectively.
TNR indicates a model’s ability to ignore utterances
directed to other participants; low TNR means that
the character will consider changing the game state
when it hasn’t been addressed.

Table 2 (top) shows comparative performance
without the need for any speech recognition. F1

and TPR are generally high for all models. Using
only the basic features, however, gives a relatively
low TNR and an AUC that is almost random. The
History model, (g-w-h(8,1)), increased performance
across all measures compared to the basic features
(g-w-h-). We found that the History model’s per-
formance was best when four seconds of the past
were considered. Group information within a single
time slice also improves performance over the ba-
sic features, but the Group-History model has the
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best overall tradeoff in missed CHAR versus ig-
nored NCHAR utterances (AUC). Group-History’s
best performance is achieved using two seconds of
group information from the past via the Participants
submodel and four seconds of the speaker’s past
from the Individual submodel.

Comparing the top and bottom halves of Table 2
shows that all models benefit from accurate recogni-
tion of a small set of task-independent words. The
table shows that word spotting improves both TPR
and TNR when added to the Basic model, but tends
to improve only TNR when added to models with
group and history features. Improved TNR probably
results from the ability to detect NCHAR utterances
when participants are facing the characters and/or
pointing during naming discussions and comments.2

Table 2 shows results averaged over each held out
child. We then recast this information to show, by
model, the percentage of children that would expe-
rience TPR and TNR higher than given thresholds.
Figure 3 shows a small portion of a complete graph
of this type; in this case the percentage of children
who would experience greater than 0.6 for TPR and
greater than 0.5 for TNR under each model. TPR
and TNR lines for a model have the same color and
share a common pattern.

Better models have higher TPR and TNR for more
children. The child who has to keep restating his or
her choice (poor TPR) will be frustrated, as will the
child who has the character pre-emptively take his
or her choice away by “overhearing” side discus-
sions (poor TNR). While we do not know for any
child (or any age group) how high a TPR or TNR is
required to prevent frustration, Figure 3 shows that
without lexical information the Group-History and
Group models have the best balance for the thresh-
olds. Group-History gives about 85% of the children
a TPR ≥ 0.7 for a TNR ≥ 0.5. The simpler Group
model, which has no 500 msec delay for lookahead,
can give a better TPR for the same TNR but for only
75% of the children. When we add lexical knowl-
edge the case for Group-History becomes stronger,
as it gives more than 85% of children a TPR ≥ 0.7
for a TNR ≥ 0.6, while Group gives 85% of chil-
dren about the same TPR with a TNR ≥ 0.5.

2Results showing the affect of including object choice words
in the w+ models are given in Figure 4 in the Appendix.

Figure 3: The percentage of children experiencing dif-
ferent TPR/TNR tradeoffs in models with (bottom) and
without (top) lexical knowledge. The g-w-h- model does
not fall in the region of interest unless lexical features are
used.

6 Conclusions and Future Work

The behavior of the characters, types of games,
group make up, and physical environment all con-
tribute to how participants communicate over time
and signal addressee. We can manipulate some re-
lationships (e.g., by organizing the spatial layout to
promote head movement or having the character use
examples of recognizable language) and take ad-
vantage of others by detecting relevant features and
learning how they combine as behavior unfolds. Our
best current model uses group and history informa-
tion as well as basic audio-visual features to achieve
a max F1 of 0.91 and an AUC of 0.70. Although
this model does not yet perform as well as human
annotators, it may be possible to improve it by tak-
ing advantage of additional features that the behav-
ioral data tells us are predictive (e.g., whether the
speaker is an adult or child). Such additional sources
of information are likely to be important as we re-
place the annotated data with automatic sensors for
speech activity, orientation, and gesture recognition,
and embed addressee identification in the larger con-
text of turn-taking and full autonomous interaction.
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7 Appendix

Object Choice Words

antler, antlers, horn, horns, ear,
ears, head, brown

astronaut, astronauts, space,
spaceman, spacemans, space-
men, helmet, head

bear, bears claw, claws, paw,
paws, hand, hands, brown

bunny, rabbit, bunnies, rabbits,
slipper, slippers, foot, feet,
white

Task-independent Words
Discourse marker hmm, mm, mmm, ok, eww,

shh, oopsy
Question words what, let, where, who, which,

when
Greetings hi, hello, bye, goodbye

Table 3: Excerpts from the dictionary for task-specific
and task-independent words

Model Max f1 AUC TPR TNR
Greeting, question & discourse words

g-w+h- 0.904 0.636 0.901 0.675
g+w+h- 0.906 0.655 0.863 0.728

g-w+h(8,1) 0.901 0.661 0.886 0.716
g+w+h(4,1,8,4) 0.913 0.701 0.859 0.786

With object reference words added
g-w+h- 0.894 0.576 0.777 0.768
g+w+h- 0.898 0.623 0.782 0.773

g-w+h(7,1) 0.910 0.642 0.838 0.783
g+w+h(4,1,8,4) 0.912 0.685 0.834 0.799
Table 4: The effect of adding object reference words
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Figure 4: A concrete representation for the Group-
History model with N = 2, M = 1, and K = 1 at
time step t = 4. The value at t = 4 is delayed one time
slice of real time.

Session
Type

Group: participant(age) Duration

full p1(5), experimenter 9 min
full p2(7), p3(6), p6(adult) 9 min
full p4(7), p5 (4), p6(adult) 9 min
replay p2(7), p3(6), p4(7), p5(4) 8 min
full p7(10), experimenter 8 min
replay p7(10) 6 min
full p8(9), p9(8), experimenter 9 min
full p10(10), p11(5), experimenter 11 min
full p12(6), p14(adult) 11 min
full p13(4), p14(adult) 11 min
full p15(4), experimenter 8 min
full p16(9), p17(7), experimenter 12 min
replay p16(9), experimenter 3 min
full p18(8), p19(6), p20(8),

p21(adult)
12 min

full p22(5), experimenter 9 min
replay p22(5), experimenter 3 min
full p25(6), experimenter 9 min
full p26(8), p27(4), experimenter 11 min
replay p26(8), experimenter 6 min
full p28(7), p29(adult) 12 min
full p30(5), experimenter 11 min
replay p30(5), experimenter 4 min
full p31(6), p32(5), p33(adult) 10 min
full p34(4), p35(adult) 9 min
replay p34(4), p35(adult) 4 min

Table 5: Details for sessions used in the analysis (does
not include five sessions with corrupted data)
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Abstract

We evaluate a wizard-of-oz spoken dialogue

system that adapts to multiple user affective

states in real-time: user disengagement and

uncertainty. We compare this version with the

prior version of our system, which only adapts

to user uncertainty. Our analysis investigates

how iteratively adding new affect adaptation

to an existing affect-adaptive system impacts

global and local performance. We find a sig-

nificant increase in motivation for users who

most frequently received the disengagement

adaptation. Moreover, responding to disen-

gagement breaks its negative correlations with

task success and user satisfaction, reduces un-

certainty levels, and reduces the likelihood of

continued disengagement.

1 Introduction

State of the art spoken dialogue system research fo-

cuses on responding not only to the literal content

of users’ speech but also to their affective state1,

such that the same literal content may receive one

system response when the user is frustrated, and

another when the user is confused, etc. The po-

tential benefits are clear: affect-adaptive systems

can increase task success (Forbes-Riley and Litman,

2011a; Wang et al., 2008) and other global perfor-

mance metrics such as user satisfaction (Liu and Pi-

card, 2005; Klein et al., 2002) and motivation (Aist

1We use affect for emotions and attitudes that affect how

users communicate. Other speech researchers also combine

concepts of emotion, arousal, and attitudes where emotion is

not full-blown (Cowie and Cornelius, 2003).

et al., 2002). However, to date most researchers have

focused on adapting to a single affective state. The

next step is thus to develop and evaluate spoken dia-

logue systems that respond to multiple user affective

states. The problem of how to develop effective af-

fect adaptations is a complex one even as applied

to a single affective state, and it multiples with ev-

ery new state added. For example, it is not clear

a priori how responding to one affective state may

impact another’s frequency and relationship to per-

formance. In this paper we examine this problem

in the context of the computer tutoring domain. We

previously showed that adapting to user uncertainty

during spoken dialogue computer tutoring improves

task success, both in a wizard-of oz version where

a hidden human performed the affect detection and

natural language understanding (Forbes-Riley and

Litman, 2011b), as well as in a fully automated sys-

tem version (Forbes-Riley and Litman, 2011a).

We are now taking the next step by incorporating

adaptation to a second user affective state: user dis-

engagement. We target user disengagement for two

reasons: first, our prior manual annotation showed

disengagement and uncertainty to be the most fre-

quent user affective states that occur in our system,

and second, our prior analyses show that the occur-

rence of disengagement is negatively correlated with

task success and user satisfaction (Forbes-Riley and

Litman, 2012).2 Thus, we hypothesized that provid-

ing appropriate system responses to both affective

states could have multiple benefits: 1) reduce the

frequency of one or both states, 2) “break” the nega-

2Redesigning a system in light of correlational analyses can

improve performance (Rotaru and Litman, 2009).
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tive correlations with performance, and 3) yield fur-

ther improvements in global and local performance.

In this paper, we test these hypotheses, present-

ing the results of a controlled experiment evaluating

a wizard-of-oz version of our spoken dialogue com-

puter tutor that adapts to both user uncertainty and

user disengagement (Section 3). Although we ad-

dress these states within the tutoring domain, speech

researchers from other domains and applications are

also focusing on detecting and adapting to user dis-

engagement (e.g., (Schuller et al., 2010; Wang and

Hirschberg, 2011)) and uncertainty (e.g. (Pon-Barry

and Shieber, 2011; Paek and Ju, 2008)) to improve

system performance. Our results should be of in-

terest not only to these researchers but also more

generally to any researchers working towards com-

prehensive affect-adaptive spoken dialogue systems.

In particular, our results show that iteratively adding

new affect adaptations to an existing affect-adaptive

system can yield performance improvements. We

find no increase (but also no decrease) in task suc-

cess or user satisfaction, but we do find an increase

in motivation for users who most frequently received

the disengagement adaptation (Section 4). Further-

more, we find that responding to disengagement

“breaks” negative correlations with task success and

user satisfaction (Section 5), and also yields a reduc-

tion both in uncertainty levels (Section 4) and in the

likelihood of continued disengagement (Section 6).

2 Related Work

User disengagement is highly undesirable because

of its potential to increase dissatisfaction and task

failure, and there is a growing awareness of its

potential to negatively impact commercial applica-

tions; thus there has been substantial prior work

focused on detecting disengagement (along with

the closely related states of boredom and lack of

interest) (e.g., (Schuller et al., 2010; Wang and

Hirschberg, 2011; Bohus and Horvitz, 2009)). To

date, however, only a few disengagement-adaptive

systems have been evaluated, and within the tutoring

domain these have focused on only one disengage-

ment behavior: gaming. For example, responding to

gaming with supplementary material reduced gam-

ing and improved task success for users who most

frequently gamed (Baker et al., 2006), while adding

progress reports and productive learning tips at the

end of problems (i.e., without specifically targeting

gaming instances) increased task success, engage-

ment, and user satisfaction (Arroyo et al., 2007).

Our research builds on this work but is novel in that

we focus on speech and dialogue-based disengage-

ment and on adapting to multiple affective states.

More generally, while substantial spoken dia-

logue and affective systems research has shown

that users display a range of affective states when

interacting with a system (e.g. (Schuller et al.,

2009; Conati and Maclaren, 2009)), to date only

a few systems adapt to multiple affective states

(e.g., (D’Mello et al., 2010; Aist et al., 2002; Tsuka-

hara and Ward, 2001)). Most have been deployed

with wizard-of-oz components, and none have yet

shown significant improvements in task success,

though other benefits have been shown, including

increased user satisfaction (Tsukahara and Ward,

2001), rapport (Acosta and Ward, 2011) and mo-

tivation (Aist et al., 2002). Recently, D’Mello et

al. (2010) showed that performance can depend on

when and to whom the adaptations are provided;

higher expertise users never benefited from system

responses to their frustration, boredom and confu-

sion, while lower expertise users only benefited after

multiple system interactions. While this prior work

showed the benefits of adapting to multiple affec-

tive states as compared to not adapting to affect at

all, it did not test whether these benefits were due

to having multiple adaptations, or if any one would

have sufficed. Our work is novel in explicitly mea-

suring the value of having multiple adaptations as

compared to one.

3 The Experiment

Our prior work showed that our uncertainty-adaptive

spoken dialogue system improves performance over

not adapting to affect (Forbes-Riley and Litman,

2011b; Forbes-Riley and Litman, 2011a); this sys-

tem serves as our baseline in the current work.

3.1 Baseline System: UNC ADAPT ITSPOKE

UNC ADAPT ITSPOKE (Intelligent Tutoring

SPOKEn dialog system)3 tutors 5 Newtonian

3ITSPOKE is a speech-enhanced and modified version of

the Why2-Atlas text-based tutor (VanLehn et al., 2002).
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physics problems (one per dialogue), using a Tutor

Question - User Answer - Tutor Response format.

In the fully automated system, the speech from

the user’s answer is digitized from head-mounted

microphone input and sent to a speech recognizer.

The answer’s (in)correctness is then automatically

classified based on the recognizer’s transcription us-

ing a semantic analysis component, and the answer’s

(un)certainty is automatically classified by inputting

features of the speech signal (e.g. prosody), the au-

tomatic transcript, and the dialogue context into a

logistic regression model. The (in)correctness and

(un)certainty detection components comprising our

system’s user model are described in detail else-

where (Forbes-Riley and Litman, 2011a).

For the present experiment, the affect and

(in)correctness labeling are performed by a hidden

human wizard. As in our prior work, this allows us

to first analyze the impact of an affect adaptation

separately from the noise introduced by automat-

ing affect and semantic analysis (see Section 7).

Figures 1-3 illustrate the binary (dis)engagement

(ENG, DISE), (in)correctness (COR, INC), and

(un)certainty (CER, UNC) labels.

Finally, the system automatically determines the

appropriate response based on the answer’s labeled

(in)correctness and (un)certainty and this response

is sent to the Cepstral text-to-speech system4, whose

audio output is played through the headphones and

displayed on a web-based interface (see Figure 4).

The uncertainty label and system adaptation are

described in detail elsewhere (Forbes-Riley and Lit-

man, 2011b; Forbes-Riley and Litman, 2011a).

Briefly, the uncertain (UNC) label is used for turns

expressing uncertainty or confusion about the topic

being discussed, and the non-uncertain (CER) label

is used otherwise. The wizard in this experiment

displayed interannotator agreement of 0.85 and 0.62

Kappa on correctness and uncertainty, respectively,

in prior ITSPOKE corpora. Our uncertainty adapta-

tion is based on the hypothesis that uncertainty and

incorrectness are both points of impasse in a dia-

logue, and that providing additional knowledge can

help resolve them. In UNC ADAPT ITSPOKE, in-

correct answers and uncertain answers both receive

(in)correctness feedback (e.g., “Right” or “I don’t

4an outgrowth of Festival (Black and Taylor, 1997).

think so”), followed by a (re)statement of the cor-

rect answer. Depending on topic difficulty, the sys-

tem then either provides a brief explanation of rea-

soning (“Bottom Out”) or a more lengthy dialogue

exchange that walks the user through the steps of

the reasoning (“Remediation Subdialogue”). An ex-

ample is shown in Figure 1.

3.2 UNC-DISE ADAPT ITSPOKE

UNC-DISE ADAPT ITSPOKE adds disengage-

ment detection and adaptation to UNC ADAPT IT-

SPOKE. Our disengagement annotation scheme is

described in detail elsewhere (Forbes-Riley and Lit-

man, 2011c). It was derived from empirical obser-

vation of our data and from prior work, including

that mentioned in Section 2 and appraisal theory-

based emotion models, which distinguish emotional

behaviors from their underlying causes (e.g., (Conati

and Maclaren, 2009)). Briefly, the Disengaged

(DISE) label is used for turns expressing moderate

to strong disengagement towards the interaction, i.e.,

responses given without much effort or caring about

appropriateness, and might include signs of bore-

dom or irritation. Clear examples include turns spo-

ken in leaden monotone, with sarcasm, or off-task

sounds such as electronics usage. The wizard in

this experiment displayed interannotator agreement

of 0.55 Kappa on the DISE label in prior ITSPOKE

corpora, which is on par with prior affect research,

where moderate agreement is common given the dif-

ficulty of the task (Forbes-Riley and Litman, 2011c).

Based on the results of the prior research dis-

cussed in Section 2 and our own prior research,

we have developed one class of system responses

for correct+disengaged (COR-DISE) answers and

another for incorrect+disengaged (INC-DISE) an-

swers (Forbes-Riley and Litman, 2011c)5.

Our INC-DISE adaptation builds on the prior

finding that supplementary information can help re-

duce some types of disengagement for highly dis-

engaged users (Baker et al., 2006). We hypothe-

sized that our UNC ADAPT response to incorrect-

ness (a Bottom Out or Remediation Subdialogue)

was insufficient for an INC-DISE turn because the

5Originally we distinguished six DISE types, but found this

too many to be reliably detected automatically and thus reduced

the distinction to two using correctness. Our automatic disen-

gagement detector is discussed further in Section 7.
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user had already disengaged. To benefit from this

supplementary knowledge, the user first had to reen-

gage. Thus, the UNC-DISE ADAPT system re-

sponds to INC-DISE answers with “productive in-

teraction feedback”6 followed by an easier “fill in

the blank” version of the original question. The pur-

pose of this two-pronged response is to regain the

user’s attention with the feedback and then provide

a path through the impasse with the easier ques-

tion, thereby keeping the user engaged. An ex-

ample is shown in Figure 2, where USER-1 is la-

beled INC-DISE because the user gives an irrelevant

(and obviously incorrect) answer. Note that while

most knowledge asymmetry spoken dialogue sys-

tems (e.g., problem-solving and troubleshooting (Ja-

narthanam and Lemon, 2008)) use the concept of

response (in)correctness, a more general version is

response (in)appropriateness, which can be realized

differently across applications, including as the user

turn’s speech recognition score (Kamm et al., 1998).

Since misrecognitions are also a type of dialogue

impasse, a similar version of our INC-DISE adap-

tation could be provided by other spoken dialogue

systems for turns where users disengage and their

response isn’t recognized by the system.

Our COR-DISE adaptation builds on the prior

findings that progress reports and productive learn-

ing tips can positively impact multiple performance

metrics when used without specifically targeting dis-

engagement (Arroyo et al., 2007), but not when

used after every user turn (Walonoski and Heffer-

nan, 2006). We hypothesized that these responses

might be most beneficial if they targeted COR-DISE

turns. Thus, the UNC-DISE ADAPT system re-

sponds to COR-DISE answers with “productive in-

teraction feedback” followed by a progress report

graphing the user’s correctness both in the current

dialogue and over all prior dialogues. Examples

are shown in Figures 3-4, where USER-1 is labeled

COR-DISE because the user unnecessarily repeats

himself, signaling his lack of interest. As shown,

we distinguish two classes of productive interaction

feedback. That in “2a” shows the feedback given

when the progress report indicates improvement on

the current dialogue relative to the prior ones, while

6This is our generalization of the concept of “productive

learning tip” used in prior work (Arroyo et al., 2007).

“2b” shows the feedback given when there is a de-

cline. Note that a similar combination of productive

interaction feedback and progress reports tailored to

the domain (e.g., graphs showing subtasks accom-

plished so far) could be provided by most spoken di-

alogue systems on turns where users disengage and

their response is recognized by the system.7

3.3 Experimental Procedure

College students with no college-level physics were

recruited and randomly assigned to either the

UNC ADAPT or UNC-DISE ADAPT condition af-

ter balancing for user expertise (pretest score) and

gender. Users: (1) read a short physics text, (2) took

a pretest and a pre-motivation survey, (3) worked 5

“training” problem dialogues with the system from

their condition, (4) took a post-motivation survey

and a user satisfaction survey, (5) took a posttest iso-

morphic to the pretest, and (6) worked a “test” prob-

lem dialogue with UNC ADAPT.

The pre/post tests are the same as those used in

multiple prior ITSPOKE experiments (c.f., (Forbes-

Riley and Litman, 2011a)). The tests are isomor-

phic, each containing 26 multiple choice questions

querying knowledge of the topics covered in the di-

alogues. Average pretest and posttest scores were

53% and 81% (out of 100%), respectively.

The pre/post motivation surveys are a reduced

version of a widely used motivation survey in the

tutoring domain (Pintrich and DeGroot, 1990); our

selected questions were relevant to our system and

also selected in other recent research (Ward, 2010;

Roll, 2009). The two surveys are isomorphic, each

containing 19 statements rated on a 7-point Likert

scale. Average pre and post scores were 68% and

70% (out of 100%), respectively.

The user satisfaction survey was recently devel-

oped and validated for use with spoken dialogue

computer tutors (Dzikovska et al., 2011). It con-

tains 40 statements rated on a 5-point Likert scale.

Average score was 68% (out of 100%).

The “test” dialogue is isomorphic to the fifth

training dialogue, such that all questions are identi-

cal except for the identities of the objects discussed.

In this way, we can measure how the disengagement

7Note that our DISE and UNC adaptations are combined if

the two states occur simultaneously.
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adaptations from the fifth dialogue impact user turns

when the questions are repeated in the test dialogue

(where no disengagement adaptation is given). We

have also used this test dialogue in our prior work

(c.f., (Forbes-Riley and Litman, 2011a)).

3.4 Corpus

The resulting corpus contains 228 dialogues (6 per

user) and 3518 turns from 38 users, 22 female and 16

male, with 19 subjects per condition.8 Table 1 shows

the distribution of the labeled turns in the corpus.

Table 1: Corpus Description (N=3518)

Turn Label Total Percent

Disengaged 622 17.7%

Correct 2825 80.3%

Disengaged+Correct 247 7.0%

Uncertain 537 15.3%

4 Global Performance Evaluation

We use the test and survey instruments described in

Section 3.3 to evaluate global performance in UNC-

DISE ADAPT. We measure task success via learn-

ing gain; as is typical in the tutoring community,

we compute normalized learning gain as (posttest-

pretest)/(1-pretest). We compute percent user satis-

faction from the survey as (user score)/(maximum

possible score). We compute raw motivation gain

from the surveys as (post score-pre score).9 For each

metric, we ran a one-way ANOVA with condition as

the between-subjects factor. The first two rows of

Table 2 show the number of users (N), means (Mn)

and standard deviations (sd) for these metrics across

condition. Although UNC-DISE ADAPT shows a

small decrease in means for learning gain and user

satisfaction, there were no significant differences

(p≤.05) or trends (p≤.10) for differences between

conditions for any global metric.

As a further comparison, we compared the perfor-

mance of UNC-DISE ADAPT to our non-adaptive

wizard-of-oz version of ITSPOKE (NO ADAPT),

using the corpus collected from our prior user

8One outlier with negative learning was removed from each

condition, because our goal is to investigate the role of affect

adaptation when learning is successful.
9Total, average or percent satisfaction yielded comparable

results, as did raw or normalized motivation and learning gains.

study comparing UNC ADAPT and NO ADAPT;

that study showed UNC ADAPT had signifi-

cantly higher learning gain than NO ADAPT

(p=.001) (Forbes-Riley and Litman, 2011b).10 The

goal here was to ascertain in a post-hoc way whether

adapting to multiple affective states yielded higher

task success than not adapting to affect at all.

As shown last in Table 2, UNC-DISE ADAPT

and UNC ADAPT both significantly outperform

NO ADAPT (p≤.003), suggesting that while itera-

tively adding new affect adaptations to an existing

affect-adaptive system does not necessarily yield ad-

ditive improvements to global performance, it also

does not decrease performance.

Table 2: Global Performance Metrics Across Conditions

(All UNC vs. UNC-DISE Differences Yield p>=.274;

All NO-ADAPT Differences Yield p≤.003)

Cond N LearnGain UserSat MotGain

Mn sd Mn sd Mn sd

Unc 19 .65 .20 .69 .11 .01 .07

Unc-Dise 19 .58 .19 .66 .09 .01 .07

NoAdapt 21 .38 .20 - - - -

The frequency of disengagement and other af-

fective states can vary widely across system users.

In our case, some users showed disengagement on

the majority of turns in later dialogues while oth-

ers showed almost none at all; the average and stan-

dard deviation of per user %DISE over conditions

are 17.7% and 10.1%, respectively (Table 5 breaks

this down by condition). Thus we hypothesized

that the global performance improvements of UNC-

DISE ADAPT might have been weakened by in-

cluding users with low or no disengagement who

rarely received the adaptation and thus could not be

expected to show improvement. To test this hypoth-

esis, we split users into high and low DISE based

on the median %DISE in the corpus. We ran a

two-way ANOVA for each global metric with DISE

split and condition as factors. We found a signifi-

cant interaction effect between condition and DISE

10Because this prior corpus was collected in a different exper-

iment, the conclusions here are tenuous. However, both exper-

iments had similar subject populations (local college students)

and mean pretest scores (p=.84). The prior experiment used a

smaller satisfaction survey and no motivational surveys, so we

can only compare learning.
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split (F(1,38) = 4.84, p=0.035) for motivation gain.

Means for these groups are shown in Table 3. As

shown, low DISE users had higher motivation gain

in UNC ADAPT, while high DISE users had higher

motivation gain in UNC-DISE ADAPT.

Table 3: Motivation Gain Differences Across Condition

for High and Low DISE Users (p=.035)

Condition Split N MotGain

Mn sd

UNC high DISE 9 -.01 .04

UNC-DISE high DISE 7 .04 .07

UNC low DISE 10 .03 .08

UNC-DISE low DISE 12 -.01 .06

In contrast to the tests and surveys, which do

not necessarily reflect user performance during the

dialogues, the “test” dialogue enables us to mea-

sure global performance using dialogue-based met-

rics. The test dialogue was isomorphic with the fi-

nal training dialogue, except that the disengagement

adaptation was not given; moreover, different sys-

tem questions could appear in the test dialogue if the

user answered a question differently.11 We hypoth-

esized that responding to the user’s disengagement

during the training dialogue (UNC-DISE ADAPT)

would yield increased correctness as well as reduced

uncertainty and disengagement in the test dialogue.

We tested this hypothesis by computing per-

cent correctness, disengagement, and uncertainty

for each user, both alone and in combination, over

user answers to tutor questions that were repeated

between the training and test dialogues. We ran

ANOVAs comparing these metrics across the two

conditions. Table 4 presents our results. Interest-

ingly, no differences between conditions were found

for transitions from DISE turns. However, the dis-

engagement adaptation did impact other turns in the

dialogues apart from the (DISE) ones that triggered

it. The first row shows that uncertain answers are

more likely to remain uncertain in UNC ADAPT

than in UNC-DISE ADAPT. The second row shows

that incorrect+uncertain+engaged answers are more

likely to become correct and certain in UNC-

11For example, if a user answered a question incorrectly dur-

ing training and then answered its isomorph correctly during

testing, s/he would not receive the remediation during the test

dialogue that s/he received during training.

DISE ADAPT. By more fully engaging users, the

disengagement adaptation may thereby enable them

to benefit more from the uncertainty adaptation.

However, the third row suggests that the adaptation

can have a negative impact when users are origi-

nally certain about their incorrect answers: incor-

rect+certain+engaged users turns are more likely

to become disengaged in UNC-DISE ADAPT. This

suggests that the disengagement adaptation does not

more fully engage certain users (particularly those

whose certainty does not reflect correctness).

Table 4: Differences Across Condition for Test Dialogue

Metric Condition Mn sd p

UNC → UNC UNC .06 .09 .05

UNC-DISE .01 .04

INC+UNC+ENG → UNC .01 .03 .10

COR+CER+ENG UNC-DISE .03 .05

INC+CER+ENG → UNC .00 .00 .04

INC+CER+DISE UNC-DISE .02 .03

5 Breaking Negative Correlations

As noted in Section 1, in our prior ITSPOKE

corpora we found that user disengagement was

negatively correlated with task success (measured

as learning gain) (p=.01) and user satisfaction

(p=.03) (Forbes-Riley and Litman, 2011c; Forbes-

Riley and Litman, 2012). Thus, one important stan-

dard of evaluation for our disengagement adapta-

tion is to determine whether or not it “breaks” these

negative correlations when it is employed with real

users (Rotaru and Litman, 2009). A broken corre-

lation would mean that even though disengagement

may still occur, it no longer relates to decreased per-

formance.

UNC-DISE ADAPT responds differently to cor-

rect and incorrect DISE turns (Section 3.2). To

compare the impacts of these responses both com-

bined and individually, we computed %DISE, %cor-

rectDISE (CDISE) and %incorrectDISE (IDISE) for

each user (over all five training problems). We then

computed bivariate Pearson’s correlations within

each condition between each DISE metric and both

learning and user satisfaction.

Table 5 shows the mean (Mn) and standard de-

viations (sd) for the DISE metrics within each con-
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dition, the coefficient (R) for each correlation, and

its significance (p). Consider first task success.

The first pair of rows shows that the negative cor-

relation between DISE and learning is still present

whether or not the disengagement adaptation is re-

ceived. However, the second pair of rows shows that

the negative correlation between %correctDISE and

learning is broken when the disengagement adap-

tation is received (UNC-DISE), but is still present

when not received (UNC). The third pair of rows

shows that the disengagement adaptation does not

break the negative correlation between %incorrect-

DISE and learning. Consider next user satisfaction.

The first pair of rows shows that the negative cor-

relation between DISE and user satisfaction is bro-

ken when the disengagement adaptation is received

(UNC-DISE), but is still present when not received

(UNC). The third pair of rows shows that the the

negative correlation between %incorrectDISE and

user satisfaction is also broken when the disengage-

ment adaptation is received (UNC-DISE), but is still

present when not received (UNC). These results sug-

gest that for improving task success, adapting to dis-

engagement is more effective for correct turns than

incorrect turns12, while for improving user satisfac-

tion, adapting to disengagement is effective for in-

correct turns and for the dialogue as a whole with-

out considering correctness. Finally, Table 5 shows

that while %correctDISE is reduced in UNC-DISE

as compared to UNC, %incorrectDISE actually in-

creases in UNC-DISE. This suggests that while a re-

duction in disengagement due to the adaptation par-

tially explains the broken correlations, the adapta-

tion may also ameliorate the negative performance

impact of user disengagement.

6 Local Affect Transition Analyses

In addition to global performance analyses, the im-

pact of affect adaptation can also be evaluated lo-

cally, i.e., in terms of its immediate impact in the di-

alogue. We investigate this local effect by comput-

ing the likelihoods of transitioning from each user

12Users who are more often correct may also be predisposed

to learn more. This may explain why %correctDISE has a lesser

negative impact on learning than %DISE and %incorrectDISE

in UNC and UNC-DISE. However, only the disengagement

adaptation can explain why %correctDISE has a lesser negative

impact on learning in UNC-DISE than in UNC.

Table 5: Disengagement-Performance Correlations

Across Conditions (Bold Indicates “Broken” Correlation)

Mn sd LGain UserSat

R p R p

%DISE in:

UNC 17.2 12.1 -.77 .01 -.48 .04

UNC-DISE 16.9 7.9 -.65 .01 -.16 .51

%CDISE in:

UNC 7.7 7.6 -.45 .05 -.14 .56

UNC-DISE 6.1 3.3 .25 .31 -.27 .27

%IDISE in:

UNC 9.5 7.7 -.76 .01 -.61 .01

UNC-DISE 10.8 7.7 -.78 .01 -.05 .83

disengagement state in turn n (DISE or ENG) to

each user disengagement state in turn n+1 (DISE

or ENG). We use the transition likelihood L met-

ric (D’Mello et al., 2007), which has also previously

been used by ourselves and others to compute the

likelihood of transitioning from one affective state

to another in a dialogue corpus and to compare these

likelihoods across different system versions (Forbes-

Riley and Litman, 2011a; McQuiggan et al., 2008;

D’Mello et al., 2007). As in this prior work, we com-

pute the transition likelihoods for each user (over all

5 training dialogues), then use ANOVAs to deter-

mine if there were differences in the likelihoods of

all possible transitions from the user state in turn n.

Transition likelihood L is computed as shown be-

low, where n refers to the disengagement state in

turn n and n+1 refers to the state in turn n+1. As

shown, L computes the likelihood that the n→n+1

transition will occur. L=1 indicates that n+1 always

follows n, while L=0 and L<0 indicate that the like-

lihood of transitioning from n to n+1 is equal to

chance, and less than chance, respectively.

L(n→n+1) =
P (n+1|n)−P (n+1)

1−P (n+1)

We hypothesized that users in the UNC-

DISE ADAPT condition would be less likely to

transition into disengagement in turn n+1. Mean L

values across users for each transition are shown in

Table 6 for the two conditions, where the rows repre-

sent each turn n state and the columns represent each

turn n+1 state. The p-value from the ANOVA for

each transition likelihood comparison is also shown.

The table shows that in both conditions, an engaged
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user in turn n is significantly more likely to remain

engaged in turn n+1 than s/he is to become disen-

gaged. However, in UNC ADAPT, a disengaged

user is more likely (as a trend, p=.06) to remain dis-

engaged than to become engaged in turn n+1. In

contrast, in UNC-DISE ADAPT, a disengaged user

is equally likely (p=.14) to become disengaged or

remain engaged in turn n+1. This analysis thus in-

dicates that the disengagement adaptation also has a

benefit at the local performance level, in that it re-

duces the likelihood of continued disengagement.

Table 6: Mean L Values for Disengagement State Transi-

tions
Condition Turn n Turn n+1

ENG DISE p

UNC-DISE ENG .06 -.01 .04

DISE -.35 .06 .14

UNC ENG .09 -.03 .01

DISE -.41 .09 .06

7 Summary and Current Directions

We investigated how iteratively adding new affect

adaptation to an affect-adaptive spoken dialogue

system impacts global and local performance. We

presented a disengagement adaptation that can gen-

eralize across domains, and discussed its incorpo-

ration into our uncertainty-adaptive computer tutor.

We then presented a controlled evaluation compar-

ing these multiply and singly adaptive systems. Our

results showed that while the disengagement adap-

tation did not increase (or decrease) task success or

user satisfaction, it demonstrated a slight but sig-

nificant increase in motivation gain for users with

high disengagement. Future analyses will shed fur-

ther light on how disengagement mediates the ef-

fect of condition on motivation. The adaptation also

reduced user uncertainty and increased correctness

for uncertain answers when repeated in the test dia-

logue, but increased disengagement for repeated an-

swers that were originally certain and incorrect. It

also broke negative correlations between disengaged

turns and performance, when measured both as task

success and user satisfaction, and showed a trend to

reduce disengagement at the local dialogue level.

Our next step is to repeat the experiment with

fully automated versions of our affect-adaptive spo-

ken dialogue systems, to determine the impact of

adding new affect adaptation when the system per-

forms the affect detection and natural language un-

derstanding tasks. We are currently in the last

stages of building an automatic disengagement de-

tector that will then be implemented in UNC-

DISE ITSPOKE. Interestingly, our prior work sug-

gests that the fully automated UNC-DISE ADAPT

system may yield greater global performance im-

provements relative to UNC ADAPT (Forbes-Riley

and Litman, 2012) than the wizard-of-oz version of

the system; it may be that users are more responsive

to the disengagement adaptation when the affect de-

tection and natural language understanding outputs

are “noisier”. Future work will also consider other

experimental designs to help determine the separate

and joint effects of the two affect adaptations.
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UNC ADAPT ITSPOKE: What are the forces exerted on the man after he releases his keys?

USER: gravity??? (COR, UNC, ENG)

UNC ADAPT ITSPOKE: Right. [Correctness Feedback] Gravity is the only force acting on the man. This force is

also called the weight of the man. It’s always present when an object is in earth’s gravitational field. [Bottom Out]. So

what’s the direction of the force of gravity on the man (e.g., vertically up)? [Next Topic Question]

Figure 1: Annotated Dialogue Example Showing Uncertainty Adaptation

UNC-DISE ADAPT ITSPOKE-1: Let’s begin by looking at the motion of the man and his keys while he’s holding

them. How does his velocity compare to that of his keys?

USER-1: vertical (INC, UNC, DISE)

UNC-DISE ADAPT ITSPOKE-2: That doesn’t sound right. Let’s think about this a little more. [ Productive

Interaction Feedback] Since the man is holding his keys, they aren’t moving relative to each other. So their velocities

must be WHAT? [Supplementary Question].

Figure 2: Dialogue Example Showing Adaptation for Disengaged+Incorrect Turns

UNC-DISE ADAPT ITSPOKE-1: Let’s begin by looking at the motion of the man and his keys while he’s holding

them. How does his velocity compare to that of his keys?

USER-1: same same same (COR, CER, DISE)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNC-DISE ADAPT ITSPOKE-2a: Well done. Here’s a quick progress update. Good effort so far!![Productive

Interaction Feedback When Progress Report Shows Improvement] Now let’s see what happens after the man releases

his keys. [...] [Next Topic Question]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNC-DISE ADAPT ITSPOKE-2b: Right. Here’s a quick progress update. It might help to remember we will build

on the topics we’re discussing now.[Productive Interaction Feedback When Progress Report Shows Decline] Now let’s

see what happens after the man releases his keys. [...] [Next Topic Question]

Figure 3: Dialogue Example Showing Adaptation for Disengaged+Correct Users

Figure 4: Example Progress Report after Disengaged+Correct Turn
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Abstract

We propose a dialog system that creates re-
sponses based on a large-scale dialog corpus
retrieved from Twitter and real-time crowd-
sourcing. Instead of using complex dialog
management, our system replies with the ut-
terance from the database that is most simi-
lar to the user input. We also propose a real-
time crowdsourcing framework for handling
the case in which there is no adequate re-
sponse in the database.

1 Introduction

There is a lot of language data on the Internet. Twit-
ter offers many APIs to retrieve or search post sta-
tus data, and this data is frequently used in research,
such as in stock market prediction (Bollen et al.,
2011), the spread of information through social me-
dia (Bakshy and Hofman, 2011), and representations
of textual content(Ramage et al., 2010). Several
models for conversation using Twitter data (Ritter et
al., 2010; Higashinaka et al., 2011) have been pro-
posed because of the data’s vast size and conversa-
tional nature.

Kelly (2009) previously showed that 37% of En-
glish tweets are Conversational, of which 69% are
two-length (one status post and a reply). In our anal-
ysis of over 2.5 million tweets, 37.5% of all Japanese
tweets are Conversational, which matches Kelly’s
data. However, less than 58.3% of these are two-
length tweets.

Many chat bots are rule-based, which requires a
lot of human effort to create or add new rules. For
example, A.L.I.C.E (Wallace, 2009), which won the
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Utterance Pair

Status Post Reply

User Utterance

Calculation Similarity

It was cold yesterday.
Yeah, it was 
freezing.

Figure 1: Utterance pair.

Loebner Prize three times, creates responses based
on a dialog strategy database written in a markup
language named AIML. Recently, some other chat
bots based on a large-scale dialog corpus have been
proposed1,2.

In this paper, we propose a novel dialog sys-
tem (chat bot) that uses real-time crowdsourcing and
Twitter large-scale corpus. We evaluate response se-
lection methods based on positive/negative example
to judge if each feature could be exploited to judge
similarity between uterrances.

2 Method

2.1 Overview

We create an ”Utterance Pair” database as shown in
Figure 1. Each pair is composed of an utterance
(Figure 1, A) and a reply to the utterance (Figure
1, B). Our approach for creating responses is simple
and is illustrated in Figure 2. For each user input, the
system searches the utterance-pair database for the
pair of which the tweet (Figure 1, A) is most similar
to that input. The reply contained in this pair (Figure
1, B) forms the system’s response to the user’s input.

1Jabberwacky: http://www.jabberwacky.com
2Cleverbot: http://www.cleverbot.com
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Figure 2: System overview.

If the system cannot find a post that is sufficiently
similar to the user’s input, then it ”outsources” the
response to another user.

To build the conversation database, we collected
1.2 million utterance-pairs from the microblogging
service, Twitter. We fetched public timeline data
using the Streaming API 3 , and then looked for
tweets which were written in Japanese 4 and had an
in-reply-to field. We followed the replies using the
REST API 5.

Raw posts from Twitter included mentions (the
symbol @ followed by a user name), quotes (writ-
ten with letters ”RT”), hashtags (a word preceded by
the symbol #), and URLs. We filtered away this in-
formation using regular expressions. Unlike English
tweets, in Japanese users placed hashtags at the end
of their tweet, separated from the bodytext, making
the deletion of hashtags feasible.

2.2 Method for the retrieval of Similar
Utterance-pairs

In this section, we define a similarity measure be-
tween user input and each utterance data in the
database. Each utterance in the database is analyzed
by a morphological analyzer after Twitter-specific
representations are eliminated as mentioned in Sec-
tion 2.1. Analyzed data are filtered based on part-
of-speech (POS) tags. In this paper we only ex-
tract noun, verb and interjection, and because many
Japanese tweets include emoticons which cannot

3https://dev.twitter.com/docs/
streaming-api

4We assume tweets as Japanese-written which are written by
users who set Language as Japanese.

5https://dev.twitter.com/docs/api

be tagged correctly by the morpological analyzer
we used. We filtered out emoticons using a key-
character-filter.

These documents (tweets) were then converted
into document vectors. For a document di, the vec-
tor element corresponding to word wj is represented
as

xi,j =
tf i,j

nj
, (1)

where tf i,j represents the number of times wj ap-
pears in di (term frequency), and nj represents the
length of di.

The similarity between two documents is calcu-
lated by taking the inner product of the two docu-
ment vectors, that is

Similarity(da, db) = xT
a xb. (2)

2.3 Real-Time Crowdsourcing

We propose to integrate the dialog system with
”real-time crowdsourcing”. When the system fails
to find an adequate response to a user input, in other
words, when the similarity score of the most similar
tweet in the database is below a certain threshold,
the system relegates the user’s input to other users
(crowd). The original user input is a tweet to the chat
bot and therefore includes the system’s name as the
target user. In our experiment, the system exchanges
its own name to the address of the crowd and utters
the tweet to the crowd. If a crowd member responds
to the system before a preset timeout period, the sys-
tem uses the crowd member’s reply as a response
to the original user. One of the advantages of this
method is that people in the crowd do not know that
they are part of a crowd; instead, they think they are
being addressed by the system. The original user
also thinks (s)he is talking with the system. We im-
plemented this real-time crowdosourcing framework
using a Twitter clone, StatusNet6 as an interface (see
Figure 5).

3 Evaluation

We prepared 90 user input examples and extracted
20 utterance-pairs (utterance and responses in the
database retrieved from Twitter) per user input, so
that a total of 1,800 of triples (a user input and an

6http://status.net/
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utterance pair) were included in our sample. Thirty
subjects evaluated the naturalness and versatility of
the responses. Each subject evaluated 600 triples.
We note that subjects saw only the user input and
response in an utterance pair (B in Figure 1), and
were not shown A in Figure 1 in the survey sheets.
In this paper, versatility of a response corresponds
to the number of utterances to which it was rated as
sensible response (e.g., ”What do you mean?” can
serve as a response to almost any input, and is there-
fore highly versatile). Michael (1994) points out that
chat bots have many tricks to fool people, and pro-
viding a versatile answer is one of them. We believe
our system can avoids versatile answers by using a
large-scale database.

In the following, we describe how we evalu-
ate each scoring function (which takes a triplet as
an input and the score as the output) using posi-
tive/negative learning data. We treat scoring func-
tions as classifiers, that is, when the function re-
ceives a triplet as input, we assume that the function
judges the triplet as positive data if the output score
is above a certain threshold and negative data if it is
below it.

Triplets collected in the survey were divided into
positive and negative triplets. We consider an utter-
ance pair to be positive if it is judged as natural by
more than 7 out of 10 subjects and versatile by less
than 7 out of 10 subjects. All else were considered
negative triplets.

The ROC curve is used to illustrate the perfor-
mance of the classifiers. It is a two-dimensional
graph in which true positive rate is plotted on the Y
axis and false positive rate is plotted on the X axis.
Here, the true positive rate (rTP ) and false positive
rate (rFP ) are given by

rTP =
Positives correctly classified

Total positives
, (3)

rFP =
Negatives incorrectly classified

Total negatives
. (4)

The area under the curve (AUC), or the area under
the ROC curve, was used to measure classifier per-
formance. A random classifier has an AUC of 0.5,
and ideal classifier has an AUC of 1.0. We applied a
number of scoring functions to the triples, and then
calculated the AUC for each function (classifier) for
validation. We chose scoring functions which

Calculate similarity with A or A+B. A+B
Use tf? YES
Use idf? NO
Eliminate Twitter-specific representations? YES
Filter POS? YES

Table 1: Scoring function we chose.

• calculate similarity only with A in Figure 1, or
A and B in Figure 1,

• use term frequency (tf) when the document
vector is calculated, or not,

• use inverse document frequency (idf) when the
document vector is calculated, or not,

• eliminate Twitter-specific representations (see
Section 2.1) or not,

• normalize by character count or not,

• filter POS or not.

We compared a total of 64 (=26) scoring functions.
Figure 3 illustrates some or our results. As it shows,
when only Twitter-specific expressions are filtered,
classifier performance is similar to a random classi-
fier. The addition of word count normalization and
POS filter improved to classification performance.
This is because longer utterances normally include
more specific information, so that the topic is more
prone to be missed during the response selection
process. Adverbs (e.g. ”very”) or particles (corre-
sponds preposition in English, e.g. ”as”) had little
effect on the context of an utterance, so POS filter-
ing acts as noise elimination. With respect to tf and
idf, the effect of tf varied widely, and idf hindered
classification performance (c, d, g, h).

We chose the scoring function with the best per-
formance (see Table 1 for details), of which the AUC
is 0.803.

4 Conclusions and Future Work

In this paper, we proposed a new dialog system
based on real-time crowdsourcing and a large-scale
database which is collected from the web automati-
cally. We also evaluated scoring functions based on
positive/negative utterance pairs.

In future work, we will keep on enlarging our ut-
terance pair corpus, and conduct the same experi-
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(a) normal (A) (b) eliminated (A) (c) eliminated +
normalized (A)

(d) eliminated +
normalized + POS filter

(A)

(e) normal (A+B) (f) eliminated (A+B) (g) eliminated +
normalized (A+B)

(h) eliminated +
normalized + POS filter

(A+B)

Figure 3: ROC curve for each scoring function. In each graph there are 4 lines, and each line represents whether tf
and idf are used to calculate the document vector. Only A in Figure 1 is treated in the first line (a, b, c, d), whereas
A and B is considered in the bottom (e, f, g, h). Normal, eliminated, normalized, POS filter mean doing nothing,
twitter-specific description is eliminated, normalized by character count, considering only specified POS, respectively.

ments as in this paper on the larger database. We
will also use more than two-length tweets for the
database. We believe that this approach could lead
to a context-aware dialog system (e.g., suppose the
user gives ”Why?” as the response to the system’s
utterance ”I like dogs.”. Our current system cannot
handle the topic, ”dog”, however a system can do so
by considering 3 utterances).
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USER こんにちは (konnitiha: Hello)
SYSTEM こんにちは！！こんにちは！！こんにちは！！ (konnitiha!! konnnitiha!! konnnitiha!!: Hello!! Hello!!

Hello!!)
USER 今日も寒いですよね。 (kyou-mo-samui-desu-yone: It’s cold today, isn’t it?)

SYSTEM だ、大丈夫ゼロ？上着を羽織って、暖房をつけてみたりした？ (da, daijobu-zero? uwagi-wo-haotte,
danbou-wo-tuketemitari-sita?: Are you ok? How about putting on a jacket, and turning on the heater?)
)

USER 暖房つけてるよ。(danbou-tuketeru-yo.: I’ve already turned on the heater.)
SYSTEM 暖房ないけどあったかい (＊´～｀＊) (danbou-nai-kedo-attakai <emoticon>: There is no heater(in

this room), but it’s warm <emoticon>)

USER なんだか熱っぽい。(nandaka-netuppoi: I feel feverish.)
SYSTEM 大丈夫？ (daijoubu?: Are you ok?)

USER インフルエンザに感染してないといいけど。 (Infuruenza-ni-kannsenn-shitenai-to-iikedo.: I hope I’m
not ill with flu.)

SYSTEM インフルエンザ用の効ウィルス剤は感染から 48時間以内にしかあまり効果がない罠 (infuruenza-you-
no-kouuiruzuzai-ha-kannsenn-kara-48jikanninai-ni-shika-amari-kouka-ga-nai-wana: Antiviral drug for
flu only works to those who got infected in 48 hours.)

USER マジか。(majika.: really?)
SYSTEM 寝ろよ！ (neroyo!: You should sleep.)

USER おとなしく寝ます。(otonashiku-nemasu.: I’ll take it easy and sleep.)
SYSTEM おとなしくするべきだ (otonashiku-suru-beki-da: You should do so.)

Table 2: Dialog examples
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Figure 4: System Implementation. Figure 5: System implementation on StatusNet.

Figure 6: System response time distribution. (datasize =
1,154,621)
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Abstract

We present a model for automatically predict-
ing information status labels for German refer-
ring expressions. We train a CRF on manually
annotated phrases, and predict a fine-grained
set of labels. We achieve an accuracy score of
69.56% on our most detailed label set, 76.62%
when gold standard coreference is available.

1 Introduction

The automatic identification of information status
(Prince, 1981; 1992), i.e. categorizing discourse en-
tities into different classes on the given-new scale,
has recently been identified as an important issue in
natural language processing (Nissim, 2006; Rahman
and Ng, 2011; 2012). It is widely acknowledged that
information status and, more generally, information
structure,1 is reflected in word order, in the form of
referring expressions as well as in prosody. In com-
putational linguistics, the ability to automatically la-
bel text with information status, therefore, could be
of great benefit to many applications, including sur-
face realization, text-to-speech synthesis, anaphora
resolution, summarization, etc.

The task of automatically labeling text with infor-
mation status, however, is a difficult one. Part of

1Information structure is usually taken to describe clause-
internal divisions into focus-background, topic-comment, or
theme-rheme, which are in turn defined in terms of contex-
tual factors such as given-new information, salience, contrast
and alternatives, cf. Steedman and Kruijff-Korbayová (2003),
Krifka (2007). Information status is the subfield of information
structure which exclusively deals with the given-new distinction
and which is normally confined to referring expressions.

the difficulty arises from the fact that, to a certain
degree, such labeling requires world knowledge and
semantic comprehension of the text, but another ob-
stacle is simply that theoretical notions of informa-
tion status are not used consistently in the literature.

In this paper we outline a system, trained on a
small amount of data, that achieves encouraging
results on the task of automatically labeling tran-
scribed German radio news data with fine-grained
information status labels.

2 Learning information status

A simpler variant of the task is anaphoricity de-
tection (discourse-new detection) (Bean and Riloff,
1999; Ng and Cardie, 2002; Uryupina, 2003; Denis
and Baldridge, 2007; Zhou and Kong, 2011), which
divides discourse entities into anaphoric (given) and
new. Identifying discourse-new expressions in texts
is helpful as a precursor to coreference resolution,
since, by definition, there is no need to identify an-
tecedents for new entities.

In the linguistic literature, referring expressions
have been distinguished in much more detail, and
there is reason to believe that this could also provide
useful information for NLP applications. Nissim
(2006) and Rahman and Ng (2011) developed meth-
ods to automatically identify three different classes:
OLD, MEDIATED and NEW expressions. This classi-
fication, which is described in Nissim et al. (2004),
has been used for annotating the Switchboard dialog
corpus (Calhoun et al., 2010), on which both studies
are based. Most recently, Rahman and Ng (2012)
extend their automatic prediction system to a more
fine-grained set of 16 subtypes.
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Old. The class of OLD entities in Nissim et al.
(2004) is not limited to full-fledged anaphors like in
Example (1a) but also includes cases of generic and
first/second person pronouns like in (1b), which may
or may not possess a previous mention.

(1) a. Shares in General Electric rose as investors
bet that the US company would take more
lucrative engine orders for the A380.

b. I wonder where this comes from.

Mediated. The group of MEDIATED entities mainly
has two subtypes: (2a) shows an expression which
has not been mentioned before but which is depen-
dent on previous context. Such items have also been
called bridging anaphors (Poesio and Vieira, 1998).
(2b) contains a phrase which is generally known but
does not depend on the discourse context.

(2) a. Tomorrow, the Shenzhou 8 spacecraft will
be in a position to attempt the docking.

b. They hope that he will be given the right to
remain in the Netherlands.

New. The label NEW, following Nissim et al. (2004:
1024), applies “to entities that have not yet been in-
troduced in the dialog and that the hearer cannot in-
fer from previously mentioned entities.”2 Two kinds
of expressions which fall into this category are unfa-
miliar definites (3a) and (specific) indefinites (3b).

(3) a. The man who shot a policeman yesterday
has not been caught yet.

b. Klose scored a penalty in the 80th minute.

Based on work described in Nissim (2006), Rahman
and Ng (2011) develop a machine learning approach
to information-status determination. They develop a
support vector machine (SVM) model from the an-
notated Switchboard dialogs in order to predict the
three possible classes. In an extension of this work,
Rahman and Ng (2012) compare a rule-based sys-
tem to a classifier with features based on the rules to
predict 16 subtypes of the three basic types. On this
extended label set on the dialog data, they achieve
accuracy of 86.4% with gold standard coreference
and 78.7% with automatically detected coreference.

3 Extending Information Status prediction

The work we present here is most similar to that
of Rahman and Ng (2012), however, our work dif-

2Note that this definition fails to exclude cases like (2b).

fers from theirs in a number of important respects.
We (i) experiment with a different information status
classification, derived from Riester et al. (2010), (ii)
use (morpho-)syntactic and functional features auto-
matically extracted from a deep linguistic parser in
our CRF sequence model, (iii) test our approach on
a different language (German), (iv) show that high
accuracy can be achieved with a limited number of
training examples, and (v) that the approach works
on a different genre (transcribed radio news bulletins
which contain complex embedded phrases like an
offer to the minority Tamil population of Sri Lanka,
not typically found in spoken dialog).

The annotation scheme by Riester et al. (2010)
divides referring items differently to Nissim et al.
(2004). Arguments are provided in the former pa-
per and in Baumann and Riester (to appear). As it
stands, the scheme provides too many labels for our
purpose. As a compromise, we group them in seven
classes: GIVEN, SITUATIVE, BRIDGING, UNUSED,
NEW, GENERIC and EXPLETIVE.
Given. Givenness is a central notion in informa-
tion structure theory. Schwarzschild (1999) de-
fines givenness of individual-type entities in terms
of coreference. If desired, GIVEN items can be sub-
classified, e.g. whether they are pronouns or full
noun phrases, and whether the latter are repetitions
or short forms of earlier material, or whether they
consist of lexically new material (epithets).
Situative. 1st and 2nd person pronouns, locative and
temporal adverbials, usually count as deictic expres-
sions since they refer to elements in the utterance sit-
uation. We therefore count them as a separate class.
SITUATIVE entities may, but need not, corefer.
Bridging. Bridging anaphors, as in (2a) above, have
received much attention, see e.g. Asher and Las-
carides (1998) or Poesio and Vieira (1998). Al-
though they are discourse-new, they share properties
with coreference anaphors since they depend on the
discourse context. They represent a class which can
be easily identified by human annotators but are dif-
ficult to capture by automatic techniques.
Unused. In manual annotation practice, it is very of-
ten impossible to decide whether an entity is hearer-
known, since this depends on who we assume the
hearer to be; and even if we agree on a recipient, we
may still be mistaken about their knowledge. For ex-
ample, Wolfgang Bosbach, deputy chairman of the
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Countable Boolean Descriptive
# Words in phrase* Phrase contains a compound noun Adverbial type, e.g. locative
# Predicative phrases Phrase contains coordination Determiner type, e.g. definite *
# DPs and NPs in phrase Phrase contains time expression Left/Right-most POS tag of phrase
# top category children Phrase contains < 2, 5 or 10 words Highest syntactic node label
# Labels/titles Phrase does not have a complete parse that dominates the phrase
# Depth of syntactic phrase Phrase is a pronoun Grammatical function, e.g. SUBJ *
# Cardinal numbers Phrase contains more than 1 DP Type of pronoun, e.g. demonstrative
# Depth of syntactic phrase and 1 NP (i.e. phrase contains Syntactic shape, e.g. apposition with
ignoring unary branching an embedded argument) a determiner and attributive modifier
# Apposition phrases Head noun appears (partly or completely) Head noun type, e.g. common *
# Year phrases in previous 10 sentences * Head noun number, e.g. singular

Table 1: Features of the CRF prediction model (* indicates feature used in baseline model)

CDU parliamentary group may be known to parts
of a German audience but not to other people.

We address this by collecting both hearer-known
and hearer-unknown definite expressions into one
class UNUSED. This does not rule out further sub-
classification (known/unknown) or the possibility of
using machine learning techniques to identify this
distinction, see Nenkova et al. (2005). The fact that
Rahman and Ng (2011) report the highest confusion
rate between NEW and MEDIATED entities may have
its roots in this issue.
New. Only (specific) indefinites are labeled NEW.
Generic. An issue which is not dealt with in Nissim
et al. (2004) are GENERIC expressions as in Lions
have manes. Reiter and Frank (2010) discuss the
task of identifying generic items in a manner sim-
ilar to the learning tasks presented above, using a
Bayesian network. We believe it makes sense to in-
tegrate genericity detection into information-status
prediction.3

4 German data

Our work is based on the DIRNDL radio news cor-
pus of Eckart et al. (2012) which has been hand-
annotated with information status labels. We choose
a selection of 6668 annotated phrases (1420 sen-
tences). This is an order of magnitude smaller than
the annotated Switchboard corpus of Calhoun et al.
(2010). We parse each sentence with the German
Lexical Functional Grammar of Rohrer and Forst
(2006) using the XLE parser in order to automati-

3Note that in coreference annotation it is an open question
whether two identical generic terms should count as coreferent.

cally extract (morpho-)syntactic and functional fea-
tures for our model.

5 Prediction Model for Information Status

Cahill and Riester (2009) show that there are asym-
metries between pairs of information status labels
contained in sentences, i.e. certain classes of expres-
sions tend to precede certain other classes. We there-
fore treat the prediction of IS labels as a sequence
labeling task.4 We train a CRF using wapiti
(Lavergne et al., 2010), with the features outlined in
Table 1. We also include a basic “coreference” fea-
ture, similar to the lexical features of Rahman and
Ng (2011), that fires if there is some lexical overlap
of nouns (or compound nouns) in the preceding 10
sentences. The original label set described in Riester
et al. (2010) contains 21 labels. Here we work with
a subset of maximally 12 labels, but also consider
smaller subsets of labels and carry out a mapping to
the Nissim (2006) label set (Table 2).5 We run a 10-
fold cross-validation experiment and report average
prediction accuracy. The results are given in Table
3a. As an informed baseline, we run the same cross-
validation experiment with a subset of features that
roughly correspond to the features of Nissim (2006).
Our models perform statistically significantly better
than the baseline (p < 0.001, using the approximate
randomization test) for all label sets.

4Preliminary experimental evidence showed that the CRF
performed slightly better than a simple multiclass logistic re-
gression model (e.g. compare 72.19 to 72.43 in Table 3a).

5Unfortunately, due to underlying theoretical differences, it
is impossible to map between the Riester label set and the ex-
tended label set used in Rahman and Ng (2012).
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Total Riester 1 Riester 2 Riester 3 Nissim ’06

462 GIVEN- GIVEN-

GIVEN
OLD

PRONOUN PRONOUN

143 GIVEN- GIVEN-
REFLEXIVE REFLEXIVE

427 GIVEN-
EPITHET

169 GIVEN- GIVEN-
REPEATED NOUN

204 GIVEN-
SHORT

265 SITUATIVE SITUATIVE SITUATIVE
449 BRIDGING BRIDGING BRIDGING

MEDIATED1271 UNUSED- UNUSED-
UNUSEDKNOWN KNOWN

1227 UNUSED- UNUSED-

NEW
UNKNOWN UNKNOWN

1282 NEW NEW NEW
632 GENERIC GENERIC GENERIC

96 EXPLETIVE EXPLETIVE EXPLETIVE OTHER

Table 2: Varying the granularity of the label sets

As expected, the less fine-grained a label set, the
easier it is to predict the labels. It remains for fu-
ture work to show the effect of different label set
granularities in practical applications. We approx-
imate gold standard coreference information from
the manually annotated labels (e.g. all GIVEN la-
bel types are by their nature coreferent), and carry
out an experiment with gold-standard approximation
of coreference marking. These results are also re-
ported in Table 3a. Here we see a clear performance
difference in the effect of gold-standard corefer-
ence on the Riester label set (increasing around 6-
10%), compared to the Nissim label set (decreasing
slightly). This is an artifact of the way the mapping
was carried out, deriving the gold standard corefer-
ence information from the Riester label set. There is
not a one-to-one mapping between OLD and GIVEN,
and, in the Riester label set, coreferential entities
that are labeled as SITUATIVE (deictic terms) are not
recognized as such.

The feature set in Table 1 reflects the morpho-
syntactic properties of the phrases to be labeled.
Sometimes world knowledge is required in order
to be able to accurately predict a label; for exam-
ple, to know that the pope can be categorized as
UNUSED-KNOWN, because it can occur discourse-
initially, whereas the priest must usually be cate-
gorized as GIVEN. The BRIDGING relationship is
also difficult to capture without some world knowl-
edge. For example, to infer that the waitress can

be categorized as BRIDGING in the context of the
restaurant requires information that links the two
concepts. Rahman and Ng (2012) also note this and
include features based on FrameNet, WordNet and
the ReVerb corpus for English.

For German, we address this issue by introducing
two further types of features into our model based on
the GermaNet resource (Hamp and Feldweg, 1997).
The first type is based on the GermaNet synset of
the head noun in the phrase and its distance from the
root node (the assumption is that entities closer to
root are more generic than those further away). The
second include the sum and maximum of the Lin
semantic relatedness measures (Lin, 1998) of how
similar the head noun of the phrase is to the other
nouns in current and immediately preceding sen-
tence surrounding the phrase (calculated with Ger-
maNet Pathfinder; Finthammer and Cramer, 2008).
The results are given in Table 3b. Here we see a
consistent increase in performance of around 4% for
each label set over the model that does not include
the GermaNet features. Again, we see the same de-
crease in performance on the Nissim label set when
using gold standard coreference information.

Label Set Accuracy Gold Baseline
coref. feats.

Riester 1 65.49 72.49 57.25
Riester 2 67.21 76.88 58.82
Riester 3 72.43 82.22 64.20
Nissim ’06 76.24 74.06 71.70

(a) Only morpho-syntactic features

Label Set Accuracy Gold coreference
Riester 1 69.56 76.62
Riester 2 71.99 79.86
Riester 3 75.82 84.76
Nissim ’06 79.61 78.46

(b) Morpho-syntactic + GermaNet features

Table 3: Cross validation accuracy results

6 Conclusion

In this paper we presented a model for automatically
labeling German text with fine-grained information
status labels. The results reported here show that we
can achieve high accuracy prediction on a complex
text type (transcribed radio news), even with a lim-
ited amount of data.
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sitätsverlag Potsdam.

Thomas Lavergne, Olivier Cappé, and François Yvon.
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Abstract

This paper proposes a probabilistic approach
to the resolution of referring expressions for
task-oriented dialogue systems. The approach
resolves descriptions, anaphora, and deixis in
a unified manner. In this approach, the notion
of reference domains serves an important role
to handle context-dependent attributes of enti-
ties and references to sets. The evaluation with
the REX-J corpus shows promising results.

1 Introduction

Referring expressions (REs) are expressions in-
tended by speakers to identify entities to hearers.
REs can be classified into three categories: descrip-
tions, anaphora, and deixis; and, in most cases,
have been studied within each category and with a
narrowly focused interest. Descriptive expressions
(such as “the blue glass on the table”) exploit at-
tributes of entities and relations between them to
distinguish an entity from the rest. They are well
studied in natural language generation, e.g., (Dale
and Reiter, 1995; Krahmer et al., 2003; Dale and Vi-
ethen, 2009). Anaphoric expressions (such as “it”)
refer to entities or concepts introduced in the pre-
ceding discourse and are studied mostly on textual
monologues, e.g., (Kamp and Reyle, 1993; Mitkov,
2002; Ng, 2010). Deictic (exophoric) expressions
(such as “this one”) refer to entities outside the pre-
ceding discourse. They are often studied focusing
on pronouns accompanied with pointing gestures in
physical spaces, e.g., (Gieselmann, 2004).

Dialogue systems (DSs) as natural human-
machine (HM) interfaces are expected to han-
dle all the three categories of referring expres-
sions (Salmon-Alt and Romary, 2001). In fact, the

three categories are not mutually exclusive. To be
concrete, a descriptive expression in conversation is
either deictic or anaphoric. It is, however, not easy to
tell whether a RE is deictic or anaphoric in advance
of a resolution (regardless of whether the RE is de-
scriptive or not). Therefore, we propose a general
unified approach to the above three kinds of REs.

We employ a Bayesian network (BN) to model a
RE. Dealing with continuous information and vague
situations is critical to handle real world problems.
Probabilistic approaches enable this for reference re-
solvers. Each BN is dynamically constructed based
on the structural analysis result of a RE and contex-
tual information available at that moment. The BN
is used to estimate the probability with which the
corresponding RE refers to an entity.

One of the two major contributions of this paper is
our probabilistic formulation that handles the above
three kinds of REs in a unified manner. Previously
Iida et al. (2010) proposed a quantitative approach
that handles anaphoric and deictic expressions in a
unified manner. However it lacks handling of de-
scriptive expressions. Our formulation subsumes
and extends it to handle descriptive REs. So far, no
previously proposed method for reference resolution
handles all three types of REs.

The other contribution is bringing reference
domains into that formulation. Reference do-
mains (Salmon-Alt and Romary, 2000) are sets of
referents implicitly presupposed at each use of REs.
By considering them, our approach can appropri-
ately interpret context-dependent attributes. In ad-
dition, by treating a reference domain as a referent,
REs referring to sets of entities are handled, too. As
far as the authors know, this work is the first that
takes a probabilistic approach to reference domains.
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1.1 Reference domains
First, we explain reference domains concretely. Ref-
erence domains (RDs) (Salmon-Alt and Romary,
2000; Salmon-Alt and Romary, 2001; Denis, 2010)
are theoretical constructs, which are basically sets
of entities presupposed at each use of REs. RDs in
the original literature are not mere sets of entities
but mental objects equipped with properties such
as type, focus, or saliency and internally structured
with partitions. In this paper, while we do not ex-
plicitly handle partitions, reference domains can be
nested as an approximation of partitioning, that is,
an entity included in a RD is either an individual en-
tity or another RD. Each RD d has its focus and de-
gree of saliency (a non-negative real number). Here-
after, two of them are denoted as foc(d) and sal(d)
respectively. RDs are sorted in descending order ac-
cording to saliency.

We illustrate reference domains with figure 1. It
shows a snapshot of solving a Tangram puzzle (the
puzzle and corpus are explained in section 3.1). RDs
are introduced into our mental spaces either linguis-
tically (by hearing a RE) or visually (by observing
a physical situation). If one says “the two big tri-
angles” in the situation shown in figure 1, we will
recognize a RD consisting of pieces 1 and 2. If we
observe one moves piece 1 and attaches it to piece
2, we will perceptually recognize a RD consisting
of pieces 1, 2, and 6 due to proximity (Thórisson,
1994). In a similar way, a RD consisting of pieces 5
and 7 also can be recognized. Hereafter, we indicate
a RD with the mark @ with an index, and denote
its elements by enclosing them with [ ]. E.g., @1 =
[1, 2], @2 = [1, 2, 6], @3 = [5, 7]. The focused en-
tity is marked by ‘*’. Thus, foc([1∗, 2]) = 1.

The referent of a RE depends on which RD is pre-
supposed. That is, if one presupposes @1 or @2, the
referent of “the right piece” should be piece 1. If
one presupposes @3, the referent of the same RE
should be piece 5. This is the context-dependency
mentioned above.

Previous work on RDs (Salmon-Alt and Romary,
2000; Salmon-Alt and Romary, 2001; Denis, 2010)
employ not probabilistic but formal approaches.

1.2 Probabilistic approaches to REs
Here, previous probabilistic approaches to REs are
explained and differences between ours and theirs

Figure 1: Tangram puzzle. (The labels 1 to 7 are for il-
lustration purposes and not visible to participants.)

are highlighted. Bayesian networks (Pearl, 1988;
Jensen and Nielsen, 2007) have been not often but
occasionally applied to problems in natural language
processing/computational linguistics since (Char-
niak and Goldman, 1989). With regard to REs,
Burger and Connolly (1992) proposed a BN special-
ized for anaphora resolution. Weissenbacher (2005;
2007) proposed a BN for the resolution of non-
anaphoric “it” and also a BN for the resolution of
pronominal anaphora. They used pre-defined fixed
BNs for their tasks while our approach dynamically
tailors a BN for each RE.

Cho and Maida (1992) and Roy (2002) adopted
not exactly BNs but similar probabilistic approaches
for reference resolution and generation respectively.
However, their foci are only on descriptions.

Lison et al. (2010) proposed an approach using
Markov logic networks (MLNs) (Richardson and
Domingos, 2006) to reference resolution. They
dealt with only deictic and descriptive REs. Even
though MLNs are also a probabilistic framework, it
is difficult for DS developers to provide quantitative
domain knowledge needed to resolve REs because
MLNs accept domain knowledge in the form of for-
mal logic rules with weights, which must be deter-
mined globally. In contrast, BNs are more flexible
and easy in providing quantitative knowledge to DSs
in the form of conditional probability tables, which
can be determined locally.

As just described, there are several probabilis-
tic approaches to REs but none of them incorpo-
rates reference domains. In the next section, we in-
troduce our REBNs (Referring Expression Bayesian
Networks), a novel Bayesian network-based model-
ing approach to REs that incorporates reference do-
mains.
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W C X D

Figure 2: WCXD fundamental structure.

2 Bayesian Network-based Modeling of
Referring Expressions

Each REBN is dedicated for a RE in the context at
the moment. Its structure is determined by the syn-
tactic and semantic information in the RE and prob-
ability tables are determined by the context.

2.1 Structures

Figure 2 shows the fundamental network structure
of REBNs. We call this structure WCXD. The four
nodes (random variables) W , C, X , and D represent
an observed word, the concept denoted by the word,
the referent of the RE, and the presupposed RD, re-
spectively. Here, a word means a lexical entry in
the system dictionary defined by the DS developer
(concept dictionary; section 3.2.1).

Each REBN is constructed by modifying or mul-
tiply connecting the WCXD structure as shown in
figures 3 and 4. Figure 3 shows the network for REs
indicating one referent such as “that table.” Each Wi

node has a corresponding word wi. Figure 4 shows
the network for REs indicating two referents such as
“his table.” We call the class of the former REs s-
REX (simple Referring EXpression) and the class of
the latter REs c-REX (compound Referring EXpres-
sion). Although REBNs have the potential to deal
with c-REX, hereafter we concentrate on s-REX be-
cause the page space is limited and the corpus used
for evaluation contains very few c-REX instances.

Although, in section 1, we explained that (Iida et
al., 2010) handles anaphoric and deictic expressions
in a unified manner, it handles anaphora to instances
only and does not handle that to concepts. There-
fore, it cannot satisfactorily resolve such an expres-
sion “Bring me the red box, and the blue one, too.”
Here, “one” does not refer to the physical referent
of “the red box” but refers to the concept of “box”.
The C nodes will enable handling of such references
to concepts. This is one of the important features of
REBNs but will be investigated in future work.

W1 C1

X D

W2 C2

Figure 3: BN for two-word REs indicating one referent.

W1 C1 X1 D1

W2 C2 X2 D2

Figure 4: BN for two-word REs indicating two referents.

2.2 Domains of random variables

A REBN for an s-REX instance of N words
has 2N + 2 discrete random variables:
W1, . . . , WN , C1, . . . , CN , X , and D. The do-
main of each variable depends on the corresponding
RE and the context at the moment. Here, D(V )
denotes the domain of a random variable V .

D(Wi) contains the corresponding observed word
wi and a special symbol ω that represents other pos-
sibilities, i.e., D(Wi) = {wi, ω}. Each Wi has a
corresponding node Ci.

D(Ci) contains M concepts that can be expressed
by wi and a special concept Ω that represents other
possibilities, i.e., D(Ci) = {c1

i , . . . , c
M
i , Ω}. cj

i

(j = 1 . . . M ) are looked up from the concept dic-
tionary (see section 3.2.1, table 2).

D(D) contains L + 1 RDs recognized up to that
point in time, i.e., D(D) = {@0, @1, . . . , @L}. @0

is the ground domain that contains all the individ-
ual entities to be referred to in a dialogue. At the
beginning of the dialogue, D(D) = {@0}. Other
L RDs are incrementally added in the course of the
dialogue.

D(X) contains all the possible referents, i.e., K
individual entities and L + 1 RDs. Thus, D(X) =
{x1, . . . , xK , @0, . . . , @L}. Including RDs enables
handling of references to sets.

Then reference resolution is formalized as below:

x′ = arg max
x∈D(X)

P (X = x|W1 = w1, . . . , WN = wN ). (1)

P (X|W1, . . . , WN ) is obtained by marginalizing
the joint probabilities that are computed with the
probability tables described in the next subsection.
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2.3 Probability tables

Probability distributions are given as (conditional)
probability tables since all the random variables
used in a REBN are discrete. Here, four types of
probability tables used by REBNs are described.

2.3.1 P (Wi|Ci, X)

P (Wi = w|Ci = c, X = x) is the probability that
a hearer observes w from c and x which the speaker
intends to indicate.

In most cases, Wi does not depend on X , i.e.,
P (Wi|Ci, X) ≡ P (Wi|Ci). X is, however, nec-
essary to handle individualized terms (names).

There are several conceivable ways of probabil-
ity assignment. One simple way is: for each cj

i ,
P (W = wi|C = cj

i ) = 1/T, P (W = ω|C =

cj
i ) = (T − 1)/T , and for Ω, P (W = wi|C =

Ω) = ε, P (W = ω|C = Ω) = 1 − ε. Here T is the
number of possible words for cj

i . ε is a predefined
small number such as 10−8. We use this assignment
in the evaluation.

2.3.2 P (Ci|X, D)

P (Ci = c|X = x,D = d) is the probability that
concept c is chosen from D(Ci) to indicate x in d.

The developers of DSs cannot provide
P (Ci|X, D) in advance because D(Ci) is context-
dependent. Therefore, we take an approach of
composing P (Ci|X = x,D = d) from R(cj

i , x, d)

(cj
i ∈ D(Ci)\{Ω}). Here R(cj

i , x, d) is the rele-
vancy of concept cj

i to referent x with regard to d,
and 0 ≤ R(cj

i , x, d) ≤ 1. 1 means full relevancy
and 0 means no relevancy. 0.5 means neutral. For
example, a concept BOX will have a high relevancy
to a suitcase such as 0.8 but a concept BALL will
have a low relevancy to the suitcase such as 0.1.
If x is not in d, R(cj

i , x, d) is 0. Algorithm 1
in appendix A shows an algorithm to compose
P (Ci|X = x,D = d) from R(cj

i , x, d). Concept
Ω will be assigned a high probability if none of
cj
i ∈ D(Ci)\{Ω} has a high relevancy to x.

If cj
i is static,1 R(cj

i , x, d) is numerically given in
advance in the form of a table. If not static, it is im-
plemented as a function by the DS developer, that is,
R(cj

i , x, d) = f
cj
i
(x, d, I). Here I is all the informa-

tion available from the DS.
1Whether a concept is static or not depends on each DS.

For example, given a situation such as shown in
figure 1, the relevancy function of a positional con-
cept LEFT (suppose a RE such as “the left piece”)
can be implemented as below:

fLEFT(x, d, I) = (ux − ur)/(ul − ur). (2)

Here, ux, ul and ur are respectively the horizontal
coordinates of x, the leftmost piece in d, and the
rightmost piece in d, which are obtained from I . If
x is a RD, the relevancy is given as the average of
entities included in the RD.

2.3.3 P (X|D)

P (X = x|D = d) is the probability that entity x
in RD d is referred to, which is estimated according
to the contextual information at the time the corre-
sponding RE is uttered but irrespective of attributive
information in the RE. The contextual information
includes the history of referring so far (discourse)
and physical statuses such as the gaze of the referrer
(situation). We call P (X = x|D = d) the predic-
tion model.

The prediction model can be constructed by us-
ing a machine learning-based method. We use a
ranking-based method (Iida et al., 2010). The score
output by the method is input into the standard sig-
moid function and normalized to be a probability. If
x is not in d, P (X = x|D = d) is 0.

2.3.4 P (D)

P (D = d) is the probability that RD d is presup-
posed at the time the RE is uttered. We cannot col-
lect data to estimate this probabilistic model because
RDs are implicit. Therefore, we examine three a pri-
ori approximation functions based on the saliency of
d. Saliency is proportional to recency.2

Uniform model This model ignores saliency. This
is introduced to see the importance of saliency.

P (D = d) = 1/|D(D)| (3)

Linear model This model distributes probabilities
in proportion to saliency. This is an analogy of the
method used in (Denis, 2010).

P (D = d) =
sal(d)∑

d′∈D(D) sal(d′)
(4)

2Assignment of saliency is described in section 3.2.3.
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Exponential model This model puts emphasis on
recent RDs. This function is so called soft-max.

P (D = d) =
exp(sal(d))∑

d′∈D(D) exp(sal(d′))
(5)

3 Experimental Evaluation

We evaluated the potential of the proposed frame-
work by using a situated human-human (HH) dia-
logue corpus.

3.1 Corpus

We used the REX-J Japanese referring expression
corpus (Spanger et al., 2010). The REX-J corpus
consists of 24 HH dialogues in each of which two
participants solve a Tangram puzzle of seven pieces
(see figure 1). The goal of the puzzle is combining
seven pieces to form a designated shape (such as a
swan). One of two subjects takes the role of opera-
tor (OP) and the other takes the role of solver (SV).
The OP can manipulate the virtual puzzle pieces dis-
played on a PC monitor by using a computer mouse
but does not know the goal shape. The SV knows
the goal shape but cannot manipulate the pieces. The
states of the pieces and the mouse cursor operated by
the OP are shared by the two subjects in real time.
Thus, the two participants weave a collaborative dia-
logue including many REs to the pieces. In addition
to REs, the positions and directions of the pieces, the
position of the mouse cursor, and the manipulation
by the OP were recorded with timestamps and the
IDs of relevant pieces.

3.1.1 Annotation

Each RE is annotated with its referent(s) as shown
in table 1. The 1st RE okkiisankaku3 big triangle “a
big triangle” in the table is ambiguous and refers to
either piece 1 or 2. The 7th and 8th REs refer to
the set of pieces 1 and 2. The other REs refer to an
individual piece.

To skip the structural analysis of REs to avoid
problems due to errors in such analysis, we have
additionally annotated the corpus with intermediate
structures, from which REBNs are constructed. Be-
cause we focus on s-REX only in this paper, the

3Words are not separated by white spaces in Japanese.

intermediate structures are straightforward:4 paren-
thesized lists of separated words as shown in ta-
ble 1. The procedure to generate a REBN of s-REX
from such an intermediate structure is also straight-
forward and thus it is not explained due to the page
limitation.

3.2 Implementations
We use BNJ5 for probabilistic computation. Here
we describe the implementations of resources and
procedures that are more or less specific to the task
domain of REX-J.

3.2.1 Concept dictionary
Table 2 shows an excerpt of the concept dictio-

nary defined for REX-J. We manually defined 40
concepts by observing the dialogues.

3.2.2 Static relevancy table and relevancy
functions

For 13 concepts out of 40, their relevancy values
were manually determined by the authors. Table 3
shows an excerpt of the static relevancy table defined
for the seven pieces shown in figure 1. TRI is rele-
vant only to pieces 1 to 5, and SQR is relevant only
to pieces 6 and 7 but is not totally relevant to piece 7
because it is not a square in a precise sense. FIG is
equally but not very relevant to all the pieces,6

For the remaining 27 concepts, we implemented
relevancy functions (see appendix B).

3.2.3 Updating the list of RDs
In our experiment, REs are sequentially resolved

from the beginning of each dialogue in the corpus.
In the course of resolution, RDs are added into a list
and updated by the following procedure. RDs are
sorted in descending order according to saliency.

At each time of resolution, we assume that all the
previous REs are correctly resolved. Therefore, af-
ter each time of resolution, if the correct referent of
the last RE is a set, we add a new RD equivalent
to the set into the list of RDs, unless the list con-
tains another equivalent RD already. In either case,
the saliency of the RD equivalent to the set is set to
σ +1 unless the RD is at the head of the list already.

4In the case of c-REX, graph-like structures are required.
5http://bnj.sourceforge.net/
6This is because concept FIG in REX-J is usually used to

refer to not a single piece but a shaped form (combined pieces).
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D-ID Role Start End Referring expression Referents Intermediate structure
0801 SV 17.345 18.390 okkiisankaku big triangle 1 or 2 (okkii sankaku)
0801 SV 20.758 21.368 sore it 1 (sore)
0801 SV 23.394 24.720 migigawanookkiisankaku right big triangle 1 (migigawano okkii sankaku)
0801 SV 25.084 25.277 kore this 1 (kore)
0801 SV 26.512 26.671 sono that 1 (sono)
0801 SV 28.871 29.747 konookkiisankaku this big triangle 2 (kono okkii sankaku)
0801 OP 46.497 48.204 okkinasankakkei big triangle 1, 2 (okkina sankakkei)
0801 OP 51.958 52.228 ryôhô both 1, 2 (ryôhô)

“D-ID” means dialogue ID. “Start” and “End” mean the end points of a RE.

Table 1: Excerpt of the corpus annotation (w/ English literal translations).

Concept Words
TRI triangle, right triangle
SQR quadrate, square, regular tetragon
FIG figure, shape

Table 2: Dictionary (excerpted and translated in English).

Concept Relevancy values by piece
(1) (2) (3) (4) (5) (6) (7)

TRI 1 1 1 1 1 0 0
SQR 0 0 0 0 0 1 0.8
FIG 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 3: Static relevancy table.

Here, σ is the largest saliency value in the list at the
moment (the saliency value of the head RD).

Before each time of resolution, we check whether
the piece that is most recently manipulated after the
previous RE constitutes a perceptual group by using
the method explained in section 3.2.4 at the onset
time of the target RE. If such a group is recognized,
we add a new RD equivalent to the recognized group
unless the list contains another equivalent RD. In ei-
ther case, the saliency of the RD equivalent is set to
σ +1 unless the RD is at the head of the list already,
and the focus of the equivalent RD is set to the most
recently manipulated piece.

When a new RD @m is added to the list, a comple-
mentary RD @n and a subsuming RD @l are also in-
serted just after @m in the list. Here, @n = @0\@m

and @l = [@m∗, @n]. This operation is required to
handle a concept REST, e.g., “the remaining pieces.”

3.2.4 Perceptual grouping
There is a generally available method of simulated

perceptual grouping (Thórisson, 1994). It works
well in a spread situation such as shown in figure 1
but tends to produce results that do not match our
intuition when pieces are tightly packed at the end
of a dialogue. Therefore, we adopt a simple method
that recognizes a group when a piece is attached to
another. This method is less general but works sat-

isfactorily in the REX-J domain due to the nature of
the Tangram puzzle.

3.2.5 Ranking-based prediction model
As mentioned in section 2.3.3, a ranking-based

method (Iida et al., 2010) using SVMrank (Joachims,
2006) was adopted for constructing the prediction
model P (X|D). This model ranks entities accord-
ing to 16 binary features such as whether the tar-
get entity is previously referred to (a discourse fea-
ture), whether the target is under the mouse cursor
(a mouse cursor feature), etc.7

When a target is a set (i.e., a RD), discourse fea-
tures for it are computed as in the case of a piece;
meanwhile, mouse cursor features are handled in a
different manner. That is, if one of the group mem-
bers meets the criterion of a mouse cursor feature,
the group is judged as meeting the criterion.

In (Iida et al., 2010), preparing different models
for pronouns and non-pronouns achieved better per-
formance. Therefore we trained two linear kernel
SVM models for pronouns and non-pronouns with
the 24 dialogues.

3.3 Experiment

We used the 24 dialogues for evaluation.8 As men-
tioned in section 2.1, we focused on s-REX. These
24 dialogues contain 1,474 s-REX instances and 28
c-REX instances. In addition to c-REX, we ex-
cluded REs mentioning complicated concepts, for
which it is difficult to implement relevancy func-
tions in a short time.9 After excluding those REs,

7Following the results shown in (Iida et al., 2010), we did
not use the 6 manipulation-related features (CO1 . . . CO6).

8We used the same data to train the SVM-rank models. This
is equivalent to assuming that we have data large enough to sat-
urate the performance of the prediction model.

9Mostly, those are metaphors such as “neck” and concepts
related to operations such as “put.” For example, although
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P (D) model Most-recent Mono-domain Uniform Linear Exponential
Category Single Plural Total Single Plural Total Single Plural Total Single Plural Total Single Plural Total

w/o S/P info. 42.4 28.8 40.0 77.5 47.3 73.3 77.1 40.6 72.0 78.3 45.1 73.7 76.2 48.4 72.3
w/ S/P info. 44.3 35.4 42.7 84.8 58.8 81.2 84.4 55.0 80.3 85.6 61.0 82.1 83.4 68.1 81.3

Table 4: Results of reference resolution (Accuracy in %).

1,310 REs were available. Out of the 1,310 REs, 182
REs (13.9%) refers to sets, and 612 REs (46.7%) are
demonstrative pronouns such as sore “it.”

3.3.1 Settings
We presupposed the following conditions.
Speaker role independence: We assumed REs

are independent of speaker roles, i.e., SV and OP.
All REs were mixed and processed serially.

Perfect preprocessing and past information:
As mentioned in sections 3.1.1 and 3.2.3, we as-
sumed that no error comes from preprocessing in-
cluding speech recognition, morphological analysis,
and syntactic analysis;10 and all the correct referents
of past REs are known.11

No future information: In HH dialogue, some-
times information helpful for resolving a RE is pro-
vided after the RE is uttered. We, however, do not
consider such future information.

Numeral information: Many languages includ-
ing English grammatically require indication of nu-
meral distinctions by using such as articles, singu-
lar/plural forms of nouns and copulas, etc. Although
Japanese does not have such grammatical devices,12

it would be possible to predict such distinctions by
using a machine learning technique with linguistic
“putting a piece” and “getting a piece out” are distinguished
due to speakers’ intentions, they are (at least superficially) ho-
mogeneous in the physical data available from the corpus and
difficult for machines to distinguish each other.

10In general, the speech and expressions in human-machine
(HM) dialogue are less complex and less difficult to process
than those in HH dialogue data. This is typcially observed as
fewer disfluencies (Shriberg, 2001) and simpler sentences with
fewer omissions (Itoh et al., 2002). Therefore, when we apply
our framework to real DSs, we can expect clearer and simpler
input and thus better performance. We supposed that the condi-
tion of perfect preprocessing in HH dialogue approximates the
results to those obtained when HM dialogue data is used.

11If a reference is misinterpreted (i.e., wrongly resolved) in a
dialogue, usually that misinterpretation will be repaired by the
interlocutors in the succeeding interaction once the misinterpre-
tation becomes apparent. Therefore, accumulating all past er-
rors in resolution is rather irrational as an experimental setting.

12Japanese has a plurality marker -ra (e.g., sore-ra), but use
of it is not mandatory (except for personal pronouns).

and gestural information. Therefore we observed the
effect of providing such information. In the follow-
ing experiment we provide the singular/plural dis-
tinction information to REBNs by looking at the an-
notations of the correct referents in advance. This
is achieved by adding a special evidence node C0,
where D(C0) = {S, P}. P (C0 = S|X = x) = 1
and P (P|x) = 0 if x is a piece. On the contrary,
P (S|x) = 0 and P (P|x) = 1 if x is a set.

3.3.2 Baselines
To our best knowledge, there is no directly com-

parable method. We set up two baselines. The first
baseline uses the most recent as the resolved refer-
ent for each RE (Initial resolution of each dialogue
always fails). This baseline is called Most-recent.

As the second baseline, we prepared another
P (D) model in addition to those explained in sec-
tion 2.3.4, which is called Mono-domain. In Mono-
domain, D(D) consists of only a single RD @′

0,
which contains individual pieces and the RDs recog-
nized up to that point in time. That is, @′

0 = D(X).
Resolution using this model can be considered as
a straightforward extension of (Iida et al., 2010),
which enables handling of richer concepts in REs13

and handling of REs to sets14.

3.3.3 Results
The performance of reference resolution is pre-

sented by category and by condition in terms of ac-
curacy (# of correctly resolved REs/# of REs).

We set up the three categories in evaluating res-
olution, that is, Single, Plural, and Total. Category
Single is the collection of REs referring to a single
piece. Plural is the collection of REs referring to a
set of pieces. Total is the sum of them. Ambigu-
ous REs such as the first one in table 1 are counted
as “Single” and the resolution of such a RE is con-
sidered correct if the resolved result is one of the
possible referents.

13(Iida et al., 2010) used only object types and sizes. Other
concepts such as LEFT were simply ignored.

14(Iida et al., 2010) did not deal with REs to sets.
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“w/o S/P info.” indicates experimental results
without singular/plural distinction information. “w/
S/P info.” indicates experimental results with it.

Table 4 shows the results of reference resolution
per P (D) modeling method.15 Obviously S/P infor-
mation has a significant impact.

While the best performance for category Single
was achieved with the Linear model, the best perfor-
mance for Plural was achieved with the Exponen-
tial model. If it is possible to know whether a RE
is of Single or Plural, that is, if S/P information is
available, we can choose a suitable P (D) model.
Therefore, by switching models, the best perfor-
mance of Total with S/P information reached 83.4%,
and a gain of 2.0 points against Mono-domain was
achieved (sign test, p < 0.0001).

Because the corpus did not include many in-
stances to which the notion of reference domains is
effective, the impact of RDs may appear small on the
whole. In fact, the impact was not small. By intro-
ducing RDs, resolution in category Plural achieved
a significant advancement. The highest gain from
Mono-domain was 9.3 points (sign test, p < 0.005).
Moreover, more REs containing positional concepts
such as LEFT and RIGHT were correctly resolved
in the cases of Uniform, Linear, and Exponential.
Table 5 summarizes the resolution results of four
positional concepts (with S/P information). While
Mono-domain resolved 65% of them, Linear cor-
rectly resolved 75% (sign test, p < 0.05).

As shown in table 4, the performance of the Uni-
form model was worse than that of Mono-domain.
This indicates that RDs introduced without an ap-
propriate management of them would be harmful
noise. Conversely, it also suggests that there might
be a room for improvement by looking deeply into
the management of RDs (e.g., forgetting old RDs).

4 Conclusion

This paper proposed a probabilistic approach to ref-
erence resolution, REBNs, which stands for Refer-
ring Expression Bayesian Networks. At each time
of resolution, a dedicated BN is constructed for the

15According to the results of preliminary experiments, even
in the case of the Uniform/Linear/Exponential models, we re-
solved the REs having demonstratives with the Mono-domain
model. This is in line with the finding of separating models
between pronouns and non-pronouns in (Iida et al., 2010).

Concept Count Mono Uni. Lin. Exp.
LEFT 21 11 12 16 13

RIGHT 33 23 23 25 27
UPPER 9 6 6 6 4
LOWER 6 5 4 5 4

Total 69 45 45 52 48

(Count means the numbers of occurrence of each concept. Mono, Uni.,
Lin., and Exp. correspond to Mono-domain, Uniform, Linear and Ex-
ponential.)

Table 5: Numbers of correctly resolved REs containing
positional concepts.

RE in question. The constructed BN deals with ei-
ther descriptive, deictic or anaphoric REs in a uni-
fied manner. REBNs incorporate the notion of ref-
erence domains (RDs), which enables the resolution
of REs with context-dependent attributes and han-
dling of REs to sets. REBNs are for task-oriented
dialogue systems and presuppose a certain amount
of domain-dependent manual implementation by de-
velopers. Therefore, REBNs would not be suited
to general text processing or non-task-oriented sys-
tems. However, REBNs have the potential to be a
standard approach that can be used for any and all
task-oriented applications such as personal agents in
smart phones, in-car systems, service robots, etc. 　

The proposed approach was evaluated with the
REX-J human-human dialogue corpus and promis-
ing results were obtained. The impact of incorpo-
rating RDs in the domain of the REX-J corpus was
recognizable but not so large on the whole. How-
ever, in other types of task domains where grouping
and comparisons of objects occur frequently, the im-
pact would be larger. Note that REBNs are not lim-
ited to Japanese, even though the evaluation used a
Japanese corpus. Evaluations with human-machine
dialogue are important future work.

Although this paper focused on the simple type of
REs without relations, REBNs are potentially able
to deal with complex REs with relations. The eval-
uation for complex REs is necessary to validate this
potential of REBN. Currently REBN assumes REs
whose referents are concrete entities. An extension
for handling abstract entities (Byron, 2002; Müller,
2007) is important future work. Another direction
would be generating REs with REBNs. A generate-
and-test approach is a naive application of REBN
for generation. More efficient method is, however,
necessary.
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A Algorithm to compose P (C|X, D)

Algorithm 1 Composing P (C|X = x, D = d).
Input: D(C); R(c, x, d) for all c ∈ D(C)\{Ω}
Output: P (C|X = x,D = d)

1: n← 0, s← 0, S = D(C)\{Ω}
2: for all c ∈ S do
3: r[c]← R(c, x, d) #{Relevancy of concept c}
4: s← s + r[c] #{Sum of relevancy r[c]}
5: n← n + (1− r[c]) #{Sum of residual (1− r[c])}
6: end for
7: r[Ω]← n/|S|
8: s← s + r[Ω]
9: for all c ∈ D(C) do

10: P (C = c|X = x, D = d)← r[c]/s
11: end for
(#{. . . } is a comment.)

B Relevancy functions

As explained in section 2.3.2, the relevancy func-
tions for positional concepts such as LEFT and
RIGHT were implemented as geometric calcula-
tions. Here several other relevancy functions are
shown with corresponding example REs.

“this figure”:

R(FIG, x, d)

=





0.3 : if single(x)
1 : if not single(x) and shape(x)
0 : otherwise

(single(x) means x is a single piece. shape(x)
means x is a set of pieces that are concatenated and

form a shape. 0.3 comes from the static relevancy
table.)

“both the triangles”:

R(BOTH, x, d) =

{
1 : if |x| = 2
0 : otherwise

“another one”:

R(ANOTHER, x, d) =

{
1 : if foc(d) '= x
0 : otherwise

“the remaining ones”:

R(REST, x, d) =

{
1 : if d = [x, y∗]
0 : otherwise

(REST requires |d| = 2, and both x and y are sets.
ANOTHER does not.)

“all”:

R(ALL, x, d) =

{
1 : if x = d
0 : otherwise

(ALL does not always refer to @0.)
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Abstract 

Dialogue act modeling in task-oriented 
dialogue poses significant challenges. It is 
particularly challenging for corpora 
consisting of two interleaved 
communication streams: a dialogue stream 
and a task stream. In such corpora, 
information can be conveyed implicitly by 
the task stream, yielding a dialogue stream 
with seemingly missing information. A 
promising approach leverages rich 
resources from both the dialog and the task 
streams, combining verbal and non-verbal 
features. This paper presents work on 
dialogue act modeling that leverages body 
posture, which may be indicative of 
particular dialogue acts. Combining three 
information sources (dialogue exchanges, 
task context, and users’ posture), three 
types of machine learning frameworks 
were compared. The results indicate that 
some models better preserve the structure 
of task-oriented dialogue than others, and 
that automatically recognized postural 
features may help to disambiguate user 
dialogue moves.  

1 Introduction 

Dialogue act classification is concerned with 
understanding users’ communicative intentions as 
reflected in their utterances. It is an important first 
step toward building automated dialogue systems. 
To date, the majority of work on dialogue act 

modeling has addressed spoken dialogue (Samuel 
et al., 1998; Stolcke et al., 2000; Surendran and 
Levow, 2006; Bangalore et al., 2008; Sridhar et al., 
2009; Di Eugenio et al., 2010). However, with the 
increasing popularity of computer-mediated means 
of conversation, such as instant messaging and 
social networking services, automated analysis of 
textual dialogue holds much appeal. Dialogue act 
modeling for textual conversations has many 
practical application areas, which include web-
based intelligent tutoring systems (Boyer et al., 
2010a), chat-based online customer service (Kim 
et al., 2010), and social media analysis (Joty et al., 
2011). 

Human interaction involves not only verbal 
communication but also nonverbal communication. 
Research on nonverbal communication (Knapp and 
Hall, 2006; Mehrabian, 2007; Russell et al., 2003) 
has identified a range of nonverbal cues, such as 
posture, gestures, eye gaze, and facial and vocal 
expressions. However, the utility of these 
nonverbal cues has not been fully explored within 
the context of dialogue act classification research. 
Previous research has leveraged prosodic cues 
(Sridhar et al., 2009; Stolcke et al., 2000) and 
facial expressions (Boyer et al., 2011) for 
automatic dialogue act classification, but other 
types of nonverbal cues remain unexplored. As a 
first step toward a dialogue system that learns its 
behavior from a human corpus, this paper proposes 
a novel approach to dialogue act classification that 
leverages information about users’ posture. Posture 
has been found to be a significant indicator of a 
broad range of emotions (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Based on the premise that emotion plays an 
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important role in dialogue, this work hypothesizes 
that adding posture features will improve the 
performance of automatic dialogue act models.  

 The domain considered in this paper is task-
oriented textual dialogue collected in a human 
tutoring study. In contrast to conventional task-
oriented dialogue corpora (e.g., Carletta et al., 
1997; Jurafsky et al., 1998; Ivanovic, 2008) in 
which conversational exchanges are carried out 
within a single channel of dialogue between the 
dialogue participants, the corpus used in this work 
utilizes two separate and interleaved streams of 
communication. One stream is the textual 
conversation between a student and a tutor 
(dialogue stream). The other is the student’s 
problem-solving activity (task stream). As will be 
described in Section 3, the interface used in the 
corpus collection was designed to allow the tutor to 
monitor the student’s problem-solving activities. 
Thus, the student’s problem-solving activities and 
the tutor’s monitoring of those activities functioned 
as an implicit communication channel. This 
characteristic of the corpus poses significant 
challenges for dialogue act modeling. First, 
because the dialogue stream and the task stream 
are interleaved, the dialogue stream alone may not 
be coherent. Second, since information can be 
exchanged implicitly via the task stream, the 
dialogue likely contains substantial information 
gaps1. 

Addressing these challenges, the dialogue act 
models described in this paper combine three 
sources of information: the verbal information 
from the dialogue stream, the task-related context 
from the task stream, and information about users’ 
posture. This paper makes several contributions to 
the dialogue research community. First, it is the 
first effort to explore posture as a nonverbal cue 
for dialogue act classification. Second, the 
proposed approach is fully automatic and ready for 
real-world application. Third, this paper explicitly 
defines the notion of information gap in task-
oriented dialogue consisting of multiple 
communication channels, which has only begun to 
be explored in the context of dialogue act 
classification (Boyer et al., 2010a). Finally, this 

                                                
1 In this paper, information gap is defined as the information 
that is missing from the explicit verbal exchanges between the 
dialogue participants but conveyed by the implicit task stream. 

paper examines adaptability of previous dialogue 
act classification approaches in conventional task-
oriented domains by comparing three classifiers 
previously applied to dialogue act modeling for 
task-oriented dialogue. 

2 Related Work 

A rich body of research has addressed data-driven 
approaches for dialogue act modeling. Russell et 
al. (2003) applied a transformation-based learning 
approach for dialogue act tagging for spoken 
dialogue, using speaker direction, punctuation, 
marks, and cue phrases. Stolcke et al. (2000) 
modeled the structure of dialogue as an HMM, 
treating the dialogue acts as the observations 
emitted from the hidden states of the learned 
HMM. More recently, Bangalore et al. (2008) 
proposed a unified approach to task-oriented 
dialogue, in which both the user dialogue act 
classification and the system dialogue act selection 
were informed by a shared maximum entropy 
dialogue act classifier. Sridhar et al. (2009) also 
used a maximum entropy model, exploring the 
utility of different representations of prosodic 
features. Di Eugenio et al. (2010) used a memory-
based classifier, in combination with a modified 
latent semantic analysis (LSA) technique by 
augmenting the original word-document matrix in 
LSA with rich linguistic features. 

While most work on dialogue act modeling has 
focused on spoken dialogue, a recent line of 
investigation has explored the analysis of textual 
conversation, such as asynchronous online chat 
conversation (Wu et al., 2005; Forsyth, 2007; 
Reitter et al., 2010; Joty et al., 2011) and 
synchronous online chat conversation   (Ivanovic, 
2008; Kim et al., 2010; Boyer et al., 2010a). Wu et 
al. (2005) proposed a transformation-based 
learning approach for an asynchronous chat 
posting domain, utilizing regular expression-based 
selection rules. For a similar domain, Forsyth 
(2007) applied neural networks and Naïve Bayes 
classification technique using lexical cues. Ritter et 
al. (2010) and Joty et al. (2011) applied 
unsupervised learning approaches to dialogue act 
modeling for Twitter conversations, in which 
dialogue acts were automatically discovered by 
clustering raw utterances. Work by Ivanovic 
(2008) and Kim et al. (2010) analyzed one-to-one 
synchronous online chat dialogue in a task-oriented 
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customer service domain. Ivanovic (2008) applied 
maximum entropy, naïve Bayes, and support 
vector machines using word n-gram features. Kim 
et al. (2010) compared the CRF, HMM-SVM, and 
Naïve Bayes classifiers using word n-grams and 
features extracted from the dialogue structure, in 
which CRF achieved the highest performance. 
Boyer et al. (2010a) investigated dialogue act 
modeling for task-oriented tutorial dialogue, 
applying a logistic regression approach using 
lexical, syntactic, dialogue structure, and task 
structure features. 

Some previous dialogue act modeling work 
(Boyer et al., 2011; Sridhar et al., 2009; Stolcke et 
al., 2000) leveraged nonverbal information such as 
prosodic cues (Sridhar et al., 2009; Stolcke et al., 
2000) and facial expressions (Boyer et al., 2011). 
Stolcke et al. (2000) combined various prosodic 
features such as pitch, duration, and energy. 
Sridhar et al. (2009) represented the sequence of 
prosodic features as n-grams. Boyer et al. (2011) 
leveraged confusion-related facial expressions for 
tutorial dialogue. 

Like Boyer et al. (2010a), this work addresses 
dialogue act classification for task-oriented textual 
conversation in a web-based tutoring domain. In 
contrast to Boyer et al. (2010a), whose approach 
directly leveraged manually annotated features, 
making it challenging to apply the proposed model 
to a real-world system, the present work is fully 
automatic and ready for real-world application.  A 
novel feature of this work is its utilization of 
nonverbal cues carried by users’ posture. This is 
the first dialogue act classification work that 
leverages posture information. 

3 Data 

The corpus used in this paper consists of textual 
exchanges between a student and a tutor in a web-
based remote-tutoring interface for introductory 
programming in Java. The corpus was collected 
from a series of six tutoring lessons, covering 
progressive topics in computer science over the 
course of four weeks. The tutoring interface 
consisted of four windows: a task window 
displaying the current programming task; a code 
window in which the student writes Java code; an 
output window for displaying the result of 
compiling and running the code; and a chat 
window for instant exchange of textual dialogue 

between the student and tutor. With this tutoring 
interface, the student and the tutor were able to 
exchange textual dialogue and share a 
synchronized view of the task. Apart from sending 
dialogue messages, the only action the tutor could 
perform to affect the student’s interface was 
advancing to the next programming task.  

3.1 Data Collection 

The data collection conducted in Fall 2011 paired 
42 students with one of four tutors for six forty-
minute tutoring sessions on introductory computer 
science topics.  The students were chosen from a 
first-year engineering course and were pre-
screened to filter out those with significant 
programming experience. The tutors were graduate 
students with previous tutoring or teaching 
experience in Java programming. Students were 
compensated for their participation with partial 
course credit. The students worked with the same 
tutor for the entire study. Each lesson consisted of 
between four and thirteen distinct subtasks. 

During each tutoring session, the dialogue text 
exchanged between the student and the tutor was 
logged to a database. Additional runtime data 
including content of the student’s Java code, the 
result (e.g., success or failure) of compiling and 
running the student’s code, and the IDs of the 
subtask were logged. All logged data were time-
stamped at a millisecond precision. Students’ body 
posture was recorded at a rate of 8 frames per 
second with a Kinect depth camera, which emits 
infrared rays to measure distance for each pixel in 
a depth image frame. The camera was positioned 
above the student’s computer monitor, ensuring the 
student’s upper body is centered in the recorded 
image. Tutors were not recorded. 

3.2 Dialogue Act Annotation 

For the work described in this paper, a subset of 
the collected data was manually annotated, which 
include the first of the six tutoring lessons from 21 
students. This corpus contains 2564 utterances 
(1777 tutor, 787 student). The average number of 
utterances per tutoring session was 122 (min = 74; 
max = 201). The average number of tutor 
utterances per session was 84.6 (min = 51; max = 
137) and the average number of student utterances 
per session was 37.4 (min = 22; max = 64). 
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Extending a previous annotation scheme used 
for similar task-oriented tutorial dialogue (Boyer et 
al., 2010b), the scheme used in this work consists 
of 13 dialogue act tags (Appendix). The dialogue 
turns that contained more than one dialogue 
function were segmented into multiple utterances 
before being assigned a dialogue act tag. The 
annotation scheme did not constrain any of the 
dialogue act tags as applying either to students’ or 
tutors’ utterances only; however, the resulting 
distribution of the tags in the annotated corpus 
show certain dialogue act tags were more relevant 
to either students’ or tutors’ utterances. Figure 1 
depicts an excerpt from the corpus with the 
manually applied dialogue act annotations. 

 

 
Three human annotators were trained to apply 

the scheme. The training consisted of an iterative 
process involving collaborative and independent 
tagging, followed by refinements of the tagging 
protocol. At the initial phase of training, the 
annotators tagged the corpus collaboratively. In 
later phases annotators tagged independently. To 
compute agreement between different annotators, 
24% (5 of the 21 sessions) of the corpus were 
doubly annotated by two annotators. All possible 

pairs of the annotators participated in double 
annotation. The aggregate agreement was .80 in 
Cohen’s Kappa (Cohen, 1960). 

3.3 Posture Estimation 

Posture has been found to be a significant indicator 
of a broad range of emotions such as anxiety, 
boredom, confusion, engaged concentration (or 
flow), frustration, and joy (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Early investigations into posture utilized pressure-
sensitive chairs which provided indirect measures 
of upper-body posture (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Newer, computer vision-based techniques provide 
more detailed postural data (Sanghvi et al., 2011). 
The present work uses a posture estimation 
algorithm developed to automatically detect the 
head, mid torso, and lower torso through depth 
image recordings of seated individuals (Grafsgaard 
et al., 2012). With this estimation algorithm, 
posture is represented as a triple of head depth 
(distance between camera and head), mid torso 
depth, and lower torso depth. 

A dataset of depth camera recordings from the 
first of the six tutoring lessons consists of 512,977 
depth image frames collected across 18.5 hours of 
computer-mediated human-human tutoring among 
33 participants.2 For each depth image frame, the 
posture algorithm scanned through the three 
middle regions that corresponded to head, mid-
torso, and lower-torso of the recorded person, and 
selected a single representative depth pixel from 
each region. The boundaries for each region were 
heuristically determined relying on the placement 
of the students’ chairs in the middle of the depth 
recording view at a common distance. Given these 
constraints, the model was manually verified by 
two independent human judges to have 95.1% 
accuracy across 1,109 depth image snapshots 
corresponding to one-minute intervals across the 
dataset. The algorithm output for each depth image 
was labeled as erroneous if either judge found that 
any of the posture tracking points did not coincide 
with its target region. Example output of the 
algorithm is shown in Figure 2.  

                                                
2 The other 9 sessions were not successfully recorded because 
of technical errors. 

Tutor: hang on :) [S] 
Tutor: When we show you example code, it is not the 
code you need to write. [S] 
Tutor: Look at the task again. [H] 

Student writes programming code 
Tutor: YUP [PF] 
Tutor: Perfect [PF] 
Tutor: OK. Go ahead and test. [DIR] 
Student: And I don't need anything in the 
parentheses? [Q] 
Tutor: Line 9 is correct. You do NOT need anything 
inside the parentheses. [A] 
Student: Ok [ACK] 

Student compiles and runs code successfully 
Tutor: Good. [PF]  
Tutor: Moving on. [S] 

Tutor advances to the next task. 
Student writes programming code 

Tutor: Syntactically correct. But there is a logic error 
[LF] 
Tutor: When will the output statement display your 
request to the player? [Q] 
Student: AFTER they put in their name [A] 
Tutor: Exactly [PF] 

Figure 1. Corpus Excerpt with Dialogue Act Annotation 
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4 Features 

For web-based one-to-one dialogue systems, it is 
important to achieve efficient runtime 
performance. To maximize real-world feasibility of 
the learned dialogue act classifiers, this work only 
considers the features that can be automatically 
extracted at runtime. In addition, the use of 
linguistic analysis software, such as a part-of-
speech tagger and a syntactic parser, is 
intentionally restrained. One might argue that rich 
linguistic analysis may provide additional 
information to dialogue act classifiers, potentially 
improving the performance of learned models. 
However, there is a trade-off between additional 
information obtained by rich linguistic analysis and 
processing time. In addition, previous work (Boyer 
et al., 2010a) found part-of-speech and syntax 
features did not provide obvious benefit for 
dialogue act classification in a domain similar to 
the one considered in this work. The dialogue act 
classifiers described in this paper integrate four 
classes of features automatically extracted from 
three sources of information: the textual dialogue 
utterances, task-related runtime information logged 
into the database, and the images of the students 
recorded by depth cameras. Each feature class is 
explained in the following subsections. 

4.1 Lexical Features 

Based on previous dialogue act classification 
research (Bangalore et al., 2008; Boyer et al., 
2010a; Kim et al., 2010), this work utilizes word n-
grams as features for dialogue act classification. In 
the experiment reported in Section 5, unigrams and 

bigrams were used. Adding higher order n-grams 
did not improve model accuracies. In our corpus 
(Section 3), the nature of the student dialogues is 
informal and utterances contain many typos. To 
remove undesirable noise in the data such as typos 
and rare words, n-grams were filtered out 
according to their frequency in the training data 
(i.e., n-grams that appear less than a predefined 
cutoff threshold in the training data are not 
included as features). The value of the cutoff 
threshold was empirically determined by testing 
the values between 0 and 10 on a development data 
set that consisted of 20% of randomly selected 
dialogue sessions. The value of 3 was selected as it 
yielded the highest classification accuracy. 

4.2 Dialogue Context Features 

While lexical features characterize the intrinsic 
nature of individual utterances, the context of the 
utterance within a larger dialogue structure 
provides additional information about a given 
utterance in relation with other utterances. This 
work considers the following dialogue context 
features: 

• Utterance Position: Specifies the relative 
position of an utterance at a given turn. The 
value of this feature indicates whether the 
utterance is the first one in a given turn, the 
second or later one in a given turn, or the given 
turn consists of a single utterance. 

• Length: Specifies the number of a given 
utterance in terms of individual word tokens. 

• Previous Author: Indicates whether the author 
of the previous utterance was student or tutor. 

• Previous Tutor Dialogue Act: Specifies 
dialogue act of the most recent tutor utterance. 
The value of this feature is directly extracted 
from the manual annotation in the corpus, 
because in the broader context of our work, 
tutor dialogue moves will be determined by an 
external dialogue management module.   

4.3 Task Context Features 

In our data, students’ problem-solving activities 
(e.g., reading the problem description, writing 
computer programming code, and compiling and 
running the code) functioned as an implicit 
communication channel between students and 
tutors (Section 1). Because of the existence of this 

Figure 2. Automatically detected posture points (H = 
headDepth, M = midTorsoDepth, L = lowerTorsoDepth) 
 

 H 

 M 
 L 
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implicit communication channel, the dialogue 
exchanges between students and tutors likely 
contain substantial information gaps. To overcome 
such information gaps, it is important to identify 
effective task context features. The present work 
leverages the following task context features, 
which can be automatically extracted during 
runtime: 

• Previous Task Action: Specifies the type of the 
most recent problem-solving action performed 
by the student. The value could be message 
(writing a textual message to the tutor) code 
(writing code in the code window), or 
compile_run (compiling or running the code). 

• Task Begin Flag: A binary feature that 
indicates whether a given utterance is the first 
one since the current problem task was posted.  

• Task Activity Flag: Another binary feature 
indicating that a given utterance was preceded 
by a student’s task activity. 

• Last Compile/Run Status: Specifies the status 
(e.g., begin, stop, success, error, input sent) of 
the most recent compile/run action performed 
by the students.  

In addition to the listed task context features, the 
utility of time information was also explored, such 
as the amount of time taken for previous coding 
activity and the elapsed time since the beginning of 
the current task. However, these features did not 
positively impact the performance of the learned 
models and were thus excluded. 

4.4 Posture Features 

After preprocessing recorded image frames with 
the estimation algorithm (Section 3.3), students’ 
postures were represented as tuples of three 
different integer values, each respectively 
representing head depth, mid torso depth, and 
lower torso depth. To extract posture features, the 
time window of n seconds directly preceding a 
given utterance was compared with the previous 
time window of the same size in terms of min, 
max, median, average, and variance of each depth 
value. The indicators of whether each of these 
values has increased, decreased or remained the 
same were considered as potential posture features. 
To avoid introducing errors to the model by 
insignificant changes in posture, an error tolerance 
𝜏  was allowed (i.e., the two compared postures 

were considered the same unless the amount of the 
change in the posture was greater than 𝜏). 

Optimal values for n and 𝜏  were empirically 
determined, selecting the values that maximized 
classification accuracy on the development data 
set. For n, the values between 0 and 60 were 
compared at an interval of 10. The value of 50 was 
selected for head depth and 60 for both mid torso 
depth and lower torso depth.  Similarly, the value 
of 𝜏  was determined by comparing the values 
between 0 and 200 with an increment of 10. The 
selected value was 100.  

All the potential posture features were examined 
in an informal experiment, in which each of the 
potential posture features were added to the 
combination of the lexical, the dialogue context, 
and the task context features. The posture features 
that improved the classification accuracy after 
adding them were included in the present dialogue 
act models. The selected posture features are min 
of head depth and max, median, and average of 
lower torso depth. None of the mid torso depth 
features were selected. 

5 Experiment 

The goal of this experiment is twofold: (1) to 
evaluate the effectiveness of the feature classes and 
(2) to compare the performance of three classifiers: 
maximum entropy (ME), naïve Bayes (NB), and 
conditional random field (CRF). These classifiers 
are chosen because they have been shown effective 
for dialogue act modeling in traditional task-
oriented textual dialogue, in which conversational 
exchanges were carried out by a single channel of 
dialogue (Ivanovic, 2008; Kim et al., 2010). 
Previous result by Kim et al. (2010) suggests a 
structured model such as CRF yields more accurate 
dialogue act model compared to unstructured 
models (e.g., Naïve Bayes), because of its ability to 
model the sequential patterns in target 
classification labels. This experiment examines 
whether a similar finding is observed for our 
domain, which exhibits substantial information 
gaps due to the existence of an implicit 
communication channel, the task stream. 

5.1 Dialogue Act Modeling 

All classifiers were built using the MALLET 
package (McCallum, 2002). This experiment used 
the manually annotated portion of the data 
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described in Section 3. The original dialogue 
scheme (Section 3.2) was slightly modified by 
introducing an additional dialogue act, GR, in 
order to distinguish conventional expressions, such 
as greetings and thanks, from other information-
delivering utterances. For this modified scheme, 
annotator agreement was 0.81 in Cohen’s Kappa 
on the doubly annotated portion of the corpus. 6 
among the 21 dialogue sessions in the annotated 
data do not have accompanying images due to 
technical problems with the depth camera, thus 
these sessions were excluded from this experiment. 
Table 1 shows the distribution of the student 
dialogue act tags in the resulting corpus of 15 
dialogues used in this experiment. The most 
frequent tag was A (answer), followed by ACK 
(acknowledgement) and Q (question). The features 
were extracted by aligning three sources of 
information (the textual dialogue corpus, the task-
related runtime log data, and the recorded images) 
by timestamp. Word boundaries in the dialogue 
corpus were recognized by the surrounding white 
spaces and punctuations. 

The dialogue context features (D) leveraged in 
this paper includes previous tutor dialogue act. 
This feature takes the manually annotated value in 
the corpus, because this work assumes the 
existence of an external dialogue manager. 
However, since the external dialogue manager is 
not likely to achieve 100% accuracy in predicting 
human tutor dialogue acts, it would be informative 
to estimate a reasonable range of the accuracies of 
the student dialogue act model, taking into account 
the errors introduced by the dialogue manager. For 
this reason, two versions of the dialogue context 
features were considered in this experiment: one 
that leverages the full set of dialogue context 
features (D) and the other that excludes previous 

tutor dialogue act (D-). These respectively provide 
the maximum and the minimum expected accuracy 
of the student dialogue act model, when used with 
a dialogue manager. 

The models were trained and tested using five-
fold cross validation, in which the 15 dialogue 
sessions were partitioned into 5 non-overlapping 
sets of the same size (i.e., 3 sessions per partition). 
Each set was used for testing exactly once. 

5.2 Results 

Table 2 reports the average classification 
accuracies from the five-fold cross validation. The 
majority baseline accuracy for our data is .347, 
when the classifier always chooses the most 
frequent dialog act (A). The first group of rows in 
Table 3 report the accuracies of individual feature 
classes. All of the individual features performed 
better than the baseline. The improvement from the 
baseline was significant except for D- with CRF. 
The most powerful feature class was dialogue 
context class when the full set was used. The 
second group in Table 3 shows the effects of 
incrementally combining the feature classes. 
Adding dialogue act features to the lexical features 
(L + D) brought significant improvement in the 
classification accuracy for ME and CRF. Adding 
posture features (L + D + T + P) also improved the 
accuracy of ME by a statistically significant 
margin. The last group shows similar results for 
ME when the previous tutor dialogue act was 
excluded from the dialogue context, except that the 
improvement achieved by adding the posture 
features (L + D- + T + P) was not significant.  

Student Dialogue Act Distribution 
A (answer) 192 (34.7%) 
ACK (acknowledgement) 124 (22.4%) 
Q (question)  92 (16.6%)  
S (statement) 76 (13.7%) 
GR (greeting and thanks) 52 (9.4%) 
C (clarification) 6 (1.0%) 
RF (request for feedback) 5 (.9%) 
RC (request confirmation) 2 (.4%) 
O (other) 5 (.9%) 
Total 554 
Table 1. Student dialogue acts in the experiment data 

Features ME NB CRF 

 In
di

vi
du

al
  Lexical (L)     .696**     .703**     .599** 

 Dialogue (D)     .711**     .715**     .696** 
 Dialogue- (D-)     .477**     .473**     .405 
 Task (T)     .405**     .396*      .386* 
 Posture (P)     .382*     .385*     .399* 

 M
ax

  L + D     .772§§     .724     .692§§ 
 L + D + T     .777     .729     .694 
 L + D + T + P     .789‡     .714     .682 

 M
in

  L + D-     .724§§     .681     .606 
 L + D- + T     .733     .671     .627 
 L + D- + T + P     .750     .676     .644 

Table 2. Classification accuracies (*p < .05, **p < .01 
compared to baseline; §§p < .01 compared to L; and ‡p < 
.05 compared to L + D + T, with paired-samples t-test)  
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The highest accuracy was achieved by ME when 
using all four classes of the features, with 
maximum (L + D + T + P) .789 and minimum (L + 
D- + T + P) .750. For both the maximum and the 
minimum conditions, the differences among the 
classifiers were significant (p < .01, one-way 
repeated measure ANOVA), with post-hoc Tukey 
HSD tests revealing ME was significantly better 
than both NB (p < .05) and CRF (p < .01). There 
was no significant difference between NB and 
CRF. 

6 Discussion 

The experiment described in Section 5 compared 
the utility of lexical, dialogue context, task context, 
and posture features for dialogue act classification. 
The results indicate the effectiveness of these 
features. Particularly, adding the dialogue context 
and the posture features improved the accuracy of 
the maximum entropy model. Although the margin 
of improvement achieved by adding posture 
features was relatively small, the improvement was 
statistically significant (p < .05) for the maximum 
condition (L + D + T + P), which suggests that the 
users’ posture during computer-mediated textual 
dialogue conveys important communicative 
messages. 

The experiment also compared three classifiers: 
maximum entropy, naïve Bayes, and CRF. 
Interestingly, CRF was the worst-performing 
model for our data, contradicting the previous 
finding by Kim et al. (2010), in which CRF (a 
structured classifier) performed significantly better 
than Naïve Bayes (a non-structured classifier). 
This contradictive result suggests that, in our 
domain, the presence of an implicit communication 
channel resulted in substantial information gaps in 
the dialogue and it poses new challenges that were 
not encountered by conventional task-oriented 
domains consisting of a single communication 
channel.  

The maximum entropy classifier achieved the 
best overall performance, reaching accuracy of 
.789. This is an encouraging result compared to 
previous work in a similar domain. Boyer et al. 
(2010a) reported an accuracy of .628 for dialogue 
act classification in a similar domain. However, a 
direct comparison is not applicable since different 
data were used in their work. 

7 Conclusions and Future Work 

Dialogue act modeling for a task-oriented domain 
in which the dialogue stream is interleaved with 
the task stream poses significant challenges. With 
the goal of effective dialogue act modeling, this 
work leverages information about users’ posture as 
non-verbal features. An experiment found that 
posture is a significant indicator of dialogue acts, 
in addition to lexical features, dialogue context, 
and task context. The experiment also compared 
three statistical classifiers: maximum entropy, 
naive Bayes, and CRF. The best performing model 
was maximum entropy. Using all features, the 
maximum entropy achieved .789 in accuracy. 

Several directions for future work are promising. 
First, given the encouraging finding that nonverbal 
information plays a significant role as a 
communicative means for task-oriented dialogue, 
various types of non-verbal information can be 
investigated, such as gesture and facial 
expressions. Second, incorporating richer task 
features, such as in our case, deep analysis of 
student code, may contribute to more accurate 
dialogue act modeling. Third, it is important to 
generalize the findings to a larger data set, 
including across other task-oriented domains.  
Finally, the community is embracing a move 
toward annotation-lean approaches such as 
unsupervised or semi-supervised learning, which 
hold great promise for dialogue modeling. 
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Appendix. Dialogue Act Annotation Scheme and Inter-rater Agreement 

Tag Description Frequency Agreement (k) 
H 
 

Hint:  
The tutor gives advice to help the student proceed with the task 

Tutor:     
Student:     

133 
0 

.50 

DIR  
 

Directive:  
The tutor explicitly tells the student the next step to take 

Tutor:     
Student:     

121 
0 

.63 

ACK  
 

Acknowledgement:  
Either the tutor or the student acknowledges previous utterance; 
conversational grounding 

Tutor:       
Student:  

41 
175 

.73 

RC  
 

Request for Confirmation:  
Either the tutor or the student requests confirmation from the other 
participant (e.g., “Make sense?”) 

Tutor:       
Student:  

11 
2 

Insufficient data 

RF  
 

Request for Feedback:  
The student requests an assessment of performance or work from the tutor 

Tutor:     
Student:    

0 
5 

1.0 

PF  Positive Feedback:  
The tutor provides a positive assessment of the student’s performance 

Tutor:     
Student:     

327 
0 

.90 

LF Lukewarm Feedback:  
The tutor provides an assessment that has both positive and negative 
elements 

Tutor:      
Student:    

13 
0 

.80 

NF Negative Feedback:  
The tutor provides a negative assessment of the student’s performance 

Tutor:        
Student:     

1 
0 

.40 

Q Question:  
A question regarding the task that is not a direct request for confirmation 
or feedback 

Tutor:     
Student:  

327 
120   

.95 

A Answer:  
An answer to an utterance marked Q 

Tutor:       
Student:  

96 
295 

.94 

C Correction:  
Correction of a typo in a previous utterance 

Tutor:       
Student:  

10 
6 

.54 

S  Statement:  
A statement regarding the task that does not fit into any of the above 
categories 

Tutor:     
Student:  

681 
174 

.71 

O Other: Other utterances, usually containing only affective content Tutor:     
Student:  

6 
10 

.69 
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Abstract

Ambiguous or open-ended requests to a di-
alogue system result in more complex dia-
logues. We present a semantic-specificity met-
ric to gauge this complexity for dialogue sys-
tems that access a relational database. An ex-
periment where a simulated user makes re-
quests to a dialogue system shows that seman-
tic specificity correlates with dialogue length.

1 Introduction

A dialogue system (DS) and its users have asymmet-
ric knowledge. The DS has access to knowledge the
user is not privy to, and the user has intentions that
the DS attempts to recognize. When the user’s inten-
tions are difficult for her to specify fully, the user and
DS must collaborate to formulate the intention. The
thesis of this work is that a DS can assess the speci-
ficity of its knowledge with respect to the user inten-
tions it is designed to address. Our principal result
is that, for a DS that queries a relational database,
measures of the ambiguity of database attributes can
be used both to assess the scope of the DS’s task
and to guide its dialogue strategy. To demonstrate
our thesis, we have developed a semantic specificity
metric applicable to any DS that queries a relational
database. This metric measures the degree to which
one or more attributes can uniquely specify an item
in the database. Attributes whose values are more
often ambiguous have lower semantic specificity.

CheckItOut is a book request DS that references
a copy of the catalogue at the Heiskell Braille and
Talking Book Library with its 71,166 books (Epstein

et al., In Press). We focus on three book attributes:
AUTHOR, TITLE and CALL NUMBER. Only the lat-
ter is guaranteed to identify a unique book. Of the
64,907 distinct TITLE values, a large majority return
a unique book (N=59,236; 91.3%). Of the 28,045
distinct AUTHOR values, about two thirds return a
unique book (N=17,980; 64.1%).

Query return Distinct Distinct
size TITLE values AUTHOR values

1 59236 17980
2 5234 4377
3 345 1771
...
10 2 168
...

184 – 1
Total 64907 28045

Table 1: When used as a query, many TITLE values return
unique books, but AUTHOR values are less specific.

To compare the specificity of TITLE and AUTHOR,
we calculated query return size, the number of dis-
tinct books in the Heiskell database returned by each
possible attribute value. Table 1 tallies how many
attribute values have the same query return size. TI-
TLE partitions the books into 10 subsets, where the
two most ambiguous TITLE values, Collected Sto-
ries and Sanctuary, each return 10 distinct books.
AUTHOR produces 89 subsets; its most ambiguous
value, Louis L’Amour, returns 184 distinct books.
Clearly, TITLE has higher specificity than AUTHOR.

After a survey of related work, this paper defines a
semantic specificity metric that is a weighted sum of
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the number of query return sizes for one or more at-
tributes. We show through simulation that dialogue
length varies with semantic specificity for a DS with
a simple system-initiative dialogue strategy.

2 Related Work

Little work has been reported on measures of the
relationship between dialogue complexity and the
semantic structure of a DS application’s database.
Zadrozny (1995) proposes Q-Complexity, which
roughly corresponds to vocabulary size, and is es-
sentially the number of questions that can be asked
about a database. Pollard and Bierman (2000) de-
scribe a similar measure that considers the number
of bits required to distinguish every object, attribute,
and relationship in the semantic space.

Gorin et al. (2000) distinguish between semantic
and linguistic complexity of calls to a spoken DS.
Semantic complexity is measured by inheritance re-
lations between call types, the number of type labels
per call, and how often calls are routed to human
agents. Linguistic complexity is measured by utter-
ance length, vocabulary size and perplexity.

Popescu et al. (2003) identify a class of “seman-
tically tractable” natural language questions that can
be mapped to an SQL query to return the question’s
unique correct answer. Ambiguous questions with
multiple correct answers are not considered seman-
tically tractable. Polifroni and Walker (2008) ad-
dress how to present informative options to users
who are exploring a database, for example, to choose
a restaurant. When a query returns many options,
their system summarizes the return using attribute
value pairs shared by many of the members.

3 Semantic Specificity

The database queried by a DS can be regarded as
the system’s knowledge. Consequently, the seman-
tic structure of the database and the way it is popu-
lated constrain the requests the system can address
and how much information the user must provide.
Intuitively, Table 1 shows that TITLE has a higher
semantic specificity than AUTHOR. Our goal is to
quantify the query ambiguity engendered by the in-
stantiation of any database table.

Often a user does not know in advance which
combination of attribute values uniquely communi-

cates her intent to the system. In addition, the DS
does not know what the user wants until it has of-
fered an item that the user confirms, whether ex-
plicitly or implicitly. The remainder of this section
defines the specificity of individual and multiple at-
tributes with respect to a set of database instances.

3.1 Specificity for Single Attributes
When a user requests information about one or more
entities, the request can map to many more database
instances than intended. Let I be a set of instances
(rows) in a database relation, and let α be an attribute
of I with values V that occur in I . Denote by q(v, α)
the query return size for v ∈ V on α, the number of
instances of I returned by the query α = v. When-
ever q(v, α) = 1, the query returns exactly one in-
stance in I; attributes with more such values have
higher specificity. If q(v, α) = 1 for every v, then α
is maximally specific with respect to I .

Let Qα be the set of dα distinct query return sizes
q(v, α) returned on I . We call Qα the query return
size partition for α. Qα induces a partition of V
into subsets Vj , j ∈ Qα such that a query on every
value in a given subset returns the same number of
instances. Table 1 shows two such partitions. We
now define the specificity S(α, I) of attribute αwith
respect to I as a weighted sum of the sizes of the
subsets in the partition induced by α, normalized by
|I|, the number of instances in I:

S(α, I) =
1

|I|
∑

j∈Qα
w(j) · |Vj | (1)

The weight function w in (1) addresses the num-
ber of distinct values in each subset of Qα. A larger
query return size indicates a more ambiguous at-
tribute, one less able to distinguish among instances
in I . To produce specificity values in the range [0, 1],
w(j) should decrease as j increases, but not penal-
ize any query that returns a single instance, that is,
w(1) = 1. The faster w decreases, the more it pe-
nalizes an ambiguous attribute. Here we take as w
the inverse of the query return size, w(j) = 1

j .
For our CheckItOut example, equation (1) scores

TITLE’s specificity as 0.871 and AUTHOR’s speci-
ficity much lower, at 0.300. This matches our intu-
ition. The third attribute with which a user can order
a book, CALL NUMBER, was designed as a primary
key and so has a perfect specificity of 1.000.
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3.2 Specificity for Multiple Attributes
The specificity of a set β = {α1, α2, ..., αk} of k at-
tributes on a set of instances I measures to what de-
gree a combination (one value for each attribute in
β) specifies a restricted set of instances in I . Let V
be the combinations for β that occur in I , and let
q(v, β) be the query return size for v ∈ V . Then
Qβ , the set of dβ distinct query return sizes, induces
a partition on V into subsets Vj , j ∈ Qβ where com-
binations in the same subset return the same number
of instances. We take w(j, k) = 1

jk
to penalize am-

biguity more heavily when there are more attributes.
Then the specificity of β with respect to I is

S(β, I) =
1

|I|
∑

j∈Qβ
w(j, k) · |Vj | (2)

Using this equation, the specificity of β =
{TITLE, AUTHOR} is 0.880. Interestingly, this is not
much higher than the 0.871 TITLE specificity alone,
which indicates that, in this particular database
instantiation, AUTHOR has little ability to disam-
biguate a TITLE query. This is because many
“books” in the Heiskell catalog appear in two for-
mats, Braille and audio. This duplication creates an
ambiguity that is better resolved by prompting the
user for CALL NUMBER or FORMAT. In some cases,
a value for FORMAT might still result in ambiguity;
for example, different recorded readers produce dif-
ferent audio versions of the same title and author.
In contrast, the large difference between AUTHOR’s
very low specificity (0.300) and that of {TITLE, AU-
THOR} (0.880) suggests that, given an ambiguous
author, it would in general be a good strategy for the
DS to then prompt the user for the title.

Because specificity is a function of a database in-
stantiation, specificity can be used to guide dialogue
strategy. For the books in Heiskell’s catalogue that
cannot be uniquely identified by AUTHOR and TITLE

alone, it can be determined a priori that some book
requests cannot be disambiguated without additional
attribute values.

4 Specificity in Simulated Dialogues

A DS faced with an ambiguous query should enter
a disambiguation subdialogue. It can either offer a
list of matching instances that must be individually
confirmed or rejected by the user, or indicate to the

user that an attribute value is ambiguous and request
additional information. In general, a less specific
user request should increase the dialogue length.

We tested this hypothesis with a simulated user
that interacted with the CheckItOut book-order DS
through a text interface. As in our work where hu-
man subjects called CheckItOut, a new scenario for
each call included “patron” identification data and a
list of four books with their authors, titles, and call
numbers. In each dialogue, the simulator received
a scenario, the DS confirmed the simulator’s “iden-
tity,” and then the simulator requested the books.

The simulator uses a rule-based dialogue strat-
egy with some parameters, such as persistence in
re-ordering the same book, that can be set or ran-
domized to represent a set of real users more real-
istically. For this experiment, the simulator was set
to request books only by author, and to be willing to
engage in a disambiguation subdialogue of arbitrary
length. When the system cannot uniquely identify a
requested book, it begins a disambiguation subdia-
logue, an example of which is shown in Figure 1.
To avoid addressing information presentation issues
such as those explored in (Polifroni and Walker,
2008), CheckItOut followed a simple strategy of of-
fering each next candidate book in a query return,
and user studies with CheckItOut restricted query re-
turn size to a maximum of three books. For the sim-
ulations, we expect an inverse relationship between
specificity and dialogue length.

S: NEXT BOOK?
U: Dan Simmons
S: DID YOU SAY DAN SIMMONS?
U: Yes
S: WOULD YOU LIKE ENDYMION BY THIS AUTHOR?
U: No
S: WOULD YOU LIKE THE CROOK FACTORY

BY THIS AUTHOR?
U: Yes

Figure 1: Sample disambiguation subdialogue.

We randomly sampled Heiskell’s full set of
71,166 books to create five smaller instantiations
of 1000 books each. We deliberately sampled
at different frequencies within each subset of the
original partition induced by AUTHOR, so that
S(AUTHOR, T ) for instantiation T ranged from
0.3528 to 1.000. For each instantiation we simulated
25 dialogues. Conditions of relatively lower speci-
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Figure 2: Dialogue length averaged across 25 simulated
dialogues for each run of 5 different attribute specificity
levels, shown with 95% confidence intervals.

ficity result in more dialogues like the one shown in
Figure 1, with multiple turn exchanges where the DS
offers the simulator different books by the requested
author. As specificity approaches 1.0, the first book
offered by the DS is more frequently the requested
book, so no disambiguation is required, and the min-
imum dialogue length of 43 turns is achieved. Fig-
ure 2 compares the mean dialogue length for each
sub-instantiation to its author specificity, and clearly
shows that dialogue length increases as author speci-
ficity decreases. The error bars shrink as specificity
increases because there is less variation in dialogue
length when there are fewer candidate books for
CheckItOut to offer.

5 Conclusion and Future Work

Semantic specificity has two important applications.
Because it predicts how likely a value for a database
attribute (or a combination for a set of attributes) is
to return a single database instance, semantic speci-
ficity can help formulate subdialogues with a prior-
ity order in which the DS should prompt users for
attributes. Because it is a predictor for dialogue
length, semantic specificity could also be used to
evaluate whether a DS dialogue strategy incurs the
expected costs. Of course, many factors other than
semantic specificity affect DS dialogue complexity,
particularly the relation between users’ utterances
and the semantics of the database. In the examples
given here, the way users refer to books corresponds
directly to attribute values in the database. Other
domains may require a more complex procedure to
map between the semantics of the database and the

semantics of natural language expressions.
Finally, how well semantic specificity with re-

spect to a database instantiation predicts dialogue
length depends in part on how closely the database
attributes correspond to information that users can
readily provide. Here, AUTHOR and TITLE are con-
venient both for users and for the database seman-
tics. However, the maximally specific CALL NUM-
BER is often unknown to the user. For DSs where
the database attributes differ from those that can be
extracted from user utterances, we intend to explore
enhanced or additional metrics to predict dialogue
length and guide dialogue strategy.
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Abstract 

Unlike in English, the sentence boundaries 
in Chinese are fuzzy and not well-defined. 
As a result, Chinese sentences tend to be 
long and consist of complex discourse 
relations. In this paper, we focus on two 
important relations, Contingency and 
Comparison, which occur often inside a 
sentence. We construct a moderate-sized 
corpus for the investigation of intra-
sentential relations and propose models to 
label the relation structure. A learning 
based model is evaluated with various 
features. Experimental results show our 
model achieves accuracies of 81.63% in the 
task of relation labeling and 74.8% in the 
task of relation structure prediction.  

1 Introduction 

Discourse relation labeling has attracted much 
attention in recent years due to its potential 
applications such as opinion mining, question 
answering, etc. The release of the Penn Discourse 
Treebank (Joshi and Webber, 2004; Prasad et al., 
2008) has advanced the development of English 
discourse relation recognition (Lin et al., 2009; 
Pitler et al., 2009; Pitler and Nenkova, 2009; Wang 
et al., 2010). For Chinese, a discourse corpus is not 
publicly available yet. Thus, the research on 
Chinese discourse relation recognition is relatively 
rare. Most notably, Xue (2005) annotated discourse 

connectives in the Chinese Treebank. Our previous 
work labeled four types of relations, including 
temporal, contingency, comparison and expansion, 
between two successive sentences, and reported an 
accuracy of 88.28% and an F-score of 62.88% 
(Huang and Chen, 2011). The major issue of our 
work is the determination of discourse boundaries. 
Each Chinese sentence is always treated as one of 
the two arguments in their annotation and many 
instances of the Contingency and the Comparison 
remain uncaught. 

As suggested by the Penn Discourse Treebank 
annotation guidelines, an argument is possibly 
some clauses in a sentence, a sentence, or several 
successive sentences. In Chinese, the Contingency 
and the Comparison relations are likely to occur 
within a sentence. Thus, a lot of the Contingency 
relations and the Comparison relations are missing 
from annotation in the corpus used in our previous 
work, and the classification performance for these 
two relations, especially the Contingency relation, 
is especially poor (Huang and Chen, 2011). 

In contrast to Chinese inter-sentential discourse 
relation detection (Huang and Chen, 2011) and the 
study of English coherence evaluation (Lin et al., 
2011), this paper focuses on the Contingency 
relation and the Comparison relations that occur 
inside a sentence. In Chinese, the relations usually 
occur in the sentences which contain many clauses. 
For example, two relations occur in sample (S1). 
 

(S1) 管理處雖嘗試要讓長期來作為大台北後
花園的陽明山區更回歸自然  (“Although the 
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management office tried to make the 
Yangmingshan area a more natural environment as 
the long-term garden of Taipei”)，但隨著週休二
日、經濟環境改善  (“But due to the two-day 
weekend and the improved economic conditions”)，
遊客帶來停車、垃圾等間接影響卻更為嚴重 
(“The issues of tourists parking, garbage, and other 
indirect effects become more serious”)。 

 
In (S1), the long sentence consists of three 

clauses, and such a Chinese sentence is expressed 
as multiple short sentences in English. Figure 1 
shows that a Comparison relation occurs between 
the first clause and the last two clauses, and a 
Contingency relation occurs between the second 
clause and the third clause. An explicit paired 
discourse marker 雖 (although) … 但 (but) denotes 
a Comparison relation in (S1), where the first 
clause is the first argument of this relation, and the 
second and the third clauses are the second 
argument of this relation. In addition, an implicit 
Contingency relation also occurs between the 
second and the third clauses. The second clause is 
the cause argument of this Contingency relation, 
and the third clause is its effect. It shows a nested 
relation, which makes relation labeling and relation 
structure determination challenging. 

In Chinese, an explicit discourse marker does 
not always uniquely identify the existence of a 
particular discourse relation. In sample (S2), a 
discourse marker 而  “moreover” appears, but 
neither Contingency nor Comparison relation 
exists between the two clauses. The discourse 
marker 而 has many meanings. Here, It has the 
meaning of “and” or “moreover”, which indicates 
an Expansion relation. In other usages, it may have 
the meaning of “but” or “however”, which 
indicates a Comparison relation. 
 

(S2) 而大陸經濟開放１０年以來，其進步更
令人刮目相看。 (“Moreover, the progress of 
mainland is more impressive due to its economic 
openness for the last 10 years.”) 

 
Note that the relation structure of a sentence 

cannot be exactly derived from the parse tree of the 
sentence. Shown in Figure 2 is the structure of 
sample (S3) based on the syntactic tree generated 
by the Stanford parser. However, it is clear that the 

correct structure of (S3) is the one shown in Figure 
3. 
 

(S3) 目前雖然還只能在圖片上讓女性露露臉 
(“Although women only appear in the pictures”)，
但 未 來 女 性 的 貢 獻  (“The contribution of 
women”)，將是教科書另一個著墨的重點 (“Will 
be another major focus in textbooks in the future”)。 
 

This shows that the Stanford parser does not 
capture the information that the last two clauses 
form a unit, which in turn is one of the two 
arguments of a Comparison relation. 

In this work, we investigate intra-sentential 
relation detection in Chinese. Given a Chinese 
sentence, our model will predict if Contingency or 
Comparison relations exist, and determine their 
relation structure. In Section 2, the development of 
a corpus annotated with Contingency and 
Comparison relations is presented. The methods 
and the features are proposed in Section 3. In 
Section 4, the experimental results are shown and 
discussed. Finally, Section 5 concludes this paper. 

 
Figure 1: Relation structure of sample (S1). 

 
Figure 2: Structure of sample (S3) based on the 
syntactic tree generated by the Stanford parser. 

 

 
Figure 3: Correct structure of sample (S3) 
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2 Dataset  

The corpus is based on the Sinica Treebank 
(Huang et al., 2000). A Total of 81 articles are 
randomly selected from the Sino and Travel sets. 
All the sentences that consist of two, three, and 
four clauses are extracted for relation and structure 
labeling by native Chinese speakers. 

A web-based system is developed for 
annotation. The annotation scheme is designed as 
follows. An annotator first signs in to the 
annotation system, and a list of sentences that are 
assigned to the annotator are given. The annotator 
labels the sentences one by one in the system. A 
sentence is split into clauses along commas, and all 
of its feasible binary tree structures are shown in 
the interface. The annotator decides if a 
Contingency/Comparison relation occurs in this 
sentence. The sentence will be marked as “Nil” if 
no relation is found. If there is at least one relation 
in this sentence, the annotator then chooses the 
best tree structure of the relations, and the second 
page is shown. 

The previously chosen tree structure is 
presented again, and at this time the annotator has 
to assign a suitable relation type to each internal 
node of the tree structure. The relation type 
includes Contingency “因果”, Comparison “轉折”, 
and Nil. For example, in sample (S4), its three 
internal nodes are annotated with three relation 
types as shown in Figure 4. 

 
(S4) 即使沒有傳承的使命感 (“Even without 

the sense of mission of the heritage”)，為了尋求
更好的治療方式  (“In order to seek better 
treatments”)，也會驅使這些醫學工作者跨越領
域區隔 (“These medical workers will be driven 
crossing domain areas”)，去尋找資源 (“To find 
resources”)。 

 
The number of feasible relation structures of a 

sentence may be very large depending on the 
number of clauses. For a sentence with n clauses, 
the number of its feasible structures is given as the 
recursive function f(n) as follows, and the number 
of its feasible relation structures is 3!!!𝑓 𝑛 . 

 

𝑓 𝑛 =
1, 𝑛 = 1

𝑓 𝑛 − 𝑖 𝑓(𝑖)
!!!

!!!
, 𝑛 > 1 

 
Figure 4: Relation structure of sample (S4). 

 
Explicit/ 
implicit 

Relations 2-
Clause 

3-
Clause 

4-
Clause 

Total % 

Explicit Both 0 5 6 11 0.89% 
Contingency 59 72 45 176 14.31% 
Comparison 41 57 22 120 9.76% 
Nil 269 249 169 687 55.85% 

Implicit Both 0 0 0 0 0.00% 
Contingency 11 8 0 19 1.54% 
Comparison 6 0 0 6 0.49% 
Nil 125 56 4 211 17.15% 

All  511 447 272 1,230 100.00% 
Table 1: Statistics of the dataset. 

 
For a two-clause sentence, there are only one 

tree structure and three possible relation tags 
(Contingency, Comparison, and Nil) for the only 
one internal node, the root. For a three-clause 
sentence, there are two candidate tree structures 
and nine combinations of the relation tags. For a 
four-clause sentence, there are five candidate tree 
structures and 27 combinations of the relation tags. 
There are theoretically 3, 18, and 135 feasible 
relation structures for the two-, three-, and four- 
clause sentences, respectively, though only 49 
types of relations structures are observed in the 
dataset. 

Each sentence is shown to three annotators, and 
the majority is taken as the ground-truth. The 
Fleiss-Kappa of the inter-annotator agreement is 
0.44 (moderate agreement). A final decider is 
involved to break ties. The statistics of our corpus 
are shown in Table 1. The explicit data are those 
sentences which have at least one discourse marker. 
The rest of the data are implicit. A total of 11 
explicit sentences which contain both Contingency 
and Comparison relations form complex sentence 
compositions. The implicit samples are relatively 
rare. 

3 Methods 

To predict the intra-sentential relations and 
structures, two learning algorithms, the modern 
implementation of the decision tree algorithm, 
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C5.01, and the support vector machine, SVMlight2, 
are applied. The linguistic features are the crucial 
part in the learning-based approaches. Various 
features from different linguistic levels are 
evaluated in the experiments as shown below. 
Word: The bags of words in each clause. The 

Stanford Chinese word segmenter3 is applied to all 
the sentences to tokenize the Chinese words. In 
addition, the first word and the last word in each 
clause are extracted as distinguished features. 
POS: The bags of parts of speech (POS) of the 

words in each clause are also taken as features. All 
the sentences in the dataset are sent to the Stanford 
parser4 that parses a sentence from a surface form 
into a syntactic tree, labels POS for each word, and 
generates all the dependencies among the words. In 
addition, the POS tags of the first word and the last 
word in each clause are extracted as distinguished 
features. 
Length: Several length features are considered, 

including the number of clauses in the sentence 
and the number of words for each clause in the 
sentence. 
Connective: In English, some words/phrases 

called connectives are used as discourse markers. 
For example, the phrase “due to” is a typical 
connective that indicates a Contingency relation, 
and the word “however” is a connective that 
indicates a Comparison relation. 

Similar to the connectives in English, various 
words and word pair patterns are usually used as 
discourse markers in Chinese. A dictionary that 
contains several types of discourse markers is used. 
The statistics of the connective dictionary and 
samples are listed in Table 2. An intra-sentential 
phrase pair indicates a relation which occurs only 
inside a sentence. In other words, a relation occurs 
when the two phrases of an intra-sentential pair 
exist in the same sentence no matter whether they 
are in the same clause or not. In contrast, an inter-
sentential connective indicates a relation that can 
occur across neighboring sentences. Some 
connectives belong to both intra-sentential and 
inter-sentential types. Each connective in each 
clause is detected and marked with its 
corresponding type. For example, the phrase 相對

                                                             
1 http://www.rulequest.com/see5-unix.html 
2 http://svmlight.joachims.org/ 
3 http://nlp.stanford.edu/software/segmenter.shtml 
4 http://nlp.stanford.edu/software/lex-parser.shtml 

的 “In contrast” will be marked as a connective 
that belongs to Comparison relation. The number 
of types and scopes of the connectives in a 
sentence are used as features. 
Dependency: The dependencies among all 

words in a sentence are used as features. The 
Stanford parser generates dependency pairs from 
the sentence. A dependency pair consists of two 
arguments, i.e., the governor and the dependent, 
and their types. We are interested in those 
dependency pairs that are across two clauses. That 
is, the two arguments of a pair are from different 
clauses. In our assumption, the clauses have a 
closer connection if some dependencies occur 
between them. All such dependency pairs and their 
types are extracted and counted. 
Structure: Recent research work reported 

improved performance using syntactic information 
for English discourse relation detection. In the 
work of Pilter and Nenkova (2009), the categories 
of a tree node, its parent, its left sibling, and its 
right sibling are taken as features. In the work of 
Wang et al. (2010), the entire paragraph is parsed  

  
Relation Type  # Samples 
Temporal Single Phrase 41 目前 “now” 

之後 “after” 

Intra-Sent 
Phrase Pair 

80 接著...再 “Then...again” 
當初...曾 “At first...ever” 

Inter-Sent 
Phrase Pair 

30 當初...後來 “Initially...Later” 
最早...緊接著 “At first...Then” 

Contingency Single Phrase 62 如此一來 “As a result” 
假設 “If” 

Intra-Sent 
Phrase Pair 

180 如果...則 “If ... then” 
無論...都 “Whether ...” 

Inter-Sent 
Phrase Pair 

14 既然...看來 “Since... It seems” 
幸而...不然 “Fortunately... otherwise” 

Comparison Single Phrase 34 相對的 “In contrast” 
未料 “Unexpectedly” 

Intra-Sent 
Phrase Pair 

38 即使...卻 “Even ... but” 
雖然...仍 “Although...still” 

Inter-Sent 
Phrase Pair 

15 雖說...其實 “Although... In fact” 
儘管...然而 “Although... However” 

Expansion Single Phrase 182 除此之外 “in addition” 
而且 “moreover” 

Intra-Sent 
Phrase Pair 

106 不只...而且 “Not only...but also” 
或者...或者 “or...or” 

Inter-Sent 
Phrase Pair 

26 首先...其次 “Firstly...Secondly” 
既然...況且 “Since...Furthermore” 

Table 2: Statistics of connectives (discourse markers). 
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Figure 5: The upper three level sub-tree of (S1) and the 

punctuation sub-tree of (S1). 
 

as a syntactic tree, and three levels of tree 
expansions are extracted as structured syntactic 
features. 

To capture syntactic structure, we get the 
syntactic tree for each sentence using the Stanford 
parser, and extract the sub-tree of the upper three 
levels, which represents the fundamental 
composition of this sentence. In addition, all the 
paths from the root to each punctuation node in a 
sentence are extracted. From the paths, the depth of 
each comma node is counted, and the common 
parent node of every adjacent clause is also 
extracted. For example, the upper three level sub-
tree of the syntactic tree of (S1) is shown in Figure 
5. In addition, the sub-tree in the dotted line forms 
the structure of the punctuations in the (S1).  
Polarity: A Comparison relation implies its two 

arguments are contrasting, and some contrasts are 
presented with different polarities in the two 
arguments. For example, sample (S5) is a case of 
Comparison. 

 
(S5)  儘管天然環境如此優越，人為的不幸還

是叫高棉子民不得好過，遍嚐戰亂的痛楚。 
(“Despite such favorable natural environment, 
man-made disasters still make the Khmer people 
unfortunate to suffer from the pain of war.”) 

 
The first clause in (S5) is positive (“favorable 

natural environment”), while the last two clauses 
are negative (“unfortunate to suffer from the pain 
of war”). Besides the connectives 儘管 “despite” 
and 還 是  “still”, the opposing polarity values 
between the first and the last two clauses is also a 
strong clue to the existence of a Comparison 

relation. In addition, the same polarity of the last 
two clauses is also a hint that no Comparison 
relation occurs between them. 

To capture polarity information, we estimate the 
polarity of each clause and detect the negations 
from the clause. The polarity score is a real number 
estimated by a sentiment dictionary-based 
algorithm. For each clause, the polarity score, and 
the existence of negation are taken as features. 

4 Experiments and Discussion 

4.1   Experimental Results 

All the models in the experiments are evaluated by 
5-fold cross-validation. The metrics are accuracies 
and macro-averaged F-scores. The t-test is used for 
significance testing. 

We firstly examine our model for the task of 
two-way classification. In this task, binary 
classifiers are trained to predict the existence of 
Contingency and Comparison relations in a given 
sentence. For meaningful comparison, a majority 
classifier is used as a baseline model, which 
always predicts the majority class. In the dataset, 
72.6% of the sentences involve neither 
Contingency nor Comparison. Thus, the major 
class is “Nil”, and the accuracy and the F-score of 
the baseline model is 72.6% and 42.06%, 
respectively. 

The experimental results for the two-way 
classification task are shown in Table 3. In the 
table, the symbol † denotes the lowest accuracy 
which has a significant improvement over the 
baseline at p=0.05 for the two models. The symbol 
‡ denotes the adding of a single feature yields a 
significant improvement for the model at p=0.005. 

The performance of the decision tree and the 
SVM are similar in terms of accuracy and F-score. 
Overall, the decision tree model achieves better 
accuracies. In the two-way classification task, the 
decision tree model with only the Word feature 
achieves an accuracy of 76.75%, which is 
significantly better than the baseline at p=0.05. For 
both the decision tree and the SVM, Connective is 
the most useful feature: performance is 
significantly improved with the addition of 
Connective.  

Besides the binary classification task, we extend 
our model to tackle the task of finer classification. 
In the second task, four-way classifiers are trained  
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 Decision Tree SVM 
Features Accuracy F-Score Accuracy F-Score 
Word †76.75%  58.94% 72.36% 56.54% 
+POS  77.15% 61.72% 72.28%  60.53% 
+Length 77.15%  61.72%  72.60% 61.09% 
+Connective ‡81.63%  71.11% ‡78.05% 69.17% 
+Dependency 81.14% 70.79% 77.80% 68.79% 
+Structure  81.30%  70.78%  †77.48% 69.08% 
+Polarity  81.30%  70.78% 77.64% 69.09% 

Table 3: Performance of the two-way classification. 
 
  Decision Tree SVM 
Features Accuracy F-Score Accuracy F-Score 
Word †76.50%  34.72% 73.58% 31.54% 
+POS  76.99% 36.77% 72.52%  34.44% 
+Length  76.99%  36.77% 72.36% 34.54% 
+Connective  79.84%  44.08% ‡77.89%  45.26% 
+Dependency 79.92% 44.47% †77.07% 44.42% 
+Structure   79.92%   44.47% 77.15% 44.69% 
+Polarity  79.92%  44.47% 77.40% 44.80% 

Table 4: Performance of the four-way classification. 
 

 Decision Tree SVM 
Features Accuracy F-Score Accuracy F-Score 
Word 73.66%   3.00% 70.00% 3.62% 
+POS  73.66% 3.00% 69.84% 4.29% 
+Length 73.66%  3.00% 70.00% 5.08% 
+Connective  74.80%  4.90% 74.39% 7.66% 
+Dependency  74.72% 4.61% 72.60% 5.60% 
+Structure  74.72%  4.61% 73.01% 5.49% 
+Polarity  74.72%  4.61% 72.76% 5.23% 

Table 5: Performance of the 49-way classification.  
 

Task Explicit Implicit 
Accuracy F-score Accuracy F-score 

2-way 77.97% 69.26% 88.98% 50.64% 
4-way 76.06% 42.54% 88.98% 31.39% 
49-way 71.33% 4.88% 89.41% 1.92% 

Table 6: Performances for explicit cases and implicit 
cases. 

 
to predict a given sentence with four classes: 
existence of Contingency relations only, existence 
of Comparison relations only, existence of Both 
relations, and Nil. The experimental results of the 
four-way classification task are shown in Table 4. 
Consistent with the results of the two-way 
classification task, the addition of Connective to 
the SVM yields a significant improvement at 
p=0.005. The performance between the decision 
tree and the SVM is still similar, but the SVM 
achieves a slightly better F-score of 45.26% in 
comparison with the best F-score of 44.47% 
achieved by the decision tree. 

We further extend our model to predict the full 
relation structure of a given sentence as shown in 
Figure 1 and Figure 4. This is a 49-way 
classification task because there are 49 types of the 
full relation structures in the dataset. Not only as 
many as 49-ways, 72.6% of instances belong to the 
Nil relation, which yields an unbalanced 
classification problem. The experimental results 
are shown in Table 5. In the most challenging case, 
the SVM achieves a better F-score of 7.66% in 
comparison with the F-score of 4.90% achieved by 
the decision tree. Connective is still the most 
helpful feature. Comparing the F-scores of the 
SVM in the three tasks with the F-scores of the 
decision tree, it shows that the SVM performs 
better for predicting finer classes. 

4.2 Explicit versus Implicit 

We compare the performances between the explicit 
instances and the implicit instances for the three 
tasks with the decision tree model trained on all 
features.  The results are shown in Table 6. 

The higher accuracies and the lower F-scores of 
the implicit cases are due to the fact that the 
classifier tends to predict the sentences as Nil when 
no connective is found, and most implicit samples 
are Nil. For example, the relation of Contingency 
in implicit sample (S6) should be inferred from the 
meaning of 帶給 “brought”. 

 
(S6) 得天獨厚的地理環境，的確帶給這個百

年港埠無窮的財富。(“The unique geographical 
environment, it really brought the infinite wealth to 
this hundred-year port.”) 

 
In addition, some informal/spoken phrases are 

useful clues for predicting the relations, but they 
are not present in our connective dictionary. For 
example, the phrase 的 話  “if” implies a 
Contingency relation in (S7). This issue can be 
addressed by using a larger connective dictionary 
that contains informal and spoken phrases. 

 
(S7) 想要以自助旅行的方式進行的話，那麼

隨團旅遊呢？ (“If you want to backpacking, how 
about an organized tour?”) 

   
We regard an instance as explicit if there is at 

least one connective in the sentence. However, 
many explicit instances are still not easy to label 
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even with the connectives. As a result, predicting 
explicit samples is much more challenging than the 
task of recognizing explicit discourse relations in 
English. One reason is the ambiguous usage of 
connectives as shown in (S2). The following 
sentence depicts another issue. The word 但是 
“however” in (S8) is a connective used as a marker 
of an inter-sentential relation. That is, the entire 
sentence is one of the arguments of an inter-
sentential Comparison relation, but it does not 
contain any intra-sentential relation inside the 
sentence itself.  

 
(S8) 但是，操一口流利中文的傅吾康則公開

批評這種看法。(“However, Fu Wu Kang, who 
speaks fluent Chinese, openly criticizes this 
opinion.”) 

 
The fact that connectives possess multiple 

senses is one of the important reasons for their 
misclassification. This issue can be addressed by 
employing contextual information such as the 
neighboring sentences. 

4.3 Number of Clauses 

We compare the performance among the 2-clause 
instances, the 3-clause instances, and the 4-clause 
instances for the three tasks with the decision tree 
model trained on all the features. The accuracies 
(A) and F-scores (F) are reported in Table 7.  

Comparing the two-way classification and the 
four-way classification tasks, the performance of 
the longer instances decreases a little in relation 
labeling. Although sentence complexity increases 
with length, a longer sentence provides more 
information at the same time. In the 49-way 
classification, the model should predict the 
sentence structure and the relation tags from the 49 
candidate classes. The performances are greatly 
decreased because the feasible classes are 
substantially increased along with the number of 
clauses.  

4.4 Contingency versus Comparison 

The confusion matrix of the decision tree model 
trained on all features for the four-way 
classification is shown in Table 8. Each row 
represents the samples in an actual class, while 
each column of the matrix represents the samples 
in a predicted class. The precision (P), recall (R), 

  
Task 2-Clause 3-Clause 4-Clause 

A (%) F (%) A (%) F (%) A (%) F (%) 
2-way 81.80 66.39 78.52 70.32 79.41 69.32 
4-way 79.84 49.98 75.62 42.64 80.88 46.73 
49-way 80.23 29.62 70.02 9.56 69.85 2.25 

Table 7: Performances of clauses of different lengths. 
 
Actual 
Class 

Predicted Class Performance 
Cont. Comp. Both Nil P (%) R (%) F (%) 

Cont. 61 3 0 131 81.33 31.28 45.19 
Comp. 3 40 0 83 74.07 31.75 44.44 
Both 2 4 0 5 0 0 0 
Nil 9 7 0 882 80.11 98.22 88.24 

Table 8: Confusion matrix of the best model in the 4-
way classification. 

 
Feature instance Category Usages 
The first token in the third clause is the word
但 “but; however” 

Word 100% 

The first token in the second clause is the 
word 但 “but; however” 

Word 99% 

The first token in the third clause is a single 
connective of Contingency 

Connective 98% 

The first token in the first clause is the word 
由於 “because; due to” 

Word 96% 

There is at least one word 以免 “in order to 
avoid” in the entire sentence 

Word 95% 

The first token in the second clause is the 
word 而 “moreover; while; but” 

Word 94% 

The first token in the third clause is a single 
connective of Comparison 

Connective 93% 

The second clause contains a single 
connective of Contingency 

Connective 92% 

The first token in the second clause is a 
single connective of Contingency 

Connective 91% 

The first clause contains a single connective 
of Contingency 

Connective 90% 

Table 9: Instances of the top ten useful features for the 
decision tree model 

 
and F-score (F) for each class are provided on the 
right side of the table. The class Both is too small 
to train the model, thus our model does not 
correctly predict the samples in the Both class. The 
confusion matrix shows that the confusions 
between the classes Contingency and Comparison 
are very rare. The major issue is to distinguish 
Contingency and Comparison from the largest 
class, Nil. The lower recall of the Contingency and 
Comparison relations also show that our model 
tends to predict the instances as the largest class. 

4.5 Features 

The top ten useful feature instances reported by the 
decision tree model in the 49-way classification are 
shown in Table 9. Word and Connective provide 
useful information for the classification. Moreover, 
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seven of the ten feature instances are about the 
word or the connective category of the first token 
in each clause. This result shows that it is crucial to 
employ the information of the first token in each 
clause as distinguished features. Certain words, for 
example, 但 “but; however”, 由於 “because; due 
to”, and 而 “moreover; while; but” are especially 
useful for deciding the relations. For this reason, 
labeling these words carefully is necessary. All the 
synonyms for each of these words should be 
clustered and assigned the same category. In 
addition, a dedicated extractor should be involved 
in accurately fetching these words from the 
sentence in order to reduce tokenization errors 
introduced by the Chinese word segmenter.  

The advanced features such as Dependency, 
Structure, and Polarity are not helpful as expected. 
One possible reason is that the training data is still 
not enough to model the complex features. In such 
a case, the surface features are even more useful. 

Sample (S1) shows an interesting case of the use 
of polarity information. The first clause of (S1) is 
positive (嘗試要讓長期來作為大台北後花園的
陽明山區更回歸自然  “tried to make the 
Yangmingshan area a more natural state as the 
long-term garden of Taipei”), the second clause of 
(S1) is also positive (但隨著週休二日、經濟環境
改善  “the two-day weekend and the improved 
economic conditions.”), while the last clause of 
(S1) is negative (遊客帶來停車、垃圾等間接影
響卻更為嚴重  “the issues of tourists parking, 
garbage, and other indirect effects”). The polarity 
of the last clause is opposite to those of the second 
clause, but they do not form a Comparison relation. 
Instead, a Contingency relation occurs between the 
last two clauses. Likewise, the polarities of the first 
and second clauses are both positive, but a 
Comparison relation occurs after the first clause. In 
fact, we realize that this is a complex case after 
performing an in-depth analysis. Because the last 
clause plays the role of effect in the Contingency 
relation, the negative polarity of the last clause 
makes the last two clauses form a negative polarity. 
For this reason, a Comparison relation occurs 
between the first argument with positive polarity 
and the second argument (i.e., the last two clauses) 
with negative polarity without a doubt. The 
polarity diagram of sample (S1) is shown in Figure 
6. 

 

 

 
Figure 6: Polarity diagram of (S1). 

 
Overall, the interaction among structure, relation, 

and polarity is complicated. The surface polarity 
information we extract by using the sentiment 
dictionary-based algorithm does not capture such 
complexity well. A dedicated structure-sensitive 
polarity tagger will be utilized in future work. 

5 Conclusion and Future Work 

In this paper, we addressed the problem of intra-
sentential Contingency and Comparison relation 
detection in Chinese. This is a challenging task 
because Chinese sentences tend to be very long 
and therefore contain more clauses. To tackle this 
problem, we constructed a moderate-sized corpus 
and proposed a learning-based approach that 
achieves accuracies of 81.63%, 79.92%, and 
74.80% and F-scores of 71.11%, 45.26%, and 
7.66% in the two-way, the four-way, and the 49-
way classification tasks, respectively. 

From the experiments, we found that 
performance could be significantly improved by 
adding the Connective feature. The next step is to 
enlarge the connective dictionary automatically by 
a text mining approach, in particular with those 
informal connectives, in order to boost 
performance. The advanced features such as 
Dependency, Structure, and Polarity are not as 
helpful as expected due to the small size of the 
corpus. In future work, we plan to construct a large 
Chinese discourse Treebank based on the 
methodology proposed in Section 2 and release the 
corpus to the public. 

Naturally, the intra-sentential relations are 
important cues for discourse relation detection at 
the inter-sentential level. How to integrate cues 
from these two levels will be investigated. Besides, 
relation labeling and structure prediction are 
tackled at the same time with the same learning 
algorithm in this study. We will explore different 
methods to tackle the two problems separately to 
reduce the complexity.  
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Abstract

This paper presents an analysis of how the
level of performance achievable by an NLU
module can affect the optimal modular design
of a dialogue system. We present an evalua-
tion that shows how NLU accuracy levels im-
pact the overall performance of a system that
includes an NLU module and a rule-based di-
alogue policy. We contrast these performance
levels with the performance of a direct classifi-
cation design that omits a separate NLU mod-
ule. We conclude with a discussion of the po-
tential for a hybrid architecture incorporating
the strengths of both approaches.

1 Introduction

Recently computer-driven conversational characters
or virtual humans have started finding real-life ap-
plications ranging from education to health services
and museums (Traum et al., 2005; Swartout et al.,
2006; Kenny et al., 2009; Jan et al., 2009; Swartout
et al., 2010). As proliferation of these systems in-
creases, there is a growing demand for the design
and construction of virtual humans to be made more
efficient and accessible to people without extensive
linguistics and computer science backgrounds, such
as writers, designers, and educators. We are specif-
ically interested in making the language processing
and dialogue management components in a virtual
human easier for such potential authors to develop.
Some system building steps that can be challenging
for such authors include annotating the meaning of
user and system utterances in a semantic formalism,
developing a formal representation of information

state, and writing detailed rules that govern dialogue
management.

We are generally interested in the extent to which
these various authoring steps are necessary in order
to achieve specific levels of system performance. In
this paper, we present a case study analysis of the
performance of two alternative architectures for a
specific virtual human. The two architectures, which
have been developed and evaluated in prior work
(DeVault et al., 2011b; DeVault et al., 2011a), differ
substantially in their semantic annotation and policy
authoring requirements. We describe these architec-
tures and our evaluation corpus in Section 2. We
focus our new analysis specifically on how the over-
all performance of one of the architectures, which
uses a natural language understanding (NLU) mod-
ule and hand-authored rules for the dialogue policy,
depends on the performance of the NLU module. In
Section 3, we describe our finding that, depending
on the attainable level of NLU accuracy, this modu-
lar approach may or may not perform better than a
simpler direct classification design that omits a sep-
arate NLU module and has a lower annotation and
rule authoring burden. In Section 4, we present an
initial exploration of whether a hybrid architecture
may be able to combine these approaches’ strengths.

2 Summary of Data Set and Prior Results

This work is part of an ongoing research effort
into techniques for developing high quality dialogue
policies using a relatively small number of sample
dialogues and low annotation requirements (DeVault
et al., 2011b; DeVault et al., 2011a). This section
briefly summarizes our prior work and data set.
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2.1 Data Set

For our experiments we use the dataset described
in (DeVault et al., 2011b). It contains 19 Wiz-
ard of Oz dialogues with a virtual human called
Amani (Gandhe et al., 2009). The user plays the
role of an Army commander whose unit has been at-
tacked by a sniper. The user interviews Amani, who
was a witness to the incident and has some informa-
tion about the sniper. Amani is willing to tell the
interviewer what she knows, but she will only re-
veal certain information in exchange for promises of
safety, secrecy, and money (Artstein et al., 2009).

Each dialogue turn in the data set includes a single
user utterance followed by the response chosen by a
human Amani role player. There are a total of 296
turns, for an average of 15.6 turns/dialogue. User
utterances are modeled using 46 distinct speech act
(SA) labels. The dataset also defines a different set
of 96 unique SAs (responses) for Amani. Six ex-
ternal referees analyzed each user utterance and se-
lected a single character response out of the 96 SAs.
Thus the dataset defines a one-to-many mapping be-
tween user utterances and alternative system SAs.

2.2 Evaluation Metric

We evaluate the dialogue policies in our experi-
ments through 19-fold cross-validation of our 19 di-
alogues. In each fold, we hold out one dialogue and
use the remaining 18 as training data. To measure
policy performance, we count an automatically pro-
duced system SA as correct if that SA was chosen by
the original wizard or at least one external referee for
that dialogue turn. We then count the proportion of
the correct SAs among all the SAs produced across
all 19 dialogues, and use this measure of weak accu-
racy to score dialogue policies.

We can use the weak accuracy of one referee,
measured against all the others, to establish a per-
formance ceiling for this metric. This score is .79;
see DeVault et al. (2011b).

2.3 Baseline Systems

We consider two existing baseline systems in our ex-
periments here. The first system (Rules-NLU-SA)
consists of a statistical NLU module that maps a user
utterance to a single user SA label, and a rule-based
dialogue policy hand-crafted by one of the authors.

The NLU uses a maximum-entropy model (Berger
et al., 1996) to classify utterances as one of the user
SAs using shallow text features. Training this model
requires a corpus of user utterances that have been
semantically annotated with the appropriate SA.

We developed our rule-based policy by manu-
ally writing the simple rules needed to implement
Amani’s dialogue policy. Given a user SA label
At for turn t, the rules for determining Amani’s re-
sponse Rt take one of three forms:

(a)ifAt = SAi thenRt = SAj
(b)ifAt = SAi ∧ ∃kAt−k = SAl thenRt = SAj
(c)ifAt = SAi ∧ ¬∃kAt−k = SAl thenRt = SAj

The first rule form specifies that a given user SA
should always lead to a given system response. The
second and third rule forms enable the system’s re-
sponse to depend on the user having previously per-
formed (or not performed) a specific SA. One the
system developers, who is also a computational lin-
guist, created the current set of 42 rules in about 2
hours. There are 30 rules of form (a), 6 rules of form
(b), and 6 rules of form (c).

The second baseline system (RM-Text) is a sta-
tistical classifier that selects system SAs by analyz-
ing shallow features of the user utterances and sys-
tem responses. We use the Relevance Model (RM)
approach pioneered by Lavrenko et al. (2002) for
cross-lingual information retrieval and adapted to
question-answering by Leuski et al. (2006). This
method does not require semantic annotation or rule
authoring; instead, the necessary training data is de-
fined by linking user utterances directly to the appro-
priate system responses (Leuski and Traum, 2010).

Table 1 summarizes the performance for the base-
line systems (DeVault et al., 2011a). The NLU mod-
ule accuracy is approximately 53%, and the weak
accuracy of .58 for the corresponding system (Rules-
NLU-SA) is relatively low when compared to the
RM system at .71. For comparison we provide a
third data point: for Rules-G-SA, we assume that
our NLU is 100% accurate and always returns the
correct (“gold”) SA label. We then run the rule-
based dialogue policy on those labels. The third
column (Rules-G-SA) shows the resulting weak ac-
curacy value, .79, which is comparable to the weak
accuracy score achieved by the human referees (De-
Vault et al., 2011b).
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Rules-NLU-SA RM-Text Rules-G-SA
.58 .71 .79

Table 1: Weak accuracy results for baseline systems.
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Figure 1: Weak accuracy of the Rules system as a func-
tion of simulated NLU accuracy.

3 NLU Accuracy and System Performance

We conducted two experiments. In the first, we stud-
ied the effect of NLU accuracy on the performance
of the Rules-NLU-SA system. One of our goals was
to find how accurate the NLU would have to be for
the Rules-NLU-SA system to outperform RM-Text.

To investigate this, we simulated NLU perfor-
mance at different accuracy levels by repeatedly
sampling to create a mixture of the SAs from the
trained NLU classifier and from the correct (gold)
set of SAs. Specifically, we set a fixed value p rang-
ing from 0 to 1 and then iterate over all dialogue
turns in the held out dialogue, selecting the the cor-
rect SA label with probability p or the trained NLU
module’s output with probability 1 − p. Using the
sampled set of SA labels, we compute the result-
ing simulated NLU accuracy, run the Rules dialogue
policy, and record the weak accuracy result. We re-
peat the process 25 times for each value of p. We let
p range from 0 to 1 in increments of .05 to explore a
range of simulated accuracy levels.

Figure 1 shows simulated NLU accuracy and the
corresponding dialogue policy weak accuracy as a
point in two dimensions. The points form a cloud
with a clear linear trend that starts at approximately
53% NLU accuracy where it intersects with the
Rules-NLU-SA system performance and then goes
up to the Rules-G performance at 100% NLU accu-

racy. The correlation is strong with R2 = 0.97.1

The existence of a mostly linear relationship com-
ports with the fact that most of the policy rules (30
of 42), as described in Section 2.3, are of form (a).
For such rules, each individual correct NLU speech
act translates directly into a single correct system
response, with no dependence on the system hav-
ing understood previous user utterances correctly.
In contrast, selecting system responses that comply
with rules in forms (b) and (c) generally requires
correct understanding of multiple user utterances.
Such rules create a nonlinear relationship between
policy performance and NLU accuracy, but these
rules are relatively few in number for Amani.

The estimated linear trend line (in purple) crosses
the RM-Text system performance at approximately
82% NLU accuracy. This result suggests that our
NLU component would need to improve from its
current accuracy of 53% to approximately 82% ac-
curacy for the Rules-NLU-SA system to outperform
the RM-Text classifier. This represents a very sub-
stantial increase in NLU accuracy that, in practice,
could be expected to require a significant effort in-
volving utterance data collection, semantic annota-
tion, and optimization of machine learning for NLU.

4 Hybrid System

In our second experiment we investigated the po-
tential to integrate the Rules-NLU-SA and RM-Text
systems together for better performance. Our ap-
proach draws on a confidence score θ from the NLU
maximum-entropy classifier; specifically, θ is the
probability assigned to the most probable user SA.

Figure 2 shows an analysis of NLU accuracy,
Rules-NLU-SA, and RM-Text that is restricted to
those subsets of utterances for which NLU confi-
dence θ is greater than or equal to some threshold τ .
Two important aspects of this figure are (1) that rais-
ing the minimum confidence threshold also raises
the NLU accuracy on the selected subset of utter-
ances; and (2) that there is a threshold NLU confi-
dence level beyond which Rules-NLU-SA seems to

1This type of analysis of dialogue system performance in
terms of internal component metrics is somewhat similar to the
regression analysis in the PARADISE framework (Walker et al.,
2000). However, here we are not concerned with user satis-
faction, but are instead focused solely on the modular system’s
ability to reproduce a specific well-defined dialogue policy.
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Figure 3: Weak accuracy of the Hybrid system as a func-
tion of the NLU confidence score.

outperform RM-Text. This confidence level is ap-
proximately 0.95, and it identifies a subset of user
utterances for which NLU accuracy is 83.3%. These
results therefore suggest that NLU confidence can
be useful in identifying utterances for which NLU
speech acts are more likely to be accurate and Rules-
NLU-SA is more likely to perform well.

To explore this further, we implemented a hy-
brid system that chooses between Rules-NLU-SA or
RM-Text as follows. If the confidence score is high
enough (θ ≥ τ , for some fixed threshold τ ), the Hy-
brid system uses the NLU output to run the Rules
dialogue policy to select the system SA; otherwise,
it discards the NLU SA, and applies the RM classi-
fier to select the system response directly.

Figure 3 shows the plot of the Hybrid system per-
formance as a function of the threshold value τ .

We see that with sufficiently high threshold value
(τ ≥ 0.95) the Hybrid system outperforms both
the Rules-NLU-SA and the RM-Text systems. The
second line, labeled ”Mix” and plotted against the
secondary (right) axis, shows the proportion of the
NLU SAs with the confidence score that exceed the
threshold (θ ≥ τ ). It indicates how often the Hybrid
system prefers the Rules-NLU-SA output over the
RM-Text system output. We observe that approxi-
mately 42 of the NLU outputs over all 296 dialogue
turns (15%) have confidence values θ ≥ 0.95. How-
ever, for most of these dialogue turns the outputs for
the Rules-NLU-SA and RM-Text dialogue policies
are the same. While we observe a small improve-
ment in the Hybrid system weak accuracy values
over the RM-Text system at thresholds of 0.95 and
higher, the difference is not statistically significant.

Despite the lack of statistical significance in the
initial Hybrid results in this small data set, we inter-
pret the complementary evidence from both experi-
ments, which support the potential for Rules-NLU-
SA to perform well when NLU accuracy is high, and
the potential for a hybrid system to identify a subset
of utterances that are likely to be understood accu-
rately at run-time, as indicating that a hybrid design
is a promising avenue for future work.

5 Conclusions and Future Work

We presented a case study analysis of how the level
of performance that is achievable in an NLU module
can provide perspective on the design choices for a
modular dialogue system. We found that NLU accu-
racy must be substantially higher than it currently is
in order for the Rules-NLU-SA design, which car-
ries a greater annotation and rule authoring burden,
to deliver better performance than the simpler RM-
Text design. We also presented evidence that a hy-
brid architecture could be a promising direction.
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Abstract

The goal of this paper is to present a first
step toward integrating Incremental Speech
Recognition (ISR) and Partially-Observable
Markov Decision Process (POMDP) based di-
alogue systems. The former provides sup-
port for advanced turn-taking behavior while
the other increases the semantic accuracy of
speech recognition results. We present an In-
cremental Interaction Manager that supports
the use of ISR with strictly turn-based dia-
logue managers. We then show that using
a POMDP-based dialogue manager with ISR
substantially improves the semantic accuracy
of the incremental results.

1 Introduction and Background

This paper builds toward integrating two distinct
lines of research in spoken dialogue systems: in-
cremental speech recognition (ISR) for input, and
Partially Observable Markov Decision Processes
(POMDPs) for dialogue management.

On the one hand, ISR improves on whole-
utterance speech recognition by streaming results to
the dialogue manager (DM) in real time (Baumann
et al., 2009; Skantze and Schlangen, 2009). ISR
is attractive because it enables sophisticated system
behavior such as interruption and back-channeling.
However, ISR output is particularly error-prone, and
often requires a specialized dialogue manager to be
written (Buß and Schlangen, 2011; Schlangen and
Skantze, 2009).

1Work done while at AT&T Labs - Research

On the other hand, POMDP-based dialogue man-
agers improve on traditional approaches by (in part)
tracking a distribution over many possible dialogue
states, rather than just one, thereby improving ro-
bustness to speech recognition errors (Williams and
Young, 2007; Thomson and Young, 2010; Young
et al., 2010). The overall aim of combining these
two lines of research is to improve the robustness of
error-prone ISR output.

To our knowledge only one study to date has com-
bined ISR and POMDPs. Lu et al. (2011) show
how 1-best ISR hypotheses can be used within a sin-
gle dialogue turn. This work is different than the
present paper, where we use N-Best lists of ISR re-
sults across multiple turns of a dialogue.

Specifically, this paper makes two contributions.
First, as a foundation, we introduce an Incremental
Interaction Manager (IIM) that enables ISR to be
used within the traditional turn-based dialogue man-
agement framework. The IIM confers many, but not
all, of the benefits of ISR without requiring mod-
ification to a traditional dialogue manager. Thus,
in theory, any existing dialogue system architecture
could use ISR with the addition of an IIM. Second,
we show that pairing our IIM with a POMDP-based
dialogue manager yields a substantial improvement
in accuracy for incremental recognition results at the
dialogue level.

The paper is organized as follows. Section 2 de-
scribes the IIM, section 3 describes the POMDP in-
tegration, sections 4 and 5 describe experiments and
results, and section 6 concludes.

275



Table 1: Example IIM operation. P = partial ISR result; A = dialogue action.

Original Copied
ISR IIM DM state DM state DM Action
Prompt: “Where are you leaving from?”
yew Rej. P 0 0 -
ridge Acc. P / Rej. A 0 0 “I’m sorry...”
mckee Acc. P / Acc. A 0 1 “Ok, Mckee...”
mckeesport Acc. P / Acc. A 0 2 “Ok, Mckeesport..”
mckeesport center Acc. P / Rej. A 0 2 “Ok, Mckeesport..”
Prompt: “Ok, Mckeesport. Where are you going to?”
pitt Acc. P / Rej. A 2 4 “I’m sorry...”
pittsburgh Acc. P / Acc. A 2 5 “Ok, Pittsburgh...”

2 Incremental Interaction manager

The Incremental Interaction Manager (IIM) medi-
ates communication between the incremental speech
recognizer and the DM. The key idea is that the
IIM evaluates potential dialogue moves by apply-
ing ISR results to temporary instances of the DM.
The IIM copies the current state of the DM, pro-
vides the copied DM with a recognition result, and
inspects the action that the copied DM would take.2

If the action does not sufficiently advance the dia-
logue (such as re-asking the same question), the ac-
tion is rejected and the copied DM is discarded. If
the action advances the dialogue (such as asking for
or providing new information), then that action is
immediately executed.

The system should gracefully handle revisions
following a premature action execution, and a copy-
ing procedure is a viable solution for any DM. When
a revision is received, a second copy of the original
DM is made and the new ISR result is passed to that
second copy; if that second copy takes an action that
advances the dialogue and is different from the ac-
tion generated by the first copy, then the first action
is terminated, the first copy of the DM is discarded,
the second action is initiated, and the second copy
assumes the position of the first copy. Additional
revisions can be handled by following the same pro-
cedure. Terminating a speech action and immedi-
ately starting another can be jarring (“Say a city /
Ok, Boston...”), which can be mitigated by preced-

2If the DM design does not force a state transition following
a result then the DM supplies the the action without copying.

ing actions with either a sound or simple silence (at
the expense of some response delay). Once recog-
nition is complete, the copied DM is installed as the
new original DM.

Many ISR results can be discarded before passing
them to the DM. First, only incremental results that
could correspond to complete user utterance are con-
sidered: incomplete results are discarded and never
passed to the DM. In addition, ISR results are of-
ten unstable, and it is undesirable to proceed with
an ISR result if it will very likely be revised. Thus
each candidate ISR result is scored for stability (Sel-
fridge et al., 2011) and results with scores below a
manually-set threshold are discarded.

Table 1 shows an example of the recognizer, the
IIM, and the DM. For sake of clarity, stability scores
are not shown. The system asks “Where are you
leaving from?” and the user answers “Mckeesport
Center.” The IIM receives five ISR results (called
partials), rejecting the first, yew, because its stabil-
ity score is too low (not shown). With the second,
ridge, it copies the DM, passes ridge to the copy,
and discards the action of the copied DM (also dis-
carded) because it does not advance the dialogue. It
accepts and begins to execute the action generated
by the third partial, mckee. The fourth partial revises
the action, and the fifth action is rejected since it is
the same. The original DM is then discarded and the
copied DM state is installed in its place.

Overall, the IIM enables a turn-based DM to en-
joy many of the benefits of ISR – in particular, the
ability to make turn-taking decisions with a com-
plete account of the dialogue history.
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3 Integrating ISR with a POMDP-based
dialogue manager

A (traditional) dialogue manager based on a partially
observable Markov decision process (POMDP DM)
tracks a probability distribution over multiple hid-
den dialogue states called a belief state (Williams
and Young, 2007).3 As such, POMDP DMs read-
ily make use of the entire ASR N-Best list, even
for low-confidence results — the confidence level of
each N-Best list item contributes proportionally to
the probability of its corresponding hidden state.

It is straightforward to integrate ISR and a
POMDP DM using the IIM. Each item on the N-
Best list of an incremental result is assigned a confi-
dence score (Williams and Balakrishnan, 2009) and
passed to the POMDP DM as if it were a complete
result, triggering a belief state update. Note that this
approach is not predicting future user speech from
partial results (DeVault et al., 2009; Lu et al., 2011),
but rather (tentatively) assuming that partial results
are complete.

The key benefit is that a belief state generated
from an incremental result incorporates all of the
contextual information available to the system from
the start of the dialogue until the moment of that
incremental result. By comparison, an isolated in-
cremental result includes only information from the
current utterance. If the probability models in the
POMDP are estimated properly, belief states should
be more accurate than isolated incremental results.

4 Experimental design

For our experiments we used a corpus of 1037 calls
from real users to a single dialogue system that pro-
vides bus timetable information for Pittsburgh, PA
(a subsequent version of Williams (2011)). This di-
alogue system opened by asking the caller to say a
bus route number or “I don’t know”; if the system
had insufficient confidence following recognition, it
repeated the question. We extracted the first 3 re-
sponses to the system’s bus route question. Often
the system did not need to ask 3 times; our exper-
imental set contained 1037 calls with one or more
attempts, 586 calls with two or more attempts, and

3It also uses reinforcement learning to choose actions, al-
though in this paper we are not concerned with this aspect.

356 calls with three or more attempts. These utter-
ances were all transcribed, and tagged for the bus
route they contained, if any: 25% contained neither
a route nor “I don’t know”.

We ran incremental speech recognition on each
utterance using Lattice-Aware Incremental Speech
Recognition (Selfridge et al., 2011) on the AT&T
WATSONSM speech recognizer (Goffin et al., 2005)
with the same rule-based language models used in
the production system. On average, there were
5.78, 5.44, and 5.11 incremental results per utter-
ance (plus an utterance-final result) for the first, sec-
ond, and third attempts. For each incremental result,
we noted its time stamp and interpretation: correct,
if the interpretation was present and correct, other-
wise incorrect. Each incremental result included an
N-Best list, from which we determined oracle accu-
racy: correct if the correct interpretation was present
anywhere on the most recent ISR N-Best list, other-
wise incorrect.

Each incremental result was then passed to the
IIM and POMDP DM. The models in the POMDP
DM were estimated using data collected from a dif-
ferent (earlier) time period. When an incremental
result updated the belief state, the top hypothesis
for the route was extracted from the belief state and
scored for correctness. For utterances in the first at-
tempt, the belief state was initialized to its prior; for
subsequent attempts, it incorporated all of the prior
(whole-turn) utterances. In other words, each at-
tempt was begun assuming the belief state had been
running up to that point.

5 Results and Discussion

We present results by showing instantaneous seman-
tic accuracy for the raw incremental result (base-
line), the top belief state, and oracle. Instantaneous
semantic accuracy is shown with respect to the per-
cent of the total recognition time the partial is rec-
ognized at. An utterance is incorrect if it has no in-
cremental result before a certain percentage.

We show 2 sets of plots. Figure 1 shows only in-
cremental recognition results and excludes the end-
of-utterance (phrase) results; Figure 2 shows incre-
mental recognition results and includes phrase re-
sults. It is useful to view these separately since the
phrase result, having access to all the speech, is sub-
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Figure 1: Instantaneous semantic accuracy of incremental results, excluding phrase-final results

Figure 2: Instantaneous semantic accuracy of incremental and phrase-final results

stantially more accurate than the incremental results.
Figure 1 shows that the POMDP is more accu-

rate than the raw incremental result (excluding end-
of-phrase results). Its performance gain is minimal
in attempt 1 because the belief is informed only by
the prior. In attempt 2 and 3, the gain is larger
since the belief also benefits from the previous at-
tempts. Since the top POMDP result in subsequent
attempts is sometimes already correct (because it
incorporates past recognitions), the POMDP some-
times meets and occasionally exceeds the oracle dur-
ing the early portions of attempts 2 and 3.

Figure 2 shows that when end-of-phrase recog-
nition results are included, the benefit of the belief
state is limited to the initial portions of the second
and third turns. This is because the POMDP mod-
els are not fit well to the data: the models were
estimated from an earlier version of the system,
with a different user base and different functionality.
Identifying and eliminating this type of mismatch
is an important issue and has been studied before
(Williams, 2011).

Taken as a whole, we find that using belief track-
ing increases the accuracy of partials by over 8%
(absolute) in some cases. Even though the final
phrase results of the 1-best list are more accurate

than the belief state, the POMDP shows better ac-
curacy on the volatile incremental results. As com-
pared to the whole utterance results, incremental re-
sults have lower 1-best accuracy, yet high oracle ac-
curacy. This combination is a natural fit with the
POMDPs belief state, which considers the whole N-
Best list, effectively re-ranking it by synthesizing in-
formation from dialogue history priors.

6 Conclusion

This paper has taken a step toward integrating ISR
and POMDP-based dialogue systems. The Incre-
mental Interaction Manager (IIM) enables a tradi-
tional turn-based DM to make use of incremental
results and enjoy many their benefits. When this
IIM is paired with a POMDP DM, the interpreta-
tion accuracy of incremental results improves sub-
stantially. In the future we hope to build on this work
by incorporating Reinforcement Learning into turn-
taking and dialogue action decisions.
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Abstract
During conversations, addressees produce
conversational acts—verbal and nonverbal
backchannels—that facilitate turn-taking,
acknowledge speakership, and communicate
common ground without disrupting the
speaker’s speech. These acts play a key role
in achieving fluent conversations. Therefore,
gaining a deeper understanding of how these
acts interact with speaker behaviors in shap-
ing conversations might offer key insights
into the design of technologies such as
computer-mediated communication systems
and embodied conversational agents. In this
paper, we explore how a regression-based
approach might offer such insights into mod-
eling predictive relationships between speaker
behaviors and addressee backchannels in
a storytelling scenario. Our results reveal
speaker eye contact as a significant predictor
of verbal, nonverbal, and bimodal backchan-
nels and utterance boundaries as predictors of
nonverbal and bimodal backchannels.

1 Introduction

Conversations involve a dynamic shifting of speak-
ership, one party playing the role of the “speaker”
and the other(s) the role of the “addressee” at any
given moment (Goodwin, 1981; Levinson, 1988;
Clark, 1996). In these roles, while speakers pro-
duce the majority of the conversational content, ad-
dressees play a major role in facilitating speakership
by performing backchannels—verbal and nonverbal
acts such as “uh huh” and head nods that indicate the
addressee’s understanding and involvement and ac-
knowledge that the speaker has and may continue to
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Figure 1: A mapping of the predictive relationships be-
tween speaker behaviors and overlapping bimodal ad-
dressee backchannels. β coefficients show the relative
importance of significant predictors of backchannel be-
haviors.

have the floor (Yngve, 1970; Drummond and Hop-
per, 1993).

Backchannels serve as a mechanism for coopera-
tion between speakers and addressees to achieve ef-
ficient communication (Brunner, 1979; Grice, 1989)
and to establish rapport (Drolet and Morris, 2000).
The design of conversational technologies such
as computer-mediated communication systems will
have to facilitate the use of backchannel mechanisms
to help their users achieve efficient conversations.
Similarly, embodied conversational agents will have
to use these mechanisms to achieve efficient inter-
actions with their users. However, these develop-
ments require a deeper understanding of backchan-
nel behavior and models of the relationship between
backchannel acts and speaker behaviors.

280



Research across many communities including
discourse processes, dialog systems, and human-
computer interaction has explored the use of
backchannels in conversations and sought to model
the relationships between backchannel acts and
other conversational processes using techniques that
range from contingency analyses (Truong et al.,
2011) to model training (Morency et al., 2010). In
this paper, we propose a complementary, regression-
based approach to untangle the predictive rela-
tionships between speaker behaviors and addressee
backchannels. This approach provides us with an
understanding of what speaker behaviors are signifi-
cant predictors of addressee backchannels and of the
relative contributions of each behavior in these pre-
dictions. The resulting models inform us of what
speaker behaviors are important to support in in-
teractive systems and communication technologies
to facilitate addressee backchannels and comple-
ment finer-granulated analyses of specific backchan-
nel mechanisms.

We contextualize our exploration in a storytelling
scenario, which requires addressees to rely on and
frequently use backchannels to participate in the dis-
course while maintaining consistency in conversa-
tional roles, using a multimodal data corpus col-
lected from 24 dyads. Our analysis includes verbal
and nonverbal backchannels, focusing on continuers
and assessments in the verbal channel and head nods
in the nonverbal channel. In the remainder of the pa-
per, we review related work, describe our methodol-
ogy, present our results, and discuss our findings and
their implications for future research and the design
of communication and interactive technologies.

2 Background

Conversations involve a cooperative process in
which interlocutors manage the floor, negotiate
turns, and provide feedback with the aid of subtle
linguistic and extralinguistic cues—backchannels—
that might not significantly contribute to the sub-
stance of the conversation (Yngve, 1970; Brunner,
1979; Grice, 1989; Drummond and Hopper, 1993).
These backchannels allow parties, particularly ad-
dressees, to exchange information on their inten-
tions and statuses and to participate in the conver-
sation without disrupting ongoing speech (Morris

and Desebrock, 1977; White, 1989). Backchan-
nels differ from “backchannel inviting cues,” which
might indicate what might be an appropriate time
for a backchannel (Gravano and Hirschberg, 2011).
While backchannels are produced universally, in-
dividual characteristics such as gender (Helweg-
Larsen et al., 2004) and cultural background (White,
1989; Ward and Tsukahara, 2000) significantly
shape their production and interpretation.

2.1 Backchannel Cues

Researchers have sought to distinguish and cate-
gorize the wide range of backchannels based on
how they are expressed by addressees (Jenkins and
Parra, 2003) and how they contribute to the conver-
sation(Young and Lee, 2004). The majority of re-
search on backchannels considers verbal or linguis-
tic cues and offers several categorizations. One of
these categorizations distinguishes continuers from
assessments (Young and Lee, 2004). Continuers are
short, nondescript verbal segments such as “uh huh”
and “yeah” that prompt the speaker to continue talk-
ing, while assessments are longer verbal segments
such as “oh, wow” and “really?” that offer commen-
tary or request clarification on the speaker’s state-
ments.

Another classification of verbal backchannels dis-
tinguishes among non-lexical, phrasal, and substan-
tive backchannels (Iwasaki, 1997; Young and Lee,
2004). Non-lexical backchannels include vocaliza-
tions such as “hmm” or “uh huh” that offer little
or no meaning but indicate the addressee’s engage-
ment in the conversation. Phrasal backchannels in-
volve simple, well-established expressions such as
“Really?” or “Are you serious?” that indicate ac-
knowledgment. Finally, substantive backchannels
involve the addressee taking the floor for brief pe-
riods and include repetitions, summary statements,
clarifying questions about the speaker’s speech, re-
pair, and collaborative completions.

Research on backchannels also describes nonver-
bal or extralinguistic cues such as smiling (Brunner,
1979) and gaze (Rosenfeld and Hancks, 1980) as
common backchannel behaviors that indicate agree-
ment, understanding, or engagement in the conver-
sation (Jenkins and Parra, 2003). Nodding is a par-
ticularly common nonverbal backchannel behavior
that plays a range of roles from indicating agree-
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ment to conveying sympathy and understanding with
the speaker’s perspective (Stivers, 2008). While ver-
bal and nonverbal backchannels play similar com-
municative roles, the specific context of the conver-
sation, such as whether the conversation involves a
negotiation or a discussion, shapes how participants
perform and interpret the two forms of backchannels
(Jenkins and Parra, 2003). Addressees often display
both verbal and nonverbal backchannels (Truong et
al., 2011), such as concurrently nodding and saying
“yeah” to express agreement.

2.2 Modeling Backchannels

Research on conversational backchannels involves a
wide range of modeling approaches including rule-
based models (Duncan, 1972), contingency analysis
(Truong et al., 2011), and trained models (Morency
et al., 2010) across a wide range of conversa-
tional contexts from telephone conversations (Ward
and Tsukahara, 2000) to face-to-face interactions
(Truong et al., 2011). Rule-based models capture
relationships between backchannels and other con-
versational behaviors based on prototypical exam-
ples of commonly observed behaviors. Contingency
analysis offers a quantitative basis for modeling
these relationships through pairwise analyses of co-
occurrences. Finally, statistical learning techniques
allow researchers to train machine learning algo-
rithms, such as Support Vector Machines (SVM) and
Hidden Markov models (HMM), on data that cap-
ture these relationships in order to estimate the tim-
ing of backchannels.

2.3 Regression-based Modeling

While it remains unexplored in the context of mod-
eling backchannel behaviors, regression-based ap-
proaches are commonly used in modeling complex
relationships among many variables. In the context
of modeling discourse and dialog, frameworks such
as PARADISE (PARAdigm for DIalogue System
Evaluation) build on regression-based approaches to
identify predictive relationships between several el-
ements of dialog and objective or subjective out-
comes of the dialog (Walker et al., 1997). Re-
searchers have used these frameworks to evaluate
the effectiveness of spoken dialog in interactive sys-
tems (Foster et al., 2009; Peltason et al., 2012).

3 Method

Due to the broad range of verbal and nonverbal
backchannels, we chose to focus on a limited subset
of verbal and nonverbal cues, including continuers
and assessments as verbal backchannels and head
nods as nonverbal backchannels. Although there are
numerous possible speaker behaviors, which may
predict backchannels, we focused on six cues based
on previous research: (1) speaker’s gaze (directed
toward the addressee), (2) nods, (3) gestures, (4)
speech (whether the speaker is speaking or not), (5)
conjunctions in the speaker’s speech, and (6) pitch
variance in the speaker’s speech. These six predic-
tors were then used to build models for five depen-
dent variables: (1) nonverbal backchannels, (2) ver-
bal backchannels, (3) concurrent verbal and nonver-
bal backchannels (e.g., a nod and an “OK” starting
simultaneously), (4) overlapping verbal and nonver-
bal backchannels (e.g., a nod followed by an “OK”
towards the end of the nod), and (5) independent bi-
modal backchannels (the presence of either verbal or
nonverbal backchannels). We modeled the relation-
ships between these predictors and dependent vari-
ables using stepwise regression.

3.1 Participants and Data Corpus

A total of 48 subjects from the University of
Wisconsin–Madison participated in this study. They
studied a diverse set of fields and were aged be-
tween 18 and 28. All participants were native En-
glish speakers. We assigned participants into dyads
and conversational roles following a fully stratified
design to control for the effects of gender compo-
sition of the dyads. We discarded data from one
dyad, because the participants did not conform to
the conversational roles that they were asked to fol-
low. With this omission, our final dataset consisted
of 23 dyads.

Our experimental setup followed common con-
ventions of face-to-face conversations. Two partici-
pants unfamiliar with one another were seated across
from each other at a “social distance” of five feet
(Hall, 1963). An illustration of our experimental
setup can be seen in Figure 2. The data collection
equipment consisted of three high-definition video
cameras at 1080p resolution and 30p frame rate,
two high-fidelity lapel microphones, and an omni-
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Speaker
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Addressee
microphone

Speaker

Participants

Addressee

Figure 2: The experimental setup (left) shows the place-
ment of the participants at a “social distance” and of the
equipment for capturing data. The snapshots (right) show
the vantage point from each of the three cameras.

directional microphone. Two of the video cameras
were positioned across from each participant, cap-
turing their upper torso from a direct frontal angle,
while the lapel microphones captured their speech.
The third camera and the omni-directional micro-
phone recorded the speech and nonverbal behaviors
of both participants from a side angle. The final
datas corpus consisted of 1 hour and 31 minutes of
audio and video. The average video length was 3
minutes and 57 seconds.

3.2 Procedure

The experimental task involved partaking in a sto-
rytelling scenario that aimed to elicit a wide range
of behavioral and interactional mechanisms. In this
scenario, one of the participants took on the role of
the speaker and narrated the plot of their favorite
movie to the second participant who took on the role
of the addressee. We expected this scenario to pro-
vide us with a rich context to observe backchannels.

Participants were first given a brief description of
the experiment and asked to review and sign a con-
sent form. The experimenter then seated the partic-
ipants, assigned them conversational roles, and set
up the data collection equipment. Participants first
performed an acclimation task (getting to know one
another) that was not considered part of the exper-
imental task. The participants then performed the
storytelling scenario. Following the experiment, the
experimenter debriefed the participants. Participants
were paid $10 for their time.

3.3 Measurements
Based on a preliminary analysis of our data, we
identified five forms of addressee backchannels as
dependent variables: (1) nonverbal backchannels,
(2) verbal backchannels, (3) concurrent verbal and
nonverbal backchannels (e.g., a nod and an “OK”
starting simultaneously), (4) overlapping verbal and
nonverbal backchannels (e.g., a nod followed by an
“OK” towards the end of the nod), and (5) indepen-
dent bimodal backchannels (either verbal or nonver-
bal backchannels).

Our independent variables consisted of speaker
behaviors that previous research suggested as likely
predictors of addressee backchannels and that a real-
time interactive system might be able to capture and
interpret. These variables included visible and au-
dible features from the speaker’s movements and
speech, such as the presence or absence of speech
and pitch variability, and specific linguistic features
that might signal discourse structure, such as con-
junctions. Drawing on these considerations, our
analysis included speaker’s gaze (directed toward
the addressee), nods, gestures, speech (whether the
speaker is speaking or not), conjunctions in the
speaker’s speech, and pitch variance measurements
of the speaker’s speech.

In our measurement of pitch, we sought to cap-
ture computationally feasible, high-level intona-
tional characteristics of the speech by calculating the
variability in pitch in the entire conversation. Low
pitch variability indicated more monotonous speak-
ers, whereas high pitch variability represented more
expressive speech. This measure was calculated by
finding the average pitch of the speaker throughout
the conversation and aggregating the difference be-
tween the average pitch and the pitch value at each
frame, as expressed below:

pitch variance =
n

∑
i=0
|pitch− pitchi|

Here, the number of measurements in the conver-
sation is represented by n; each individual measure-
ment is represented by i; the speaker’s average pitch
in the entire conversation is represented by pitch;
and the pitch value at each individual measurement
is represented by pitchi.

The data was labeled using a combination of man-
ual and computational techniques. All speaker and
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Measure (y) Function (β0 + β1x1 + . . . + βnxn+ e) R2 Significance

Nonverbal backchannels .138 + .635 × N (gaze) + .374 × N (speech) + .089 .911 gaze
speech

p < .001
p = .008

Verbal backchannels .034 + .875 × N (gaze) + .067 .977 gaze p < .001

Concurrent 
bimodal backchannels

.019 + .471 × N (gaze) + .822 × N (speech) + .059 .940 gaze
speech

p < .001
p < .001

Overlapping
bimodal backchannels

.013 + .923 × N (gaze) + .618 × N (nods) + .297 × N (speech) + .061 .966 gaze
nods

speech

p < .001
p = .009
p = .011

Independent 
bimodal backchannels

.134 + .483 × N (gaze) + .212 × N (pitch) + .074 .896 gaze
pitch

p < .001
p = .014

Figure 3: The final models for each dependent variable after elimination in the stepwise regression analysis including
only the significant predictors. Gaze was a significant predictor in all five models. Speech was significant in three
models. Pitch variability and nods each significantly predicted one type of backchannel.

addressee utterances were transcribed using Praat.
Speech and conjunctions measurements were drawn
from this transcription. Only pauses that were longer
than 500 milliseconds were considered as absence
of speech; speech segments that were separated by
shorter pauses were combined into a single segment.
The pitch variability was automatically extracted us-
ing Praat. A primary coder labeled 100% of the
remaining attributes (addressee nods, speaker nods,
speaker gestures, and speaker gaze). To evaluate
reliability, a second coder labeled 10% of a ran-
domly sampled subset of the data. The inter-rater
reliability showed substantial agreement for all at-
tributes; addressee nods (94% agreement, Cohen’s
κ = 0.72), speaker nods (92% agreement, Cohen’s
κ= 0.71), speaker gesture (87% agreement, Cohen’s
κ = 0.67), and speaker gaze (96% agreement, Co-
hen’s κ = 0.75).

All variables except pitch variability were binary:
0 for not occurring and 1 for occurring of events.
Pitch variability was a normalized continuous vari-
able that varied between 0 and 1. We considered
variables as co-occurring when they overlapped with
each other within a window that spanned 200 mil-
liseconds before the onset and after the end of each
variable, following criteria from previous research
(Truong et al., 2011). The data corpus included mea-
surements of all variables every 33.3 milliseconds.

The data corpus for each dependent variable in-
cluded aggregate counts of measurements for all

variables for each video. The aggregate counts for
each video were normalized by dividing them by the
length of the video in seconds. Finally, each vari-
able across all videos were normalized to vary be-
tween 0 (least frequent) and 1 (most frequent). The
resulting data corpus included five data tables of size
23x7 (data from 23 dyads on seven variables—the
dependent variable and six predictors) for five types
of backchannel behaviors.

3.4 Analysis
Our analysis followed a stepwise multiple linear
regression to model the relationships between our
predictors and dependent variables. Each analysis
started with the following linear form:

y = (β0+β1x1+β2x2+ . . .+βnxn)+e

Here, β0 is a constant, whereas β1 . . .βn are coef-
ficient weights for each of n predictors. The values
of each predictor for each measurement are repre-
sented by x1 . . .xn. The error term for the model is e,
which is assumed to be mean zero and independent
and identically distributed (i.i.d.).

Our use of stepwise regression followed a back-
ward elimination algorithm in which the final model
is constructed by gradually excluding predictors that
do not sufficiently contribute to the model. For the
purposes of our study, we excluded any predictor
with a p-value above .25. The final model is com-
prised of predictors left which are statistically sig-
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Predictor

Nods

Gaze

Gestures

Speech

Conjunctions

Pitch

β

.297

.621

–.134

.388

.129

.012

p

.542

< .001

.275

.043

.779

.148

Nonverbal backchannels
(R2 = .912)

Verbal backchannels
(R2 = .968)

Concurrent
bimodal backchannels

(R2 = .938)

Overlapping
bimodal backchannels

(R2 = .962)

β

.209

.952

–.033

.067

.323

.003

p

.242

< .001

.834

.644

.372

.721

β

.332

.574

.052

.631

n/a

–.001

p

.227

.001

.735

.005

n/a

.761

β

.579

.848

.235

.205

–.191

.009

p

.015

< .001

.113

.091

.622

.655

Independent
bimodal backchannels

(R2 = .889)

β

.530

.542

–.066

.072

.397

.402

p

.205

.001

.489

.775

.325

.118

Figure 4: The results of the model for each dependent variable before elimination in the stepwise regression analysis.

nificant (p < .050). The β coefficients in the model
provide the relative contribution of each indepen-
dent variable in predicting the dependent variable.
Our analysis considered the number of addressee
backchannels that occurred in each dyad as the met-
ric of success.

3.5 Results

In all five of our models, the independent variables
accounted for a significant proportion of variance in
the dependent variables, varying between 89.9% and
96.6%. These results are summarized in Figure 3.

In the first model, speaker behaviors accounted
for a significant portion of addressee nonverbal
backchannels, R2 = .911,F(2,20) = 113.6, p <
.001. Speaker gaze and speech significantly pre-
dicted these backchannels, β = .635, t(21) = 6.02,
p < .001 and β = .374, t(21) = 2.90, p = .008,
respectively. Gaze also significantly predicted ad-
dressee verbal backchannels, β = .875, t(22) =
27.24, p < .001, and explained a significant por-
tion of the variance in them, R2 = .977,F(1,21) =
702.5, p< .001.

Results from the third model showed that gaze
and speech explained a significant proportion of
the variance in concurrent bimodal backchannels,
R2 = .940,F(2,20) = 172.3, p < .001, and sig-
nificantly predicted these backchannels, β = .471,
t(21) = 3.98, p < .001 and β = .822, t(21) =
7.92, p < .001, respectively. In the fourth model,
speaker behaviors explained a significant proportion
of the variance in overlapping bimodal backchan-

nels, R2 = .966,F(3,19) = 180, p < .001. Speaker
gaze, speech, and nods were significant predictors
of these backchannels, β = .923, t(20) = 12.3, p <
.001, β = .297, t(20) = 2.80, p = .011, β = .618,
t(20) = 2.93, p = .009, respectively.

Finally, results from the fifth model showed that
speaker behaviors explained a significant proportion
of the variance in independent bimodal backchan-
nels, R2 = .896,F(2,20) = 94.63, p < .001. The
speaker’s gaze and the variability in the pitch of the
speaker’s speech significantly predicted these ad-
dressee behaviors, β = .483, t(21) = 6.74, p< .001
and β = .212, t(21) = 2.83, p = .014, respectively.

4 Discussion

The results of our statistical analysis show key rela-
tionships between speaker behaviors and addressee
backchannels, reaffirming findings from previous
studies and revealing new relationships. The para-
graphs below provide a discussion of these find-
ings and support them with examples of addressee
backchannels that we frequently observed in our
data. These examples are illustrated in Appendix A
in three episodes of interaction. We also discuss the
implications of our approach for modeling conver-
sational mechanisms.

Our results are summarized in Figures 3 and 4,
which show our final models after elimination and
the models before elimination, respectively. The
results in Figure 3, consistent with previous work
(Bavelas et al., 2002), highlight the importance of
gaze in eliciting addressee backchannels. Gaze is
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included in all five of our models and is consistently
the most important predictor of addressee backchan-
nels in four of our five models. In Appendix
A, all six instances of the addressee backchannels
across three illustrated episodes occur either when
the speaker is looking toward the addressee or al-
most concurrently with the speaker shifting gaze
away from the addressee.

The results also show speech to be a signifi-
cant predictor of addressee backchannels. Three of
our models included speech as a predictor, which
suggests that more frequent pauses in speech pro-
vides the addressee with more opportunities to pro-
vide backchannels; that frequent pauses prompt ad-
dressees to provide more backchannels to facilitate
the continuation of the speaker’s speech; and/or that
the addressees produce more backchannels, because
speakers present more information. Four instances
of backchannels shown in Appendix A occur imme-
diately after an utterance has ended, which exem-
plify pauses as opportune moments for the addressee
to produce backchannels.

The significance of pitch variability in predicting
independent bimodal backchannels offers a different
perspective on the relationship between attributes of
speaker pitch and addressee backchannels than pre-
vious research does. Although previous work sug-
gested that pitch attributes do not have a significant
relationship with addressee backchannels in face-to-
face conversations (Truong et al., 2011), pitch vari-
ability significantly predicted independent bimodal
backchannels in our models. We speculate that pitch
variability captures the speaker’s overall ability to
engage their addressees in their speech and, thus,
predicts addressee backchannels. However, our re-
sults show that this predictive relationship only ex-
ists with independent bimodal backchannels and not
with verbal or nonverbal backchannels. This dis-
crepancy might be a result of variability across indi-
viduals in their preferences to use verbal and nonver-
bal backchannels, which is not captured by our mod-
els for these individual backchannels but is captured
by the model that considers either type of backchan-
nels.

Speech did not significantly predict the ad-
dressee’s verbal or independent bimodal backchan-
nels, while it predicted nonverbal and concurrent
and overlapping backchannels. This finding sug-

gests that frequent pauses in speech elicit primarily
nonverbal backchannels and elicit verbal backchan-
nels only in the presence of nonverbal backchan-
nels. A possible explanation of this finding is that
addressees might prefer nonverbal backchannels to
verbal backchannels when they wish to facilitate the
continuation of speech.

A key contribution of our work is an exploration
of the relationship between verbal and nonverbal
backchannels by modeling the concurrent onsets and
overlaps between these backchannels. These models
indicate that gaze and speech are significant predic-
tors of concurrent onsets and overlaps in verbal and
nonverbal backchannels and that speaker nods also
significantly predict overlaps.

Our analysis also identified overlapping bimodal
backchannels as a new form of backchannel behav-
ior that has not been considered by previous research
(Truong et al., 2011). These backchannels involve
the addressee producing a nonverbal backchannel
towards the end of the speaker’s speech and then
producing a verbal backchannel when the speaker
had stopped talking. We speculate that this behav-
ior allows the addressee to express agreement during
the speaker’s speech using nonverbal backchannels
without disrupting the speech and reassert agree-
ment using verbal backchannels when the speaker’s
utterance is completed. Episode B in Appendix
A illustrates an instance of overlapping bimodal
backchannels.

A final contribution of this work is an illustration
of the use of a regression-based approach in model-
ing predictive relationships between speaker behav-
iors and addressee backchannels. This approach al-
lowed us to explore the relationships among many
aspects of speaker and addressee behavior and to
quantify the relative significance of each aspect of
the speaker’s behaviors in predicting addressee be-
haviors. Our results confirmed findings from previ-
ous research and produced new findings, revealing
novel relationships between these behaviors. These
relationships will serve as a basis for future research
to create more nuanced models of speaker and ad-
dressee behavior. They will also inform the design
of future communication technologies and interac-
tive systems that incorporate mechanisms to support
the communication of key predictors of addressee
backchannels.
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While the primary goal of our study was to better
understand relationships among conversational be-
haviors, our models might also serve as coarse esti-
mation models. The models shown in Figure 3 might
be used to estimate ŷ—how frequently addressee
backchannels should appear—using the predictor
coefficients β and values for known speaker behav-
iors x. These estimations might complement finer-
granulated models of backchannel mechanisms in
generating opportune backchannel behaviors for ar-
tificial agents and predict when these backchannels
might occur in human-computer interaction scenar-
ios.

4.1 Limitations
Our work also has a number of limitations. First,
because our approach uses aggregate counts of be-
haviors from the entire interaction, it does not ac-
count for the temporal relationships among these
variables. Therefore, the insights offered by our
approach are limited to high-level conclusions on
the relationships between these behaviors and illus-
trations of these relationships in example episodes
of interaction. Future work should include com-
plementary modeling techniques to build finer-
granulated models of backchannel mechanisms.

Although participants in each conversation were
explicitly assigned to one of the roles of speaker and
addressee, we did not specifically tell addressees not
to speak, which led to a greater amount of variability
in their participation in the conversation, some offer-
ing up their opinions or asking questions throughout
the speaker’s story and others limiting their behav-
iors to a small number of backchannels. While this
variability enabled more natural conversations, this
lack of control might have limited the power of our
statistical models.

In this paper, we focused on a set of high-level
predictors that allow for real-time capture and inter-
pretation, ignoring underlying conversational mech-
anisms such as repair, which might also serve as sig-
nificant predictors of backchannels. The relation-
ships between these mechanisms and backchannel
behavior would be a fruitful area of exploration for
future research.

Finally, the generalizability of our results suffers
from the limited extent of the conversational con-
text and participation structure of our experimental

setup. Future work should seek to extend this ex-
ploration to a broader set of conversational settings,
such as interview and discussion scenarios, and par-
ticipation structures, such as multi-party conversa-
tions.

5 Conclusion

Backchannels are essential behaviors for achieving
fluent and effective conversations. Gaining a deeper
understanding of how these behaviors shape conver-
sations might offer key insights into the design of
technologies such as computer-mediated communi-
cation systems and embodied conversational agents.
In an exploratory study, we used a stepwise regres-
sion approach to model the relationships between
various types of addressee backchannels and speaker
behaviors in a storytelling scenario. We found that
gaze significantly predicted all types of backchannel
behaviors including verbal, nonverbal, and bimodal
backchannels. Our results also showed that speech,
speaker nods, and pitch variability predicted some
types of backchannel behaviors. While these re-
sults have some limitations due to our methodolog-
ical choices, they suggest directions for future work
and offer preliminary insights toward a deeper un-
derstanding of backchannel behaviors and how in-
teractive systems and communication technologies
might be designed to support these behaviors.
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Appendix A. Contextual Examples

Below are three example episodes drawn from our data. Each episode displays all occurrences of all the
predictors we measured in real time. All six instances of backchannels highlight the importance of the
speaker’s gaze and speech in eliciting addressee backchannels.

Nonverbal backchannel
Verbal backchannel
Addressee

Speech
Speaker

Pitch
Conjunctions

was one of  the owners of  the farm or like the daughter of  the owner of  the farm

Gaze
Nods

Gestures

or 

BackchannelBackchannel1 2Speaker Speaker

Speaker

Nonverbal backchannel
Verbal backchannel
Addressee

Speech
Speaker

Pitch
Conjunctions

that guy definitely got screwed over in the court scene like right away

Gaze
Nods

Gestures

Backchannel
Backchannel

yeah

3
4

Speaker

Nonverbal backchannel
Verbal backchannel

Backchannel BackchannelAddressee

Speech
Speaker

Pitch
Conjunctions

it was a good movie, like Johnny Depp was really good

Gaze
Nods

Gestures

5 6

AddresseeSpeaker AddresseeSpeaker

Episode A

Episode B

Episode C
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Abstract

With the aim of investigating how humans un-
derstand each other through language and ges-
tures, this paper focuses on how people un-
derstand incomplete sentences. We trained a
system based on interrupted but resumed sen-
tences, in order to find plausible completions
for incomplete sentences. Our promising re-
sults are based on multi-modal features.

1 Introduction

Our project, called RoboHelper, focuses on devel-
oping an interface for elderly people to effectively
communicate with robotic assistants that can help
them perform Activities of Daily Living (ADLs)
(Krapp, 2002), so that they can safely remain living
in their home (Di Eugenio et al., 2010; Chen et al.,
2011). We are developing a multi-modal interface
since people communicate with each other using a
variety of verbal and non-verbal signals, including
haptics, i.e., force exchange (as when one person
hands a bowl to another person, and lets go only
when s/he senses that the other is holding it). We
collected a medium size multi-modal human-human
dialogue corpus, then processed and analyzed it. We
observed that a fair number of sentences are incom-
plete, namely, the speaker does not finish the utter-
ance. Because of that, we developed a core compo-
nent of our multi-modal interface, a sentence com-
pletion system, trained on the set of interrupted but
eventually completed sentences from our corpus. In
this paper, we will present the component of the sys-
tem that predicts reasonable completion structures
for an incomplete sentence.

Sentence completion has been addressed within
information retrieval, to satisfy user’s information
needs (Grabski and Scheffer, 2004). Completing
sentences in human-human dialogue is more diffi-
cult than in written text. First, utterances may be in-
formal, ungrammatical or dis-fluent; second, people
interrupt each other during conversations (DeVault
et al., 2010; Yang et al., 2011). Additionally, the
interaction is complex, as people spontaneously use
hand gestures, body language and gaze besides spo-
ken language. As noticed by (Bolden, 2003), during
face-to-face interaction, the completion problem is
not only an exclusively verbal phenomenon but ”an
action embedded within a complex web of differ-
ent meaning-making fields”. Accordingly, among
our features, we will include pointing gestures, and
haptic-ostensive (H-O) actions, e.g., referring to an
object by manipulating it in the real world (Landra-
gin et al., 2002; Foster et al., 2008).

The paper is organized as follows. In Section 2 we
describe our data collection and multi-modal anno-
tation. In Section 3 we discuss how we generate our
training data, and in Section 4 the model we train
for sentence completion, and the results we obtain.

2 Dataset

In contrast with other sentence completion systems
that focus on text input, the dataset we use in this
paper is a subset of the ELDERLY-AT-HOME cor-
pus, a multi-modal corpus in the domain of elderly
care, which includes collaborative human-human di-
alogues, pointing gestures and haptic-ostensive (H-
O) actions. Our experiments were conducted in
a fully functional apartment and included a helper
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(HEL) and an elderly person (ELD). HEL helps
ELD to complete several realistic tasks, such as
putting on shoes, finding a pot, cooking pasta and
setting the table for dinner. We used 7 web cameras
to videotape the whole experiment, one microphone
each to record the audio and one data glove each to
collect haptics data. We ran 20 realistic experiments
in total, and then imported the videos and audios (in
avi format), haptics data (in csv format) and tran-
scribed utterances (in xml format) into Anvil (Kipp,
2001) to build the multi-modal corpus.

Among other annotations (for example Dialogue
Acts) we have annotated these dialogues for Point-
ing gestures and H-O actions. Due to the setting
of our experiments, the targets of pointing gestures
and H-O actions are real life objects, thus we de-
signed a reference index system to annotate them.
We give pre-defined indices to targets which can-
not be moved, such as cabinets, draws, and fridge.
We also assign runtime indices to targets which can
be moved, like pots, glasses, and plates. For exam-
ple, ”Glass1” refers to the first glass that appears in
one experiment. In our annotation, a “Pointing” ges-
ture is defined as a hand gesture without any phys-
ical contact between human and objects. Hand
gestures with physical contact to objects are anno-
tated as H-O actions. H-O actions are further subdi-
vided into 7 subtypes, including ”Holding”, ”Touch-
ing”,”Open” and ”Close”. In order to verify the reli-
ability of our annotations, we double coded 15% of
the pointing gestures and H-O actions. Kappa val-
ues of 0.751 for pointing gestures, and of 0.703 for
H-O actions, are considered acceptable, especially
considering the complexity of these real life tasks
(Chen and Di Eugenio, 2012).

In this paper, we focus on specific sub-dialogues
in the corpus, which we call interruptions. An inter-
ruption can occur at any point in human-human dia-
logues: it happens when presumably the interrupter
(ITR) thinks s/he has already understood what the
speaker (SPK) means before listening to the entire
sentence. By observing the data from our corpus,
we conclude that there are generally three cases of
interruptions. First, the speaker (SPK) stops speak-
ing and does not complete the sentence – these are
the incomplete sentences whose completion a robot
would need to infer. In the second type of inter-
ruption, after being interrupted SPK continues with

(a) few words, and then stops without finishing the
whole sentence: hence, there is a short time over-
lap between two sentences (7 cases). The third case
occurs when the SPK ignores the ITR and finishes
the entire sentence. In this case, the SPK and the
ITR speak simultaneously (198 cases). The number
of interruptions ranges from 1 to 37 in each experi-
ment. An excerpt from an interruption with a subse-
quent completion (an example of case 3) is shown
below. The interruption occurs at the start of the
overlap between the two speakers, marked by < and
>. This example also includes annotations for point-
ing gestures and for H-O actions.

Elder: I need some glasses from < that cabinet >.
[Point (Elder, Cabinet1)]

Helper: < From this > cabinet?
[Point (Helper, Cabinet2)]

Helper: Is this the glass you < ’re looking for? >
[Touching (Helper, Glass1)]

Elder: < No, that one.>
[Point (Elder, Cabinet1, Glass2)]

As concerns annotation for interruptions, it proceeds
from identifying interrupted sentences to finding
<interrupted sentences, candidate structure> pairs
which will be used for generating grammatical com-
pletion for an incomplete sentence. Each in-
terrupted sentence is marked with two categories:
incomplete form, from the start of the sentence
to where it is interrupted, such as ”I need some
glasses”; complete form, from the start of a sentence
to where the speaker stops, ”I need some glasses
from that cabinet.”

Table 2 shows distribution statistics for our
ELDERLY-AT-HOME corpus. It contains a total of
4839 sentences, which in turn contain 7219 clauses.
320 sentences are incomplete in the sense of case 1
(after interruption SPK never completes his/her sen-
tence); whereas 205 sentences are completed after
interruption (cases 2 and 3).

Sentences 4,839
Clauses 7,219
Pointing Gestures 362
H-O Actions 629
Incomplete sentences 320
Interrupted sentences 205

Table 1: Corpus Distributions
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3 Candidate Pairs Generation

The question is now, how to generate plausible train-
ing instances to predict completions for incomplete
sentences. We use the 205 sentences that have
been interrupted but for which we have comple-
tions; however, we cannot only use those pairs for
training, since we would run the risk of overfit-
ting, and not being able to infer appropriate com-
pletions for other sentences. To generate addi-
tional<Interrupted sentences, candidate structure>
pairs, we need to match an interrupted sentence IntS
with its potential completions – basically, to check
whether IntS can match the prefix of other sentences
in the corpus. We do so by comparing the POS se-
quence and parse tree of IntS with the POS sequence
and parse tree of the prefix of another sentence. Both
IntS and other sentences in the corpus are parsed via
the Stanford Parser (Klein and Manning, 2003).

Before discussing the details though, we need
to deal with one potential problem: the POS se-
quence for the incomplete portion of IntS may not
be correctly assigned. For example, when the sen-
tence ’The/DT, top/JJ, cabinet/NN.’ is interrupted as
’The/DT, top/NN’, the POS tag of NN is assigned
to ’top’; this is incorrect, and engenders noise for
finding correct completions.

We first pre-process a dialogue by splitting turns
into sentences, tokenizing sentences into tokens, and
POS tagging tokens. Although for the interrupted
sentences, we could obtain a correct POS tag se-
quence by parsing the incomplete and resumed por-
tions together, this would not work for a truly incom-
plete sentence (whose completion is our goal). Thus,
to treat both interrupted sentences and incomplete
sentences in the same way, we train a POS tag Cor-
rection Model to correct fallaciously assigned POS
tags. The POS tag Correction Model’s feature set
includes the POS tag of the token, the word, and the
previous tokens’ POS tags in a window size of 3.
The model outputs the corrected POS tags.

The POS tag Correction model described above
was implemented using the Weka package (Hall et
al., 2009). Specifically, we experimented with J48
(a decision tree implementation), Naive Bayes (NB),
and LibSVM (a Support Vector Machine implemen-
tation). All the results reported below are calculated
using 10 fold cross-validation.

J48 NB LibSVM
Accuracy 0.829 0.680 0.532

Table 2: POS tag Correction Model Performance

The results in Table 2 are not surprising, since de-
tecting the POS tag of a known word is a simple
task. Additionally, it is not surprising that J48 is
more accurate than NB, since NB is known to of-
ten behave as a baseline method. What is surprising
though is the poor performance of SVMs, which are
generally among the top performers for a broad va-
riety of tasks. We are investigating why this may be
the case. At any rate, by applying the J48 model, we
obtain more accurate POS tag assignments for inter-
rupted sentences (and in our future application, for
the incomplete sentence we need to complete).

Once we have corrected the POS assignments for
each interrupted sentence IntS, we retrieve poten-
tial grammatical structures for IntS, by comparing
IntS with the prefixes of all complete sentences in
the corpus via POS tags and parse trees. Note that
due to the complexity of building a parse tree cor-
rection model in our corpus, we only build a model
to correct the POS tags, but ignore the possible in-
correct parse trees of the incomplete portion of an
interrupted sentence. The matching starts from the
last word in IntS back to the first word, with weights
assigned to each position in decreasing order. Due to
the size of our corpus, it is not possible to find ex-
actly matched POS tag sequences for every incom-
plete sentence; thus, we also consider the parsed tree
structures and mismatched POS tags between IntS’s
and complete sentences by reducing weights accord-
ing to the size of the matched phrases and distances
of mismatched POS tags. After this, a matching
score is calculated for each incomplete and candi-
date structure pair.

Due to the large number of candidate structures,
only the top 150 candidate structures for each IntS
are selected and manually annotated with three
classifications: ”R”, when the candidate structure
provides a grammatically ”reasonable” structure,
which can be used as a template for completion;
”U”, which means the candidate structure gives
an ”ungrammatical” structure, thus this candidate
structure cannot be used as template for completion;
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”T”, the candidate structure is exactly the same as
what the speaker was originally saying, as judged
based on the video and audio records. An example
of an incomplete sentence with candidate structures
in each of the three categories is shown below.

It/PRP, feels/VBZ | It/PRP, feels/VBZ, good/JJR
[R] It/PRP, ’s/VBZ, fine/JJ, like/IN, this/DT]
[U] We/PRP, did/VBD, n’t/RB
[T] It/PRP, is/VBZ, better/JJR

10543 interrupted sentences and candidate pairs
are generated. 5268 of those 10543 pairs
(49.97%) were annotated as ”Reasonable”, 4727
pairs (44.85%) were annotated as ”Unreasonable”,
and 545 pairs (5.17%) were annotated as ”Same with
original sentence”.

Incomplete Sentence and Structure pairs 10,543
Reasonable structures (R) 5,268
Unreasonable structures (U) 4,729
Exactly same structures (T) 545

Table 3: Distribution of completion classifications

4 Results and Discussion

On the basis of the annotation, we trained a “Rea-
sonable Structure Selection (RSS)” model via su-
pervised learning methods. For each pair <IntS,
Candidate>, the feature set includes word and POS
tag of the tokens of IntS and its candidate structure
sentence. Co-occurring pointing gestures and H-O
actions for both IntS and Candidate are also included
in the model. Co-occurrence is defined as tempo-
ral overlap between the gesture (pointing or H-O ac-
tion) and the duration of the utterance. For each
training instance, we include the following features:
IntS: <words, POS tags>, <Pointing (Person / Ob-
ject / Location)>, <H-O action (Person / Object /
Location / Type)>;
Candidate: <words/POS tags)>, <Pointing (Per-
son / Object / Location)>, <H-O action (Person /
Object / Location / Type)>;
<Matching Score>;
<Classification: R, U, or T>.
We trained the RSS model also using the Weka
package. The same methods mentioned earlier

(J48, NB and SVM) are used, with 10-fold cross-
validations. Results are shown in Table 4. We

J48 NB LibSVM
Precision R, U, T 0.822 0.724 0.567

R, U 0.843 0.761 0.600
Recall R, U, T 0.820 0.725 0.512

R, U 0.842 0.762 0.563
F-Measure R, U, T 0.818 0.711 0.390

R, U 0.841 0.761 0.440

Table 4: Reasonable Structure Selection models

ran two different sets of experiments using two ver-
sions of training instances: Classification with three
classes, R, U and T, and classification with two
classes, R and U. When training with only two
classes, the T instances are marked as R. We exper-
imented with collapsing R and T candidates since T
candidates may lead to overfitting, and some R can-
didates might even provide better structures for an
incomplete sentence than what exactly one speaker
had originally said. Not surprisingly, results im-
prove for two-way classification. Based on the J48
model, we observed that the POS tag features play
a significant part in classification, whereas the word
features are redundant. Further, pointing gestures
and H-O actions do appear in some subtrees of the
larger decision tree, but not on every branch. We
speculate that this is due to the fact that pointing ges-
tures or H-O actions do not accompany every utter-
ance.

5 Conclusions and Future Work

In this paper, we introduced our multi-modal sen-
tence completion schema which includes pointing
gestures and H-O actions in the corpus ELDERLY-
AT-HOME. Our data shows that it is possible to pre-
dict what people will say, even if the utterance is
not complete. Our promising results include multi-
modal features, which as we have shown elsewhere
(Chen and Di Eugenio, 2012) improve traditional
co-reference resolution models. In the near future,
we will implement the last module of our sentence
completion system, the one that fills the chosen can-
didate structure with actual words.
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Abstract

Participants in a conversation are normally re-
ceptive to their surroundings and their inter-
locutors, even while they are speaking and can,
if necessary, adapt their ongoing utterance. Typ-
ical dialogue systems are not receptive and can-
not adapt while uttering. We present combin-
able components for incremental natural lan-
guage generation and incremental speech syn-
thesis and demonstrate the flexibility they can
achieve with an example system that adapts to
a listener’s acoustic understanding problems
by pausing, repeating and possibly rephrasing
problematic parts of an utterance. In an eval-
uation, this system was rated as significantly
more natural than two systems representing the
current state of the art that either ignore the
interrupting event or just pause; it also has a
lower response time.

1 Introduction

Current spoken dialogue systems often produce pre-
scripted system utterances or use templates with vari-
able substitution during language generation. If a
dialogue system uses grammar-based generation at
all, it produces complete utterances that are then syn-
thesised and realised in one big chunk. As systems
become increasingly more conversational, however,
the need arises to make output generation1 more flex-
ible. In particular, capabilities for incrementally gen-
erating output become desirable, for two kinds of
reasons.

(a) In situations where fast system responses are
important, production of output can begin before the

1We will use the term ‘output generation’ here to cover both
natural language generation and speech synthesis.

content that is to be presented is fully specified – even
if what is being produced is just a turn-taking signal
(Skantze and Hjalmarsson, 2010).

(b) A system that produces its output incrementally
can react to events happening while it is realising an
utterance. This can be beneficial in domains where
the state of the world that the system relays informa-
tion about can change mid-utterance, so that a need
may arise to adapt while speaking. It should also
improve naturalness by allowing the system to react
to dialogue phenomena such as concurrent feedback
signals from the user (Buschmeier and Kopp, 2011).

We present work towards enabling such capabil-
ities. We have implemented and connected a com-
ponent for incremental natural language genera-
tion (iNLG) that works with specifications of sub-
utterance-sized communicative intentions and a com-
ponent for incremental speech synthesis (iSS) that can
handle sub-utterance-sized input and modifications
to not-yet-spoken parts of the utterance with very low
latencies. To explore whether such an output genera-
tion capability can indeed be advantageous, we have
created a test system that can react to random noise
events that occur during a system utterance by repeat-
ing and modifying the last sub-utterance chunk. In
an evaluation, we found that this system is in general
more reactive than a non-incremental variant and that
humans rate its behaviour to be more natural than
two non-incremental and non-responsive systems.

2 Related Work

Psycholinguistic research has identified incremen-
tality as an important property of human language
production early on and it has been incorporated into
several models (e. g., Kempen and Hoenkamp, 1987;
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Levelt, 1989). Guhe (2007) presents a computational
model of incremental conceptualisation. However,
work on iNLG itself is rare, partly because NLG re-
search focusses on text (instead of spoken language).

Notable exceptions are the in-depth analysis of
requirements for and properties of incremental gen-
eration by Kilger and Finkler (1995), who describe
the LTAG-based incremental syntactic generator VM-
GEN. It takes incremental input, processes it and pro-
duces output as soon as at least a prefix of the final
sentence is syntactically complete. If VM-GEN no-
tices that it committed itself to a prefix too early, it
can initiate an overt repair. More recently, Skantze
and Hjalmarsson (2010) presented a system that per-
forms incremental generation in the context of a spo-
ken dialogue system. It can already start to produce
output when the user has not yet finished speaking
and only a preliminary interpretation exists. By flexi-
bly changing what to say and by being able to make
self-repairs the system can recover from situations
where it selected and committed on an inadequate
speech plan. Both systems, however, are not able
to flexibly adapt the language that they generate to
changing requirements due to changes in the situation
or changing needs on the side of the user.

Real-time on-the-fly control of speech synthesis
is rare, especially the full integration into a dialogue
system. Matsuyama et al. (2010) describe a system
that feeds back to the dialogue system the word at
which it has been interrupted by a barge-in. Edlund
(2008) additionally enables a system to continue at
the point where it was interrupted. He also outlines
some requirements for incremental speech synthe-
sis: to give constant feedback about what has been
delivered, to be interruptible (and possibly continue
from that position), and to run in real time. Edlund’s
system, which uses diphone synthesis, performed
non-incrementally before delivery starts. We go be-
yond this in also enabling changes during delivery
and conducting synthesis steps just-in-time.

Dutoit et al. (2011) present an incremental HMM

optimiser which allows to change pitch and tempo
of upcoming phonemes. However, as that system is
fed from a (non-incrementally produced) label file, it
cannot easily be used in an incremental system.

A predecessor of our iSS component (which was
not yet fully incremental on the HMM level) is de-
scribed in detail in (Baumann and Schlangen, 2012a).

3 Incremental and Adaptive NLG

3.1 The SPUD microplanning framework

The NLG component presented here is based on
the SPUD microplanning framework (Stone et al.,
2003) and realised in DeVault’s (2008) implemen-
tation ‘Java SPUD’. SPUD frames microplannig as
a constraint satisfaction problem, solving the tasks
that are involved in generating a sentence (lexical
and syntactic choice, referring expression generation
and aggregation) in an integrated manner. Genera-
tion starts from a communicative goal that specifies
constraints for the final utterance. The generation pro-
cess is further shaped by (a) general constraints that
model pragmatic properties of language use such as
the Gricean maxims (a principle called ‘textual econ-
omy’); (b) specific constraints imposed through the
communicative status of the propositions to be com-
municated (i. e., what knowledge can be presupposed
and what needs to be communicated explicitly); and
(c) linguistic resources (a context-free tree rewriting
formalism based on LTAG; Stone, 2002).

To deal efficiently with the infinite search space
spanned by the linguistic resources, SPUD uses a
heuristic search algorithm to find an utterance that
satisfies the imposed constraints (Stone et al., [2003]
describe the heuristic function). In each search step,
the algorithm expands the ‘provisional’ utterance by
adding the linguistic resource that maximally reduces
the estimated distance to the final utterance.

If the generation process runs into a dead-end state,
it could in principle deal with the situation by track-
ing back and expanding a different branch. This,
however, is impractical, as it becomes impossible
to project when – if at all – generation will finish.
Hence, in that case, SPUD stops without providing a
result, delegating the problem back to the preceding
component in the generation pipeline.

3.2 Partially incremental generation

SPUD generates utterances incrementally in the sense
that the completeness of the provisional utterance
increases monotonically with every step. This, how-
ever, does not mean that the surface structure of pro-
visional utterances is constructed incrementally (i. e.,
from left to right) as well, which would only be pos-
sible, if (a) the search strategy would always expand
the leftmost non-lexicalised node in the provisional
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Utterance IC1 IC2 ICn …

Utterance
outline IMPT1 IMPT2 IMPTn …

  MCP

– {U1, …}
– KB1

– {Ui, …}
– KB2

– {Uk, …}
– KBn

  MPP

 …state

t

Figure 1: Incremental microplanning consists of two pro-
cesses, micro content planning (MCP) and microplanning-
proper (MPP). The former provides incremental microplan-
ning tasks from an utterance outline to the latter, which
incrementally transforms them into communicative intent
and intonation unit-sized chunks of natural language.

utterance first and if (b) the linguistic resources are
specified (and ordered) in a way that allows left-to-
right expansion of the trees in all possible situations.
In practice, both requirements are difficult to meet
and full word-by-word incrementality in natural lan-
guage microplanning is not within reach in the SPUD

framework. Because of this, we take a slightly more
coarse grained approach to incremental microplan-
ning and choose chunks of the size of intonation
phrases instead of words as our incremental units.
We say that our microplanner does ‘partially incre-
mental generation’.

Our incremental microplanner comprises two inter-
acting processes, micro content planning and micro-
planning-proper (MCP and MPP; schematised in Fig-
ure 1), each of which fulfils a distinct task and oper-
ates on different structures.

MCP takes as input utterance outlines that describe
the communicative goal (a set of desired updates Ux)
intended to be communicated in an utterance and the
presuppositions and private knowledge needed to do
so. Importantly, utterance outlines specify how the
communicative goal can be decomposed into an or-
dered list of incremental microplanning-tasks IMPTx.
Each such task comprises (a) a subset of the commu-
nicative goal’s desired updates that belong together
and fit into one intonation unit sized chunk of speech
and (b) knowledge KBx used in generation.

MPP takes one incremental microplanning-task at

a time and uses SPUD to generate the IMPT’s commu-
nicative intent as well as its linguistic surface form
ICx. The communiciative intent is added to a repre-
sentation (‘state’ in Figure 1) that is shared between
the two processes. While processing the IMPTs of
an utterance outline, MCP can access this representa-
tion, which holds information about all the desired
updates that were achieved before, and thus knows
that a desired update that is shared between subse-
quent IMPTs has already been communicated. MPP

can also take this information into account during
generation. This makes it possible that an utterance
is coherent and adheres to pragmatic principles even
though generation can only take local decisions.

3.3 Adaptive generation

Being able to generate language in sub-utterance
chunks makes it possible to dynamically adapt later
increments of an utterance to changes in the situa-
tion that occur while the utterance is being realised.
Decisions about these adaptations need not be taken
almost until the preceding increment finishes, mak-
ing the generation process very responsive. This is
important to be able to deal with interactive dialogue
phenomena, such as communicative feedback of the
interlocutor (Allwood et al., 1992) or compound con-
tributions (Howes et al., 2011), in a timely manner.

Adaptation may happen in both parts of incremen-
tal microplanning. In MCP, adaptation takes the form
of dynamically changing the choice of which IMPT to
generate next or changing the internal structure of an
IMPT; adaptation in MPP changes the choices the gen-
eration process makes while transforming IMPTs into
communicative intent and surface form. Adaptation
in MCP is triggered top-down, by higher-level pro-
cesses such as dialogue management. Adaptation in
MPP on the other hand depends on the task given and
on the status of the knowledge used during generation.
The details are then governed by global parameter
settings MPP uses during generation.

If there is, for example, reason for the system to
believe that the current increment was not commu-
nicated clearly because of noise in the transmission
channel, the MCP process might delay future IMPTs
and initiate a repair of the current one by re-inserting
it at the beginning of the list of upcoming IMPTs of
this utterance outline. The MPP process’ next task
is then to re-generate the same IMPT again. Due to
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Table 1: Surface forms generated from the same IMPT (de-
sired updates = {hasSubject(event6, ‘Vorlesung
Linguistik’)}; KB = {event6}) but with different
levels of verbosity.

Verbosity Generated sub-utterance chunk

0 ‘Vorlesung Linguistik’
(lecture Linguistcs)

1 ‘Betreff: Vorlesung Linguistik’
(subject: lecture Linguistics)

2 ‘mit dem Betreff Vorlesung Linguistik’
(with the subject: lecture Linguistics)

changes in the state information and situation that
influence microplanning, the resulting communica-
tive intent and surface form might then differ from
its previous result.

3.4 Adaptation mechanisms

As a proof of concept, we integrated several adapta-
tion mechanism into our NLG-microplanning system.
The goal of these mechanisms is to respond to a dia-
logue partner’s changing abilities to perceive and/or
understand the information the system wants to con-
vey. Some of the mechanisms operate on the level of
MCP, others on the level of MPP. The mechanisms are
implemented either with the knowledge and its con-
versational status used in generation or by altering
the decision structure of SPUD’s search algorithm’s
heuristic function. Similar to the approach of flexi-
ble NLG described by Walker et al. (2007), most of
the mechanism are conditioned upon individual flags,
that in our case depend on a numeric value that repre-
sents the level of understanding the system attributes
to the user. Here we describe the two most relevant
mechanisms used to adapt verbosity and redundancy.

Verbosity The first mechanism aims at influenc-
ing the length of a sub-utterance chunk by making
it either more or less verbose. The idea is that actual
language use of human speakers seldom adheres to
the idealised principle of textual economy. This is
not only the case for reasons of cognitive constraints
during speech production, but also because words
and phrases that do not contribute much to an utter-
ance’s semantics can serve a function, for example by
drawing attention to specific aspects of an utterance
or by giving the listener time to process.

To be able to vary utterance verbosity, we anno-
tated the linguistic resources in our system with val-
ues of their verbosity (these are hand-crafted similar
to the rule’s annotation with production costs). Dur-
ing generation in MPP the values of all linguistic re-
sources used in a (provisional) utterance are added up
and used as one factor in SPUD’s heuristic function.
When comparing two provisional utterances that only
deviate in their verbosity value, the one that is nearer
to a requested verbosity level is chosen. Depend-
ing on this level, more or less verbose constructions
are chosen and it is decided whether sub-utterance
chunks are enriched with additional words. Table 1
shows the sub-utterance chunk ‘Betreff: Vorlesung
Linguistik’ (subject: lecture Linguistics) generated
with different levels of verbosity.

Redundancy The second adaptation mechanism is
redundancy. Again, redundancy is something that an
ideal utterance does not contain and by design SPUD

penalises the use of redundancy in its heuristic func-
tion. Two provisional utterances being equal, the one
exhibiting less redundancy is normally preferred. But
similar to verbosity, redundancy serves communica-
tive functions in actual language use. It can highlight
important information, it can increase the probability
of the message being understood (Reiter and Sripada,
2002) and it is often used to repair misunderstanding
(Baker et al., 2008).

In incremental microplanning, redundant informa-
tion can be present both within one sub-utterance
chunk (e. g., ‘tomorrow, March 26, . . . ’ vs. ‘tomorrow
. . . ’) or across IMPTs. For the former case, we modi-
fied SPUD’s search heuristic in order to conditionally
either prefer an utterance that contains redundant in-
formation or an utterance that only contains what is
absolutely necessary. In the latter case, redundancy
only becomes an option when later IMPTs enable the
choice of repeating information previously conveyed
and therefore already established as shared knowl-
edge. This is controlled via the internal structure of
an IMPT and thus decided on the level of MCP.

4 Incremental Speech Synthesis

In this section we describe our component for incre-
mental speech synthesis. We extend Edlund’s (2008)
requirements specification cited in Section 2, requir-
ing additionally that an iSS supports changes to as-yet
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unspoken parts of an ongoing utterance.
We believe that the iSS’s requirements of inter-

ruptability, changeability, responsiveness, and feed-
back are best resolved by a processing paradigm in
which processing takes place just-in-time, i. e., tak-
ing processing steps as late as possible such as to
avoid re-processing if assumptions change. Before
we describe these ideas in detail, we give a short
background on speech synthesis in general.

4.1 Background on speech synthesis
Text-to-speech (TTS) synthesis functions in a top-
down processing approach, starting on the utterance
level and descending onto words and phonemes, in
order to make good decisions (Taylor, 2009). For
example, top-down modelling is necessary to assign
stress patterns and sentence-level intonation which
ultimately lead to pitch and duration contours, and to
model co-articulation effects.

TTS systems start out assigning intonation patterns
to the utterance’s words and then generate a target
phoneme sequence which is annotated with the tar-
gets’ durations and pitch contour; all of this is called
the linguistic pre-processing step. The synthesis step
proper can be executed in one of several ways with
HMM-based and unit-selection synthesis currently
producing the perceptually best results.

In HMM-based synthesis, the target sequence is
first turned into a sequence of HMM states. A global
optimisation then determines a stream of vocoding
features that optimise both HMM emission probabili-
ties and continuity constraints (Tokuda et al., 2000).
The stream may also be enhanced to consider global
variance of features (Toda and Tokuda, 2007). The
parameter frames are then fed to a vocoder which
generates the final speech audio signal.

Unit-selection, in contrast, searches for the best
sequence of (variably sized) units of speech in a
large, annotated corpus, aiming to find a sequence
that closely matches the target sequence while having
few and if possible smooth joints between units.

We follow the HMM-based approach for our com-
ponent for the following reasons: (a) even though
only global optimisation is optimal for both tech-
niques, the influence of look-ahead on the continuity
constraints of HMM-based synthesis is linear leading
to a linear loss in optimality with smaller look-aheads
(whereas unit-selection with limited look-ahead may

Figure 2: Hierarchical structure of incremental units de-
scribing an example utterance as it is being produced
during delivery.

jump erratically between completely different unit se-
quences). (b) HMM-based synthesis nicely separates
the production of vocoding parameter frames from
the production of the speech audio signal which al-
lows for fine-grained concurrent processing (see next
subsection). (c) Parameters in the vocoding frames
are partially independent. This allows us to indepen-
dently manipulate, e. g., pitch without altering other
parameters or deteriorating speech quality (in unit-
selection, a completely different unit sequence might
become optimal even for slight changes of pitch).

4.2 Incrementalising speech synthesis

As explained in the previous subsection, speech syn-
thesis is performed top-down, starting at the utterance
and progressing down to the word, target and finally,
in the HMM approach, vocoding parameter and signal
processing levels. It is, however, not necessary that
all details at one level of processing are worked out
before starting to process at the next lower level. To
be precise, some syntactic structure is sufficient to
produce sentence-level intonation, but all words need
not be known. Likewise, post-lexical phonological
processes can be computed as long as a local context
of one word is available and vocoding parameter com-
putation (which must model co-articulation effects)
should in turn be satisfied with about one phoneme of
context. Vocoding itself does not need any lookahead
at all (aside from audio buffering considerations).

Thus, we generate our data structures incremen-
tally in a top-down and left-to-right fashion with dif-
ferent amounts of pre-planning and we do this using
several processing modules that work concurrently.
This results in a ‘triangular’ structure as shown in
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Figure 2. At the top stands a pragmatic plan for the
full utterance from which a syntactic plan can be de-
vised. This plan is filled with words, as they become
available. On the vocoding parameter level, only a
few frames into the future have been computed so
far – even though much more context is already avail-
able. That is, we generate structure just-in-time, only
shortly before it is needed by the next processor. This
holds very similarly for the vocoding step that pro-
duces the speech signal just-in-time.

The just-in-time processing approach, combined
with the increasing temporal granularity of units to-
wards the lower levels has several advantages: (a) lit-
tle utterance-initial processing (only what is neces-
sary to produce the beginning of the signal) allows for
very responsive systems; and (b) changes to the ini-
tial plan result only in a modest processing overhead
because little structure has to be re-computed.

4.3 Technical overview

As a basis, we use MaryTTS (Schröder and Trouvain,
2003), but replace Mary’s internal data structures
and processing strategies with structures from our
incremental SDS architecture, the INPROTK toolkit
(Schlangen et al., 2010; Baumann and Schlangen,
2012b), which implements the IU model for incre-
mental dialogue processing (Schlangen and Skantze,
2009). The model conceptualises – and the toolkit
implements – incremental processing as the process-
ing of incremental units (IUs), which are the smallest
‘chunks’ of information at a specific level (the boxes
in Figure 2). IUs are interconnected to form a network
(e. g., words keep links to their associated phonemes
and neighbouring words and vice-versa) which repre-
sents the system’s information state.

The component is fed with chunk IUs which con-
tain some words to be synthesised (on their own or
appended to an ongoing utterance). For simplicity,
all units below the chunk level are currently gener-
ated using Mary’s (non-incremental) linguistic pre-
processing capabilities to obtain the target phoneme
sequence. For continuations, the preceding parts of
the utterance are taken into account when generating
prosodic characteristics for the new chunk. Also, our
component is able to revoke and exchange chunks
(or unspoken parts thereof) to change what is to be
spoken; this capability however is not used in the
example system presented in Section 5.

The lowest level module of our component is what
may be called a crawling vocoder, which actively
moves along the phoneme IU layer and executes two
processing steps: (a) for each phoneme it generates
the sequence of HMM parameter frames using a local
optimisation technique (using up to four neighbour-
ing phonemes as context) similar to the one described
by Dutoit et al. (2011); and (b) vocoding the HMM

parameters into an audio stream which contains the
actual speech signal.

IUs have a ‘progress’ field which is set by the
crawling vocoder to one of ‘upcoming’, ‘ongoing’,
or ‘completed’, as applicable. IUs provide a generic
update mechanism to support notification about
progress changes in delivery. The next section de-
scribes how this is used to drive the system.

5 Integrating iNLG and iSS for Adaptive
Information Presentation

Integrating incremental microplanning with incre-
mental speech synthesis in one incremental output
generation architecture allows us to test and explore
how their capabilities act in a coordinated way. As a
first example, we implemented a system that presents
information about events in an appointment database
(e. g., new, conflicting or rescheduled appointments)
and is able to cope with external noise burst events,
as they might for example occur on a bad telephone
line or when using a dialogue system next to a busy
street. The focus is on the incremental capabilities of
the system which enable its adaptive behaviour.

5.1 Component interplay

iNLG and iSS are implemented as IU modules in the
INPROTK architecture. The control flow of the sys-
tem (Figure 3) is managed without special coupling
between the modules, relying only on the left-to-right
processing capabilities of INPROTK combined with
its generic IU update mechanism for transporting
feedback from iSS to iNLG. Both modules can be
(and have been) combined with other IU modules.

To communicate an appointment event, the iNLG

module starts by generating two initial chunk IUs,
the first to be expressed immediately, the second as
additional prosodic context (chunk lengths differ with
an average of about 4 words). The iNLG registers as a
‘progress listener’ on each chunkIU, which registers
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Figure 3: Information flow (dashed lines) between iNLG
and iSS components (rounded boxes) and incremental
units (rectangular boxes). The vocoder crawls along with
time and triggers the updates.

as a progress listener on a phonemeIUnear its end.
Shortly before iSS finishes speaking the chunk, iNLG

is thus informed and can generate and send the next
chunk to iSS just-in-time.

If adaptation to noise is needed, iNLG re-generates
and re-sends the previous chunk, taking altered pa-
rameters into account. Again, a subsequent chunk
is immediately pre-generated for additional prosodic
context. This way of generating sub-utterance chunks
ensures that there is always one chunk lookahead to
allow the iSS module to compute an adequate in-
tonation for the current chunk, while maintaining
the single chunk as increment size for the system
and minimising redundant work on the side of iNLG

(this lookahead is not required for iSS; but if it is un-
available, sub-utterance chunks may be inadequately
connected prosodically).

5.2 Responding to a noise event

A third module, the noise detector connects to both
iSS and iNLG. On noise onset, it informs iSS to inter-
rupt the ongoing utterance after the current word (this
works by breaking the links between words so that
the crawling vocoder finishes after the currently ongo-
ing word). Once a noise burst ends, iNLG is informed,
re-generates the interrupted sub-utterance chunk with
the verbosity level decreased by one and the assumed
understanding value increased by one (this degree
of adaptation results in a noticeable difference, it is,
however, not based on empirical study). The values
are then reset, the following chunk is generated and
both chunks are sent to iSS.

It should be noted, that we have not implemented
a real noise source and noise detector. Instead, our
random noise simulator generates bursts of noise of
1000 ms after a random time interval (between 2 and

Table 2: Processing time per processing step before deliv-
ery can begin (in ms; averaged over nine stimuli taking the
median of three runs for each stimulus; calculated from
log messages; code paths preheated for optimisation).

non-incr. incr.

NLG-microplanning 361 52
Synthesis (ling. pre-processing) 217 4472

Synthesis (HMM and vocoding) 1004 21

total response time 1582 519

5 seconds) and directly informs the system 300 ms
after noise starts and ends. We think it is reasonable
to assume that a real noise detector should be able to
give accurate information with a similar delay.

6 Evaluation

6.1 Quantitative evaluation
One important argument in favour of incremental
processing is the possibility of speeding up system
response time, which for non-incremental systems
is the sum of the times taken by all processors to
do their work. An incremental system, in contrast,
can fold large amounts of its processing time into the
ongoing speech output; what matters is the sum of
the onset times of each processor, i. e., the time until
a first output becomes available to the next processor.

Table 2 summarises the runtime for the three major
steps in output production of our system using nine
utterances from our domain. Both NLG and speech
synthesis’ onset times are greatly reduced in the in-
cremental system.2 Combined, they reduce system
response time by more than a second. This is mostly
due to the almost complete folding of HMM opti-
misation and vocoding times into the spoken utter-
ance. NLG profits from the fact that at the beginning
of an utterance only two chunks have to be gener-
ated (instead of an average of 6.5 chunks in the non-
incremental system) and that the first chunk is often
very simple.

6.2 Subjective evaluation
To further test whether the system’s behaviour in
noisy situations resembles that of a human speaker

2The iSS component by mistake takes the symbolic pre-
processing step twice. Unfortunately, we found this bug only
after creating the stimuli used in the subjective evaluation.
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in a similar situation, we let humans rate utterances
produced by the fully incremental, adaptive system
and utterances produced by two non-incremental
and less responsive variants (we have not used non-
incremental TTS in combination with iNLG as another
possible base-line as pretests showed this to sound
very unnatural due to the missing prosodic linkage be-
tween phrases). The participants were to rate whether
they agree to the statement ‘I found the behaviour of
the system in this situation as I would expect it from
a human speaker’ on a 7-point Likert-scale.

In condition A, full utterances were generated non-
incrementally, synthesised non-incrementally and
played without responding to noise-interruptions in
the channel (as if the system did not notice them).
Utterances in condition B were generated and synthe-
sised as in condition A, but playback responded to the
noisy channel, stopping when the noise was noticed
and continuing when noise ended. For condition C,
utterances were generated with the fully incremental
and adaptive system described in Section 5. Upon
noise detection, speech synthesis is interrupted and,
when the noise ends, iNLG will re-generate the in-
terrupted sub-utterance chunk – using the adaptation
strategy outlined in Section 5.2. This then triggers
iSS into action and shortly after, the system contin-
ues speaking. Nine system runs, each producing a
different utterance from the calendar domain, were
recorded in each of the three conditions, resulting in
a total of 27 stimuli.

Before the actual stimuli were presented, partici-
pants listened to two example stimuli without noise
interruptions to get an impression of how an aver-
age utterance produced by the system sounds. After
the presentation of these two examples, the 27 stim-
uli were presented in the same random order. Par-
ticipants listened once to each stimulus and rated it
immediately after every presentation.

Twelve PhD-students (3 female, 9 male; mean age
30.5 years; 11 with German as one of their first lan-
guages; none with uncorrected hearing impairment)
from Bielefeld University participated in our study
and listened to and rated the 27 stimuli.

A Friedman rank sum test revealed a highly sig-
nificant difference between the perceived human-
likeness of the three systems (χ2 = 151, p< .0001).
Median values of stimulus ratings in the conditions
A, B and C were 2, 2 and 6 respectively, indicat-

ing that the fully incremental system was rated con-
siderably more human-like. This was also shown
through a post-hoc analysis with Wilcoxon signed
rank tests which found no significant difference be-
tween condition A and B (V = 1191.5, p = .91)3.
Conditions A and C, however, differed highly signifi-
cantly (V = 82, p< .0001), as did conditions B and
C (V = 22.5, p< .0001) – even after applying a Bon-
ferroni correction to correct for a possible cumulation
of α-errors.

7 Conclusion

We have presented what is – to the best of our knowl-
edge – the first integrated component for incremental
NLG and speech synthesis and demonstrated the flex-
ibility that an incremental approach to output gener-
ation for speech systems offers by implementing a
system that can repair understanding problems.

From the evaluation we can conclude that incre-
mental output generation (both iNLG and iSS in iso-
lation or combined) is able to greatly speed up sys-
tem response time and can be used as a means to
speed up system response even in an otherwise non-
incremental system. Furthermore, we showed that the
behaviour of our fully incremental and adaptive sys-
tem was perceived as significantly more human-like
than the non-incremental and the non-incremental
but responsive baseline systems.

The understanding problem that our demonstra-
tor system tackled was of the simplest kind, namely
acoustic non-understanding, objectively detectable
as the presence of noise. In principle, however, the
same mechanisms of stopping and rephrasing can be
used to tackle more subjective understanding prob-
lems as can be signalled by linguistic feedback. Our
incremental output generation component gives us an
ideal basis to explore such problems in future work.
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ported by the Deutsche Forschungsgemeinschaft
(DFG) in the Center of Excellence in ‘Cognitive Inter-
action Technology’ (CITEC) and through an Emmy
Noether Fellowship to the last author.

3This suggests that it does not matter whether a system re-
sponds to problems in the communication channel by waiting or
totally ignores these problems. Notice, however, that we did not
test recall of the calendar events. In that case, condition B should
outperform A, as some information was clearly inaudible in A.
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Abstract

We present a novel unsupervised framework
for focused meeting summarization that views
the problem as an instance of relation extrac-
tion. We adapt an existing in-domain rela-
tion learner (Chen et al., 2011) by exploit-
ing a set of task-specific constraints and fea-
tures. We evaluate the approach on a decision
summarization task and show that it outper-
forms unsupervised utterance-level extractive
summarization baselines as well as an exist-
ing generic relation-extraction-based summa-
rization method. Moreover, our approach pro-
duces summaries competitive with those gen-
erated by supervised methods in terms of the
standard ROUGE score.

1 Introduction
For better or worse, meetings play an integral role
in most of our daily lives — they let us share infor-
mation and collaborate with others to solve a prob-
lem, to generate ideas, and to weigh options. Not
surprisingly then, there is growing interest in devel-
oping automatic methods for meeting summariza-
tion (e.g., Zechner (2002), Maskey and Hirschberg
(2005), Galley (2006), Lin and Chen (2010), Mur-
ray et al. (2010a)). This paper tackles the task of fo-
cused meeting summarization , i.e., generating sum-
maries of a particular aspect of a meeting rather than
of the meeting as a whole (Carenini et al., 2011).
For example, one might want a summary of just the
DECISIONS made during the meeting, the ACTION

ITEMS that emerged, the IDEAS discussed, or the
HYPOTHESES put forth, etc.

Consider, for example, the task of summarizing

the decisions in the dialogue snippet in Figure 1. The
figure shows only the decision-related dialogue acts
(DRDAs) — utterances associated with one or more
decisions.1 Each DRDA is labeled numerically ac-
cording to the decision it supports; so the first two
utterances support DECISION 1 as do the final two
utterances in the snippet. Manually constructed de-
cision abstracts for each decision are shown at the
bottom of the figure.2 These constitute the decision-
focused summary for the snippet.

Notice that many portions of the DRDAs are not
relevant to the decision itself: they often begin with
phrases that identify the utterance within the dis-
course as potentially introducing a decision (e.g.,
“Maybe that could be”, “It seems like you’re gonna
have”), but do not themselves describe the decision.
We will refer to this portion of a DRDA (underlined
in Figure 1) as the Decision Cue.

Moreover, the decision cue is generally directly
followed by the actual Decision Content (e.g., “be a
little apple”, “have rubber cases”). Decision Content
phrases are denoted in Figure 1 via italics and square
brackets. Importantly, it is just the decision content
portion of the utterance that should be considered for
incorporation into the focused summary.

1These are similar, but not completely equivalent, to the de-
cision dialogue acts (DDAs) of (Bui et al., 2009), (Fernández et
al., 2008), (Frampton et al., 2009).

2Murray et al. (2010b) show that users much prefer abstrac-
tive summaries over extracts when the text to be summarized
is a conversation. In particular, extractive summaries drawn
from group conversations can be confusing to the reader with-
out additional context; and the noisy, error-prone, disfluent text
of speech transcripts is likely to result in extractive summaries
with low readability.
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C: Say the standby button is quite kinda separate from all the
other functions. (1)
C: Maybe that could be [a little apple]. (1)
C: It seems like you’re gonna have [rubber cases], as well as
[buttons]. (2)
A: [Rubber buttons] require [rubber case]. (2)
A: You could have [your company badge] and [logo]. (3)
A: I mean a lot of um computers for instance like like on the one
you’ve got there, it actually has a sort of um [stick on badge]. (3)
C: Shall we go [for single curve], just to compromise? (2)
B: We’ll go [for single curve], yeah. (2)
C: And the rubber push buttons, rubber case. (2)
D: And then are we going for sort of [one button] shaped
[like a fruit]. <vocalsound> Or veg. (1)
D: Could be [a red apple], yeah. (1)

Decision Abstracts (Summary)
DECISION 1: The group decided to make the standby button
in the shape of an apple.
DECISION 2: The remote will also feature a rubber case and
rubber buttons, and a single-curved design.
DECISION 3: The remote will feature the company logo,
possibly in a sticker form.

Figure 1: Clip from the AMI meeting corpus (Carletta et al.,
2005). A, B, C and D refer to distinct speakers; the numbers
in parentheses indicate the associated meeting decision: DECI-
SION 1, 2 or 3. Also shown is the gold-standard (manual) ab-
stract (summary) for each decision. Colors indicate overlapping
vocabulary between utterances and the summary. Underlining,
italics, and [bracketing] are decscribed in the running text.

This paper presents an unsupervised framework
for focused meeting summarization that supports the
generation of abstractive summaries. (Note that we
do not currently generate actual abstracts, but rather
aim to identify those Content phrases that should
comprise the abstract.) In contrast to existing ap-
proaches to focused meeting summarization (e.g.,
Purver et al. (2007), Fernández et al. (2008), Bui et
al. (2009)), we view the problem as an information
extraction task and hypothesize that existing meth-
ods for domain-specific relation extraction can be
modified to identify salient phrases for use in gener-
ating abstractive summaries.

Very generally, information extraction methods
identify a lexical “trigger” or “indicator” that evokes
a relation of interest and then employ syntactic in-
formation, often in conjunction with semantic con-
straints, to find the “target phrase” or “argument
constituent” to be extracted. Relation instances,
then, are represented by indicator-argument pairs
(Chen et al., 2011).

Figure 1 shows some possible indicator-argument
pairs for identifying the Decision Content phrases
in the dialogue sample. Content indicator words

are shown in italics; the Decision Content target
phrases are the arguments. For example, in the
fourth DRDA, “require” is the indicator, and “rub-
ber buttons” and “rubber case” are both arguments.
Although not shown in Figure 1, it is also possible
to identify relations that correspond to the Decision
Cue phrases.3

Specifically, we focus on the task of decision sum-
marization and, as in previous work in meeting sum-
marization (e.g., Fernández et al. (2008), Wang and
Cardie (2011)), assume that all decision-related ut-
terances (DRDAs) have been identified. We adapt
the unsupervised relation learning approach of Chen
et al. (2011) to separately identify relations asso-
ciated with decision cues vs. the decision content
within DRDAs by defining a new set of task-specific
constraints and features to take the place of the
domain-specific constraints and features of the orig-
inal model. Output of the system is a set of extracted
indicator-argument decision content relations (see
the “OUR METHOD” sample summary of Table 6)
that can be used as the basis of the decision abstract.

We evaluate the approach (using the AMI cor-
pus (Carletta et al., 2005)) under two input set-
tings — in the True Clusterings setting, we assume
that the DRDAs for each meeting have been per-
fectly grouped according to the decision(s) each sup-
ports; in the System Clusterings setting, an auto-
mated system performs the DRDA-decision pairing.
The results show that the relation-based summariza-
tion approach outperforms two extractive summa-
rization baselines that select the longest and the most
representative utterance for each decision, respec-
tively. (ROUGE-1 F score of 37.47% vs. 32.61%
and 33.32% for the baselines given the True Cluster-
ings of DRDAs.) Moreover, our approach performs
admirably in comparison to two supervised learning
alternatives (scores of 35.61% and 40.87%) that aim
to identify the important tokens to include in the de-
cision abstract given the DRDA clusterings. In con-
trast to our approach which is transferable to differ-
ent domains or tasks, these methods would require
labeled data for retraining for each new meeting cor-
pus.

3Consider, for example, the phrases underlined in the sixth
and seventh DRDAs. “I mean” and “shall we” are two typical
Decision Cue phrases where “mean” and “shall” are possible
indicators with “I” and “we” as their arguments, respectively.
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Finally, in order to compare our approach to an-
other relation-based summarization technique, we
modify the multi-document summarization system
of Hachey (2009) to the single-document meeting
scenario. Here again, our proposed approach per-
forms better (37.47% vs. 34.69%). Experiments un-
der the System Clusterings setting produce the same
overall results, albeit with lower scores for all of the
systems and baselines.

In the remainder of the paper, we review related
work in Section 2 and give a high-level description
of the relation-based approach to focused summa-
rization in Section 3. Sections 4, 5 and 6 present the
modifications to the Chen et al. (2011) relation ex-
traction model required for its instantiation for the
meeting summarization task. Sections 7 and 8 pro-
vide our experimental setup and results.

2 Related Work
Most research on spoken dialogue summariza-
tion attempts to generate summaries for full dia-
logues (Carenini et al., 2011). Only recently, how-
ever, has the task of focused summarization, and de-
cision summarization, in particular, been addressed.
Fernández et al. (2008) and Bui et al. (2009) em-
ploy supervised learning methods to rank phrases
or words for inclusion in the decision summary.
In comparison, Fernández et al. (2008) find that
the phrase-based approach yields better recall than
token-based methods, concluding that phrases have
the potential to support better summaries. Input to
their system, however, is narrowed down (manually)
from the full set of DRDAs to the subset that is use-
ful for summarization. In addition, they evaluate
their system w.r.t. informative phrases or words that
have been manually annotated within this DRDA
subset. We are instead interested in comparing our
extracted relations to the abstractive summaries.

In contrast to our phrase-based approach, we pre-
viously explored a collection of supervised and un-
supervised learning methods for utterance-level (i.e.,
dialogue act) and token-level decision summariza-
tion (Wang and Cardie, 2011). We adopt here the
two unsupervised baselines (utterance-level sum-
maries) from that work for use in our evaluation.
We further employ their supervised summarization
methods as comparison points for token-level sum-
marization, adding additional features for consis-

tency with the other approaches in the evaluation.
Murray et al. (2010a) develop an integer linear pro-
gramming approach for focused summarization at
the utterance-level, selecting sentences that cover
more of the entities mentioned in the meeting as de-
termined through the use of an external ontology.

The most relevant previous work is Hachey
(2009), which uses relational representations to fa-
cilitate sentence-ranking for multi-document sum-
marization. The method utilizes generic relation ex-
traction to represent the concepts in the documents
as relation instances; summaries are generated based
on a set cover algorithm that selects a subset of
the sentences that best cover the weighted concepts.
Thus, the goal of Hachey’s approach is sentence ex-
traction rather than phrase extraction. Although his
relation extraction method, like ours (see Section
4), is probabilistic and unsupervised (he uses Latent
Dirichelt Allocation (Blei et al., 2003)), the relations
are limited to pairs of named-entities, which is not
appropriate for our decision summarization setting.
Nevertheless, we will adapt his approach for com-
parison with our relation-based summarization tech-
nique and include it for evaluation.

3 Focused Summarization as Relation Ex-
traction

Given the DRDAs for each meeting grouped (not
necessarily correctly) according to the decisions
they support, we put each cluster of DRDAs (or-
dered according to time within the cluster) into one
“decision document”. The goal will be to pro-
duce one decision abstract for each such decision
document. We obtain constituent and dependency
parses using the Stanford parser (Klein and Man-
ning, 2003; de Marneffe et al., 2006). With the cor-
pus of constituent-parsed decision documents as the
input, we will use and modify Chen et al. (2011)’s
system to identify decision cue relations and deci-
sion content relations for each cluster.4 (Section 6
will make clear how the learned decision cue rela-
tions will be used to identify decision content re-
lations.) The salient decision content relation in-
stances will be returned as decision summary com-

4Other unsupervised relation learning methods might also
be appropriate (e.g., Open IE (Banko et al., 2007)), but they
generally model relations between pairs of entities and group
relations only according to lexical similarity.
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ponents.
Designed for in-domain relation discovery from

standard written texts (e.g., newswire), however, the
Chen et al. (2011) system cannot be applied to our
task directly. In our setting, for example, neither the
number of relations nor the relation types is known
in advance.

In the following sections, we describe the modi-
fications needed for the spoken meeting genre and
decision-focused summarization task. In particular,
Chen et al. (2011) provide two mechanisms that al-
low for this type of tailoring: the feature set used to
cluster potential relation instances into groups/types,
and a set of global constraints that characterize the
general qualities (e.g., syntactic form, prevalence,
discourse behavior) of a good relation for the task.

4 Model
In this section, we describe the Chen et al. (2011)
probabilistic relation learning model used for both
Decision Cue and Decision Content relation extrac-
tion. The parameter estimation and constraint en-
coding through posterior inference are presented in
Section 5.

The relation learning model takes as input clus-
ters of DRDAs, sorted according to utterance time
and concatenated into one decision document. We
assume one decision will be made per document.
The goal for the model is to explain how the de-
cision documents are generated from the latent re-
lation variables. The posterior regularization tech-
nique (Section 5) biases inference to adhere to the
declarative constraints on relation instances. In gen-
eral, instead of extracting relation instances strictly
satisfying a set of human-written rules, features and
constraints are designed to allow the model to reveal
diverse relation types and to ensure that the identi-
fied relation instances are coherent and meaningful.
For each decision document, we select the relation
instance with highest probability for each relation
type and concatenate them to form the decision sum-
mary.

We restrict the eligible indicators to be a noun or
verb, and eligible arguments to be a noun phrase
(NP), prepositional phrase (PP) or clause introduced
by “to” (S). Given a pre-specified number of relation
types K, the model employs a set of features φi(w)
and φa(x) (see Section 6) to describe the indicator
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Figure 2: Graphical model representation for the relation
learning model. D is the number of decision documents (each
decision document consists of a cluster of DRDAs). K is the
number of relation types. W and X represent the number of in-
dicators and arguments in the decision document. |φi| and |φa|
are the number of features for indicator and argument.

word w and argument constituent x. Each relation
type k is associated with a set of feature distributions
θk and a location distribution λk. θk include four pa-
rameter vectors: θik for indicator words, θbik for non-
indicator words, θak for argument constituents, and
θbak for non-argument constituents. Each decision
document is divided into L equal-length segments
and the location parameter vector λk describes the
probability of relation k arising from each segment.
The plate diagram for the model is shown in Fig-
ure 2. The generative process and likelihood of the
model are shown in Appendix A.

5 Parameter Estimation and Inference via
Posterior Regularization

In order to specify global preferences for the rela-
tion instances (e.g. the syntactic structure of the ex-
pressions), we impose inequality constraints on ex-
pectations of the posterior distributions during infer-
ence (Graca et al., 2008).

5.1 Variational inference with Constraints

Suppose we are interested in estimating the posterior
distribution p(θ, z|x) of a model in general, where
θ, z and x are parameters to estimate, latent vari-
ables and observations, respectively. We aim to find
a distribution q(θ, z) ∈ Q that minimizes the KL-
divergence to the true posterior

KL(q(θ, z)‖p(θ, z|x)) (1)
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A mean-field assumption is made for variational
inference, where q(θ, z) = q(θ)q(z). Then we can
minimize Equation 1 by performing coordinate de-
scent on q(θ) and q(z). Now we intend to have fine-
level control on the posteriors to induce meaningful
semantic parts. For instance, we would like most of
the extracted relation instances to satisfy a set of pre-
defined syntactic patterns. As presented in (Graca et
al., 2008), a general way to put constraints on pos-
terior q is through bounding expectations of given
functions: Eq[f(z)] ≤ b, where f(z) is a determin-
istic function of z, and b is a pre-specified threshold.
For instance, define f(z) as a function to count the
number of generated relation instances that meet the
pre-defined syntactic patterns, then most of the ex-
tracted relation instances will have the desired syn-
tactic structures.

By using the mean-field assumption, the model in
Section 4 is factorized as

q(θ, λ, z, i, a) =

K∏

k=1

q(λk; λ̂k)q(θik; θ̂ik)q(θbik ; θ̂bik )q(θak θ̂
a
k)q(θbak ; θ̂bak )

×
D∏

d=1

q(zd,k, id,k, ad,k; ĉd,k) (2)

The constraints are encoded in the inequalities
Eq[f(z, i, a)] ≥ b or Eq[f(z, i, a)] ≤ b, and affect
the inference as described above. Updates for the
parameters are discussed in Appendix B.

5.2 Task-Specific Constraints.

We define four types of constraints for the decision
relation extraction model.

Syntactic Constraints. Syntactic constraints are
widely used for information extraction (IE) systems
(Snow et al., 2005; Banko and Etzioni, 2008), as it
has been shown that most relations are expressed via
a small number of common syntactic patterns. For
each relation type, we require at least 80%5 of the
induced relation instances in expectation to match
one of the following syntactic patterns:

• The indicator is a verb and the argument is a noun
phrase. The headword of the argument is the direct
object of the indicator or the nominal subject of the
indicator.

5Experiments show that this threshold is suitable for deci-
sion relation extraction, so we adopt it from (Chen et al., 2011).

• The indicator is a verb and the argument is a prepo-
sitional phrase or a clause starting with “to”. The
indicator and the argument have the same parent in
the constituent parsing tree.

• The indicator is a noun and is the headword of a
noun phrase, and the argument is a prepositional
phrase. The noun phrase with the indicator as its
headword and the argument have the same parent in
the constituent parsing tree.

For relation k, let f(zk, ik, ak) count the number
of induced indicator ik and argument ak pairs that
match one of the patterns above, and b is set to 0.8D,
whereD is the number of decision documents. Then
the syntactic constraint is encoded in the inequality
Eq[f(zk, ik, ak)] ≥ b.
Prevalence Constraints. The prevalence con-
straint is enforced on the number of times a relation
is instantiated, in order to guarantee that every rela-
tion has enough instantiations across the corpus and
is task-relevant. Again, we require each relation to
have induced instances in at least 80% of decision
documents.
Occurrence Constraints. Diversity of relation
types is enforced through occurrence constraints. In
particular, for each decision document, we restrict
each word to trigger at most two relation types as in-
dicator and occur at most twice as part of a relation’s
argument in expectation. An entire span of argument
constituent can appear in at most one relation type.
Discourse Constraints. The discourse constraint
captures the insight that the final decision on an is-
sue is generally made, or at least restated, at the end
of the decision-related discussion. As each decision
document is divided into four equal parts, we re-
strict 50% of the relation instances to be from the
last quarter of the decision documents.

6 Features
Table 1 lists the features we use for discovering
both the decision cue relations and decision con-
tent relations. We start with a collection of domain-
independent BASIC FEATURES shown to be use-
ful in relation extraction (Banko and Etzioni, 2008;
Chen et al., 2011). Then we add MEETING FEA-
TURES, STRUCTURAL FEATURES and SEMANTIC

FEATURES that have been found to be good pre-
dictors for decision detection (Hsueh and Moore,
2007) or meeting and decision summarization (Gal-
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Basic Features
unigram (stemmed)
part-of-speech (POS)
constituent label (NP, VP, S/SBAR (start with “to”))
dependency label
Meeting Features
Dialogue Act (DA) type
speaker role
topic
Structural Features (Galley, 2006) (Wang and Cardie, 2011)
in an Adjacency Pair (AP)?
if in an AP, AP type
if in an AP, the other part is decision-related?
if in an AP, the source part or target part?
if in an AP and is source part, is the target positive feedback?
if in an AP and is target part, is the source a question?
Semantic Features (from WordNet) (Miller, 1995)
first Synset of head word with the given POS
first hypernym path for the first synset of head word
Other Features (only for Argument)
number of words (without stopwords)
has capitalized word or not
has proper noun or not

Table 1: Features for Decision Cue and Decision Content re-
lation extraction. All features, except the last type of features,
are used for both the indicator and argument. (An Adjacency
Pair (AP) is an important conversational analysis concept (Schegloff
and Sacks, 1973). In the AMI corpus, an AP pair consists of a source
utterance and a target utterance, produced by different speakers.)

ley, 2006; Murray and Carenini, 2008; Fernández et
al., 2008; Wang and Cardie, 2011). Features em-
ployed only for argument’s are listed in the last cat-
egory in Table 1.

After applying the features in Table 1 and the
global constraints from Section 5 in preliminary ex-
periments, we found that the extracted relation in-
stances are mostly derived from decision cue rela-
tions. Sample decision cue relations and instances
are displayed in Table 2 and are not necessarily sur-
prising: previous research (Hsueh and Moore, 2007)
has observed the important role of personal pro-
nouns, such as “we” and “I”, in decision-making ex-
pressions. Notably, the decision cue is always fol-
lowed by the decision content. As a result, we in-
clude two additional features (see Table 3) that rely
on the cues to identify the decision content. Finally,
we disallow content relation instances with an argu-
ment containing just a personal pronoun.

7 Experiment Setup
The Corpus. We evaluate our approach on the
AMI meeting corpus (Carletta et al., 2005) that con-
sists of 140 multi-party meetings with a wide range

Decision Cue Relations Relation Instances
Group Wrap-up / Recap we have, we are, we say, we want
Personal Explanation I mean, I think, I guess, I (would) say
Suggestion do we, we (could/should) do
Final Decision it is (gonna), it will, we will

Table 2: Sample Decision Cue relation instances. The words
in parentheses are filled for illustration purposes, while they are
not part of the relation instances.

Discourse Features
clause position (first, second, other)
position to the first decision cue relation if any (before, after)

Table 3: Additional features for Decision Content relation ex-
traction, inspired by Decision Cue relations. Both indicator and
argument use those features.

of annotations. The 129 scenario-driven meetings
involve four participants playing different roles on
a design team. Importantly, the corpus includes a
short (usually one-sentence), manually constructed
abstract summarizing each decision discussed in the
meeting. In addition, all of the dialogue acts that
support (i.e., are relevant to) each decision are an-
notated as such. We use the manually constructed
decision abstracts as gold-standard summaries.
System Inputs. We consider two system input set-
tings. In the True Clusterings setting, we use
the AMI annotations to create perfect partitionings
of the DRDAs for input to the summarization sys-
tem; in the System Clusterings setting, we em-
ploy a hierarchical agglomerative clustering algo-
rithm used for this task in previous work (Wang and
Cardie, 2011). The Wang and Cardie (2011) cluster-
ing method groups DRDAs according to their LDA
topic distribution similarity. As better approaches
for DRDA clustering become available, they could
be employed instead.
Evaluation Metrics. We use the widely accepted
ROUGE (Lin and Hovy, 2003) evaluation measure.
We adopt the ROUGE-1 and ROUGE-SU4 met-
rics from (Hachey, 2009), and also use ROUGE-
2. We choose the stemming option of the ROUGE
software at http://berouge.com/ and remove
stopwords from both the system and gold-standard
summaries.
Training and Parameters. The Dirichlet hyper-
parameters are set to 0.1 for the priors. When train-
ing the model, ten random restarts are performed
and each run stops when reaching a convergence
threshold (10−5). Then we select the posterior with
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the lowest final free energy. For the parameters
used in posterior constraints, we either adopt them
from (Chen et al., 2011) or choose them arbitrarily
without tuning in the spirit of making the approach
domain-independent.

We compare our decision summarization ap-
proach with (1) two unsupervised baselines, (2)
the unsupervised relation-based approach of Hachey
(2009), (3) two supervised methods, and (4) an up-
perbound derived from the gold standard decision
abstracts.

The LONGEST DA Baseline. As in Riedhammer
et al. (2010) and Wang and Cardie (2011), this base-
line simply selects the longest DRDA in each clus-
ter as the summary. Thus, this baseline performs
utterance-level decision summarization. Although
it’s possible that decision content is spread over mul-
tiple DRDAs in the cluster, this baseline and the next
allow us to determine summary quality when sum-
maries are restricted to a single utterance.

The PROTOTYPE DA Baseline. Following Wang
and Cardie (2011), the second baseline selects the
decision cluster prototype (i.e., the DRDA with the
largest TF-IDF similarity with the cluster centroid)
as the summary.

The Generic Relation Extraction (GRE) Method
of Hachey (2009). Hachey (2009) presents
a generic relation extraction (GRE) for multi-
document summarization. Informative sentences
are extracted to form summaries instead of relation
instances. Relation types are discovered by Latent
Dirichlet Allocation, such that a probability is
output for each relation instance given a topic
(equivalent to relation). Their relation instances are
named entity(NE)-mention pairs conforming to a
set of pre-specified rules. For comparison, we use
these same rules to select noun-mention pairs rather
than NE-mention pairs, which is better suited to
meetings, which do not contain many NEs.6

6Because an approximate set cover algorithm is used in
GRE, one decision-related dialogue act (DRDA) is extracted
each time until the summary reaches the desired length. We run
two sets of experiments using this GRE system with different
output summaries — one selects one entire DRDA as the final
summary (as Hachey (2009) does), and another one outputs the
relation instances with highest probability conditional on each
relation type. We find that the first set of experiments gets better

True Clusterings
R-1 R-2 R-SU4

PREC REC F1 F1 F1
Baselines

Longest DA 34.06 31.28 32.61 12.03 13.58
Prototype DA 40.72 28.21 33.32 12.18 13.46

GRE
5 topics 38.51 30.66 34.13 11.44 13.54
10 topics 39.39 31.01 34.69 11.28 13.42
15 topics 38.00 29.83 33.41 11.40 12.80
20 topics 37.24 30.13 33.30 10.89 12.95

Supervised Methods
CRF 53.95 26.57 35.61 11.52 14.07
SVM 42.30 41.49 40.87 12.91 16.29

Our Method
5 Relations 39.33 35.12 37.10 12.05 14.29
10 Relations 37.94 37.03 37.47 12.20 14.59
15 Relations 37.36 37.43 37.39 11.47 14.00
20 Relations 37.27 37.64 37.45 11.40 13.90
Upperbound 100.00 45.05 62.12 33.27 34.89

Table 4: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-
SU4 (R-SU4) scores for summaries produced by the baselines,
GRE (Hachey, 2009)’s best results, the supervised methods, our
method and an upperbound — all with perfect/true DRDA clus-
terings.

Supervised Learning (SVMs and CRFs). We
also compare our approach to two supervised learn-
ing methods — Support Vector Machines (Joachims,
1998) with RBF kernel and order-1 Conditional
Random Fields (Lafferty et al., 2001) — trained us-
ing the same features as our system (see Tables 1
and 3) to identify the important tokens to include in
the decision abstract. Three-fold cross validation is
conducted for both methods.
Upperbound. We also compute an upperbound
that reflects the gap between the best possible ex-
tractive summaries and the human-written abstracts
according to the ROUGE score: for each cluster of
DRDAs, we select the words that also appear in the
associated decision abstract.

8 Results and Discussion
Table 4 illustrates that, using True (DRDA) Clus-
terings our method outperforms the two baselines
and the generic relation extraction (GRE) based sys-
tem in terms of F score in ROUGE-1 and ROUGE-
SU4 with varied numbers of relations. Note that for
GRE based approach, we only list out their best re-
sults for utterance-level summarization. If using the
salient relation instances identified by GRE as the
summaries, the ROUGE results will be significantly

performance than the second, so we only report the best results
for their system in this paper.
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System Clusterings
R-1 R-2 R-SU4

PREC REC F1 F1 F1
Baselines

Longest DA 17.06 11.64 13.84 2.76 3.34
Prototype DA 18.14 10.11 12.98 2.84 3.09

GRE
5 topics 17.10 9.76 12.40 3.03 3.41
10 topics 16.28 10.03 12.35 3.00 3.36
15 topics 16.54 10.90 13.04 2.84 3.28
20 topics 17.25 8.99 11.80 2.90 3.23

Supervised Methods
CRF 47.36 15.34 23.18 6.12 9.21
SVM 39.50 18.49 25.19 6.15 9.86

Our Method
5 Relations 16.12 18.93 17.41 3.31 5.56
10 Relations 16.27 18.93 17.50 3.32 5.69
15 Relations 16.42 19.14 17.68 3.47 5.75
20 Relations 16.75 18.25 17.47 3.33 5.64

Table 5: ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-
SU4 (R-SU4) scores for summaries produced by the baselines,
GRE (Hachey, 2009)’s best results, the supervised methods and
our method — all with system clusterings.

lower. When measured by ROUGE-2, our method
still have better or comparable performances than
other unsupervised methods. Moreover, our sys-
tem achieves F scores in between those of the su-
pervised learning methods, performing better than
the CRF in both recall and F score. The recall score
for the upperbound in ROUGE-1, on the other hand,
indicates that there is still a wide gap between the
extractive summaries and human-written abstracts:
without additional lexical information (e.g., seman-
tic class information, ontologies) or a real language
generation component, recall appears to be a bottle-
neck for extractive summarization methods that se-
lect content only from decision-related dialogue acts
(DRDAs).

Results using the System Clusterings (Table 5)
are comparable, although all of the system and base-
line scores are much lower. Supervised methods get
the best F scores largely due to their high precision;
but our method attains the best recall in ROUGE-1.

Discussion. To better exemplify the summaries
generated by different systems, sample output for
each method is shown in Table 6. The GRE system
uses an approximate algorithm for set cover extrac-
tion, we list the first three selected DRDA in order.
We see from the table that utterance-level extractive
summaries (Longest DA, Prototype DA, GRE) make
more coherent but still far from concise and compact

DRDA (1): Uh the batteries, uh we also thought about that already,
DRDA (2): uh will be chargeable with uh uh an option for a
mount station
DRDA (3): Maybe it’s better to to include rechargeable batteries
DRDA (4): We already decided that on the previous meeting.
DRDA (5): which you can recharge through the docking station.
DRDA (6): normal plain batteries you can buy at the supermarket
or retail shop. Yeah.
Decision Abstract: The remote will use rechargeable batteries
which recharge in a docking station.
Longest DA & Prototype DA: normal plain batteries you can
buy at the supermarket or retail shop. Yeah.
GRE: 1st: normal plain batteries you can buy at the supermarket
or retail shop. Yeah.
2nd: which you can recharge through the docking station.
3rd: uh will be chargeable with uh uh an option for a mount station
SVM: batteries include rechargeable batteries decided recharge
docking station
CRF: chargeable station rechargeable batteries
Our Method: <option, for a mount station>,
<include, rechargeable batteries>,
<decided, that on the previous meeting>,
<recharge, through the docking station>,
<buy, normal plain batteries>

Table 6: Sample system outputs by different methods are in
the third cell (methods’ names are in bold). First cell contains
the six DRDAs supporting the decision abstracted in the second
cell.

abstracts. On the other hand, the supervised methods
(SVM, CRF) that produce token-level extracts better
identify the overall content of the decision abstract.
Unfortunately, they require human annotation in the
training phase; in addition, the output is ungrammat-
ical and lacks coherence. In comparison, our sys-
tem presents the decision summary in the form of
phrase-based relations that provide a relatively com-
prehensive expression.

9 Conclusions
We present a novel framework for focused meet-
ing summarization based on unsupervised relation
extraction. Our approach is shown to outperform
unsupervised utterance-level extractive summariza-
tion baselines as well as an existing generic relation-
extraction-based summarization method. Our ap-
proach also produces summaries competitive with
those generated by supervised methods in terms of
the standard ROUGE score. Overall, we find that
relation-based methods for focused summarization
have potential as a technique for supporting the gen-
eration of abstractive decision summaries.
Acknowledgments This work was supported in part by
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Appendix A Generative Process
The entire generative process is as follows (“Dir”
and “Mult” refer to the Dirichlet distribution and
multinomial distribution):

1. For each relation type k:
(a) For each indicator feature φi, draw feature distribu-

tions θik,φi , θ
bi
k,φi ∼ Dir(θ0)

(b) For each argument feature φa, draw feature distri-
butions θak,φa , θbak,φa ∼ Dir(θ0)

(c) Draw location distribution λk ∼ Dir(λ0)

2. For each relation type k and decision document d:
(a) Select decision document segment sd,k ∼

Mult(λk)

(b) Select DRDA zd,k uniformly from segment sd,k,
and indicator id,k and argument constituent ad,k
uniformly from DRDA zd,k

3. For each indicator word w in every decision document d:
(a) For each indicator feature φi(w) ∼

Mult( 1
Z

ΠK
k=1θk,φi), where θk,φi is θik,φi if

id,k = w and θbik,φi otherwise. Z is the
normalization factor.

4. For each argument constituent x in every decision docu-
ment d:

(a) For each indicator feature φa(x) ∼
Mult( 1

Z
ΠK
k=1θk,φa), where θk,φa is θak,φa

if ad,k = x and θbak,φa otherwise. Z is the
normalization factor.

Given θ0 and λ0, The joint distribution of a set of
feature parameters θ, the location distributions λ, a
set of DRDAs z, and the selected indicators i and
arguments a is:

P (θ, λ, z, i, a; θ0, λ0) =

K∏

k=1

P (θik; θ0)P (θbik ; θ0)P (θak |θ0)P (θbak ; θ0)P (λk;λ0)

× (

D∏

d=1

P (id,k; zd,k)P (ad,k; zd,k)P (zd,k; sd,k)P (sd,k;λk)

× (P (w = id,k; θik)
∏

w 6=id,k

P (w; θbik ))

× (P (x = ad,k; θak)
∏

x 6=ad,k

P (x; θbak )))

Appendix B Updates for the Parameters
The constraints put on the posterior will only affect
the update for q(z). For q(θ), the update is

q(θ) = argmin
q(θ)

KL(q(θ)‖q′(θ)), (3)

where q′(θ) ∝ expEq(z)[log p(θ, z, x)], and q(θ)
is updated to q′(θ). For q(z), the update is

q(z) = argmin
q(z)

KL(q(z)‖q′(z))

s.t. Eq(z)[fc(z)] ≤ bc, ∀c ∈ C (4)

where q′(z) ∝ expEq(θ)[log p(θ, z, x)]. Equa-
tion 4 is easily solved via the dual (Graca et al.,
2008) (Chen et al., 2011).
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Abstract

We present work on understanding natural lan-
guage in a situated domain, that is, language
that possibly refers to visually present enti-
ties, in an incremental, word-by-word fashion.
Such type of understanding is required in con-
versational systems that need to act immedi-
ately on language input, such as multi-modal
systems or dialogue systems for robots. We
explore a set of models specified as Markov
Logic Networks, and show that a model that
has access to information about the visual con-
text of an utterance, its discourse context, as
well as the linguistic structure of the utter-
ance performs best. We explore its incremen-
tal properties, and also its use in a joint pars-
ing and understanding module. We conclude
that MLNs offer a promising framework for
specifying such models in a general, possibly
domain-independent way.

1 Introduction

We speak situated in time and space. Speech by ne-
cessity unfolds sequentially in time; and in a conver-
sation, all speech but that of the opening utterance is
preceded by other speech belonging to the same con-
versation. In many, if not most, conversational situa-
tions speaker and addressee are co-located in space,
and their speech may refer to their shared situation.

Most current spoken dialogue systems attempt to
abstract from this fact, however. They work in do-
mains where physical co-location is not necessary,
such as information look-up, and they quantize time
into discrete turn units by endpointing utterances

(see discussion in (Aist et al., 2007; Schlangen and
Skantze, 2009)).

In this paper we present our current work on over-
coming these abstractions for the task of natural lan-
guage understanding (NLU). We have created a sta-
tistical model that can be trained on conversational
data and which can be used as an NLU module for
an incremental, situated dialogue system (such as
that described in (Buß et al., 2010)). We show that
this model beats baseline approaches by a wide mar-
gin, and that making available the full set of infor-
mation comprising visual context, discourse context,
and linguistic structure gives significantly better re-
sults than any subset of these information sources on
their own.

The paper is structured as follows: we first dis-
cuss related work and introduce some background,
and then describe in detail our set of experiments,
and present and analyse our results. We close with a
general discussion of this work and possible future
extensions.

2 Related Work and Background

The work in this paper builds on, connects and ex-
tends several strands of research: grounded seman-
tics (Roy, 2005), which worries about the connec-
tion between language and the situation in which
it is used, but often does not go beyond the word
level to include linguistic structure information and
does not work incrementally;1 statistical NLU (see
e.g. (Zettlemoyer and Collins, 2009; Liang et al.,

1But see (Spranger et al., 2010); for recent attempts that par-
tially overcome these limitations.
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2011)), which tries to infer linguistic structures au-
tomatically, but normally stops at generating, not in-
terpreting semantic representations, and works with
(the text of) full utterances and not incrementally on
speech data; and incremental NLU, which is a less
intensely studied field, but where previous contri-
butions (such as (DeVault et al., 2009; Devault et
al., 2011; Aist et al., 2007; Schlangen and Skantze,
2009)) have not dealt with learned grounded seman-
tics.

We go beyond this earlier work in that we study
a model that is incremental, can use linguistic struc-
ture, and learns from conversational data a semantics
that connects the utterance to its visual and discourse
context. We have looked at individual components
of this before (grounded semantics in (Siebert and
Schlangen, 2008); incremental reference resolution
in (Schlangen et al., 2009); incremental general NLU

in (Heintze et al., 2010); interaction between incre-
mental parsing and reference resolution in (Peldszus
et al., 2012)), but use a more sophisticated model in
this work and show that tackling these tasks jointly
improves performance.

MLN
System

Context/World

Language/
RMRS

Context/
Discourse

Prediction:
action
object
result

Figure 1: NLU Data Flow

We apply Markov Logic Networks (MLNs,
(Richardson and Domingos, 2006)) as the machine
learning technique in our experiments. MLNs have
recently received attention in language processing
fields like co-reference resolution (Chen, 2009), se-
mantic role labeling (Meza-Ruiz and Riedel, 2009),
spoken (albeit neither situational nor incremental)
NLU (Meurs et al., 2008), and web information ex-
traction (Satpal et al., 2011). The framework of-
fers a convenient way of specifying factor functions
on sets of random variables for undirected graphical
models (Markov Random Fields, see (Kindermann
and Snell, 1980)), in such a way that the factors
correspond to weighted first order formulae and the
joint distribution of random variables corresponds to

probabilities of groundings of formulae. In this way,
MLNs offer a helpful bridge between symbolic rep-
resentation and stochastic inference. Weights of for-
mulae can be specified by hand or learned from data;
we used the latter capability.

Figure 1 shows data flow in our task. We use com-
binations of situated context, previous context, and
linguistic information as evidence to an MLN, and
infer what action is to be taken, what object is to be
acted upon, and specifications of the manner of exe-
cution.

3 Experiments

We will now describe our experiments with using
Markov Logic Networks for situated incremental
natural language understanding.

3.1 Data and Task
For our experiments, we used task-oriented con-
versational data from the Pentomino domain
(Fernández et al., 2007); more specifically, we
worked with the corpus also used recently in
(Heintze et al., 2010) and (Peldszus et al., 2012).
This corpus was collected in a Wizard-of-Oz study,
where the user goal was to instruct the computer to
pick up, delete, rotate or mirror puzzle tiles on a
rectangular board (as in Figure 2), and place them
onto another one. For each utterance, the corpus
records the state of the game board before the utter-
ance, the immediately preceding system action, and
the intended interpretation of the utterance (as un-
derstood by the Wizard) in the form of a semantic
frame specifying action-type and arguments, where
those arguments are objects occurring in the descrip-
tion of the state of the board. The language of the
corpus is German.

Figure 2: Example Pentomino Board

For this study, we were interested in the potential
contribution of linguistic structure to the NLU task.
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To this end, we produced for each utterance an in-
cremental sequence of parses and corresponding se-
mantic representations (as RMRS structures (Copes-
take, 2007), i.e. underspecified semantic representa-
tions), using the parser described in (Peldszus et al.,
2012). These representations were not further man-
ually checked for appropriateness, and hence do not
necessarily represent ground truth.

As in (Peldszus et al., 2012), we discarded ut-
terances without clear semantic alignments. One
major difference from them is that we do include
the 661 utterances that used pronouns to refer to
pieces, leaving us with 1687 utterances, 5.43 words
per utterance (sd 2.36), with a vocabulary of 237 dis-
tinct words. These were transcribed utterances and
not automatic speech recognition output, so our re-
sults represent an upper-bound on real world perfor-
mance.

The task that we wanted our model to tackle can
then be stated as follows: given information about
the current state of the world (i.e., the game board),
the previous system action, and about the (possibly
still not-yet completed) utterance, predict an inter-
pretation for the utterance, in the form of such a
frame. The elements of the frame may be speci-
fied separately; as argued in (Heintze et al., 2010),
this is the most appropriate format for incremental
processing since it provides a rough alignment be-
tween parts of the utterance and parts of its inter-
pretation. Figure 3 illustrates such a desired output
from the model. In more general terms, what we
want our model to learn then is how, in a given dis-
course context, language connects to the world. To
explore what information contributes to this, we will
systematically vary in our experiments what is avail-
able to the learner.

3.2 Representation

As mentioned above, Markov Logic allows the spec-
ification of knowledge bases through first order for-
mulae. A straightforward representation of the game
board would simply assert salient properties of the
individual objects such as their colour, shape, po-
sition, etc.; for the topmost object in Figure 2 this
could be colour(yellow) ∧ shape(g) ∧ pos(2, 1).
However, in pre-experiments on held-out data, we
found that a more parsimonious representation ac-
tually worked better, in which there is only one

n word interpretation
1 rotate action:rotate
2 the ...
3 yellow argument:yellow objects
4 piece argument:yellow pieces
5 next ...
6 to ...
7 the ...
8 yellow argument:yellow pieces

by yellow objects
9 plus argument:yellow piece

next to unique yellow plus
10 clockwise option:clockwise

Figure 3: Incremental interpretation of a 10-word utter-
ance. Only changes to the frame are shown, e.g. when
predictions about different frame elements are made. For
illustration, sets of objects are represented by descrip-
tions; in the system, these would be sets of object identi-
fiers.

abstract property that only implicitly does a typ-
ing into different features of the objects; again, for
the topmost piece from the figure this would be
piece(p)∧ property(p, yellow)∧ property(p, g)∧
property(p, row0)∧property(p, col1). This repre-
sentation follows a Davidsonian form of represent-
ing the relations between predicates.

The properties of the objects that we represented
in this way were colour, shape, its row and column,
horizontal percentage from the center and vertical
percentage from the center.

The utterance itself forms another source of in-
formation about the situation. In the simplest form,
it could be represented just through assertions of
the words which are part of it, e.g. word(rotate) ∧
word(the) ∧ word(yellow) ∧ . . . . As mentioned
above, we were interested in whether a more de-
tailed linguistic analysis could provide more useful
information to a model of situated semantics; we
represented this information by extracting some of
the relations of the RMRS representation for each ut-
terance (-prefix) and converting them to a slightly
simpler form. Figure 4 shows the RMRS representa-
tion of an example utterance and the corresponding
simplified representation that we derive from it (la-
bels as defined by RMRS and quotes required by and
the MLN are removed for simplicity). We represent
words as RMRS EPs (elementary predicates); i.e., by
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their lemma and with additional identifiers as argu-
ments, which can be used to relate the EP to other
RMRS structure. In the variants of the model that
only look at words, the other arguments can sim-
ply be ignored in the MLN template. The final ar-
gument for EP is the board identifier, which remains
unchanged during an utterance.

RMRS
a33:yellow(e34)
a19:NN(x14)
ARG1(a49,x14)
ARG2(a49,x53)
a49:nextto(e50)
BV(a52,x53)
RSTR(a52,h60)
BODY(a52,h61)
a52:def()
ARG1(a72,x53)
a72:yellow(e73)
a58:plus(x53)

MLN
EP(a33,yellow,e34,1)
EP(a19,NN,x14,1)
RMRS(ARG1,a49,x14,1)
RMRS(ARG2,a49,x53,1)
EP(a49,nextto,e50,1)
RMRS(BV,a52,x53,1)
EP(a52,def,,1)
RMRS(ARG1,a72,x53,1)
EP(a72,yellow,e73,1)
EP(a58,plus,x53,1)

Figure 4: RMRS and MLN for yellow piece next to the
yellow plus

Finally, the previous system action and, during
learning but not testing, the interpretation that is
to be predicted needs to be represented. This is
done through predicates action(), argument() and
option() for the interpretation of the current utter-
ances and corresponding predicates for that of the
previous one.

To summarise, each problem instance is hence
represented as a conjunction of predicates encoding
a) the (world) situational context (the state of the
game board), b) the discourse context (in the form
of the previous action), and c) the (possibly as-yet
partial) utterance, linguistically analysed.

3.3 Model and Decision Rule
The actual model is now formed by the MLN tem-
plates that specify the relations between the predi-
cates; in particular those between those representing
the available information (evidence) and the predi-
cates that represent the information that is to be pre-
dicted (or, in MLN terminology, whose most likely
values are to be inferred). Figure 5 illustrates graph-
ically how our model makes these connections, sep-
arately for each frame element that is to be predicted.

These graphs show that for action and
option, we assume an influence both of the words

Action

Argument

Option

PrevAction PrevOptionEP

RMRS

Property

EP

EP

Property

EP

Figure 5: MLN relations between predicates

present in the utterance (denoted by EP; see above)
and of the previous value of these slots on the cur-
rent one. The previous context that is used for train-
ing and evaluation is taken from the corpus anno-
tation files. The structure for argument is some-
what more complicated; this is where the linguis-
tic information coming from the RMRSs comes into
play, and also where the connection between lan-
guage and properties of the visual scene is made.
The actual template that defines our MLN is shown
in Figure 6.

1 EP (a1, a2,+w, a3, b)⇒ Action(+a, b)
2 PrevAction(+a, b)⇒ Action(+a, b)
3 EP (a1, a2,+w, a3, b))⇒ Option(+o, b)
4 PrevOption(+o, b)⇒ Option(+o, b)
5 EP (a1, a2,+w, a3, b)) ∧ Property(p,+pr, b)
⇒ Argument(p, b)

6 EP (a1, a2, w1, a3, b) ∧RMRS(+t, a4, a3, b)
∧RMRS(+t, a4, a5, b) ∧ EP (a5, a6, w2, a5, )
∧Property(p,+pr, b)⇒ Argument(p, b)

Figure 6: The MLN template specifying our model

Our MLN system gives us probability distribu-
tions over all possible groundings of the frame pred-
icates, but as we are interested in single best candi-
dates (or the special value unknown, if no guess
can be made yet), we applied an additional deci-
sion rule to the output of the MLN component. If
the probability of the highest candidate is below a
threshold, unknown is returned, otherwise that can-
didate is returned. Ties are broken by random se-
lection. The thresholds for each frame element /
predicate were determined empirically on held-out
data so that a satisfactory trade-off between letting
through wrong predictions and changing correct re-
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Type Class Acc.
Action majority put 33.55
Argument majority tile-3 20.98
Option majority na 27.08
Frame majority take, tile-3, na 3.67
Action Contextual 42.24

Table 1: Majority class and Action contextual baselines

sults to unknown was achieved.

3.4 Parameter Training Procedure, Baselines,
Metrics

All results reported below were obtained by aver-
aging results of a 10-fold validation on 1489 Pento
boards (i.e., utterances + context). We used a sep-
arate set of 168 boards for small-scale, held-out
experiments. For learning and inference we used
the Alchemy system (Domingos et al., 2006), us-
ing the discriminative training option (Singla and
Domingos, 2005).2 Inference was performed on the
Action, Argument, and Option predicates; a sin-
gle answer was derived from the distributions deliv-
ered by alchemy in the way described in the previous
section.

To be able to assess our results, we devised two
kinds of baselines for the full utterance. The sim-
plest is just the majority class. Table 1 shows ac-
curacy when choosing the majority class, both for
the frame elements individually (where this baseline
is quite high) and for the most frequent full frame
(which, unsurprisingly, only reaches a very low ac-
curacy). Action can be predicted with somewhat
more accuracy if not the overall most frequent value
is chosen but that given the previous action (i.e.,
when Action is conditioned on PreviousAction).
The accuracy for this method, where the conditional
distribution was determined on the 1489 boards and
tested on the remaining 168 boards, is shown in the
Table under “action contextual”.

We give our results below as f-score, slot accuracy
and frame accuracy based on comparison to a gold
representation. To compute the f-score, we count a
prediction of unknown as a false negative (since for
our test utterance a value should always have been
predicted) and a wrong prediction as a false posi-

2http://alchemy.cs.washington.edu/

tive; i.e., a frame with one correct slot and the rest as
unknown has perfect precision, but only 1/3 recall.
Slot accuracy counts the number of slots that are
correct, and frame accuracy only counts fully cor-
rect frames. Hence, these metrics are successively
more strict. Which one most accurately predicts per-
formance of the model in the context of a dialogue
system depends on properties of the further compo-
nents: if they can act on partial frames, then an f-
score that start highs and continually improves as the
utterance goes on is desired; if not, then what’s rel-
evant is when in the utterance high frame accuracy
can be reached.

Using the best model variant, we further com-
pare two parsing/NLU feedback strategies, where the
feedback is to provide aid to the syntactic/RMRS

parser as to which parses to prune (as in (Peldszus
et al., 2012)). If a candidate parse does not resolve
to anything, then the parse score is degraded. (Peld-
szus et al., 2012) use a rule-based reference resolu-
tion component to provide this feedback signal. We
explore what the effects are of exchanging this for
a learned feedback strategy using our MLN model.
This model, however, does not provide discrete ref-
erent sets, but instead gives a probability distribution
over all possible pieces. We therefore simply mul-
tiplied each parse by the probability of the highest
probable piece, so that low probabilities effectively
result in pruning a parse.

On the incremental level, we followed Schlangen
et al. (2009) by using a subset of their incremental
metrics, with a modification on the edit overhead:
first correct: how deep into the utterance do we
make the first correct guess?
first final: how deep into the utterance do we make
the correct guess, and don’t subsequently change our
minds?
edit overhead: ratio of unnecessary edits / sentence
length, where the only necessary edit is that going
from unknown to the final, correct result anywhere
in the sentence)

We also follow their assumption that as the sen-
tence progresses incrementally, the earlier the frame
prediction can be made, the better. This is an impor-
tant part of our threshold decision rule, because we
also assume that no decision is better than a bad de-
cision. A comparison between first correct and first
final would reveal how well this assumption is real-
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W E R P FScore Slot Frame
5 5 5 5 92.18 88.88 74.76 1

{86.76} {81.61} {61.21}
5 5 5 81.06 72.59 34.36

{68.20} {58.61} {19.19}
5 5 5 91.63 88.03 72.68 2

{86.47} {80.69} {58.18}
5 5 75.44 65.72 22.55
5 5 5 72.29 61.61 24.56
5 5 18.15 12.10 0.0
5 5 72.34 61.67 24.63
5 18.32 12.21 0.0

5 5 5 90.68 85.68 63.75 4

5 5 68.94 56.26 0.0
5 5 90.67 85.68 63.89 3

5 69.10 56.39 0.0
5 5 72.29 61.61 24.56
5 18.15 12.10 0.0

5 72.30 61.63 24.69
18.15 12.10 0.0

Table 2: Comparison of combinations using World, EPs
(words), RMRS and Previous context. Number in brack-
ets are for tests on automatically transcribed speech.

ized. A good model would have the two numbers
fairly close together, and the prediction would be
best if both were lower, meaning good predictions
earlier in the sentence. The edit overhead further
sheds light on this distinction by showing what per-
centage of the time edits were made unnecessarily
throughout a sentence.

The procedure on the incremental level is simi-
lar to the full utterance procedure, except that for
incremental evaluation the f-score, slot accuracy,
and frame accuracies were calculated word for word
against the final gold representation.

3.5 Results

Since we were interested in the relative contributions
of our different kinds of information sources (visual
context, discourse context, words, linguistic struc-
ture), we trained and tested variant of the model de-
scribed above that had access to only parts of the full
information (by removing the appropriate predicates
from the MLN template). We report results in Table 2
for these different variants; here just as results after
the final word of the utterance, i.e., we’re not yet

Feedback Predictor FScore Slot Frame
HC HC 38.2
HC Full 92.26 88.94 74.69
none Full 92.18 88.88 74.76
Full Full 92.29 89.01 74.96

Table 3: Feedback strategies comparison for hard-coded
(HC), automatic (MLN) and no feedback (none)

looking at the incremental performance. For easier
reference, some lines are indexed with their rank ac-
cording to frame accuracy. The tope three lines also
contain a bracketed entry which represents automat-
ically transcribed utterances (also trained on manu-
ally transcribed data as in (Peldszus et al., 2012)).

First, it should be pointed out that the full model
(which has access to all information types) performs
rather well, giving a fully correct interpretation for
74% of all frames. As the somewhat higher f-score
indicates, some of the loss of frame accuracy is not
due to wrong predictions but rather to staying unde-
cided (choosing unknown)—a behaviour that could
be advantageous in some applications.

The next line shows that much of the informa-
tion required to reach this accuracy comes not from
the visual context or an analysis of the language but
from the discourse context; without access to it, ac-
curacy drops to 22%. However, the advantage of
having access to discourse context only really comes
out when access to the utterance is given as well
(rows indexed with 3 and 4, and 1 and 2). The model
that just goes by previous context can only achieve
an accuracy of 24%

Connecting discourse context to language alone
only brings accuracy to around 65% (rows 3 and 4);
only when the visual context is provided as well can
the best accuracy be reached. This is a pleasing re-
sult, as it shows that the model is indeed capable
of making the desired connection between language
and world; as none of it was not explicitly given,
which words and linguistic structure linked to which
properties was completely learned by the discrimi-
native training.

For the automatically transcribed results, all ver-
sions take a hit especially with regards to frame ac-
curacy. These also show that previous context and
linguistic structure contribute to increased perfor-
mance.
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action 1-6 7-8 9-14
first correct (% into utt.) 4.43 9.17 6.80
first final (% into utt.) 29.47 31.57 28.47
edit overhead 4.28
argument 1-6 7-8 9-14
first correct (% into utt.) 12.12 11.14 8.08
first final (% into utt.) 38.26 36.10 30.84
edit overhead 5.72
option 1-6 7-8 9-14
first correct (% into utt.) 7.62 27.75 26.73
first final (% into utt.) 45.13 56.68 59.36
edit overhead 13.96

Table 4: Incremental Results for Action, Argument, and
Option with varying sentence lengths

3.5.1 Feedback Results

Table 3 shows the various feedback strategies. HC
refers to the hard-coded version of feedback as in
(Peldszus et al., 2012). None means no feedback
was used, which is the setting of the parser as it was
used for the RMRS structures used in Table 2. MLN
refers using our learned model to provide feedback.
The column “Predictor” shows what model was used
to make the final prediction at the end of the utter-
ance. Overall, MLN performed much better on pre-
dicting the frame than the HC system (first row vs the
other rows); but one should keep in mind that much
of that improvement is presumably due to it having
access to discourse context.

The last three lines show that, as (Peldszus et
al., 2012) observed, providing feedback during pars-
ing does offer benefits; both HC-MLN and MLN-
MLN significantly improve over NONE-MLN (for f-
score: one-sided t(1489) = -3.313, p-value < 0.001,
and t(1489) = -3.67, p-value < 0.001, respectively;
significance-level Bonferroni corrected for multiple
comparisons; similar numbers for other metrics).
There was no significance when comparing HC with
MLN. This is an interesting result, indicating that
even though our model performs better at accurately
picking out referents, it provides a less useful feed-
back signal. This may be due to the way we com-
pute this signal; we leave further exploration to fu-
ture work.

3.5.2 Incremental Results

Table 4 shows the incremental results. Rows in-
volving first correct and first final represent aver-
age percentage into the utterance, where the utter-
ances were binned for lengths 1-6, 7-8, and 10-17
(“short”, “normal”, “long” utterances, respectively).
The boundaries of the bins were determined by look-
ing at the distribution of utterance lengths, which
looked like a normal distribution with 7 and 8-word
utterances having the highest representation. Our
model makes very early predictions (low first cor-
rect), but those predictions don’t always remain sta-
ble, and there is an edit overhead which leads to a
final correct decision only later in the sentence (first
final). For action and argument, the final deci-
sion is typically made within the first third of the ut-
terance. For option, it comes between the first and
second third of the sentence; this reflects typical ut-
terance structure, where the words that describe the
option (“spiegle es horizontal”; mirror it horizon-
tally) usually come later in the sentence.

A final way to show incremental progress is in
Figures 7 and 8 for sentences of “normal” length
(7-8 words). These show how accurate the pre-
diction was for each incremental step into the sen-
tence, both for the model with and that without ac-
cess to discourse context. Where first correct and
first final help identify specific points in the process-
ing of an utterance, for this graph each incremental
step is compared with the gold result. Figure 8, for
the model variant without access to discourse con-
text, shows that there is little impact on prediction
of action or option, but a significant and con-
stant impact on the quality of predicting argument
(i.e., of doing reference resolution); this is due to
some extent to the presence of anaphoric references
which simply cannot be resolved without access to
context.

Taken together, the incremental statistics help de-
termine an “operating point” for later modules that
consume NLU output. Under the assumption that the
ongoing utterance will be one of normal length (this
of course cannot be known in advance), the strength
with which a decision of the predictor can be be-
lieved at the current point into the utterance can be
read off the graphs.

Some discussion on speed efficiency: Using
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Figure 8: incremental accuracies, no discourse context

MLNs did not introduce any noticeable speed effi-
ciency reduction in non-feedback models. In feed-
back models which used Auto, many more calls
to MLN were used, which greatly slowed down the
model.

3.6 Model Analysis
Examining the utterances that were not correctly in-
terpreted, we found that words dealing with the ar-
gument occured most frequently, specifically words
involving spatial language where the argument was
described in relation to another piece. This is some-
what disappointing, as we were hoping that RMRS

structure might help learn such constructions.
However, basic spatial expressions were learned

successfully, as can be illustrated by Figure 9. It
shows shows the probability distributions for the ut-
terances left and bottom right, on a 5x5 board we
generated for analysis, where each field was filled
with the same kind of piece of the same colour

(thus making these properties non-distinguishing).
The darker the gradient in the Figure the higher the
probability. The Figure shows that model success-
fully marks the fields closer to the left (or bottom-
right, respectively) as having higher probability. In-
terestingly, “left” seems to have some confusability
with “right” for the model, indicating perhaps that
it picked up on the general type of description (“far
side”). Further investigation of model properties is
left to future work, however.

left bottom right

Figure 9: probability gradient for left and bottom right

4 Conclusions

Markov logic networks are effective in expressing
models for situated incremental natural language un-
derstanding in a domain like Pentomino. We have
shown that various aspects of situated language use,
like previous context and the current state of the
world, all play a role in NLU. We have also shown
that semantic representations like RMRS can im-
prove performance, and we further verified that in-
cremental feedback between parser and NLU can im-
prove performance (Peldszus et al., 2012). MLNs
also provide an easy-to-read trained model which
can be easily analyzed. However, there is a trade-off
in that MLNs take some time to design, which still is
an intellectual task. Furthermore, inference in MLNs
is still not as efficient as other methods, which can
cause a slowdown in applications where very many
inference steps are required, such as the feedback
model.

In future work, we will further explore how to best
integrate linguistic information from the RMRSs,
specifically in spatial language; as well as look into
improvements in speed performance. Future work
will focus on interaction with live ASR. We will also
investigate using this setup for automatically trained
natural language generation.
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