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Preface: General Chair

It is with great pleasure that I welcome you to the 2010 Human Language Technologies conference of
the North American chapter of the Association for Computational Linguistics. An enormous amount
of effort has gone into organizing the conference, and the result is the rich set of intellectual and social
experiences that you will enjoy this week.

The NAACL HLT 2010 conference is an orchestrated production of many events. The centerpiece is
the collection of carefully chosen papers, posters, and demonstrations that will be presented during
the three days of the main conference. This includes the papers and posters of the Student Research
Workshop, a setting that gives encouragement and opportunity for new members of our community to
present their work. The main conference is preceded by a day of tutorials on topics of current interest
in the field, and it is followed by a very full program of specialized workshops.

Many people have volunteered their time and energy to ensure the success of the conference. Indeed,
the community as a whole has contributed by submitting papers and proposals for workshops, demos,
and tutorials, by making thoughtful judgments as members of the many review committees, and for
coming to participate in the events this week. These contributions are very much appreciated. The
heaviest burdens have been shared by the people who agreed to lead the major subcommittees of the
conference, and I want to recognize them here and explicitly thank them for their service.

To begin, I want to express my gratitude to Jill Burstein, Mary Harper, and Gerald Penn, the co-
Chairs of the Program Committee. They supervised the selection of papers and scheduling for the main
conference, recruiting the Area Chairs and managing the overall process. They chose the Noisy Genre
theme of the conference, collaborated with the Area Chairs to select the Invited Speakers, administered
the START reviewing system, and worked with the Area Chairs and the Local Arrangements Committee
to assemble the final program. They also added a new feature to the program, a ”one-minute madness”
session to raise awareness and excitement about the poster and demo presentations.

The Program Committee co-Chairs and Area Chairs recommended a small number of papers for further
consideration by the Best Papers Committee, chaired by Aravind Joshi. Tremendous thanks go to
Aravind, Eugene Charniak, Michael Collins, Diane Litman, Daniel Marcu, and Drago Radev for their
work in identifying the best examples of current work in the field.

The main-conference days include some other important activities. I appreciate Kristina Toutanova’s
effort to organize a second lunch-time Industry Panel, a follow-on to the successful panel at NAACL
HLT 2009. I thank Carolyn Penstein Rosé, Chair of the Demonstration Committee, for soliciting
candidates for the Demo Session and overseeing the rigorous process of review. For organizing the
Student Research Workshop I thank Adriane Boyd, Mahesh Joshi, and Frank Rudzicz, the student co-
Chairs, and also Julia Hockenmaier and Diane Litman for the assistance and guidance they provided
as Faculty Advisors. Financial support for the student workshop came from a grant from the National
Science Foundation.

I thank Richard Sproat and David Traum for serving as co-Chairs of the Workshop Committee. The
workshop proposal and selection process was a joint activity of committees representing all three of
this year’s computational linguistics conferences, the ACL conference in Uppsala, Coling in Beijing,
and NAACL HLT. Their challenge was to honor the location requests of the workshop proposers while
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arranging for each conference to have a broad and balanced collection of workshops. A full complement
of 16 workshops were chosen for NAACL HLT, and Richard and David then became the interface
with the organizers of the individual workshops as they put out their calls, reviewed submissions, and
assembled final papers for the Publications Committee.

I am grateful to Jason Baldridge, Peter Clark, and Gokhan Tur for volunteering to co-Chair the Tutorial
Committee and for attracting and selecting tutorials that introduce a range of novel techniques and
address a number of theoretical and practical problems.

The Publications Committee is responsible for constructing the written Proceedings of the conference
from the materials that come from the many sources. The Publications Committee, with Claudia
Leacock and Richard Wicentowski as co-Chairs, comes in at the end of the preparation stage and
must operate on a strict schedule if the Proceedings are to be available by the time the conference
begins. This year Claudia and Richard have been the pioneers for two major departures from past
procedure. ACL proceedings in the past have been produced by a stand-alone community-developed
software package, ACLPUB; this year we are using a version of that package that has been integrated
directly into the START conference-management system. This should simplify the publication process
for future conferences, but Claudia and Richard endured a fair amount of first-user suffering. The
second departure from past practices is that for the first time we are providing the proceedings only on
a USB memory stick, unaccompanied by a hardcopy volume. I deeply appreciate the care and attention
with which Claudia and Richard have carried out their responsibilities.

We are all very much indebted to David Chiang, Jason Riesa, Jonathan May, and Eduard Hovy, the
co-Chairs of the Local Arrangements Committee, and to the other members of the committee from the
USC Information Sciences Institute. They have been hard at work for the longest time, and the comfort
and elegance of the conference setting is the result of the many decisions they have made. To highlight
just a few, they selected the hotel, made sure that the session rooms are properly laid out and equipped,
and planned for the reception and banquet. They also designed and maintained the very attractive and
informative conference web site. Liang Huang served as Coordinator of the Student Volunteers, and
Jillian Gerten and Kenji Sagae served as Exhibit Coordinators.

I am grateful to the sponsoring organizations listed above for their financial support of the conference,
and to the members of the Sponsorship Committee for identifying and nurturing those important
relationships. The Sponsorship Committee—Srinivas Bangalore, Christy Doran, Eduard Hovy, Stephen
Pulman, and Frédérique Segond-raised money jointly for NAACL HLT and ACL this year.

The NAACL executive committee, chaired by Owen Rambow and Rebecca Hwa, provides overall
supervision and maintains the continuity and traditions of the conference from year to year. They
helped by identifying candidates for many of the committee positions, by resolving several significant
issues of conference policy, and by overseeing the budgeting process.

Finally, my heartfelt thanks go to Priscilla Rasmussen, the Business Manager of the ACL office and
for the ACL conferences, for her steady guidance through all the stages of conference preparation.
Priscilla, as always, played a critical role as the voice of experience and the source of wise advice that
kept everything moving in the right direction.

Ronald M. Kaplan
Powerset division of Microsoft Bing
General Chair, NAACL HLT 2010
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Preface: Program Chairs

Thanks for attending NAACL HLT 2010! As can be seen in the Conference Program, the
NAACL HLT program contains innovative, high-quality work spanning a large array of disciplines
within computational linguistics and human language technology. This year, we have included a special
Noisy Genre theme to acknowledge the significant work in that area across several disciplines. We
would like to thank L.Venkata Subramaniam of IBM Research-India for this suggestion.

NAACL HLT 2010 consists of oral and poster presentations of full and short papers, tutorials,
application demonstrations, and workshops. A one-minute madness session has been introduced this
year to highlight the poster and demo contributions. We are excited to have two very interesting and
diverse keynote speakers: David Temperley, University of Rochester, whose talk is entitled, “Music,
Language, and Computational Modeling: Lessons from the Key-Finding Problem”, and Steve Renals,
University of Edinburgh, “Recognition and Understanding of Meetings.” In addition, we have a panel
session Recent and Future HLT Challenges in Industry, chaired by Kristina Toutanova, which very
appropriately reflects the conference theme.

This year, 291 full papers were submitted and reviewed, of which 90 papers were accepted (a 30.9%
acceptance rate); 159 short papers were submitted and reviewed, of which 56 were accepted (a 35.2%
acceptance rate). One of the accepted short papers was withdrawn to appear elsewhere, leaving a total
of 55 short papers in the proceedings. Eighty-six full papers and 25 short papers will be presented
orally. The remaining 34 accepted full and short papers will be presented as posters. We would like to
thank all of the authors for submitting such remarkable papers to the conference.

Two best papers have been selected this year, and will be presented at the conference in a special
awards session. The Best Full Paper, entitled Coreference Resolution in a Modular, Entity-Centered
Model, was written by Aria Haghighi and Dan Klein. The Best Short Paper, entitled “cba to check
the spelling”: Investigating Parser Performance on Discussion Forum Posts, was written by Jennifer
Foster. Congratulations to the authors! The selection process worked as follows. The Senior Program
Committee (SPC) nominated an initial set of best paper candidates for the awards; the final decisions
were then made by a separate committee: Aravind Joshi (chair), Eugene Charniak, Michael Collins,
Diane Litman, Daniel Marcu, and Dragomir Radev. We would like to thank the committee for reading,
discussing, and contributing to the final selection process. The committee was selected to handle the
breadth of expertise required to review the nominated best papers. Once the camera-ready versions of
the papers were submitted by the authors, the Best Paper committee chair used the following process:
(a) Committee members were asked to notify the chair about conflicts of interest. Members with
conflicts of interest did not rank or discuss those papers with which they were conflicted. (b) Short
papers were ranked first by committee members, and additional discussions were held to make a final
decision. (c) Next, long papers were ranked by members and a smaller set of top papers were identified.
Discussions were then held to make the final decision. (d) The committee chair was available to break
any ties.

The review process was organized as a two-tier system with 18 SPC members and 382 reviewers.
The SPC members managed the review process for both the full and short paper submissions: each
paper received at least three reviews. Strict conflict-of-interest policies were in place during the review
process. Specifically, authors who served on the Program Committee in any capacity were removed



from any responsibility related to their paper. Any such conflict-of-interest paper was handled by
another committee member. In addition, the author was prohibited from participating in any discussion
or decision making related to the paper. A similar policy also applied if a Program Committee member
had an institutional or personal conflict with an author. All decisions on papers with these types of
conflicts were made by members without conflicts. We would not have been able to produce such an
interesting conference program without the dedicated SPC members who spent many weeks handling
and evaluating the submission reviews, nor without the reviewers who provided such thoughtful
evaluations. The full list of the SPC members and reviewers is listed elsewhere in these Proceedings.
We would also like to thank the SPC members for their best paper recommendations and suggestions
for the program, and Chris Dyer for his suggestions on the Machine Translation sessions.

There were, of course, a number of additional people with whom we directly interacted, and who
made significant contributions to the success of this conference. So, here are some well-deserved
acknowledgements. We would like to thank Rich Gerber and the START team for their help with
the system that managed paper submissions and reviews, and the Local Arrangement co-chairs, David
Chiang, Eduard Hovy, Jonathan May, and Jason Riesa, for their help with organizing the program,
the preparation and publication of the conference handbook, handling the NAACL HLT 2010 website,
and various other tasks — a list too lengthy to name here. We would also like to thank the Publication
Co-chairs, Claudia Leacock and Richard Wicentowski, for forging through a number of obstacles, and
doing an excellent job of handling the preparation and printing of these proceedings. We would like to
thank the Workshop Co-chairs, David Traum and Richard Sproat, the Demo Chair, Carolyn Penstein
Rosé, the Tutorial Co-chairs, Jason Baldridge, Peter Clark and Gokhan Tur, and the Student Research
Workshop Faculty Co-chairs, Julia Hockenmeier and Diane Litman, and Student Co-chairs, Adriane
Boyd, Mahesh Joshi, and Frank Rudzicz. The hard work of all of these co-chairs contributed to the
quality of the entire conference program. We would also like to thank Chris Callison-Burch for handling
Student Author Support, and to Liang Huang for serving as the Student Volunteer Coordinator. We are
grateful to Priscilla Rasmussen for supporting the visa application process, as well as answering a
variety of our questions and concerns around general conference logistics and event planning. Finally,
we would like to express our deepest thanks to the General Chair, Ron Kaplan, for his continual support
and patience throughout this process.

We hope that you will have a unique and enriching conference experience!

Jill Burstein, Educational Testing Service
Mary Harper, University of Maryland; Johns Hopkins HLT COE
Gerald Penn, University of Toronto
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Abstract

This paper is about interpreting human com-
munication in meetings using audio, video and
other signals. Automatic meeting recognition
and understanding is extremely challenging,
since communication in a meeting is sponta-
neous and conversational, and involves mul-
tiple speakers and multiple modalities. This
leads to a number of significant research prob-
lems in signal processing, in speech recog-
nition, and in discourse interpretation, tak-
ing account of both individual and group be-
haviours. Addressing these problems requires
an interdisciplinary effort. In this paper, I
discuss the capture and annotation of multi-
modal meeting recordings—resulting in the
AMI meeting corpus—and how we have built
on this to develop techniques and applications
for the recognition and interpretation of meet-
ings.

1 Introduction

On the face of it, meetings do not seem to form a
compelling research area. Although many people
spend a substantial fraction of their time in meetings
(e.g. the 1998 3M online survey at http://www.
3m.com/meetingnetwork/), for most people
they are not the most enjoyable aspect of their work.
However, for all the time that is spent in meet-
ings, technological support for the meeting process
is scant. Meeting records usually take the form of
brief minutes, personal notes, and more recent use
of collaborative web 2.0 software. Such records are
labour intensive to produce—because they are man-
ually created—and usually fail to capture much of
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the content of a meeting, for example the factors
that led to a particular decision and the different sub-
jective attitudes displayed by the meeting attendees.
For all the time invested in meetings, very little of
the wealth of information that is exchanged is ex-
plicitly preserved.

To preserve the information recorded in meet-
ings, it is necessary to capture it. Obviously this
involves recording the speech of the meeting partic-
ipants. However, human communication is a mul-
timodal activity with information being exchanged
via gestures, handwritten diagrams, and numerous
social signals. The creation of a rich meeting record
involves the capture of data across several modal-
ities. It is a key engineering challenge to capture
such multimodal signals in a reliable, unobtrusive
and flexible way, but the greater challenges arise
from unlocking the multimodal recordings. If such
recordings are not transcribed and indexed (at the
least), then access merely corresponds to replay.
And it is rare that people will have the time, or the
inclination, to replay a meeting.

There is a long and interesting thread of research
which is concerned to better understand the dynam-
ics of meetings and the way that groups function
(Bales, 1951; McGrath, 1991; Stasser and Taylor,
1991). The types of analyses and studies carried
out by these authors is still someway beyond what
we can do automatically. The first significant work
on automatic processing of meetings, coupled with
an exploration of how people might interact with
an archive of recorded meetings, was performed in
the mid 1990s (Kazman et al., 1996). This work
was limited by the fact that it was not possible at
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that time to transcribe meeting speech automatically.
Other early work in the area concentrated on the
multimodal capture and broadcast of meetings (Roy
and Luz, 1999; Cutler et al., 2002; Yong et al.,
2001).

Three groups further developed approaches to
automatically index the content of meetings. A
team at Fuji Xerox PARC used video retrieval tech-
niques such as keyframing to automatically gener-
ate manga-style summaries of meetings (Uchihashi
et al.,, 1999), Waibel and colleagues at CMU used
speech recognition and video tracking for meet-
ings (Waibel et al., 2001), and Morgan and col-
leagues at ICSI focused on audio-only capture and
speech recognition (Morgan et al., 2003). Since
2003 research in the recognition and understand-
ing of meetings has developed substantially, stim-
ulated by evaluation campaigns such as the NIST
Rich Transcription (RT)! and CLEAR? evaluations,
as well as some large multidisciplinary projects such
as AMI/AMIDA?, CHIL* and CALO®.

This paper is about the work we have carried out
in meeting capture, recognition and interpretation
within the AMI and AMIDA projects since 2004.
One of the principal outputs of these projects was
a multimodal corpus of meeting recordings, anno-
tated at a number of different levels. In section 2 we
discuss collection of meeting data, and the construc-
tion of the AMI corpus. The remainder of the pa-
per discusses the automatic recognition (section 3)
and interpretation (section 4) of multimodal meeting
recordings, application prototypes (section 5) and is-
sues relating to evaluation (section 6).

2 The AMI corpus

Ideally it would not be necessary to undertake a large
scale data collection and annotation exercise, every
time we address a new domain. However unsuper-
vised adaptation techniques are still rather imma-
ture, and prior to the collection of the AMI corpus,
there had not been a controlled collection and multi-
level annotation of multiparty interactions, recorded
across multiple modalities.

'www.itl.nist.gov/iad/mig/tests/rt/

2clear—evaluation.org/
*www.amiproject.org/
4chil.server.de/

5caloproject.sri.com/

Figure 1: AMI instrumented meeting room: four co-
located participants, one joined by video conference. In
this case two microphone arrays and seven cameras were
used.

One of our key motivations is the development
of automatic approaches to recognise and interpret
group interactions, using information spread across
multiple modalities, but collected as unobtrusively
as possible. This led to the design and construction
of the AMI Instrumented Meeting Rooms (figure 1)
at the University of Edinburgh, Idiap Research In-
stitute, and TNO Human Factors. These rooms con-
tained a set of standardised recording equipment in-
cluding six or seven cameras (four of which would
be used for close-up views in meeting of up to four
people), an 8-element microphone array, a close-
talking microphone for each participant (used to
guarantee a clean audio signal for each speaker),
as well capture of digital pens, whiteboards, shared
laptop spaces, data projector and videoconferencing
if used. A considerable amount of hardware was
necessary for ensuring frame-level synchronisation.
More recently we have used a lighter weight setup,
that uses a high resolution spherical digital video
camera system, and a single microphone array (7—
20 elements, depending on meeting size) synchro-
nised using software. We have also constructed a
prototype system using a low-cost, flexible array of
digital MEMS microphones (Zwyssig et al., 2010).

We used these instrumented meeting rooms to
record the AMI Meeting Corpus (Carletta, 2007).
This corpus contains over 100 hours of meeting
recordings, with the different recording streams syn-
chronised to a common timeline. The corpus con-
tains a number of manually created and automatic
annotations, synchronised to the same timeline. This



includes a high-quality manual word-level transcrip-
tion of the complete corpus, as well as reference au-
tomatic speech recognition output, using the speech
recognition system discussed in section 3 (using 5-
fold cross-validation). In addition to word-level
transcriptions, the corpus includes manual annota-
tions that describe the behaviour of meeting partici-
pants at a number of levels. These include dialogue
acts, topic segmentation, extractive and abstractive
summaries, named entities, limited forms of head
and hand gestures, gaze direction, movement around
the room, and head pose information. Some of these
annotations, in particular video annotation, are ex-
pensive to perform: about 10 hours of meetings have
been completely annotated at all these levels; over
70% of the corpus has been fully annotated with
the linguistic annotations. NXT—the NITE XML
Toolkit’—an XML-based open source software in-
frastructure for multimodal annotation was used to
carry out and manage the annotations.

About 70% of the AMI corpus consists of meet-
ings based on a design scenario, in which four par-
ticipants play roles in a design team. The scenario
involves four team meetings, between which the par-
ticipants had tasks to accomplish. The participant
roles were stimulated in real-time by email and web
content. Although the use of a scenario reduces the
overall realism of the meetings, we adopted this ap-
proach for several reasons, most importantly: (1)
there were some preferred design outcomes, mak-
ing it possible to define some objective group out-
come measures; (2) the knowledge and motivation
of the participants was controlled, thus removing the
serious confounding factors that would arise from
the long history and context found in real organ-
isations; and (3) allowing the meeting scenario to
be replicated, thus enabling system-level evaluations
(as discussed in section 6). We recorded and anno-
tated thirty replicates of the scenario: this provides
an unparalleled resource for system evaluation, but
also reduces the variability of the corpus (for ex-
ample in terms of the language used). The remain-
ing 30% of the corpus contains meetings that would
have occurred anyway; these are meetings with a
lot less control than the scenario meetings, but with
greater linguistic variability.

®sourceforge.net/projects/nite/

All the meetings in the AMI corpus are spoken
in English, but over half the participants are non-
native speakers. This adds realism in a European
context, as well as providing an additional speech
recognition challenge. The corpus is publicly avail-
able’, and is released under a licence that is based on
the Creative Commons Attribution NonCommercial
ShareAlike 2.5 Licence. This includes all the signals
and manual annotations, plus a number of automatic
annotations (e.g. speech recognition) made available
to lower the startup cost of performing research on
the corpus.

3 Multimodal recognition

The predominant motivation behind the collection
and annotation of the AMI corpus was to enable the
development of multimodal recognisers to address
issues such as speech recognition, speaker diarisar-
tion (Wooters and Huijbregts, 2007), gesture recog-
nition (Al-Hames et al., 2007) and focus of attention
(Ba and Odobez, 2008). Although speech recog-
nition is based on the (multichannel) audio signal,
the other problems can be successfully addressed by
combining modalities. (There is certainly informa-
tion in other modalities that has the potential to make
speech recognition more accurate, but so far we have
not been able to use it consistently and robustly.)

Speech recognition: The automatic transcription
of what is spoken in a meeting is an essential pre-
requisite to interpreting a meeting. Morgan et al
(2003) described the speech recognition of meetings
as an “ASR-complete” problem. Developing an ac-
curate system for meeting recognition involves the
automatic segmentation of the recording into utter-
ances from a single talker, robustness to reverbera-
tion and competing acoustic sources, handling over-
lapping talkers, exploitation of multiple microphone
recordings, as well as the core acoustic and language
modelling problems that arise when attempting to
recognise spontaneous, conversational speech.

Our initial systems for meeting recognition used
audio recorded with close-talking microphones, in
order to develop the core acoustic modelling tech-
niques. More recently our focus has been on recog-
nising speech obtained using tabletop microphone

7corpus.amiproject.org/



arrays, which are less intrusive but have a lower
signal-to-noise ratio. Multiple microphone sys-
tems are based on microphone array beamforming
in which the individual microphone signals are fil-
tered and summed to enhance signals coming from
a particular direction, while suppressing signals
from competing locations (Wolfel and McDonough,
2009).

The core acoustic and language modelling com-
ponents for meeting speech recognition correspond
quite closely to the state-of-the-art systems used in
other domains. Acoustic modelling techniques in-
clude vocal tract length normalisation, speaker adap-
tation based on maximum likelihood linear trans-
forms, and further training using a discriminative
minimum Bayes risk criterion such as minimum
phone error rate (Gales and Young, 2007; Renals
and Hain, 2010). In addition we have employed a
number of novel acoustic parameterisations includ-
ing approaches based on local posterior probability
estimation (Grezl et al., 2007) and pitch adaptive
features (Garau and Renals, 2008), the automatic
construction of domain-specific language models
using documents obtained from the web by search-
ing with n-grams obtained from meeting transcripts
(Wan and Hain, 2006; Bulyko et al., 2007), and au-
tomatic approaches to acoustic segmentation opti-
mised for meetings (Wrigley et al., 2005; Dines et
al., 2006).

A feature of the systems developed for meeting
recognition is the use of multiple recognition passes,
cross-adaptation and model combination (Hain et
al., 2007). In particular successive passes make use
of more detailed—and more diverse—acoustic and
language models. Different acoustic models trained
on different feature representations (e.g. standard
PLP features and posterior probability-based fea-
tures) are cross-adapted, and different feature repre-
sentations are also combined using linear transforms
such as heteroscedastic linear discriminant analysis
(Kumar and Andreou, 1998).

These systems have been evaluated in successive
NIST RT evaluations: the core microphone array
based system has a word error rate of about 40%;
after adaptation and feature combination steps, this
error rate can be reduced to about 30%. The equiv-
alent close-talking microphone system has baseline
word error rate of about 35%, reduced to less than

4

25% after further recognition passes (Hain et al.,
2007). The core system runs about five times slower
than real-time, and the full system is about fourteen
times slower than real-time, on current commodity
hardware. We have developed a low-latency real-
time system (with an error rate of about 41% for mi-
crophone array input) (Garner et al., 2009), based on
an open source runtime system®.

4 Meeting interpretation

One of the interdisciplinary joys of working on
meetings is that researchers with different ap-
proaches are able to build collaborations through
working on common problems and common data.
The automatic interpretation of meetings is a very
good example: meetings form an exciting challenge
for work in things such as topic identification, sum-
marisation, dialogue act recognition and the recog-
nition of subjective content. Although text-based
approaches (using the output of a speech recogni-
tion system) form strong baselines, it is often the
case that systems can be improved through the in-
corporation of information characteristic of spoken
communication, such as prosody and speaker turn
patterns, as well video information such as head or
hand movements.

Segmentation: We have explored multistream
statistical models to automatically segment meeting
recordings. Meetings can be usefully segmented at
many different levels, for example into speech and
non-speech (an essential pre-processing for speech
recognition), into utterances spoken by a single
talker, into dialogue acts, into topics, and into “meet-
ing phases”. The latter was the subject of our first in-
vestigations in using multimodal multistream mod-
els to segment meetings.

Meetings are group events, characterised by both
individual actions and group actions. To obtain
structure at the group level, we and colleagues in
the M4 and AMI projects investigated segmenting
a meeting into a sequence of group actions such as
monologue, discussion and presentation (McCowan
et al., 2005). We used a number of feature streams
for this segmentation and labelling task including
speaker turn dynamics, prosody, lexical information,

8juj.ce]:.amiproject .org/



and participant head and hand movements (Diel-
mann and Renals, 2007). Our initial experiments
used an HMM to model the feature streams with a
single hidden state space, and resulted in an “action
error rate” of over 40% (action error rate is analo-
gous to word error rate, but defined over meeting
actions, presumed not to overlap). The HMM was
then substituted by a richer DBN multistream model
in which each feature stream was processed inde-
pendently at a lower level of the model. These par-
tial results were then combined at a higher level,
thus providing hierarchical integration of the multi-
modal feature streams. This multistream approach
enabled a later integration of feature streams and
increased flexibility in modelling the interdepen-
dences between the different streams, enabling some
accommodation for asynchrony and multiple time
scales. Thus use of the richer DBN multistream
model resulted in a significant lowering of the ac-
tion error rate to around 13%.

We extended this approach to look at a much finer
grained segmentation: dialogue acts. A dialogue act
can be viewed as a segment of speech labelled so as
to roughly categorise the speaker’s intention. In the
AMI corpus each dialogue act in a meeting is given
one of 15 labels, which may be categorised as infor-
mation exchange, making or eliciting suggestions or
offers, commenting on the discussion, social acts,
backchannels, or “other”. The segmentation prob-
lem is non-trivial, since a single stretch of speech
(with no pauses) from a speaker may comprise sev-
eral dialogue acts—and conversely a single dialogue
act may contain pauses. To address the tasks of auto-
matically segmenting the speech into dialogue acts,
and assigning a label to each segment, we employed
a switching dynamic Bayesian network architecture,
which modelled a set of features related to lexical
content and prosody and incorporates a weighted in-
terpolated factored language model (Dielmann and
Renals, 2008). The switching DBN coordinated the
recognition process by integrating all the available
resources. This approach was able to leverage addi-
tional corpora of conversational data by using them
as training data for a factored language model which
was used in conjunction with additional task spe-
cific language models. We followed this joint gener-
ative model, with a discriminative approach, based
on conditional random fields, which performed a re-
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classification of the segmented dialogue acts.

Our experiments on dialogue act recognition used
both automatic and manual transcriptions of the
AMI corpus. The degradation when moving from
manual transcriptions to the output of a speech
recogniser was less than 10% absolute for both di-
alogue act classification and segmentation. Our ex-
periments indicated that it is possible to perform au-
tomatic segmentation into dialogue acts with a rel-
atively low error rate. However the operations of
tagging and recognition into fifteen imbalanced DA
categories have a relatively high error rate, even after
discriminative reclassification, indicating that this
remains a challenging task.

Summarisation: The automatic generation of
summaries provides a natural way to succinctly de-
scribe the content of a meeting, and can be an effi-
cient way for users to obtain information. We have
focussed on extractive techniques to construct sum-
maries, in which the most relevant parts of a meeting
are located, and concatenated together to provide a
‘cut-and-paste’ summary, which may be textual or
multimodal.

Our approach to extractive summarisation is
based on automatically extracting relevant dialogue
acts (or alternatively “spurts”, segments spoken by
a single speaker and delimited by silence) from a
meeting (Murray et al., 2006). This requires (as a
minimum) the automatic speech transcription and,
if spurts are not used, dialogue act segmentation.
Lexical information is clearly extremely important
for summarisation, but we have also found speaker
features (relating to activity, dominance and over-
lap), structural features (the length and position of
dialogue acts), prosody, and discourse cues (phrases
which signal likely relevance) to be important for
the development of accurate methods for extractive
summarisation of meetings. Furthermore we have
explored reduced dimension representations of text,
based on latent semantic analysis, which we found
added precision to the summarisation. Using an
evaluation measure referred to as weighted preci-
sion, we discovered that it is possible to reliably
extract the most relevant dialogue acts, even in the
presence of speech recognition errors.



5 Application prototypes

We have incorporated these meeting recognition and
interpretation components in a number of applica-
tions. Our basic approach to navigating meeting
archives centres on the notion of meeting browsers,
in which media files, transcripts and segmentations
are synchronised to a common time line. Figure 2
(a) gives an example of such a browser, which also
enables a user to pan and zoom within the captured
spherical video stream.

We have explored (and, as discussed below, eval-
uated) a number of ways of including automatically
generated summaries in meeting browsers. The
browser illustrated in figure 2 (b) enables navigation
by the summarised transcript or via the topic seg-
mentation. In this case the degree of summarisation
is controlled by a slider, which removes those speech
segments that do no contribute to the summary. We
have also explored real-time (with a few utterances
latency) approaches to summarisation, to facilitate
meeting “catchup” scenarios, including the genera-
tion of audio only summaries, with about 60% of
the speech removed (Tucker et al., 2010). Visual-
isations of summaries include a comic book layout
(Castronovo et al., 2008), illustrated in figure 3. This
is related to “VideoManga” (Uchihashi et al., 1999),
but driven by transcribed speech rather than visually
identified keyframes.

The availability of real-time meeting speech
recognition, with phrase-level latency (Garner et al.,
2009), enables a new class of applications. Within
AMIDA we developed a software architecture re-
ferred to as “The Hub” to support real-time ap-
plications. The Hub is essentially a real-time an-
notation server, mediating between annotation pro-
ducers, such as speech recognition, and annotation
consumers, such as a real-time catchup browser.
Of course many applications will be both produc-
ers and consumers: for instance topic segmenta-
tion consumes transcripts and speaker turn informa-
tion and produces time aligned topic segments. A
good example of an application made possible by
real-time recognition components and the Hub is the
AMIDA Content Linking Device (Popescu-Belis et
al., 2008). Content linking is essentially a continual
real-time search in which a repository is searched
using a query constructed from the current conver-
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Figure 2: Two examples of meeting browsers, both in-
clude time synchronisation with a searchable ASR tran-
script and speaker activities. (a) is a basic web-based
browser; (b) also employs extractive summarisation and
topic segmentation components.

sational context. In this case the context is obtained
from a speech recognition transcript of the past 30
seconds of the conversation, and a query is con-
structed using ¢ f-¢df or a similar measure, combined
with predefined keywords or topic weightings. The
repository to be searched may be the web, or a por-
tion of the web, or it may be an organisational doc-
ument repository, including transcribed, structured
and indexed recordings of previous meetings. Figure
4 shows a basic interface to content linking. We have
constructed live content-linking systems, driven by
microphone array based real-time speech recogni-
tion, with the aim of presenting—without explicit
query—potentially relevant documents to meeting
participants.
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Figure 3: Comic book display of automatically generated
meeting summary.

6 Evaluation

The multiple streams of data and multiple layers of
annotations that make up the AMI corpus enable it to
be used for evaluations of specific recognition com-
ponents. The corpus has been used to evaluate many
different things including voice activity detection,
speaker diarisation and speech recognition (in the
NIST RT evaluations), and head pose recognition
(in the CLEAR evaluation). In the spoken language
processing domain, the AMI corpus has been used
to evaluate meeting summarisation, topic segmen-
tation, dialogue act recognition and cross-language
retrieval.

In addition to intrinsic component-level evalu-
ations, it is valuable to evaluate complete sys-
tems, and components in a system context. In the
AMI/AMIDA projects, we investigated a number of
extrinsic evaluation frameworks for browsing and
accessing meeting archives. The Browser Evalua-
tion Test (BET) (Wellner et al., 2005) provides a
framework for the comparison of arbitrary meet-
ing browser setups, which may differ in terms of
which content extraction or abstraction components
are employed. In the BET test subjects have to an-
swer true/false questions about a number of “obser-
vations of interest” relating to a recorded meeting,
using the browser under test with a specified time
limit (typically half the meeting length).

We developed of a variant of the BET to specifi-
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Figure 4: Demonstration screenshot of the AMI auto-
matic content linking device. The subpanels show (clock-
wise from top left) the ASR transcript, relevant docu-
ments from the meeting document base, relevant web hits
and a a tag cloud.

cally evaluate different summarisation approaches.
In the Decision Audit evaluation (Murray et al.,
2009) the user’s task is to ascertain the factors across
a number of meetings that lead to a particular deci-
sion being made. A set of browsers were constructed
differing in the summarisation approach employed
(manual vs. ASR transcripts; extractive vs. abstrac-
tive vs. human vs. keyword-based summarisation),
and the test subjects used them to perform the deci-
sion audit. Like the BET this evaluation is labour-
intensive, but the results can be analysed using a
battery of objective and subjective measures. Con-
clusions from carrying out this evaluation indicated
that the task itself was quite challenging for users
(even with human transcripts and summaries, most
users could not find many factors involved in the de-
cision), that automatic extractive summaries outper-
formed reasonably competitive baseline approaches,
and that although subjects reported ASR transcripts
to be unsatisfactory (due to the error rate) browsing
using the ASR transcript still resulted in users’ be-
ing generally able to find the relevant parts of the
meeting archive.



7 Conclusions

In this paper I have given an overview of our inves-
tigations into automatic meeting recognition and in-
terpretation. Multiparty communication is a chal-
lenging problem at many levels, from signal pro-
cessing to discourse modelling. A major part of
our attempt to address this problem, in an interdisci-
plinary way, was the collection, annotation, and dis-
tribution of the AMI meeting corpus. The AMI cor-
pus has been at the basis of nearly all the work that
we have carried out in the area, from speech recog-
nition to summarisation. Multiparty speech recog-
nition remains a difficult task, with a typical error
rate of over 20%, however the accuracy is enough to
enable various components to build on top of it. A
major achievement has been the development of pro-
totype applications that can use phrase-level latency
real-time speech recognition.

Many of the automatic approaches to meeting
recognition and characterisation are characterised by
extensive combination at the feature stream, model
and system level. In our experience, such ap-
proaches offer consistent improvements in accuracy
for these complex, multimodal tasks.

Meetings serve a social function, and much of
this has been ignored in our work, so far. We have
focussed principally on understanding meetings in
terms of their lexical content, augmented by vari-
ous multimodal streams. However in many inter-
actions, the social signals are at least as important
as the propositional content of the words (Pentland,
2008); it is a major challenge to develop meeting in-
terpretation components that can infer and take ad-
vantage of such social cues. We have made initial
attempts to do this, by attempting to include aspects
such as social role (Huang and Renals, 2008).

The AMI corpus involved a substantial effort from
many individuals, and provides an invaluable re-
source. However, we do not wish to do this again,
even if we are dealing with a domain that is sig-
nificantly different, such as larger groups, or family
“meetings”. However, our recognisers rely strongly
on annotated in-domain data. It is a major chal-
lenge to develop algorithms that are unsupervised
and adaptive to free us from the need to collect and
annotate large amount of data each time we are in-
terested in a new domain.
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Abstract

In this paper, we present an innovative chart
mining technique for improving parse cover-
age based on partial parse outputs from preci-
sion grammars. The general approach of min-
ing features from partial analyses is applica-
ble to a range of lexical acquisition tasks, and
is particularly suited to domain-specific lexi-
cal tuning and lexical acquisition using low-
coverage grammars. As an illustration of the
functionality of our proposed technique, we
develop a lexical acquisition model for En-
glish verb particle constructions which oper-
ates over unlexicalised features mined from
a partial parsing chart. The proposed tech-
nique is shown to outperform a state-of-the-art
parser over the target task, despite being based
on relatively simplistic features.

1 Introduction

Parsing with precision grammars is increasingly
achieving broad coverage over open-domain texts
for a range of constraint-based frameworks (e.g.,
TAG, LFG, HPSG and CCG), and is being used in
real-world applications including information ex-
traction, question answering, grammar checking and
machine translation (Uszkoreit, 2002; Oepen et al.,
2004; Frank et al., 2006; Zhang and Kordoni, 2008;
MacKinlay et al., 2009). In this context, a “preci-
sion grammar” is a grammar which has been engi-
neered to model grammaticality, and contrasts with
a treebank-induced grammar, for example.
Inevitably, however, such applications demand
complete parsing outputs, based on the assumption
that the text under investigation will be completely
analysable by the grammar. As precision grammars
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generally make strong assumptions about complete
lexical coverage and grammaticality of the input,
their utility is limited over noisy or domain-specific
data. This lack of complete coverage can make
parsing with precision grammars less attractive than
parsing with shallower methods.

One technique that has been successfully applied
to improve parser and grammar coverage over a
given corpus is error mining (van Noord, 2004;
de Kok et al., 2009), whereby n-grams with low
“parsability” are gathered from the large-scale out-
put of a parser as an indication of parser or (pre-
cision) grammar errors. However, error mining is
very much oriented towards grammar engineering:
its results are a mixture of different (mistreated) lin-
guistic phenomena together with engineering errors
for the grammar engineer to work through and act
upon. Additionally, it generally does not provide
any insight into the cause of the parser failure, and it
is difficult to identify specific language phenomena
from the output.

In this paper, we instead propose a chart min-
ing technique that works on intermediate parsing re-
sults from a parsing chart. In essence, the method
analyses the validity of different analyses for words
or constructions based on the “lifetime” and prob-
ability of each within the chart, combining the con-
straints of the grammar with probabilities to evaluate
the plausibility of each.

For purposes of exemplification of the proposed
technique, we apply chart mining to a deep lexical
acquisition (DLA) task, using a maximum entropy-
based prediction model trained over a seed lexicon
and treebank. The experimental set up is the fol-
lowing: given a set of sentences containing puta-
tive instances of English verb particle constructions,

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 10-18,
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extract a list of non-compositional VPCs optionally
with valence information. For comparison, we parse
the same sentence set using a state-of-the-art statisti-
cal parser, and extract the VPCs from the parser out-
put. Our results show that our chart mining method
produces a model which is superior to the treebank
parser.

To our knowledge, the only other work that has
looked at partial parsing results of precision gram-
mars as a means of linguistic error analysis is that of
Kiefer et al. (1999) and Zhang et al. (2007a), where
partial parsing models were proposed to select a set
of passive edges that together cover the input se-
quence. Compared to these approaches, our pro-
posed chart mining technique is more general and
can be adapted to specific tasks and domains. While
we experiment exclusively with an HPSG grammar
in this paper, it is important to note that the proposed
method can be applied to any grammar formalism
which is compatible with chart parsing, and where it
is possible to describe an unlexicalised lexical entry
for the different categories of lexical item that are to
be extracted (see Section 3.2 for details).

The remainder of the paper is organised as fol-
lows. Section 2 defines the task of VPC extraction.
Section 3 presents the chart mining technique and
the feature extraction process for the VPC extraction
task. Section 4 evaluates the model performance
with comparison to two competitor models over sev-
eral different measures. Section 5 further discusses
the general applicability of chart mining. Finally,
Section 6 concludes the paper.

2 Verb Particle Constructions

The particular construction type we target for DLA
in this paper is English Verb Particle Constructions
(henceforth VPCs). VPCs consist of a head verb
and one or more obligatory particles, in the form
of intransitive prepositions (e.g., hand in), adjec-
tives (e.g., cut short) or verbs (e.g., let go) (Villav-
icencio and Copestake, 2002; Huddleston and Pul-
lum, 2002; Baldwin and Kim, 2009); for the pur-
poses of our dataset, we assume that all particles are
prepositional—by far the most common and produc-
tive of the three types—and further restrict our atten-
tion to single-particle VPCs (i.e., we ignore VPCs
such as get along together).
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One aspect of VPCs that makes them a partic-
ularly challenging target for lexical acquisition is
that the verb and particle can be non-contiguous (for
instance, hand the paper in and battle right on).
This sets them apart from conventional collocations
and terminology (cf., Manning and Schiitze (1999),
Smadja (1993) and McKeown and Radev (2000))
in that they cannot be captured effectively using n-
grams, due to their variability in the number and type
of words potentially interceding between the verb
and the particle. Also, while conventional colloca-
tions generally take the form of compound nouns
or adjective—noun combinations with relatively sim-
ple syntactic structure, VPCs occur with a range of
valences. Furthermore, VPCs are highly productive
in English and vary in use across domains, making
them a prime target for lexical acquisition (Dehé,
2002; Baldwin, 2005; Baldwin and Kim, 2009).

In the VPC dataset we use, there is an addi-
tional distinction between compositional and non-
compositional VPCs. With compositional VPCs,
the semantics of the verb and particle both corre-
spond to the semantics of the respective simplex
words, including the possibility of the semantics be-
ing specific to the VPC construction in the case of
particles. For example, battle on would be clas-
sified as compositional, as the semantics of bat-
tle is identical to that for the simplex verb, and
the semantics of on corresponds to the continua-
tive sense of the word as occurs productively in
VPCs (cf., walk/dance/drive/govern/... on). With
non-compositional VPCs, on the other hand, the
semantics of the VPC is somehow removed from
that of the parts. In the dataset we used for eval-
uation, we are interested in extracting exclusively
non-compositional VPCs, as they require lexicalisa-
tion; compositional VPCs can be captured via lexi-
cal rules and are hence not the target of extraction.

English VPCs can occur with a number of va-
lences, with the two most prevalent and productive
valences being the simple transitive (e.g., hand in
the paper) and intransitive (e.g., back off). For the
purposes of our target task, we focus exclusively on
these two valence types.

Given the above, we define the English VPC ex-
traction task to be the production of triples of the
form (v, p, s), where v is a verb lemma, p is a prepo-
sitional particle, and s € {intrans, trans} is the va-



lence; additionally, each triple has to be semantically
non-compositional. The triples are extracted relative
to a set of putative token instances for each of the
intransitive and transitive valences for a given VPC.
That is, a given triple should be classified as positive
if and only if it is associated with at least one non-
compositional token instance in the provided token-
level data.

The dataset used in this research is the one used
in the LREC 2008 Multiword Expression Workshop
Shared Task (Baldwin, 2008).! In the dataset, there
is a single file for each of 4,090 candidate VPC
triples, containing up to 50 sentences that have the
given VPC taken from the British National Cor-
pus. When the valence of the VPC is ignored,
the dataset contains 440 unique VPCs among 2,898
VPC candidates. In order to be able to fairly com-
pare our method with a state-of-the-art lexicalised
parser trained over the WSJ training sections of the
Penn Treebank, we remove any VPC types from the
test set which are attested in the WSJ training sec-
tions. This removes 696 VPC types from the test
set, and makes the task even more difficult, as the
remaining testing VPC types are generally less fre-
quent ones. At the same time, it unfortunately means
that our results are not directly comparable to those
for the original shared task.’

3 Chart Mining for Parsing with a Large
Precision Grammar

3.1 The Technique

The chart mining technique we use in this paper
is couched in a constituent-based bottom-up chart
parsing paradigm. A parsing chart is a data struc-
ture that records all the (complete or incomplete) in-
termediate parsing results. Every passive edge on
the parsing chart represents a complete local analy-
sis covering a sub-string of the input, while each ac-
tive edge predicts a potential local analysis. In this
view, a full analysis is merely a passive edge that
spans the whole input and satisfies certain root con-

"Downloadable from http://www.csse.unimelb.
edu.au/research/1lt/resources/vpc/vpc.tgz.

In practice, there was only one team who participated in
the original VPC task (Ramisch et al., 2008), who used a vari-
ety of web- and dictionary-based features suited more to high-
frequency instances in high-density languages, so a simplistic
comparison would not have been meaningful.
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ditions. The bottom-up chart parser starts with edges
instantiated from lexical entries corresponding to the
input words. The grammar rules are used to incre-
mentally create longer edges from smaller ones until
no more edges can be added to the chart.

Standardly, the parser returns only outputs that
correspond to passive edges in the parsing chart that
span the full input string. For those inputs without a
full-spanning edge, no output is generated, and the
chart becomes the only source of parsing informa-
tion.

A parsing chart takes the form of a hierarchy of
edges. Where only passive edges are concerned,
each non-lexical edge corresponds to exactly one
grammar rule, and is connected with one or more
daughter edge(s), and zero or more parent edge(s).
Therefore, traversing the chart is relatively straight-
forward.

There are two potential challenges for the chart-
mining technique. First, there is potentially a huge
number of parsing edges in the chart. For in-
stance, when parsing with a large precision gram-
mar like the HPSG English Resource Grammar
(ERG, Flickinger (2002)), it is not unusual for a
20-word sentence to receive over 10,000 passive
edges. In order to achieve high efficiency in pars-
ing (as well as generation), ambiguity packing is
usually used to reduce the number of productive
passive edges on the parsing chart (Tomita, 1985).
For constraint-based grammar frameworks like LF G
and HPSG, subsumption-based packing is used to
achieve a higher packing ratio (Oepen and Carroll,
2000), but this might also potentially lead to an in-
consistent packed parse forest that does not unpack
successfully. For chart mining, this means that not
all passive edges are directly accessible from the
chart. Some of them are packed into others, and the
derivatives of the packed edges are not generated.
Because of the ambiguity packing, zero or more
local analyses may exist for each passive edge on
the chart, and the cross-combination of the packed
daughter edges is not guaranteed to be compatible.
As aresult, expensive unification operations must be
reapplied during the unpacking phase. Carroll and
Oepen (2005) and Zhang et al. (2007b) have pro-
posed efficient k-best unpacking algorithms that can
selectively extract the most probable readings from
the packed parse forest according to a discrimina-



tive parse disambiguation model, by minimising the
number of potential unifications. The algorithm can
be applied to unpack any passive edges. Because
of the dynamic programming used in the algorithm
and the hierarchical structure of the edges, the cost
of the unpacking routine is empirically linear in the
number of desired readings, and O(1) when invoked
more than once on the same edge.

The other challenge concerns the selection of in-
formative and representative pieces of knowledge
from the massive sea of partial analyses in the pars-
ing chart. How to effectively extract the indicative
features for a specific language phenomenon is a
very task-specific question, as we will show in the
context of the VPC extraction task in Section 3.2.
However, general strategies can be applied to gener-
ate parse ranking scores on each passive edge. The
most widely used parse ranking model is the log-
linear model (Abney, 1997; Johnson et al., 1999;
Toutanova et al., 2002). When the model does not
use non-local features, the accumulated score on a
sub-tree under a certain (unpacked) passive edge can
be used to approximate the probability of the partial
analysis conditioned on the sub-string within that
span.’

3.2 The Application: Acquiring Features for
VPC Extraction

As stated above, the target task we use to illustrate
the capabilities of our chart mining method is VPC
extraction.

The grammar we apply our chart mining method
to in this paper is the English Resource Grammar
(ERG, Flickinger (2002)), a large-scale precision
HPSG for English. Note, however, that the method
is equally compatible with any grammar or grammar
formalism which is compatible with chart parsing.

The lexicon of the ERG has been semi-
automatically extended with VPCs extracted
by Baldwin (2005). In order to show the effective-
ness of chart mining in discovering “unknowns”
and remove any lexical probabilities associated
with pre-existing lexical entries, we block the

3To have a consistent ranking model on any sub-analysis,
one would have to retrain the disambiguation model on every
passive edge. In practice, we find this to be intractable. Also,
the approximation based on full-parse ranking model works rea-
sonably well.
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lexical entries for the verb in the candidate VPC
by substituting the input token with a DUMMY-V
token, which is coupled with four candidate lexical
entries of type: (1) intransitive simplex verb (v_-_e),
(2) transitive simplex verb (v_np_le), (3) intransitive
VPC (v_p_le), and (4) transitive VPC (v_p-np_le),
respectively. These four lexical entries represent the
two VPC valences we wish to distinguish between
in the VPC extraction task, and the competing
simplex verb candidates. Based on these lexical
types, the features we extract with chart mining are
summarised in Table 1. The maximal constituent
(MAxCons) of a lexical entry is defined to be the
passive edge that is an ancestor of the lexical entry
edge that: (i) must span over the particle, and (ii)
has maximal span length. In the case of a tie,
the edge with the highest disambiguation score is
selected as the MAXCoONs. If there is no edge found
on the chart that spans over both the verb and the
particle, the MAXCONS is set to be NULL, with a
MaxSpPaN of O, MAXLEVEL of 0 and MAXCRANK
of 4 (see Table 1). The stem of the particle is also
collected as a feature.

One important characteristic of these features is
that they are completely unlexicalised on the verb.
This not only leads to a fair evaluation with the ERG
by excluding the influence from the lexical coverage
of VPCs in the grammar, but it also demonstrates
that complete grammatical coverage over simplex
verbs is not a prerequisite for chart mining.

To illustrate how our method works, we present
the unpacked parsing chart for the candidate VPC
show off and input sentence The boy shows off his
new toys in Figure 1. The non-terminal edges are
marked with their syntactic categories, i.e., HPSG
rules (e.g., subjh for the subject-head-rule, hadj for
the head-adjunct-rule, etc.), and optionally their dis-
ambiguation scores. By traversing upward through
parent edges from the DUMMY-V edge, all features
can be efficiently extracted (see the third column in
Table 1).

It should be noted that none of these features are
used to deterministically dictate the predicted VPC
category. Instead, the acquired features are used as
inputs to a statistical classifier for predicting the type
of the VPC candidate at the token level (in the con-
text of the given sentence). In our experiment, we
used a maximum entropy-based model to do a 3-



Feature Description Examples
A lexical entry together with the maximal constituent | v_-_le:subjh, v_np_le:hadj,
LE:MAXCONS - . .
constructed from it v_p_le:subjh, v_p-np_le:subj
LE:MAXSPAN A lexical entry together with the length of the span of | v_-_le:7, v_np_le:5, v_p_le:4,

LE:MAXLEVEL

LE:MAXCRANK

PARTICLE

the maximal constituent constructed from the LE

A lexical entry together with the levels of projections
before it reaches its maximal constituent

A lexical entry together with the relative disambigua-
tion score ranking of its maximal constituent among
all MaxCons from different LEs

The stem of the particle in the candidate VPC

v_p-np_le:7

v_-_le:2, vnp_le:l, v_p_le:2,
v_p-np_le:3
v_-_le:4, vnp_le:3, v_p_le:l,
v_p-np_le:2

off

Table 1: Chart mining features used for VPC extraction

S1-subjh(.125) S2-subjh(.925)

S3-subjh(.875)

v_—_le v_np_le v_p_le v_p-np_le
PRTL PREP NP2
UV NS
shows off his new toys
2 3 4 7

VP1-hadj VP2-hadj(.325) VP3-hcomp VP4—hcomp

VP5-hcomp

PP-hcomp

Figure 1: Example of a parsing chart in chart-mining for VPC extraction with the ERG

category classification: non-VPC, transitive VPC,
or intransitive VPC. For the parameter estimation
of the ME model, we use the TADM open source
toolkit (Malouf, 2002). The token-level predictions
are then combined with a simple majority voting to
derive the type-level prediction for the VPC candi-
date. In the case of a tie, the method backs off to
the naive baseline model described in Section 4.2,
which relies on the combined probability of the verb
and particle forming a VPC.

We have also experimented with other ways of de-
riving type-level predictions from token-level classi-
fication results. For instance, we trained a separate
classifier that takes the token-level prediction as in-
put in order to determine the type-level VPC predic-
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tion. Our results indicate no significant difference
between these methods and the basic majority vot-
ing approach, so we present results exclusively for
this simplistic approach in this paper.

4 Evaluation

4.1 Experiment Setup

To evaluate the proposed chart mining-based VPC
extraction model, we use the dataset from the LREC
2008 Multiword Expression Workshop shared task
(see Section 2). We use this dataset to perform three
distinct DL A tasks, as detailed in Table 2.

The chart mining feature extraction is imple-
mented as an extension to the PET parser (Callmeier,



Task Description

GoLD VPC Determine the valence for a verb—preposition combination which is known to occur
as a non-compositional VPC (i.e. known VPC, with unknown valence(s))

FULL Determine whether each verb—preposition combination is a VPC or not, and further
predict its valence(s) (i.e. unknown if VPC, and unknown valence(s))

VPC Determine whether each verb—preposition combination is a VPC or not ignoring va-

lence (i.e. unknown if VPC, and don’t care about valence)

Table 2: Definitions of the three DLA tasks

2001). We use a slightly modified version of the
ERG in our experiments, based on the nov-06 re-
lease. The modifications include 4 newly-added
dummy lexical entries for the verb DUMMY-V and
the corresponding inflectional rules, and a lexical
type prediction model (Zhang and Kordoni, 2006)
trained on the LOGON Treebank (Oepen et al., 2004)
for unknown word handling. The parse disambigua-
tion model we use is also trained on the LOGON
Treebank. Since the parser has no access to any of
the verbs under investigation (due to the DUMMY-
V substitution), those VPC types attested in the
LOGON Treebank do not directly impact on the
model’s performance. The chart mining feature ex-
traction process took over 10 CPU days, and col-
lected a total of 44K events for 4,090 candidate VPC
triples.* 5-fold cross validation is used to train/test
the model. As stated above (Section 2), the VPC
triples attested in the WSJ training sections of the
Penn Treebank are excluded in each testing fold for
comparison with the Charniak parser-based model
(see Section 4.2).

4.2 Baseline and Benchmark

For comparison, we first built a naive baseline model
using the combined probabilities of the verb and par-
ticle being part of a VPC. More specifically, P(c|v)
and P(c|p) are the probabilities of a given verb
v and particle p being part of a VPC candidate
of type s € {intrans, trans,null}, for transitive

“Not all sentences in the dataset are successfully chart-
mined. Due to the complexity of the precision grammar we
use, the parser is unlikely to complete the parsing chart for ex-
tremely long sentences (over 50 words). Moreover, sentences
which do not receive any spanning edge over the verb and the
particle are not considered as an indicative event. Nevertheless,
the coverage of the chart mining is much higher than the full-
parse coverage of the grammar.
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VPC, intransitive VPC, and non-VPC, respectively.
P(s|lv,p) = P(s|v) - P(s|p) is used to approxi-
mate the joint probability of verb-particle (v, p) be-
ing of type s, and the prediction type is chosen ran-
domly based on this probabilistic distribution. Both
P(s|v) and P(s|p) can be estimated from a list of
VPC candidate types. If v is unseen, P(s|v) is set to
be ﬁ > vev P(s|v;) estimated over all verbs |V|
seen in the list of VPC candidates. The naive base-
line performed poorly, mainly because there is not
enough knowledge about the context of use of VPCs.
This also indicates that the task of VPC extraction
is non-trivial, and that context (evidence from sen-
tences in which the VPC putatively occurs) must be
incorporated in order to make more accurate predic-
tions.

As a benchmark VPC extraction system, we use
the Charniak parser (Charniak, 2000). This sta-
tistical parser induces a context-free grammar and
a generative parsing model from a training set of
gold standard parse trees. Traditionally, it has been
trained over the WSJ component of the Penn Tree-
bank, and for this work we decided to take the same
approach and train over sections 1 to 22, and use sec-
tion 23 for parameter-tuning. After parsing, we sim-
ply search for the VPC triples in each token instance
with tgrep2,’ and decide on the classification of
the candidate by majority voting over all instances,
breaking ties randomly.

>Noting that the Penn POS tagset captures essentially the
compositional vs. non-compositional VPC distinction required
in the extraction task, through the use of the RP (prepositional
particle, for non-compositional VPCs) and RB (adverb, for com-
positional VPCs) tags.



4.3 Results

The results of our experiments are summarised in
Table 3. For the naive baseline and the chart mining-
based models, the results are averaged over 5-fold
cross validation.

We evaluate the methods in the form of the three
tasks described in Table 2. Formally, GoLD VPC
equates to extracting (v, p, s) tuples from the sub-
set of gold-standard (v, p) tuples; FULL equates to
extracting (v, p,s) tuples for all VPC candidates;
and VPC equates to extracting (v, p) tuples (ignor-
ing valence) over all VPC candidates. In each case,
we present the precision (P), recall (R) and F-score
(8 = 1. F). For multi-category classifications (i.e.
the two tasks where we predict the valence s, indi-
cated as “All” in Table 3), we micro-average the pre-
cision and recall over the two VPC categories, and
calculate the F-score as their harmonic mean.

From the results, it is obvious that the chart
mining-based model performs best overall, and in-
deed for most of the measures presented. The Char-
niak parser-based extraction method performs rea-
sonably well, especially in the VPC+valence extrac-
tion task over the FULL task, where the recall was
higher than the chart mining method. Although
not reported here, we observe a marked improve-
ment in the results for the Charniak parser when
the VPC types attested in the WSJ are not filtered
from the test set. This indicates that the statisti-
cal parser relies heavily on lexicalised VPC infor-
mation, while the chart mining model is much more
syntax-oriented. In error analysis of the data, we ob-
served that the Charniak parser was noticeably more
accurate at extracting VPCs where the verb was fre-
quent (our method, of course, did not have access
to the base frequency of the simplex verb), under-
lining again the power of lexicalisation. This points
to two possibilities: (1) the potential for our method
to similarly benefit from lexicalisation if we were to
remove the constraint on ignoring any pre-existing
lexical entries for the verb; and (2) the possibility
for hybridising between lexicalised models for fre-
quent verbs and unlexicalised models for infrequent
verbs. Having said this, it is important to reinforce
that lexical acquisition is usually performed in the
absence of lexicalised probabilities, as if we have
prior knowledge of the lexical item, there is no need
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to extract it. In this sense, the first set of results in
Table 3 over Gold VPCs are the most informative,
and illustrate the potential of the proposed approach.

From the results of all the models, it would ap-
pear that intransitive VPCs are more difficult to ex-
tract than transitive VPCs. This is partly because the
dataset we use is unbalanced: the number of transi-
tive VPC types is about twice the number of intran-
sitive VPCs. Also, the much lower numbers over
the FULL set compared to the GoLD VPC set are due
to the fact that only 1/8 of the candidates are true
VPCs.

5 Discussion and Future Work

The inventory of features we propose for VPC ex-
traction is just one illustration of how partial parse
results can be used in lexical acquisition tasks.
The general chart mining technique can easily be
adapted to learn other challenging linguistic phe-
nomena, such as the countability of nouns (Bald-
win and Bond, 2003), subcategorization properties
of verbs or nouns (Korhonen, 2002), and general
multiword expression (MWE) extraction (Baldwin
and Kim, 2009). With MWE extraction, e.g., even
though some MWE:s are fixed and have no internal
syntactic variability, such as ad hoc, there is a very
large proportion of idioms that allow various de-
grees of internal variability, and with a variable num-
ber of elements. For example, the idiom spill the
beans allows internal modification (spill mountains
of beans), passivisation (The beans were spilled in
the latest edition of the report), topicalisation (The
beans, the opposition spilled), and so forth (Sag et
al., 2002). In general, however, the exact degree of
variability of an idiom is difficult to predict (Riehe-
mann, 2001). The chart mining technique we pro-
pose here, which makes use of partial parse results,
may facilitate the automatic recognition task of even
more flexible idioms, based on the encouraging re-
sults for VPCs.

The main advantage, though, of chart mining is
that parsing with precision grammars does not any
longer have to assume complete coverage, as has
traditionally been the case. As an immediate con-
sequence, the possibility of applying our chart min-
ing technique to evolving medium-sized grammars
makes it especially interesting for lexical acquisi-



Task VPC Type Naive Baseline Charniak Parser Chart-Mining
P R F P R F P R F

Intrans-VPC | 0.300 0.018 0.034 | 0.549 0.753 0.635 | 0.845 0.621 0.716
GoLD VPC | Trans-VPC | 0.676 0.348 0.459 | 0.829 0.648 0.728 | 0.877 0.956 0.915
All 0.576  0.236 0.335 | 0.691 0.686 0.688 | 0.875 0.859 0.867
Intrans-VPC | 0.060 0.018 0.028 | 0.102 0.593 0.174 | 0.153 0.155 0.154
FULL Trans-VPC | 0.083 0.348 0.134 | 0.179 0.448 0.256 | 0.179 0.362 0.240
All 0.080 0.236 0.119 | 0.136 0.500 0.213 | 0.171 0.298 0.218
VPC 0.123 0.348 0.182 | 0.173 0.782 0.284 | 0.259 0.332 0.291

Table 3: Results for the different methods over the three VPC extraction tasks detailed in Table 2

tion over low-density languages, for instance, where
there is a real need for rapid-prototyping of language
resources.

The chart mining approach we propose in this
paper is couched in the bottom-up chart parsing
paradigm, based exclusively on passive edges. As
future work, we would also like to look into the
top-level active edges (those active edges that are
never completed), as an indication of failed assump-
tions. Moreover, it would be interesting to investi-
gate the applicability of the technique in other pars-
ing strategies, e.g., head-corner or left-corner pars-
ing. Finally, it would also be interesting to in-
vestigate whether by using the features we acquire
from chart mining enhanced with information on the
prevalence of certain patterns, we could achieve per-
formance improvements over broader-coverage tree-
bank parsers such as the Charniak parser.

6 Conclusion

We have proposed a chart mining technique for lex-
ical acquisition based on partial parsing with preci-
sion grammars. We applied the proposed method
to the task of extracting English verb particle con-
structions from a prescribed set of corpus instances.
Our results showed that simple unlexicalised fea-
tures mined from the chart can be used to effec-
tively extract VPCs, and that the model outperforms
a probabilistic baseline and the Charniak parser at
VPC extraction.

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Re-

17

search Council through the ICT Centre of Excellence pro-
gram. The first was supported by the German Excellence
Cluster of Multimodal Computing and Interaction.

References

Steven Abney. 1997. Stochastic attribute-value gram-
mars. Computational Linguistics, 23:597-618.

Timothy Baldwin and Francis Bond. 2003. Learning
the countability of English nouns from corpus data.
In Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2003),
pages 463—-470, Sapporo, Japan.

Timothy Baldwin and Su Nam Kim. 2009. Multiword
expressions. In Nitin Indurkhya and Fred J. Damerau,
editors, Handbook of Natural Language Processing.
CRC Press, Boca Raton, USA, 2nd edition.

Timothy Baldwin. 2005. The deep lexical acquisition of
English verb-particle constructions. Computer Speech
and Language, Special Issue on Multiword Expres-
sions, 19(4):398-414.

Timothy Baldwin. 2008. A resource for evaluating the
deep lexical acquisition of English verb-particle con-
structions. In Proceedings of the LREC 2008 Work-
shop: Towards a Shared Task for Multiword Expres-
sions (MWE 2008), pages 1-2, Marrakech, Morocco.

Ulrich Callmeier. 2001. Efficient parsing with large-
scale unification grammars. Master’s thesis, Univer-
sitdt des Saarlandes, Saarbriicken, Germany.

John Carroll and Stephan Oepen. 2005. High efficiency
realization for a wide-coverage unification grammar.
In Proceedings of the 2nd International Joint Confer-
ence on Natural Language Processing (IJCNLP 2005),
pages 165-176, Jeju Island, Korea.

Eugene Charniak. 2000. A maximum entropy-based
parser. In Proceedings of the 1st Annual Meeting of
the North American Chapter of Association for Com-
putational Linguistics (NAACL2000), Seattle, USA.

Daniel de Kok, Jiangiang Ma, and Gertjan van Noord.
2009. A generalized method for iterative error min-
ing in parsing results. In Proceedings of the ACL2009
Workshop on Grammar Engineering Across Frame-
works (GEAF), Singapore.



Nicole Dehé. 2002. Particle Verbs in English: Syn-
tax, Information, Structure and Intonation. John Ben-
jamins, Amsterdam, Netherlands/Philadelphia, USA.

Dan Flickinger. 2002. On building a more efficient
grammar by exploiting types. In Stephan Oepen, Dan
Flickinger, Jun’ichi Tsujii, and Hans Uszkoreit, edi-
tors, Collaborative Language Engineering, pages 1—
17. CSLI Publications.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans
Uszkoreit, Berthold Crysmann, Brigitte Jorg, and Ul-
rich Schifer. 2006. Question answering from struc-
tured knowledge sources. Journal of Applied Logic,
Special Issue on Questions and Answers: Theoretical
and Applied Perspectives., 5(1):20—48.

Rodney Huddleston and Geoffrey K. Pullum. 2002. The
Cambridge Grammar of the English Language. Cam-
bridge University Press, Cambridge, UK.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochas-
tic unifcation-based grammars. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 1999), pages 535-541, Mary-
land, USA.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and
Rob Malouf. 1999. A Bag of Useful Techniques for
Efficient and Robust Parsing. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics, pages 473-480, Maryland, USA.

Anna Korhonen. 2002. Subcategorization Acquisition.
Ph.D. thesis, University of Cambridge.

Andrew MacKinlay, David Martinez, and Timothy Bald-
win. 2009. Biomedical event annotation with CRFs
and precision grammars. In Proceedings of BioNLP
2009: Shared Task, pages 77-85, Boulder, USA.

Robert Malouf. 2002. A comparison of algorithms
for maximum entropy parameter estimation. In Pro-
ceedings of the 6th Conferencde on Natural Language
Learning (CoNLL 2002), pages 49-55, Taipei, Taiwan.

Christopher D. Manning and Hinrich Schiitze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press.

Kathleen R. McKeown and Dragomir R. Radev. 2000.
Collocations. In Robert Dale, Hermann Moisl, and
Harold Somers, editors, Handbook of Natural Lan-
guage Processing.

Stephan Oepen and John Carroll. 2000. Ambiguity pack-
ing in constraint-based parsing — practical results. In
Proceedings of the 1st Annual Meeting of the North
American Chapter of Association for Computational
Linguistics (NAACL 2000), pages 162—-169, Seattle,
USA.

Stephan Oepen, Helge Dyvik, Jan Tore Lgnning, Erik
Velldal, Dorothee Beermann, John Carroll, Dan
Flickinger, Lars Hellan, Janne Bondi Johannessen,
Paul Meurer, Torbjgrn Nordgard, and Victoria Rosén.
2004. Som & kapp-ete med trollet? Towards MRS-
Based Norwegian—-English Machine Translation. In
Proceedings of the 10th International Conference on
Theoretical and Methodological Issues in Machine
Translation, Baltimore, USA.

18

Carlos Ramisch, Paulo Schreiner, Marco Idiart, and Aline
Villavicencio. 2008. An evaluation of methods for the
extraction of multiword expressions. In Proceedings
of the LREC 2008 Workshop: Towards a Shared Task
for Multiword Expressions (MWE 2008), pages 5053,
Marrakech, Morocco.

Susanne Riehemann. 2001. A Constructional Approach
to Idioms and Word Formation. Ph.D. thesis, Stanford
University, CA, USA.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword ex-
pressions: A pain in the neck for NLP. In Proceedings
of the 3rd International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing-
2002), pages 1-15, Mexico City, Mexico.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational Linguistics, 19(1):143—178.
Masaru Tomita. 1985. An efficient context-free parsing
algorithm for natural languages. In Proceedings of the
9th International Joint Conference on Artificial Intel-

ligence, pages 756-764, Los Angeles, USA.

Kristina Toutanova, Christoper D. Manning, Stuart M.
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse ranking for a rich HPSG grammar. In Proceed-
ings of the 1st Workshop on Treebanks and Linguistic
Theories (TLT 2002), pages 253-263, Sozopol, Bul-
garia.

Hans Uszkoreit. 2002. New chances for deep linguis-
tic processing. In Proceedings of the 19th interna-
tional conference on computational linguistics (COL-
ING 2002), Taipei, Taiwan.

Gertjan van Noord. 2004. Error mining for wide-
coverage grammar engineering. In Proceedings of the
42nd Annual Meeting of the Association for Computa-
tional Linguistics), pages 446-453, Barcelona, Spain.

Aline Villavicencio and Ann Copestake. 2002. Verb-
particle constructions in a computational grammar of
English. In Proceedings of the 9th International Con-
ference on Head-Driven Phrase Structure Grammar
(HPSG-2002), Seoul, Korea.

Yi Zhang and Valia Kordoni. 2006. Automated deep
lexical acquisition for robust open texts processing.
In Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC 2006),
pages 275-280, Genoa, Italy.

Yi Zhang and Valia Kordoni. 2008. Robust parsing
with a large HPSG grammar. In Proceedings of the
Sixth International Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco.

Yi Zhang, Valia Kordoni, and Erin Fitzgerald. 2007a.
Partial parse selection for robust deep processing. In
Proceedings of ACL 2007 Workshop on Deep Linguis-
tic Processing, pages 128—135, Prague, Czech Repub-
lic.

Yi Zhang, Stephan Oepen, and John Carroll. 2007b. Ef-
ficiency in unification-based N-best parsing. In Pro-
ceedings of the 10th International Conference on Pars-
ing Technologies (IWPT 2007), pages 48-59, Prague,
Czech.



1

Products of Random L atent Variable Grammars

Slav Petrov
Google Research
New York, NY, 10011
sl av@oogl e. com

Abstract

We show that the automatically induced latent
variable grammars of Petrov et al. (2006) vary
widely in their underlying representations, de-
pending on their EM initialization point. We
use this to our advantage, combining multiple
automatically learned grammars into an un-
weighted product model, which gives signif-
icantly improved performance over state-of-
the-art individual grammars. In our model,
the probability of a constituent is estimated as
a product of posteriors obtained from multi-
ple grammars that differ only in the random
seed used for initialization, without any learn-
ing or tuning of combination weights. Despite
its simplicity, a product of eight automatically
learned grammars improves parsing accuracy
from 90.2% to 91.8% on English, and from
80.3% to 84.5% on German.

I ntroduction

(Johnson, 1998; Klein and Manning, 2003b) or au-
tomatically learned (Matsuzaki et al., 2005; Petrov
et al., 2006). The constraints serve the purpose of
weakening the independence assumptions, and re-
duce the number of possible (but incorrect) parses.

Here, we focus on the latent variable approach of
Petrov et al. (2006), where an Expectation Maxi-
mization (EM) algorithm is used to induce a hier-
archy of increasingly more refined grammars. Each
round of refinement introduces new constraints on
how constituents can be combined, which in turn
leads to a higher parsing accuracy. However, EMis a
local method, and there are no guarantees that it will
find the same grammars when initialized from dif-
ferent starting points. In fact, it turns out that even
though the final performance of these grammars is
consistently high, there are significant variations in
the learned refinements.

We use these variations to our advantage, and
treat grammars learned from different random seeds

Learning a context-free grammar for parsing reas independent and equipotent experts. We use a
quires the estimation of a more highly articulategproduct distribution for joint prediction, which gives
model than the one embodied by the observed tremore peaked posteriors than a sum, and enforces all
bank. This is because the naive treebank grammeonstraints of the individual grammars, without the
(Charniak, 1996) is too permissive, making unrealnreed to tune mixing weights. It should be noted here
istic context-freedom assumptions. For example, that our focus is on improving parsing performance
postulates that there is only one type of noun phrasgsing a single underlying grammar class, which is
(NP), which can appear in all positions (subject, obsomewhat orthogonal to the issue of parser combina-
ject, etc.), regardless of case, number or gender. Aisn, that has been studied elsewhere in the literature
a result, the grammar can generate millions of (infSagae and Lavie, 2006; Fossum and Knight, 2009;
correct) parse trees for a given sentence, and hagZhang et al., 2009). In contrast to that line of work,
flat posterior distribution. High accuracy grammarsve also do not restrict ourselves to working with k-
therefore add soft constraints on the way categoridmst output, but work directly with a packed forest
can be combined, and enrich the label set with addiepresentation of the posteriors, much in the spirit
tional information. These constraints can be lexicalef Huang (2008), except that we work with several
ized (Collins, 1999; Charniak, 2000), unlexicalizedforests rather than rescoring a single one.
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In our experimental section we give empirical anal. (2006) extend this algorithm to use a split&merge
swers to some of the remaining theoretical quegprocedure to adaptively determine the optimal num-
tions. We address the question of averaging versb&r of subcategories for each observed category.
multiplying classifier predictions, we investigate dif-Starting from a completely markovized X-Bar gram-
ferent ways of introducing more diversity into themar, each category is split in two, generating eight
underlying grammars, and also compare combiningew productions for each original binary production.
partial (constituent-level) and complete (tree-levelJo break symmetries, the production probabilities
predictions. Quite serendipitously, the simplest apare perturbed by 1% of random noise. EM is then
proaches work best in our experiments. A produdhitialized with this starting point and used to climb
of eight latent variable grammars, learned on ththe highly non-convex objective function given in
same data, and only differing in the seed used iBq. 1. Each splitting step is followed by a merging
the random number generator that initialized EMstep, which uses a likelihood ratio test to reverse the
improves parsing accuracy from 90.2% to 91.8%east useful half of the splits. Learning proceeds by
on English, and from 80.3% to 84.5% on Germaniterating between those two steps for six rounds. To
These parsing results are even better than those girevent overfitting, the production probabilities are
tained by discriminative systems which have accedimearly smoothed by shrinking them towards their
to additional non-local features (Charniak and Johreommon base category.
son, 2005; Huang, 2008).

2.2 EM induced Randomness

While the split&merge procedure described above
Before giving the details of our model, we brieflyis shown in Petrov et al. (2006) to reduce the vari-
review the basic properties of latent variable gramance in final performance, we found after closer
mars. Learning latent variable grammars consists xamination that there are substantial differences
two tasks: (1) determining the data representatioft the patterns learned by the grammars. Since
(the set of context-free productions to be used in tH&@e initialization is not systematically biased in any
grammar), and (2) estimating the parameters of tH&ay, one can obtain different grammars by simply
model (the production probabilities). We focus orfhanging the seed of the random number genera-
the randomness introduced by the EM algorithm anr. We trained 16 different grammars by initial-
refer the reader to Matsuzaki et al. (2005) and Petrd¢ing the random number generator with seed val-

2 Latent Variable Grammars

et al. (2006) for a more general introduction. ues 1 through 16, but without biasing the initial-
_ _ ization in any other way. Figure 1 shows that the
2.1 Split& Merge L earning number of subcategories allocated to each observed

Latent variable grammars split the coarse (but olsategory varies significantly between the different
served) grammar categories of a treebank into momgitialization points, especially for the phrasal cate-
fine-grained (but hidden) subcategories, which argories. Figure 2 shows posteriors over the most fre-
better suited for modeling the syntax of naturabjuent subcategories given their base category for the
languages (e.g. NP becomes Nffrough NR). first four grammars. Clearly, EM is allocating the la-
Accordingly, each grammar production -ABC tent variables in very different ways in each case.
over observed categories A,B,C is split into a set As a more quantitative measure of differefage
of productions A—B,C, over hidden categories evaluated all 16 grammars on sections 22 and 24 of
A;,B,,C.. Computing the joint likelihood of the ob- the Penn Treebank. Figure 3 shows the performance
served parse treeé and sentences requires sum- on those two sets, and reveals that there is no single
ming over all derivationg over split subcategories: grammar that achieves the best score on both. While

H Pw;, ;) H Z Pluw;. 1) ) the parsing accuracies are consistently Righere

i i bT IWhile cherry-picking similarities is fairly straight-fard,

. . . itis less obvious how to quantify differences.
Matsuzaki et al. (2005) derive an EM algorithm  2yqte that despite their variance, the performance is always

for maximizing the joint likelihood, and Petrov et higher than the one of the lexicalized parser of CharniaR@20
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Figure 1: There is large variance in the number of subcat-
egories (error bars correspond to one standard deviatiofjgure 2: Posterior probabilities of the eight most fre-
guent hidden subcategories given their observed base cat-
egories. The four grammars (indicated by shading) are
is only a weak correlation between the accuracigsopulating the subcategories in very different ways.
on the two evaluation sets (Pearson coefficient 0.34).
This suggests that no single grammar should be prgl-jboptimal parameter estimates.
ferred over the others. In previous work (Petrov et o
| 2006: Petrov and Klein. 2007) the final arammar To leverage the strengths of the individual gram-
al  retrova ein, ) the final gra amars, we combine them in a product model. Product
was chosen based on its performance on a held-out . .
) models have the nice property that their Kullback-
set (section 22), and corresponds to the second bt]a_s

R . |ébler divergence from the true distribution will
grammar in Figure 3 (because only 8 different gram- .
. always be smaller than the average of the KL di-
mars were trained).

) o . _. vergences of the individual distributions (Hinton,
A more detailed error analysis is given in I:'9'2001). Therefore, as long as no individual gram-

ure 4, where we show a breakdown gfseores for ., g is significantly worse than the others, we can

selected phrasal categories in addition to the overgll,y yenefit from combining multiple latent variable

F1 score and exact match (on the WSJ developmepi,mmars and searching for the tree that maximizes
set). While grammar &ghas the highest overall;F

score, its exact match is not particula_rly_ high, anq P(T|w) o H P(T|w, G;) )
it turns out to be the weakest at predicting quanti- p

fier phrases (QP). Similarly, the performance of the

other grammars varies between the different errdi€re, we are making the assumption that the individ-
measures, indicating again that no single gramma@l grammars are conditionally independent, which

dominates the others. is of course not true in theory, but holds surprisingly
well in practice. To avoid this assumption, we could
3 A Simple Product Model use a sum model, but we will show in Section 4.1

that the product formulation performs significantly
It should be clear by now that simply varying thebetter. Intuitively speaking, products have the ad-
random seed used for initialization causes EM twantage that the final prediction has a high poste-
discover very different latent variable grammarstior underall models, giving each model veto power.
While this behavior is worrisome in general, it turnsThis is exactly the behavior that we need in the case
out that we can use it to our advantage in this parti®f parsing, where each grammar has learned differ-
ular case. Recall that we are using EM to learn bottgnt constraints for ruling out improbable parses.
the data representation, as well as the parameters of _
the model. Our analysis showed that changing thel Le€arning
initialization point results in learning grammars thatloint training of our product model would couple the
vary quite significantly in the errors they make, buparameters of the individual grammars, necessitat-
have comparable overall accuracies. This suggestyy the computation of an intractable global parti-
that the different local maxima found by EM corre-tion function (Brown and Hinton, 2001). Instead,
spond to different data representations rather thantee use EM to train each grammar independently,
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Figure 3: Parsing accuracies for grammars learned frorrgg gg
differentrandom seeds. The large variance and weak cors4 G4
relation suggest that no single grammar is to be preferred. p P
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but from a different, randomly chosen starting pointFigure 4: Breakdown of different accuracy measures for
To emphasize, we do not introduce any systematfour randomly selected grammars(G,), as well as a
bias (but see Section 4.3 for some experiments), gfoduct model (P) that uses those four grammars. Note
attempt to train the models to be maximally dif-that no single grammar dpesf yvell on all measures, while
ferent (Hinton, 2002) — we simply train a randomthe product model does significantly better on all.
collection of grammars by varying the random seed
used for initialization. We found in our experimentsthe search space (Goodman, 1996; Titov and Hen-
that the randomness provided by EM is sufficiengerson, 2006; Petrov and Klein, 2007).
to achieve diversity among the individual grammars, The simplest approach is to stick to likelihood as
and gives results that are as good as more involvédie objective function, but to limit the search space
training procedures. Xu and Jelinek (2004) madt a set of high quality candidatés
a similar observatio_n when learning random forests T* — argmax P(T'w) 3)
for language modeling. TeT

Our model is reminiscent of Logarithmic Opinion Because the likelihood of a given parse tree can be
Pools (Bordley, 1982) and Products of Experts (Hin-

) ly f [ (Eg. 2), th
ton, 2001)3. However, because we believe that nongomputed exactly for our product model (Eq. 2), the

of the underlying grammars should be favored, Wguallty of this approximation is only limited by the

deliberatelv do not use anv combination weiahts uality of the candidate list. To generate the candi-
! y u y ination Weights. - jate list, we produce k-best lists of Viterbi deriva-

tions with the efficient algorithm of Huang and Chi-

ang (2005), and erase the subcategory information

Computing the most likely parse tree is intractablgq ,ptain parse trees over unsplit categories. We re-
for latent variable grammars (Sima'an, 2002), ang, ¢, this approximation asREE-L EVEL inference,
therefore also for our product model. This is becausg..ause it considers a list of complete trees from
there are exponentially many derivations over splilthe underlying grammars, and selects the tree that
subcategories that correspond to a single parse trggs e highest likelihood under the product model.
over unsplit categories, and there is no dynamic proy e the k-best lists are of very high quality, this is
gram to efficiently marginalize out the latent vari-, iy crude and unsatisfactory way of approximat-
ables. Previous work on parse risk minimization ha&g the posterior distribution of the product model,

addressed this problem in two different ways: bY,q'i qoes not allow the synthesis of new trees based
changing the objective function, or by constraining,, ree fragments from different grammars.

3As a matter of fact, Hinton (2001) mentions syntactic pars- AN alternative is to use a tractable objective func-
ing as one of the motivating examples for Products of Expertstion that allows the efficient exploration of the entire

3.2 Inference
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Figure 5: Grammar Ghas a preference for flat structures, while grammap€&fers deeper hierarchical structures.
Both grammars therefore make one mistake each on their ovenvettr, the correct parse tree (which uses a flat
ADJP in the first slot and a hierarchical NP in the second)ebighest under the product model.

search space. Petrov and Klein (2007) present suclsion, and would chose the incorrect hierarchical
an objective function, which maximizes the producADJP construction here (as one can verify using the
of expected correct productiomns provided model scores).

. To make inference efficient, we can use the
T = argmaxHE(r]w) 4 . . :
o same coarse-to-fine pruning techniques as Petrov
T

. _ and Klein (2007). We generate a hierarchy of pro-
These expectations can be easily computed from t'j”l?cted grammars for each individual grammar and

inside/outside scores, similarly as in the maXimU”barse with each one in sequence. Because only the
bracket recall algorithm of Goodman (1996), or inery |ast pass requires scores from the different un-
the variational approximation of Matsuzaki et al.der|ying grammars, this computation can be trivially
(2005). We extend the algorithm to work over posteparallelized across multiple CPUs. Additionally, the
rior distributions from multiple grammars, by aggre-fj st (X-Bar) pruning pass needs to be computed
gating their expectations into a product. In practicc-\@my once because it is shared among all grammars.
we use a packed forest representation to approXsince the X-Bar pass is the bottleneck of the multi-
mate the posterior distribution, as in Huang (2008)pass scheme (using nearly 50% of the total process-
We refer to this approximation asaBISTITUENT-  jng time), the overhead of using a product model is
LEVEL, because it allows us to form new parse treeguite manageable. It would have also been possi-
from individual constituents. ble to use A*-search for factored models (Klein and

Figure 5 illustrates a real case where the proq\-ﬂanning’ 2003a; Sun and Tsujii, 2009), but we did
uct model was able to construct a completely corre¢fot attempt this in the present work.

parse tree from two partially correct ones. In the ex-
ample, one of the underlying grammars,; J&ad an 4 Experiments
imperfect recall score, because of its preference for

flat structures (it missed an NP node in the secongé our experiments, we follow the standard setups
part of the sentence). In contrast, the other grangtescribed in Table 1, and use the EVALB tool for
mar (G) favors deeper structures, and therefore incomputing parsing figures. Unless noted other-
troduced a superfluous ADVP node. The produGlise, we use ©NSTITUENT-LEVEL inference. All

model gives each underlying grammar veto powegur experiments are based on the publicly available
and picks the least controversial tree (which is thgerkeleyParseft.

correct one in this case). Note that a sum model al-
lows the most confident model to dominate the de- “http://code.google.com/p/berkeleyparser
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Parsing accuracy on the WSJ development set

Training Set | Dev. Set Test Set

ENGLISH-WSJ Sections . . ‘

(Marcus et al., 1993) 291 Section 22 | Section 23 9251+

ENGLISH-BROW see 10% of 10% of the

(Francis et al. 1979) [ENGLISH-WSJ the data the data 92 ¢

GERMAN Sentences | Sentences| Sentences

(Skut et al., 1997) 1-18,602 18,603-19,60@9,603-20,60? 915}

Table 1: Corpora and standard experimental setups. 91t ,,«"'
4 CONSTITUENT-LEVEL Inference ——
90.5 L _ TrEe-LEVEL Inference —<—

4.1 (Weighted) Product vs. (Weighted) Sum 12 4 8 16

. . Number of grammars in product model
A great deal has been written on the topic of prod-

ucts versus sums of probability distributions for jointFigure 6: Adding more grammars to the product model
prediction (Genest and Zidek, 1986; Tax et alMProves parsingaccuracy, while®QSTITUENTLEVEL
2000). However, those theoretical results do ndfference gives consistently better results.
apply directly here, because we are using multi-
ple randomly permuted models from the same clas$
rather models from different classes. To shed sonfigure 6 shows that accuracy increases when more
light on this issue, we addressed the question emgrammars are added to the product model, but levels
pirically, and combined two grammars into an unoff after eight grammars. The plot also compares
weighted product model, and also an unweightedur two inference approximations, and shows that
sum model. The individual grammars had parsin€oNsTITUENT-LEVEL inference results in a small
accuracies (B of 91.2 and 90.7 respectively, and(0.2), but consistent improvement in Bcore.
their product (91.7) clearly outperformed their sum A first thought might be that the improvement is
(91.3). When more grammars are added, the gajue to the limited scope of the k-best lists. How-
widens even further, and the trends persist indepesver, this is not the case, as the results hold even
dently of whether the models useREE-LEVEL or when the candidate set fordBISTITUENT-LEVEL
CONSTITUENTLEVEL inference. At least for the inference is constrained to trees from the k-best lists.
case of unweighted combinations, the product dist/hile the packed forrest representation can very ef-
tribution seems to be superior. ficiently encode an exponential set of parse trees, in
In related work, Zhang et al. (2009) achieve exour case the k-best lists appear to be already very di-
cellent results with a weighted sum model. Usingerse because they are generated by multiple gram-
weights learned on a held-out set and rescoring Séhars. Starting at 96.1 for a single latent variable
best lists from Charniak (2000) and Petrov et algrammar, merging two 50-best lists from different
(2006), they obtain an;Fscore of 91.0 (which they grammars gives an oracle score of 97.4, and adding
further improve to 91.4 using a voting scheme). Wenore k-best lists further improves the oracle score to
replicated their experiment, but used an unweighte@8.6 for 16 grammars. This compares favorably to
product of the two model scores. UsingRAE- the results of Huang (2008), where the oracle score
LEVEL inference, we obtained an Bcore of 91.6, over a pruned forest is shown to be 97.8 (compared
suggesting that weighting is not so important in théo 96.7 for a 50-best list).
product case, as long as the classifiers are of compa-The accuracy improvement can instead be ex-
rable quality® This is in line with previous work on plained by the change in the objective function. Re-
product models, where weighting has been impogall from section Section 3.2, thatdBISTITUENT
tant when combining heterogenous classifiers (Heg-eveL inference maximizes the expected number
kes, 1998), and less important when the classifiets correct productions, while REE-LEVEL infer-
are of similar accuracy (Smith et al., 2005). ence maximizes tree-likelihood. It is therefore not
"~ SSee Gildea (2001) for the exact setup. too surprising that the two objectivc_e functions se-
5The unweighted sum model, however, underperforms thi€Ct the same tree only 41% of the time, even when
individual models with an Fscore of only 90.3. limited to the same candidate set. Maximizing the

.2 Tree-Leve vs. Constituent-L evel Inference
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expected number of correct productions is superidp training a set of unregularized CRFs over differ-
for F; score (see the one grammar case in Figure &nt feature sets and combining them in an LOP. In
However, as to be expected, likelihood is better fotheir experiments, both approaches work compara-
exact match, giving a score of 47.6% vs. 46.8%. bly well, but their combination, an LOP of regular-
o ized CRFs works best.

4.3 Systematic Bias Not too surprisingly, we find this to be the case
Diversity among the underlying models is whathere as well. The parameters of each latent vari-
gives combined models their strength. One way adble grammar are typically smoothed in a linear
increasing diversity is by modifying the feature setfashion to prevent excessive overfitting (Petrov et
of the individual models (Baldridge and Osborneal., 2006). While all the experiments so far used
2008; Smith and Osborne, 2007). This approackmoothed grammars, we reran the experiments also
has the disadvantage that it reduces the performanag&h a set of unsmoothed grammars. The individ-
of the individual models, and is not directly appli-ual unsmoothed grammars have on average an 1.2%
cable for latent variable grammars because the fekwer accuracy. Even though our product model
tures are automatically learned. Alternatively, onés able to increase accuracy by combining multiple
can introduce diversity by changing the training disgrammars, the gap to the smoothed models remains
tribution. Bagging (Breiman, 1996) and Boostingconsistent. This suggests that the product model is
(Freund and Shapire, 1996) fall into this categoryjoing more than just smoothing. In fact, because the
but have had limited success for parsing (Hendeproduct distribution is more peaked, it seems to be
son and Brill, 2000). Furthermore boosting is im-doing the opposite of smoothing.
practical here, because it requires training dozens of ,
grammars in sequence. 4.5 Final Results

Since training a single grammar takes roughly on®ur final model uses an unweighted product of eight
day, we opted for a different, parallelizable way ofgrammars trained by initializing the random number
changing the training distribution. In a first exper-generator with seeds 1 through 8. Table 2 shows
iment, we divided the training set into two disjointour test set results (obtained witho@STITUENT
sets, and trained separate grammars on each halEvEL inference), and compares them to related
These truly disjoint grammars had low Bcores work. There is a large body of work that has re-
of 89.4 and 89.6 respectively (because they wegorted parsing accuracies for English, and we have
trained on less data). Their combination unfortugrouped the different methods into categories for
nately also achieves only an accuracy of 90.9, whichetter overview.
is lower than what we get when training a single Our results on the English in-domain test set are
grammar on the entire training set. In another expehigher than those obtained by any single component
iment, we used a cross-validation setup where indparser (SINGLE). The other methods quoted in Ta-
vidual sections of the treebank were held out. Thble 2 operate over the output of one or more single
resulting grammars had parsing accuracies of abocdmponent parsers and are therefore largely orthog-
90.5, and the product model was again not able tonal to our line of work. It is nonetheless exciting
overcome the lower starting point, despite the poterto see that our product model is competitive with
tially larger diversity among the underlying gram-the discriminative rescoring methods (RE) of Char-
mars. It appears that any systematic bias that lowengak and Johnson (2005) and Huang (2008), achiev-
the accuracy of the individual grammars also hurting higher | scores but lower exact match. These

the final performance of the product model. two methods work on top of the Charniak (2000)
S _ parser, and it would be possible to exchange that
4.4 Product Distribution as Smoothing parser with our product model. We did not attempt

Smith et al. (2005) interpret Logarithmic Opinionthis experiment, but we expect that those methods
Pools (LOPs) as a smoothing technique. Thewould stack well with our model, because they use
compare regularizing Conditional Random Fieldgprimarily non-local features that are not available in
(CRFs) with Gaussian priors (Lafferty et al., 2001)a context-free grammar.
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all sentences

Techniques like self-training (SELF) and system

Type‘

combinations (COMBO) can further improve pars- L=_LParser LP LR EX
ing accuracies, but are also orthogonal to our work —— ENG'—'SH'WQSZJO — |
In particular the COMBO methods seem related t IS Faper : . .

; Charniak (2000) 89.9 895 37.2

our work, but are very different in their nature.
While we use multiple grammars in our work, all
grammars are from the same model class for us. In
contrast, those methods rely on a diverse set of in
dividual parsers, each of which requires a signifi-
cant effort to build. Furthermore, those technique
have largely relied on different voting schemes in the|
past (Henderson and Brill, 1999; Sagae and Lavie Zhang et al. (2009) 93.3 920 .
2006), and only more recently have started using ac ENGLISH-BROWN |
tual posteriors from the underlying models (Fossum [ This Paper 365 863 358

Petrov and Klein (2007) | 90.2 90.1 36.7
Carreras et al. (2008) 91.4 90.7 -
Charniak et al. (2005) 91.8 912 448
Huang (2008) 922 912 435
Huang and Harper (2009) 91.3° 91.5 39.3
McClosky et al. (2006) 925 921 453
Sagae and Lavie (2006) | 93.2 91.0 -
Fossum and Knight (2009) 93.2  91.7 -

COMBO SELH RE [SINGLE

and Knight, 2009; Zhang et al., 2009). Even then, 2 | Charniak (2000) 829 829 317
those methods operate only over k-best lists, and weoz Petrov and Klein (2007) | 83.9 83.8 29.6
are the first to work directly with parse forests from | @ | Charniak et al. (2005) 86.1 85.2 36.8
multiple grammars. | GERMAN \

It is also interesting to note that the best results | This Paper 845 840 512
in Zhang et al. (2009) are achieved by combining k- 2 | Petrov and Klein (2007) | 80.0 80.2 424
o | Petrov and Klein (2008) | 80.6 80.8 43.9

best lists from a latent variable grammar of Petrov
etal. (2006) with the self-trained reranking parser ofaple 2: Final test set accuracies for English and German.
McClosky et al. (2006). Clearly, replacing the sin-
gle latent variable grammar with a product of latent

variable grammars ought to improve performance. gorithm. As our analysis showed, the grammars vary

The results on the other two corpora are similaividely, making very different errors. This is in part
A product of latent variable grammars very signifi-due to the fact that EM is used not only for estimat-
cantly outperforms a single latent variable grammang the parameters of the grammar, but also to deter-
and sets new standards for the state-of-the-art.  mine the set of context-free productions that under-

We also analyzed the errors of the product modie it. Because the resulting data representations are
els. In addition to the illustrative example in Fig-largely independent, they can be easily combined in
ure 5, we computed detailed error metrics for differan unweighted product model. The product model
ent phrasal categories. Figure 4 shows that a produbbes not require any additional training and is ca-
of four random grammars is always better than evepable of significantly improving the state-of-the-art
the best underlying grammar. The individual gramin parsing accuracy. It remains to be seen if a sim-
mars seem to learn different sets of constraints, anldr approach can be used in other cases where EM
the product model is able to model them all at oncegonverges to widely varying local maxima.

giving consistent accuracy improvements across all
metrics. Acknowledgements
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Abstract

Current statistical parsers tend to perform well
only on their training domain and nearby gen-
res. While strong performance on a few re-
lated domains is sufficient for many situations,
itis advantageous for parsers to be able to gen-
eralize to a wide variety of domains. When
parsing document collections involving het-
erogeneous domains (e.g. the web), the op-
timal parsing model for each document is typ-
ically not obvious. We study this problem as
a new task —multiple source parser adapta-
tion. Our system trains on corpora from many
different domains. It learns not only statistics
of those domains but quantitative measures of
domain differences and how those differences
affect parsing accuracy. Given a specific tar-
get text, the resulting system proposes linear
combinations of parsing models trained on the
source corpora. Tested across six domains,
our system outperforms all non-oracle base-
lines including the best domain-independent
parsing model. Thus, we are able to demon-
strate the value of customizing parsing models
to specific domains.
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syntax are domain dependent (typically at the lexi-
cal level), single parsing models tend to not perform
well across all domains (see Table 1). Thus, statis-
tical parsers inevitably learn some domain-specific
properties in addition to the more general properties
of a language’s syntax. Recently, Daumé IIl (2007)
and Finkel and Manning (2009) showed techniques
for training models that attempt to separate domain-
specific and general properties. However, even when
given models for multiple training domains, it is not
straightforward to determine which model performs
best on an arbitrary piece of novel text.

This problem comes to the fore when one wants
to parse document collections where each document
is potentially its own domain. This shows up par-
ticularly when parsing the web. Recently, there
has been much interest in applying parsers to the
web for the purposes of information extraction and
other forms of analysis (c.f. the CLSP 2009 summer
workshop “Parsing the Web: Large-Scale Syntactic
Processing”). The scale of the web demands an au-
tomatic solution to the domain detection and adap-
tation problems. Furthermore, it is not obvious that
human annotators can determine the optimal parsing
models for each web page.

Our goal is to study this exact problem. We create

In statistical parsing literature, it is common to se@ new parsing taskyultiple source parser adapta-

parsers trained and tested on the same textual doen, designed to capture cross-domain performance
main (Charniak and Johnson, 2005; McClosky etlong with evaluation metrics and baselines. Our
al., 2006a; Petrov and Klein, 2007; Carreras et alnew task involves training parsing models on labeled

2008; Suzuki et al., 2009, among others).

Unforand unlabeled corpora from a variety of domains

tunately, the performance of these systems degrad@surce domains). This is in contrast to standard do-
on sentences drawn from a different domain. Thimain adaptation tasks where there is a single source
issue can be seen across different parsing modelemain. For evaluation, one is given a teter¢et
(Sekine, 1997; Gildea, 2001; Bacchiani et al., 2006gxt) but not the identity of its domain. The chal-
McClosky et al., 2006b). Given that some aspects dénge is determining how to best use the available
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Test
Train BNC GENIA BROWN SWBD ETT WsSJ| Average
GENIA | 66.3 83.6 64.6 51.6 69.0 66.6 67.0
BROWN | 81.0 71.5 86.3 79.0 80.9 80. 79.9
SWBD 70.8 62.9 755 890 759 69.1f 739
ETT 72.7 65.3 75.4 75.2 819 732 73.9
WSJ 825 749 83.8 78.5 834 890 82.0

Table 1: Cross-domaiif-score performance of the Charniak (2000) parser. Averagesnacro-averages.
Performance drops as training and test domains divergev€age, thavsimodel is the most accurate.

resources from training to maximize accuracy across Multiple source domain adaptation has been done
multiple target texts. for other tasks (e.g. classification in (Blitzer et
Broadly put, we model how domain differencesal., 2007; Daumé IIl, 2007; Dredze and Cram-
influence parsing accuracy. This is done by takingner, 2008)) and is related to multitask learning.
several computational measures of domain diffeaumé Il (2007) shows that an extremely sim-
ences between the target text and each source gide method delivers solid performance on a num-
main. We use these features in a simple linear réer of domain adaptation classification tasks. This is
gression model which is trained to predict the accuachieved by making a copy of each feature for each
racy of a parsing model (or, more generally, a mixsource domain plus the “general” pseudodomain
ture of parsing models) on a target text. To parséor capturing domain independent features). This
the target text, one simply uses the mixture of parsllows the classifier to directly model which features
ing models with the highest predicted accuracy. Ware domain-specific. Finkel and Manning (2009)
show that our method is able to predict these acculemonstrate the hierarchical Bayesian extension of
racies quite well and thus effectively rank parsinghis where domain-specific models draw from a gen-
models formed from mixtures of labeled and autoeral base distribution. This is applied to classifica-
matically labeled corpora. tion (named entity recognition) as well as depen-
In Section 2, we detail recent work on similardency parsing. These works describe how to train
tasks. Our regression-based approach is coveredrirodels in many different domains but sidestep the
Section 3. We describe an evaluation strategy in Seproblem of domain detection. Thus, our work is or-
tion 4. Section 5 presents new baselines which ateogonal to theirs.
intended to give a sense of current approaches andoyr domain detection strategy draws on work in
their_limif[ations._ The results of our experiments ar‘?oarser accuracy prediction (Ravi et al., 2008; Kawa-
detailed in Section 6 where we show that our systeifarg and Uchimoto, 2008). These works aim to pre-
ogtperfo_rms a_II non-oracle baselines. We conclud&ict the parser performance on a given target sen-
with a discussion and future work (Section 7). tence. Ravi et al. (2008) frame this as a regression
2 Reated work problem. Kawaht_a_ra e_lnd Uchimoto (2098) treat it
as a binary classification task and predict whether
The closest work to ours is Plank and Sima’am specific parse is at a certain level of accuracy or
(2008), where unlabeled text is used to group setmgher. Ravi et al. (2008) show that their system
tences fromwsJinto subdomains. The authors cre-can be used to return a ranking over different parsing
ate a model for each subdomain which weights treeaodels which we extend to the multiple domain set-
from its subdomain more highly than others. Givering. They also demonstrate that training their model
the domain specific models, they consider differendn wsJ allows them to accurately predict parsing
parse combination strategies. Unfortunately, thessccuracy on th8ROWN corpus. In contrast, our
methods do not yield a statistically significant im-models are trained over multiple domains to model
provement. which factors influence cross-domain performance.
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3 Approach KWORDS returns the percentage of words in one
] ) _ domain which never appear in the other domain.
We start with the assumption that all target domain$pis can be done on the word type or token level.
are mixtures of our source domaihsintuitively, We opt for tokens since unknown words pose prob-
these mixtures should give higher probability masg, s for parsing each time they occunvkMWORDS
to more similar source domains. This raises thgqijes the percentage of words in the source
question of how to measure the similarity betweeomain that are never seen in the target domain.
doma_ms_. _Our method uses multiple complemer’whereas ©SINETOP50 examines how similar the
tary similarity measures between the target and ea%h frequency words are from one domainnU

source. We feed these similarity measures into a rWORDS tends to focus on the overlap of low fre-

gression model which learns how domain dISSImIquenCy words.

larities hurt parse accuracy. Thus, to parse a target no described. BSINETOP50 and WNKWORDS

domain, we need only find the input that maximize, o fnctions only of two source domains and do not
the regression function —thatis, the highest scoring, e the mixing weights of source domains into ac-
mixture of source domains. Our system is similar tQount. We experimented with several methods of in-

Ravi et al. (2008) in that both use regression to pres, orating mixing weights into the feature value.
dict f-scores and some of the features are related. In practice, the one which worked best for us is to

divide the mixture weight of the source domain by
the raw feature value. This has the nice property that
Our features are designed to help the regressi@fhen a source is not used, the adjusted feature value
model determine if a particular source domain mixis zero regardless of the raw feature value.
ture is well suited for a target domain as well as the From pilot studies, we learned that a uniform mix-
quality of a source domain mixture. While we ex-tyre of available source domains gave strong results
plored a large number of features, we present he(rther details on this in Section 5). Our last feature,
only the three that were chosen by our feature selegnTropy, is intended to let the regression system
tion method (Section 6.2). leverage this and measures the entropy of the distri-
Two of our features, GSINETOP50 and WN-  pution over source domains. This provides a sense
KWORDS, are designed to approximate how simiof uniformity.
lar the target domain is to a specific source domain.
Only the surface form of the target text and auto3-2 Predicting cross-domain accuracy
matic analyses are available (e.g. we can tag or parger a given source domain mixture, we can create
the target text, but cannot use gold tags or trees). a parsing model by linearly interpolating the pars-
Relative word frequencies are an important ining model statistics from each source domain. The
dicator of domain. Cosine similarity uses a spakey component of our approach is a domain-aware
tial representation to summarize the word frequerlinear regression model which predicts how well a
cies in a corpus as a single vector. A commospecific parsing model will do on a given target text.
method is to represent each corpus as a vector Dhe linear regressor is given values from the three
frequencies of thé most frequent words (Schuitze,features from the previous section@d€INETOP50,
1995). This method assigns high similarity to doUNkWORDS, and ENTROPY) and returns an esti-
mains with a large amount of overlap in the high-mate of thef-score the parsing model would achieve
frequency vocabulary items. We experimented witlthe target text.
several orders of magnitude fbr(our feature selec-  Training data for the regressor consists of ex-
tion method later choske = 50 — see Section 6.2). amples of source domain mixtures and their ac-
Our second feature for comparing domaingy-U tual f-scores on target texts. To produce this, we
Tmayseem like a major limitation, but as we will showrand-Omly sampled source dpmaln mixtures, created
, o . parsing models for those mixtures, and then evalu-
later, our method works quite well at incorporating sedfitied

(automatically parsed) corpora which can typically be oieta ~ ated the parsing models on _a” of our target texts.
for any domain. We used a simple technique for randomly sam-

3.1 Features
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87.5¢ ‘ ‘ ‘ ‘ — Train Test
/[JI Source  Target| Source Target
7o | C\{t} C\{i}[C\{t} {t}
86.5 (a) Out-of-domain evaluation
% 660 Train Test
2 Source Target| Source Target
855 C Cc\{§| c {4y
850 (b) In-domain evaluation
84.5 Table 2: List of domains allowed in single round of
84.0 { evaluation. In each round, the evaluation corpus is
C is the set of all target domains.

0 200 400 600 800 1000
Number of mixed parsing model samples

4 Evaluation
Figure 1: Cumulative oraclé¢-score (averaged over
all target domains) as more models are randomiyultiple-source domain adaptation is a new task for
sampled. Most of the improvement comes the firgtarsing and thus some thought must be given to eval-
200 samples indicating that our samples seem to lb@tion methodology. We describe two evaluation
sufficient to cover the space of good source domaiscenarios which differ in how foreign the target text
mixtures. is from our source domains. Schemas for these eval-
uation scenarios are shown in Table 2. Note that

training and testing here refer to training and testing

pling source domain mixtures. First, we sample thgs o regression modenot the parsing models.
number of source domains to use. We draw values | . first scenario out-of-domain evaluation

from an exponential distribution and take their inte_ - target domain is completely removed from con-

ger value until we obtain a number between two an%deration and only used to evaluate proposed mod-

the number of source domains. This is parametrize s at test time. The regressor is trained on training

so that we typically only use a few corpora but still _ . -
i oints that use any of the remaining corpdza,{¢},
have some chance of using all of them. Once wIO y g corpta, {t}

K h b f d . ISS sources or targets. For example, # wsJ we

now the number of source domains, We Sampi,, yrain the regressor on all data points which don’t
their identities uniformly at random without replace-usewSJ (or any self-trained corpora derived from
ment from the list of all source domains. Finally,

: . WSJ) as a source or target domain. At test time, we
we sample the weights for the source domains UNkre given the text ofvsJs test set. From this, our

formly from a simplex. The dimension of the sim- stem creates a parsing model using the remaining

: .S
plex is the sam_e as the nu_mber_ of_ sogrce doma'%%ailable corpora for parsing the rawsJtext.
so we end up with a probability distribution over the . . L
This evaluation scenario is intended to evaluate

sampled source domains. how well our system can adapt to an entirely new
In total, we sampled 1,040 source domain mix- y P y

domain with only raw text from the new domain
tures. We evaluated each of these source dom ! . . .
. . . o or example, parsing biomedical text when none
mixtures on the six target domains giving us 6,24

: . |% available in our list of source domains). Ide-

data points in total. One may be concerned tha
A - ally, we would have a large number of web pages
this is insufficient to cover the large space of source . .
. . - or other documents from other domains which we
domain mixtures. However, we show in Figure 1 .
- - “could use solely for evaluation. Unfortunately, at
that only about 200 samples are sufficient to ach|ev%. . .
) i this time, only a handful of domains have been an-

good oracle performanéeén practice.

notated with constituency structures under the same

2\We calculate this by picking the best available model fo——
each target domain and taking the average of tlfedcores. This can pick different models for each target domain.
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annotation guidelines. Instead, we hold out eactarget domain isvsJwhile the in-domain scenario
hand-annotated domain, (including any automat- uses thevsimodel throughout.

ically parsed corpora derived from that source do- There are several interesting oracle baselines as
main) as a test set in a round-robin fashforFor  \ell which serve to measure the limits of our ap-
each round of the round robin we obtain fscore proach.  These baselines examine the resulting
and we report the mean and variance of frecores  f.scores of models and pick the best model accord-
for each model. ing to some criteria. The first oracle baseline is
The second scenarion-domain evaluation, al- BesT SINGLE CORPUSwhich parses each corpus
lows the target domain, to be used as a sourcewith the source domain that maximizes performance
domain in training but not as a target domain. Thign the target domain. In almost all cases, this base-
is intended to evaluate the situation where the targgfe selects each corpus to parse itself.
domain is not actually that different from our source Our second oracle baselineEST SEEN, chooses

domalrrlls. The in-domain Izvalu?tlon csn a?promfhe best parsing model from all those explored for
mat(T ow ?]ur system wou pec'; orm w eg, hor ®Xzach test set. Recall that while training the regres-
ample, we havevsJjas a source domain and the tar;,, mogel in Section 3.2, we needed to explore

get text |s|ney|\:shfrom alsourcE other thﬂﬂh“l Thush many possible source domain mixtures to approxi-
our mpde still has to learn thavsJ and the North 0.0 e complete space of mixed parsing models.
Ame_rlcan News T?Xt Corp_USN('\NC) are good_for To the extent that we can fully explore the space of
parsing news text like/sawithout seeing any direct ;. g parsing models, this baseline represents an
_evaluatlons Of the sory(sJ andNANC can be used upper bound for model mixing approaches. Since
'?1 mo;:llels which are evaluated on elher corpora, fully exploring the space of possible weightings is
though). intractable, it is not a true upper bound. While it

. is theoretically possible to beat this pseudo-upper
5 Basdines bound, (indeed, this is the mark of a good domain

Given that this is a new task for parsing, we needeg€tection system) it is far from easy. We provide
to create baselines which demonstrate the curreREST SINGLE CORPUSand BEsT SeeN for both
approaches to multiple-source domain adaptatioffi-domain and out-of-domain scenarios. The out-of-
One approach is to take all available corpora andomain scenario r_estrlcts the set of pQSS|bIe models
mix them together uniformi$. The UNIFORM base-  t© those notincluding the target domain.
line does exactly this using the available hand-built Finally, we searched for the H5T OVERALL
training corpora. BLF-TRAINED UNIFORM uses MODEL. This is the model with the highest aver-
self-trained corpora as well. In the out-of-domairage f-score across all six target domains. This base-
scenario, these exclude the held out domain, but line can be thought of as an oracle version ofe#b
the in-domain setting, the held out domain is inSET: wsJand demonstrates the limit of using a sin-
cluded. These baselines are similar to the.A&and gle parsing model regardless of target domain. Natu-
WEIGHTED baselines in Daumé Il (2007). rally, the very nature of this baseline places it only in
Another simple baseline is to use the same par§1€ in-domain evaluation scenario. Since it was able
ing model regardless of target domain. This is ho0 select the model according fescores on our six
large heterogeneous document collections are typgRrget domains, its performance on domains outside
cally parsed currently. We use thesicorpus since that setis not guaranteed.
it is the best single corpus for parsing all six target To provide a better sense of the space of mixed
domains (see Table 1). We refer to this baseline gmrsing models, we also provide thed®sT SEEN
FIXED SET: wsd In the out-of-domain scenario, baseline which picks the worst model available for a
we fall back to &LF-TRAINED UNIFORM when the  specific target corpus.

3Thus, the schemas in Table 2 are schemas for each round.

4Accounting for size so that the larger corpora don’t over-  °This turns out to be&ENIA for all corpora other thagENIA
whelm the smaller ones. andswsD when the target domain SENIA.
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6 Experiments from Medline for our self-trained/EDLINE corpus.

. . _Unlike the other two self-trained corpora, we include
Our experiments use the Charniak (2000) generatl\f\%o versions ofMEDLINE. These differ on whether
parser. We describe the corpora used in our nir}%ey were parsed USINGENIA or WSJ as a base
source and six target domains in Section 6.1. In Se(r:ﬁodel to study the effect on cross-domain perfor-
tion 6.2, we provide a greedy strategy for pickin

; . : %nance. Finally, we use a small number of sentences
features to include in our regression model. The re. " .

. . . rom the British National Corpuss{ic) (Foster and
sults of our experiments are in Section 6.3.

van Genabith, 2008f The sentences were chosen
6.1 Corpora randomly, so each one is potentially from a different

. . . : domain. On the other hangNc can be thought of
We aimed to include as many different domains as_ . L : . L
S its own domain in that it contains significant lex-

possible annotated under compatible schemes. We . . . i
) . |8al differences from the American English used in
also tried to include human-annotated corpora an
. : our other corpora.
automatically labeled corpora (self-trained corpora Wi dth dardi
as in McClosky et al. (2006a) which have been fthe prepr(t)cte_zsse d'f; ecorpore_ll_Lo standar |zeltmany
shown to work well across domains). Our fina' N€ annotation dilterences. us, our resufts on

set includes text from newsmsJ NANC), broad- tEem may be Sl'ﬁlhtly (E[i;]ffelrent ttr;]an Othﬁr works r?n Id
cast newsgTT), literature BROWN, GUTENBERG), ese corpora. INEVerineless, these changes shou

biomedical GENIA, MEDLINE), Spontaneous speechnot significantly impact overall the performance.
(swBD), a_nd the British Natlonal CorpugKc). In 6.2 Feature sdection
our experiments, self-trained corpora cannot be use
as target domains since we lack gold annotations afMdhile our final model uses only three features, we
BNC is not used as a source domain due to its sizeonsidered many other possible features (not de-
An overview of our corpora is shown in Table 3.  scribed due to space constraints). In order to explore
We use news articles portion of the Wall Streethese without hill climbing on our test data, we cre-
Journal corpusws) from the Penn Treebank (Mar- ated a round-robin tuning scenario. Since the out-
cus et al., 1993) in conjunction with the self-trainedf-domain evaluation scenario holds out one target
North American News Text CorpusiANc, Graff domain, this gives us six test evaluation rounds. For
(1995)). The English Translation TreebarkrT each of these six rounds, we hold out one of the re-
(Bies, 2007), is the translatibrof broadcast news maining five target domains for tuning. This gives
in Arabic. For literature, we use thr@ROwN cor- us 30 tuning evaluation rounds and we pick our fea-
pus (Francis and Kutera, 1979) and the same diires to optimize our aggregate performance over all
vision as (Gildea, 2001; Bacchiani et al., 20060f them. A model that performs wellin this situation
McClosky et al., 2006b). We also use raw senhas proven that it has useful features which transfer
tences which we downloaded from Project Gutento unknown target domains.
berd as a self-trained corpus. The Switchboard cor- The next step is to determine the loss function
pus GwBD) consists of transcribed telephone conto minimize. Our primary guide isracle f-score
versations. While the original trees include disfluioss which we determine as follows. We take all
ency information, we assume our speech corpotast data points (i.e. mixed parsing models evalu-
have had speech repairs excised (e.g. using a syged on the target domain) and predict thiescores
tem such as Johnson et al. (2004)). Our biomedwith our model. In particular for this measure, we
cal data comes from theENIA treebanR (Tateisi are interested in the point with the highest predicted
et al., 2005), a corpus of abstracts from the Medf-score. We take its actugtscore which we call
line databas@.We downloaded additional sentenceshe candidate f-score. When tuning, we know the

®The transcription and translation were done by humans. true f-scores of all test points. The difference be-

"http://gutenberg.org/ tween the highestf-score (the oraclef-score for
8http://www-tsuijii.is.s.u-tokyo.ac.jp/

GENIA/ Phttp://nclt.computing.dcu.ie/ ~ jfoster/
®http:/iwww.ncbi.nim.nih.gov/PubMed/ resources/ , downloaded January 8th, 2009.
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Corpus Source? Target? Average length Train  Tune  Test
BNC o 28.3 — — 1,000
BROWN o o 20.0 19,786 2,082 2,439
ETT . . 25.6 2,639 1,029 1,166
GENIA o o 27.5 14,326 1,361 1,36(
MEDLINE ° 27.2 278,192 — —
SWBD o o 9.2 92,536 5,895 6,051
WSJ . . 25.5 39,832 1,346 2,416
NANC o 23.2 915,794  — —
GUTENBERG e 26.2 689,782 — —
MEDLINE ° 27.2 278,192 — —

Table 3: List of source and target domains, sizes of eactsidiviin trees, and average sentence length.
Indented rows indicate self-trained corpora parsed usiagnbn-indented row as a base parser.

this dataset) and the candidgtescore is the oracle results include thg-score macro-averaged over the
f-score loss. Ties need to be handled correctly tsix target domains and their standard deviation.
avoid degenerate modeisf there is a tie for high- |y poth situations, the IKED SET wsJ baseline

est predictedf-score, the candidaté-score is the performs fairly poorly. Not surprisingly, assuming
one with thelowest actual f-score. This approach i of our target domains are close enoughwtes
is conservative but ensures that regression modefgyks badly for our set of target domains and it
which give everything the same predictgdcore do ygeg particularly poorly osWBD and GENIA. On
not receive zero oraclg-score [0ss. average, the NIFORM baseline does slightly bet-
Armed with a tuning regime and a loss functionser for out-of-domain and over 3% better for in-

we created a procedure to pick the combination Qfomain. LniIForm actually does fairly well on out-
features to use. We used a parallelized best-firgt.qomain except oGENIA. In general, using more
search procedure. At each round, it expanded th@rce domains is better which partially explains the
current best set of features by adding or removing,ccess of NIFORM. This seems to be the case
each feature where ‘best’ was determined by the 10%nce even if a source domain is terribly mismatched
function. We explored over 6,000 settings, thouglyith the target domain, it may still be able to fil
the best setting of (NkWORDS COSINETOPSO,  jn some holes left by the other source domains. Of
ENTROPY) was found within the first 200 settings course, if it overpowers more relevant domains, per-
explored. The best setting obtains an orgékcore  formance may suffer. The ERF-TRAINED UNI-
loss of 0.37 and a root mean squared error of 0.48ry haseline uses even more source domains as
— these numbers are quite low and show the higlye|| a5 the largest ones. In both scenarios, this dra-
accuracy of our regression model (similar to thosgatically improves performance and is the second
in Ravi et al. (2008)). Additionally, the features arepest non-oracle system. This baseline provides more
complementary in that NKWORDSfocuses onlow  evidence as to the power of self-training for improv-
frequency words whereasdSINETOPSO0 looks only  ing parser adaptation. If we excluded all self-trained
at high frequency words andNEROPY functions as ¢orpora, our performance on this task would be sub-
aregularizer. stantially worse. We believe the self-trained cor-

pora are beneficial in this task since they help reduce
6.3 Results .

data sparsity of smaller corpora. The®r SINGLE
We present an overview of our final results for outCorpusbaseline is poor in the out-of-domain sce-
of-domain and in-domain evaluation in Table 4. Theyario primarily because the actual best single corpus
~ TiFor example, regression models which assign every parsifig €xcluded by the task specification in most cases.
model the sam¢-score. When we move to in-domain, this baseline improves
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Oracle Baseline or model Averagiescore | | Oracle Baseline or model Averagfescore
° Worst seen 62.6- 6.1 Fixed set:.wsJ 82.0+ 4.8
° Best single corpus 8148 2.9 Uniform 854+ 24
Fixed set:.wsJ 81.0+ 3.5 ° Best single corpus 8546 2.9
Uniform 81.4+ 3.6 Self-trained uniform 86.1% 2.0
Self-trained uniform 83.4-25 ° Best overall model 86.2 1.9
Our model 84.0+25 Our model 86.9+24
° Best seen 84.3 2.6 ° Best seen 87521
(a) Out-of-domain evaluation (b) In-domain evaluation

Table 4: Baselines and final results for the two multiplerseudomain adaptation evaluation scenarios.
Results includef-scores, macro-averaged over all six target domains airdsthedard deviations.

but is still worse than SLF-TRAINED UNIFORM On  ing accuracy. Using the parsing model with the
average. It beatsesF-TRAINED UNIFORM primar-  highest predicted-score leads to great performance
ily on wsJ swBD, andGENIA indicating that these in practice. There is a substantial benefit to doing
three domains are best when not diluted by otherthis over existing approaches (using the same model
By definition, the WORST SEENbaseline does terri- for all domains or mixing all training data together
bly, almost 20% worse thenesT SINGLE CORPUS  uniformly). Creating a number of domain-specific
Our model is the best non-oracle system for botimodels and mixing them together as needed is a vi-
evaluation scenarios. For out-of-domain evaluatiorgble approach.
our system is only 0.3% worse than the 8 SEEN One can think of our system as trying to esti-
models for each target domain. For the in-domaimate document-level context. Our representation of
scenario, we are within 0.6% of theEBT SEEN this context is simply a distribution over our source
models. For a sense of scale, our out-of-domain antbmains, but one can imagine more complex op-
in-domain f-scores onwsJ are 83.1% and 89.8% tions such as a high-dimensional vector space. Ad-
respectively. Both numbers are quite close to theitionally, our model separates domain and syntax
BEST SEEN baseline. Additionally, our model is estimation, but a future direction is to learn these
0.7% better than the BT OVERALL MODEL. Re- jointly. This would combine our work with (Daumé
call that the BEST OVERALL MODEL is the single 1lI, 2007; Finkel and Manning, 2009).
model with the best performance across all six tar- We have focused on the Charniak (2000) parser,
get domains? By beating this baseline, we showthe first stage in the two stage Charniak and John-
that there is value in customizing parsing modelgon (2005) reranking parser. Applying our methods
to the target domain. It is also interesting that theéo other generative parsers (such as (Collins, 1999:
BEST OVERALL MODEL is only marginally better Petrov and Klein, 2007)) is trivial, but it is less clear
than SELF-TRAINED UNIFORM. Without any fur-  how our methods can be applied to the discrimina-
ther information about the target corpus, an unintive reranker component of the two stage parser. One

formed prior appears best. avenue of approach is to incorporate the domain rep-
_ _ resentation into the feature space, as in Daumeé Il
7 Discussion (2007) but with more complex domain information.

We have shown that for both out-of-domain and in-
: : . Acknowledgments
domain evaluations, our system is well adapted to
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Abstract

This paper investigates using prosodic infor-
mation in the form of ToBI break indexes for
parsing spontaneous speech. We revisit two
previously studied approaches, one that hurt
parsing performance and one that achieved
minor improvements, and propose a new
method that aims to better integrate prosodic
breaks into parsing.  Although these ap-
proaches can improve the performance of ba-
sic probabilistic context free grammar (PCFG)
parsers, they all fail to produce fine-grained
PCFG models with latent annotations (PCFG-
LA) (Matsuzaki et al., 2005; Petrov and Klein,
2007) that perform significantly better than the
baseline PCFG-LA model that does not use
break indexes, partially due to mis-alignments
between automatic prosodic breaks and true
phrase boundaries. We propose two alterna-
tive ways to restrict the search space of the
prosodically enriched parser models to the n-
best parses from the baseline PCFG-LA parser
to avoid egregious parses caused by incor-
rect breaks. Our experiments show that all
of the prosodically enriched parser models can
then achieve significant improvement over the
baseline PCFG-LA parser.

1 Introduction

Speech conveys more than a sequence of words to
a listener. An important additional type of informa-
tion that phoneticians investigate is called prosody,
which includes phenomena such as pauses, pitch,
energy, duration, grouping, and emphasis. For a
review of the role of prosody in processing spo-
ken language, see (Cutler et al., 1997). Prosody
can help with the disambiguation of lexical meaning
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(via accents and tones) and sentence type (e.g., yes-
no question versus statement), provide discourse-
level information like focus, prominence, and dis-
course segment, and help a listener to discern a
speaker’s emotion or hesitancy, etc. Prosody often
draws a listener’s attention to important information
through contrastive pitch or duration patterns associ-
ated words or phrases. In addition, prosodic cues can
help one to segment speech into chunks that are hy-
pothesized to have a hierarchical structure, although
not necessarily identical to that of syntax. This sug-
gests that prosodic cues may help in the parsing of
speech inputs, the topic of this paper.

Prosodic information such as pause length, du-
ration of words and phones, pitch contours, en-
ergy contours, and their normalized values have
been used in speech processing tasks like sentence
boundary detection (Liu et al., 2005). In contrast,
other researchers use linguistic encoding schemes
like ToBI (Silverman et al., 1992), which encodes
tones, the degree of juncture between words, and
prominence symbolically. For example, a simplified
ToBI encoding scheme uses the symbol 4 for ma-
jor intonational breaks, p for hesitation, and 1 for all
other breaks (Dreyer and Shafran, 2007). In the lit-
erature, there have been several attempts to integrate
prosodic information to improve parse accuracy of
speech transcripts. These studies have used either
quantized acoustic measurements of prosody or au-
tomatically detected break indexes.

Gregory et al. (2004) attempted to integrate quan-
tized prosodic features as additional tokens in the
same manner that punctuation marks are added
into text. Although punctuation marks can signif-
icantly improve parse accuracy of newswire text,
the quantized prosodic tokens were found harm-

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 37-45,
Los Angeles, California, June 2010. (©2010 Association for Computational Linguistics



ful to parse accuracy when inserted into human-
generated speech transcripts of the Switchboard cor-
pus. The authors hypothesized that the inserted
pseudo-punctuation break n-gram dependencies in
the parser model, leading to lower accuracies. How-
ever, another possible cause is that the prosody has
not been effectively utilized due to the fact that
it is overloaded; it not only provides information
about phrases, but also about the state of the speaker
and his/her sentence planning process. Hence, the
prosodic information may at times be more harmful
than helpful to parsing performance.

In a follow-on experiment, Kahn et al. (2005), in-
stead of using raw quantized prosodic features, used
three classes of automatically detected ToBI break
indexes (1, 4, or p) and their posteriors. Rather than
directly incorporating the breaks into the parse trees,
they used the breaks to generate additional features
for re-ranking the n-best parse trees from a gener-
ative parsing model trained without prosody. They
were able to obtain a significant 0.6% improvement
on Switchboard over the generative parser, and a
more modest 0.1% to 0.2% improvement over the
reranking model that also utilizes syntactic features.

Dreyer and Shafran (2007) added prosodic breaks
into a generative parsing model with latent vari-
ables. They utilized three classes of ToBI break in-
dexes (1, 4, and p), automatically predicted by the
approach described in (Dreyer and Shafran, 2007;
Harper et al., 2005). Breaks were modeled as a se-
quence of observations parallel to the sentence and
each break was generated by the preterminal of the
preceding word, assuming that the observation of a
break, b, was conditionally independent of its pre-
ceding word, w, given preterminal X:

P(w,b|X) = P(w]|X)P(b|X) 1)

Their approach has advantages over (Gregory et al.,
2004) in that it does not break n-gram dependencies
in parse modeling. It also has disadvantages in that
the breaks are modeled by preterminals rather than
higher level nonterminals, and thus cannot directly
affect phrasing in a basic PCFG grammar. How-
ever, they addressed this independence drawback by
splitting each nonterminal into latent tags so that the
impact of prosodic breaks could be percolated into
the phrasing process through the interaction of la-
tent tags. They achieved a minor 0.2% improvement
over their baseline model without prosodic cues and
also found that prosodic breaks can be used to build
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more compact grammars.

In this paper, we re-investigate the models of
(Gregory et al., 2004) and (Dreyer and Shafran,
2007), and propose a new way of modeling that
can potentially address the shortcomings of the two
previous approaches. We also attribute part of the
failure or ineffectiveness of the previously investi-
gated approaches to errors in the quantized prosodic
tokens or automatic break indexes, which are pre-
dicted based only on acoustic cues and could mis-
align with phrase boundaries. We illustrate that
these prosodically enriched models are in fact highly
effective if we systematically eliminate bad phrase
and hesitation breaks given their projection onto the
reference parse trees. Inspired by this, we pro-
pose two alternative rescoring methods to restrict
the search space of the prosodically enriched parser
models to the n-best parses from the baseline PCFG-
LA parser to avoid egregious parse trees. The effec-
tiveness of our rescoring method suggests that the
reranking approach of (Kahn et al., 2005) was suc-
cessful not only because of their prosodic feature de-
sign, but also because they restrict the search space
for reranking to n-best lists generated by a syntactic
model alone.

2 Experimental Setup

Due to our goal of investigating the effect of
prosodic information on the accuracy of state of the
art parsing of conversational speech, we utilize both
Penn Switchboard (Godfrey et al., 1992) and Fisher
treebanks (Harper et al., 2005; Bies et al., 2006), for
which we also had automatically generated break in-
dexes from (Dreyer and Shafran, 2007; Harper et al.,
2005)". The Fisher treebank is a higher quality pars-
ing resource than Switchboard due to its greater use
of audio and refined specifications for sentence seg-
mentation and disfluency markups, and so we utilize
its eval set for our parser evaluation; the first 1,020
trees (7,184 words) were used for development and
the remaining 3,917 trees (29,173 words) for eval-
uation. We utilized the Fisher devl and dev2 sets
containing 16,519 trees (112,717 words) as the main
training data source and used the Penn Switchboard

'A small fraction of words in the Switchboard treebank
could not be aligned with the break indexes that were produced
based on a later refinement of the transcription. We chose not
to alter the Switchboard treebank, so in cases of missing break
values, we heuristically added break *1* to words in the middle
of a sentence and *4* to words that end a sentence.



treebank containing 110,504 trees (837,863 words)
as an additional training source to evaluate the ef-
fect of training data size on parsing performance.
The treebank trees are normalized by downcasing
all terminal strings and deleting punctuation, empty
nodes, and nonterminal-yield unary rules that are not
related to edits.

We will compare~ three prosodically enriched
PCFG models described in the next section, with a
baseline PCFG parser. We will also utilize a state
of the art PCFG-LA parser (Petrov and Klein, 2007;
Huang and Harper, 2009) to examine the effect of
prosodic enrichment®. Unlike (Kahn et al., 2005),
we do not remove EDITED regions prior to parsing
because parsing of EDITED regions is likely to ben-
efit from prosodic information. Also, parses from all
models are compared with the gold standard parses
in the Fisher evaluation set using SParseval bracket
scoring (Harper et al., 2005; Roark et al., 2006)
without flattening the EDITED constituents.

2

3 Methods of Integrating Breaks

Rather than using quantized raw acoustic features as
in (Gregory et al., 2004), we use automatically gen-
erated ToBI break indexes as in (Dreyer and Shafran,
2007; Kahn et al., 2005) as the prosodic cues, and
investigate three alternative methods of modeling
prosodic breaks. Figure 1 shows parse trees for the
four models for processing the spontaneous speech
transcription she’s she would do, where the speaker
hesitated after saying she’s and then resumed with
another utterance she would do. Each word input
into the parser has an associated break index repre-
sented by the symbol 1, 4, or p enclosed in asterisks
indicating the break after the word. The automat-
ically detected break *4* after the contraction is a
strong indicator of an intonational phrase boundary
that might provide helpful information for parsing if
modeled appropriately. Figure 1 (a) shows the ref-
erence parse tree (thus the name REGULAR) where

the break indexes are not utilized. .
The first method to incorporate break indexes,

BRKINSERT, shown in Figure 1 (b), treats the *p*
and *4* breaks as tokens, placing them under the

>We use Bikel’s randomized parsing evaluation comparator
to determine the significance (p < 0.005) of the difference be-
tween two parsers’ outputs.

>Due to the randomness of parameter initialization in the
learning of PCFG-LA models with increasing numbers of latent
tags, we train each latent variable grammar with 10 different
seeds and report the average F score on the evaluation set.
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N|P VIP NIP \{P NP VP N|P / VP
PRP VIISZ PRP MD VB PRP VIIBZ PRP MD VB
she *1* s *4* she *1*would *1* do *4* she *1* s *4* she *1*would *1* do *4*

(a) REGULAR (b) BRKINSERT

/S o
EDITED \ EDITED - \ ™.
h! \,
S VP S \ VPN
—— — —— —
NIP VIP NIP \{P NIP\\ VIP H NIP\\ / \:P \
PRP~, VBZs, PRP+  MD-~, VB, PRP | VBZ | PRP % MD-o, VB 4
\ \ \ \ J ! ' \ \
she *1* s *4% she *I*would *1* do *4* she *1* s *4% she *I*would *1* do *4*
(c) BRKPOS (d) BRKPHRASE

Figure 1: Modeling Methods

highest nonterminal nodes so that the order of words
and breaks remain unchanged in the terminals. This
is similar to (Gregory et al., 2004), except that auto-
matically generated ToBI breaks are used rather than
quantized raw prosodic tokens.

The second method, BRKPOS, shown in Fig-
ure 1 (c), treats breaks as a sequence of observa-
tions parallel to the words in the sentence as in
(Dreyer and Shafran, 2007). The dotted edges in
Figure 1 (c) represent the relation between pretermi-
nals and prosodic breaks, and we call them prosodic
rewrites, with analogy to grammar rewrites and lex-
ical rewrites. The generation of words and prosodic
breaks is assumed to be conditionally independent
given the preterminal, as in Equation 1.

The third new method, BRKPHRASE, shown in
Figure 1 (d), also treats breaks as a sequence of ob-
servations parallel to the sentence; however, rather
than associating the prosodic breaks with the preter-
minals, each is generated by the highest nonterminal
(including preterminal) in the parse tree that covers
the preceding word as the right-most terminal. The
observation of break, b, is assumed to be condition-
ally independent of grammar or lexical rewrite, 7,
given the nonterminal X:

P(r,b|X) = P(r|X)P(bX) 2)

The relation is indicated by the dotted edges in Fig-
ure 1 (d), and it is also called a prosodic rewrite.
The potential advantage of BRKPHRASE is that it
does not break or fragment n-gram dependencies of
the grammar rewrites, as in the BRKINSERT method,
and it directly models the dependency between
breaks and phrases, which the BRKPOS method ex-
plicitly lacks.

4 Model Training

Since automatically generated prosodic breaks are
incorporated into the parse trees deterministi-



cally for all of the three enrichment methods
(BRKINSERT, BRKPOS, and BRKPHRASE), train-
ing a basic PCFG is straightforward; we simply pull
the counts of grammar rules, lexical rewrites, or
prosodic rewrites from the treebank and normalize
them to obtain their probabilities.

As is well known in the parsing community, the
basic PCFG does not provide state-of-the-art per-
formance due to its strong independence assump-
tions. We can relax these assumptions by explicitly
incorporating more information into the conditional
history, as in Charniak’s parser (Charniak, 2000);
however, this would require sophisticated engineer-
ing efforts to decide what to include in the history
and how to smooth probabilities appropriately due
to data sparsity. In this paper, we utilize PCFG-LA
models (Matsuzaki et al., 2005; Petrov and Klein,
2007) that split each nonterminal into a set of latent
tags and learn complex dependencies among the la-
tent tags automatically during training. The result-
ing model is still a PCFG, but it is probabilistically
context free on the latent tags, and the interaction
among the latent tags is able to implicitly capture
higher order dependencies among the original non-
terminals and observations. We follow the approach
in (Huang and Harper, 2009) to train the PCFG-LA
models.

5 Parsing

In a basic PCFG without latent variables, the goal
of maximum probability parsing is to find the most
likely parse tree given a sentence based on the gram-
mar. Suppose our grammar is binarized (so it con-
tains only unary and binary grammar rules). Given
an input sentence w} = wi, w2, - - , Wy, the inside
probability, P(i,j, X), of the most likely sub-tree
that is rooted at nonterminal X and generates sub-
sequence w; can be computed recursively by:

P(i,j,X) = max(m}a}xP(i,j,Y)P(X —Y),
Pli.k Y)P(k 11,5, Z)P(X — Y 2)) ()

max
i<k<jY,Z

Backtracing the search process then returns the most
likely parse tree for the REGULAR grammar.

The same parsing algorithm can be directly ap-
plied to the BRKINSERT grammar given that the
break indexes are inserted appropriately into the in-
put sentence as additional tokens. Minor modifica-
tion is needed to extend the same parsing algorithm
to the BRKPOS grammar. The only difference is that
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the inside probability of a preterminal is set accord-
ing to Equation 1. The rest of the algorithm proceeds
as in Equation 3.

However, parsing with the BRKPHRASE grammar
is more complicated because whether a nonterminal
generates a break or not is determined by whether
it is the highest nonterminal that covers the preced-
ing word as its right-most terminal. In this case,
the input observation also contains a sequence of
break indexes b = by,bo, - ,b, that is parallel
to the input sentence w} = w1, wa, - ,wy. Let
P(i,7,X,0) be the probability of the most likely
sub-tree rooted at nonterminal X over span (i, j)

that generates word sequence w!, as well as break

(2
index sequence b{fl, excluding b;. According to
the independence assumption in Equation 2, with
the addition of prosodic edge X — b;, the same
sub-tree also has the highest probability, denoted by
P(i,j,X,1), of generating word sequence w; to-
gether with the break index sequence b]. Thus we
have:

The structural constraint that a break index is only
generated by the highest nonterminal that covers
the preceding word as the right-most terminal en-
ables a dynamic programming algorithm to compute
P(i,7,X,0) and thus P(i,j, X, 1) efficiently. If the
sub-tree (without the prosodic edge that generates
b;) over span (i, j) is constructed from a unary rule
rewrite X — Y, then the root nonterminal Y of
some best sub-tree over the same span (i, j) can not
generate break b; because it has a higher nontermi-
nal X that also covers word w; as its right-most ter-
minal. If the sub-tree is constructed from a binary
rule rewrite X — Y Z, then the root nonterminal Y
of some best sub-tree over some span (7, k) will gen-
erate break by because Y is the highest nonterminal
that covers word wy, as the right-most terminal®. In
contrast, the root nonterminal Z of some best sub-
tree over some span (k+1, j) can not generate break
b; because Z has a higher nonterminal X that also
covers word w; as its right-most terminal. Hence,

*Use of left-branching is required for the BRKPHRASE
method to ensure that the prosodic breaks are associated with
the original nonterminals, not intermediate nonterminals in-
troduced by binarization. Binarization is needed for efficient
parametrization of PCFG-LA models and left- versus right-
branching binarization does not significantly affect model per-
formance; hence, we use left-branching for all models.



P(i,j,X,1) and P(i,j, X,0) can be computed re-
cursively by Equation 4 above and Equation 5 be-
low:

P(i,j3,X,0) = max(m&x P(i,5,Y,00P(X —Y),

P(i,k,Y,)P(k+1,§,Z,00P(X - Y Z 5
s (i, k, Y,1)P(k+ 1,4, Z,0)P(X — Y Z)) 6))

Although dynamic programming algorithms exist
for maximum probability decoding of basic PCFGs
without latent annotations for all four methods, it is
an NP hard problem to find the most likely parse tree
using PCFG-LA models. Several alternative decod-
ing algorithms have been proposed in the literature
for parsing with latent variable grammars. We use
the best performing max-rule-product decoding al-
gorithm, which searches for the best parse tree that
maximizes the product of the posterior rule (either
grammar, lexical, or prosodic) probabilities, as de-
scribed in (Petrov and Klein, 2007) for our models
with latent annotations and extend the dynamic pars-
ing algorithm described in Equation 5 for the BRK-
PHRASE grammar with latent annotations.

6 Results on the Fisher Corpus
6.1 Prosodically Enriched Models

Table 1 reports the parsing accuracy of the four basic
PCFGs without latent annotations when trained on
the Fisher training data. All of the grammars have a
low F score of around 65% due to the overly strong
and incorrect independence assumptions. We ob-
serve that the BRKPHRASE grammar benefits most
from breaks, significantly improving the baseline
accuracy from 64.9% to 67.2%, followed by the
BRKINSERT grammar, which at 66.2% achieves a
smaller improvement. The BRKPOS grammar ben-
efits the least among the three because breaks are
attached to the preterminals and thus have less im-
pact on phrasing due to the independence assump-
tions in the basic PCFG. In contrast, both the BRK-
PHRASE and BRKINSERT methods directly model
the relationship between breaks and phrase bound-
aries through governing nonterminals; however, the
BRKPHRASE method does not directly change any
of the grammar rules in contrast to the BRKINSERT
method that more or less breaks n-gram dependen-
cies and fragments rule probabilities.

The bars labeled DIRECT in Figure 2 report the
parsing performance of the four PCFG-LA models
trained on Fisher. The introduction of latent anno-
tations significantly boosts parsing accuracies, pro-
viding relative improvements ranging from 16.8%
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REGULAR | BRKINSERT | BRKPOS | BRKPHRASE
649 | 662 | 652 | 612
Table 1: Fisher evaluation parsing results for the basic
PCFGs without latent annotations trained on the Fisher
training set.

up to 19.0% when trained on Fisher training data
due to the fact that the PCFG-LA models are able
to automatically learn more complex dependencies
not captured by basic PCFGs.

85.5

84.5

839

- J
82.5

REGULAR

BRKINSERT BrxPos BRKPHRASE

DIRECT mmmmm ORACLERESCORE i

ORACLE {7770 DIRECTRESCORE £

Figure 2: Parsing results on the Fisher evaluation set
of the PCFG-LA models trained on the Fisher training
data. The DIRECT bars represent direct parsing results for
models trained and evaluated on the original data, ORA-
CLE bars for models trained and evaluated on the modi-
fied oracle data (see Subsection 6.2), and the ORACLE-
RESCORE and DIRECTRESCORE bars for results of the
two rescoring approaches (described in Subsection 6.3)
on the original evaluation data.

However, the prosodically enriched methods do
not significantly improve upon the REGULAR base-
line after the introduction of latent annotations. The
BRKPHRASE method only achieves a minor in-
significant 0.1% improvement over the REGULAR
baseline; whereas, the BRKINSERT method is a sig-
nificant 0.7% worse than the baseline. Similar re-
sults for BRKINSERT were reported in (Gregory et
al., 2004), where they attributed the degradation to
the fact that the insertion of the prosodic “punctua-
tion” breaks the n-gram dependencies. Another pos-
sible cause is that the insertion of “bad” breaks that
do not align with true phrase boundaries hurts per-
formance more than the benefits gained from “good”
breaks due to the tightly integrated relationship be-
tween phrases and breaks. For the BRKPOS method,
the impact of break indexes is implicitly percolated
to the nonterminals through the interaction among
latent tags, as discussed in (Dreyer and Shafran,
2007), and its performance may thus be less affected
by the “bad” breaks. With latent annotations (in con-
trast to the basic PCFG), the model is now signif-
icantly better than BRKINSERT and is on par with
BRKPHRASE.



6.2 Models with Oracle Breaks

In order to determine whether “bad” breaks limit
the improvements in parsing performance from
prosodic enrichment, we conducted a simple ora-
cle experiment where all *p* and *4* breaks that
did not align with phrase boundaries in the tree-
bank were systematically converted to *1* breaks>.
When trained and evaluated on this modified ora-
cle data, all three prosodically enriched latent vari-
able models improve by about 1% and were then
able to achieve significant improvements over the
REGULAR PCFG-LA baseline, as shown by the bars
labeled ORACLE in Figure 2. It should be noted,
however, that the BRKINSERT method is much less
effective than the other two methods in the oracle
experiment, suggesting that broken n-gram depen-
dencies affect the model in addition to the erroneous
breaks.

6.3 N-Best Re-Scoring

As mentioned previously, prosody does not only
provide information about phrases, but also about
the state of the speaker and his/her sentence plan-
ning process. Given that our break detector uti-
lizes only acoustic knowledge to predict breaks, the
recognized *p* and *4* breaks may not correctly
reflect hesitations and phrase boundaries. Incor-
rectly recognized breaks could hurt parsing more
than the benefit brought from the correctly recog-
nized breaks, as demonstrated by superior perfor-
mance of the prosodically enhanced models in the
oracle experiment. We next describe two alternative
methods to make better use of automatic breaks.

In the first approach, which is called ORACLE-
RESCORE, we train the prosodically enhanced
grammars on cleaned-up break-annotated training
data, where misclassified *p* and *4* breaks are
converted to *1* breaks (as in the oracle experi-
ment). If these grammars were used to directly parse
the test sentences with automatically detected (un-
modified) breaks, the results would be quite poor
due to mismatch between the training and testing
conditions. However, we can automatically bias
against potentially misclassified *p* and *4* breaks
if we utilize information provided by n-best parses
from the baseline REGULAR PCFG-LA grammar.

>Other sources of errors include misclassification of *p*
breaks as *1* or *4* and misclassification of *4* breaks as *1*
or *p*. Although these errors are not repaired in the oracle ex-
periment, fixing them could potentially provide greater gains.
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For each hypothesized parse tree in the n-best list,
the *p* and *4* breaks that do not align with the
phrase boundaries of the hypothesized parse tree are
converted to *1* breaks, and then a new score is
computed using the product of posterior rule proba-
bilities®, as in the max-rule-product criterion, for the
hypothesized parse tree using the grammars trained
on the cleaned-up training data. In this approach,
we convert the posterior probability, P(T'|W, B),
of parse tree T given words W and breaks B
to P(B'|W,B)P(T|W,B’), where B’ is the new
break sequence constrained by 7, and simplify it to
P(T|W, B’), assuming that conversions to a new se-
quence of breaks as constrained by a hypothesized
parse tree are equally probable given the original se-
quence of breaks. We consider this to be a reason-
able assumption for a small n-best (n = 50) list with
reasonably good quality.

In the second approach, called DIRECTRESCORE,
we train the prosodically enhanced PCFG-LA mod-
els using unmodified, automatic breaks, and then
use them to rescore the n-best lists produced by
the REGULAR PCFG-LA model to avoid the poorer
parse trees caused by fully trusting automatic break
indexes. The size of the n-best list should not be too
small or too large, or the results would be like di-
rectly parsing with REGULAR when n = 1 or with
the prosodically enriched model when n — oo.

The ORACLERESCORE and DIRECTRESCORE
bars in Figure 2 report the performance of the
prosodically enriched models with the correspond-
ing rescoring method. Both methods use the same
50-best lists produced by the baseline REGULAR
PCFG-LA model using the max-rule-product cri-
terion. Both rescoring methods produce signifi-
cant improvements in the performance of all three
prosodically enriched PCFG-LA models. The pre-
viously ineffective (0.7% worse than REGULAR)
BRKINSERT PCFG-LA model is now 0.3% and
0.5% better than the REGULAR baseline using
the ORACLERESCORE and DIRECTRESCORE ap-
proaches, respectively. The best performing BRK-
Pos and BRKPHRASE rescoring models are 0.6-
0.9% better than the REGULAR baseline. It is in-
teresting to note that rescoring with models trained
on cleaned up prosodic breaks is somewhat poorer

The product of posterior rule probabilities of a parse tree
is more suitable for rescoring than the joint probability of the
parse tree and the observables (words and breaks) because the
breaks are possibly different for different trees.



than models trained using all automatic breaks.

7 Models with Augmented Training Data

Figure 3 reports the evaluation results for mod-
els that are trained on the combination of Fisher
and Switchboard training data. With the additional
Switchboard training data, the nonterminals can be
split into more fine-grained latent tags, enabling the
learning of deeper dependencies without over-fitting
the limited sized Fisher training data. This improved
all models by at least 2.6% absolute. Note also that
the patterns observed for models trained using the
larger training set are quite similar to those from us-
ing the smaller training set in Figure 2. The prosod-
ically enriched models all benefit significantly from
the oracle breaks and from the rescoring methods.
The BRKPOS and BRKPHRASE methods, with the
additional training data, also achieve significant im-
provements over the REGULAR baseline without
rescoring.
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DIRECT = ORACLERESCORE

ORACLE Il DIRECTRESCORE !

Figure 3: Parsing results on the Fisher evaluation set of
the PCFG-LA models trained on the Fisher+Switchboard
training data.

8 Error Analysis

In this section, we compare the errors of the
BRKPHRASE PCFG-LA model and the DIRECT-
RESCORE approach for that model to each other and
to the baseline PCFG-LA model without prosodic
breaks. All models are trained and tested on Fisher
as in Section 6. The results using other prosodically
enhanced PCFG-LA models and their rescoring al-
ternatives show similar patterns.

Figure 4 depicts the difference in F scores be-
tween BRKPHRASE and REGULAR and between
BRKPHRASE+DIRECTRESCORE and REGULAR on
a tree-by-tree basis in a 2D plot. Each quad-
rant also contains +/— signs roughly describing how
much BRKPHRASE+DIRECTRESCORE is better (+)
or worse (—) than BRKPHRASE and a pair of num-
bers (a,b), in which a represents the percentage of
sentences in that quadrant containing *p* or *4*
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Figure 4: 2D plot of the difference in F scores be-
tween BRKPHRASE and REGULAR and between BRK-
PHRASE+DIRECTRESCORE and REGULAR, on a tree-
by-tree basis, where each dot represents a test sentence.
Each quadrant also contains +/— signs roughly describ-
ing how much BRKPHRASE+DIRECTRESCORE is better
(+) or worse (—) than BRKPHRASE and a pair of numbers
(a,b), in which a represents the percentage of sentences
in that quadrant containing *p* or *4* breaks that do not
align with true phrase boundaries, and b represents the
percentage of such *p* and *4* breaks among the total
number of *p* and *4* breaks in that quadrant.

breaks that do not align with true phrase bound-
aries, and b represents the percentage of such *p*
and *4* breaks among the total number of *p* and
*4* breaks in that quadrant.

Each dot in the top-right quadrant represents a
test sentence for which both BRKPHRASE and BRK-
PHRASE+DIRECTRESCORE produce better trees
than the baseline REGULAR PCFG-LA model. The
BRKPHRASE+DIRECTRESCORE approach is on av-
erage slightly worse than the BRKPHRASE method
(hence the single minus sign), although it also often
produces better parses than BRKPHRASE alone. In
contrast, the BRKPHRASE+DIRECTRESCORE ap-
proach on average makes many fewer errors than
BRKPHRASE (hence ++) as can be observed in the
bottom-left quadrant, where both approaches pro-
duce worse parse trees than the REGULAR base-
line. The most interesting quadrant is on the top-left
where the BRKPHRASE approach always produces
worse parses than the REGULAR baseline while the
BRKPHRASE+DIRECTRESCORE approach is able
to avoid these errors while producing better parses
than the baseline (hence +++). Although the BRK-
PHRASE+DIRECTRESCORE approach can also pro-
duce worse parses than REGULAR, as in the bottom-
right quadrant (hence ——-), altogether the quad-
rants suggest that, by restricting the search space



to the n-best lists produced by the baseline REG-
ULAR parser, the BRKPHRASE+DIRECTRESCORE
approach is able to avoid many bad parses trees
at the expense of somewhat poorer parses in cases
when BRKPHRASE is able to benefit from the full
search space.

The reader should note that the top-left quadrant
of Figure 4 has the highest percentage (70.2%) of
sentences with “bad” *p* and *4* breaks and the
highest percentage (30.0%) of such “bad” breaks
among all breaks. This evidence supports our argu-
ment that “bad” breaks are harmful to parsing per-
formance and some parse errors caused by mislead-
ing breaks can be resolved by limiting the search
space of the prosodically enriched models to the
n-best lists produced by the baseline REGULAR
parser. However, the significant presence of “bad”
breaks in the top-right quadrant also suggests that
the prosodically enriched models are able to pro-
duce better parses than the baseline despite the pres-
ence of “bad” breaks, probably because the models
are trained on the mixture of both “good” and “bad”
breaks and are able to somehow learn to use “good”
breaks while avoiding being misled by “bad” breaks.

BRKPHRASE

REGULAR | BRKPHRASE | +DIRECTRESCORE
NP 90.4 90.4 90.9
VP 84.7 84.7 85.6
S 84.4 84.3 85.2
INTJ 93.0 93.4 93.4
PP 76.5 76.7 77.9
EDITED 60.4 62.2 63.3
SBAR 67.2 67.0 68.8

Table 2: F scores of the seven most frequent non-
terminals of the REGULAR, BRKPHRASE, and BRK-
PHRASE+DIRECTRESCORE models.

Table 2 reports the F scores of the seven most fre-
quent phrases for the REGULAR, BRKPHRASE, and
BRKPHRASE+DIRECTRESCORE methods trained
on Fisher. When comparing the BRKPHRASE
method to REGULAR, the break indexes help to im-
prove the score for edits most, followed by inter-
jections and prepositional phrases; however, they do
not improve the accuracy of any of the other phrases.
The BRKPHRASE+DIRECTRESCORE approach ob-
tains improvements on all of the major phrases.

Figure 5 (a) shows a reference parse tree of a
test sentence. The REGULAR approach correctly
parses the first half (omitted) of the sentence but
it fails to correctly interpret the second half (as
shown). The BRKPHRASE approach, in contrast,
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is misguided by the incorrectly classified inter-
ruption point *p* after word “has”, and so pro-
duces an incorrect parse early in the sentence. The
BRKPHRASE+DIRECTRESCORE approach is able
to provide the correct tree given the n-best list pro-
duced by the REGULAR approach, despite the break
index errors.

5Q

= —
like VBZ anything like VP

has VP or anything

affected you personally
(a) Reference, BRKPHRASE+DIRECTRESCORE
50

=7 S
VP

N like EDITED anything like
affected NP |

has

you personally or anything

(b) REGULAR (c) BRKPHRASE

Figure 5: Parses for likei. has.p« anything.i. like,.
affected, . Yousa, personally.. ory1s anything..4.

9 Conclusions

We have investigated using prosodic information in
the form of automatically detected ToBI break in-
dexes for parsing spontaneous speech by compar-
ing three prosodic enrichment methods. Although
prosodic enrichment improves the basic PCFGs, that
performance gain disappears when latent variables
are used, partly due to the impact of misclassified
(“bad”) breaks that are assigned to words that do not
occur at phrase boundaries. However, we find that
by simply restricting the search space of the three
prosodically enriched latent variable parser models
to the n-best parses from the baseline PCFG-LA
parser, all of them attain significant improvements.
Our analysis more fully explains the positive results
achieved by (Kahn et al., 2005) from reranking with
prosodic features and suggests that the hypothesis
that inserted prosodic punctuation breaks n-gram de-
pendencies only partially explains the negative re-
sults of (Gregory et al., 2004). Our findings from
the oracle experiment suggest that integrating ToBI
classification with syntactic parsing should increase
the accuracy of both tasks.
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Abstract

For extractive meeting summarization, previ-
ous studies have shown performance degrada-
tion when using speech recognition transcripts
because of the relatively high speech recogni-
tion errors on meeting recordings. In this pa-
per we investigated using confusion networks
to improve the summarization performance
on the ASR condition under an unsupervised
framework by considering more word candi-
dates and their confidence scores. Our ex-
perimental results showed improved summa-
rization performance using our proposed ap-
proach, with more contribution from leverag-
ing the confidence scores. We also observed
that using these rich speech recognition re-
sults can extract similar or even better sum-
mary segments than using human transcripts.

1 Introduction

Speech summarization has received increasing in-
terest recently. It is a very useful technique that
can help users to browse a large amount of speech
recordings. The problem we study in this paper is
extractive meeting summarization, which selects the
most representative segments from the meeting tran-
scripts to form a summary. Compared to text sum-
marization, speech summarization is more challeng-
ing because of not only its more spontaneous style,
but also word errors in automatic speech recogni-
tion (ASR) output. Intuitively the incorrect words
have a negative impact on downstream summariza-
tion performance. Previous research has evaluated
summarization using either the human transcripts or
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ASR output with word errors. Most of the prior
work showed that performance using ASR output is
consistently lower (to different extent) comparing to
that using human transcripts no matter whether su-
pervised or unsupervised approaches were used.

To address the problem caused by imperfect
recognition transcripts, in this paper we investigate
using rich speech recognition results for summariza-
tion. N-best hypotheses, word lattices, and confu-
sion networks have been widely used as an inter-
face between ASR and subsequent spoken language
processing tasks, such as machine translation, spo-
ken document retrieval (Chelba et al., 2007; Chia
et al.,, 2008), and shown outperforming using 1-
best hypotheses. However, studies using these rich
speech recognition results for speech summariza-
tion are very limited. In this paper, we demonstrate
the feasibility of using confusion networks under an
unsupervised MMR (maximum marginal relevance)
framework to improve summarization performance.
Our experimental results show better performance
over using 1-best hypotheses with more improve-
ment observed from using confidence measure of the
words. Moreover, we find that the selected summary
segments are similar to or even better than those gen-
erated using human transcripts.

2 Related Work

Many techniques have been proposed for the meet-
ing summarization task, including both unsuper-
vised and supervised approaches. Since we use un-
supervised methods in this study, we will not de-
scribe previous work using supervised approaches
because of the space limit. Unsupervised meth-

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 4654,
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ods are simple and robust to different corpora, and
do not need any human labeled data for training.
MMR was introduced in (Carbonell and Goldstein,
1998) for text summarization, and was used widely
in meeting summarization (Murray et al., 2005a; Xie
and Liu, 2008). Latent semantic analysis (LSA) ap-
proaches have also been used (Murray et al., 2005a),
which can better measure document similarity at the
semantic level rather than relying on literal word
matching. In (Gillick et al., 2009), the authors intro-
duced a concept-based global optimization frame-
work using integer linear programming (ILP), where
concepts were used as the minimum units, and the
important sentences were extracted to cover as many
concepts as possible. They showed better perfor-
mance than MMR. In a follow-up study, (Xie et al.,
2009) incorporated sentence information in this ILP
framework. Graph-based methods, such as LexRank
(Erkan and Radeyv, 2004), have been originally used
for extractive text summarization, where the docu-
ment is modeled as a graph and sentences as nodes,
and sentences are ranked according to its similarity
with other nodes. (Garg et al., 2009) proposed Clus-
terRank, a modified graph-based method in order
to take into account the conversational speech style
in meetings. Recently (Lin et al., 2009) suggested
to formulate the summarization task as optimizing
submodular functions defined on the document’s se-
mantic graph, and showed better performance com-
paring to other graph-based approaches.

Rich speech recognition results, such as N-best
hypotheses and confusion networks, were first used
in multi-pass ASR systems to improve speech recog-
nition performance (Stolcke et al., 1997; Mangu et
al., 2000). They have been widely used in many sub-
sequent spoken language processing tasks, such as
machine translation, spoken document understand-
ing and retrieval. Confusion network decoding was
applied to combine the outputs of multiple machine
translation systems (Sim et al., 2007; Matusov et
al., 2006). In the task of spoken document retrieval,
(Chiaet al., 2008) proposed to compute the expected
word counts from document and query lattices, and
estimate the statistical models from these counts,
and reported better retrieval accuracy than using
only I-best transcripts. (Hakkani-Tur et al., 2006)
investigated using confusion networks for name en-
tity detection and extraction and user intent classifi-
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cation. They also obtained better performance than
using ASR 1-best output.

There is very limited previous work using more
than 1-best ASR output for speech summarization.
Several studies used acoustic confidence scores in
the 1-best ASR hypothesis in the summarization sys-
tems (Valenza et al., 1999; Zechner and Waibel,
2000; Hori and Furui, 2003). (Liu et al., 2010) eval-
uated using n-best hypotheses for meeting summa-
rization, and showed improved performance with the
gain coming mainly from the first few candidates. In
(Lin and Chen, 2009), confusion networks and po-
sition specific posterior lattices were considered in
a generative summarization framework for Chinese
broadcast news summarization, and they showed
promising results by using more ASR hypotheses.
We investigate using confusion networks for meet-
ing summarization in this study. This work differs
from (Lin and Chen, 2009) in terms of the language
and genre used in the summarization task, as well
as the summarization approaches. We also perform
more analysis on the impact of confidence scores,
different pruning methods, and different ways to
present system summaries.

3 Summarization Approach

In this section, we first describe the baseline sum-
marization framework, and then how we apply it to
confusion networks.

3.1 Maximum Marginal Relevance (MMR)

MMR is a widely used unsupervised approach in
text and speech summarization, and has been shown
perform well. We chose this method as the basic
framework for summarization because of its sim-
plicity and efficiency. We expect this is a good
starting point for the study of feasibility of us-
ing confusion networks for summarization. For
each sentence segment S; in one document D, its
score (MM R(7)) is calculated using Equation 1
according to its similarity to the entire document
(Sim1(S;, D)) and the similarity to the already ex-
tracted summary (Sima(.S;, Summ)).

MMR(i) =

A x Sim1(S;, D) — (1 — X) x Sima(S;, Summ)
(1)



where parameter ) is used to balance the two factors
to ensure the selected summary sentences are rel-
evant to the entire document (thus important), and
compact enough (by removing redundancy with the
currently selected summary sentences). Cosine sim-
ilarity can be used to compute the similarity of two
text segments. If each segment is represented as a
vector, cosine similarity between two vectors (Vj,
V5) is measured using the following equation:

it
sim(Vi,Va) = 2ihit2 2)

R \/Zzt%z X \/Zzt%z

where ¢; is the term weight for a word w;, for which
we can use the TFIDF (term frequency, inverse doc-
ument frequency) value, as widely used in the field
of information retrieval.

3.2 Using Confusion Networks for
Summarization

Confusion networks (CNs) have been used in many
natural language processing tasks. Figure 1 shows
a CN example for a sentence segment. It is a di-
rected word graph from the starting node to the end
node. Each edge represents a word with its associ-
ated posterior probability. There are several word
candidates for each position. “-” in the CN repre-
sents a NULL hypothesis. Each path in the graph is
a sentence hypothesis. For the example in Figure 1,
“I HAVE IT VERY FINE” is the best hypothesis
consisting of words with the highest probabilities for
each position. Compared to N-best lists, confusion
networks are a more compact and powerful repre-
sentation for word candidates. We expect the rich in-
formation contained in the confusion networks (i.e.,
more word candidates and associated posterior prob-
abilities) can help to determine words’ importance
for summarization.

1/0.9 HAVE/0.8

FINE/0.6

1/0.9 | VEAL/0.01
= —y

OFTEN/0.1 4

Figure 1: An example of confusion networks.

The core problems when using confusion net-
works under the MMR summarization framework
are the definitions for S;, D, and Summ, as shown
in Equation 1. The extractive summary unit (for
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each S;) we use is the segment provided by the rec-
ognizer. This is often different from syntactic or se-
mantic meaningful unit (e.g., a sentence), but is a
more realistic setup. Most of the previous studies
for speech summarization used human labeled sen-
tences as extraction units (for human transcripts, or
map them to ASR output), which is not the real sce-
nario when performing speech summarization on the
ASR condition. In the future, we will use automatic
sentence segmentation results, which we expect are
better units than pause-based segmentation used in
ASR. We still use a vector space model to represent
each summarization unit S;. The entire document
(D) and the current selected summary (Summ,) are
formed by simply concatenating the corresponding
segments S; together. In the following, we describe
different ways to represent the segments and how to
present the final summary.

A. Segmentation representation

First, we construct the vector for each segment
simply using all the word candidates in the CNs,
without considering any confidence measure or pos-
terior probability information. The same TFIDF
computation is used as before, i.e., counting the
number of times a word appears (TF) and how many
documents it appears (used to calculate IDF).

Second, we leverage the confidence scores to
build the vector. For the term frequency of word w;,
we calculate it by summing up its posterior proba-
bilities p(wj;y,) at each position k, that is,

TF(w;) =Y plwi) (3)
k

Similarly, the IDF values can also be computed us-
ing the confidence scores. The traditional method
for calculating a word’s IDF uses the ratio of the
total number of documents (V) and the number of
documents containing this word. Using the confi-
dence scores, we calculate the IDF values as follows,

D) = log(ZD (maxy, p(wzk))) @

If a word w; appears in the document, we find its
maximum posterior probability among all the posi-
tions it occurs in the CNs, which is used to signal
w;’s soft appearance in this document. We add these
soft counts for all the documents as the denomina-
tor in Equation 4. Different from the traditional IDF



calculation method, where the number of documents
containing a word is an integer number, here the de-
nominator can be any real number.

B. Confusion network pruning

The above vectors are constructed using the entire
confusion networks. We may also use the pruned
ones, in which the words with low posterior prob-
abilities are removed beforehand. This can avoid
the impact of noisy words, and increase the system
speed as well. We investigate three different pruning
methods, listed below.

e absolute pruning: In this method, we delete
words if their posterior probabilities are lower
than a predefined threshold, i.e., p(w;) < 6.

e max_diff pruning: First for each position k,
we find the maximum probability among all
the word candidates: Pmaz), = max; p(wj).
Then we remove a word wj; in this position if
the absolute difference of its probability with
the maximum score is larger than a predefined
threshold, i.e., Pmaxy — p(w;x) > 6.

e max ratio pruning: This is similar to the above
one, but instead of absolute difference, we use

the ratio of their probabilities, i.e., % < 6.

Again, for the last two pruning methods, the com-
parison is done for each position in the CNs.

C. Summary rendering

With a proper way of representing the text seg-
ments, we then extract the summary segments using
the MMR method described in Section 3.1. Once the
summary segments are selected using the confusion
network input, another problem we need to address
is how to present the final summary. When using
the human transcripts or the 1-best ASR hypothesis
for summarization, we can simply concatenate the
corresponding transcripts of the selected sentence
segments as the final summary for the users. How-
ever, when using the confusion networks as the rep-
resentation of each sentence segment, we only know
which segments are selected by the summarization
system. To provide the final summary to the users,
there are two choices. We can either use the best hy-
pothesis from CNs of those selected segments as a
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text summary; or return the speech segments to the
users to allow them to play it back. We will evaluate
both methods in this paper. For the latter, in order to
use similar word based performance measures, we
will use the corresponding reference transcripts in
order to focus on evaluation of the correctness of the
selected summary segments.

4 Experiments

4.1 Corpus and Evaluation Measurement

We use the ICSI meeting corpus, which contains 75
recordings from natural meetings (most are research
discussions) (Janin et al., 2003). Each meeting is
about an hour long and has multiple speakers. These
meetings have been transcribed, and annotated with
extractive summaries (Murray et al., 2005b). The
ASR output is obtained from a state-of-the-art SRI
speech recognition system, including the confusion
network for each sentence segment (Stolcke et al.,
2006). The word error rate (WER) is about 38.2%
on the entire corpus.

The same 6 meetings as in (Murray et al., 2005a;
Xie and Liu, 2008; Gillick et al., 2009; Lin et al.,
2009) are used as the test set in this study. Fur-
thermore, 6 other meetings were randomly selected
from the remaining 69 meetings in the corpus to
form a development set. Each meeting in the de-
velopment set has only one human-annotated sum-
mary; whereas for the test meetings, we use three
summaries from different annotators as references
for performance evaluation. The lengths of the ref-
erence summaries are not fixed and vary across an-
notators and meetings. The average word compres-
sion ratio for the test set is 14.3%, and the mean de-
viation is 2.9%. We generated summaries with the
word compression ratio ranging from 13% to 18%,
and only provide the best results in this paper.

To evaluate summarization performance, we use
ROUGE (Lin, 2004), which has been widely used
in previous studies of speech summarization (Zhang
et al., 2007; Murray et al., 2005a; Zhu and Penn,
2006). ROUGE compares the system generated
summary with reference summaries (there can be
more than one reference summary), and measures
different matches, such as N-gram, longest com-
mon sequence, and skip bigrams. In this paper,
we present our results using both ROUGE-1 and



ROUGE-2 F-scores.

4.2 Characteristics of CNs

First we perform some analysis of the confusion net-
works using the development set data. We define
two measurements:

e Word coverage. This is to verify that CNs con-
tain more correct words than the 1-best hy-
potheses. It is defined as the percentage of
the words in human transcripts (measured us-
ing word types) that appear in the CNs. We
use word types in this measurement since we
are using a vector space model and the multi-
ple occurrence of a word only affects its term
weights, not the dimension of the vector. Note
that for this analysis, we do not perform align-
ment that is needed in word error rate measure
— we do not care whether a word appears in the
exact location; as long as a word appears in the
segment, its effect on the vector space model is
the same (since it is a bag-of-words model).

e Average node density. This is the average num-
ber of candidate words for each position in the
confusion networks.

Figure 2 shows the analysis results for these two
metrics, which are the average values on the devel-
opment set. In this analysis we used absolute prun-
ing method, and the results are presented for dif-
ferent pruning thresholds. For a comparison, we
also include the results using the 1-best hypotheses
(shown as the dotted line in the figure), which has an
average node density of 1, and the word coverage of
71.55%. When the pruning threshold is 0, the results
correspond to the original CNs without pruning.

We can see that the confusion networks include
much more correct words than 1-best hypotheses
(word coverage is 89.3% vs. 71.55%). When in-
creasing the pruning thresholds, the word coverage
decreases following roughly a linear pattern. When
the pruning threshold is 0.45, the word coverage of
the pruned CNs is 71.15%, lower than 1-best hy-
potheses. For node density, the non-pruned CNs
have an average density of 11.04. With a very small
pruning threshold of 0.01, the density decreases
rapidly to 2.11. The density falls less than 2 when
the threshold is 0.02, which means that for some
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Figure 2: Average node density and word coverage of the
confusion networks on the development set.

nodes there is only one word candidate preserved
after pruning (i.e., only one word has a posterior
probability higher than 0.02). When the threshold
increases to 0.4, the density is less than 1 (0.99),
showing that on average there is less than one candi-
date left for each position. This is consistent with the
word coverage results — when the pruning thresh-
old is larger than 0.45, the confusion networks have
less word coverage than 1-best hypotheses because
even the top word hypotheses are deleted. There-
fore, for our following experiments we only use the
thresholds 6 < 0.45 for absolute pruning.

Note that the results in the figure are based on
absolute pruning. We also performed analysis us-
ing the other two pruning methods described in Sec-
tion 3.2. For those methods, because the decision
is made by comparing each word’s posterior proba-
bility with the maximum score for that position, we
can guarantee that at least the best word candidate is
included in the pruned CNs. We varied the pruning
threshold from 0 to 0.95 for these pruning methods,
and observed similar patterns as in absolute prun-
ing for the word coverage and node density analysis.
As expected, the fewer word candidates are pruned,
the better word coverage and higher node density the
pruned CNs have.

4.3 Summarization Results
4.3.1 Results on dev set using 1-best hypothesis
and human transcripts

We generate the baseline summarization result
using the best hypotheses from the confusion net-



works. The summary sentences are extracted using
the MMR method introduced in Section 3.1. The
term weighting is the traditional TFIDF value. The
ROUGE-1 and ROUGE-2 scores for the baseline are
listed in Table 1.

Because in this paper our task is to evaluate the
summarization performance using ASR output, we
generate an oracle result, where the summary ex-
traction and IDF calculation are based on the human
transcripts for each ASR segment. These results are
also presented in Table 1. Comparing the results for
the two testing conditions, ASR output and human
transcripts, we can see the performance degradation
due to recognition errors. The difference between
them seems to be large enough to warrant investiga-
tion of using rich ASR output for improved summa-
rization performance.

ROUGE-1 | ROUGE-2
Baseline: best hyp 65.60 26.83
Human transcript 69.98 33.21

Table 1: ROUGE results (%) using 1-best hypotheses and
human transcripts on the development set.

4.3.2 Results on the dev set using CNs

A. Effect of segmentation representation

We evaluate the effect on summarization using
different vector representations based on confusion
networks. Table 2 shows the results on the develop-
ment set using various input under the MMR frame-
work. We also include the results using 1-best and
human transcripts in the table as a comparison. The
third row in the table uses the 1-best hypothesis, but
the term weight for each word is calculated by con-
sidering its posterior probability in the CNs (denoted
by “wp”). We calculate the TF and IDF values us-
ing Equation 3 and 4 introduced in Section 3.2. The
other representations in the table are for the non-
pruned and pruned CNs based on different pruning
methods, and with or without using the posteriors to
calculate term weights.

In general, we find that using confusion networks
improves the summarization performance compar-
ing with the baseline. Since CNs contain more can-
didate words and posterior probabilities, a natural
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segment representation | ROUGE-1 | ROUGE-2
Best hyp 65.60 26.83
Best hyp (wp) 66.83 29.84
Non-pruned CNs 66.58 28.22
Non-pruned CNs (wp) 66.47 29.27
Absolute 67.44 29.02
Absolute (wp) 66.98 29.99
Max_diff 67.29 28.97
Pruned CNs |\ p ¢ diff (wp) | 67.10 | 29.76
Max _ratio 67.43 28.97
Max _ratio (wp) 67.06 29.90
] Human transcript | 69.98 33.21

Table 2: ROUGE results (%) on the development set us-
ing different vector representations based on confusion
networks: non-pruned and pruned, using posterior prob-
abilities (“wp”’) and without using them.

question to ask is, which factor contributes more to
the improved performance? We can compare the re-
sults in Table 2 across different conditions that use
the same candidate words, one with standard TFIDF,
and the other with posteriors for TFIDEF, or that use
different candidate words and the same setup for
TFIDF calculation. Our results show that there is
more improvement using our proposed method for
TFIDF calculation based on posterior probabilities,
especially ROUGE-2 scores. Even when just us-
ing 1-best hypotheses, if we consider posteriors, we
can obtain very competitive results. There is also
a difference in the effect of using posterior proba-
bilities. When using the top hypotheses representa-
tion, posteriors help both ROUGE-1 and ROUGE-2
scores; when using confusion networks, non-pruned
or pruned, using posterior probabilities improves
ROUGE-2 results, but not ROUGE-1.

Our results show that adding more candidates in
the vector representation does not necessarily help
summarization. Using the pruned CNs yields bet-
ter performance than the non-pruned ones. There is
not much difference among different pruning meth-
ods. Overall, the best results are achieved by using
pruned CNs: best ROUGE-1 result without using
posterior probabilities, and best ROUGE-2 scores
when using posteriors.

B. Presenting summaries using human tran-
scripts



segment representation | ROUGE-1 | ROUGE-2

Best hyp 68.26 32.25
Best hyp (wp) 69.16 33.99
Non-pruned CNs 69.28 33.49
Non-pruned CNs (wp) 67.84 32.95
Absolute 69.66 34.06
Absolute (wp) 69.37 34.25
Max_diff 69.88 34.17
Pruned CNs |\ p ¢ diff (wp) | 6938 | 33.94
Max _ratio 69.76 34.06
Max _ratio (wp) 69.44 34.39

Human transcript | 6998 | 3321 |

Table 3: ROUGE results (%) on the development set
using different segment representations, with the sum-
maries constructed using the corresponding human tran-
scripts for the selected segments.

In the above experiments, we construct the final
summary using the best hypotheses from the con-
fusion networks once the summary sentence seg-
ments are determined. Although we notice obvious
improvement comparing with the baseline results,
the ROUGE scores are still much lower than using
the human transcripts. One reason for this is the
speech recognition errors. Even if we select the cor-
rect utterance segment as in the reference summary
segments, the system performance is still penalized
when calculating the ROUGE scores. In order to
avoid the impact of word errors and focus on evalu-
ating whether we have selected the correct segments,
next we use the corresponding human transcripts of
the selected segments to obtain performance mea-
sures. The results from this experiment are shown in
Table 3 for different segment representations.

We can see that the summaries formed using hu-
man transcripts are much better comparing with the
results presented in Table 2. These two setups use
the same utterance segments. The only difference
lies in the construction of the final summary for
performance measurement, using the top hypothe-
ses or the corresponding human transcripts for the
selected segments. We also notice that the differ-
ence between using 1-best hypothesis and human
transcripts is greatly reduced using this new sum-
mary formulation. This suggests that the incorrect
word hypotheses do not have a very negative im-
pact in terms of selecting summary segments; how-
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ever, word errors still account for a significant part
of the performance degradation on ASR condition
when using word-based metrics for evaluation. Us-
ing the best hypotheses with their posterior proba-
bilities we can obtain similar ROUGE-1 score and
a little higher ROUGE-2 score comparing to the re-
sults using human transcripts. The performance can
be further improved using the pruned CNss.

Note that when using the non-pruned CNs and
posterior probabilities for term weighting, the
ROUGE scores are worse than most of other condi-
tions. We performed some analysis and found that
one reason for this is the selection of some poor
segments. Most of the word candidates in the non-
pruned CNs have very low confidence scores, result-
ing in high IDF values using our proposed methods.
Since some top hypotheses are NULL words in the
poorly selected summary segments, it did not affect
the results when using the best hypothesis for eval-
uation, but when using human transcripts, it leads to
lower precision and worse overall F-scores. This is
not a problem for the pruned CNs since words with
low probabilities have been pruned beforehand, and
thus do not impact segment selection. We will inves-
tigate better methods for term weighting to address
this issue in our future work.

These experimental results prove that using the
confusion networks and confidence scores can help
select the correct sentence segments. Even though
the 1-best WER is quite high, if we can con-
sider more word candidates and/or their confidence
scores, this will not impact the process of select-
ing summary segments. We can achieve similar
performance as using human transcripts, and some-
times even slightly better performance. This sug-
gests using more word candidates and their confi-
dence scores results in better term weighting and
representation in the vector space model. Some
previous work showed that using word confidence
scores can help minimize the WER of the extracted
summaries, which then lead to better summarization
performance. However, we think the main reason
for the improvement in our study is from selecting
better utterances, as shown in Table 3. In our ex-
periments, because different setups select different
segments as the summary, we can not directly com-
pare the WER of extracted summaries, and analyze
whether lower WER is also helpful for better sum-



output summary

best hypotheses || human transcripts

R-1 \ R-2 R-1 \ R-2

Best hyp 65.73| 26.79 |/68.60| 32.03

Best hyp (wp) [65.92| 27.27 ||6891| 32.69
] Pruned CNs \66.47\ 27.73 \\69.53\ 34.05 \
[Human transcript| N/A | N/A []69.08] 33.33 |

Table 4: ROUGE results (%) on the test set.

marization performance. In our future work, we will
perform more analysis along this direction.

4.3.3 Experimental results on test set

The summarization results on the test set are pre-
sented in Table 4. We show four different evalua-
tion conditions: baseline using the top hypotheses,
best hypotheses with posterior probabilities, pruned
CNs, and using human transcripts. For each condi-
tion, the final summary is evaluated using the best
hypotheses or the corresponding human transcripts
of the selected segments. The summarization system
setups (the pruning method and threshold, A value in
MMR function, and word compression ratio) used
for the test set are decided based on the results on
the development set.

For the results on the test set, we observe sim-
ilar trends as on the development set. Using the
confidence scores and confusion networks can im-
prove the summarization performance comparing
with the baseline. The performance improvements
from “Best hyp” to “Best hyp (wp)” and from “Best
hyp (wp)” to “Pruned CNs” using both ROUGE-1
and ROUGE-2 measures are statistically significant
according to the paired t-test (p < 0.05). When the
final summary is presented using the human tran-
scripts of the selected segments, we observe slightly
better results using pruned CNs than using human
transcripts as input for summarization, although the
difference is not statistically significant. This shows
that using confusion networks can compensate for
the impact from recognition errors and still allow us
to select correct summary segments.

5 Conclusion and Future Work

Previous research has shown performance degrada-
tion when using ASR output for meeting summa-
rization because of word errors. To address this

53

problem, in this paper we proposed to use confu-
sion networks for speech summarization. Under the
MMR framework, we introduced a vector represen-
tation for the segments by using more word can-
didates in CNs and their associated posterior prob-
abilities. We evaluated the effectiveness of using
different confusion networks, the non-pruned ones,
and the ones pruned using three different methods,
i.e., absolute, max_diff and max_ratio pruning. Our
experimental results on the ICSI meeting corpus
showed that even when we only use the top hypothe-
ses from the CNs, considering the word posterior
probabilities can improve the summarization perfor-
mance on both ROUGE-1 and ROUGE-2 scores.
By using the pruned CNs we can obtain further im-
provement. We found that more gain in ROUGE-
2 results was yielded by our proposed soft term
weighting method based on posterior probabilities.
Our experiments also demonstrated that it is pos-
sible to use confusion networks to achieve similar
or even better performance than using human tran-
scripts if the goal is to select the right segments. This
is important since one possible rendering of summa-
rization results is to return the audio segments to the
users, which does not suffer from recognition errors.

In our experiments, we observed less improve-
ment from considering more word candidates than
using the confidence scores. One possible reason is
that the confusion networks we used are too confi-
dent. For example, on average 90.45% of the can-
didate words have a posterior probability lower than
0.01. Therefore, even though the correct words were
included in the confusion networks, their contribu-
tion may not be significant enough because of low
term weights. In addition, low probabilities also
cause problems to our proposed soft IDF computa-
tion. In our future work, we will investigate prob-
ability normalization methods and other techniques
for term weighting to cope with these problems.
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Qme! : A Speech-based Question-Answering system on Mobile Devices
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Abstract

Mobile devices are becoming the dominant
mode of information access despite being
cumbersome to input text using small key-
boards and browsing web pages on small
screens. We present Qme !, a speech-based
question-answering system that allows for
spoken queries and retrieves answers to the
questions instead of web pages. We present
bootstrap methods to distinguish dynamic
questions from static questions and we show
the benefits of tight coupling of speech recog-
nition and retrieval components of the system.

1 Introduction

Access to information has moved from desktop and
laptop computers in office and home environments
to be an any place, any time activity due to mo-
bile devices. Although mobile devices have small
keyboards that make typing text input cumbersome
compared to conventional desktop and laptops, the
ability to access unlimited amount of information,
almost everywhere, through the Internet, using these
devices have made them pervasive.

Even so, information access using text input on
mobile devices with small screens and soft/small
keyboards is tedious and unnatural. In addition, by
the mobile nature of these devices, users often like
to use them in hands-busy environments, ruling out
the possibility of typing text. We address this issue
by allowing the user to query an information repos-
itory using speech. We expect that spoken language
queries to be a more natural and less cumbersome
way of information access using mobile devices.

A second issue we address is related to directly
and precisely answering the user’s query beyond
serving web pages. This is in contrast to the current
approach where a user types in a query using key-
words to a search engine, browses the returned re-
sults on the small screen to select a potentially rele-
vant document, suitably magnifies the screen to view
the document and searches for the answer to her
question in the document. By providing a method
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for the user to pose her query in natural language and
presenting the relevant answer(s) to her question, we
expect the user’s information need to be fulfilled in
a shorter period of time.

We present a speech-driven question answering
system, Qme !, as a solution toward addressing these
two issues. The system provides a natural input
modality — spoken language input — for the users
to pose their information need and presents a col-
lection of answers that potentially address the infor-
mation need directly. For a subclass of questions
that we term static questions, the system retrieves
the answers from an archive of human generated an-
swers to questions. This ensures higher accuracy
for the answers retrieved (if found in the archive)
and also allows us to retrieve related questions on
the user’s topic of interest. For a second subclass of
questions that we term dynamic questions, the sys-
tem retrieves the answer from information databases
accessible over the Internet using web forms.

The layout of the paper is as follows. In Section 2,
we review the related literature. In Section 3, we
illustrate the system for speech-driven question an-
swering. We present the retrieval methods we used
to implement the system in Section 4. In Section 5,
we discuss and evaluate our approach to tight cou-
pling of speech recognition and search components.
In Section 6, we present bootstrap techniques to dis-
tinguish dynamic questions from static questions,
and evaluate the efficacy of these techniques on a
test corpus. We conclude in Section 7.

2 Related Work

Early question-answering (QA) systems, such as
Baseball (Green et al., 1961) and Lunar (Woods,
1973) were carefully hand-crafted to answer ques-
tions in a limited domain, similar to the QA
components of ELIZA (Weizenbaum, 1966) and
SHRDLU (Winograd, 1972). However, there has
been a resurgence of QA systems following the
TREC conferences with an emphasis on answering
factoid questions. This work on text-based question-
answering which is comprehensively summarized

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 55-63,
Los Angeles, California, June 2010. (©2010 Association for Computational Linguistics



in (Maybury, 2004), range widely in terms of lin-
guistic sophistication. At one end of the spectrum,
There are linguistically motivated systems (Katz,
1997; Waldinger et al., 2004) that analyze the user’s
question and attempt to synthesize a coherent an-
swer by aggregating the relevant facts. At the other
end of the spectrum, there are data intensive sys-
tems (Dumais et al., 2002) that attempt to use the
redundancy of the web to arrive at an answer for
factoid style questions. There are also variants of
such QA techniques that involve an interaction and
use context to resolve ambiguity (Yang et al., 2006).
In contrast to these approaches, our method matches
the user’s query against the questions in a large cor-
pus of question-answer pairs and retrieves the asso-
ciated answer.

In the information retrieval community, QA sys-
tems attempt to retrieve precise segments of a doc-
ument instead of the entire document. In (To-
muro and Lytinen, 2004), the authors match the
user’s query against a frequently-asked-questions
(FAQ) database and select the answer whose ques-
tion matches most closely to the user’s question.
An extension of this idea is explored in (Xue et al.,
2008; Jeon et al., 2005), where the authors match the
user’s query to a community collected QA archive
such as (Yahoo!, 2009; MSN-QnA, 2009). Our ap-
proach is similar to both these lines of work in spirit,
although the user’s query for our system originates
as a spoken query, in contrast to the text queries in
previous work. We also address the issue of noisy
speech recognition and assess the value of tight in-
tegration of speech recognition and search in terms
of improving the overall performance of the system.
A novelty in this paper is our method to address dy-
namic questions as a seamless extension to answer-
ing static questions.

Also related is the literature on voice-search ap-
plications (Microsoft, 2009; Google, 2009; Yellow-
Pages, 2009; vlingo.com, 2009) that provide a spo-
ken language interface to business directories and
return phone numbers, addresses and web sites of
businesses. User input is typically not a free flowing
natural language query and is limited to expressions
with a business name and a location. In our system,
users can avail of the full range of natural language
expressions to express their information need.

And finally, our method of retrieving answers to
dynamic questions has relevance to the database and
meta search community. There is growing interest
in this community to mine the “hidden” web — infor-
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mation repositories that are behind web forms — and
provide a unified meta-interface to such informa-
tion sources, for example, web sites related travel,
or car dealerships. Dynamic questions can be seen
as providing a natural language interface (NLI) to
such web forms, similar to early work on NLI to
databases (Androutsopoulos, 1995).

3 Speech-driven Question Retrieval
System

We describe the speech-driven query retrieval appli-
cation in this section. The user of this application
provides a spoken language query to a mobile device
intending to find an answer to the question. Some
example users’ inputs are! what is the fastest ani-
mal in water, how do I fix a leaky dishwasher, why
is the sky blue. The result of the speech recognizer
is used to search a large corpus of question-answer
pairs to retrieve the answers pertinent to the user’s
static questions. For the dynamic questions, the an-
swers are retrieved by querying a web form from
the appropriate web site (e.g www.fandango.com for
movie information). The result from the speech rec-
ognizer can be a single-best string or a weighted
word lattice.> The retrieved results are ranked using
different metrics discussed in the next section. In
Figure 2, we illustrate the answers that Qme ! returns
for static and dynamic quesitons.

e
—

Speech 1-best
ASR

Search

Ranked Results

Lattice —

Figure 1: The architecture of the speech-driven question-
answering system

4 Methods of Retrieval

We formulate the problem of answering static
questions as follows. Given a question-answer

archive QA = {(q1,a1),(q2,a2),...,(qn,an)}

'The query is not constrained to be of any specific question
type (for example, what, where, when, how).

?For this paper, the ASR used to recognize these utterances
incorporates an acoustic model adapted to speech collected
from mobile devices and a four-gram language model that is
built from the corpus of questions.
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Figure 2: Retrieval results for static and dynamic ques-
tions using Qme !

of N question-answer pairs, and a user’s ques-
tion g, the task is to retrieve a subset QA" =
{(Q{vaq)? (QEv a’g)v L) (QR/D aqu)} M << N us-
ing a selection function Select and rank the mem-
bers of QAT using a scoring function Score such
that Score(qu, (7, a7)) > Score(qu, (¢j1,a{41))-
Here, we assume

Score(qu, (qf,al)) = Score(qu, q).

The Select function is intended to select the
matching questions that have high “semantic” simi-
larity to the user’s question. However, given there is
no objective function that measures semantic simi-
larity, we approximate it using different metrics dis-
cussed below.

Ranking of the members of the retrieved set can
be based on the scores computed during the selec-
tion step or can be independently computed based
on other criteria such as popularity of the question,
credibility of the source, temporal recency of the an-
swer, geographical proximity to the answer origin.

4.1 Question Retrieval Metrics

We retrieve QA pairs from the data repository based
on the similarity of match between the user’s query
and each of the set of questions (d) in the repos-
itory. To measure the similarity, we have experi-
mented with the following metrics.

1. TF-IDF metric: The user input query and the
document (in our case, questions in the repos-
itory) are represented as bag-of-n-grams (aka
terms). The term weights are computed using a
combination of term frequency (¢ f) and inverse
document frequency (i¢df) (Robertson, 2004).
IfQ = q1,92,...,qn is a user query, then the
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aggregated score for a document d using a un-
igram model of the query and the document is
given as in Equation 1. For a given query, the
documents with the highest total term weight
are presented as retrieved results. Terms can
also be defined as n-gram sequences of a query
and a document. In our experiments, we have
used up to 4-grams as terms to retrieve and rank
documents.

Score(d) =Y tfypaxidfy (1)
wER

2. String Comparison Metrics: Since the length
of the user query and the query to be retrieved
are similar in length, we use string compar-
ison methods such as Levenshtein edit dis-
tance (Levenshtein, 1966) and n-gram overlap
(BLEU-score) (Papineni et al., 2002) as simi-
larity metrics.

We compare the search effectiveness of these sim-
ilarity metrics in Section 5.3.

5 Tightly coupling ASR and Search

Most of the speech-driven search systems use the
1-best output from the ASR as the query for the
search component. Given that ASR 1-best output
is likely to be erroneous, this serialization of the
ASR and search components might result in sub-
optimal search accuracy. A lattice representation
of the ASR output, in particular, a word-confusion
network (WCN) transformation of the lattice, com-
pactly encodes the n-best hypothesis with the flexi-
bility of pruning alternatives at each word position.
An example of a WCN is shown in Figure 3. The
weights on the arcs are to be interpreted as costs and
the best path in the WCN is the lowest cost path
from the start state (0) to the final state (4). Note
that the 1-best path is how old is mama, while the
input speech was how old is obama which also is in
the WCN, but at a higher cost.

0ld/0.006

1

obama/7.796

_

obamas/13.35
mama/0.000
bottle/12.60

Figure 3: A sample word confusion network with arc
costs as negative logarithm of the posterior probabilities.

late/14.14
was/14.43

a/12.60
_epsilon/8.369

0 how/0.001
who/6.292

_epsilon/5.010



obama:qa450/c7
how:gal2/c6

old:qal50/c5
obamaqa25/c4
¢ Y

NS

Figure 4: Example of an FST representing the search in-
dex.

5.1 Representing Search Index as an FST

Lucene (Hatcher and Gospodnetic., 2004) is an off-
the-shelf search engine that implements the TF-IDF
metric. But, we have implemented our own search
engine using finite-state transducers (FST) for this
reason. The oracle word/phrase accuracy using n-
best hypotheses of an ASR is usually far greater than
the 1-best output. However, using each of the n-best
(n > 1) hypothesis as a separate query to the search
component is computationally sub-optimal since the
strings in the n-best hypotheses usually share large
subsequences with each other. The FST representa-
tion of the search index allows us to efficiently con-
sider lattices/WCNss as input queries.

The FST search index is built as follows. We in-
dex each question-answer (QA) pair from our repos-
itory ((gi, a;), ga; for short) using the words (wy,) in
question g;. This index is represented as a weighted
finite-state transducer (SearchFST) as shown in Fig-
ure 4. Here a word wy, (e.g old) is the input symbol
for a set of arcs whose output symbol is the index
of the QA pairs where old appears in the question.
The weight of the arc Clwag, ) is one of the simi-
larity based weights discussed in Section 4.1. As
can be seen from Figure 4, the words how, old, is
and obama contribute a score to the question-answer
pair ga25; while other pairs, gal 50, gal2, ga450 are
scored by only one of these words.

5.2 Search Process using FSTs

A user’s speech query, after speech recognition, is
represented as an FSA (either 1-best or WCN), a
QueryFSA. The QueryFSA (denoted as ¢) is then
transformed into another FSA (NgramFSA(q)) that
represents the set of n-grams of the QueryFSA.
Due to the arc costs from WCNs, the NgramFSA
for a WCN is a weighted FSA. The NgramFSA is
composed with the SearchFST and we obtain all
the arcs (wg, qa,, , C(wq’qawq)) where wy is a query
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term, ga,, is a QA index with the query term and,
Clwgqa,) is the weight associated with that pair. Us-
ing this information, we aggregate the weight for a
QA pair (qa,) across all query words and rank the
retrieved QAs in the descending order of this aggre-
gated weight. We select the top N QA pairs from
this ranked list. The query composition, QA weight
aggregation and selection of top N QA pairs are
computed with finite-state transducer operations as
shown in Equations 2 to 5.3

D1 = mo(NgramFSA(q) o SearchFST) (2)

R1 = fsmbestpath(D1,1) 3)
D2 = ma(NgramFSA(R1) o SearchFST) (4)

TopN = fsmbestpath(fsmdeterminize(D2), N)

&)

The process of retrieving documents using the

Levenshtein-based string similarity metric can also
be encoded as a composition of FSTs.

5.3 Experiments and Results

We have a fairly large data set consisting of over a
million question-answer pairs collected by harvest-
ing the web. In order to evaluate the retrieval meth-
ods discussed earlier, we use two test sets of QA
pairs: a Seen set of 450 QA pairs and an Unseen set
of 645 QA pairs. The queries in the Seen set have
an exact match with some question in the database,
while the queries in the Unseen set may not match
any question in the database exactly. * The questions
in the Unseen set, however, like those in the Seen set,
also have a human generated answer that is used in
our evaluations.

For each query, we retrieve the twenty most rel-
evant QA pairs, ranked in descending order of the
value of the particular metric under consideration.
However, depending on whether the user query is a
seen or an unseen query, the evaluation of the rele-
vance of the retrieved question-answer pairs is dif-
ferent as discussed below.

3We have dropped the need to convert the weights into the
real semiring for aggregation, to simplify the discussion.

“There may however be semantically matching questions.

3The reason it is not a recall and precision curve is that, for
the “seen” query set, the retrieval for the questions is a zero/one
boolean accuracy. For the “unseen” query set there is no perfect
match with the input question in the query database, and so we
determine the closeness of the questions based on the closeness
of the answers. Coherence attempts to capture the homogen-
ity of the questions retrieved, with the assumption that the user
might want to see similar questions as the returned results.



5.3.1 Evaluation Metrics

For the set of Seen queries, we evaluate the rele-
vance of the retrieved top-20 question-answer pairs
in two ways:

1. Retrieval Accuracy of Top-N results: We eval-
uate whether the question that matches the user
query exactly is located in the top-1, top-5,
top-10, top-20 or not in top-20 of the retrieved
questions.

2. Coherence metric: We compute the coherence
of the retrieved set as the mean of the BLEU-
score between the input query and the set of
top-5 retrieved questions. The intuition is that
we do not want the top-5 retrieved QA pairs
to distract the user by not being relevant to the
user’s query.

For the set of Unseen queries, since there are no
questions in the database that exactly match the in-
put query, we evaluate the relevance of the top-20 re-
trieved question-answer pairs in the following way.
For each of the 645 Unseen queries, we know the
human-generated answer. We manually annotated
each unseen query with the Best-Matched QA pair
whose answer was the closest semantic match to the
human-generated answer for that unseen query. We
evaluate the position of the Best-Matched QA in the
list of top twenty retrieved QA pairs for each re-
trieval method.

5.3.2 Results

On the Seen set of queries, as expected the re-
trieval accuracy scores for the various retrieval tech-
niques performed exceedingly well. The unigram
based tf.idf method retrieved 93% of the user’s query
in the first position, 97% in one of top-5 positions
and 100% in one of top-10 positions. All the other
retrieval methods retrieved the user’s query in the
first position for all the Seen queries (100% accu-
racy).

In Table 1, we tabulate the results of the Coher-
ence scores for the top-5 questions retrieved using
the different retrieval techniques for the Seen set of
queries. Here, the higher the n-gram the more co-
herent is the set of the results to the user’s query. It
is interesting to note that the BLEU-score and Lev-
enshtein similarity driven retrieval methods do not
differ significantly in their scores from the n-gram
tf.idf based metrics.
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Method Coherence Metric
for top-5 results

TF-IDF | unigram 61.58
bigram 66.23

trigram 66.23

4-gram 69.74
BLEU-score 66.29
Levenshtein 67.36

Table 1: Coherence metric results for top-5 queries re-
trieved using different retrieval techniques for the seen
set.

In Table 2, we present the retrieval results using
different methods on the Unseen queries. For 240 of
the 645 unseen queries, the human expert found that
that there was no answer in the data repository that
could be considered semantically equivalent to the
human-generated response to that query. So, these
240 queries cannot be answered using the current
database. For the remaining 405 unseen queries,
over 60% have their Best-Matched question-answer
pair retrieved in the top-1 position. We expect the
coverage to improve considerably by increasing the
size of the QA archive.

Method Top-1 | Top-20
TFIDF | Unigram | 69.13 | 75.81
Bigram 62.46 | 67.41
Trigram | 61.97 | 65.93
4-gram 56.54 | 58.77
WCN 70.12 | 78.52
Levenshtein 67.9 77.29
BLEU-score 72.0 75.31

Table 2: Retrieval results for the Unseen queries

5.3.3 Speech-driven query retrieval

In Equation 6, we show the tight integration of
WCNs and SearchFST using the FST composition
operation (o). A is used to scale the weights® from
the acoustic/language models on the WCNs against
the weights on the SearchFST. As before, we use
Equation 3 to retrieve the top /N QA pairs. The tight
integration is expected to improve both the ASR and
Search accuracies by co-constraining both compo-
nents.

D = my(Unigrams(WCN)*o SearchFST) (6)

For this experiment, we use the speech utterances
corresponding to the Unseen set as the test set. We
use a different set of 250 speech queries as the

Sfixed using the development set



development set. In Table 3, we show the Word
and Sentence Accuracy measures for the best path
in the WCN before and after the composition of
SearchFST with the WCN on the development and
test sets. We note that by integrating the constraints
from the search index, the ASR accuracies can be
improved by about 1% absolute.

Set # of Word Sentence
utterances | Accuracy | Accuracy

Dev Set | 250 77.1(78.2) | 54(54)

Test Set | 645 70.8(72.1) | 36.7(37.1)

Table 3: ASR accuracies of the best path before and after
(in parenthesis) the composition of SearchFST

Since we have the speech utterances of the Un-
seen set, we were also able to compute the search
results obtained by integrating the ASR WCNs with
the SearchF ST, as shown in line 5 of Table 2. These
results show that the the integration of the ASR
WCNs with the SearchFST produces higher search
accuracy compared to ASR 1-best.

6 Dynamic and Static Questions

Storing previously answered questions and their an-
swers allows Qme ! to retrieve the answers to a sub-
class of questions quickly and accurately. We term
this subclass as static questions since the answers
to these questions remain the same irrespective of
when and where the questions are asked. Examples
of such questions are What is the speed of light?,
When is George Washington’s birthday?. In con-
trast, there is a subclass of questions, which we term
dynamic questions, for which the answers depend
on when and where they are asked. For such ques-
tions the above method results in less than satisfac-
tory and sometimes inaccurate answers. Examples
of such questions are What is the stock price of Gen-
eral Motors?, Who won the game last night?, What
is playing at the theaters near me?.

We define dynamic questions as questions whose
answers change more frequently than once a year.
In dynamic questions, there may be no explicit ref-
erence to time, unlike the questions in the TERQAS
corpus (Radev and Sundheim., 2002) which explic-
itly refer to the temporal properties of the entities
being questioned or the relative ordering of past and
future events. The time-dependency of a dynamic
question lies in the temporal nature of its answer.
For example, consider the dynamic question, “What
is the address of the theater ‘White Christmas’ is
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playing at in New York?”. White Christmas is a sea-
sonal play that plays in New York every year for a
few weeks in December and January, but it does not
necessarily at the same theater every year. So, de-
pending when this question is asked, the answer will
be different.

Interest in temporal analysis for question-
answering has been growing since the late 1990’s.
Early work on temporal expressions identifica-
tion using a tagger led to the development of
TimeML (Pustejovsky et al., 2001), a markup
language for annotating temporal expressions and
events in text. Other examples include QA-by-
Dossier with Constraints (Prager et al., 2004), a
method of improving QA accuracy by asking auxil-
iary questions related to the original question in or-
der to temporally verify and restrict the original an-
swer. (Moldovan et al., 2005) detect and represent
temporally related events in natural language using
logical form representation. (Saquete et al., 2009)
use the temporal relations in a question to decom-
pose it into simpler questions, the answers of which
are recomposed to produce the answers to the origi-
nal question.

6.1 Dynamic/Static Classification

We automatically classify questions as dynamic and
static questions. Answers to static questions can be
retrieved from the QA archive. To answer dynamic
questions, we query the database(s) associated with
the topic of the question through web forms on the
Internet. We use a topic classifier to detect the topic
of a question followed by a dynamic/static classifier
trained on questions related to a topic, as shown in
figure 5. Given the question what movies are play-
ing around me?, we detect it is a movie related dy-
namic question and query a movie information web
site (e.g. www.fandango.com) to retrieve the results
based on the user’s GPS information.

Dynamic /Static

6“"’%@‘ Classification

Movies @, Dynamic/Static

Topic """ Classification

classification

S
e
SQ~J Dynamic/Static

Classification

Figure 5: Chaining two classifiers

We used supervised learning to train the topic



classifier, since our entire dataset is annotated by hu-
man experts with topic labels. In contrast, to train a
dynamic/static classifier, we experimented with the
following three different techniques.

Baseline: We treat questions as dynamic if they
contain temporal indexicals, e.g. today, now, this
week, two summers ago, currently, recently, which
were based on the TimeML corpus. We also in-
cluded spatial indexicals such as here, and other sub-
strings such as cost of and how much is. A question
is considered static if it does not contain any such
words/phrases.

Self-training with bagging: The general self-
training with bagging algorithm (Banko and Brill,
2001) is presented in Table 6 and illustrated in Fig-
ure 7(a). The benefit of self-training is that we can
build a better classifier than that built from the small
seed corpus by simply adding in the large unlabeled
corpus without requiring hand-labeling.

1. Create k bags of data, each of size |L|, by sampling
with replacement from labeled set L.

2. Train k classifiers; one classifier on each of k bags.

3. Each classifier predicts labels of the unlabeled set.

4. The N labeled instances that j of k classifiers agree
on with the highest average confidence is added to the
labeled set L, to produce a new labeled set L.

5. Repeat all 5 steps until stopping criteria is reached.

Figure 6: Self-training with bagging
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Figure 7: (a) Self-training with bagging (b) Committee-
based active-learning
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In order to prevent a bias towards the majority
class, in step 4, we ensure that the distribution of
the static and dynamic questions remains the same
as in the annotated seed corpus. The benefit of bag-
ging (Breiman, 1996) is to present different views of
the same training set, and thus have a way to assess
the certainty with which a potential training instance
can be labeled.
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Active-learning: This is another popular method for
training classifiers when not much annotated data is
available. The key idea in active learning is to anno-
tate only those instances of the dataset that are most
difficult for the classifier to learn to classify. It is
expected that training classifiers using this method
shows better performance than if samples were cho-
sen randomly for the same human annotation effort.
Figure 7(b) illustrates the algorithm and Figure 8
describes the algorithm, also known as committee-
based active-learning (Banko and Brill, 2001).

1. Create k bags of data, each of size |L|, by sampling
with replacement from the labeled set L.

2. Train k classifiers, one on each bag of the k bags.

3. Each classifier predicts the labels of the unlabeled set.
4. Choose N instances from the unlabeled set for human
labeling. N/2 of the instances are those whose labels the
committee of classifiers have highest vote entropy (un-
certainity). The other N/2 of the instances are selected
randomly from the unlabeled set.

5. Repeat all 5 steps until stopping criteria is reached.

Figure 8: Active Learning algorithm

We used the maximum entropy classifier in
Llama (Haffner, 2006) for all of the above classi-
fication tasks.

6.2 Experiments and Results

6.2.1 Topic Classification

The topic classifier was trained using a training
set consisted of over one million questions down-
loaded from the web which were manually labeled
by human experts as part of answering the questions.
The test set consisted of 15,000 randomly selected
questions. Word trigrams of the question are used
as features for a MaxEnt classifier which outputs a
score distribution on all of the 104 possible topic
labels. The error rate results for models selecting
the top topic and the top two topics according to the
score distribution are shown in Table 4. As can be
seen these error rates are far lower than the baseline
model of selecting the most frequent topic.

Model Error Rate
Baseline 98.79%
Top topic 23.9%
Top-two topics 12.23%

Table 4: Results of topic classification
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Figure 9: Change in classification results

6.2.2 Dynamic/static Classification

As mentioned before, we experimented with
three different approaches to bootstrapping a dy-
namic/static question classifier. We evaluate these
methods on a 250 question test set drawn from the
broad topic of Movies. For the baseline model, we
used the words/phrases discussed earlier based on
temporal and spatial indexicals. For the “super-
vised” model, we use the baseline model to tag SO0K
examples and use the machine-annotated corpus to
train a MaxEnt binary classifier with word trigrams
as features. The error rate in Table 5 shows that it
performs better than the baseline model mostly due
to better lexical coverage contributed by the 500K
examples.

| Training approach | Lowest Error rate |

Baseline 27.70%
“Supervised” learning 22.09%
Self-training 8.84%
Active-learning 4.02%

Table 5: Best Results of dynamic/static classification

In the self-training approach, we start with a small
seed corpus of 250 hand-labeled examples from the
Movies topic annotated with dynamic or static tags.
We used the same set of 500K unlabeled examples
as before and word trigrams from the question were
used as the features for a MaxEnt classifier. We used
11 bags in the bagging phase of this approach and
required that all 11 classifiers agree unanimously
about the label of a new instance. Of all such in-
stances, we randomly selected N instances to be
added to the training set of the next iteration, while
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maintaining the distribution of the static and dy-
namic questions to be the same as that in the seed
corpus. We experimented with various values of N,
the number of newly labeled instances added at each
iteration. The error rate at initialization is 10.4%
compared to 22.1% of the “supervised” approach
which can be directly attributed to the 250 hand-
labeled questions. The lowest error rate of the self-
training approach, obtained at N=100, is 8.84%, as
shown in Table 5. In Figure 9, we show the change
in error rate for N=40 (line S1 in the graph) and
N=100 (line S2 in the graph).

For the active learning approach, we used the
same set of 250 questions as the seed corpus, the
same set of S00K unlabeled examples, the same test
set, and the same set of word trigrams features as in
the self-training approach. We used 11 bags for the
bagging phase and selected top 20 new unlabeled in-
stances on which the 11 classifiers had the greatest
vote entropy to be presented to the human labeler for
annotation. We also randomly selected 20 instances
from the rest of the unlabeled set to be presented for
annotation. The best error rate of this classifier on
the test set is 4.02%, as shown in Table 5. The error
rate over successive iterations is shown by line Al
in Figure 9.

In order to illustrate the benefits of selecting the
examples actively, we repeated the experiment de-
scribed above but with all 40 unlabeled instances se-
lected randomly for annotation. The error rate over
successive iterations is shown by line R1 in Fig-
ure 9. Comparing Al to R1, we see that the error de-
creases faster when we select some of the unlabeled
instances for annotation actively at each iteration.

7 Conclusion

In this paper, we have presented a system Qme!,
a speech-driven question-answering system for mo-
bile devices. We have proposed a query retrieval
model for question-answering and demonstrated the
mutual benefits of tightly coupling the ASR and
Search components of the system. We have pre-
sented a novel concept of distinguishing questions
that need dynamic information to be answered from
those questions whose answers can be retrieved from
an archive. We have shown results on bootstrap-
ping such a classifier using semi-supervised learning
techniques.
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Abstract

In this paper we present an opinion summari-
zation technique in spoken dialogue systems.
Opinion mining has been well studied for
years, but very few have considered its appli-
cation in spoken dialogue systems. Review
summarization, when applied to real dialogue
systems, is much more complicated than pure
text-based summarization. We conduct a sys-
tematic study on dialogue-system-oriented
review analysis and propose a three-level
framework for a recommendation dialogue
system. In previous work we have explored a
linguistic parsing approach to phrase extrac-
tion from reviews. In this paper we will de-
scribe an approach using statistical models
such as decision trees and SVMs to select the
most representative phrases from the ex-
tracted phrase set. We will also explain how
to generate informative yet concise review
summaries for dialogue purposes. Experimen-
tal results in the restaurant domain show that
the proposed approach using decision tree al-
gorithms achieves an outperformance of 13%
compared to SVM models and an improve-
ment of 36% over a heuristic rule baseline.
Experiments also show that the decision-tree-
based phrase selection model can achieve ra-
ther reliable predictions on the phrase label,
comparable to human judgment. The pro-
posed statistical approach is based on do-
main-independent learning features and can
be extended to other domains effectively.

1 Introduction

Spoken dialogue systems are presently available
for many purposes, such as weather inquiry (Zue
et al., 2000), bus schedules and route guidance
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(Raux et al., 2003), customer service (Gorin et al.,
1997), and train timetable inquiry (Eckert et al.,
1993). These systems have been well developed
for laboratory research, and some have become
commercially viable.

The next generation of intelligent dialogue sys-
tems is expected to go beyond factoid question
answering and straightforward task fulfillment, by
providing active assistance and subjective recom-
mendations, thus behaving more like human
agents. For example, an intelligent dialogue sys-
tem may suggest which airline is a better choice,
considering cost, flight duration, take-off time,
available seats, etc.; or suggest which digital cam-
era is the most popular among teenagers or highest
rated by professional photographers; or which res-
taurant is a perfect spot for a semi-formal business
meeting or a romantic date.

Luckily, there are enormous amounts of reviews
published by general users on the web every day.
These are perfect resources for providing subjec-
tive recommendations and collective opinions. If
there exists a systematic framework that harvests
these reviews from general users, extracts the es-
sence from the reviews and presents it appropriate-
ly in human-computer conversations, then we can
enable dialogue systems to behave like a human
shopping assistant, a travel agent, or a local friend
who tells you where to find the best restaurant.

Summarization from online reviews, therefore,
plays an important role for such dialogue systems.
There have been previous studies on review analy-
sis for text-based summarization systems (Mei et
al., 2007; Titov and McDonald, 2008a; Branavan
et al., 2008). Mixture models and topic models are
used to predict the underlying topics of each doc-
ument and generate a phrase-level summary. An
aspect rating on each facet is also automatically

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 6472,
Los Angeles, California, June 2010. (©2010 Association for Computational Linguistics



learned with statistical models (Snyder and Barzi-
lay, 2007; Titov and McDonald, 2008b; Baccia-
nella et al., 2009). These approaches are all very
effective, and the review databases generated are
well presented.

So the first thought for developing a recom-
mendation dialogue system is to use such a cate-
gorized summary in a table-lookup fashion. For
example, a dialogue system for restaurant recom-
mendations can look up a summary table as exem-
plified in Table 1, and generate a response
utterance from each row: “Restaurant A has good
service and bad food; restaurant B has good ser-
vice and good food; restaurant C has great service
and nice atmosphere; restaurant D has poor service
and reasonable price.”

“Show me restaurants that serve fantastic cock-
tails.”

Thus, the generally used correlated topic mod-
els, although very effective in text-based systems,
are not quite suitable for interactive dialogue sys-
tems. The missing piece is an HCl-oriented (hu-
man  computer  interaction),  fine-grained,
informative yet concise review summarization. A
good recommendation system should be able to
provide sufficient yet specific information to help
users choose a restaurant, a movie or a consumer
product. Figure 1 shows an example of a conversa-
tion with a good recommendation system, which 1)
provides a generalized yet high-density review
summary in human-friendly dialogue; 2) provides
both a coarse-grained summary (e.g., ‘authentic
food’) and fine-grained information such as house

Table 1. A partial table of categorization-based review
summaries.

Such a dialogue system is, however, not very
informative. First of all, there is too much redun-
dancy. Long utterances repeated in the same pat-
tern on the same topic are quite boring, and the
information density is very low. Second, such a
summary is too coarse-grained to be helpful. A
user querying a restaurant recommendation system
expects more fine-grained information such as
house specials, wine selections and choices on
desserts rather than just general ‘good food.’

In contrast to a ‘text” summarization system, the
textual space in a dialogue turn is often very li-
mited. Speech is inherently serial, and it cannot be
skipped and scanned easily. A dialogue system
which speaks long diatribes in each single conver-
sation turn would likely not be well received. We
believe that the best unit of review summary for
dialogue purposes is short succinct phrases (e.g.,
‘amazing sauce’ and ‘romantic ambiance’) which
are catalogued into categories to answer high-level
questions such as “How is the food at this restau-
rant?” or “What about the armosphere?” Also,
domain-specific phrases are greatly needed to
generate correct answers to specific queries, such
as “Which restaurants have fresh sushi?” and
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Restaurant Summary specialties.
A Good service, bad food,
B Good service, good food U: Are there any French restaurants in Cambridge?
C Great service, nice atmosphere S: There are five French restaurants in Cambridge.
D Poor service, reasonable price Most of them are on Backbay Street. And most of

them have attentive service.

U: Show me the ones that have nice ambiance.

S: Two of them have nice ambiance, Pierrot Bistrot
Francais and Coriander.

U: How about the food?

S: Pierrot Bistrot Francais has authentic food,
fresh salad, and absolutely delicious spaghetti
carbonara. The food at Coriander is below aver-
age. It has very greasy chicken tikka masala and
dry bread.
Figure 1. Example of a conversation with a good rec-
ommendation dialogue system (‘U’ denotes the user
and ‘S’ denotes the dialogue system. The responses to
the user queries are produced by our system and the
actual dialogue was an illustration of system capacities).

Therefore, the task of developing recommenda-
tion dialogue systems is decomposed into three
problems: 1) how to extract context-related phras-
es, both coarse-grained and fine-grained, from
online reviews; 2) how to select a representative
set from the extracted phrases to create an infor-
mative yet concise dialogue-oriented summary
database; 3) how to generate human-friendly di-
alogue responses from the review summary data-
base.

To tackle these problems, we propose a three-
level framework. In previous work (Liu and Seneff,
2009), we explored the first level by proposing a
linguistic parse-and-paraphrase paradigm for re-



view phrase extraction. In this paper, we address
the second problem: dialogue-oriented review
summary generation. We propose an automatic
approach to classifying high/low informative
phrases using statistical models. Experiments con-
ducted on a restaurant-domain dataset indicate that
the proposed approach can predict phrase labels
consistently with human judgment and can gener-
ate high-quality review summaries for dialogue
purposes.

The rest of the paper is organized as follows:
Section 2 gives an overview of the three-level
framework for recommendation dialogue systems.
In Section 3, we explain the proposed approach to
dialogue-oriented review summary generation.
Section 4 provides a systematic evaluation of the
proposed approach, and Section 5 gives a further
discussion on the experimental results. Section 6
summarizes the paper as well as pointing to future
work.

2 System Overview

The three-level framework of a review-summary-
based recommendation dialogue system is shown
in Figure 2. The bottom level is linguistic phrase
extraction. In previous work (Liu and Seneff,
2009), we employed a probabilistic lexicalized
grammar to parse review sentences into a hierar-
chical representation, which we call a /linguistic
frame. From the linguistic frames, phrases are ex-
tracted by capturing a set of adjective-noun rela-
tionships. Adverbs and negations conjoined with
the adjectives are also captured. We also calcu-
lated a numerical score for sentiment strength for
each adjective and adverb, and further applied a
cumulative offset model to assign a sentiment
score to each phrase.

The approach relies on linguistic features that
are independent of frequency statistics; therefore it
can retrieve very rare phrases such as ‘very greasy
chicken tikka masala’ and ‘absolutely delicious
spaghetti carbonara’, which are very hard to derive
from correlated topic models. Experimental results
showed that the linguistic paradigm outperforms
existing methods of phrase extraction which em-
ploy shallow parsing features (e.g., part-of-speech).
The main contribution came from the linguistic
frame, which preserves linguistic structure of a
sentence by encoding different layers of semantic
dependencies. This allows us to employ more so-

66

phisticated high-level linguistic features (e.g., long
distance semantic dependencies) for phrase extrac-
tion.

However, the linguistic approach fails to distin-
guish highly informative and relevant phrases
from uninformative ones (e.g., ‘drunken husband’,
‘whole staff’). To apply these extracted phrases
within a recommendation dialogue system, we
have to filter out low quality or irrelevant phrases
and maintain a concise summary database. This is
the second level: dialogue-oriented review sum-
mary generation.
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Figure 2. Three-level framework of review-based rec-
ommendation dialogue systems.

The standard of highly informative and relevant
phrases is a very subjective problem. To gain in-
sights on human judgment on this, the first two
authors separately labeled a set of review-related
phrases in a restaurant domain as ‘good’ and ‘bad’
summary phrases. We surveyed several subjects,
all of whom indicated that, when querying a dialo-
gue system for information about a restaurant,
they care much more about special dishes served
in this restaurant than generic descriptions such as
‘good food.” This knowledge informed the annota-
tion task: to judge whether a phrase delivered by a
dialogue recommendation system would be help-



ful for users to make a decision. Surprisingly, al-
though this is a difficult and subjective problem,
the judgment from the two annotators is substan-
tially consistent. By examining the annotations we
observed that phrases such as ‘great value’ and
‘good quality’ are often treated as “uninformative’
as they are too common to be representative for a
particular product, a restaurant or a movie. Phrases
with neutral sentiment (e.g., ‘green beans’ and
‘whole staff’) are often considered as uninforma-
tive too. Phrases on specific topics such as house
specialties (e.g., ‘absolutely delicious spaghetti
carbonara’) are what the annotators care about
most and are often considered as highly relevant,
even though they may have only been seen once in
a large database.

Driven by these criteria, from each phrase we
extract a set of statistical features such as uni-
gram/bigram probabilities and sentiment features
such as sentiment orientation degree of the phrase,
as well as underlying semantic features (e.g.,
whether the topic of the phrase fits in a domain-
specific ontology). Classification models such as
SVMs and decision tree algorithms are then
trained on these features to automatically classify
high/low informative phrases. Phrases identified
as ‘good’ candidates are further pruned and cata-
logued to create concise summaries for dialogue
purposes.

After generating the review summary database,
the third level is to modify the response generation
component in dialogue systems to create genera-
lized and interactive conversations, as exemplified
in Figure 1. The utterance from users is piped
through speech recognition and language under-
standing. The meaning representation is then sent
to the dialogue management component for re-
view-summary database lookup. A response is
then generated by the language generation compo-
nent, and a speech utterance is generated by the
synthesizer and sent back to the user. The dialogue
system implementation is beyond the scope of this
paper and will be discussed later in a separate pa-
per.

3 Dialogue-oriented Review Summary
Generation

Given an inquiry from users, the answer from a
recommendation system should be helpful and
relevant. So the first task is to identify a phrase as
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‘helpful” or not. The task of identifying a phrase as
informative and relevant, therefore, is defined as a
classification problem:

y=0-x=3}"_10x; (1)

where y is the label of a phrase, assigned as ‘1’ if
the phrase is highly informative and relevant, and
‘-1’ if the phrase is uninformative. x is the feature
vector extracted from the phrase, and 0 is the
coefficient vector.

We employ statistical models such as SVMs
(Joachims, 1998) and decision trees (Quinlan,
1986) to train the classification model. For model
learning, we employ a feature set including statis-
tical features, sentiment features and semantic
features.

Generally speaking, phrases with neutral senti-
ment are less informative than those with strong
sentiment, either positive or negative. For example,
‘fried seafood appetizer’, ‘baked halibut’, ‘elec-
tronic bill” and ‘red drink’ do not indicate whether
a restaurant is worth trying, as they did not express
whether the fried seafood appetizer or the baked
halibut are good or bad. Therefore, we take the
sentiment score of each phrase generated from a
cumulative offset model (Liu and Seneff, 2009) as
a sentiment feature. Sentiment scores of phrases
are exemplified in Table 2 (on a scale of 1 to 5).

Phrase Se. Phrase Se.
really welcoming 4.8 | truly amazing flavor 4.6
atmosphere
perfect portions | 4.4 | very tasty meat 43
busy place 3.1 | typical Italian restaurant |3.1
a little bit high
price 2.2 | pretty bad soup 1.8
sloppy service 1.8 | absolute worst service |1.4

Table 2. Examples of sentiment scores of phrases.

We also employ a set of statistical features for
model training, such as the unigram probability of
the adjective in a phrase, the unigram probability
of the noun in a phrase, the unigram probability of
the phrase and the bigram probability of the adjec-
tive-noun pair in a phrase.

Statistical features, however, fail to reveal the
underlying semantic meaning of phrases. For ex-
ample, phrases ‘greasy chicken tikka masala’ and
‘drunken husband’ have the same n-gram proba-
bilities in our corpus (a single observation), but



they should certainly not be treated as the same.
To capture the semantic meanings of phrases, we
first cluster the topics of phrases into generic se-
mantic categories. The language-model based al-
gorithm is given by:

P(t.| t;) = Xaea P(tc|a) - P(alt;)

=y P(at;)  Platy)
a€47p@) Pt

1 1
= mzaeAm'P(a, t.)-Pla,t)

2)

where A4 represents the set of all the adjectives in
the corpus. We select a small set of initial topics
with the highest frequency counts (e.g., ‘food’,
‘service’ and ‘atmosphere’). For each of the other
topics t. (e.g., ‘chicken’, ‘waitress’ and ‘décor’),
we calculate its similarity with each initial topic t;
based on the bigram probability statistics. For
those topics with conditional probability higher
than a threshold for an initial topic t;, we assign
them to the cluster of t;. We use this as a semantic
feature, e.g., whether the topic of a phrase belongs
to a generic semantic category. Table 3 gives some
clustering examples.

low frequencies, yet they are very relevant and
valuable. But many of them are discarded by the
clustering. It would be a similar case in other do-
mains. For example, consumer products, movies
and books all have domain-independent semantic
categories (e.g., ‘price’ and ‘released date’) and
domain-specific categories (e.g., technical features
of consumer products, casts of movies and authors
of books).

To recover these context-relevant topics, we
employ domain context relations such as a con-
text-related ontology. A context-related ontology
can be constructed from structured web resources
such as online menus of restaurants, names of ac-
tors and actresses from movie databases, and spe-
cifications of products from online shops. An
example of a partial online menu of a restaurant is
shown in Figure 3. From these structured web re-
sources, we can build up a hierarchical ontology,
based on which a set of semantic features can be
extracted (e.g., whether a phrase contains a course
name, or an actress’s name, or a dimension of
technical features of a consumer product).

Entree

Roasted Pork Loin Wrapped In Bacon with watermelon and

Table 3. Topic to semantic category clustering.

This language-model-based method relies on
bigram probability statistics and can well cluster
highly frequent topics. Categories such as ‘service’
and ‘atmosphere’ contain very limited related top-
ics, most of which have high frequencies (e.g.,
‘waiter’, ‘staff’, ‘ambiance’ and ‘vibe’). The cate-
gory ‘food’, however, is very domain-specific and
contains a very large vocabulary, from generic
sub-categories such as ‘sushi’, ‘dessert’” and
‘sandwich’ as shown in the examples, to specific
courses such as ‘bosc pear bread pudding’ and
‘herb roasted vermont pheasant wine cap mu-
shrooms’. These domain-specific topics have very
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Category Relevant Topics red onion salad spicy honey-mustard bbq sauce
appetizer, beer, bread, fish, fries, ice Spl.cy Halibut And Clam Roast with bacon braised greens,
. . white beans and black trumpet mushrooms

food C,r eam, margarias, menu, pizza, pa,Sta’ Parmesan and Caramelized Shallot Wrapper Style Ravi-
rib, roll, sauce, seafood, sandwich, oli turnip greens and white truffle oil
steak, sushi, dessert, cocktail, brunch Herb Roasted Vermont Pheasant Wine Cap Mushrooms,

. waiter, staff, management, server,| |Pearl Onions and Fava Beans
service hostess, chef, bartender, waitstaff Dessert
décor, ambiance, music, vibe, setting, Chocolate Tasting Plate of white chocolate bombe milk choc-
atmosphere environment. crowd olate creme brulée and dark chocolate flourless cake
price bill, pricing, ,pl’i ces White Fruit Tasting Plate of warm apple strudel butterscotch,

Bosc Pear bread pudding and toasted coconut panna cotta

Entrée | Pork loin, bacon, watermelon, red onion
salad, honey, mustard, bbq sauce
Dessert | Chocolate, milk, créme brulee, cake

Figure 3. Example of a partial online menu and an ex-
emplary ontology derived.

After the classification, phrases identified as
‘highly informative and relevant’ are clustered
into different aspects according to the semantic
category clustering and the hierarchical ontology.
An average sentiment score for each aspect is then
calculated:

LjeNs T

ave(s;) = T

3)



where s, represents the aspect s of entry ¢ (e.g., a
restaurant, a movie, or a consumer product), N
represents the set of phrases in the cluster of as-
pect s, and 7; represents the sentiment score of
phrase j in the cluster.

The set of phrases selected for one entry may
come from several reviews on this single entry,
and many of them may include the same noun
(e.g., ‘good fish’, ‘not bad fish’ and ‘above-
average fish’ for one restaurant). Thus, the next
step is multi-phrase redundancy resolution. We
select the phrase with a sentiment score closest to
the average score of its cluster as the most repre-
sentative phrase on each topic:

m = argmin;ey, (I — ave(s))  (4)

where ave(s;) represents the average sentiment
score of aspect s, N; represents the set of phrases
on the same topic i in the cluster s, and 7
represents the sentiment score of phrase j.

This sequence of topic categorization, ontology
construction, phrase pruning and redundancy eli-
mination leads to a summary database, which can
be utilized for dialogue generation in spoken rec-
ommendation systems. A review summary data-
base entry generated by the proposed approaches
is exemplified in Figure 4.

{ restaurant "dali restaurant and tapas bar"
-atmosphere ( "wonderful evening", "cozy atmos-
phere", "fun decor", "romantic date" )
-atmosphere rating "4.1"
:Afood ( "very fresh ingredients", "tasty fish",
"creative dishes", "good sangria" )
:food rating "3.9"
:service ( "fast service" )
:service rating "3.9"
:general ("romantic restaurant”,"small space" )
:general rating "3.6" }
Figure 4. Example of a review summary database entry

generated by the proposed approaches.

4 Experiments

In this project, we substantiate the proposed ap-
proach in a restaurant domain for our spoken di-
alogue system (Gruenstein and Seneff, 2007),
which is a web-based multimodal dialogue system
allowing users to inquire about information about
restaurants, museums, subways, etc. We harvested
a data collection of 137,569 reviews on 24,043
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restaurants in 9 cities in the U.S. from an online
restaurant evaluation website'. From the dataset,
857,466 sentences were subjected to parse analysis;
and a total of 434,372 phrases (114,369 unique
ones) were extracted from the parsable subset
(78.6%) of the sentences.

Most pros/cons consist of well-formatted phras-
es; thus, we select 3,000 phrases extracted from
pros/cons as training data. To generate a human
judgment-consistent training set, we manually la-
bel the training samples with ‘good’ and ‘bad’ la-
bels. We then randomly select a subset of 3,000
phrases extracted from review texts as the test set
and label the phrases. The kappa agreement be-
tween two sets of annotations is 0.73, indicating
substantial consistency. We use the two annotation
sets as the ground truth.

To extract context-related semantic features, we
collect a large pool of well-formatted menus from
an online resource’, which contains 16,141 restau-
rant menus. Based on the hierarchical structure of
these collected menus, we build up a context-
related ontology and extract a set of semantic fea-
tures from the ontology, such as whether the topic
of a phrase is on category-level (e.g., ‘entrée’,
‘dessert’, ‘appetizers’, ‘salad’), whether the topic
is on course-level (e.g., ‘Roasted Pork Loin’, ‘Spi-
cy Halibut and Clam Roast’), and whether the top-
ic is on ingredient-level (e.g., ‘beans’, ‘chicken’,
‘mushrooms’, ‘scallop’).

We employ the three types of features as afore-
mentioned to train the SVMs and the decision tree
models. To select the most valuable features for
model training, we conducted a set of leave-one-
feature-out experiments for both the SVMs and the
decision tree models. We found that all the fea-
tures except the adjective unigram probability
contribute positively to model learning. From fur-
ther data analysis we observed that many phrases
with popular adjectives have context-unrelated
nouns, which makes the adjective unigram proba-
bility fail to become a dominant factor for phrase
relevance. Using the adjective unigram probability
as a learning feature will mislead the system into
trusting an adjective that is common but has a poor
bigram affinity to the noun in the phrase. Thus, we
eliminate this feature for both the SVMs and the
decision tree learning.

! http://www.citysearch.com
2 http://www.menupages.com



To evaluate the performance of the classifica-
tion models, we take a set of intuitively motivated
heuristic rules as the baseline. Figure 5 gives the
pseudo-code of the heuristic rule algorithm, which

74%). This shows that the decision tree model can
predict phrase labels as reliably as human judg-
ment.

uses variations of all the features except the uni- . Decision
. Lo Baseline SVM
gram probability of adjectives. tree
Annotation 1 61.5% 72.0% 77.9%
[f(sentiment score of the phrase exists) Annotation 2 51.3% 63.2% 74.5%

if(sentiment score is within neutral range) label=-1;
else
if(phrase appeared in the training data)
if((3<frequency of phrase < 100)) label = 1;
else
if(frequency of phrase >= 100) label = -1;
else if(topic belongs to ontology) label = 1;
else label =-1;
else
if(topic belongs to ontology) label = 1;
else label =-1;
else
if(phrase appeared in the training data)
if((3<frequency of phrase < 100))
if(topic belongs to ontology) label = 1;
else label = -1;
else
if(frequency of phrase >= 100) label = -1;
else
if(topic belongs to ontology) label = 1;
else if(frequency of noun > 100) label = 1;
else label =-1;
else
if(topic belongs to ontology) label = 1;
else if(frequency of noun > 100) label =1;
else label =-1;
Figure 5. Pseudo-code of the heuristic rule algorithm.

The performance of classification by different
models is shown in Table 4. Although the heuris-
tic rule algorithm is complicated and involves hu-
man knowledge, the statistical models trained by
SVMs and the decision tree algorithms both out-
perform the baseline significantly. The SVM mod-
el outperforms the baseline by 10.5% and 11.9%
on the two annotation sets respectively. The deci-
sion tree model outperforms the baseline by 16.4%
and 23.2% (average relative improvement of 36%),
and it also outperforms the SVM model by 5.9%
and 11.3% (average relative improvement of 13%).

The classification model using the decision tree
algorithm can achieve a precision of 77.9% and
74.5% compared with the ground truth, which is
quite comparable to human judgment (the preci-
sion of one annotation set based on the other is
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Table 4. Precision of phrase classification using the
heuristic rule baseline, the SVM model, and the deci-
sion tree algorithm.

To gain further insight on the contributions of
each feature set to the decision tree learning, Table
5 gives the experimental results on leaving each
feature out of model training. As shown, without
semantic features, the precision is 70.6% and 65.4%
on the two annotation sets, lower by 7.3% and 9.1%
than the case of training the model with all the
features (77.9% and 74.5%). This shows that the
semantic features significantly contribute to the
decision tree learning,.

Feature set Al A2
all features 77.9% 74.5%
without bigram probability| 56.6% 63.9%
of adjective-noun pair (-21.3%) | (-10.6%)
without unigram probability | 57.6% 64.3%
of the phrase (-20.3%) | (-10.2%)
without unigram probability | 59.8% 67.8%
of the noun (-18.1%) | (-6.7%)
without sentiment score of| 63.4% 66.6%
the phrase (-14.5%) | (-7.9%)
without underlying semantic| 70.6% 65.4%
features (-7.3%) | (-9.1%)

Table 5. Performance of the decision tree model by
leaving each feature out of model training (‘Al’ and
‘A2’ represent the annotation set 1 and 2 respectively).

The experimental results also show that the fea-
ture of bigram probability of the adjective-noun
pair contributes the most to the model learning.
Without this feature, the precision drops by 21.3%
and 10.6%, reaching the lowest precision among
all the leave-one-out experiments. This confirms
our observation that although a single adjective is
not dominant, the pair of the adjective and the
noun that co-occurs with it plays an important role
in the classification.

The sentiment of phrases also plays an impor-
tant role. Without sentiment features, the precision



drops to 63.4% and 66.6% respectively on the two
annotations, decreasing by 14.5% and 7.9%. This
shows that the sentiment features contribute sig-
nificantly to the classification.

5 Discussions

Experimental results show that the decision tree
algorithm outperforms the SVMs on this particular
classification problem, and it outperforms the heu-
ristic rule baseline significantly. Thus, although
the identification of informativeness and relevance
of phrases is a rather subjective problem, which is
difficult to predict using only human knowledge, it
can be well defined by decision trees. Part of the
reason is that the decision tree algorithm can make
better use of a combination of Boolean value fea-
tures (e.g., whether a topic belongs to a context-
related ontology) and continuous value features.
Also, as the phrase classification task is very sub-
jective, it is very similar to a ‘hierarchical if-else
decision problem’ in human cognition, where de-
cision tree algorithms can fit well. Figure 6 shows
a partial simplified decision tree learned from our
model, which can give an intuitive idea of the de-
cision tree models.

6 Related Work

Sentiment classification and opinion mining have
been well studied for years. Most studies have fo-
cused on text-based systems, such as document-
level sentiment classification and sentence-level
opinion aggregation (Turney, 2002; Pang et al.,
2002; Dave et al., 2003; Hu and Liu, 2004; Popes-
cu and Etzioni, 2005; Wilson et al., 2005; Zhuang
et al., 2006; Kim and Hovy, 2006).

There was a study conducted by Carenini et al.
in 2006, which proposed a combination of a sen-
tence extraction-based approach and a language
generation-based approach for summarizing eva-
luative arguments. In our work, we utilize a lower-
level phrase-based extraction approach, which uti-
lizes high level linguistic features and syntactic
structure to capture phrase patterns.

There was also a study on using reviews to gen-
erate a dictionary of mappings between semantic
representations and realizations of concepts for
dialogue systems (Higashinaka et al., 2006; Higa-
shinaka, 2007). They also used the association
between user ratings and reviews to capture se-
mantic-syntactic structure mappings. A set of fil-
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tering rules was manually created to eliminate
low-quality mappings. In our approach, we use an
automatic approach to classifying high/low infor-
mative phrases. The learning features are domain-
independent with no hand-crafted rules, and can
be extended to other domains effortlessly.

7  Conclusions

In this paper we proposed a three-level framework
for review-based recommendation dialogue sys-
tems, including linguistic phrase extraction, dialo-
gue-oriented review summary generation, and
human-friendly dialogue generation. The contribu-
tions of this paper are three-fold: 1) it identified
and defined the research goal of utilizing opinion
summarization for real human-computer conversa-
tion; 2) it formulated an evaluation methodology
for high-density review summary for dialogue
purposes; 3) it proposed an approach to automatic
classification of high/low informative phrases us-
ing a decision tree model. Experimental results
showed that the decision tree model significantly
outperforms a heuristic rule baseline and the SVM
model, and can resolve the phrase classification
problem comparably to humans consistently.
Future work will focus on: 1) applying the sen-
timent scoring model to noun/verb sentiment as-
sessment; 2) application of the review summary
generation approach in other domains and other
languages; 3) data collection on user engagement
with our dialogue systems involving review-

summary evaluation.
Whether the topic of the

phrase belongs to the
context-related ontology

Log bigram probability
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Figure 6. A partial simplified decision tree learned from
our model.
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Minimally-Supervised Extraction of Entities from Text Advertisements

Sameer Singh
Dept. of Computer Science
University of Massachusetts
Ambherst, MA 01003

Abstract

Extraction of entities from ad creatives is an
important problem that can benefit many com-
putational advertising tasks. Supervised and
semi-supervised solutions rely on labeled data
which is expensive, time consuming, and dif-
ficult to procure for ad creatives. A small
set of manually derived constraints on fea-
ture expectations over unlabeled data can be
used to partially and probabilistically label
large amounts of data. Utilizing recent work
in constraint-based semi-supervised learning,
this paper injects light weight supervision
specified as these “constraints” into a semi-
Markov conditional random field model of en-
tity extraction in ad creatives. Relying solely
on the constraints, the model is trained on a set
of unlabeled ads using an online learning al-
gorithm. We demonstrate significant accuracy
improvements on a manually labeled test set
as compared to a baseline dictionary approach.
We also achieve accuracy that approaches a
fully supervised classifier.

1 Introduction

Growth and competition in web search in recent
years has created an increasing need for improve-
ments in organic and sponsored search. While foun-
dational approaches still focus on matching the exact
words of a search to potential results, there is emerg-
ing need to better understand the underlying intent in
queries and documents. The implicit intent is partic-
ularly important when little text is available, such as
for user queries and advertiser creatives.

This work specifically explores the extraction of
named-entities, i.e. discovering and labeling phrases
in ad creatives. For example, for an ad “Move to
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San Francisco!”, we would like to extract the entity
san francisco and label it a CITY. Similarly, for an
ad “Find DVD players at Amazon”, we would ex-
tract dvd players as a PRODUCT and amazon as a
ORGNAME. The named-entities provide important
features to downstream tasks about what words and
phrases are important, as well as information on the
intent. Much recent research has focused on extract-
ing useful information from text advertisement cre-
atives that can be used for better retrieval and rank-
ing of ads. Semantic annotation of queries and ad
creatives allows for more powerful retrieval models.
Structured representations of semantics, like the one
studied in our task, can be directly framed as infor-
mation extraction tasks, such as segmentation and
named-entity recognition.

Information extraction methods commonly rely
on labeled data for training the models. The hu-
man labeling of ad creatives would have to pro-
vide the complete segmentation and entity labels for
the ads, which the information extraction algorithm
would then rely on as the truth. For entity extraction
from advertisements this involves familiarity with
a large number of different domains, such as elec-
tronics, transportation, apparel, lodging, sports, din-
ing, services, efc. This leads to an arduous and time
consuming labeling process that can result in noisy
and error-prone data. The problem is further com-
pounded by the inherent ambiguity of the task, lead-
ing to the human editors often presenting conflicting
and incorrect labeling.

Similar problems, to a certain degree, are also
faced by a number of other machine learning tasks
where completely relying on the labeled data leads
to unsatisfactory results. To counter the noisy
and sparse labels, semi-supervised learning meth-
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ods utilize unlabeled data to improve the model
(see (Chapelle et al., 2006) for an overview). Fur-
thermore, recent work on constraint-based semi-
supervised learning allows domain experts to eas-
ily provide additional light supervision, enabling the
learning algorithm to learn using the prior domain
knowledge, labeled and unlabeled data (Chang et
al., 2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010).

Prior domain knowledge, if it can be easily ex-
pressed and incorporated into the learning algo-
rithm, can often be a high-quality and cheap sub-
stitute for labeled data. For example, previous
work has often used dictionaries or lexicons (lists
of phrases of a particular label) to bootstrap the
model (Agichtein and Ganti, 2004; Canisius and
Sporleder, 2007), leading to a partial labeling of the
data. Domain knowledge can also be more proba-
bilistic in nature, representing the probability of cer-
tain token taking on a certain label. For most tasks,
labeled data is a convenient representation of the do-
main knowledge, but for complex domains such as
structured information extraction from ads, these al-
ternative easily expressible representations may be
as effective as labeled data.

Our approach to solving the the named entity ex-
traction problem for ads relies completely on do-
main knowledge not expressed as labeled data, an
approach that is termed minimally supervised. Each
ad creative is represented as a semi-Markov condi-
tional random field that probabilistically represents
the segmentation and labeling of the creative. Exter-
nal domain knowledge is expressed as a set of targets
for the expectations of a small subset of the features
of the model. We use alternating projections (Bel-
lare et al., 2009) to train our model using this knowl-
edge, relying on the rest of the features of the model
to “dissipate” the knowledge. Topic model and co-
occurrence based features help this propagation by
generalizing the supervision to a large number of
similar ads.

This method is applied to a large dataset of text
advertisements sampled from a variety of different
domains. The minimally supervised model performs
significantly better than a model that incorporates
the domain knowledge as hard constraints. Our
model also performs competitively when compared
to a supervised model trained on labeled data from a
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similar domain (web search queries).

Background material on semi-CRFs and con-
straint based semi-supervised learning is summa-
rized in Section 2. In Section 3, we describe the
problem of named entity recognition in ad creatives
as a semi-CRF, and describe the features in Sec-
tion 4. The constraints that we use to inject super-
vision into our model are listed in Section 5. We
demonstrate the success of our approach in Sec-
tion 6. This work is compared with related literature
in Section 7.

2 Background

This section covers introductory material on
the probabilistic representation of our model
(semi-Markov conditional random fields) and the
constraint-driven semi-supervised method that we
use to inject supervision into the model.

2.1 Semi-Markov Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) use a Markov random field to model the
conditional probability P(y|x). CRFs are com-
monly used to learn sequential models, where the
Markov field is a linear-chain, and y is a linear se-
quence of labels and each label y; € ). Let f be a
vector of local feature functions f = (f1,..., f¥),
each of which maps a pair (x,y) and an index 7 to
a measurement f¥(i,x,y) € R. Let f(i,x,y) be
the vector of these measurements, and let F(x,y) =
ZLXl f(i,x,y). CRFs use these feature functions in
conjunction with the parameters 6 to represent the
conditional probability as follows:

LGQF(X,y)

Py, 0) = 77

where Z(z) = ./ eI FY),

For sequential models where the same labels ap-
pear within a sequence as contiguous blocks (e.g.,
named entity recognition) it is more convenient to
represent these blocks directly as segments. This
representation was formulated as semi-Markov con-
ditional random fields (Semi-CRFs) in (Sarawagi
and Cohen, 2004). The segmentation of a sequence
is represented by s = (s1,. .., s,) where each seg-
ment s; = (tj,uj,y;) consists of a start position
t;, an end position uj, and a label y; € Y. Similar
to the CREF, let g be the vector of segment feature



functions g = (g*,...,g"), each of which maps
the pair (x,s) and an index j to a measurement
g*(j,x,s) € R, and G(x,s) = Z‘js‘ g(j,x,s). The
conditional probability is represented as:

1 ‘G(x
P(S’X, 0) = mee G(xs)

where Z(z) = 3 ¢ G) To assert the Marko-
vian assumption, each ¢¥(j,x,s) only computes
features based on x, s;, and yj_ll.

An exact inference algorithm was described in
(Sarawagi and Cohen, 2004), and was later im-

proved to be more efficient (Sarawagi, 2006).

2.2 Constraint Driven Learning Using
Alternating Projections

Recent work in semi-supervised learning uses
constraints as external supervision (Chang et al.,
2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010). These external constraints

In the batch setting, parameters A and u are
learned using an EM-like algorithm, where p is fixed
while optimizing A and vice versa. Each of the up-
dates in these steps decomposes according to the in-
stances, leading to a stochastic gradient based online
algorithm, as follows:

I.Fort = 1,...,T, letn = 4 where tg =
1/no, mo the initial learning rate. Let labeled
and unlabeled data set sizes be m and n — m
respectively. Let the initial parameters be \°
and 10, and « be the weight of Ly regulariza-

tion on \.

2. For a new labeled instance x; with segmen-
tation s, set uf = pi~t and Xt = X1 4

0w 50) = By, o 5)] - 2],

3. For a new unlabeled instance x;, u* =
Nt_l + n [ﬁ - Eq,\t—1’ut—1 [g,(xtv S)]
and A = AL

are specified as constraints on the expectations of a

at—1
Ui |:Eth—11Ht—1 [g(xt’ S)] - Ep,\t—l [g(xtv S)] - )\n ]

set of auxiliary features g’ = {g,...,g;} over the
unlabeled data. In particular, given the targets u =
{u1,...,uy} corresponding to the auxiliary features
g’, the constraints can take different forms, for ex-
ample LLo penalty (%Hui—zj Eyldi(zj,9)]13 =0,
Ly box constraints ([u; — >_; Ep[gi (25, 8)]| < B)
and Affine constraints® (Ep[g}(x, s)] < u;). In this
work, we only use the affine form of the constraints.
For an example, using domain knowledge, we
may know that token “arizona” should get the label
STATE in at least half of the occurrences in our data.
To capture this, we introduce an auxiliary feature ¢’ :
[[Label=STATE given Token="arizona”]]. The
affine constraint is written as E,[¢'(z,y)] > 0.5.
These constraints have been incorporated into
learning using Alternating Projections (Bellare et
al., 2009). Instead of directly optimizing an ob-
jective function that includes the constraints, this
method considers two distributions, py and g .,
where py(s|x) = e G5 is the usual semi-

Markov model, and ¢y ,, = %e(A'G(X,SHM-G’(x,S))
is an auxiliary distribution that satisfies the con-

straints and has low divergence with the model p,.
.e. g*(4,%,s) can be written as g* (y;_1, %, s;)

2where E,[g] represents the expectation of g over the unla-
beled data using the model p.
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Online training enables scaling the approach to
large data sets, as is the case with ads. In our ap-
proach we rely only on unlabeled data (m = 0, and
step 2 of the above algorithm does not apply).

3 Model

Most text ads consist of a brief title and an ac-
companying abstract that provides additional infor-
mation. The objective of our paper is to extract
the named-entity phrases within these titles and ab-
stracts, then label them with a type from a pre-
determined taxonomy. An example of such an ex-
traction is shown in Fig 1.

We represent the ad creatives as a sequence of
individual tokens, with a special token inserted be-
tween the title and the abstract of the ad. The dis-
tribution over possible phrases and labels of the ad
is expressed as a semi-Markov conditional random
field, as described earlier in Section 2.1.

3.1 Label Taxonomy

In most applications of CRFs and semi-CRFs, the
domain of labels is a fixed set ), where each label
indexes into one value. Instead, in our approach, we
represent our set of labels as a taxonomy (tree). The
labels higher in the taxonomy are more generic (for



Ad Title:
Ad Abstract:

Bradley International Airport Hotel
Marriott Hartford, CT Airport hotel - free shuttle service & parking.

Output:

Bradley International ‘ Airport

Marriott | Hartford, | CT Airpord hotel free’ shuttle service & parking.

Label Segment
PLACE: AIRPORT Bradley International

BUSINESS: TRAVEL Hotel

ORGNAME: LODGING Marriott

PLACE: CITY Hartford
PLACE: STATE CT
BUSINESS: TRAVEL hotel

PrRODUCT: TRAVEL | shuttle service & parking.

Figure 1: Example Prediction: An example of an ad creative (title and abstract), along with a set of probable ex-
tracted entities. Note that even in this relatively simple example, there is some ambiguity about what is the correct

segmentation and labeling.

instance, PLACE) and the labels lower in the taxon-
omy are more specific (for instance, STATE may be
a child of PLACE). The taxonomy of labels that we
use for tagging phrases is shown in Figure 2.

When the model predicts a label for a segment,
it can be from any of the levels in the tree. The
benefits of this is multi-fold. First, this allows the
model to be flexible in predicting labels at a lower
(or higher) level based on its confidence. For ex-
ample, the model may have enough evidence to la-
bel “san francisco” a CITY, however, for “georgia”
it may not have enough context to discriminate be-
tween STATE or COUNTRY, but could confidently
label it a PLACE. Secondly, this also allows us to
design the features over multiple levels of label gran-
ularity, which leads to a more expressive model. Ex-
pectation constraints can be specified over this ex-
panded set of features, at any level of the taxonomy.

In order to incorporate the nested labels into our
model, we observe that every feature that fires for
a non-leaf label should also fire for all descendants
of that label, e.g. every feature that is active for la-
bel PLACE should also be active for a label CITY,
COUNTRY, efc 3. Following the observation, for ev-
ery feature g*(x, (tj,u;,y;)) that is active, we also

3Note that this argument works similarly for the taxonomy
represented as a DAG, where the descendants are of a node are
all nodes reachable from it. We do not explore this structure of
the taxonomy in this paper.
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fire Vy' € desc(yj),gk(x, <tj,uj,y’>)4.

procedure is applied to the constraints.

The same

4 Features

Our learning algorithm relies on constraints g’ as
supervision to extract entities, but even though con-
straints are designed to be generic they do not cover
the whole dataset. The learning algorithm needs
to propagate the supervision to instances where the
constraints are not applicable, guided by the set
of feature functions g. More expressive and rele-
vant features will provide better propagation. Even
though these feature functions represent the “unsu-
pervised” part of the model (in that they are only
dependent on the unlabeled sequences), they play
an important role in propagating the supervision
throughout the dataset.

4.1 Sequence and Segment Features

Our first set of features are the commonly used
features employed in linear-chain sequence models
such as CRFs and HMMs. These consist of factors
between each token and its corresponding label, and
neighboring labels. They also include transition fac-
tors between the labels. These are local feature func-
tions that are defined only over pairs of token-wise

*This example describes when g*(y;_1,x,s;) ignores
yj—1. For the usual case g*(y;—1,x, s;), features between all
pairs of descendants of y;_1 and y; are enabled.



Proper Nouns Common Nouns
PERSON PRODUCT and BUSINESS
PLACE
MANUFACTURER FINANCE MEDIA
CiTY STATE
PRODUCTNAME EDUCATION APPAREL
COUNTRY | CONTINENT
MEDIATITLE TRAVEL AUTO
AIRPORT Z1PCODE
EVENT TECHNOLOGY | RESTAURANT
ORGNAME
AIRLINE SPORTSLEAGUE APPAREL AUTO
OCCASION
MEDIA TECHNOLOGY FINANCE LODGING
EDUCATION SPORTSTEAM RESTAURANT

Figure 2: Label Taxonomy: The set of labels that are used are shown grouped by the parent label. PRODUCT and
BUSINESS labels have been merged for brevity, i.e. there are two labels of each child label shown (e.g. PRODUCT:

AUTO and BUSINESS: AUTO). An additional label OTHER is used for the tokens that do not belong to any entities.

labels y; and y;_1. To utilize the semi-Markov rep-
resentation that allows features over the predicted
segmentation, we add the segment length and pre-
fix/suffix tokens of the segment as features.

4.2 Segment Clusters

Although the sequence and segment features cap-
ture a lot of useful information, they are not suffi-
cient for propagation. For example, if we have a
constraint about the token “london” being a CITY,
but not about “boston”, the model can only rely on
similar contexts between ‘london” and ‘boston” to
propagate the information. To allow more compli-
cated propagation to occur, we use features based
on a clustering of segments.

The segment cluster features are based on simi-
larity between segments from English sentences. A
large corpus of English documents were taken from
web, from which 5.1 billion unique sentences were
extracted. Using the co-occurrence of segments in
the sentences as a distance measure, K-Means is
used to identify clusters of segments as described in
(Pantel et al., 2009). The cluster identity of each seg-
ment is added as a feature to the model, capturing
the intuition that segments that appear in the same
cluster should get the same label.

4.3 Topic Model

Most of the ads lie in separate domains with
very little overlap, for example travel and electron-
ics. Additional information about the domain can
be very useful for identifying entities in the ad. For
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example, consider the token “amazon”. It may be
difficult to discern whether the token refers to the
geographical region or the website from just the fea-
tures in the model, however given that the domain
of the ad is travel (or conversely, electronics), the
choice becomes easier.

The problem of domain identification is often
posed as a document classification task, which re-
quires labeled data to train and thus is not applica-
ble for our task. Additionally, we are not concerned
with accurately specifying the exact domain of each
ad, instead any information about similarity between
ads according to their domains is helpful. This kind
of representation can be obtained in an unsupervised
fashion by using topic cluster models (Steyvers and
Griffiths, 2007; Blei et al., 2003). Given a large
set of unlabeled documents, topic models define a
distribution of topics over each document, such that
documents that are similar to each other have similar
topic distributions.

The LDA (Blei et al., 2003) implementation of
topic models in the Mallet toolkit (McCallum, 2002)
was used to construct a model with 1000 topics for
a dataset containing 3 million ads. For each ad, the
discrete distribution over the topics, in conjunction
with each possible label, was added as a feature.
This captures a potential for each label given an ap-
proximation of the ad’s domain captured as topics.



5 Constraints

Constraints are used to inject light supervision
into the learning algorithm and are defined as tar-
gets u for expectations of features G’ over the data.
Any feature that can be included in the model can be
used as a constraint. This allows us to capture a va-
riety of different forms of domain knowledge, some
of which we shall explore in this section.

Labeled data x;, s; can be incorporated as a spe-
cial case when constraints have a target expectation
of 1.0 for the features that are defined only for the
sequence x; and with segmentation s;. This allows
us to easily use labeled data in form of constraints,
but in this work we do not include any labeled data.
A more interesting case is that of partial labeling,
where the domain expert may have prior knowledge
about the probability that certain tokens and/or con-
texts result in a specific label. These constraints
can cover more instances than labeled data, however
they only provide partial and stochastic labels. All
of the constraints described in this section are also
included as simple features.

Many different methods have been suggested in
recent work for finding the correct target values for
the feature expectations. First, if ample labeled data
is available, features expectations can be calculated,
and assumptions can be made that the same expec-
tations hold for the unlabeled data. This method
cannot be applied to our work due to lack of la-
beled data. Second, for certain constraints, the prior
knowledge can be used directly to specify these val-
ues. Third, if the constraints are an output of a
previous machine learning model, we can use that
model’s confidence in the prediction as the target
expectation of the constraint. Finally, a search for
the ideal values of the target expectations can be
performed by evaluating on small evaluation data.
Our target values for feature expectations were set
based on domain knowledge, then adjusted manu-
ally based on minimal manual examination of ex-
amples on a small held-out data set.

5.1 Dictionary-Based

Dictionary constraints are the form of constraints
that apply to the feature between an individual token
and its label. For a set of tokens in the dictionary, the
constraints specify which label they are likely to be.
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Dictionaries can be easily constructed using various
sources, for example product databases, lexicons,
manual collections, or predictions from other mod-
els. These dictionary constraints are often used to
bootstrap models (Agichtein and Ganti, 2004; Cani-
sius and Sporleder, 2007) and have also been used in
the ads domain (Li et al., 2009). For our application,
we rely on dictionary constraints from two sources.

First, the predictions of a previous model are used
to construct a dictionary. A model for entity extrac-
tion is trained on a large amount of labeled search
query data. The domain and style of web queries
differs from advertisements, but the set of labels is
essentially the same. The supervised query entity
extraction model is used to infer segments and la-
bels for the ads domain, and each of the predicted
segments are added to the dictionary of the corre-
sponding predicted label. Even though the predic-
tions of the model are not perfect (see Section 6.1)
the predictions of some of the labels are of high pre-
cision, and thus can be used for supervision in form
of noisy dictionary constraints.

The second source of prior information for dictio-
nary constraints are external databases. Lists of vari-
ous types of places can be obtained easily, for exam-
ple CiTYy, COUNTRY, STATE, AIRPORT, etc. Ad-
ditionally, product databases available internally to
our research group are used for MANUFACTURERS,
BRANDS, PRODUCTS, MEDIATITLE, etc. Some of
these databases are noisy, and the constraints based
on them are given lower target expectations.

5.2 Pattern-Based

Prior knowledge can often be easily expressed as
patterns that appear for a specific domain. Pattern
based matching has been used to express supervision
for information extraction tasks (Califf and Mooney,
1999; Muslea, 1999). The usual use case involves
a domain expert specifying a number of “prototyp-
ical” patterns, while additional patterns are discov-
ered based on these initial patterns.

We incorporate noisy forms of patterns as con-
straints. Simple regular expression based patterns
were used to identify and label segments for a few
domains (e.g. “flights to {PLACE}” and “looking
for {PRODUCT}?”). We do not employ a pattern-
discovery algorithm for finding other contexts; the
model propagates these labels, as before, using the



features of the rest of the model. However if the
output of a pattern-discovery algorithm is available,
it can be directly incorporated into the model as ad-
ditional constraints.

5.3 Domain-Based

A number of label-independent constraints are
also added to avoid unrealistic segmentation predic-
tions. For example, an expectation over segment
lengths was included, which denotes that the seg-
ment length is usually 1 or 2, and almost never more
than 6. A constraint is also added to avoid segments
that overlap the separator token between title and
abstract by ensuring that the segment that includes
the separator token is always of length 1 and of la-
bel OTHER. Finally, an additional constraint ensures
that the label OTHER is the most common label.

6 Results

The feature expectations of the model are cal-
culated with modifications to an open source
semi-CRF package®. We collect two datasets of
ad creatives randomly sampled from Yahoo!’s ads
database: a smaller dataset contains 14k ads and a
larger dataset of 42k ads. The ads were not restricted
to any particular domain (such as travel, electronics,
etc.). The average length of the complete ad text
was ~14 tokens. Preprocessing of the text involved
lower-casing, basic cleaning, and stemming.

The training time for each iteration through the
data was ~90 minutes for the smaller dataset and
~360 minutes for the larger dataset. Inference over
the dataset, using Viterbi decoding for semi-CRFs,
took a total of ~8 and ~32 minutes. The initial
learning rate 7 is set to 10.0.

6.1 Discussion

We compare our approach to a baseline “Dictio-
nary” system that deterministically selects a label
based on the dictionaries described in Section 5.1.
A segment is given a label corresponding to the dic-
tionary it appears in, or OTHER if it does not ap-
pear in any dictionary. In addition, we compare to
an external supervised system that has been trained
on tens-of-thousands of manually-annotated search
queries that use the same taxonomy (the same sys-
tem as used in Section 5.1 to derive dictionaries).

5 Available on http://crf.sourceforge.net/
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This CRF-based model contains mostly the same
features as our unsupervised system, and approxi-
mates what a fully supervised system might achieve,
although it is trained on search queries. Results for
our approach and these two systems are presented
in Table 1. Our evaluation data consists of 2,157
randomly sampled ads that were manually labeled
by professional editors. This labeled data size was
too small to sufficiently train a supervised semi-CRF
model that out-performed the dictionary baseline for
our task (which consists of 45 potential labels).

We measure the token-wise accuracy and macro
F-score over the manually labeled dataset. Typi-
cally, these metrics measure only exact matches be-
tween the true and the predicted label, but this leads
to cases where the model may predict PLACE for a
true CITY. To allow a “partial credit” for these cases,
we introduce “weighted” version of these measures,
where a predicted label is given 0.5 credit if the true
label is its direct child or parent, and 0.25 credit if
the true label is a sibling. Our F-score measures the
recall of all true labels except OTHER and similarly
the precision of all predicted labels except OTHER.
We focus on these labels because the OTHER la-
bel is mostly uninformative for downstream tasks.
The token-wise accuracy over all labels (including
OTHER) is included as “Overall Accuracy’.

Our method significantly outperforms the base-
line dictionary method while approaching the results
obtained with the sophisticated supervised model.
Overall accuracy is 50% greater than the dictionary
baseline, and comes within 10% of the supervised
model®. Increasing unlabeled data from 14k to 42k
ads provides an increase in overall accuracy and
non-OTHER precision, but somewhat reduces recall
for the remaining labels. We also include the F2-
score which gives more weight to recall, because
we are interested in extracting informative labels for
downstream models (which may be able to com-
pensate for a lower precision in label prediction).
Our model trained on 14k samples out-performs the
query-based supervised model in terms of F2, which
is promising for future work that will incorporate
predicted labels in ad retrieval and ranking systems.

Comparisons and trends for normal and weighted measures
are consistent throughout the results.



Table 1: Evaluation: Token-wise accuracy and F-score for the methods evaluated on labeled data (Normal / Weighted)

Metric Dictionary | Our Method (14K) | Our Method (42k) | Query-based Sup. Model
Overall Accuracy 0.454 7 0.466 0.596/0.627 0.629 /7 0.649 0.665/0.685
non-OTHER Recall | 0.170/0.205 0.329/0.412 0.271/0.325 0.286/0.342
non-OTHER Precision | 0.136/0.163 0.265/0.333 0.297/0.357 0.392/0.469
F1-score 0.151/0.182 0.293/0.368 0.283/0.340 0.331/0.395
F2-score 0.162/0.195 0.313/0.393 0.276/0.331 0.303/0.361

7 Related Work

Extraction of structured information from text is
of interest to a large number of communities. How-
ever, in the ads domain, the task has usually been
simplified to that of classification or ranking. Pre-
vious work has focused on retrieval (Raghavan and
Iyer, 2008), user click prediction (Shaparenko et
al., 2009; Richardson et al., 2007; Ciaramita et al.,
2008), ad relevance (Hillard et al., 2010) and bounce
rate prediction (Sculley et al., 2009). As far we
know, our method is the only one that aims to solve a
much more complex task of segmentation and entity
extraction from ad creatives. Supervised methods
are a poor choice to solve this task as they require
large amounts of labeled ads, which is expensive,
time-consuming and noisy. Most semi-supervised
methods also rely on some labeled data, and scale
badly with the size of unlabeled data, which is in-
tractable for most ad databases.

Considerable research has been undertaken to ex-
ploit forms of domain knowledge other than la-
beled data to efficiently train a model while utiliz-
ing the unlabeled data. These include methods that
express domain knowledge as constraints on fea-
tures, which have shown to provide high accuracy
on natural language datasets (Chang et al., 2007;
Chang et al.,, 2008; Mann and McCallum, 2008;
Bellare et al., 2009; Singh et al., 2010). We use
the method of alternating projections for constraint-
driven learning (Bellare et al., 2009) since it spec-
ifies constraints on feature expectations instead of
less intuitive constraints on feature parameters (as
in (Chang et al., 2008)). Additionally, the alternat-
ing projection method is computationally more effi-
cient than Generalized Expectation (Mann and Mc-
Callum, 2008) and can be applied in an online fash-
ion using stochastic gradient.
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Our approach is most similar to (Li et al., 2009),
which uses semi-supervised learning for CRFs to ex-
tract structured information from user queries. They
also use a constraint-driven method that utilizes an
external data source. Their method, however, relies
on labeled data for part of the supervision while our
method uses only unlabeled data. Also, evaluation
was only shown for a small domain of user queries,
while our work does not restrict itself to any specific
domain of ads for evaluation.

8 Conclusions

Although important for a number of tasks in spon-
sored search, extraction of structured information
from text advertisements is not a well-studied prob-
lem. The difficulty of the problem lies in the expen-
sive, time-consuming and error-prone labeling pro-
cess. In this work, the aim was to explore machine
learning methods that do not use labeled data, re-
lying instead on light supervision specified as con-
straints on feature expectations. The results clearly
show this minimally-supervised method performs
significantly better than a dictionary based baseline.
Our method also approaches the performance of a
supervised model trained to extract entities from
web search queries. These findings strongly suggest
that domain knowledge expressed in forms other
than directly labeled data may be preferable in do-
mains for which labeling data is unsuitable.

The most important limitation lies in the fact
that specifying the target expectations of constraints
is an ad-hoc process, and robustness of the semi-
supervised learning method to noise in these target
values needs to be investigated. Further research
will also explore using the extracted entities from
advertisements to improve downstream sponsored
search tasks.
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Abstract

Taxonomies are an important resource for a
variety of Natural Language Processing (NLP)
applications. Despite this, the current state-
of-the-art methods in taxonomy learning have
disregarded word polysemy, in effect, devel-
oping taxonomies that conflate word senses.
In this paper, we present an unsupervised
method that builds a taxonomy of senses
learned automatically from an unlabelled cor-
pus. Our evaluation on two WordNet-derived
taxonomies shows that the learned taxonomies
capture a higher number of correct taxonomic
relations compared to those produced by tradi-
tional distributional similarity approaches that
merge senses by grouping the features of each
word into a single vector.

1 Introduction

A concept or a sense, s, can be defined as the mean-
ing of a word or a multiword expression. A con-
cept s can be linguistically realised by more than one
word while at the same time a word w can be the lin-
guistic realisation of more than one concept. Given
a set of concepts .S, taxonomy learning is the task of
hierarchically classifying the elements in S in an au-
tomatic manner. For example, consider a set of con-
cepts linguistically realised by the words/multiword
expressions LAN, computer network, internet, mesh-
work, gauze, snood. Taxonomy learning methods
produce taxonomies, such as the ones shown in Fig-
ures 1 (a) and 1 (b).

By observing Figure 1 (a), we can express IS-
A statements, such as Internet IS-A Computer Net-
work etc. However, the same does not apply to the
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(b)

Figure 1: A labelled and an unlabelled concept taxonomy

taxonomy in Figure 1 (b), since this taxonomy is not
fully labelled. Despite this, its hierarchical organ-
isation clearly shows that the concepts are divided
into groups, which are further subdivided into sub-
groups and so forth, until we reach a level where
each concept belongs to its own group. Unlabelled
taxonomies are typically produced by agglomera-
tive hierarchical clustering algorithms (King, 1967;
Sneath and Sokal, 1973).

The knowledge encoded in taxonomies can be
utilised in a range of NLP applications. For in-
stance, taxonomies can be used in information re-
trieval to expand a user query with semantically re-
lated words or to enhance document representation
by abstracting from plain words and adding concep-
tual information (Cimiano, 2006). WordNet’s (Fell-
baum, 1998) taxonomic relations have also been
used in Word Sense Disambiguation (WSD) (Nav-
igli and Velardi, 2004b). In named entity recog-
nition, methods relying on gazetteers could make

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 82-90,
Los Angeles, California, June 2010. (©2010 Association for Computational Linguistics



use of automatically acquired taxonomies (Cimiano,
2006), while question answering systems have also
benefited (Moldovan and Novischi, 2002).

Despite the wide uses of taxonomies, the majority
of methods disregard or do not deal effectively with
word polysemy, in effect, developing taxonomies
that conflate the senses of words (see Section 2).
In this work, we show that Word Sense Induction
(WSI) can be effectively employed to address this
limitation of existing methods.

We present a novel method that employs WSI to
generate the different senses of a set of target words
from an unlabelled corpus and then produces a tax-
onomy of senses using Hierarchical Agglomerative
Clustering (HAC) (King, 1967; Sneath and Sokal,
1973). We evaluate our method on two WordNet-
derived sub-taxonomies and show that our method
leads to the development of concept hierarchies that
capture a higher number of correct taxonomic rela-
tions in comparison to those generated by current
distributional similarity approaches.

2 Related work

Initial research on taxonomy learning focused on
identifying in a given text lexico-syntactic patterns
that suggest hyponymy relations (Hearst, 1992). For
instance, the pattern NPy such as NPi,...,NP,
suggests that N P is a hypernym of N F;. For ex-
ample, given the phrase Fruits, such as oranges, ap-
ples,..., the above pattern would suggest that fruit
is a hypernym of orange and apple. These pattern-
based approaches operate at the word level by learn-
ing lexical relations between words rather than be-
tween senses of words.

In the same spirit, other work attempted to exploit
the regularities of dictionary entries to identify hy-
ponymy relations (Amsler, 1981). For example in
WordNet, WAN is defined as a computer network
that spans .... Hence, one can easily induce that
WAN is a hyponym of computer network by assum-
ing that the first noun phrase in the definition is a hy-
pernym of the target word. These approaches learn
lexical relations at the sense level since dictionaries
separate the senses of a word. However this would
be true if and only if the glosses of the dictionaries
were sense-annotated, which is not the case for the
majority of electronic dictionaries (Cimiano, 20006).
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Another limitation is that taxonomies are built ac-
cording to the sense distinctions present in dictio-
naries and not according to the actual use of words
in the corpus.

The majority of taxonomy learning approaches
are based on the distributional hypothesis (Harris,
1968). Typically, distributional similarity methods
(Cimiano et al., 2004; Cimiano et al., 2005; Faure
and Nédellec, 1998; Reinberger and Spyns, 2004;
Caraballo, 1999) utilise syntactic dependencies such
as subject/verb, object/verb relations, conjunctive
and appositive constructions and others. These de-
pendencies are used to extract the features that serve
as the dimensions of the vector space. Each target
noun is then represented as a vector of extracted fea-
tures where the frequency of co-occurrence of the
target noun with each feature is used to calculate the
weight of that feature. The constructed vectors are
the input to hierarchical clustering or formal concept
analysis (Ganter and Wille, 1999) to produce a tax-
onomy. These approaches assume that a target noun
is monosemous creating one vector of features for
each target noun. This limitation can lead to a num-
ber of problems.

Firstly, the constructed taxonomies might be bi-
ased towards the inclusion of taxonomic relation-
ships between the most frequent senses of tar-
get nouns, ignoring interesting taxonomic relations
where less frequent senses are present. For exam-
ple, consider the word house. Current distributional
similarity methods would possibly capture the hy-
ponyms of its Most Frequent Sense (MFS!), how-
ever ignoring the hyponyms of less frequent senses
of house, e.g. casino, theater, etc. Given that word
senses typically follow a Zipf distribution, these
methods construct vectors dominated by the MFS of
words. This bias significantly degrades the useful-
ness of learned taxonomies.

Secondly, given that distributional similarity ap-
proaches rely on the computation of pairwise simi-
larities between target words, merging their senses
to a single vector might lead to unreliable similarity
estimates. For example, merging the features of the
different senses of house could provide a lower sim-
ilarity with its monosemous hyponym beach house,
since only the first sense of house is related to beach

"WordNet: A dwelling that serves as living quarters ...



house. This problem might lead both to inclusion
of incorrect or loss of correct taxonomic relations.
In our work, we aim to overcome these drawbacks
by identifying the different senses with which target
words appear in text and then building a hierarchy
of the identified senses.

Soft clustering approaches (Reinberger and
Spyns, 2004; Reinberger et al., 2003) have also been
applied to taxonomy learning to deal with polysemy.
These methods associate each verb with a vector of
features, where each feature is a noun appearing as
a subject or object of that verb. That way a noun can
appear in different vectors, hence in different clus-
ters during hierarchical clustering as a result of its
polysemy. However, the underlying assumption is
that a verb is monosemous with respect to its associ-
ated vector of nouns. This assumption is not always
valid and can cause the problems mentioned above.

Other work in taxonomy learning exploits the
head/modifier relationships to create taxonomic re-
lations (Buitelaar et al., 2004; Hwang, 1999;
Sanchez and Moreno, 2005). These relations are
used to create: (1) a class (concept) for each head,
and (2) subclasses by adding nominal or adjectival
modifiers. For example, credit card IS-A card. The
corresponding hyponymy relations are learned at the
lexical level disregarding word polysemy. Some of
these approaches identified the problem of polysemy
and applied sense disambiguation with respect to
WordNet in order to capture the different senses of a
target term (Navigli and Velardi, 2004b; Navigli and
Velardi, 2004a). Specifically, the taxonomy built by
exploiting head/modifiers relations was modified ac-
cording to WordNet’s hyponymy relations between
senses of disambiguated terms. One important de-
ficiency of using sense disambiguation is that dic-
tionaries miss many domain-specific senses. Addi-
tionally, the fixed-list of senses paradigm prohibits
learning word senses according to their use in con-
text. The use of sense induction we propose in this
paper aims to overcome these limitations.

3 Method

Given a set of words W, a WSI method is applied
to each w; € W (Section 3.1). The outcome of the
first stage is a set of senses, S, where each s’ € S
denotes the i-th sense of word w € W. This set
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(a) Target word: network
Extracted nouns

Extracted collocations

A:{1,2,3,4,5,6}
B:{1,7,8,9,10,11}

C: {11,12,13,14,15,16,17,18,19,20}
D: {14,15,20,21,22,23,24}

internet, pc, lan, ethernet, network, ...
pc, internet, wire, net, network,...
fabric, rope, wire, hair, net, network, ...
net, cloth, hair, fabric, network, ...

Collocations
1:internet_pc, 2:internet_lan, 3:internet_ethernet, 4:pc_lan, 5:pc_ethernet, 6:ethernet_lan, 7:pc_wire,
8:pc_net, O:internet_wire, 10:internet_net, 11:wire_net, 12:fabric_rope, 13:fabric_wire, 14: fabric_hair
15:fabric_net, 16:rope_wire, 17:rope_hair, 18:rope_net, 19:wire_hair, 20:hair_net, 21:net_cloth,
22:cloth_hair, 23:cloth_fabric, 24:hair_fabric

computer network

OO w>»

net, meshwork

<A

(b) Target word: LAN

Extracted nouns Extracted collocations

internet, computer, ethernet, wan, lan, ...
computer, internet, wire, broadband, lan, ...
web, computer, wan, wlan, lan, ...

E:{1,2,3.4,5,6)
F:{1,7,89,10,11}
G: {5,12,13,14,15,16}

@ mm

Collocations
1:internet_computer, 2:internet_erthernet, 3:internet_wan, 4:computer_ethernet, 5:computer_wan,
6:ethernet_wan, 7:computer_wire, 8:computer_broadband, 9:internet_wire, 10:internet_broadband,
11:wire_broadband, 12:web_computer, 13:web_wan, 14:web_wlan, 15:computer_wlan, 16:wan_wlan

Figure 2: WSI for network & LAN

of senses is the input to hierarchical clustering that
produces a hierarchy of senses (Section 3.2).

3.1 Word sense induction

WSI is the task of identifying the senses of a tar-
get word in a given text. Recent WSI methods
were evaluated under the framework of SemEval-
2007 WSI task (SWSI) (Agirre and Soroa, 2007).
The evaluation framework defines two types of as-
sessment, i.e. evaluation in: (1) a clustering and
(2) a WSD setting. Based on this evaluation, we se-
lected the method of Klapaftis & Manandhar (2008)
(henceforth referred to as KM) that achieves high F-
score in both evaluation schemes as compared to the
systems participating in SWSI. We briefly describe
KM mentioning its parameters used in our evalua-
tion (Section 4). Figures 2 (a) and 2 (b) describe the
different steps for inducing the senses of the target
words network and LAN.

Corpus preprocessing: The input to KM is a
base corpus bc, in which the target word w appears
in each paragraph. In Figure 2 (a), the base cor-
pus consists of the paragraphs A, B, C and D. The
aim of this stage is to capture nouns contextually



related to w. Initially, the target word is removed
from bc, part-of-speech tagging is applied to each
paragraph, only nouns are kept and lemmatised. In
the next step, the distribution of each noun is com-
pared to the distribution of the same noun in a ref-
erence corpus’ using the log-likelihood ratio (G?)
(Dunning, 1993). Nouns with a G2 below a pre-
specified threshold (parameter p;) are removed from
each paragraph. Figure 2 (a) shows the remaining
nouns for each paragraph of bc.

Graph creation & clustering: In the setting of
KM, a collocation is a juxtaposition of two nouns
within the same paragraph. Thus, each noun is com-
bined with any other noun yielding a total of (1;7 )
collocations for a paragraph with N nouns. Each
collocation, c;;, is assigned a weight that measures
the relative frequency of two nouns co-occurring.
This weight is the average of the conditional prob-
abilities p(n;|n;) and p(n;|n;), where p(n;|n;) =

f‘((;lj))  f (Cij) is the number of paragraphs nouns n;,

n; co-occur and f(n;) is the number of paragraphs
in which n; appears. Collocations are filtered with
respect to their frequency (parameter ps) and weight
(parameter ps3). Each retained collocation is rep-
resented as a vertex. Edges between vertices are
present, if two collocations co-occur in one or more
paragraphs. Figure 2 (a) shows that this process has
generated 24 collocations for the target word net-
work. On the top right of the figure we also observe
the collocations associated with each paragraph.

In the next step, a smoothing technique is applied
to discover new edges between vertices. The weight
applied to each edge connecting vertices v; and v;
(collocations ¢y, ¢4e) is the maximum of their con-
ditional probabilities (max(p(cqap|cde), P(Cde|Cap)))-
Finally, the graph is clustered using Chinese whis-
pers (Biemann, 2006). The final output is a set of
senses, each one represented by a set of contextually
related collocations. In Figure 2, we generated two
senses for network and one sense for LAN.

3.2 Hierarchical clustering of senses

Given the set of senses S, our task at this point is to
hierarchically classify the senses using HAC. Con-
sider for example the words network and LAN, and

’The British National Corpus, 2001, Distributed by Oxford
University Computing Services.
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Senses computer | meshwork | LAN
network

computer network | 1 0.0 0.66

meshwork 0.0 1 0.14

LAN 0.66 0.14 1

Table 1: Similarity matrix for HAC.

{A,B,E,F}
{A,B,C,EF,G}
{C,D}

{A,B,E,F}
{A,B,C,E,F,G}

computer
etwor!

{A,B,EF}

{AB,CEF,G}
Figure 3: WSI & HAC example

{c,n}

let us assume that the WSI process has generated
the senses in Figures 2 (a) and 2 (b). HAC oper-
ates by treating each sense as a singleton cluster and
then successively merging the most similar clusters
according to a pre-defined similarity function. This
process iterates until all clusters have been merged
into a single cluster taken to be the root.

To calculate the pairwise similarities between
senses we exploit the attributes that represent each
sense, i.e. their collocations. Let BC' be the cor-
pus resulting from the union of the base corpora of
all words in W. In our example, BC' would consist
of the paragraphs, in which the words network and
LAN appear, i.e. A, B, ..., G. An induced sense tags
a paragraph, if one or more of its collocations ap-
pear in that paragraph. Thus, each induced sense is
associated with a set of paragraph labels that denote
the paragraphs tagged by that sense. Figure 3 shows
the paragraph labels tagged by each sense of our ex-
ample. Finally, given two senses s, si? and their
corresponding sets of tagged paragraphs f; and fib,
we use the Jaccard coefficient to calculate their sim-
a sl?) — m
DU fuf)
the j-th sense of word k. The resulting similarity
matrix of our example is shown in Table 1. Given
that matrix, HAC would first group computer net-
work and LAN as they have the highest similarity
(Figure 3). In the final iteration, the remaining two
clusters (Cluster 1 & meshwork) would be grouped
to the root.

ilarity, i.e. JC(s where sf denotes

An important parameter of HAC is the choice
of the technique for calculating cluster similarities.
Note that as we move towards the higher levels of



the taxonomy clusters contain more than one sets of
tagged paragraphs (Figure 3 - Cluster 1), hence the
choice of the similarity function is crucial. We ex-
periment with three techniques, i.e. single-linkage,
complete-linkage and average-linkage. The first one
defines the similarity between two clusters as the
maximum similarity among all the pairs of their cor-
responding feature sets. The second considers the
minimum similarity among all the pairs, while the
third calculates the average similarity of all the pairs.

4 Evaluation

We evaluate our method with respect to two
WordNet-derived sub-taxonomies (Section 4.3). For
that reason, it is necessary to map the induced senses
to WordNet before applying HAC. Note that the
mapping process might map more than one induced
senses to the same WordNet sense. In that case,
these induced senses are merged to a single one
along with their corresponding collocations.

4.1 Mapping WSI clusters to WordNet senses

The process of mapping the induced senses to Word-
Net is straightforward. Let w € W be a word with
n senses in WordNet. A WordNet sense ¢ of w is de-
noted by ws’, i = [1, n]. Let us also assume that the
WSI method has produced m senses for w, where
each sense j is denoted as s¥, j = [1,m]. Each in-
duced sense s}’ is associated with a set of features
f]’” as in the previous section. These features are the
paragraphs (paragraph labels) of BC' tagged by s7'.
In the next step, each WordNet sense ws;’ is associ-
ated with its WordNet signature g;” that contains the
following semantic features: hypernyms/hyponyms,
meronyms/holonyms and synonyms of ws;”. For
example, the signature of the fifth WordNet sense
of network would contain internet, cyberspace and
other semantically related words. Table 2 shows par-
tial signatures for each sense of network.

The signature g;" is used to formalise the Word-
Net sense ws;’ as a set of features ¢;". These fea-
tures are the paragraphs (paragraph labels) of BC
that contain one or more of the aforementioned se-
mantically related to ws}’ words that exist in g;°.
Given an induced sense s7, a similarity score is cal-
culated between s and each WordNet sense of w.
The maximum score determines the WordNet sense
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WordNet sense | Semantically related words/phrases
reticulum, RF, RAS
communication system/equipment
gauze, snood, tulle

reseau, reticle, reticulation

net, internet, cyberspace

| AW —

Table 2: Semantically related words/phrases to network

label that will be assigned to s, i.e. label(s}) =
argmax; JC(f}’, ¢;"), where JC'is the Jaccard sim-
ilarity coefficient. In the example of Figure 2 (a),
the computer network sense would be mapped to the
fifth WordNet sense of network, since there is a sig-
nificant overlap between the paragraphs tagged by

the induced and that WordNet sense.

4.2 Evaluation measures

For the purposes of this section we present one gold
standard taxonomy (Figure 1 (a)) and a second de-
rived from our method (Figure 1 (b)). The compari-
son of these taxonomies is based on the semantic co-
topy of a node, which has also been used in (Maed-
che and Staab, 2002; Cimiano et al., 2005). In par-
ticular, the semantic cotopy of a node is defined as
the set of all its super- and subnodes excluding the
root and including that node. For example, the se-
mantic cotopy of computer network in Figure 1 (a)
is {computer network, internet, LAN}. There are
two issues, which make the evaluation difficult.

The first one is that HAC produces a taxonomy in
which all internal nodes are unlabelled, as opposed
to the gold standard taxonomy. In Figure 1 (b), we
have manually labelled internal nodes with their IDs
for clarity. For example, the semantic cotopy of the
node New Cluster I in Figure 1 (b) is {computer net-
work, internet, LAN, New Cluster 1, New Cluster
0}. By comparing the cotopies of nodes computer
network in Figure 1 (a) and New Cluster I in Fig-
ure 1 (b), we observe that the automatic method has
successfully grouped all of the hypernyms and hy-
ponyms of computer network under New Cluster 1.
However, the corresponding cotopies are not iden-
tical, because the cotopy of New Cluster I also in-
cludes the labels produced by HAC.

To deal with this problem, we use a version of se-
mantic cotopy for nodes in the automatically learned
taxonomy which excludes nodes that do not exist in
WordNet. That way the semantic cotopies of New
Cluster I in Figure 1 (b) and computer network in



Figure 1 (a) will yield maximum similarity.

The second issue is that the nodes that exist in the
gold standard taxonomy are leaf nodes in the auto-
matically learned taxonomy. As a result, the seman-
tic cotopy of LAN in Figure 1 (b) is {LAN} since
all of its supernodes do not exist in WordNet. In
contrast, the semantic cotopy of LAN in Figure 1
(a) is {LAN, computer network}. We observe that
there is an overlap between the two cotopies derived
by the existence of the same concept in both tax-
onomies, i.e. LAN. In fact, all of the leaf nodes of
a learned taxonomy will have a small overlap with
the corresponding concept in the gold standard. For
this problem, we observe that in our automatically
learned taxonomies it does not make sense to cal-
culate the semantic cotopy of leaf nodes. On the
contrary, we need to evaluate the internal nodes that
group the leaf nodes. Let us assume the following
notation:

Ty = automatically learned taxonomy

n; = node in a taxonomy

C(T4) = internal nodes + leaf nodes of T'a
I(T'4) = internal nodes of Ty

Ta = gold standard taxonomy

C(T¢) = internal nodes + leaf nodes of T
I(T) = internal nodes of T¢;

hyper(n;) = supernodes of n; excluding the root
hypo(n;) = subnodes of n; including n;

For n; € I(T4), the semantic cotopy is defined as:
SC'(n;) = (hyper(n:) U hypo(n:)) N C(Tc)

For n; € C(T¢), the semantic cotopy is defined as:

SC"(n;) = (hyper(n;) U hypo(n;))

[SC"(ni) N SC" (n;)]

oy 18C(mi) N SC(n;)]
R(n, 773) = ‘SC”("?j)’ (2)
2P i i 1515
Flony) (i, ) Bmis ) 3

P(ni,nj) + R(ni,nj)

Precision, recall and harmonic mean of node 7; €
I(T4) with respect to node n; € C(Tg) are de-
fined in Equations 1, 2 and 3. The F-score, F'S, of
node n; € I(T4) is the maximum F attained at any
n; € C(Tg) (FS(m;) = argmax; F'(n;,1;)). Fi-
nally, the similarity 7S of the entire taxonomy to
the gold standard taxonomy is the average of the
F-scores of each 7, € I(T4) (Equation 4). The
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TS(Ta,T¢) in Figure 1 is 0.9. All nodes of Ty
have a perfect match, apart from New Cluster 0 and
New Cluster 2, which are matched against computer
network and meshwork respectively, having a per-
fect precision but a lower recall since the cotopies
of computer network and meshwork consist of three
concepts. The automatically learned taxonomy has
two redundant clusters that decrease its similarity.

1
A n:€1(T4a)

The similarity measure 7'S(T'4,T) provides the
similarity of the automatically learned taxonomy to
the gold standard one, but it is not symmetric. Cal-
culating the taxonomic similarity one way might not
provide accurate results, in cases where 7’4 misses
senses of the gold standard. This is due to the
fact that we would only evaluate the internal nodes
of Ty, partially ignoring the fact that 74 might
have missed some parts of the gold standard taxon-
omy. For that reason, we also calculate 7'S(T, T4)
which provides the similarity of the gold standard
taxonomy to the automatically learned one. Fi-
nally, taxonomic similarities are combined to pro-
duce their harmonic mean (Equation 5).
2TS(Tq, TA)TS(Ta,Tc)

TzSm(Ta, Te) = TS(Tg,Ta) +TS(Ta, Tc) ®

4.3 Evaluation datasets & setting

The first gold standard taxonomy is derived by ex-
tracting from WordNet all the hyponyms of the
senses of the word network. The extracted taxonomy
contains 29 senses linguistically realized by 24 word
sets (one sense might be expressed with more than
one words), since network has 5 senses and reseau
has 2 senses in the gold standard taxonomy. Note
that we have disregarded senses only expressed by
multiword expressions. The average polysemy of
words is around 1.7. The second taxonomy is de-
rived by extracting the concepts under the senses of
the word speaker. The speaker taxonomy contains
52 senses linguistically realized by 50 word sets,
since speaker has 3 senses included in the taxonomy.
The average polysemy of words is around 1.58.

To create our datasets® we use the Yahoo! search
api*. For each word w in each of the datasets, we is-

3 Available in http://www.cs.york.ac.uk/aig/projects/indect/taxlearn

*http://developer.yahoo.com/search/ [Accessed:10/06/2009]



Parameter Range

G? threshold (p1) 5,10
Collocation frequency (p2) | 4.6,8
Collocation weight (p3) 0.1,0.2,0.3,0.4

Table 3: Chosen parameters for the KM WSI method.

sue a query to Yahoo! that contains w and we down-
load a maximum of 1000 pages. In cases where
a particular sense is expressed by more than one
word, the query was formulated by including all the
words and putting the keyword OR between them.
For each page we extracted fragments of text (para-
graphs) that occur in <p> </p> html tags. We ex-
tracted 58956 and 78691 paragraphs for the network
and speaker dataset respectively. The reason we ex-
tracted on average less content for the second dataset
was that Yahoo! provided a small number of results
for rare words such as alliterator, anecdotist, etc.

Table 3 shows the parameter ranges for the WSI
method. Our method is evaluated according to these
parameters. Our first baseline is RAND, which per-
forms a random hierarchical clustering of senses to
produce a binary tree. In each iteration two clusters
are randomly chosen and form a new cluster, until
we end up with one cluster taken to be the root. The
performance of RAND is calculated by executing the
random algorithm 10 times and then averaging the
results. The second baseline is the taxonomy most
frequent sense baseline (TL MFS), in which we do
not perform WSI. Instead, given a parameter setting
and a word w, all the collocations of w are grouped
into one vector, which will possibly be dominated
by collocations related to the MFS of w. WordNet
mapping takes place and finally HAC with average-
linkage is applied to create the taxonomy.

4.4 Results & discussion

Figures 4 (a) and 4 (b) show the performance
of HAC with single-linkage (HAC SNG), average-
linkage (HAC AVG) and complete-linkage (HAC
CMP) against RAND for p; = 5 and different com-
binations of p, and ps3. It is clear that HAC SNG and
HAC AVG outperform RAND by very large margins
under all parameter combinations. In the network
dataset, both of them achieve their highest distance
from RAND (27.84%) at ps = 8 and p3 = 0.2. In the
speaker dataset, their highest distance from RAND
(20.97% and 19.63% respectively) is achieved at
p2 = 4 and p3 = 0.1. HAC CMP performs worse
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than the other HAC versions, yet it clearly outper-
forms RAND in all but one parameter combinations
(p1 = 5, p2 = 6, p3 = 0.4) in the speaker dataset.

Generally, for collocation weight equal to 0.4 the
performance of all HAC versions drops. At this
high collocation weight the WSI method produces a
larger number of small clusters than in lower thresh-
olds. This issue negatively affects both the map-
ping process and HAC. For example in the speaker
dataset, for p; = 5, p2 = 8 and p3 = 0.1 our tax-
onomies contained 86.54% of the gold standard tax-
onomy senses. Increasing the collocation weight to
0.2 did not have any effect, but increasing the weight
to 0.3 and then 0.4 led to 71.15% and 65.38% sense
coverage. Overall, our conclusion is that all HAC
versions exploit the WSI method and learn useful
information better than chance. The picture is the
same for p; = 10.

Figures 4 (c) and 4 (d) show the performance of
HAC versions against the 7L MFS baseline in the
same parameter setting as above. We observe that
both HAC SNG and HAC AVG perform significantly
better than TL MFS apart from p3 = 0.4, in which
case all HAC versions perform worse. In the network
dataset, the largest performance difference for HAC
SNG is 10.12% and for HAC AVG 9.9% at p» = 6
and p3 = 0.2. In the speaker dataset, the largest per-
formance difference for HAC SNG is 10.83% and
for HAC AVG 7.83% at py = 8 and p3 = 0.2. HAC
CMP performs worse than 7L MFS under most pa-
rameter settings in both datasets. The picture is the
same for p; = 10.

Overall, the analysis of the WSI-based taxonomy
learning approach against 7L MFS shows that HAC
SNG and HAC AVG perform better than 7L MFS
under all parameter combinations for both datasets.
The main reason for their superior performance is
that their learned taxonomies contain a higher num-
ber of senses than TL MFS as a result of the sense
induction process. This greater sense coverage leads
to the discovery of a higher number of correct taxo-
nomic relations between senses than 7L MF'S, hence
in a better performance. To conclude, our results
verify our hypothesis and suggest that the unsuper-
vised learning of word senses contributes to produc-
ing taxonomies with a higher similarity to the gold
standard ones than traditional distributional similar-
ity methods.
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Figure 4: Performance analysis of the proposed method for p; = 5 and different combinations of p» and ps.

Despite that, our evaluation also shows that in
most cases HAC CMP is unable to exploit the in-
duced senses and performs worse than 7L MFS,
HAC SNG and HAC AVG. This result was not ex-
pected, since HAC SNG employs a local criterion to
merge two clusters and does not consider the global
structure of the clusters, in effect, being biased to-
wards elongated clusters. The observation of the
gold standard taxonomies shows that they consist
both of cohyponym concepts which are expected
to be contextually related, but also of cohyponyms
which are not expected to appear in similar contexts.
For example, someone would expect a high similar-
ity between WAN, LAN, or between snood and tulle.
However, the same does not apply for snood and
cheesecloth or tulle and grillwork, because cheese-
cloth and grillwork appear in significantly different
contexts than snood and tulle. Despite that, all of
them are cohyponyms. This issue is more prevalent
in the speaker dataset, where concepts such as loud-
speaker, tannoy, woofer are expected to be contex-
tually related, while cohyponyms such as whisperer,
lecturer and interviewer are not. This means that the
gold standard taxonomies include elongated clusters
and explains the superior performance of HAC SNG.

&9

This issue is not affecting HAC AVG, but it has a sig-
nificant effect on HAC CMP. Generally, HAC CMP
employs a non-local criterion by considering the di-
ameter of a candidate cluster. This results in com-
pact clusters with small diameters, as opposed to
elongated ones.

5 Conclusion

We presented an unsupervised method for taxonomy
learning that employs WSI to identify the senses of
target words and then builds a taxonomy of these
senses using HAC. We have shown that dealing with
polysemy by means of sense induction helps to de-
velop taxonomies that capture a higher number of
correct taxonomic relations than traditional distribu-
tional similarity methods, which associate each tar-
get word with one vector of features, in effect, merg-
ing its senses.
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Abstract

The question of how meaning might be ac-
quired by young children and represented by
adult speakers of a language is one of the most
debated topics in cognitive science. Existing
semantic representation models are primarily
amodal based on information provided by the
linguistic input despite ample evidence indi-
cating that the cognitive system is also sensi-
tive to perceptual information. In this work we
exploit the vast resource of images and associ-
ated documents available on the web and de-
velop a model of multimodal meaning repre-
sentation which is based on the linguistic and
visual context. Experimental results show that
a closer correspondence to human data can be
obtained by taking the visual modality into ac-
count.

1 Introduction

The representation and modeling of word mean-
ing has been a central problem in cognitive science
and natural language processing. Both disciplines
are concerned with how semantic knowledge is ac-
quired, organized, and ultimately used in language
processing and understanding. A popular tradition
of studying semantic representation has been driven
by the assumption that word meaning can be learned
from the linguistic environment. Words that are sim-
ilar in meaning tend to behave similarly in terms
of their distributions across different contexts. Se-
mantic space models, among which Latent Semantic
Analysis (LSA, Landauer and Dumais 1997) is per-
haps known best, operationalize this idea by captur-
ing word meaning quantitatively in terms of simple
co-occurrence statistics. Each word w is represented
by a k element vector reflecting the local distribu-
tional context of w relative to k context words. More
recently, fopic models have been gaining ground as
a more structured representation of word meaning.
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In contrast to more standard semantic space mod-
els where word senses are conflated into a single
representation, topic models assume that words ob-
served in a corpus manifest some latent structure —
word meaning is a probability distribution over a set
of topics (corresponding to coarse-grained senses).
Each topic is a probability distribution over words,
and the content of the topic is reflected in the words
to which it assigns high probability.

Semantic space (and topic) models are extracted
from real language corpora, and thus provide a direct
means of investigating the influence of the statistics
of language on semantic representation. They have
been successful in explaining a wide range of be-
havioral data — examples include lexical priming,
deep dyslexia, text comprehension, synonym selec-
tion, and human similarity judgments (see Landauer
and Dumais 1997 and the references therein). They
also underlie a large number of natural language
processing (NLP) tasks including lexicon acquisi-
tion, word sense discrimination, text segmentation
and notably information retrieval. Despite their pop-
ularity, these models offer a somewhat impoverished
representation of word meaning based solely on in-
formation provided by the linguistic input.

Many experimental studies in language acquisi-
tion suggest that word meaning arises not only from
exposure to the linguistic environment but also from
our interaction with the physical world. For ex-
ample, infants are from an early age able to form
perceptually-based category representations (Quinn
et al., 1993). Perhaps unsurprisingly, words that re-
fer to concrete entities and actions are among the
first words being learned as these are directly ob-
servable in the environment (Bornstein et al., 2004).
Experimental evidence also shows that children re-
spond to categories on the basis of visual features,
e.g., they generalize object names to new objects of-
ten on the basis of similarity in shape (Landau et al.,
1998) and texture (Jones et al., 1991).

In this paper we aim to develop a unified mod-
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eling framework of word meaning that captures the
mutual dependence between the linguistic and visual
context. This is a challenging task for at least two
reasons. First, in order to emulate the environment
within which word meanings are acquired, we must
have recourse to a corpus of verbal descriptions and
their associated images. Such corpora are in short
supply compared to the large volumes of solely tex-
tual data. Secondly, our model should integrate lin-
guistic and visual information in a single representa-
tion. It is unlikely that we have separate representa-
tions for different aspects of word meaning (Rogers
et al., 2004).

We meet the first challenge by exploiting mul-
timodal corpora, namely collections of documents
that contain pictures. Although large scale corpora
with a one-to-one correspondence between words
and images are difficult to come by, datasets that
contain images and text are ubiquitous. For exam-
ple, online news documents are often accompanied
by pictures. Using this data, we develop a model
that combines textual and visual information to learn
semantic representations. We assume that images
and their surrounding text have been generated by
a shared set of latent variables or topics. Our model
follows the general rationale of topic models — it is
based upon the idea that documents are mixtures of
topics. Importantly, our topics are inferred from the
joint distribution of textual and visual words. Our
experimental results show that a closer correspon-
dence to human word similarity and association can
be obtained by taking the visual modality into ac-
count.

2 Related Work

The bulk of previous work has focused on models of
semantic representation that are based solely on tex-
tual data. Many of these models represent words as
vectors in a high-dimensional space (e.g., Landauer
and Dumais 1997), whereas probabilistic alterna-
tives view documents as mixtures of topics, where
words are represented according to their likelihood
in each topic (e.g., Steyvers and Griffiths 2007).
Both approaches allow for the estimation of similar-
ity between words. Spatial models compare words
using distance metrics (e.g., cosine), while proba-
bilistic models measure similarity between terms ac-
cording to the degree to which they share the same
topic distributions.

Within cognitive science, the problem of how
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words are grounded in perceptual representations
has attracted some attention. Previous modeling ef-
forts have been relatively small-scale, using either
artificial images, or data gathered from a few sub-
jects in the lab. Furthermore, the proposed models
work well for the tasks at hand (e.g., either word
learning or object categorization) but are not de-
signed as a general-purpose meaning representation.
For example, Yu (2005) integrates visual informa-
tion in a computational model of lexical acquisi-
tion and object categorization. The model learns a
mapping between words and visual features from
data provided by (four) subjects reading a children’s
story. In a similar vein, Roy (2002) considers the
problem of learning which words or word sequences
refer to objects in a synthetic image consisting of ten
rectangles. Andrews et al. (2009) present a proba-
bilistic model that incorporates perceptual informa-
tion (indirectly) by combining distributional infor-
mation gathered from corpus data with speaker gen-
erated feature norms! (which are also word-based).

Much work in computer vision attempts to learn
the underlying connections between visual features
and words from examples of images annotated with
description keywords. The aim here is to enhance
image-based applications (e.g., search or retrieval)
by developing models that can label images with
keywords automatically. Most methods discover
the correlations between visual features and words
by introducing latent variables. Standard latent se-
mantic analysis (LSA) and its probabilistic variant
(PLSA) have been applied to this task (Pan et al.,
2004; Hofmann, 2001; Monay and Gatica-Perez,
2007). More sophisticated approaches estimate the
joint distribution of words and regional image fea-
tures, whilst treating annotation as a problem of sta-
tistical inference in a graphical model (Blei and Jor-
dan, 2003; Barnard et al., 2002).

Our own work aims to develop a model of se-
mantic representation that takes visual context into
account. We do not model explicitly the correspon-
dence of words and visual features, or learn a map-
ping between words and visual features. Rather,
we develop a multimodal representation of meaning
which is based on visual information and distribu-
tional statistics. We hypothesize that visual features
are crucial in acquiring and representing meaning

IParticipants are given a series of object names and for each
object they are asked to name all the properties they can think
of that are characteristic of the object.



Michelle Obama fever hits the UK _

In the UK on her first
visit as first lady, Michelle
Obama seems to be mak-
ing just as big an im-
pact. She has attracted as
much interest and column
inches as her husband on
this London trip; creating (
a buzz with her dazzling outfits, her own schedule
of events and her own fanbase. Outside Bucking-
ham Palace, as crowds gathered in anticipation of
the Obamas’ arrival, Mrs Obama’s star appeal was
apparent.

GETTV IMAGES

Table 1: Each article in the document collection contains
a document (the title is shown in boldface), and image
with related content.

and conversely, that linguistic information can be
useful in isolating salient visual features. Our model
extracts a semantic representation from large docu-
ment collections and their associated images without
any human involvement. Contrary to Andrews et al.
(2009) we use visual features directly without rely-
ing on speaker generated norms. Furthermore, un-
like most work in image annotation, we do not em-
ploy any goldstandard data where images have been
manually labeled with their description keywords.

3 Semantic Representation Model

Much like LSA and the related topic models our
model creates semantic representations from large
document collections. Importantly, we assume that
the documents are paired with images which in turn
describe some of the document’s content. Our ex-
periments make use of news articles which are of-
ten accompanied with images illustrating events, ob-
jects or people mentioned in the text. Other datasets
with similar properties include Wikipedia entries
and their accompanying pictures, illustrated stories,
and consumer photo collections. An example news
article and its associated image is shown in Table 1
(we provide more detail on the database we used in
our experiments in Section 4).

Our model exploits the redundancy inherent in
this multimodal collection. Specifically, we assume
that the images and their surrounding text have been
generated by a shared set of topics. A potential
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stumbling block here is the fact that images and
documents represent distinct modalities: images are
commonly described by a continuous feature space
(e.g., color, shape, texture; Barnard et al. 2002; Blei
and Jordan 2003), whereas words are discrete. For-
tunately, we can convert the visual features from a
continuous onto a discrete space, thereby rendering
image features more like word units. In the follow-
ing we describe how we do this and then move on to
present an extension of Latent Dirichlet Allocation
(LDA, Blei and Jordan 2003), a topic model that can
be used to represent meaning as a probability distri-
bution over a set of multimodal topics. Finally, we
discuss how word similarity can be measured under
this model.

3.1 Image Processing

A large number of image processing techniques have
been developed in computer vision for extracting
meaningful features which are subsequently used
in a modeling task. For example, a common first
step to all automatic image annotation methods is
partitioning the image into regions, using either an
image segmentation algorithm (such as normalized
cuts; Shi and Malik 2000) or a fixed-grid layout
(Feng et al., 2004). In the first case the image is
represented by irregular regions (see Figure 1(a)),
whereas in the second case the image is partitioned
into smaller scale regions which are uniformly ex-
tracted from a fixed grid (see Figure 1(b)). The ob-
tained regions are further represented by a standard
set of features including color, shape, and texture.
These can be treated as continuous vectors (Blei and
Jordan, 2003) or in quantized form (Barnard et al.,
2002).

Despite much progress in image segmentation,
there is currently no automatic algorithm that can
reliably divide an image into meaningful parts. Ex-
tracting features from small local regions is thus
preferable, especially for image collections that are
diverse and have low resolution (this is often the case
for news images). In our work we identify local re-
gions using a difference-of-Gaussians point detector
(see Figure 1(c)). This representation is based on de-
scriptors computed over automatically detected im-
age regions. It provides a much richer (and hopefully
more informative) feature space compared to the
alternative image representations discussed above.
For example, an image segmentation algorithm,
would extract at most 20 regions from the image
in Figure 1; uniform grid segmentation yields 143
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Figure 1: Image partitioned into regions of varying granularity using (a) the normalized cut image segmentation algo-
rithm, (b) uniform grid segmentation, and (c) the SIFT point detector.

(11 x 13) regions, whereas an average of 240 points
(depending on the image content) are detected. A
non-sparse feature representation is critical in our
case, since we usually do not have more than one
image per document.

We compute local image descriptors using the
the Scale Invariant Feature Transform (SIFT) algo-
rithm (Lowe, 1999). Importantly, SIFT descriptors
are designed to be invariant to small shifts in posi-
tion, changes in illumination, noise, and viewpoint
and can be used to perform reliable matching be-
tween different views of an object or scene (Mikola-
jezyk and Schmid, 2003; Lowe, 1999). We further
quantize the SIFT descriptors using the K-means
clustering algorithm to obtain a discrete set of vi-
sual terms (visiterms) which form our visual vo-
cabulary Vocy. Each entry in this vocabulary stands
for a group of image regions which are similar
in content or appearance and assumed to origi-
nate from similar objects. More formally, each im-
age [ is expressed in a bag-of-words format vector,
[Vi,v2,...,vL], where v; = n only if I has n regions
labeled with v;. Since both images and documents
in our corpus are now represented as bags-of-words,
and since we assume that the visual and textual
modalities express the same content, we can go a
step further and represent the document and its as-
sociated image as a mixture of verbal and visual
words dy;,. We will then learn a topic model on this
concatenated representation of visual and textual in-
formation.

3.2 Topic Model

Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths et al., 2007) is a probabilistic model of text gen-
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eration. LDA models each document using a mix-
ture over K topics, which are in turn characterized
as distributions over words. The words in the docu-
ment are generated by repeatedly sampling a topic
according to the topic distribution, and selecting a
word given the chosen topic. Under this framework,
the problem of meaning representation is expressed
as one of statistical inference: given some data —
textual and visual words — infer the latent structure
from which it was generated. Word meaning is thus
modeled as a probability distribution over a set of
latent multimodal topics.

LDA can be represented as a three level hierarchi-
cal Bayesian model. Given a corpus consisting of M
documents, the generative process for a document d
is as follows. We first draw the mixing proportion
over topics 6, from a Dirichlet prior with parame-
ters o. Next, for each of the N; words wy, in doc-
ument d, a topic zg, is first drawn from a multino-
mial distribution with parameters 0,,. The probabil-
ity of a word token w taking on value i given that
topic z = j is parametrized using a matrix 3 with
bij = p(w = i|z = j). Integrating out 0,’s and z4,’s,
gives P(D|a., B), the probability of a corpus (or doc-
ument collection):

M Ny
H/P(6d|oc)<H ZP(Zdn|ed)P(de|ZdnaBaded
d=1

n=1 Zgn

The central computational problem in topic
modeling is to compute the posterior distribu-
tion P(0,z|w,o,B) of the hidden variables given
a document w = (wy,wy,...,wy). Although this
distribution is intractable in general, a variety of ap-



proximate inference algorithms have been proposed
in the literature including variational inference
which our model adopts. Blei et al. (2003) introduce
a set of variational parameters, Yy and ¢, and show
that a tight lower bound on the log likelihood of
the probability can be found using the following
optimization procedure:

(v, 0") = ar%rginD(q(e,Z\W)IIP(G,le, o,B))
Here, D denotes the Kullback-Leibler (KL) diver-
gence between the true posterior and the variational
distribution ¢(0,z|y,0) defined as: ¢(0,z|y,9) =
q(8Y) TT_, q(zx|0»), where the Dirichlet parame-
ter y and the multinomial parameters (¢y,...,0y) are
the free variational parameters. Notice that the opti-
mization of parameters (y*(w),0*(w)) is document-
specific (whereas o is corpus specific).

Previous applications of LDA (e.g., to docu-
ment classification or information retrieval) typi-
cally make use of the posterior Dirichlet parame-
ters y*(w) associated with a given document. We are
not so much interested in Y as we wish to obtain a
semantic representation for a given word across doc-
uments. We therefore train the LDA model sketched
above on a corpus of multimodal documents {dyy;, }
consisting of both textual and visual words. We se-
lect the number of topics, K, and apply the LDA al-
gorithm to obtain the  parameters, where 3 repre-
sents the probability of a word w; given a topic z;,
p(wilzj) = Bij. The meaning of w; is thus extracted
from B and is a K-element vector, whose compo-
nents correspond to the probability of w; given each
latent topic assumed to have generated the document
collection.

3.3 Similarity Measures

The ability to accurately measure the similarity or
association between two words is often used as a di-
agnostic for the psychological validity of semantic
representation models. In the topic model described
above, the similarity between two words w; and w»,
can be intuitively measured by the extent to which
they share the same topics (Griffiths et al., 2007).
For example, we may use the KL divergence to mea-
sure the difference between the distributions p and g:

K pi
D(p,q) =Y pjlog, =
j=1 4

where p and ¢ are shorthand for P(w|z;)
and P(w,|z;), respectively.
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The KL divergence is asymmetric and in many ap-
plications, it is preferable to apply a symmetric mea-
sure such as the Jensen Shannon (JS) divergence.

The latter measures the “distance” between p and ¢

through w, the average of p and ¢:

(p+q)

(p+61))
2

1
JS -
(p.q) >

D
3 (p,

)+D(q;

An alternative approach to expressing the similar-
ity between two words is proposed in Griffiths et al.
(2007). The underlying idea is that word association
can be expressed as a conditional distribution. If we
have seen word w1, then we can determine the prob-
ability that w, will be also generated by comput-
ing P(w;|wy). Although the LDA generative model
allows documents to contain multiple topics, here it
is assumed that both w; and w, came from a single
topic:

Plwawr) = X Pwal2)P(Ewn)

P(zlwr) o< P(wi|2)P(2)

where p(z) is uniform, a single topic is sampled
from the distribution P(z|w;), and an overall esti-
mate is obtained by averaging over all topics K.

Griffiths et al. (2007) report results on mod-
eling human association norms using exclu-
sively P(wa|w). We are not aware of any previous
work that empirically assesses which measure is best
at capturing semantic similarity. We undertake such
an empirical comparison as it is not a priory obvious
how similarity is best modeled under a multimodal
representation.

4 Experimental Setup

In this section we discuss our experimental design
for assessing the performance of the model pre-
sented above. We give details on our training proce-
dure and parameter estimation and present the base-
line method used for comparison with our model.

Data We trained the multimodal topic model on
the corpus created in Feng and Lapata (2008). It
contains 3,361 documents that have been down-
loaded from the BBC News website.> Each doc-
ument comes with an image that depicts some of
its content. The images are usually 203 pixels wide

Zhttp://mews.bbe.co.uk/



and 152 pixels high. The average document length
is 133.85 words. The corpus has 542,414 words in
total. Our experiments used a vocabulary of 6,253
textual words. These were words that occurred at
least five times in the whole corpus, excluding
stopwords. The accompanying images were prepro-
cessed as follows. We first extracted SIFT features
from each image (150 on average) which we subse-
quently quantized into a discrete set of visual terms
using K-means. As we explain below, we deter-
mined an optimal value for K experimentally.

Evaluation Our evaluation experiments compared
the multimodal topic model against a standard text-
based topic model trained on the same corpus whilst
ignoring the images. Both models were assessed on
two related tasks, that have been previously used
to evaluate semantic representation models, namely
word association and word similarity.

In order to simulate word association, we used
the human norms collected by Nelson et al. (1999).3
These were established by presenting a large num-
ber of participants with a cue word (e.g., rice) and
asking them to name an associate word in response
(e.g., Chinese, wedding, food, white). For each word,
the norms provide a set of associates and the fre-
quencies with which they were named. We can thus
compute the probability distribution over associates
for each cue. Analogously, we can estimate the de-
gree of similarity between a cue and its associates
using our model (and any of the measures in Sec-
tion 3.3). And consequently examine (using corre-
lation analysis) the degree of linear relationship be-
tween the human cue-associate probabilities and the
automatically derived similarity values. We also re-
port how many times the word with the highest prob-
ability under the model was the first associate in the
norms. The norms contain 10,127 unique words in
total. Of these, we created semantic representations
for the 3,895 words that appeared in our corpus.

Our word similarity experiment used the Word-
Sim353 test collection (Finkelstein et al., 2002)
which consists of relatedness judgments for word
pairs. For each pair, a similarity judgment (on
a scale of 0 to 10) was elicited from human
subjects (e.g., tiger-cat are very similar, whereas
delay-racism are not). The average rating for each
pair represents an estimate of the perceived sim-
ilarity of the two words. The task varies slightly
from word association. Here, participants are asked

3nttp://wuw.usf.edu/Freeassociation.
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Figure 2: Performance of multimodal topic model on pre-
dicting word association under varying topics and visual
terms (development set).

to rate perceived similarity rather than generate the
first word that came into their head in response to a
cue word. The collection contains similarity ratings
for 353 word pairs. Of these, we constructed seman-
tic representations for the 254 that appeared in our
corpus. We also evaluated how well model produced
similarities correlate with human ratings. Through-
out this paper we report correlation coefficients us-
ing Pearson’s r.

5 Experimental Results

Model Selection The multimodal topic model has
several parameters that must be instantiated. These
include the quantization of the image features, the
number of topics, the choice of similarity function,
and the values for a and . We explored the pa-
rameter space on held-out data. Specifically, we fit
the parameters for the word association and similar-
ity models separately using a third of the associa-
tion norms and WordSim353 similarity judgments,
respectively. As mentioned in Section 3.1 we used
K-means to quantize the image features into a dis-
crete set of visual terms. We varied K from 250
to 2000. We also varied the number of topics from 25
to 750 for both the multimodal and text-based topic
models. The parameter o was set to 0.1 and B was
initialized randomly. The model was trained using
variational Bayes until convergence of its bound on
the likelihood objective. This took 1,000 iterations.
Figure 2 shows how word association perfor-
mance varies on the development set with different
numbers of topics (t) and visual terms (r) according
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Figure 3: Performance of multimodal topic model on pre-
dicting word similarity under varying topics and visual
terms (development set).

to three similarity measures: KL divergence, JS di-
vergence, and P(wz|wy ), the probability of word wy
given w (see Section 3.3). Figure 3 shows results on
the development set for the word similarity task. As
far as word association is concerned, we obtain best
results with P(wa|wy ), 750 visual terms and 750 top-
ics (r = 0.188). On word similarity, JS performs best
with 500 visual terms and 25 topics (r = 0.374). It is
not surprising that P(w,|w;) works best for word as-
sociation. The measure expresses the associative re-
lations between words as a conditional distribution
over potential response words w, for cue word wy.
A symmetric function is more appropriate for word
similarity as the task involves measuring the degree
to which to words share some meaning (expressed
as topics in our model) rather than whether a word is
likely to be generated as a response to another word.
These differences also lead to different parametriza-
tions of the semantic space. A rich visual term vo-
cabulary (750 terms) is needed for modeling associ-
ation as broader aspects of word meaning are taken
into account, whereas a sparser more focused repre-
sentation (with 500 visual terms and 25 overall top-
ics) is better at isolating the common semantic con-
tent between two words. We explored the parame-
ter space for the text-based topic model in a sim-
ilar fashion. On the word association task the best
correlation coefficient was achieved with 750 top-
ics and P(wz|w;) (r = 0.139). On word similarity,
the best results were obtained with 75 topics and the
JS divergence (r = 0.309).
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Model Word Association Word Similarity
UpperBnd 0.400 0.545
MixLDA 0.123 0.318
TxtLDA 0.077 0.247

Table 2: Model performance on word association and
similarity (test set).

Model Comparison Table 2 summarizes our re-
sults on the test set using the optimal set of pa-
rameters as established on the development set. The
first row shows how well humans agree with each
other on the two tasks (UpperBnd). We estimated
the intersubject correlation using leave-one-out re-
sampling* (Weiss and Kulikowski, 1991). As can
be seen, in all cases the topic model based on tex-
tual and visual modalities (MixLDA) outperforms
the model relying solely on textual information
(TxtLDA). The differences in performance are sta-
tistically significant (p < 0.05) using a ¢-test (Cohen
and Cohen, 1983).

Steyvers and Griffiths (2007) also predict word
association using Nelson’s norms and a state-of-the-
art LDA model. Although they do not report correla-
tions, they compute how many times the word with
the highest probability P(wz|w;) under the model
was the first associate in the human norms. Using
a considerably larger corpus (37,651 documents),
they reach an accuracy of 16.15%. Our corpus con-
tains 3,361 documents, the MixXLDA model per-
forms at 14.15% and the LDA model at 13.16%. Us-
ing a vector-based model trained on the BNC corpus
(100M words), Washtell and Markert (2009) report a
correlation of 0.167 on the same association data set,
whereas our model achieves a correlation of 0.123.
With respect to word similarity, Marton et al. (2009)
report correlations within the range of 0.31-0.54 us-
ing different instantiations of a vector-based model
trained on the BNC with a vocabulary of 33,000
words. Our MixLDA model obtains a correlation
of 0.318 with a vocabulary five times smaller (6,253
words). Although these results are not strictly com-
parable due to the different nature and size of the
training data, they give some indication of the qual-
ity of our model in the context of other approaches
that exploit only the textual modality. Besides, our
intent is not to report the best performance possible,

4We correlated the data obtained from each participant with
the ratings obtained from all other participants and report the
average.



GAME, CONSOLE, XBOX, SECOND, SONY, WORLD,
TIME, JAPAN, JAPANESE, SCHUMACHER, LAP, MI-
CROSOFT, ALONSO, RACE, TITLE, WIN, GAMERS,
LAUNCH, RENAULT, MARKET

PARTY, MINISTER, BLAIR, LABOUR, PRIME, LEADER,
GOVERNMENT, TELL, BROW, MP, TONY, SIR, SECRE-
TARY, ELECTION, CONFERENCE, POLICY, NEW, WANT,
PUBLIC, SPEECH

SCHOOL, CHILD, EDUCATION, STUDENT, WORK,
PUPIL, PARENT, TEACHER, GOVERNMENT, YOUNG,
SKILL, AGE, NEED, UNIVERSITY, REPORT, LEVEL,
GOOD, HELL, NEW, SURVEY

Table 3: Most frequent words in three topics learnt from
a corpus of image-document pairs.

but to show that a model of meaning representation
is more accurate when taking visual information into
account.

Table 3 shows some examples of the topics
found by our model, which largely form coher-
ent blocks of semantically related words. In gen-
eral, we observe that the model using image fea-
tures tends to prefer words that visualize easily
(e.g., CONSOLE, XBOX). Furthermore, the visual
modality helps obtain crisper meaning distinctions.
Here, SCHUMACHER is a very probable world for
the “game” cluster. This is because the Formula One
driver appears as a character in several video games
discussed and depicted in our corpus. For com-
parison the “game” cluster for the text-based LDA
model contains the words: GAME, USE, INTERNET,
SITE, USE, SET, ONLINE, WEB, NETWORK, MUR-
RAY, PLAY, MATCH, GOOD, WAY, BREAK, TECH-
NOLOGY, WORK, NEW, TIME, SECOND.

We believe the model presented here works bet-
ter than a vanilla text-based topic model for at least
three reasons: (1) the visual information helps cre-
ate better clusters (i.e., conceptual representations)
which in turn are used to measure similarity or as-
sociation; these clusters themselves are amodal but
express commonalities across the visual and textual
modalities; (2) the model is also able to capture per-
ceptual correlations between words. For example,
RED is the most frequent associate for APPLE in Nel-
son’s norms. This association is captured in our vi-
sual features (pictures with apples cluster with pic-
tures showing red objects) even though RED does not
co-occur with APPLE in our data; (3) finally, even in
cases where two words are visually very different in
terms of shape or color (e.g., BANANA and APPLE),
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they tend to appear in images with similar structure
(e.g., on tables, in bowls, as being held or eaten by
someone) and thus often share some common ele-
ment of meaning.

6 Conclusion

In this paper we developed a computational model
that unifies visual and linguistic representations of
word meaning. The model learns from natural lan-
guage corpora paired with images under the assump-
tion that visual terms and words are generated by
mixtures of latent topics. We have shown that a
closer correspondence to human data can be ob-
tained by explicitly taking the visual modality into
account in comparison to a model that estimates the
topic structure solely from the textual modality. Be-
yond word similarity and association, the approach
is promising for modeling word learning and cate-
gorization as well as a wide range of priming stud-
ies. Outwith cognitive science, we hope that some
of the work described here might be of relevance
to more applied tasks such as thesaurus acquisition,
word sense disambiguation, multimodal search, im-
age retrieval, and summarization.

Future improvements include developing a non-
parametric version that jointly /earns how many vi-
sual terms and topics are optimal. Currently, the size
of the visual vocabulary and the number of topics
are parameters in the model, that must be tuned sep-
arately for different tasks and corpora. Another ex-
tension concerns the creation of visual terms. Our
model assumes that an image is a bag of words. The
assumption is convenient for modeling purposes, but
clearly false in the context of visual processing. Im-
age descriptors found closely to each other are likely
to represent the same object and should form one
term rather than several distinct ones (Wang and
Grimson, 2007). Taking the spatial structure among
visual words into account would yield better topics
and overall better semantic representations. Analo-
gously, we could represent documents by their syn-
tactic structure (Boyd-Graber and Blei, 2009).
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Abstract

This paper introduces the novel task of topic
coherence evaluation, whereby a set of words,
as generated by a topic model, is rated for
coherence or interpretability. We apply a
range of topic scoring models to the evaluation
task, drawing on WordNet, Wikipedia and the
Google search engine, and existing research
on lexical similarity/relatedness. In compar-
ison with human scores for a set of learned
topics over two distinct datasets, we show a
simple co-occurrence measure based on point-
wise mutual information over Wikipedia data
is able to achieve results for the task at or
nearing the level of inter-annotator correla-
tion, and that other Wikipedia-based lexical
relatedness methods also achieve strong re-
sults. Google produces strong, if less consis-
tent, results, while our results over WordNet
are patchy at best.

1 Introduction

There has traditionally been strong interest within
computational linguistics in techniques for learning
sets of words (aka topics) which capture the latent
semantics of a document or document collection, in
the form of methods such as latent semantic analysis
(Deerwester et al., 1990), probabilistic latent seman-
tic analysis (Hofmann, 2001), random projection
(Widdows and Ferraro, 2008), and more recently, la-
tent Dirichlet allocation (Blei et al., 2003; Griffiths
and Steyvers, 2004). Such methods have been suc-
cessfully applied to a myriad of tasks including word
sense discrimination (Brody and Lapata, 2009), doc-
ument summarisation (Haghighi and Vanderwende,
2009), areal linguistic analysis (Daume III, 2009)
and text segmentation (Sun et al., 2008). In each
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case, extrinsic evaluation has been used to demon-
strate the effectiveness of the learned topics in the
application domain, but standardly, no attempt has
been made to perform intrinsic evaluation of the top-
ics themselves, either qualitatively or quantitatively.
In machine learning, on the other hand, researchers
have modified and extended topic models in a vari-
ety of ways, and evaluated intrinsically in terms of
model perplexity (Wallach et al., 2009), but there has
been less effort on qualitative understanding of the
semantic nature of the learned topics.

This research seeks to fill the gap between topic
evaluation in computational linguistics and machine
learning, in developing techniques to perform intrin-
sic qualitative evaluation of learned topics. That
is, we develop methods for evaluating the qual-
ity of a given topic, in terms of its coherence to
a human. After learning topics from a collection
of news articles and a collection of books, we ask
humans to decide whether individual learned top-
ics are coherent, in terms of their interpretability
and association with a single over-arching seman-
tic concept. We then propose models to predict
topic coherence, based on resources such as Word-
Net, Wikipedia and the Google search engine, and
methods ranging from ontological similarity to link
overlap and term co-occurrence. Over topics learned
from two distinct datasets, we demonstrate that there
is remarkable inter-annotator agreement on what is
a coherent topic, and additionally that our methods
based on Wikipedia are able to achieve nearly perfect
agreement with humans over the evaluation of topic
coherence.

This research forms part of a larger research
agenda on the utility of topic modelling in gist-
ing and visualising document collections, and ulti-
mately enhancing search/discovery interfaces over

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 100-108,
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document collections (Newman et al., to appeara).
Evaluating topic coherence is a component of the
larger question of what are good topics, what char-
acteristics of a document collection make it more
amenable to topic modelling, and how can the po-
tential of topic modelling be harnessed for human
consumption (Newman et al., to appearb).

2 Related Work

Most earlier work on intrinsically evaluating learned
topics has been on the basis of perplexity results,
where a model is learned on a collection of train-
ing documents, then the log probability of the un-
seen test documents is computed using that learned
model. Usually perplexity is reported, which is the
inverse of the geometric mean per-word likelihood.
Perplexity is useful for model selection and adjust-
ing parameters (e.g. number of topics 7'), and is
the standard way of demonstrating the advantage of
one model over another. Wallach et al. (2009) pre-
sented efficient and unbiased methods for computing
perplexity and evaluating almost any type of topic
model.

While statistical evaluation of topic models is
reasonably well understood, there has been much
less work on evaluating the intrinsic semantic qual-
ity of topics learned by topic models, which could
have a far greater impact on the overall value of
topic modeling for end-user applications. Some re-
searchers have started to address this problem, in-
cluding Mei et al. (2007) who presented approaches
for automatic labeling of topics (which is core to the
question of coherence and semantic interpretabil-
ity), and Griffiths and Steyvers (2006) who applied
topic models to word sense discrimination tasks.
Misra et al. (2008) used topic modelling to identify
semantically incoherent documents within a docu-
ment collection (vs. coherent fopics, as targeted in
this research). Chang et al. (2009) presented the
first human-evaluation of topic models by creating
a task where humans were asked to identify which
word in a list of five topic words had been ran-
domly switched with a word from another topic.
This work showed some possibly counter-intuitive
results, where in some cases humans preferred mod-
els with higher perplexity. This type of result shows
the need for further exploring measures other than
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perplexity for evaluating topic models. In earlier
work, we carried out preliminary experimentation
using pointwise mutual information and Google re-
sults to evaluate topic coherence over the same set
of topics as used in this research (Newman et al.,
2009).

Part of this research takes inspiration from the
work on automatic evaluation in machine translation
(Papineni et al., 2002) and automatic summarisation
(Lin, 2004). Here, the development of automated
methods with high correlation with human subjects
has opened the door to large-scale automated evalua-
tion of system outputs, revolutionising the respective
fields. While our aspirations are more modest, the
basic aim is the same: to develop a fully-automated
method for evaluating a well-grounded task, which
achieves near-human correlation.

3 Topic Modelling

In order to evaluate topic modelling, we require a
topic model and set of topics for a given document
collection. While the evaluation methodology we
describe generalises to any method which gener-
ates sets of words, all of our experiments are based
on Latent Dirichlet Allocation (LDA, aka Discrete
Principal Component Analysis), on the grounds that
it is a state-of-the-art method for generating topics.

LDA is a Bayesian graphical model for text docu-
ment collections represented by bags-of-words (see
Blei et al. (2003), Griffiths and Steyvers (2004),
Buntine and Jakulin (2004)). In a topic model, each
document in the collection of D documents is mod-
elled as a multinomial distribution over 7" topics,
where each topic is a multinomial distribution over
W words. Typically, only a small number of words
are important (have high likelihood) in each topic,
and only a small number of topics are present in each
document.

The collapsed Gibbs sampled topic model simul-
taneously learns the topics and the mixture of topics
in documents by iteratively sampling the topic as-
signment z to every word in every document, using
the Gibbs sampling update:

p(2ia = t|rig = w, 29
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where z;; = t is the assignment of the ith word in
document d to topic ¢, x;y = w indicates that the
current observed word is w, and z™? is the vector of
all topic assignments not including the current word.
Ny, represents integer count arrays (with the sub-
scripts denoting what is counted), and « and (3 are
Dirichlet priors.

The maximum a posterior (MAP) estimates of the

topics p(w|t), t = 1...T are given by:

Nwt+/8
p(wlt) = S N+ WA

We will follow the convention of representing a
topic via its top-n words, ordered by p(w|t). Here,
we use the top-ten words, as they usually provide
sufficient detail to convey the subject of a topic,
and distinguish one topic from another. For the
remainder of this paper, we will refer to individ-
ual topics by its list of top-ten words, denoted by
W = (wl, N ,wm).

4 Topic Evaluation Methods

We experiment with scoring methods based on
WordNet (Section 4.1), Wikipedia (Section 4.2) and
the Google search engine (Section 4.3). In the case
of Google, we query for the entire topic, but with
WordNet and Wikipedia, this takes the form of scor-
ing each word-pair in a given topic w based on the
component words (w1, . . ., wip). Given some (sym-
metric) word-similarity measure D(w;,w;), two
straightforward ways of producing a combined score
from the 45 (i.e. (120)) word-pair scores are: (1) the
arithmetic mean, and (2) the median, as follows:

Mean-D-Score(w) =
mean{D(w;,w;),ij € 1...10,i < j}

Median-D-Score(w) =
median{D(w;, w;),ij € 1...10,i < j}

Intuitively, the median seems the more natural rep-
resentation, as it is less affected by outlier scores,
but we experiment with both, and fall back to empir-
ical verification of which is the better combination
method.
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4.1 WordNet similarity

WordNet (Fellbaum, 1998) is a lexical ontology
that represents word sense via “synsets”, which
are structured in a hypernym/hyponym hierarchy
(nouns) or hypernym/troponym hierarchy (verbs).
WordNet additionally links both synsets and words
via lexical relations including antonymy, morpho-
logical derivation and holonymy/meronym.

In parallel with the development of WordNet, a
number of computational methods for calculating
the semantic relatedness/similarity between synset
pairs (i.e. sense-specified word pairs) have been de-
veloped, as we outline below. These methods ap-
ply to synset rather than word pairs, so to generate a
single score for a given word pair, we look up each
word in WordNet and exhaustively generate scores
for each sense pairing defined by them, and calcu-
late their arithmetic mean.'

The majority of the methods (all methods other
than HSO, VECTOR and LESK) are restricted to op-
erating strictly over hierarchical links within a sin-
gle hierarchy. As the verb and noun hierarchies are
not connected (other than via derivational links), this
means that it is generally not possible to calculate
the similarity between noun and verb senses, for ex-
ample. In such cases, we simply drop the synset
pairing in question from our calculation of the mean.

The least common subsumer (LCS) is a common
feature to a number of the measures, and is defined
as the deepest node in the hierarchy that subsumes
both of the synsets under question.

For all our experiments over WordNet, we use the
WordNet: :Similarity package.

Path distance (PATH)

The simplest of the WordNet-based measures is
to count the number of nodes visited while going
from one word to another via the hypernym hierar-
chy. The path distance between two nodes is de-
fined as the number of nodes that lie on the short-
est path between two words in the hierarchy. This

"'We also experimented with the median, and trialled filter-
ing the set of senses in a variety of ways, e.g. using only the
first sense (the sense with the highest prior) for a given word,
or using only the word senses associated with the POS with the
highest prior. In all cases, the overall trend was for the correla-
tion with the human scores to drop relative to the mean, so we
only present the numbers for the mean in this paper.



count of nodes includes the beginning and ending
word nodes.

Leacock-Chodorow (LCH)

The measure of semantic similarity devised by
Leacock et al. (1998) finds the shortest path between
two WordNet synsets (sp(c1,c2)) using hypernym
and synonym relationships. This path length is then
scaled by the maximum depth of WordNet (D), and
the log likelihood taken:

. sp(ci,c
simyen(c1,c2) = —log W
Wu-Palmer (WUP)

Wu and Palmer (1994) proposed to scale the depth
of the two synset nodes (depth., and depth.,) by
the depth of their LCS (depth(lcse, ¢, )):

Simwup(clv 02) =
2 - depth(lcse, c,)
depthe, + depthe, + 2 - depth(lcse, c,)

The scaling means that specific terms (deeper in the
hierarchy) that are close together are more semanti-
cally similar than more general terms, which have a
short path distance between them. Only hypernym
relationships are used in this measure, as the LCS
is defined by the common member in the concepts’
hypernym path.

Hirst-St Onge (HSO)

Hirst and St-Onge (1998) define a measure of se-
mantic similarity based on length and tortuosity of
the path between nodes. Hirst and St-Onge attribute
directions (up, down and horizontal) to the larger set
of WordNet relationships, and identify the path from
one word to another utilising all of these relation-
ships. The relatedness score is then computed by
the weighted sum of the path length between the two
words (len(c1, ¢2)) and the number of turns the path
makes (turns(cy, c2)) to take this route:

Telhso (Cl ) CQ) ==

C —len(cy,c2) — k X turns(cy, c2)

where C' and k are constants. Additionally, a set of
restrictions is placed on the path so that it may not
be more than a certain length, may not contain more
than a set number of turns, and may only take turns
in certain directions.
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Resnik Information Content (RES)

Resnik (1995) presents a method for weighting
edges in WordNet (avoiding the assumption that all
edges between nodes have equal importance), by
weighting edges between nodes by their frequency
of use in textual corpora.

Resnik found that the most effective measure of
comparison using this methodology was to measure
the Information Content (IC(c) = —logp(c)) of
the subsumer with the greatest Information Content
from the set of all concepts that subsumed the two
initial concepts (S(c1, c2)) being compared:

[~ log p(c)]

Simpes(c1,c2) = max

ceS(ey,c2)
Lin (LIN)

Lin (1998) expanded on the Information Theo-
retic approach presented by Resnik by scaling the
Information Content of each node by the informa-
tion content of their LCS:

2 x logp(lCScl,Q)
logp(c1) + log p(c2)

simyn(c1,c2) =

This measure contrasts the joint content of the two
concepts with the difference between them.

Jiang-Conrath (JCN)

Jiang and Conrath (1997) define a measure that
utilises the components of the information content
of the LCS in a different manner:

$iMjen(c1,c2) =
1
IC(a) +1C(b) —2