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1 Model Run Time

A single experiment implementing the adversarial
training for 2,048 dimensions with 20 adversar-
ial classifiers typically lasted for 5 days on a sin-
gle GPU. This time includes the initial adversarial
training, in addition to freezing the representations
and trying to learn the bias from the resulting model
sentence representations.

Due to the large number of experiments per-
formed for this paper (repeated trials for statistical
testing, implementing adversarial training for each
combination of dimensions and the number of ad-
versaries, and finally testing these de-biased models
on different datasets), over 10,000 GPU hours were
required in total to complete the experimentation.

2 Hyper-Parameter Ranges

Hyper-parameters for the adversarial training were
tested across A\ values of 0.001, 0.01, 0.1, 0.2,
0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999. Af-
ter demonstrating that the adversarial training im-
proves performance across any A hyper-parameter,
a A value of 0.5 was used throughout the experi-
mentation (the highest performing X\ value tested
in terms of reducing the bias which does not result
in a drop in model performance).

When testing the performance of the de-biased
models on the 12 different NLI datasets, as per
Belinkov et al. (2019), hyper-parameters were
selected based on the model accuracy for each
datasets dev set. This involved a grid-search over
the following « and 3 parameters described by (Be-
linkov et al., 2019): 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5
and 5.0.

3 Datasets

The following datasets were used within the model
experimentation: ADD-ONE-RTE (Pavlick and
Callison-Burch, 2016), GLUE (Wang et al., 2018),
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JOCI (Zhang et al., 2017), MNLI (Williams et al.,
2018), MPE (Lai et al., 2017), SCITAIL (Khot
et al., 2018), SICK (Marelli et al., 2014), SNLI-
hard (Gururangan et al., 2018), and three datasets
recast by White et al. (2017): DPR (Rahman
and Ng, 2012), FN+ (Pavlick et al., 2015) and
SPR (Reisinger et al., 2015).

The test and dev splits of each dataset are pro-
vided in the experiment code (please see 'Experi-
ment code’ below). The size of the train, dev and
test sets for each dataset are also provided below:

e SNLI has 549,360 examples in the training
set, 9,842 in the dev set and 9,824 in the test
set.

e SNLI-hard has 3,261 examples in this test
set.

o ADD-ONE-RTE has 4,481 examples in the
training set, 510 in the dev set and 387 in the
test set.

e HANS has 15,000 examples in the training
set, dev set and in the test set.

e JOCI has 26,492 examples in the training set,
3,311 in the dev set and 3,311 in the test set.

e MPE has 32,000 examples in the training set,
4,000 in the dev set and 4,000 in the test set.

e SICK has 4,439 examples in the training set,
495 in the dev set and 4,906 in the test set.

e SCITAIL has 23,596 examples in the training
set, 1,304 in the dev set and 2,126 in the test
set.

e DPR has 2,080 examples in the training set,
486 in the dev set and 1,095 in the test set.

o FN+ has 124,011 examples in the training set,
15,914 in the dev set and 14,679 in the test set.



e SPR has 123,0855 examples in the training
set, 15,296 in the dev set and 15,456 in the
test set.

e MultiNLI matched has 392,702 examples in
the training set, 9,823 in the dev set and 9,815
in the test set.

e GLUE has 8,551 examples in the training set,
1,043 in the dev set and 1,063 in the test set.

4 Experiment code

The source code has been provided with details of
how to repeat our experiments. This source code
includes a link to download the datasets used in our
experiments and the GloVe word embeddings that
we use.
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