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Preface: General Chair

Welcome to the 51st Annual Meeting of the Association for Computational Linguistics in Sofia, Bulgaria!
The first ACL meeting was held in Denver in 1963 under the name AMTCL. This makes ACL one of the
longest running conferences in computer science. This year we received a record total number of 1286
submissions, which is a testament to the continued and growing importance of computational linguistics
and natural language processing.

The success of an ACL conference is made possible by the dedication and hard work of many people. I
thank all of them for volunteering their time and energy in service to our community.

Priscilla Rasmussen, the ACL Business Manager, and Graeme Hirst, the treasurer, did most of the
groundwork in selecting Sofia as the conference site, went through several iterations of planning and
shouldered a significant part of the organizational work for the conference. It was my first exposure to
the logistics of organizing a large event and I was surprised at how much expertise and experience is
necessary to make ACL a successful meeting.

Thanks to Svetla Koeva and her team for their work on local arrangements, including social activities
(Radka Vlahova, Tsvetana Dimitrova, Svetlozara Lesseva), local sponsorship (Stoyan Mihov, Rositsa
Dekova), conference handbook (Nikolay Genov, Hristina Kukova), web site (Tinko Tinchev, Emil
Stoyanov, Georgi Iliev), local exhibits (Maria Todorova, Ekaterina Tarpomanova), internet, wifi and
equipment (Martin Yalamov, Angel Genov, Borislav Rizov) and student volunteer management (Kalina
Boncheva). Perhaps most importantly, Svetla was the liaison to the professional conference organizer
AIM Group, a relationship that is crucial for the success of the conference. Doing the local arrangements
is a fulltime job for an extended period of time. We are lucky that we have people in our community who
are willing to provide this service without compensation.

The program co-chairs Pascale Fung and Massimo Poesio selected a strong set of papers for the main
conference and invited three great keynote speakers, Harald Baayen, Chantal Prat and Lars Rasmussen.
Putting together the program of the top conference in our field is a difficult job and I thank Pascale and
Massimo for taking on this important responsibility.

Thanks are also due to the other key members of the ACL organizing committees: Aoife Cahill and
Qun Liu (workshop co-chairs); Johan Bos and Keith Hall (tutorial co-chairs); Miriam Butt and Sarmad
Hussain (demo co-chairs); Steven Bethard, Preslav Nakov and Feiyu Xu (faculty advisors to the student
research workshop); Anik Dey, Eva Vecchi, Sebastian Krause and Ivelina Nikolova (co-chairs of the
student research workshop); Leo Wanner (mentoring chair); and Anisava Miltenova, Ivan Derzhanski
and Anna Korhonen (publicity co-chairs).

I am particularly indebted to Roberto Navigli, Jing-Shin Chang and Stefano Faralli for producing the
proceedings of the conference, a bigger job than usual because of the large number of submissions and
the resulting large number of acceptances.

The ACL conference and the ACL organization benefit greatly from the financial support of our sponsors.
We thank the platinum level sponsor, Baidu; the three gold level sponsors; the three silver level sponsors;
and six bronze level sponsors. Three other sponsors took advantage of more creative options to assist us:
Facebook sponsored the Student Volunteers; IBM sponsored the Best Student Paper Award; and SDL
sponsored the conference bags. We are grateful for the financial support from these organizations.

Finally, I would like to express my appreciation to the area chairs, workshop organizers, tutorial
presenters and reviewers for their participation and contribution.

Of course, the ACL conference is primarily held for the people who attend the conference, including the
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authors. I would like to thank all of you for your participation and wish you a productive and enjoyable
meeting in Sofia!

ACL 2013 General Chair
Hinrich Schuetze, University of Munich
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Preface: Programme Committee Co-Chairs

Welcome to the 2013 Conference of the Association for Computational Linguistics! Our community
continues to grow, and this year’s conference has set a new record for paper submissions. We received
1286 submissions, which is 12% more than the previous record; we are particularly pleased to see a
striking increase in the number of short papers submitted - 624, which is 21.8% higher than the previous
record set in 2011.

Another encouraging trend in recent years is the increasing number of aspects of language processing,
and forms of language, of interest to our community. In order to reflect this greater diversity, this year’s
conference has a much larger number of tracks than previous conferences, 26. Consequently, many more
area chairs and reviewers were recruited than in the past, thus involving an even greater subset of the
community in the selection of the program. We feel this, too, is a very positive development. We thank
the area chairs and reviewers for their hard work.

A key innovation introduced this year is the presentation at the conference of sixteen papers accepted by
the new ACL journal, Transactions of the Association for Computational Linguistics (TACL). We have
otherwise maintained most of the innovations introduced in recent years, including accepting papers
accompanied by supplemental materials such as corpora or software.

Another new practice this year is the presence of an industrial keynote speaker in addition to the two
traditional keynote speakers. We are delighted to have as invited speakers two scholars as distinguished as
Prof. Harald Baayen of Tuebingen and Alberta and Prof. Chantel Prat from the University of Wisconsin.
Prof. Baayen will talk about using eye-tracking to study the semantics of compounds, an issue of great
interest for work on distributional semantics. Prof. Prat will talk about research studying language in
bilinguals using methods from neuroscience. The industrial keynote speaker, Dr. Lars Rasmussen from
Facebook, will talk about the new graph search algorithm recently announced by the company. Last, but
not least, the recipient of this year’s ACL Lifetime Achievement Award will give a plenary lecture during
the final day of the conference.

The list of people to thank for their contribution to this year’s program is very long. First of all we
wish to thank the authors who submitted top quality work to the conference; we would not have such
a strong program without them, nor without the hard work of area chairs and reviewers, who enabled
us to make often very difficult choices and to provide valuable feedback to the authors. As usual, Rich
Gerber and the START team gave us crucial help with an amazing speed. The general conference chair
Hinrich Schuetze provided valuable guidance and kept the timetable ticking along. We thank the local
arrangements committee headed by Svetla Koeva, who played a key role in finalizing the program. We
also thank the publication chairs, Jing-Shin Chang and Roberto Navigli, and their collaborator Stefano
Faralli, who together produced this volume; and Priscilla Rasmussen, Drago Radev and Graeme Hirst,
who provided enormously useful guidance and support. Finally, we wish to thank previous program
chairs, and in particular John Carroll, Stephen Clark, and Jian Su, for their insight on the process.

We hope you will be as pleased as we are with the result and that you’ll enjoy the conference in Sofia
this Summer.

ACL 2013 Program Co-Chairs
Pascale Fung, Hong-Kong University of Science and Technology
Massimo Poesio, University of Essex
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Invited Talk

When parsing makes things worse: An eye-tracking study of English compounds
Harald Baayen

Seminar für Sprachwissenschaft, Eberhard Karls University, Tuebingen

Abstract

Compounds differ in the degree to which they are semantically compositional (compare, e.g., "carwash",
"handbag", "beefcake" and "humbug"). Since even relatively transparent compounds such as "carwash"
may leave the uninitiated reader with uncertainty about the intended meaning (soap for washing cars? a
place where you can get your car washed?), an efficient way of retrieving the meaning of a compound is
to use the compound’s form as an access key for its meaning.

However, in psychology, the view has become popular that at the earliest stage of lexical processing
in reading, a morpho-orthographic decomposition into morphemes would necessarily take place. Theo-
rists ascribing to obligatory decomposition appear to have some hash coding scheme in mind, with the
constituents providing entry points to a form of table look-up (e.g., Taft & Forster, 1976).

Leaving aside the question of whether such a hash coding scheme would be computationally efficient
as well as the question how the putative morpho-orthographic representations would be learned, my
presentation focuses on the details of lexical processing as revealed by an eye-tracking study of the
reading of English compounds in sentences.

A careful examination of the eye-tracking record with generalized additive modeling (Wood, 2006),
combined with computational modeling using naive discrimination learning (Baayen, Milin, Filipovic,
Hendrix, & Marelli, 2011) revealed that how far the eye moved into the compound is co-determined by
the compound’s lexical distributional properties, including the cosine similarity of the compound and its
head in document vector space (as measured with latent semantic analysis, Landauer & Dumais, 1997).
This indicates that compound processing is initiated already while the eye is fixating on the preceding
word, and that even before the eye has landed on the compound, processes discriminating the meaning
of the compound from the meaning of its head have already come into play.

Once the eye lands on the compound, two very different reading signatures emerge, which critically
depend on the letter trigrams spanning the morpheme boundary (e.g., "ndb" and "dba" in "handbag").
From a discrimination learning perspective, these boundary trigrams provide the crucial (and only) or-
thographic cues for the compound’s (idiosyncratic) meaning. If the boundary trigrams are sufficiently
strongly associated with the compound’s meaning, and if the eye lands early enough in the word, a single
fixation suffices. Within 240 ms (of which 80 ms involve planning the next saccade) the compound’s
meaning is discriminated well enough to proceed to the next word.

However, when the boundary trigrams are only weakly associated with the compound’s meaning, multi-
ple fixations become necessary. In this case, without the availability of the critical orthographic cues, the
eye-tracking record bears witness to the cognitive system engaging not only bottom-up processes from
form to meaning, but also top-down guessing processes that are informed by the a-priori probability of
the head and the cosine similarities of the compound and its constituents in semantic vector space.

These results challenge theories positing obligatory decomposition with hash coding, as hash coding
predicts insensitivity to semantic transparency, contrary to fact. Our results also challenge theories posit-
ing blind look-up based on compounds’ orthographic forms. Although this might be computationally
efficient, the eye can’t help seeing parts of the whole. In summary, reality is much more complex, with
deep pre-arrival parafoveal processing followed by either efficient discrimination driven by the boundary
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trigrams (within 140 ms), or by an inefficient decompositional process (requiring an additional 200 ms)
that seeks to make sense of the conjunction of head and modifier.
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Invited Talk

The Natural Language Interface of Graph Search
Lars Rasmussen

Facebook Inc

Abstract

The backbone of the Facebook social network service is an enormous graph representing hundreds of
types of nodes and thousands of types of edges. Among these nodes are over 1 billion users and 250
billion photos. The edges connecting these nodes have exceeded 1 trillion and continue to grow at an
incredible rate. Retrieving information from such a graph has been a formidable and exciting task. Now
it is possible for you to find, in an aggregated manner, restaurants in a city that your friends have visited,
or photos of people who have attended college with you, and explore many other nuanced connections
between the nodes and edges in our graph given that such information is visible to you.

Graph Search Beta, launched early this year, is a personalized semantic search engine that allows users
to express their intent in natural language. It seeks answers through the traversal of relevant graph edges
and ranks results by various signals extracted from our data. You can find “tv shows liked by people who
study linguistics“ by issuing this query verbatim and, for the entertainment value, compare the results
with “tv shows liked by people who study computer science“. Our system is built to be robust to many
varied inputs, such as grammatically incorrect user queries or traditional keyword searches. Our query
suggestions are always constructed in natural language, expressing the precise intention interpreted by
our system. This means users would know in advance whether the system has correctly understood their
intent before selecting any suggestion. The system also assists users with auto-completions, demonstrat-
ing what kinds of queries it can understand.

The development of the natural language interface encountered an array of challenging problems. The
grammar structure needed to incorporate semantic information in order to translate an unstructured query
into a structured semantic function, and also use syntactic information to return grammatically meaning-
ful suggestions. The system required not only the recognition of entities in a query, but also the resolution
of entities to database entries based on proximity of the entity and user nodes. Semantic parsing aimed to
rank potential semantics including those that may match the immediate purpose of the query along with
other refinements of the original intent. The ambiguous nature of natural language led us to consider
how to interpret certain queries in the most sensible way. The need for speed demanded state-of-the-art
parsing algorithms tailored for our system. In this talk, I will introduce the audience to Graph Search
Beta, share our experience in developing the technical components of the natural language interface, and
bring up topics that may be of interesting research value to the NLP community.
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Invited Talk

Individual Differences in Language and Executive Processes: How the Brain Keeps Track of
Variables

Chantel S. Prat
University of Washington

Abstract
Language comprehension is a complex cognitive process which requires tracking and integrating multi-
ple variables. Thus, it is not surprising that language abilities (e.g., reading comprehension) vary widely
even in the college population, and that language and general cognitive abilities (e.g., working memory
capacity) co-vary. Although it has been widely accepted that improvements in general cognitive abili-
ties enable (or give rise to) increased linguistic skills, the fact that individuals who develop bilingually
outperform monolinguals in tests of executive functioning provides evidence of a situation in which a
particular language experience gives rise to improvements in general cognitive processes. In this talk, I
will describe two converging lines of research investigating individual differences in working memory
capacity and reading ability in monolinguals and improved executive functioning in bilinguals. Results
from these investigations suggest that the functioning of the fronto-striatal loops can explain the relation
between language and non-linguistic executive functioning in both populations. I then discuss evidence
suggesting that this system may function to track and route “variables” into prefrontal control structures.
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Abstract

We introduce a shift-reduce parsing
algorithm for phrase-based string-to-
dependency translation. As the algorithm
generates dependency trees for partial
translations left-to-right in decoding, it
allows for efficient integration of both
n-gram and dependency language mod-
els. To resolve conflicts in shift-reduce
parsing, we propose a maximum entropy
model trained on the derivation graph of
training data. As our approach combines
the merits of phrase-based and string-to-
dependency models, it achieves significant
improvements over the two baselines on
the NIST Chinese-English datasets.

1 Introduction

Modern statistical machine translation approaches
can be roughly divided into two broad categories:
phrase-based and syntax-based. Phrase-based ap-
proaches treat phrase, which is usually a sequence
of consecutive words, as the basic unit of trans-
lation (Koehn et al., 2003; Och and Ney, 2004).
As phrases are capable of memorizing local con-
text, phrase-based approaches excel at handling
local word selection and reordering. In addition,
it is straightforward to integrate n-gram language
models into phrase-based decoders in which trans-
lation always grows left-to-right. As a result,
phrase-based decoders only need to maintain the
boundary words on one end to calculate language
model probabilities. However, as phrase-based de-
coding usually casts translation as a string con-
catenation problem and permits arbitrary permuta-
tion, it proves to be NP-complete (Knight, 1999).

Syntax-based approaches, on the other hand,
model the hierarchical structure of natural lan-
guages (Wu, 1997; Yamada and Knight, 2001;
Chiang, 2005; Quirk et al., 2005; Galley et al.,

2006; Liu et al., 2006; Huang et al., 2006;
Shen et al., 2008; Mi and Huang, 2008; Zhang
et al., 2008). As syntactic information can be
exploited to provide linguistically-motivated re-
ordering rules, predicting non-local permutation
is computationally tractable in syntax-based ap-
proaches. Unfortunately, as syntax-based de-
coders often generate target-language words in a
bottom-up way using the CKY algorithm, inte-
grating n-gram language models becomes more
expensive because they have to maintain target
boundary words at both ends of a partial trans-
lation (Chiang, 2007; Huang and Chiang, 2007).
Moreover, syntax-based approaches often suffer
from the rule coverage problem since syntac-
tic constraints rule out a large portion of non-
syntactic phrase pairs, which might help decoders
generalize well to unseen data (Marcu et al.,
2006). Furthermore, the introduction of non-
terminals makes the grammar size significantly
bigger than phrase tables and leads to higher mem-
ory requirement (Chiang, 2007).

As a result, incremental decoding with hierar-
chical structures has attracted increasing attention
in recent years. While some authors try to inte-
grate syntax into phrase-based decoding (Galley
and Manning, 2008; Galley and Manning, 2009;
Feng et al., 2010), others develop incremental al-
gorithms for syntax-based models (Watanabe et
al., 2006; Huang and Mi, 2010; Dyer and Resnik,
2010; Feng et al., 2012). Despite these success-
ful efforts, challenges still remain for both direc-
tions. While parsing algorithms can be used to
parse partial translations in phrase-based decod-
ing, the search space is significantly enlarged since
there are exponentially many parse trees for expo-
nentially many translations. On the other hand, al-
though target words can be generated left-to-right
by altering the way of tree transversal in syntax-
based models, it is still difficult to reach full rule
coverage as compared with phrase table.
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zongtong jiang yu siyue lai lundun fangwen

The President will visit London in April

source phrase target phrase dependency category
r1 fangwen visit {} fixed
r2 yu siyue in April {1→ 2} fixed
r3 zongtong jiang The President will {2→ 1} floating left
r4 yu siyue lai lundun London in April {2→ 3} floating right
r5 zongtong jiang President will {} ill-formed

Figure 1: A training example consisting of a (romanized) Chinese sentence, an English dependency
tree, and the word alignment between them. Each translation rule is composed of a source phrase, a
target phrase with a set of dependency arcs. Following Shen et al. (2008), we distinguish between fixed,
floating, and ill-formed structures.

In this paper, we propose a shift-reduce parsing
algorithm for phrase-based string-to-dependency
translation. The basic unit of translation in our
model is string-to-dependency phrase pair, which
consists of a phrase on the source side and a depen-
dency structure on the target side. The algorithm
generates well-formed dependency structures for
partial translations left-to-right using string-to-
dependency phrase pairs. Therefore, our approach
is capable of combining the advantages of both
phrase-based and syntax-based approaches:

1. compact rule table: our rule table is a subset
of the original string-to-dependency gram-
mar (Shen et al., 2008; Shen et al., 2010) by
excluding rules with non-terminals.

2. full rule coverage: all phrase pairs, both
syntactic and non-syntactic, can be used in
our algorithm. This is the same with Moses
(Koehn et al., 2007).

3. efficient integration of n-gram language
model: as translation grows left-to-right in
our algorithm, integrating n-gram language
models is straightforward.

4. exploiting syntactic information: as the
shift-reduce parsing algorithm generates tar-
get language dependency trees in decoding,
dependency language models (Shen et al.,
2008; Shen et al., 2010) can be used to en-
courage linguistically-motivated reordering.

5. resolving local parsing ambiguity: as de-
pendency trees for phrases are memorized
in rules, our approach avoids resolving local
parsing ambiguity and explores in a smaller
search space than parsing word-by-word on
the fly in decoding (Galley and Manning,
2009).

We evaluate our method on the NIST Chinese-
English translation datasets. Experiments show
that our approach significantly outperforms both
phrase-based (Koehn et al., 2007) and string-to-
dependency approaches (Shen et al., 2008) in
terms of BLEU and TER.

2 Shift-Reduce Parsing for Phrase-based
String-to-Dependency Translation

Figure 1 shows a training example consisting of
a (romanized) Chinese sentence, an English de-
pendency tree, and the word alignment between
them. Following Shen et al. (2008), string-to-
dependency rules without non-terminals can be
extracted from the training example. As shown
in Figure 1, each rule is composed of a source
phrase and a target dependency structure. Shen et
al. (2008) divide dependency structures into two
broad categories:

1. well-formed

(a) fixed: the head is known or fixed;
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0 ◦ ◦ ◦ ◦ ◦ ◦ ◦

1 S r3 [The President will] • • ◦ ◦ ◦ ◦ ◦

2 S r1 [The President will] [visit] • • ◦ ◦ ◦ ◦ •

3 Rl [The President will visit] • • ◦ ◦ ◦ ◦ •

4 S r4 [The President will visit] [London in April] • • • • • • •

5 Rr [The President will visit London in April] • • • • • • •

step action rule stack coverage

Figure 2: Shift-reduce parsing with string-to-dependency phrase pairs. For each state, the algorithm
maintains a stack to store items (i.e., well-formed dependency structures). At each step, it chooses one
action to extend a state: shift (S), reduce left (Rl), or reduce right (Rr). The decoding process terminates
when all source words are covered and there is a complete dependency tree in the stack.

(b) floating: sibling nodes of a common
head, but the head itself is unspecified
or floating. Each of the siblings must be
a complete constituent.

2. ill-formed: neither fixed nor floating.

We further distinguish between left and right
floating structures according to the position of
head. For example, as “The President will” is the
left dependant of its head “visit”, it is a left floating
structure.

To integrate the advantages of phrase-based
and string-to-dependency models, we propose a
shift-reduce algorithm for phrase-based string-to-
dependency translation.

Figure 2 shows an example. We describe a state
(i.e., parser configuration) as a tuple 〈S, C〉 where
S is a stack that stores items and C is a cover-
age vector that indicates which source words have
been translated. Each item s ∈ S is a well-formed
dependency structure. The algorithm starts with
an empty state. At each step, it chooses one of the
three actions (Huang et al., 2009) to extend a state:

1. shift (S): move a target dependency structure
onto the stack;

2. reduce left (Rl): combine the two items on
the stack, st and st−1 (t ≥ 2), with the root of
st as the head and replace them with a com-
bined item;

3. reduce right (Rr): combine the two items on
the stack, st and st−1 (t ≥ 2), with the root
of st−1 as the head and replace them with a
combined item.

The decoding process terminates when all source
words are covered and there is a complete depen-
dency tree in the stack.

Note that unlike monolingual shift-reduce
parsers (Nivre, 2004; Zhang and Clark, 2008;
Huang et al., 2009), our algorithm does not main-
tain a queue for remaining words of the input be-
cause the future dependency structure to be shifted
is unknown in advance in the translation scenario.
Instead, we use a coverage vector on the source
side to determine when to terminate the algorithm.

For an input sentence of J words, the number of
actions is 2K − 1, where K is the number of rules
used in decoding. 1 There are always K shifts and

1Empirically, we find that the average number of stacks
for J words is about 1.5 × J on the Chinese-English data.
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[The President] [will] [visit]

[The President] [will] [visit] [London]

[The President] [will] [visit London]

[The President] [will visit London]

[The President] [will visit]

[The President will visit]

[The President will visit] [London]

[The President will visit London]

S

Rr

Rl

Rl

Rl

Rl

S

Rr

Figure 3: Ambiguity in shift-reduce parsing.

st−1 st legal action(s)
yes S

h yes S
l yes S
r no

h h yes S, Rl, Rr

h l yes S
h r yes Rr

l h yes Rl

l l yes S
l r no
r h no
r l no
r r no

Table 1: Conflicts in shift-reduce parsing. st and
st−1 are the top two items in the stack of a state.
We use “h” to denote fixed structure, “l” to de-
note left floating structure, and “r” to denote right
floating structure. It is clear that only “h+h” is am-
biguous.

K − 1 reductions.

It is easy to verify that the reduce left and re-
duce right actions are equivalent to the left adjoin-
ing and right adjoining operations defined by Shen
et al. (2008). They suffice to operate on well-
formed structures and produce projective depen-
dency parse trees.

Therefore, with dependency structures present
in the stacks, it is possible to use dependency lan-
guage models to encourage linguistically plausible
phrase reordering.

3 A Maximum Entropy Based
Shift-Reduce Parsing Model

Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:

1. shift vs. shift;

2. shift vs. reduce left;

3. shift vs. reduce right;

4. reduce left vs. reduce right.

Fortunately, if we distinguish between left and
right floating structures, it is possible to rule out
most conflicts. Table 1 shows the relationship
between conflicts, dependency structures and ac-
tions. We use st and st−1 to denote the top two
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[The President will visit London][in April]

DT NNP MD VB NNP IN IN

type feature templates
Unigram c Wh(st) Wh(st−1)

Wlc(st) Wrc(st−1) Th(st)
Th(st−1) Tlc(st) Trc(st−1)

Bigram Wh(st) ◦ Wh(st−1) Th(St) ◦ Th(st−1) Wh(st) ◦ Th(st)
Wh(st−1) ◦ Th(st−1) Wh(st) ◦ Wrc(st−1) Wh(st−1) ◦ Wlc(st)

Trigram c ◦ Wh(st) ◦ W (st−1) c ◦ Th(st) ◦ Th(st−1) Wh(st) ◦ Wh(st−1) ◦ Tlc(st)
Wh(st) ◦ Wh(st−1) ◦ Trc(st−1) Th(st) ◦ Th(st−1) ◦ Tlc(st) Th(st) ◦ Th(st−1) ◦ Trc(st−1)

Figure 4: Feature templates for maximum entropy based shift-reduce parsing model. c is a boolean
value that indicate whether all source words are covered (shift is prohibited if true), Wh(·) and Th(·)
are functions that get the root word and tag of an item, Wlc(·) and Tlc(·) returns the word and tag of
the left most child of the root, Wrc(·) amd Trc(·) returns the word and tag of the right most child of the
root. Symbol ◦ denotes feature conjunction. In this example, c = true, Wh(st) = in, Th(st) = IN,
Wh(st−1) = visit, Wlc(st−1) = London.

items in the stack. “h” stands for fixed struc-
ture, “l” for left floating structure, and “r” for right
floating structure. If the stack is empty, the only
applicable action is shift. If there is only one item
in the stack and the item is either fixed or left float-
ing, the only applicable action is shift. Note that it
is illegal to shift a right floating structure onto an
empty stack because it will never be reduced. If
the stack contains at least two items, only “h+h”
is ambiguous and the others are either unambigu-
ous or illegal. Therefore, we only need to focus on
how to resolve conflicts for the “h+h” case (i.e.,
the top two items in a stack are both fixed struc-
tures).

We propose a maximum entropy model to re-
solve the conflicts for “h+h”: 2

Pθ(a|c, st, st−1) =
exp(θ · h(a, c, st, st−1))∑
a exp(θ · h(a, c, st, st−1))

where a ∈ {S,Rl, Rr} is an action, c is a boolean
value that indicates whether all source words are
covered (shift is prohibited if true), st and st−1

are the top two items on the stack, h(a, c, st, st−1)
is a vector of binary features and θ is a vector of
feature weights.

Figure 4 shows the feature templates used in our
experiments. Wh(·) and Th(·) are functions that
get the root word and tag of an item, Wlc(·) and
Tlc(·) returns the word and tag of the left most
child of the root, Wrc(·) and Trc(·) returns the

2The shift-shift conflicts always exist because there are
usually multiple rules that can be shifted. This can be re-
volved using standard features in phrase-based models.

word and tag of the right most child of the root.
In this example, c = true, Wh(st) = in, Th(st) =
IN, Wh(st−1) = visit, Wlc(st−1) = London.

To train the model, we need an “oracle” or gold-
standard action sequence for each training exam-
ple. Unfortunately, such oracle turns out to be
non-unique even for monolingual shift-reduce de-
pendency parsing (Huang et al., 2009). The situ-
ation for phrase-based shift-reduce parsing aggra-
vates because there are usually multiple ways of
segmenting sentence into phrases.

To alleviate this problem, we introduce a struc-
ture called derivation graph to compactly repre-
sent all derivations of a training example. Figure 3
shows a (partial) derivation graph, in which a node
corresponds to a state and an edge corresponds to
an action. The graph begins with an empty state
and ends with the given training example.

More formally, a derivation graph is a directed
acyclic graph G = 〈V,E〉 where V is a set of
nodes and E is a set of edges. Each node v cor-
responds to a state in the shift-reduce parsing pro-
cess. There are two distinguished nodes: v0, the
staring empty state, and v|V |, the ending com-
pleted state. Each edge e = (a, i, j) transits node
vi to node vj via an action a ∈ {S,Rl, Rr}.

To build the derivation graph, our algorithm
starts with an empty state and iteratively extends
an unprocessed state until reaches the completed
state. During the process, states that violate the
training example are discarded. Even so, there are
still exponentially many states for a training exam-
ple, especially for long sentences. Fortunately, we
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Algorithm 1 Beam-search shift-reduce parsing.
1: procedure PARSE(f )
2: V ← ∅
3: ADD(v0, V[0])
4: k ← 0
5: while V[k] 6= ∅ do
6: for all v ∈ V[k] do
7: for all a ∈ {S,Rl, Rr} do
8: EXTEND(f , v, a, V)
9: end for

10: end for
11: k ← k + 1
12: end while
13: end procedure

only need to focus on “h+h” states. In addition,
we follow Huang et al. (2009) to use the heuristic
of “shortest stack” to always prefer Rl to S.

4 Decoding

Our decoder is based on a linear model (Och,
2003) with the following features:

1. relative frequencies in two directions;

2. lexical weights in two directions;

3. phrase penalty;

4. distance-based reordering model;

5. lexicaized reordering model;

6. n-gram language model model;

7. word penalty;

8. ill-formed structure penalty;

9. dependency language model;

10. maximum entropy parsing model.

In practice, we extend deterministic shift-
reduce parsing with beam search (Zhang and
Clark, 2008; Huang et al., 2009). As shown in Al-
gorithm 1, the algorithm maintains a list of stacks
V and each stack groups states with the same num-
ber of accumulated actions (line 2). The stack list
V initializes with an empty state v0 (line 3). Then,
the states in the stack are iteratively extended un-
til there are no incomplete states (lines 4-12). The
search space is constrained by discarding any state
that has a score worse than:

1. β multiplied with the best score in the stack,
or

2. the score of b-th best state in the stack.

As the stack of a state keeps changing during the
decoding process, the context information needed
to calculate dependency language model and max-
imum entropy model probabilities (e.g., root word,
leftmost child, etc.) changes dynamically as well.
As a result, the chance of risk-free hypothesis re-
combination (Koehn et al., 2003) significantly de-
creases because complicated contextual informa-
tion is much less likely to be identical.

Therefore, we use hypergraph reranking
(Huang and Chiang, 2007; Huang, 2008), which
proves to be effective for integrating non-local
features into dynamic programming, to alleviate
this problem. The decoding process is divided
into two passes. In the first pass, only standard
features (i.e., features 1-7 in the list in the
beginning of this section) are used to produce
a hypergraph. 3 In the second pass, we use the
hypergraph reranking algorithm (Huang, 2008) to
find promising translations using additional de-
pendency features (i.e., features 8-10 in the list).
As hypergraph is capable of storing exponentially
many derivations compactly, the negative effect of
propagating mistakes made in the first pass to the
second pass can be minimized.

To improve rule coverage, we follow Shen et
al. (2008) to use ill-formed structures in decoding.
If an ill-formed structure has a single root, it can
treated as a (pseudo) fixed structure; otherwise it is
transformed to one (pseudo) left floating structure
and one (pseudo) right floating structure. We use
a feature to count how many ill-formed structures
are used in decoding.

5 Experiments

We evaluated our phrase-based string-to-
dependency translation system on Chinese-
English translation. The training data consists
of 2.9M pairs of sentences with 76.0M Chinese
words and 82.2M English words. We used the
Stanford parser (Klein and Manning, 2003) to
get dependency trees for English sentences. We
used the SRILM toolkit (Stolcke, 2002) to train a

3Note that the first pass does not work like a phrase-based
decoder because it yields dependency trees on the target side.
A uniform model (i.e., each action has a fixed probability of
1/3) is used to resolve “h+h” conflicts.
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MT02 (tune) MT03 MT04 MT05
system BLEU TER BLEU TER BLEU TER BLEU TER
phrase 34.88 57.00 33.82 57.19 35.48 56.48 32.52 57.62

dependency 35.23 56.12 34.20 56.36 36.01 55.55 33.06 56.94

this work 35.71∗∗ 55.87∗∗ 34.81∗∗+ 55.94∗∗+ 36.37∗∗ 55.02∗∗+ 33.53∗∗ 56.58∗∗

Table 2: Comparison with Moses (Koehn et al., 2007) and a re-implementation of the bottom-up string-
to-dependency decoder (Shen et al., 2008) in terms of uncased BLEU and TER. We use randomiza-
tion test (Riezler and Maxwell, 2005) to calculate statistical significance. *: significantly better than
Moses (p < 0.05), **: significantly better than Moses (p < 0.01), +: significantly better than string-to-
dependency (p < 0.05), ++: significantly better than string-to-dependency (p < 0.01).

features BLEU TER
standard 34.79 56.93

+ depLM 35.29∗ 56.17∗∗

+ maxent 35.40∗∗ 56.09∗∗

+ depLM & maxent 35.71∗∗ 55.87∗∗

Table 3: Contribution of maximum entropy shift-
reduce parsing model. “standard” denotes us-
ing standard features of phrase-based system.
Adding dependency language model (“depLM”)
and the maximum entropy shift-reduce parsing
model (“maxent”) significantly improves BLEU
and TER on the development set, both separately
and jointly.

4-gram language model on the Xinhua portion of
the GIGAWORD coprus, which contians 238M
English words. A 3-gram dependency language
model was trained on the English dependency
trees. We used the 2002 NIST MT Chinese-
English dataset as the development set and the
2003-2005 NIST datasets as the testsets. We
evaluated translation quality using uncased BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006). The features were optimized with respect
to BLEU using the minimum error rate training
algorithm (Och, 2003).

We chose the following two systems that are
closest to our work as baselines:

1. The Moses phrase-based decoder (Koehn et
al., 2007).

2. A re-implementation of bottom-up string-to-
dependency decoder (Shen et al., 2008).

All the three systems share with the same target-
side parsed, word-aligned training data. The his-
togram pruning parameter b is set to 100 and

rules coverage BLEU TER
well-formed 44.87 34.42 57.35

all 100.00 35.71∗∗ 55.87∗∗

Table 4: Comparison of well-formed and ill-
formed structures. Using all rules significantly
outperforms using only well-formed structures.
BLEU and TER scores are calculated on the de-
velopment set.

phrase table limit is set to 20 for all the three sys-
tems. Moses shares the same feature set with our
system except for the dependency features. For the
bottom-up string-to-dependency system, we in-
cluded both well-formed and ill-formed structures
in chart parsing. To control the grammar size, we
only extracted “tight” initial phrase pairs (i.e., the
boundary words of a phrase must be aligned) as
suggested by (Chiang, 2007). For our system, we
used the Le Zhang’s maximum entropy modeling
toolkit to train the shift-reduce parsing model after
extracting 32.6M events from the training data. 4

We set the iteration limit to 100. The accuracy on
the training data is 90.18%.

Table 2 gives the performance of Moses, the
bottom-up string-to-dependency system, and our
system in terms of uncased BLEU and TER
scores. From the same training data, Moses
extracted 103M bilingual phrases, the bottom-
up string-to-dependency system extracted 587M
string-to-dependency rules, and our system ex-
tracted 124M phrase-based dependency rules. We
find that our approach outperforms both baselines
systematically on all testsets. We use randomiza-
tion test (Riezler and Maxwell, 2005) to calculate
statistical significance. As our system can take full
advantage of lexicalized reordering and depen-

4http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
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Figure 5: Performance of Moses and our system
with various distortion limits.

dency language models without loss in rule cov-
erage, it achieves significantly better results than
Moses on all test sets. The gains in TER are much
larger than BLEU because dependency language
models do not model n-grams directly. Compared
with the bottom-up string-to-dependency system,
our system outperforms consistently but not sig-
nificantly in all cases. The average decoding time
for Moses is 3.67 seconds per sentence, bottom-
up string-to-dependency is 13.89 seconds, and our
system is 4.56 seconds.

Table 3 shows the effect of hypergraph rerank-
ing. In the first pass, our decoder uses standard
phrase-based features to build a hypergraph. The
BLEU score is slightly lower than Moses with the
same configuration. One possible reason is that
our decoder organizes stacks with respect to ac-
tions, whereas Moses groups partial translations
with the same number of covered source words in
stacks. In the second pass, our decoder reranks
the hypergraph with additional dependency fea-
tures. We find that adding dependency language
and maximum entropy shift-reduce models consis-
tently brings significant improvements, both sepa-
rately and jointly.

We analyzed translation rules extracted from the
training data. Among them, well-formed struc-
tures account for 43.58% (fixed 33.21%, float-
ing left 9.01%, and floating right 1.36%) and ill-
formed structures 56.42%. As shown in Table
4, using all rules clearly outperforms using only
well-formed structures.

Figure 5 shows the performance of Moses and
our system with various distortion limits on the
development set. Our system consistently outper-

forms Moses in all cases, suggesting that adding
dependency helps improve phrase reordering.

6 Related Work

The work of Galley and Manning (2009) is clos-
est in spirit to ours. They introduce maximum
spanning tree (MST) parsing (McDonald et al.,
2005) into phrase-based translation. The system
is phrase-based except that an MST parser runs to
parse partial translations at the same time. One
challenge is that MST parsing itself is not incre-
mental, making it expensive to identify loops dur-
ing hypothesis expansion. On the contrary, shift-
reduce parsing is naturally incremental and can
be seamlessly integrated into left-to-right phrase-
based decoding. More importantly, in our work
dependency trees are memorized for phrases rather
than being generated word by word on the fly in
decoding. This treatment might not only reduce
decoding complexity but also potentially revolve
local parsing ambiguity.

Our decoding algorithm is similar to Gimpel
and Smith (2011)’s lattice parsing algorithm as we
divide decoding into two steps: hypergraph gener-
ation and hypergraph rescoring. The major differ-
ence is that our hypergraph is not a phrasal lat-
tice because each phrase pair is associated with
a dependency structure on the target side. In
other words, our second pass is to find the Viterbi
derivation with addition features rather than pars-
ing the phrasal lattice. In addition, their algorithm
produces phrasal dependency parse trees while the
leaves of our dependency trees are words, making
dependency language models can be directly used.

Shift-reduce parsing has been successfully used
in phrase-based decoding but limited to adding
structural constraints. Galley and Manning (2008)
propose a shift-reduce algorithm to integrate a hi-
erarchical reordering model into phrase-based sys-
tems. Feng et al. (2010) use shift-reduce parsing
to impose ITG (Wu, 1997) constraints on phrase
permutation. Our work differs from theirs by go-
ing further to incorporate linguistic syntax into
phrase-based decoding.

Along another line, a number of authors have
developed incremental algorithms for syntax-
based models (Watanabe et al., 2006; Huang and
Mi, 2010; Dyer and Resnik, 2010; Feng et al.,
2012). Watanabe et al. (2006) introduce an Early-
style top-down parser based on binary-branching
Greibach Normal Form. Huang et al. (2010), Dyer
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and Resnik (2010), and Feng et al. (2012) use dot-
ted rules to change the tree transversal to gener-
ate target words left-to-right, either top-down or
bottom-up.

7 Conclusion

We have presented a shift-reduce parsing al-
gorithm for phrase-based string-to-dependency
translation. The algorithm generates depen-
dency structures incrementally using string-to-
dependency phrase pairs. Therefore, our ap-
proach is capable of combining the advantages of
both phrase-based and string-to-dependency mod-
els, it outperforms the two baselines on Chinese-
to-English translation.

In the future, we plan to include more con-
textual information (e.g., the uncovered source
phrases) in the maximum entropy model to re-
solve conflicts. Another direction is to adapt
the dynamic programming algorithm proposed by
Huang and Sagae (2010) to improve our string-to-
dependency decoder. It is also interesting to com-
pare with applying word-based shift-reduce pars-
ing to phrase-based decoding similar to (Galley
and Manning, 2009).
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Abstract 

Since statistical machine translation (SMT) 

and translation memory (TM) complement 

each other in matched and unmatched regions, 

integrated models are proposed in this paper to 

incorporate TM information into phrase-based 

SMT. Unlike previous multi-stage pipeline 

approaches, which directly merge TM result 

into the final output, the proposed models refer 

to the corresponding TM information associat-

ed with each phrase at SMT decoding. On a 

Chinese–English TM database, our experi-

ments show that the proposed integrated Mod-

el-III is significantly better than either the 

SMT or the TM systems when the fuzzy match 

score is above 0.4. Furthermore, integrated 

Model-III achieves overall 3.48 BLEU points 

improvement and 2.62 TER points reduction 

in comparison with the pure SMT system. Be-

sides, the proposed models also outperform 

previous approaches significantly.  

1 Introduction 

Statistical machine translation (SMT), especially 

the phrase-based model (Koehn et al., 2003), has 

developed very fast in the last decade. For cer-

tain language pairs and special applications, 

SMT output has reached an acceptable level, es-

pecially in the domains where abundant parallel 

corpora are available (He et al., 2010). However, 

SMT is rarely applied to professional translation 

because its output quality is still far from satis-

factory. Especially, there is no guarantee that a 

SMT system can produce translations in a con-

sistent manner (Ma et al., 2011). 

In contrast, translation memory (TM), which 

uses the most similar translation sentence (usual-

ly above a certain fuzzy match threshold) in the 

database as the reference for post-editing, has 

been widely adopted in professional translation 

field for many years (Lagoudaki, 2006). TM is 

very useful for repetitive material such as updat-

ed product manuals, and can give high quality 

and consistent translations when the similarity of 

fuzzy match is high. Therefore, professional 

translators trust TM much more than SMT. 

However, high-similarity fuzzy matches are 

available unless the material is very repetitive. 

In general, for those matched segments
1
, TM 

provides more reliable results than SMT does. 

One reason is that the results of TM have been 

revised by human according to the global context, 

but SMT only utilizes local context. However, 

for those unmatched segments, SMT is more re-

liable. Since TM and SMT complement each 

other in those matched and unmatched segments, 

the output quality is expected to be raised signif-

icantly if they can be combined to supplement 

each other. 

In recent years, some previous works have in-

corporated TM matched segments into SMT in a 

pipelined manner (Koehn and Senellart, 2010; 

Zhechev and van Genabith, 2010; He et al., 2011; 

Ma et al., 2011). All these pipeline approaches 

translate the sentence in two stages. They first 

determine whether the extracted TM sentence 

pair should be adopted or not. Most of them use 

fuzzy match score as the threshold, but He et al. 

(2011) and Ma et al. (2011) use a classifier to 

make the judgment. Afterwards, they merge the 

relevant translations of matched segments into 

the source sentence, and then force the SMT sys-

tem to only translate those unmatched segments 

at decoding. 

There are three obvious drawbacks for the 

above pipeline approaches. Firstly, all of them 

determine whether those matched segments 

                                                 
1 We mean “sub-sentential segments” in this work. 
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should be adopted or not at sentence level. That 

is, they are either all adopted or all abandoned 

regardless of their individual quality. Secondly, 

as several TM target phrases might be available 

for one given TM source phrase due to insertions, 

the incorrect selection made in the merging stage 

cannot be remedied in the following translation 

stage. For example, there are six possible corre-

sponding TM target phrases for the given TM 

source phrase “关联4 的5 对象6” (as shown in 

Figure 1) such as “object2 that3 is4 associated5”, 

and “an1 object2 that3 is4 associated5  with6”, etc. 

And it is hard to tell which one should be adopt-

ed in the merging stage. Thirdly, the pipeline 

approach does not utilize the SMT probabilistic 

information in deciding whether a matched TM 

phrase should be adopted or not, and which tar-

get phrase should be selected when we have mul-

tiple candidates. Therefore, the possible im-

provements resulted from those pipeline ap-

proaches are quite limited. 

On the other hand, instead of directly merging 

TM matched phrases into the source sentence, 

some approaches (Biçici and Dymetman, 2008; 

Simard and Isabelle, 2009) simply add the long-

est matched pairs into SMT phrase table, and 

then associate them with a fixed large probability 

value to favor the corresponding TM target 

phrase at SMT decoding. However, since only 

one aligned target phrase will be added for each 

matched source phrase, they share most draw-

backs with the pipeline approaches mentioned 

above and merely achieve similar performance. 

To avoid the drawbacks of the pipeline ap-

proach (mainly due to making a hard decision 

before decoding), we propose several integrated 

models to completely make use of TM infor-

mation during decoding. For each TM source 

phrase, we keep all its possible corresponding 

target phrases (instead of keeping only one of 

them). The integrated models then consider all 

corresponding TM target phrases and SMT pref-

erence during decoding. Therefore, the proposed 

integrated models combine SMT and TM at a 

deep level (versus the surface level at which TM 

result is directly plugged in under previous pipe-

line approaches). 

On a Chinese–English computer technical 

documents TM database, our experiments have 

shown that the proposed Model-III improves the 

translation quality significantly over either the 

pure phrase-based SMT or the TM systems when 

the fuzzy match score is above 0.4. Compared 

with the pure SMT system, the proposed inte-

grated Model-III achieves 3.48 BLEU points im-

provement and 2.62 TER points reduction over-

all. Furthermore, the proposed models signifi-

cantly outperform previous pipeline approaches. 

2 Problem Formulation 

Compared with the standard phrase-based ma-

chine translation model, the translation problem 

is reformulated as follows (only based on the 

best TM, however, it is similar for multiple TM 

sentences): 

  (1) 

Where  is the given source sentence to be trans-

lated,  is the corresponding target sentence and  

is the final translation;  

are the associated information of the best TM 

sentence-pair;  and  denote the corre-

sponding TM sentence pair;  denotes its 

associated fuzzy match score (from 0.0 to 1.0); 

 is the editing operations between  and ; 

and  denotes the word alignment between 

 and . 

Let  and  denote the k-th associated 

source phrase and target phrase, respectively. 

Also,  and  denote the associated source 

phrase sequence and the target phrase sequence, 

respectively (total  phrases without insertion). 

Then the above formula (1) can be decomposed 

as below: 

 

(2) 

Afterwards, for any given source phrase , 

we can find its corresponding TM source phrase 

 and all possible TM target phrases (each 

of them is denoted by ) with the help of 

corresponding editing operations  and word 

alignment . As mentioned above, we can 

have six different possible TM target phrases for 

the TM source phrase “关联 4 的 5 对象 6”. This 

获取0                    与1  批注2  标签3  关联4  的5  对象6  。7

获取0  或1  设置2  与3  批注4             关联5  的6  对象7  。8

gets0  an1  object2  that3  is4  associated5  with6  the7  annotation8  label9  .10

Source

TM Source

TM Target
 

Figure 1: Phrase Mapping Example 
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is because there are insertions around the directly 

aligned TM target phrase. 

In the above Equation (2), we first segment the 

given source sentence into various phrases, and 

then translate the sentence based on those source 

phrases. Also,  is replaced by , as they 

are actually the same segmentation sequence. 

Assume that the segmentation probability 

 is a uniform distribution, with the corre-

sponding TM source and target phrases obtained 

above, this problem can be further simplified as 

follows: 

 

(3) 

Where  is the corresponding TM phrase 

matching status for , which is a vector consist-

ing of various indicators (e.g., Target Phrase 

Content Matching Status, etc., to be defined lat-

er), and reflects the quality of the given candi-

date;  is the linking status vector of  (the 

aligned source phrase of  within ), and indi-

cates the matching and linking status in the 

source side (which is closely related to the status 

in the target side); also,  indicates the corre-

sponding TM fuzzy match interval specified later.  

In the second line of Equation (3), we convert 

the fuzzy match score  into its correspond-

ing interval , and incorporate all possible com-

binations of TM target phrases. Afterwards, we 

select the best one in the third line. Last, in the 

fourth line, we introduce the source matching 

status and the target linking status (detailed fea-

tures would be defined later). Since we might 

have several possible TM target phrases , 

the one with the maximum score will be adopted 

during decoding. 

The first factor  in the above for-

mula (3) is just the typical phrase-based SMT 

model, and the second factor  (to be 

specified in the Section 3) is the information de-

rived from the TM sentence pair. Therefore, we 

can still keep the original phrase-based SMT 

model and only pay attention to how to extract 

useful information from the best TM sentence 

pair to guide SMT decoding. 

3 Proposed Models 

Three integrated models are proposed to incorpo-

rate different features as follows: 

3.1 Model-I 

In this simplest model, we only consider Target 

Phrase Content Matching Status (TCM) for . 

For , we consider four different features at the 

same time: Source Phrase Content Matching 

Status (SCM), Number of Linking Neighbors 

(NLN), Source Phrase Length (SPL), and Sen-

tence End Punctuation Indicator (SEP). Those 

features will be defined below.  is 

then specified as: 

 

All features incorporated in this model are speci-

fied as follows: 

TM Fuzzy Match Interval (z): The fuzzy match 

score (FMS) between source sentence  and TM 

source sentence  indicates the reliability of 

the given TM sentence, and is defined as (Sikes, 

2007): 

 

Where  is the word-based 

Levenshtein Distance (Levenshtein, 1966) be-

tween  and . We equally divide FMS into 

ten fuzzy match intervals such as: [0.9, 1.0), [0.8, 

0.9) etc., and the index  specifies the corre-

sponding interval. For example, since the fuzzy 

match score between  and  in Figure 1 is 

0.667, then . 

Target Phrase Content Matching Status 
(TCM): It indicates the content matching status 

between   and , and reflects the quality 

of . Because  is nearly perfect when FMS 

is high, if the similarity between    and  

is high, it implies that the given  is possibly a 

good candidate. It is a member of {Same, High, 

Low, NA (Not-Applicable)}, and is specified as: 

(1) If  is not null: 

(a) if , ; 

(b) else if , ; 

(c) else, ; 

(2) If  is null, ; 

Here  is null means that either there is no 

corresponding TM source phrase  or 

there is no corresponding TM target phrase 
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 aligned with . In the example of 

Figure 1, assume that the given  is “关联 5  

的 6  对象 7” and  is “object that is associated”. 

If  is “object2 that3 is4 associated5”, 

; if  is “an1 object2 that3 

is4 associated5”, . 

Source Phrase Content Matching Status 
(SCM): Which indicates the content matching 

status between  and , and it affects 

the matching status of  and  greatly. 

The more similar  is to , the more 

similar   is to . It is a member of {Same, 

High, Low, NA} and is defined as: 

(1) If  is not null: 

(a) if , ; 

(b) else if , 

; 

(c) else, ; 

(2) If  is null, ; 

Here  is null means that there is no corre-

sponding TM source phrase  for the giv-

en source phrase . Take the source phrase  

 “关联 5 的 6 对象 7” in Figure 1 for an ex-

ample, since its corresponding  is “关联 4 

的 5 对象 6”, then . 

Number of Linking Neighbors (NLN): Usually, 

the context of a source phrase would affect its 

target translation. The more similar the context 

are, the more likely that the translations are the 

same. Therefore, this NLN feature reflects the 

number of matched neighbors (words) and it is a 

vector of <x, y>. Where “x” denotes the number 

of matched source neighbors; and “y” denotes 

how many those neighbors are also linked to tar-

get words (not null), which also affects the TM 

target phrase selection. This feature is a member 

of {<x, y>: <2, 2>, <2, 1>, <2, 0>, <1, 1>, <1, 0>, 

<0, 0>}. For the source phrase “关联 5 的 6 对象

7” in Figure 1, the corresponding TM source 

phrase is “关联 4 的 5 对象 6” . As only their 

right neighbors “。8” and “。7” are matched, and 

“。7” is aligned with “.10”, NLN will be <1, 1>. 

Source Phrase Length (SPL): Usually the long-

er the source phrase is, the more reliable the TM 

target phrase is. For example, the corresponding 

 for the source phrase with 5 words 

would be more reliable than that with only one 

word. This feature denotes the number of words 

included in , and is a member of {1, 2, 3, 4, 

≥5}. For the case “关联 5 的 6 对象 7”, SPL will 

be 3.  

Sentence End Punctuation Indicator (SEP): 

Which indicates whether the current phrase is a 

punctuation at the end of the sentence, and is a 

member of {Yes, No}. For example, the SEP for 

“关联 5 的 6 对象 7” will be “No”. It is intro-

duced because the SCM and TCM for a sen-

tence-end-punctuation are always “Same” re-

gardless of other features. Therefore, it is used to 

distinguish this special case from other cases. 

3.2 Model-II 

As Model-I ignores the relationship among vari-

ous possible TM target phrases, we add two fea-

tures TM Candidate Set Status (CSS) and Long-

est TM Candidate Indicator (LTC) to incorporate 

this relationship among them.  Since CSS is re-

dundant after LTC is known, we thus ignore it 

for evaluating TCM probability in the following 

derivation: 

 

The two new features CSS and LTC adopted in 

Model-II are defined as follows: 

TM Candidate Set Status (CSS): Which re-

stricts the possible status of , and is a 

member of {Single, Left-Ext, Right-Ext, Both-Ext, 

NA}. Where “Single” means that there is only 

one  candidate for the given source 

phrase ; “Left-Ext” means that there are 

multiple  candidates, and all the candi-

dates are generated by extending only the left 

boundary; “Right-Ext” means that there are mul-

tiple  candidates, and all the candidates 

are generated by only extending to the right; 

“Both-Ext” means that there are multiple  

candidates, and the candidates are generated by 

extending to both sides; “NA” means that 

 is null. 

For “关联 4 的 5 对象 6” in Figure 1, the 

linked TM target phrase is “object2 that3 is4 asso-

ciated5”, and there are 5 other candidates by ex-

tending to both sides. Therefore, 

. 

Longest TM Candidate Indicator (LTC): 

Which indicates whether the given  is the 

longest candidate or not, and is a member of 

{Original, Left-Longest, Right-Longest, Both-

Longest, Medium, NA}. Where “Original” means 

that the given  is the one without exten-

sion; “Left-Longest” means that the given 
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 is only extended to the left and is the 

longest one; “Right-Longest” means that the giv-

en  is only extended to the right and is 

the longest one; “Both-Longest” means that the 

given  is extended to both sides and is the 

longest one; “Medium” means that the given 

 has been extended but not the longest 

one; “NA” means that  is null. 

For  “object2 that3 is4 associated5” in 

Figure 1, ; for  “an1 ob-

ject2 that3 is4 associated5”, ; 

for the longest  “an1 object2 that3 is4 as-

sociated5 with6 the7”, . 

3.3 Model-III 

The abovementioned integrated models ignore 

the reordering information implied by TM. 

Therefore, we add a new feature Target Phrase 

Adjacent Candidate    Relative   Position   

Matching    Status (CPM) into Model-II and 

Model-III is given as: 

 

We assume that CPM is independent with SPL 

and SEP, because the length of source phrase 

would not affect reordering too much and SEP is 

used to distinguish the sentence end punctuation 

with other phrases.  

The new feature CPM adopted in Model-III is 

defined as: 

Target Phrase Adjacent Candidate Relative 

Position Matching Status (CPM): Which indi-

cates the matching status between the relative 

position of 
 
and the relative position of  

. It checks if  are 

positioned in the same order with 

, and reflects the quality of 

ordering the given target candidate . It is a 

member of {Adjacent-Same, Adjacent-Substitute, 

Linked-Interleaved, Linked-Cross, Linked-

Reversed, Skip-Forward, Skip-Cross, Skip-

Reversed, NA}. Recall that 
 
is always right ad-

jacent to , then various cases are defined as 

follows: 

(1) If both  and  are not null: 

(a) If  is on the right of  

and they are also adjacent to each other: 

i. If the right boundary words of  and 

 are the same, and the left 

boundary words of  and  are 

the same, ; 

ii. Otherwise, ; 

(b) If  is on the right of  

but they are not adjacent to each other, 

; 

(c) If  is not on the right of 

: 

i. If there are cross parts between  

and , ; 

ii. Otherwise, ; 

(2) If   is null but  is not null, 

then find the first which is 

not null (  starts from 2)
2
: 

(a) If  is on the right of , 

; 

(b) If  is not on the right of 

: 

i. If there are cross parts between  

and , ; 

ii. Otherwise, . 

(3) If  is null, . 

In Figure 1, assume that ,  and 

 are “gets an”, “object that is associat-

ed with” and “gets0 an1”, respectively. For 

 “object2 that3 is4 associated5”, because 

 is on the right of  and they are 

adjacent pair, and both boundary words (“an” 

and “an1”; “object” and “object2”) are matched, 

; for  “an1 object2 

that3 is4 associated5”, because there are cross 

parts “an1” between  and , 

. On the other hand, as-

sume that ,  and  are “gets”, “ob-

ject that is associated with” and “gets0”, respec-

tively. For  “an1 object2 that3 is4 associ-

ated5”, because  and  are adja-

cent pair, but the left boundary words of  and 

 (“object” and “an1”) are not matched, 

; for  “object2 

that3 is4 associated5”, because  is on the 

right of  but they are not adjacent pair, 

therefore, . One more 

example, assume that ,  and  are 

“the annotation label”, “object that is associated 

with” and “the7 annotation8 label9”, respectively. 

For  “an1 object2 that3 is4 associated5”, 

because  is on the left of , and 

there are no cross parts, .  

                                                 
2 It can be identified by simply memorizing the index of 

nearest non-null  during search. 
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4 Experiments 

4.1 Experimental Setup 

Our TM database consists of computer domain 

Chinese-English translation sentence-pairs, 

which contains about 267k sentence-pairs. The 

average length of Chinese sentences is 13.85 

words and that of English sentences is 13.86 

words. We randomly selected a development set 

and a test set, and then the remaining sentence 

pairs are for training set. The detailed corpus sta-

tistics are shown in Table 1. Furthermore, devel-

opment set and test set are divided into various 

intervals according to their best fuzzy match 

scores. Corpus statistics for each interval in the 

test set are shown in Table 2.  

For the phrase-based SMT system, we adopted 

the Moses toolkit (Koehn et al., 2007). The sys-

tem configurations are as follows: GIZA++ (Och 

and Ney, 2003) is used to obtain the bidirectional 

word alignments. Afterwards, “intersection”
3
 

refinement (Koehn et al., 2003) is adopted to ex-

tract phrase-pairs. We use the SRI Language 

Model toolkit (Stolcke, 2002) to train a 5-gram 

model with modified Kneser-Ney smoothing 

(Kneser and Ney, 1995; Chen and Goodman, 

1998) on the target-side (English) training corpus. 

All the feature weights and the weight for each 

probability factor (3 factors for Model-III) are 

tuned on the development set with minimum-

error-rate training (MERT) (Och, 2003). The 

maximum phrase length is set to 7 in our exper-

iments. 

In this work, the translation performance is 

measured with case-insensitive BLEU-4 score 

(Papineni et al., 2002) and TER score (Snover et 

al., 2006). Statistical significance test is conduct-

ed with re-sampling (1,000 times) approach 

(Koehn, 2004) in 95% confidence level. 

4.2 Cross-Fold Translation 

To estimate the probabilities of proposed models, 

the corresponding phrase segmentations for bi-

lingual sentences are required. As we want to 

check what actually happened during decoding in 

the real situation, cross-fold translation is used to 

obtain the corresponding phrase segmentations. 

We first extract 95% of the bilingual sentences as 

a new training corpus to train a SMT system. 

Afterwards, we generate the corresponding 

phrase segmentations for the remaining 5% bi-

                                                 
3 “grow-diag-final” and “grow-diag-final-and” are also test-

ed. However, “intersection” is the best option in our exper-

iments, especially for those high fuzzy match intervals.  

lingual sentences with Forced Decoding (Li et 

al., 2000; Zollmann et al., 2008; Auli et al., 2009; 

Wisniewski et al., 2010), which searches the best 

phrase segmentation for the specified output. 

Having repeated the above steps 20 times
4
, we 

obtain the corresponding phrase segmentations 

for the SMT training data (which will then be 

used to train the integrated models). 

Due to OOV words and insertion words, not 

all given source sentences can generate the de-

sired results through forced decoding. Fortunate-

ly, in our work, 71.7% of the training bilingual 

sentences can generate the corresponding target 

results. The remaining 28.3% of the sentence 

pairs are thus not adopted for generating training 

samples. Furthermore, more than 90% obtained 

source phrases are observed to be less than 5 

words, which explains why five different quanti-

zation levels are adopted for Source Phrase 

Length (SPL) in section 3.1. 

4.3 Translation Results 

After obtaining all the training samples via cross-

fold translation, we use Factored Language 

Model toolkit (Kirchhoff et al., 2007) to estimate 

the probabilities of integrated models with Wit-

ten-Bell smoothing (Bell et al., 1990; Witten et 

al., 1991) and Back-off method. Afterwards, we 

incorporate the TM information  for 

each  phrase  at  decoding.   All  experiments  are 

                                                 
4  This training process only took about 10 hours on our 

Ubuntu server (Intel 4-core Xeon 3.47GHz, 132 GB of 

RAM).  

  Train Develop Test 

#Sentences 261,906 2,569 2,576 

#Chn. Words 3,623,516 38,585 38,648 

#Chn. VOC. 43,112 3,287 3,460 

#Eng. Words 3,627,028 38,329 38,510 

#Eng. VOC. 44,221 3,993 4,046 

Table 1: Corpus Statistics 

Intervals #Sentences #Words W/S 

[0.9, 1.0) 269 4,468 16.6 

[0.8, 0.9) 362 5,004 13.8 

[0.7, 0.8) 290 4,046 14.0 

[0.6, 0.7) 379 4,998 13.2 

[0.5, 0.6) 472 6,073 12.9 

[0.4, 0.5) 401 5,921 14.8 

[0.3, 0.4) 305 5,499 18.0 

(0.0, 0.3) 98 2,639 26.9 

(0.0, 1.0) 2,576 38,648 15.0 

Table 2: Corpus Statistics for Test-Set 
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Intervals TM SMT Model-I Model-II Model-III Koehn-10 Ma-11 Ma-11-U 

[0.9, 1.0) 81.31 81.38 85.44  * 86.47  *# 89.41  *# 82.79 77.72 82.78 

[0.8, 0.9) 73.25 76.16 79.97  * 80.89  * 84.04  *# 79.74  * 73.00 77.66 

[0.7, 0.8) 63.62 67.71 71.65  * 72.39  * 74.73  *# 71.02  * 66.54 69.78 

[0.6, 0.7) 43.64 54.56 54.88    # 55.88  *# 57.53  *# 53.06 54.00 56.37 

[0.5, 0.6) 27.37 46.32 47.32  *# 47.45  *# 47.54  *# 39.31 46.06 47.73 

[0.4, 0.5) 15.43 37.18 37.25    # 37.60    # 38.18  *# 28.99 36.23 37.93 

[0.3, 0.4) 8.24 29.27 29.52    # 29.38    # 29.15    # 23.58 29.40 30.20 

(0.0, 0.3) 4.13 26.38 25.61    # 25.32    # 25.57    # 18.56 26.30 26.92 

(0.0, 1.0) 40.17 53.03 54.57  *# 55.10  *# 56.51  *# 50.31 51.98 54.32 

Table 3: Translation Results (BLEU%). Scores marked by “*” are significantly better (p < 0.05) than both TM 

and SMT systems, and those marked by “#” are significantly better (p < 0.05) than Koehn-10. 

Intervals TM SMT Model-I Model-II Model-III Koehn-10 Ma-11 Ma-11-U 

[0.9, 1.0) 9.79 13.01 9.22      # 8.52    *# 6.77    *# 13.01 18.80 11.90 

[0.8, 0.9) 16.21 16.07 13.12  *# 12.74  *# 10.75  *# 15.27 20.60 14.74 

[0.7, 0.8) 27.79 22.80 19.10  *# 18.58  *# 17.11  *# 21.85 25.33 21.11 

[0.6, 0.7) 46.40 33.38 32.63    # 32.27  *# 29.96  *# 35.93 35.24 31.76 

[0.5, 0.6) 62.59 39.56 38.24  *# 38.77  *# 38.74  *# 47.37 40.24 38.01 

[0.4, 0.5) 73.93 47.19 47.03    # 46.34  *# 46.00  *# 56.84 48.74 46.10 

[0.3, 0.4) 79.86 55.71 55.38    # 55.44    # 55.87    # 64.55 55.93 54.15 

(0.0, 0.3) 85.31 61.76 62.38    # 63.66    # 63.51    # 73.30 63.00 60.67 

(0.0, 1.0) 50.51 35.88 34.34  *# 34.18  *# 33.26  *# 40.75 38.10 34.49 

Table 4: Translation Results (TER%). Scores marked by “*” are significantly better (p < 0.05) than both TM and 

SMT systems, and those marked by “#” are significantly better (p < 0.05) than Koehn-10. 

conducted using the Moses phrase-based decoder 

(Koehn et al., 2007). 

Table 3 and 4 give the translation results of 

TM, SMT, and three integrated models in the test 

set. In the tables, the best translation results (ei-

ther in BLEU or TER) at each interval have been 

marked in bold. Scores marked by “*” are signif-

icantly better (p < 0.05) than both the TM and 

the SMT systems. 

It can be seen that TM significantly exceeds 

SMT at the interval [0.9, 1.0) in TER score, 

which illustrates why professional translators 

prefer TM rather than SMT as their assistant tool. 

Compared with TM and SMT, Model-I is signif-

icantly better than the SMT system in either 

BLEU or TER when the fuzzy match score is 

above 0.7; Model-II significantly outperforms 

both the TM and the SMT systems in either 

BLEU or TER when the fuzzy match score is 

above 0.5; Model-III significantly exceeds both 

the TM and the SMT systems in either BLEU or 

TER when the fuzzy match score is above 0.4. 

All these improvements show that our integrated 

models have combined the strength of both TM 

and SMT.  

However, the improvements from integrated 

models get less when the fuzzy match score de-

creases. For example, Model-III outperforms 

SMT 8.03 BLEU points at interval [0.9, 1.0), 

while the advantage is only 2.97 BLEU points at 

interval [0.6, 0.7). This is because lower fuzzy 

match score means that there are more un-

matched parts between  and ; the output of 

TM is thus less reliable. 

Across all intervals (the last row in the table), 

Model-III not only achieves the best BLEU score 

(56.51), but also gets the best TER score (33.26). 

If intervals are evaluated separately, when the 

fuzzy match score is above 0.4, Model-III out-

performs both Model-II and Model-I in either 

BLEU or TER. Model-II also exceeds Model-I in 

either BLEU or TER. The only exception is at 

interval [0.5, 0.6), in which Model-I achieves the 

best TER score. This might be due to that the 

optimization criterion for MERT is BLEU rather 

than TER in our work. 

4.4 Comparison with Previous Work 

In order to compare our proposed models with 

previous work, we re-implement two XML-

Markup approaches: (Koehn and Senellart, 2010) 

and (Ma et al, 2011), which are denoted as 

Koehn-10 and Ma-11, respectively. They are 

selected because they report superior perfor-

mances in the literature. A brief description of 

them is as follows: 
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Source 
如果 0 禁用 1 此 2 策略 3 设置 4 ，5 internet6 explorer7 不 8 搜索 9 internet10 查找 11 浏览器 12 

的 13 新 14 版本 15 ，16 因此 17 不 18 会 19 提示 20 用户 21 安装 22 。23 

Reference 

if0 you1 disable2 this3 policy4 setting5 ,6 internet7 explorer8 does9 not10 check11 the12 internet13 

for14 new15 versions16 of17 the18 browser19 ,20 so21 does22 not23 prompt24 users25 to26 install27 

them28 .29 

TM 

Source 

如果 0 不 1 配置 2 此 3 策略 4 设置 5 ，6 internet7 explorer8 不 9 搜索 10 internet11 查找 12 浏览

器 13 的 14 新 15 版本 16 ，17 因此 18 不 19 会 20 提示 21 用户 22 安装 23 。24 

TM 

Target 

if0 you1 do2 not3 configure4 this5 policy6 setting7 ,8 internet9 explorer10 does11 not12 check13 the14 

internet15 for16 new17 versions18 of19 the20 browser21 ,22 so23 does24 not25 prompt26 users27 to28 

install29 them30 .31 

TM 

Alignment 

0-0 1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 9-11 11-15 13-21 14-19 15-17 16-18 17-22 18-23 19-24 

21-26 22-27 23-29 24-31 

SMT 

if you disable this policy setting , internet explorer does not prompt users to install internet for 

new versions of the browser .    [Miss 7 target words: 9~12, 20~21, 28; Has one wrong permuta-

tion] 

Koehn-10 

if you do you disable this policy setting , internet explorer does not check the internet for new 

versions of the browser , so does not prompt users to install them .    [Insert two spurious target 

words] 

Ma-11 

if you disable this policy setting , internet explorer does not prompt users to install internet for 

new versions of the browser .    [Miss 7 target words: 9~12, 20~21, 28; Has one wrong permuta-

tion] 

Model-I 

if you disable this policy setting , internet explorer does not prompt users to install new ver-

sions of the browser , so does not check the internet .    [Miss 2 target words: 14, 28; Has one 

wrong permutation] 

Model-II 

if you disable this policy setting , internet explorer does not prompt users to install new ver-

sions of the browser , so does not check the internet .    [Miss 2 target words: 14, 28; Has one 

wrong permutation] 

Model-III 
if you disable this policy setting , internet explorer does not check the internet for new versions 

of the browser , so does not prompt users to install them .    [Exactly the same as the reference] 

Figure 2: A Translation Example at Interval [0.9, 1.0] (with FMS=0.920) 

Koehn et al. (2010) first find out the un-

matched parts between the given source sentence 

and TM source sentence. Afterwards, for each 

unmatched phrase in the TM source sentence, 

they replace its corresponding translation in the 

TM target sentence by the corresponding source 

phrase in the input sentence, and then mark the 

substitution part. After replacing the correspond-

ing translations of all unmatched source phrases 

in the TM target sentence, an XML input sen-

tence (with mixed TM target phrases and marked 

input source phrases) is thus obtained. The SMT 

decoder then only translates the un-

matched/marked source phrases and gets the de-

sired results. Therefore, the inserted parts in the 

TM target sentence are automatically included. 

They use fuzzy match score to determine wheth-

er the current sentence should be marked or not; 

and their experiments show that this method is 

only effective when the fuzzy match score is 

above 0.8. 

Ma et al. (2011) think fuzzy match score is not 

reliable and use a discriminative learning method 

to decide whether the current sentence should be 

marked or not. Another difference between Ma-

11 and Koehn-10 is how the XML input is con-

structed. In constructing the XML input sentence, 

Ma-11 replaces each matched source phrase in 

the given source sentence with the corresponding 

TM target phrase. Therefore, the inserted parts in 

the TM target sentence are not included. In Ma’s 

another paper (He et al., 2011), more linguistic 

features for discriminative learning are also add-

ed. In our work, we only re-implement the XML-

Markup method used in (He et al., 2011; Ma et al, 

2011), but do not implement the discriminative 

learning method. This is because the features 

adopted in their discriminative learning are com-

plicated and difficult to re-implement. However, 

the proposed Model-III even outperforms the 

upper bound of their methods, which will be dis-

cussed later.  

Table 3 and 4 give the translation results of 

Koehn-10 and Ma-11 (without the discriminator). 

Scores marked by “#” are significantly better (p 

< 0.05) than Koehn-10. Besides, the upper bound 

of (Ma et al, 2011) is also given in the tables, 

which is denoted as Ma-11-U. We calculate this 
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upper bound according to the method described 

in (Ma et al., 2011). Since He et al., (2011) only 

add more linguistic features to the discriminative 

learning method, the upper bound of (He et al., 

2011) is still the same with (Ma et al., 2011); 

therefore, Ma-11-U applies for both cases. 

It is observed that Model-III significantly ex-

ceeds Koehn-10 at all intervals. More important-

ly, the proposed models achieve much better 

TER score than the TM system does at interval 

[0.9, 1.0), but Koehn-10 does not even exceed 

the TM system at this interval. Furthermore, 

Model-III is much better than Ma-11-U at most 

intervals. Therefore, it can be concluded that the 

proposed models outperform the pipeline ap-

proaches significantly.  

Figure 2 gives an example at interval [0.9, 1.0), 

which shows the difference among different sys-

tem outputs. It can be seen that “you do” is re-

dundant for Koehn-10, because they are inser-

tions and thus are kept in the XML input. How-

ever, SMT system still inserts another “you”, 

regardless of “you do” has already existed. This 

problem does not occur at Ma-11, but it misses 

some words and adopts one wrong permutation. 

Besides, Model-I selects more right words than 

SMT does but still puts them in wrong positions 

due to ignoring TM reordering information. In 

this example, Model-II obtains the same results 

with Model-I because it also lacks reordering 

information. Last, since Model-III considers both 

TM content and TM position information, it 

gives a perfect translation. 

5 Conclusion and Future Work 

Unlike the previous pipeline approaches, which 

directly merge TM phrases into the final transla-

tion result, we integrate TM information of each 

source phrase into the phrase-based SMT at de-

coding. In addition, all possible TM target 

phrases are kept and the proposed models select 

the best one during decoding via referring SMT 

information. Besides, the integrated model con-

siders the probability information of both SMT 

and TM factors. 

The experiments show that the proposed 

Model-III outperforms both the TM and the SMT 

systems significantly (p < 0.05) in either BLEU 

or TER when fuzzy match score is above 0.4. 

Compared with the pure SMT system, Model-III 

achieves overall 3.48 BLEU points improvement 

and 2.62 TER points reduction on a Chinese–

English TM database. Furthermore, Model-III 

significantly exceeds all previous pipeline ap-

proaches. Similar improvements are also ob-

served on the Hansards parts of LDC2004T08 

(not shown in this paper due to space limitation). 

Since no language-dependent feature is adopted, 

the proposed approaches can be easily adapted 

for other language pairs. 

Moreover, following the approaches of 

Koehn-10 and Ma-11 (to give a fair comparison), 

training data for SMT and TM are the same in 

the current experiments. However, the TM is 

expected to play an even more important role 

when the SMT training-set differs from the TM 

database, as additional phrase-pairs that are un-

seen in the SMT phrase table can be extracted 

from TM (which can then be dynamically added 

into the SMT phrase table at decoding time). Our 

another study has shown that the integrated mod-

el would be even more effective when the TM 

database and the SMT training data-set are from 

different corpora in the same domain (not shown 

in this paper). In addition, more source phrases 

can be matched if a set of high-FMS sentences, 

instead of only the sentence with the highest 

FMS, can be extracted and referred at the same 

time. And it could further raise the performance. 

Last, some related approaches (Smith and 

Clark, 2009; Phillips, 2011) combine SMT and 

example-based machine translation (EBMT) 

(Nagao, 1984). It would be also interesting to 

compare our integrated approach with that of 

theirs. 
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Abstract

We derive variants of the fertility based
models IBM-3 and IBM-4 that, while
maintaining their zero and first order pa-
rameters, are nondeficient. Subsequently,
we proceed to derive a method to com-
pute a likely alignment and its neighbors
as well as give a solution of EM training.
The arising M-step energies are non-trivial
and handled via projected gradient ascent.

Our evaluation on gold alignments shows
substantial improvements (in weighted F-
measure) for the IBM-3. For the IBM-
4 there are no consistent improvements.
Training the nondeficient IBM-5 in the
regular way gives surprisingly good re-
sults.

Using the resulting alignments for phrase-
based translation systems offers no clear
insights w.r.t. BLEU scores.

1 Introduction

While most people think of the translation and
word alignment models IBM-3 and IBM-4 as in-
herently deficient models (i.e. models that assign
non-zero probability mass to impossible events),
in this paper we derive nondeficient variants main-
taining their zero order (IBM-3) and first order
(IBM-4) parameters. This is possible as IBM-3
and IBM-4 are very special cases of general log-
linear models: they are properly derived by the
chain rule of probabilities. Deficiency is only in-
troduced by ignoring a part of the history to be
conditioned on in the individual factors of the
chain rule factorization. While at first glance this
seems necessary to obtain zero and first order de-

Figure 1: Plot of the negative log. likelihoods
(the quantity to be minimized) arising in training
deficient and nondeficient models (for Europarl
German | English, training scheme 15H53545).
1/3/4=IBM-1/3/4, H=HMM, T=Transfer iteration.
The curves are identical up to iteration 11.
Iteration 11 shows that merely 5.14% of the

(HMM) probability mass are covered by the
Viterbi alignment and its neighbors. With deficient
models (and deficient empty words) the final neg-
ative log likelihood is higher than the initial HMM
one, with nondeficient models it is lower than for
the HMM, as it should be for a better model.

pendencies, we show that with proper renormal-
ization all factors can be made nondeficient.

Having introduced the model variants, we pro-
ceed to derive a hillclimbing method to compute
a likely alignment (ideally the Viterbi alignment)
and its neighbors. As for the deficient models, this
plays an important role in the E-step of the sub-
sequently derived expectation maximization (EM)
training scheme. As usual, expectations in EM are
approximated, but we now also get non-trivial M-
step energies. We deal with these via projected
gradient ascent.
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The downside of our method is its resource con-
sumption, but still we present results on corpora
with 100.000 sentence pairs. The source code of
this project is available in our word alignment soft-
ware RegAligner1, version 1.2 and later.

Figure 1 gives a first demonstration of how
much the proposed variants differ from the stan-
dard models by visualizing the resulting negative
log likelihoods2, the quantity to be minimized in
EM-training. The nondeficient IBM-4 derives a
lower negative log likelihood than the HMM, the
regular deficient variant only a lower one than
the IBM-1. As an aside, the transfer iteration
from HMM to IBM3 (iteration 11) reveals that
only 5.14% of the probability mass3 are preserved
when using the Viterbi alignment and its neighbors
instead of all alignments.

Indeed, it is widely recognized that – with
proper initialization – fertility based models out-
perform sequence based ones. In particular, se-
quence based models can simply ignore a part of
the sentence to be conditioned on, while fertility
based models explicitly factor in a probability of
words in this sentence to have no aligned words
(or any other number of aligned words, called the
fertility). Hence, it is encouraging to see that the
nondeficient IBM-4 indeed derives a higher likeli-
hood than the sequence based HMM.

Related Work Today’s most widely used mod-
els for word alignment are still the models IBM
1-5 of Brown et al. (1993) and the HMM of Vo-
gel et al. (1996), thoroughly evaluated in (Och
and Ney, 2003). While it is known that fertility-
based models outperform sequence-based ones,
the large bulk of word alignment literature follow-
ing these publications has mostly ignored fertility-
based models. This is different in the present paper
which deals exclusively with such models.

One reason for the lack of interest is surely that
computing expectations and Viterbi alignments for
these models is a hard problem (Udupa and Maji,
2006). Nevertheless, computing Viterbi align-

1https://github.com/Thomas1205/RegAligner,
for the reported results we used a slightly earlier version.

2Note that the figure slightly favors IBM-1 and HMM as
for them the length J of the foreign sequence is assumed to
be known whereas IBM-3 and IBM-4 explicitly predict it.

3This number regards the corpus probability as in (9) to
the power of 1/S, i.e. the objective function in maximum
likelihood training. The number is not entirely fair as align-
ments where more than half the words align to the empty
word are assigned a probability of 0. Still, this is an issue
only for short sentences.

ments for the IBM-3 has been shown to often
be practicable (Ravi and Knight, 2010; Schoen-
emann, 2010).

Much work has been spent on HMM-based
formulations, focusing on the computationally
tractable side (Toutanova et al., 2002; Sumita et
al., 2004; Deng and Byrne, 2005). In addition,
some rather complex models have been proposed
that usually aim to replace the fertility based mod-
els (Wang and Waibel, 1998; Fraser and Marcu,
2007a).

Another line of models (Melamed, 2000; Marcu
and Wong, 2002; Cromières and Kurohashi, 2009)
focuses on joint probabilities to get around the
garbage collection effect (i.e. that for conditional
models, rare words in the given language align to
too many words in the predicted language). The
downside is that these models are computationally
harder to handle.

A more recent line of work introduces various
forms of regularity terms, often in the form of
symmetrization (Liang et al., 2006; Graça et al.,
2010; Bansal et al., 2011) and recently by using
L0 norms (Vaswani et al., 2012).

2 The models IBM-3, IBM-4 and IBM-5

We begin with a short review of fertility-based
models in general and IBM-3, IBM-4 and IBM-
5 specifically. All are due to (Brown et al., 1993)
who proposed to use the deficient models IBM-3
and IBM-4 to initialize the nondeficient IBM-5.

For a foreign sentence f = fJ1 = (f1, . . . , fJ)
with J words and an English one e = eI1 =
(e1, . . . , eI) with I words, the (conditional) proba-
bility p(fJ1 |eI1) of getting the foreign sentence as a
translation of the English one is modeled by intro-
ducing the word alignment a as a hidden variable:

p(fJ1 |eI1) =
∑

a

p(fJ1 ,a|eI1)

All IBM models restrict the space of alignments
to those where a foreign word can align to at most
one target word. The resulting alignment is then
written as a vector aJ1 , where each aj takes integral
values between 0 and I , with 0 indicating that fj
has no English correspondence.

The fertility-based models IBM-3, IBM-4
and IBM-5 factor the (conditional) probability
p(fJ1 , a

J
1 |eI1) of obtaining an alignment and a

translation given an English sentence according to
the following generative story:
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1. For i = 1, 2, . . . , I , decide on the number Φi

of foreign words aligned to ei. This number
is called the fertility of ei. Choose with prob-
ability p(Φi|eI1,Φi−1

1 ) = p(Φi|ei).

2. Choose the number Φ0 of unaligned words
in the (still unknown) foreign sequence.
Choose with probability p(Φ0|eI1,ΦI

1) =
p(Φ0|

∑I
i=1 Φi). Since each foreign word be-

longs to exactly one English position (includ-
ing 0), the foreign sequence is now known to
be of length J =

∑I
i=0 Φi.

3. For each i = 1, 2, . . . , I , and k = 1, . . . ,Φi

decide on
(a) the identity fi,k of the next foreign
word aligned to ei. Choose with probability
p(fi,k|eI1,ΦI

0,d
i−1
1 , di,1, . . . , di,k−1, fi,k) =

p(fi,k|ei), where di comprises all di,k for
word i (see point b) below) and fi,k com-
prises all foreign words known at that point.
(b) the position di,k of the just gener-
ated foreign word fi,k, with probability
p(di,k|eI1,ΦI

0,d
i−1
1 , di,1, . . . , di,k−1, fi,k, fi,k)

= p(di,k|ei,di−1
1 , di,1, . . . , di,k−1, fi,k, J).

4. The remaining Φ0 open positions in the for-
eign sequence align to position 0. Decide
on the corresponding foreign words with
p(fd0,k |e0), where e0 is an artificial “empty
word”.

To model the probability for the number of un-
aligned words in step 2, each of the

∑I
i=1 Φi prop-

erly aligned foreign words generates an unaligned
foreign word with probability p0, resulting in

p
(
Φ0

∣∣∣
I∑

i=1

Φi

)
=




I∑
i=1

Φi

Φ0


pΦi

0 (1−p0)(
∑
i Φi)−Φ0 ,

with a base probability p0 and the combinato-

rial coefficients
( n
k

)
= n!

k!(n−k)! , where n! =
∏n
k=1 k denotes the factorial of n. The main dif-

ference between IBM-3, IBM-4 and IBM-5 is the
choice of probability model in step 3 b), called a
distortion model. The choices are now detailed.

2.1 IBM-3
The IBM-3 implements a zero order distortion
model, resulting in

p(di,k|i, J) .

Since most of the context to be conditioned on is
ignored, this allows invalid configurations to occur
with non-zero probability: some foreign positions
can be chosen several times, while others remain
empty. One says that the model is deficient. On
the other hand, the model for p(Φ0|

∑I
i=1 Φi) is

nondeficient, and in training this often results in
very high probabilities p0. To prevent this it is
common to make this model deficient as well (Och
and Ney, 2003), which improves performance im-
mensely and gives much better results than simply
fixing p0 in the original model.

As for each i the di,k can appear in any order
(i.e. need not be in ascending order), there are∏I
i=1 Φi! ways to generate the same alignment aJ1

(where the Φi are the fertilities induced by aJ1 ).
In total, the IBM-3 has the following probability
model:

p(fJ1 , a
J
1 |eI1) =

J∏

j=1

[
p(fj |eaj ) · p(j|aj , J)

]
(1)

· p
(

Φ0|
I∑

i=1

Φi

)
·
I∏

i=1

Φi! p(Φi|ei) .

Reducing the Number of Parameters While
using non-parametric models p(j|i, J) is conve-
nient for closed-form M-steps in EM training,
these parameters are not very intuitive. Instead,
in this paper we use the parametric model

p(j|i, J) =
p(j|i)

∑J
j=1 p(j|i)

(2)

with the more intuitive parameters p(j|i). The
arising M-step energy is addressed by projected
gradient ascent (see below).

These parameters are also used for the nondefi-
cient variants. Using the original non-parametric
ones can be handled in a very similar manner to
the methods set forth below.

2.2 IBM-4

The distortion model of the IBM-4 is a first order
one that generates the di,k of each English position
i in ascending order (i.e. for 1 < k ≤ Φi we have
di,k > di,k−1). There is then a one-to-one cor-
respondence between alignments aJ1 and (valid)
distortion parameters (di,k)i=1,...,I, k=1,...,Φi and
therefore no longer a factor of

∏I
i=1 Φi! .

The IBM-4 has two sub-distortion models, one
for the first aligned word (k = 1) of an English po-
sition and one for all following words (k > 1, only
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if Φi > 1). For position i, let [i]=arg max{i′|1≤
i′ < i,Φi′ > 0} denote4 the closest preceding En-
glish word that has aligned foreign words. The
aligned foreign positions of [i] are combined into
a center position �[i], the rounded average of the
positions. Now, the distortion probability for the
first word (k = 1) is

p=1(di,1|�[i],A(fi,1),B(e[i]), J) ,

where A gives the word class of a foreign word
and B the word class of an English word (there are
typically 50 classes per language, derived by ma-
chine learning techniques). The probability is fur-
ther reduced to a dependency on the difference of
the positions, i.e. p=1(di,1−�[i] | A(fi,1),B(e[i])).
For k > 1 the model is

p>1(di,k|di,k−1,A(fi,k), J) ,

which is likewise reduced to p>1(di,k −
di,k−1 | A(fi,k)). Note that in both difference-
based formulations the dependence on J has to
be dropped to get closed-form solutions of the
M-step in EM training, and Brown et al. note
themselves that the IBM-4 can place words before
the start and after the end of the sentence.

Reducing Deficiency In this paper, we also in-
vestigate the effect of reducing the amount of
wasted probability mass by enforcing the depen-
dence on J by proper renormalization, i.e. using

p=1(j|j′,A(fi,1),B(e[i]), J) = (3)

p=1(j − j′|A(fi,1),B(e[i]))∑J
j′′=1 p=1(j′′ − j′|A(fi,1),B(e[i]))

,

for the first aligned word and

p>1(j|j′,A(fi,k), J) = (4)

p>1(j − j′ | A(fi,k))∑J
j′′=1 p>1(j′′ − j′ | A(fi,k))

for all following words, again handling the M-step
in EM training via projected gradient ascent. With
this strategy words can no longer be placed out-
side the sentence, but a lot of probability mass is
still wasted on configurations where at least one
foreign (or predicted) position j aligns to two or
more positions i, i′ in the English (or given) lan-
guage (and consequently there are more unaligned

4If the set is empty, instead a sentence start probability
is used. Note that we differ slightly in notation compared to
(Brown et al., 1993).

source words than the generated Φ0). Therefore,
here, too, the probability for Φ0 has to be made
deficient to get good performance.

In summary, the base model for the IBM-4 is:

p(fJ1 , a
J
1 |eI1) = p

(
Φ0|

I∑

i=1

Φi

)
(5)

·
J∏

j=1

p(fj |eaj ) ·
I∏

i=1

p(Φi|ei)

·
∏

i:Φi>0

[
p=1(di,1 −�[i]|A(fi,1),B(e[i]))

·
Φi∏

k=2

p>1(di,k − di,k−1|A(fi,k))
]

,

where empty products are understood to be 1.

2.3 IBM-5
We note in passing that the distortion model of the
IBM-5 is nondeficient and has parameters for fill-
ing the nth open gap in the foreign sequence given
that there are N positions to choose from – see
the next section for exactly what positions one can
choose from. There is also a dependence on word
classes for the foreign language.

This is neither a zero order nor a first order de-
pendence, and in (Och and Ney, 2003) the first or-
der model of the IBM-4, though deficient, outper-
formed the IBM-5. The IBM-5 is therefore rarely
used in practice. This motivated us to instead re-
formulate IBM-3 and IBM-4 as nondeficient mod-
els. In our results, however, the IBM-5 gave sur-
prisingly good results and was often superior to all
variants of the IBM-4.

3 Nondeficient Variants of IBM-3 and
IBM-4

From now on we always enforce that for each po-
sition i the indices di,k are generated in ascending
order (di,k > di,k−1 for k > 1). A central con-
cept for the generation of di,k in step 3(b) is the
set of positions in the foreign sequence that are
still without alignment. We denote the set of these
positions by

Ji,k,J = {1, . . . , J} − {di,k′ | 1 ≤ k′ < k}
−{di′,k′ | 1 ≤ i′ < i, 1 ≤ k′ ≤ Φi′}

where the dependence on the various di′,k′ is not
made explicit in the following.

It is tempting to think that in a nondeficient
model all members of Ji,k,J can be chosen for
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di,k, but this holds only Φi = 1. Otherwise, the
requirement of generating the di,k in ascending or-
der prevents us from choosing the (Φi−k) largest
entries inJi,k,J . For k > 1 we also have to remove
all positions smaller than di,k−1.

Let J Φi
i,k,J denote the set where these positions

have been removed. With that, we can state the
nondeficient variants of IBM-3 and IBM-4.

3.1 Nondeficient IBM-3
For the IBM-3, we define the auxiliary quantity

q(di,k = j | i,J Φi
i,k,J) =

{
p(j|i) if j ∈ J Φi

i,k,J

0 else ,

where we use the zero order parameters p(j|i) we
also use for the standard (deficient) IBM-3, com-
pare (2). To get a nondeficient variant, it remains
to renormalize, resulting in

p(di,k = j|i,J Φi
i,k,J) =

q(j|i,J Φi
i,k,J)

∑J
j=1 q(j|i,J Φi

i,k,J)
. (6)

Further, note that the factors Φi! now have to
be removed from (1) as the di,k are generated in
ascending order. Lastly, here we use the original
nondeficient empty word model p(Φ0|

∑I
i=1 Φi),

resulting in a totally nondeficient model.

3.2 Nondeficient IBM-4
With the notation set up, it is rather straightfor-
ward to derive a nondeficient variant of the IBM-
4. Here, there are the two cases k = 1 and k > 1.
We begin with the case k = 1. Abbreviating
α = A(fi,1) and β = B(e[i]), we define the auxil-
iary quantity

q=1(di,1 = j|�[i], α, β,J Φi
i,k,J) = (7)

{
p=1(j −�[i]|α, β) if j ∈ J Φi

i,k,J

0 else ,

again using the - now first order - parameters
of the base model. The nondeficient distribution
p=1(di,1 = j|�[i], α, β,J Φi

i,k,J) is again obtained
by renormalization.

For the case k > 1, we abbreviate α = A(fi,k)
and introduce the auxiliary quantity

q>1(di,k = j|di,k−1, α,J Φi
i,k,J) = (8)

{
p>1(j − di,k−1|α) if j ∈ J Φi

i,k,J

0 else ,

from which the nondeficient distribution
p>1(di,k=j|di,k−1, α,J Φi

i,k,J) is again obtained by
renormalization.

4 Training the New Variants

For the task of word alignment, we infer the pa-
rameters of the models using the maximum likeli-
hood criterion

max
θ

S∏

s=1

pθ(fs|es) (9)

on a set of training data (i.e. sentence pairs s =
1, . . . , S). Here, θ comprises all base parameters
of the respective model (e.g. for the IBM-3 all
p(f |e), all p(Φ, e) and all p(j|i) ) and pθ signifies
the dependence of the model on the parameters.
Note that (9) is truly a constrained optimization
problem as the parameters θ have to satisfy a num-
ber of probability normalization constraints.

When pθ(·) denotes a fertility based model the
resulting problem is a non-concave maximization
problem with many local minima and no (known)
closed-form solutions. Hence, it is handled by
computational methods, which typically apply the
logarithm to the above function.

Our method of choice to attack the maximum
likelihood problem is expectation maximization
(EM), the standard in the field, which we explain
below. Due to non-concaveness the starting point
for EM is of extreme importance. As is common,
we first train an IBM-1 and then an HMM before
proceeding to the IBM-3 and finally the IBM-4.

As in the training of the deficient IBM-3 and
IBM-4 models, we approximate the expectations
in the E-step by a set of likely alignments, ideally
centered around the Viterbi alignment, but already
for the regular deficient variants computing it is
NP-hard (Udupa and Maji, 2006). A first task is
therefore to compute such a set. This task is also
needed for the actual task of word alignment (an-
notating a given sentence pair with an alignment).

4.1 Alignment Computation
For computing alignments, we use the common
procedure of hillclimbing where we start with an
alignment, then iteratively compute the probabili-
ties of all alignments differing by a move or a swap
(Brown et al., 1993) and move to the best of these
if it beats the current alignment.

Since we cannot ignore parts of the history and
still get a nondeficient model, computing the prob-
abilities of the neighbors cannot be handled in-
crementally (or rather only partially, for the dic-
tionary and fertility models). While this does in-
crease running times, in practice the M-steps take
longer than the E-steps.
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For self-containment, we recall here that for an
alignment aJ1 applying the move aJ1 [j→ i] results
in the alignment âJ1 defined by âj = i and âj′=aj′

for j′ 6= j. Applying the swap aJ1 [j1 ↔ j2] results
in the alignment âJ1 defined by âj1 =aj2 , âj2 =aj1
and âj′ = aj′ elsewhere. If aJ1 is the alignment
produced by hillclimbing, the move matrix m ∈
IRJ×I+1 is defined bymj,i being the probability of
aJ1 [j → i] as long as aj 6= i, otherwise 0. Likewise
the swap matrix s ∈ IRJ×J is defined as sj1,j2
being the probability of aJ1 [j1 ↔ j2] for aj1 6=aj2 ,
0 otherwise. The move and swap matrices are used
to approximate expectations in EM training (see
below).

4.2 Parameter Update
Naive Scheme It is tempting to account for the
changes in the model in hillclimbing, but to oth-
erwise use the regular M-step procedures (closed
form solution when not conditioning on J for the
IBM-4 and for the non-parametric IBM-3, other-
wise projected gradient ascent) for the deficient
models. However, we verified that this is not a
good idea: not only can the likelihood go down
in the process (even if we could compute expecta-
tions exactly), but these schemes also heavily in-
crease p0 in each iteration, i.e. the same problem
Och and Ney (2003) found for the deficient mod-
els. There is therefore the need to execute the M-
step properly, and when done the problem is in-
deed resolved.

Proper EM The expectation maximization
(EM) framework (Dempster et al., 1977; Neal and
Hinton, 1998) is a class of template procedures
(rather than a proper algorithm) that iteratively
requires solving the task

max
θk

S∑

s=1

∑

as

pθk−1
(as|fs, es) log

(
pθk(fs,as|es)

)

(10)
by appropriate means. Here, θk−1 are the parame-
ters from the previous iteration, while θk are those
derived in the current iteration. Of course, here
and in the following the normalization constraints
on θ apply, as already in (9). On explicit request
of a reviewer we give a detailed account for our
setting here. Readers not interested in the details
can safely move on to the next section.

Details on EM For the corpora occurring in
practice, the function (10) has many more terms
than there are atoms in the universe. The trick is

that pθk(fs,as|es) is a product of factors, where
each factor depends on very few components of
θk only. Taking the logarithm gives a sum of
logarithms, and in the end we are left with the
problem of computing the weights of each factor,
which turn out to be expectations. To apply this
to the (deficient) IBM-3 model with parametric
distortion we simplify pθk−1

(as|fs, es) = p(as)

and define the counts nf,e(as) =
∑Js

j=1 δ(f
s
j , f) ·

δ(esasj
, e), nΦ,e(as) =

∑Is
i=1 δ(e

s
i , e) ·δ(Φi(as),Φ)

and nj,i(as) = δ(asj , i). We also use short hand
notations for sets, e.g. {p(f |e)} is meant as the
set of all translation probabilities induced by the
given corpus. With this notation, after reordering
the terms problem (10) can be written as

max
{p(f |e)},{p(Φ|e)},{p(j|i)}

(11)

∑

e,f

[ S∑

s=1

∑

as

p(as)nf,e(as)
]
log
(
p(f |e)

)

+
∑

e,Φ

[ S∑

s=1

∑

as

p(as)nΦ,e(as)
]
log
(
p(Φ, e)

)

+
∑

i,j

[ S∑

s=1

∑

as

p(as)nj,i(as)
]
log
(
p(j|i, J)

)
.

Indeed, the weights in each line turn out to be
nothing else than expectations of the respective
factor under the distribution pθk−1

(as|fs, es) and
will henceforth be written as wf,e, wΦ,e and wj,i,J .
Therefore, executing an iteration of EM requires
first calculating all expectations (E-step) and then
solving the maximization problems (M-step). For
models such as IBM-1 and HMM the expectations
can be calculated efficiently, so the enormous sum
of terms in (10) is equivalently written as a man-
ageable one. In this case it can be shown5 that
the new θk must have a higher likelihood (9) than
θk−1 (unless a stationary point is reached). In fact,
any θ that has a higher value in the auxiliary func-
tion (11) than θk−1 must also have a higher like-
lihood. This is an important background for para-
metric models such as (2) where the M-step cannot
be solved exactly.

For IBM-3/4/5 computing exact expectations is
intractable (Udupa and Maji, 2006) and approx-
imations have to be used (in fact, even comput-
ing the likelihood for a given θ is intractable). We

5See e.g. the author’s course notes (in German), currently
http://user.phil-fak.uni-duesseldorf.de/
˜tosch/downloads/statmt/wordalign.pdf.
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use the common procedure based on hillclimbing
and the move/swap matrices. The likelihood is not
guaranteed to increase but it (or rather its approx-
imation) always did in each of the five run itera-
tions. Nevertheless, the main advantage of EM is
preserved: problem (11) decomposes into several
smaller problems, one for each probability distri-
bution since the parameters are tied by the nor-
malization constraints. The result is one problem
for each e involving all p(f |e), one for each e in-
volving all p(Φ|e) and one for each i involving all
p(j|i).

The problems for the translation probabilities
and the fertility probabilities yield the known stan-
dard update rules. The most interesting case is the
problem for the (parametric) distortion models. In
the deficient setting, the problem for each i is

max
{p(j|i)}

∑

J

wi,j,J log

(
p(j|i)

∑J
j′=1 p(j

′|i)

)

In the nondeficient setting, we now drop the sub-
scripts i, k, J and the superscript Φ from the sets
defined in the previous sections, i.e. we write J
instead of J Φ

i,k,J . The M-step problem is then

max
{p(j|i)}

Ei =
∑

j

∑

J :j∈J
wj,i,J log

(
p(j|i,J )

)
,

where wj,i,J (with j ∈ J ) is the expectation for
aligning j to iwhen one can choose among the po-
sitions inJ , and with p(j|i,J ) as in (6). In princi-
ple there is an exponential number of expectations
wj,i,J . However, since we approximate expecta-
tions from the move and swap matrices, and hence
by O((I + J) · J) alignments per sentence pair,
in the end we get a polynomial number of terms.
Currently we only consider alignments with (ap-
proximated) pθk−1

(as|fs, es) > 10−6.
Importantly, the fact that we get separate M-step

problems for different i allows us to reduce mem-
ory consumption by using refined data structures
when storing the expectations.

For both the deficient and the nondeficient vari-
ants, the M-step problems for the distortion pa-
rameters p(j|i) are non-trivial, non-concave and
have no (known) closed form solutions. We ap-
proach them via the method of projected gradient
ascent (PGA), where the gradient for the nondefi-
cient problem is

∂Ei
∂p(j|i) =

∑

J :j∈J

[
wj,J
p(j|i) −

∑
j′∈J wj′,J∑
j′∈J p(j

′|i)

]
.

When running PGA we guarantee that the result-
ing {p(j|i)} has a higher function value Ei than
the input ones (unless a stationary point is input).
We stop when a cutoff criterion indicates a local
maximum or 250 iterations are used up.

Projected Gradient Ascent This method is
used in a couple of recent papers, notably (Schoen-
emann, 2011; Vaswani et al., 2012) and is briefly
sketched here for self-containment (see those pa-
pers for more details). To solve a maximization
problem

max
p(j|i)≥0,

∑
j p(j|i)=1

Ei({p(j|i)})

for some (differentiable) function Ei(·), one iter-
atively starts at the current point {pk(j|i)}, com-
putes the gradient ∇Ei({pk(j|i)}) and goes to the
point

q(j|i) = pk(j|i) + α∇Ei(pk(j|i)) , j = 1, . . . , J

for some step-length α. This point is generally
not a probability distribution, so one computes the
nearest probability distribution

min
q′(j|i)≥0,

∑
j q
′(j|i)=1

J∑

j=1

(
q′(j|i)− q(j|i)

)2
,

a step known as projection which we solve with
the method of (Michelot, 1986). The new dis-
tribution {q′(j|i)} is not guaranteed to have a
higher Ei(·), but (since the constraint set is a con-
vex one) a suitable interpolation of {pk(j|i)} and
{q′(j|i)} is guaranteed to have a higher value (un-
less {pk(j|i)} is a local maximum or minimum
of Ei(·)). Such a point is computed by back-
tracking line search and defines the next iterate
{pk+1(j|i)}.
IBM-4 When moving from the IBM-3 to the
IBM-4, only the last line in (11) changes. In
the end one gets two new kinds of problems, for
p=1(·) and p>1(·). For p=1(·) we have one prob-
lem for each foreign class α and each English class
β, of the form

max
{p=1(j|j′,α,β)}

∑

j,j′,J

wj,j′,J,α,β log
(
p=1(j|j′, α, β, J)

)

for reduced deficiency (with p=1(j|j′, α, β, J) as
in (3) ) and of the form

max
{p=1(j|j′,α,β)}

∑

j,j′,J
wj,j′,J ,α,β log

(
p=1(j|j′, α, β,J )

)
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Model Degree of Deficiency De|En En|De Es|En En|Es
HMM nondeficient (our) 73.8 77.6 77.4 76.1
IBM-3 full (GIZA++) 74.2 76.5 74.3 74.5
IBM-3 full (our) 75.6 79.2 75.2 73.7
IBM-3 nondeficient (our) 76.1 79.8 76.8 75.5
IBM-4, 1 x 1 word class full (GIZA++) 77.9 79.4 78.6 78.4
IBM-4, 1 x 1 word class full (our) 76.1 81.5 77.8 78.0
IBM-4, 1 x 1 word class reduced (our) 77.2 80.6 77.9 78.3
IBM-4, 1 x 1 word class nondeficient (our) 77.6 81.5 80.0 78.4
IBM-4, 50 x 50 word classes full (GIZA++) 78.6 80.4 79.3 79.3
IBM-4, 50 x 50 word classes full (our) 78.0 82.4 79.2 79.4
IBM-4, 50 x 50 word classes reduced (our) 78.5 82.1 79.2 79.0
IBM-4, 50 x 50 word classes nondeficient (our) 77.9 82.5 79.7 78.2
IBM-5, 50 word classes nondeficient (GIZA++) 79.4 81.1 80.0 79.5
IBM-5, 50 word classes nondeficient (our) 79.2 82.7 79.7 79.5

Table 1: Alignment accuracy (weighted F-measure times 100, α = 0.1) on Europarl with 100.000
sentence pairs. Reduced deficiency means renormalization as in (3) and (4), so that words cannot be
placed before or after the sentence. For the IBM-3, the nondeficient variant is clearly best. For the
IBM-4 it is better in roughly half the cases, both with and without word classes.

for the nondeficient variant, with
p=1(j|j′, α, β,J ) based on (7).

For p>1(·) we have one problem per foreign
class α, of the form

max
{p>1(j|j′,α)}

∑

j,j′,J

wj,j′,J,α log
(
p>1(j|j′, α, J)

)

for reduced deficiency, with p>1(j|j′, α, J) based
on (4), and for the nondeficient variant it has the
form

max
{p>1(j|j′,α)}

∑

j,j′,J
wj,j′,J ,α log

(
p>1(j|j′, α,J )

)
,

with p>1(j|j′, α,J ) based on (8). Calculating the
gradients is analogous to the IBM-3.

5 Experiments

We test the proposed methods on subsets of the
Europarl corpus for German and English as well
as Spanish and English, using lower-cased cor-
pora. We evaluate alignment accuracies on gold
alignments6 in the form of weighted F-measures
with α=0.1, which performed well in (Fraser and
Marcu, 2007b). In addition we evaluate the effect
on phrase-based translation on one of the tasks.

We implement the proposed methods in our
own framework RegAligner rather than GIZA++,

6from (Lambert et al., 2005) and from
http://user.phil-fak.uni-duesseldorf.de/
˜tosch/downloads.html.

which is only rudimentally maintained. Therefore,
we compare to the deficient models in our own
software as well as to those in GIZA++.

We run 5 iterations of IBM-1, followed by 5
iterations of HMM, 5 of IBM-3 and finally 5 of
IBM-4. The first iteration of the IBM-3 collects
counts from the HMM, and likewise the first iter-
ation of the IBM-4 collects counts from the IBM-
3 (in both cases the move and swap matrices are
filled with probabilities of the former model, then
theses matrices are used as in a regular model iter-
ation). A nondeficient IBM-4 is always initialized
by a nondeficient IBM-3. We did not set a fertility
limit (except for GIZA++).

Experiments were run on a Core i5 with 2.5
GHz and 8 GB of memory. The latter was the
main reason why we did not use still larger cor-
pora7. The running times for the entire training
were half a day without word classes and a day
with word classes. With 50 instead of 250 PGA it-
erations in all M-steps we get only half these run-
ning times, but the resulting F-measures deterio-
rate, especially for the IBM-4 with classes.

The running times of our implementation of the
IBM-5 are much more favorable: the entire train-
ing then runs in little more than an hour.

7The main memory bottleneck is the IBM-4 (6 GB with-
out classes, 8 GB with). Using refined data structures should
reduce this bottleneck.
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5.1 Alignment Accuracy

The alignment accuracies – weighted F-measures
with α = 0.1 – for the tested corpora and model
variants are given in Table 1. Clearly, nondefi-
ciency greatly improves the accuracy of the IBM-
3, both compared to our deficient implementation
and that of GIZA++.

For the IBM-4 we get improvements for the
nondeficient variant in roughly half the cases, both
with and without word classes. We think this is
an issue of local minima, inexactly solved M-steps
and sensitiveness to initialization.

Interestingly, also the reduced deficient IBM-4
is not always better than the fully deficient variant.
Again, we think this is due to problems with the
non-concave nature of the models.

There is also quite some surprise regarding the
IBM-5: contrary to the findings of (Och and Ney,
2003) the IBM-5 in GIZA++ performs best in
three out of four cases - when competing with both
deficient and nondeficient variants of IBM-3 and
IBM-4. Our own implementation gives slightly
different results (as we do not use smoothing), but
it, too, performs very well.

5.2 Effect on Translation Performance

We also check the effect of the various align-
ments (all produced by RegAligner) on trans-
lation performance for phrase-based translation,
randomly choosing translation from German to
English. We use MOSES with a 5-gram lan-
guage model (trained on 500.000 sentence pairs)
and the standard setup in the MOSES Experi-
ment Management System: training is run in both
directions, the alignments are combined using
diag-grow-final-and (Och and Ney, 2003)
and the parameters of MOSES are optimized on
750 development sentences.

The resulting BLEU-scores are shown in Table
2. However, the table shows no clear trends and
even the IBM-3 is not clearly inferior to the IBM-
4. We think that one would need to handle larger
corpora (or run multiple instances of Minimum Er-
ror Rate Training with different random seeds) to
get more meaningful insights. Hence, at present
our paper is primarily of theoretical value.

6 Conclusion

We have shown that the word alignment models
IBM-3 and IBM-4 can be turned into nondeficient

Model #Classes Deficiency BLEU
HMM - nondeficient 29.72
IBM-3 - deficient 29.63
IBM-3 - nondeficient 29.73
IBM-4 1 x 1 fully deficient 29.91
IBM-4 1 x 1 reduced deficient 29.88
IBM-4 1 x 1 nondeficient 30.18
IBM-4 50 x 50 fully deficient 29.86
IBM-4 50 x 50 reduced deficient 30.14
IBM-4 50 x 50 nondeficient 29.90
IBM-5 50 nondeficient 29.84

Table 2: Evaluation of phrase-based translation
from German to English with the obtained align-
ments (for 100.000 sentence pairs). Training is run
in both directions and the resulting alignments are
combined via diag-grow-final-and. The
table shows no clear superiority of any method.
In fact, the IBM-4 is not superior to the IBM-3
and the HMM is about equal to the IBM-3. We
think that one needs to handle larger corpora to
get clearer insights.

variants, an important aim of probabilistic model-
ing for word alignment.

Here we have exploited that the models are
proper applications of the chain rule of probabili-
ties, where deficiency is only introduced by ignor-
ing parts of the history for the distortion factors in
the factorization. By proper renormalization the
desired nondeficient variants are obtained.

The arising models are trained via expectation
maximization. In the E-step we use hillclimb-
ing to get a likely alignment (ideally the Viterbi
alignment). While this cannot be handled fully
incrementally, it is still fast enough in practice.
The M-step energies are non-concave and have no
(known) closed-form solutions. They are handled
via projected gradient ascent.

For the IBM-3 nondeficiency clearly improves
alignment accuracy. For the IBM-4 we get im-
proved accuracies in roughly half the cases, both
with and without word classes. The IBM-5 per-
forms surprisingly well, it is often best and hence
much better than its reputation. An evaluation of
phrase based translation showed no clear insights.

Nevertheless, we think that nondeficiency in
fertility based models is an important issue, and
that at the very least our paper is of theoretical
value. The implementations are publicly available
in RegAligner 1.2.
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Abstract
Annotating linguistic data is often a com-
plex, time consuming and expensive en-
deavour. Even with strict annotation
guidelines, human subjects often deviate
in their analyses, each bringing different
biases, interpretations of the task and lev-
els of consistency. We present novel tech-
niques for learning from the outputs of
multiple annotators while accounting for
annotator specific behaviour. These tech-
niques use multi-task Gaussian Processes
to learn jointly a series of annotator and
metadata specific models, while explicitly
representing correlations between models
which can be learned directly from data.
Our experiments on two machine trans-
lation quality estimation datasets show
uniform significant accuracy gains from
multi-task learning, and consistently out-
perform strong baselines.

1 Introduction

Most empirical work in Natural Language Pro-
cessing (NLP) is based on supervised machine
learning techniques which rely on human anno-
tated data of some form or another. The annota-
tion process is often time consuming, expensive,
and prone to errors; moreover there is often con-
siderable disagreement amongst annotators.

In general, the predominant perspective to deal
with these data annotation issues in previous work
has been that there is a single underlying ground
truth, and that the annotations collected are noisy
and/or biased samples of this. The challenge is
then one of quality control, in order to process
the data by filtering, averaging or similar to dis-
til the truth. We posit that this perspective is
too limiting, especially with respect to linguis-
tic data, where each individual’s idiolect and lin-
guistic background can give rise to many different

– and yet equally valid – truths. Particularly in
highly subjective annotation tasks, the differences
between annotators cannot be captured by simple
models such as scaling all instances of a certain
annotator by a factor. They can originate from
a number of nuanced aspects. This is the case,
for example, of annotations on the quality of sen-
tences generated using machine translation (MT)
systems, which are often used to build quality es-
timation models (Blatz et al., 2004; Specia et al.,
2009) – our application of interest.

In addition to annotators’ own perceptions and
expectations with respect to translation quality, a
number of factors can affect their judgements on
specific sentences. For example, certain anno-
tators may prefer translations produced by rule-
based systems as these tend to be more grammati-
cal, while others would prefer sentences produced
by statistical systems with more adequate lexical
choices. Likewise, some annotators can be biased
by the complexity of the source sentence: lengthy
sentences are often (subconsciously) assumed to
be of low quality by some annotators. An ex-
treme case is the judgement of quality through
post-editing time: annotators have different typing
speeds, as well as levels of expertise in the task
of post-editing, proficiency levels in the language
pair, and knowledge of the terminology used in
particular sentences. These variations result in
time measurements that are not comparable across
annotators. Thus far, the use of post-editing time
has been done on an per-annotator basis (Specia,
2011), or simply averaged across multiple transla-
tors (Plitt and Masselot, 2010), both strategies far
from ideal.

Overall, these myriad of factors affecting qual-
ity judgements make the modelling of multiple
annotators a very challenging problem. This
problem is exacerbated when annotations are
provided by non-professional annotators, e.g.,
through crowdsourcing – a common strategy used
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to make annotation cheaper and faster, however at
the cost of less reliable outcomes.

Most related work on quality assurance for data
annotation has been developed in the context of
crowdsourcing. Common practices include fil-
tering out annotators who substantially deviate
from a gold-standard set or present unexpected
behaviours (Raykar et al., 2010; Raykar and Yu,
2012), or who disagree with others using, e.g., ma-
jority or consensus labelling (Snow et al., 2008;
Sheng et al., 2008). Another relevant strand of
work aims to model legitimate, systematic biases
in annotators (including both non-experts and ex-
perts), such as the fact that some annotators tend
to be more negative than others, and that some
annotators use a wider or narrower range of val-
ues (Flach et al., 2010; Ipeirotis et al., 2010).
However, with a few exceptions in Computer Vi-
sion (e.g., Whitehill et al. (2009), Welinder et al.
(2010)), existing work disregard metadata and its
impact on labelling.

In this paper we model the task of predicting the
quality of sentence translations using datasets that
have been annotated by several judges with differ-
ent levels of expertise and reliability, containing
translations from a variety of MT systems and on
a range of different types of sentences. We ad-
dress this problem using multi-task learning in
which we learn individual models for each context
(the task, incorporating the annotator and other
metadata: translation system and the source sen-
tence) while also modelling correlations between
tasks such that related tasks can mutually inform
one another. Our use of multi-task learning allows
the modelling of a diversity of truths, while also
recognising that they are rarely independent of one
another (annotators often agree) by explicitly ac-
counting for inter-annotator correlations.

Our approach is based on Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), a ker-
nelised Bayesian non-parametric learning frame-
work. We develop multi-task learning models by
representing intra-task transfer simply and explic-
itly as part of a parameterised kernel function. GPs
are an extremely flexible probabilistic framework
and have been successfully adapted for multi-task
learning in a number of ways, e.g., by learning
multi-task correlations (Bonilla et al., 2008), mod-
elling per-task variance (Groot et al., 2011) or per-
annotator biases (Rogers et al., 2010). Our method
builds on the work of Bonilla et al. (2008) by

explicitly modelling intra-task transfer, which is
learned automatically from the data, in order to ro-
bustly handle outlier tasks and task variances. We
show in our experiments on two translation qual-
ity datasets that these multi-task learning strate-
gies are far superior to training individual per-task
models or a single pooled model, and moreover
that our multi-task learning approach can achieve
similar performance to these baselines using only
a fraction of the training data.

In addition to showing empirical performance
gains on quality estimation applications, an im-
portant contribution of this paper is in introduc-
ing Gaussian Processes to the NLP community,1

a technique that has great potential to further per-
formance in a wider range of NLP applications.
Moreover, the algorithms proposed herein can be
adapted to improve future annotation efforts, and
subsequent use of noisy crowd-sourced data.

2 Quality Estimation

Quality estimation (QE) for MT aims at providing
an estimate on the quality of each translated seg-
ment – typically a sentence – without access to ref-
erence translations. Work in this area has become
increasingly popular in recent years as a conse-
quence of the widespread use of MT among real-
world users such as professional translators. Ex-
amples of applications of QE include improving
post-editing efficiency by filtering out low qual-
ity segments which would require more effort and
time to correct than translating from scratch (Spe-
cia et al., 2009), selecting high quality segments
to be published as they are, without post-editing
(Soricut and Echihabi, 2010), selecting a trans-
lation from either an MT system or a translation
memory for post-editing (He et al., 2010), select-
ing the best translation from multiple MT sys-
tems (Specia et al., 2010), and highlighting sub-
segments that need revision (Bach et al., 2011).

QE is generally addressed as a machine learn-
ing task using a variety of linear and kernel-based
regression or classification algorithms to induce
models from examples of translations described
through a number of features and annotated for
quality. For an overview of various algorithms and
features we refer the reader to the WMT12 shared
task on QE (Callison-Burch et al., 2012).

While initial work used annotations derived
1We are not strictly the first, Polajnar et al. (2011) used

GPs for text classification.

33



from automatic MT evaluation metrics (Blatz et
al., 2004) such as BLEU (Papineni et al., 2002)
at training time, it soon became clear that human
labels result in significantly better models (Quirk,
2004). Current work at sentence level is thus based
on some form of human supervision.

As typical of subjective annotation tasks, QE
datasets should contain multiple annotators to lead
to models that are representative. Therefore, work
in QE faces all common issues regarding variabil-
ity in annotators’ judgements. The following are a
few other features that make our datasets particu-
larly interesting:
• In order to minimise annotation costs, trans-

lation instances are often spread among anno-
tators, such that each instance is only labelled
by one or a few judges. In fact, for a sizeable
dataset (thousands of instances), the annota-
tion of a complete dataset by a single judge
may become infeasible.
• It is often desirable to include alternative

translations of source sentences produced by
multiple MT systems, which requires multi-
ple annotators for unbiased judgements, par-
ticularly for labels such as post-editing time
(a translation seen a second time will require
less editing effort).
• For crowd-sourced annotations it is often im-

possible to ensure that the same annotators
will label the same subset of cases.

These features – which are also typical of many
other linguistic annotation tasks – make the learn-
ing process extremely challenging. Learning mod-
els from datasets annotated by multiple annotators
remains an open challenge in QE, as we show in
Section 4. In what follows, we present our QE
datasets in more detail.

2.1 Datasets

We use two freely available QE datasets to experi-
ment with the techniques proposed in this paper:2

WMT12: This dataset was distributed as part of
the WMT12 shared task on QE (Callison-Burch et
al., 2012). It contains 1, 832 instances for train-
ing, and 422 for test. The English source sen-
tences are a subset of WMT09-12 test sets. The
Spanish MT outputs were created using a standard
PBSMT Moses engine. Each instance was anno-
tated with post-editing effort scores from highest

2Both datasets can be downloaded from http://www.
dcs.shef.ac.uk/˜lucia/resources.html.

effort (score 1) to lowest effort (score 5), where
each score identifies an estimated percentage of
the MT output that needs to be corrected. The
post-editing effort scores were produced indepen-
dently by three professional translators based on
a previously post-edited translation by a fourth
translator. In an attempt to accommodate for sys-
tematic biases among annotators, the final effort
score was computed as the weighted average be-
tween the three PE-effort scores, with more weight
given to the judges with higher standard deviation
from their own mean score. This resulted in scores
spread more evenly in the [1, 5] range.

WPTP12: This dataset was distributed by Ko-
ponen et al. (2012). It contains 299 English sen-
tences translated into Spanish using two or more
of eight MT systems randomly selected from all
system submissions for WMT11 (Callison-Burch
et al., 2011). These MT systems range from on-
line and customised SMT systems to commercial
rule-based systems. Translations were post-edited
by humans while time was recorded. The labels
are the number of seconds spent by a translator
editing a sentence normalised by source sentence
length. The post-editing was done by eight na-
tive speakers of Spanish, including five profes-
sional translators and three translation students.
Only 20 translations were edited by all eight an-
notators, with the remaining translations randomly
distributed amongst them. The resulting dataset
contains 1, 624 instances, which were randomly
split into 1, 300 for training and 300 for test. Ac-
cording to the analysis in (Koponen et al., 2012),
while on average certain translators were found to
be faster than others, their speed in post-editing
individual sentences varies considerably, i.e., cer-
tain translators are faster at certain sentences. To
our knowledge, no previous work has managed to
successfully model the prediction of post-editing
time from datasets with multiple annotators.

3 Gaussian Process Regression

Machine learning models for quality estimation
typically treat the problem as regression, seeking
to model the relationship between features of the
text input and the human quality judgement as a
continuous response variable. Popular choices in-
clude Support Vector Machines (SVMs), which
have been shown to perform well for quality es-
timation (Callison-Burch et al., 2012) using non-
linear kernel functions such as radial basis func-
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tions. In this paper we consider Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2006), a
probabilistic machine learning framework incor-
porating kernels and Bayesian non-parametrics,
widely considered state-of-the-art for regression.
Despite this GPs have not been used widely to date
in statistical NLP. GPs are particularly suitable for
modelling QE for a number of reasons: 1) they
explicitly model uncertainty, which is rife in QE
datasets; 2) they allow fitting of expressive kernels
to data, in order to modulate the effect of features
of varying usefulness; and 3) they can naturally
be extended to model correlated tasks using multi-
task kernels. We now give a brief overview of GPs,
following Rasmussen and Williams (2006).

In our regression task3 the data consists of n
pairs D = {(xi, yi)}, where xi ∈ RF is a F -
dimensional feature vector and yi ∈ R is the re-
sponse variable. Each instance is a translation and
the feature vector encodes its linguistic features;
the response variable is a numerical quality judge-
ment: post editing time or likert score. As usual,
the modelling challenge is to automatically predict
the value of y based on the x for unseen test input.

GP regression assumes the presence of a la-
tent function, f : RF → R, which maps from
the input space of feature vectors x to a scalar.
Each response value is then generated from the
function evaluated at the corresponding data point,
yi = f(xi) + η, where η ∼ N (0, σ2n) is added
white-noise. Formally f is drawn from a GP prior,

f(x) ∼ GP
(
0, k(x,x′)

)
,

which is parameterised by a mean (here, 0) and
a covariance kernel function k(x,x′). The ker-
nel function represents the covariance (i.e., sim-
ilarities in the response) between pairs of data
points. Intuitively, points that are in close proxim-
ity should have high covariance compared to those
that are further apart, which constrains f to be a
smoothly varying function of its inputs. This intu-
ition is embodied in the squared exponential ker-
nel (a.k.a. radial basis function or Gaussian),

k(x,x′) = σ2f exp

(
−1

2
(x− x′)TA−1(x− x′)

)

(1)
where σ2f is a scaling factor describing the overall
levels of variance, and A = diag(a) is a diagonal

3Our approach generalises to classification, ranking (ordi-
nal regression) or various other training objectives, including
mixtures of objectives. In this paper we use regression for
simplicity of exposition and implementation.

matrix of length scales, encoding the smoothness
of functions f with respect to each feature. Non-
uniform length scales allow for different degrees
of smoothness of f in each dimension, such that
e.g., for unimportant features f is relatively flat
whereas for very important features f is jagged,
such that a small change in the feature value has
a large effect. When the values of a are learned
automatically from data, as we do herein, this is
referred to as the automatic relevance determina-
tion (ARD) kernel.

Given the generative process defined above, we
formulate prediction as Bayesian inference under
the posterior, namely

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D)

where x∗ is a test input and y∗ is its response
value. The posterior p(f |D) reflects our updated
belief over possible functions after observing the
training set D, i.e., f should pass close to the re-
sponse values for each training instance (but need
not fit exactly due to additive noise). This is bal-
anced against the smoothness constraints that arise
from the GP prior. The predictive posterior can be
solved analytically, resulting in

y∗ ∼ N
(
kT∗ (K + σ2nI)

−1y, (2)

k(x∗,x∗)− kT∗ (K + σ2nI)
−1k∗

)

where k∗ = [k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)]T
are the kernel evaluations between the test point
and the training set, and {Kij = k(xi,xj)} is
the kernel (gram) matrix over the training points.
Note that the posterior in Eq. 2 includes not only
the expected response (the mean) but also the vari-
ance, encoding the model’s uncertainty, which is
important for integration into subsequent process-
ing, e.g., as part of a larger probabilistic model.

GP regression also permits an analytic for-
mulation of the marginal likelihood, p(y|X) =∫
f p(y|X, f)p(f), which can be used for model

training (X are the training inputs). Specifically,
we can derive the gradient of the (log) marginal
likelihood with respect to the model hyperparam-
eters (i.e., a, σn, σs etc.) and thereby find the type
II maximum likelihood estimate using gradient as-
cent. Note that in general the marginal likelihood
is non-convex in the hyperparameter values, and
consequently the solutions may only be locally op-
timal. Here we bootstrap the learning of complex
models with many hyperparameters by initialising
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with the (good) solutions found for simpler mod-
els, thereby avoiding poor local optima. We refer
the reader to Rasmussen and Williams (2006) for
further details.

At first glance GPs resemble SVMs, which also
admit kernels such as the popular squared expo-
nential kernel in Eq. 1. The key differences are
that GPs are probabilistic models and support ex-
act Bayesian inference in the case of regression
(approximate inference is required for classifica-
tion (Rasmussen and Williams, 2006)). Moreover
GPs provide greater flexibility in fitting the ker-
nel hyperparameters even for complex composite
kernels. In typical usage, the kernel hyperparam-
eters for an SVM are fit using held-out estima-
tion, which is inefficient and often involves ty-
ing together parameters to limit the search com-
plexity (e.g., using a single scale parameter in
the squared exponential). Multiple-kernel learning
(Gönen and Alpaydın, 2011) goes some way to ad-
dressing this problem within the SVM framework,
however this technique is limited to reweighting
linear combinations of kernels and has high com-
putational complexity.

3.1 Multi-task Gaussian Process Models

Until now we have considered a standard regres-
sion scenario, where each training point is labelled
with a single output variable. In order to model
multiple different annotators jointly, i.e., multi-
task learning, we need to extend the model to han-
dle many tasks. Conceptually, we can consider
the multi-task model drawing a latent function for
each task, fm(x), where m ∈ 1, ...,M is the task
identifier. This function is then used to explain
the response values for all the instances for that
task (subject to noise). Importantly, for multi-task
learning to be of benefit, the prior over {fm} must
correlate the functions over different tasks, e.g., by
imposing similarity constraints between the values
for fm(x) and fm′(x).

We can consider two alternative perspectives
for framing the multi-task learning problem: ei-
ther isotopic where we associate each input point
x with a vector of outputs, y ∈ RM , one for
each of the M tasks; or heterotopic where some
of the outputs are missing, i.e., tasks are not con-
strained to share the same data points (Alvarez et
al., 2011). Given the nature of our datasets, we
opted for the heterotopic approach, which can han-
dle both singly annotated and multiply annotated

data. This can be implemented by augmenting
each input point with an additional task identity
feature, which is paired with a single y response,
and integrated into a GP model with the standard
training and inference algorithms.4

In moving to a task-augmented data representa-
tion, we need to revise our kernel function. We use
a separable multi-task kernel (Bonilla et al., 2008;
Alvarez et al., 2011) of the form

k
(
(x, d), (x′, d′)

)
= kdata(x,x′)Bd,d′ , (3)

where kdata(x,x′) is a standard kernel over the in-
put points, typically a squared exponential (see
Eq. 1), and B ∈ RD×D is a positive semi-definite
matrix encoding task covariances. We develop
a series of increasingly complex choices for B,
which we compare empirically in Section 4.2:

Independent The simplest case is whereB = I ,
i.e., all pairs of different tasks have zero covari-
ance. This corresponds to independent modelling
of each task, although all models share the same
data kernel, so this setting is not strictly equiva-
lent to independent training with independent per-
task data kernels (with different hyperparameters).
Similarly, we might choose to use a single noise
variance, σ2n, or an independent noise variance hy-
perparameter per task.

Pooled Another extreme is B = 1, which ig-
nores the task identity, corresponding to pooling
the multi-task data into one large set. Groot et
al. (2011) present a method for applying GPs for
modelling multi-annotator data using this pool-
ing kernel with independent per-task noise terms.
They show on synthetic data experiments that this
approach works well at extracting the signal from
noise-corrupted inputs.

Combined A simple approach for B is a
weighted combination of Independent and Pool,
i.e., B = 1+ aI , where the hyperparameter a ≥ 0
controls the amount of inter-task transfer between
each task and the global ‘pooled’ task.5 For dis-
similar tasks, a high value of a allows each task to
be modelled independently, while for more simi-
lar tasks low a allows the use of a large pool of

4Note that the separable kernel (Eq. 3) gives rise to block
structured kernel matrices which permit various optimisa-
tions (Bonilla et al., 2008) to reduce the computational com-
plexity of inference, e.g., the matrix inversion in Eq. 2.

5Note that larger values of a need not affect the overall
magnitude of k, which can be down-scaled by the σ2

f factor
in the data kernel (Eq. 1).
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similar data. A scaled version of this kernel has
been shown to correspond to mean regularisation
in SVMs when combined with a linear data ker-
nel (Evgeniou et al., 2006). A similar multi-task
kernel was proposed by Daumé III (2007), using
a linear data kernel and a = 1, which has shown
to result in excellent performance across a range
of NLP problems. In contrast to these earlier ap-
proaches, we learn the hyperparameter a directly,
fitting the relative amounts of inter- versus intra-
task transfer to the dataset.

Combined+ We consider an extension to the
Combined kernel, B = 1 + diag(a), ad ≥ 0
in which each task has a different hyperparameter
modulating its independence from the global pool.
This additional flexibility can be used, e.g., to al-
low individual outlier annotators to be modelled
independently of the others, by assigning a high
value to ad. In contrast, Combined ties together
the parameters for all tasks, i.e., all annotators are
assumed to have similar quality in that they devi-
ate from the mean to the same degree.

3.2 Integrating metadata

The approaches above assume that the data is split
into an unstructured set of M tasks, e.g., by anno-
tator. However, it is often the case that we have
additional information about each data instance in
the form of metadata. In our quality estimation
experiments we consider as metadata the MT sys-
tem which produced the translation, and the iden-
tity of the source sentence being translated. Many
other types of metadata, such as the level of expe-
rience of the annotator, could also be used. One
way of integrating such metadata would be to de-
fine a separate task for every observed combina-
tion of metadata values, in which case we treat the
metadata as a task descriptor. Doing so naively
would however incur a significant penalty, as each
task will have very few training instances result-
ing in inaccurate models, even with the inter-task
kernel approaches defined above.

We instead extend the task-level kernels to use
the task descriptors directly to represent task cor-
relations. Let B(i) be a square covariance matrix
for the ith task descriptor ofM , with a column and
row for each value (e.g., annotator identity, trans-
lation system, etc.). We redefine the task level ker-
nel using paired inputs (x,m), where m are the

task descriptors,

k
(
(x,m), (x′,m′)

)
= kdata(x,x′)

M∏

i=1

B
(i)
mi,m′

i
.

This is equivalent to using a structured task-kernel
B = B(1) ⊗ B(3) ⊗ · · · ⊗ B(M) where ⊗ is the
Kronecker product. Using this formulation we can
consider any of the above choices for B applied
to each task descriptor. In our experiments we
consider the Combined and Combined+ kernels,
which allow the model to learn the relative impor-
tance of each descriptor in terms of independent
modelling versus pooling the data.

4 Multi-task Quality Estimation

4.1 Experimental Setup
Feature sets: In all experiments we use 17 shal-
low QE features that have been shown to perform
well in previous work. These were used by a
highly competitive baseline entry in the WMT12
shared task, and were extracted here using the sys-
tem provided by that shared task.6 They include
simple counts, e.g., the tokens in sentences, as
well as source and target language model proba-
bilities. Each feature was scaled to have zero mean
and unit standard deviation on the training set.

Baselines: The baselines use the SVM regres-
sion algorithm with radial basis function kernel
and parameters γ, ε and C optimised through grid-
search and 5-fold cross validation on the training
set. This is generally a very strong baseline: in
the WMT12 QE shared task, only five out of 19
submissions were able to significantly outperform
it, and only by including many complex additional
features, tree kernels, etc. We also present µ, a
trivial baseline based on predicting for each test
instance the training mean (overall, and for spe-
cific tasks).

GP: All GP models were implemented using the
GPML Matlab toolbox.7 Hyperparameter optimi-
sation was performed using conjugate gradient as-
cent of the log marginal likelihood function, with
up to 100 iterations. The simpler models were ini-
tialised with all hyperparameters set to one, while
more complex models were initialised using the

6The software used to extract these (and other) fea-
tures can be downloaded from http://www.quest.
dcs.shef.ac.uk/

7http://www.gaussianprocess.org/gpml/
code
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Model MAE RMSE

µ 0.8279 0.9899
SVM 0.6889 0.8201

Linear ARD 0.7063 0.8480
Squared exp. Isotropic 0.6813 0.8146

Squared exp. ARD 0.6680 0.8098
Rational quadratic ARD 0.6773 0.8238

Matern(5,2) 0.6772 0.8124
Neural network 0.6727 0.8103

Table 1: Single-task learning results on the
WMT12 dataset, trained and evaluated against
the weighted averaged response variable. µ is a
baseline which predicts the training mean, SVM
uses the same system as the WMT12 QE task, and
the remainder are GP regression models with dif-
ferent kernels (all include additive noise).

solution for a simpler model. For instance, mod-
els using ARD kernels were initialised from an
equivalent isotropic kernel (which ties all the hy-
perparameters together), and independent per-task
noise models were initialised from a single noise
model. This approach was more reliable than ran-
dom restarts in terms of accuracy and runtime ef-
ficiency.

Evaluation: We evaluate predictive accuracy
using two measures: mean absolute error,
MAE = 1

N

∑N
i=1 |yi − ŷi| and root mean square

error, RMSE =
√

1
N

∑N
i=1 (yi − ŷi)2, where yi

are the gold standard response values and ŷi are
the model predictions.

4.2 Results

Our experiments aim to demonstrate the efficacy
of GP regression, both the single task and multi-
task settings, compared to competitive baselines.

WMT12: Single task We start by comparing
GP regression with alternative approaches using
the WMT12 dataset on the standard task of pre-
dicting a weighted mean quality rating (as it was
done in the WMT12 QE shared task). Table 1
shows the results for baseline approaches and the
GP models, using a variety of different kernels
(see Rasmussen and Williams (2006) for details of
the kernel functions). From this we can see that all
models do much better than the mean baseline and
that most of the GP models have lower error than
the state-of-the-art SVM. In terms of kernels, the
linear kernel performs comparatively worse than
non-linear kernels. Overall the squared exponen-

Model MAE RMSE

µ 0.8541 1.0119
Independent SVMs 0.7967 0.9673

EasyAdapt SVM 0.7655 0.9105

Independent 0.7061 0.8534
Pooled 0.7252 0.8754

Pooled & {N} 0.7050 0.8497

Combined 0.6966 0.8448
Combined & {N} 0.6975 0.8476

Combined+ 0.6975 0.8463
Combined+ & {N} 0.7046 0.8595

Table 2: Results on the WMT12 dataset, trained
and evaluated over all three annotator’s judge-
ments. Shown above are the training mean base-
line µ, single-task learning approaches, and multi-
task learning models, with the columns showing
macro average error rates over all three response
values. All systems use a squared exponential
ARD kernel in a product with the named task-
kernel, and with added noise (per-task noise is de-
noted {N}, otherwise has shared noise).

tial ARD kernel has the best performance under
both measures of error, and for this reason we use
this kernel in our subsequent experiments.

WMT12: Multi-task We now turn to the multi-
task setting, where we seek to model each of the
three annotators’ predictions. Table 2 presents
the results. Note that here error rates are mea-
sured over all of the three annotators’ judgements,
and consequently are higher than those measured
against their average response in Table 1. For com-
parison, taking the predictions of the best model,
Combined, in Table 2 and evaluating its averaged
prediction has a MAE of 0.6588 vs. the averaged
gold standard, significantly outperforming the best
model in Table 1.

There are a number of important findings in Ta-
ble 2. First, the independently trained models do
well, outperforming the pooled model with fixed
noise, indicating that naively pooling the data is
counter-productive and that there are annotator-
specific biases. Including per-annotator noise to
the pooled model provides a boost in performance,
however the best results are obtained using the
Combined kernel which brings the strengths of
both the independent and pooled settings. There
are only minor differences between the different
multi-task kernels, and in this case per-annotator
noise made little difference. An explanation for
the contradictory findings about the importance
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of independent noise is that differences between
annotators can already be explained by the MTL
model using the multi-task kernel, and need not be
explained as noise.

The GP models significantly improve over
the baselines, including an SVM trained inde-
pendently and using the EasyAdapt method for
multi-task learning (Daumé III, 2007). While
EasyAdapt showed an improvement over the in-
dependent SVM, it was a long way short of the
GP models. A possible explanation is that in
EasyAdapt the multi-task sharing parameter is set
at a = 1, which may not be appropriate for the
task. In contrast the Combined GP model learned
a value of a = 0.01, weighting the value of pool-
ing much more highly than independent training.

A remaining question is how these approaches
cope with smaller datasets, where issues of data
sparsity become more prevalent. To test this, we
trained single-task, pooled and multi-task models
on randomly sub-sampled training sets of differ-
ent sizes, and plot their error rates in Figure 1.
As expected, for very small datasets pooling out-
performs single task learning, however for modest
sized datasets of ≥ 90 training instances pooling
was inferior. For all dataset sizes multi-task learn-
ing is superior to the other approaches, making
much better use of small and large training sets.
The MTL model trained on 500 samples had an
MAE of 0.7082± 0.0042, close to the best results
from the full dataset in Table 2, despite using 1

9
as much data: here we use 1

3 as many training
instances where each is singly (cf. triply) anno-
tated. The same experiments run with multiply-
annotated instances showed much weaker perfor-
mance, presumably due to the more limited sam-
ple of input points and poorer fit of the ARD ker-
nel hyperparameters. This finding suggests that
our multi-task learning approach could be used to
streamline annotation efforts by reducing the need
for extensive multiple annotations.

WPTP12 This dataset involves predicting the
post-editing time for eight annotators, where we
seek to test our model’s capability to use addi-
tional metadata. We model the logarithm of the
per-word post-editing time, in order to make the
response variable more comparable between an-
notators and across sentences, and generally more
Gaussian in shape. In Table 3 immediately we
can see that the baseline of predicting the train-
ing mean is very difficult to beat, and the trained
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Figure 1: Learning curve comparing MAE for dif-
ferent training methods on the WMT12 dataset,
all using a squared exponential ARD data kernel
and tied noise parameter. The MTL model uses the
Combined task kernel. Each point is the average
of 5 runs, and the error bars show ±1 s.d.

systems often do worse. Partitioning the data
by annotator (µA) gives the best baseline result,
while there is less information from the MT sys-
tem or sentence identity. Single-task learning per-
forms only a little better than these baselines, al-
though some approaches such as the naive pool-
ing perform terribly. This suggests that the tasks
are highly different to one another. Interestingly,
adding the per-task noise models to the pooling ap-
proach greatly improves its performance.

The multi-task learning methods performed best
when using the annotator identity as the task de-
scriptor, and less well for the MT system and sen-
tence pair, where they only slightly improved over
the baseline. However, making use of all these lay-
ers of metadata together gives substantial further
improvements, reaching the best result with Com-
binedA,S,T . The effect of adding per-task noise to
these models was less marked than for the pooled
models, as in the WMT12 experiments. Inspecting
the learned hyperparameters, the combined mod-
els learned a large bias towards independent learn-
ing over pooling, in contrast to the WMT12 exper-
iments. This may explain the poor performance of
EasyAdapt on this dataset.

5 Conclusion

This paper presented a novel approach for learning
from human linguistic annotations by explicitly
training models of individual annotators (and pos-
sibly additional metadata) using multi-task learn-
ing. Our method using Gaussian Processes is flex-
ible, allowing easy learning of inter-dependences
between different annotators and other task meta-
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Model MAE RMSE

µ 0.5596 0.7053
µA 0.5184 0.6367
µS 0.5888 0.7588
µT 0.6300 0.8270

Pooled SVM 0.5823 0.7472
IndependentA SVM 0.5058 0.6351

EasyAdapt SVM 0.7027 0.8816

SINGLE-TASK LEARNING

IndependentA 0.5091 0.6362
IndependentS 0.5980 0.7729

Pooled 0.5834 0.7494
Pooled & {N} 0.4932 0.6275

MULTI-TASK LEARNING: Annotator

CombinedA 0.4815 0.6174
CombinedA & {N} 0.4909 0.6268

Combined+A 0.4855 0.6203
Combined+A & {N} 0.4833 0.6102

MULTI-TASK LEARNING: Translation system

CombinedS 0.5825 0.7482

MULTI-TASK LEARNING: Sentence pair

CombinedT 0.5813 0.7410

MULTI-TASK LEARNING: Combinations

CombinedA,S 0.4988 0.6490
CombinedA,S & {NA,S} 0.4707 0.6003

Combined+A,S 0.4772 0.6094
CombinedA,S,T 0.4588 0.5852

CombinedA,S,T & {NA,S} 0.4723 0.6023

Table 3: Results on the WPTP12 dataset, using
the log of the post-editing time per word as the
response variable. Shown above are the training
mean and SVM baselines, single-task learning and
multi-task learning results (micro average). The
subscripts denote the task split: annotator (A), MT
system (S) and sentence identity (T).

data. Our experiments showed how our approach
outperformed competitive baselines on two ma-
chine translation quality regression problems, in-
cluding the highly challenging problem of predict-
ing post-editing time.

In future work we plan to apply these techniques
to new datasets, particularly noisy crowd-sourced
data with much large numbers of annotators, as
well as a wider range of task types and mixtures
thereof (regression, ordinal regression, ranking,
classification). We also have preliminary positive
results for more advanced multi-task kernels, e.g.,
general dense matrices, which can induce clusters
of related tasks.

Our multi-task learning approach has much
wider application. Models of individual annota-
tors could be used to train machine translation
systems to optimise an annotator-specific quality
measure, or in active learning for corpus annota-
tion, where the model can suggest the most ap-
propriate instances for each annotator or the best
annotator for a given instance. Further, our ap-
proach contributes to work based on cheap and fast
crowdsourcing of linguistic annotation by min-
imising the need for careful data curation and
quality control.
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Abstract

We present an algorithm for re-estimating
parameters of backoff n-gram language
models so as to preserve given marginal
distributions, along the lines of well-
known Kneser-Ney (1995) smoothing.
Unlike Kneser-Ney, our approach is de-
signed to be applied to any given smoothed
backoff model, including models that have
already been heavily pruned. As a result,
the algorithm avoids issues observed when
pruning Kneser-Ney models (Siivola et al.,
2007; Chelba et al., 2010), while retain-
ing the benefits of such marginal distribu-
tion constraints. We present experimen-
tal results for heavily pruned backoff n-
gram models, and demonstrate perplexity
and word error rate reductions when used
with various baseline smoothing methods.
An open-source version of the algorithm
has been released as part of the OpenGrm
ngram library.1

1 Introduction

Smoothed n-gram language models are the de-
facto standard statistical models of language for
a wide range of natural language applications, in-
cluding speech recognition and machine transla-
tion. Such models are trained on large text cor-
pora, by counting the frequency of n-gram col-
locations, then normalizing and smoothing (reg-
ularizing) the resulting multinomial distributions.
Standard techniques store the observed n-grams
and derive probabilities of unobserved n-grams via
their longest observed suffix and “backoff” costs
associated with the prefix histories of the unob-
served suffixes. Hence the size of the model grows
with the number of observed n-grams, which is
very large for typical training corpora.

1www.opengrm.org

Natural language applications, however, are
commonly used in scenarios requiring relatively
small footprint models. For example, applica-
tions running on mobile devices or in low latency
streaming scenarios may be required to limit the
complexity of models and algorithms to achieve
the desired operating profile. As a result, statisti-
cal language models – an important component of
many such applications – are often trained on very
large corpora, then modified to fit within some
pre-specified size bound. One method to achieve
significant space reduction is through random-
ized data structures, such as Bloom (Talbot and
Osborne, 2007) or Bloomier (Talbot and Brants,
2008) filters. These data structures permit effi-
cient querying for specific n-grams in a model
that has been stored in a fraction of the space
required to store the full, exact model, though
with some probability of false positives. Another
common approach – which we pursue in this pa-
per – is model pruning, whereby some number of
the n-grams are removed from explicit storage in
the model, so that their probability must be as-
signed via backoff smoothing. One simple prun-
ing method is count thresholding, i.e., discarding
n-grams that occur less than k times in the corpus.
Beyond count thresholding, the most widely used
pruning methods (Seymore and Rosenfeld, 1996;
Stolcke, 1998) employ greedy algorithms to re-
duce the number of stored n-grams by comparing
the stored probabilities to those that would be as-
signed via the backoff smoothing mechanism, and
removing those with the least impact according to
some criterion.

While these greedy pruning methods are highly
effective for models estimated with most com-
mon smoothing approaches, they have been shown
to be far less effective with Kneser-Ney trained
language models (Siivola et al., 2007; Chelba et
al., 2010), leading to severe degradation in model
quality relative to other standard smoothing meth-
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4-gram models Backoff Interpolated
Perplexity n-grams Perplexity n-grams

Smoothing method full pruned (×1000) full pruned (×1000)
Absolute Discounting (Ney et al., 1994) 120.5 197.3 383.4 119.8 198.1 386.2
Witten-Bell (Witten and Bell, 1991) 118.8 196.3 380.4 121.6 202.3 396.4
Ristad (1995) 126.4 203.6 395.6 ——- N/A ——-
Katz (1987) 119.8 198.1 386.2 ——- N/A ——-
Kneser-Ney (Kneser and Ney, 1995) 114.5 285.1 388.2 115.8 274.3 398.7
Mod. Kneser-Ney (Chen and Goodman, 1998) 116.3 280.6 396.2 112.8 270.7 399.1

Table 1: Reformatted version of Table 3 in Chelba et al. (2010), demonstrating perplexity degradation of Kneser-Ney
smoothed models in contrast to other common smoothing methods. Data: English Broadcast News, 128M words training;
692K words test; 143K word vocabulary. 4-gram language models, pruned using Stolcke (1998) relative entropy pruning to
approximately 1.3% of the original size of 31,095,260 n-grams.

ods. Thus, while Kneser-Ney may be the preferred
smoothing method for large, unpruned models
– where it can achieve real improvements over
other smoothing methods – when relatively sparse,
pruned models are required, it has severely dimin-
ished utility.

Table 1 presents a slightly reformatted version
of Table 3 from Chelba et al. (2010). In their
experiments (see Table 1 caption for specifics on
training/test setup), they trained 4-gram Broad-
cast News language models using a variety of
both backoff and interpolated smoothing methods
and measured perplexity before and after Stol-
cke (1998) relative entropy based pruning. With
this size training data, the perplexity of all of
the smoothing methods other than Kneser-Ney
degrades from around 120 with the full model
to around 200 with the heavily pruned model.
Kneser-Ney smoothed models have lower perplex-
ity with the full model than the other methods by
about 5 points, but degrade with pruning to far
higher perplexity, between 270-285.

The cause of this degradation is Kneser-Ney’s
unique method for estimating smoothed language
models, which will be presented in more detail in
Section 3. Briefly, the smoothing method reesti-
mates lower-order n-gram parameters in order to
avoid over-estimating the likelihood of n-grams
that already have ample probability mass allocated
as part of higher-order n-grams. This is done via
a marginal distribution constraint which requires
the expected frequency of the lower-order n-grams
to match their observed frequency in the training
data, much as is commonly done for maximum
entropy model training. Goodman (2001) proved
that, under certain assumptions, such constraints
can only improve language models. Lower-order
n-gram parameters resulting from Kneser-Ney are
not relative frequency estimates, as with other
smoothing methods; rather they are parameters

estimated specifically for use within the larger
smoothed model.

There are (at least) a couple of reasons why such
parameters do not play well with model pruning.
First, the pruning methods commonly use lower
order n-gram probabilities to derive an estimate
of state marginals, and, since these parameters are
no longer smoothed relative frequency estimates,
they do not serve that purpose well. For this rea-
son, the widely-used SRILM toolkit recently pro-
vided switches to modify their pruning algorithm
to use another model for state marginal estimates
(Stolcke et al., 2011). Second, and perhaps more
importantly, the marginal constraints that were ap-
plied prior to smoothing will not in general be con-
sistent with the much smaller pruned model. For
example, if a bigram parameter is modified due
to the presence of some set of trigrams, and then
some or all of those trigrams are pruned from the
model, the bigram associated with the modified
parameter will be unlikely to have an overall ex-
pected frequency equal to its observed frequency
anymore. As a result, the resulting model degrades
dramatically with pruning.

In this paper, we present an algorithm that
imposes marginal distribution constraints of the
sort used in Kneser-Ney modeling on arbitrary
smoothed backoff n-gram language models. Our
approach makes use of the same sort of deriva-
tion as the original Kneser-Ney modeling, but,
among other differences, relies on smoothed es-
timates of the empirical relative frequency rather
than the unsmoothed observed frequency. The al-
gorithm can be applied after the smoothed model
has been pruned, hence avoiding the pitfalls asso-
ciated with Kneser-Ney modeling. Furthermore,
while Kneser-Ney is conventionally defined as a
variant of absolute discounting, our method can
be applied to models smoothed with any backoff
smoothing, including mixtures of models, widely
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used for domain adaptation.
We next establish formal preliminaries and

our smoothed marginal distribution constraints
method.

2 Preliminaries

N-gram language models are typically presented
mathematically in terms of words w, the strings
(histories) h that precede them, and the suffixes
of the histories (backoffs) h′ that are used in the
smoothing recursion. Let V be a vocabulary (al-
phabet), and V ∗ a string of zero or more symbols
drawn from V . Let V k denote the set of strings
w ∈ V ∗ of length k, i.e., |w| = k. We will use
variables u, v, w, x, y, z ∈ V to denote single sym-
bols from the vocabulary; h, g ∈ V ∗ to denote his-
tory sequences preceding the specific word; and
h′, g′ ∈ V ∗ the respective backoff histories of h
and g as typically defined (see below). For a string
w = w1 . . . w|w| we can calculate the smoothed
conditional probability of each word wi in the se-
quence given the k words that preceded it, de-
pending on the order of the Markov model. Let
hki = wi−k . . . wi−1 be the previous k words in
the sequence. Then the smoothed model is defined
recursively as follows:

P(wi | hki ) =

{
P(wi | hki ) if c(hkiwi) > 0
α(hki ) P(wi | hk−1

i ) otherwise

where c(hkiwi) is the count of the n-gram sequence
wi−k . . . wi in the training corpus; P is a regular-
ized probability estimate that provides some prob-
ability mass for unobserved n-grams; and α(hki )
is a factor that ensures normalization. Note that
for h = hki , the typically defined backoff history
h′ = hk−1i , i.e., the longest suffix of h that is not h
itself. When we use h′ and g′ (for notational con-
venience) in future equations, it is this definition
that we are using.

There are many ways to estimate P, includ-
ing absolute discounting (Ney et al., 1994), Katz
(1987) and Witten and Bell (1991). Interpolated
models are special cases of this form, where the P
is determined using model mixing, and the α pa-
rameter is exactly the mixing factor value for the
lower order model.

N-gram language models allow for a sparse rep-
resentation, so that only a subset of the possible n-
grams must be explicitly stored. Probabilities for
the rest of the n-grams are calculated through the
“otherwise” semantics in the equation above. For

an n-gram language model G, we will say that an
n-gram hw ∈ G if it is explicitly represented in
the model; otherwise hw 6∈ G. In the standard n-
gram formulation above, the assumption is that if
c(hkiwi) > 0 then the n-gram has a parameter; yet
with pruning, we remove many observed n-grams
from the model, hence this is no longer the ap-
propriate criterion. We reformulate the standard
equation as follows:

P(wi|hki ) =

{
β(hkiwi) if hkiwi ∈ G
α(hki , h

k−1
i ) P(wi|hk−1

i ) otherwise
(1)

where β(hkiwi) is the parameter associated with
the n-gram hkiwi and α(hki , h

k−1
i ) is the backoff

cost associated with going from state hki to state
hk−1i . We assume that, if hw ∈ G then all prefixes
and suffixes of hw are also in G.

Figure 1 presents a schema of an automaton rep-
resentation of an n-gram model, of the sort used in
the OpenGrm library (Roark et al., 2012). States
represent histories h, and the words w, whose
probabilities are conditioned on h, label the arcs,
leading to the history state for the subsequent
word. State labels are provided in Figure 1 as
a convenience, to show the (implicit) history en-
coded by the state, e.g., ‘xyz’ indicates that the
state represents a history with the previous three
symbols being x, y and z. Failure arcs, labeled
with a φ in Figure 1, encode an “otherwise” se-
mantics and have as destination the origin state’s
backoff history. Many higher order states will
back off to the same lower order state, specifically
those that share the same suffix.

Note that, in general, the recursive definition of
backoff may require the traversal of several back-

yz

z

xyz

u/β(xyzu)

w/β(yzw)

w/β(zw)
φ/α(xyz,yz)

φ/α(yz,z)

zw

yyz

φ/α(yyz,yz)

yzw

ε

yzu yzv

v/β(yyzv)
w/β(yyzw)

φ/α(z,ε)

φ/α(yzw,zw)

z/β(z)

Figure 1: N-gram weighted automaton schema. State labels
are presented for convenience, to specify the history implic-
itly encoded by the state.
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off arcs before emitting a word, e.g., the highest
order states in Figure 1 needing to traverse a cou-
ple of φ arcs to reach state ‘z’. We can define
the backoff cost between a state hki and any of its
suffix states as follows. Let α(h, h) = 1 and for
m > 1,

α(hki , h
k−m
i ) =

m∏

j=1

α(hk−j+1
i , hk−ji ).

If hkiw 6∈ G then the probability of that n-gram
will be defined in terms of backoff to its longest
suffix hk−mi w ∈ G. Let hwG denote the longest
suffix of h such that hwGw ∈ G. Note that this
is not necessarily a proper suffix, since hwG could
be h itself or it could be ε. Then

P(w | h) = α(h, hwG) β(hwGw) (2)

which is equivalent to equation 1.

3 Marginal distribution constraints

Marginal distribution constraints attempt to match
the expected frequency of an n-gram with its ob-
served frequency. In other words, if we use the
model to randomly generate a very large corpus,
the n-grams should occur with the same rela-
tive frequency in both the generated and original
(training) corpus. Standard smoothing methods
overgenerate lower-order n-grams. Using standard
n-gram notation (where g′ is the backoff history
for g), this constraint is stated in Kneser and Ney
(1995) as

P̂(w | h′) =
∑

g:g′=h′
P(g, w | h′) (3)

where P̂ is the empirical relative frequency esti-
mate. Taking this approach, certain base smooth-
ing methods end up with very nice, easy to cal-
culate solutions based on counts. Absolute dis-
counting (Ney et al., 1994) in particular, using the
above approach, leads to the well-known Kneser-
Ney smoothing approach (Kneser and Ney, 1995;
Chen and Goodman, 1998). We will follow this
same approach, with a couple of changes. First,
we will make use of regularized estimates of rela-
tive frequency P rather than raw relative frequency
P̂. Second, rather than just looking at observed
histories h that back off to h′, we will look at
all histories (observed or not) of the length of
the longest history in the model. For notational
simplicity, suppose we have an n+1-gram model,

hence the longest history in the model is of length
n. Assume the length of the particular backoff his-
tory |h′| = k. Let V n−kh′ be the set of strings
h ∈ V n with h′ as a suffix. Then we can restate
the marginal distribution constraint in equation 3
as

P(w | h′) =
∑

h∈V n−kh′

P(h,w | h′) (4)

Next we solve for β(h′w) parameters used in
equation 1. Note that h′ is a suffix of any h ∈
V n−kh′, so conditioning probabilities on h and h′

is the same as conditioning on just h. Each of
the following derivation steps simply relies on the
chain rule or definition of conditional probability,
as well as pulling terms out of the summation.

P(w | h′) =
∑

h∈V n−kh′

P(h,w | h′)

=
∑

h∈V n−kh′

P(w | h, h′) P(h | h′)

=
∑

h∈V n−kh′

P(w | h)
P(h)∑

g∈V n−kh′

P(g)

=
1∑

g∈V n−kh′

P(g)

∑

h∈V n−kh′

P(w | h) P(h) (5)

Then, multiplying both sides by the normaliz-
ing denominator on the right-hand side and using
equation 2 to substitute α(h, hwG) β(hwGw) for
P(w | h):

P(w | h′)
∑

g∈V n−kh′

P(g) =
∑

h∈V n−kh′

P(w | h) P(h)

=
∑

h∈V n−kh′

α(h, hwG) β(hwGw) P(h) (6)

Note that we are only interested in h′w ∈ G,
hence there are two disjoint subsets of histories
h ∈ V n−kh′ that are being summed over: those
such that hwG = h′ and those such that |hwG| >
|h′|. We next separate these sums in the next step
of the derivation:

P(w | h′)
∑

g∈V n−kh′

P(g) =

∑

h∈V n−kh′:|hwG|>|h′|
α(h, hwG) β(hwGw) P(h) +

∑

h∈V n−kh′:hwG=h′

α(h, h′) β(h′w) P(h) (7)

Finally, we solve for β(h′w) in the second sum
on the right-hand side of equation 7, yielding the
formula in equation 8. Note that this equation is
the correlate of equation (6) in Kneser and Ney
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β(h′w) =

P(w | h′)
∑

g∈V n−kh′

P(g) −
∑

h∈V n−kh′:|hwG|>|h′|
α(h, hwG) β(hwGw) P(h)

∑

h∈V n−kh′:hwG=h′

α(h, h′) P(h)
(8)

(1995), modulo the two differences noted earlier:
use of smoothed probability P rather than raw rel-
ative frequency; and summing over all history sub-
strings in V n−kh′ rather than just those with count
greater than zero, which is also a change due to
smoothing. Keep in mind, P is the target expected
frequency from a given smoothed model. Kneser-
Ney models are not useful input models, since
their P n-gram parameters are not relative fre-
quency estimates. This means that we cannot sim-
ply ‘repair’ pruned Kneser-Ney models, but must
use other smoothing methods where the smoothed
values are based on relative frequency estimation.

There are, in addition, two other important dif-
ferences in our approach from that in Kneser and
Ney (1995), which would remain as differences
even if our target expected frequency were the
unsmoothed relative frequency P̂ instead of the
smoothed estimate P. First, the sum in the nu-
merator is over histories of length n, the highest
order in the n-gram model, whereas in the Kneser-
Ney approach the sum is over histories that imme-
diately back off to h′, i.e., from the next highest
order in the n-gram model. Thus the unigram dis-
tribution is with respect to the bigram model, the
bigram model is with respect to the trigram model,
and so forth. In our optimization, we sum in-
stead over all possible history sequences of length
n. Second, an early assumption made in Kneser
and Ney (1995) is that the denominator term in
their equation (6) (our Eq. 8) is constant across all
words for a given history, which is clearly false.
We do not make this assumption. Of course, the
probabilities must be normalized, hence the final
values of β(h′w) will be proportional to the val-
ues in Eq. 8.

We briefly note that, like Kneser-Ney, if the
baseline smoothing method is consistent, then the
amount of smoothing in the limit will go to zero
and our resulting model will also be consistent.

The smoothed relative frequency estimate P and
higher order β values on the right-hand side of Eq.
8 are given values (from the input smoothed model
and previous stages in the algorithm, respectively),
implying an algorithm that estimates highest or-
ders of the model first. In addition, steady state

history probabilities P(h) must be calculated. We
turn to the estimation algorithm next.

4 Model constraint algorithm

Our algorithm takes a smoothed backoff n-gram
language model in an automaton format (see Fig-
ure 1) and returns a smoothed backoff n-gram lan-
guage model with the same topology. For all n-
grams in the model that are suffixes of other n-
grams in the model – i.e., that are backed-off to
– we calculate the weight provided by equation 8
and assign it (after normalization) to the appropri-
ate n-gram arc in the automaton. There are several
important considerations for this algorithm, which
we address in this section. First, we must provide
a probability for every state in the model. Second,
we must memoize summed values that are used
repeatedly. Finally, we must iterate the calcula-
tion of certain values that depend on the n-gram
weights being re-estimated.

4.1 Steady state probability calculation
The steady state probability P(h) is taken to be the
probability of observing h after a long word se-
quence, i.e., the state’s relative frequency in a long
sequence of randomly-generated sentences from
the model:

P(h) = lim
m→∞

∑

w1...wm

P̂(w1 . . . wmh) (9)

where P̂ is the corpus probability derived as fol-
lows: The smoothed n-gram probability model
P(w | h) is naturally extended to a sentence
s = w0 . . . wl, where w0 = <s> and wl = </s>
are the sentence initial and final words, by P(s) =∏l
i=1 P(wi | hni ). The corpus probability s1 . . . sr

is taken as:

P̂(s1 . . . sr) = (1− λ)λr−1
r∏

i=1

P(si) (10)

where λ parameterizes the corpus length distri-
bution.2 Assuming the n-gram language model
automaton G has a single final state </s> into

2P̂ models words in a corpus rather than a single sen-
tence since Equation 9 tends to zero as m → ∞ otherwise.
In Markov chain terms, the corpus distribution is made irre-
ducible to allow a non-trivial stationary distribution.
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which all </s> arcs enter, adding a λ weighted
ε arc from the </s> state to the initial state and
having a final weight 1 − λ in order to leave the
automaton at the </s> state will model this cor-
pus distribution. According to Eq. 9, P (h) is then
the stationary distribution of the finite irreducible
Markov Chain defined by this altered automaton.
There are many methods for computing such a sta-
tionary distribution; we use the well-known power
method (Stewart, 1999).

One difficulty remains to be resolved. The
backoff arcs have a special interpretation in the
automaton: they are traversed only if a word fails
to match at the higher order. These failure arcs
must be properly handled before applying stan-
dard stationary distribution calculations. A simple
approach would be for each word w′ and state h
such that hw′ /∈ G, but h′w′ ∈ G, add a w′ arc
from state h to h′w′ with weight α(h, h′)β(h′w′)
and then remove all failure arcs (see Figure 2a).
This however results in an automaton with |V | arcs
leaving every state, which is unwieldy with larger
vocabularies and n-gram orders. Instead, for each
word w and state h such that hw ∈ G, add a w arc
from state h to h′w with weight −α(h, h′)β(h′w)
and then replace all failure labels with ε labels (see
Figure 2b). In this case, the added negatively-
weighted arcs compensate for the excess probabil-
ity mass allowed by the epsilon arcs3. The number
of added arcs is no more than found in the original
model.

4.2 Accumulation of higher order values

We are summing over all possible histories of
length n in equation 8, and the steady state prob-
ability calculation outlined in the previous section
includes the probability mass for histories h 6∈ G.
The probability mass of states not inG ends up be-
ing allocated to the state representing their longest
suffix that is explicitly in G. That is the state that
would be active when these histories are encoun-
tered. Hence, once we have calculated the steady
state probabilities for each state in the smoothed
model, we only need to sum over states explicitly
in the model.

As stated earlier, the use of β(hwGw) in the
numerator of equation 8 for hwG that are larger
than h′ implies that the longer n-grams must be

3Since each negatively-weighted arc leaving a state
exactly cancels an epsilon arc followed by a matching
positively-weighted arc in each iteration of the power
method, convergence is assured.

(a) (b)

h

h'

w/β(hw)

w'/β(h'w')φ/α(h,h')

hw

h'w'
w'/α(h,h') β(h'w')

h

h'

w/β(hw)

w/β(h'w)ε/α(h,h')

hw

h'w
w/-α(h,h') β(h'w)

Figure 2: Schemata showing failure arc handling: (a) φ
removal: add w′ arc (red), delete φ arc; (b) φ replacement:
add w arc (red), replace φ by ε (red)

re-estimated first. Thus we process each history
length in descending order, finishing with the un-
igram state. Since we assume that, for every n-
gram hw ∈ G, every prefix and suffix is also
in G, we know that if h′w 6∈ G then there is
no history h such that h′ is a suffix of h and
hw ∈ G. This allows us to recursively accumu-
late the α(h, h′) P(h) in the denominator of Eq. 8.

For every n-gram, we can accumulate values re-
quired to calculate the three terms in equation 8,
and pass them along to calculate lower order n-
gram values. Note, however, that a naive imple-
mentation of an algorithm to assign these values is
O(|V |n). This is due to the fact that the denom-
inator factor must be accumulated for all higher
order states that do not have the given n-gram.
Hence, for every state h directly backing off to
h′ (order |V |), and for every n-gram arc leaving
state h′ (order |V |), some value must be accumu-
lated. This can be particularly clearly seen at the
unigram state, which has an arc for every unigram
(the size of the vocabulary): for every bigram state
(also order of the vocabulary), in the naive algo-
rithm we must look for every possible arc. Since
there are O(|V |n−2) lower order histories in the
model in the worst case, we have overall complex-
ity O(|V |n). However, we know that the number
of stored n-grams is very sparse relative to the pos-
sible number of n-grams, so the typical case com-
plexity is far lower. Importantly, the denominator
is calculated by first assuming that all higher order
states back off to the current n-gram, then subtract
out the mass associated with those that are already
observed at the higher order. In such a way, we
need only perform work for higher order n-grams
hw that are explicitly in the model. This opti-
mization achieves orders-of-magnitude speedups,
so that models take seconds to process.

Because smoothing is not necessarily con-

48



strained across n-gram orders, it is possible that
higher-order n-grams could be smoothed less than
lower order n-grams, so that the numerator of
equation 8 can be less than zero, which is not valid.
A value less than zero means that the higher or-
der n-grams will already produce the n-gram more
frequently than its smoothed expected frequency.
We set a minimum value ε for the numerator, and
any n-gram numerator value less than ε is replaced
with ε (for the current study, ε = 0.001). We
find this to be relatively infrequent, about 1% of
n-grams for most models.

4.3 Iteration

Recall that P and β terms on the right-hand side of
equation 8 are given and do not change. But there
are two other terms in the equation that change as
we update the n-gram parameters. The α(h, h′)
backoff weights in the denominator ensure nor-
malization at the higher order states, and change
as the n-gram parameters at the current state are
modified. Further, the steady state probabilities
will change as the model changes. Hence, at each
state, we must iterate the calculation of the denom-
inator term: first adjust n-gram weights and nor-
malize; then recalculate backoff weights at higher
order states and iterate. Since this only involves
the denominator term, each n-gram weight can be
updated by multiplying by the ratio of the old term
and the new term.

After the entire model has been re-estimated,
the steady state probability calculation presented
in Section 4.1 is run again and model estimation
happens again. As we shall see in the experimen-
tal results, this typically converges after just a few
iterations. At this time, we have no convergence
proofs for either of these iterative components to
the algorithm, but expect that something can be
said about this, which will be a priority in future
work.

5 Experimental results

All results presented here are for English Broad-
cast News. We received scripts for replicating the
Chelba et al. (2010) results from the authors, and
we report statistics on our replication of their pa-
per’s results in Table 2. The scripts are distributed
in such a way that the user supplies the data from
LDC98T31 (1996 CSR HUB4 Language Model
corpus) and the script breaks the collection into
training and testing sets, normalizes the text, and

Smoothing Perplexity n-grams (×1000)
method full pruned model diff
Abs.Disc. 120.4 197.1 382.3 -1.1
Witten-Bell 118.7 196.1 379.3 -1.1
Ristad 126.2 203.4 394.6 -1.1
Katz 119.7 197.9 385.1 -1.1
Kneser-Ney† 114.4 234.1 375.4 -12.7

Table 2: Replication of Chelba et al. (2010) using provided
script. Using the script, the size of the unpruned model is
31,091,219 ngrams, 4,041 fewer than Chelba et al. (2010).
† Kneser-Ney model pruned using -prune-history-lm
switch in SRILM.

trains and prunes the language models using the
SRILM toolkit (Stolcke et al., 2011). Presumably
due to minor differences in text normalization, re-
sulting in very slightly fewer n-grams in all con-
ditions, we achieve negligibly lower perplexities
(one or two tenths of a point) in all conditions, as
can be seen when comparing with Table 1. All
of the same trends result, thus that paper’s result
is successfully replicated here. Note that we ran
our Kneser-Ney pruning (noted with a † in the ta-
ble), using the new -prune-history-lm switch in
SRILM – created in response to the Chelba et al.
(2010) paper – which allows the use of another
model to calculate the state marginals for pruning.
This fixes part of the problem – perplexity does not
degrade as much as the Kneser-Ney pruned model
in Table 1 – but, as argued earlier in this paper, this
is not the sole reason for the degradation and the
perplexity remains extremely inflated.

We follow Chelba et al. (2010) in training and
test set definition, vocabulary size, and parame-
ters for reporting perplexity. Note that unigrams
in the models are never pruned, hence all models
assign probabilities over an identical vocabulary
and perplexity is comparable across models. For
all results reported here, we use the SRILM toolkit
for baseline model training and pruning, then con-
vert from the resulting ARPA format model to
an OpenFst format (Allauzen et al., 2007), as
used in the OpenGrm n-gram library (Roark et al.,
2012). We then apply the marginal distribution
constraints, and convert the result back to ARPA
format for perplexity evaluation with the SRILM
toolkit. All models are subjected to full normaliza-
tion sanity checks, as with typical model functions
in the OpenGrm library.

Recall that our algorithm assumes that, for ev-
ery n-gram in the model, all prefix and suffix n-
grams are also in the model. For pruned mod-
els, the SRILM toolkit does not impose such a
requirement, hence explicit arcs are added to the
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Perplexity n-grams
Smoothing Pruned Pruned (×1000)

Method Model +MDC ∆ in WFST
Abs.Disc. 197.1 187.4 9.7 389.2

Witten-Bell 196.1 185.7 10.4 385.0
Ristad 203.4 190.3 13.1 395.9
Katz 197.9 187.5 10.4 390.8

AD,WB,Katz
Mixture 196.6 186.3 10.3 388.7

Table 3: Perplexity reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. WFST n-
gram counts are slightly higher than ARPA format in Table 2
due to adding prefix and suffix n-grams.

model during conversion, with probability equal to
what they would receive in the the original model.
The resulting model is equivalent, but with a small
number of additional arcs in the explicit repre-
sentation (around 1% for the most heavily pruned
models).

Table 3 presents perplexity results for models
that result from applying our marginal distribution
constraints to the four heavily pruned models from
Table 2. In all four cases, we get perplexity reduc-
tions of around 10 points. We present the num-
ber of n-grams represented explicitly in the WFST,
which is a slight increase from those presented in
Table 2 due to the reintroduction of prefix and suf-
fix n-grams.

In addition to the four models reported in
Chelba et al. (2010), we produced a mixture model
by interpolating (with equal weight) smoothed n-
gram probabilities from the full (unpruned) ab-
solute discounting, Witten-Bell and Katz models,
which share the same set of n-grams. After renor-
malizing and pruning to approximately the same
size as the other models, we get commensurate
gains using this model as with the other models.

Figure 3 demonstrates the importance of iterat-
ing the steady state history calculation. All of the
methods achieve perplexity reductions with sub-
sequent iterations. Katz and absolute discounting
achieve very little reduction in the first iteration,
but catch back up in the second iteration.

The other iterative part of the algorithm, dis-
cussed in Section 4.3, is the denominator of equa-
tion 8, which changes due to adjustments in the
backoff weights required by the revised n-gram
probabilities. If we do not iteratively update the
backoff weights when reestimating the weights,
the ‘Pruned+MDC’ perplexities in Table 3 in-
crease by between 0.2–0.4 points. Hence, iterat-
ing the steady state probability calculation is quite
important, as illustrated by Figure 3; iterating the
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Figure 3: Models resulting from different numbers of pa-
rameter re-estimation iterations. Iteration 0 is the baseline
pruned model.

denominator calculation much less so, at least for
these models. We noted in Section 3 that a key dif-
ference between our approach and Kneser and Ney
(1995) is that their approach treated the denomina-
tor as a constant. If we do this, the ‘Pruned+MDC’
perplexities increase by between 4.5–5.6 points,
i.e., about half of the perplexity reduction is lost
for each method. Thus, while iteration of denomi-
nator calculation may not be critical, it should not
be treated as a constant.

We now look at the impacts on system perfor-
mance we can achieve with these new models4,
and whether the perplexity differences that we ob-
serve translate to real error rate reductions.

For automatic speech recognition experiments,
we used as test set the 1997 Hub4 evaluation set
consisting of 32,689 words. The acoustic model
is a tied-state triphone GMM-based HMM whose
input features are 9-frame stacked 13-dimensional
PLP-cepstral coefficients projected down to 39 di-
mensions using LDA. The model was trained on
the 1996 and 1997 Hub4 acoustic model train-
ing sets (about 150 hours of data) using semi-tied
covariance modeling and CMLLR-based speaker
adaptive training and 4 iterations of boosted MMI.

We used a multi-pass decoding strategy: two
quick passes for adaptation supervision, CMLLR
and MLLR estimation; then a slower full decoding
pass running about 3 times slower than real time.

Table 4 presents recognition results for the
heavily pruned models that we have been con-
sidering, both for first pass decoding and rescor-
ing of the resulting lattices using failure transi-
tions rather than epsilon backoff approximations.

4For space purposes, we exclude the Ristad method from
this point forward since it is not competitive with the others.
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Word error rate (WER)
First pass Rescoring

Smoothing Pruned Pruned Pruned Pruned
Method Model +MDC Model +MDC

Abs.Disc. 20.5 19.7 20.2 19.6
Witten-Bell 20.5 19.9 20.1 19.6

Katz 20.5 19.7 20.2 19.7
Mixture 20.5 19.6 20.2 19.6

Kneser-Neya 22.1 22.2
Kneser-Neyb 20.5 20.6

Table 4: WER reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. Kneser-
Ney results are shown for: a) original pruning; and b) with
-prune-history-lm switch.

The perplexity reductions that were achieved for
these models do translate to real word error rate
reductions at both stages of between 0.5 and 0.9
percent absolute. All of these gains are sta-
tistically significant at p < 0.0001 using the
stratified shuffling test (Yeh, 2000). For pruned
Kneser-Ney models, fixing the state marginals
with the -prune-history-lm switch reduces the
WER versus the original pruned model, but no re-
ductions were achieved vs. baseline methods.

Table 5 presents perplexity and WER results
for less heavily pruned models, where the prun-
ing thresholds were set to yield approximately
1.5 million n-grams (4 times more than the pre-
vious models); and another set at around 5 mil-
lion n-grams, as well as the full, unpruned mod-
els. While the robust gains we’ve observed up to
now persist with the 1.5M n-gram models (WER
reductions significant, Witten-Bell at p < 0.02,
others at p < 0.0001), the larger models yield
diminishing gains, with no real WER improve-
ments. Performance of Witten-Bell models with
the marginal distribution constraints degrade badly
for the larger models, indicating that this method
of regularization, unmodified by aggressive prun-
ing, does not provide a well suited distribution for

this sort of optimization. We speculate that this
is due to underregularization, having noted some
floating point precision issues when allowing the
backoff recalculation to run indefinitely.

6 Summary and Future Directions
The presented method reestimates lower order
n-gram model parameters for a given smoothed
backoff model, achieving perplexity and WER re-
ductions for many smoothed models. There re-
main a number of open questions to investigate
in the future. Recall that the numerator in Eq.
8 can be less than zero, meaning that no param-
eterization would lead to a model with the target
frequency of the lower order n-gram, presumably
due to over- or under-regularization. We antic-
ipate a pre-constraint on the baseline smoothing
method, that would recognize this problem and ad-
just the smoothing to ensure that a solution does
exist. Additionally, it is clear that different reg-
ularization methods yield different behaviors, no-
tably that large, relatively lightly pruned Witten-
Bell models yield poor results. We will look to
identify the issues with such models and provide
general guidelines for prepping models prior to
processing. Finally, we would like to perform ex-
tensive controlled experimentation to examine the
relative contribution of the various aspects of our
approach.
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M Less heavily pruned model Moderately pruned model Full model
Smoothing D ngrams WER ngrams WER ngrams WER

Method C (×106) PPL FP RS (×106) PPL FP RS (×106) PPL FP RS
Abs. N 1.53 146.6 18.1 17.9 5.19 129.1 17.0 16.6 31.1 120.4 16.2 16.1
Disc. Y 141.2 17.2 17.2 126.3 16.6 16.6 31.1 117.0 16.0 16.0

Witten- N 1.54 145.8 18.1 17.6 5.08 129.4 17.3 16.8 31.1 118.7 16.3 16.1
Bell Y 139.7 17.9 17.4 126.4 18.4 17.3 31.1 118.4 18.1 17.6
Katz N 1.57 146.6 17.8 17.7 5.10 128.9 16.8 16.6 31.1 119.7 16.2 16.1

Y 141.1 17.3 17.3 125.7 16.6 16.6 31.1 114.7 16.2 16.1
Mixture N 1.55 145.5 18.1 17.7 5.11 128.2 16.9 16.6 31.1 118.5 16.3 16.1

Y 139.2 17.3 17.2 123.6 16.6 16.4 31.1 114.6 17.3 16.4
Kneser-Ney backoff model, unpruned: 31.1 114.4 15.8 15.9

Table 5: Perplexity (PPL) and both first pass (FP) and rescoring (RS) WER reductions for less heavily pruned models using
marginal distribution constraints (MDC).
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Abstract

We present a method that learns repre-
sentations for word meanings from short
video clips paired with sentences. Un-
like prior work on learning language from
symbolic input, our input consists of video
of people interacting with multiple com-
plex objects in outdoor environments. Un-
like prior computer-vision approaches that
learn from videos with verb labels or im-
ages with noun labels, our labels are sen-
tences containing nouns, verbs, preposi-
tions, adjectives, and adverbs. The cor-
respondence between words and concepts
in the video is learned in an unsupervised
fashion, even when the video depicts si-
multaneous events described by multiple
sentences or when different aspects of a
single event are described with multiple
sentences. The learned word meanings
can be subsequently used to automatically
generate description of new video.

1 Introduction

People learn language through exposure to a rich
perceptual context. Language is grounded by
mapping words, phrases, and sentences to mean-
ing representations referring to the world. Siskind
(1996) has shown that even with referential un-
certainty and noise, a system based on cross-
situational learning can robustly acquire a lexicon,
mapping words to word-level meanings from sen-
tences paired with sentence-level meanings. How-
ever, it did so only for symbolic representations of
word- and sentence-level meanings that were not
perceptually grounded. An ideal system would not
require detailed word-level labelings to acquire
word meanings from video but rather could learn
language in a largely unsupervised fashion, just as
a child does, from video paired with sentences.

There has been recent research on grounded lan-
guage learning. Roy (2002) pairs training sen-
tences with vectors of real-valued features ex-
tracted from synthesized images which depict 2D
blocks-world scenes, to learn a specific set of fea-
tures for adjectives, nouns, and adjuncts. Yu and
Ballard (2004) paired training images containing
multiple objects with spoken name candidates for
the objects to find the correspondence between
lexical items and visual features. Dominey and
Boucher (2005) paired narrated sentences with
symbolic representations of their meanings, au-
tomatically extracted from video, to learn object
names, spatial-relation terms, and event names as
a mapping from the grammatical structure of a
sentence to the semantic structure of the associated
meaning representation. Chen and Mooney (2008)
learned the language of sportscasting by deter-
mining the mapping between game commentaries
and the meaning representations output by a rule-
based simulation of the game. Kwiatkowski et al.
(2012) present an approach that learns Montague-
grammar representations of word meanings to-
gether with a combinatory categorial grammar
(CCG) from child-directed sentences paired with
first-order formulas that represent their meaning.

Although most of these methods succeed in
learning word meanings from sentential descrip-
tions they do so only for symbolic or simple vi-
sual input (often synthesized); they fail to bridge
the gap between language and computer vision,
i.e., they do not attempt to extract meaning rep-
resentations from complex visual scenes. On the
other hand, there has been research on training
object and event models from large corpora of
complex images and video in the computer-vision
community (Kuznetsova et al., 2012; Sadanand
and Corso, 2012; Kulkarni et al., 2011; Ordonez
et al., 2011; Yao et al., 2010). However, most
such work requires training data that labels indi-
vidual concepts with individual words (i.e., ob-
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jects delineated via bounding boxes in images as
nouns and events that occur in short video clips
as verbs). There is no attempt to model phrasal
or sentential meaning, let alone acquire the ob-
ject or event models from training data labeled
with phrasal or sentential annotations. Moreover,
such work uses distinct representations for differ-
ent parts of speech; i.e., object and event recogniz-
ers use different representations.

In this paper, we present a method that learns
representations for word meanings from short
video clips paired with sentences. Our work dif-
fers from prior work in three ways. First, our input
consists of realistic video filmed in an outdoor en-
vironment. Second, we learn the entire lexicon,
including nouns, verbs, prepositions, adjectives,
and adverbs, simultaneously from video described
with whole sentences. Third we adopt a uniform
representation for the meanings of words in all
parts of speech, namely Hidden Markov Models
(HMMs) whose states and distributions allow for
multiple possible interpretations of a word or a
sentence in an ambiguous perceptual context.

We employ the following representation to
ground the meanings of words, phrases, and sen-
tences in video clips. We first run an object de-
tector on each video frame to yield a set of de-
tections, each a subregion of the frame. In prin-
ciple, the object detector need just detect the ob-
jects rather than classify them. In practice, we
employ a collection of class-, shape-, pose-, and
viewpoint-specific detectors and pool the detec-
tions to account for objects whose shape, pose,
and viewpoint may vary over time. Our methods
can learn to associate a single noun with detections
produced by multiple detectors. We then string to-
gether detections from individual frames to yield
tracks for objects that temporally span the video
clip. We associate a feature vector with each frame
(detection) of each such track. This feature vector
can encode image features (including the identity
of the particular detector that produced that detec-
tion) that correlate with object class; region color,
shape, and size features that correlate with object
properties; and motion features, such as linear and
angular object position, velocity, and acceleration,
that correlate with event properties. We also com-
pute features between pairs of tracks to encode the
relative position and motion of the pairs of objects
that participate in events that involve two partici-
pants. In principle, we can also compute features

between tuples of any number of tracks.

Following Yamoto et al. (1992), Siskind and
Morris (1996), and Starner et al. (1998), we repre-
sent the meaning of an intransitive verb, like jump,
as a two-state HMM over the velocity-direction
feature, modeling the requirement that the par-
ticipant move upward then downward. We rep-
resent the meaning of a transitive verb, like pick
up, as a two-state HMM over both single-object
and object-pair features: the agent moving to-
ward the patient while the patient is as rest, fol-
lowed by the agent moving together with the pa-
tient. We extend this general approach to other
parts of speech. Nouns, like person, can be rep-
resented as one-state HMMs over image features
that correlate with the object classes denoted by
those nouns. Adjectives, like red, round, and big,
can be represented as one-state HMMs over region
color, shape, and size features that correlate with
object properties denoted by such adjectives. Ad-
verbs, like quickly, can be represented as one-state
HMMs over object-velocity features. Intransitive
prepositions, like leftward, can be represented as
one-state HMMs over velocity-direction features.
Static transitive prepositions, like to the left of, can
be represented as one-state HMMs over the rela-
tive position of a pair of objects. Dynamic transi-
tive prepositions, like towards, can be represented
as HMMs over the changing distance between a
pair of objects. Note that with this formulation,
the representation of a verb, like approach, might
be the same as a dynamic transitive preposition,
like towards. While it might seem like overkill
to represent the meanings of words as one-state-
HMMs, in practice, we often instead encode such
concepts with multiple states to allow for temporal
variation in the associated features due to chang-
ing pose and viewpoint as well as deal with noise
and occlusion. Moreover, the general framework
of modeling word meanings as temporally variant
time series via multi-state HMMs allows one to
model denominalized verbs, i.e., nouns that denote
events, as in The jump was fast.

Our HMMs are parameterized with vary-
ing arity. Some, like jump(α), person(α),
red(α), round(α), big(α), quickly(α), and
leftward(α) have one argument, while oth-
ers, like pick-up(α, β), to-the-left-of(α, β), and
towards(α, β), have two arguments (In principle,
any arity can be supported.). HMMs are instanti-
ated by mapping their arguments to tracks. This
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involves computing the associated feature vector
for that HMM over the detections in the tracks
chosen to fill its arguments. This is done with
a two-step process to support compositional se-
mantics. The meaning of a multi-word phrase
or sentence is represented as a joint likelihood
of the HMMs for the words in that phrase or
sentence. Compositionality is handled by link-
ing or coindexing the arguments of the conjoined
HMMs. Thus a sentence like The person to
the left of the backpack approached the trash-
can would be represented as a conjunction of
person(p0), to-the-left-of(p0, p1), backback(p1),
approached(p0, p2), and trash-can(p2) over the
three participants p0, p1, and p2. This whole
sentence is then grounded in a particular video
by mapping these participants to particular tracks
and instantiating the associated HMMs over those
tracks, by computing the feature vectors for each
HMM from the tracks chosen to fill its arguments.

Our algorithm makes six assumptions. First,
we assume that we know the part of speech Cm
associated with each lexical entry m, along with
the part-of-speech dependent number of states Ic
in the HMMs used to represent word meanings
in that part of speech, the part-of-speech depen-
dent number of features Nc in the feature vec-
tors used by HMMs to represent word meanings in
that part of speech, and the part-of-speech depen-
dent feature-vector computation Φc used to com-
pute the features used by HMMs to represent word
meanings in that part of speech. Second, we pair
individual sentences each with a short video clip
that depicts that sentence. The algorithm is not
able to determine the alignment between multi-
ple sentences and longer video segments. Note
that there is no requirement that the video depict
only that sentence. Other objects may be present
and other events may occur. In fact, nothing pre-
cludes a training corpus with multiple copies of
the same video, each paired with a different sen-
tence describing a different aspect of that video.
Moreover, our algorithm potentially can handle
a small amount of noise, where a video clip is
paired with an incorrect sentence that the video
does not depict. Third, we assume that we already
have (pre-trained) low-level object detectors capa-
ble of detecting instances of our target event par-
ticipants in individual frames of the video. We al-
low such detections to be unreliable; our method
can handle a moderate amount of false positives

and false negatives. We do not need to know
the mapping from these object-detection classes
to words; our algorithm determines that. Fourth,
we assume that we know the arity of each word
in the corpus, i.e., the number of arguments that
that word takes. For example, we assume that
we know that the word person(α) takes one ar-
gument and the word approached(α, β) takes two
arguments. Fifth, we assume that we know the to-
tal number of distinct participants that collectively
fill all of the arguments for all of the words in
each training sentence. For example, for the sen-
tence The person to the left of the backpack ap-
proached the trash-can, we assume that we know
that there are three distinct objects that partic-
ipate in the event denoted. Sixth, we assume
that we know the argument-to-participant map-
ping for each training sentence. Thus, for ex-
ample, for the above sentence we would know
person(p0), to-the-left-of(p0, p1), backback(p1),
approached(p0, p2), and trash-can(p2). The lat-
ter two items can be determined by parsing the
sentence, which is what we do. One can imagine
learning the ability to automatically perform the
latter two items, and even the fourth item above,
by learning the grammar and the part of speech
of each word, such as done by Kwiatkowski et al.
(2012). We leave such for future work.

Figure 1 illustrates a single frame from a po-
tential training sample provided as input to our
learner. It consists of a video clip paired with
a sentence, where the arguments of the words in
the sentence are mapped to participants. From
a sequence of such training samples, our learner
determines the objects tracks and the mapping
from participants to those tracks, together with the
meanings of the words.

The remainder of the paper is organized as fol-
lows. Section 2 generally describes our problem
of lexical acquisition from video. Section 3 intro-
duces our work on the sentence tracker, a method
for jointly tracking the motion of multiple ob-
jects in a video that participate in a sententially-
specified event. Section 4 elaborates on the de-
tails of our problem formulation in the context of
this sentence tracker. Section 5 describes how to
generalize and extend the sentence tracker so that
it can be used to support lexical acquisition. We
demonstrate this lexical acquisition algorithm on a
small example in Section 6. Finally, we conclude
with a discussion in Section 7.
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The person to the left of the backpack carried the trash-can towards the chair.
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(α and possibly β), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7→ Track 3, p1 7→ Track 0, p2 7→ Track 1,
and p3 7→ Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m
denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =
(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(τr,1, . . . , τr,Ur) of object tracks τr,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7→ τr,39

and pr,1 7→ τr,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(τr,39), chair(τr,51), and
approached(τr,39, τr,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set Dt

r of detections. Since our object detector
is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections Dt in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from Dt in frame t that is selected to
form the track. The object detector scores each
detection. Let F (Dt, jt) denote that score. More-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(Dt−1, jt−1, Dt, jt) denote some measure
of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement ofDt relative toDt−1 with the
velocity of Dt−1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

max
j1,...,jT




T∑

t=1

F (Dt, jt)

+

T∑

t=2

G(Dt−1, jt−1, Dt, jt)




(1)

This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking
(Viterbi, 1971).

Recall that we model the meaning of an in-
transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let λ denote the parameters of this HMM,
(q1, . . . , qT ) denote the sequence of states qt that
leads to an observed track, B(Dt, jt, qt, λ) de-
note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by jt among the detections Dt in
frame t, given that the HMM is in state qt, and
A(qt−1, qt, λ) denote the log transition probabil-
ity of the HMM. For a given track (j1, . . . , jT ),
the state sequence that yields the maximal likeli-
hood is given by:

max
q1,...,qT




T∑

t=1

B(Dt, jt, qt, λ)

+
T∑

t=2

A(qt−1, qt, λ)




(2)

which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.

max
j1,...,jT

q1,...,qT




T∑

t=1

F (Dt, jt)
+B(Dt, jt, qt, λ)

+

T∑

t=2

G(Dt−1, jt−1, Dt, jt)
+A(qt−1, qt, λ)




(3)

While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize jt to denote a sequence of de-
tections from Dt, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by jt. When
doing this, note that Eqs. 1 and 3 maximize over
j1, . . . , jT which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl
denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize qt to denote a sequence (qt1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q1

l , . . . , q
T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial
HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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pendent component processes (Brand et al., 1997;
Zhong and Ghosh, 2001) for the individual words.
In this view, q denotes the state sequence for the
combined factorial HMM and ql denotes the factor
of that state sequence for word l. The remainder
of this paper wraps this sentence tracker in Baum
Welch (Baum et al., 1970; Baum, 1972).

4 Detailed Problem Formulation

We adapt the sentence tracker to training a cor-
pus of R video clips, each paired with a sentence.
Thus we augment our notation, generalizing jt

to jtr and qtl to qtr,l. Below, we use jr to denote
(j1
r , . . . , j

Tr
r ), j to denote (j1, . . . , jR), qr,l to de-

note (q1
r,l, . . . , q

Tr
r,l ), qr to denote (qr,1, . . . , qr,Lr),

and q to denote (q1, . . . , qR).
We use discrete features, namely natural num-

bers, in our feature vectors, quantized by a binning
process. We assume the part of speech of entry m
is known as Cm. The length of the feature vector
may vary across parts of speech. LetNc denote the
length of the feature vector for part of speech c,
xr,l denote the time-series (x1

r,l, . . . , x
Tr
r,l) of fea-

ture vectors xtr,l, associated with Sr,l (which re-
call is some entry m), and xr denote the sequence
(xr,1, . . . , xr,Lr). We assume that we are given
a function Φc(D

t
r, j

t
r) that computes the feature

vector xtr,l for the word Sr,l whose part of speech
is CSr,l = c. Note that we allow Φ to be depen-
dent on c allowing different features to be com-
puted for different parts of speech, since we can
determinem and thus Cm from Sr,l. We choose to
haveNc and Φc depend on the part of speech c and
not on the entry m since doing so would be tanta-
mount to encoding the to-be-learned word mean-
ing in the provided feature-vector computation.

The goal of training is to find a sequence λ =
(λ1, . . . , λM ) of parameters λm that best explains
the R training samples. The parameters λm con-
stitute the meaning of the entry m in the lexicon.
Collectively, these are the initial state probabili-
ties am0,k, for 1 ≤ k ≤ ICm , the transition prob-
abilities ami,k, for 1 ≤ i, k ≤ ICm , and the out-
put probabilities bmi,n(x), for 1 ≤ i ≤ ICm and
1 ≤ n ≤ NCm , where ICm denotes the number of
states in the HMM for entry m. Like before, we
could have a distinct Im for each entry m but in-
stead have ICm depend only on the part of speech
of entry m, and assume that we know the fixed I
for each part of speech. In our case, bmi,n is a dis-
crete distribution because the features are binned.

5 The Learning Algorithm

Instantiating the above approach requires a defini-
tion for what it means to best explain the R train-
ing samples. Towards this end, we define the score
of a video clip Dr paired with sentence Sr given
the parameter set λ to characterize how well this
training sample is explained. While the cost func-
tion in Eq. 3 may qualify as a score, it is easier to
fit a likelihood calculation into the Baum-Welch
framework than a MAP estimate. Thus we replace
the max in Eq. 3 with a

∑
and redefine our scor-

ing function as follows:

L(Dr;Sr, λ) =
∑

jr

P (jr|Dr)P (xr|Sr, λ) (4)

The score in Eq. 4 can be interpreted as an ex-
pectation of the HMM likelihood over all possible
mappings from participants to all possible tracks.
By definition, P (jr|Dr) = V (Dr,jr)∑

j′r V (Dr,j′r)
, where

the numerator is the score of a particular track se-
quence jr while the denominator sums the scores
over all possible track sequences. The log of the
numerator V (Dr, jr) is simply Eq. 1 without the
max. The log of the denominator can be com-
puted efficiently by the forward algorithm (Baum
and Petrie, 1966). The likelihood for a factorial
HMM can be computed as:

P (xr|Sr, λ) =
∑

qr

∏

l

P (xr,l, qr,l|Sr,l, λ) (5)

i.e., summing the likelihoods for all possible state
sequences. Each summand is simply the joint like-
lihood for all the words in the sentence condi-
tioned on a state sequence qr. For HMMs we have

P (xr,l, qr,l|Sr,l, λ) =
∏

t

a
Sr,l

qt−1
r,l ,q

t
r,l∏

n

b
Sr,l
qtr,l,n

(xtr,l,n)

(6)

Finally, for a training corpus of R samples, we
seek to maximize the joint score:

L(D;S, λ) =
∏

r

L(Dr;Sr, λ) (7)

A local maximum can be found by employing
the Baum-Welch algorithm (Baum et al., 1970;
Baum, 1972). By constructing an auxiliary func-
tion (Bilmes, 1997), one can derive the reestima-
tion formulas in Eq. 8, where xtr,l,n = h denotes
the selection of all possible jtr such that the nth
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ami,k = θmi

R∑

r=1

Lr∑

l=1
s.t.Sr,l=m

Tr∑

t=1

L(qt−1
r,l = i, qtr,l = k,Dr;Sr, λ

′)

L(Dr;Sr, λ′)︸ ︷︷ ︸
ξ(r,l,i,k,t)

bmi,n(h) = ψmi,n

R∑

r=1

Lr∑

l=1
s.t.Sr,l=m

Tr∑

t=1

L(qtr,l = i, xtr,l,n = h,Dr;Sr, λ
′)

L(Dr;Sr, λ′)︸ ︷︷ ︸
γ(r,l,n,i,h,t)

(8)

feature computed by ΦCm(Dt
r, j

t
r) is h. The coef-

ficients θmi and ψmi,n are for normalization.
The reestimation formulas involve occurrence

counting. However, since we use a factorial HMM
that involves a cross-product lattice and use a scor-
ing function derived from Eq. 3 that incorporates
both tracking (Eq. 1) and word models (Eq. 2),
we need to count the frequency of transitions in
the whole cross-product lattice. As an example
of such cross-product occurrence counting, when
counting the transitions from state i to k for the
lth word from frame t − 1 to t, i.e., ξ(r, l, i, k, t),
we need to count all the possible paths through
the adjacent factorial states (jt−1

r , qt−1
r,1 , . . . , q

t−1
r,Lr

)

and (jtr, q
t
r,1, . . . , q

t
r,Lr

) such that qt−1
r,l = i and

qtr,l = k. Similarly, when counting the fre-
quency of being at state i while observing h as
the nth feature in frame t for the lth word of
entry m, i.e., γ(r, l, n, i, h, t), we need to count
all the possible paths through the factorial state
(jtr, q

t
r,1, . . . , q

t
r,Lr

) such that qtr,l = i and the nth
feature computed by ΦCm(Dt

r, j
t
r) is h.

The reestimation of a single component HMM
can depend on the previous estimate for other
component HMMs. This dependence happens
because of the argument-to-participant mapping
which coindexes arguments of different compo-
nent HMMs to the same track. It is precisely
this dependence that leads to cross-situational
learning of two kinds: both inter-sentential and
intra-sentential. Acquisition of a word meaning
is driven across sentences by entries that appear
in more than one training sample and within sen-
tences by the requirement that the meanings of all
of the individual words in a sentence be consistent
with the collective sentential meaning.

6 Experiment

We filmed 61 video clips (each 3–5 seconds at
640×480 resolution and 40 fps) that depict a va-
riety of different compound events. Each clip de-
picts multiple simultaneous events between some

S → NP VP
NP → D N [PP]

D → the
N → person | backpack | trash-can | chair

PP → P NP
P → to the left of | to the right of

VP → V NP [ADV] [PPM]
V → picked up | put down | carried | approached

ADV → quickly | slowly
PPM → PM NP

PM → towards | away from

Table 1: The grammar used for our annotation and
generation. Our lexicon contains 1 determiner,
4 nouns, 2 spatial relation prepositions, 4 verbs,
2 adverbs, and 2 motion prepositions for a total of
15 lexical entries over 6 parts of speech.

subset of four objects: a person, a backpack, a
chair, and a trash-can. These clips were filmed
in three different outdoor environments which we
use for cross validation. We manually annotated
each video with several sentences that describe
what occurs in that video. The sentences were
constrained to conform to the grammar in Table 1.
Our corpus of 159 training samples pairs some
videos with more than one sentence and some sen-
tences with more than one video, with an average
of 2.6 sentences per video 1.

We model and learn the semantics of all words
except determiners. Table 2 specifies the arity, the
state number Ic, and the features computed by Φc

for the semantic models for words of each part of
speech c. While we specify a different subset of
features for each part of speech, we presume that,
in principle, with enough training data, we could
include all features in all parts of speech and auto-
matically learn which ones are noninformative and
lead to uniform distributions.

We use an off-the-shelf object detector (Felzen-
szwalb et al., 2010a; Felzenszwalb et al., 2010b)
which outputs detections in the form of scored
axis-aligned rectangles. We trained four object de-
tectors, one for each of the four object classes in

1Our code, videos, and sentential annotations are
available at http://haonanyu.com/research/
acl2013/.
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c arity Ic Φc

N 1 1 α detector index

V 2 3

α VEL MAG
α VEL ORIENT
β VEL MAG
β VEL ORIENT
α-β DIST
α-β size ratio

P 2 1 α-β x-position
ADV 1 3 α VEL MAG

PM 2 3 α VEL MAG
α-β DIST

Table 2: Arguments and model configurations for
different parts of speech c. VEL stands for veloc-
ity, MAG for magnitude, ORIENT for orientation,
and DIST for distance.

our corpus: person, backpack, chair, and trash-
can. For each frame, we pick the two highest-
scoring detections produced by each object detec-
tor and pool the results yielding eight detections
per frame. Having a larger pool of detections per
frame can better compensate for false negatives in
the object detection and potentially yield smoother
tracks but it increases the size of the lattice and the
concomitant running time and does not lead to ap-
preciably better performance on our corpus.

We compute continuous features, such as veloc-
ity, distance, size ratio, and x-position solely from
the detection rectangles and quantize the features
into bins as follows:
velocity To reduce noise, we compute the veloc-

ity of a participant by averaging the optical flow
in the detection rectangle. The velocity magni-
tude is quantized into 5 levels: absolutely station-
ary, stationary, moving, fast moving, and quickly.
The velocity orientation is quantized into 4 direc-
tions: left, up, right, and down.

distance We compute the Euclidean distance be-
tween the detection centers of two participants,
which is quantized into 3 levels: near, normal,
and far away.

size ratio We compute the ratio of detection area
of the first participant to the detection area of the
second participant, quantized into 2 possibilities:
larger/smaller than.

x-position We compute the difference between
the x-coordinates of the participants, quantized
into 2 possibilities: to the left/right of.

The binning process was determined by a prepro-
cessing step that clustered a subset of the training
data. We also incorporate the index of the detector
that produced the detection as a feature. The par-

ticular features computed for each part of speech
are given in Table 2.

Note that while we use English phrases, like to
the left of, to refer to particular bins of particular
features, and we have object detectors which we
train on samples of a particular object class such
as backpack, such phrases are only mnemonic of
the clustering and object-detector training process.
We do not have a fixed correspondence between
the lexical entries and any particular feature value.
Moreover, that correspondence need not be one-
to-one: a given lexical entry may correspond to a
(time variant) constellation of feature values and
any given feature value may participate in the
meaning of multiple lexical entries.

We perform a three-fold cross validation, taking
the test data for each fold to be the videos filmed in
a given outdoor environment and the training data
for that fold to be all training samples that contain
other videos. For testing, we hand selected 24 sen-
tences generated by the grammar in Table 1, where
each sentence is true for at least one test video.
Half of these sentences (designated NV) contain
only nouns and verbs while the other half (des-
ignated ALL) contain other parts of speech. The
latter are longer and more complicated than the
former. We score each testing video paired with
every sentence in both NV and ALL. To evaluate
our results, we manually annotated the correctness
of each such pair.

Video-sentence pairs could be scored with
Eq. 4. However, the score depends on the sentence
length, the collective numbers of states and fea-
tures in the HMMs for words in that sentence, and
the length of the video clip. To render the scores
comparable across such variation we incorporate a
sentence prior to the per-frame score:

L̂(Dr, Sr;λ) = [L(Dr;Sr, λ)]
1
Tr π(Sr) (9)

where
π(Sr) =

exp

Lr∑

l=1




E(ICSr,l )

+

NCSr,l∑

n=1

E(ZCSr,l ,n)




(10)

In the above, ZCSr,l ,n is the number of bins for
the nth feature of Sr,l of part of speech CSr,l and
E(Y ) = −∑Y

y=1
1
Y log 1

Y = log Y is the entropy
of a uniform distribution over Y bins. This prior
prefers longer sentences which describe more in-
formation in the video.
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CHANCE BLIND OUR HAND

NV 0.155 0.265 0.545 0.748
ALL 0.099 0.198 0.639 0.786

Table 3: F1 scores of different methods.

Figure 2: ROC curves of trained models and hand-
written models.

The scores are thresholded to decide hits, which
together with the manual annotations, can gener-
ate TP, TN, FP, and FN counts. We select the
threshold that leads to the maximal F1 score on
the training set, use this threshold to compute F1
scores on the test set in each fold, and average F1
scores across the folds.

The F1 scores are listed in the column labeled
Our in Table 3. For comparison, we also report
F1 scores for three baselines: Chance, Blind, and
Hand. The Chance baseline randomly classifies
a video-sentence pair as a hit with probability 0.5.
The Blind baseline determines hits by potentially
looking at the sentence but never looking at the
video. We can find an upper bound on the F1 score
that any blind method could have on each of our
test sets by solving a 0-1 fractional programming
problem (Dinkelbach, 1967) (see Appendix A for
details). The Hand baseline determines hits with
hand-coded HMMs, carefully designed to yield
what we believe is near-optimal performance. As
can be seen from Table 3, our trained models
perform substantially better than the Chance and
Blind baselines and approach the performance of
the ideal Hand baseline. One can further see from
the ROC curves in Figure 2, comparing the trained
and hand-written models on both NV and ALL, that
the trained models are close to optimal. Note that
performance on ALL exceeds that on NV with the
trained models. This is because longer sentences
with varied parts of speech incorporate more in-
formation into the scoring process.

7 Conclusion
We presented a method that learns word mean-
ings from video paired with sentences. Unlike
prior work, our method deals with realistic video
scenes labeled with whole sentences, not indi-
vidual words labeling hand delineated objects or
events. The experiment shows that it can cor-
rectly learn the meaning representations in terms
of HMM parameters for our lexical entries, from
highly ambiguous training data. Our maximum-
likelihood method makes use of only positive sen-
tential labels. As such, it might require more train-
ing data for convergence than a method that also
makes use of negative training sentences that are
not true of a given video. Such can be handled
with discriminative training, a topic we plan to ad-
dress in the future. We believe that this will allow
learning larger lexicons from more complex video
without excessive amounts of training data.
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A An Upper Bound on the F1 Score of
any Blind Method

A Blind algorithm makes identical decisions on
the same sentence paired with different video
clips. An optimal algorithm will try to find a de-
cision si for each test sentence i that maximizes
the F1 score. Suppose, the ground-truth yields FPi
false positives and TPi true positives on the test
set when si = 1. Also suppose that setting si = 0
yields FNi false negatives. Then the F1 score is

F1 =
1

1 +

∑
i siFPi + (1− si)FNi∑

i 2siTPi︸ ︷︷ ︸
∆

Thus we want to minimize the term ∆. This is an
instance of a 0-1 fractional programming problem
which can be solved by binary search or Dinkel-
bach’s algorithm (Dinkelbach, 1967).
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Abstract
Recent work on statistical quantifier scope
disambiguation (QSD) has improved upon
earlier work by scoping an arbitrary num-
ber and type of noun phrases. No corpus-
based method, however, has yet addressed
QSD when incorporating the implicit uni-
versal of plurals and/or operators such as
negation. In this paper we report early,
though promising, results for automatic
QSD when handling both phenomena. We
also present a general model for learning
to build partial orders from a set of pair-
wise preferences. We give an n log n algo-
rithm for finding a guaranteed approxima-
tion of the optimal solution, which works
very well in practice. Finally, we signifi-
cantly improve the performance of the pre-
vious model using a rich set of automati-
cally generated features.

1 Introduction

The sentence there is one faculty member in ev-
ery graduate committee is ambiguous with respect
to quantifier scoping, since there are at least two
possible readings: If one has wide scope, there is
a unique faculty member on every committee. If
every has wide scope, there can be different fac-
ulty members on each committee. Over the past
decade there has been some work on statistical
quantifier scope disambiguation (QSD) (Higgins
and Sadock, 2003; Galen and MacCartney, 2004;
Manshadi and Allen, 2011a). However, the extent
of the work has been quite limited for several rea-
sons. First, in the past two decades, the main focus
of the NLP community has been on shallow text
processing. As a deep processing task, QSD is not
essential for many NLP applications that do not re-
quire deep understanding. Second, there has been
a lack of comprehensive scope-disambiguated cor-
pora, resulting in the lack of work on extensive

statistical QSD. Third, QSD has often been con-
sidered only in the context of explicit quantifica-
tion such as each and every versus some and a/an.
These co-occurrences do not happen very often in
real-life data. For example, Higgins and Sadock
(2003) find fewer than 1000 sentences with two or
more explicit quantifiers in the Wall Street journal
section of Penn Treebank. Furthermore, for more
than 60% of those sentences, the order of the quan-
tifiers does not matter, either as a result of the logi-
cal equivalence (as in two existentials), or because
they do not have any scope interaction.

Having said that, with deep language processing
receiving more attention in recent years, QSD is
becoming a real-life issue.1 At the same time, new
scope-disambiguated corpora have become avail-
able (Manshadi et al., 2011b). In this paper, we
aim at tackling the third issue mentioned above.
We push statistical QSD beyond explicit quantifi-
cation, and address an interesting, yet practically
important, problem in QSD: plurality and quan-
tification. In spite of an extensive literature in
theoretical semantics (Hamm and Hinrichs, 2010;
Landmann, 2000), this topic has not been well in-
vestigated in computational linguistics. To illus-
trate the phenomenon, consider (1):

1. Three words start with a capital letter.

A deep understanding of this sentence, requires
deciding whether each word in the set, referred
to by Three words, starts with a potentially dis-
tinct capital letter (as in Apple, Orange, Banana)
or there is a unique capital letter which each word
starts with (as in Apple, Adam, Athens). By treat-
ing the NP Three words as a single atomic entity,
earlier work on automatic QSD has overlooked
this problem. In general, every plural NP poten-
tially introduces an implicit universal, ranging

1For example, Liang et al. (2011) in their state-of-the-art
statistical semantic parser within the domain of natural lan-
guage queries to databases, explicitly devise quantifier scop-
ing in the semantic model.
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over the collection of entities introduced by the
plural.2 Scoping this implicit universal is just as
important. While explicit universals may not oc-
cur very often in natural language, the usage of
plurals is very common. Plurals form 18% of the
NPs in our corpus and 20% of the nouns in Penn
Treebank. Explicit universals, on the other hand,
form less than 1% of the determiners in Penn Tree-
bank. Quantifiers are also affected by negation.
Previous work (e.g., Morante and Blanco, 2012)
has investigated automatically detecting the scope
and focus of negation. However, the scope of
negation with respect to quantifiers is a different
phenomenon. Consider the following sentence.

2. The word does not start with a capital letter.
Transforming this sentence into a meaning repre-
sentation language, for almost any practical pur-
poses, requires deciding whether the NP a capital
letter lies in the scope of the negation or outside
of it. The former describes the preferred reading
where The word starts with a lowercase letter as
in apple, orange, banana, but the latter gives the
unlikely reading, according to which there exists a
particular capital letter, say A, that The word starts
with, as in apple, Orange, Banana. By not in-
volving negation in quantifier scoping, a semantic
parser may produce an unintended interpretation.

Previous work on statistical QSD has been quite
restricted. Higgins and Sadock (2003), which
we refer to as HS03, developed the first statisti-
cal QSD system for English. Their system dis-
ambiguates the scope of exactly two explicitly
quantified NPs in a sentence, ignoring indefinite
a/an, definites and bare NPs. Manshadi and Allen
(2011a), hence MA11, go beyond those limita-
tions and scope an arbitrary number of NPs in a
sentence with no restriction on the type of quantifi-
cation. However, although their corpus annotates
the scope of negations and the implicit universal of
plurals, their QSD system does not handle those.

As a step towards comprehensive automatic
QSD, in this paper we present our work on auto-
matic scoping of the implicit universal of plurals
and negations. For data, we use a new revision
of MA11’s corpus, first introduced in Manshadi et
al. (2011b). The new revision, called QuanText,
carries a more detailed, fine-grained scope annota-
tion (Manshadi et al., 2012). The performance of

2Although plurals carry different types of quantification
(Herbelot and Copestake, 2010), almost always there exists
an implicit universal. The importance of scoping this univer-
sal, however, may vary based on the type of quantification.

our model defines a baseline for future efforts on
(comprehensive) QSD over QuanText. In addition
to addressing plurality and negation, this work im-
proves upon MA11’s in two directions.

• We theoretically justify MA11’s ternary-
classification approach, formulating it as a
general framework for learning to build par-
tial orders. An n log n algorithm is then given
to find a guaranteed approximation within a
fixed ratio of the optimal solution from a set
of pairwise preferences (Sect. 3.1).

• We replace MA11’s hand-annotated features
with a set of automatically generated linguis-
tic features. Our rich set of features signifi-
cantly improves the performance of the QSD
model, even though we give up the gold-
standard dependency features (Sect. 3.3).

2 Task definition

In QuanText, scope-bearing elements (or, as we
call them, scopal terms) of each sentence have
been identified using labeled chunks, as in (3).

3. Replace [1/ every line] in [2/ the file] ending
in [3/ punctuation] with [4/ a blank line] .

NP chunks follow the definition of baseNP
(Ramshaw and Marcus, 1995) and hence are flat.
Outscoping relations are used to specify the rel-
ative scope of scopal terms. The relation i > j
means that chunk i outscopes (or has wide scope
over) chunk j. Equivalently, chunk j is said to
have narrow scope with respect to i. Each sen-
tence is annotated with its most preferred scoping
(according to the annotators’ judgement), repre-
sented as a partial order:

4. SI : (2 > 1 > 4; 1 > 3)

If neither i > j nor j > i is entailed from the
scoping, i and j are incomparable. This happens
if both orders are equivalent (as in two existentials)
or when the two chunks have no scope interaction.

Since a partial order can be represented by a Di-
rected Acyclic Graph (DAG), we use DAGs to
represent scopings. For example, G1 in Figure 1
represents the scoping in (4).

2.1 Evaluation metrics
Given the gold standard DAG Gg = (V,Eg) and
the predicted DAG Gp = (V,Ep), a similarity
measure may be defined based on the ratio of the
number of pairs (of nodes) labeled correctly to the
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Figure 1: Scoping as DAG

total number of pairs. In order to take the transi-
tivity of outscoping relations into account, we use
the transitive closure (TC) of DAGs. Let G+ =
(V,E+) represent the TC of a DAG G = (V,E).3

G1 and G+
1 in Figure 1 illustrate this concept. We

now define the similiarty metric S+ as follows:

σ+ =
|E+

p ∩ E+
g | ∪ |Ē+

p ∩ Ē+
g |

|V |(|V | − 1)/2
(1)

in which Ḡ = (V, Ē) is the complement of the
underlying undirected version of G.

HS03 and others have used such a similarity
measure for evaluation purposes. A disadvantage
of this metric is that it gives the same weight to
outscoping and incomparability relations. In prac-
tice, if two scopal terms with equivalent ordering
(and hence, no outscoping relation) are incorrectly
labeled with an outscoping, the logical form still
remains valid. But if an outscoping relation is mis-
labeled, it will change the interpretation of the sen-
tence. Therefore, in MA11, we suggest defining a
precision/recall based on the number of outscop-
ing relations recovered correctly: 4

P+ =
|E+

p ∩ E+
g |

|E+
p |

, R+ =
|E+

p ∩ E+
g |

|E+
g |

(2)

3 (u, v) ∈ G+ ⇐⇒ ((u, v)∈G ∨
∃w1 . . . wn∈V, (u,w1) . . . (wn, v) ∈ E )

4MA11 argues that TC-based metrics tend to produce
higher numbers. For example if G3 in Figure 1 is a gold-
standard DAG andG1 is a candidate DAG, TC-based metrics
count 2>3 as another match, even though it is entailed from
2 > 1 and 1 > 3. They give an alternative metric based on
transitive reduction (TR), obtained by removing all the re-
dundant edges of a DAG. TR-based metrics, however, have
their own disadvantage. For example, if G2 is another candi-
date forG3, TR-based metrics produce the same numbers for
both G1 and G2, even though G1 is clearly closer to G3 than
G2. Therefore, in this paper we stick to TC-based metrics.

3 Our framework

3.1 Learning to do QSD
Since we defined QSD as a partial ordering, auto-
matic QSD would become the problem of learn-
ing to build partial orders. The machine learning
community has studied the problem of learning to-
tal orders (ranking) in depth (Cohen et al., 1999;
Furnkranz and Hullermeier, 2003; Hullermeier et
al., 2008). Many ranking systems create partial
orders as output when the confidence level for the
relative order of two objects is below some thresh-
old. However, the target being a partial order is
a fundamentally different problem. While the lack
of order between two elements is interpreted as the
lack of confidence in the former, it should be inter-
preted as incomparability in the latter. Learning
to build partial orders has not attracted much atten-
tion in the learning community, although as seen
shortly, the techniques developed for ranking can
be adopted for learning to build partial orders.

As mentioned before, a partial order P can be
represented by a DAG G, with a preceding b in P
if and only if a reaches b in G by a directed path.
Although there could be many DAGs representing
a partial order P , only one of those is a transitive
DAG.5 Therefore, in order to have a one-to-one re-
lationship between QSDs and DAGs, we only con-
sider the class of transitive DAGs, or TDAG. Ev-
ery non-transitive DAG will be converted into its
transitive counterpart by taking its transitive clo-
sure (as shown in Figure 1).

Consider V , a set of nodes and a TDAG G =
(V,E). It would help to think of disconnected
nodes u, v of G, as connected with a null edge ε.
We define the labeling function δG : V × V −→
{+,−, ε} assigning one of the three labels to each
pair of nodes in G:

δG(u, v) =





+ (u, v) ∈ G
− (v, u) ∈ G
ε otherwise

(3)

Given the true TDAG Ĝ = (V, Ê), and a candidate
TDAG G, we define the Loss function to be the
total number of incorrect edges:

L(G, Ĝ) =
∑

u≺v∈V
I(δG(u, v) 6= δĜ(u, v)) (4)

in which ≺ is an arbitrary total order over the
nodes in V 6, and I(·) is the indicator function. We

5G is transitive iff (u, v), (v, w) ∈ G =⇒ (u,w) ∈ G.
6E.g., the left-to-right order of the corresponding chunks

in the sentence.
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adopt a minimum Bayes risk (MBR) approach,
with the goal of finding the graph with the lowest
expected loss against the (unknown) target graph:

G∗ = argmin
G∈TDAG

EĜ

[
L(G, Ĝ)

]
(5)

Substituting in the definition of the loss function
and exchanging the order of the expectation and
summation, we get:

G∗ = argmin
G∈TDAG

∑

u≺v∈V
EĜ
[
I(δG(u, v) 6= δĜ(u, v)

]

= argmin
G∈TDAG

∑

u≺v∈V
P (δG(u, v) 6= δĜ(u, v)) (6)

This means that in order to solve Eq. (5), we need
only the probabilities of each of the three labels for
each of the C(n, 2) = n(n− 1)/2 pairs of nodes7

in the graph, rather than a probability for each
of the superexponentially many possible graphs.
We train a classifier to estimate these probabili-
ties directly for a given pair. Therefore, we have
reduced the problem of predicting a partial order
to pairwise comparison, analogous to ranking by
pairwise comparison or RPC (Hullermeier et al.,
2008; Furnkranz and Hullermeier, 2003), a popu-
lar technique in learning total orders. The differ-
ence though is that in RPC, the comparison is a
(soft) binary classification, while for partial orders
we have the case of incomparability (the label ε),
hence a (soft) ternary classification.

A soft ternary classifier generates three proba-
bilities, pu,v(+), pu,v(−), and pu,v(ε) for each pair
(u, v),8 corresponding to the three labels. Hence,
equation Eq. (6) can be rearranged as follows:

G∗ = argmax
G∈TDAG

∑

u≺v∈V
pu,v(δG(u, v)) (7)

Let Γp be a graph like the one in Figure 2, contain-
ing exactly three edges between every two nodes,
weighted by the probabilities from the n(n− 1)/2
classifiers. We call Γp the preference graph. In-
tuitively speaking, the solution to Eq. (7) is the
transitive directed acyclic subgraph of Γp that has
the maximum sum of weights. Unfortunately find-
ing this subgraph is an NP-hard problem.9

7Throughout this subsection, unless otherwise specified,
by a pair of nodes we mean a pair (u, v) with u≺v.

8pv,u for u≺v is defined in the obvious way: pv,u(+) =
pu,v(−), pv,u(−) = pu,v(+), and pv,u(ε) = pu,v(ε).

9 The proof is beyond the scope of this paper, but the idea
is similar to that of Cohen et al. (1999), on finding total or-
ders. Although they don’t use an RPC technique, Cohen et
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Figure 2: A preference graph over three nodes.

1. Let Γp be the preference graph and
set G to ∅.

2. ∀u ∈ V , let π(u) =
∑
v pu,v(+)−∑v pu,v(−).

3. Let u∗ = argmaxu π(u),
S− =

∑
v∈G pv,u∗(−) & Sε =

∑
v∈G pv,u∗(ε).

4. Remove u∗ and all its incident edges
from Γp.

5. Add u∗ to G; also if S− > Sε, for
every v ∈ G− u∗, add (v, u∗) to G.

6. If Γp is empty, output G, otherwise
repeat steps 2-5.

Figure 3: An approximation algorithm for Eq. (7)

Since it is very unlikely to find an efficient al-
gorithm to solve Eq. (7), instead, we propose the
algorithm in Figure 3 which finds an approximate
solution. The idea of the algorithm is simple. By
finding u∗ with the highest π(u) in step 3, we form
a topological order for the nodes in G in a greedy
way (see Footnote 9). We then add u∗ to G. A
directed edge is added either from every node in
G−u∗ to u∗ or from no node, depending on which
case makes the sum of the weights in G higher.

Theorem 1 The algorithm in Figure 3 is a 1/3-
OPT approximation algorithm for Eq. (7).

Proof idea. First of all, note that G is a TDAG,
because edges are only added to the most recently
created node in step 5. Let OPT be the optimum
value of the right hand side of Eq. (7). The sum of
all the weights in Γp is an upper bound for OPT :

∑

u≺v∈V

∑

λ∈{+,−,ε}
pu,v(λ) ≥ OPT

Step 5 of the algorithm guarantees that the labels
δG(u, v) satisfy:

∑

u≺v∈V
pu,v(δG(u, v)) ≥

∑

u≺v∈V
pu,v(λ) (8)

al. (1999) encounter a similar optimization problem. They
propose an approximation algorithm which finds the solution
(a total order) in a greedy way. Here we use the same greedy
technique to find a total order, but take it only as the topolog-
ical order of the solution (Figure 3).
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for any λ ∈ {+,−, ε}. Hence:
∑

u≺v∈V
pu,v(δG(u, v))=

1

3

(
3
∑

u≺v∈V
pu,v(δG(u, v))

)

≥ 1

3

∑

u≺v∈V

∑

λ∈{+,−,ε}
pu,v(λ)

≥ 1

3
OPT

In practice, we improve the algorithm in Figure 3,
while maintaining the approximation guarantee, as
follows. When adding a node u∗ to graph G, we
do not make a binary decision as to whether con-
nect every node in G to u∗ or none, but we use
some heuristics to choose a subset of nodes (pos-
sibly empty) in G that if connected to u∗ results
in a TDAG whose sum of weights is at least as
big as the binary none-vs-all case. As described in
Sec. 4, the algorithm works very well in our QSD
system, finding the optimum solution in virtually
all cases we examined.

3.2 Dealing with plurality and negation
Consider the following sentence with the plural
NP chunk the lines.

5. Merge [1p/ the lines], ending in [2/ a punctu-
ation], with [3/ the next non-blank line].

6. SI : (1c > 1d > 2; 1d > 3) 10

In QuanText, plural chunks are indexed with a
number followed by the lowercase letter “p”. As
seen in (6), the scoping looks different from before
in that the terms 1d and 1c are not the label of any
chunk. These two terms refer to the two quantified
terms introduced by the plural chunk 1p: 1c (for
collection) represents the set (or in better words
collection) of entities, defined by the plural, and 1d
(for distribution) refers to the implicit universal,
introduced by the plural. In other words, for a plu-
ral chunk ip, id represents the universally quanti-
fied entity over the collection ic. The outscoping
relation 1d > 2 in (6) states that every line in the
collection, denoted by 1c, starts with its own punc-
tuation character. Similarly, 1d > 3 indicates that
every line has its own next non-blank line. Fig-
ure 4(a) shows a DAG for the scoping in (6).

In (7) we have a sentence containing a negation.
In QuanText, negation chunks are labeled with an
uppercase “N” followed by a number.

10This scoping corresponds to the logical formula:
Dx1c, Collection(x1c) ∧ ∀x1d, In(x1d, x1c)⇒
(Line(x1d)∧(∃x2, Punctuation(x2)∧EndIn(x1d, x2))∧
(Dx3,¬blank(x3) ∧ next(x1d, x3) ∧merge(x1d, x3)))
It is straightforward to write a formula for, say, 1c > 2 > 1d.

(a)

1c 1d

2

3

(b)

2 1

3

N1 4

Figure 4: DAGs for scopings in (6) and (8)

7. Extract [1/ every word] in [2/ file “1.txt”],
which starts with [3/ a capital letter], but
does [N1/ not] end with [4/ a capital letter].

8. SI : (2 > 1 > 3; 1 > N1 > 4)

As seen here, a negation simply introduces a
chunk, which participates in outscoping relations
like an NP chunk. Figure 4(b) represents the scop-
ing in (8) as a DAG.

From these examples, as long as we create two
nodes in the DAG corresponding to each plu-
ral chunk, and one node corresponding to each
negation, there is no need to modify the under-
lying model (defined in the previous section).
However, when u (or v) is a negation (Ni) or
an implicit universal (id) node, the probabilities
pλu,v (λ ∈ {+,−, ε}) may come from a different
source, e.g. a different classification model or the
same model with a different set of features, as de-
scribed in the following section.

3.3 Feature selection

Previous work has shown that the lexical item
of quantifiers and syntactic clues (often extracted
from phrase structure trees) are good at predicting
quantifier scoping. Srinivasan and Yates (2009)
use the semantics of the head noun in a quantified
NP to predict the scoping. MA11 also find the lex-
ical item of the head noun to be a good predictor.
In this paper, we introduce a new set of syntac-
tic features which we found very informative: the
“type” dependency features of de Marneffe et al.
(2006). Adopting this new set of features, we out-
perform MA11’s system by a large margin. An-
other point to mention here is that the features that
are predictive of the relative scope of quantifiers
are not necessarily as helpful when determining
the scope of negation and vice versa. Therefore we
do not use exactly the same set of features when
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one of the scopal terms in the pair11 is a negation,
although most of the features are quite similar.

3.3.1 NP chunks
We first describe the set of features we have
adopted when both scopal terms in a pair are NP-
chunks. We have organized the features into dif-
ferent categories listed below.
Individual NP-chunk features
Following features are extracted for both NP
chunks in a pair.

• The part-of-speech (POS) tag of the head of chunk
• The lexical item of the head noun
• The lexical item of the determiner/quantifier
• The lexical item of the pre-determiner
• Does the chunk contain a constant (e.g. “do”, ’x’)?
• Is the NP-chunk a plural?

Implicit universal of a plural
Remember that every plural chunk i introduces
two nodes in the DAG, ic and id. Both nodes
are introduced by the same chunk i, therefore they
use the same set of features. The only exception
is a single additional binary feature for plural NP
chunks, which determines whether the given node
refers to the implicit universal of the plural (i.e. id)
or to the collection itself (i.e. ic).

• Does this node refer to an implicit universal?

Syntactic features – phrase structure tree
As mentioned above, we have used two sets
of syntactic features. The first is motivated by
HS03’s work and is based on the constituency (i.e.
phrase structure) tree T of the sentence. Since
our model is based on pairwise comparison, the
following features are defined for each pair of
chunks. In the following, by chunk we mean the
deepest phrase-level node in T dominating all the
words in the chunk. If the constituency tree is cor-
rect, this node is usually an NP node. Also, P
refers to the undirected path in T connecting the
two chunks.
• Syntactic category of the deepest common ancestor
• Does 1st/2nd chunk C-command 2nd/1st one?
• Length of the path P
• Syntactic categories of nodes on P
• Is there a conjoined node on P ?
• List of punctuation marks dominated by nodes on P

Syntactic features – dependency tree
Although regular “untyped” dependency relations
do not seem to help our QSD system in the pres-
ence of phrase-structure trees, we found the col-

11Since our model is based on pairwise comparison, every
sample is in fact a pair of nodes (u, v) of the DAG.

lapsed typed dependencies (de Marneffe and Man-
ning, 2008) very helpful, even when used on top of
the phrase-structure features. Below is the list of
features we extract from the collapsed typed de-
pendency tree Td of each sentence. In the follow-
ing, by noun we mean the node in Td which corre-
sponds to the head of the chunk. The choice of the
word noun, however, may be sloppy, as the head
of an NP chunk may not be a noun.
• Does 1st/2nd noun dominate 2nd/1st noun?
• Does 1st/2nd noun immediately dominate 2nd/1st?
• Type of incoming dependency relation of each noun
• Syntactic category of the deepest common ancestor
• Lexical item of the deepest common ancestor
• Length of the undirected path between the two

3.3.2 Negations
There are no sentences in our corpus with more
than one negation. Therefore, for every pair of
nodes with one negation, the other node must re-
fer to an NP chunk. We use the following word-
level, phrase-structure, and dependency features
for these pairs.
• Lexical item of the determiner for the NP chunk
• Does the NP chunk contain a constant?
• Is the NP chunk a plural?
• If so, does this node refer to its implicit universal?
• Does the negation C-command the NP chunk in T ?
• Does the NP chunk C-command the negation in T ?
• What is the POS of the parent p of negation in Td?
• Does p dominate the noun in Td?
• Does the noun dominate p in Td?
• Does p immediately dominate the noun in Td?
• If so, what is the type of the dependency?
• Does the noun immediately dominate p in Td?
• If so, what is the type of the dependency?
• Length of the undirected path between the two in Td

4 Experiments

QuanText contains 500 sentences with a total of
1750 chunks, that is 3.5 chunks/sentence on av-
erage. Of those, 1700 chunks are NP chunks.
The rest are scopal operators, mainly negation. Of
all the NP chunks, 320 (more than 18%) are plu-
ral, each introducing an implicit universal, that is,
an additional node in the DAG. Since we feed
each pair of elements to the classifiers indepen-
dently, each (unordered) pair introduces one sam-
ple. Therefore, a sentence with n scopal elements
creates C(n, 2) = n(n − 1)/2 samples for classi-
fication. When all the elements are taken into ac-
count,12 the total number of samples in the corpus
will be:

12Here by all elements we mean explicit chunks and the
implicit universals. QuanText labels some other (implicit) el-
ements, which we have not been handled in this work. In
particular, some nouns introduce two entities: a type and a
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∑

i

C(ni, 2) ≈ 4500 (9)

Where ni is the number of scopal terms introduced
by sentence i. Out of the 4500 samples, around
1800 involve at least one implicit universal (i.e.,
id), but only 120 samples contain a negation. We
evaluate the performance of the system for implicit
universals and negation both separately and in the
context of full scope disambiguation. We split the
corpus at random into three sets of 50, 100, and
350 sentences, as development, test, and train sets
respectively.13

To extract part-of-speech tags, phrase structure
trees, and typed dependencies, we use the Stan-
ford parser (Klein and Manning, 2003; de Marn-
effe et al., 2006) on both train and test sets. Since
we are using SVM, we have passed the confidence
levels through a softmax function to convert them
into probabilities P λu,v before applying the algo-
rithm of Section 3. We take MA11’s system as the
baseline. However, in order to have a fair com-
parison, we have used the output of the Stanford
parser to automatically generate the same features
that MA11 have hand-annotated.14 In order to run
the baseline system on implicit universals, we take
the feature vector of a plural NP and add a fea-
ture to indicate that this feature vector represents
the implicit universal of the corresponding chunk.
Similarly, for negation we add a feature to show
that the chunk represents a negation. As shown in
Section 3.3.2, we have used a more compact set
of features for negations. Once again, in order to
have a fair comparison, we apply a similar modifi-
cation to the baseline system. We also use the ex-
act same classifier as used in MA11.15 Figure 5(a)
compares the performance of our model, which we
refer to as RPC-SVM-13, with the baseline sys-
tem, but only on explicit NP chunks.16 The goal
for running this experiment has been to compare
the performance of our model to the baseline sys-

token, as described by Manshadi et al. (2012). In this work,
we have only considered the token entity introduced by those
nouns and have ignored the type entity.

13Since the percentage of sentences with negation is small,
we made sure that those sentences are distributed uniformly
between three sets.

14MA11’s features are similar to part-of-speech tags and
untyped dependency relations.

15SVMMulticlass from SVM-light (Joachims, 1999).
16In all experiments, we ignore NP conjunctions. Previous

work treats a conjunction of NPs as separate NPs. However,
similar to plurals, NP conjunctions (disjunctions) introduce
an extra scopal element: a universal (existential). We are
working on an annotation scheme for NP conjunctions, so
we have left this for after the annotations become available.

NP-Chunks only (no id or 
negation) σ+ P+ R+ F+ AR A

Baseline (MA11) 0.762 0.638 0.484 0.550 0.59 0.47

Our model (RPC-SVM-13) 0.827 0.743 0.677 0.709 0.68 0.55

(a) Scoping explicit NP chunks

Overall system (including 
negation and implicit universals) σ+ P+ R+ F+ AR A

Baseline (MA11) 0.787 0.688 0.469 0.557 0.59 0.47

Our model (RPC-SVM-13) 0.863 0.784 0.720 0.751 0.69 0.55

(b) Scoping all elements (including id and Ni)

Figure 5: Performance on QuanText data

tem on the task that it was actually defined to per-
form (that is scoping only explicit NP chunks).

As seen in this table, by incorporating a richer
set of features and a better learning algorithm, our
model outperforms the baseline by almost 15%.
The measure A in these figures shows sentence-
based accuracy. A sentence counts as correct iff
every pair of scopal elements has been labeled
correctly. Therefore A is a tough measure. Fur-
thermore, it is sensitive to the length of the sen-
tence. Following MA11, we have computed an-
other sentence-based accuracy measure, AR. In
computing AR, a sentence counts as correct iff all
the outscoping relations have been recovered cor-
rectly – in other words, iff R = 100%, regardless
of the value of P. AR may be more practically
meaningful, because if in the correct scoping of
the sentence there is no outscoping between two
elements, inserting one does not affect the inter-
pretation of the sentence. In other words, precision
is less important for QSD in practice.

Figure 5(b) gives the performance of the over-
all model when all the elements including the im-
plicit universals and the negations are taken into
account. That the F-score of our model for the
second experiment is 0.042 higher than F-score for
the first indicates that scoping implicit universals
and/or negations must be easier than scoping ex-
plicit NP chunks. In order to find how much one or
both of the two elements contribute to this gain, we
have run two more experiments, scoping only the
pairs with at least one implicit universal and pairs
with one negation, respectively. Figure 6 reports
the results. As seen, the contribution in boosting
the overall performance comes from the implicit
universals while negations, in fact, lower the per-
formance. The performance for pairs with implicit
universal is higher because universals, in general,
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Implicit universals only (pairs 
with at least one id) P+ R+ F+

Baseline (MA11) 0.776 0.458 0.576
Our model (RPC-SVM-13) 0.836 0.734 0.782

(a) Pairs with at least one implicit universal

Negation only (pairs with one 
negation) P+ R+ F+

Baseline (MA11) 0.502 0.571 0.534

Our model (RPC-SVM-13) 0.733 0.55 0.629

(b) Pairs with at least one negation

Figure 6: Implicit universals and negations

are easier to scope, even for the human annota-
tors.17 There are several reasons for poor perfor-
mance with negations as well. First, the number
of negations in the corpus is small, therefore the
data is very sparse. Second, the RPC model does
not work well for negations. Scoping a negation
relative to an NP chunk, with which it has a long
distance dependency, often depends on the scope
of the elements in between. Third, scoping nega-
tion usually requires a deep semantic analysis.

In order to see how well our approximation al-
gorithm is working, similar to the approach of
Chambers and Jurafsky (2008), we tried an ILP
solver18 for DAGs with at most 8 nodes to find the
optimum solution, but we found the difference in-
significant. In fact, the approximation algorithm
finds the optimum solution in all but one case.19

5 Related work

Since automatic QSD is in general challenging,
traditionally quantifier scoping is left underspec-
ified in deep linguistic processing systems (Al-
shawi and Crouch, 1992; Bos, 1996; Copestake et
al., 2001). Some efforts have been made to move
underspecification frameworks towards weighted
constraint-based graphs in order to produce the
most preferred reading (Koller et al., 2008), but
the source of these types of constraint are often
discourse, pragmatics, world knowledge, etc., and
hence, they are hard to obtain automatically. In or-

17Trivially, we have taken the relation outscoping ic > id
for granted and not counted it towards higher performance.

18lpsolve: http://sourceforge.net/projects/lpsolve
19To find the gain that can be obtained with gold-standard

parses, we used MA11’s system with their hand-annotated
and the equivalent automatically generated features. The
former boost the performance by 0.04. Incidentally, HS03
lose almost 0.04 when switching to automatically generated
parses.

der to evade scope disambiguation, yet be able to
perform entailment, Koller and Thater (2010) pro-
pose an algorithm to calculate the weakest read-
ings20 from a scope-underspecified representation.

Early efforts on automatic QSD (Moran, 1988;
Hurum, 1988) were based on heuristics, manually
formed into rules with manually assigned weights
for resolving conflicts. To the best of our knowl-
edge, there have been four major efforts on statisti-
cal QSD for English: Higgins and Sadock (2003),
Galen and MacCartney (2004), Srinivasan and
Yates (2009), and Manshadi and Allen (2011a).
The first three only scope two scopal terms in a
sentence, where the scopal term is an NP with an
explicit quantification. MA11 is the first to scope
any number of NPs in a sentence with no restric-
tion on the type of quantification. Besides ignor-
ing negation and implicit universals, their system
has some other limitations too. First, the learning
model is not theoretically justified. Second, hand-
annotated features (e.g. dependency relations) are
used on both the train and the test data.

6 Summary and future work

We develop the first statistical QSD model ad-
dressing the interaction of quantifiers with nega-
tion and the implicit universal of plurals, defining
a baseline for this task on QuanText data (Man-
shadi et al., 2012). In addition, our work improves
upon Manshadi and Allen (2011a)’s work by (ap-
proximately) optimizing a well justified criterion,
by using automatically generated features instead
of hand-annotated dependencies, and by boosting
the performance by a large margin with the help of
a rich feature vector.

This work can be improved in many directions,
among which are scoping more elements such as
other scopal operators and implicit entities, de-
ploying more complex learning models, and de-
veloping models which require less supervision.
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Abstract

Traditional approaches to the task of ACE
event extraction usually rely on sequential
pipelines with multiple stages, which suf-
fer from error propagation since event trig-
gers and arguments are predicted in isola-
tion by independent local classifiers. By
contrast, we propose a joint framework
based on structured prediction which ex-
tracts triggers and arguments together so
that the local predictions can be mutu-
ally improved. In addition, we propose
to incorporate global features which ex-
plicitly capture the dependencies of multi-
ple triggers and arguments. Experimental
results show that our joint approach with
local features outperforms the pipelined
baseline, and adding global features fur-
ther improves the performance signifi-
cantly. Our approach advances state-of-
the-art sentence-level event extraction, and
even outperforms previous argument la-
beling methods which use external knowl-
edge from other sentences and documents.

1 Introduction

Event extraction is an important and challeng-
ing task in Information Extraction (IE), which
aims to discover event triggers with specific types
and their arguments. Most state-of-the-art ap-
proaches (Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; Hong et al., 2011) use sequential
pipelines as building blocks, which break down
the whole task into separate subtasks, such as
trigger identification/classification and argument
identification/classification. As a common draw-
back of the staged architecture, errors in upstream
component are often compounded and propagated
to the downstream classifiers. The downstream
components, however, cannot impact earlier deci-

sions. For example, consider the following sen-
tences with an ambiguous word “fired”:

(1) In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

(2) He has fired his air defense chief .

In sentence (1), “fired” is a trigger of type Attack.
Because of the ambiguity, a local classifier may
miss it or mislabel it as a trigger of End-Position.
However, knowing that “tank” is very likely to be
an Instrument argument of Attack events, the cor-
rect event subtype assignment of “fired” is obvi-
ously Attack. Likewise, in sentence (2), “air de-
fense chief” is a job title, hence the argument clas-
sifier is likely to label it as an Entity argument for
End-Position trigger.

In addition, the local classifiers are incapable
of capturing inter-dependencies among multiple
event triggers and arguments. Consider sentence
(1) again. Figure 1 depicts the corresponding
event triggers and arguments. The dependency be-
tween “fired” and “died” cannot be captured by the
local classifiers, which may fail to attach “camera-
man” to “fired” as a Target argument. By using
global features, we can propagate the Victim ar-
gument of the Die event to the Target argument
of the Attack event. As another example, know-
ing that an Attack event usually only has one At-
tacker argument, we could penalize assignments
in which one trigger has more than one Attacker.
Such global features cannot be easily exploited by
a local classifier.

Therefore, we take a fresh look at this prob-
lem and formulate it, for the first time, as a struc-
tured learning problem. We propose a novel joint
event extraction algorithm to predict the triggers
and arguments simultaneously, and use the struc-
tured perceptron (Collins, 2002) to train the joint
model. This way we can capture the dependencies
between triggers and argument as well as explore
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In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel.

AttackDie

Instrument
Place

Victim

Target
Instrument

Target

Place

Figure 1: Event mentions of example (1). There are two event mentions that share three arguments,
namely the Die event mention triggered by “died”, and the Attack event mention triggered by “fired”.

arbitrary global features over multiple local pre-
dictions. However, different from easier tasks such
as part-of-speech tagging or noun phrase chunking
where efficient dynamic programming decoding is
feasible, here exact joint inference is intractable.
Therefore we employ beam search in decoding,
and train the model using the early-update percep-
tron variant tailored for beam search (Collins and
Roark, 2004; Huang et al., 2012).

We make the following contributions:

1. Different from traditional pipeline approach,
we present a novel framework for sentence-
level event extraction, which predicts triggers
and their arguments jointly (Section 3).

2. We develop a rich set of features for event
extraction which yield promising perfor-
mance even with the traditional pipeline
(Section 3.4.1). In this paper we refer to them
as local features.

3. We introduce various global features to ex-
ploit dependencies among multiple triggers
and arguments (Section 3.4.2). Experi-
ments show that our approach outperforms
the pipelined approach with the same set of
local features, and significantly advances the
state-of-the-art with the addition of global
features which brings a notable further im-
provement (Section 4).

2 Event Extraction Task

In this paper we focus on the event extraction task
defined in Automatic Content Extraction (ACE)
evaluation.1 The task defines 8 event types and
33 subtypes such as Attack, End-Position etc. We
introduce the terminology of the ACE event ex-
traction that we used in this paper:

1http://projects.ldc.upenn.edu/ace/

• Event mention: an occurrence of an event
with a particular type and subtype.
• Event trigger: the word most clearly ex-

presses the event mention.
• Event argument: an entity mention, tempo-

ral expression or value (e.g. Job-Title) that
serves as a participant or attribute with a spe-
cific role in an event mention.
• Event mention: an instance that includes one

event trigger and some arguments that appear
within the same sentence.

Given an English text document, an event ex-
traction system should predict event triggers with
specific subtypes and their arguments from each
sentence. Figure 1 depicts the event triggers and
their arguments of sentence (1) in Section 1. The
outcome of the entire sentence can be considered a
graph in which each argument role is represented
as a typed edge from a trigger to its argument.

In this work, we assume that argument candi-
dates such as entities are part of the input to the
event extraction, and can be from either gold stan-
dard or IE system output.

3 Joint Framework for Event Extraction

Based on the hypothesis that facts are inter-
dependent, we propose to use structured percep-
tron with inexact search to jointly extract triggers
and arguments that co-occur in the same sentence.
In this section, we will describe the training and
decoding algorithms for this model.

3.1 Structured perceptron with beam search

Structured perceptron is an extension to the stan-
dard linear perceptron for structured prediction,
which was proposed in (Collins, 2002). Given a
sentence instance x ∈ X , which in our case is a
sentence with argument candidates, the structured
perceptron involves the following decoding prob-
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lem which finds the best configuration z ∈ Y ac-
cording to the current model w:

z = argmax
y′∈Y(x)

w · f(x, y′) (1)

where f(x, y′) represents the feature vector for in-
stance x along with configuration y′.

The perceptron learns the model w in an on-
line fashion. Let D = {(x(j), y(j))}nj=1 be the set
of training instances (with j indexing the current
training instance). In each iteration, the algorithm
finds the best configuration z for x under the cur-
rent model (Eq. 1). If z is incorrect, the weights
are updated as follows:

w = w + f(x, y)− f(x, z) (2)

The key step of the training and test is the de-
coding procedure, which aims to search for the
best configuration under the current parameters. In
simpler tasks such as part-of-speech tagging and
noun phrase chunking, efficient dynamic program-
ming algorithms can be employed to perform ex-
act inference. Unfortunately, it is intractable to
perform the exact search in our framework be-
cause: (1) by jointly modeling the trigger labeling
and argument labeling, the search space becomes
much more complex. (2) we propose to make use
of arbitrary global features, which makes it infea-
sible to perform exact inference efficiently.

To address this problem, we apply beam-search
along with early-update strategy to perform inex-
act decoding. Collins and Roark (2004) proposed
the early-update idea, and Huang et al. (2012) later
proved its convergence and formalized a general
framework which includes it as a special case. Fig-
ure 2 describes the skeleton of perceptron train-
ing algorithm with beam search. In each step of
the beam search, if the prefix of oracle assign-
ment y falls out from the beam, then the top re-
sult in the beam is returned for early update. One
could also use the standard-update for inference,
however, with highly inexact search the standard-
update generally does not work very well because
of “invalid updates”, i.e., updates that do not fix a
violation (Huang et al., 2012). In Section 4.5 we
will show that the standard perceptron introduces
many invalid updates especially with smaller beam
sizes, also observed by Huang et al. (2012).

To reduce overfitting, we used averaged param-
eters after training to decode test instances in our
experiments. The resulting model is called aver-
aged perceptron (Collins, 2002).

Input: Training set D = {(x(j), y(j))}ni=1,
maximum iteration number T

Output: Model parameters w
1 Initialization: Set w = 0;
2 for t← 1...T do
3 foreach (x, y) ∈ D do
4 z ← beamSearch (x, y,w)
5 if z 6= y then
6 w← w + f(x, y[1:|z|])− f(x, z)

Figure 2: Perceptron training with beam-
search (Huang et al., 2012). Here y[1:i] de-
notes the prefix of y that has length i, e.g.,
y[1:3] = (y1, y2, y3).

3.2 Label sets

Here we introduce the label sets for trigger and ar-
gument in the model. We use L ∪ {⊥} to denote
the trigger label alphabet, where L represents the
33 event subtypes, and ⊥ indicates that the token
is not a trigger. Similarly, R ∪ {⊥} denotes the
argument label sets, whereR is the set of possible
argument roles, and ⊥ means that the argument
candidate is not an argument for the current trig-
ger. It is worth to note that the set R of each par-
ticular event subtype is subject to the entity type
constraints defined in the official ACE annotation
guideline2. For example, the Attacker argument
for an Attack event can only be one of PER, ORG
and GPE (Geo-political Entity).

3.3 Decoding

Let x = 〈(x1, x2, ..., xs), E〉 denote the sentence
instance, where xi represents the i-th token in the
sentence and E = {ek}mk=1 is the set of argument
candidates. We use

y = (t1, a1,1, . . . , a1,m, . . . , ts, as,1, . . . , as,m)

to denote the corresponding gold standard struc-
ture, where ti represents the trigger assignment for
the token xi, and ai,k represents the argument role
label for the edge between xi and argument candi-
date ek.

2http://projects.ldc.upenn.edu/ace/docs/English-Events-
Guidelines v5.4.3.pdf

75



y = (t1, a1,1, a1,2, t2, a2,1, a2,2,| {z }
arguments for x2

t3, a3,1, a3,2)

g(1) g(2) h(2, 1) h(3, 2)

Figure 3: Example notation with s = 3,m = 2.

For simplicity, throughout this paper we use
yg(i) and yh(i,k) to represent ti and ai,k, respec-
tively. Figure 3 demonstrates the notation with
s = 3 and m = 2. The variables for the toy sen-
tence “Jobs founded Apple” are as follows:

x = 〈(Jobs,

x2︷ ︸︸ ︷
founded, Apple),

E︷ ︸︸ ︷
{JobsPER,AppleORG}〉

y = (⊥,⊥,⊥, Start Org︸ ︷︷ ︸
t2

, Agent, Org︸ ︷︷ ︸
args for founded

,⊥,⊥,⊥)

Figure 4 describes the beam-search procedure
with early-update for event extraction. During
each step with token i, there are two sub-steps:

• Trigger labeling We enumerate all possible
trigger labels for the current token. The linear
model defined in Eq. (1) is used to score each
partial configuration. Then the K-best par-
tial configurations are selected to the beam,
assuming the beam size is K.
• Argument labeling After the trigger label-

ing step, we traverse all configurations in the
beam. Once a trigger label for xi is found in
the beam, the decoder searches through the
argument candidates E to label the edges be-
tween each argument candidate and the trig-
ger. After labeling each argument candidate,
we again score each partial assignment and
select the K-best results to the beam.

After the second step, the rank of different trigger
assignments can be changed because of the argu-
ment edges. Likewise, the decision on later argu-
ment candidates may be affected by earlier argu-
ment assignments.

The overall time complexity for decoding is
O(K · s ·m).

3.4 Features
In this framework, we define two types of fea-
tures, namely local features and global features.
We first introduce the definition of local and global
features in this paper, and then describe the im-
plementation details later. Recall that in the lin-
ear model defined in Eq. (1), f(x, y) denotes the
features extracted from the input instance x along

Input: Instance x = 〈(x1, x2, ..., xs), E〉 and
the oracle output y if for training.

K: Beam size.
L ∪ {⊥}: trigger label alphabet.
R∪ {⊥}: argument label alphabet.
Output: 1-best prediction z for x

1 Set beam B ← [ε] /*empty configuration*/
2 for i← 1...s do
3 buf ← {z′ ◦ l | z′ ∈ B, l ∈ L ∪ {⊥}}
B ←K-best(buf )

4 if y[1:g(i)] 6∈ B then
5 return B[0] /*for early-update*/
6 for ek ∈ E do /*search for arguments*/
7 buf ← ∅
8 for z′ ∈ B do
9 buf ← buf ∪ {z′ ◦ ⊥}

10 if z′g(i) 6= ⊥ then /*xi is a trigger*/
11 buf ← buf ∪ {z′ ◦ r | r ∈ R}
12 B ←K-best(buf )
13 if y[1:h(i,k)] 6∈ B then
14 return B[0] /*for early-update*/
15 return B[0]

Figure 4: Decoding algorithm for event extrac-
tion. z◦l means appending label l to the end of
z. During test, lines 4-5 & 13-14 are omitted.

with configuration y. In general, each feature in-
stance f in f is a function f : X × Y → R, which
maps x and y to a feature value. Local features are
only related to predictions on individual trigger or
argument. In the case of unigram tagging for trig-
ger labeling, each local feature takes the form of
f(x, i, yg(i)), where i denotes the index of the cur-
rent token, and yg(i) is its trigger label. In practice,
it is convenient to define the local feature function
as an indicator function, for example:

f1(x, i, yg(i)) =

{
1 if yg(i) = Attack and xi = “fire”

0 otherwise

The global features, by contrast, involve longer
range of the output structure. Formally,
each global feature function takes the form of
f(x, i, k, y), where i and k denote the indices
of the current token and argument candidate in
decoding, respectively. The following indicator
function is a simple example of global features:

f101(x, i, k, y) =





1 if yg(i) = Attack and

y has only one “Attacker”

0 otherwise
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Category Type Feature Description

Trigger

Lexical

1. unigrams/bigrams of the current and context words within the window of size 2
2. unigrams/bigrams of part-of-speech tags of the current and context words within the
window of size 2
3. lemma and synonyms of the current token
4. base form of the current token extracted from Nomlex (Macleod et al., 1998)
5. Brown clusters that are learned from ACE English corpus (Brown et al., 1992; Miller et
al., 2004; Sun et al., 2011). We used the clusters with prefixes of length 13, 16 and 20 for
each token.

Syntactic

6. dependent and governor words of the current token
7. dependency types associated the current token
8. whether the current token is a modifier of job title
9. whether the current token is a non-referential pronoun

Entity
Information

10. unigrams/bigrams normalized by entity types
11. dependency features normalized by entity types
12. nearest entity type and string in the sentence/clause

Argument

Basic

1. context words of the entity mention
2. trigger word and subtype
3. entity type, subtype and entity role if it is a geo-political entity mention
4. entity mention head, and head of any other name mention from co-reference chain
5. lexical distance between the argument candidate and the trigger
6. the relative position between the argument candidate and the trigger: {before, after,
overlap, or separated by punctuation}
7. whether it is the nearest argument candidate with the same type
8. whether it is the only mention of the same entity type in the sentence

Syntactic

9. dependency path between the argument candidate and the trigger
10. path from the argument candidate and the trigger in constituent parse tree
11. length of the path between the argument candidate and the trigger in dependency graph
12. common root node and its depth of the argument candidate and parse tree
13. whether the argument candidate and the trigger appear in the same clause

Table 1: Local features.

3.4.1 Local features

In general there are two kinds of local features:
Trigger features The local feature func-

tion for trigger labeling can be factorized as
f(x, i, yg(i)) = p(x, i) ◦ q(yg(i)), where p(x, i) is
a predicate about the input, which we call text fea-
ture, and q(yg(i)) is a predicate on the trigger label.
In practice, we define two versions of q(yg(i)):

q0(yg(i)) = yg(i) (event subtype)

q1(yg(i)) = event type of yg(i)

q1(yg(i)) is a backoff version of the standard un-
igram feature. Some text features for the same
event type may share a certain distributional sim-
ilarity regardless of the subtypes. For example,
if the nearest entity mention is “Company”, the
current token is likely to be Personnel no matter
whether it is End-Postion or Start-Position.

Argument features Similarly, the local fea-
ture function for argument labeling can be rep-
resented as f(x, i, k, yg(i), yh(i,k)) = p(x, i, k) ◦
q(yg(i), yh(i,k)), where yh(i,k) denotes the argu-
ment assignment for the edge between trigger
word i and argument candidate ek. We define two

versions of q(yg(i), yh(i,k)):

q0(yg(i), yh(i,k)) =





yh(i,k) if yh(i,k) is Place,

Time or None

yg(i) ◦ yh(i,k) otherwise

q1(yg(i), yh(i,k)) =

{
1 if yh(i,k) 6=None

0 otherwise

It is notable that Place and Time arguments are
applicable and behave similarly to all event sub-
types. Therefore features for these arguments are
not conjuncted with trigger labels. q1(yh(i,k)) can
be considered as a backoff version of q0(yh(i,k)),
which does not discriminate different argument
roles but only focuses on argument identification.
Table 1 summarizes the text features about the in-
put for trigger and argument labeling. In our ex-
periments, we used the Stanford parser (De Marn-
effe et al., 2006) to create dependency parses.

3.4.2 Global features
Table 2 summarizes the 8 types of global features
we developed in this work. They can be roughly
divided into the following two categories:
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Category Feature Description

Trigger
1. bigram of trigger types occur in the same sentence or the same clause
2. binary feature indicating whether synonyms in the same sentence have the same trigger label
3. context and dependency paths between two triggers conjuncted with their types

Argument

4. context and dependency features about two argument candidates which share the same role within the
same event mention
5. features about one argument candidate which plays as arguments in two event mentions in the same
sentence
6. features about two arguments of an event mention which are overlapping
7. the number of arguments with each role type of an event mention conjuncted with the event subtype
8. the pairs of time arguments within an event mention conjuncted with the event subtype

Table 2: Global features.
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Figure 5: Illustration of global features (4-6) in Table 2.

Event Probability
Attack 0.34

Die 0.14
Transport 0.08

Injure 0.04
Meet 0.02

Table 3: Top 5 event subtypes that co-occur with
Attack event in the same sentence.

Trigger global feature This type of feature
captures the dependencies between two triggers
within the same sentence. For instance: feature (1)
captures the co-occurrence of trigger types. This
kind of feature is motivated by the fact that two
event mentions in the same sentence tend to be se-
mantically coherent. As an example, from Table 3
we can see that Attack event often co-occur with
Die event in the same sentence, but rarely co-occur
with Start-Position event. Feature (2) encourages
synonyms or identical tokens to have the same la-
bel. Feature (3) exploits the lexical and syntactic
relation between two triggers. A simple example
is whether an Attack trigger and a Die trigger are
linked by the dependency relation conj and.

Argument global feature This type of feature
is defined over multiple arguments for the same
or different triggers. Consider the following sen-
tence:

(3) Trains running to southern Sudan were used

to transport abducted women and children.

The Transport event mention “transport” has
two Artifact arguments, “women” and “chil-
dren”. The dependency edge conj and be-
tween “women” and “children” indicates that
they should play the same role in the event men-
tion. The triangle structure in Figure 5(a) is an ex-
ample of feature (4) for the above example. This
feature encourages entities that are linked by de-
pendency relation conj and to play the same role
Artifact in any Transport event.

Similarly, Figure 5(b) depicts an example of
feature (5) for sentence (1) in Section 1. In this ex-
ample, an entity mention is Victim argument to Die
event and Target argument to Attack event, and the
two event triggers are connected by the typed de-
pendency advcl. Here advcl means that the word
“fired” is an adverbial clause modier of “died”.

Figure 5(c) shows an example of feature (6) for
the following sentence:

(4) Barry Diller resigned as co-chief executive of
Vivendi Universal Entertainment.

The job title “co-chief executive of Vivendi Uni-
versal Entertainment” overlaps with the Orga-
nization mention “Vivendi Universal Entertain-
ment”. The feature in the triangle shape can be
considered as a soft constraint such that if a Job-
Title mention is a Position argument to an End-
Position trigger, then the Organization mention
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which appears at the end of it should be labeled
as Entity argument for the same trigger.

Feature (7-8) are based on the statistics about
different arguments for the same trigger. For in-
stance, in many cases, a trigger can only have one
Place argument. If a partial configuration mis-
takenly classifies more than one entity mention as
Place arguments for the same trigger, then it will
be penalized.

4 Experiments

4.1 Data set and evaluation metric

We utilized the ACE 2005 corpus as our testbed.
For comparison, we used the same test set with 40
newswire articles (672 sentences) as in (Ji and Gr-
ishman, 2008; Liao and Grishman, 2010) for the
experiments, and randomly selected 30 other doc-
uments (863 sentences) from different genres as
the development set. The rest 529 documents (14,
840 sentences) are used for training.

Following previous work (Ji and Grishman,
2008; Liao and Grishman, 2010; Hong et al.,
2011), we use the following criteria to determine
the correctness of an predicted event mention:

• A trigger is correct if its event subtype and
offsets match those of a reference trigger.
• An argument is correctly identified if its event

subtype and offsets match those of any of the
reference argument mentions.
• An argument is correctly identified and clas-

sified if its event subtype, offsets and argu-
ment role match those of any of the reference
argument mentions.

Finally we use Precision (P), Recall (R) and F-
measure (F1) to evaluate the overall performance.

4.2 Baseline system

Chen and Ng (2012) have proven that perform-
ing identification and classification in one step is
better than two steps. To compare our proposed
method with the previous pipelined approaches,
we implemented two Maximum Entropy (Max-
Ent) classifiers for trigger labeling and argument
labeling respectively. To make a fair comparison,
the feature sets in the baseline are identical to the
local text features we developed in our framework
(see Figure 1).

4.3 Training curves

We use the harmonic mean of the trigger’s F1

measure and argument’s F1 measure to measure
the performance on the development set.
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Figure 6: Training curves on dev set.

Figure 6 shows the training curves of the aver-
aged perceptron with respect to the performance
on the development set when the beam size is 4.
As we can see both curves converge around itera-
tion 20 and the global features improve the over-
all performance, compared to its counterpart with
only local features. Therefore we set the number
of iterations as 20 in the remaining experiments.

4.4 Impact of beam size

The beam size is an important hyper parameter in
both training and test. Larger beam size will in-
crease the computational cost while smaller beam
size may reduce the performance. Table 4 shows
the performance on the development set with sev-
eral different beam sizes. When beam size = 4, the
algorithm achieved the highest performance on the
development set with trigger F1 = 67.9, argument
F1 = 51.5, and harmonic mean = 58.6. When
the size is increased to 32, the accuracy was not
improved. Based on this observation, we chose
beam size as 4 for the remaining experiments.

4.5 Early-update vs. standard-update

Huang et al. (2012) define “invalid update” to be
an update that does not fix a violation (and instead
reinforces the error), and show that it strongly
(anti-)correlates with search quality and learning
quality. Figure 7 depicts the percentage of in-
valid updates in standard-update with and with-
out global features, respectively. With global fea-
tures, there are numerous invalid updates when the
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Beam size 1 2 4 8 16 32
Training time (sec) 993 2,034 3,982 8,036 15,878 33,026
Harmonic mean 57.6 57.7 58.6 58.0 57.8 57.8

Table 4: Comparison of training time and accuracy on the dev set.
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Figure 7: Percentage of the so-called “invalid up-
dates” (Huang et al., 2012) in standard perceptron.

Strategy
F1 on Dev F1 on Test

Trigger Arg Trigger Arg
Standard (b = 1) 68.3 47.4 64.4 49.8

Early (b = 1) 68.9 49.5 65.2 52.1
Standard (b = 4) 68.4 50.5 67.1 51.4

Early (b = 4) 67.9 51.5 67.5 52.7

Table 5: Comparison between the performance
(%) of standard-update and early-update with
global features. Here b stands for beam size.

beam size is small. The ratio decreases mono-
tonically as beam size increases. The model with
only local features made much smaller numbers
of invalid updates, which suggests that the use of
global features makes the search problem much
harder. This observation justify the application of
early-update in this work. To further investigate
the difference between early-update and standard-
update, we tested the performance of both strate-
gies, which is summarized in Table 5. As we can
see the performance of standard-update is gener-
ally worse than early-update. When the beam size
is increased (b = 4), the gap becomes smaller as
the ratio of invalid updates is reduced.

4.6 Overall performance

Table 6 shows the overall performance on the blind
test set. In addition to our baseline, we compare
against the sentence-level system reported in Hong
et al. (2011), which, to the best of our knowledge,

is the best-reported system in the literature based
on gold standard argument candidates. The pro-
posed joint framework with local features achieves
comparable performance for triggers and outper-
forms the staged baseline especially on arguments.
By adding global features, the overall performance
is further improved significantly. Compared to
the staged baseline, it gains 1.6% improvement
on trigger’s F-measure and 8.8% improvement on
argument’s F-measure. Remarkably, compared to
the cross-entity approach reported in (Hong et al.,
2011), which attained 68.3% F1 for triggers and
48.3% for arguments, our approach with global
features achieves even better performance on ar-
gument labeling although we only used sentence-
level information.

We also tested the performance with argument
candidates automatically extracted by a high-
performing name tagger (Li et al., 2012b) and an
IE system (Grishman et al., 2005). The results
are summarized in Table 7. The joint approach
with global features significantly outperforms the
baseline and the model with only local features.
We also show that it outperforms the sentence-
level baseline reported in (Ji and Grishman, 2008;
Liao and Grishman, 2010), both of which at-
tained 59.7% F1 for triggers and 36.6% for argu-
ments. Our approach aims to tackle the problem of
sentence-level event extraction, thereby only used
intra-sentential evidence. Nevertheless, the perfor-
mance of our approach is still comparable with the
best-reported methods based on cross-document
and cross-event inference (Ji and Grishman, 2008;
Liao and Grishman, 2010).

5 Related Work

Most recent studies about ACE event extraction
rely on staged pipeline which consists of separate
local classifiers for trigger labeling and argument
labeling (Grishman et al., 2005; Ahn, 2006; Ji and
Grishman, 2008; Chen and Ji, 2009; Liao and Gr-
ishman, 2010; Hong et al., 2011; Li et al., 2012a;
Chen and Ng, 2012). To the best of our knowl-
edge, our work is the first attempt to jointly model
these two ACE event subtasks.
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Methods
Trigger
Identification (%)

Trigger Identification
+ classification (%)

Argument
Identification (%)

Argument Role (%)

P R F1 P R F1 P R F1 P R F1

Sentence-level in Hong et al. (2011) N/A 67.6 53.5 59.7 46.5 37.15 41.3 41.0 32.8 36.5
Staged MaxEnt classifiers 76.2 60.5 67.4 74.5 59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
Joint w/ local features 77.4 62.3 69.0 73.7 59.3 65.7 69.7 39.6 50.5 64.1 36.5 46.5
Joint w/ local + global features 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
Cross-entity in Hong et al. (2011)† N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3

Table 6: Overall performance with gold-standard entities, timex, and values. †beyond sentence level.

Methods Trigger F1 Arg F1

Ji and Grishman (2008)

cross-doc Inference

67.3 42.6

Ji and Grishman (2008)

sentence-level

59.7 36.6

MaxEnt classifiers 64.7 (↓1.2) 33.7 (↓10.2)
Joint w/ local 63.7 (↓2.0) 35.8 (↓10.7)
Joint w/ local + global 65.6 (↓1.9) 41.8 (↓10.9)

Table 7: Overall performance (%) with predicted
entities, timex, and values. ↓ indicates the perfor-
mance drop from experiments with gold-standard
argument candidates (see Table 6).

For the Message Understanding Conference
(MUC) and FAS Program for Monitoring Emerg-
ing Diseases (ProMED) event extraction tasks,
Patwardhan and Riloff (2009) proposed a proba-
bilistic framework to extract event role fillers con-
ditioned on the sentential event occurrence. Be-
sides having different task definitions, the key
difference from our approach is that their role
filler recognizer and sentential event recognizer
are trained independently but combined in the test
stage. Our experiments, however, have demon-
strated that it is more advantageous to do both
training and testing with joint inference.

There has been some previous work on joint
modeling for biomedical events (Riedel and Mc-
Callum, 2011a; Riedel et al., 2009; McClosky et
al., 2011; Riedel and McCallum, 2011b). (Mc-
Closky et al., 2011) is most closely related to our
approach. They casted the problem of biomedi-
cal event extraction as a dependency parsing prob-
lem. The key assumption that event structure can
be considered as trees is incompatible with ACE
event extraction. In addition, they used a separate
classifier to predict the event triggers before ap-
plying the parser, while we extract the triggers and
argument jointly. Finally, the features in the parser
are edge-factorized. To exploit global features,

they applied a MaxEnt-based global re-ranker. In
comparison, our approach is a unified framework
based on beam search, which allows us to exploit
arbitrary global features efficiently.

6 Conclusions and Future Work

We presented a joint framework for ACE event ex-
traction based on structured perceptron with inex-
act search. As opposed to traditional pipelined
approaches, we re-defined the task as a struc-
tured prediction problem. The experiments proved
that the perceptron with local features outperforms
the staged baseline and the global features further
improve the performance significantly, surpassing
the current state-of-the-art by a large margin.

As shown in Table 7, the overall performance
drops substantially when using predicted argu-
ment candidates. To improve the accuracy of end-
to-end IE system, we plan to develop a complete
joint framework to recognize entities together with
event mentions for future work. Also we are inter-
ested in applying this framework to other IE tasks
such as relation extraction.
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Abstract

Temporal resolution systems are tradition-
ally tuned to a particular language, re-
quiring significant human effort to trans-
late them to new languages. We present
a language independent semantic parser
for learning the interpretation of tempo-
ral phrases given only a corpus of utter-
ances and the times they reference. We
make use of a latent parse that encodes
a language-flexible representation of time,
and extract rich features over both the
parse and associated temporal semantics.
The parameters of the model are learned
using a weakly supervised bootstrapping
approach, without the need for manually
tuned parameters or any other language
expertise. We achieve state-of-the-art ac-
curacy on all languages in the TempEval-
2 temporal normalization task, reporting
a 4% improvement in both English and
Spanish accuracy, and to our knowledge
the first results for four other languages.

1 Introduction

Temporal resolution is the task of mapping from
a textual phrase describing a potentially complex
time, date, or duration to a normalized (grounded)
temporal representation. For example, possibly
complex phrases such as the week before last1 are
often more useful in their grounded form – e.g.,
August 4 - August 11.

Many approaches to this problem make
use of rule-based methods, combining regular-
expression matching and hand-written interpreta-
tion functions. In contrast, we would like to learn
the interpretation of a temporal expression proba-
bilistically. This allows propagation of uncertainty
to higher-level components, and the potential to

1Spoken on, for instance, August 20.

dynamically back off to a rule-based system in the
case of low confidence parses. In addition, we
would like to use a representation of time which is
broadly applicable to multiple languages, without
the need for language-specific rules or manually
tuned parameters.

Our system requires annotated data consist-
ing only of an input phrase and an associ-
ated grounded time, relative to some reference
time; the language-flexible parse is entirely latent.
Training data of this weakly-supervised form is
generally easier to collect than the alternative of
manually creating and tuning potentially complex
interpretation rules.

A large number of languages conceptualize time
as lying on a one dimensional line. Although
the surface forms of temporal expressions differ,
the basic operations many languages use can be
mapped to operations on this time line (see Sec-
tion 3). Furthermore, many common languages
share temporal units (hours, weekdays, etc.). By
structuring a latent parse to reflect these seman-
tics, we can define a single model which performs
well on multiple languages.

A discriminative parsing model allows us to de-
fine sparse features over not only lexical cues but
also the temporal value of our prediction. For ex-
ample, it allows us to learn that we are much more
likely to express March 14th than 2pm in March –
despite the fact that both interpretations are com-
posed of similar types of components. Further-
more, it allows us to define both sparse n-gram and
denser but less informative bag-of-words features
over multi-word phrases, and allows us to handle
numbers in a flexible way.

We briefly describe our temporal representation
and grammar, followed by a description of the
learning algorithm; we conclude with experimen-
tal results on the six languages of the TempEval-2
A task.
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2 Related Work

Our approach follows the work of Angeli et al.
(2012), both in the bootstrapping training method-
ology and the temporal grammar. Our foremost
contributions over this prior work are: (i) the uti-
lization of a discriminative parser trained with rich
features; (ii) simplifications to the temporal gram-
mar which nonetheless maintain high accuracy;
and (iii) experimental results on 6 different lan-
guages, with state-of-the-art performance on both
datasets on which we know of prior work.

As in this previous work, our approach draws
inspiration from work on semantic parsing. The
latent parse parallels the formal semantics in pre-
vious work. Supervised approaches to semantic
parsing prominently include Zelle and Mooney
(1996), Zettlemoyer and Collins (2005), Kate et
al. (2005), Zettlemoyer and Collins (2007), inter
alia. For example, Zettlemoyer and Collins (2007)
learn a mapping from textual queries to a logical
form. Importantly, the logical form of these parses
contain all of the predicates and entities used in
the parse – unlike the label provided in our case,
where a grounded time can correspond to any of
a number of latent parses. Along this line, re-
cent work by Clarke et al. (2010) and Liang et al.
(2011) relax supervision to require only annotated
answers rather than full logical forms.

Related work on interpreting temporal expres-
sions has focused on constructing hand-crafted in-
terpretation rules (Mani and Wilson, 2000; Sa-
quete et al., 2003; Puscasu, 2004; Grover et al.,
2010). Of these, HeidelTime (Strötgen and Gertz,
2010) and SUTime (Chang and Manning, 2012)
provide a strong comparison in English.

Recent probabilistic approaches to temporal
resolution include UzZaman and Allen (2010),
who employ a parser to produce deep logical
forms, in conjunction with a CRF classifier. In a
similar vein, Kolomiyets and Moens (2010) em-
ploy a maximum entropy classifier to detect the
location and temporal type of expressions; the
grounding is then done via deterministic rules.

In addition, there has been work on pars-
ing Spanish expressions; UC3M (Vicente-Dı́ez et
al., 2010) produce the strongest results on the
TempEval-2 corpus. Of the systems entered in the
original task, TIPSem (Llorens et al., 2010) was
the only system to perform bilingual interpreta-
tion for English and Spanish. Both of the above
systems rely primarily on hand-built rules.

3 Temporal Representation

We define a compositional representation of time,
similar to Angeli et al. (2012), but with a greater
focus on efficiency and simplicity. The represen-
tation makes use of a notion of temporal types
and their associated semantic values; a grammar
is constructed over these types, and is grounded
by appealing to the associated values.

A summary of the temporal type system is pro-
vided in Section 3.1; the grammar is described in
Section 3.2; key modifications from previous work
are highlighted in Section 3.3.

3.1 Temporal Types

Temporal expressions are represented either as a
Range, Sequence, or Duration. The root of a parse
tree should be one of these types. In addition,
phrases can be tagged as a Function; or, as a spe-
cial Nil type corresponding to segments without a
direct temporal interpretation. Lastly, a type is al-
located for numbers. We describe each of these
briefly below.

Range [and Instant] A period between two
dates (or times), as per an interval-based theory
of time (Allen, 1981). This includes entities such
as Today, 1987, or Now.

Sequence A sequence of Ranges, occurring at
regular but not necessarily constant intervals. This
includes entities such as Friday, November
27th, or last Friday. A Sequence is de-
fined in terms of a partial completion of calendar
fields. For example, November 27th would de-
fine a Sequence whose year is unspecified, month
is November, and day is the 27th; spanning the en-
tire range of the lower order fields (in this case, a
day). This example is illustrated in Figure 1. Note
that a Sequence implicitly selects a possibly infi-
nite number of possible Ranges.

To select a particular grounded time for a Se-
quence, we appeal to a notion of a reference time
(Reichenbach, 1947). For the TempEval-2 corpus,
we approximate this as the publication time of the
article. While this is conflating Reichenbach’s ref-
erence time with speech time, and comes at the
expense of certain mistakes (see Section 5.3), it is
nonetheless useful in practice.

To a first approximation, grounding a sequence
given a reference time corresponds to filling in the
unspecified fields of the sequence with the fully-
specified fields of the reference time. This pro-
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Sequence:
year
—

mon
Nov

day

27th – 28th

week
—

weekday
—

hour
00

min
00

sec
00

Reference Time:
year
2013

mon
Aug

day

06th

week
32

weekday
Tue

hour
03

min
25

sec
00

year
2013

mon
Nov

day

27th – 28th

week
—

weekday
—

hour
00

min
00

sec
00

Figure 1: An illustration of grounding a Sequence. When grounding the Sequence November 27th

with a reference time 2013-08-06 03:25:00, we complete the missing fields in the Sequence (the
year) with the corresponding field in the reference time (2013).

cess has a number of special cases not enumerated
here,2 but the complexity remains constant time.

Duration A period of time. This includes enti-
ties like Week, Month, and 7 days. A special
case of the Duration type is defined to represent ap-
proximate durations, such as a few years or some
days.

Function A function of arity less than or equal
to two representing some general modification to
one of the above types. This captures semantic
entities such as those implied in last x, the third x
[of y], or x days ago. The particular functions are
enumerated in Table 2.

Nil A special Nil type denotes terms which are
not directly contributing to the semantic meaning
of the expression. This is intended for words such
as a or the, which serve as cues without bearing
temporal content themselves.

Number Lastly, a special Number type is defined
for tagging numeric expressions.

3.2 Temporal Grammar

Our approach assumes that natural language de-
scriptions of time are compositional in nature; that
is, each word attached to a temporal phrase is com-
positionally modifying the meaning of the phrase.
We define a grammar jointly over temporal types
and values. The types serve to constrain the parse
and allow for coarse features; the values encode
specific semantics, and allow for finer features.
At the root of a parse tree, we recursively apply

2Some of these special cases are caused by variable days
of the month, daylight savings time, etc. Another class arises
from pragmatically peculiar utterances; e.g., the next Monday
in August uttered in the last week of August should ground to
August of next year (rather than the reference time’s year).

the functions in the tree to obtain a final temporal
value.

This approach can be presented as a rule-to-rule
translation (Bach, 1976; Allen, 1995, p. 263), or
a constrained Synchronous PCFG (Yamada and
Knight, 2001).

Formally, we define our grammar as
G = (Σ, S,V, T,R). The alphabet Σ and start
symbol S retain their usual interpretations. We
define a set V to be the set of types, as described in
Section 3.1. For each v ∈ V we define an (infinite)
set Tv corresponding to the possible instances of
type v. Each node in the tree defines a pair (v, τ)
such that τ ∈ Tv. A rule R ∈ R is defined as
a pair R =

(
vi → vjvk, f : (Tvj , Tvk)→ Tvi

)
.

This definition is trivially adapted for the case of
unary rules.

The form of our rules reveals the synchronous
aspect of our grammar. The structure of the tree is
bound by the first part over types v – these types
are used to populate the chart, and allow for effi-
cient inference. The second part is used to eval-
uate the semantics of the parse, τ ∈ Tvi , and al-
lows partial derivations to be discriminated based
on richer information than the coarse types.

We adopt the preterminals of Angeli et al.
(2012). Each preterminal consists of a type
and a value; neither which are lexically in-
formed. That is, the word week and preterminal
(Week,Duration) are not tied in any way. A total
of 62 preterminals are defined corresponding to in-
stances of Ranges, Sequences, and Durations; these
are summarized in Table 1.

In addition, 10 functions are defined for manip-
ulating temporal expressions (see Table 2). The
majority of these mirror generic operations on in-
tervals on a timeline, or manipulations of a se-
quence. Notably, like intervals, times can be
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Type Example Instances
Range Past, Future, Yesterday,

Tomorrow, Today, Reference,
Year(n), Century(n)

Sequence Friday, January, . . .
DayOfMonth, DayOfWeek, . . .
EveryDay, EveryWeek, . . .

Duration Second, Minute, Hour,
Day, Week, Month, Quarter,
Year, Decade, Century

Table 1: The content-bearing preterminals of the
grammar, arranged by their types. Note that the
Sequence type contains more elements than enu-
merated here; however, only a few of each charac-
teristic type are shown here for brevity.

Function Description
shiftLeft Shift a Range left by a Duration
shiftRight Shift a Range right by a Duration

shrinkBegin Take the first Duration of a Range
shrinkEnd Take the last Duration of a Range

catLeft Take the Duration after a Range
catRight Take the Duration before a Range

moveLeft1 Shift a Sequence left by 1
moveRight1 Shift a Sequence right by 1
nth x of y Take the nth element in y
approximate Make a Duration approximate

Table 2: The functional preterminals of the gram-
mar. The name and a brief description of the func-
tion are given; the functions are most easily in-
terpreted as operations on either an interval or se-
quence. All operations on Ranges can equivalently
be applied to Sequences.

moved (3 weeks ago) or their size changed (the
first two days of the month), or a new interval can
be started from one of the endpoints (the last 2
days). Additionally, a sequence can be modified
by shifting its origin (last Friday), or taking the
nth element of the sequence within some bound
(fourth Sunday in November).

Combination rules in the grammar mirror type-
checked curried function application. For in-
stance, the function moveLeft1 applied to week
(as in last week) yields a grammar rule:

( EveryWeek -1 , Seq. )

( moveLeft1 , Seq.→Seq. ) ( EveryWeek , Seq. )

In more generality, we create grammar rules for
applying a function on either the left or the right,
for all possible type signatures of f : f(x, y) � x
or x� f(x, y).

Additionally, a grammar rule is created for in-
tersecting two Ranges or Sequences, for multiply-
ing a duration by a number, and for absorbing a Nil
span. Each of these can be though of as an implicit
function application (in the last case, the identity
function).

3.3 Differences From Previous Work

While the grammar formalism is strongly inspired
by Angeli et al. (2012), a number of key differ-
ences are implemented to both simplify the frame-
work, and make inference more efficient.

Sequence Grounding The most time-
consuming and conceptually nuanced aspect
of temporal inference in Angeli et al. (2012)
is intersecting Sequences. In particular, there
are two modes of expressing dates which resist
intersection: a day-of-month-based mode and a
week-based mode. Properly grounding a sequence
which defines both a day of the month and a day
of the week (or week of the year) requires backing
off to an expensive search problem.

To illustrate, consider the example: Friday the
13th. Although both a Friday and a 13th of the
month are easily found, the intersection of the two
requires iterating through elements of one until it
overlaps with an element of the other. At train-
ing time, a number of candidate parses are gen-
erated for each phrase. When considering that
these parses can become both complex and prag-
matically unreasonable, this can result in a notice-
able efficiency hit; e.g., during training a sentence
could have a [likely incorrect] candidate interpre-
tation of: nineteen ninety-six Friday the 13ths from
now.

In our Sequence representation, such intersec-
tions are disallowed, in the same fashion as Febru-
ary 30th would be.

Sequence Pragmatics For the sake of simplicity
the pragmatic distribution over possible ground-
ings of a sequence is replaced with the single most
likely offset, as learned empirically from the En-
glish TempEval-2 corpus by Angeli et al. (2012).

No Tag Splitting The Number and Nil types
are no longer split according to their ordinal-
ity/magnitude and subsumed phrase, respectively.
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More precisely, there is a single nonterminal (Nil),
rather than a nonterminal symbol characterizing
the phrase it is subsuming (Nil-the, Nil-a, etc.). This
information is encoded more elegantly as features.

4 Learning

The system is trained using a discriminative k-
best parser, which is able to incorporate arbi-
trary features over partial derivations. We describe
the parser below, followed by the features imple-
mented.

4.1 Parser

Inference A discriminative k-best parser was
used to allow for arbitrary features in the parse
tree. In the first stage, spans of the input sentence
are tagged as either text or numbers. A rule-based
number recognizer was used for each language
to recognize and ground numeric expressions, in-
cluding information on whether the number was
an ordinal (e.g., two versus second). Note that un-
like conventional parsing, a tag can span multiple
words. Numeric expressions are treated as if the
numeric value replaced the expression.

Each rule of the parse derivation was assigned
a score according to a log-linear factor. Specifi-
cally, each rule R = (vi → vjvk, f) with features
over the rule and derivation so far φ(R), subject to
parameters θ, is given a probability:

P (vi | vj , vk, f ; θ) ∝ eθTφ(R) (1)

Naı̈vely, this parsing algorithm gives us a com-
plexity of O(n3k2), where n is the length of the
sentence, and k is the size of the beam. However,
we can approximate the algorithm inO(n3k log k)
time with cube pruning (Chiang, 2007). With
features which are not context-free, we are not
guaranteed an optimal beam with this approach;
however, empirically the approximation yields a
significant efficiency improvement without notice-
able loss in performance.

Training We adopt an EM-style bootstrapping
approach similar to Angeli et al. (2012), in order to
handle the task of parsing the temporal expression
without annotations for the latent parses. Each
training instance is a tuple consisting of the words
in the temporal phrase, the annotated grounded
time τ∗, and the reference time.

Given an input sentence, our parser will out-
put k possible parses; when grounded to the

reference time these correspond to k candidate
times: τ1 . . . τk, each with a normalized probabil-
ity P (τi). This corresponds to an approximate E
step in the EM algorithm, where the distribution
over latent parses is approximated by a beam of
size k. Although for long sentences the number
of parses is far greater than the beam size, as the
parameters improve, increasingly longer sentences
will have correct derivations in the beam. In this
way, a progressively larger percentage of the data
is available to be learned from at each iteration.

To approximate the M step, we define a multi-
class hinge loss l(θ) over the beam, and optimize
using Stochastic Gradient Descent with AdaGrad
(Duchi et al., 2010):

l(θ) = max
0≤i<k

1[τi 6= τ∗] + Pθ(τi)− Pθ(τ∗) (2)

We proceed to describe our features.

4.2 Features
Our framework allows us to define arbitrary fea-
tures over partial derivations. Importantly, this al-
lows us to condition not only on the PCFG proba-
bilities over types but also the partial semantics of
the derivation. We describe the features used be-
low; a summary of these features for a short phrase
is illustrated in Figure 2.

Bracketing Features A feature is defined over
every nonterminal combination, consisting of
the pair of children being combined in that
rule. In particular, let us consider a rule
R = (vi → vjvk, f) corresponding to a CFG rule
vi → vjvk over types, and a function f over the
semantic values corresponding to vj and vk: τj
and τk. Two classes of bracketing features are
extracted: features are extracted over the types
of nonterminals being combined (vj and vk), and
over the top-level semantic derivation of the non-
terminals (f , τj , and τk).

Unlike syntactic parsing, child types of a parse
tree uniquely define the parent type of the rule; this
is a direct consequence of our combination rules
being functions with domains defined in terms
of the temporal types, and therefore necessarily
projecting their inputs into a single output type.
Therefore, the first class of bracketing features –
over types – reduce to have the exact same expres-
sive power as the nonterminal CFG rules of Angeli
et al. (2012). Examples of features in this class are
features 13 and 15 in Figure 2 (b).
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Input (w,t) ( Friday of this week , August 6 2013 )

Latent
parse

FRI ∩ EveryWeek

FRI

Friday

EveryWeek

Nil

of this

EveryWeek

week

Output τ∗ August 9 2013

FRI

Friday

1. < FRI , Friday >

Nil

of this

2. < Nil , of >
3. < Nil , this >
4. < Nil , of this >
5. < nil bias >

EveryWeek

week

6. < EveryWeek , week >

EveryWeek

Nil EveryWeek

7. < Nil of , EveryWeek >

8. < Nil this , EveryWeek >

9. < Nil of this , EveryWeek >

10. < Nil of , Sequence >
11. < Nil this , Sequence >
12. < Nil of this , Sequence >
13. < Nil , Sequence >
14. < Nil , EveryWeek >

FRI ∩ EveryWeek

FRI EveryWeek

15. < Sequence , Sequence >
16. < Intersect , FRI , EveryWeek >

17. < root valid >

(a) (b)

Figure 2: An example parse of Friday of this week, along with the features extracted from the parse.
A summary of the input, latent parse, and output for a particular example is given in (a). The features
extracted for each fragment of the parse are given in (b), and described in detail in Section 4.2.

We now also have the flexibility to extract a sec-
ond class of features from the semantics of the
derivation. We define a feature bracketing the
most recent semantic function applied to each of
the two child derivations; along with the function
being applied in the rule application. If the child
is a preterminal, the semantics of the pretermi-
nal are used; otherwise, the outermost (most re-
cent) function to be applied to the derivation is
used. To illustrate, a tree fragment combining
August and 2013 into August 2013 would
yield the feature<INTERSECT, AUGUST, 2013>.
This can be read as a feature for the rule apply-
ing the intersect function to August and 2013.
Furthermore, intersecting August 2013 with
the 12th of the month would yield a feature
<INTERSECT, INTERSECT, 12th>. This can be
read as applying the intersect function to a subtree
which is the intersection of two terms, and to the
12th of the month. Features 14 and 16 in Figure 2
(b) are examples of such features.

Lexical Features The second large class of fea-
tures extracted are lexicalized features. These are
primarily used for tagging phrases with pretermi-

nals; however, they are also relevant in incorporat-
ing cues from the yield of Nil spans. To illustrate, a
week and the week have very different meanings,
despite differing by only their Nil tagged tokens.

In the first case, a feature is extracted over the
value of the preterminal being extracted, and the
phrase it is subsuming (e.g., features 1–4 and 6 in
Figure 2 (b)). As the type of the preterminal is
deterministic from the value, encoding a feature
on the type of the preterminal would be a coarser
encoding of the same information, and is empir-
ically not useful in this case. Since a multi-word
expression can parse to a single nonterminal, a fea-
ture is extracted for the entire n-gram in addition
to features for each of the individual words. For
example, the phrase of this – of type Nil – would
have features extracted: <NIL, of>, <NIL, this>,
and <NIL, of this>.

In the second case – absorbing Nil-tagged spans
– we extract features over the words under the Nil
span joined with the type and value of the other
derivation (e.g., features 7–12 in Figure 2 (b)).
As above, features are extracted for both n-grams
and for each word in the phrase. For example,
combining of this and week would yield features
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Train Test
System Type Value Type Value
GUTime 0.72 0.46 0.80 0.42
SUTime 0.85 0.69 0.94 0.71
HeidelTime 0.80 0.67 0.85 0.71
ParsingTime 0.90 0.72 0.88 0.72
OurSystem 0.94 0.81 0.91 0.76

Table 3: English results for TempEval-2 attribute
scores for our system and four previous systems.
The scores are calculated using gold extents, forc-
ing an interpretation for each parse.

Train Test
System Type Value Type Value
UC3M — — 0.79 0.72
OurSystem 0.90 0.84 0.92 0.76

Table 4: Spanish results for TempEval-2 attribute
scores for our system and the best known previ-
ous system. The scores are calculated using gold
extents, forcing an interpretation for each parse.

<of, EVERYWEEK>, <this, EVERYWEEK>,
and <of this, EVERYWEEK>.

In both cases, numbers are featurized according
to their order of magnitude, and whether they are
ordinal. Thus, the number tagged from thirty-first
would be featurized as an ordinal number of mag-
nitude 2.

Semantic Validity Although some constraints
can be imposed to help ensure that a top-level
parse will be valid, absolute guarantees are diffi-
cult. For instance, February 30 is never a valid
date; but, it would be difficult to disallow any local
rule in its derivation. To mediate this, an indicator
feature is extracted denoting whether the grounded
semantics of the derivation is valid. This is illus-
trated in Figure 2 (b) by feature 17.

Nil Bias Lastly, an indicator feature is extracted
for each Nil span tagged (feature 5 in Figure 2
(b)). In part, this discourages over-generation of
the type; in another part, it encourages Nil spans to
absorb as many adjacent words as possible.

We proceed to describe our experimental setup
and results.

5 Evaluation

We evaluate our model on all six languages in
the TempEval-2 Task A dataset (Verhagen et al.,

2010), comparing against state-of-the-art systems
for English and Spanish. New results are reported
on smaller datasets from the four other languages.
To our knowledge, there has not been any prior
work on these corpora.

We describe the TempEval-2 datasets in Sec-
tion 5.1, present experimental results in Sec-
tion 5.2, and discuss system errors in Section 5.3.

5.1 TempEval-2 Datasets

TempEval-2, from SemEval 2010, focused on re-
trieving and reasoning about temporal information
from newswire. Our system evaluates against Task
A – detecting and resolving temporal expressions.
Since we perform only the second of these, we
evaluate our system assuming gold detection.

The dataset annotates six languages: English,
Spanish, Italian, French, Chinese, and Korean; of
these, English and Spanish are the most mature.
We describe each of these languages, along with
relevant quirks, below:

English The English dataset consists of 1052
training examples, and 156 test examples. Evalu-
ation was done using the official evaluation script,
which checks for exact match between TIMEX3
tags. Note that this is stricter than our training ob-
jective; for instance, 24 hours and a day have the
same interpretation, but have different TIMEX3
strings. System output was heuristically converted
to the TIMEX3 format; where ambiguities arose,
the convention which maximized training accu-
racy was chosen.

Spanish The Spanish dataset consists of 1092
training examples, and 198 test examples. Evalua-
tion was identical to the English, with the heuristic
TIMEX3 conversion adapted somewhat.

Italian The Italian dataset consists of 523 train-
ing examples, and 126 test examples. Evaluation
was identical to English and Spanish.

Chinese The Chinese dataset consists of 744
training examples, and 190 test examples. Of
these, only 659 training and 143 test examples had
a temporal value marked; the remaining examples
had a type but no value, and are therefore impossi-
ble to predict. Results are also reported on a clean
corpus with these impossible examples omitted.

The Chinese, Korean, and French corpora had
noticeable inconsistencies in the TIMEX3 anno-
tation. Thus, evaluations are reported according
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Train Test
Language # examples Type Value # examples Type Value
English 1052 0.94 0.81 156 0.91 0.76
Spanish 1092 0.90 0.84 198 0.92 0.76
Italian 523 0.89 0.85 126 0.84 0.38
Chinese† 744 0.95 0.65 190 0.87 0.48
Chinese (clean)† 659 0.97 0.73 143 0.97 0.60
Korean† 247 0.83 0.67 91 0.82 0.42
French† 206 0.78 0.76 83 0.78 0.35

Table 5: Our system’s accuracy on all 6 languages of the TempEval-2 corpus. Chinese is divided into two
results: one for the entire corpus, and one which considers only examples for which a temporal value
is annotated. Languages with a dagger (†) were evaluated based on semantic rather than string-match
correctness.

to the training objective: if two TIMEX3 values
ground to the same grounded time, they are con-
sidered equal. For example, in the example above,
24 hours and a day would be marked identical de-
spite having different TIMEX3 strings.

Most TIMEX3 values convert naturally to
a grounded representation; values with wild-
cards representing Sequences (e.g., 1998-QX or
1998-XX-12) ground to the same value as the
Sequence encoding that value would. For instance,
1998-QX is parsed as every quarter in 1998.

Korean The Korean dataset consists of 287
training examples, and 91 test examples. 40 of
the training examples encoded dates as a long in-
teger For example: 003000000200001131951006
grounds to January 13, 2000 at the time 19:51.
These were removed from the training set, yield-
ing 247 examples; however, all three such exam-
ples were left in the test set. Evaluation was done
identically to the Chinese data.

French Lastly, a dataset for French temporal
expressions was compiled from the TempEval-2
data. Unlike the other 5 languages, the French
data included only the raw TIMEX3 annotated
newswire documents, encoded as XML. These
documents were scraped to recover 206 training
examples and 83 test examples. Evaluation was
done identically to the Chinese and Korean data.

We proceed to describe our experimental results
on these datasets.

5.2 Results

We compare our system with state-of-the-art sys-
tems for both English and Spanish. To the best of
our knowledge, no prior work exists for the other

four languages.
We evaluate in the same framework as Angeli et

al. (2012). We compare to previous system scores
when constrained to make a prediction on every
example; if no guess is made, the output is consid-
ered incorrect. This in general yields lower results
for those systems, as the system is not allowed to
abstain on expressions it does not recognize.

The systems compared against are:

• GUTime (Mani and Wilson, 2000), a widely
used, older rule-based system.

• HeidelTime (Strötgen and Gertz, 2010), the
top system at the TempEval-2 task for En-
glish.

• SUTime (Chang and Manning, 2012), a more
recent rule-based system for English.

• ParsingTime (Angeli et al., 2012), a seman-
tic parser for temporal expressions, similar to
this system (see Section 2).

• UC3M (Vicente-Dı́ez et al., 2010), a rule-
based system for Spanish.

Results for the English corpus are shown in Ta-
ble 3. Results for Spanish are shown in Table 4.
Lastly, a summary of results in all six languages is
shown in Table 5.

A salient trend emerges from the results – while
training accuracy is consistently high, test accu-
racy drops sharply for the data-impoverished lan-
guages. This is consistent with what would be
expected from a discriminatively trained model
in data-impoverished settings; however, the con-
sistent training accuracy suggests that the model
nonetheless captures the phenomena it sees in
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Error Class English Spanish
Pragmatics 29% 23%
Type error 16% 5%
Incorrect number 10% 5%
Relative Range 7% 2%
Incorrect parse 19% 36%

Missing context 16% 23%
Bad reference time 3% 6%

Table 6: A summary of errors of our system,
by percentage of incorrect examples for the En-
glish and Spanish datasets. The top section de-
scribes errors which could be handled in our
framework, while the bottom section describes ex-
amples which are either ambiguous (missing con-
text), or are annotated inconsistently relative the
reference time.

training. This suggests the possibility for improv-
ing accuracy further by making use of more data
during training.

5.3 Discussion

We characterize the examples our system parses
incorrectly on the English and Spanish datasets in
Table 6, expanding on each class of error below.

Pragmatics This class of errors is a result of
pragmatic ambiguity over possible groundings of
a sequence – for instance, it is often ambiguous
whether next weekend refers to the coming or sub-
sequent weekend. These errors manifest in either
dropping a function (next, last), or imagining one
that is not supported by the text (e.g., this week
parsed as next week).

Type error Another large class of errors – par-
ticularly in the English dataset – arise from not
matching the annotation’s type, but otherwise pro-
ducing a reasonable response. For instance, the
system may mistake a day on the calendar (a
Range), with a day, the period of time.

Incorrect number A class of mistakes arises
from either omitting numbers from the parse, or
incorrectly parsing numbers – the second case is
particularly prevalent for written years, such as
seventeen seventy-six.

Relative Range These errors arise from attempt-
ing to parse a grounded Range by applying func-
tions to the reference time. For example, from
a reference time of August 8th, it is possible to

“correctly” parse the phrase August 1 as a week
ago; but, naturally, this parse does not general-
ize well. This class of errors, although relatively
small, merits special designation as it suggests a
class of correct responses which are correct for the
wrong reasons. Future work could explore miti-
gating these errors for domains where the text is
further removed from the events it is describing
than most news stories are.

Incorrect parse Errors in this class are a result
of failing to find the correct parse, for a number of
reasons not individually identified. A small sub-
set of these errors (notably, 6% on the Spanish
dataset) are a result of the grammar being insuf-
ficiently expressive with the preterminals we de-
fined. For instance, we cannot capture fractional
units, such as in half an hour.

Missing context A fairly large percentage of our
errors arise from failing to classify inputs which
express ambiguous or poorly defined times. For
example, from time to time (annotated as the fu-
ture), or that time (annotated as 5 years). Many
of these require either some sort of inference or a
broader understanding of the context in which the
temporal phrase is uttered, which our system does
not attempt to capture.

Bad reference time The last class of errors
cover cases where the temporal phrase is clear,
but annotation differs from our judgment of what
would be reasonable. These are a result of assum-
ing that the reference time of an utterance is the
publication time of the article.

6 Conclusion

We have presented a discriminative, multilingual
approach to resolving temporal expressions, using
a language-flexible latent parse and rich features
on both the types and values of partial derivations
in the parse. We showed state-of-the-art results
on both languages in TempEval-2 with prior work,
and presented results on four additional languages.
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Abstract

We propose a computationally efficient
graph-based approach for local coherence
modeling. We evaluate our system on
three tasks: sentence ordering, summary
coherence rating and readability assess-
ment. The performance is comparable to
entity grid based approaches though these
rely on a computationally expensive train-
ing phase and face data sparsity problems.

1 Introduction

Many NLP applications which process or gener-
ate texts rely on information about local coher-
ence, i.e. information about which entities occur
in which sentence and how the entities are dis-
tributed in the text. This led to the development
of many theories and models accounting for lo-
cal coherence. One popular model, the center-
ing model (Grosz et al., 1995), uses a ranking of
discourse entities realized in particular sentences
and computes transitions between adjacent sen-
tences to provide insight in the felicity of texts.
Centering models local coherence rather generally
and has been applied to the generation of refer-
ring expressions (Kibble and Power, 2004), to re-
solve pronouns (Brennan et al., 1987, inter alia),
to score essays (Miltsakaki and Kukich, 2004), to
arrange sentences in the correct order (Karamanis
et al., 2009), and to many other tasks. Poesio et
al. (2004) observe that it is not clear how to set
parameters in the centering model so that optimal
performance in different tasks and languages can
be achieved. Barzilay and Lapata (2008) criticize
research on centering to be too dependent on man-
ually annotated input. This led them to propose a
local coherence model relying on a more parsimo-
nious representation, the entity grid model.

The entity grid is a two dimensional array where
the rows represent sentences and the columns dis-
course entities. From this grid Barzilay and La-
pata (2008) derive probabilities of transitions be-
tween adjacent sentences which are used as fea-
tures for machine learning algorithms. They eval-
uate this approach successfully on sentence order-
ing, summary coherence rating, and readability as-
sessment. However, their approach has some dis-
advantages which they point out themselves: data
sparsity, domain dependence and computational
complexity, especially in terms of feature space is-
sues while building their model (Barzilay and La-
pata (2008, p.8, p.10, p.30), Elsner and Charniak
(2011, p.126, p.127)).

In order to overcome these problems we pro-
pose to represent entities in a graph and then
model local coherence by applying centrality mea-
sures to the nodes in the graph (Section 3). We
claim that a graph is a more powerful representa-
tion for local coherence than the entity grid (Barzi-
lay and Lapata, 2008) which is restricted to transi-
tions between adjacent sentences. The graph can
easily span the entire text without leading to com-
putational complexity and data sparsity problems.
Similar to the application of graph-based methods
in other areas of NLP (e.g. work on word sense
disambiguation by Navigli and Lapata (2010); for
an overview over graph-based methods in NLP
see Mihalcea and Radev (2011)) we model local
coherence by relying only on centrality measures
applied to the nodes in the graph. We apply our
graph-based model to the three tasks handled by
Barzilay and Lapata (2008) to show that it pro-
vides the same flexibility over disparate tasks as
the entity grid model: sentence ordering (Section
4.1), summary coherence ranking (Section 4.2),
and readability assessment (Section 4.3). In the
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The Turkish government fell after mob-tie allegations.

Turkey’s constitution mandates a secular republic despite its
Muslim majority.

Military and secular leaders pressured President Demirel to
keep the Islamic-oriented Virtue Party on the fringe.

Business leaders feared Virtue would alienate the EU.

Table 1: Excerpt of a manual summary M from
DUC2003

experiments sections, we discuss the impact of
genre and stylistic properties of documents on the
local coherence computation. We also show that,
though we do not need a computationally expen-
sive learning phase, our model achieves state-of-
the-art performance. From this we conclude that a
graph is an alternative to the entity grid model: it is
computationally more tractable for modeling local
coherence and does not suffer from data sparsity
problems (Section 5).

2 The Entity Grid Model

Barzilay and Lapata (2005; 2008) introduced the
entity grid, a method for local coherence modeling
that captures the distribution of discourse entities
across sentences in a text.

An entity grid is a two dimensional array, where
rows correspond to sentences and columns to dis-
course entities. For each discourse entityej and
each sentencesi in the text, the corresponding grid
cell cij contains information about the presence or
absence of the entity in the sentence. If the entity
does not appear in the sentence, the correspond-
ing grid cell contains an absence marker “−”. If
the entity is present in the sentence, the cell con-
tains a representation of the entity’s syntactic role:
“S” if the entity is a subject, “O” if it is an object
and “X” for all other syntactic roles (cf. Table 2).
When a noun is attested more than once with a
different grammatical role in the same sentence,
the role with the highest grammatical ranking is
chosen to represent the entity (a subject is ranked
higher than an object, which is ranked higher than
other syntactic roles).

Barzilay and Lapata (2008) capture local coher-
ence by means of local entity transitions, i.e. se-
quences of grid cells(c1j . . . cij . . . cnj) represent-
ing the syntactic function or absence of an entity in
adjacent sentences1. The coherence of a sentence
in relation to its local context is determined by the

1For complexity reasons, Barzilay and Lapata consider
only transitions between at most three sentences.
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s1 S X − − − − − − − − − − − − − −
s2 − − X S X O X − − − − − − − − −
s3 − − − − X − − X S X S X O X − −
s4 − − − − − − − − S − − S − − X O

Table 2: Entity Grid representation of summary M

local entity transitions of the entities present or ab-
sent in the sentence. To make this representation
accessible to machine learning algorithms, Barzi-
lay and Lapata (2008) compute for each document
the probability of each transition and generate fea-
ture vectors representing the sentences. Coherence
assessment is then formulated as a ranking learn-
ing problem where the ranking function is learned
with SVMlight (Joachims, 2002).

The entity grid approach has already been ap-
plied to many applications relying on local co-
herence estimation: summary rating (Barzilay
and Lapata, 2005), essay scoring (Burstein et al.,
2010) or story generation (McIntyre and Lapata,
2010). It was also used successfully in com-
bination with other systems or features. Sori-
cut and Marcu (2006) show that the entity grid
model is a critical component in their sentence or-
dering model for discourse generation. Barzilay
and Lapata (2008) combine the entity grid with
readability-related features to discriminate docu-
ments between easy- and difficult-to-read cate-
gories. Lin et al. (2011) use discourse relations to
transform the entity grid representation into a dis-
course role matrix that is used to generate feature
vectors for machine learning algorithms similarly
to Barzilay and Lapata (2008).

Several studies propose to extend the entity grid
model using different strategies for entity selec-
tion. Filippova and Strube (2007) aim to improve
the entity grid model performance by grouping en-
tities by means of semantic relatedness. In their
studies, Elsner and Charniak extend the number
and type of entities selected and consider that each
entity has to be dealt with accordingly with its in-
formation status (Elsner et al., 2007) or its named-
entity category (Elsner and Charniak, 2011). Fi-
nally, they include a heuristic coreference resolu-
tion component by linking mentions which share a
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Projection Projection

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

s1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 0 0 1 3 1 2 1 0 0 0 0 0 0 0 0 0
s3 0 0 0 0 1 0 0 1 3 1 3 1 2 1 0 0
s4 0 0 0 0 0 0 0 0 3 0 0 3 0 0 1 2

s1 s2 s3 s4

s1 0 0 0 0
s2 0 0 1 0
s3 0 0 0 1
s4 0 0 0 0

s1 s2 s3 s4

s1 0 0 0 0
s2 0 0 1 0
s3 0 0 0 2
s4 0 0 0 0

(d) Incidence Matrix (e) Unweighted Adjacency (f) Weighted Adjacency

Matrix Matrix

Figure 1: Bipartite graph for summary M from Table 1, one-mode projectionsand associated incidence
and adjacency matrices. Weights in Figure 1(a) are assigned as follows: “S” = 3, “O” = 2, “X” = 1,
“−” = 0 (no edge).

head noun. These extensions led to the best results
reported so far for the sentence ordering task.

3 Method

Our model is based on the insight that the en-
tity grid (Barzilay and Lapata, 2008) corresponds
to the incidence matrix of a bipartite graph rep-
resenting the text (see Newman (2010) for more
details on graph representation). A fundamental
assumption underlying our model is that this bi-
partite graph contains the entity transition infor-
mation needed for local coherence computation,
rendering feature vectors and learning phase un-
necessary. The bipartite graphG = (Vs, Ve, L, w)
is defined by two independent sets of nodes – that
correspond to the set of sentencesVs and the set of
entitiesVe of the text – and a set of edgesL associ-
ated with weightsw. An edge between a sentence
nodesi and an entity nodeej is created in the bi-
partite graph if the corresponding cellcij in the
entity grid is not equal to “−”. Each edge is asso-
ciated with a weightw(ej , si) that depends on the
grammatical role of the entityej in the sentence
si

2. In contrast to Barzilay and Lapata’s entity
grid that contains information about absent enti-
ties, our graph-based representation only contains
“positive” information. Figure 1(a) shows an ex-
ample of the bipartite graph that corresponds to the
grid in Table 2. The incidence matrix of this graph
(Figure 1(d)) is very similar to the entity grid.

2The assignment of weights is described in Section 4.

By modeling entity transitions, Barzilay and
Lapata rely on links that exist between sentences
to model local coherence. In the same spirit, we
apply different kinds of one-mode projections to
the sentence node setVs of the bipartite graph to
represent the connections that exist between – po-
tentially non adjacent – sentences in the graph.
These projections result in graphs where nodes
correspond to sentences. An edge is created be-
tween two nodes if the corresponding sentences
have a least one entity in common. Contrary to the
bipartite graph, one-mode projections are directed
as they follow the text order. Therefore, in projec-
tion graphs an edge can exist between the first and
the second sentence while the inverse is not pos-
sible. In our model, we define three kinds of pro-
jection graphs,PU , PW andPAcc, depending on
the weighting scheme associated with their edges.
In PU , weights are binary and equal1 when two
sentences have a least one entity in common (Fig-
ure 1(b)). InPW , edges are weighted according to
the number of entities “shared” by two sentences
(Figure 1(c)). InPAcc syntactic information is ac-
counted for by integrating the edge weights in the
bipartite graph. In this case, weights are equal to

Wik =
∑

e∈Eik

w(e, si) · w(e, sk) ,

whereEik is the set of entities shared bysi and
sk. Distance between sentencessi andsk can also
be integrated in the weight of one-mode projec-
tions to decrease the importance of links that ex-
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ists between non adjacent sentences. In this case,
the weights of the projection graphs are divided by
k − i.

From this graph-based representation, the local
coherence of a textT can be measured by comput-
ing the average outdegree of a projection graphP .
This centrality measure was chosen for two main
reasons. First, it allows us to evaluate to which ex-
tent a sentence is connected, in terms of discourse
entities, with the other sentences of the text. Sec-
ond, compared to other centrality measures, the
computational complexity of the average outde-
gree is low (O(N∗(N−1)

2 ) for a document com-
posed byN sentences), keeping the local coher-
ence estimation feasible on large documents and
on large corpora. Formally, the local coherence of
a textT is equal to

LocalCoherence(T ) = AvgOutDegree(P )

=
1

N

∑

i=1..N

OutDegree(si) ,

whereOutDegree(si) is the sum of the weights as-
sociated to edges that leavesi andN is the num-
ber of sentences in the text. This value can also be
seen as the sum of the values of the adjacency ma-
trix of the projection graph (Figures 1(e) and 1(f))
divided by the number of sentences.

4 Experiments

We compare our model with the entity grid ap-
proach and evaluate the influence of the different
weighting schemes used in the projection graphs,
eitherPW or PAcc, where weights are potentially
decreased by distance informationDist. Our
baseline corresponds to local coherence computa-
tion based on the unweighted projection graphPU .

For graph construction, all nouns in a document
are considered as discourse entities, even those
which do not head NPs as this is beneficial for
the entity grid model as described in Elsner and
Charniak (2011). We also propose to use a coref-
erence resolution system and consider coreferent
entities to be the same discourse entity. To do so,
we use one of the top performing systems from the
CoNLL 2012 shared task (Martschat et al., 2012).
As the coreference resolution system is trained on
well-formed textual documents and expects a cor-
rect sentence ordering, we use in all our experi-
ments only features that do not rely on sentence
order (e.g. alias relations, string matching, etc.).

Grammatical information associated with each
entity is extracted automatically thanks to the
Stanford parser using dependency conversion (de
Marneffe et al., 2006). Syntactic weights in the
bipartite graph are defined following the linguistic
intuition that subjects are more important than ob-
jects, which are themselves more important than
other syntactic roles. Preliminary experiments
show that as long as weight assignment follows
the scheme S> O > X, then more coherent docu-
ments are associated with a higher local coherence
value than less coherent document in 90% of cases
(while this value equals 49% when no restric-
tion is given on syntactic weights order). More-
over, as the local coherence computation is a lin-
ear combination of the syntactic weights, the func-
tion is smooth and no large variations of the local
coherence values are observed for small changes
of weights’ values. For these reasons, weights
w(e, si) are set as follows: 3 ife is subject insi, 2
if e is an object and 1 otherwise.

We evaluate the ability of our graph-based
model to estimate the local coherence of a tex-
tual document with three different experiments.
First, we perfom a sentence ordering task (Sec-
tion 4.1) as proposed in Barzilay and Lapata
(2008). Then, as the first task uses “artificial” doc-
uments, we also work on two other tasks that in-
volve “real” documents: summary coherence rat-
ing (Section 4.2), and readability assessment (Sec-
tion 4.3). In these experiments, distance compu-
tation and syntactic weights are the same for all
tasks and all corpora. However, the model is also
flexible and can be adaptated to the different tasks
by optimizing the parameters on a development
data set, which may give better results.

4.1 Sentence Ordering

The first experiment consists in ranking alternative
sentence orderings of a document, as proposed by
Barzilay and Lapata (2008) and Elsner and Char-
niak (2011).

4.1.1 Experimental Settings

The sentence ordering task can be performed in
two ways: discrimination and insertion. Discrimi-
nation consists in comparing a document to a ran-
dom permutation of its sentences. For this, our
system associates local coherence values with the
original document and its permutation, the output
of our system being considered as correct if the
score for the original document is higher than the
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score of its permutation. In the insertion task, pro-
posed by Elsner and Charniak (2011), we evaluate
the ability of our system to retrieve the original
position of a sentence previously removed from a
document. For this, each sentence is removed in
turn and a local coherence score is computed for
every possible reinsertion position. The system
output is considered as correct if the document as-
sociated with the highest local coherence score is
the one in which the sentence is reinserted in the
correct position.

These two tasks were performed on docu-
ments extracted from the English test part of the
CoNLL 2012 shared task (Pradhan et al., 2012).
This corpus, composed by documents of multiple
news sources – spoken or written – was preferred
to the ACCIDENTS and EARTHQUAKES corpora
used by Barzilay and Lapata (2008) for two rea-
sons. First, as mentioned by Elsner and Charniak
(2008), these corpora use a very constrained style
and are not typical of normal informative docu-
ments3. Second, we want to evaluate the influence
of automatically performed coreference resolution
in a controlled fashion. The coreference resolution
system used performs well on the CoNLL 2012
data. In this dataset, documents composed by the
concatenation of differents news articles or too
short to have at least 20 permutations were dis-
carded from the corpus. This filtering results in 61
documents composed of 36.1 sentences or 2064
word tokens on average. In both discrimination
and insertion, we compare our system against a
random baseline where random values are associ-
ated with the different orderings.

4.1.2 Discrimination

Accuracy is used to evaluate the ability of our sys-
tem to discriminate a document from 20 differ-
ent permutations. It equals the number of times
our system gives the highest score to the original
document, divided by the number of comparisons.
Since the model can give the same score for a per-
mutation and the original document, we also com-
pute F-measure where recall iscorrect/total and
precision equalscorrect/decisions. We test sig-
nificance using the Student’s t-test that can detect
significant differences between paired samples.
Moreover, as increasing the number of hypotheses

3Our graph-based model obtains for the discrimination
task an accuracy of 0.846 and 0.635 on theACCIDENTS and
EARTHQUAKESdatasets, respectively, compared to 0.904 and
0.872 as reported by Barzilay and Lapata (2008).

Acc F Acc F
Random 0.496 0.496
B&L 0.877 0.877
E&C 0.915 0.915

wo coref w coref
PU , Dist 0.830 0.830 0.833 0.833
PW , Dist 0.871 0.871 0.849 0.849
PAcc, Dist 0.889 0.889 0.852 0.852

Table 3: Discrimination, reproduced baselines
(B&L: Barzilay and Lapata (2008); E&C Elsner
and Charniak (2011)) vs. graph-based

in a test can also increase the likelihood of wit-
nessing a rare event, and therefore, the chance to
reject the null hypothesis when it is true, we use
the Bonferroni correction to adjust the increased
random likelihood of apparent significance.

Table 3 presents the values obtained by three
baseline systems when applied to our corpus. Re-
sults for the entity grid models described by Barzi-
lay and Lapata (2008) and Elsner and Charniak
(2011) are obtained by using Micha Elsner’s reim-
plementation in the Brown Coherence Toolkit4.
The system was trained on the English training
part of the CoNLL 2012 shared task filtered in the
same way as the test part.

Table 3 also displays the results for our model.
These values show that our system performs com-
parable to the state-of-the-art. Indeed, the differ-
ence between our best results and those of Elsner
and Charniak are not statistically significant.

In this experiment, distance information is criti-
cal. Without it, it is not possible to distinguish be-
tween an original document and one of its permu-
tation as both contain the same number and kind
of entities. Distance however can detect changes
in the distribution of entities within the document
as space between entities is significantly modi-
fied when sentence order is permuted. When the
number of entities “shared” by two sentences is
taken into account (PW ), the accuracy of our sys-
tem grows (from 0.830 to 0.871). Table 3 finally
shows that syntactic information improves the per-
formance of our system (yet not significantly) and
gives the best results (PAcc).

We also evaluated the influence of coreference
resolution on the performance of our system. Us-

4https://bitbucket.org/melsner/
browncoherence; B&L is Elsner’s “baseline entity
grid” (command line option ’-n’), E&C is Elsner’s “extended
entity grid” (’-f’)
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Acc. Ins. Acc. Ins.
Random 0.028 0.071
E&C 0.068 0.167

wo coref w coref
PU , Dist 0.062 0.101 0.068 0.120
PW , Dist 0.075 0.114 0.070 0.138
PAcc, Dist 0.071 0.102 0.067 0.097

Table 4: Insertion, reproduced baselines vs. graph-
based

ing coreference resolution improves the perfor-
mance of the system when distance information is
used alone in the system (Table 3). However, this
improvement is not statistically significant.

4.1.3 Insertion

Sentence insertion is much more difficult than dis-
crimination for two reasons. First, in insertion,
permutations only differ by one sentence. Second,
a document is compared to many more permuta-
tions in insertion task than in discrimination.

In complement to accuracy, we use the insertion
score introduced by Elsner and Charniak (2011)
for evaluation. This score – the higher, the better
– computes the proximity between the initial and
the proposed position of a sentence, averaged by
the number of sentences.

Table 4 shows that, as expected, results for this
task are much lower than those obtained for dis-
crimination. However they are still comparable
with the results of Elsner and Charniak (2011)5.

As previously and for the same reasons, dis-
tance information is critical for this task. The best
results, that present a statistically significant im-
provement when compared to the random base-
line, are obtained when distance information and
the number of entities “shared” by two sentences
are taken into account (PW ). We can see that the
accuracy value obtained with our system is higher
than the one provided with the entity grid model.
However, the entity grid model reaches a signifi-
cantly higher insertion score. This means that, if it
makes more mistakes than our system, the position
chosen by the entity grid model is usually closer
to the correct position. Finally, contrary to the
discrimination task, syntactic information (PAcc)
does not improve the performance of our system.

5Their results are slightly lower than those presented in
their paper, probably because our corpus is composed by doc-
uments that can be longer than the ones used in their experi-
ments (Wall Street Journal articles).

When the coreference resolution system is used,
the best accuracy value decreases while the inser-
tion score increases from 0.114 to 0.138 (Table 4).
Therefore, coreference resolution tends to asso-
ciate positions that are closer to the original ones.

4.2 Summary Coherence Rating

To reconfirm the hypothesis that our model can es-
timate the local coherence of a textual document,
we perform a second experiment, summary co-
herence rating. To this end, we apply our model
on the corpus used and proposed by Barzilay and
Lapata (2008). As the objective of our model is
to estimate thecoherence of a summary, we pre-
fer this dataset to other summarization evaluation
task corpora, as these account for other dimen-
sions of the summaries: content selection, fluency,
etc. Starting with a pair of summaries, one slightly
more coherent than the other, the objective of the
task is to order the two summaries according to
local coherence.

4.2.1 Experimental Settings

For the summary coherence rating experiment,
pairs to be ordered are composed of summaries
extracted from the Document Understanding Con-
ference (DUC 2003). Summaries, provided either
by humans or by automatic systems, were judged
by seven humans annotators and associated with
a coherence score (for more details on this score
see Barzilay and Lapata (2008)). 80 pairs were
then created, each of these being composed by two
summaries of a same document where the score
of one of the summaries is significantly higher
than the score of the second one. Even though all
summaries are of approximately the same length
(114.2 words on average), their sentence length
can vary considerably. Indeed, more coherent
summaries tend to have more sentences and con-
tain less entities.

For evaluation purposes, the accuracy still cor-
responds to the number of correct ratings di-
vided by the number of comparisons, while the F-
measure combines recall and precision measures.
As before, significance is tested with the Student’s
t-test accounting for the Bonferroni correction.

4.2.2 Results

Table 5 compares the results reported by Barzilay
and Lapata (2008) on the exact same corpus with
the results obtained with our system. It shows that
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Acc. F Acc. F
B&L 0.833

wo coref w coref
PU 0.800 0.815 0.700 0.718
PW 0.613 0.613 0.538 0.548
PAcc 0.700 0.704 0.638 0.638
PU , Dist 0.650 0.658 0.550 0.557
PW , Dist 0.525 0.525 0.513 0.513
PAcc, Dist 0.700 0.700 0.588 0.588

Table 5: Summary Coherence Rating, reported re-
sults from Barzilay and Lapata (2008) vs. graph-
based

our system gives results comparable to those ob-
tained by Barzilay and Lapata (2008).

This table also shows that, contrary to sentence
ordering task, accounting for the distance between
two sentences (Dist) tends to decrease the results.
This difference is explained by the fact that a man-
ual summary, usually considered as more coher-
ent by humans annotators, tends to contain more
(and shorter) sentences than an automatic one. As
adding distance information decreases the value of
our local coherence score, our graph-based model
gives better results without it.

Moreover, in contrast to the first experiment,
when accounting for the number of entities
“shared” by two sentences (PW ), values of accu-
racy and F-measure are lower. We explain this
behaviour by the number of sentences contained
in the less coherent documents. Indeed, they are
composed by a smaller number of sentences but
contain more entities on average. This means that,
in these documents, two sentences tend to share
a larger number of entities and therefore have a
higher local coherence score when thePW projec-
tion graph is used.

When combined with distance information,
syntactic information still improves the results
(PAcc), though not significantly, but does not lead
to the best results for this task.

Finally, Table 5 also shows that using a coref-
erence resolution system for document represen-
tation does not improve the performance of our
system. We believe that, as mentioned by Barzi-
lay and Lapata (2008), this degradation is related
to the fact that automatic summarization systems
do not use anaphoric expressions which makes the
coreference resolution system useless in this case.

With our graph-based model, the best results are

obtained by the baseline (PU ), and experiments
show that adding information about distance or
syntax does not help in this context. It seems
therefore necessary to integrate information that is
more appropriate to summaries. Although making
the model more appropriate for a specific task is
out of the scope of this paper, our model is flex-
ible and accounting for information about genre
differences or sentence length, by adding weights
in the graph-based representation of the document,
is feasible without any modification of the model.

4.3 Readability Assessment

Barzilay and Lapata (2008) argue that grid models
are domain and style dependent. Therefore they
proposed a readability assessment task to test if the
entity grid model can be used for style classifica-
tion. They combined their model with Schwarm
and Ostendorf’s (2005) readability features and
use Support Vector Machines to classify docu-
ments in two categories. With the same intention,
we evaluate the ability of our model to differenti-
ate “easy to read” documents from difficult ones.

4.3.1 Experimental Settings

The objective of the readability assessment task
is to evaluate how difficult to read a document is.
We perform this task on the data used by Barzilay
and Lapata (2008), a corpus collected originally
by Barzilay and Elhadad (2003) from theEncy-
clopedia Britannica and its version for children,
theBritannica Elementary. Both versions contain
107 articles. InEncyclopedia Britannica, docu-
ments are composed by an average of 83.1 sen-
tences while they contain 36.6 sentences inBri-
tannica Elementary. Although these texts are not
explicitly annotated with grade levels, they repre-
sent two broad readability categories.

In order to estimate the complexity of a doc-
ument, our model computes the local coherence
score for each article in the two categories. The
article associated with the higher score is consid-
ered to be the more readable as it is more coherent,
needing less interpretation from the reader than a
document associated with a lower local coherence
score. Values presented in the following section
correspond to accuracy, where the system is cor-
rect if it assigns the higher local coherence score to
the most “easy to read” document, and F-measure.
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Acc. F Acc. F
S&O 0.786
B&L 0.509
B&L + S&O 0.888

wo coref w coref
PU 0.589 0.589 0.374 0.374
PW 0.579 0.579 0.383 0.383
PAcc 0.645 0.645 0.421 0.421
PU , Dist 0.589 0.589 0.280 0.280
PW , Dist 0.570 0.570 0.290 0.290
PAcc, Dist 0.766 0.766 0.308 0.308

Table 6: Readability, reported results from Barzi-
lay and Lapata (2008) vs. graph-based (S&O:
Schwarm and Ostendorf (2005))

4.3.2 Results

In order to compare our results with those reported
by Barzilay and Lapata (2008), entities used for
the graph-based representation are discourse enti-
ties that head NPs.

Table 6 shows that, for this task, syntactic in-
formation plays a dominant role (PAcc). A sta-
tistically significant improvement is provided by
including syntactic information. It gives more
weight to subject entities that are more numerous
in the Britannica Elementary documents which
are composed by simpler and shorter sentences.
Finally, when distance is accounted for together
with syntactic information, the accuracy is signif-
icantly improved (p< 0.01) with regard to the re-
sults obtained with syntactic information only.

Table 6 also shows that when the number of en-
tities “shared” by two sentences is accounted for
(PW ), the results are lower. Indeed,Encyclope-
dia Britannica documents are composed by longer
sentences, that contain a higher number of enti-
ties. This increases the local coherence value of
difficult documents more than the value of “easy
to read” documents, that contain less entities.

When our graph-based representation used the
coreference resolution system, unlike the observa-
tion of Barzilay and Lapata (2008), the results of
our model decrease significantly. The poor perfor-
mance of our system in this case can be explained
by the fact that the coreference resolution system
regroups more entities inEncyclopedia Britannica
documents than inBritannica Elementary ones.
Therefore, the number of entities that are “shared”
by two sentences increases more importantly in
theEncyclopedia Britannica corpus, while the dis-

tance between two occurrences of one entity de-
creases in a more significant manner. For these
reasons, the coherence scores associated with “dif-
ficult to read” documents tend to be higher when
coreference resolution is performed on our data,
which reduces the performance of our system. As
before, syntactic information leads to the best re-
sults, but does not allow the accuracy to be higher
than random anymore.

Compared to the results provided by Barzi-
lay and Lapata (2008) with the entity grid model
alone, our representation outperforms their model
significantly. We believe that this difference is
caused by how syntactic information is introduced
in the document representation and by the fact
that our system can deal with entities that appear
throughout the whole document while the entity
grid model only looks at entities within a three
sentences windows. Our model which captures
exclusively local coherence is almost on par with
the results reported for Schwarm & Ostendorf’s
(2005) system which relies on a wide range of lex-
ical, syntactic and semantic features. Only when
Barzilay and Lapata (2008) combine the entity
grid with Schwarm & Ostendorf’s features they
reach performance considerably better than ours.

In addition to the experiments proposed by
Barzilay and Lapata (2008), we used a third read-
ability category, theBritannica Student, that con-
tains articles targeted for youths (from 11 to 14
years old). These documents, which are quite sim-
ilar to theEncyclopedia Britannica ones, are com-
posed by an average of 44.1 sentences. As we
were only able to find 99 articles out of the 107
original ones in this category, sub corpora of the
three categories were used for the comparison with
theBritannica Student articles.

Table 7 shows the results obtained for the com-
parisons between the two first categories and the
Britannica Student articles. As previously, coref-
erence resolution tends to lower the results, there-
fore only values obtained without coreference res-
olution are reported in the table.

When articles fromBritannica Student are com-
pared to articles extracted fromEncyclopedia Bri-
tannica, Table 7 shows that the different param-
eters have the same influence as for comparing
betweenEncyclopedia Britannica andBritannica
Elementary: statistically significant improvement
with syntactic information, higher values when
distance is taken into account, etc. However, it
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Brit. vs. Stud. Stud. vs. Elem.
Acc. F Acc. F

PU 0.444 0.444 0.667 0.667
PW 0.434 0.434 0.636 0.636
PAcc 0.465 0.465 0.707 0.707
PU , Dist 0.475 0.475 0.646 0.646
PW , Dist 0.485 0.485 0.616 0.616
PAcc, Dist 0.556 0.556 0.657 0.657

Table 7: Readability, comparison betweenEncy-
clopedia Britannica, Britannica Elementary and
Britannica Student

can also be seen that accuracy and F-measure are
lower for comparing these two corpora. This is
probably due to the stylistic difference between
these two kinds of articles, which is less signifi-
cant than the difference between articles fromEn-
cyclopedia Britannica andBritannica Elementary.

Concerning the comparison betweenBritannica
Student and Britannica Elementary articles, Ta-
ble 7 shows that integrating distance information
gives slightly different results and tends to de-
crease the values of accuracy and F-measure. This
is explained by the fact thatBritannica Elementary
documents contain fewer entities thanBritannica
Student articles. As the length of the two kinds of
articles is similar, distance between entities inBri-
tannica Elementary documents is more important.
As a result, accounting for distance information
lowers the local coherence values for the more co-
herent document, which reduces the performance
of our model. As previously, syntactic information
improves the results and, for this comparison, the
best result is obtained when syntactic information
alone is accounted for. This leads to an accuracy
which is almost equal to the one when comparing
Encyclopedia Britannica andBritannica Elemen-
tary (0.707 against 0.766).

These two additional experiments show that our
model is style dependent. It obtains better results
when it has to distinguish betweenEncyclopedia
Britannica andBritannica Elementary or Britan-
nica Student and Britannica Elementary articles
which present a more important difference from
a stylictic point of view than articles fromEncy-
clopedia Britannica andBritannica Elementary.

5 Conclusions

In this paper, we proposed an unsupervised and
computationally efficient graph-based local coher-

ence model. Experiments show that our model is
robust among tasks and domains, and reaches rea-
sonable results for three tasks with the same pa-
rameter values and settings (i.e. accuracy values
of 0.889, 0.70 and 0.766 for sentence ordering,
summary coherence rating and readability assess-
ment tasks respectively (PAcc, Dist)). Moreover,
our model can be optimized and obtains results
comparable with entity grid based methods when
proper settings are used for each task.

Our model has two main advantages over the
entity grid model. First, as the graph used for doc-
ument representation contains information about
entity transitions, our model does not need a learn-
ing phase. Second, as it relies only on graph cen-
trality, our model does not suffer from the com-
putational complexity and data sparsity problems
mentioned by Barzilay and Lapata (2008).

Our current model leaves space for improve-
ment. Future work should first investigate the inte-
gration of information about entities. Indeed, our
model only uses entities as indications of sentence
connection although it has been shown that distin-
guishing important from unimportant entities, ac-
cording to their named-entity category, has a pos-
itive impact on local coherence computation (El-
sner and Charniak, 2011). Moreover, future work
should also examine the use of discourse relation
information, as proposed in (Lin et al., 2011). This
can be easily done by adding edges in the projec-
tion graphs when sentences contain entities related
from a discourse point of view while Lin et al.’s
approach suffers from complexity and data spar-
sity problems similar to the entity grid model.

Finally, these promising results on local coher-
ence modeling make us believe that our graph-
based representation can be used without much
modification for other tasks, e.g. extractive sum-
marization or topic segmentation. This could be
achieved with link analysis algorithms such as
PageRank, that decide on the importance of a (sen-
tence) node within a graph based on global infor-
mation recursively drawn from the entire graph.
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Abstract

Automated annotation of social behavior
in conversation is necessary for large-scale
analysis of real-world conversational data.
Important behavioral categories, though,
are often sparse and often appear only
in specific subsections of a conversation.
This makes supervised machine learning
difficult, through a combination of noisy
features and unbalanced class distribu-
tions. We propose within-instance con-
tent selection, using cue features to selec-
tively suppress sections of text and bias-
ing the remaining representation towards
minority classes. We show the effective-
ness of this technique in automated anno-
tation of empowerment language in online
support group chatrooms. Our technique
is significantly more accurate than multi-
ple baselines, especially when prioritizing
high precision.

1 Introduction

Quantitative social science research has experi-
enced a recent expansion, out of controlled set-
tings and into natural environments. With this
influx of interest comes new methodology, and
the inevitable question arises of how to move
towards testable hypotheses, using these uncon-
trolled sources of data as scientific lenses into the
real world.

The study of conversational transcripts is a key
domain in this new frontier. There are certain
social and behavioral phenomena in conversation
that cannot be easily identified through question-
naire data, self-reported surveys, or easily ex-
tracted user metadata. Examples of these social
phenomena in conversation include overt displays
of power (Prabhakaran et al., 2012) or indicators
of rapport and relationship building (Wang et al.,

2012). Manually annotating these social phenom-
ena cannot scale to large data, so researchers turn
to automated annotation of transcripts (Rosé et al.,
2008). While machine learning is highly effec-
tive for annotation tasks with relatively balanced
labels, such as sentiment analysis (Pang and Lee,
2004), more complex social functions are often
rarer. This leads to unbalanced class label distri-
butions and a much more difficult machine learn-
ing task. Moreover, features indicative of rare so-
cial annotations tend to be drowned out in favor of
features biased towards the majority class. The net
effect is that classification algorithms tend to bias
towards the majority class, giving low accuracy for
rare class detection.

Automated annotation of social phenomena also
brings opportunities for real-world applications.
For example, real-time annotation of conversation
can power adaptive intervention in collaborative
learning settings (Rummel et al., 2008; Adamson
and Rosé, 2012). However, with the considerable
power of automation comes great responsibility. It
is critical to avoid intervening in the case of er-
roneous annotations, as providing unnecessary or
inappropriate support in such a setting has been
shown to be harmful to group performance and so-
cial cohesion (Dillenbourg, 2002; Stahl, 2012).

We propose adaptations to existing machine
learning algorithms which improve recognition of
rare annotations in conversational text data. Our
primary contribution comes in the form of within-
instance content selection. We develop a novel al-
gorithm based on textual cues, suppressing infor-
mation which is likely to be irrelevant to an in-
stance’s class label. This allows features which
predict minority classes to gain prominence, help-
ing to sidestep the frequency of common features
pointing to a majority class label.

Additionally, we propose modifications to ex-
isting algorithms. First, we identify a new appli-
cation of logistic model trees to text data. Next,

104



we define a modification of confidence-based en-
semble voting which encourages minority class la-
beling. Using these techniques, we demonstrate a
significant improvement in classifier performance
when recognizing the language of empowerment
in support group chatrooms, a critical application
area for researchers studying conversational inter-
actions in healthcare (Uden-Kraan et al., 2009).

The remainder of this paper is structured as fol-
lows. We introduce the domain of empowerment
in support contexts, along with previous studies on
the challenges that these annotations (and similar
others) bring to machine learning. We introduce
our new technique for improving the ability to au-
tomate this annotation, along with other optimiza-
tions to the machine learning workflow which are
tailored to this skewed class balance. We present
experimental results showing that our method is
effective, and provide a detailed analysis of the be-
havior of our model and the features it uses most.
We conclude with a discussion of particularly use-
ful applications of this work.

2 Background

We ground this paper’s discussion of machine
learning with a real problem, turning to the an-
notation of empowerment language in chat1. The
concept of empowerment, while a prolific area
of research, lacks a broad definition across pro-
fessionals, but broadly relates to “the power to
act efficaciously to bring about desired results”
(Boehm and Staples, 2002) and “experiencing per-
sonal growth as a result of developing skills and
abilities along with a more positive self-definition”
(Staples, 1990). Participants in online support
groups feel increased empowerment (Uden-Kraan
et al., 2009; Barak et al., 2008). Quantita-
tive studies have shown the effect of empower-
ment through statistical methods such as structural
equation modeling (Vauth et al., 2007), as have
qualitative methods such as deductive transcript
analysis (Owen et al., 2008) and interview studies
(Wahlin et al., 2006).

The transition between these styles of research
has been gradual. Pioneering work has demon-
strated the ability to distinguish empowerment lan-
guage in written texts, including prompted writ-
ing samples (Pennebaker and Seagal, 1999), nar-

1Definitions of empowerment are closely related to the
notion of self-efficacy (Bandura, 1997). For simplicity, we
use the former term exclusively in this paper.

Table 1: Empowerment label distribution in our
corpus.

Annotation Label # %
Self-Empowerment NA 1522 79.3

POS 202 10.5
NEG 196 10.2

Other-Empowerment NA 1560 81.3
POS 217 11.3
NEG 143 7.4

ratives in online forums (Hoybye et al., 2005), and
some preliminary analysis of synchronous discus-
sion (Ogura et al., 2008; Mayfield et al., 2012b).
These transitional works have used limited analy-
sis methodology; in the absence of sophisticated
natural language processing, their conclusions of-
ten rely on coarse measures, such as word counts
and proportions of annotations in a text.

Users, of course, do not express empowerment
in every thread in which they participate, which
leads to a challenge for machine learning. Threads
often focus on a single user’s experiences, in
which most participants in a chat are merely com-
mentators, if they participate at all, matching pre-
vious research on shifts in speaker salience over
time (Hassan et al., 2008). This leads to many
user threads which are annotated as not applicable
(N/A). We move to our proposed approach with
these skewed distributions in mind.

3 Data

Our data consists of a set of chatroom conversa-
tion transcripts from the Cancer Support Commu-
nity2. Each 90-minute conversation took place in
the context of a weekly meeting in a real-time chat,
with up to 6 participants in addition to a profes-
sional therapist facilitating the discussion. In to-
tal, 2,206 conversations were collected from 2007-
2011. This data offers potentially rich insight into
coping and social support; however, annotating
such a dataset by hand would be prohibitively ex-
pensive, even when it is already transcribed.

Twenty-one of these conversations have been
annotated, as originally described and analyzed
in (Mayfield et al., 2012b)3. This data was dis-
entangled into threads based on common themes
or topics, as in prior work (Elsner and Charniak,

2www.cancersupportcommunity.org
3All annotations were found to be adequately reliable be-

tween humans, with thread disentanglement f = 0.75 and
empowerment annotation κ > 0.7.
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Figure 1: An example mapping from a single thread’s chat lines (left) to the per-user, per-thread instances
used for classification in this paper (right), with example annotations for self-empowerment indicated.

2010; Adams and Martel, 2010). A novel per-
user, per-thread annotation was then employed
for empowerment annotation, following a coding
manual based on definitions like those in Section
2. Each user was assigned a label of positive
or negative empowerment if they exhibited such
emotions, or was left blank if they did not do so
within the context of that thread. This annotation
was performed both for their self-empowerment
as well as their attitude towards others’ situations
(other-empowerment). An example of this annota-
tion for self-empowerment is presented in Figure
1 and the distribution of labels is given in Table 1.

Most previous annotation tasks attempt to an-
notate on a per-utterance basis, such as dialogue
act tagging (Popescu-Belis, 2008), or on arbitrary
spans of text, such as in the MPQA subjectivity
corpus (Wiebe et al., 2005). However, for our task,
a per-user, per-thread annotation is more appropri-
ate, because empowerment is often indicated best
through narrative (Hoybye et al., 2005). Human
annotators are instructed to take this context into
account when annotating (Mayfield et al., 2012b).
It would therefore be nonsensical to annotate indi-
vidual lines as “embodying” empowerment. Simi-
lar arguments have been made for sentiment, espe-
cially as the field moves towards aspect-oriented
sentiment (Breck et al., 2007). Assigning labels
based on thread boundaries allows for context to
be meaningfully taken into account, without cross-
ing topic boundaries.

However, this granularity comes with a price:
the distribution of class values in these instances
is highly skewed. In our data, the vast majority of
users’ threads are marked as not applicable to em-
powerment. Perhaps more inconveniently, while
taking context into account is important for reli-
able annotation, it leads to extraneous information
in many cases. Many threads can have multiple
lines of contributions that are topically related to
an expression of empowerment (and thus belong
in the same thread), but which do not indicate any
empowerment themselves. This exacerbates the
likelihood of instances being classified as N/A.

We choose to take advantage of these attributes
of threads. We know from research in discourse
analysis that many sections of conversations are
formulaic and rote, like introductions and greet-
ings (Schegloff, 1968). We additionally know that
polarity often shifts in dialogue through the use
of discourse connectives such as conjunctions and
transitional phrases. These issues have been ad-
dressed in work in the language technologies com-
munity, most notably through the Penn Discourse
Treebank (Prasad et al., 2008); however, their ap-
plications to noisier synchronous conversation has
beenrare in computational linguistics.

With these linguistic insights in mind, we ex-
amine how we can make best use of them for
machine learning performance. While techniques
for predicting rare events (Weiss and Hirsh, 1998)
and compensating for class imbalance (Frank and
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Bouckaert, 2006), these approaches generally fo-
cus on statistical properties of large class sets with-
out taking the nature of their datasets into account.
In the next section, we propose a new algorithm
which takes advantage specifically of the linguis-
tic phenomena in the conversation-based data that
we study for empowerment detection. As such,
our algorithm is highly suited to this data and task,
with the necessary tradeoff in uncertain generality
to new domains with unrelated data.

4 Cue Discovery for Content Selection

Our algorithm performs content selection by
learning a set of cue features. Each of these fea-
tures indicates some linguistic function within the
discourse which should downplay the importance
of features either before or after that discourse
marker. Our algorithm allows us to evaluate the
impact of rules against a baseline, and to itera-
tively judge each rule atop the changes made by
previous rules.

This algorithm fits into existing language tech-
nologies research which has attempted to partition
documents into sections which are more or less
relevant for classification. Many researchers have
attempted to make use of cue phrases (Hirschberg
and Litman, 1993), especially for segmentation
both in prose (Hearst, 1997) and conversation
(Galley et al., 2003). The approach of content se-
lection, meanwhile, has been explored for senti-
ment analysis (Pang and Lee, 2004), where indi-
vidual sentences may be less subjective and there-
fore less relevant to the sentiment classification
task. It is also similar conceptually to content
selection algorithms that have been used for text
summarization (Teufel and Moens, 2002) and text
generation (Sauper and Barzilay, 2009), both of
which rely on finding highly-relevant passages
within source texts.

Our work is distinct from these approaches.
While we have coarse-grained annotations of em-
powerment, there is no direct annotation of what
makes a good cue for content selection. With
our cues, we hope to take advantage of shallow
discourse structure in conversation, such as con-
trastive markers, making use of implicit structure
in the conversational domain.

4.1 Notation

Before describing extensions to the baseline lo-
gistic regression model, we define notation. Our

data is arranged hierarchically. We assume that
we have a collection of d training documents Tr =
{D1 . . . Dd}, each of which contains many train-
ing instances (in our task, an instance consists of
all lines of chat from one user in one thread). Our
total set of n instances I thus consists of instances
{I1, I2, . . . In}. Each document contains lines of
chat L and each instance Ii is comprised of some
subset of those lines, Li ⊆ L.

Our feature space X = {x1, x2, . . . xm} con-
sists of m unigram features representing the ob-
served vocabulary used in our corpus. Each in-
stance is associated with a feature vector x̄ con-
taining values for each x ∈ X, and each feature
x that is present in the i-th instance maintains a
“memory” of the lines in which it appeared in that
instance, Lix, where Lix ⊆ Li. Our potential out-
put labels consist of Y = {NA,NEG,POS},
though this generalizes to any nominal classifica-
tion task. Each instance I is associated with ex-
actly one y ∈ Y for self-empowerment and one
for other-empowerment; these two labels do not
interact and our tasks are treated as independent
in this paper4. We define classifiers as functions
f(x̄→ y ∈ Y); in practice, we use logistic regres-
sion via LibLINEAR (Fan et al., 2008).

We define a content selection rule as a pairing
r = 〈c, t〉 between a cue feature c ∈ X and a se-
lection function t ∈ T . We created a list of possi-
ble selection functions, given a cue c, maximizing
for generality while being expressive. These are
illustrated in Figure 2 and described below:

• Ignore Local Future (A): Ignore all features
from the two lines after each occurrence of c.

• Ignore All Future (B): Ignore all features
occurring after the first occurrence of c.

• Ignore Local History (C): Ignore all features
in the two lines preceding each occurrence of
c.

• Ignore All History (D): Ignore all features
occurring only before the last occurrence of
c.

We define an ensemble member E = 〈R, fR〉 -
the ordered list of learned content selection rules
R = [r1, r2, . . . ] and a classifier fC trained on in-
stances transformed by those rules. Our final out-

4Future work may examine the interaction of jointly an-
notating multiple sparse social phenomena.
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Figure 2: Effects of content selection rules, based
on a cue feature (ovals) observed at lines m and n.

put of a trained model is a set of ensemble mem-
bers {E1, . . . , Ek}.

4.2 Algorithm

Our ensemble learning follows the paradigm
of cross-validated committees (Parmanto et al.,
1996), where k ensemble members are trained by
subdividing our training data into k subfolds. For
each ensemble classifier, cue rulesR are generated
on k − 1 subfolds (Trk) and evaluated on the re-
maining subfold (Tek). In practice, with 21 train-
ing documents, 7-fold cross-validation, and k = 3
ensemble members, each generation set consists
of 12 documents’ instances, while each evaluation
set contains instances from 6 documents.

Our full algorithm is presented in Algorithm
1, and is broken into component parts for clar-
ity. Algorithm 2 begins by measuring the base-
line classifier’s ability to recognize minority-class
labels. After training on Trk, we measure the
average probability assigned to the correct label
of instances in Tek, but only for instances whose
correct labels are minority classes (remember, be-
cause both Trk and Tek are drawn from the over-
all Tr, we have access to true class labels). We
choose this subset of only minority instances, as
we are not interested in optimizing to the majority
class.

We next enumerate all rules that we wish to
judge. To keep this problem tractable, we ignore
features which do not occur in at least 5% of train-
ing instances. For the remaining features, we cre-
ate a candidate rule for each possible pairing of
features and selection functions. For each of these
candidates, we test its utility by selecting content
as if it were an actual rule, then building a new
classifier (trained on the generation set) using in-
stances that have been altered in that way. In the
evaluation set, we measure the difference in prob-
ability of minority class labels being assigned cor-

rectly between the baseline and this altered space.
This measure of an individual rule’s impact is de-
scribed in Algorithm 3.

Once we have evaluated every possible rule
once, we select the top-ranked rule and ap-
ply it to the feature set. We then iteratively
progress through our now-ranked list of candi-
dates, each time treating the newly filtered dataset
as our new baseline. We search only top can-
didates for efficiency, following the fixed-width
search methodology for feature selection in very
high-dimensionality feature spaces (Gütlein et al.,
2009). Each ensemble classifier is finally retrained
on all training data, after applying the correspond-
ing content selection rules to that data.

5 Prediction

Our prediction algorithm begins with a stan-
dard implementation of cross-validated commit-
tees (Parmanto et al., 1996), whose results are
aggregated with a confidence voting method in-
tended to favor rare labels (Erp et al., 2002).
Cross-validated committees are an ensemble tech-
nique used to subsample training data to produce
multiple hypotheses for classification. Each clas-
sifier produced by our cue-based transformation
is trained on a subset of our training data. Each
makes predictions on all test set instances, pro-
ducing a distribution of confidence across possi-
ble labels. These values serve as inputs to a voting
method to produce a final label for each instance.

Compared to other ensemble methods, cross-
validated committees as described above are a
good fit for our task, because of its unique unit of
analysis. As thread-level analysis is the set of in-
dividual participants’ turns in a conversation, we
risk overfitting if we sample from the same con-
versations for the training and testing sets. In con-
trast to standard bagging, hard sampling bound-
aries never train and test on instances drawn from
the same conversation.

To aggregate the votes from members of this en-
semble into a final prediction, we employ a variant
on Selfridge’s Pandemonium (Selfridge, 1958).
If a minority label is selected as the highest-
confidence value in any classifier in our ensem-
ble, it is selected. The majority label, by contrast,
is only selected if it is the most likely prediction
by all classifiers in our ensemble. Thus consen-
sus is required to elect the majority class, and the
strongest minority candidate is elected otherwise.
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In : generation set Trk, evaluation set Tek
Out: ensemble committee {E1 . . . Ek}
for i = 1 to k do

Rfinal ← [ ];
Xfreq ← {x ∈ X | freq(x) ∈ Trk >
5%};
R← Xfreq × T ;
R∗ ← R;
repeat

Pbase ← EvaluateClassifier(Trk,Tek);
EvaluateRules(Pbase,Trk,Tek, R∗);
Trk,Tek ← ApplyRule(R∗[0]);
R← R−R∗[0];
∆← score(R∗[0]);
Rfinal ← Rfinal +R∗[0];
R∗ ← R[0 . . . 50];

until ∆ < threshold;
Trfinal ← Trk ∪ Tek;
foreach r ∈ Rfinal do

Trfinal ← ApplyRule(Trfinal, r);
end
Train f(x̄→ y) on Trfinal;

end
Algorithm 1: LearnSelectionCues()

This approach is designed to bias the prediction
of our machine learning algorithms in favor of mi-
nority classes in a coherent manner. If there is a
plausible model that has been trained which rec-
ognizes the possibility of a rare label, it is used;
the prediction only reverts to the majority class
when no plausible minority label could be chosen.
As validation of this technique, we compare our
“minority pandemonium” approach against both
typical pandemonium and standard sum-rule con-
fidence voting (Erp et al., 2002).

5.1 Logistic Model Stumps

One characteristic of highly skewed data is that,
while minority labels may be expressed in a num-
ber of different surface forms, there are many ob-
vious cases in which they do not apply. These
cases can actually be harmful to classification of
borderline cases. Features that could be given high
weight in marginal cases may be undervalued in
“low-hanging fruit” easy cases. To remove those
obvious instances, a very simple screening heuris-
tic is often enough to eliminate frequent pheno-
types of instances where the rare annotation is
not present. Prior work has sometimes screened
training data through obvious heuristic rules, espe-

In : generation set Trk, evaluation set Tek
Out: minority class probability average Pbase
Train f(x̄→ y) on Trk;
Temink ← {Instance I ∈ Tek | yI 6= “NA”}
;
Pbase ← 0 ;
foreach Instance I ∈ Temink do

Pbase ← Pbase + P (f(x̄I) = yI)
end
Pbase = Pbase/size(Temink )

Algorithm 2: EvaluateClassifier()

In : Trk, Tek, rules R, base probability Pbase
Out: R sorted on each rule’s improvement

score
foreach Rule r ∈ R do

Tr′k,Te′k ← ApplyRule(Trk,Tek, r);
Palter ← EvaluateClassifier(Tr′k,Te′k);
score(r)← Palter − Pbase;

end
Sort R on score(r) from high to low;

Algorithm 3: EvaluateRules()

cially in speech recognition; for instance, training
speech recognition for words followed by a pause
separately from words followed by another word
(Franco et al., 2010), or training separate models
based on gender (Jiang et al., 1999).

We achieve this instance screening by learn-
ing logistic model tree stumps (Landwehr et al.,
2005), which allow us to quickly partition data if
there is a particularly easy heuristic that can be
learned to eliminate a large number of majority-
class labels. One challenge of this approach is
our underlying unigram feature space - tree-based
algorithms are generally poor classifiers for the
high-dimensionality, low-information features in a
lexical feature space (Han et al., 2001). To com-
pensate, we employ a smaller, denser set of binary
features for tree stump screening: instance length
thresholds and LIWC category membership.

First, we define a set of features that split based
on the number of lines an instance contains, from
1 to 10 (only a tiny fraction of instances are more
than 10 lines long). For example, a feature split-
ting on instances with lines ≤ 2 would be true
for one- and two-line instances, and false for all
others. Second, we define a feature for each cate-
gory in the Linguistic Inquiry and Word Count dic-
tionary (Tausczik and Pennebaker, 2010) - these
broad classes of words allow for more balanced
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Figure 3: Precision/recall curves for algorithms.
After 50% recall all models converge and there are
no significant differences in performance.

splits than would unigrams alone. Each category’s
feature is true if any word in that category was
used at least once in that instance.

We exhaustively sweep this feature space, and
report the most successful stump rules for each an-
notation task. In our other experiments, we report
results with and without the best rule for this pre-
processing step; we also measure its impact alone.

6 Experimental Results

All experiments were performed using LightSIDE
(Mayfield and Rosé, 2013). We use a binary uni-
gram feature space, and we perform 7-fold cross-
validation. Instances from the same chat transcript
never occur in both train and testing folds. Fur-
thermore, we assume that threads have been dis-
entangled already, and our experiments use gold
standard thread structure. While this is not a triv-
ial assumption, prior work has shown thread dis-
entanglement to be manageable (Mayfield et al.,
2012a); we consider it an acceptable simplify-
ing assumption for our experiments. We compare
our methods against baselines including a majority
baseline, a baseline logistic regression classifier
with L2 regularized features, and two common en-
semble methods, AdaBoost (Freund and Schapire,
1996) and bagging (Breiman, 1996) with logistic
regression base classifiers5.

Table 2 presents the best-performing result
from each classification method. For self-
empowerment recognition, all methods that we
introduce are significant improvements in κ, the

5These methods usually use weak, unstable base classi-
fiers; however, in our experiments, those performed poorly.

Table 2: Performance for baselines, common en-
semble algorithms, and proposed methods. Statis-
tically significant improvements over baseline are
marked (p < .01, †; p < .05, *; p < 0.1, +).

Self Other
Method % κ % κ

Majority 79.3 .000 81.3 .000
LR Baseline 81.0 .367 81.0 .270
LR + Boosting 78.1 .325 78.5 .275
LR + Bagging 81.2 .352 81.9 .265
LR + Committee 81.0 .367 81.0 .270
Learned Stumps 81.8* .385† 81.7 .293+
Content Selection 80.9 .389† 80.7 .282
Stumps+Selection 81.3 .406† 79.4 .254

Table 3: Performance of content-selection
wrapped learners, for minority voting and two
baseline voting methods.

Self Other
Method % κ % κ

Pandemonium 80.3 .283 81.4 .239
Averaged 80.6 .304 81.6 .251
Minority Voting 80.9† .389† 80.7 .282

measurement of agreement over chance, compared
to all baselines. While accuracy remains stable,
this is due to predictions shifting away from the
majority class and towards minority classes. Our
combined model using both logistic model tree
stumps and content selection is significantly better
than either alone (p < .01). To compare the mi-
nority pandemonium voting method against base-
lines of simple pandemonium and summed confi-
dence voting, Table 3 presents the results of con-
tent selection wrappers with each voting method.
Minority voting is more effective compared to
standard confidence voting, improving κ while
modestly reducing accuracy; this is typical of a
shift towards minority class predictions.

7 Discussion

These results show promise for our techniques,
which are able to distinguish features of rare la-
bels, previously awash in a sea of irrelevance. Fig-
ure 3 shows the impact of our rules as we tune
to different levels of recall, with a large boost in
precision when recall is not important; our model
converges with the baseline for high-recall, low-
precision tuning. This suggests that our method is
particularly suitable for tasks where confident la-
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Table 4: Cue rules commonly selected by the algo-
rithm. Average improvement over the LR baseline
is also shown.

Self-Empowerment
Cue Transformation ∆%

and,but Ignore Local Future +5.0
have Ignore All History +4.3

! Ignore All History +4.2
me,my Ignore All History +3.4
Other-Empowerment

Cue Transformation ∆%
and,but Ignore Local Future +5.5

you Ignore Local History +5.2
’s Ignore Local History +4.1

that Ignore Local History +3.9

beling of a few instances is more important than
labeling as many instances as possible. This is
common when tasks have a high cost or carry high
risk (for instance, providing real-time conversa-
tional supports with an agent, where inappropriate
intervention could be disruptive). Other low-recall
applications include exploration large corpora for
exemplar instances, where the most confident pre-
dictions for a given label should be presented first
for analyst use. In the rest of this section, we
examine notable within-instance and per-instance
rules selected by our methods. These rules are
summarized in Tables 4 and 5.

For both self- and other-empowerment, we find
pronoun rules that match the task (first-person and
second-person pronouns for self-Empowerment
and other-Empowerment respectively). In both
tasks, we find cue rules that suppress the context
preceding personal pronouns. These, as well as
the possessive suffix ’s, echo the per-instance ef-
fect of the Self and You splits, anticipating that
what follows such a personal reference is likely to
bear an evaluation of empowerment. Exclamation
marks may indicate strong emotion - we find many
instances where what precedes a line with an ex-
clamation is more objective, and what follows in-
cludes an assessment. Conjunctions but and and
are selected as cue rules suppressing the two lines
that follow the occurrence - suggesting, as sus-
pected, that connective discourse markers play a
role in indicating empowerment (Fraser, 1999).

The best-performing stump splits for the Self-
Empowerment annotation are Line Length ≤ 1
and the LIWC word-categories Article, Swear, and

Table 5: Best decision rules for logistic model
stumps. Significant improvement (p < 0.05) in-
dicated with *.

Self-Empowerment
Split Rule κ ∆κ % ∆%
Split ≤ 1 * 0.385 +.018 81.8 +0.8
LIWC-Article 0.379 +.012 81.6 +0.6
LIWC-Swear * 0.376 +.009 81.4 +0.4
LIWC-Self * 0.376 +.009 81.5 +0.5
Other-Empowerment
Split Rule κ ∆κ % ∆%
LIWC-You 0.293 +.023 81.7 +0.7
LIWC-Eating * 0.283 +.013 81.6 +0.6
LIWC-Negate * 0.282 +.012 82.3 +1.3
LIWC-Present 0.281 +.011 81.6 +0.6

Self. The split on line length corresponds to the
observation that longer instances provide greater
opportunity for personal narrative self-assessment
to occur (95% of single-line instances are labeled
NA). The Article category may serve as a proxy for
content length - article-less instances in our corpus
include one-line social greetings and exchanges
of contact information. Swear words may be a
cue for awareness of self-empowerment - a recent
study of women coping with illness reported that
swearing in the presence of others, but not alone,
was related to potentially harmful outcomes (Rob-
bins et al., 2011). Among other- oriented split
rules, Eating stands out as non-obvious, although
medical literature has suggested a link between
dietary behavior and empowerment attitudes in a
study of women with cancer (Pinto et al., 2002).

8 Conclusion

We have demonstrated an algorithm for improv-
ing automated classification accuracy on highly
skewed tasks for conversational data. This algo-
rithm, particularly its focus on content selection, is
rooted in the structural format of our data, which
can generalize to many tasks involving conversa-
tional data. Our experiments show that this model
significantly improves machine learning perfor-
mance. Our algorithm is taking advantage of
structural facets of discourse markers, lending ba-
sic sociolinguistic validity to its behavior. Though
we have treated each of these rarely-occurring la-
bels as independent thus far, in practice we know
that this is not the case. Joint prediction of labels
through structured modeling is an obvious next
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step for improving classification accuracy.
This is an important step towards large-scale

analysis of the impact of support groups on pa-
tients and caregivers. Our method can be used to
confidently highlight occurrences of rare labels in
large data sets. This has real-world implications
for professional intervention in social conversa-
tional domains, especially in scenarios where such
an intervention is likely to be associated with a
high cost or high risk. With the construction of
more accurate classifiers, we open the possibility
of automating annotation on large conversational
datasets, enabling new directions for researchers
with domain expertise.
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Abstract

Efficiently incorporating entity-level in-
formation is a challenge for coreference
resolution systems due to the difficulty of
exact inference over partitions. We de-
scribe an end-to-end discriminative prob-
abilistic model for coreference that, along
with standard pairwise features, enforces
structural agreement constraints between
specified properties of coreferent men-
tions. This model can be represented as
a factor graph for each document that ad-
mits efficient inference via belief propaga-
tion. We show that our method can use
entity-level information to outperform a
basic pairwise system.

1 Introduction

The inclusion of entity-level features has been a
driving force behind the development of many
coreference resolution systems (Luo et al., 2004;
Rahman and Ng, 2009; Haghighi and Klein, 2010;
Lee et al., 2011). There is no polynomial-time dy-
namic program for inference in a model with ar-
bitrary entity-level features, so systems that use
such features typically rely on making decisions
in a pipelined manner and sticking with them, op-
erating greedily in a left-to-right fashion (Rahman
and Ng, 2009) or in a multi-pass, sieve-like man-
ner (Raghunathan et al., 2010). However, such
systems may be locked into bad coreference deci-
sions and are difficult to directly optimize for stan-
dard evaluation metrics.

In this work, we present a new structured model
of entity-level information designed to allow effi-
cient inference. We use a log-linear model that can
be expressed as a factor graph. Pairwise features
appear in the model as unary factors, adjacent
to nodes representing a choice of antecedent (or
none) for each mention. Additional nodes model
entity-level properties on a per-mention basis, and

structural agreement factors softly drive properties
of coreferent mentions to agree with one another.
This is a key feature of our model: mentions man-
age their partial membership in various corefer-
ence chains, so that information about entity-level
properties is decentralized and propagated across
individual mentions, and we never need to explic-
itly instantiate entities.

Exact inference in this factor graph is in-
tractable, but efficient approximate inference can
be carried out with belief propagation. Our model
is the first discriminatively-trained model that both
makes joint decisions over an entire document and
models specific entity-level properties, rather than
simply enforcing transitivity of pairwise decisions
(Finkel and Manning, 2008; Song et al., 2012).

We evaluate our system on the dataset from
the CoNLL 2011 shared task using three differ-
ent types of properties: synthetic oracle proper-
ties, entity phi features (number, gender, animacy,
and NER type), and properties derived from un-
supervised clusters targeting semantic type infor-
mation. In all cases, our transitive model of en-
tity properties equals or outperforms our pairwise
system and our reimplementation of a previous
entity-level system (Rahman and Ng, 2009). Our
final system is competitive with the winner of the
CoNLL 2011 shared task (Lee et al., 2011).

2 Example

We begin with an example motivating our use of
entity-level features. Consider the following ex-
cerpt concerning two famous auction houses:

When looking for [art items], [people] go
to [Sotheby’s and Christie’s] because [they]A
believe [they]B can get the best price for
[them].

The first three mentions are all distinct entities,
theyA and theyB refer to people, and them refers to
art items. The three pronouns are tricky to resolve
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automatically because they could at first glance re-
solve to any of the preceding mentions. We focus
in particular on the resolution of theyA and them.
In order to correctly resolve theyA to people rather
than Sotheby’s and Christie’s, we must take ad-
vantage of the fact that theyA appears as the sub-
ject of the verb believe, which is much more likely
to be attributed to people than to auction houses.

Binding principles prevent them from attaching
to theyB. But how do we prevent it from choos-
ing as its antecedent the next closest agreeing pro-
noun, theyA? One way is to exploit the correct
coreference decision we have already made, theyA
referring to people, since people are not as likely
to have a price as art items are. This observa-
tion argues for enforcing agreement of entity-level
semantic properties during inference, specifically
properties relating to permitted semantic roles.
Because even these six mentions have hundreds
of potential partitions into coreference chains, we
cannot search over partitions exhaustively, and
therefore we must design our model to be able to
use this information while still admitting an effi-
cient inference scheme.

3 Models

We will first present our BASIC model (Sec-
tion 3.1) and describe the features it incorporates
(Section 3.2), then explain how to extend it to use
transitive features (Sections 3.3 and 3.4).

Throughout this section, let x be a variable con-
taining the words in a document along with any
relevant precomputed annotation (such as parse in-
formation, semantic roles, etc.), and let n denote
the number of mentions in a given document.

3.1 BASIC Model
Our BASIC model is depicted in Figure 1 in stan-
dard factor graph notation. Each mention i has
an associated random variable ai taking values in
the set {1, . . . , i−1, <new>}; this variable spec-
ifies mention i’s selected antecedent or indicates
that it begins a new coreference chain. Let a =
(a1, ..., an) be the vector of the ai. Note that a set
of coreference chains C (the final desired output)
can be uniquely determined from a, but a is not
uniquely determined by C.

We use a log linear model of the conditional dis-
tribution P (a|x) as follows:

P (a|x) ∝ exp

(
n∑

i=1

wT fA(i, ai, x)

)

When looking for [art items], [people] go to [Sotheby's 
and Christie's] because [they]A believe [they]B can get 

the best price for [them].

art items 0.15

people 0.4

Sotheby’s and 
Christie’s 0.4

<new> 0.05

a2 a3 a4a1

A1 A2 A3 A4

art items 0.05

<new> 0.95

antecedent 
choices

antecedent 
factors

}
}

Figure 1: Our BASIC coreference model. A de-
cision ai is made independently for each men-
tion about what its antecedent mention should
be or whether it should start a new coreference
chain. Each unary factor Ai has a log-linear form
with features examining mention i, its selected an-
tecedent ai, and the document context x.

where fA(i, ai, x) is a feature function that exam-
ines the coreference decision ai for mention i with
document context x; note that this feature function
can include pairwise features based on mention i
and the chosen antecedent ai, since information
about each mention is contained in x.

Because the model factors completely over the
individual ai, these feature functions fA can be ex-
pressed as unary factors Ai (see Figure 1), with
Ai(j) ∝ exp

(
wT fA(i, j, x)

)
. Given a setting of

w, we can determine â = argmaxa P (a|x) and
then deterministically compute C(a), the final set
of coreference chains.

While the features of this model factor over
coreference links, this approach differs from clas-
sical pairwise systems such as Bengtson and Roth
(2008) or Stoyanov et al. (2010). Because poten-
tial antecedents compete with each other and with
the non-anaphoric hypothesis, the choice of ai ac-
tually represents a joint decision about i−1 pair-
wise links, as opposed to systems that use a pair-
wise binary classifier and a separate agglomera-
tion step, which consider one link at a time during
learning. This approach is similar to the mention-
ranking model of Rahman and Ng (2009).

3.2 Pairwise Features

We now present the set of features fA used by our
unary factors Ai. Each feature examines the an-
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tecedent choice ai of the current mention as well
as the observed information x in the document.
For each of the features we present, two conjoined
versions are included: one with an indicator of the
type of the current mention being resolved, and
one with an indicator of the types of the current
and antecedent mentions. Mention types are either
NOMINAL, PROPER, or, if the mention is pronom-
inal, a canonicalized version of the pronoun ab-
stracting away case.1

Several features, especially those based on the
precise constructs (apposition, etc.) and those in-
corporating phi feature information, are computed
using the machinery in Lee et al. (2011). Other
features were inspired by Song et al. (2012) and
Rahman and Ng (2009).

Anaphoricity features: Indicator of anaphoric-
ity, indicator on definiteness.

Configurational features: Indicator on distance
in mentions (capped at 10), indicator on dis-
tance in sentences (capped at 10), does the an-
tecedent c-command the current mention, are the
two mentions in a subject/object construction, are
the mentions nested, are the mentions in determin-
istic appositive/role appositive/predicate nomina-
tive/relative pronoun constructions.

Match features: Is one mention an acronym of
the other, head match, head contained (each way),
string match, string contained (each way), relaxed
head match features from Lee et al. (2011).

Agreement features: Gender, number, ani-
macy, and NER type of the current mention and
the antecedent (separately and conjoined).

Discourse features: Speaker match conjoined
with an indicator of whether the document is an
article or conversation.

Because we use conjunctions of these base fea-
tures together with the antecedent and mention
type, our system can capture many relationships
that previous systems hand-coded, especially re-
garding pronouns. For example, our system has
access to features such as “it is non-anaphoric”,
“it has as its antecedent a geopolitical entity”, or
“I has as its antecedent I with the same speaker.”

1While this canonicalization could theoretically impair
our ability to resolve, for example, reflexive pronouns, con-
joining features with raw pronoun strings does not improve
performance.

We experimented with synonymy and hyper-
nymy features from WordNet (Miller, 1995), but
these did not empirically improve performance.

3.3 TRANSITIVE Model
The BASIC model can capture many relationships
between pairs of mentions, but cannot necessarily
capture entity-level properties like those discussed
in Section 2. We could of course model entities
directly (Luo et al., 2004; Rahman and Ng, 2009),
saying that each mention refers to some prior en-
tity rather than to some prior mention. However,
inference in this model would require reasoning
about all possible partitions of mentions, which is
computationally infeasible without resorting to se-
vere approximations like a left-to-right inference
method (Rahman and Ng, 2009).

Instead, we would like to try to preserve the
tractability of the BASIC model while still being
able to exploit entity-level information. To do so,
we will allow each mention to maintain its own
distributions over values for a number of proper-
ties; these properties could include gender, named-
entity type, or semantic class. Then, we will re-
quire each anaphoric mention to agree with its an-
tecedent on the value of each of these properties.

Our TRANSITIVE model which implements this
scheme is shown in Figure 2. Each mention i
has been augmented with a single property node
pi ∈ {1, ..., k}. The unary Pi factors encode prior
knowledge about the setting of each pi; these fac-
tors may be hard (I will not refer to a plural entity),
soft (such as a distribution over named entity types
output by an NER tagger), or practically uniform
(e.g. the last name Smith does not specify a partic-
ular gender).

To enforce agreement of a particular property,
we require a mention to have the same property
value as its antecedent. That is, for mentions i and
j, if ai = j, we want to ensure that pi and pj
agree. We can achieve this with the following set
of structural equality factors:

Ei−j(ai, pi, pj) = 1− I[ai = j ∧ pi 6= pj ]

In words, this factor is zero if both ai = j and
pi disagrees with pj . These equality factors es-
sentially provide a mechanism by which these pri-
ors Pi can influence the coreference decisions: if,
for example, the factors Pi and Pj disagree very
strongly, choosing ai 6= j will be preferred in or-
der to avoid forcing one of pi or pj to take an un-
desirable value. Moreover, note that although ai
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E4-3

a2 a4

p4p3p2

E4-2

A2 A3 A4

P2 P3 P4

antecedent 
choices

antecedent 
factors

property 
factors

properties

equality 
factors

a3

}
}
}

}
}

people Sotheby's
and Christie's

they

Figure 2: The factor graph for our TRANSI-
TIVE coreference model. Each node ai now has
a property pi, which is informed by its own unary
factor Pi. In our example, a4 strongly indicates
that mentions 2 and 4 are coreferent; the factor
E4−2 then enforces equality between p2 and p4,
while the factor E4−3 has no effect.

only indicates a single antecedent, the transitive
nature of the E factors forces pi to agree with the
p nodes of all other mentions likely to be in the
same entity.

3.4 Property Projection

So far, our model as specified ensures agreement
of our entity-level properties, but strictly enforc-
ing agreement may not always be correct. Suppose
that we are using named entity type as an entity-
level property. Organizations and geo-political en-
tities are two frequently confused and ambiguous
tags, and in the gold-standard coreference chains
it may be the case that a single chain contains in-
stances of both. We might wish to learn that or-
ganizations and geo-political entities are “compat-
ible” in the sense that we should forgive entities
for containing both, but without losing the ability
to reject a chain containing both organizations and
people, for example.

To address these effects, we expand our model
as indicated in Figure 3. As before, we have a
set of properties pi and agreement factors Eij . On
top of that, we introduce the notion of raw prop-
erty values ri ∈ {1, ..., k} together with priors in
the form of the Ri factors. The ri and pi could in
principle have different domains, but for this work
we take them to have the same domain. The Pi
factors now have a new structure: they now rep-
resent a featurized projection of the ri onto the
pi, which can now be thought of as “coreference-

p4p3p2

r4r3r2

P2 P3 P4

R2 R3 R4
raw property 

factors

raw properties

projection 
factors

projected 
properties

}
}
}
}

a2 a4

A2 A3 A4

a3
E3-1 E4-1

Figure 3: The complete factor graph for our
TRANSITIVE coreference model. Compared to
Figure 2, the Ri contain the raw cluster posteriors,
and the Pi factors now project raw cluster values ri
into a set of “coreference-adapted” clusters pi that
are used as before. This projection allows men-
tions with different but compatible raw property
values to coexist in the same coreference chain.

adapted” properties. The Pi factors are defined by
Pi(pi, ri) ∝ exp(wT fP (pi, ri)), where fP is a fea-
ture vector over the projection of ri onto pi. While
there are many possible choices of fP , we choose
it to be an indicator of the values of pi and ri, so
that we learn a fully-parameterized projection ma-
trix.2 The Ri are constant factors, and may come
from an upstream model or some other source de-
pending on the property being modeled.

Our description thus far has assumed that we
are modeling only one type of property. In fact,
we can use multiple properties for each mention
by duplicating the r and p nodes and the R, P ,
and E factors across each desired property. We
index each of these by l ∈ {1, . . . ,m} for each of
m properties.

The final log-linear model is given by the fol-
lowing formula:

P (a|x) ∝
∑

p,r




∏

i,j,l

El,i−j(ai, pli, plj)




∏

i,l

Rli(rli)




exp

(
wT

∑

i

(
fA(i, ai, x) +

∑

l

fP (pli, rli)

))]

where i and j range over mentions, l ranges over
2Initialized to zero (or small values), this matrix actually

causes the transitive machinery to have no effect, since all
posteriors over the pi are flat and completely uninformative.
Therefore, we regularize the weights of the indicators of pi =
ri towards 1 and all other features towards 0 to give each raw
cluster a preference for a distinct projected cluster.
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each of m properties, and the outer sum indicates
marginalization over all p and r variables.

4 Learning

Now that we have defined our model, we must
decide how to train its weights w. The first
issue to address is one of the supervision pro-
vided. Our model traffics in sets of labels a
which are more specified than gold coreference
chains C, which give cluster membership for each
mention but not antecedence. Let A(C) be the
set of labelings a that are consistent with a set
of coreference chains C. For example, if C =
{{1, 2, 3}, {4}}, then (<new>, 1, 2, <new>) ∈
A(C) and (<new>, 1, 1, <new>) ∈ A(C) but
(<new>, 1, <new>, 3) /∈ A(C), since this im-
plies the chains C = {{1, 2}, {3, 4}}

The most natural objective is a variant of
standard conditional log-likelihood that treats the
choice of a for the specified C as a latent variable
to be marginalized out:

`(w) =
t∑

i=1

log


 ∑

a∈A(Ci)
P (a|xi)


 (1)

where (xi, Ci) is the ith labeled training example.
This optimizes for the 0-1 loss; however, we are
much more interested in optimizing with respect
to a coreference-specific loss function.

To this end, we will use softmax-margin (Gim-
pel and Smith, 2010), which augments the proba-
bility of each example with a term proportional to
its loss, pushing the model to assign less mass to
highly incorrect examples. We modify Equation 1
to use a new probability distribution P ′ instead
of P , where P ′(a|xi) ∝ P (a|xi) exp (l(a,C))
and l(a,C) is a loss function. In order to
perform inference efficiently, l(a,C) must de-
compose linearly across mentions: l(a,C) =∑n

i=1 l(ai, C). Commonly-used coreference met-
rics such as MUC (Vilain et al., 1995) and B3

(Bagga and Baldwin, 1998) do not have this prop-
erty, so we instead make use of a parameterized
loss function that does and fit the parameters to
give good performance. Specifically, we take

l(a,C) =

n∑

i=1

[c1I(K1(ai, C)) + c2I(K2(ai, C))

+ c3I(K3(ai, C))]

where c1, c2, and c3 are real-valued weights, K1

denotes the event that ai is falsely anaphoric when

it should be non-anaphoric, K2 denotes the event
that ai is falsely non-anaphoric when it should be
anaphoric, and K3 denotes the event that ai is cor-
rectly determined to be anaphoric but . These can
be computed based on only ai and C. By setting
c1 low and c2 high relative to c3, we can force
the system to be less conservative about making
anaphoricity decisions and achieve a better bal-
ance with the final coreference metrics.

Finally, we incorporate L1 regularization, giv-
ing us our final objective:

`(w) =
t∑

i=1

log


 ∑

a∈A(Ci)
P ′(a|xi)


+ λ‖w‖1

We optimize this objective using AdaGrad
(Duchi et al., 2011); we found this to be faster and
give higher performance than L-BFGS using L2

regularization (Liu and Nocedal, 1989). Note that
because of the marginalization over A(Ci), even
the objective for the BASIC model is not convex.

5 Inference

Inference in the BASIC model is straightforward.
Given a set of weights w, we can predict

â = argmax
a

P (a|x)

We then report the corresponding chains C(a)
as the system output.3 For learning, the gradi-
ent takes the standard form of the gradient of a
log-linear model, a difference of expected feature
counts under the gold annotation and under no
annotation. This requires computing marginals
P ′(ai|x) for each mention i, but because the
model already factors this way, this step is easy.

The TRANSITIVE model is more complex. Ex-
act inference is intractable due to theE factors that
couple all of the ai by way of the pi nodes. How-
ever, we can compute approximate marginals for
the ai, pi, and ri using belief propagation. BP has
been effectively used on other NLP tasks (Smith
and Eisner, 2008; Burkett and Klein, 2012), and is
effective in cases such as this where the model is
largely driven by non-loopy factors (here, the Ai).

From marginals over each node, we can com-
pute the necessary gradient and decode as before:

â = argmax
a

P̂ (a|x)

3One could use ILP-based decoding in the style of Finkel
and Manning (2008) and Song et al. (2012) to attempt to ex-
plicitly find the optimal C with choice of a marginalized out,
but we did not explore this option.
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This corresponds to minimum-risk decoding with
respect to the Hamming loss over antecedence pre-
dictions.

Pruning. The TRANSITIVE model requires in-
stantiating a factor for each potential setting of
each ai. This factor graph grows quadratically in
the size of the document, and even approximate in-
ference becomes slow when a document contains
over 200 mentions. Therefore, we use our BA-
SIC model to prune antecedent choices for each
ai in order to reduce the size of the factor graph
that we must instantiate. Specifically, we prune
links between pairs of mentions that are of men-
tion distance more than 100, as well as values for
ai that fall below a particular odds ratio threshold
with respect to the best setting of that ai in the
BASIC model; that is, those for which

log

(
PBASIC (ai|x)

maxj PBASIC (ai = j|x)

)

is below a cutoff γ.

6 Related Work

Our BASIC model is a mention-ranking approach
resembling models used by Denis and Baldridge
(2008) and Rahman and Ng (2009), though it is
trained using a novel parameterized loss function.
It is also similar to the MLN-JOINT(BF) model
of Song et al. (2012), but we enforce the single-
parent constraint at a deeper structural level, al-
lowing us to treat non-anaphoricity symmetrically
with coreference as in Denis and Baldridge (2007)
and Stoyanov and Eisner (2012). The model of
Fernandes et al. (2012) also uses the single-parent
constraint structurally, but with learning via la-
tent perceptron and ILP-based one-best decod-
ing rather than logistic regression and BP-based
marginal computation.

Our TRANSITIVE model is novel; while Mc-
Callum and Wellner (2004) proposed the idea of
using attributes for mentions, they do not actu-
ally implement a model that does so. Other sys-
tems include entity-level information via hand-
written rules (Raghunathan et al., 2010), induced
rules (Yang et al., 2008), or features with learned
weights (Luo et al., 2004; Rahman and Ng, 2011),
but all of these systems freeze past coreference de-
cisions in order to compute their entities.

Most similar to our entity-level approach is
the system of Haghighi and Klein (2010), which

also uses approximate global inference; however,
theirs is an unsupervised, generative system and
they attempt to directly model multinomials over
words in each mention. Their system could be ex-
tended to handle property information like we do,
but our system has many other advantages, such as
freedom from a pre-specified list of entity types,
the ability to use multiple input clusterings, and
discriminative projection of clusters.

7 Experiments

We use the datasets, experimental setup, and scor-
ing program from the CoNLL 2011 shared task
(Pradhan et al., 2011), based on the OntoNotes
corpus (Hovy et al., 2006). We use the standard
automatic parses and NER tags for each docu-
ment. Our mentions are those output by the sys-
tem of Lee et al. (2011); we also use their postpro-
cessing to remove appositives, predicate nomina-
tives, and singletons before evaluation. For each
experiment, we report MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), and CEAFe (Luo,
2005), as well as their average.

Parameter settings. We take the regularization
constant λ = 0.001 and the parameters of our
surrogate loss (c1, c2, c3) = (0.15, 2.5, 1) for all
models.4 All models are trained for 20 iterations.
We take the pruning threshold γ = −2.

7.1 Systems
Besides our BASIC and TRANSITIVE systems, we
evaluate a strictly pairwise system that incorpo-
rates property information by way of indicator fea-
tures on the current mention’s most likely property
value and the proposed antecedent’s most likely
property value. We call this system PAIRPROP-
ERTY; it is simply the BASIC system with an ex-
panded feature set.

Furthermore, we compare against a LEFT-
TORIGHT entity-level system like that of Rahman
and Ng (2009).5 Decoding now operates in a se-
quential fashion, with BASIC features computed
as before and entity features computed for each
mention based on the coreference decisions made
thus far. Following Rahman and Ng (2009), fea-
tures for each property indicate whether the cur-

4Additional tuning of these hyper parameters did not sig-
nificantly improve any of the models under any of the exper-
imental conditions.

5Unfortunately, their publicly-available system is closed-
source and performs poorly on the CoNLL shared task
dataset, so direct comparison is difficult.
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rent mention agrees with no mentions in the an-
tecedent cluster, at least one mention, over half of
the mentions, or all of the mentions; antecedent
clusters of size 1 or 2 fire special-cased features.
These additional features beyond those in Rah-
man and Ng (2009) were helpful, but more in-
volved conjunction schemes and fine-grained fea-
tures were not. During training, entity features of
both the gold and the prediction are computed us-
ing the Viterbi clustering of preceding mentions
under the current model parameters.6

All systems are run in a two-pass manner:
first, the BASIC model is run, then antecedent
choices are pruned, then our second-round model
is trained from scratch on the pruned data.7

7.2 Noisy Oracle Features
We first evaluate our model’s ability to exploit syn-
thetic entity-level properties. For this experiment,
mention properties are derived from corrupted or-
acle information about the true underlying corefer-
ence cluster. Each coreference cluster is assumed
to have one underlying value for each of m coref-
erence properties, each taking values over a do-
main D. Mentions then sample distributions over
D from a Dirichlet distribution peaked around the
true underlying value.8 These posteriors are taken
as the Ri for the TRANSITIVE model.

We choose this setup to reflect two important
properties of entity-level information: first, that it
may come from a variety of disparate sources, and
second, that it may be based on the determinations
of upstream models which produce posteriors nat-
urally. A strength of our model is that it can accept
such posteriors as input, naturally making use of
this information in a model-based way.

Table 1 shows development results averaged
across ten train-test splits with m = 3 proper-
ties, each taking one of |D| = 5 values. We em-
phasize that these parameter settings give fairly
weak oracle information: a document may have
hundreds of clusters, so even in the absence of
noise these oracle properties do not have high dis-

6Using gold entities for training as in Rahman and Ng
(2009) resulted in a lower-performing system.

7We even do this for the BASIC model, since we found
that performance of the pruned and retrained model was gen-
erally higher.

8Specifically, the distribution used is a Dirichlet with
α = 3.5 for the true underlying cluster and α = 1 for other
values, chosen so that 25% of samples from the distribution
did not have the correct mode. Though these parameters af-
fect the quality of the oracle information, varying them did
not change the relative performance of the different models.

NOISY ORACLE

MUC B3 CEAFe Avg.
BASIC 61.96 70.66 47.30 59.97

PAIRPROPERTY 66.31 72.68 49.08 62.69
LEFTTORIGHT 66.49 73.14 49.46 63.03

TRANSITIVE 67.37 74.05 49.68 63.70

Table 1: CoNLL metric scores for our four dif-
ferent systems incorporating noisy oracle data.
This information helps substantially in all cases.
Both entity-level models outperform the PAIR-
PROPERTY model, but we observe that the TRAN-
SITIVE model is more effective than the LEFT-
TORIGHT model at using this information.

criminating power. Still, we see that all mod-
els are able to benefit from incorporating this in-
formation; however, our TRANSITIVE model out-
performs both the PAIRPROPERTY model and the
LEFTTORIGHT model. There are a few reasons
for this: first, our model is able to directly use soft
posteriors, so it is able to exploit the fact that more
peaked samples from the Dirichlet are more likely
to be correct. Moreover, our model can propagate
information backwards in a document as well as
forwards, so the effects of noise can be more eas-
ily mitigated. By contrast, in the LEFTTORIGHT

model, if the first or second mention in a cluster
has the wrong property value, features indicating
high levels of property agreement will not fire on
the next few mentions in those clusters.

7.3 Phi Features

As we have seen, our TRANSITIVE model can ex-
ploit high-quality entity-level features. How does
it perform using real features that have been pro-
posed for entity-level coreference?

Here, we use hard phi feature determinations
extracted from the system of Lee et al. (2011).
Named-entity type and animacy are both com-
puted based on the output of a named-entity tag-
ger, while number and gender use the dataset of
Bergsma and Lin (2006). Once this informa-
tion is determined, the PAIRPROPERTY and LEFT-
TORIGHT systems can compute features over it di-
rectly. In the TRANSITIVE model, each of the Ri
factors places 3

4 of its mass on the determined la-
bel and distributes the remainder uniformly among
the possible options.

Table 2 shows results when adding entity-level
phi features on top of our BASIC pairwise system
(which already contains pairwise features) and on
top of an ablated BASIC system without pairwise
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PHI FEATURES

MUC B3 CEAFe Avg.
BASIC 61.96 70.66 47.30 59.97

LEFTTORIGHT 61.34 70.41 47.64 59.80
TRANSITIVE 62.66 70.92 46.88 60.16

PHI FEATURES (ABLATED BASIC)
BASIC-PHI 59.45 69.21 46.02 58.23

PAIRPROPERTY 61.88 70.66 47.14 59.90
LEFTTORIGHT 61.42 70.53 47.49 59.81

TRANSITIVE 62.23 70.78 46.74 59.92

Table 2: CoNLL metric scores for our systems in-
corporating phi features. Our standard BASIC sys-
tem already includes phi features, so no results are
reported for PAIRPROPERTY. Here, our TRAN-
SITIVE system does not give substantial improve-
ment on the averaged metric. Over a baseline
which does not include phi features, all systems
are able to incorporate them comparably.

phi features. Our entity-level systems successfully
captures phi features when they are not present in
the baseline, but there is only slight benefit over
pairwise incorporation, a result which has been
noted previously (Luo et al., 2004).

7.4 Clustering Features

Finally, we consider mention properties derived
from unsupervised clusterings; these properties
are designed to target semantic properties of nom-
inals that should behave more like the oracle fea-
tures than the phi features do.

We consider clusterings that take as input pairs
(n, r) of a noun head n and a string r which con-
tains the semantic role of n (or some approxima-
tion thereof) conjoined with its governor. Two dif-
ferent algorithms are used to cluster these pairs: a
NAIVEBAYES model, where c generates n and r,
and a CONDITIONAL model, where c is generated
conditioned on r and then n is generated from c.
Parameters for each can be learned with the ex-
pectation maximization (EM) algorithm (Demp-
ster et al., 1977), with symmetry broken by a small
amount of random noise at initialization.

Similar models have been used to learn sub-
categorization information (Rooth et al., 1999)
or properties of verb argument slots (Yao et al.,
2011). We choose this kind of clustering for its rel-
ative simplicity and because it allows pronouns to
have more informed properties (from their verbal
context) than would be possible using a model that
makes type-level decisions about nominals only.
Though these specific cluster features are novel
to coreference, previous work has used similar

CLUSTERS

MUC B3 CEAFe Avg.
BASIC 61.96 70.66 47.30 59.97

PAIRPROPERTY 62.88 70.71 47.45 60.35
LEFTTORIGHT 61.98 70.19 45.77 59.31

TRANSITIVE 63.34 70.89 46.88 60.37

Table 3: CoNLL metric scores for our systems
incorporating clustering features. These features
are equally effectively incorporated by our PAIR-
PROPERTY system and our TRANSITIVE system.

government
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authorities

ARG0:said
ARG0:say
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ARG0:announced

prices
shares
index
rates

ARG1:rose
ARG1:fell
ARG1:cut
ARG1:closed

way
law

agreement
plan

ARG1:signed
ARG1:announced
ARG1:set
ARG1:approved

attack
problems
attacks
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ARG1:cause
ARG2:following
ARG1:reported
ARG1:filed... ...

... ...

... ...

... ... ...

Figure 4: Examples of clusters produced by the
NAIVEBAYES model on SRL-tagged data with
pronouns discarded.

types of fine-grained semantic class information
(Hendrickx and Daelemans, 2007; Ng, 2007; Rah-
man and Ng, 2010). Other approaches incorpo-
rate information from other sources (Ponzetto and
Strube, 2006) or compute heuristic scores for real-
valued features based on a large corpus or the web
(Dagan and Itai, 1990; Yang et al., 2005; Bansal
and Klein, 2012).

We use four different clusterings in our
experiments, each with twenty clusters:
dependency-parse-derived NAIVEBAYES clusters,
semantic-role-derived CONDITIONAL clusters,
SRL-derived NAIVEBAYES clusters generating
a NOVERB token when r cannot be determined,
and SRL-derived NAIVEBAYES clusters with all
pronoun tuples discarded. Examples of the latter
clusters are shown in Figure 4. Each clustering
is learned for 30 iterations of EM over English
Gigaword (Graff et al., 2007), parsed with the
Berkeley Parser (Petrov et al., 2006) and with
SRL determined by Senna (Collobert et al., 2011).

Table 3 shows results of modeling these cluster
properties. As in the case of oracle features, the
PAIRPROPERTY and LEFTTORIGHT systems use
the modes of the cluster posteriors, and the TRAN-
SITIVE system uses the posteriors directly as the
Ri. We see comparable performance from incor-
porating features in both an entity-level framework
and a pairwise framework, though the TRANSI-
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MUC B3 CEAFe Avg.
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

BASIC 69.99 55.59 61.96 80.96 62.69 70.66 41.37 55.21 47.30 59.97
STANFORD 61.49 59.59 60.49 74.60 68.25 71.28 47.57 49.45 48.49 60.10

NOISY ORACLE
PAIRPROPERTY 76.49 58.53 66.31 84.98 63.48 72.68 41.84 59.36 49.08 62.69
LEFTTORIGHT 76.92 58.55 66.49 85.68 63.81 73.14 42.07 60.01 49.46 63.03

TRANSITIVE 76.48 60.20 *67.37 84.84 65.69 *74.05 42.89 59.01 *49.68 63.70
PHI FEATURES

LEFTTORIGHT 69.77 54.73 61.34 81.40 62.04 70.41 41.49 55.92 47.64 59.80
TRANSITIVE 70.27 56.54 *62.66 79.81 63.82 *70.92 41.17 54.44 46.88 60.16

PHI FEATURES (ABLATED BASIC)
BASIC-PHI 67.04 53.41 59.45 78.93 61.63 69.21 40.40 53.46 46.02 58.23

PAIRPROPERTY 70.24 55.31 61.88 81.10 62.60 70.66 41.04 55.38 47.14 59.90
LEFTTORIGHT 69.94 54.75 61.42 81.38 62.23 70.53 41.29 55.87 47.49 59.81

TRANSITIVE 70.06 55.98 *62.23 79.92 63.52 70.78 40.90 54.52 46.74 59.92
CLUSTERS

PAIRPROPERTY 71.77 55.95 62.88 81.76 62.30 70.71 40.98 56.35 47.45 60.35
LEFTTORIGHT 69.75 54.82 61.39 81.48 62.29 70.60 41.62 55.89 47.71 59.90

TRANSITIVE 71.54 56.83 *63.34 80.55 63.31 *70.89 40.77 55.14 46.88 60.37

Table 4: CoNLL metric scores averaged across ten different splits of the training set for each experiment.
We include precision, recall, and F1 for each metric for completeness. Starred F1 values on the individual
metrics for the TRANSITIVE system are significantly better than all other results in the same block at the
p = 0.01 level according to a bootstrap resampling test.

MUC B3 CEAFe Avg.
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

BASIC 68.84 56.08 61.81 77.60 61.40 68.56 38.25 50.57 43.55 57.97
PAIRPROPERTY 70.90 56.26 62.73 78.95 60.79 68.69 37.69 51.92 43.67 58.37
LEFTTORIGHT 68.84 55.56 61.49 78.64 61.03 68.72 38.97 51.74 44.46 58.22

TRANSITIVE 70.62 58.06 *63.73 76.93 62.24 68.81 38.00 50.40 43.33 58.62
STANFORD 60.91 62.13 61.51 70.61 67.75 69.15 45.79 44.55 45.16 58.61

Table 5: CoNLL metric scores for our best systems (including clustering features) on the CoNLL blind
test set, reported in the same manner as Table 4.

TIVE system appears to be more effective than the
LEFTTORIGHT system.

7.5 Final Results
Table 4 shows expanded results on our develop-
ment sets for the different types of entity-level
information we considered. We also show in in
Table 5 the results of our system on the CoNLL
test set, and see that it performs comparably to
the Stanford coreference system (Lee et al., 2011).
Here, our TRANSITIVE system provides modest
improvements over all our other systems.

Based on Table 4, our TRANSITIVE system ap-
pears to do better on MUC andB3 than on CEAFe.
However, we found no simple way to change the
relative performance characteristics of our various
systems; notably, modifying the parameters of the
loss function mentioned in Section 4 or changing
it entirely did not trade off these three metrics but
merely increased or decreased them in lockstep.
Therefore, the TRANSITIVE system actually sub-
stantially improves over our baselines and is not

merely trading off metrics in a way that could be
easily reproduced through other means.

8 Conclusion

In this work, we presented a novel coreference ar-
chitecture that can both take advantage of standard
pairwise features as well as use transitivity to en-
force coherence of decentralized entity-level prop-
erties within coreference clusters. Our transitive
system is more effective at using properties than
a pairwise system and a previous entity-level sys-
tem, and it achieves performance comparable to
that of the Stanford coreference resolution system,
the winner of the CoNLL 2011 shared task.
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Abstract

Characters play an important role in the
Chinese language, yet computational pro-
cessing of Chinese has been dominated
by word-based approaches, with leaves in
syntax trees being words. We investigate
Chinese parsing from the character-level,
extending the notion of phrase-structure
trees by annotating internal structures of
words. We demonstrate the importance
of character-level information to Chinese
processing by building a joint segmen-
tation, part-of-speech (POS) tagging and
phrase-structure parsing system that inte-
grates character-structure features. Our
joint system significantly outperforms a
state-of-the-art word-based baseline on the
standard CTB5 test, and gives the best
published results for Chinese parsing.

1 Introduction

Characters play an important role in the Chinese
language. They act as basic phonetic, morpho-
syntactic and semantic units in a Chinese sentence.
Frequently-occurring character sequences that ex-
press certain meanings can be treated as words,
while most Chinese words have syntactic struc-
tures. For example, Figure 1(b) shows the struc-
ture of the word “建筑业 (construction and build-
ing industry)”, where the characters “建 (construc-
tion)” and “筑 (building)” form a coordination,
and modify the character “业 (industry)”.

However, computational processing of Chinese
is typically based on words. Words are treated
as the atomic units in syntactic parsing, machine
translation, question answering and other NLP
tasks. Manually annotated corpora, such as the
Chinese Treebank (CTB) (Xue et al., 2005), usu-
ally have words as the basic syntactic elements

∗Email correspondence.
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(a) CTB-style word-based syntax tree for “中国 (China)建
筑业 (architecture industry) 呈现 (show) 新 (new) 格局
(pattern)”.
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(b) character-level syntax tree with hierarchal word structures
for “中 (middle) 国 (nation) 建 (construction) 筑 (building)
业 (industry) 呈 (present) 现 (show) 新 (new) 格 (style) 局
(situation)”.

Figure 1: Word-based and character-level phrase-
structure trees for the sentence “中国建筑业呈现
新格局 (China’s architecture industry shows new
patterns)”, where “l”, “r”, “c” denote the direc-
tions of head characters (see section 2).

(Figure 1(a)). This form of annotation does not
give character-level syntactic structures for words,
a source of linguistic information that is more fun-
damental and less sparse than atomic words.

In this paper, we investigate Chinese syn-
tactic parsing with character-level information
by extending the notation of phrase-structure
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(constituent) trees, adding recursive structures of
characters for words. We manually annotate the
structures of 37,382 words, which cover the entire
CTB5. Using these annotations, we transform
CTB-style constituent trees into character-level
trees (Figure 1(b)). Our word structure corpus,
together with a set of tools to transform CTB-style
trees into character-level trees, is released at
https://github.com/zhangmeishan/wordstructures.
Our annotation work is in line with the work of
Vadas and Curran (2007) and Li (2011), which
provide extended annotations of Penn Treebank
(PTB) noun phrases and CTB words (on the
morphological level), respectively.

We build a character-based Chinese parsing
model to parse the character-level syntax trees.
Given an input Chinese sentence, our parser pro-
duces its character-level syntax trees (Figure 1(b)).
With richer information than word-level trees, this
form of parse trees can be useful for all the afore-
mentioned Chinese NLP applications.

With regard to task of parsing itself, an impor-
tant advantage of the character-level syntax trees is
that they allow word segmentation, part-of-speech
(POS) tagging and parsing to be performed jointly,
using an efficient CKY-style or shift-reduce algo-
rithm. Luo (2003) exploited this advantage by
adding flat word structures without manually an-
notation to CTB trees, and building a generative
character-based parser. Compared to a pipeline
system, the advantages of a joint system include
reduction of error propagation, and the integration
of segmentation, POS tagging and syntax features.
With hierarchical structures and head character in-
formation, our annotated words are more informa-
tive than flat word structures, and hence can bring
further improvements to phrase-structure parsing.

To analyze word structures in addition to phrase
structures, our character-based parser naturally
performs joint word segmentation, POS tagging
and parsing jointly. Our model is based on the
discriminative shift-reduce parser of Zhang and
Clark (2009; 2011), which is a state-of-the-art
word-based phrase-structure parser for Chinese.
We extend their shift-reduce framework, adding
more transition actions for word segmentation and
POS tagging, and defining novel features that cap-
ture character information. Even when trained
using character-level syntax trees with flat word
structures, our joint parser outperforms a strong
pipelined baseline that consists of a state-of-the-
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(b) verb-object.
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Figure 2: Inner word structures of “库存 (reper-
tory)”,“考古 (archaeology)”, “科技 (science and
technology)” and “败类 (degenerate)”.

art joint segmenter and POS tagger, and our base-
line word-based parser. Our word annotations lead
to further improvements to the joint system, espe-
cially for phrase-structure parsing accuracy.

Our parser work falls in line with recent work
of joint segmentation, POS tagging and parsing
(Hatori et al., 2012; Li and Zhou, 2012; Qian
and Liu, 2012). Compared with related work,
our model gives the best published results for
joint segmentation and POS tagging, as well as
joint phrase-structure parsing on standard CTB5
evaluations. With linear-time complexity, our
parser is highly efficient, processing over 30 sen-
tences per second with a beam size of 16. An
open release of the parser is freely available at
http://sourceforge.net/projects/zpar/, version 0.6.

2 Word Structures and Syntax Trees

The Chinese language is a character-based lan-
guage. Unlike alphabetical languages, Chinese
characters convey meanings, and the meaning of
most Chinese words takes roots in their charac-
ter. For example, the word “计算机 (computer)” is
composed of the characters “计 (count)”, “算 (cal-
culate)” and “机 (machine)”. An informal name of
“computer” is “电脑”, which is composed of “电
(electronic)” and “脑 (brain)”.

Chinese words have internal structures (Xue,
2001; Ma et al., 2012). The way characters inter-
act within words can be similar to the way words
interact within phrases. Figure 2 shows the struc-
tures of the four words “库存 (repertory)”, “考古
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Figure 3: Character-level word structure of “卧虎
藏龙 (crouching tiger hidden dragon)”.

(archaeology)”, “科技 (science and technology)”
and “败类 (degenerate)”, which demonstrate
four typical syntactic structures of two-character
words, including subject-predicate, verb-object,
coordination and modifier-noun structures. Multi-
character words can also have recursive syntac-
tic structures. Figure 3 illustrates the structure
of the word “卧虎藏龙 (crouching tiger hidden
dragon)”, which is composed of two subwords “卧
虎 (crouching tiger)” and “藏龙 (hidden dragon)”,
both having a modifier-noun structure.

The meaning of characters can be a useful
source of information for computational process-
ing of Chinese, and some recent work has started
to exploit this information. Zhang and Clark
(2010) found that the first character in a Chinese
word is a useful indicator of the word’s POS. They
made use of this information to help joint word
segmentation and POS tagging.

Li (2011) studied the morphological structures
of Chinese words, showing that 35% percent of
the words in CTB5 can be treated as having mor-
phemes. Figure 4(a) illustrates the morphological
structures of the words “ 朋友们 (friends)” and
“教育界 (educational world)”, in which the char-
acters “们 (plural)” and “界 (field)” can be treated
as suffix morphemes. They studied the influence
of such morphology to Chinese dependency pars-
ing (Li and Zhou, 2012).

The aforementioned work explores the influ-
ence of particular types of characters to Chinese
processing, yet not the full potentials of complete
word structures. We take one step further in this
line of work, annotating the full syntactic struc-
tures of 37,382 Chinese words in the form of Fig-
ure 2 and Figure 3. Our annotation covers the
entire vocabulary of CTB5. In addition to dif-
ference in coverage (100% vs 35%), our annota-
tion is structurally more informative than that of
Li (2011), as illustrated in Figure 4(b).

Our annotations are binarized recursive word
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(a) morphological-level word structures, where “f” de-
notes a special mark for fine-grained words.

NN-c

NN-iNN-b

科
(science)

技
(technology)

VV-l

VV-iVV-b

烧
(burn)

完
(up)

NN-r

NN-iNN-b

库
(repository)

存
(saving)

NN-l

VV-iVV-b

考
(investigate)

古
(ancient)

NN-r

NN-iNN-b

败
(bad)

类
(kind)

AD-l

AD-iAD-b

徒
(vain)

然
(so)

NN-r

NN-iNN-b

卧
(crouching)

虎
(tiger)

NN-r

NN-iNN-i

藏
(hidden)

龙
(dragon)

NN-c

VV-r

VV-iVV-b

横
(fiercely)

扫
(sweep)

VV-r

VV-iVV-i

千
(thousands)

军
(troops)

VV-l

NN-c

NN-iNN-b

教
(teach)

育
(education)

NN-i

界
(field)

NN-r

NN

NN-fNN-f

教育
(education)

界
(field)

NN-c

NN-iNN-b

朋
(friend)

友
(friend)

NN-i

们
(plural)

NN-l

NN

NN-fNN-f

朋友
(friend)

们
(plural)
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Figure 4: Comparison between character-level and
morphological-level word structures.

structures. For each word or subword, we spec-
ify its POS and head direction. We use “l”, “r”
and “c” to indicate the “left”, “right” and “coordi-
nation” head directions, respectively. The “coor-
dination” direction is mostly used in coordination
structures, while a very small number of translit-
eration words, such as “奥巴马 (Obama)” and “洛
杉矶 (Los Angeles)”, have flat structures, and we
use “coordination” for their left binarization. For
leaf characters, we follow previous work on word
segmentation (Xue, 2003; Ng and Low, 2004), and
use “b” and “i” to indicate the beginning and non-
beginning characters of a word, respectively.

The vast majority of words do not have struc-
tural ambiguities. However, the structures of some
words may vary according to different POS. For
example, “制服” means “dominate” when it is
tagged as a verb, of which the head is the left char-
acter; the same word means “uniform dress” when
tagged as a noun, of which the head is the right
character. Thus the input of the word structure
annotation is a word together with its POS. The
annotation work was conducted by three persons,
with one person annotating the entire corpus, and
the other two checking the annotations.

Using our annotations, we can extend CTB-
style syntax trees (Figure 1(a)) into character-
level trees (Figure 1(b)). In particular, we mark
the original nodes that represent POS tags in CTB-
style trees with “-t”, and insert our word structures
as unary subnodes of the “-t” nodes. For the rest
of the paper, we refer to the “-t” nodes as full-word
nodes, all nodes above full-word nodes as phrase

127



nodes, and all nodes below full-word nodes as sub-
word nodes.

Our character-level trees contain additional syn-
tactic information, which are potentially useful to
Chinese processing. For example, the head char-
acters of words can be populated up to phrase-
level nodes, and serve as an additional source of
information that is less sparse than head words. In
this paper, we build a parser that yields character-
level trees from raw character sequences. In addi-
tion, we use this parser to study the effects of our
annotations to character-based statistical Chinese
parsing, showing that they are useful in improving
parsing accuracies.

3 Character-based Chinese Parsing

To produce character-level trees for Chinese
NLP tasks, we develop a character-based parsing
model, which can jointly perform word segmen-
tation, POS tagging and phrase-structure parsing.
To our knowledge, this is the first work to develop
a transition-based system that jointly performs the
above three tasks. Trained using annotated word
structures, our parser also analyzes the internal
structures of Chinese words.

Our character-based Chinese parsing model is
based on the work of Zhang and Clark (2009),
which is a transition-based model for lexicalized
constituent parsing. They use a beam-search de-
coder so that the transition action sequence can be
globally optimized. The averaged perceptron with
early-update (Collins and Roark, 2004) is used to
train the model parameters. Their transition sys-
tem contains four kinds of actions: (1) SHIFT,
(2) REDUCE-UNARY, (3) REDUCE-BINARY and
(4) TERMINATE. The system can provide bina-
rzied CFG trees in Chomsky Norm Form, and they
present a reversible conversion procedure to map
arbitrary CFG trees into binarized trees.

In this work, we remain consistent with their
work, using the head-finding rules of Zhang and
Clark (2008), and the same binarization algo-
rithm.1 We apply the same beam-search algorithm
for decoding, and employ the averaged perceptron
with early-update to train our model.

We make two extensions to their work to en-
able joint segmentation, POS tagging and phrase-
structure parsing from the character level. First,
we modify the actions of the transition system for

1We use a left-binarization process for flat word structures
that contain more than two characters.

S2

stack

...

...

queue

Q0 Q1
...S1

S1l S1r

... ...

S0

S0l S0r

... ...

Figure 5: A state in a transition-based model.

parsing the inner structures of words. Second, we
extend the feature set for our parsing problem.

3.1 The Transition System
In a transition-based system, an input sentence is
processed in a linear left-to-right pass, and the
output is constructed by a state-transition pro-
cess. We learn a model for scoring the transi-
tion Ai from one state STi to the next STi+1. As
shown in Figure 5, a state ST consists of a stack
S and a queue Q, where S = (· · · , S1, S0) con-
tains partially constructed parse trees, and Q =
(Q0, Q1, · · · , Qn−j) = (cj , cj+1, · · · , cn) is the
sequence of input characters that have not been
processed. The candidate transition action A at
each step is defined as follows:

• SHIFT-SEPARATE(t): remove the head
character cj fromQ, pushing a subword node
S′
cj

2 onto S, assigning S′.t = t. Note that the
parse tree S0 must correspond to a full-word
or a phrase node, and the character cj is the
first character of the next word. The argu-
ment t denotes the POS of S′.

• SHIFT-APPEND: remove the head character
cj from Q, pushing a subword node S′

cj
onto

S. cj will eventually be combined with all the
subword nodes on top of S to form a word,
and thus we must have S′.t = S0.t.

• REDUCE-SUBWORD(d): pop the top two
nodes S0 and S1 off S, pushing a new sub-
word node S′

S1 S0
onto S. The argument d

denotes the head direction of S′, of which
the value can be “left”, “right” or “coordi-
nation”.3 Both S0 and S1 must be subword
nodes and S′.t = S0.t = S1.t.

2We use this notation for a compact representation of a
tree node, where the numerator represents a father node, and
the denominator represents the children.

3For the head direction “coordination”, we extract the
head character from the left node.
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Category Feature templates When to Apply

Structure S0ntl S0nwl S1ntl S1nwl S2ntl S2nwl S3ntl S3nwl, All
features Q0c Q1c Q2c Q3c Q0c ·Q1c Q1c ·Q2c Q2c ·Q3c,

S0ltwl S0rtwl S0utwl S1ltwl S1rtwl S1utwl,
S0nw · S1nw S0nw · S1nl S0nl · S1nw S0nl · S1nl,
S0nw ·Q0c S0nl ·Q0c S1nw ·Q0c S1nlQ0c,
S0nl · S1nl · S2nl S0nw · S1nl · S2nl S0nl · S1nw · S2nl S0nl · S1nl · S2nw,
S0nw · S1nl ·Q0c S0nl · S1nw ·Q0c S0nl · S1nl ·Q0c,
S0ncl S0nct S0nctl S1ncl S1nct S1nctl,
S2ncl S2nct S2nctl S3ncl S3nct S3nctl,
S0nc · S1nc S0ncl · S1nl S0nl · S1ncl S0ncl · S1ncl,
S0nc ·Q0c S0nl ·Q0c S1nc ·Q0c S1nl ·Q0c,
S0nc · S1nc ·Q0c S0nc · S1nc ·Q0c ·Q1c

start(S0w) · start(S1w) start(S0w) · end(S1w), REDUCE-SUBWORD

indict(S1wS0w) · len(S1wS0w) indict(S1wS0w, S0t) · len(S1wS0w)

String t−1 · t0 t−2 · t−1t0 w−1 · t0 c0 · t0 start(w−1) · t0 c−1 · c0 · t−1 · t0, SHIFT-SEPARATE

features w−1 w−2 · w−1 w−1,where len(w−1) = 1 end(w−1) · c0, REDUCE-WORD

start(w−1) · len(w−1) end(w−1) · len(w−1) start(w−1) · end(w−1),
w−1 · c0 end(w−2) · w−1 start(w−1) · c0 end(w−2) · end(w−1),
w−1 · len(w−2) w−2 · len(w−1) w−1 · t−1 w−1 · t−2 w−1 · t−1 · c0,
w−1 · t−1 · end(w−2) c−2 · c−1 · c0 · t−1,where len(w−1) = 1 end(w−1) · t−1,
c · t−1 · end(w−1),where c ∈ w−1 and c 6= end(w−1)

c0 · t−1 c−1 · c0 start(w−1) · c0t−1 c−1 · c0 · t−1 SHIFT-APPEND

Table 1: Feature templates for the character-level parser. The function start(·), end(·) and len(·) denote
the first character, the last character and the length of a word, respectively.

• REDUCE-WORD: pop the top node S0 off S,
pushing a full-word node S′

S0
onto S. This re-

duce action generates a full-word node from
S0, which must be a subword node.

• REDUCE-BINARY(d, l): pop the top two
nodes S0 and S1 off S, pushing a binary
phrase node S′

S1 S0
onto S. The argument l

denotes the constituent label of S′, and the ar-
gument d specifies the lexical head direction
of S′, which can be either “left” or “right”.
Both S0 and S1 must be a full-word node or
a phrase node.

• REDUCE-UNARY(l): pop the top node S0
off S, pushing a unary phrase node S′

S0
onto

S. l denotes the constituent label of S′.

• TERMINATE: mark parsing complete.

Compared to set of actions in our baseline
transition-based phrase-structure parser, we have
made three major changes. First, we split the orig-
inal SHIFT action into SHIFT-SEPARATE(t)
and SHIFT-APPEND, which jointly perform the
word segmentation and POS tagging tasks. Sec-
ond, we add an extra REDUCE-SUBWORD(d) op-
eration, which is used for parsing the inner struc-

tures of words. Third, we add REDUCE-WORD,
which applies a unary rule to mark a completed
subword node as a full-word node. The new node
corresponds to a unary “-t” node in Figure 1(b).

3.2 Features

Table 1 shows the feature templates of our model.
The feature set consists of two categories: (1)
structure features, which encode the structural in-
formation of subwords, full-words and phrases.
(2) string features, which encode the information
of neighboring characters and words.

For the structure features, the symbols S0, S1,
S2, S3 represent the top four nodes on the stack;
Q0, Q1, Q2, Q3 denote the first four characters
in the queue; S0l, S0r, S0u represent the left,
right child for a binary branching S0, and the sin-
gle child for a unary branching S0, respectively;
S1l, S1r, S1u represent the left, right child for
a binary branching S1, and the single child for
a unary branching S1, respectively; n represents
the type for a node; it is a binary value that indi-
cates whether the node is a subword node; c, w,
t and l represent the head character, word (or sub-
word), POS tag and constituent label of a node, re-
spectively. The structure features are mostly taken
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from the work of Zhang and Clark (2009). The
feature templates in bold are novel, are designed
to encode head character information. In particu-
lar, the indict function denotes whether a word is
in a tag dictionary, which is collected by extract-
ing all multi-character subwords that occur more
than five times in the training corpus.

For string features, c0, c−1 and c−2 represent
the current character and its previous two charac-
ters, respectively; w−1 and w−2 represent the pre-
vious two words to the current character, respec-
tively; t0, t−1 and t−2 represent the POS tags of
the current word and the previous two words, re-
spectively. The string features are used for word
segmentation and POS tagging, and are adapted
from a state-of-the-art joint segmentation and tag-
ging model (Zhang and Clark, 2010).

In summary, our character-based parser con-
tains the word-based features of constituent parser
presented in Zhang and Clark (2009), the word-
based and shallow character-based features of
joint word segmentation and POS tagging pre-
sented in Zhang and Clark (2010), and addition-
ally the deep character-based features that encode
word structure information, which are the first pre-
sented by this paper.

4 Experiments

4.1 Setting

We conduct our experiments on the CTB5 cor-
pus, using the standard split of data, with sections
1–270,400–931 and 1001–1151 for training, sec-
tions 301–325 for system development, and sec-
tions 271–300 for testing. We apply the same pre-
processing step as Harper and Huang (2011), so
that the non-terminal yield unary chains are col-
lapsed to single unary rules.

Since our model can jointly process word seg-
mentation, POS tagging and phrase-structure pars-
ing, we evaluate our model for the three tasks, re-
spectively. For word segmentation and POS tag-
ging, standard metrics of word precision, recall
and F-score are used, where the tagging accuracy
is the joint accuracy of word segmentation and
POS tagging. For phrase-structure parsing, we
use the standard parseval evaluation metrics on
bracketing precision, recall and F-score. As our
constituent trees are based on characters, we fol-
low previous work and redefine the boundary of
a constituent span by its start and end characters.
In addition, we evaluate the performance of word
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Figure 6: Accuracies against the training epoch
for joint segmentation and tagging as well as joint
phrase-structure parsing using beam sizes 1, 4, 16
and 64, respectively.

structures, using the word precision, recall and F-
score metrics. A word structure is correct only if
the word and its internal structure are both correct.

4.2 Development Results

Figure 6 shows the accuracies of our model using
different beam sizes with respect to the training
epoch. The performance of our model increases
as the beam size increases. The amount of in-
creases becomes smaller as the size of the beam
grows larger. Tested using gcc 4.7.2 and Fedora
17 on an Intel Core i5-3470 CPU (3.20GHz), the
decoding speeds are 318.2, 98.0, 30.3 and 7.9 sen-
tences per second with beam size 1, 4, 16 and 64,
respectively. Based on this experiment, we set the
beam size 64 for the rest of our experiments.

The character-level parsing model has the ad-
vantage that deep character information can be ex-
tracted as features for parsing. For example, the
head character of a word is exploited in our model.
We conduct feature ablation experiments to eval-
uate the effectiveness of these features. We find
that the parsing accuracy decreases about 0.6%
when the head character related features (the bold
feature templates in Table 1) are removed, which
demonstrates the usefulness of these features.

4.3 Final Results

In this section, we present the final results of our
model, and compare it to two baseline systems, a
pipelined system and a joint system that is trained
with automatically generated flat words structures.

The baseline pipelined system consists of the
joint segmentation and tagging model proposed by
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Task P R F
Pipeline Seg 97.35 98.02 97.69

Tag 93.51 94.15 93.83
Parse 81.58 82.95 82.26

Flat word Seg 97.32 98.13 97.73
structures Tag 94.09 94.88 94.48

Parse 83.39 83.84 83.61
Annotated Seg 97.49 98.18 97.84
word structures Tag 94.46 95.14 94.80

Parse 84.42 84.43 84.43
WS 94.02 94.69 94.35

Table 2: Final results on test corpus.

Zhang and Clark (2010), and the phrase-structure
parsing model of Zhang and Clark (2009). Both
models give state-of-the-art performances, and are
freely available.4 The model for joint segmen-
tation and POS tagging is trained with a 16-
beam, since it achieves the best performance. The
phrase-structure parsing model is trained with a
64-beam. We train the parsing model using the
automatically generated POS tags by 10-way jack-
knifing, which gives about 1.5% increases in pars-
ing accuracy when tested on automatic segmented
and POS tagged inputs.

The joint system trained with flat word struc-
tures serves to test the effectiveness of our joint
parsing system over the pipelined baseline, since
flat word structures do not contain additional
sources of information over the baseline. It is also
used to test the usefulness of our annotation in im-
proving parsing accuracy.

Table 2 shows the final results of our model
and the two baseline systems on the test data.
We can see that both character-level joint mod-
els outperform the pipelined system; our model
with annotated word structures gives an improve-
ment of 0.97% in tagging accuracy and 2.17% in
phrase-structure parsing accuracy. The results also
demonstrate that the annotated word structures are
highly effective for syntactic parsing, giving an ab-
solute improvement of 0.82% in phrase-structure
parsing accuracy over the joint model with flat
word structures.

Row “WS” in Table 2 shows the accuracy of
hierarchical word-structure recovery of our joint
system. This figure can be useful for high-level ap-
plications that make use of character-level trees by

4http://sourceforge.net/projects/zpar/, version 0.5.

our parser, as it reflects the capability of our parser
in analyzing word structures. In particular, the per-
formance of parsing OOV word structure is an im-
portant metric of our parser. The recall of OOV
word structures is 60.43%, while if we do not con-
sider the influences of segmentation and tagging
errors, counting only the correctly segmented and
tagged words, the recall is 87.96%.

4.4 Comparison with Previous Work

In this section, we compare our model to previous
systems on the performance of joint word segmen-
tation and POS tagging, and the performance of
joint phrase-structure parsing.

Table 3 shows the results. Kruengkrai+ ’09
denotes the results of Kruengkrai et al. (2009),
which is a lattice-based joint word segmentation
and POS tagging model; Sun ’11 denotes a sub-
word based stacking model for joint segmenta-
tion and POS tagging (Sun, 2011), which uses a
dictionary of idioms; Wang+ ’11 denotes a semi-
supervised model proposed by Wang et al. (2011),
which additionally uses the Chinese Gigaword
Corpus; Li ’11 denotes a generative model that
can perform word segmentation, POS tagging and
phrase-structure parsing jointly (Li, 2011); Li+
’12 denotes a unified dependency parsing model
that can perform joint word segmentation, POS
tagging and dependency parsing (Li and Zhou,
2012); Li ’11 and Li+ ’12 exploited annotated
morphological-level word structures for Chinese;
Hatori+ ’12 denotes an incremental joint model
for word segmentation, POS tagging and depen-
dency parsing (Hatori et al., 2012); they use exter-
nal dictionary resources including HowNet Word
List and page names from the Chinese Wikipedia;
Qian+ ’12 denotes a joint segmentation, POS tag-
ging and parsing system using a unified frame-
work for decoding, incorporating a word segmen-
tation model, a POS tagging model and a phrase-
structure parsing model together (Qian and Liu,
2012); their word segmentation model is a combi-
nation of character-based model and word-based
model. Our model achieved the best performance
on both joint segmentation and tagging as well as
joint phrase-structure parsing.

Our final performance on constituent parsing is
by far the best that we are aware of for the Chinese
data, and even better than some state-of-the-art
models with gold segmentation. For example, the
un-lexicalized PCFG model of Petrov and Klein
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System Seg Tag Parse
Kruengkrai+ ’09 97.87 93.67 –
Sun ’11 98.17* 94.02* –
Wang+ ’11 98.11* 94.18* –
Li ’11 97.3 93.5 79.7
Li+ ’12 97.50 93.31 –
Hatori+ ’12 98.26* 94.64* –
Qian+ ’12 97.96 93.81 82.85
Ours pipeline 97.69 93.83 82.26
Ours joint flat 97.73 94.48 83.61
Ours joint annotated 97.84 94.80 84.43

Table 3: Comparisons of our final model with
state-of-the-art systems, where “*” denotes that
external dictionary or corpus has been used.

(2007) achieves 83.45%5 in parsing accuracy on
the test corpus, and our pipeline constituent pars-
ing model achieves 83.55% with gold segmenta-
tion. They are lower than the performance of our
character-level model, which is 84.43% without
gold segmentation. The main differences between
word-based and character-level parsing models are
that character-level model can exploit character
features. This further demonstrates the effective-
ness of characters in Chinese parsing.

5 Related Work

Recent work on using the internal structure of
words to help Chinese processing gives impor-
tant motivations to our work. Zhao (2009) stud-
ied character-level dependencies for Chinese word
segmentation by formalizing segmentsion task in
a dependency parsing framework. Their results
demonstrate that annotated word dependencies
can be helpful for word segmentation. Li (2011)
pointed out that the word’s internal structure is
very important for Chinese NLP. They annotated
morphological-level word structures, and a unified
generative model was proposed to parse the Chi-
nese morphological and phrase-structures. Li and
Zhou (2012) also exploited the morphological-
level word structures for Chinese dependency
parsing. They proposed a unified transition-based
model to parse the morphological and depen-
dency structures of a Chinese sentence in a unified
framework. The morphological-level word struc-

5We rerun the parser and evaluate it using the publicly-
available code on http://code.google.com/p/berkeleyparser
by ourselves, since we have a preprocessing step for the
CTB5 corpus.

tures concern only prefixes and suffixes, which
cover only 35% of entire words in CTB. Accord-
ing to their results, the final performances of their
model on word segmentation and POS tagging are
below the state-of-the-art joint segmentation and
POS tagging models. Compared to their work,
we consider the character-level word structures
for Chinese parsing, presenting a unified frame-
work for segmentation, POS tagging and phrase-
structure parsing. We can achieve improved seg-
mentation and tagging performance.

Our character-level parsing model is inspired
by the work of Zhang and Clark (2009), which
is a transition-based model with a beam-search
decoder for word-based constituent parsing. Our
work is based on the shift-reduce operations of
their work, while we introduce additional opera-
tions for segmentation and POS tagging. By such
an extension, our model can include all the fea-
tures in their work, together with the features for
segmentation and POS tagging. In addition, we
propose novel features related to word structures
and interactions between word segmentation, POS
tagging and word-based constituent parsing.

Luo (2003) was the first work to introduce the
character-based syntax parsing. They use it as
a joint framework to perform Chinese word seg-
mentation, POS tagging and syntax parsing. They
exploit a generative maximum entropy model for
character-based constituent parsing, and find that
POS information is very useful for Chinese word
segmentation, but high-level syntactic information
seems to have little effect on segmentation. Com-
pared to their work, we use a transition-based dis-
criminative model, which can benefit from large
amounts of flexible features. In addition, in-
stead of using flat structures, we manually anno-
tate hierarchal tree structures of Chinese words
for converting word-based constituent trees into
character-based constituent trees.

Hatori et al. (2012) proposed the first joint work
for the word segmentation, POS tagging and de-
pendency parsing. They used a single transition-
based model to perform the three tasks. Their
work demonstrates that a joint model can improve
the performance of the three tasks, particularly
for POS tagging and dependency parsing. Qian
and Liu (2012) proposed a joint decoder for word
segmentation, POS tagging and word-based con-
stituent parsing, although they trained models for
the three tasks separately. They reported better
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performances when using a joint decoder. In our
work, we employ a single character-based dis-
criminative model to perform segmentation, POS
tagging and phrase-structure parsing jointly, and
study the influence of annotated word structures.

6 Conclusions and Future Work

We studied the internal structures of more than
37,382 Chinese words, analyzing their structures
as the recursive combinations of characters. Using
these word structures, we extended the CTB into
character-level trees, and developed a character-
based parser that builds such trees from raw char-
acter sequences. Our character-based parser per-
forms segmentation, POS tagging and parsing
simultaneously, and significantly outperforms a
pipelined baseline. We make both our annotations
and our parser available online.

In summary, our contributions include:

• We annotated the internal structures of Chi-
nese words, which are potentially useful
to character-based studies of Chinese NLP.
We extend CTB-style constituent trees into
character-level trees using our annotations.

• We developed a character-based parsing
model that can produce our character-level
constituent trees. Our parser jointly performs
word segmentation, POS tagging and syntac-
tic parsing.

• We investigated the effectiveness of our joint
parser over pipelined baseline, and the effec-
tiveness of our annotated word structures in
improving parsing accuracies.

Future work includes investigations of our
parser and annotations on Chinese NLP tasks.
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Abstract

We present a novel transition-based, greedy
dependency parser which implements a
flexible mix of bottom-up and top-down
strategies. The new strategy allows the
parser to postpone difficult decisions until
the relevant information becomes available.
The novel parser has a ∼12% error reduc-
tion in unlabeled attachment score over an
arc-eager parser, with a slow-down factor
of 2.8.

1 Introduction

Dependency-based methods for syntactic parsing
have become increasingly popular during the last
decade or so. This development is probably due
to many factors, such as the increased availability
of dependency treebanks and the perceived use-
fulness of dependency structures as an interface
to downstream applications, but a very important
reason is also the high efficiency offered by de-
pendency parsers, enabling web-scale parsing with
high throughput. The most efficient parsers are
greedy transition-based parsers, which only explore
a single derivation for each input and relies on
a locally trained classifier for predicting the next
parser action given a compact representation of the
derivation history, as pioneered by Yamada and
Matsumoto (2003), Nivre (2003), Attardi (2006),
and others. However, while these parsers are cap-
able of processing tens of thousands of tokens per
second with the right choice of classifiers, they are
also known to perform slightly below the state-of-
the-art because of search errors and subsequent
error propagation (McDonald and Nivre, 2007),
and recent research on transition-based depend-
ency parsing has therefore explored different ways
of improving their accuracy.

The most common approach is to use beam
search instead of greedy decoding, in combination

with a globally trained model that tries to minim-
ize the loss over the entire sentence instead of a
locally trained classifier that tries to maximize the
accuracy of single decisions (given no previous er-
rors), as first proposed by Zhang and Clark (2008).
With these methods, transition-based parsers have
reached state-of-the-art accuracy for a number of
languages (Zhang and Nivre, 2011; Bohnet and
Nivre, 2012). However, the drawback with this ap-
proach is that parsing speed is proportional to the
size of the beam, which means that the most accur-
ate transition-based parsers are not nearly as fast
as the original greedy transition-based parsers. An-
other line of research tries to retain the efficiency of
greedy classifier-based parsing by instead improv-
ing the way in which classifiers are learned from
data. While the classical approach limits training
data to parser states that result from oracle predic-
tions (derived from a treebank), these novel ap-
proaches allow the classifier to explore states that
result from its own (sometimes erroneous) predic-
tions (Choi and Palmer, 2011; Goldberg and Nivre,
2012).

In this paper, we explore an orthogonal approach
to improving the accuracy of transition-based pars-
ers, without sacrificing their advantage in efficiency,
by introducing a new type of transition system.
While all previous transition systems assume a
static parsing strategy with respect to top-down
and bottom-up processing, our new system allows
a dynamic strategy for ordering parsing decisions.
This has the advantage that the parser can postpone
difficult decisions until the relevant information be-
comes available, in a way that is not possible in
existing transition systems. A second advantage of
dynamic parsing is that we can extend the feature
inventory of previous systems. Our experiments
show that these advantages lead to significant im-
provements in parsing accuracy, compared to a
baseline parser that uses the arc-eager transition
system of Nivre (2003), which is one of the most
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widely used static transition systems.

2 Static vs. Dynamic Parsing

The notions of bottom-up and top-down parsing
strategies do not have a general mathematical defin-
ition; they are instead specified, often only inform-
ally, for individual families of grammar formal-
isms. In the context of dependency parsing, a pars-
ing strategy is called purely bottom-up if every
dependency h → d is constructed only after all
dependencies of the form d → i have been con-
structed. Here h→ d denotes a dependency with
h the head node and d the dependent node. In con-
trast, a parsing strategy is called purely top-down
if h→ d is constructed before any dependency of
the form d→ i.

If we consider transition-based dependency pars-
ing (Nivre, 2008), the purely bottom-up strategy is
implemented by the arc-standard model of Nivre
(2004). After building a dependency h → d, this
model immediately removes from its stack node d,
preventing further attachment of dependents to this
node. A second popular parser, the arc-eager model
of Nivre (2003), instead adopts a mixed strategy.
In this model, a dependency h→ d is constructed
using a purely bottom-up strategy if it represents a
left-arc, that is, if the dependent d is placed to the
left of the head h in the input string. In contrast, if
h → d represents a right-arc (defined symmetric-
ally), then this dependency is constructed before
any right-arc d → i (top-down) but after any left-
arc d→ i (bottom-up).

What is important to notice about the above
transition-based parsers is that the adopted pars-
ing strategies are static. By this we mean that each
dependency is constructed according to some fixed
criterion, depending on structural conditions such
as the fact that the dependency represents a left or a
right arc. This should be contrasted with dynamic
parsing strategies in which several parsing options
are simultaneously available for the dependencies
being constructed.

In the context of left-to-right, transition-based
parsers, dynamic strategies are attractive for sev-
eral reasons. One argument is related to the well-
known PP-attachment problem, illustrated in Fig-
ure 1. Here we have to choose whether to attach
node P as a dependent of V (arc α2) or else as
a dependent of N1 (arc α3). The purely bottom-
up arc-standard model has to take a decision as
soon as N1 is placed into the stack. This is so

V N1 P N2

α1

α2

α3 α4

Figure 1: PP-attachment example, with dashed arcs
identifying two alternative choices.

because the construction of α1 excludes α3 from
the search space, while the alternative decision of
shifting P into the stack excludes α2. This is bad,
because the information about the correct attach-
ment could come from the lexical content of node P.
The arc-eager model performs slightly better, since
it can delay the decision up to the point in which α1

has been constructed and P is read from the buffer.
However, at this point it must make a commitment
and either construct α3 or pop N1 from the stack
(implicitly committing to α2) before N2 is read
from the buffer. In contrast with this scenario, in
the next sections we implement a dynamic parsing
strategy that allows a transition system to decide
between the attachments α2 and α3 after it has seen
all of the four nodes V, N1, P and N2.

Other additional advantages of dynamic parsing
strategies with respect to static strategies are re-
lated to the increase in the feature inventory that
we apply to parser states, and to the increase of
spurious ambiguity. However, these arguments are
more technical than the PP-attachment argument
above, and will be discussed later.

3 Dependency Parser

In this section we present a novel transition-based
parser for projective dependency trees, implement-
ing a dynamic parsing strategy.

3.1 Preliminaries

For non-negative integers i and j with i ≤ j, we
write [i, j] to denote the set {i, i+1, . . . , j}. When
i > j, [i, j] is the empty set.

We represent an input sentence as a string w =
w0 · · ·wn, n ≥ 1, where token w0 is a special
root symbol and, for each i ∈ [1, n], token wi =
(i, ai, ti) encodes a lexical element ai and a part-of-
speech tag ti associated with the i-th word in the
sentence.

A dependency tree for w is a directed, ordered
tree Tw = (Vw, Aw), where Vw = {wi | i ∈
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w4

w2 w5 w7

w1 w3 w6

Figure 2: A dependency tree with left spine
〈w4, w2, w1〉 and right spine 〈w4, w7〉.

[0, n]} is the set of nodes, and Aw ⊆ Vw × Vw is
the set of arcs. Arc (wi, wj) encodes a dependency
wi → wj . A sample dependency tree (excluding
w0) is displayed in Figure 2. If (wi, wj) ∈ Aw for
j < i, we say that wj is a left child of wi; a right
child is defined in a symmetrical way.

The left spine of Tw is an ordered sequence
〈u1, . . . , up〉 with p ≥ 1 and ui ∈ Vw for i ∈ [1, p],
consisting of all nodes in a descending path from
the root of Tw taking the leftmost child node at
each step. More formally, u1 is the root node of Tw
and ui is the leftmost child of ui−1, for i ∈ [2, p].
The right spine of Tw is defined symmetrically;
see again Figure 2. Note that the left and the right
spines share the root node and no other node.

3.2 Basic Idea

Transition-based dependency parsers use a stack
data structure, where each stack element is associ-
ated with a tree spanning some (contiguous) sub-
string of the input w. The parser can combine
two trees T and T ′ through attachment operations,
called left-arc or right-arc, under the condition that
T and T ′ appear at the two topmost positions in
the stack. Crucially, only the roots of T and T ′ are
available for attachment; see Figure 3(a).

In contrast, a stack element in our parser records
the entire left spine and right spine of the associated
tree. This allows us to extend the inventory of the
attachment operations of the parser by including
the attachment of tree T as a dependent of any node
in the left or in the right spine of a second tree T ′,
provided that this does not violate projectivity.1

See Figure 3(b) for an example.
The new parser implements a mix of bottom-up

and top-down strategies, since after any of the at-
tachments in Figure 3(b) is performed, additional
dependencies can still be created for the root of T .
Furthermore, the new parsing strategy is clearly dy-

1A dependency tree for w is projective if every subtree has
a contiguous yield in w.

T

T ′

T

T ′

(a) (b)

Figure 3: Left-arc attachment of T to T ′ in case
of (a) standard transition-based parsers and (b) our
parser.

namic, due to the free choice in the timing for these
attachments. The new strategy is more powerful
than the strategy of the arc-eager model, since we
can use top-down parsing at left arcs, which is not
allowed in arc-eager parsing, and we do not have
the restrictions of parsing right arcs (h→ d) before
the attachment of right dependents at node d.

To conclude this section, let us resume our dis-
cussion of the PP-attachment example in Figure 1.
We observe that the new parsing strategy allows the
construction of a tree T ′ consisting of the only de-
pendency V→ N1 and a tree T , placed at the right
of T ′, consisting of the only dependency P→ N2.
Since the right spine of T ′ consists of nodes V
and N1, we can freely choose between attachment
V→ P and attachment N1→ P. Note that this is
done after we have seen node N2, as desired.

3.3 Transition-based Parser
We assume the reader is familiar with the formal
framework of transition-based dependency parsing
originally introduced by Nivre (2003); see Nivre
(2008) for an introduction. To keep the notation at
a simple level, we only discuss here the unlabeled
version of our parser; however, a labeled extension
is used in §5 for our experiments.

Our transition-based parser uses a stack data
structure to store partial parses for the input string
w. We represent the stack as an ordered sequence
σ = [σd, . . . , σ1], d ≥ 0, of stack elements, with
the topmost element placed at the right. When d =
0, we have the empty stack σ = []. Sometimes we
use the vertical bar to denote the append operator
for σ, and write σ = σ′|σ1 to indicate that σ1 is the
topmost element of σ.

A stack element is a pair

σk = (〈uk,1, . . . , uk,p〉, 〈vk,1, . . . , vk,q〉)

where the ordered sequences 〈uk,1, . . . , uk,p〉 and
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〈vk,1, . . . , vk,q〉 are the left and the right spines, re-
spectively, of the tree associated with σk. Recall
that uk,1 = vk,1, since the root node of the associ-
ated tree is shared by the two spines.

The parser also uses a buffer to store the por-
tion of the input string still to be processed. We
represent the buffer as an ordered sequence β =
[wi, . . . , wn], i ≥ 0, of tokens from w, with the
first element placed at the left. Note that β always
represents a (non-necessarily proper) suffix of w.
When i > n, we have the empty buffer β = [].
Sometimes we use the vertical bar to denote the
append operator for β, and write β = wi|β′ to in-
dicate that wi is the first token of β; consequently,
we have β′ = [wi+1, . . . , wn].

When processing w, the parser reaches several
states, technically called configurations. A con-
figuration of the parser relative to w is a triple
c = (σ, β,A), where σ and β are a stack and
a buffer, respectively, and A ⊆ Vw × Vw is a
set of arcs. The initial configuration for w is
([], [w0, . . . , wn], ∅). The set of terminal config-
urations consists of all configurations of the form
([σ1], [], A), where σ1 is associated with a tree hav-
ing root w0, that is, u1,1 = v1,1 = w0, and A is any
set of arcs.

The core of a transition-based parser is the set
of its transitions. Each transition is a binary rela-
tion defined over the set of configurations of the
parser. Since the set of configurations is infinite,
a transition is infinite as well, when viewed as a
set. However, transitions can always be specified
by some finite means. Our parser uses three types
of transitions, defined in what follows.

• SHIFT, or sh for short. This transition re-
moves the first node from the buffer and
pushes into the stack a new element, consist-
ing of the left and right spines of the associ-
ated tree. More formally

(σ,wi|β,A) `sh (σ|(〈wi〉, 〈wi〉), β, A)

• LEFT-ARCk, k ≥ 1, or lak for short. Let h
be the k-th node in the left spine of the top-
most tree in the stack, and let d be the root
node of the second topmost tree in the stack.
This transition creates a new arc h→ d. Fur-
thermore, the two topmost stack elements are
replaced by a new element associated with the
tree resulting from the h→ d attachment. The
transition does not advance with the reading

of the buffer. More formally

(σ′|σ2|σ1, β, A) `lak (σ′|σla, β, A ∪ {h→ d})

where

σ1 = (〈u1,1, . . . , u1,p〉, 〈v1,1, . . . , v1,q〉) ,
σ2 = (〈u2,1, . . . , u2,r〉, 〈v2,1, . . . , v2,s〉) ,
σla = (〈u1,1, . . . , u1,k, u2,1, . . . , u2,r〉,

〈v1,1, . . . , v1,q〉) ,

and where we have set h = u1,k and d = u2,1.

• RIGHT-ARCk, k ≥ 1, or rak for short. This
transition is defined symmetrically with re-
spect to lak. We have

(σ′|σ2|σ1, β, A) `rak (σ′|σra, β, A ∪ {h→ d})

where σ1 and σ2 are as in the lak case,

σra = (〈u2,1, . . . , u2,r〉,
〈v2,1, . . . , v2,k, v1,1, . . . , v1,q〉) ,

and we have set h = v2,k and d = v1,1.

Transitions lak and rak are parametric in k,
where k is bounded by the length of the input string
and not by a fixed constant (but see also the experi-
mental findings in §5). Thus our system uses an un-
bounded number of transition relations, which has
an apparent disadvantage for learning algorithms.
We will get back to this problem in §4.3.

A complete computation relative to w is a se-
quence of configurations c1, c2, . . . , ct, t ≥ 1, such
that c1 and ct are initial and final configurations,
respectively, and for each i ∈ [2, t], ci is produced
by the application of some transition to ci−1. It is
not difficult to see that the transition-based parser
specified above is sound, meaning that the set of
arcs constructed in any complete computation on
w is always a dependency tree for w. The parser
is also complete, meaning that every (projective)
dependency tree for w is constructed by some com-
plete computation on w. A mathematical proof of
this statement is beyond the scope of this paper,
and will not be provided here.

3.4 Deterministic Parsing Algorithm
The transition-based parser of the previous sec-
tion is a nondeterministic device, since several
transitions can be applied to a given configuration.
This might result in several complete computations
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Algorithm 1 Parsing Algorithm
Input: string w = w0 · · ·wn, function score()
Output: dependency tree Tw
c = (σ, β,A)← ([], [w0, . . . , wn], ∅)
while |σ| > 1 ∨ |β| > 0 do

while |σ| < 2 do
update c with sh

p← length of left spine of σ1
s← length of right spine of σ2
T ← {lak | k ∈ [1, p]} ∪
{rak | k ∈ [1, s]} ∪ {sh}

bestT ← argmaxt∈T score(t , c)
update c with bestT

return Tw = (Vw, A)

for w. We present here an algorithm that runs
the parser in pseudo-deterministic mode, greed-
ily choosing at each configuration the transition
that maximizes some score function. Algorithm 1
takes as input a string w and a scoring function
score() defined over parser transitions and parser
configurations. The scoring function will be the
subject of §4 and is not discussed here. The output
of the parser is a dependency tree for w.

At each iteration the algorithm checks whether
there are at least two elements in the stack and, if
this is not the case, it shifts elements from the buffer
to the stack. Then the algorithm uses the function
score() to evaluate all transitions that can be ap-
plied under the current configuration c = (σ, β,A),
and it applies the transition with the highest score,
updating the current configuration.

To parse a sentence of length n (excluding the
root token w0) the algorithm applies exactly 2n+1
transitions. In the worst case, each transition ap-
plication involves 1 + p+ s transition evaluations.
We therefore conclude that the algorithm always
reaches a configuration with an empty buffer and a
stack which contains only one element. Then the al-
gorithm stops, returning the dependency tree whose
arc set is defined as in the current configuration.

4 Model and Training

In this section we introduce the adopted learning
algorithm and discuss the model parameters.

4.1 Learning Algorithm

We use a linear model for the score function in
Algorithm 1, and define score(t , c) = ~ω · φ(t , c).
Here ~ω is a weight vector and function φ provides

Algorithm 2 Learning Algorithm
Input: pair (w = w0 · · ·wn, Ag), vector ~ω
Output: vector ~ω
c = (σ, β,A)← ([], [w0, . . . , wn], ∅)
while |σ| > 1 ∨ |β| > 0 do

while |σ| < 2 do
update c with SHIFT

p← length of left spine of σ1
s← length of right spine of σ2
T ← {lak | k ∈ [1, p]} ∪
{rak | k ∈ [1, s]} ∪ {sh}

bestT ← argmaxt∈T score(t , c)
bestCorrectT ←

argmaxt∈T ∧isCorrect(t) score(t , c)
if bestT 6= bestCorrectT then
~ω ← ~ω − φ(bestT , c)

+φ(bestCorrectT , c)
update c with bestCorrectT

a feature vector representation for a transition t ap-
plying to a configuration c. The function φ will be
discussed at length in §4.3. The vector ~ω is trained
using the perceptron algorithm in combination with
the averaging method to avoid overfitting; see Fre-
und and Schapire (1999) and Collins and Duffy
(2002) for details.

The training data set consists of pairs (w,Ag),
where w is a sentence and Ag is the set of arcs
of the gold (desired) dependency tree for w. At
training time, each pair (w,Ag) is processed using
the learning algorithm described as Algorithm 2.
The algorithm is based on the notions of correct and
incorrect transitions, discussed at length in §4.2.

Algorithm 2 parsesw following Algorithm 1 and
using the current ~ω, until the highest score selec-
ted transition bestT is incorrect according to Ag .
When this happens, ~ω is updated by decreasing the
weights of the features associated with the incorrect
bestT and by increasing the weights of the features
associated with the transition bestCorrectT having
the highest score among all possible correct trans-
itions. After each update, the learning algorithm
resumes parsing from the current configuration by
applying bestCorrectT , and moves on using the
updated weights.

4.2 Correct and Incorrect Transitions
Standard transition-based dependency parsers are
trained by associating each gold tree with a canon-
ical complete computation. This means that, for
each configuration of interest, only one transition
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σ2 σ1 b1

(a)

σ2 σ1 b1

(b)

σ2 σ1
· · ·

bi

(c)

σ2 σ1
· · ·

bi

(d)

Figure 4: Graphical representation of configura-
tions; drawn arcs are in Ag but have not yet been
added to the configuration. Transition sh is incor-
rect for configuration (a) and (b); sh and ra1 are
correct for (c); sh and la1 are correct for (d).

leading to the gold tree is considered as correct. In
this paper we depart from such a methodology, and
follow Goldberg and Nivre (2012) in allowing more
than one correct transition for each configuration,
as explained in detail below.

Let (w,Ag) be a pair in the training set. In §3.3
we have mentioned that there is always a complete
computation on w that results in the construction
of the set Ag . In general, there might be more than
one computation forAg . This means that the parser
shows spurious ambiguity.

Observe that all complete computations for Ag

share the same initial configuration cI,w and final
configuration cF,Ag . Consider now the set C(w) of
all configurations c that are reachable from cI,w,
meaning that there exists a sequence of transitions
that takes the parser from cI,w to c. A configuration
c ∈ C(w) is correct for Ag if cF,Ag is reachable
from c; otherwise, c is incorrect for Ag .

Let c ∈ C(w) be a correct configuration for Ag .
A transition t is correct for c and Ag if c `t c′
and c′ is correct for Ag ; otherwise, t is incorrect
for c and Ag . The next lemma provides a charac-
terization of correct and incorrect transitions; see
Figure 4 for examples. We use this characterization
in the implementation of predicate isCorrect() in
Algorithm 2.

Lemma 1 Let (w,Ag) be a pair in the training set
and let c ∈ C(w) with c = (σ, β,A) be a correct
configuration for Ag . Let also v1,k, k ∈ [1, q], be
the nodes in the right spine of σ1.

(i) lak and rak are incorrect for c and Ag if and
only if they create a new arc (h→ d) 6∈ Ag ;

(ii) sh is incorrect for c and Ag if and only if the

following conditions are both satisfied:

(a) there exists an arc (h → d) in Ag such
that h is in σ and d = v1,1;

(b) there is no arc (h′ → d′) in Ag with
h′ = v1,k, k ∈ [1, q], and d′ in β. 2

PROOF (SKETCH) To prove part (i) we focus on
transition rak; a similar argument applies to lak.
The ‘if’ statement in part (i) is self-evident.

‘Only if’. Assuming that transition rak creates
a new arc (h→ d) ∈ Ag , we argue that from con-
figuration c′ with c `rak c′ we can still reach the
final configuration associated with Ag . We have
h = v2,k and d = u1,1. The tree fragments in σ
with roots v2,k+1 and u1,1 must be adjacent siblings
in the tree associated with Ag , since c is a correct
configuration for Ag and (v2,k → u1,1) ∈ Ag .
This means that each of the nodes v2,k+1, . . . , v2,s
in the right spine in σ2 in c must have already ac-
quired all of its right dependents, since the tree is
projective. Therefore it is safe for transition rak to
eliminate the nodes v2,k+1, . . . , v2,s from the right
spine in σ2.

We now deal with part (ii). Let c `sh c′, c′ =
(σ′, β′, A).

‘If’. Assuming (ii)a and (ii)b, we argue that c′ is
incorrect. Node d is the head of σ′2. Arc (h→ d) is
not inA, and the only way we could create (h→ d)
from c′ is by reaching a new configuration with d
in the topmost stack symbol, which amounts to say
that σ′1 can be reduced by a correct transition. Node
h is in some σ′i, i > 2, by (ii)a. Then reduction of
σ′1 implies that the root of σ′1 is reachable from the
root of σ′2, which contradicts (ii)b.

‘Only if’. Assuming (ii)a is not satisfied, we
argue that sh is correct for c and Ag . There must
be an arc (h→ d) not in A with d = v1,1 and h is
some token wi in β. From stack σ′ = σ′′|σ′2|σ′1 it
is always possible to construct (h→ d) consuming
the substring of β up to wi and ending up with
stack σ′′|σred , where σred is a stack element with
root wi. From there, the parser can move on to
the final configuration cF,Ag . A similar argument
applies if we assume that (ii)b is not satisfied. �

From condition (i) in Lemma 1 and from the fact
that there are no cycles in Ag , it follows that there
is at most one correct transition among the trans-
itions of type lak or rak. From condition (ii) in the
lemma we can also see that the existence of a cor-
rect transition of type lak or rak for some configura-
tion does not imply that the sh transition is incorrect
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for the same configuration; see Figures 4(c,d) for
examples. It follows that for a correct configuration
there might be at most 2 correct transitions. In our
training experiments for English in §5 we observe 2
correct transitions for 42% of the reached configur-
ations. This nondeterminism is a byproduct of the
adopted dynamic parsing strategy, and eventually
leads to the spurious ambiguity of the parser.

As already mentioned, we do not impose any ca-
nonical form on complete computations that would
hardwire a preference for some correct transition
and get rid of spurious ambiguity. Following Gold-
berg and Nivre (2012), we instead regard spurious
ambiguity as an additional resource of our pars-
ing strategy. Our main goal is that the training
algorithm learns to prefer a sh transition in a con-
figuration that does not provide enough information
for the choice of the correct arc. In the context of
dependency parsing, the strategy of delaying arc
construction when the current configuration is not
informative is called the easy-first strategy, and
has been first explored by Goldberg and Elhadad
(2010).

4.3 Feature Extraction

In existing transition-based parsers a set of atomic
features is statically defined and extracted from
each configuration. These features are then com-
bined together into complex features, according to
some feature template, and joined with the avail-
able transition types. This is not possible in our
system, since the number of transitions lak and rak
is not bounded by a constant. Furthermore, it is not
meaningful to associate transitions lak and rak, for
any k ≥ 1, always with the same features, since
the constructed arcs impinge on nodes at differ-
ent depths in the involved spines. It seems indeed
more significant to extract information that is local
to the arc h→ d being constructed by each trans-
ition, such as for instance the grandparent and the
great grandparent nodes of d. This is possible if
we introduce a higher level of abstraction than in
existing transition-based parsers. We remark here
that this abstraction also makes the feature repres-
entation more similar to the ones typically found
in graph-based parsers, which are centered on arcs
or subgraphs of the dependency tree.

We index the nodes in the stack σ relative to
the head node of the arc being constructed, in
case of the transitions lak or rak, or else relative
to the root node of σ1, in case of the transition

sh. More precisely, let c = (σ, β,A) be a con-
figuration and let t be a transition. We define
the context of c and t as the tuple C(c, t) =
(s3, s2, s1, q1, q2, gp, gg), whose components are
placeholders for word tokens in σ or in β. All these
placeholders are specified in Table 1, for each c and
t . Figure 5 shows an example of feature extraction
for the displayed configuration c = (σ, β,A) and
the transition la2. In this case we have s3 = u3,1,
s2 = u2,1, s1 = u1,2, q1 = gp = u1,1, q2 = b1;
gg = none because the head of gp is not available
in c.

Note that in Table 1 placeholders are dynamic-
ally assigned in such a way that s1 and s2 refer to
the nodes in the constructed arc h→ d, and gp, gg
refer to the grandparent and the great grandparent
nodes, respectively, of d. Furthermore, the node
assigned to s3 is the parent node of s2, if such a
node is defined; otherwise, the node assigned to
s3 is the root of the tree fragment in the stack un-
derneath σ2. Symmetrically, placeholders q1 and
q2 refer to the parent and grandparent nodes of s1,
respectively, when these nodes are defined; other-
wise, these placeholders get assigned tokens from
the buffer. See again Figure 5.

Finally, from the placeholders in C(c, t) we ex-
tract a standard set of atomic features and their
complex combinations, to define the function φ.
Our feature template is an extended version of the
feature template of Zhang and Nivre (2011), ori-
ginally developed for the arc-eager model. The
extension is obtained by adding top-down features
for left-arcs (based on placeholders gp and gg),
and by adding right child features for the first stack
element. The latter group of features is usually ex-
ploited for the arc-standard model, but is undefined
for the arc-eager model.

5 Experimental Assessment

Performance evaluation is carried out on the Penn
Treebank (Marcus et al., 1993) converted to Stan-
ford basic dependencies (De Marneffe et al., 2006).
We use sections 2-21 for training, 22 as develop-
ment set, and 23 as test set. The part-of-speech
tags are assigned by an automatic tagger with ac-
curacy 97.1%. The tagger used on the training set
is trained on the same data set by using four-way
jackknifing, while the tagger used on the develop-
ment and test sets is trained on all the training set.
We train an arc-labeled version of our parser.

In the first three lines of Table 2 we compare
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context sh lak rak
placeholder k = 1 k = 2 k > 2 k = 1 k = 2 k > 2

s1 u1,1 = v1,1 u1,k u1,1 = v1,1
s2 u2,1 = v2,1 u2,1 = v2,1 v2,k
s3 u3,1 = v3,1 u3,1 = v3,1 u3,1 = v3,1 v2,k−1

q1 b1 b1 u1,k−1 b1
q2 b2 b2 b1 u1,k−2 b2
gp none none u1,k−1 none v2,k−1

gg none none none u1,k−2 none none v2,k−2

Table 1: Definition ofC(c, t) = (s3, s2, s1, q1, q2, gp, gg), for c = (σ′|σ3|σ2|σ1, b1|b2|β,A) and t of type
sh or lak, rak, k ≥ 1. Symbols uj,k and vj,k are the k-th nodes in the left and right spines, respectively, of
stack element σj , with uj,1 = vj,1 being the shared root of σj ; none is an artificial element used when
some context’s placeholder is not available.

· · ·

stack σ

u3,1 = v3,1

v3,2

u2,1 = v2,1

u2,2 v2,2

v2,3

u1,1 = v1,1

u1,2 v1,2

u1,3 v1,3

la2

buffer β

b1 b2 b3 · · ·

context extracted for la2

s3 s2 s1 q1=gp q2

Figure 5: Extraction of atomic features for context C(c, la2) = (s3, s2, s1, q1, q2, gp, gg), c = (σ, β,A).

parser iter UAS LAS UEM
arc-standard 23 90.02 87.69 38.33
arc-eager 12 90.18 87.83 40.02
this work 30 91.33 89.16 42.38
arc-standard + easy-first 21 90.49 88.22 39.61
arc-standard + spine 27 90.44 88.23 40.27

Table 2: Accuracy on test set, excluding punc-
tuation, for unlabeled attachment score (UAS),
labeled attachment score (LAS), unlabeled exact
match (UEM).

the accuracy of our parser against our implementa-
tion of the arc-eager and arc-standard parsers. For
the arc-eager parser, we use the feature template
of Zhang and Nivre (2011). The same template is
adapted to the arc-standard parser, by removing the
top-down parent features and by adding the right
child features for the first stack element. It turns out
that our feature template, described in §4.3, is the
exact merge of the templates used for the arc-eager
and the arc-standard parsers.

We train all parsers up to 30 iterations, and for
each parser we select the weight vector ~ω from the
iteration with the best accuracy on the development
set. All our parsers attach the root node at the end
of the parsing process, following the ‘None’ ap-

proach discussed by Ballesteros and Nivre (2013).
Punctuation is excluded in all evaluation metrics.
Considering UAS, our parser provides an improve-
ment of 1.15 over the arc-eager parser and an im-
provement of 1.31 over the arc-standard parser, that
is an error reduction of ∼12% and ∼13%, respect-
ively. Considering LAS, we achieve improvements
of 1.33 and 1.47, with an error reduction of ∼11%
and ∼12%, over the arc-eager and the arc-standard
parsers, respectively.

We speculate that the observed improvement of
our parser can be ascribed to two distinct com-
ponents. The first component is the left-/right-
spine representation for stack elements, introduced
in §3.3. The second component is the easy-first
strategy, implemented on the basis of the spurious
ambiguity of our parser and the definition of cor-
rect/incorrect transitions in §4.2. In this perspective,
we observe that our parser can indeed be viewed as
an arc-standard model augmented with (i) the spine
representation, and (ii) the easy-first strategy. More
specifically, (i) generalizes the la/ra transitions to
the lak/rak transitions, introducing a top-down com-
ponent into the purely bottom-up arc-standard. On
the other hand, (ii) drops the limitation of canonical
computations for the arc-standard, and leverages
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on the spurious ambiguity of the parser to enlarge
the search space.

The two components above are mutually inde-
pendent, meaning that we can individually imple-
ment each component on top of an arc-standard
model. More precisely, the arc-standard + spine
model uses the transitions lak/rak but retains the
definition of canonical computation, defined by ap-
plying each lak/rak transition as soon as possible.
On the other hand, the arc-standard + easy-first
model retains the original la/ra transitions but is
trained allowing any correct transition at each con-
figuration. In this case the characterization of cor-
rect and incorrect configurations in Lemma 1 has
been adapted to transitions la/ra, taking into ac-
count the bottom-up constraint.

With the purpose of incremental comparison, we
report accuracy results for the two ‘incremental’
models in the last two lines of Table 2. Analyzing
these results, and comparing with the plain arc-
standard, we see that the spine representation and
the easy-first strategy individually improve accur-
acy. Moreover, their combination into our model
(third line of Table 2) works very well, with an
overall improvement larger than the sum of the
individual contributions.

We now turn to a computational analysis. At
each iteration our parser evaluates a number of
transitions bounded by γ+1, with γ the maximum
value of the sum of the lengths of the left spine in σ1
and of the right spine in σ2. Quantity γ is bounded
by the length n of the input sentence. Since the
parser applies exactly 2n + 1 transitions, worst
case running time is O(n2). We have computed
the average value of γ on our English data set,
resulting in 2.98 (variance 2.15) for training set,
and 2.95 (variance 1.96) for development set. We
conclude that, in the expected case, running time is
O(n), with a slow down constant which is rather
small, in comparison to standard transition-based
parsers. Accordingly, when running our parser
against our implementation of the arc-eager and
arc-standard models, we measured a slow-down of
2.8 and 2.2, respectively. Besides the change in
representation, this slow-down is also due to the
increase in the number of features in our system.
We have also checked the worst case value of γ in
our data set. Interestingly, we have seen that for
strings of length smaller than 40 this value linearly
grows with n, and for longer strings the growth
stops, with a maximum worst case observed value

of 22.

6 Concluding Remarks

We have presented a novel transition-based parser
using a dynamic parsing strategy, which achieves
a ∼12% error reduction in unlabeled attachment
score over the static arc-eager strategy and even
more over the (equally static) arc-standard strategy,
when evaluated on English.

The idea of representing the right spine of a
tree within the stack elements of a shift-reduce
device is quite old in parsing, predating empirical
approaches. It has been mainly exploited to solve
the PP-attachment problem, motivated by psycho-
linguistic models. The same representation is also
adopted in applications of discourse parsing, where
right spines are usually called right frontiers; see
for instance Subba and Di Eugenio (2009). In
the context of transition-based dependency parsers,
right spines have also been exploited by Kitagawa
and Tanaka-Ishii (2010) to decide where to attach
the next word from the buffer. In this paper we
have generalized their approach by introducing the
symmetrical notion of left spine, and by allowing
attachment of full trees rather than attachment of a
single word.2

Since one can regard a spine as a stack in it-
self, whose elements are tree nodes, our model is
reminiscent of the embedded pushdown automata
of Schabes and Vijay-Shanker (1990), used to parse
tree adjoining grammars (Joshi and Schabes, 1997)
and exploiting a stack of stacks. However, by im-
posing projectivity, we do not use the extra-power
of the latter class.

An interesting line of future research is to com-
bine our dynamic parsing strategy with a training
method that allows the parser to explore transitions
that apply to incorrect configurations, as in Gold-
berg and Nivre (2012).
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Abstract

Binarization of grammars is crucial for im-
proving the complexity and performance
of parsing and translation. We present a
versatile binarization algorithm that can
be tailored to a number of grammar for-
malisms by simply varying a formal pa-
rameter. We apply our algorithm to bi-
narizing tree-to-string transducers used in
syntax-based machine translation.

1 Introduction

Binarization amounts to transforming a given
grammar into an equivalent grammar of rank 2,
i.e., with at most two nonterminals on any right-
hand side. The ability to binarize grammars is
crucial for efficient parsing, because for many
grammar formalisms the parsing complexity de-
pends exponentially on the rank of the gram-
mar. It is also critically important for tractable
statistical machine translation (SMT). Syntax-
based SMT systems (Chiang, 2007; Graehl et
al., 2008) typically use some type of synchronous
grammar describing a binary translation rela-
tion between strings and/or trees, such as syn-
chronous context-free grammars (SCFGs) (Lewis
and Stearns, 1966; Chiang, 2007), synchronous
tree-substitution grammars (Eisner, 2003), syn-
chronous tree-adjoining grammars (Nesson et al.,
2006; DeNeefe and Knight, 2009), and tree-to-
string transducers (Yamada and Knight, 2001;
Graehl et al., 2008). These grammars typically
have a large number of rules, many of which have
rank greater than two.

The classical approach to binarization, as
known from the Chomsky normal form transfor-
mation for context-free grammars (CFGs), pro-
ceeds rule by rule. It replaces each rule of rank
greater than 2 by an equivalent collection of rules
of rank 2. All CFGs can be binarized in this

way, which is why their recognition problem is
cubic. In the case of linear context-free rewriting
systems (LCFRSs, (Weir, 1988)) the rule-by-rule
technique also applies to every grammar, as long
as an increased fanout it permitted (Rambow and
Satta, 1999).

There are also grammar formalisms for which
the rule-by-rule technique is not complete. In the
case of SCFGs, not every grammar has an equiva-
lent representation of rank 2 in the first place (Aho
and Ullman, 1969). Even when such a represen-
tation exists, it is not always possible to compute
it rule by rule. Nevertheless, the rule-by-rule bi-
narization algorithm of Huang et al. (2009) is very
useful in practice.

In this paper, we offer a generic approach
for transferring the rule-by-rule binarization tech-
nique to new grammar formalisms. At the core of
our approach is a binarization algorithm that can
be adapted to a new formalism by changing a pa-
rameter at runtime. Thus it only needs to be im-
plemented once, and can then be reused for a va-
riety of formalisms. More specifically, our algo-
rithm requires the user to (i) encode the grammar
formalism as a subclass of interpreted regular tree
grammars (IRTGs, (Koller and Kuhlmann, 2011))
and (ii) supply a collection of b-rules, which rep-
resent equivalence of grammars syntactically. Our
algorithm then replaces, in a given grammar, each
rule of rank greater than 2 by an equivalent collec-
tion of rules of rank 2, if such a collection is li-
censed by the b-rules. We define completeness of
b-rules in a way that ensures that if any equivalent
collection of rules of rank 2 exists, the algorithm
finds one. As a consequence, the algorithm bina-
rizes every grammar that can be binarized rule by
rule. Step (i) is possible for all the grammar for-
malisms mentioned above. We show Step (ii) for
SCFGs and tree-to-string transducers.

We will use SCFGs as our running example
throughout the paper. We will also apply the algo-
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rithm to tree-to-string transducers (Graehl et al.,
2008; Galley et al., 2004), which describe rela-
tions between strings in one language and parse
trees of another, which means that existing meth-
ods for binarizing SCFGs and LCFRSs cannot be
directly applied to these systems. To our knowl-
edge, our binarization algorithm is the first to bi-
narize such transducers. We illustrate the effec-
tiveness of our system by binarizing a large tree-
to-string transducer for English-German SMT.

Plan of the paper. We start by defining IRTGs
in Section 2. In Section 3, we define the gen-
eral outline of our approach to rule-by-rule bina-
rization for IRTGs, and then extend this to an ef-
ficient binarization algorithm based on b-rules in
Section 4. In Section 5 we show how to use the
algorithm to perform rule-by-rule binarization of
SCFGs and tree-to-string transducers, and relate
the results to existing work.

2 Interpreted regular tree grammars

Grammar formalisms employed in parsing and
SMT, such as those mentioned in the introduc-
tion, differ in the the derived objects—e.g., strings,
trees, and graphs—and the operations involved in
the derivation—e.g., concatenation, substitution,
and adjoining. Interpreted regular tree grammars
(IRTGs) permit a uniform treatment of many of
these formalisms. To this end, IRTGs combine
two ideas, which we explain here.

Algebras IRTGs represent the objects and op-
erations symbolically using terms; the object in
question is obtained by interpreting each symbol
in the term as a function. As an example, Table 1
shows terms for a string and a tree, together with
the denoted object. In the string case, we describe
complex strings as concatenation (con2) of ele-
mentary symbols (e.g., a, b); in the tree case, we
alternate the construction of a sequence of trees
(con2) with the construction of a single tree by
placing a symbol (e.g., α, β, σ) on top of a (pos-
sibly empty) sequence of trees. Whenever a term
contains variables, it does not denote an object,
but rather a function. In the parlance of universal-
algebra theory, we are employing initial-algebra
semantics (Goguen et al., 1977).

An alphabet is a nonempty finite set. Through-
out this paper, let X = {x1, x2, . . . } be a set,
whose elements we call variables. We let Xk de-
note the set {x1, . . . , xk} for every k ≥ 0. Let Σ

be an alphabet and V ⊆ X . We write TΣ(V ) for
the set of all terms over Σ with variables V , i.e.,
the smallest set T such that (i) V ⊆ T and (ii) for
every σ ∈ Σ, k ≥ 0, and t1, . . . , tk ∈ T , we
have σ(t1, . . . , tk) ∈ T . Alternatively, we view
TΣ(V ) as the set of all (rooted, labeled, ordered,
unranked) trees over Σ and V , and draw them
as usual. By TΣ we abbreviate TΣ(∅). The set
CΣ(V ) of contexts over Σ and V is the set of all
trees over Σ and V in which each variable in V
occurs exactly once.

A signature is an alphabet Σ where each symbol
is equipped with an arity. We write Σ|k for the
subset of all k-ary symbols of Σ, and σ|k to denote
σ ∈ Σ|k. We denote the signature by Σ as well.
A signature is binary if the arities do not exceed 2.
Whenever we use TΣ(V ) with a signature Σ, we
assume that the trees are ranked, i.e., each node
labeled by σ ∈ Σ|k has exactly k children.

Let ∆ be a signature. A ∆-algebra A consists
of a nonempty set A called the domain and, for
each symbol f ∈ ∆ with rank k, a total function
fA : Ak → A, the operation associated with f .
We can evaluate any term t in T∆(Xk) in A, to
obtain a k-ary operation tA over the domain. In
particular, terms in T∆ evaluate to elements of A.
For instance, in the string algebra shown in Ta-
ble 1, the term con2(a, b) evaluates to ab, and the
term con2(con2(x2, a), x1) evaluates to a binary
operation f such that, e.g., f(b, c) = cab.

Bimorphisms IRTGs separate the finite control
(state behavior) of a derivation from its derived
object (in its term representation; generational be-
havior); the former is captured by a regular tree
language, while the latter is obtained by applying
a tree homomorphism. This idea goes back to the
tree bimorphisms of Arnold and Dauchet (1976).

Let Σ be a signature. A regular tree grammar
(RTG) G over Σ is a triple (Q, q0, R) where Q
is a finite set (of states), q0 ∈ Q, and R is a fi-
nite set of rules of the form q → α(q1, . . . , qk),
where q ∈ Q, α ∈ Σ|k and q, q1, . . . , qk ∈ Q.
We call α the terminal symbol and k the rank
of the rule. Rules of rank greater than two are
called suprabinary. For every q ∈ Q we de-
fine the language Lq(G) derived from q as the set
{α(t1, . . . , tk) | q → α(q1, . . . , qk) ∈ R, tj ∈
Lqj (G)}. If q = q0, we drop the superscript and
write L(G) for the tree language of G. In the lit-
erature, there is a definition of RTG which also
permits more than one terminal symbol per rule,
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strings over Γ trees over Γ

example term
and denoted object

con2

a b
7→ ab

σ

con2

α

con0

β

con0

7→
σ

α β

domain Γ∗ T ∗Γ (set of sequences of trees)

signature ∆ {a|0 | a ∈ Γ} ∪ {γ|1 | γ ∈ Γ} ∪
{conk|k | 0 ≤ k ≤ K, k 6= 1} {conk|k | 0 ≤ k ≤ K, k 6= 1}

operations a : () 7→ a γ : x1 7→ γ(x1)
conk : (x1, . . . , xk) 7→ x1 · · ·xk conk : (x1, . . . , xk) 7→ x1 · · ·xk

Table 1: Algebras for strings and trees, given an alphabet Γ and a maximum arity K ∈ N.

or none. This does not increase the generative ca-
pacity (Brainerd, 1969).

A (linear, nondeleting) tree homomorphism is a
mapping h : TΣ(X) → T∆(X) that satisfies the
following condition: there is a mapping g : Σ →
T∆(X) such that (i) g(σ) ∈ C∆(Xk) for every
σ ∈ Σ|k, (ii) h(σ(t1, . . . , tk)) is the tree obtained
from g(σ) by replacing the occurrence of xj by
h(tj), and (iii) h(xj) = xj . This extends the
usual definition of linear and nondeleting homo-
morphisms (Gécseg and Steinby, 1997) to trees
with variables. We abuse notation and write h(σ)
for g(σ) for every σ ∈ Σ.

Let n ≥ 1 and ∆1, . . . ,∆n be signatures. A
(generalized) bimorphism over (∆1, . . . ,∆n) is a
tuple B = (G, h1, . . . , hn) where G is an RTG
over some signature Σ and hi is a tree homo-
morphism from TΣ(X) into T∆i(X). The lan-
guage L(B) induced by B is the tree relation
{(h1(t), . . . , hn(t)) | t ∈ L(G)}.

An IRTG is a bimorphism whose derived trees
are viewed as terms over algebras; see Fig. 1.
Formally, an IRTG G over (∆1, . . . ,∆n) is a
tuple (B,A1, . . . ,An) such that B is a bimor-
phism over (∆1, . . . ,∆n) and Ai is a ∆i-algebra.
The language L(G) induced by G is the relation
{(tA1

1 , . . . , tAnn ) | (t1, . . . , tn) ∈ L(B)}. We call
the trees in L(G) derivation trees and the terms
in L(B) semantic terms. We say that two IRTGs
G and G′ are equivalent if L(G) = L(G′). IRTGs
were first defined in (Koller and Kuhlmann, 2011).

For example, Fig. 2 is an IRTG that encodes
a synchronous context-free grammar (SCFG). It
contains a bimorphism B = (G, h1, h2) consist-
ing of an RTG G with four rules and homomor-

L(G)

T∆1 · · · T∆n

A1 · · · An

h1 hn

(.)A1 (.)An

⊆ TΣ

bimorphism B = (G, h1, h2)

IRTG G = (B,A1,A2)

derivation
trees

semantic
terms

derived
objects

Figure 1: IRTG, bimorphism overview.

A→ α(B,C,D)
B → α1, C → α2, D → α3

con3

x1 x2 x3

h1←− [ α h27−→
con4

x3 a x1 x2

b
h1←− [α1

h27−→ b

c
h1←− [α2

h27−→ c

d
h1←− [α3

h27−→ d

Figure 2: An IRTG encoding an SCFG.

phisms h1 and h2 which map derivation trees to
trees over the signature of the string algebra in Ta-
ble 1. By evaluating these trees in the algebra,
the symbols con3 and con4 are interpreted as con-
catenation, and we see that the first rule encodes
the SCFG rule A → 〈BCD,DaBC〉. Figure 3
shows a derivation tree with its two homomorphic
images, which evaluate to the strings bcd and dabc.

IRTGs can be tailored to the expressive capacity
of specific grammar formalisms by selecting suit-
able algebras. The string algebra in Table 1 yields
context-free languages, more complex string al-
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con3

b c d

h1←− [
α

α1 α2 α3

h27−→
con4

d a b c

Figure 3: Derivation tree and semantic terms.

A→ α′(A′, D)
A′ → α′′(B,C)

con2

x1 x2

h′1←− [ α′ h′27−→

con2

con2

x2 a

x1

con2

x1 x2

h′1←− [α′′ h
′
27−→

con2

x1 x2

Figure 4: Binary rules corresponding to the α-rule
in Fig. 2.

gebras yield tree-adjoining languages (Koller and
Kuhlmann, 2012), and algebras over other do-
mains can yield languages of trees, graphs, or
other objects. Furthermore, IRTGs with n = 1 de-
scribe languages that are subsets of the algebra’s
domain, n = 2 yields synchronous languages or
tree transductions, and so on.

3 IRTG binarization

We will now show how to apply the rule-by-rule
binarization technique to IRTGs. We start in this
section by defining the binarization of a rule in an
IRTG, and characterizing it in terms of binariza-
tion terms and variable trees. We derive the actual
binarization algorithm from this in Section 4.

For the remainder of this paper, let G =
(B,A1, . . . ,An) be an IRTG over (∆1, . . . ,∆n)
with B = (G, h1, . . . , hn).

3.1 An introductory example

We start with an example to give an intuition of
our approach. Consider the first rule in Fig. 2,
which has rank three. This rule derives (in one
step) the fragment α(x1, x2, x3) of the derivation
tree in Fig. 3, which is mapped to the semantic
terms h1(α) and h2(α) shown in Fig. 2. Now con-
sider the rules in Fig. 4. These rules can be used to
derive (in two steps) the derivation tree fragment ξ
in Fig. 5e. Note that the terms h′1(ξ) and h1(α)
are equivalent in that they denote the same func-
tion over the string algebra, and so are the terms
h′2(ξ) and h2(α). Thus, replacing the α-rule by
the rules in Fig. 4 does not change the language of
the IRTG. However, since the new rules are binary,

(a)
con3

x1 x2 x3

con4

x3 a x1 x2

(b)

con2

x1 con2

x2 x3

con2

con2

x1 x2

x3

t1 : con2

con2

x3 a

con2

x1 x2

t2 :
con2

con2

x3 con2

a x1

x2

(c)

(d)

con2

x1 x2

x1
con2

x1 x2

x1 x2

con2

con2

x2 a

x1

x1
con2

x1 x2

x1 x2

(e)

h1←− [ α h27−→

{x1, x2, x3}

{x1} {x2, x3}

{x2} {x3}

{x1, x2, x3}

{x1, x2}

{x1} {x2}

{x3}

τ : {x1, x2, x3}

{x1, x3}

{x1} {x3}

{x2}

con2

con2

x1 x2

x3

t1 :
h′
1←− [

α′

α′′

x1 x2

x3

ξ :

h′
27−→

con2

con2

x3 a

con2

x1 x2

t2 :

Figure 5: Outline of the binarization algorithm.

parsing and translation will be cheaper.
Now we want to construct the binary rules sys-

tematically. In the example, we proceed as fol-
lows (cf. Fig. 5). For each of the terms h1(α) and
h2(α) (Fig. 5a), we consider all terms that satisfy
two properties (Fig. 5b): (i) they are equivalent
to h1(α) and h2(α), respectively, and (ii) at each
node at most two subtrees contain variables. As
Fig. 5 suggests, there may be many different terms
of this kind. For each of these terms, we ana-
lyze the bracketing of variables, obtaining what we
call a variable tree (Fig. 5c). Now we pick terms
t1 and t2 corresponding to h1(α) and h2(α), re-
spectively, such that (iii) they have the same vari-
able tree, say τ . We construct a tree ξ from τ by a
simple relabeling, and we read off the tree homo-
morphisms h′1 and h′2 from a decomposition we
perform on t1 and t2, respectively; see Fig. 5, dot-
ted arrows, and compare the boxes in Fig. 5d with
the homomorphisms in Fig. 4. Now the rules in
Fig. 4 are easily extracted from ξ.

These rules are equivalent to r because of (i);
they are binary because ξ is binary, which in turn
holds because of (ii); finally, the decompositions
of t1 and t2 are compatible with ξ because of (iii).
We call terms t1 and t2 binarization terms if they
satisfy (i)–(iii). We will see below that we can con-
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struct binary rules equivalent to r from any given
sequence of binarization terms t1, t2, and that bi-
narization terms exist whenever equivalent binary
rules exist. The majority of this paper revolves
around the question of finding binarization terms.

Rule-by-rule binarization of IRTGs follows the
intuition laid out in this example closely: it means
processing each suprabinary rule, attempting to
replace it with an equivalent collection of binary
rules.

3.2 Binarization terms

We will now make this intuition precise. To this
end, we assume that r = q → α(q1, . . . , qk) is a
suprabinary rule of G. As we have seen, binariz-
ing r boils down to constructing:
• a tree ξ over some binary signature Σ′ and
• tree homomorphisms h′1, . . . , h

′
n of type

h′i : TΣ′(X)→ T∆i(X),
such that h′i(ξ) and hi(α) are equivalent, i.e., they
denote the same function over Ai. We call such a
tuple (ξ, h′1, . . . , h

′
n) a binarization of the rule r.

Note that a binarization of r need not exist. The
problem of rule-by-rule binarization consists in
computing a binarization of each suprabinary rule
of a grammar. If such a binarization does not exist,
the problem does not have a solution.

In order to define variable trees, we assume a
mapping seq that maps each finite set U of pair-
wise disjoint variable sets to a sequence over U
which contains each element exactly once. Let
t ∈ C∆(Xk). The variable set of t is the set of
all variables that occur in t. The set S(t) of sub-
tree variables of t consists of the nonempty vari-
able sets of all subtrees of t. We represent S(t)
as a tree v(t), which we call variable tree as fol-
lows. Any two elements of S(t) are either compa-
rable (with respect to the subset relation) or dis-
joint. We extend this ordering to a tree struc-
ture by ordering disjoint elements via seq. We let
v(L) = {v(t) | t ∈ L} for every L ⊆ C∆(Xk).

In the example of Fig. 5, t1 and t2 have the same
set of subtree variables; it is {{x1}, {x2}, {x3},
{x1, x2}, {x1, x2, x3}}. If we assume that seq or-
ders sets of variables according to the least vari-
able index, we arrive at the variable tree in the cen-
ter of Fig. 5.

Now let t1 ∈ T∆1(Xk), . . . , tn ∈ T∆n(Xk).
We call the tuple t1, . . . , tn binarization terms of
r if the following properties hold: (i) hi(α) and ti
are equivalent; (ii) at each node the tree ti contains

at most two subtrees with variables; and (iii) the
terms t1, . . . , tn have the same variable tree.

Assume for now that we have found binariza-
tion terms t1, . . . , tn. We show how to construct a
binarization (ξ, h′1, . . . , h

′
n) of r with ti = h′i(ξ).

First, we construct ξ. Since t1, . . . , tn are bi-
narization terms, they have the same variable tree,
say, τ . We obtain ξ from τ by replacing every la-
bel of the form {xj} with xj , and every other label
with a fresh symbol. Because of condition (ii) in
in the definition of binarization terms, ξ is binary.

In order to construct h′i(σ) for each symbol σ
in ξ, we transform ti into a tree t′i with labels from
C∆i(X) and the same structure as ξ. Then we read
off h′i(σ) from the node of t′i that corresponds to
the σ-labeled node of ξ. The transformation pro-
ceeds as illustrated in Fig. 6: first, we apply the
maximal decomposition operation d; it replaces
every label f ∈ ∆i|k by the tree f(x1, . . . , xk),
represented as a box. After that, we keep applying
the merge operation  m as often as possible; it
merges two boxes that are in a parent-child rela-
tion, given that one of them has at most one child.
Thus the number of variables in any box can only
decrease. Finally, the reorder operation o orders
the children of each box according to the seq of
their variable sets. These operations do not change
the variable tree; one can use this to show that t′i
has the same structure as ξ.

Thus, if we can find binarization terms, we
can construct a binarization of r. Conversely, for
any given binarization (ξ, h′1, . . . , h

′
n) the seman-

tic terms h′1(ξ), . . . , h′n(ξ) are binarization terms.
This proves the following lemma.

Lemma 1 There is a binarization of r if and only
if there are binarization terms of r.

3.3 Finding binarization terms

It remains to show how we can find binarization
terms of r, if there are any.

Let bi : T∆i(Xk) → P(T∆i(Xk)) the mapping
with bi(t) = {t′ ∈ T∆i(Xk) | t and t′ are equiv-
alent, and at each node t′ has at most two chil-
dren with variables}. Figure 5b shows some ele-
ments of b1(h1(α)) and b2(h2(α)) for our exam-
ple. Terms t1, . . . , tn are binarization terms pre-
cisely when ti ∈ bi(hi(α)) and t1, . . . , tn have the
same variable tree. Thus we can characterize bi-
narization terms as follows.

Lemma 2 There are binarization terms if and
only if

⋂
i v(bi(hi(α))) 6= ∅.
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con2

con2

x3 a

con2

x1 x2

 d

con2

x1 x2

con2

x1 x2

x3 a

con2

x1 x2

x1 x2

 m

con2

x1 x2

con2

x1 a

x3

con2

x1 x2

x1 x2

 m

con2

con2

x1 a

x2

x3
con2

x1 x2

x1 x2

 o

con2

con2

x2 a

x1

con2

x1 x2

x1 x2

x3

Figure 6: Transforming t2 into t′2.

This result suggests the following procedure
for obtaining binarization terms. First, determine
whether the intersection in Lemma 2 is empty. If
it is, then there is no binarization of r. Otherwise,
select a variable tree τ from this set. We know that
there are trees t1, . . . , tn such that ti ∈ bi(hi(α))
and v(ti) = τ . We can therefore select arbitrary
concrete trees ti ∈ bi(hi(α))∩ v−1(τ). The terms
t1, . . . , tn are then binarization terms.

4 Effective IRTG binarization

In this section we develop our binarization algo-
rithm. Its key task is finding binarization terms
t1, . . . , tn. This task involves deciding term equiv-
alence, as ti must be equivalent to hi(α). In gen-
eral, equivalence is undecidable, so the task can-
not be solved. We avoid deciding equivalence by
requiring the user to specify an explicit approxi-
mation of bi, which we call a b-rule. This param-
eter gives rise to a restricted version of the rule-
by-rule binarization problem, which is efficiently
computable while remaining practically relevant.

Let ∆ be a signature. A binarization rule (b-
rule) over ∆ is a mapping b : ∆ → P(T∆(X))
where for every f ∈ ∆|k we have that b(f) ⊆
C∆(Xk), at each node of a tree in b(f) only two
children contain variables, and b(f) is a regular
tree language. We extend b to T∆(X) by setting
b(xj) = {xj} and b(f(t1, . . . , tk)) = {t[xj/t′j |
1 ≤ j ≤ k] | t ∈ b(f), t′j ∈ b(tj)}, where [xj/t

′
j ]

denotes substitution of xj by t′j . Given an alge-
bra A over ∆, a b-rule b over ∆ is called a b-rule
over A if, for every t ∈ T∆(Xk) and t′ ∈ b(t),
t′ and t are equivalent inA. Such a b-rule encodes
equivalence in A, and it does so in an explicit and
compact way: because b(f) is a regular tree lan-
guage, a b-rule can be specified by a finite collec-
tion of RTGs, one for each symbol f ∈ ∆. We will
look at examples (for the string and tree algebras
shown earlier) in Section 5.

From now on, we assume that b1, . . . , bn are
b-rules over A1, . . . ,An, respectively. A bina-
rization (ξ, h′1, . . . , h

′
n) of r is a binarization of r

with respect to b1, . . . , bn if h′i(ξ) ∈ bi(hi(α)).
Likewise, binarization terms t1, . . . , tn are bi-
narization terms with respect to b1, . . . , bn if
ti ∈ bi(hi(α)). Lemmas 1 and 2 carry over to
the restricted notions. The problem of rule-by-
rule binarization with respect to b1, . . . , bn con-
sists in computing a binarization with respect to
b1, . . . , bn for each suprabinary rule.

By definition, every solution to this restricted
problem is also a solution to the general prob-
lem. The converse need not be true. However,
we can guarantee that the restricted problem has
at least one solution whenever the general problem
has one, by requiring v(bi(hi(α)) = v(b(hi(α)).
Then the intersection in Lemma 2 is empty in the
restricted case if and only if it is empty in the gen-
eral case. We call the b-rules b1, . . . , b1 complete
on G if the equation holds for every α ∈ Σ.

Now we show how to effectively compute bina-
rization terms with respect to b1, . . . , bn, along the
lines of Section 3.3. More specifically, we con-
struct an RTG for each of the sets (i) bi(hi(α)),
(ii) b′i = v(bi(hi(α))), (iii)

⋂
i b
′
i, and (iv) b′′i =

bi(hi(α))∩v−1(τ) (given τ ). Then we can select τ
from (iii) and ti from (iv) using a standard algo-
rithm, such as the Viterbi algorithm or Knuth’s
algorithm (Knuth, 1977; Nederhof, 2003; Huang
and Chiang, 2005). The effectiveness of our pro-
cedure stems from the fact that we only manipulate
RTGs and never enumerate languages.

The construction for (i) is recursive, following
the definition of bi. The base case is a language
{xj}, for which the RTG is easy. For the recursive
case, we use the fact that regular tree languages
are closed under substitution (Gécseg and Steinby,
1997, Prop. 7.3). Thus we obtain an RTG Gi with
L(Gi) = bi(hi(α)).

For (ii) and (iv), we need the following auxiliary
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construction. Let Gi = (P, p0, R). We define the
mapping vari : P → P(Xk) such that for every
p ∈ P , every t ∈ Lp(Gi) contains exactly the vari-
ables in vari(p). We construct it as follows. We
initialize vari(p) to “unknown” for every p. For
every rule p → xj , we set vari(p) = {xj}. For
every rule p→ σ(p1, . . . , pk) such that vari(pj) is
known, we set vari(p) =

⋃
j vari(pj). This is iter-

ated; it can be shown that vari(p) is never assigned
two different values for the same p. Finally, we set
all remaining unknown entries to ∅.

For (ii), we construct an RTG G′i with L(G′i) =
b′i as follows. We let G′i = ({〈vari(p)〉 | p ∈
P}, vari(p0), R′) where R′ consists of the rules

〈{xj}〉 → {xj} if p→ xi ∈ R ,

〈vari(p)〉 → vari(p)(〈U1〉, . . . , 〈Ul〉〉)
if p→ σ(p1, . . . , pk) ∈ R,

V = {vari(pj) | 1 ≤ j ≤ k} \ {∅},
|V | ≥ 2, seq(V ) = (U1, . . . , Ul) .

For (iii), we use the standard product construc-
tion (Gécseg and Steinby, 1997, Prop. 7.1).

For (iv), we construct an RTG G′′i such that
L(G′′i ) = b′′i as follows. We let G′′i = (P, p0, R

′′),
where R′′ consists of the rules

p→ σ(p1, . . . , pk)

if p→ σ(p1, . . . , pk) ∈ R,
V = {vari(pj) | 1 ≤ j ≤ k} \ {∅},
if |V | ≥ 2, then

(vari(p), seq(V )) is a fork in τ .

By a fork (u, u1 · · ·uk) in τ , we mean that there
is a node labeled u with k children labeled u1 up
to uk.

At this point we have all the ingredients for our
binarization algorithm, shown in Algorithm 1. It
operates directly on a bimorphism, because all the
relevant information about the algebras is captured
by the b-rules. The following theorem documents
the behavior of the algorithm. In short, it solves
the problem of rule-by-rule binarization with re-
spect to b-rules b1, . . . , bn.

Theorem 3 Let G = (B,A1, . . . ,An) be
an IRTG, and let b1, . . . , bn be b-rules over
A1, . . . ,An, respectively.

Algorithm 1 terminates. Let B′ be the
bimorphism computed by Algorithm 1 on B
and b1, . . . , bn. Then G′ = (B′,A1, . . . ,An) is
equivalent to G, and G′ is of rank 2 if and only

Input: bimorphism B = (G, h1, . . . , hn),
b-rules b1, . . . , bn over ∆1, . . . ,∆n

Output: bimorphism B′

1: B′ ← (G|≤2, h1, . . . , hn)
2: for rule r : q → α(q1, . . . , qk) of G|>2 do
3: for i = 1, . . . , n do
4: compute RTG Gi for bi(hi(α))
5: compute RTG G′i for v(bi(hi(α)))

6: compute RTG Gv for
⋂
i L(G′i)

7: if L(Gv) = ∅ then
8: add r to B′
9: else

10: select t′ ∈ L(Gv)
11: for i = 1, . . . , n do
12: compute RTG G′′i for
13: b′′i = bi(hi(α)) ∩ v−1(t′)
14: select ti ∈ L(G′′i )

15: construct binarization for t1, . . . , tn
16: add appropriate rules to B′

Algorithm 1: Complete binarization algorithm,
whereG|≤2 andG|>2 isG restricted to binary and
suprabinary rules, respectively.

if every suprabinary rule of G has a binarization
with respect to b1, . . . , bn.

The runtime of Algorithm 1 is dominated by the
intersection construction in line 6, which isO(m1 ·
. . . ·mn) per rule, where mi is the size of G′i. The
quantity mi is linear in the size of the terms on the
right-hand side of hi, and in the number of rules in
the b-rule bi.

5 Applications

Algorithm 1 implements rule-by-rule binarization
with respect to given b-rules. If a rule of the given
IRTG does not have a binarization with respect to
these b-rules, it is simply carried over to the new
grammar, which then has a rank higher than 2. The
number of remaining suprabinary rules depends
on the b-rules (except for rules that have no bi-
narization at all). The user can thus engineer the
b-rules according to their current needs, trading off
completeness, runtime, and engineering effort.

By contrast, earlier binarization algorithms for
formalisms such as SCFG and LCFRS simply at-
tempt to find an equivalent grammar of rank 2;
there is no analogue of our b-rules. The problem
these algorithms solve corresponds to the general
rule-by-rule binarization problem from Section 3.
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NP

NP

DT

the

x1:NNP POS

’s

x2:JJ x3:NN
−→ das x2 x3 der x1

Figure 7: A rule of a tree-to-string transducer.

We show that under certain conditions, our algo-
rithm can be used to solve this problem as well.
In the following two subsections, we illustrate this
for SCFGs and tree-to-string transducers, respec-
tively. In the final subsection, we discuss how to
extend this approach to other grammar formalisms
as well.

5.1 Synchronous context-free grammars
We have used SCFGs as the running example in
this paper. SCFGs are IRTGs with two interpre-
tations into the string algebra of Table 1, as illus-
trated by the example in Fig. 2. In order to make
our algorithm ready to use, it remains to specify a
b-rule for the string algeba.

We use the following b-rule for both b1 and b2.
Each symbol a ∈ ∆i|0 is mapped to the language
{a}. Each symbol conk, k ≥ 2, is mapped to
the language induced by the following RTG with
states of the form [j, j′] (where 0 ≤ j < j′ ≤ k)
and final state [0, k]:

[j − 1, j]→ xj (1 ≤ j ≤ k)

[j, j′]→ con2([j, j′′], [j′′, j′])
(0 ≤ j < j′′ < j′ ≤ k)

This language expresses all possible ways in
which conk can be written in terms of con2.

Our definition of rule-by-rule binarization with
respect to b1 and b2 coincides with that of Huang
et al. (2009): any rule can be binarized by
both algorithms or neither. For instance, for the
SCFG rule A → 〈BCDE,CEBD〉, the sets
v(b1(h1(α))) and v(b2(h2(α))) are disjoint, thus
no binarization exists. Two strings of length N
can be parsed with a binary IRTG that represents
an SCFG in time O(N6).

5.2 Tree-to-string transducers
Some approaches to SMT go beyond string-to-
string translation models such as SCFG by exploit-
ing known syntactic structures in the source or tar-
get language. This perspective on translation nat-
urally leads to the use of tree-to-string transducers

NP→ α(NNP, JJ,NN)

NP
con3

NP
con3

DT
the
con0

x1 POS
’s

con0

x2 x3

h1←− [ α h27−→
con5

das x2 x3 der x1

Figure 8: An IRTG rule encoding the rule in Fig. 7.

(Yamada and Knight, 2001; Galley et al., 2004;
Huang et al., 2006; Graehl et al., 2008). Figure 7
shows an example of a tree-to-string rule. It might
be used to translate “the Commission’s strategic
plan” into “das langfristige Programm der Kom-
mission”.

Our algorithm can binarize tree-to-string trans-
ducers; to our knowledge, it is the first algorithm
to do so. We model the tree-to-string transducer
as an IRTG G = ((G, h1, h2),A1,A2), where
A2 is the string algebra, but this time A1 is the
tree algebra shown in Table 1. This algebra has
operations conk to concatenate sequences of trees
and unary γ that maps any sequence (t1, . . . , tl) of
trees to the tree γ(t1, . . . , tl), viewed as a sequence
of length 1. Note that we exclude the operation
con1 because it is the identity and thus unneces-
sary. Thus the rule in Fig. 7 translates to the IRTG
rule shown in Fig. 8.

For the string algebra, we reuse the b-rule from
Section 5.1; we call it b2 here. For the tree algebra,
we use the following b-rule b1. It maps con0 to
{con0} and each unary symbol γ to {γ(x1)}. Each
symbol conk, k ≥ 2, is treated as in the string
case. Using these b-rules, we can binarize the rule
in Fig. 8 and obtain the rules in Fig. 9. Parsing
of a binary IRTG that represents a tree-to-string
transducer is O(N3 ·M) for a string of length N
and a tree with M nodes.

We have implemented our binarization algo-
rithm and the b-rules for the string and the tree
algebra. In order to test our implementation, we
extracted a tree-to-string transducer from about a
million parallel sentences of English-German Eu-
roparl data, using the GHKM rule extractor (Gal-
ley, 2010). Then we binarized the transducer. The
results are shown in Fig. 10. Of the 2.15 million
rules in the extracted transducer, 460,000 were
suprabinary, and 67 % of these could be binarized.
Binarization took 4.4 minutes on a single core of
an Intel Core i5 2520M processor.
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NP→ α′(NNP, A′)
A′ → α′′(JJ,NN)

NP
con2

NP
con2

DT
the
con0

con2

x1 POS
’s

con0

x2

h′1←− [ α′ h′27−→

con2

con2

das x2

con2

der x1

con2

x1 x2

h′1←− [α′′ h
′
27−→

con2

x1 x2

Figure 9: Binarization of the rule in Fig. 8.
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Figure 10: Rules of a transducer extracted from
Europarl (ext) vs. its binarization (bin).

5.3 General approach

Our binarization algorithm can be used to solve
the general rule-by-rule binarization problem for
a specific grammar formalism, provided that one
can find appropriate b-rules. More precisely,
we need to devise a class C of IRTGs over the
same sequence A1, . . . ,An of algebras that en-
codes the grammar formalism, together with b-
rules b1, . . . , bn over A1, . . . ,An that are com-
plete on every grammar in C, as defined in Sec-
tion 4.

We have already seen the b-rules for SCFGs and
tree-to-string transducers in the preceding subsec-
tions; now we have a closer look at the class C
for SCFGs. We used the class of all IRTGs with
two string algebras and in which hi(α) contains
at most one occurrence of a symbol conk for ev-
ery α ∈ Σ. On such a grammar the b-rules are
complete. Note that this would not be the case
if we allowed several occurrences of conk, as in
con2(con2(x1, x2), x3). This term is equivalent
to itself and to con2(x1, con

2(x2, x3)), but the b-

rules only cover the former. Thus they miss one
variable tree. For the term con3(x1, x2, x3), how-
ever, the b-rules cover both variable trees.

Generally speaking, given C and b-rules
b1, . . . , bn that are complete on every IRTG in C,
Algorithm 1 solves the general rule-by-rule bina-
rization problem on C. We can adapt Theorem 3 by
requiring that G must be in C, and replacing each
of the two occurrences of “binarization with re-
spect to b1, . . . , bn” by simply “binarization”. If C
is such that every grammar from a given grammar
formalism can be encoded as an IRTG in C, this
solves the general rule-by-rule binarization prob-
lem of that grammar formalism.

6 Conclusion

We have presented an algorithm for binarizing
IRTGs rule by rule, with respect to b-rules that
the user specifies for each algebra. This improves
the complexity of parsing and translation with any
monolingual or synchronous grammar that can be
represented as an IRTG. A novel algorithm for
binarizing tree-to-string transducers falls out as a
special case.

In this paper, we have taken the perspective that
the binarized IRTG uses the same algebras as the
original IRTG. Our algorithm extends to gram-
mars of arbitrary fanout (such as synchronous
tree-adjoining grammar (Koller and Kuhlmann,
2012)), but unlike LCFRS-based approaches to bi-
narization, it will not increase the fanout to en-
sure binarizability. In the future, we will ex-
plore IRTG binarization with fanout increase. This
could be done by binarizing into an IRTG with
a more complicated algebra (e.g., of string tu-
ples). We might compute binarizations that are
optimal with respect to some measure (e.g., fanout
(Gomez-Rodriguez et al., 2009) or parsing com-
plexity (Gildea, 2010)) by keeping track of this
measure in the b-rule and taking intersections of
weighted tree automata.
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Abstract

This paper proposes new distortion mod-
els for phrase-based SMT. In decoding, a
distortion model estimates the source word
position to be translated next (NP) given
the last translated source word position
(CP). We propose a distortion model that
can consider the word at the CP, a word
at an NP candidate, and the context of the
CP and the NP candidate simultaneously.
Moreover, we propose a further improved
model that considers richer context by dis-
criminating label sequences that specify
spans from the CP to NP candidates. It
enables our model to learn the effect of
relative word order among NP candidates
as well as to learn the effect of distances
from the training data. In our experiments,
our model improved 2.9 BLEU points for
Japanese-English and 2.6 BLEU points for
Chinese-English translation compared to
the lexical reordering models.

1 Introduction

Estimating appropriate word order in a target lan-
guage is one of the most difficult problems for
statistical machine translation (SMT). This is par-
ticularly true when translating between languages
with widely different word orders.

To address this problem, there has been a lot
of research done into word reordering: lexical
reordering model (Tillman, 2004), which is one
of the distortion models, reordering constraint
(Zens et al., 2004), pre-ordering (Xia and Mc-
Cord, 2004), hierarchical phrase-based SMT (Chi-
ang, 2007), and syntax-based SMT (Yamada and
Knight, 2001).

In general, source language syntax is useful for
handling long distance word reordering. However,

obtaining syntax requires a syntactic parser, which
is not available for many languages. Phrase-based
SMT (Koehn et al., 2007) is a widely used SMT
method that does not use a parser.

Phrase-based SMT mainly1 estimates word re-
ordering using distortion models2. Therefore, dis-
tortion models are one of the most important com-
ponents for phrase-based SMT. On the other hand,
there are methods other than distortion models for
improving word reordering for phrase-based SMT,
such as pre-ordering or reordering constraints.
However, these methods also use distortion mod-
els when translating by phrase-based SMT. There-
fore, distortion models do not compete against
these methods and are commonly used with them.
If there is a good distortion model, it will improve
the translation quality of phrase-based SMT and
benefit to the methods using distortion models.

In this paper, we propose two distortion mod-
els for phrase-based SMT. In decoding, a distor-
tion model estimates the source word position to
be translated next (NP) given the last translated
source word position (CP). The proposed models
are the pair model and the sequence model. The
pair model utilizes the word at the CP, a word at
an NP candidate site, and the words surrounding
the CP and the NP candidates (context) simultane-
ously. In addition, the sequence model, which is
the further improved model, considers richer con-
text by identifying the label sequence that spec-
ify the span from the CP to the NP. It enables
our model to learn the effect of relative word or-
der among NP candidates as well as to learn the
effect of distances from the training data. Our
model learns the preference relations among NP

1A language model also supports the estimation.
2In this paper, reordering models for phrase-based SMT,

which are intended to estimate the source word position to
be translated next in decoding, are called distortion models.
This estimation is used to produce a hypothesis in the target
language word order sequentially from left to right.
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kinou  kare  wa  pari  de  hon  wo  katta

he   bought   books   in   Paris   yesterday

Source:

Target:

Figure 1: An example of left-to-right translation
for Japanese-English. Boxes represent phrases
and arrows indicate the translation order of the
phrases.

candidates. Our model consists of one probabilis-
tic model and does not require a parser. Exper-
iments confirmed the effectiveness of our method
for Japanese-English and Chinese-English transla-
tion, using NTCIR-9 Patent Machine Translation
Task data sets (Goto et al., 2011).

2 Distortion Model for Phrase-Based
SMT

A Moses-style phrase-based SMT generates target
hypotheses sequentially from left to right. There-
fore, the role of the distortion model is to esti-
mate the source phrase position to be translated
next whose target side phrase will be located im-
mediately to the right of the already generated hy-
potheses. An example is shown in Figure 1. In
Figure 1, we assume that only the kare wa (En-
glish side: “he”) has been translated. The target
word to be generated next will be “bought” and the
source word to be selected next will be its corre-
sponding Japanese word katta. Thus, a distortion
model should estimate phrases including katta as
a source phrase position to be translated next.

To explain the distortion model task in more de-
tail, we need to redefine more precisely two terms,
the current position (CP) and next position (NP) in
the source sentence. CP is the source sentence po-
sition corresponding to the rightmost aligned tar-
get word in the generated target word sequence.
NP is the source sentence position corresponding
to the leftmost aligned target word in the target
phrase to be generated next. The task of the distor-
tion model is to estimate the NP3 from NP candi-
dates (NPCs) for each CP in the source sentence.4

3NP is not always one position, because there may be mul-
tiple correct hypotheses.

4This definition is slightly different from that of existing
methods such as Moses and (Green et al., 2010). In existing
methods, CP is the rightmost position of the last translated
source phrase and NP is the leftmost position of the source
phrase to be translated next. Note that existing methods do

kinou1 kare2 wa3 pari4 de5 hon6 wo7 katta8

he   bought   books   in   Paris   yesterday

(a)

kinou1 kare2 wa3 pari4 de5 ni6 satsu7 hon8 wo9 katta10

he   bought   two   books   in   Paris   yesterday

(b)

kinou1 kare2 wa3 hon4 wo5 karita6 ga7 kanojo8 wa9 katta10

he   borrowed   books  yesterday  but  she  bought

(c)

kinou1 kare2 wa3 kanojo4 ga5 katta6 hon7 wo8 karita9

yesterday  he  borrowed  the  books  that  she  bought

(e)

kinou1 kare2 wa3 hon4 wo5 katta6 ga7 kanojo8 wa9 karita10

he   bought   books   yesterday   but   she   borrowed

(d)

��

�~ ��

�� �~

�� �~

���~

CP NP

Figure 2: Examples of CP and NP for Japanese-
English translation. The upper sentence is the
source sentence and the sentence underneath is a
target hypothesis for each example. The NP is in
bold, and the CP is in bold italics. The point of an
arrow with a × mark indicates a wrong NP candi-
date.

Estimating NP is a difficult task. Figure 2 shows
some examples. The superscript numbers indicate
the word position in the source sentence.

In Figure 2 (a), the NP is 8. However, in Fig-
ure 2 (b), the word (kare) at the CP is the same as
(a), but the NP is different (the NP is 10). From
these examples, we see that distance is not the es-
sential factor in deciding an NP. And it also turns
out that the word at the CP alone is not enough to
estimate the NP. Thus, not only the word at the CP
but also the word at a NP candidate (NPC) should
be considered simultaneously.

In (c) and (d) in Figure 2, the word (kare) at the
CP is the same and karita (borrowed) and katta
(bought) are at the NPCs. Karita is the word at
the NP and katta is not the word at the NP for
(c), while katta is the word at the NP and karita
is not the word at the NP for (d). From these ex-
amples, considering what the word is at the NP

not consider word-level correspondences.
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is not enough to estimate the NP. One of the rea-
sons for this difference is the relative word order
between words. Thus, considering relative word
order is important.

In (d) and (e) in Figure 2, the word (kare) at the
CP and the word order between katta and karita
are the same. However, the word at the NP for
(d) and the word at the NP for (e) are different.
From these examples, we can see that selecting
a nearby word is not always correct. The differ-
ence is caused by the words surrounding the NPCs
(context), the CP context, and the words between
the CP and the NPC. Thus, these should be con-
sidered when estimating the NP.

In summary, in order to estimate the NP, the fol-
lowing should be considered simultaneously: the
word at the NP, the word at the CP, the relative
word order among the NPCs, the words surround-
ing NP and CP (context), and the words between
the CP and the NPC.

There are distortion models that do not require
a parser for phrase-based SMT. The linear dis-
tortion cost model used in Moses (Koehn et al.,
2007), whose costs are linearly proportional to
the reordering distance, always gives a high cost
to long distance reordering, even if the reorder-
ing is correct. The MSD lexical reordering model
(Tillman, 2004; Koehn et al., 2005; Galley and
Manning, 2008) only calculates probabilities for
the three kinds of phrase reorderings (monotone,
swap, and discontinuous), and does not consider
relative word order or words between the CP and
the NPC. Thus, these models are not sufficient for
long distance word reordering.

Al-Onaizan and Papineni (2006) proposed a
distortion model that used the word at the CP and
the word at an NPC. However, their model did not
use context, relative word order, or words between
the CP and the NPC.

Ni et al. (2009) proposed a method that adjusts
the linear distortion cost using the word at the CP
and its context. Their model does not simultane-
ously consider both the word specified at the CP
and the word specified at the NPCs.

Green et al. (2010) proposed distortion mod-
els that used context. Their model (the outbound
model) estimates how far the NP should be from
the CP using the word at the CP and its con-
text.5 Their model does not simultaneously con-

5They also proposed another model (the inbound model)

sider both the word specified at the CP and the
word specified at an NPC. For example, the out-
bound model considers the word specified at the
CP, but does not consider the word specified at an
NPC. Their models also do not consider relative
word order.

In contrast, our distortion model solves the
aforementioned problems. Our distortion models
utilize the word specified at the CP, the word spec-
ified at an NPC, and also the context of the CP
and the NPC simultaneously. Furthermore, our se-
quence model considers richer context including
the relative word order among NPCs and also in-
cluding all the words between the CP and the NPC.
In addition, unlike previous methods, our models
learn the preference relations among NPCs.

3 Proposed Method

In this section, we first define our distortion model
and explain our learning strategy. Then, we de-
scribe two proposed models: the pair model and
the sequence model that is the further improved
model.

3.1 Distortion Model and Learning Strategy

First, we define our distortion model. Let i be a
CP, j be an NPC, S be a source sentence, and X be
the random variable of the NP. In this paper, dis-
tortion probability is defined as P (X = j|i, S),
which is the probability of an NPC j being the NP.
Our distortion model is defined as the model cal-
culating the distortion probability.

Next, we explain the learning strategy for our
distortion model. We train this model as a dis-
criminative model that discriminates the NP from
NPCs. Let J be a set of word positions in S other
than i. We train the distortion model subject to

∑

j∈J

P (X = j|i, S) = 1.

The model parameters are learned to maximize the
distortion probability of the NP among all of the
NPCs J in each source sentence. This learning
strategy is a kind of preference relation learning
(Evgniou and Pontil, 2002). In this learning, the

that estimates reverse direction distance. Each NPC is re-
garded as an NP, and the inbound model estimates how far
the corresponding CP should be from the NP using the word
at the NP and its context.
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distortion probability of the actual NP will be rel-
atively higher than those of all the other NPCs J .

This learning strategy is different from that of
(Al-Onaizan and Papineni, 2006; Green et al.,
2010). For example, Green et al. (2010) trained
their outbound model subject to

∑
c∈C P (Y =

c|i, S) = 1, where C is the set of the nine distor-
tion classes6 and Y is the random variable of the
correct distortion class that the correct distortion is
classified into. Distortion is defined as j − i − 1.
Namely, the model probabilities that they learned
were the probabilities of distortion classes in all
of the training data, not the relative preferences
among the NPCs in each source sentence.

3.2 Pair Model
The pair model utilizes the word at the CP, the
word at an NPC, and the context of the CP and the
NPC simultaneously to estimate the NP. This can
be done by our distortion model definition and the
learning strategy described in the previous section.

In this work, we use the maximum entropy
method (Berger et al., 1996) as a discriminative
machine learning method. The reason for this
is that a model based on the maximum entropy
method can calculate probabilities. However, if
we use scores as an approximation of the distor-
tion probabilities, various discriminative machine
learning methods can be applied to build the dis-
tortion model.

Let s be a source word and sn
1 = s1s2...sn be

a source sentence. We add a beginning of sen-
tence (BOS) marker to the head of the source sen-
tence and an end of sentence (EOS) marker to the
end, so the source sentence S is expressed as sn+1

0

(s0 = BOS, sn+1 = EOS). Our distortion model
calculates the distortion probability for an NPC
j ∈ {j|1 ≤ j ≤ n + 1 ∧ j ̸= i} for each CP
i ∈ {i|0 ≤ i ≤ n}

P (X = j|i, S) =
1

Zi
exp

(
wTf (i, j, S, o, d)

)

(1)

where

o =

{
0 (i < j)

1 (i > j)
, d =





0 (|j − i| = 1)

1 (2 ≤ |j − i| ≤ 5)

2 (6 ≤ |j − i|)
,

6(−∞, −8], [−7, −5], [−4, −3], −2, 0, 1, [2, 3], [4, 6],
and [7, ∞). In (Green et al., 2010), −1 was used as one of
distortion classes. However, −1 represents the CP in our def-
inition, and CP is not an NPC. Thus, we shifted all of the
distortion classes for negative distortions by −1.

Template
⟨o⟩, ⟨o, sp⟩1, ⟨o, ti⟩, ⟨o, tj⟩, ⟨o, d⟩, ⟨o, sp, sq⟩2,
⟨o, ti, tj⟩, ⟨o, ti−1, ti, tj⟩, ⟨o, ti, ti+1, tj⟩,
⟨o, ti, tj−1, tj⟩, ⟨o, ti, tj , tj+1⟩, ⟨o, si, ti, tj⟩,
⟨o, sj , ti, tj⟩
1 p ∈ {p|i − 2 ≤ p ≤ i + 2 ∨ j − 2 ≤ p ≤ j + 2}
2 (p, q) ∈ {(p, q)|i − 2 ≤ p ≤ i + 2 ∧ j − 2 ≤ q ≤

j + 2 ∧ (|p − i| ≤ 1 ∨ |q − j| ≤ 1)}

Table 1: Feature templates. t is the part of speech
of s.

w is a weight parameter vector, each element
of f(·) is a binary feature function, and Zi =∑

j∈{j|1≤j≤n+1 ∧ j ̸=i}(numerator of Equation 1)
is a normalization factor. o is an orientation of i to
j and d is a distance class.

The binary feature function that constitutes an
element of f(·) returns 1 when its feature is
matched and if else, returns 0. Table 1 shows the
feature templates used to produce the features. A
feature is an instance of a feature template.

In Equation 1, i, j, and S are used by the feature
functions. Thus, Equation 1 can utilize features
consisting of both si, which is the word specified
at i, and sj , which is the word specified at j, or
both the context of i and the context of j simulta-
neously. Distance is considered using the distance
class d. Distortion is represented by distance and
orientation. The pair model considers distortion
using six joint classes of d and o.

3.3 Sequence Model

The pair model does not consider relative word or-
der among NPCs or all the words between the CP
and an NPC. In this section, we propose a further
improved model, the sequence model, which con-
siders richer context including relative word order
among NPCs and also including all the words be-
tween the CP and an NPC.

In (c) and (d) in Figure 2, karita (borrowed) and
katta (bought) occur in the source sentences. The
pair model considers the effect of distances using
only the distance class d. If these positions are
in the same distance class, the pair model cannot
consider the differences in distances. In this case,
these are conflict instances during training and it
is difficult to distinguish the NP for translation.

Now to explain how to consider the relative
word order by the sequence model. The sequence
model considers the relative word order by dis-
criminating the label sequence corresponding to
the NP from the label sequences corresponding to
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Label Description
C A position is the CP.
I A position is a position between the CP

and the NPC.
N A position is the NPC.

Table 2: The “C, I, and N” label set.
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Figure 3: Example of label sequences that specify
spans from the CP to each NPC for the case of
Figure 2 (c). The labels (C, I, and N) in the boxes
are the label sequences.

each NPC in each sentence. Each label sequence
corresponds to one NPC. Therefore, if we identify
the label sequence that corresponds to the NP, we
can obtain the NP. The label sequences specify the
spans from the CP to each NPC using three kinds
of labels indicating the type of word positions in
the spans. The three kinds of labels, “C, I, and N,”
are shown in Table 2. Figure 3 shows examples
of the label sequences for the case of Figure 2 (c).
In Figure 3, the label sequences are represented by
boxes and the elements of the sequences are labels.
The NPC is used as the label sequence ID for each
label sequence.

The label sequence can treat relative word or-
der. For example, the label sequence ID of 10 in
Figure 3 knows that karita exists to the left of the
NPC of 10. This is because karita6 carries a la-
bel I while katta10 carries a label N, and a position
with label I is defined as relatively closer to the CP
than a position with label N. By utilizing the label
sequence and corresponding words, the model can
reflect the effect of karita existing between the CP
and the NPC of 10 on the probability.

For the sequence model, karita (borrowed) and

katta (bought) in (c) and (d) in Figure 2 are not
conflict instances in training, whereas they are
conflict instances in training for the pair model.
The reason is as follows. In order to make the
probability of the NPC of 10 smaller than the NPC
of 6, instead of making the weight parameters for
the features with respect to the word at the position
of 10 with label N smaller than the weight param-
eters for the features with respect to the word at
the position of 6 with label N, the sequence model
can give negative weight parameters for the fea-
tures with respect to the word at the position of 6
with label I.

We use a sequence discrimination technique
based on CRF (Lafferty et al., 2001) to identify the
label sequence that corresponds to the NP. There
are two differences between our task and the CRF
task. One difference is that CRF discriminates la-
bel sequences that consist of labels from all of the
label candidates, whereas we constrain the label
sequences to sequences where the label at the CP
is C, the label at an NPC is N, and the labels be-
tween the CP and the NPC are I. The other dif-
ference is that CRF is designed for discriminat-
ing label sequences corresponding to the same ob-
ject sequence, whereas we do not assign labels to
words outside the spans from the CP to each NPC.
However, when we assume that another label such
as E has been assigned to the words outside the
spans and there are no features involving label E,
CRF with our label constraints can be applied to
our task. In this paper, the method designed to
discriminate label sequences corresponding to the
different word sequence lengths is called partial
CRF.

The sequence model based on partial CRF is de-
rived by extending the pair model. We introduce
the label l and extend the pair model to discrimi-
nating the label sequences. There are two exten-
sions to the pair model. One extension uses la-
bels. We suppose that label sequences specify the
spans from the CP to each NPC. We conjoined all
the feature templates in Table 1 with an additional
feature template ⟨li, lj⟩ to include the labels into
features where li is the label corresponding to the
position of i. The other extension uses sequence.
In the pair model, the position pair of (i, j) is used
to derive features. In contrast, to descriminate la-
bel sequences in the sequence model, the position
pairs of (i, k), k ∈ {k|i < k ≤ j ∨ j ≤ k < i}
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and (k, j), k ∈ {k|i ≤ k < j ∨ j < k ≤ i}
are used to derive features. Note that in the feature
templates in Table 1, i and j are used to specify
two positions. When features are used for the se-
quence model, one of the positions is regarded as
k.

The distortion probability for an NPC j being
the NP given a CP i and a source sentence S is
calculated as:

P (X = j|i, S) =

1

Zi
exp

( ∑

k∈M∪{j}
wTf (i, k, S, o, d, li, lk)

+
∑

k∈M∪{i}
wTf (k, j, S, o, d, lk, lj)

)

(2)

where

M =

{
{m|i < m < j} (i < j)

{m|j < m < i} (i > j)

and Zi =
∑

j∈{j|1≤j≤n+1 ∧ j ̸=i}(numerator of
Equation 2) is a normalization factor. Since j is
used as the label sequence ID, discriminating j
also means discriminating label sequence IDs.

The first term in exp(·) in Equation 2 considers
all of the word pairs located at i and other posi-
tions in the sequence, and also their context. The
second term in exp(·) in Equation 2 considers all
of the word pairs located at j and other positions
in the sequence, and also their context.

By designing our model to discriminate among
different length label sequences, our model can
naturally handle the effect of distances. Many fea-
tures are derived from a long label sequence be-
cause it will contain many labels between the CP
and the NPC. On the other hand, fewer features
are derived from a short label sequence because a
short label sequence will contain fewer labels be-
tween the CP and the NPC. The bias from these
differences provides important clues for learning
the effect of distances.7

7Note that the sequence model does not only consider
larger context than the pair model, but that it also considers
labels. The pair model does not discriminate labels, whereas
the sequence model uses label N and label I for the positions
except for the CP, depending on each situation. For example,
in Figure 3, at position 6, label N is used in the label sequence
ID of 6, but label I is used in the label sequence IDs of 7 to
11. Namely, even if they are at the same position, the labels
in the label sequences are different. The sequence model dis-
criminates the label differences.

BOS  kare  wa  pari  de  hon  wo  katta  EOS

BOS  he  bought  books  in  Paris  EOS

Source:

Target:

training data

Figure 4: Examples of supervised training data.
The lines represent word alignments. The English
side arrows point to the nearest word aligned on
the right.

3.4 Training Data for Discriminative
Distortion Model

To train our discriminative distortion model, su-
pervised training data is needed. The training data
is built from a parallel corpus and word alignments
between corresponding source words and target
words. Figure 4 shows examples of training data.
We select the target words aligned to the source
words sequentially from left to right (target side
arrows). Then, the order of the source words in
the target word order is decided (source side ar-
rows). The source sentence and the source side
arrows are the training data.

4 Experiment

In order to confirm the effects of our distortion
model, we conducted a series of Japanese to En-
glish (JE) and Chinese to English (CE) translation
experiments.8

4.1 Common Settings
We used the patent data for the Japanese to En-
glish and Chinese to English translation subtasks
from the NTCIR-9 Patent Machine Translation
Task (Goto et al., 2011). There were 2,000 sen-
tences for the test data and 2,000 sentences for the
development data.

Mecab9 was used for the Japanese morpholog-
ical analysis. The Stanford segmenter10 and tag-
ger11 were used for Chinese segmentation and
POS tagging. The translation model was trained
using sentences of 40 words or less from the train-
ing data. So approximately 2.05 million sen-
tence pairs consisting of approximately 54 million

8We conducted JE and CE translation as examples of
language pairs with different word orders and of languages
where there is a great need for translation into English.

9http://mecab.sourceforge.net/
10http://nlp.stanford.edu/software/segmenter.shtml
11http://nlp.stanford.edu/software/tagger.shtml
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Japanese tokens whose lexicon size was 134k and
50 million English tokens whose lexicon size was
213k were used for JE. And approximately 0.49
million sentence pairs consisting of 14.9 million
Chinese tokens whose lexicon size was 169k and
16.3 million English tokens whose lexicon size
was 240k were used for CE. GIZA++ and grow-
diag-final-and heuristics were used to obtain word
alignments. In order to reduce word alignment er-
rors, we removed articles {a, an, the} in English
and particles {ga, wo, wa} in Japanese before per-
forming word alignments because these function
words do not correspond to any words in the other
languages. After word alignment, we restored the
removed words and shifted the word alignment po-
sitions to the original word positions. We used 5-
gram language models that were trained using the
English side of each set of bilingual training data.

We used an in-house standard phrase-based
SMT system compatible with the Moses decoder
(Koehn et al., 2007). The SMT weighting param-
eters were tuned by MERT (Och, 2003) using the
development data. To stabilize the MERT results,
we tuned three times by MERT using the first half
of the development data and we selected the SMT
weighting parameter set that performed the best on
the second half of the development data based on
the BLEU scores from the three SMT weighting
parameter sets.

We compared systems that used a common
SMT feature set from standard SMT features and
different distortion model features. The com-
mon SMT feature set consists of: four translation
model features, phrase penalty, word penalty, and
a language model feature. The compared different
distortion model features are: the linear distortion
cost model feature (LINEAR), the linear distortion
cost model feature and the six MSD bidirectional
lexical distortion model (Koehn et al., 2005) fea-
tures (LINEAR+LEX), the outbound and inbound
distortion model features discriminating nine dis-
tortion classes (Green et al., 2010) (9-CLASS), the
proposed pair model feature (PAIR), and the pro-
posed sequence model feature (SEQUENCE).

4.2 Training for the Proposed Models

Our distortion model was trained as follows: We
used 0.2 million sentence pairs and their word
alignments from the data used to build the trans-
lation model as the training data for our distortion
models. The features that were selected and used

were the ones that had been counted12, using the
feature templates in Table 1, at least four times
for all of the (i, j) position pairs in the training
sentences. We conjoined the features with three
types of label pairs ⟨C, I⟩, ⟨I, N⟩, or ⟨C, N⟩ as in-
stances of the feature template ⟨li, lj⟩ to produce
features for SEQUENCE. The L-BFGS method
(Liu and Nocedal, 1989) was used to estimate the
weight parameters of maximum entropy models.
The Gaussian prior (Chen and Rosenfeld, 1999)
was used for smoothing.

4.3 Training for the Compared Models

For 9-CLASS, we used the same training data as
for our distortion models. Let ti be the part of
speech of si. We used the following feature tem-
plates to produce features for the outbound model:
⟨si−2⟩, ⟨si−1⟩, ⟨si⟩, ⟨si+1⟩, ⟨si+2⟩, ⟨ti⟩, ⟨ti−1, ti⟩,
⟨ti, ti+1⟩, and ⟨si, ti⟩. These feature templates corre-
spond to the components of the feature templates
of our distortion models. In addition to these fea-
tures, we used a feature consisting of the relative
source sentence position as the feature used by
(Green et al., 2010). The relative source sentence
position is discretized into five bins, one for each
quintile of the sentence. For the inbound model13,
i of the feature templates was changed to j. Fea-
tures occurring four or more times in the train-
ing sentences were used. The maximum entropy
method with Gaussian prior smoothing was used
to estimate the model parameters.

The MSD bidirectional lexical distortion model
was built using all of the data used to build the
translation model.

4.4 Results and Discussion

We evaluated translation quality based on the case-
insensitive automatic evaluation score BLEU-4
(Papineni et al., 2002). We used distortion lim-
its of 10, 20, 30, and unlimited (∞), which limited
the number of words for word reordering to a max-
imum number. Table 3 presents our main results.
The proposed SEQUENCE outperformed the base-
lines for both Japanese to English and Chinese to
English translation. This demonstrates the effec-
tiveness of the proposed SEQUENCE. The scores
of the proposed SEQUENCE were higher than those

12When we counted features for selection, we only counted
features that were from the feature templates of ⟨si, sj⟩,
⟨ti, tj⟩, ⟨si, ti, tj⟩, and ⟨sj , ti, tj⟩ in Table 1 when j was not
the NP, in order to avoid increasing the number of features.

13The inbound model is explained in footnote 5.
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Japanese-English Chinese-English
Distortion limit 10 20 30 ∞ 10 20 30 ∞
LINEAR 27.98 27.74 27.75 27.30 29.18 28.74 28.31 28.33
LINEAR+LEX 30.25 30.37 30.17 29.98 30.81 30.24 30.16 30.13
9-CLASS 30.74 30.98 30.92 30.75 31.80 31.56 31.31 30.84
PAIR 31.62 32.36 31.96 32.03 32.51 32.30 32.25 32.32
SEQUENCE 32.02 32.96 33.29 32.81 33.41 33.44 33.35 33.41

Table 3: Evaluation results for each method. The values are case-insensitive BLEU scores. Bold numbers
indicate no significant difference from the best result in each language pair using the bootstrap resampling
test at a significance level α = 0.01 (Koehn, 2004).

Japanese-English Chinese-English
HIER 30.47 32.66

Table 4: Evaluation results for hierarchical phrase-
based SMT.

of the proposed PAIR. This confirms the effective-
ness for considering relative word order and words
between the CP and an NPC. The proposed PAIR

outperformed 9-CLASS, confirming that consider-
ing both the word specified at the CP and the word
specified at the NPC simultaneously was more ef-
fective than that of 9-CLASS.

For translating between languages with widely
different word orders such as Japanese and En-
glish, a small distortion limit is undesirable be-
cause there are cases where correct translations
cannot be produced with a small distortion limit,
since the distortion limit prunes the search space
that does not meet the constraint. Therefore,
a large distortion limit is required to translate
correctly. For JE translation, our SEQUENCE

achieved significantly better results at distortion
limits of 20 and 30 than that at a distortion limit
of 10, while the baseline systems of LINEAR,
LINEAR+LEX, and 9-CLASS did not achieve this.
This indicate that SEQUENCE could treat long
distance reordering candidates more appropriately
than the compared methods.

We also tested hierarchical phrase-based SMT
(Chiang, 2007) (HIER) using the Moses imple-
mentation. The common data was used to train
HIER. We used unlimited max-chart-span for the
system setting. Results are given in Table 4. Our
SEQUENCE outperformed HIER. The gain for JE
was large but the gain for CE was modest. Since
phrase-based SMT is generally faster in decod-
ing speed than hierarchical phrase-based SMT,
achieving better or comparable scores is worth-

Distortion

Pr
ob

ab
ili
ty

Figure 5: Average probabilities for large distortion
for Japanese-English translation.

while.
To investigate the tolerance for sparsity of the

training data, we reduced the training data for
the sequence model to 20,000 sentences for JE
translation.14 SEQUENCE using this model with
a distortion limit of 30 achieved a BLEU score
of 32.22.15 Although the score is lower than the
score of SEQUENCE with a distortion limit of 30
in Table 3, the score was still higher than those
of LINEAR, LINEAR+LEX, and 9-CLASS for JE
in Table 3. This indicates that the sequence model
also works even when the training data is not large.
This is because the sequence model considers not
only the word at the CP and the word at an NPC
but also rich context, and rich context would be ef-
fective even for a smaller set of training data.

14We did not conduct experiments using larger training
data because there would have been a very high computa-
tional cost to build models using the L-BFGS method.

15To avoid effects from differences in the SMT weighting
parameters, we used the same SMT weighting parameters for
SEQUENCE, with a distortion limit of 30, in Table 3.
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To investigate how well SEQUENCE learns the
effect of distance, we checked the average distor-
tion probabilities for large distortions of j − i − 1.
Figure 5 shows three kinds of probabilities for dis-
tortions from 3 to 20 for Japanese-English transla-
tion. One is the average distortion probabilities
in the Japanese test sentences for each distortion
for SEQUENCE, and another is this for PAIR. The
third (CORPUS) is the probabilities for the actual
distortions in the training data that were obtained
from the word alignments used to build the trans-
lation model. The probability for a distortion for
CORPUS was calculated by the number of the dis-
tortion divided by the total number of distortions
in the training data.

Figure 5 shows that when a distance class fea-
ture used in the model was the same (e.g., distor-
tions from 5 to 20 were the same distance class
feature), PAIR produced average distortion prob-
abilities that were almost the same. In contrast,
the average distortion probabilities for SEQUENCE

decreased when the lengths of the distortions in-
creased, even if the distance class feature was
the same, and this behavior was the same as that
of CORPUS. This confirms that the proposed
SEQUENCE could learn the effect of distances ap-
propriately from the training data.16

5 Related Works

We discuss related works other than discussed in
Section 2. Xiong et al. (2012) proposed a model
predicting the orientation of an argument with re-
spect to its verb using a parser. Syntactic struc-
tures and predicate-argument structures are useful
for reordering. However, orientations do not han-
dle distances. Thus, our distortion model does not
compete against the methods predicting orienta-
tions using a parser and would assist them if used

16We also checked the average distortion probabilities for
the 9-CLASS outbound model in the Japanese test sentences
for Japanese-English translation. We averaged the average
probabilities for distortions in a distortion span of [4, 6] and
also averaged those in a distortion span of [7, 20], where the
distortions in each span are in the same distortion class. The
average probability for [4, 6] was 0.058 and that for [7, 20]
was 0.165. From CORPUS, the average probabilities in the
training data for each distortion in [4, 6] were higher than
those for each distortion in [7, 20]. However, the converse
was true for the comparison between the two average prob-
abilities for the outbound model. This is because the sum
of probabilities for distortions from 7 and above was larger
than the sum of probabilities for distortions from 4 to 6 in the
training data. This comparison indicates that the 9-CLASS
outbound model could not appropriately learn the effects of
large distances for JE translation.

together.
There are word reordering constraint methods

using ITG (Wu, 1997) for phrase-based SMT
(Zens et al., 2004; Yamamoto et al., 2008; Feng et
al., 2010). These methods consider sentence level
consistency with respect to ITG. The ITG con-
straint does not consider distances of reordering
and was used with other distortion models. Our
distortion model does not consider sentence level
consistency, so our distortion model and ITG con-
straint methods are thought to be complementary.

There are tree-based SMT methods (Chiang,
2007; Galley et al., 2004; Liu et al., 2006). In
many cases, tree-based SMT methods do not use
the distortion models that consider reordering dis-
tance apart from translation rules because it is not
trivial to use distortion scores considering the dis-
tances for decoders that do not generate hypothe-
ses from left to right. If it could be applied to these
methods, our distortion model might contribute to
tree-based SMT methods. Investigating the effects
will be for future work.

6 Conclusion

This paper described our distortion models for
phrase-based SMT. Our sequence model simply
consists of only one probabilistic model, but it can
consider rich context. Experiments indicate that
our models achieved better performance and the
sequence model could learn the effect of distances
appropriately. Since our models do not require a
parser, they can be applied to many languages. Fu-
ture work includes application to other language
pairs, incorporation into ITG constraint methods
and other reordering methods, and application to
tree-based SMT methods.
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Abstract
In this paper, we explore a novel bilin-
gual word alignment approach based on
DNN (Deep Neural Network), which has
been proven to be very effective in var-
ious machine learning tasks (Collobert
et al., 2011). We describe in detail
how we adapt and extend the CD-DNN-
HMM (Dahl et al., 2012) method intro-
duced in speech recognition to the HMM-
based word alignment model, in which
bilingual word embedding is discrimina-
tively learnt to capture lexical translation
information, and surrounding words are
leveraged to model context information
in bilingual sentences. While being ca-
pable to model the rich bilingual corre-
spondence, our method generates a very
compact model with much fewer parame-
ters. Experiments on a large scale English-
Chinese word alignment task show that the
proposed method outperforms the HMM
and IBM model 4 baselines by 2 points in
F-score.

1 Introduction

Recent years research communities have seen a
strong resurgent interest in modeling with deep
(multi-layer) neural networks. This trending topic,
usually referred under the name Deep Learning, is
started by ground-breaking papers such as (Hin-
ton et al., 2006), in which innovative training pro-
cedures of deep structures are proposed. Unlike
shallow learning methods, such as Support Vector
Machine, Conditional Random Fields, and Maxi-
mum Entropy, which need hand-craft features as
input, DNN can learn suitable features (represen-
tations) automatically with raw input data, given a
training objective.

DNN did not achieve expected success until
2006, when researchers discovered a proper way

to intialize and train the deep architectures, which
contains two phases: layer-wise unsupervised pre-
training and supervised fine tuning. For pre-
training, Restricted Boltzmann Machine (RBM)
(Hinton et al., 2006), auto-encoding (Bengio et al.,
2007) and sparse coding (Lee et al., 2007) are pro-
posed and popularly used. The unsupervised pre-
training trains the network one layer at a time, and
helps to guide the parameters of the layer towards
better regions in parameter space (Bengio, 2009).
Followed by fine tuning in this region, DNN is
shown to be able to achieve state-of-the-art per-
formance in various area, or even better (Dahl et
al., 2012) (Kavukcuoglu et al., 2010). DNN also
achieved breakthrough results on the ImageNet
dataset for objective recognition (Krizhevsky et
al., 2012). For speech recognition, (Dahl et al.,
2012) proposed context-dependent neural network
with large vocabulary, which achieved 16.0% rel-
ative error reduction.

DNN has also been applied in Natural Lan-
guage Processing (NLP) field. Most works con-
vert atomic lexical entries into a dense, low di-
mensional, real-valued representation, called word
embedding; Each dimension represents a latent as-
pect of a word, capturing its semantic and syntac-
tic properties (Bengio et al., 2006). Word embed-
ding is usually first learned from huge amount of
monolingual texts, and then fine-tuned with task-
specific objectives. (Collobert et al., 2011) and
(Socher et al., 2011) further apply Recursive Neu-
ral Networks to address the structural prediction
tasks such as tagging and parsing, and (Socher
et al., 2012) explores the compositional aspect of
word representations.

Inspired by successful previous works, we pro-
pose a new DNN-based word alignment method,
which exploits contextual and semantic similari-
ties between words. As shown in example (a) of
Figure 1, in word pair {“juda” ⇒“mammoth”},
the Chinese word “juda” is a common word, but
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mammothwill be a

jiang shi yixiang juda gongcheng

job

(a)

A :farmer Yibula said

nongmin yibula shuo : “

“

(b)

Figure 1: Two examples of word alignment

the English word “mammoth” is not, so it is very
hard to align them correctly. If we know that
“mammoth” has the similar meaning with “big”,
or “huge”, it would be easier to find the corre-
sponding word in the Chinese sentence. As we
mentioned in the last paragraph, word embedding
(trained with huge monolingual texts) has the abil-
ity to map a word into a vector space, in which,
similar words are near each other.

For example (b) in Figure 1, for the word pair
{“yibula” ⇒ “Yibula”}, both the Chinese word
“yibula” and English word “Yibula” are rare name
entities, but the words around them are very com-
mon, which are {“nongmin”, “shuo”} for Chinese
side and {“farmer”, “said”} for the English side.
The pattern of the context {“nongmin X shuo”
⇒ “farmer X said”} may help to align the word
pair which fill the variableX , and also, the pattern
{“yixiang X gongcheng”⇒ “a X job”} is helpful
to align the word pair {“juda”⇒“mammoth”} for
example (a).

Based on the above analysis, in this paper, both
the words in the source and target sides are firstly
mapped to a vector via a discriminatively trained
word embeddings, and word pairs are scored by a
multi-layer neural network which takes rich con-
texts (surrounding words on both source and target
sides) into consideration; and a HMM-like distor-
tion model is applied on top of the neural network
to characterize structural aspect of bilingual sen-
tences.

In the rest of this paper, related work about
DNN and word alignment are first reviewed in
Section 2, followed by a brief introduction of
DNN in Section 3. We then introduce the details
of leveraging DNN for word alignment, including
the details of our network structure in Section 4

and the training method in Section 5. The mer-
its of our approach are illustrated with the experi-
ments described in Section 6, and we conclude our
paper in Section 7.

2 Related Work

DNN with unsupervised pre-training was firstly
introduced by (Hinton et al., 2006) for MNIST
digit image classification problem, in which, RBM
was introduced as the layer-wise pre-trainer. The
layer-wise pre-training phase found a better local
maximum for the multi-layer network, thus led to
improved performance. (Krizhevsky et al., 2012)
proposed to apply DNN to do object recognition
task (ImageNet dataset), which brought down the
state-of-the-art error rate from 26.1% to 15.3%.
(Seide et al., 2011) and (Dahl et al., 2012) apply
Context-Dependent Deep Neural Network with
HMM (CD-DNN-HMM) to speech recognition
task, which significantly outperforms traditional
models.

Most methods using DNN in NLP start with a
word embedding phase, which maps words into
a fixed length, real valued vectors. (Bengio et
al., 2006) proposed to use multi-layer neural net-
work for language modeling task. (Collobert et al.,
2011) applied DNN on several NLP tasks, such
as part-of-speech tagging, chunking, name entity
recognition, semantic labeling and syntactic pars-
ing, where they got similar or even better results
than the state-of-the-art on these tasks. (Niehues
and Waibel, 2012) shows that machine transla-
tion results can be improved by combining neural
language model with n-gram traditional language.
(Son et al., 2012) improves translation quality of
n-gram translation model by using a bilingual neu-
ral language model. (Titov et al., 2012) learns a
context-free cross-lingual word embeddings to fa-
cilitate cross-lingual information retrieval.

For the related works of word alignment, the
most popular methods are based on generative
models such as IBM Models (Brown et al., 1993)
and HMM (Vogel et al., 1996). Discriminative ap-
proaches are also proposed to use hand crafted fea-
tures to improve word alignment. Among them,
(Liu et al., 2010) proposed to use phrase and rule
pairs to model the context information in a log-
linear framework. Unlike previous discriminative
methods, in this work, we do not resort to any hand
crafted features, but use DNN to induce “features”
from raw words.
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3 DNN structures for NLP

The most important and prevalent features avail-
able in NLP are the words themselves. To ap-
ply DNN to NLP task, the first step is to trans-
form a discrete word into its word embedding, a
low dimensional, dense, real-valued vector (Ben-
gio et al., 2006). Word embeddings often implic-
itly encode syntactic or semantic knowledge of
the words. Assuming a finite sized vocabulary V ,
word embeddings form a (L×|V |)-dimension em-
bedding matrix WV , where L is a pre-determined
embedding length; mapping words to embed-
dings is done by simply looking up their respec-
tive columns in the embedding matrix WV . The
lookup process is called a lookup layer LT , which
is usually the first layer after the input layer in neu-
ral network.

After words have been transformed to their em-
beddings, they can be fed into subsequent classi-
cal network layers to model highly non-linear re-
lations:

zl = fl(M
lzl−1 + bl) (1)

where zl is the output of lth layer, M l is a |zl| ×
|zl−1| matrix, bl is a |zl|-length vector, and fl
is an activation function. Except for the last
layer, fl must be non-linear. Common choices for
fl include sigmoid function, hyperbolic function,
“hard” hyperbolic function etc. Following (Col-
lobert et al., 2011), we choose “hard” hyperbolic
function as our activation function in this work:

htanh(x) =





1 if x is greater than 1
−1 if x is less than -1
x otherwise

(2)
If probabilistic interpretation is desired, a softmax
layer (Bridle, 1990) can be used to do normaliza-
tion:

zli =
ez
l−1
i

|zl|∑
j=1

ez
l−1
j

(3)

The above layers can only handle fixed sized in-
put and output. If input must be of variable length,
convolution layer and max layer can be used, (Col-
lobert et al., 2011) which transform variable length
input to fixed length vector for further processing.

Multi-layer neural networks are trained with
the standard back propagation algorithm (LeCun,
1985). As the networks are non-linear and the
task specific objectives usually contain many lo-
cal maximums, special care must be taken in the

optimization process to obtain good parameters.
Techniques such as layerwise pre-training(Bengio
et al., 2007) and many tricks(LeCun et al., 1998)
have been developed to train better neural net-
works. Besides that, neural network training also
involves some hyperparameters such as learning
rate, the number of hidden layers. We will address
these issues in section 4.

4 DNN for word alignment

Our DNN word alignment model extends classic
HMM word alignment model (Vogel et al., 1996).
Given a sentence pair (e, f), HMM word alignment
takes the following form:

P (a, e|f) =
|e|∏

i=1

Plex(ei|fai)Pd(ai − ai−1) (4)

where Plex is the lexical translation probability
and Pd is the jump distance distortion probability.

One straightforward way to integrate DNN
into HMM is to use neural network to compute
the emission (lexical translation) probability Plex.
Such approach requires a softmax layer in the neu-
ral network to normalize over all words in source
vocabulary. As vocabulary for natural languages
is usually very large, it is prohibitively expen-
sive to do the normalization. Hence we give up
the probabilistic interpretation and resort to a non-
probabilistic, discriminative view:

sNN (a|e, f) =
|e|∏

i=1

tlex(ei, fai |e, f)td(ai, ai−1|e, f)

(5)
where tlex is a lexical translation score computed
by neural network, and td is a distortion score.

In the classic HMM word alignment model,
context is not considered in the lexical translation
probability. Although we can rewrite Plex(ei|fai)
to Plex(ei|context of fai) to model context, it in-
troduces too many additional parameters and leads
to serious over-fitting problem due to data sparse-
ness. As a matter of fact, even without any con-
texts, the lexical translation table in HMM al-
ready contains O(|Ve| ∗ |Vf |) parameters, where
|Ve| and Vf denote source and target vocabulary
sizes. In contrast, our model does not maintain
a separate translation score parameters for every
source-target word pair, but computes tlex through
a multi-layer network, which naturally handles
contexts on both sides without explosive growth
of number of parameters.
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Figure 2: Network structure for computing context
dependent lexical translation scores. The example
computes translation score for word pair (yibula,
yibulayin) given its surrounding context.

Figure 2 shows the neural network we used
to compute context dependent lexical transla-
tion score tlex. For word pair (ei, fj), we take
fixed length windows surrounding both ei and fj
as input: (ei− sw

2
, . . . , ei+ sw

2
, fj− tw

2
, . . . , fj+ tw

2
),

where sw, tw stand window sizes on source and
target side respectively. Words are converted to
embeddings using the lookup table LT , and the
catenation of embeddings are fed to a classic neu-
ral network with two hidden-layers, and the output
of the network is the our lexical translation score:

tlex(ei, fj |e, f)
= f3 ◦ f2 ◦ f1 ◦ LT (window(ei), window(fj))

(6)
f1 and f2 layers use htanh as activation functions,
while f3 is only a linear transformation with no
activation function.

For the distortion td, we could use a lexicalized
distortion model:

td(ai, ai−1|e, f) = td(ai − ai−1|window(fai−1))
(7)

which can be computed by a neural network sim-
ilar to the one used to compute lexical transla-
tion scores. If we map jump distance (ai − ai−1)
to B buckets, we can change the length of the
output layer to B, where each dimension in the
output stands for a different bucket of jump dis-
tances. But we found in our initial experiments
on small scale data, lexicalized distortion does not
produce better alignment over the simple jump-
distance based model. So we drop the lexicalized

distortion and reverse to the simple version:

td(ai, ai−1|e, f) = td(ai − ai−1) (8)

Vocabulary V of our alignment model consists
of a source vocabulary Ve and a target vocabu-
lary Vf . As in (Collobert et al., 2011), in addition
to real words, each vocabulary contains a special
unknown word symbol 〈unk〉 to handle unseen
words; two sentence boundary symbols 〈s〉 and
〈/s〉, which are filled into surrounding window
when necessary; furthermore, to handle null align-
ment, we must also include a special null symbol
〈null〉. When fj is null word, we simply fill the
surrounding window with the identical null sym-
bols.

To decode our model, the lexical translation
scores are computed for each source-target word
pair in the sentence pair, which requires going
through the neural network (|e| × |f|) times; af-
ter that, the forward-backward algorithm can be
used to find the viterbi path as in the classic HMM
model.

The majority of tunable parameters in our
model resides in the lookup table LT , which is
a (L × (|Ve| + |Vf |))-dimension matrix. For a
reasonably large vocabulary, the number is much
smaller than the number of parameters in classic
HMM model, which is in the order of (|Ve|×|Vf |).
1

The ability to model context is not unique to
our model. In fact, discriminative word alignment
can model contexts by deploying arbitrary features
(Moore, 2005). Different from previous discrim-
inative word alignment, our model does not use
manually engineered features, but learn “features”
automatically from raw words by the neural net-
work. (Berger et al., 1996) use a maximum en-
tropy model to model the bag-of-words context for
word alignment, but their model treats each word
as a distinct feature, which can not leverage the
similarity between words as our model.

5 Training

Although unsupervised training technique such as
Contrastive Estimation as in (Smith and Eisner,
2005), (Dyer et al., 2011) can be adapted to train

1In practice, the number of non-zero parameters in clas-
sic HMM model would be much smaller, as many words do
not co-occur in bilingual sentence pairs. In our experiments,
the number of non-zero parameters in classic HMM model
is about 328 millions, while the NN model only has about 4
millions.
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our model from raw sentence pairs, they are too
computational demanding as the lexical transla-
tion probabilities must be computed from neu-
ral networks. Hence, we opt for a simpler su-
pervised approach, which learns the model from
sentence pairs with word alignment. As we do
not have a large manually word aligned corpus,
we use traditional word alignment models such as
HMM and IBM model 4 to generate word align-
ment on a large parallel corpus. We obtain bi-
directional alignment by running the usual grow-
diag-final heuristics (Koehn et al., 2003) on uni-
directional results from both directions, and use
the results as our training data. Similar approach
has been taken in speech recognition task (Dahl et
al., 2012), where training data for neural network
model is generated by forced decoding with tradi-
tional Gaussian mixture models.

Tunable parameters in neural network align-
ment model include: word embeddings in lookup
table LT , parametersW l, bl for linear transforma-
tions in the hidden layers of the neural network,
and distortion parameters sd of jump distance. We
take the following ranking loss with margin as our
training criteria:

loss(θ) =
∑

every (e,f)

max{0, 1− sθ(a+|e, f) + sθ(a−|e, f)}

(9)
where θ denotes all tunable parameters, a+ is
the gold alignment path, a− is the highest scor-
ing incorrect alignment path under θ, and sθ is
model score for alignment path defined in Eq. 5
. One nuance here is that the gold alignment af-
ter grow-diag-final contains many-to-many links,
which cannot be generated by any path. Our solu-
tion is that for each source word alignment multi-
ple target, we randomly choose one link among all
candidates as the golden link.

Because our multi-layer neural network is in-
herently non-linear and is non-convex, directly
training against the above criteria is unlikely to
yield good results. Instead, we take the following
steps to train our model.

5.1 Pre-training initial word embedding with
monolingual data

Most parameters reside in the word embeddings.
To get a good initial value, the usual approach is
to pre-train the embeddings on a large monolin-
gual corpus. We replicate the work in (Collobert

et al., 2011) and train word embeddings for source
and target languages from their monolingual cor-
pus respectively. Our vocabularies Vs and Vt con-
tain the most frequent 100,000 words from each
side of the parallel corpus, and all other words are
treated as unknown words. We set word embed-
ding length to 20, window size to 5, and the length
of the only hidden layer to 40. Follow (Turian et
al., 2010), we randomly initialize all parameters
to [-0.1, 0.1], and use stochastic gradient descent
to minimize the ranking loss with a fixed learn-
ing rate 0.01. Note that embedding for null word
in either Ve and Vf cannot be trained from mono-
lingual corpus, and we simply leave them at the
initial value untouched.

Word embeddings from monolingual corpus
learn strong syntactic knowledge of each word,
which is not always desirable for word align-
ment between some language pairs like English
and Chinese. For example, many Chinese words
can act as a verb, noun and adjective without any
change, while their English counter parts are dis-
tinct words with quite different word embeddings
due to their different syntactic roles. Thus we
have to modify the word embeddings in subse-
quent steps according to bilingual data.

5.2 Training neural network based on local
criteria

Training the network against the sentence level
criteria Eq. 5 directly is not efficient. Instead, we
first ignore the distortion parameters and train neu-
ral networks for lexical translation scores against
the following local pairwise loss:

max{0, 1− tθ((e, f)+|e, f) + tθ((e, f)
−|e, f)}

(10)
where (e, f)+ is a correct word pair, (e, f)− is a
wrong word pair in the same sentence, and tθ is as
defined in Eq. 6 . This training criteria essentially
means our model suffers loss unless it gives cor-
rect word pairs a higher score than random pairs
from the same sentence pair with some margin.

We initialize the lookup table with embed-
dings obtained from monolingual training, and
randomly initialize all W l and bl in linear layers
to [-0.1, 0.1]. We minimize the loss using stochas-
tic gradient descent as follows. We randomly cy-
cle through all sentence pairs in training data; for
each correct word pair (including null alignment),
we generate a positive example, and generate two
negative examples by randomly corrupting either
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side of the pair with another word in the sentence
pair. We set learning rate to 0.01. As there is no
clear stopping criteria, we simply run the stochas-
tic optimizer through parallel corpus for N itera-
tions. In this work, N is set to 50.

To make our model concrete, there are still
hyper-parameters to be determined: the window
size sw and tw, the length of each hidden layer
Ll. We empirically set sw and tw to 11, L1 to
120, and L2 to 10, which achieved a minimal loss
on a small held-out data among several settings we
tested.

5.3 Training distortion parameters

We fix neural network parameters obtained from
the last step, and tune the distortion parameters
sd with respect to the sentence level loss using
standard stochastic gradient descent. We use a
separate parameter for jump distance from -7 and
7, and another two parameters for longer for-
ward/backward jumps. We initialize all parame-
ters in sd to 0, set the learning rate for the stochas-
tic optimizer to 0.001. As there are only 17 param-
eters in sd, we only need to run the optimizer over
a small portion of the parallel corpus.

5.4 Tuning neural network based on sentence
level criteria

Up-to-now, parameters in the lexical translation
neural network have not been trained against the
sentence level criteria Eq. 5. We could achieve
this by re-using the same online training method
used to train distortion parameters, except that we
now fix the distortion parameters and let the loss
back-propagate through the neural networks. Sen-
tence level training does not take larger context in
modeling word translations, but only to optimize
the parameters regarding to the sentence level loss.
This tuning is quite slow, and it did not improve
alignment on an initial small scale experiment; so,
we skip this step in all subsequent experiment in
this work.

6 Experiments and Results

We conduct our experiment on Chinese-to-English
word alignment task. We use the manually aligned
Chinese-English alignment corpus (Haghighi et
al., 2009) which contains 491 sentence pairs as
test set. We adapt the segmentation on the Chinese
side to fit our word segmentation standard.

6.1 Data

Our parallel corpus contains about 26 million
unique sentence pairs in total which are mined
from web.

The monolingual corpus to pre-train word em-
beddings are also crawled from web, which
amounts to about 1.1 billion unique sentences for
English and about 300 million unique sentences
for Chinese. As pre-processing, we lowercase all
English words, and map all numbers to one spe-
cial token; and we also map all email addresses
and URLs to another special token.

6.2 Settings

We use classic HMM and IBM model 4 as our
baseline, which are generated by Giza++ (Och and
Ney, 2000). We train our proposed model from re-
sults of classic HMM and IBM model 4 separately.
Since classic HMM, IBM model 4 and our model
are all uni-directional, we use the standard grow-
diag-final to generate bi-directional results for all
models.

Models are evaluated on the manually aligned
test set using standard metric: precision, recall and
F1-score.

6.3 Alignment Result

It can be seen from Table 1, the proposed model
consistently outperforms its corresponding base-
line whether it is trained from alignment of classic
HMM or IBM model 4. It is also clear that the

setting prec. recall F-1
HMM 0.768 0.786 0.777
HMM+NN 0.810 0.790 0.798
IBM4 0.839 0.805 0.822
IBM4+NN 0.885 0.812 0.847

Table 1: Word alignment result. The first row
and third row show baseline results obtained by
classic HMM and IBM4 model. The second row
and fourth row show results of the proposed model
trained from HMM and IBM4 respectively.

results of our model also depends on the quality
of baseline results, which is used as training data
of our model. In future we would like to explore
whether our method can improve other word align-
ment models.

We also conduct experiment to see the effect
on end-to-end SMT performance. We train hier-
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archical phrase model (Chiang, 2007) from dif-
ferent word alignments. Despite different align-
ment scores, we do not obtain significant differ-
ence in translation performance. In our C-E exper-
iment, we tuned on NIST-03, and tested on NIST-
08. Case-insensitive BLEU-4 scores on NIST-08
test are 0.305 and 0.307 for models trained from
IBM-4 and NN alignment results. The result is not
surprising considering our parallel corpus is quite
large, and similar observations have been made in
previous work as (DeNero and Macherey, 2011)
that better alignment quality does not necessarily
lead to better end-to-end result.

6.4 Result Analysis
6.4.1 Error Analysis
From Table 1 we can see higher F-1 score of our

model mainly comes from higher precision, with
recall similar to baseline. By analyzing the results,
we found out that for both baseline and our model,
a large part of missing alignment links involves
stop words like English words “the”, “a”, “it” and
Chinese words “de”. Stop words are inherently
hard to align, which often requires grammatical
judgment unavailable to our models; as they are
also extremely frequent, our model fully learns
their alignment patterns of the baseline models,
including errors. On the other hand, our model
performs better on low-frequency words, espe-
cially proper nouns. Take person names for ex-
ample. Most names are low-frequency words, on
which baseline HMM and IBM4 models show the
“garbage collector” phenomenon. In our model,
different person names have very similar word em-
beddings on both English side and Chinese side,
due to monolingual pre-training; what is more, dif-
ferent person names often appear in similar con-
texts. As our model considers both word embed-
dings and contexts, it learns that English person
names should be aligned to Chinese person names,
which corrects errors of baseline models and leads
to better precision.

6.4.2 Effect of context
To examine how context contribute to alignment
quality, we re-train our model with different win-
dow size, all from result of IBM model 4. From
Figure 3, we can see introducing context increase
the quality of the learned alignment, but the ben-
efit is diminished for window size over 5. On the
other hand, the results are quite stable even with
large window size 13, without noticeable over-
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0.78

0.8

0.82

0.84

0.86

1 3 5 7 9 11 13

Figure 3: Effect of different window sizes on word
alignment F-score.

fitting problem. This is not surprising consider-
ing that larger window size only requires slightly
more parameters in the linear layers. Lastly, it
is worth noticing that our model with no context
(window size 1) performs much worse than set-
tings with larger window size and baseline IBM4.
Our explanation is as follows. Our model uses
the simple jump distance based distortion, which
is weaker than the more sophisticated distortions
in IBM model 4; thus without context, it does not
perform well compared to IBM model 4. With
larger window size, our model is able to produce
more accurate translation scores based on more
contexts, which leads to better alignment despite
the simpler distortions.

IBM4+NN F-1
1-hidden-layer 0.834
2-hidden-layer 0.847
3-hidden-layer 0.843

Table 3: Effect of different number of hidden lay-
ers. Two hidden layers outperform one hidden
layer, while three hidden layers do not bring fur-
ther improvement.

6.4.3 Effect of number of hidden layers
Our neural network contains two hidden layers be-
sides the lookup layer. It is natural to ask whether
adding more layers would be beneficial. To an-
swer this question, we train models with 1, 2 and
3 layers respectively, all from result of IBM model
4. For 1-hidden-layer setting, we set the hidden
layer length to 120; and for 3-hidden-layer set-
ting, we set hidden layer lengths to 120, 100, 10
respectively. As can be seen from Table 3, 2-
hidden-layer outperforms the 1-hidden-layer set-
ting, while another hidden layer does not bring
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word good history british served labs zetian laggards

LM

bad tradition russian worked networks hongzhang underperformers
great culture japanese lived technologies yaobang transferees

strong practice dutch offered innovations keming megabanks
true style german delivered systems xingzhi mutuals
easy literature canadian produced industries ruihua non-starters

WA

nice historical uk offering lab hongzhang underperformers
great historic britain serving laboratories qichao illiterates
best developed english serve laboratory xueqin transferees

pretty record classic delivering exam fuhuan matriculants
excellent recording england worked experiments bingkun megabanks

Table 2: Nearest neighbors of several words according to their embedding distance. LM shows neighbors
of word embeddings trained by monolingual language model method; WA shows neighbors of word
embeddings trained by our word alignment model.

improvement. Due to time constraint, we have
not tuned the hyper-parameters such as length of
hidden layers in 1 and 3-hidden-layer settings, nor
have we tested settings with more hidden-layers.
It would be wise to test more settings to verify
whether more layers would help.

6.4.4 Word Embedding
Following (Collobert et al., 2011), we show some
words together with its nearest neighbors using the
Euclidean distance between their embeddings. As
we can see from Table 2, after bilingual training,
“bad” is no longer in the nearest neighborhood of
“good” as they hold opposite semantic meanings;
the nearest neighbor of “history” is now changed
to its related adjective “historical”. Neighbors of
proper nouns such as person names are relatively
unchanged. For example, neighbors of word
“zetian” are all Chinese names in both settings.
As Chinese language lacks morphology, the single
form and plural form of a noun in English often
correspond to the same Chinese word, thus it is
desirable that the two English words should have
similar word embeddings. While this is true for
relatively frequent nouns such as “lab” and “labs”,
rarer nouns still remain near their monolingual
embeddings as they are only modified a few times
during the bilingual training. As shown in last
column, neighborhood of “laggards” still consists
of other plural forms even after bilingual training.

7 Conclusion

In this paper, we explores applying deep neu-
ral network for word alignment task. Our model

integrates a multi-layer neural network into an
HMM-like framework, where context dependent
lexical translation score is computed by neural
network, and distortion is modeled by a sim-
ple jump-distance scheme. Our model is dis-
criminatively trained on bilingual corpus, while
huge monolingual data is used to pre-train word-
embeddings. Experiments on large-scale Chinese-
to-English task show that the proposed method
produces better word alignment results, compared
with both classic HMM model and IBM model 4.

For future work, we will investigate more set-
tings of different hyper-parameters in our model.
Secondly, we want to explore the possibility of
unsupervised training of our neural word align-
ment model, without reliance of alignment result
of other models. Furthermore, our current model
use rather simple distortions; it might be helpful
to use more sophisticated model such as ITG (Wu,
1997), which can be modeled by Recursive Neural
Networks (Socher et al., 2011).
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Abstract

In the ever-expanding sea of microblog data, there
is a surprising amount of naturally occurring par-
allel text: some users create post multilingual mes-
sages targeting international audiences while oth-
ers “retweet” translations. We present an efficient
method for detecting these messages and extract-
ing parallel segments from them. We have been
able to extract over 1M Chinese-English parallel
segments from Sina Weibo (the Chinese counter-
part of Twitter) using only their public APIs. As a
supplement to existing parallel training data, our
automatically extracted parallel data yields sub-
stantial translation quality improvements in trans-
lating microblog text and modest improvements
in translating edited news commentary. The re-
sources in described in this paper are available at
http://www.cs.cmu.edu/∼lingwang/utopia.

1 Introduction

Microblogs such as Twitter and Facebook have
gained tremendous popularity in the past 10 years.
In addition to being an important form of commu-
nication for many people, they often contain ex-
tremely current, even breaking, information about
world events. However, the writing style of mi-
croblogs tends to be quite colloquial, with fre-
quent orthographic innovation (R U still with me
or what?) and nonstandard abbreviations (idk!
shm)—quite unlike the style found in more tra-
ditional, edited genres. This poses considerable
problems for traditional NLP tools, which were
developed with other domains in mind, which of-
ten make strong assumptions about orthographic
uniformity (i.e., there is just one way to spell you).
One approach to cope with this problem is to an-
notate in-domain data (Gimpel et al., 2011).

Machine translation suffers acutely from the
domain-mismatch problem caused by microblog
text. On one hand, standard models are probably
suboptimal since they (like many models) assume
orthographic uniformity in the input. However,
more acutely, the data used to develop these sys-
tems and train their models is drawn from formal
and carefully edited domains, such as parallel web
pages and translated legal documents. MT training
data seldom looks anything like microblog text.

This paper introduces a method for finding nat-
urally occurring parallel microblog text, which
helps address the domain-mismatch problem.
Our method is inspired by the perhaps surpris-
ing observation that a reasonable number of mi-
croblog users tweet “in parallel” in two or more
languages. For instance, the American entertainer
Snoop Dogg regularly posts parallel messages on
Sina Weibo (Mainland China’s equivalent of Twit-
ter), for example, watup Kenny Mayne!! - Kenny
Mayne，最近这么样啊！！, where an English
message and its Chinese translation are in the
same post, separated by a dash. Our method is able
to identify and extract such translations. Briefly,
this requires determining if a tweet contains more
than one language, if these multilingual utterances
contain translated material (or are due to some-
thing else, such as code switching), and what the
translated spans are.

The paper is organized as follows. Section 2
describes the related work in parallel data extrac-
tion. Section 3 presents our model to extract par-
allel data within the same document. Section 4
describes our extraction pipeline. Section 5 de-
scribes the data we gathered from both Sina Weibo
(Chinese-English) and Twitter (Chinese-English
and Arabic-English). We then present experiments
showing that our harvested data not only substan-
tially improves translations of microblog text with
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existing (and arguably inappropriate) translation
models, but that it improves the translation of
more traditional MT genres, like newswire. We
conclude in Section 6.

2 Related Work

Automatic collection of parallel data is a well-
studied problem. Approaches to finding par-
allel web documents automatically have been
particularly important (Resnik and Smith, 2003;
Fukushima et al., 2006; Li and Liu, 2008; Uszko-
reit et al., 2010; Ture and Lin, 2012). These
broadly work by identifying promising candidates
using simple features, such as URL similarity or
“gist translations” and then identifying truly par-
allel segments with more expensive classifiers.
More specialized resources were developed using
manual procedures to leverage special features of
very large collections, such as Europarl (Koehn,
2005).

Mining parallel or comparable messages from
microblogs has mainly relied on Cross-Lingual In-
formation Retrieval techniques (CLIR). Jelh et al.
(2012) attempt to find pairs of tweets in Twitter us-
ing Arabic tweets as search queries in a CLIR sys-
tem. Afterwards, the model described in (Xu et al.,
2001) is applied to retrieve a set of ranked trans-
lation candidates for each Arabic tweet, which are
then used as parallel candidates.

The work on mining parenthetical transla-
tions (Lin et al., 2008), which attempts to find
translations within the same document, has some
similarities with our work, since parenthetical
translations are within the same document. How-
ever, parenthetical translations are generally used
to translate names or terms, which is more lim-
ited than our work which extracts whole sentence
translations.

Finally, crowd-sourcing techniques to obtain
translations have been previously studied and ap-
plied to build datasets for casual domains (Zbib
et al., 2012; Post et al., 2012). These approaches
require remunerated workers to translate the mes-
sages, and the amount of messages translated per
day is limited. We aim to propose a method that
acquires large amounts of parallel data for free.
The drawback is that there is a margin of error in
the parallel segment identification and alignment.
However, our system can be tuned for precision or
for recall.

3 Parallel Segment Retrieval

We will first abstract from the domain of Mi-
croblogs and focus on the task of retrieving par-
allel segments from single documents. Prior work
on finding parallel data attempts to reason about
the probability that pairs of documents (x, y) are
parallel. In contrast, we only consider one doc-
ument at a time, defined by x = x1, x2, . . . , xn,
and consisting of n tokens, and need to deter-
mine whether there is parallel data in x, and if
so, where are the parallel segments and their lan-
guages. For simplicity, we assume that there are
at most 2 continuous segments that are parallel.

As representation for the parallel seg-
ments within the document, we use the tuple
([p, q], l, [u, v], r, a). The word indexes [p, q] and
[u, v] are used to identify the left segment (from
p to q) and right segment (from u to v), which
are parallel. We shall refer [p, q] and [u, v] as the
spans of the left and right segments. To avoid
overlaps, we set the constraint p ≤ q < u ≤ v.
Then, we use l and r to identify the language of
the left and right segments, respectively. Finally, a
represents the word alignment between the words
in the left and the right segments.

The main problem we address is to find the
parallel data when the boundaries of the parallel
segments are not defined explicitly. If we knew
the indexes [p, q] and [u, v], we could simply run
a language detector for these segments to find l
and r. Then, we would use an word alignment
model (Brown et al., 1993; Vogel et al., 1996),
with source s = xp, . . . , xq, target t = xu, . . . , xv
and lexical table θl,r to calculate the Viterbi align-
ment a. Finally, from the probability of the word
alignments, we can determine whether the seg-
ments are parallel.

Thus, our model will attempt to find the opti-
mal values for the segments [p, q][u, v], languages
l, r and word alignments a jointly. However, there
are two problems with this approach. Firstly, word
alignment models generally attribute higher prob-
abilities to smaller segments, since these are the
result of a smaller product chain of probabilities.
In fact, because our model can freely choose the
segments to align, choosing only one word as the
left segment that is well aligned to a word in the
right segment would be the best choice. This
is obviously not our goal, since we would not
obtain any useful sentence pairs. Secondly, in-
ference must be performed over the combination
of all latent variables, which is intractable using
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a brute force algorithm. We shall describe our
model to solve the first problem in 3.1 and our
dynamic programming approach to make the in-
ference tractable in 3.2.

3.1 Model
We propose a simple (non-probabilistic) three-
factor model that models the spans of the parallel
segments, their languages, and word alignments
jointly. This model is defined as follows:

S([u, v], r, [p, q],l, a | x) =
SαS ([p, q], [u, v] | x)×
SβL(l, r | [p, q], [u, v], x)×
SγT (a | [p, q], l, [u, v], r, x)

Each of the components is weighted by the pa-
rameters α, β and γ. We set these values empiri-
cally α = 0.3, β = 0.3 and γ = 0.4, and leave the
optimization of these parameters as future work.
We discuss the components of this model in turn.

Span score SS . We define the score of hypothe-
sized pair of spans [p, q], [u, v] as:

SS([p, q], [u, v] | x) =
(q − p+ 1) + (v − u+ 1)∑

0<p′≤q′<u′≤v′≤n(q
′ − p′ + 1) + (v′ − u′ + 1)

×

ψ([p, q], [u, v], x)

The first factor is a distribution over all spans that
assigns higher probability to segmentations that
cover more words in the document. It is highest
for segmentations that cover all the words in the
document (this is desirable since there are many
sentence pairs that can be extracted but we want
to find the largest sentence pair in the document).
The function ψ takes on values of 0 or 1 depend-
ing on whether certain constraints are violated,
these include: parenthetical constraints that en-
force that spans must not break text within par-
enthetical characters and language constraints that
ensure that we do break a sequence of Mandarin
characters, Arabic words or Latin words.

Language score SL. The language score
SL(l, r | [p, q], [u, v], x) indicates whether the lan-
guage labels l, r are appropriate to the document
contents:

SL(l, r | [p, q], [u, v], x) =∑q
i=p L(l, xi) +

∑v
i=u L(r, xi)

n

where L(l, x) is a language detection function that
yields 1 if the word xi is in language l, and 0 oth-
erwise. We build the function simply by consid-
ering all words that are composed of Latin char-
acters as English, Arabic characters as Arabic and
Han characters as Mandarin. This approach is not
perfect, but it is simple and works reasonably well
for our purposes.

Translation score ST . The translation score
ST (a | [p, q], l, [u, v], r) indicates whether [p, q]
is a reasonable translation of [u, v] with the align-
ment a. We rely on IBM Model 1 probabilities for
this score:

ST (a | [p, q], l, [u, v], r, x) =
1

(q − p+ 1)v−u+2

v∏

i=u

PM1(xi | xai).

The lexical tables PM1 for the various language
pairs are trained a priori using available parallel
corpora. While IBM Model 1 produces worse
alignments than other models, in our problem, we
need to efficiently consider all possible spans, lan-
guage pairs and word alignments, which makes
the problem intractable. We will show that dy-
namic programing can be used to make this prob-
lem tractable, using Model 1. Furthermore, IBM
Model 1 has shown good performance for sen-
tence alignment systems previously (Xu et al.,
2005; Braune and Fraser, 2010).

3.2 Inference
Our goal is to find the spans, language pair and
alignments such that:

argmax
[p,q],l,[u,v],r,a

S([p, q], l, [u, v], r, a | x) (1)

A high score indicates that the predicted bispan is
likely to correspond to a valid parallel span, so we
set a constant threshold τ to determine whether a
document has parallel data, i.e., the value of z:

z∗ = max
[u,v],r,[p,q],l,a

S([u, v], r, [p, q], l, a | x) > τ

Naively maximizing Eq. 1 would require
O(|x|6) operations, which is too inefficient to be
practical on large datasets. To process millions
of documents, this process would need to be op-
timized.

The main bottleneck of the naive algorithm is
finding new Viterbi Model 1 word alignments ev-
ery time we change the spans. Thus, we propose
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an iterative approach to compute the Viterbi word
alignments for IBM Model 1 using dynamic pro-
gramming.

Dynamic programming search. The insight we
use to improve the runtime is that the Viterbi
word alignment of a bispan can be reused to cal-
culate the Viterbi word alignments of larger bis-
pans. The algorithm operates on a 4-dimensional
chart of bispans. It starts with the minimal valid
span (i.e., [0, 0], [1, 1]) and progressively builds
larger spans from smaller ones. Let Ap,q,u,v rep-
resent the Viterbi alignment (under ST ) of the bis-
pan [p, q], [u, v]. The algorithm uses the follow-
ing recursions defined in terms of four operations
λ{+v,+u,+p,+q} that manipulate a single dimension
of the bispan to construct larger spans:

• Ap,q,u,v+1 = λ+v(Ap,q,u,v) adds one token to
the end of the right span with index v + 1 and
find the viterbi alignment for that token. This
requires iterating over all the tokens in the left
span, [p, q] and possibly updating their align-
ments. See Fig. 1 for an illustration.
• Ap,q,u+1,v = λ+u(Ap,q,u,v) removes the first to-

ken of the right span with index u, so we only
need to remove the alignment from u, which can
be done in time O(1).
• Ap,q+1,u,v = λ+q(Ap,q,u,v) adds one token to

the end of the left span with index q + 1, we
need to check for each word in the right span, if
aligning to the word in index q+1 yields a better
translation probability. This update requires n−
q + 1 operations.
• Ap+1,q,u,v = λ+p(Ap,q,u,v) removes the first

token of the left span with index p. After re-
moving the token, we need to find new align-
ments for all tokens that were aligned to p.
Thus, the number of operations for this update
is K × (q − p + 1), where K is the number of
words that were aligned to p. In the best case, no
words are aligned to the token in p, and we can
simply remove it. In the worst case, if all target
words were aligned to p, this update will result
in the recalculation of all Viterbi Alignments.

The algorithm proceeds until all valid cells have
been computed. One important aspect is that the
update functions differ in complexity, so the se-
quence of updates we apply will impact the per-
formance of the system. Most spans are reach-
able using any of the four update functions. For
instance, the span A2,3,4,5 can be reached us-
ing λ+v(A2,3,4,4), λ+u(A2,3,3,5), λ+q(A2,2,4,5) or
λ+p(A1,3,4,5). However, we want to use λ+u

a b - A B

a

b

-

A

B

a b - A B
p

q
u v

p

q
u vλ+v

Figure 1: Illustration of the λ+v operator. The
light gray boxes show the parallel span and the
dark boxes show the span’s Viterbi alignment.
In this example, the parallel message contains a
“translation” of a b to A B.

whenever possible, since it only requires one op-
eration, although that is not always possible. For
instance, the state A2,2,2,4 cannot be reached us-
ing λ+u, since the state A2,2,1,4 is not valid, be-
cause the spans overlap. If this happens, incre-
mentally more expensive updates need to be used,
such as λ+v, then λ+q, which are in the same order
of complexity. Finally, we want to minimize the
use of λ+p, which is quadratic in the worst case.
Thus, we use the following recursive formulation
that guarantees the optimal outcome:

Ap,q,u,v =





λ+u(Ap,q,u−1,v) if u > q + 1

λ+v(Ap,q,u,v−1) else if v > q + 1

λ+p(Ap−1,q,u,v) else if q = p+ 1

λ+q(Ap,q−1,u,v) otherwise

This transition function applies the cheapest
possible update to reach state Ap,q,u,v.

Complexity analysis. We can see that λ+u
is only needed in the following the cases
[0, 1][2, 2], [1, 2][3, 3], · · · , [n − 2, n − 1][n, n].
Since, this update is quadratic in the worst
case, the complexity of this operations is
O(n3). The update λ+q, is applied to the cases
[∗, 1][2, 2], [∗, 2][3, 3], · · · , [∗, n−1], [n, n], where
∗ denotes any number within the span constraints
but not present in previous updates. Since, the
update is linear and we need to iterate through
all tokens twice, this update takes O(n3) opera-
tions. The update λ+v is applied for the cases
[∗, 1][2, ∗], [∗, 2][3, ∗], · · · , [∗, n− 1], [n, ∗]. Thus,
with three degrees of freedom and a linear update,
it runs in O(n4) time. Finally, update λ+u runs in
constant time, but is run for all remaining cases,
which constitute O(n4) space. By summing the
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executions of all updates, we observe that the or-
der of magnitude of our exact inference process is
O(n4). Note that for exact inference, it is not pos-
sible to get a lower order of magnitude, since we
need to at least iterate through all possible span
values once, which takes O(n4) time.

4 Parallel Data Extraction

We will now describe our method to extract par-
allel data from Microblogs. The target domains
in this work are Twitter and Sina Weibo, and
the main language pair is Chinese-English. Fur-
thermore, we also run the system for the Arabic-
English language pair using the Twitter data.

For the Twitter domain, we use a previously
crawled dataset from the years 2008 to 2013,
where one million tweets are crawled every day.
In total, we processed 1.6 billion tweets.

Regarding Sina Weibo, we built a crawler that
continuously collects tweets from Weibo. We start
from one seed user and collect his posts, and then
we find the users he follows that we have not con-
sidered, and repeat. Due to the rate limiting es-
tablished by the Weibo API1, we are restricted in
terms of number of requests every hour, which
greatly limits the amount of messages we can col-
lect. Furthermore, each request can only fetch up
to 100 posts from a user, and subsequent pages of
100 posts require additional API calls. Thus, to
optimize the number of parallel posts we can col-
lect per request, we only crawl all messages from
users that have at least 10 parallel tweets in their
first 100 posts. The number of parallel messages
is estimated by running our alignment model, and
checking if τ > φ, where φ was set empirically
initially, and optimized after obtaining annotated
data, which will be detailed in 5.1. Using this
process, we crawled 65 million tweets from Sina
Weibo within 4 months.

In both cases, we first filter the collection of
tweets for messages containing at least one trigram
in each language of the target language pair, deter-
mined by their Unicode ranges. This means that
for the Chinese-English language pair, we only
keep tweets with more than 3 Mandarin charac-
ters and 3 latin words. Furthermore, based on the
work in (Jelh et al., 2012), if a tweet A is iden-
tified as a retweet, meaning that it references an-
other tweetB, we also consider the hypothesis that
these tweets may be mutual translations. Thus, if
A and B contain trigrams in different languages,

1http://open.weibo.com/wiki/API文档/en

these are also considered for the extraction of par-
allel data. This is done by concatenating tweets A
and B, and adding the constraint that [p, q] must
be within A and [u, v] must be within B. Finally,
identical duplicate tweets are removed.

After filtering, we obtained 1124k ZH-EN
tweets from Sina Weibo, 868k ZH-EN and 136k
AR-EN tweets from Twitter. These language pairs
are not definite, since we simply check if there is
a trigram in each language.

Finally, we run our alignment model described
in section 3, and obtain the parallel segments and
their scores, which measure how likely those seg-
ments are parallel. In this process, lexical tables
for EN-ZH language pair used by Model 1 were
built using the FBIS dataset (LDC2003E14) for
both directions, a corpus of 300K sentence pairs
from the news domain. Likewise, for the EN-
AR language pair, we use a fraction of the NIST
dataset, by removing the data originated from UN,
which leads to approximately 1M sentence pairs.

5 Experiments

We evaluate our method in two ways. First, intrin-
sically, by observing how well our method identi-
fies tweets containing parallel data, the language
pair and what their spans are. Second, extrinsi-
cally, by looking at how well the data improves
a translation task. This methodology is similar to
that of Smith et al. (2010).

5.1 Parallel Data Extraction
Data. Our method needs to determine if a given
tweet contains parallel data, and if so, what is
the language pair of the data, and what segments
are parallel. Thus, we had a native Mandarin
speaker, also fluent in English, to annotate 2000
tweets sampled from crawled Weibo tweets. One
important question of answer is what portion of
the Microblogs contains parallel data. Thus, we
also use the random sample Twitter and annotated
1200 samples, identifying whether each sample
contains parallel data, for the EN-ZH and AR-EN
filtered tweets.

Metrics. To test the accuracy of the score S, we
ordered all 2000 samples by score. Then, we cal-
culate the precision, recall and accuracy at increas-
ing intervals of 10% of the top samples. We count
as a true positive (tp) if we correctly identify a par-
allel tweet, and as a false positive (fp) spuriously
detect a parallel tweet. Finally, a true negative (tn)
occurs when we correctly detect a non-parallel
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tweet, and a false negative (fn) if we miss a par-
allel tweet. Then, we set the precision as tp

tp+fp ,
recall as tp

tp+fn and accuracy as tp+tn
tp+fp+tn+fn . For

language identification, we calculate the accuracy
based on the number of instances that were iden-
tified with the correct language pair. Finally, to
evaluate the segment alignment, we use the Word
Error Rate (WER) metric, without substitutions,
where we compare the left and right spans of our
system and the respective spans of the reference.
We count an insertion error (I) for each word in
our system’s spans that is not present in the refer-
ence span and a deletion error (D) for each word
in the reference span that is not present in our sys-
tem’s spans. Thus, we set WER = D+I

N , where
N is the number of tokens in the tweet. To com-
pute this score for the whole test set, we compute
the average of the WER for each sample.

Results. The precision, recall and accuracy
curves are shown in Figure 2. The quality of the
parallel sentence detection did not vary signifi-
cantly with different setups, so we will only show
the results for the best setup, which is the baseline
model with span constraints.
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Figure 2: Precision, recall and accuracy curves
for parallel data detection. The y-axis denotes the
scores for each metric, and the x-axis denotes the
percentage of the highest scoring sentence pairs
that are kept.

From the precision and recall curves, we ob-
serve that most of the parallel data can be found
at the top 30% of the filtered tweets, where 5 in 6
tweets are detected correctly as parallel, and only
1 in every 6 parallel sentences is lost. We will de-
note the score threshold at this point as φ, which is
a good threshold to estimate on whether the tweet
is parallel. However, this parameter can be tuned
for precision or recall. We also see that in total,

30% of the filtered tweets are parallel. If we gen-
eralize this ratio for the complete set with 1124k
tweets, we can expect approximately 337k paral-
lel sentences. Finally, since 65 million tweets were
extracted to generate the 337k tweets, we estimate
that approximately 1 parallel tweet can be found
for every 200 tweets we process using our tar-
geted approach. On the other hand, from the 1200
tweets from Twitter, we found that 27 had parallel
data in the ZH-EN pair, if we extrapolate for the
whole 868k filtered tweets, we expect that we can
find 19530. 19530 parallel sentences from 1.6 bil-
lion tweets crawled randomly, represents 0.001%
of the total corpora. For AR-EN, a similar re-
sult was obtained where we expect 12407 tweets
out of the 1.6 billion to be parallel. This shows
that targeted approaches can substantially reduce
the crawling effort required to find parallel tweets.
Still, considering that billions of tweets are posted
daily, this is a substantial source of parallel data.
The remainder of the tests will be performed on
the Weibo dataset, which contains more parallel
data. Tests on the Twitter data will be conducted
as future work, when we process Twitter data on a
larger scale to obtain more parallel sentences.

For the language identification task, we had an
accuracy of 99.9%, since distinguishing English
and Mandarin is trivial. The small percentage of
errors originated from other latin languages (Ex:
French) due to our naive language detector.

As for the segment alignment task. Our base-
line system with no constraints obtains a WER of
12.86%, and this can be improved to 11.66% by
adding constraints to possible spans. This shows
that, on average, approximately 1 in 9 words on
the parallel segments is incorrect. However, trans-
lation models are generally robust to such kinds of
errors and can learn good translations even in the
presence of imperfect sentence pairs.

Among the 578 tweets that are parallel, 496
were extracted within the same tweet and 82 were
extracted from retweets. Thus, we see that the ma-
jority of the parallel data comes from within the
same tweet.

Topic analysis. To give an intuition about the
contents of the parallel data we found, we looked
at the distribution over topics of the parallel
dataset inferred by LDA (Blei et al., 2003). Thus,
we grouped the Weibo filtered tweets by users,
and ran LDA over the predicted English segments,
with 12 topics. The 7 most interpretable topics are
shown in Table 1. We see that the data contains a
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# Topic Most probable words in topic
1 (Dating) love time girl live mv back word night rt wanna
2 (Entertainment) news video follow pong image text great day today fans
3 (Music) cr day tour cn url amazon music full concert alive
4 (Religion) man god good love life heart would give make lord
5 (Nightlife) cn url beijing shanqi party adj club dj beijiner vt
6 (Chinese News) china chinese year people world beijing years passion country government
7 (Fashion) street fashion fall style photo men model vogue spring magazine

Table 1: Most probable words inferred using LDA in several topics from the parallel data extracted from
Weibo. Topic labels (in parentheses) were assigned manually for illustration purposes.

variety of topics, both formal (Chinese news, reli-
gion) and informal (entertainment, music).

Example sentence pairs. To gain some perspec-
tive on the type of sentence pairs we are extract-
ing, we will illustrate some sentence pairs we
crawled and aligned automatically. Table 2 con-
tains 5 English-Mandarin and 4 English-Arabic
sentence pairs that were extracted automatically.
These were chosen, since they contain some as-
pects that are characteristic of the text present in
Microblogs and Social Media. These are:

• Abbreviations - In most sentence pairs exam-
ples, we can witness the use of abbreviated
forms of English words, such as wanna, TMI,
4 and imma. These can be normalized as want
to, too much information, for and I am going
to, respectively. In sentence 5, we observe that
this phenomena also occurs in Mandarin. We
find that TMD is a popular way to write他妈的
whose Pinyin rendering is tā mā de. The mean-
ing of this expression depends on the context it
is used, and can convey a similar connotation
as adding the intensifier the hell to an English
sentence.
• Jargon - Another common phenomena is the

appearance of words that are only used in sub-
communities. For instance, in sentence pair 4,
we the jargon word cday is used, which is a col-
loquial variant for birthday.
• Emoticons - In sentence 8, we observe the pres-

ence of the emoticon :), which is frequently
used in this media. We found that emoticons are
either translated as they are or simply removed,
in most cases.
• Syntax errors - In the domain of microblogs, it

is also common that users do not write strictly
syntactic sentences, for instance, in sentence
pair 7, the sentence onni this gift only 4 u, is
clearly not syntactically correct. Firstly, onni
is a named entity, yet it is not capitalized. Sec-
ondly, a comma should follow onni. Thirdly, the

verb is should be used after gift. Having exam-
ples of these sentences in the training set, with
common mistakes (intentional or not), might
become a key factor in training MT systems that
can be robust to such errors.
• Dialects - We can observe a much broader range

of dialects in our data, since there are no di-
alect standards in microblogs. For instance, in
sentence pair 6, we observe an arabic word (in
bold) used in the spoken Arabic dialect used in
some countries along the shores of the Persian
Gulf, which means means the next. In standard
Arabic, a significantly different form is used.

We can also see in sentence pair 9 that our
aligner does not alway make the correct choice
when determining spans. In this case, the segment
RT @MARYAMALKHAWAJA: was included in the
English segment spuriously, since it does not cor-
respond to anything in the Arabic counterpart.

5.2 Machine Translation Experiments
We report on machine translation experiments us-
ing our harvested data in two domains: edited
news and microblogs.

News translation. For the news test, we cre-
ated a new test set from a crawl of the Chinese-
English documents on the Project Syndicate web-
site2, which contains news commentary articles.
We chose to use this data set, rather than more
standard NIST test sets to ensure that we had re-
cent documents in the test set (the most recent
NIST test sets contain documents published in
2007, well before our microblog data was created).
We extracted 1386 parallel sentences for tuning
and another 1386 sentences for testing, from the
manually aligned segments. For this test set, we
used 8 million sentences from the full NIST par-
allel dataset as the language model training data.
We shall call this test set Syndicate.

2http://www.project-syndicate.org/
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ENGLISH MANDARIN

1 i wanna live in a wes anderson world 我想要生活在Wes Anderson的世界里
2 Chicken soup, corn never truly digests. TMI. 鸡汤吧，玉米神马的从来没有真正消化过.恶心
3 To DanielVeuleman yea iknw imma work on that 对DanielVeuleman说，是的我知道，我正在向那方面努力
4 msg 4 Warren G his cday is today 1 yr older. 发信息给Warren G，今天是他的生日，又老了一岁了。
5 Where the hell have you been all these years? 这些年你TMD到哪去了

ENGLISH ARABIC

6 It’s gonna be a warm week! Qk ø
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for widespread protests in #bahrain tmrw

Table 2: Examples of English-Mandarin and English-Arabic sentence pairs. The English-Mandarin
sentences were extracted from Sina Weibo and the English-Arabic sentences were extracted from Twitter.
Some messages have been shorted to fit into the table. Some interesting aspects of these sentence pairs
are marked in bold.

Microblog translation. To carry out the mi-
croblog translation experiments, we need a high
quality parallel test set. Since we are not aware
of such a test set, we created one by manually se-
lecting parallel messages from Weibo. Our proce-
dure was as follows. We selected 2000 candidate
Weibo posts from users who have a high num-
ber of parallel tweets according to our automatic
method (at least 2 in every 5 tweets). To these, we
added another 2000 messages from our targeted
Weibo crawl, but these had no requirement on the
proportion of parallel tweets they had produced.
We identified 2374 parallel segments, of which we
used 1187 for development and 1187 for testing.
We refer to this test set as Weibo.3

Obviously, we removed the development and
test sets from our training data. Furthermore, to
ensure that our training data was not too similar to
the test set in the Weibo translation task, we fil-
tered the training data to remove near duplicates
by computing edit distance between each paral-
lel sentence in the heldout set and each training
instance. If either the source or the target sides
of the a training instance had an edit distance of
less than 10%, we removed it.4 As for the lan-
guage models, we collected a further 10M tweets
from Twitter for the English language model and
another 10M tweets from Weibo for the Chinese
language model.

3We acknowledge that self-translated messages are prob-
ably not a typically representative sample of all microblog
messages. However, we do not have the resources to produce
a carefully curated test set with a more broadly representative
distribution. Still, we believe these results are informative as
long as this is kept in mind.

4Approximately 150,000 training instances removed.

Syndicate Weibo
ZH-EN EN-ZH ZH-EN EN-ZH

FBIS 9.4 18.6 10.4 12.3
NIST 11.5 21.2 11.4 13.9
Weibo 8.75 15.9 15.7 17.2

FBIS+Weibo 11.7 19.2 16.5 17.8
NIST+Weibo 13.3 21.5 16.9 17.9

Table 3: BLEU scores for different datasets in dif-
ferent translation directions (left to right), broken
with different training corpora (top to bottom).

Baselines. We report results on these test sets us-
ing different training data. First, we use the FBIS
dataset which contains 300K high quality sentence
pairs, mostly in the broadcast news domain. Sec-
ond, we use the full 2012 NIST Chinese-English
dataset (approximately 8M sentence pairs, includ-
ing FBIS). Finally, we use our crawled data (re-
ferred as Weibo) by itself and also combined with
the two previous training sets.

Setup. We use the Moses phrase-based MT sys-
tem with standard features (Koehn et al., 2003).
For reordering, we use the MSD reordering
model (Axelrod et al., 2005). As the language
model, we use a 5-gram model with Kneser-
Ney smoothing. The weights were tuned using
MERT (Och, 2003). Results are presented with
BLEU-4 (Papineni et al., 2002).

Results. The BLEU scores for the different par-
allel corpora are shown in Table 3 and the top 10
out-of-vocabulary (OOV) words for each dataset
are shown in Table 4. We observe that for the
Syndicate test set, the NIST and FBIS datasets
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Syndicate (test) Weibo (test)
FBIS NIST Weibo FBIS NIST Weibo

obama (83) barack (59) democracies (15) 2012 (24) showstudio (9) submissions (4)
barack (59) namo (6) imbalances (13) alanis (13) crue (9) ivillage (4)

princeton (40) mitt (6) mahmoud (12) crue (9) overexposed (8) scola (3)
ecb (8) guant (6) millennium (9) showstudio (9) tweetmeian (5) rbst (3)

bernanke (8) fairtrade (6) regimes (8) overexposed (8) tvd (5) curitiba (3)
romney (7) hollande (5) wolfowitz (7) itunes (8) iheartradio (5) zeman (2)
gaddafi (7) wikileaks (4) revolutions (7) havoc (8) xoxo (4) @yaptv (2)
merkel (7) wilders (3) qaddafi (7) sammy (6) snoop (4) witnessing (2)

fats (7) rant (3) geopolitical (7) obama (6) shinoda (4) whoohooo (2)
dialogue (7) esm (3) genome (7) lol (6) scrapbook (4) wbr (2)

Table 4: The most frequent out-of-vocabulary (OOV) words and their counts for the two English-source
test sets with three different training sets.

perform better than our extracted parallel data.
This is to be expected, since our dataset was ex-
tracted from an extremely different domain. How-
ever, by combining the Weibo parallel data with
this standard data, improvements in BLEU are ob-
tained. Error analysis indicates that one major fac-
tor is that names from current events, such as Rom-
ney and Wikileaks do not occur in the older NIST
and FBIS datasets, but they are represented in the
Weibo dataset. Furthermore, we also note that the
system built on the Weibo dataset does not per-
form substantially worse than the one trained on
the FBIS dataset, a further indication that harvest-
ing parallel microblog data yields a diverse collec-
tion of translated material.

For the Weibo test set, a significant improve-
ment over the news datasets can be achieved us-
ing our crawled parallel data. Once again newer
terms, such as iTunes, are one of the reasons older
datasets perform less well. However, in this case,
the top OOV words of the news domain datasets
are not the most accurate representation of cov-
erage problems in this domain. This is because
many frequent words in microblogs, e.g., nonstan-
dard abbreviations, like u and 4 are found in the
news domain as words, albeit with different mean-
ings. Thus, the OOV table gives an incomplete
picture of the translation problems when using
the news domain corpora to translate microblogs.
Also, some structural errors occur when training
with the news domain datasets, one such example
is shown in table 5, where the character 说 is in-
correctly translated to said. This occurs because
this type of constructions is infrequent in news
datasets. Furthermore, we can see that compound
expressions, such as the translation from 派对时
刻 to party time are also learned.

Finally, we observe that combining the datasets

Source 对sam farrar说，派对时刻
Reference to sam farrar , party time

FBIS farrar to sam said , in time
NIST to sam farrar said , the moment

WEIBO to sam farrar , party time

Table 5: Translation Examples using different
training sets.

yields another gain over individual datasets, both
in the Syndicate and in the Weibo test sets.

6 Conclusion

We presented a framework to crawl parallel data
from microblogs. We find parallel data from sin-
gle posts, with translations of the same sentence
in two languages. We show that a considerable
amount of parallel sentence pairs can be crawled
from microblogs and these can be used to improve
Machine Translation by updating our translation
tables with translations of newer terms. Further-
more, the in-domain data can substantially im-
prove the translation quality on microblog data.

The resources described in this paper and fur-
ther developments are available to the general pub-
lic at http://www.cs.cmu.edu/∼lingwang/utopia.
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Abstract

Supervised topic models with a logistic
likelihood have two issues that potential-
ly limit their practical use: 1) response
variables are usually over-weighted by
document word counts; and 2) existing
variational inference methods make strict
mean-field assumptions. We address these
issues by: 1) introducing a regularization
constant to better balance the two parts
based on an optimization formulation of
Bayesian inference; and 2) developing a
simple Gibbs sampling algorithm by intro-
ducing auxiliary Polya-Gamma variables
and collapsing out Dirichlet variables. Our
augment-and-collapse sampling algorithm
has analytical forms of each conditional
distribution without making any restrict-
ing assumptions and can be easily paral-
lelized. Empirical results demonstrate sig-
nificant improvements on prediction per-
formance and time efficiency.

1 Introduction

As widely adopted in supervised latent Dirichlet
allocation (sLDA) models (Blei and McAuliffe,
2010; Wang et al., 2009), one way to improve
the predictive power of LDA is to define a like-
lihood model for the widely available document-
level response variables, in addition to the likeli-
hood model for document words. For example, the
logistic likelihood model is commonly used for bi-
nary or multinomial responses. By imposing some
priors, posterior inference is done with the Bayes’
rule. Though powerful, one issue that could limit
the use of existing logistic supervised LDA models
is that they treat the document-level response vari-
able as one additional word via a normalized like-
lihood model. Although some special treatment is
carried out on defining the likelihood of the single

response variable, it is normally of a much small-
er scale than the likelihood of the usually tens or
hundreds of words in each document. As noted
by (Halpern et al., 2012) and observed in our ex-
periments, this model imbalance could result in a
weak influence of response variables on the topic
representations and thus non-satisfactory predic-
tion performance. Another difficulty arises when
dealing with categorical response variables is that
the commonly used normal priors are no longer
conjugate to the logistic likelihood and thus lead to
hard inference problems. Existing approaches re-
ly on variational approximation techniques which
normally make strict mean-field assumptions.

To address the above issues, we present two im-
provements. First, we present a general frame-
work of Bayesian logistic supervised topic models
with a regularization parameter to better balance
response variables and words. Technically, instead
of doing standard Bayesian inference via Bayes’
rule, which requires a normalized likelihood mod-
el, we propose to do regularized Bayesian infer-
ence (Zhu et al., 2011; Zhu et al., 2013b) via solv-
ing an optimization problem, where the posterior
regularization is defined as an expectation of a l-
ogistic loss, a surrogate loss of the expected mis-
classification error; and a regularization parame-
ter is introduced to balance the surrogate classifi-
cation loss (i.e., the response log-likelihood) and
the word likelihood. The general formulation sub-
sumes standard sLDA as a special case.

Second, to solve the intractable posterior infer-
ence problem of the generalized Bayesian logis-
tic supervised topic models, we present a simple
Gibbs sampling algorithm by exploring the ideas
of data augmentation (Tanner and Wong, 1987;
van Dyk and Meng, 2001; Holmes and Held,
2006). More specifically, we extend Polson’s
method for Bayesian logistic regression (Polson
et al., 2012) to the generalized logistic supervised
topic models, which are much more challeng-
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ing due to the presence of non-trivial latent vari-
ables. Technically, we introduce a set of Polya-
Gamma variables, one per document, to refor-
mulate the generalized logistic pseudo-likelihood
model (with the regularization parameter) as a s-
cale mixture, where the mixture component is con-
ditionally normal for classifier parameters. Then,
we develop a simple and efficient Gibbs sampling
algorithms with analytic conditional distribution-
s without Metropolis-Hastings accept/reject steps.
For Bayesian LDA models, we can also explore
the conjugacy of the Dirichlet-Multinomial prior-
likelihood pairs to collapse out the Dirichlet vari-
ables (i.e., topics and mixing proportions) to do
collapsed Gibbs sampling, which can have better
mixing rates (Griffiths and Steyvers, 2004). Final-
ly, our empirical results on real data sets demon-
strate significant improvements on time efficiency.
The classification performance is also significantly
improved by using appropriate regularization pa-
rameters. We also provide a parallel implementa-
tion with GraphLab (Gonzalez et al., 2012), which
shows great promise in our preliminary studies.

The paper is structured as follows. Sec. 2 intro-
duces logistic supervised topic models as a general
optimization problem. Sec. 3 presents Gibbs sam-
pling algorithms with data augmentation. Sec. 4
presents experiments. Sec. 5 concludes.

2 Logistic Supervised Topic Models

We now present the generalized Bayesian logistic
supervised topic models.

2.1 The Generalized Models
We consider binary classification with a training
set D = {(wd, yd)}D

d=1, where the response vari-
able Y takes values from the output space Y =
{0, 1}. A logistic supervised topic model consists
of two parts — an LDA model (Blei et al., 2003)
for describing the words W = {wd}D

d=1, where
wd = {wdn}Nd

n=1 denote the words within docu-
ment d, and a logistic classifier for considering the
supervising signal y = {yd}D

d=1. Below, we intro-
duce each of them in turn.

LDA: LDA is a hierarchical Bayesian model
that posits each document as an admixture of K
topics, where each topic Φk is a multinomial dis-
tribution over a V -word vocabulary. For document
d, the generating process is

1. draw a topic proportion θd ∼ Dir(α)

2. for each word n = 1, 2, . . . , Nd:

(a) draw a topic1 zdn ∼ Mult(θd)

(b) draw the word wdn ∼ Mult(Φzdn
)

where Dir(·) is a Dirichlet distribution; Mult(·) is
a multinomial distribution; and Φzdn

denotes the
topic selected by the non-zero entry of zdn. For
fully-Bayesian LDA, the topics are random sam-
ples from a Dirichlet prior, Φk ∼ Dir(β).

Let zd = {zdn}Nd
n=1 denote the set of topic as-

signments for document d. Let Z = {zd}D
d=1 and

Θ = {θd}D
d=1 denote all the topic assignments

and mixing proportions for the entire corpus. LDA
infers the posterior distribution p(Θ,Z,Φ|W) ∝
p0(Θ,Z,Φ)p(W|Z,Φ), where p0(Θ,Z,Φ) =(∏

d p(θd|α)
∏

n p(zdn|θd)
) ∏

k p(Φk|β) is the
joint distribution defined by the model. As noticed
in (Jiang et al., 2012), the posterior distribution
by Bayes’ rule is equivalent to the solution of an
information theoretical optimization problem
min

q(Θ,Z,Φ)
KL(q(Θ,Z,Φ)∥p0(Θ,Z,Φ))−Eq[log p(W|Z,Φ)]

s.t. : q(Θ,Z,Φ) ∈ P, (1)

where KL(q||p) is the Kullback-Leibler diver-
gence from q to p and P is the space of probability
distributions.

Logistic classifier: To consider binary super-
vising information, a logistic supervised topic
model (e.g., sLDA) builds a logistic classifier
using the topic representations as input features

p(y = 1|η, z) =
exp(η⊤z̄)

1 + exp(η⊤z̄)
, (2)

where z̄ is a K-vector with z̄k = 1
N

∑N
n=1 I(zk

n =
1), and I(·) is an indicator function that equals to
1 if predicate holds otherwise 0. If the classifier
weights η and topic assignments z are given, the
prediction rule is
ŷ|η,z = I(p(y = 1|η, z) > 0.5) = I(η⊤z̄ > 0). (3)

Since both η and Z are hidden variables, we
propose to infer a posterior distribution q(η,Z)
that has the minimal expected log-logistic loss

R(q(η,Z)) = −
∑

d

Eq[log p(yd|η, zd)], (4)

which is a good surrogate loss for the expected
misclassification loss,

∑
d Eq[I(ŷ|η,zd

̸= yd)], of
a Gibbs classifier that randomly draws a model
η from the posterior distribution and makes pre-
dictions (McAllester, 2003; Germain et al., 2009).
In fact, this choice is motivated from the obser-
vation that logistic loss has been widely used as
a convex surrogate loss for the misclassification

1A K-binary vector with only one entry equaling to 1.
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loss (Rosasco et al., 2004) in the task of fully ob-
served binary classification. Also, note that the l-
ogistic classifier and the LDA likelihood are cou-
pled by sharing the latent topic assignments z. The
strong coupling makes it possible to learn a pos-
terior distribution that can describe the observed
words well and make accurate predictions.

Regularized Bayesian Inference: To integrate
the above two components for hybrid learning, a
logistic supervised topic model solves the joint
Bayesian inference problem

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) + cR(q(η,Z)) (5)

s.t.: q(η,Θ,Z,Φ) ∈ P,

where L(q) = KL(q||p0(η,Θ,Z,Φ)) −
Eq[log p(W|Z,Φ)] is the objective for doing
standard Bayesian inference with the classifier
weights η; p0(η,Θ,Z,Φ) = p0(η)p0(Θ,Z,Φ);
and c is a regularization parameter balancing the
influence from response variables and words.

In general, we define the pseudo-likelihood for
the supervision information

ψ(yd|zd,η) = pc(yd|η, zd) =
{exp(η⊤z̄d)}cyd

(1 + exp(η⊤z̄d))c
, (6)

which is un-normalized if c ̸= 1. But, as we
shall see this un-normalization does not affect
our subsequent inference. Then, the generalized
inference problem (5) of logistic supervised topic
models can be written in the “standard” Bayesian
inference form (1)

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) − Eq[logψ(y|Z,η)] (7)

s.t.: q(η,Θ,Z,Φ) ∈ P,

where ψ(y|Z,η) =
∏

d ψ(yd|zd,η). It is easy
to show that the optimum solution of problem
(5) or the equivalent problem (7) is the posterior
distribution with supervising information, i.e.,

q(η,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ψ(y|η,Z)

ϕ(y,W)
.

where ϕ(y,W) is the normalization constant to
make q a distribution. We can see that when c = 1,
the model reduces to the standard sLDA, which in
practice has the imbalance issue that the response
variable (can be viewed as one additional word) is
usually dominated by the words. This imbalance
was noticed in (Halpern et al., 2012). We will see
that c can make a big difference later.

Comparison with MedLDA: The above for-
mulation of logistic supervised topic models as
an instance of regularized Bayesian inference pro-
vides a direct comparison with the max-margin

supervised topic model (MedLDA) (Jiang et al.,
2012), which has the same form of the optimiza-
tion problems. The difference lies in the posterior
regularization, for which MedLDA uses a hinge
loss of an expected classifier while the logistic su-
pervised topic model uses an expected log-logistic
loss. Gibbs MedLDA (Zhu et al., 2013a) is an-
other max-margin model that adopts the expect-
ed hinge loss as posterior regularization. As we
shall see in the experiments, by using appropriate
regularization constants, logistic supervised topic
models achieve comparable performance as max-
margin methods. We note that the relationship be-
tween a logistic loss and a hinge loss has been
discussed extensively in various settings (Rosas-
co et al., 2004; Globerson et al., 2007). But the
presence of latent variables poses additional chal-
lenges in carrying out a formal theoretical analysis
of these surrogate losses (Lin, 2001) in the topic
model setting.

2.2 Variational Approximation Algorithms
The commonly used normal prior for η is non-
conjugate to the logistic likelihood, which makes
the posterior inference hard. Moreover, the laten-
t variables Z make the inference problem harder
than that of Bayesian logistic regression model-
s (Chen et al., 1999; Meyer and Laud, 2002; Pol-
son et al., 2012). Previous algorithms to solve
problem (5) rely on variational approximation
techniques. It is easy to show that the variation-
al method (Wang et al., 2009) is a coordinate de-
scent algorithm to solve problem (5) with the addi-
tional fully-factorized constraint q(η,Θ,Z,Φ) =
q(η)(

∏
d q(θd)

∏
n q(zdn))

∏
k q(Φk) and a vari-

ational approximation to the expectation of the
log-logistic likelihood, which is intractable to
compute directly. Note that the non-Bayesian
treatment of η as unknown parameters in (Wang
et al., 2009) results in an EM algorithm, which
still needs to make strict mean-field assumptions
together with a variational bound of the expecta-
tion of the log-logistic likelihood. In this paper, we
consider the full Bayesian treatment, which can
principally consider prior distributions and infer
the posterior covariance.

3 A Gibbs Sampling Algorithm

Now, we present a simple and efficient Gibbs sam-
pling algorithm for the generalized Bayesian lo-
gistic supervised topic models.
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3.1 Formulation with Data Augmentation
Since the logistic pseudo-likelihood ψ(y|Z,η) is
not conjugate with normal priors, it is not easy
to derive the sampling algorithms directly. In-
stead, we develop our algorithms by introducing
auxiliary variables, which lead to a scale mix-
ture of Gaussian components and analytic condi-
tional distributions for automatical Bayesian in-
ference without an accept/reject ratio. Our algo-
rithm represents a first attempt to extend Polson’s
approach (Polson et al., 2012) to deal with highly
non-trivial Bayesian latent variable models. Let us
first introduce the Polya-Gamma variables.

Definition 1 (Polson et al., 2012) A random
variable X has a Polya-Gamma distribution,
denoted by X∼PG(a, b), if

X =
1

2π2

∞∑

i=1

gk

(i− 1)2/2 + b2/(4π2)
,

where a, b > 0 and each gi ∼ G(a, 1) is an inde-
pendent Gamma random variable.

Let ωd = η⊤z̄d. Then, using the ideas of data
augmentation (Tanner and Wong, 1987; Polson
et al., 2012), we can show that the generalized
pseudo-likelihood can be expressed as

ψ(yd|zd,η) =
1

2c
eκdωd

∫ ∞

0

exp
(

− λdω
2
d

2

)
p(λd|c, 0)dλd,

where κd = c(yd−1/2) and λd is a Polya-Gamma
variable with parameters a = c and b = 0. This
result indicates that the posterior distribution of
the generalized Bayesian logistic supervised topic
models, i.e., q(η,Θ,Z,Φ), can be expressed as
the marginal of a higher dimensional distribution
that includes the augmented variables λ. The
complete posterior distribution is

q(η,λ,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y,λ|Z,η)

ψ(y,W)
,

where the pseudo-joint distribution of y and λ is

ϕ(y,λ|Z,η) =
∏

d

exp
(
κdωd − λdω

2
d

2

)
p(λd|c, 0).

3.2 Inference with Collapsed Gibbs Sampling
Although we can do Gibbs sampling to infer the
complete posterior distribution q(η,λ,Θ,Z,Φ)
and thus q(η,Θ,Z,Φ) by ignoring λ, the mixing
rate would be slow due to the large sample space.
One way to effectively improve mixing rates
is to integrate out the intermediate variables
(Θ,Φ) and build a Markov chain whose equi-
librium distribution is the marginal distribution
q(η,λ,Z). We propose to use collapsed Gibbs

sampling, which has been successfully used in
LDA (Griffiths and Steyvers, 2004). For our
model, the collapsed posterior distribution is
q(η,λ,Z) ∝ p0(η)p(W,Z|α,β)ϕ(y,λ|Z,η)

= p0(η)

K∏

k=1

δ(Ck + β)

δ(β)

D∏

d=1

[δ(Cd + α)

δ(α)

× exp
(
κdωd − λdω

2
d

2

)
p(λd|c, 0)

]
,

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
, Ct

k is the number of

times the term t being assigned to topic k over the
whole corpus and Ck = {Ct

k}V
t=1; Ck

d is the num-
ber of times that terms being associated with topic
k within the d-th document and Cd = {Ck

d}K
k=1.

Then, the conditional distributions used in col-
lapsed Gibbs sampling are as follows.

For η: for the commonly used isotropic Gaus-
sian prior p0(η) =

∏
k N (ηk; 0, ν

2), we have

q(η|Z,λ) ∝ p0(η)
∏

d

exp
(
κdωd − λdω

2
d

2

)

= N (η; µ,Σ), (8)

where the posterior mean is µ = Σ(
∑

d κdz̄d) and
the covariance is Σ = ( 1

ν2 I+
∑

d λdz̄dz̄
⊤
d )−1. We

can easily draw a sample from a K-dimensional
multivariate Gaussian distribution. The inverse
can be robustly done using Cholesky decomposi-
tion, an O(K3) procedure. Since K is normally
not large, the inversion can be done efficiently.

For Z: The conditional distribution of Z is

q(Z|η,λ) ∝
K∏

k=1

δ(Ck + β)

δ(β)

D∏

d=1

[δ(Cd + α)

δ(α)

× exp
(
κdωd − λdω

2
d

2

)]
.

By canceling common factors, we can derive the
local conditional of one variable zdn as:
q(zk

dn = 1 | Z¬,η,λ, wdn = t)

∝ (Ct
k,¬n + βt)(C

k
d,¬n + αk)

∑
t C

t
k,¬n +

∑V
t=1 βt

exp
(
γκdηk

− λd
γ2η2

k + 2γ(1 − γ)ηkΛk
dn

2

)
, (9)

whereC ·
·,¬n indicates that term n is excluded from

the corresponding document or topic; γ = 1
Nd

;
and Λk

dn = 1
Nd−1

∑
k′ ηk′Ck′

d,¬n is the discrimi-
nant function value without word n. We can see
that the first term is from the LDA model for ob-
served word counts and the second term is from
the supervising signal y.

For λ: Finally, the conditional distribution of
the augmented variables λ is

q(λd|Z,η) ∝ exp
(

− λdω
2
d

2

)
p(λd|c, 0)

= PG
(
λd; c, ωd

)
, (10)
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Algorithm 1 for collapsed Gibbs sampling
1: Initialization: set λ = 1 and randomly draw
zdn from a uniform distribution.

2: for m = 1 to M do
3: draw a classifier from the distribution (8)
4: for d = 1 to D do
5: for each word n in document d do
6: draw the topic using distribution (9)
7: end for
8: draw λd from distribution (10).
9: end for

10: end for

which is a Polya-Gamma distribution. The equal-
ity has been achieved by using the construction
definition of the general PG(a, b) class through an
exponential tilting of the PG(a, 0) density (Pol-
son et al., 2012). To draw samples from the
Polya-Gamma distribution, we adopt the efficient
method2 proposed in (Polson et al., 2012), which
draws the samples through drawing samples from
the closely related exponentially tilted Jacobi dis-
tribution.

With the above conditional distributions, we can
construct a Markov chain which iteratively draws
samples of η using Eq. (8), Z using Eq. (9) and
λ using Eq. (10), with an initial condition. In our
experiments, we initially set λ = 1 and randomly
draw Z from a uniform distribution. In training,
we run the Markov chain forM iterations (i.e., the
burn-in stage), as outlined in Algorithm 1. Then,
we draw a sample η̂ as the final classifier to make
predictions on testing data. As we shall see, the
Markov chain converges to stable prediction per-
formance with a few burn-in iterations.

3.3 Prediction

To apply the classifier η̂ on testing data, we need
to infer their topic assignments. We take the ap-
proach in (Zhu et al., 2012; Jiang et al., 2012),
which uses a point estimate of topics Φ from
training data and makes prediction based on them.
Specifically, we use the MAP estimate Φ̂ to re-
place the probability distribution p(Φ). For the
Gibbs sampler, an estimate of Φ̂ using the sam-
ples is ϕ̂kt ∝ Ct

k + βt. Then, given a testing doc-
ument w, we infer its latent components z using
Φ̂ as p(zn = k|z¬n) ∝ ϕ̂kwn(Ck

¬n + αk), where

2The basic sampler was implemented in the R package
BayesLogit. We implemented the sampling algorithm in C++
together with our topic model sampler.

Ck
¬n is the times that the terms in this document w

assigned to topic k with the n-th term excluded.

4 Experiments

We present empirical results and sensitivity anal-
ysis to demonstrate the efficiency and prediction
performance3 of the generalized logistic super-
vised topic models on the 20Newsgroups (20NG)
data set, which contains about 20,000 postings
within 20 news groups. We follow the same set-
ting as in (Zhu et al., 2012) and remove a stan-
dard list of stop words for both binary and multi-
class classification. For all the experiments, we
use the standard normal prior p0(η) (i.e., ν2 = 1)
and the symmetric Dirichlet priors α = α

K 1, β =
0.01×1, where 1 is a vector with all entries being
1. For each setting, we report the average perfor-
mance and the standard deviation with five ran-
domly initialized runs.

4.1 Binary classification

Following the same setting in (Lacoste-Jullien et
al., 2009; Zhu et al., 2012), the task is to distin-
guish postings of the newsgroup alt.atheism and
those of the group talk.religion.misc. The training
set contains 856 documents and the test set con-
tains 569 documents. We compare the generalized
logistic supervised LDA using Gibbs sampling
(denoted by gSLDA) with various competitors,
including the standard sLDA using variational
mean-field methods (denoted by vSLDA) (Wang
et al., 2009), the MedLDA model using varia-
tional mean-field methods (denoted by vMedL-
DA) (Zhu et al., 2012), and the MedLDA mod-
el using collapsed Gibbs sampling algorithms (de-
noted by gMedLDA) (Jiang et al., 2012). We al-
so include the unsupervised LDA using collapsed
Gibbs sampling as a baseline, denoted by gLDA.
For gLDA, we learn a binary linear SVM on its
topic representations using SVMLight (Joachims,
1999). The results of DiscLDA (Lacoste-Jullien
et al., 2009) and linear SVM on raw bag-of-words
features were reported in (Zhu et al., 2012). For
gSLDA, we compare two versions – the standard
sLDA with c = 1 and the sLDA with a well-tuned
c value. To distinguish, we denote the latter by
gSLDA+. We set c = 25 for gSLDA+, and set
α = 1 and M = 100 for both gSLDA and gSL-
DA+. As we shall see, gSLDA is insensitive to α,

3Due to space limit, the topic visualization (similar to that
of MedLDA) is deferred to a longer version.

191



5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

# Topics

A
cc

ur
ac

y

gSLDA
gSLDA+
vSLDA
vMedLDA
gMedLDA
gLDA+SVM

(a) accuracy

5 10 15 20 25 30
10−2

10−1

100

101

102

103

# Topics

T
ra

in
−

tim
e 

(s
ec

on
ds

)

gSLDA
gSLDA+
vSLDA
vMedLDA
gMedLDA
gLDA+SVM

(b) training time

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

# Topics

T
es

t−
tim

e 
(s

ec
on

ds
)

gSLDA
gSLDA+
vSLDA
gMedLDA
vMedLDA
gLDA+SVM

(c) testing time

Figure 1: Accuracy, training time (in log-scale) and testing time on the 20NG binary data set.

c and M in a wide range.
Fig. 1 shows the performance of different meth-

ods with various numbers of topics. For accuracy,
we can draw two conclusions: 1) without making
restricting assumptions on the posterior distribu-
tions, gSLDA achieves higher accuracy than vSL-
DA that uses strict variational mean-field approxi-
mation; and 2) by using the regularization constant
c to improve the influence of supervision informa-
tion, gSLDA+ achieves much better classification
results, in fact comparable with those of MedLDA
models since they have the similar mechanism to
improve the influence of supervision by tuning a
regularization constant. The fact that gLDA+SVM
performs better than the standard gSLDA is due
to the same reason, since the SVM part of gL-
DA+SVM can well capture the supervision infor-
mation to learn a classifier for good prediction,
while standard sLDA can’t well-balance the influ-
ence of supervision. In contrast, the well-balanced
gSLDA+ model successfully outperforms the two-
stage approach, gLDA+SVM, by performing topic
discovery and prediction jointly4.

For training time, both gSLDA and gSLDA+ are
very efficient, e.g., about 2 orders of magnitudes
faster than vSLDA and about 1 order of magnitude
faster than vMedLDA. For testing time, gSLDA
and gSLDA+ are comparable with gMedLDA and
the unsupervised gLDA, but faster than the varia-
tional vMedLDA and vSLDA, especially when K
is large.

4.2 Multi-class classification

We perform multi-class classification on the 20NG
data set with all the 20 categories. For multi-
class classification, one possible extension is to
use a multinomial logistic regression model for
categorical variables Y by using topic represen-
tations z̄ as input features. However, it is non-

4The variational sLDA with a well-tuned c is significantly
better than the standard sLDA, but a bit inferior to gSLDA+.

trivial to develop a Gibbs sampling algorithm us-
ing the similar data augmentation idea, due to the
presence of latent variables and the nonlinearity
of the soft-max function. In fact, this is harder
than the multinomial Bayesian logistic regression,
which can be done via a coordinate strategy (Pol-
son et al., 2012). Here, we apply the binary gSL-
DA to do the multi-class classification, following
the “one-vs-all” strategy, which has been shown
effective (Rifkin and Klautau, 2004), to provide
some preliminary analysis. Namely, we learn 20
binary gSLDA models and aggregate their predic-
tions by taking the most likely ones as the final
predictions. We again evaluate two versions of
gSLDA – the standard gSLDA with c = 1 and
the improved gSLDA+ with a well-tuned c value.
Since gSLDA is also insensitive to α and c for the
multi-class task, we set α = 5.6 for both gSLDA
and gSLDA+, and set c = 256 for gSLDA+. The
number of burn-in is set as M = 40, which is suf-
ficiently large to get stable results, as we shall see.

Fig. 2 shows the accuracy and training time. We
can see that: 1) by using Gibbs sampling without
restricting assumptions, gSLDA performs better
than the variational vSLDA that uses strict mean-
field approximation; 2) due to the imbalance be-
tween the single supervision and a large set of
word counts, gSLDA doesn’t outperform the de-
coupled approach, gLDA+SVM; and 3) if we in-
crease the value of the regularization constant c,
supervision information can be better captured to
infer predictive topic representations, and gSL-
DA+ performs much better than gSLDA. In fac-
t, gSLDA+ is even better than the MedLDA that
uses mean-field approximation, while is compara-
ble with the MedLDA using collapsed Gibbs sam-
pling. Finally, we should note that the improve-
ment on the accuracy might be due to the differen-
t strategies on building the multi-class classifier-
s. But given the performance gain in the binary
task, we believe that the Gibbs sampling algorith-
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Figure 2: Multi-class classification.

Table 1: Split of training time over various steps.
SAMPLE λ SAMPLE η SAMPLE Z

K=20 2841.67 (65.80%) 7.70 (0.18%) 1455.25 (34.02%)
K=30 2417.95 (56.10%) 10.34 (0.24%) 1888.78 (43.66%)
K=40 2393.77 (49.00%) 14.66 (0.30%) 2476.82 (50.70%)
K=50 2161.09 (43.67%) 16.33 (0.33%) 2771.26 (56.00%)

m without factorization assumptions is the main
factor for the improved performance.

For training time, gSLDA models are about
10 times faster than variational vSLDA. Table 1
shows in detail the percentages of the training time
(see the numbers in brackets) spent at each sam-
pling step for gSLDA+. We can see that: 1) sam-
pling the global variables η is very efficient, while
sampling local variables (λ,Z) are much more ex-
pensive; and 2) sampling λ is relatively stable as
K increases, while sampling Z takes more time
as K becomes larger. But, the good news is that
our Gibbs sampling algorithm can be easily paral-
lelized to speedup the sampling of local variables,
following the similar architectures as in LDA.

A Parallel Implementation: GraphLab is a
graph-based programming framework for parallel
computing (Gonzalez et al., 2012). It provides a
high-level abstraction of parallel tasks by express-
ing data dependencies with a distributed graph.
GraphLab implements a GAS (gather, apply, scat-
ter) model, where the data required to compute a
vertex (edge) are gathered along its neighboring
components, and modification of a vertex (edge)
will trigger its adjacent components to recompute
their values. Since GAS has been successfully ap-
plied to several machine learning algorithms5 in-
cluding Gibbs sampling of LDA, we choose it as a
preliminary attempt to parallelize our Gibbs sam-
pling algorithm. A systematical investigation of
the parallel computation with various architectures
in interesting, but beyond the scope of this paper.

For our task, since there is no coupling among
the 20 binary gSLDA classifiers, we can learn
them in parallel. This suggests an efficient hybrid
multi-core/multi-machine implementation, which

5http://docs.graphlab.org/toolkits.html

can avoid the time consumption of IPC (i.e., inter-
process communication). Namely, we run our ex-
periments on a cluster with 20 nodes where each n-
ode is equipped with two 6-core CPUs (2.93GHz).
Each node is responsible for learning one binary
gSLDA classifier with a parallel implementation
on its 12-cores. For each binary gSLDA mod-
el, we construct a bipartite graph connecting train
documents with corresponding terms. The graph
works as follows: 1) the edges contain the to-
ken counts and topic assignments; 2) the vertices
contain individual topic counts and the augment-
ed variables λ; 3) the global topic counts and η
are aggregated from the vertices periodically, and
the topic assignments and λ are sampled asyn-
chronously during the GAS phases. Once start-
ed, sampling and signaling will propagate over the
graph. One thing to note is that since we can-
not directly measure the number of iterations of
an asynchronous model, here we estimate it with
the total number of topic samplings, which is again
aggregated periodically, divided by the number of
tokens. We denote the parallel models by parallel-
gSLDA (c = 1) and parallel-gSLDA+ (c = 256).
From Fig. 2 (b), we can see that the parallel gSL-
DA models are about 2 orders of magnitudes faster
than their sequential counterpart models, which is
very promising. Also, the prediction performance
is not sacrificed as we shall see in Fig. 4.

4.3 Sensitivity analysis

Burn-In: Fig. 3 shows the performance of gSL-
DA+ with different burn-in steps for binary classi-
fication. When M = 0 (see the most left points),
the models are built on random topic assignments.
We can see that the classification performance in-
creases fast and converges to the stable optimum
with about 20 burn-in steps. The training time in-
creases about linearly in general when using more
burn-in steps. Moreover, the training time increas-
es linearly as K increases. In the previous experi-
ments, we set M = 100.

Fig. 4 shows the performance of gSLDA+
and its parallel implementation (i.e., parallel-
gSLDA+) for the multi-class classification with d-
ifferent burn-in steps. We can see when the num-
ber of burn-in steps is larger than 20, the per-
formance of gSLDA+ is quite stable. Again, in
the log-log scale, since the slopes of the lines in
Fig. 4 (b) are close to the constant 1, the train-
ing time grows about linearly as the number of
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Figure 3: Performance of gSLDA+ with different
burn-in steps for binary classification. The most
left points are for the settings with no burn in.
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Figure 4: Performance of gSLDA+ and parallel-
gSLDA+ with different burn-in steps for multi-
class classification. The most left points are for
the settings with no burn in.

burn-in steps increases. Even when we use 40 or
60 burn-in steps, the training time is still compet-
itive, compared with the variational vSLDA. For
parallel-gSLDA+ using GraphLab, the training is
consistently about 2 orders of magnitudes faster.
Meanwhile, the classification performance is also
comparable with that of gSLDA+, when the num-
ber of burn-in steps is larger than 40. In the pre-
vious experiments, we have set M = 40 for both
gSLDA+ and parallel-gSLDA+.

Regularization constant c: Fig. 5 shows the
performance of gSLDA in the binary classification
task with different c values. We can see that in a
wide range, e.g., from 9 to 100, the performance
is quite stable for all the three K values. But for
the standard sLDA model, i.e., c = 1, both the
training accuracy and test accuracy are low, which
indicates that sLDA doesn’t fit the supervision da-
ta well. When c becomes larger, the training ac-
curacy gets higher, but it doesn’t seem to over-fit
and the generalization performance is stable. In
the above experiments, we set c = 25. For multi-
class classification, we have similar observations
and set c = 256 in the previous experiments.

Dirichlet prior α: Fig. 6 shows the perfor-
mance of gSLDA on the binary task with differ-
ent α values. We report two cases with c = 1 and
c = 9. We can see that the performance is quite
stable in a wide range of α values, e.g., from 0.1
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Figure 5: Performance of gSLDA for binary clas-
sification with different c values.
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Figure 6: Accuracy of gSLDA for binary classifi-
cation with different α values in two settings with
c = 1 and c = 9.

to 10. We also noted that the change of α does not
affect the training time much.

5 Conclusions and Discussions

We present two improvements to Bayesian logis-
tic supervised topic models, namely, a general for-
mulation by introducing a regularization parame-
ter to avoid model imbalance and a highly efficient
Gibbs sampling algorithm without restricting as-
sumptions on the posterior distributions by explor-
ing the idea of data augmentation. The algorithm
can also be parallelized. Empirical results for both
binary and multi-class classification demonstrate
significant improvements over the existing logistic
supervised topic models. Our preliminary results
with GraphLab have shown promise on paralleliz-
ing the Gibbs sampling algorithm.

For future work, we plan to carry out more
careful investigations, e.g., using various distribut-
ed architectures (Ahmed et al., 2012; Newman
et al., 2009; Smola and Narayanamurthy, 2010),
to make the sampling algorithm highly scalable
to deal with massive data corpora. Moreover,
the data augmentation technique can be applied
to deal with other types of response variables,
such as count data with a negative-binomial likeli-
hood (Polson et al., 2012).
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Abstract

We present a dual decomposition frame-
work for multi-document summarization,
using a model that jointly extracts and
compresses sentences. Compared with
previous work based on integer linear pro-
gramming, our approach does not require
external solvers, is significantly faster, and
is modular in the three qualities a sum-
mary should have: conciseness, informa-
tiveness, and grammaticality. In addition,
we propose a multi-task learning frame-
work to take advantage of existing data
for extractive summarization and sentence
compression. Experiments in the TAC-
2008 dataset yield the highest published
ROUGE scores to date, with runtimes that
rival those of extractive summarizers.

1 Introduction

Automatic text summarization is a seminal prob-
lem in information retrieval and natural language
processing (Luhn, 1958; Baxendale, 1958; Ed-
mundson, 1969). Today, with the overwhelming
amount of information available on the Web, the
demand for fast, robust, and scalable summariza-
tion systems is stronger than ever.

Up to now, extractive systems have been the
most popular in multi-document summarization.
These systems produce a summary by extracting
a representative set of sentences from the origi-
nal documents (Kupiec et al., 1995; Carbonell and
Goldstein, 1998; Radev et al., 2000; Gillick et al.,
2008). This approach has obvious advantages: it
reduces the search space by letting decisions be
made for each sentence as a whole (avoiding fine-
grained text generation), and it ensures a grammat-
ical summary, assuming the original sentences are
well-formed. The typical trade-offs in these mod-

els (maximizing relevance, and penalizing redun-
dancy) lead to submodular optimization problems
(Lin and Bilmes, 2010), which are NP-hard but ap-
proximable through greedy algorithms; learning is
possible with standard structured prediction algo-
rithms (Sipos et al., 2012; Lin and Bilmes, 2012).
Probabilistic models have also been proposed to
capture the problem structure, such as determinan-
tal point processes (Gillenwater et al., 2012).

However, extractive systems are rather limited
in the summaries they can produce. Long, partly
relevant sentences tend not to appear in the sum-
mary, or to block the inclusion of other sen-
tences. This has motivated research in compres-
sive summarization (Lin, 2003; Zajic et al., 2006;
Daumé, 2006), where summaries are formed by
compressed sentences (Knight and Marcu, 2000),
not necessarily extracts. While promising results
have been achieved by models that simultaneously
extract and compress (Martins and Smith, 2009;
Woodsend and Lapata, 2010; Berg-Kirkpatrick et
al., 2011), there are still obstacles that need to
be surmounted for these systems to enjoy wide
adoption. All approaches above are based on in-
teger linear programming (ILP), suffering from
slow runtimes, when compared to extractive sys-
tems. For example, Woodsend and Lapata (2012)
report 55 seconds on average to produce a sum-
mary; Berg-Kirkpatrick et al. (2011) report sub-
stantially faster runtimes, but fewer compressions
are allowed. Having a compressive summarizer
which is both fast and expressive remains an open
problem. A second inconvenience of ILP-based
approaches is that they do not exploit the modu-
larity of the problem, since the declarative specifi-
cation required by ILP solvers discards important
structural information. For example, such solvers
are unable to take advantage of efficient dynamic
programming routines for sentence compression
(McDonald, 2006).

196



This paper makes progress in two fronts:

• We derive a dual decomposition framework for
extractive and compressive summarization (§2–
3). Not only is this framework orders of mag-
nitude more efficient than the ILP-based ap-
proaches, it also allows the three well-known
metrics of summaries—conciseness, informa-
tiveness, and grammaticality—to be treated sep-
arately in a modular fashion (see Figure 1). We
also contribute with a novel knapsack factor,
along with a linear-time algorithm for the corre-
sponding dual decomposition subproblem.

• We propose multi-task learning (§4) as a prin-
cipled way to train compressive summarizers,
using auxiliary data for extractive summariza-
tion and sentence compression. To this end,
we adapt the framework of Evgeniou and Pon-
til (2004) and Daumé (2007) to train structured
predictors that share some of their parts.

Experiments on TAC data (§5) yield state-of-the-
art results, with runtimes similar to that of extrac-
tive systems. To our best knowledge, this had
never been achieved by compressive summarizers.

2 Extractive Summarization

In extractive summarization, we are given a set
of sentences D := {s1, . . . , sN} belonging to one
or more documents, and the goal is to extract a
subset S ⊆ D that conveys a good summary of D
and whose total number of words does not exceed
a prespecified budget B.

We use an indicator vector y := 〈yn〉Nn=1 to rep-
resent an extractive summary, where yn = 1 if
sn ∈ S, and yn = 0 otherwise. Let Ln be the
number of words of the nth sentence. By design-
ing a quality score function g : {0, 1}N → R, this
can be cast as a global optimization problem with
a knapsack constraint:

maximize g(y)

w.r.t. y ∈ {0, 1}N

s.t.
∑N

n=1 Lnyn ≤ B. (1)

Intuitively, a good summary is one which selects
sentences that individually convey “relevant” in-
formation, while collectively having small “re-
dundancy.” This trade-off was explicitly mod-
eled in early works through the notion of max-
imal marginal relevance (Carbonell and Gold-
stein, 1998; McDonald, 2007). An alternative

are coverage-based models (§2.1; Filatova and
Hatzivassiloglou, 2004; Yih et al., 2007; Gillick
et al., 2008), which seek a set of sentences that
covers as many diverse “concepts” as possible; re-
dundancy is automatically penalized since redun-
dant sentences cover fewer concepts. Both models
can be framed under the framework of submodular
optimization (Lin and Bilmes, 2010), leading to
greedy algorithms that have approximation guar-
antees. However, extending these models to allow
for sentence compression (as will be detailed in
§3) breaks the diminishing returns property, mak-
ing submodular optimization no longer applicable.

2.1 Coverage-Based Summarization

Coverage-based extractive summarization can be
formalized as follows. Let C(D) := {c1, . . . , cM}
be a set of relevant concept types which are
present in the original documents D.1 Let σm be a
relevance score assigned to the mth concept, and
let the set Im ⊆ {1, . . . , N} contain the indices of
the sentences in which this concept occurs. Then,
the following quality score function is defined:

g(y) =
∑M

m=1 σmum(y), (2)

where um(y) :=
∨
n∈Im yn is a Boolean function

that indicates whether the mth concept is present
in the summary. Plugging this into Eq. 1, one ob-
tains the following Boolean optimization problem:

maximize
∑M

m=1 σmum

w.r.t. y ∈ {0, 1}N , u ∈ {0, 1}M
s.t. um =

∨
n∈Im yn, ∀m ∈ [M ]

∑N
n=1 Lnyn ≤ B, (3)

where we used the notation [M ] := {1, . . . ,M}.
This can be converted into an ILP and addressed
with off-the-shelf solvers (Gillick et al., 2008). A
drawback of this approach is that solving an ILP
exactly is NP-hard. Even though existing commer-
cial solvers can solve most instances with a mod-
erate speed, they still exhibit poor worst-case be-
haviour; this is exacerbated when there is the need
to combine an extractive component with other
modules, as in compressive summarization (§3).

1Previous work has modeled concepts as events (Filatova
and Hatzivassiloglou, 2004), salient words (Lin and Bilmes,
2010), and word bigrams (Gillick et al., 2008). In the sequel,
we assume concepts are word k-grams, but our model can
handle other representations, such as phrases or predicate-
argument structures.
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2.2 A Dual Decomposition Formulation

We next describe how the problem in Eq. 3 can be
addressed with dual decomposition, a class of op-
timization techniques that tackle the dual of com-
binatorial problems in a modular, extensible, and
parallelizable manner (Komodakis et al., 2007;
Rush et al., 2010). In particular, we employ al-
ternating directions dual decomposition (AD3;
Martins et al., 2011a, 2012) for solving a linear re-
laxation of Eq. 3. AD3 resembles the subgradient-
based algorithm of Rush et al. (2010), but it enjoys
a faster convergence rate. Both algorithms split
the original problem into several components,
and then iterate between solving independent lo-
cal subproblems at each component and adjusting
multipliers to promote an agreement.2 The differ-
ence between the two methods is that the AD3 lo-
cal subproblems, instead of requiring the compu-
tation of a locally optimal configuration, require
solving a local quadratic problem. Martins et al.
(2011b) provided linear-time solutions for several
logic constraints, with applications to syntax and
frame-semantic parsing (Das et al., 2012). We will
see that AD3 can also handle budget and knapsack
constraints efficiently.

To tackle Eq. 3 with dual decomposition, we
split the coverage-based summarizer into the fol-
lowing M + 1 components (one per constraint):

1. For each of the M concepts in C(D), one
component for imposing the logic constraint
in Eq. 3. This corresponds to the OR-WITH-
OUTPUT factor described by Martins et al.
(2011b); the AD3 subproblem for themth factor
can be solved in time O(|Im|).

2. Another component for the knapsack con-
straint. This corresponds to a (novel) KNAP-
SACK factor, whose AD3 subproblem is solv-
able in time O(N). The actual algorithm is de-
scribed in the appendix (Algorithm 1).3

3 Compressive Summarization

We now turn to compressive summarization,
which does not limit the summary sentences to be
verbatim extracts from the original documents; in-

2For details about dual decomposition and Lagrangian re-
laxation, see the recent tutorial by Rush and Collins (2012).

3The AD3 subproblem in this case corresponds to com-
puting an Euclidean projection onto the knapsack polytope
(Eq. 11). Others addressed the related, but much harder, inte-
ger quadratic knapsack problem (McDonald, 2007).

stead, it allows the extraction of compressed sen-
tences where some words can be deleted.

Formally, let us express each sentence of D

as a sequence of word tokens, sn := 〈tn,`〉Ln`=0,
where tn,0 ≡ $ is a dummy symbol. We rep-
resent a compression of sn as an indicator vec-
tor zn := 〈zn,`〉Ln`=0, where zn,` = 1 if the `th
word is included in the compression. By conven-
tion, the dummy symbol is included if and only if
the remaining compression is non-empty. A com-
pressive summary can then be represented by an
indicator vector z which is the concatenation of
N such vectors, z = 〈z1, . . . ,zN 〉; each position
in this indicator vector is indexed by a sentence
n ∈ [N ] and a word position ` ∈ {0} ∪ [Ln].

Models for compressive summarization were
proposed by Martins and Smith (2009) and Berg-
Kirkpatrick et al. (2011) by combining extraction
and compression scores. Here, we follow the lat-
ter work, by combining a coverage score function
g with sentence-level compression score functions
h1, . . . , hN . This yields the decoding problem:

maximize g(z) +
∑N

n=1 hn(zn)

w.r.t. zn ∈ {0, 1}Ln , ∀n ∈ [N ]

s.t.
∑N

n=1

∑Ln
`=1 zn,` ≤ B. (4)

3.1 Coverage Model
We use a coverage function similar to Eq. 2, but
taking a compressive summary z as argument:

g(z) =
∑M

m=1 σmum(z), (5)

where we redefine um as follows. First, we
parametrize each occurrence of the mth concept
(assumed to be a k-gram) as a triple 〈n, `s, `e〉,
where n indexes a sentence, `s indexes a start po-
sition within the sentence, and `e indexes the end
position. We denote by Tm the set of triples repre-
senting all occurrences of the mth concept in the
original text, and we associate an indicator vari-
able zn,`s:`e to each member of this set. We then
define um(z) via the following logic constraints:

• A concept type is selected if some of its k-gram
tokens are selected:

um(y) :=
∨
〈n,`s,`e〉∈Tm zn,`s:`e . (6)

• A k-gram concept token is selected if all its
words are selected:

zn,`s:`e :=
∧`e
`=`s

zn,`. (7)
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Sentences
$     The      leader    of   moderate  Kashmiri  separatists warned   Thursday   that ...

$     Talks    with   Kashmiri  separatists began    last       year ...

"Kashmiri separatists"

Budget

Concept tokens

Concept type

Figure 1: Components of our compressive summarizer. Factors depicted in blue belong to the compres-
sion model, and aim to enforce grammaticality. The logic factors in red form the coverage component.
Finally, the budget factor, in green, is connected to the word nodes; it ensures that the summary fits the
word limit. Shaded circles represent active variables while white circles represent inactive variables.

We set concept scores as σm := w · Φcov(D, cm),
where Φcov(D, cm) is a vector of features (de-
scribed in §3.5) andw the corresponding weights.

3.2 Compression Model
For the compression score function, we follow
Martins and Smith (2009) and decompose it as a
sum of local score functions ρn,` defined on de-
pendency arcs:

hn(zn) :=
∑Ln

`=1 ρn,`(zn,`, zn,π(`)), (8)

where π(`) denotes the index of the word which
is the parent of the `th word in the dependency
tree (by convention, the root of the tree is the
dummy symbol). To model the event that an
arc is “cut” by disconnecting a child from its
head, we define arc-deletion scores ρn,`(0, 1) :=
w · Φcomp(sn, `, π(`)), where Φcomp is a feature
map, which is described in detail in §3.5. We set
ρn,`(0, 0) = ρn,`(1, 1) = 0, and ρn,`(1, 0) = −∞,
to allow only the deletion of entire subtrees.

A crucial fact is that one can maximize Eq. 8
efficiently with dynamic programming (using the
Viterbi algorithm for trees); the total cost is linear
in Ln. We will exploit this fact in the dual decom-
position framework described next.4

3.3 A Dual Decomposition Formulation
In previous work, the optimization problem in
Eq. 4 was converted into an ILP and fed to an off-
the-shelf solver (Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011; Woodsend and Lapata,
2012). Here, we employ the AD3 algorithm, in a

4The same framework can be readily adapted to other
compression models that are efficiently decodable, such as
the semi-Markov model of McDonald (2006), which would
allow incorporating a language model for the compression.

similar manner as described in §2, but with an ad-
ditional component for the sentence compressor,
and slight modifications in the other components.
We have the following N +M +

∑M
m=1 |Tm|+ 1

components in total, illustrated in Figure 1:

1. For each of the N sentences, one component
for the compression model. The AD3 quadratic
subproblem for this factor can be addressed by
solving a sequence of linear subproblems, as de-
scribed by Martins et al. (2012). Each of these
subproblems corresponds to maximizing an ob-
jective function of the same form as Eq. 8; this
can be done in O(Ln) time with dynamic pro-
gramming, as discussed in §3.2.

2. For each of the M concept types in C(D),
one OR-WITH-OUTPUT factor for the logic con-
straint in Eq. 6. This is analogous to the one
described for the extractive case.

3. For each k-gram concept token in Tm, one
AND-WITH-OUTPUT factor that imposes the
constraint in Eq. 7. This factor was described
by Martins et al. (2011b) and its AD3 subprob-
lem can be solved in time linear in k.

4. Another component linked to all the words im-
posing that at most B words can be selected;
this is done via a BUDGET factor, a particular
case of KNAPSACK. The runtime of this AD3

subproblem is linear in the number of words.

In addition, we found it useful to add a second
BUDGET factor limiting the number of sentences
that can be selected to a prescribed value K. We
set K = 6 in our experiments.
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3.4 Rounding Strategy

Recall that the problem in Eq. 4 is NP-hard, and
that AD3 is solving a linear relaxation. While
there are ways of wrapping AD3 in an exact search
algorithm (Das et al., 2012), such strategies work
best when the solution of the relaxation has few
fractional components, which is typical of pars-
ing and translation problems (Rush et al., 2010;
Chang and Collins, 2011), and attractive networks
(Taskar et al., 2004). Unfortunately, this is not the
case in summarization, where concepts “compete”
with each other for inclusion in the summary, lead-
ing to frustrated cycles. We chose instead to adopt
a fast and simple rounding procedure for obtaining
a summary from a fractional solution.

The procedure works as follows. First, solve
the LP relaxation using AD3, as described above.
This yields a solution z∗, where each component
lies in the unit interval [0, 1]. If these components
are all integer, then we have a certificate that this
is the optimal solution. Otherwise, we collect the
K sentences with the highest values of z∗n,0 (“pos-
teriors” on sentences), and seek the feasible sum-
mary which is the closest (in Euclidean distance)
to z∗, while only containing those sentences. This
can be computed exactly in timeO(B

∑K
k=1 Lnk),

through dynamic programming.5

3.5 Features and Hard Constraints

As Berg-Kirkpatrick et al. (2011), we used
stemmed word bigrams as concepts, to which we
associate the following concept features (Φcov):
indicators for document counts, features indicat-
ing if each of the words in the bigram is a stop-
word, the earliest position in a document each con-
cept occurs, as well as two and three-way conjunc-
tions of these features.

For the compression model, we include the fol-
lowing arc-deletion features (Φcomp):

• the dependency label of the arc being deleted, as
well as its conjunction with the part-of-speech
tag of the head, of the modifier, and of both;

• the dependency labels of the arc being deleted
and of its parent arc;

• the modifier tag, if the modifier is a function
word modifying a verb ;

5Briefly, if we link the roots of theK sentences to a super-
root node, the problem above can be transformed into that
of finding the best configuration in the resulting binary tree
subject to a budget constraint. We omit details for space.

• a feature indicating whether the modifier or any
of its descendants is a negation word;

• indicators of whether the modifier is a temporal
word (e.g., Friday) or a preposition pointing to
a temporal word (e.g., on Friday).

In addition, we included hard constraints to pre-
vent the deletion of certain arcs, following pre-
vious work in sentence compression (Clarke and
Lapata, 2008). We never delete arcs whose de-
pendency label is SUB, OBJ, PMOD, SBAR, VC, or
PRD (this makes sure we preserve subjects and ob-
jects of verbs, arcs departing from prepositions or
complementizers, and that we do not break verb
chains or predicative complements); arcs linking
to a conjunction word or siblings of such arcs (to
prevent inconsistencies in handling coordinative
conjunctions); arcs linking verbs to other verbs,
to adjectives (e.g., make available), to verb parti-
cles (e.g., settle down), to the word that (e.g., said
that), or to the word to if it is a leaf (e.g., allowed
to come); arcs pointing to negation words, cardinal
numbers, or determiners; and arcs connecting two
proper nouns or words within quotation marks.

4 Multi-Task Learning

We next turn to the problem of learning the model
from training data. Prior work in compressive
summarization has followed one of two strategies:
Martins and Smith (2009) and Woodsend and La-
pata (2012) learn the extraction and compression
models separately, and then post-combine them,
circumventing the lack of fully annotated data.
Berg-Kirkpatrick et al. (2011) gathered a small
dataset of manually compressed summaries, and
trained with full supervision. While the latter
approach is statistically more principled, it has
the disadvantage of requiring fully annotated data,
which is difficult to obtain in large quantities. On
the other hand, there is plenty of data contain-
ing manually written abstracts (from the DUC and
TAC conferences) and user-generated text (from
Wikipedia) that may provide useful weak supervi-
sion.

With this in mind, we put together a multi-task
learning framework for compressive summariza-
tion (which we name task #1). The goal is to
take advantage of existing data for related tasks,
such as extractive summarization (task #2), and
sentence compression (task #3). The three tasks
are instances of structured predictors (Bakır et
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Tasks Features Decoder
Comp. summ. (#1) Φcov, Φcomp AD3 (solve Eq. 4)

Extr. summ. (#2) Φcov AD3 (solve Eq. 3)
Sent. comp. (#3) Φcomp dyn. prg. (max. Eq. 8)

Table 1: Features and decoders used for each task.

al., 2007), and for all of them we assume feature-
based models that decompose over “parts”:

• For the compressive summarization task, the
parts correspond to concept features (§3.1) and
to arc-deletion features (§3.2).

• For the extractive summarization task, there are
parts for concept features only.

• For the sentence compression task, the parts
correspond to arc-deletion features only.

This is summarized in Table 1. Features for
the three tasks are populated into feature vectors
Φ1(x, y), Φ2(x, y), and Φ3(x, y), respectively,
where 〈x, y〉 denotes a task-specific input-output
pair. We assume the feature vectors are all D di-
mensional, where we place zeros in entries cor-
responding to parts that are absent. Note that
this setting is very general and applies to arbi-
trary structured prediction problems (not just sum-
marization), the only assumption being that some
parts are shared between different tasks.

Next, we associate weight vectors v1,v2,v3 ∈
RD to each task, along with a “shared” vector w.
Each task makes predictions according to the rule:

ŷ := arg max
y

(w + vk) · Φk(x, y), (9)

where k ∈ {1, 2, 3}. This setting is equiva-
lent to the approach of Daumé (2007) for domain
adaptation, which consists in splitting each fea-
ture into task-component features and a shared
feature; but here we do not duplicate features ex-
plicitly. To learn the weights, we regularize the
weight vectors separately, and assume that each
task has its own loss function Lk, so that the to-
tal loss L is a weighted sum L(w,v1,v2,v3) :=∑3

k=1 σkLk(w + vk). This yields the following
objective function to be minimized:

F (w,v1,v2,v3) =
λ

2
‖w‖2 +

3∑

k=1

λk
2
‖vk‖2

+
1

N

3∑

k=1

σkLk(w + vk), (10)

where λ and the λk’s are regularization constants,
andN is the total number of training instances.6 In
our experiments (§5), we let the Lk’s be structured
hinge losses (Taskar et al., 2003; Tsochantaridis et
al., 2004), where the corresponding cost functions
are concept recall (for task #2), precision of arc
deletions (for task #3), and a combination thereof
(for task #1).7 These losses were normalized, and
we set σk = N/Nk, where Nk is the number of
training instances for the kth task. This ensures
all tasks are weighted evenly. We used the same
rationale to set λ = λ1 = λ2 = λ3, choosing this
value through cross-validation in the dev set.

We optimize Eq. 10 with stochastic subgradient
descent. This leads to update rules of the form

w ← (1− ηtλ)w − ηtσk∇̃Lk(w + vk)

vj ← (1− ηtλj)vj − ηtδjkσk∇̃Lk(w + vk),

where ∇̃Lk are stochastic subgradients for the kth
task, that take only a single instance into account,
and δjk = 1 if and only if j = k. Stochastic sub-
gradients can be computed via cost-augmented de-
coding (see footnote 7).

Interestingly, Eq. 10 subsumes previous ap-
proaches to train compressive summarizers. The
limit λ→∞ (keeping the λk’s fixed) forcesw →
0, decoupling all the tasks. In this limit, inference
for task #1 (compressive summarization) is based
solely on the model learned from that task’s data,
recovering the approach of Berg-Kirkpatrick et al.
(2011). In the other extreme, setting σ1 = 0 sim-
ply ignores task #1’s training data. As a result, the
optimal v1 will be a vector of zeros; since tasks
#2 and #3 have no parts in common, the objective
will decouple into a sum of two independent terms

6Note that, by substituting uk := w+vk and solving for
w, the problem in Eq. 10 becomes that of minimizing the sum
of the losses with a penalty for the (weighted) variance of the
vectors {0,u1,u2,u3}, regularizing the difference towards
their average, as in Evgeniou and Pontil (2004). This is sim-
ilar to the hierarchical joint learning approach of Finkel and
Manning (2010), except that our goal is to learn a new task
(compressive summarization) instead of combining tasks.

7Let Yk denote the output set for the kth task. Given
a task-specific cost function ∆k : Yk × Yk → R,
and letting 〈xt, yt〉Tt=1 be the labeled dataset for this
task, the structured hinge loss takes the form Lk(uk) :=∑
tmaxy′∈Yk

(uk · (Φk(xt, y
′)− Φk(xt, yt)) + ∆k(y′, yt)).

The inner maximization over y′ is called the cost-augmented
decoding problem: it differs from Eq. 9 by the inclusion
of the cost term ∆k(y′, yt). Our costs decompose over the
model’s factors, hence any decoder for Eq. 9 can be used
for the maximization above: for tasks #1–#2, we solve a
relaxation by running AD3 without rounding, and for task #3
we use dynamic programming; see Table 1.
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involving v2 and v3, which is equivalent to train-
ing the two tasks separately and post-combining
the models, as Martins and Smith (2009) did.

5 Experiments

5.1 Experimental setup

We evaluated our compressive summarizers on
data from the Text Analysis Conference (TAC)
evaluations. We use the same splits as previ-
ous work (Berg-Kirkpatrick et al., 2011; Wood-
send and Lapata, 2012): the non-update portions
of TAC-2009 for training and TAC-2008 for test-
ing. In addition, we reserved TAC-2010 as a dev-
set. The test partition contains 48 multi-document
summarization problems; each provides 10 related
news articles as input, and asks for a summary
with up to 100 words, which is evaluated against
four manually written abstracts. We ignored all
the query information present in the TAC datasets.

Single-Task Learning. In the single-task exper-
iments, we trained a compressive summarizer on
the dataset disclosed by Berg-Kirkpatrick et al.
(2011), which contains manual compressive sum-
maries for the TAC-2009 data. We trained a struc-
tured SVM with stochastic subgradient descent;
the cost-augmented inference problems are re-
laxed and solved with AD3, as described in §3.3.8

We followed the procedure described in Berg-
Kirkpatrick et al. (2011) to reduce the number of
candidate sentences: scores were defined for each
sentence (the sum of the scores of the concepts
they cover), and the best-scored sentences were
greedily selected up to a limit of 1,000 words. We
then tagged and parsed the selected sentences with
TurboParser.9 Our choice of a dependency parser
was motivated by our will for a fast system; in par-
ticular, TurboParser attains top accuracies at a rate
of 1,200 words per second, keeping parsing times
below 1 second for each summarization problem.

Multi-Task Learning. For the multi-task ex-
periments, we also used the dataset of Berg-
Kirkpatrick et al. (2011), but we augmented the
training data with extractive summarization and
sentence compression datasets, to help train the

8We use the AD3 implementation in http://www.
ark.cs.cmu.edu/AD3, setting the maximum number of
iterations to 200 at training time and 1000 at test time. We
extended the code to handle the knapsack and budget factors;
the modified code will be part of the next release (AD3 2.1).

9http://www.ark.cs.cmu.edu/TurboParser

compressive summarizer. For extractive sum-
marization, we used the DUC 2003 and 2004
datasets (a total of 80 multi-document summariza-
tion problems). We generated oracle extracts by
maximizing bigram recall with respect to the man-
ual abstracts, as described in Berg-Kirkpatrick et
al. (2011). For sentence compression, we adapted
the Simple English Wikipedia dataset of Wood-
send and Lapata (2011), containing aligned sen-
tences for 15,000 articles from the English and
Simple English Wikipedias. We kept only the
4,481 sentence pairs corresponding to deletion-
based compressions.

5.2 Results
Table 2 shows the results. The top rows refer
to three strong baselines: the ICSI-1 extractive
coverage-based system of Gillick et al. (2008),
which achieved the best ROUGE scores in the
TAC-2008 evaluation; the compressive summa-
rizer of Berg-Kirkpatrick et al. (2011), denoted
BGK’11; and the multi-aspect compressive sum-
marizer of Woodsend and Lapata (2012), denoted
WL’12. All these systems require ILP solvers.
The bottom rows show the results achieved by
our implementation of a pure extractive system
(similar to the learned extractive summarizer of
Berg-Kirkpatrick et al., 2011); a system that post-
combines extraction and compression components
trained separately, as in Martins and Smith (2009);
and our compressive summarizer trained as a sin-
gle task, and in the multi-task setting.

The ROUGE and Pyramid scores show that the
compressive summarizers (when properly trained)
yield considerable benefits in content coverage
over extractive systems, confirming the results of
Berg-Kirkpatrick et al. (2011). Comparing the
two bottom rows, we see a clear benefit by train-
ing in the multi-task setting, with a consistent
gain in both coverage and linguistic quality. Our
ROUGE-2 score (12.30%) is, to our knowledge,
the highest reported on the TAC-2008 dataset,
with little harm in grammaticality with respect to
an extractive system that preserves the original
sentences. Figure 2 shows an example summary.

5.3 Runtimes
We conducted another set of experiments to com-
pare the runtime of our compressive summarizer
based on AD3 with the runtimes achieved by
GLPK, the ILP solver used by Berg-Kirkpatrick et
al. (2011). We varied the maximum number of it-
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System R-2 R-SU4 Pyr LQ
ICSI-1 11.03 13.96 34.5† –
BGK’11 11.71 14.47 41.3† –
WL’12 11.37 14.47 – –
Extractive 11.16 14.07 36.0 4.6
Post-comb. 11.07 13.85 38.4 4.1
Single-task 11.88 14.86 41.0 3.8
Multi-task 12.30 15.18 42.6 4.2

Table 2: Results for compressive summarization.
Shown are the ROUGE-2 and ROUGE SU-4 re-
calls with the default options from the ROUGE
toolkit (Lin, 2004); Pyramid scores (Nenkova and
Passonneau, 2004); and linguistic quality scores,
scored between 1 (very bad) to 5 (very good). For
Pyramid, the evaluation was performed by two
annotators, each evaluating half of the problems;
scores marked with † were computed by different
annotators and are not directly comparable. Lin-
guistic quality was evaluated by two linguists; we
show the average of the reported scores.

Solver Runtime (sec.) ROUGE-2
ILP Exact 10.394 12.40
LP-Relax. 2.265 12.38
AD3-5000 0.952 12.38
AD3-1000 0.406 12.30
AD3-200 0.159 12.15
Extractive (ILP) 0.265 11.16

Table 3: Runtimes of several decoders on a Intel
Core i7 processor @2.8 GHz, with 8GB RAM. For
each decoder, we show the average time taken to
solve a summarization problem in TAC-2008. The
reported runtimes of AD3 and LP-Relax include
the time taken to round the solution (§3.4), which
is 0.029 seconds on average.

erations of AD3 in {200, 1000, 5000}, and clocked
the time spent by GLPK to solve the exact ILPs
and their relaxations. Table 3 depicts the results.10

We see that our proposed configuration (AD3-
1000) is orders of magnitude faster than the ILP
solver, and 5 times faster than its relaxed variant,
while keeping similar accuracy levels.11 The gain
when the number of iterations in AD3 is increased
to 5000 is small, given that the runtime is more

10Within dual decomposition algorithms, we verified ex-
perimentally that AD3 is substantially faster than the subgra-
dient algorithm, which is consistent with previous findings
(Martins et al., 2011b).

11The runtimes obtained with the exact ILP solver seem
slower than those reported by Berg-Kirkpatrick et al. (2011).
(around 1.5 sec. on average, according to their Fig. 3). We
conjecture that this difference is due to the restricted set of
subtrees that can be deleted by Berg-Kirkpatrick et al. (2011),
which greatly reduces their search space.

Japan dispatched four military ships to help Russia res-
cue seven crew members aboard a small submarine
trapped on the seabed in the Far East. The Russian
Pacific Fleet said the crew had 120 hours of oxygen
reserves on board when the submarine submerged at
midday Thursday (2300 GMT Wednesday) off the Kam-
chatka peninsula, the stretch of Far Eastern Russia fac-
ing the Bering Sea. The submarine, used in rescue,
research and intelligence-gathering missions, became
stuck at the bottom of the Bay of Berezovaya off Rus-
sia’s Far East coast when its propeller was caught in a
fishing net. The Russian submarine had been tending
an underwater antenna mounted to the sea floor when it
became snagged on a wire helping to stabilize a ventila-
tion cable attached to the antenna. Rescue crews low-
ered a British remote-controlled underwater vehicle to a
Russian mini-submarine trapped deep under the Pacific
Ocean, hoping to free the vessel and its seven trapped
crewmen before their air supply ran out.

Figure 2: Example summary from our compres-
sive system. Removed text is grayed out.

than doubled; accuracy starts to suffer, however, if
the number of iterations is reduced too much. In
practice, we observed that the final rounding pro-
cedure was crucial, as only 2 out of the 48 test
problems had integral solutions (arguably because
of the “repulsive” nature of the network, as hinted
in §3.4). For comparison, we also report in the bot-
tom row the average runtime of the learned extrac-
tive baseline. We can see that our system’s runtime
is competitive with this baseline. To our knowl-
edge, this is the first time a compressive sum-
marizer achieves such a favorable accuracy/speed
tradeoff.

6 Conclusions

We presented a multi-task learning framework for
compressive summarization, leveraging data for
related tasks in a principled manner. We decode
with AD3, a fast and modular dual decomposition
algorithm which is orders of magnitude faster than
ILP-based approaches. Results show that the state
of the art is improved in automatic and manual
metrics, with speeds close to extractive systems.

Our approach is modular and easy to extend.
For example, a different compression model could
incorporate rewriting rules to enable compres-
sions that go beyond word deletion, as in Cohn
and Lapata (2008). Other aspects may be added
as additional components in our dual decom-
position framework, such as query information
(Schilder and Kondadadi, 2008), discourse con-
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straints (Clarke and Lapata, 2007), or lexical pref-
erences (Woodsend and Lapata, 2012). Our multi-
task approach may be used to jointly learn pa-
rameters for these aspects; the dual decomposi-
tion algorithm ensures that optimization remains
tractable even with many components.

A Projection Onto Knapsack

This section describes a linear-time algorithm (Al-
gorithm 1) for solving the following problem:

minimize ‖z − a‖2
w.r.t. zn ∈ [0, 1], ∀n ∈ [N ],

s.t.
∑N

n=1 Lnzn ≤ B, (11)

where a ∈ RN and Ln ≥ 0,∀n ∈ [N ]. This in-
cludes as special cases the problems of projecting
onto a budget constraint (Ln = 1,∀n) and onto
the simplex (same, plus B = 1).

Let clip(t) := max{0,min{1, t}}. Algorithm 1
starts by clipping a to the unit interval; if that
yields a z satisfying

∑N
n=1 Lnzn ≤ B, we are

done. Otherwise, the solution of Eq. 11 must sat-
isfy

∑N
n=1 Lnzn = B. It can be shown from the

KKT conditions that the solution is of the form
z∗n := clip(an+ τ∗Ln) for a constant τ∗ lying in a
particular interval of split-points (line 11). To seek
this constant, we use an algorithm due to Pardalos
and Kovoor (1990) which iteratively shrinks this
interval. The algorithm requires computing medi-
ans as a subroutine, which can be done in linear
time (Blum et al., 1973). The overall complexity
in O(N) (Pardalos and Kovoor, 1990).
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Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model

Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) andX (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T,R,X) =

P (E) [Language model]

· P (T |E) [Typesetting model]

· P (R) [Inking model]

· P (X|E, T,R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
m∏

i=1

P (ei|ei−1, . . . , ei−n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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Figure 3: Character tokens ei are generated by the language model. For each token index i, a glyph bounding box width gi,
left padding width li, and a right padding width ri, are generated. Finally, the pixels in each glyph bounding box XGLYPH

i are
generated conditioned on the corresponding character, while the pixels in left and right padding bounding boxes, XLPAD

i and
XRPAD
i , are generated from a background distribution.

3.2 Typesetting Model P (T |E)

Generally speaking, the process of typesetting
produces a line of text by first tiling bounding
boxes of various widths and then filling in the
boxes with glyphs. Our generative model, which
is depicted in Figure 3, reflects this process. As
a first step, our model generates the dimensions
of character bounding boxes; for each character
token index i we generate three bounding box
widths: a glyph box width gi, a left padding box
width li, and a right padding box width ri, as
shown in Figure 3. We let the pixel height of all
lines be fixed to h. Let Ti = (li, gi, ri) so that Ti
specifies the dimensions of the character box for
token index i; T is then the concatenation of all
Ti, denoting the full layout.

Because the width of a glyph depends on its
shape, and because of effects resulting from kern-
ing and the use of ligatures, the components of
each Ti are drawn conditioned on the character
token ei. This means that, as part of our param-
eterization of the font, for each character type c
we have vectors of multinomial parameters θLPAD

c ,
θGLYPH
c , and θRPAD

c governing the distribution of the
dimensions of character boxes of type c. These
parameters are depicted on the right-hand side of

Figure 3. We can now express the typesetting lay-
out portion of the model as:

P (T |E) =

m∏

i=1

P (Ti|ei)

=

m∏

i=1

[
P (li; θ

LPAD
ei ) · P (gi; θ

GLYPH
ei ) · P (ri; θ

RPAD
ei )

]

Each character type c in our font has another set
of parameters, a matrix φc. These are weights that
specify the shape of the character type’s glyph,
and are depicted in Figure 3 as part of the font pa-
rameters. φc will come into play when we begin
generating pixels in Section 3.3.

3.2.1 Inking Model P (R)
Before we start filling the character boxes with
pixels, we need to specify some properties of
the inking and rendering process, including the
amount of ink used and vertical variation along
the text baseline. Our model does this by gener-
ating, for each character token index i, a discrete
value di that specifies the overall inking level in
the character’s bounding box, and a discrete value
vi that specifies the glyph’s vertical offset. These
variations in the inking and typesetting process are
mostly independent of character type. Thus, in
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our model, their distributions are not character-
specific. There is one global set of multinomial
parameters governing inking level (θINK), and an-
other governing offset (θVERT); both are depicted
on the left-hand side of Figure 3. LetRi = (di, vi)
and let R be the concatenation of all Ri so that we
can express the inking model as:

P (R) =

m∏

i=1

P (Ri)

=

m∏

i=1

[
P (di; θ

INK) · P (vi; θ
VERT)

]

The di and vi variables are suppressed in Figure 3
to reduce clutter but are expressed in Figure 4,
which depicts the process of rendering a glyph
box.

3.3 Noise Model P (X|E, T,R)
Now that we have generated a typesetting layout
T and an inking context R, we have to actually
generate each of the pixels in each of the charac-
ter boxes, left padding boxes, and right padding
boxes; the matrices that these groups of pixels
comprise are denoted XGLYPH

i , XLPAD
i , and XRPAD

i ,
respectively, and are depicted at the bottom of Fig-
ure 3.

We assume that pixels are binary valued and
sample their values independently from Bernoulli
distributions.2 The probability of black (the
Bernoulli parameter) depends on the type of pixel
generated. All the pixels in a padding box have
the same probability of black that depends only on
the inking level of the box, di. Since we have al-
ready generated this value and the widths li and ri
of each padding box, we have enough information
to generate left and right padding pixel matrices
XLPAD
i and XRPAD

i .
The Bernoulli parameter of a pixel inside a

glyph bounding box depends on the pixel’s loca-
tion inside the box (as well as on di and vi, but
for simplicity of exposition, we temporarily sup-
press this dependence) and on the model param-
eters governing glyph shape (for each character
type c, the parameter matrix φc specifies the shape
of the character’s glyph.) The process by which
glyph pixels are generated is depicted in Figure 4.

The dependence of glyph pixels on location
complicates generation of the glyph pixel matrix
XGLYPH
i since the corresponding parameter matrix

2We could generate real-valued pixels with a different
choice of noise distribution.

}

}

}

}} aa a
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a a a

}
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offset

Glyph weights
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�ei

✓PIXEL(j, k, gi, di, vi;�ei
)

⇥
XGLYPH

i

⇤
jk
⇠ Bernoulli

Bernoulli parameters

Pixel values

Choose
inking

Figure 4: We generate the pixels for the character token ei
by first sampling a glyph width gi, an inking level di, and
a vertical offset vi. Then we interpolate the glyph weights
φei and apply the logistic function to produce a matrix of
Bernoulli parameters of width gi, inking di, and offset vi.
θPIXEL(j, k, gi, di, vi;φei) is the Bernoulli parameter at row j
and column k. Finally, we sample from each Bernoulli distri-
bution to generate a matrix of pixel values, XGLYPH

i .

φei has some type-level width w which may dif-
fer from the current token-level width gi. Intro-
ducing distinct parameters for each possible width
would yield a model that can learn completely dif-
ferent glyph shapes for slightly different widths of
the same character. We, instead, need a parame-
terization that ties the shapes for different widths
together, and at the same time allows mobility in
the parameter space during learning.

Our solution is to horizontally interpolate the
weights of the shape parameter matrix φei down
to a smaller set of columns matching the token-
level choice of glyph width gi. Thus, the type-
level matrix φei specifies the canonical shape of
the glyph for character ei when it takes its max-
imum width w. After interpolating, we apply
the logistic function to produce the individual
Bernoulli parameters. If we let [XGLYPH

i ]jk denote
the value of the pixel at the jth row and kth col-
umn of the glyph pixel matrix XGLYPH

i for token i,
and let θPIXEL(j, k, gi;φei) denote the token-level
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µ

Figure 5: In order to produce Bernoulli parameter matrices
θPIXEL of variable width, we interpolate over columns of φc
with vectors µ, and apply the logistic function to each result.

Bernoulli parameter for this pixel, we can write:

[XGLYPH
i ]jk ∼ Bernoulli

(
θPIXEL(j, k, gi;φei)

)

The interpolation process for a single row is de-
picted in Figure 5. We define a constant interpola-
tion vector µ(gi, k) that is specific to the glyph box
width gi and glyph box column k. Each µ(gi, k)
is shaped according to a Gaussian centered at the
relative column position in φei . The glyph pixel
Bernoulli parameters are defined as follows:

θPIXEL(j, k,gi;φei) =

logistic
( w∑

k′=1

[
µ(gi, k)k′ · [φei ]jk′

])

The fact that the parameterization is log-linear will
ensure that, during the unsupervised learning pro-
cess, updating the shape parameters φc is simple
and feasible.

By varying the magnitude of µ we can change
the level of smoothing in the logistic model and
cause it to permit areas that are over-inked. This is
the effect that di controls. By offsetting the rows
of φc that we interpolate weights from, we change
the vertical offset of the glyph, which is controlled
by vi. The full pixel generation process is dia-
grammed in Figure 4, where the dependence of
θPIXEL on di and vi is also represented.

4 Learning

We use the EM algorithm (Dempster et al., 1977)
to find the maximum-likelihood font parameters:
φc, θLPAD

c , θGLYPH
c , and θRPAD

c . The image X is the
only observed random variable in our model. The
identities of the characters E the typesetting lay-
out T and the inking R will all be unobserved. We
do not learn θINK and θVERT, which are set to the
uniform distribution.

4.1 Expectation Maximization
During the E-step we compute expected counts
for E and T , but maximize over R, for which

we compute hard counts. Our model is an in-
stance of a hidden semi-Markov model (HSMM),
and therefore the computation of marginals is
tractable with the semi-Markov forward-backward
algorithm (Levinson, 1986).

During the M-step, we update the parame-
ters θLPAD

c , θRPAD
c using the standard closed-form

multinomial updates and use a specialized closed-
form update for θGLYPH

c that enforces unimodal-
ity of the glyph width distribution.3 The glyph
weights, φc, do not have a closed-form update.
The noise model that φc parameterizes is a lo-
cal log-linear model, so we follow the approach
of Berg-Kirkpatrick et al. (2010) and use L-BFGS
(Liu and Nocedal, 1989) to optimize the expected
likelihood with respect to φc.

4.2 Coarse-to-Fine Learning and Inference

The number of states in the dynamic programming
lattice grows exponentially with the order of the
language model (Jelinek, 1998; Koehn, 2004). As
a result, inference can become slow when the lan-
guage model order n is large. To remedy this, we
take a coarse-to-fine approach to both learning and
inference. On each iteration of EM, we perform
two passes: a coarse pass using a low-order lan-
guage model, and a fine pass using a high-order
language model (Petrov et al., 2008; Zhang and
Gildea, 2008). We use the marginals4 from the
coarse pass to prune states from the dynamic pro-
gram of the fine pass.

In the early iterations of EM, our font parame-
ters are still inaccurate, and to prune heavily based
on such parameters would rule out correct anal-
yses. Therefore, we gradually increase the ag-
gressiveness of pruning over the course of EM. To
ensure that each iteration takes approximately the
same amount of computation, we also gradually
increase the order of the fine pass, only reaching
the full order n on the last iteration. To produce a
decoding of the image into text, on the final iter-
ation we run a Viterbi pass using the pruned fine
model.

3We compute the weighted mean and weighted variance
of the glyph width expected counts. We set θGLYPH

c to be pro-
portional to a discretized Gaussian with the computed mean
and variance. This update is approximate in the sense that it
does not necessarily find the unimodal multinomial that max-
imizes expected log-likelihood, but it works well in practice.

4In practice, we use max-marginals for pruning to ensure
that there is still a valid path in the pruned lattice.
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Old Bailey, 1725:

Old Bailey, 1875:

Trove, 1883:

Trove, 1823:

(a)

(b)

(c)

(d)

Figure 6: Portions of several documents from our test set rep-
resenting a range of difficulties are displayed. On document
(a), which exhibits noisy typesetting, our system achieves a
word error rate (WER) of 25.2. Document (b) is cleaner in
comparison, and on it we achieve a WER of 15.4. On doc-
ument (c), which is also relatively clean, we achieve a WER
of 12.5. On document (d), which is severely degraded, we
achieve a WER of 70.0.

5 Data

We perform experiments on two historical datasets
consisting of images of documents printed be-
tween 1700 and 1900 in England and Australia.
Examples from both datasets are displayed in Fig-
ure 6.

5.1 Old Bailey

The first dataset comes from a large set of im-
ages of the proceedings of the Old Bailey, a crimi-
nal court in London, England (Shoemaker, 2005).
The Old Bailey curatorial effort, after deciding
that current OCR systems do not adequately han-
dle 18th century fonts, manually transcribed the

documents into text. We will use these manual
transcriptions to evaluate the output of our system.
From the Old Bailey proceedings, we extracted a
set of 20 images, each consisting of 30 lines of
text to use as our first test set. We picked 20 doc-
uments, printed in consecutive decades. The first
document is from 1715 and the last is from 1905.
We choose the first document in each of the corre-
sponding years, choose a random page in the doc-
ument, and extracted an image of the first 30 con-
secutive lines of text consisting of full sentences.5

The ten documents in the Old Bailey dataset that
were printed before 1810 use the long s glyph,
while the remaining ten do not.

5.2 Trove

Our second dataset is taken from a collection of
digitized Australian newspapers that were printed
between the years of 1803 and 1954. This col-
lection is called Trove, and is maintained by the
the National Library of Australia (Holley, 2010).
We extracted ten images from this collection in the
same way that we extracted images from Old Bai-
ley, but starting from the year 1803. We manually
produced our own gold annotations for these ten
images. Only the first document of Trove uses the
long s glyph.

5.3 Pre-processing

Many of the images in historical collections are
bitonal (binary) as a result of how they were cap-
tured on microfilm for storage in the 1980s (Arl-
itsch and Herbert, 2004). This is part of the reason
our model is designed to work directly with bi-
narized images. For consistency, we binarized the
images in our test sets that were not already binary
by thresholding pixel values.

Our model requires that the image be pre-
segmented into lines of text. We automatically
segment lines by training an HSMM over rows of
pixels. After the lines are segmented, each line
is resampled so that its vertical resolution is 30
pixels. The line extraction process also identifies
pixels that are not located in central text regions,
and are part of large connected components of ink,
spanning multiple lines. The values of such pixels
are treated as unobserved in the model since, more
often than not, they are part of ink blotches.

5This ruled out portions of the document with extreme
structural abnormalities, like title pages and lists. These
might be interesting to model, but are not within the scope
of this paper.
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6 Experiments

We evaluate our system by comparing our text
recognition accuracy to that of two state-of-the-art
systems.

6.1 Baselines
Our first baseline is Google’s open source OCR
system, Tesseract (Smith, 2007). Tesseract takes
a pipelined approach to recognition. Before rec-
ognizing the text, the document is broken into
lines, and each line is segmented into words.
Then, Tesseract uses a classifier, aided by a word-
unigram language model, to recognize whole
words.

Our second baseline, ABBYY FineReader 11
Professional Edition,6 is a state-of-the-art com-
mercial OCR system. It is the OCR system that
the National Library of Australia used to recognize
the historical documents in Trove (Holley, 2010).

6.2 Evaluation
We evaluate the output of our system and the base-
line systems using two metrics: character error
rate (CER) and word error rate (WER). Both these
metrics are based on edit distance. CER is the edit
distance between the predicted and gold transcrip-
tions of the document, divided by the number of
characters in the gold transcription. WER is the
word-level edit distance (words, instead of char-
acters, are treated as tokens) between predicted
and gold transcriptions, divided by the number of
words in the gold transcription. When computing
WER, text is tokenized into words by splitting on
whitespace.

6.3 Language Model
We ran experiments using two different language
models. The first language model was trained
on the initial one million sentences of the New
York Times (NYT) portion of the Gigaword cor-
pus (Graff et al., 2007), which contains about 36
million words. This language model is out of do-
main for our experimental documents. To inves-
tigate the effects of using an in domain language
model, we created a corpus composed of the man-
ual annotations of all the documents in the Old
Bailey proceedings, excluding those used in our
test set. This corpus consists of approximately 32
million words. In all experiments we used a char-
acter n-gram order of six for the final Viterbi de-

6http://www.abbyy.com

System CER WER
Old Bailey

Google Tesseract 29.6 54.8
ABBYY FineReader 15.1 40.0
Ocular w/ NYT (this work) 12.6 28.1
Ocular w/ OB (this work) 9.7 24.1

Trove
Google Tesseract 37.5 59.3
ABBYY FineReader 22.9 49.2
Ocular w/ NYT (this work) 14.9 33.0

Table 1: We evaluate the predicted transcriptions in terms of
both character error rate (CER) and word error rate (WER),
and report macro-averages across documents. We compare
with two baseline systems: Google’s open source OCR sys-
tem, Tessearact, and a state-of-the-art commercial system,
ABBYY FineReader. We refer to our system as Ocular w/
NYT and Ocular w/ OB, depending on whether NYT or Old
Bailey is used to train the language model.

coding pass and an order of three for all coarse
passes.

6.4 Initialization and Tuning
We used as a development set ten additional docu-
ments from the Old Bailey proceedings and five
additional documents from Trove that were not
part of our test set. On this data, we tuned the
model’s hyperparameters7 and the parameters of
the pruning schedule for our coarse-to-fine ap-
proach.

In experiments we initialized θRPAD
c and θLPAD

c to
be uniform, and initialized θGLYPH

c and φc based
on the standard modern fonts included with the
Ubuntu Linux 12.04 distribution.8 For documents
that use the long s glyph, we introduce a special
character type for the non-word-final s, and ini-
tialize its parameters from a mixture of the modern
f and | glyphs.9

7 Results and Analysis

The results of our experiments are summarized in
Table 1. We refer to our system as Ocular w/
NYT or Ocular w/ OB, depending on whether the
language model was trained using NYT or Old
Bailey, respectively. We compute macro-averages

7One of the hyperparameters we tune is the exponent of
the language model. This balances the contributions of the
language model and the typesetting model to the posterior
(Och and Ney, 2004).

8http://www.ubuntu.com/
9Following Berg-Kirkpatrick et al. (2010), we use a reg-

ularization term in the optimization of the log-linear model
parameters φc during the M-step. Instead of regularizing to-
wards zero, we regularize towards the initializer. This slightly
improves performance on our development set and can be
thought of as placing a prior on the glyph shape parameters.
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(c) Trove, 1883:

(b) Old Bailey, 1885:

(a) Old Bailey, 1775: the prisoner at the bar. Jacob Lazarus and his

taken ill and taken away – I remember

how the murderers came to learn the nation in

Predicted text:

Predicted typesetting:

Image:

Predicted text:

Predicted typesetting:

Image:

Predicted text:

Predicted typesetting:

Image:

Figure 7: For each of these portions of test documents, the first line shows the transcription predicted by our model and the
second line shows a representation of the learned typesetting layout. The grayscale glyphs show the Bernoulli pixel distributions
learned by our model, while the padding regions are depicted in blue. The third line shows the input image.

across documents from all years. Our system, us-
ing the NYT language model, achieves an average
WER of 28.1 on Old Bailey and an average WER
of 33.0 on Trove. This represents a substantial er-
ror reduction compared to both baseline systems.

If we average over the documents in both Old
Bailey and Trove, we find that Tesseract achieved
an average WER of 56.3, ABBYY FineReader
achieved an average WER of 43.1, and our system,
using the NYT language model, achieved an aver-
age WER of 29.7. This means that while Tesseract
incorrectly predicts more than half of the words in
these documents, our system gets more than three-
quarters of them right. Overall, we achieve a rela-
tive reduction in WER of 47% compared to Tesser-
act and 31% compared to ABBYY FineReader.

The baseline systems do not have special pro-
visions for the long s glyph. In order to make
sure the comparison is fair, we separately com-
puted average WER on only the documents from
after 1810 (which do no use the long s glyph). We
found that using this evaluation our system actu-
ally acheives a larger relative reduction in WER:
50% compared to Tesseract and 35% compared to
ABBYY FineReader.

Finally, if we train the language model using
the Old Bailey corpus instead of the NYT corpus,
we see an average improvement of 4 WER on the
Old Bailey test set. This means that the domain of
the language model is important, but, the results
are not affected drastically even when using a lan-
guage model based on modern corpora (NYT).

7.1 Learned Typesetting Layout
Figure 7 shows a representation of the typesetting
layout learned by our model for portions of several

Initializer

1700

1740

1780 1820

1860

1900

Figure 8: The central glyph is a representation of the initial
model parameters for the glyph shape for g, and surrounding
this are the learned parameters for documents from various
years.

test documents. For each portion of a test doc-
ument, the first line shows the transcription pre-
dicted by our model, and the second line shows
padding and glyph regions predicted by the model,
where the grayscale glyphs represent the learned
Bernoulli parameters for each pixel. The third line
shows the input image.

Figure 7a demonstrates a case where our model
has effectively explained both the uneven baseline
and over-inked glyphs by using the vertical offsets
vi and inking variables di. In Figure 7b the model
has used glyph widths gi and vertical offsets to ex-
plain the thinning of glyphs and falling baseline
that occurred near the binding of the book. In sep-
arate experiments on the Old Bailey test set, using
the NYT language model, we found that remov-
ing the vertical offset variables from the model in-
creased WER by 22, and removing the inking vari-
ables increased WER by 16. This indicates that it
is very important to model both these aspects of
printing press rendering.
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Figure 9: This Old Bailey document from 1719 has severe ink bleeding from the facing page. We annotated these blotches (in
red) and treated the corresponding pixels as unobserved in the model. The layout shown is predicted by the model.

Figure 7c shows the output of our system on
a difficult document. Here, missing characters
and ink blotches confuse the model, which picks
something that is reasonable according to the lan-
guage model, but incorrect.

7.2 Learned Fonts

It is interesting to look at the fonts learned by our
system, and track how historical fonts changed
over time. Figure 8 shows several grayscale im-
ages representing the Bernoulli pixel probabilities
for the most likely width of the glyph for g under
various conditions. At the center is the representa-
tion of the initial parameter values, and surround-
ing this are the learned parameters for documents
from various years. The learned shapes are visibly
different from the initializer, which is essentially
an average of modern fonts, and also vary across
decades.

We can ask to what extent learning the font
structure actually improved our performance. If
we turn off learning and just use the initial pa-
rameters to decode, WER increases by 8 on the
Old Bailey test set when using the NYT language
model.

7.3 Unobserved Ink Blotches

As noted earlier, one strength of our generative
model is that we can make the values of certain
pixels unobserved in the model, and let inference
fill them in. We conducted an additional experi-
ment on a document from the Old Bailey proceed-
ings that was printed in 1719. This document, a
fragment of which is shown in Figure 9, has se-
vere ink bleeding from the facing page. We manu-
ally annotated the ink blotches (shown in red), and
made them unobserved in the model. The result-
ing typesetting layout learned by the model is also
shown in Figure 9. The model correctly predicted
most of the obscured words. Running the model
with the manually specified unobserved pixels re-

duced the WER on this document from 58 to 19
when using the NYT language model.

7.4 Remaining Errors

We performed error analysis on our development
set by randomly choosing 100 word errors from
the WER alignment and manually annotating them
with relevant features. Specifically, for each word
error we recorded whether or not the error con-
tained punctuation (either in the predicted word or
the gold word), whether the text in the correspond-
ing portion of the original image was italicized,
and whether the corresponding portion of the im-
age exhibited over-inking, missing ink, or signif-
icant ink blotches. These last three feature types
are subjective in nature but may still be informa-
tive. We found that 56% of errors were accompa-
nied by over-inking, 50% of errors were accom-
panied by ink blotches, 42% of errors contained
punctuation, 21% of errors showed missing ink,
and 12% of errors contained text that was itali-
cized in the original image.

Our own subjective assessment indicates that
many of these error features are in fact causal.
More often than not, italicized text is incorrectly
transcribed. In cases of extreme ink blotching,
or large areas of missing ink, the system usually
makes an error.

8 Conclusion

We have demonstrated a model, based on the his-
torical typesetting process, that effectively learns
font structure in an unsupervised fashion to im-
prove transcription of historical documents into
text. The parameters of the learned fonts are inter-
pretable, as are the predicted typesetting layouts.
Our system achieves state-of-the-art results, sig-
nificantly outperforming two state-of-the-art base-
line systems.
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Abstract

We adapt discriminative reranking to im-
prove the performance of grounded lan-
guage acquisition, specifically the task of
learning to follow navigation instructions
from observation. Unlike conventional
reranking used in syntactic and semantic
parsing, gold-standard reference trees are
not naturally available in a grounded set-
ting. Instead, we show how the weak su-
pervision of response feedback (e.g. suc-
cessful task completion) can be used as
an alternative, experimentally demonstrat-
ing that its performance is comparable to
training on gold-standard parse trees.

1 Introduction

Grounded language acquisition involves learn-
ing to comprehend and/or generate language by
simply observing its use in a naturally occur-
ring context in which the meaning of a sentence
is grounded in perception and/or action (Roy,
2002; Yu and Ballard, 2004; Gold and Scassel-
lati, 2007; Chen et al., 2010). Börschinger et
al. (2011) introduced an approach that reduces
grounded language learning to unsupervised prob-
abilistic context-free grammar (PCFG) induction
and demonstrated its effectiveness on the task of
sportscasting simulated robot soccer games. Sub-
sequently, Kim and Mooney (2012) extended their
approach to make it tractable for the more complex
problem of learning to follow natural-language
navigation instructions from observations of hu-
mans following such instructions in a virtual envi-
ronment (Chen and Mooney, 2011). The observed
sequence of actions provides very weak, ambigu-
ous supervision for learning instructional language
since there are many possible ways to describe the
same execution path. Although their approach im-
proved accuracy on the navigation task compared

to the original work of Chen and Mooney (2011),
it was still far from human performance.

Since their system employs a generative model,
discriminative reranking (Collins, 2000) could po-
tentially improve its performance. By training a
discriminative classifier that uses global features
of complete parses to identify correct interpreta-
tions, a reranker can significantly improve the ac-
curacy of a generative model. Reranking has been
successfully employed to improve syntactic pars-
ing (Collins, 2002b), semantic parsing (Lu et al.,
2008; Ge and Mooney, 2006), semantic role la-
beling (Toutanova et al., 2005), and named entity
recognition (Collins, 2002c). Standard reranking
requires gold-standard interpretations (e.g. parse
trees) to train the discriminative classifier. How-
ever, grounded language learning does not provide
gold-standard interpretations for the training ex-
amples. Only the ambiguous perceptual context
of the utterance is provided as supervision. For
the navigation task, this supervision consists of
the observed sequence of actions taken by a hu-
man when following an instruction. Therefore, it
is impossible to directly apply conventional dis-
criminative reranking to such problems. We show
how to adapt reranking to work with such weak
supervision. Instead of using gold-standard an-
notations to determine the correct interpretations,
we simply prefer interpretations of navigation in-
structions that, when executed in the world, actu-
ally reach the intended destination. Additionally,
we extensively revise the features typically used in
parse reranking to work with the PCFG approach
to grounded language learning.

The rest of the paper is organized as fol-
lows: Section 2 reviews the navigation task and
the PCFG approach to grounded language learn-
ing. Section 3 presents our modified approach to
reranking and Section 4 describes the novel fea-
tures used to evaluate parses. Section 5 experi-
mentally evaluates the approach comparing to sev-
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(a) Sample virtual world of hallways with varying tiles,
wallpapers, and landmark objects indicated by letters
(e.g. “H” for hat-rack) and illustrating a sample path
taken by a human follower.

(b) A sample natural language instruction and its formal land-
marks plan for the path illustrated above. The subset corre-
sponding to the correct formal plan is shown in bold.

Figure 1: Sample virtual world and instruction.

eral baselines. Finally, Section 6 describes related
work, Section 7 discusses future work, and Sec-
tion 8 concludes.

2 Background

2.1 Navigation Task

We address the navigation learning task intro-
duced by Chen and Mooney (2011). The goal is
to interpret natural-language (NL) instructions in a
virtual environment, thereby allowing a simulated
robot to navigate to a specified location. Figure 1a
shows a sample path executed by a human follow-
ing the instruction in Figure 1b. Given no prior lin-
guistic knowledge, the task is to learn to interpret
such instructions by simply observing humans fol-
low sample directions. Formally speaking, given
training examples of the form (ei, ai, wi), where
ei is an NL instruction, ai is an executed action
sequence for the instruction, and wi is the initial

world state, we want to learn to produce an appro-
priate action sequence aj given a novel (ej , wj).

More specifically, one must learn a seman-
tic parser that produces a plan pj using a for-
mal meaning representation (MR) language intro-
duced by Chen and Mooney (2011). This plan is
then executed by a simulated robot in a virtual en-
vironment. The MARCO system, introduced by
MacMahon et al. (2006), executes the formal plan,
flexibly adapting to situations encountered dur-
ing execution and producing the action sequence
aj . During learning, Chen and Mooney construct
a landmarks plan ci for each training example,
which includes the complete context observed in
the world-state resulting from each observed ac-
tion. The correct plan, pi, (which is latent and
must be inferred) is assumed to be composed from
a subset of the components in the corresponding
landmarks plan. The landmarks and correct plans
for a sample instruction are shown in Figure 1b.

2.2 PCFG Induction for Grounded Language
Learning

The baseline generative model we use for rerank-
ing employs the unsupervised PCFG induction ap-
proach introduced by Kim and Mooney (2012).
This model is, in turn, based on the earlier model
of Börschinger et al. (2011), which transforms
the grounded language learning into unsupervised
PCFG induction. The general approach uses
grammar-formulation rules which construct CFG
productions that form a grammar that effectively
maps NL sentences to formal meaning represen-
tations (MRs) encoded in its nonterminals. After
using Expectation-Maximization (EM) to estimate
the parameters for these productions using the am-
biguous supervision provided by the grounded-
learning setting, it produces a PCFG whose most
probable parse for a sentence encodes its correct
semantic interpretation. Unfortunately, the initial
approach of Börschinger et al. (2011) produces ex-
plosively large grammars when applied to more
complex problems, such as our navigation task.
Therefore, Kim and Mooney enhanced their ap-
proach to use a previously learned semantic lexi-
con to reduce the induced grammar to a tractable
size. They also altered the processes for construct-
ing productions and mapping parse trees to MRs in
order to make the construction of semantic inter-
pretations more compositional and allow the ef-
ficient construction of more complex representa-
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Figure 2: Simplified parse for the sentence “Turn
left and find the sofa then turn around the corner”
for Kim and Mooney’s model. Nonterminals show
the MR graph, where additional nonterminals for
generating NL words are omitted.

tions.
The resulting PCFG can be used to produce

a set of most-probable interpretations of instruc-
tional sentences for the navigation task. Our pro-
posed reranking model is used to discriminatively
reorder the top parses produced by this generative
model. A simplified version of a sample parse tree
for Kim and Mooney’s model is shown in Figure 2.

3 Modified Reranking Algorithm

In reranking, a baseline generative model is first
trained and generates a set of candidate outputs
for each training example. Next, a second con-
ditional model is trained which uses global fea-
tures to rescore the candidates. Reranking using
an averaged perceptron (Collins, 2002a) has been
successfully applied to a variety of NLP tasks.
Therefore, we modify it to rerank the parse trees
generated by Kim and Mooney (2012)’s model.
The approach requires three subcomponents: 1)
a GEN function that returns the list of top n can-
didate parse trees for each NL sentence produced
by the generative model, 2) a feature function Φ
that maps a NL sentence, e, and a parse tree, y,
into a real-valued feature vector Φ(e, y) ∈ Rd, and
3) a reference parse tree that is compared to the
highest-scoring parse tree during training.

However, grounded language learning tasks,
such as our navigation task, do not provide ref-
erence parse trees for training examples. Instead,
our modified model replaces the gold-standard ref-
erence parse with the “pseudo-gold” parse tree

Algorithm 1 AVERAGED PERCEPTRON TRAIN-
ING WITH RESPONSE-BASED UPDATE

Input: A set of training examples (ei, y∗i ),
where ei is a NL sentence and y∗i =
arg maxy∈GEN(ei) EXEC(y)
Output: The parameter vector W̄ , averaged
over all iterations 1...T

1: procedure PERCEPTRON

2: Initialize W̄ = 0
3: for t = 1...T, i = 1...n do
4: yi = arg maxy∈GEN(ei) Φ(ei, y) · W̄
5: if yi 6= y∗i then
6: W̄ = W̄ + Φ(ei, y

∗
i )− Φ(ei, yi)

7: end if
8: end for
9: end procedure

whose derived MR plan is most successful at get-
ting to the desired goal location. Thus, the third
component in our reranking model becomes an
evaluation function EXEC that maps a parse tree
y into a real number representing the success rate
(w.r.t. successfully reaching the intended destina-
tion) of the derived MR plan m composed from
y.

Additionally, we improve the perceptron train-
ing algorithm by using multiple reference parses
to update the weight vector W̄ . Although
we determine the pseudo-gold reference tree to
be the candidate parse y∗ such that y∗ =
arg maxy∈GEN(e) EXEC(y), it may not actually be
the correct parse for the sentence. Other parses
may contain useful information for learning, and
therefore we devise a way to update weights us-
ing all candidate parses whose successful execu-
tion rate is greater than the parse preferred by the
currently learned model.

3.1 Response-Based Weight Updates

To circumvent the need for gold-standard refer-
ence parses, we select a pseudo-gold parse from
the candidates produced by the GEN function. In a
similar vein, when reranking semantic parses, Ge
and Mooney (2006) chose as a reference parse the
one which was most similar to the gold-standard
semantic annotation. However, in the navigation
task, the ultimate goal is to generate a plan that,
when actually executed in the virtual environment,
leads to the desired destination. Therefore, the
pseudo-gold reference is chosen as the candidate
parse that produces the MR plan with the great-
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est execution success. This requires an external
module that evaluates the execution accuracy of
the candidate parses. For the navigation task, we
use the MARCO (MacMahon et al., 2006) ex-
ecution module, which is also used to evaluate
how well the overall system learns to follow direc-
tions (Chen and Mooney, 2011). Since MARCO
is nondeterministic when executing underspecified
plans, we execute each candidate plan 10 times,
and its execution rate is the percentage of trials
in which it reaches the correct destination. When
there are multiple candidate parses tied for the
highest execution rate, the one assigned the largest
probability by the baseline model is selected. Our
modified averaged perceptron procedure with such
a response-based update is shown in Algorithm 1.

One additional issue must be addressed when
computing the output of the GEN function. The fi-
nal plan MRs are produced from parse trees using
compositional semantics (see Kim and Mooney
(2012) for details). Consequently, the n-best parse
trees for the baseline model do not necessarily pro-
duce the n-best distinct plans, since many parses
can produce the same plan. Therefore, we adapt
the GEN function to produce the n best distinct
plans rather than the n best parses. This may
require examining many more than the n best
parses, because many parses have insignificant
differences that do not affect the final plan. The
score assigned to a plan is the probability of the
most probable parse that generates that plan. In
order to efficiently compute the n best plans, we
modify the exact n-best parsing algorithm devel-
oped by Huang and Chiang (2005). The modified
algorithm ensures that each plan in the computed
n best list produces a new distinct plan.

3.2 Weight Updates Using Multiple Parses

Typically, when used for reranking, the averaged
perceptron updates its weights using the feature-
vector difference between the current best pre-
dicted candidate and the gold-standard reference
(line 6 in Algorithm 1). In our initial modified
version, we replaced the gold-standard reference
parse with the pseudo-gold reference, which has
the highest execution rate amongst all candidate
parses. However, this ignores all other candidate
parses during perceptron training. However, it is
not ideal to regard other candidate parses as “use-
less.” There may be multiple candidate parses with
the same maximum execution rate, and even can-

didates with lower execution rates could represent
the correct plan for the instruction given the weak,
indirect supervision provided by the observed se-
quence of human actions.

Therefore, we also consider a further mod-
ification of the averaged perceptron algorithm
which updates its weights using multiple candi-
date parses. Instead of only updating the weights
with the single difference between the predicted
and pseudo-gold parses, the weight vector W̄ is
updated with the sum of feature-vector differences
between the current predicted candidate and all
other candidates that have a higher execution rate.
Formally, in this version, we replace lines 5–6 of
Algorithm 1 with:

1: for all y ∈ GEN(ei) where y 6= yi and
EXEC(y) > EXEC(yi) do

2: W̄ = W̄ + (EXEC(y)− EXEC(yi))
×(Φ(ei, y)− Φ(ei, yi))

3: end for

where EXEC(y) is the execution rate of the MR
plan m derived from parse tree y.

In the experiments below, we demonstrate that,
by exploiting multiple reference parses, this new
update rule increases the execution accuracy of
the final system. Intuitively, this approach gathers
additional information from all candidate parses
with higher execution accuracy when learning the
discriminative reranker. In addition, as shown in
line 2 of the algorithm above, it uses the differ-
ence in execution rates between a candidate and
the currently preferred parse to weight the update
to the parameters for that candidate. This allows
more effective plans to have a larger impact on the
learned model in each iteration.

4 Reranking Features

This section describes the features Φ extracted
from parses produced by the generative model and
used to rerank the candidates.

4.1 Base Features

The base features adapt those used in previous
reranking methods, specifically those of Collins
(2002a), Lu et al. (2008), and Ge and Mooney
(2006), which are directly extracted from parse
trees. In addition, we also include the log prob-
ability of the parse tree as an additional feature.
Figure 3 shows a sample full parse tree from our
baseline model, which is used when explaining the
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L1: Turn(LEFT), Verify(front : SOFA, back : EASEL),
Travel(steps : 2), Verify(at : SOFA), Turn(RIGHT)

L6: Turn()

PhraseL6

WordL6

corner

PhXL6

Word∅

the

PhXL6

WordL6

around

PhXL6

WordL6

turn

PhXL6

Word∅

then

L3: Travel(steps : 2),
Verify(at : SOFA), Turn(RIGHT)

L5: Travel(), Verify(at : SOFA)

PhraseL5

WordL5

sofa

PhXL5

Word∅

the

PhXL5

WordL5

find

L2: Turn(LEFT),
Verify(front : SOFA)

L4: Turn(LEFT)

PhraseL4

Word∅

and

PhL4

WordL4

left

PhXL4

WordL4

Turn

Figure 3: Sample full parse tree for the sentence “Turn left and find the soft then turn around the corner”
used to explain reranking features. Nonterminals representing MR plan components are shown, which
are labeled L1 to L6 for ease of reference. Additional nonterminals such as Phrase, Ph, PhX , and
Word are subsidiary ones for generating NL words from MR nonterminals. They are also shown in
order to represent the entire process of how parse trees are constructed (for details, refer to Kim and
Mooney (2012)).

reranking features below, each illustrated by an ex-
ample.

a) PCFG Rule. Indicates whether a particular
PCFG rule is used in the parse tree: f(L1 ⇒
L2L3) = 1.

b) Grandparent PCFG Rule. Indicates whether
a particular PCFG rule as well as the non-
terminal above it is used in the parse tree:
f(L3 ⇒ L5L6|L1) = 1.

c) Long-range Unigram. Indicates whether a
nonterminal has a given NL word below it
in the parse tree: f(L2 ; left) = 1 and
f(L4 ; turn) = 1.

d) Two-level Long-range Unigram. Indicates
whether a nonterminal has a child nontermi-
nal which eventually generates a NL word in
the parse tree: f(L4 ; left|L2) = 1

e) Unigram. Indicates whether a nonterminal
produces a given child nonterminal or terminal
NL word in the parse tree: f(L1 → L2) = 1
and f(L1 → L3) = 1.

f) Grandparent Unigram. Indicates whether
a nonterminal has a given child nontermi-
nal/terminal below it, as well as a given parent
nonterminal: f(L2 → L4|L1) = 1

g) Bigram. Indicates whether a given bigram of
nonterminal/terminals occurs for given a par-
ent nonterminal: f(L1 → L2 : L3) = 1.

h) Grandparent Bigram. Same as Bigram, but
also includes the nonterminal above the parent
nonterminal: f(L3 → L5 : L6|L1) = 1.

i) Log-probability of Parse Tree. Certainty as-
signed by the base generative model.

4.2 Predicate-Only Features
The base features above generally include non-
terminal symbols used in the parse tree. In the
grounded PCFG model, nonterminals are named
after components of the semantic representations
(MRs), which are complex and numerous. There
are ' 2,500 nonterminals in the grammar con-
structed for the navigation data, most of which
are very specific and rare. This results in a very
large, sparse feature space which can easily lead
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the reranking model to over-fit the training data
and prevent it from generalizing properly.

Therefore, we also tried constructing more gen-
eral features that are less sparse. First, we con-
struct generalized versions of the base features
in which nonterminal symbols use only predicate
names and omit their arguments. In the navigation
task, action arguments frequently contain redun-
dant, rarely used information. In particular, the
interleaving verification steps frequently include
many details that are never actually mentioned in
the NL instructions. For instance, a nonterminal
for the MR

Turn(LEFT),
Verify(at:SOFA,front:EASEL),
Travel(steps:3)

is transformed into the predicate-only form

Turn(), Verify(), Travel()

, and then used to construct more general versions
of the base features described in the previous sec-
tion. Second, another version of the base features
are constructed in which nonterminal symbols in-
clude action arguments but omit all interleaving
verification steps. This is a somewhat more con-
servative simplification of the nonterminal sym-
bols. Although verification steps sometimes help
interpret the actions and their surrounding context,
they frequently cause the nonterminal symbols to
become unnecessarily complex and specific.

4.3 Descended Action Features
Finally, another feature group which we utilize
captures whether a particular atomic action in a
nonterminal “descends” into one of its child non-
terminals or not. An atomic action consists of a
predicate and its arguments, e.g. Turn(LEFT),
Travel(steps:2), or Verify(at:SOFA).
When an atomic action descends into lower non-
terminals in a parse tree, it indicates that it is men-
tioned in the NL instruction and is therefore im-
portant. Below are several feature types related to
descended actions that are used in our reranking
model:

a) Descended Action. Indicates whether a given
atomic action in a nonterminal descends to the
next level. In Figure 3, f(Turn(LEFT)) = 1
since it descends into L2 and L4.

b) Descended Action Unigram. Same as De-
scended Action, but also includes the current
nonterminal: f(Turn(LEFT)|L1) = 1.

c) Grandparent Descended Action Unigram.
Same as Descended Action Unigram,
but additionally includes the parent
nonterminal as well as the current one:
f(Turn(LEFT)|L2, L1) = 1.

d) Long-range Descended Action Unigram. Indi-
cates whether a given atomic action in a non-
terminal descends to a child nonterminal and
this child generates a given NL word below it:
f(Turn(LEFT) ; left) = 1

5 Experimental Evaluation

5.1 Data and Methodology

The navigation data was collected by MacMahon
et al. (2006), and includes English instructions
and human follower data.1 The data contains 706
route instructions for three virtual worlds. The in-
structions were produced by six instructors for 126
unique starting and ending location pairs over the
three maps. Each instruction is annotated with 1
to 15 human follower traces with an average of
10.4 actions per instruction. Each instruction con-
tains an average of 5.0 sentences each with an av-
erage of 7.8 words. Chen and Mooney (2011)
constructed a version of the data in which each
sentence is annotated with the actions taken by
the majority of followers when responding to this
sentence. This single-sentence version is used for
training. Manually annotated “gold standard” for-
mal plans for each sentence are used for evaluation
purposes only.

We followed the same experimental methodol-
ogy as Kim and Mooney (2012) and Chen and
Mooney (2011). We performed “leave one en-
vironment out” cross-validation, i.e. 3 trials of
training on two environments and testing on the
third. The baseline model is first trained on data
for two environments and then used to generate
the n = 50 best plans for both training and test-
ing instructions. As mentioned in Section 3.1, we
need to generate many more top parse trees to get
50 distinct formal MR plans. We limit the num-
ber of best parse trees to 1,000,000, and even with
this high limit, some training examples were left
with less than 50 distinct plans.2 Each candidate

1Data is available at http://www.cs.utexas.
edu/users/ml/clamp/navigation/

29.6% of the examples (310 out of total 3237) produced
less than 50 distinct MR plans in the evaluation. This was
mostly due to exceeding the parse-tree limit and partly be-
cause the baseline model failed to parse some NL sentences.
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n 1 2 5 10 25 50
Parse Accuracy F1 74.81 79.08 82.78 85.32 87.52 88.62

Plan Execution
Single-sentence 57.22 63.86 70.93 76.41 83.59 87.02

Paragraph 20.17 28.08 35.34 40.64 48.69 53.66

Table 1: Oracle parse and execution accuracy for single sentence and complete paragraph instructions
for the n best parses.

plan is then executed using MARCO and its rate
of successfully reaching the goal is recorded. Our
reranking model is then trained on the training
data using the n-best candidate parses. We only
retain reranking features that appear (i.e. have a
value of 1) at least twice in the training data.

Finally, we measure both parse and execution
accuracy on the test data. Parse accuracy evalu-
ates how well a system maps novel NL sentences
for new environments into correct MR plans (Chen
and Mooney, 2011). It is calculated by compar-
ing the system’s MR output to the gold-standard
MR. Accuracy is measured using F1, the harmonic
mean of precision and recall for individual MR
constituents, thereby giving partial credit to ap-
proximately correct MRs. We then execute the re-
sulting MR plans in the test environment to see
whether they successfully reach the desired des-
tinations. Execution is evaluated both for sin-
gle sentence and complete paragraph instructions.
Successful execution rates are calculated by aver-
aging 10 nondeterministic MARCO executions.

5.2 Reranking Results

Oracle results

As typical in reranking experiments, we first
present results for an “oracle” that always returns
the best result amongst the top-n candidates pro-
duced by the baseline system, thereby providing
an upper bound on the improvements possible
with reranking. Table 1 shows oracle accuracy for
both semantic parsing and plan execution for sin-
gle sentence and complete paragraph instructions
for various values of n. For oracle parse accuracy,
for each sentence, we pick the parse that gives
the highest F1 score. For oracle single-sentence
execution accuracy, we pick the parse that gives
the highest execution success rate. These single-
sentence plans are then concatenated to produce a
complete plan for each paragraph instruction in or-
der to measure overall execution accuracy. Since
making an error in any of the sentences in an in-

struction can easily lead to the wrong final destina-
tion, paragraph-level accuracies are always much
lower than sentence-level ones. In order to bal-
ance oracle accuracy and the computational ef-
fort required to produce n distinct plans, we chose
n = 50 for the final experiments since oracle per-
formance begins to asymptote at this point.

Response-based vs. gold-standard reference
weight updates
Table 2 presents reranking results for our proposed
response-based weight update (Single) for the
averaged perceptron (cf. Section 3.1) compared
to the typical weight update method using gold-
standard parses (Gold). Since the gold-standard
annotation gives the correct MR rather than a parse
tree for each sentence, Gold selects as a single
reference parse the candidate in the top 50 whose
resulting MR is most similar to the gold-standard
MR as determined by its parse accuracy. Ge and
Mooney (2006) employ a similar approach when
reranking semantic parses.

The results show that our response-based ap-
proach (Single) has better execution accuracy
than both the baseline and the standard approach
using gold-standard parses (Gold). However,
Gold does perform best on parse accuracy since
it explicitly focuses on maximizing the accuracy
of the resulting MR. In contrast, by focusing dis-
criminative training on optimizing performance
of the ultimate end task, our response-based ap-
proach actually outperforms the traditional ap-
proach on the final task. In addition, it only uti-
lizes feedback that is naturally available for the
task, rather than requiring an expert to laboriously
annotate each sentence with a gold-standard MR.
Even though Gold captures more elements of the
gold-standard MRs, it may miss some critical MR
components that are crucial to the final naviga-
tion task. The overall result is very promising be-
cause it demonstrates how reranking can be ap-
plied to grounded language learning tasks where
gold-standard parses are not readily available.
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Parse Acc Plan Execution
F1 Single Para

Baseline 74.81 57.22 20.17
Gold 78.26 52.57 19.33
Single 73.32 59.65 22.62
Multi 73.43 62.81 26.57

Table 2: Reranking results comparing our
response-based methods using single (Single)
or multiple (Multi) pseudo-gold parses to the
standard approach using a single gold-standard
parse (Gold). Baseline refers to Kim and
Mooney (2012)’s system. Reranking results use
all features described in Section 4. “Single“ means
the single-sentence version and “Para” means the
full paragraph version of the corpus.

Weight update with single vs. multiple
reference parses
Table 2 also shows performance when using mul-
tiple reference parse trees to update weights (cf.
Section 3.2). Using multiple parses (Multi)
clearly performs better for all evaluation met-
rics, particularly execution. As explained in Sec-
tion 3.2, the single-best pseudo-gold parse pro-
vides weak, ambiguous feedback since it only pro-
vides a rough estimate of the response feedback
from the execution module. Using a variety of
preferable parses to update weights provides a
greater amount and variety of weak feedback and
therefore leads to a more accurate model.3

Comparison of different feature groups
Table 3 compares reranking results using the dif-
ferent feature groups described in Section 4. Com-
pared to the baseline model (Kim and Mooney,
2012), each of the feature groups Base (base
features), Pred (predicate-only and verification-
removed features), and Desc (descended action
features) helps improve the performance of plan
execution for both single sentence and complete
paragraph navigation instructions. Among them,
Desc is the most effective group of features.
Combinations of the feature groups helps fur-

3We also tried extending Gold to use multiple reference
parses in the same manner, but this actually degraded its per-
formance for all metrics. This indicates that, unlike Multi,
parses other than the best one do not have useful information
in terms of optimizing normal parse accuracy. Instead, ad-
ditional parses seem to add noise to the training process in
this case. Therefore, updating with multiple parses does not
appear to be useful in standard reranking.

Features
Parse Acc Plan Execution

F1 Single Para
Baseline 74.81 57.22 20.17
Base 71.50 60.09 23.20
Pred 71.61 60.87 24.13
Desc 73.90 61.33 25.00
Base+Pred 69.52 61.49 26.24
Base+Desc 73.66 61.72 25.58
Pred+Desc 72.56 62.36 26.04
All 73.43 62.81 26.57

Table 3: Reranking results comparing different
sets of features. Base refers to base features (cf.
Section 4.1), Pred refers to predicate-only fea-
tures and also includes features based on remov-
ing interleaving verification steps (cf. Section 4.2),
Desc refers to descended action features (cf. Sec-
tion 4.3). All refers to all the features including
Base, Pred, and Desc. All results use weight
update with multiple reference parses (cf. Sec-
tion 3.2).

ther improve the plan execution performance, and
reranking using all of the feature groups (All)
performs the best, as expected. However, since
our model is optimizing plan execution during
training, the results for parse accuracy are always
worse than the baseline model.

6 Related Work

Discriminative reranking is a common machine
learning technique to improve the output of gen-
erative models. It has been shown to be effective
for various natural language processing tasks in-
cluding syntactic parsing (Collins, 2000; Collins,
2002b; Collins and Koo, 2005; Charniak and
Johnson, 2005; Huang, 2008), semantic parsing
(Lu et al., 2008; Ge and Mooney, 2006), part-
of-speech tagging (Collins, 2002a), semantic role
labeling (Toutanova et al., 2005), named entity
recognition (Collins, 2002c). machine translation
(Shen et al., 2004; Fraser and Marcu, 2006) and
surface realization in generation (White and Ra-
jkumar, 2009; Konstas and Lapata, 2012). How-
ever, to our knowledge, there has been no pre-
vious attempt to apply discriminative reranking
to grounded language acquisition, where gold-
standard reference parses are not typically avail-
able for training reranking models.

Our use of response-based training is similar
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to work on learning semantic parsers from execu-
tion output such as the answers to database queries
(Clarke et al., 2010; Liang et al., 2011). Although
the demands of grounded language tasks, such as
following navigation instructions, are different, it
would be interesting to try adapting these alterna-
tive approaches to such problems.

7 Future Work

In the future, we would like to explore the con-
struction of better, more-general reranking fea-
tures that are less prone to over-fitting. Since
typical reranking features rely on the combina-
tion and/or modification of nonterminals appear-
ing in parse trees, for the large PCFG’s produced
for grounded language learning, such features are
very sparse and rare. Although the current features
provide a significant increase in performance, or-
acle results imply that an even larger benefit may
be achievable.

In addition, employing other reranking method-
ologies, such as kernel methods (Collins, 2002b),
and forest reranking exploiting a packed forest of
exponentially many parse trees (Huang, 2008), is
another area of future work. We also would like
to apply our approach to other reranking algo-
rithms such as SVMs (Joachims, 2002) and Max-
Ent methods (Charniak and Johnson, 2005).

8 Conclusions

In this paper, we have shown how to adapt dis-
criminative reranking to grounded language learn-
ing. Since typical grounded language learning
problems, such as navigation instruction follow-
ing, do not provide the gold-standard reference
parses required by standard reranking models, we
have devised a novel method for using the weaker
supervision provided by response feedback (e.g.
the execution of inferred navigation plans) when
training a perceptron-based reranker. This ap-
proach was shown to be very effective compared
to the traditional method of using gold-standard
parses. In addition, since this response-based su-
pervision is weak and ambiguous, we have also
presented a method for using multiple reference
parses to perform perceptron weight updates and
shown a clear further improvement in end-task
performance with this approach.
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Abstract

Syntactic structures, by their nature, re-
flect first and foremost the formal con-
structions used for expressing meanings.
This renders them sensitive to formal vari-
ation both within and across languages,
and limits their value to semantic ap-
plications. We present UCCA, a novel
multi-layered framework for semantic rep-
resentation that aims to accommodate the
semantic distinctions expressed through
linguistic utterances. We demonstrate
UCCA’s portability across domains and
languages, and its relative insensitivity
to meaning-preserving syntactic variation.
We also show that UCCA can be ef-
fectively and quickly learned by annota-
tors with no linguistic background, and
describe the compilation of a UCCA-
annotated corpus.

1 Introduction

Syntactic structures are mainly committed to rep-
resenting the formal patterns of a language, and
only indirectly reflect semantic distinctions. For
instance, while virtually all syntactic annotation
schemes are sensitive to the structural difference
between (a) “John took a shower” and (b) “John
showered”, they seldom distinguish between (a)
and the markedly different (c) “John took my
book”. In fact, the annotations of (a) and (c) are
identical under the most widely-used schemes for
English, the Penn Treebank (PTB) (Marcus et al.,
1993) and CoNLL-style dependencies (Surdeanu
et al., 2008) (see Figure 1).

∗ Omri Abend is grateful to the Azrieli Foundation for
the award of an Azrieli Fellowship.

Underscoring the semantic similarity between
(a) and (b) can assist semantic applications. One
example is machine translation to target languages
that do not express this structural distinction (e.g.,
both (a) and (b) would be translated to the same
German sentence “John duschte”). Question An-
swering applications can also benefit from dis-
tinguishing between (a) and (c), as this knowl-
edge would help them recognize “my book” as a
much more plausible answer than “a shower” to
the question “what did John take?”.

This paper presents a novel approach to gram-
matical representation that annotates semantic dis-
tinctions and aims to abstract away from specific
syntactic constructions. We call our approach Uni-
versal Conceptual Cognitive Annotation (UCCA).
The word “cognitive” refers to the type of cate-
gories UCCA uses and its theoretical underpin-
nings, and “conceptual” stands in contrast to “syn-
tactic”. The word “universal” refers to UCCA’s
capability to accommodate a highly rich set of se-
mantic distinctions, and its aim to ultimately pro-
vide all the necessary semantic information for
learning grammar. In order to accommodate this
rich set of distinctions, UCCA is built as a multi-
layered structure, which allows for its open-ended
extension. This paper focuses on the foundational
layer of UCCA, a coarse-grained layer that rep-
resents some of the most important relations ex-
pressed through linguistic utterances, including ar-
gument structure of verbs, nouns and adjectives,
and the inter-relations between them (Section 2).

UCCA is supported by extensive typologi-
cal cross-linguistic evidence and accords with
the leading Cognitive Linguistics theories. We
build primarily on Basic Linguistic Theory (BLT)
(Dixon, 2005; 2010a; 2010b; 2012), a typological
approach to grammar successfully used for the de-
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scription of a wide variety of languages. BLT uses
semantic similarity as its main criterion for cate-
gorizing constructions both within and across lan-
guages. UCCA takes a similar approach, thereby
creating a set of distinctions that is motivated
cross-linguistically. We demonstrate UCCA’s rel-
ative insensitivity to paraphrasing and to cross-
linguistic variation in Section 4.

UCCA is exceptional in (1) being a semantic
scheme that abstracts away from specific syntactic
forms and is not defined relative to a specific do-
main or language, (2) providing a coarse-grained
representation which allows for open-ended ex-
tension, and (3) using cognitively-motivated cat-
egories. An extensive comparison of UCCA to ex-
isting approaches to syntactic and semantic repre-
sentation, focusing on the major resources avail-
able for English, is found in Section 5.

This paper also describes the compilation of a
UCCA-annotated corpus. We provide a quanti-
tative assessment of the annotation quality. Our
results show a quick learning curve and no sub-
stantial difference in the performance of annota-
tors with and without background in linguistics.
This is an advantage of UCCA over its syntactic
counterparts that usually need annotators with ex-
tensive background in linguistics (see Section 3).

We note that UCCA’s approach that advocates
automatic learning of syntax from semantic super-
vision stands in contrast to the traditional view of
generative grammar (Clark and Lappin, 2010).

2 The UCCA Scheme
2.1 The Formalism

UCCA uses directed acyclic graphs (DAGs) to
represent its semantic structures. The atomic
meaning-bearing units are placed at the leaves of
the DAG and are called terminals. In the founda-
tional layer, terminals are words and multi-word
chunks, although this definition can be extended
to include arbitrary morphemes.

The nodes of the graph are called units. A unit
may be either (i) a terminal or (ii) several ele-
ments jointly viewed as a single entity according
to some semantic or cognitive consideration. In
many cases, a non-terminal unit is comprised of a
single relation and the units it applies to (its argu-
ments), although in some cases it may also contain
secondary relations. Hierarchy is formed by using
units as arguments or relations in other units.

Categories are annotated over the graph’s edges,

and represent the descendant unit’s role in forming
the semantics of the parent unit. Therefore, the in-
ternal structure of a unit is represented by its out-
bound edges and their categories, while the roles
a unit plays in the relations it participates in are
represented by its inbound edges.

We note that UCCA’s structures reflect a single
interpretation of the text. Several discretely dif-
ferent interpretations (e.g., high vs. low PP at-
tachments) may therefore yield several different
UCCA annotations.

UCCA is a multi-layered formalism, where
each layer specifies the relations it encodes. The
question of which relations will be annotated
(equivalently, which units will be formed) is de-
termined by the layer in question. For example,
consider “John kicked his ball”, and assume our
current layer encodes the relations expressed by
“kicked” and by “his”. In that case, the unit “his”
has a single argument1 (“ball”), while “kicked”
has two (“John” and “his ball”). Therefore, the
units of the sentence are the terminals (which are
always units), “his ball” and “John kicked his
ball”. The latter two are units by virtue of express-
ing a relation along with its arguments. See Fig-
ure 2(a) for a graph representation of this example.

For a brief comparison of the UCCA formalism
with other dependency annotations see Section 5.

2.2 The UCCA Foundational Layer

The foundational layer is designed to cover the
entire text, so that each word participates in at
least one unit. It focuses on argument structures
of verbal, nominal and adjectival predicates and
the inter-relations between them. Argument struc-
ture phenomena are considered basic by many ap-
proaches to semantic and grammatical representa-
tion, and have a high applicative value, as demon-
strated by their extensive use in NLP.

The foundational layer views the text as a col-
lection of Scenes. A Scene can describe some
movement or action, or a temporally persistent
state. It generally has a temporal and a spatial di-
mension, which can be specific to a particular time
and place, but can also describe a schematized
event which refers to many events by highlight-
ing a common meaning component. For example,
the Scene “John loves bananas” is a schematized
event, which refers to John’s disposition towards
bananas without making any temporal or spatial

1The anaphoric aspects of “his” are not considered part of
the current layer (see Section 2.3).
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John took a shower -ROOT-

ROOT

SBJ
OBJ
NMOD

(a)
John showered -ROOT-

ROOTSBJ

(b)
John took my book -ROOT-

ROOT

SBJ
OBJ
NMOD

(c)

Figure 1: CoNLL-style dependency annotations. Note that (a) and (c), which have different semantics but superficially similar
syntax, have the same annotation.

Abb. Category Short Definition
Scene Elements

P Process The main relation of a Scene that evolves in time (usually an action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant A participant in a Scene in a broad sense (including locations, abstract entities and Scenes serving

as arguments).
D Adverbial A secondary relation in a Scene (including temporal relations).

Elements of Non-Scene Units
C Center Necessary for the conceptualization of the parent unit.
E Elaborator A non-Scene relation which applies to a single Center.
N Connector A non-Scene relation which applies to two or more Centers, highlighting a common feature.
R Relator All other types of non-Scene relations. Two varieties: (1) Rs that relate a C to some super-ordinate

relation, and (2) Rs that relate two Cs pertaining to different aspects of the parent unit.
Inter-Scene Relations

H Parallel
Scene

A Scene linked to other Scenes by regular linkage (e.g., temporal, logical, purposive).

L Linker A relation between two or more Hs (e.g., “when”, “if”, “in order to”).
G Ground A relation between the speech event and the uttered Scene (e.g., “surprisingly”, “in my opinion”).

Other
F Function Does not introduce a relation or participant. Required by the structural pattern it appears in.

Table 1: The complete set of categories in UCCA’s foundational layer.

specifications. The definition of a Scene is moti-
vated cross-linguistically and is similar to the se-
mantic aspect of the definition of a “clause” in Ba-
sic Linguistic Theory2.

Table 1 provides a concise description of the
categories used by the foundational layer3. We
turn to a brief description of them.
Simple Scenes. Every Scene contains one main
relation, which is the anchor of the Scene, the most
important relation it describes (similar to frame-
evoking lexical units in FrameNet (Baker et al.,
1998)). We distinguish between static Scenes, that
describe a temporally persistent state, and proces-
sual Scenes that describe a temporally evolving
event, usually a movement or an action. The main
relation receives the category State (S) in static and
Process (P) in processual Scenes. We note that
the S-P distinction is introduced here mostly for
practical purposes, and that both categories can be
viewed as sub-categories of the more abstract cat-
egory Main Relation.

A Scene contains one or more Participants (A).
2As UCCA annotates categories on its edges, Scene nodes

bear no special indication. They can be identified by examin-
ing the labels on their outgoing edges (see below).

3Repeated here with minor changes from (Abend and
Rappoport, 2013), which focuses on the categories them-
selves.

This category subsumes concrete and abstract par-
ticipants as well as embedded Scenes (see be-
low). Scenes may also contain secondary rela-
tions, which are marked as Adverbials (D).

The above categories are indifferent to the syn-
tactic category of the Scene-evoking unit, be it a
verb, a noun, an adjective or a preposition. For in-
stance, in the Scene “The book is in the garden”,
“is in” is the S, while “the book” and “the garden”
are As. In “Tomatoes are red”, the main static re-
lation is “are red”, while “Tomatoes” is an A.

The foundational layer designates a separate set
of categories to units that do not evoke a Scene.
Centers (C) are the sub-units of a non-Scene unit
that are necessary for the unit to be conceptualized
and determine its semantic type. There can be one
or more Cs in a non-Scene unit4.

Other sub-units of non-Scene units are catego-
rized into three types. First, units that apply to a
single C are annotated as Elaborators (E). For in-
stance, “big” in “big dogs” is an E, while “dogs” is
a C. We also mark determiners as Es in this coarse-
grained layer5. Second, relations that relate two or

4By allowing several Cs we avoid the difficulties incurred
by the common single head assumption. In some cases the
Cs are inferred from context and can be implicit.

5Several Es that apply to a single C are often placed in
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more Cs, highlighting a common feature or role
(usually coordination), are called Connectors (N).
See an example in Figure 2(b).

Relators (R) cover all other types of relations
between two or more Cs. Rs appear in two main
varieties. In one, Rs relate a single entity to a
super-ordinate relation. For instance, in “I heard
noise in the kitchen”, “in” relates “the kitchen”
to the Scene it is situated in. In the other, Rs re-
late two units pertaining to different aspects of the
same entity. For instance, in “bottom of the sea”,
“of” relates “bottom” and “the sea”, two units that
refer to different aspects of the same entity.

Some units do not introduce a new relation or
entity into the Scene, and are only part of the for-
mal pattern in which they are situated. Such units
are marked as Functions (F). For example, in the
sentence “it is customary for John to come late”,
the “it” does not refer to any specific entity or re-
lation and is therefore an F.

Two example annotations of simple Scenes are
given in Figure 2(a) and Figure 2(b).

More complex cases. UCCA allows units to
participate in more than one relation. This is a nat-
ural requirement given the wealth of distinctions
UCCA is designed to accommodate. Already in
the foundational layer of UCCA, the need arises
for multiple parents. For instance, in “John asked
Mary to join him”, “Mary” is a Participant of both
the “asking” and the “joining” Scenes.

In some cases, an entity or relation is prominent
in the interpretation of the Scene, but is not men-
tioned explicitly anywhere in the text. We mark
such entities as Implicit Units. Implicit units are
identical to terminals, except that they do not cor-
respond to a stretch of text. For example, “playing
games is fun” has an implicit A which corresponds
to the people playing the game.

UCCA annotates inter-Scene relations (linkage)
and, following Basic Linguistic Theory, distin-
guishes between three major types of linkage.
First, a Scene can be an A in another Scene. For
instance, in “John said he must leave”, “he must
leave” is an A inside the Scene evoked by “said”.
Second, a Scene may be an E of an entity in an-
other Scene. For instance, in “the film we saw yes-
terday was wonderful”, “film we saw yesterday” is
a Scene that serves as an E of “film”, which is both
an A in the Scene and the Center of an A in the

a flat structure. In general, the coarse-grained foundational
layer does not try to resolve fine scope issues.

John

A

kicked
P

his
E

ball
C

A

(a)

John

C

and

N

Mary

C

A

bought

P

a
E

sofa

C

A

together

D

(b)

the film

A

we

A

saw

P

yesterday

D

E

A

was

F

wonderful

C

S

E C

(c)

Figure 2: Examples of UCCA annotation graphs.

Scene evoked by “wonderful” (see Figure 2(c)).
A third type of linkage covers all other cases,

e.g., temporal, causal and conditional inter-Scene
relations. The linked Scenes in such cases are
marked as Parallel Scenes (H). The units speci-
fying the relation between Hs are marked as Link-
ers (L)6. As with other relations in UCCA, Linkers
and the Scenes they link are bound by a unit.

Unlike common practice in grammatical anno-
tation, linkage relations in UCCA can cross sen-
tence boundaries, as can relations represented in
other layers (e.g., coreference). UCCA therefore
annotates texts comprised of several paragraphs
and not individual sentences (see Section 3).

Example sentences. Following are complete
annotations of two abbreviated example sentences
from our corpus (see Section 3).
“Golf became a passion for his oldest daughter:
she took daily lessons and became very good,

reaching the Connecticut Golf Championship.”

This sentence contains four Scenes, evoked by
“became a passion”, “took daily lessons”, “be-
came very good” and “reaching”. The individual
Scenes are annotated as follows:

1. “GolfA [becameE aE passionC]P [forR hisE
oldestE daughterC]A”

6It is equally plausible to include Linkers for the other two
linkage types. This is not included in the current layer.
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2. “sheA [tookF [dailyE lessonsC]C]P ”

3. “sheA ... [becameE [veryE goodC]C]S”

4. “sheA ... reachingP [theE ConnecticutE
GolfE ChampionshipC ]A”

There is only one explicit Linker in this sen-
tence (“and”), which links Scenes (2) and (3).
None of the Scenes is an A or an E in the other, and
they are therefore all marked as Parallel Scenes.
We also note that in the case of the light verb
construction “took lessons” and the copula clauses
“became good” and “became a passion”, the verb
is not the Center of the main relation, but rather
the following noun or adjective. We also note that
the unit “she” is an A in Scenes (2), (3) and (4).

We turn to our second example:
“Cukor encouraged the studio to

accept her demands.”
This sentence contains three Scenes, evoked by

“encouraged”, “accept” and “demands”:

1. CukorA encouragedP [theE studioC]A [toR
[accept her demands]C ]A

2. [the studio]A ... acceptP [her demands]A
3. herA demandsP IMPA
Scenes (2) and (3) act as Participants in Scenes

(1) and (2) respectively. In Scene (2), there is
an implicit Participant which corresponds to what-
ever was demanded. Note that “her demands” is a
Scene, despite being a noun phrase.

2.3 UCCA’s Multi-layered Structure
Additional layers may refine existing relations or
otherwise annotate a complementary set of dis-
tinctions. For instance, a refinement layer can
categorize linkage relations according to their se-
mantic types (e.g., temporal, purposive, causal) or
provide tense distinctions for verbs. Another im-
mediate extension to UCCA’s foundational layer
can be the annotation of coreference relations. Re-
call the example “John kicked his ball”. A coref-
erence layer would annotate a relation between
“John” and “his” by introducing a new node whose
descendants are these two units. The fact that
this node represents a coreference relation would
be represented by a label on the edge connecting
them to the coreference node.

There are three common ways to extend an an-
notation graph. First, by adding a relation that re-
lates previously established units. This is done by
introducing a new node whose descendants are the
related units. Second, by adding an intermediate

Passage #
1 2 3 4 5 6

# Sents. 8 20 23 14 13 15
# Tokens 259 360 343 322 316 393

ITA 67.3 74.1 71.2 73.5 77.8 81.1
Vs. Gold 72.4 76.7 75.5 75.7 79.5 84.2

Correction 93.7

Table 2: The upper part of the table presents the number of
sentences and the number of tokens in the first passages used
for the annotator training. The middle part presents the av-
erage F-scores obtained by the annotators throughout these
passages. The first row presents the average F-score when
comparing the annotations of the different annotators among
themselves. The second row presents the average F-score
when comparing them to a “gold standard”. The bottom row
shows the average F-score between an annotated passage of
a trained annotator and its manual correction by an expert. It
is higher due to conforming analyses (see text). All F-scores
are in percents.

unit between a parent unit and some of its sub-
units. For instance, consider “he replied foolishly”
and “he foolishly replied”. A layer focusing on
Adverbial scope may refine the flat Scene structure
assigned by the foundational layer, expressing the
scope of “foolishly” over the relation “replied” in
the first case, and over the entire Scene in the sec-
ond. Third, by adding sub-units to a terminal. For
instance, consider “gave up”, an expression which
the foundational layer considers atomic. A layer
that annotates tense can break the expression into
“gave” and “up”, in order to annotate “gave” as the
tense-bearing unit.

Although a more complete discussion of the for-
malism is beyond the scope of this paper, we note
that the formalism is designed to allow different
annotation layers to be defined and annotated in-
dependently of one another, in order to facilitate
UCCA’s construction through a community effort.

3 A UCCA-Annotated Corpus
The annotated text is mostly based on English
Wikipedia articles for celebrities. We have chosen
this genre as it is an inclusive and diverse domain,
which is still accessible to annotators from varied
backgrounds.

For the annotation process, we designed and im-
plemented a web application tailored for UCCA’s
annotation. A sample of the corpus containing
roughly 5K tokens, as well as the annotation ap-
plication can be found in our website7.

UCCA’s annotations are not confined to a sin-
gle sentence. The annotation is therefore carried
out in passages of 300-400 tokens. After its an-

7www.cs.huji.ac.il/˜omria01
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notation, a passage is manually corrected before
being inserted into the repository.

The section of the corpus annotated thus far
contains 56890 tokens in 148 annotated passages
(average length of 385 tokens). Each passage con-
tains 450 units on average and 42.2 Scenes. Each
Scene contains an average of 2 Participants and 0.3
Adverbials. 15% of the Scenes are static (contain
an S as the main relation) and the rest are dynamic
(containing a P). The average number of tokens in
a Scene (excluding punctuation) is 10.7. 18.3%
of the Scenes are Participants in another Scene,
11.4% are Elaborator Scenes and the remaining
are Parallel Scenes. A passage contains an aver-
age of 11.2 Linkers.

Inter-annotator agreement. We employ 4 an-
notators with varying levels of background in lin-
guistics. Two of the annotators have no back-
ground in linguistics, one took an introductory
course and one holds a Bachelor’s degree in lin-
guistics. The training process of the annotators
lasted 30–40 hours, which includes the time re-
quired for them to get acquainted with the web
application. As this was the first large-scale trial
with the UCCA scheme, some modifications to the
scheme were made during the annotator’s training.
We therefore expect the training process to be even
faster in later distributions.

There is no standard evaluation measure for
comparing two grammatical annotations in the
form of labeled DAGs. We therefore converted
UCCA to constituency trees8 and, following stan-
dard practice, computed the number of brackets in
both trees that match in both span and label. We
derive an F-score from these counts.

Table 2 presents the inter-annotator agreement
in the training phase. The four annotators were
given the same passage in each of these cases. In
addition, a “gold standard” was annotated by the
authors of this paper. The table presents the av-
erage F-score between the annotators, as well as
the average F-score when comparing to the gold
standard. Results show that although it repre-
sents complex hierarchical structures, the UCCA
scheme is learned quickly and effectively.

We also examined the influence of prior linguis-
tic background on the results. In the first passage
there was a substantial advantage to the annotators

8In cases a unit had multiple parents, we discarded all but
one of its incoming edges. This resulted in discarding 1.9%
of the edges. We applied a simple normalization procedure to
the resulting trees.

who had prior training in linguistics. The obtained
F-scores when comparing to a gold standard, or-
dered decreasingly according to the annotator’s
acquaintance with linguistics, were 78%, 74.4%,
69.5% and 67.8%. However, this performance gap
quickly vanished. Indeed, the obtained F-scores,
again compared to a gold standard and averaged
over the next five training passages, were (by the
same order) 78.6%, 77.3%, 79.2% and 78%.

This is an advantage of UCCA over other syn-
tactic annotation schemes that normally require
highly proficient annotators. For instance, both
the PTB and the Prague Dependency Treebank
(Böhmová et al., 2003) employed annotators with
extensive linguistic background. Similar findings
to ours were reported in the PropBank project,
which successfully employed annotators with var-
ious levels of linguistic background. We view
this as a major advantage of semantic annotation
schemes over their syntactic counterparts, espe-
cially given the huge amount of manual labor re-
quired for large syntactic annotation projects.

The UCCA interface allows for multiple non-
contradictory (“conforming”) analyses of a stretch
of text. It assumes that in some cases there is
more than one acceptable option, each highlight-
ing a different aspect of meaning of the analyzed
utterance (see below). This makes the computa-
tion of inter-annotator agreement fairly difficult.
It also suggests that the above evaluation is exces-
sively strict, as it does not take into account such
conforming analyses. To address this issue, we
conducted another experiment where an expert an-
notator corrected the produced annotations. Com-
paring the corrected versions to the originals, we
found that F-scores are typically in the range of
90%–95%. An average taken over a sample of
passages annotated by all four annotators yielded
an F-score of 93.7%.

It is difficult to compare the above results to the
inter-annotator agreement of other projects for two
reasons. First, many existing schemes are based
on other annotation schemes or heavily rely on
automatic tools for providing partial annotations.
Second, some of the most prominent annotation
projects do not provide reliable inter-annotator
agreement scores (Artstein and Poesio, 2008).

A recent work that did report inter-annotator
agreement in terms of bracketing F-score is an an-
notation project of the PTB’s noun phrases with
more elaborate syntactic structure (Vadas and Cur-
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ran, 2011). They report an agreement of 88.3% in
a scenario where their two annotators worked sep-
arately. Note that this task is much more limited
in scope than UCCA (annotates noun phrases in-
stead of complete passages in UCCA; uses 2 cat-
egories instead of 12 in UCCA). Nevertheless, the
obtained inter-annotator agreement is comparable.
Disagreement examples. Here we discuss two
major types of disagreements that recurred in the
training process. The first is the distinction be-
tween Elaborators and Centers. In most cases this
distinction is straightforward, particularly where
one sub-unit determines the semantic type of the
parent unit, while its siblings add more informa-
tion to it (e.g., “truckE companyC” is a type of a
company and not of a truck). Some structures do
not nicely fall into this pattern. One such case is
with apposition. In the example “the Fox drama
Glory days”, both “the Fox drama” and “Glory
days” are reasonable candidates for being a Cen-
ter, which results in disagreements.

Another case is the distinction between Scenes
and non-Scene relations. Consider the example
“[John’s portrayal of the character] has been de-
scribed as ...”. The sentence obviously contains
two scenes, one in which John portrays a charac-
ter and another where someone describes John’s
doings. Its internal structure is therefore “John’sA
portrayalP [of the character]A”. However, the
syntactic structure of this unit leads annotators at
times into analyzing the subject as a non-Scene re-
lation whose C is “portrayal”.

Static relations tend to be more ambiguous be-
tween a Scene and a non-Scene interpretation.
Consider “Jane Smith (née Ross)”. It is not at all
clear whether “née Ross” should be annotated as a
Scene or not. Even if we do assume it is a Scene,
it is not clear whether the Scene it evokes is her
Scene of birth, which is dynamic, or a static Scene
which can be paraphrased as “originally named
Ross”. This leads to several conforming analyses,
each expressing a somewhat different conceptual-
ization of the Scene. This central notion will be
more elaborately addressed in future work.

We note that all of these disagreements can be
easily resolved by introducing an additional layer
focusing on the construction in question.

4 UCCA’s Benefits to Semantic Tasks

UCCA’s relative insensitivity to syntactic forms
has potential benefits for a wide variety of seman-

tic tasks. This section briefly demonstrates these
benefits through a number of examples.

Recall the example “John took a shower” (Sec-
tion 1). UCCA annotates the sentence as a sin-
gle Scene, with a single Participant and a proces-
sual main relation: “JohnA [tookF [aE showerC]C
]P ”. The paraphrase “John showered” is anno-
tated similarly: “JohnA showeredP ”. The struc-
ture is also preserved under translation to other
languages, such as German (“JohnA duschteP ”,
where “duschte” is a verb), or Portuguese “JohnA
[tomouF banhoC]P ” (literally, John took shower).
In all of these cases, UCCA annotates the example
as a Scene with an A and a P, whose Center is a
word expressing the notion of showering.

Another example is the sentence “John does
not have any money”. The foundational layer
of UCCA annotates negation units as Ds, which
yields the annotation “JohnA [doesF ]S- notD
[haveC]-S [anyE moneyC]A” (where “does ...
have” is a discontiguous unit)9. This sentence can
be paraphrased as “JohnA hasP noD moneyA”.
UCCA reflects the similarity of these two sen-
tences, as it annotates both cases as a single Scene
which has two Participants and a negation. A syn-
tactic scheme would normally annotate “no” in the
second sentence as a modifier of “money”, and
“not” as a negation of “have”.

The value of UCCA’s annotation can again be
seen in translation to languages that have only one
of these forms. For instance, the German transla-
tion of this sentence, “JohnA hatS keinD GeldA”,
is a literal translation of “John has no money”. The
Hebrew translation of this sentence is “eyn le john
kesef” (literally, “there-is-no to John money”).
The main relation here is therefore “eyn” (there-
is-no) which will be annotated as S. This yields
the annotation “eynS [leR JohnC]A kesefA”.

The UCCA annotation in all of these cases is
composed of two Participants and a State. In En-
glish and German, the negative polarity unit is rep-
resented as a D. The negative polarity of the He-
brew “eyn” is represented in a more detailed layer.

As a third example, consider the two sentences
“There are children playing in the park” and “Chil-
dren are playing in the park”. The two sentences
have a similar meaning but substantially different
syntactic structures. The first contains two clauses,
an existential main clause (headed by “there are”)

9The foundational layer places “not” in the Scene level to
avoid resolving fine scope issues (see Section 2)
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and a subordinate clause (“playing in the park”).
The second contains a simple clause headed by
“playing”. While the parse trees of these sentences
are very different, their UCCA annotation in the
foundational layer differ only in terms of Function
units: “ChildrenA [areF playingC]P [inR theE
parkC]A” and “ThereF areF childrenA [playing]P
[inR theE parkC]A”10.

Aside from machine translation, a great vari-
ety of semantic tasks can benefit from a scheme
that is relatively insensitive to syntactic variation.
Examples include text simplification (e.g., for sec-
ond language teaching) (Siddharthan, 2006), para-
phrase detection (Dolan et al., 2004), summariza-
tion (Knight and Marcu, 2000), and question an-
swering (Wang et al., 2007).

5 Related Work

In this section we compare UCCA to some of the
major approaches to grammatical representation in
NLP. We focus on English, which is the most stud-
ied language and the focus of this paper.

Syntactic annotation schemes come in many
forms, from lexical categories such as POS tags
to intricate hierarchical structures. Some for-
malisms focus particularly on syntactic distinc-
tions, while others model the syntax-semantics in-
terface as well (Kaplan and Bresnan, 1981; Pollard
and Sag, 1994; Joshi and Schabes, 1997; Steed-
man, 2001; Sag, 2010, inter alia). UCCA diverges
from these approaches in aiming to abstract away
from specific syntactic forms and to only represent
semantic distinctions. Put differently, UCCA ad-
vocates an approach that treats syntax as a hidden
layer when learning the mapping between form
and meaning, while existing syntactic approaches
aim to model it manually and explicitly.

UCCA does not build on any other annotation
layers and therefore implicitly assumes that se-
mantic annotation can be learned directly. Recent
work suggests that indeed structured prediction
methods have reached sufficient maturity to allow
direct learning of semantic distinctions. Examples
include Naradowsky et al. (2012) for semantic role
labeling and Kwiatkowski et al. (2010) for seman-
tic parsing to logical forms. While structured pre-
diction for the task of predicting tree structures
is already well established (e.g., (Suzuki et al.,

10The two sentences are somewhat different in terms of
their information structure (Van Valin Jr., 2005), which is rep-
resented in a more detailed UCCA layer.

2009)), recent work has also successfully tackled
the task of predicting semantic structures in the
form of DAGs (Jones et al., 2012).

The most prominent annotation scheme in NLP
for English syntax is the Penn Treebank. Many
syntactic schemes are built or derived from it. An
increasingly popular alternative to the PTB are
dependency structures, which are usually repre-
sented as trees whose nodes are the words of the
sentence (Ivanova et al., 2012). Such represen-
tations are limited due to their inability to natu-
rally represent constructions that have more than
one head, or in which the identity of the head
is not clear. They also face difficulties in repre-
senting units that participate in multiple relations.
UCCA proposes a different formalism that ad-
dresses these problems by introducing a new node
for every relation (cf. (Sangati and Mazza, 2009)).

Several annotated corpora offer a joint syntac-
tic and semantic representation. Examples in-
clude the Groningen Meaning bank (Basile et al.,
2012), Treebank Semantics (Butler and Yoshi-
moto, 2012) and the Lingo Redwoods treebank
(Oepen et al., 2004). UCCA diverges from these
projects in aiming to abstract away from syntac-
tic variation, and is therefore less coupled with a
specific syntactic theory.

A different strand of work addresses the con-
struction of an interlingual representation, often
with a motivation of applying it to machine trans-
lation. Examples include the UNL project (Uchida
and Zhu, 2001), the IAMTC project (Dorr et al.,
2010) and the AMR project (Banarescu et al.,
2012). These projects share with UCCA their
emphasis on cross-linguistically valid annotations,
but diverge from UCCA in three important re-
spects. First, UCCA emphasizes the notion of
a multi-layer structure where the basic layers are
maximally coarse-grained, in contrast to the above
works that use far more elaborate representations.
Second, from a theoretical point of view, UCCA
differs from these works in aiming to represent
conceptual semantics, building on works in Cog-
nitive Linguistics (e.g., (Langacker, 2008)). Third,
unlike interlingua that generally define abstract
representations that may correspond to several dif-
ferent texts, UCCA incorporates the text into its
structure, thereby facilitating learning.

Semantic role labeling (SRL) schemes bear
similarity to the foundational layer, due to their
focus on argument structure. The leading SRL ap-
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proaches are PropBank (Palmer et al., 2005) and
NomBank (Meyers et al., 2004) on the one hand,
and FrameNet (Baker et al., 1998) on the other. At
this point, all these schemes provide a more fine-
grained set of categories than UCCA.

PropBank and NomBank are built on top of the
PTB annotation, and provide for each verb (Prop-
Bank) and noun (NomBank), a delineation of their
arguments and their categorization into semantic
roles. Their structures therefore follow the syn-
tax of English quite closely. UCCA is generally
less tailored to the syntax of English (e.g., see sec-
ondary verbs (Dixon, 2005)).

Furthermore, PropBank and NomBank do not
annotate the internal structure of their arguments.
Indeed, the construction of the commonly used se-
mantic dependencies derived from these schemes
(Surdeanu et al., 2008) required a set of syntactic
head percolation rules to be used. These rules are
somewhat arbitrary (Schwartz et al., 2011), do not
support multiple heads, and often reflect syntac-
tic rather than semantic considerations (e.g., “mil-
lions” is the head of “millions of dollars”, while
“dollars” is the head of “five million dollars”).

Another difference is that PropBank and Nom-
Bank each annotate only a subset of predicates,
while UCCA is more inclusive. This difference
is most apparent in cases where a single complex
predicate contains both nominal and verbal com-
ponents (e.g., “limit access”, “take a shower”). In
addition, neither PropBank nor Nomabnk address
copula clauses, despite their frequency. Finally,
unlike PropBank and NomBank, UCCA’s founda-
tional layer annotates linkage relations.

In order to quantify the similarity between
UCCA and PropBank, we annotated 30 sentences
from the PropBank corpus with their UCCA anno-
tations and converted the outcome to PropBank-
style annotations11. We obtained an unlabeled
F-score of 89.4% when comparing to PropBank,
which indicates that PropBank-style annotations
are generally derivable from UCCA’s. The dis-
agreement between the schemes reflects both an-
notation conventions and principle differences,
some of which were discussed above.

The FrameNet project (Baker et al., 1998)

11The experiment was conducted on the first 30 sentences
of section 02. The identity of the predicates was determined
according to the PropBank annotation. We applied a simple
conversion procedure that uses half a dozen rules that are not
conditioned on any lexical item. We used a strict evaluation
that requires an exact match in the argument’s boundaries.

proposes a comprehensive approach to semantic
roles. It defines a lexical database of Frames, each
containing a set of possible frame elements and
their semantic roles. It bears similarity to UCCA
both in its use of Frames, which are a context-
independent abstraction of UCCA’s Scenes, and
in its emphasis on semantic rather than distribu-
tional considerations. However, despite these sim-
ilarities, FrameNet focuses on constructing a lex-
ical resource covering specific cases of interest,
and does not provide a fully annotated corpus of
naturally occurring text. UCCA’s foundational
layer can be seen as a complementary effort to
FrameNet, as it focuses on high-coverage, coarse-
grained annotation, while FrameNet is more fine-
grained at the expense of coverage.

6 Conclusion

This paper presented Universal Conceptual Cog-
nitive Annotation (UCCA), a novel framework
for semantic representation. We described the
foundational layer of UCCA and the compilation
of a UCCA-annotated corpus. We demonstrated
UCCA’s relative insensitivity to paraphrases and
cross-linguistic syntactic variation. We also dis-
cussed UCCA’s accessibility to annotators with no
background in linguistics, which can alleviate the
almost prohibitive annotation costs of large syn-
tactic annotation projects.

UCCA’s representation is guided by conceptual
notions and has its roots in the Cognitive Linguis-
tics tradition and specifically in Cognitive Gram-
mar (Langacker, 2008). These theories represent
the meaning of an utterance according to the men-
tal representations it evokes and not according to
its reference in the world. Future work will ex-
plore options to further reduce manual annotation,
possibly by combining texts with visual inputs
during training.

We are currently attempting to construct a
parser for UCCA and to apply it to several seman-
tic tasks, notably English-French machine trans-
lation. Future work will also discuss UCCA’s
portability across domains. We intend to show
that UCCA, which is less sensitive to the idiosyn-
crasies of a specific domain, can be easily adapted
to highly dynamic domains such as social media.
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Abstract

Many current Natural Language Process-
ing [NLP] techniques work well assum-
ing a large context of text as input data.
However they become ineffective when
applied to short texts such as Twitter feeds.
To overcome the issue, we want to find
a related newswire document to a given
tweet to provide contextual support for
NLP tasks. This requires robust model-
ing and understanding of the semantics of
short texts.

The contribution of the paper is two-fold:
1. we introduce the Linking-Tweets-to-
News task as well as a dataset of linked
tweet-news pairs, which can benefit many
NLP applications; 2. in contrast to previ-
ous research which focuses on lexical fea-
tures within the short texts (text-to-word
information), we propose a graph based
latent variable model that models the in-
ter short text correlations (text-to-text in-
formation). This is motivated by the ob-
servation that a tweet usually only cov-
ers one aspect of an event. We show that
using tweet specific feature (hashtag) and
news specific feature (named entities) as
well as temporal constraints, we are able to
extract text-to-text correlations, and thus
completes the semantic picture of a short
text. Our experiments show significant im-
provement of our new model over base-
lines with three evaluation metrics in the
new task.

1 Introduction

Recently there has been an increasing interest in
language understanding of Twitter messages. Re-
searchers (Speriosui et al., 2011; Brody and Di-
akopoulos, 2011; Jiang et al., 2011) were in-

terested in sentiment analysis on Twitter feeds,
and opinion mining towards political issues or
politicians (Tumasjan et al., 2010; Conover et al.,
2011). Others (Ramage et al., 2010; Jin et al.,
2011) summarized tweets using topic models. Al-
though these NLP techniques are mature, their
performance on tweets inevitably degrades, due to
the inherent sparsity in short texts. In the case
of sentiment analysis, while people are able to
achieve 87.5% accuracy (Maas et al., 2011) on a
movie review dataset (Pang and Lee, 2004), the
performance drops to 75% (Li et al., 2012) on
a sentence level movie review dataset (Pang and
Lee, 2005). The problem worsens when some
existing NLP systems cannot produce any results
given the short texts. Considering the following
tweet:

Pray for Mali...

A typical event extraction/discovery system (Ji
and Grishman, 2008) fails to discover the war
event due to the lack of context information (Ben-
son et al., 2011), and thus fails to shed light on the
users focus/interests.

To enable the NLP tools to better understand
Twitter feeds, we propose the task of linking a
tweet to a news article that is relevant to the tweet,
thereby augmenting the context of the tweet. For
example, we want to supplement the implicit con-
text of the above tweet with a news article such as
the following entitled:

State of emergency declared in Mali

where abundant evidence can be fed into an off-
the-shelf event extraction/discovery system. To
create a gold standard dataset, we download tweets
spanning over 18 days, each with a url linking to a
news article of CNN or NYTIMES, as well as all
the news of CNN and NYTIMES published during
the period. The goal is to predict the url referred
news article based on the text in each tweet.1 We

1The data and code is publicly available at www.cs.
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believe many NLP tasks will benefit from this task.
In fact, in the topic modeling research, previous
work (Jin et al., 2011) already showed that by in-
corporating webpages whose urls are contained
in tweets, the tweet clustering purity score was
boosted from 0.280 to 0.392.

Given the few number of words in a tweet (14
words on average in our dataset), the traditional
high dimensional surface word matching is lossy
and fails to pinpoint the news article. This con-
stitutes a classic short text semantics impediment
(Agirre et al., 2012). Latent variable models are
powerful by going beyond the surface word level
and mapping short texts into a low dimensional
dense vector (Socher et al., 2011; Guo and Diab,
2012b). Accordingly, we apply a latent variable
model, namely, the Weighted Textual Matrix Fac-
torization [WTMF] (Guo and Diab, 2012b; Guo
and Diab, 2012c) to both the tweets and the news
articles. WTMF is a state-of-the-art unsupervised
model that was tested on two short text similar-
ity datasets: (Li et al., 2006) and (Agirre et al.,
2012), which outperforms Latent Semantic Anal-
ysis [LSA] (Landauer et al., 1998) and Latent
Dirichelet Allocation [LDA] (Blei et al., 2003) by
a large margin. We employ it as a strong baseline
in this task as it exploits and effectively models the
missing words in a tweet, in practice adding thou-
sands of more features for the tweet, by contrast
LDA, for example, only leverages observed words
(14 features) to infer the latent vector for a tweet.

Apart from the data sparseness, our dataset pro-
poses another challenge: a tweet usually covers
only one aspect of an event. In our previous ex-
ample, the tweet only contains the location Mali
while the event is about French army participated
in Mali war. In this scenario, we would like to find
the missing elements of the tweet such as French,
war from other short texts, to complete the seman-
tic picture of Pray in Mali tweet. One drawback
of WTMF for our purposes is that it simply mod-
els the text-to-word information without leverag-
ing the correlation between short texts. While
this is acceptable on standard short text similarity
datasets (data points are independently generated),
it ignores some valuable information characteristi-
cally present in our dataset: (1) The tweet specific
features such as hashtags. Hashtags prove to be
a direct indication of the semantics of tweets (Ra-
mage et al., 2010); (2) The news specific features

columbia.edu/˜weiwei

such as named entities in a document. Named en-
tities acquired from a news document, typically
with high accuracy using Named Entity Recog-
nition [NER] tools, may be particularly informa-
tive. If two texts mention the same entities then
they might describe the same event; (3) The tem-
poral information in both genres (tweets and news
articles). We note that there is a higher chance
of event description overlap between two texts if
their time of publication is similar.

In this paper, we study the problem of min-
ing and exploiting correlations between texts us-
ing these features. Two texts may be considered
related or complementary if they share a hash-
tag/NE or satisfies the temporal constraints. Our
proposed latent variable model not only models
text-to-word information, but also is aware of the
text-to-text information (illustrated in Figure 1):
two linked texts should have similar latent vec-
tors, accordingly the semantic picture of a tweet is
completed by receiving semantics from its related
tweets. We incorporate this additional information
in the WTMF model. We also show the differ-
ent impact of the text-to-text relations in the tweet
genre and news genre. We are able to achieve sig-
nificantly better results than with a text-to-words
WTMF model. This work can be regarded as a
short text modeling approach that extends previ-
ous work however with a focus on combining the
mining of information within short texts coupled
with utilizing extra shared information across the
short texts.

2 Task and Data

The task is given the text in a tweet, a system aims
to find the most relevant news article. For gold
standard data, we harvest all the tweets that have a
single url link to a CNN or NYTIMES news arti-
cle, dated from the 11th of Jan to the 27th of Jan,
2013. In evaluation, we consider this url-referred
news article as the gold standard – the most rele-
vant document for the tweet, and remove the url
from the text of the tweet. We also collect all the
news articles from both CNN and NYTIMES from
RSS feeds during the same timeframe. Each tweet
entry has the published time, author, text; each
news entry contains published time, title, news
summary, url. The tweet/news pairs are extracted
by matching urls. We manually filtered “trivial”
tweets where the tweet content is simply the news
title or news summary. The final dataset results in
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Figure 1: (a) WTMF. (b) WTMF-G: the tweet nodes t and news nodes n are connected by hashtags, named entities or
temporal edges (for simplicity, the missing tokens are not shown in the figure)

34,888 tweets and 12,704 news articles.
It is worth noting that the news corpus is not

restricted to current events. It covers various gen-
res and topics, such as travel guides. e.g. World’s
most beautiful lakes, and health issues, e.g. The
importance of a ‘stop day’, etc.

2.1 Evaluation metric

For our task evaluation, ideally, we would like
the system to be able to identify the news arti-
cle specifically referred to by the url within each
tweet in the gold standard. However, this is very
difficult given the large number of potential can-
didates, especially those with slight variations.
Therefore, following the Concept Definition Re-
trieval task in (Guo and Diab, 2012b) and (Steck,
2010) we use a metric for evaluating the ranking
of the correct news article to evaluate the systems,
namely, ATOPt, area under the TOPKt(k) recall
curve for a tweet t. Basically, it is the normal-
ized ranking ∈ [0, 1] of the correct news article
among all candidate news articles: ATOPt = 1
means the url-referred news article has the highest
similarity value with the tweet (a correct NARU);
ATOPt = 0.95 means the similarity value with
correct news article is larger than 95% of the can-
didates, i.e. within the top 5% of the candidates.
ATOPt is calculated as follows:

ATOPt =
∫ 1

0
TOPKt(k)dk (1)

where TOPKt(k) = 1 if the url referred news arti-
cle is in the “top k” list, otherwise TOPKt(k) = 0.
Here k ∈ [0, 1] is the relative position (when
k = 1, it means all the candidates).

We also include other metrics to examine if the
system is able to rank the url referred news arti-
cle in the first few returned results: TOP10 recall
hit rate to evaluate whether the correct news is in
the top 10 results, and RR, Reciprocal Rank= 1/r

(i.e., RR= 1/3 when the correct news article is
ranked at the 3rd highest place).

3 Weighted Textual Matrix Factorization

The WTMF model (Guo and Diab, 2012a) has
been successfully applied to the short text simi-
larity task, achieving state-of-the-art unsupervised
performance. This can be attributed to the fact that
it models the missing tokens as features, thereby
adding many more features for a short text. The
missing words of a sentence are defined as all the
vocabulary of the training corpus minus the ob-
served words in a sentence. Missing words serve
as negative examples for the semantics of a short
text: the short text should not be related to the
missing words.

As per (Guo and Diab, 2012b), the corpus is
represented in a matrix X , where each cell stores
the TF-IDF values of words. The rows of X are
words and columns are short texts. As in Figure
2, matrix X is approximated by the product of a
K×M matrix P and a K×N matrix Q. Accord-
ingly, each sentence sj is represented by a K di-
mensional latent vector Q·,j . Similarly a word wi
is generalized by P·,i. Therefore, the inner product
of a word vector P·,i and a short text vector Q·,j is
to approximate the cell Xij (shaded part in Figure
2). In this way, the missing words are modeled by
requiring the inner product of a word vector and
short text vector to be close to 0 (the word and the
short text should be irrelevant).

Since 99% cells in X are missing tokens (0
value), the impact of observed words is signifi-
cantly diminished. Therefore a small weight wm
is assigned for each 0 cell (missing tokens) in the
matrix X in order to preserve the influence of ob-
served words. P andQ are optimized by minimize
the objective function:
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Figure 2: Weighted Textual Matrix Factorization

∑

i

∑

j

Wij (P·,i ·Q·,j −Xij)2 + λ||P ||22 + λ||Q||22

Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0

(2)

where λ is a regularization term.

4 Creating Text-to-text Relations via
Twitter/News Features

WTMF exploits the text-to-word information in a
very nuanced way, while the dependency between
texts is ignored. In this Section, we introduce how
to create text-to-text relations.

4.1 Hashtags and Named Entities

Hashtags highlight the topics in tweets, e.g., The
#flu season has started. We believe two tweets
sharing the same hashtag should be related, hence
we place a link between them to explicitly inform
the model that these two tweets should be similar.

We find only 8,701 tweets out of 34,888 include
hashtags. In fact, we observe many hashtag words
are mentioned in tweets without explicitly being
tagged with #. To overcome the hashtag sparse-
ness issue, one can resort to keywords recommen-
dation algorithms to mine hashtags for the tweets
(Yang et al., 2012). In this paper, we adopt a sim-
ple but effective approach: we collect all the hash-
tags in the dataset, and automatically hashtag any
word in a tweet if that word appears hashtagged in
any other tweets. This process resulted in 33,242
tweets automatically labeled with hashtags. For
each tweet, and for each hashtag it contains, we
extract k tweets that contain this hashtag, assum-
ing they are complementary to the target tweet,
and link the k tweets to the target tweet. If there
are more than k tweets found, we choose the top
k ones that are most chronologically close to the
target tweet. The statistics of links can be found in
table 2.

Named entities are some of the most salient fea-
tures in a news article. Directly applying Named
Entity Recognition (NER) tools on news titles or

tweets results in many errors (Liu et al., 2011) due
to the noise in the data, such as slang and capital-
ization. Accordingly, we first apply the NER tool
on news summaries, then label named entities in
the tweets in the same way as labeling the hash-
tags: if there is a string in the tweet that matches
a named entity from the summaries, then it is la-
beled as a named entity in the tweet. 25,132 tweets
are assigned at least one named entity.2 To create
the similar tweet set, we find k tweets that also
contain the named entity.

4.2 Temporal Relations

Tweets published in the same time interval have
a larger chance of being similar than those are
not chronologically close (Wang and McCallum,
2006). However, we cannot simply assume any
two tweets are similar only based on the times-
tamp. Therefore, for a tweet we link it to the
k most similar tweets whose published time is
within 24 hours of the target tweet’s timestamp.
We use the similarity score returned by WTMF
model to measure the similarity of two tweets.

We experimented with other features such as au-
thorship. We note that it was not a helpful feature.
While authorship information helps in the task of
news/tweets recommendation for a user (Corso et
al., 2005; Yan et al., 2012), the authorship infor-
mation is too general for this task where we target
on “recommending” a news article for a tweet.

4.3 Creating Relations on News

We extract the 3 subgraphs (based on hash-
tags, named entities and temporal) on news ar-
ticles. However, automatically tagging hashtags
or named entities leads to much worse perfor-
mance (around 93% ATOP values, a 3% decrease
from baseline WTMF). There are several reasons
for this: 1. When a hashtag-matched word ap-
pears in a tweet, it is often related to the central
meaning of the tweet, however news articles are
generally much longer than tweets, resulting in
many more hashtags/named entities matches even
though these named entities may not be closely re-
lated. 2. The noise introduced during automatic
NER accumulates much faster given the large
number of named entities in news data. There-
fore we only extract temporal relations for news
articles.

2Note that there are some false positive named entities
detected such as apple. We plan to address removing noisy
named entities and hashtags in future work
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5 WTMF on Graphs

We propose a novel model to incorporate the links
generated as described in the previous section.

If two texts are connected by a link, it means
they should be semantically similar. In the WTMF
model, we would like the latent vectors of two
text nodes Q·,j1 , Q·,j2 to be as similar as possible,
namely that their cosine similarity to be close to 1.
To implement this, we add a regularization term in
the objective function of WTMF (equation 2) for
each linked pairs Q·,j1 , Q·,j2 :

δ · ( Q·,j1 ·Q·,j2|Q·,j1 ||Q·,j2 |
− 1)2 (3)

where |Q·,j | denotes the length of vectorQ·,j . The
coefficient δ denotes the importance of the text-to-
text links. A larger δ means we put more weights
on the text-to-text links and less on the text-to-
word links. We refer to this model as WTMF-G
(WTMF on graphs).

5.1 Inference
Alternating Least Square [ALS] is used for in-
ference in weighted matrix factorization (Srebro
and Jaakkola, 2003). However, ALS is no longer
applicable here with the new regularization term
(equation 3) involving the length of text vectors
|Q·,j |, which is not in quadratic form. Therefore
we approximate the objective function by treating
the vector length |Q·,j | as fixed values during the
ALS iterations:

P·,i =
(
QW̃

(i)
Q
>

+ λI
)−1

QW̃
(i)
X·,i

Q·,j =
(
PW̃

(j)
P
>

+ λI + δL
2
(j)Q·,s(j)diag(L2

(s(j)))Q
>
·,s(j)

)−1

(
PW̃

(j)
X
>
j,· + δL(j)Q·,s(j)Ln(j)

)

(4)

We define n(j) as the linked neighbors of short
text j, and Q·,n(j) as the set of latent vectors of
j’s neighbors. The reciprocal of length of these
vectors in the current iteration are stored in Ls(j).
Similarly, the reciprocal of the length of the short
text vector Q·,j is Lj . W̃ (i) = diag(W·,i) is an
M ×M diagonal matrix containing the ith row of
weight matrixW . Due to limited space, the details
of the optimization are not shown in this paper;
they can be found in (Steck, 2010).

6 Experiments

6.1 Experiment Setting
Corpora: We use the same corpora as in (Guo
and Diab, 2012b): Brown corpus (each sentence is

treated as a document), sense definitions of Wik-
tionary and Wordnet (Fellbaum, 1998). The tweets
and news articles are also included in the cor-
pus, generating 441,258 short texts and 5,149,122
words. The data is tokenized, POS-tagged by
Stanford POS tagger (Toutanova et al., 2003),
and lemmatized by WordNet::QueryData.pm. The
value of each word in matrixX is its TF-IDF value
in the short text.
Baselines: We present 4 baselines: 1. Informa-
tion Retrieval model [IR], which simply treats a
tweet as a document, and performs traditional sur-
face word matching. 2. LDA-θ with Gibbs Sam-
pling as inference method. We use the inferred
topic distribution θ as a latent vector to represent
the tweet/news. 3. LDA-wvec. The problem with
LDA-θ is the inferred topic distribution latent vec-
tor is very sparse with only a few non-zero val-
ues, resulting in many tweet/news pairs receiving
a high similarity value as long as they are in the
same topic domain. Hence following (Guo and
Diab, 2012b), we first compute the latent vector
of a word by P (z|w) (topic distribution per word),
then average the word latent vectors weighted by
TF-IDF values to represent the short text, which
yields much better results. 4. WTMF. In these
baselines, hashtags and named entities are simply
treated as words.

To curtail variation in results due to random-
ness, each reported number is the average of 10
runs. For WTMF and WTMF-G, we assign the
same initial random values and run 20 iterations.
In both systems we fix the missing words weight
as wm = 0.01 and regularization coefficient at
λ = 20, which is the best condition of WTMF
found in (Guo and Diab, 2012b; Guo and Diab,
2012c). For LDA-θ and LDA-wvec, we run Gibbs
Sampling based LDA for 2000 iterations and aver-
age the model over the last 10 iterations.
Evaluation: The similarity between a tweet and
a news article is measured by cosine similarity. A
news article is represented as the concatenation of
its title and its summary, which yields better per-
formance.3

As in (Guo and Diab, 2012b), for each tweet,
we collect the 1,000 news articles published prior
to the tweet whose dates of publication are clos-
est to that of the tweet. 4 The cosine similarity

3While these are separated, WTMF receive ATOP
95.558% for representing news article as titles and 94.385%
for representing news article as summaries

4Ideally we want to include all the news articles published
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Models Parameters ATOP TOP10 RR
dev test dev test dev test

IR - 90.795% 90.743% 73.478% 74.103% 46.024% 46.281%
LDA-θ α = 0.05, β = 0.05 81.368% 81.251% 32.328% 31.207% 13.134% 12.469%

LDA-wvec α = 0.05, β = 0.05 94.148% 94.196% 53.500% 53.952% 28.743% 27.904%
WTMF - 95.964% 96.092% 75.327% 76.411% 45.310% 46.270%

WTMF-G k = 3, δ = 3 96.450% 96.543% 76.485% 77.479% 47.516% 48.665%
WTMF-G k = 5, δ = 3 96.613% 96.701% 76.029% 77.176% 47.197% 48.189%
WTMF-G k = 4, δ = 3 96.510% 96.610% 77.782% 77.782% 47.917% 48.997%

Table 1: ATOP Performance (latent dimension D = 100 for LDA/WTMF/WTMF-G)
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Figure 3: Impact of δ (D = 100, k = 4)

score between the url referred news article and the
tweet is compared against the scores of these 1,000
news articles to calculate the metric scores. 1/10 of
the tweet/news pairs are used as development set,
based on which all the parameters are tuned. The
metrics ATOP, TOP10 and RR are used to evaluate
the performance of systems.

6.2 Results
Table 1 summarizes the performance of the base-
lines and WTMF-G at latent dimension D = 100.
All the parameters are chosen based on the de-
velopment set. For WTMF-G, we try different
values of k (the number of neighbors linked to a
tweet/news for a hashtag/NE/time constraint) and
δ (the weight of link information). We choose to
model the links in four subgraphs: (a) hashtags
in tweet; (b) named entities in tweet; (c) time in
tweet; (d) time in news article. For LDA we tune
the hyperparameter α (Dirichlet prior for topic dis-
tribution of a document) and β (Dirichlet prior for
word distribution given a topic). It is worth noting
that ATOP measures the overall ranking in 1000
samples while TOP10/RR focus on whether the
aligned news article is in the first few returned re-
sults.

Same as reported in (Guo and Diab, 2012b),
LDA-θ has the worst results due to directly using
prior to the tweet, however, that will give a bias to some
tweets, since the latter tweets have a larger candidate set than
the earlier ones

the inferred topic distribution of a text θ. The in-
ferred topic vector has only a few non-zero values,
hence a lot of information is missing. LDA-wvec
preserves more information by creating a dense la-
tent vector from the topic distribution of a word
P (z|w), and thus does much better in ATOP.

It is interesting to see that IR model has a
very low ATOP (90.795%) and an acceptable RR
(46.281%) score, in contrast to LDA-wvec with
a high ATOP (94.148%) and a low RR(27.904%)
score. This is caused by the nature of the two mod-
els. LDA-wvec is able to identify global coarse
grained topic information (such as politics vs. eco-
nomics), hence receiving a high ATOP by exclud-
ing the most irrelevant news articles, however it
does not distinguish fine grained difference such
as Hillary vs. Obama. IR model exerts the oppo-
site influence via word matching. It ranks a cor-
rect news article very high if overlapping words
exist (leading to a high RR), or the news article is
ranked very low if no overlapping words (hence a
low ATOP).

We can conclude WTMF is a very strong base-
line given that it achieves high scores with three
metrics. As a latent variable model, it is able to
capture global topics (+1.89% ATOP over LDA-
wvec); moreover, by explicitly modeling missing
words, the existence of a word is also encoded in
the latent vector (+2.31% TOP10 and −0.011%
RR over IR model).
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Figure 4: Impact of latent dimension D (k = 4)

Conditions Links ATOP TOP10 RR
dev test dev test dev test

hashtags tweets 375,371 +0.397% +0.379% +1.015% +1.021% +0.504% +0.641%
NE tweets 164,412 +0.141% +0.130% +0.598% +0.479% +0.278% +0.294%
time tweet 139,488 +0.126% +0.136% +0.512% +0.503% +0.241% +0.327%
time news 50,008 +0.036% +0.026% +0.156% +0.256% +1.890% +1.924%

full model (all 4 subgraphs) 573,999 +0.546% +0.518% +1.556% +1.371% +2.607% +2.727%
full model minus hashtags tweets 336,963 +0.288% +0.276% +1.129% +1.037% +2.488% +2.541%

full model minus NE tweets 536,333 +0.528% +0.503% +1.518% +1.393% +2.580% +2.680%
full model minus time tweet 466,207 +0.457% +0.426% +1.281% +1.145% +2.449% +2.554%
full model minus time news 523,991 +0.508% +0.490% +1.300% +1.190% +0.632% +0.785%

author tweet 21,318 +0.043% +0.042% +0.028% +0.057% −0.003% −0.017%
full model plus author tweet 593,483 +0.575% +0.545% +1.465% +1.336% +2.415% +2.547%

Table 2: Contribution of subgraphs when D = 100, k = 4, δ = 3 (gain over baseline WTMF)

With WTMF being a very challenging baseline,
WTMF-G can still significantly improve all 3 met-
rics. In the case k = 4, δ = 3 compared to WTMF,
WTMF-G receives +1.371% TOP10, +2.727%
RR, and +0.518% ATOP value (this is a signifi-
cant improvement of ATOP value considering that
it is averaged on 30,000 data points, at an already
high level of 96% reducing error rate by 13%). All
the improvement of WTMF-G over WTMF is sta-
tistically signicant at the 99% condence level with
a two-tailed paired t-test.

We also present results using different number
of links k in WTMF-G in table 1. We experi-
ment with k = {3, 4, 5}. k = 4 is found to
be the optimal value (although k = 5 has a bet-
ter ATOP). Figure 3 demonstrates the impact of
δ = {0, 1, 2, 3, 4} on each metric when k = 4.
Note when δ = 0 no link is used, which is the
baseline WTMF. We can see using links is always
helpful. When δ = 4, we receive a higher ATOP
value but lower TOP10 and RR.

Figure 4 illustrates the impact of dimension
D = {50, 75, 100, 125, 150} on WTMF and
WTMF-G (k = 4) on the test set. The trends
hold in different D values with a consistent im-
provement. Generally a larger D leads to a better
performance. In all conditions WTMF-G outper-
forms WTMF.

6.3 Contribution of Subgraphs

We are interested in the contribution of each fea-
ture subgraph. Therefore we list the impact of
individual components in table 2. The impact of
each subgraph is evaluated in two conditions: (a)
the subgraph-only; (b) the full-model-minus the
subgraph. The full model is the combination of the
4 subgraphs (which is also the best model k = 4
in table 1). In the last two rows of table 2 we also
present the results of using authorship only and the
full model plus authorship. The 2nd column lists
the number of links in the subgraph. To highlight
the difference, we report the gain of each model
over the baseline model WTMF.

We have several interesting observations from
table 2. It is clear that the hashtag sub-
graph on tweets is the most useful subgraph:
with hashtag tweet it has the best ATOP and
TOP10 values among subgraph-only condition
(ATOP: +0.379% vs. 2nd best +0.136%, TOP10:
+1.021% vs. 2nd best +0.503%), while in the
full-model-minus condition, minus hashtag has
the lowest ATOP and TOP10. Observing that it
also contains the most links, we believe the cover-
age is another important reason for the great per-
formance.

It seems the named entity subgraph helps the
least. Looking into the extracted named entities
and hashtags, we find many popular named enti-
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ties are covered by hashtags. That said, adding
named entity subgraph into final model has a pos-
itive contribution.

It is worth noting that the time news subgraph
has the most positive influence on RR. This is be-
cause temporal information is very salient in news
domain: usually there are several reports to de-
scribe an event within a short period, therefore the
news latent vector is strengthened by receiving se-
mantics from its neighbors.

At last, we analyze the influence of author-
ship of tweets. Adding authorship into the full
model greatly hurts the scores of TOP10 and RR,
whereas it is helpful to ATOP. This is understand-
able since by introducing author links between
tweets, to some degree we are averaging the la-
tent vectors of tweets written by the same per-
son. Therefore, for a tweet whose topic is vague
and hard to detect, it will get some prior knowl-
edge of topics through the author links (hence in-
crease ATOP), whereas this prior knowledge be-
comes noise for the tweets that are already handled
very well by the model (hence decrease TOP10
and RR).

6.4 Error Analysis
We look closely into ATOP results to obtain an in-
tuitive feel for what is captured and what is not.
For example, the ATOP score of WTMF for the
tweet-news pair below is 89.9%:

Tweet: ...stoked growing speculation that Pak-
istan’s powerful military was quietly supporting
moves... @declanwalsh
News: Pakistan Supreme Court Orders Arrest of
Prime Minister

By identifying “Pakistan” and “Supreme Court”
as hashtags/named entity, WTMF-G is able to
propagate the semantics from the following two
informative tweets to the original tweet, hence
achieving a higher ATOP score of 91.9%.

#Pakistan Supreme Court orders the arrest of the
PM on corruption charges.
A discouraging sign from a tumultuous political
system: Pakistan’s Supreme Court ordered the ar-
rest of PM Ashraf today.

Below is an example that shows the deficiency of
both WTMF and WTMF-G:
Tweet: Another reason to contemplate moving: an
early death
News: America flunks its health exam

In this case WTMF and WTMF-G achieve a

low ATOP of 69.8% and 75.1%, respectively. The
only evidence the latent variable models rely on
is lexical items (WTMF-G extract additional text-
to-text correlation by word matching). To pin-
point the url referred news articles, other advanced
NLP features should be exploited. In this case, we
believe sentiment information could be helpful –
both tweet and the news article contain a negative
polarity.

7 Related Work

Short Text Semantics: The field of short text se-
mantics has progressed immensely in recent years.
Early work focus on word pair similarity in the
high dimensional space. The word pair similarity
is either knowledge based (Mihalcea et al., 2006;
Tsatsaronis et al., 2010) or corpus based (Li et
al., 2006; Islam and Inkpen, 2008), where co-
occurrence information cannot be efficiently ex-
ploited. Guo and Diab (2012b; 2012a; 2013) show
the superiority of the latent space approach in the
WTMF model achieving state-of-the-art perfor-
mance on two datasets. However, all of them only
reply on text-to-word information. In this paper,
we focus on modeling inter-text relations induced
by Twitter/news features. We extend the WTMF
model and adapt it into tweets modeling, achiev-
ing significantly better results.
Modeling Tweets in a Latent Space: Ramage
et al. (2010) also use hashtags to improve the la-
tent representation of tweets in a LDA framework,
Labeled-LDA (Ramage et al., 2009), treating each
hashtag as a label. Similar to the experiments pre-
sented in this paper, the result of using Labeled-
LDA alone is worse than the IR model, due to the
sparseness in the induced LDA latent vector. Jin et
al. (2011) apply an LDA based model on cluster-
ing by incorporating url referred documents. The
semantics of long documents are transferred to the
topic distribution of tweets.
News recommendation: A news recommen-
dation system aims to recommend news articles
to a user based on the features (e.g., key words,
tags, category) in the documents that the user likes
(hence these documents form a training set) (Clay-
pool et al., 1999; Corso et al., 2005; Lee and Park,
2007). Our paper resembles it in searching for a
related news article. However, we target on rec-
ommending news article only based on a tweet,
which is a much smaller context than the set of
favorite documents chosen by a user .
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Research on Tweets: In (Duan et al., 2010), url
availability is an important feature for tweets rank-
ing. However, the number of tweets with an ex-
plicit url is very limited. Huang et al. (2012) pro-
pose a graph-based framework to propagate tweet
ranking scores, where relevant web documents is
found to be helpful to discover informative tweets.
Both work can take advantage of our work to ei-
ther extract potential url features or retrieve topi-
cally similar web documents.

(Sankaranarayanan et al., 2009) aims at captur-
ing tweets that correspond to late breaking news.
However, they cluster tweets and simply choose
a url referred news in those tweets as the related
news for the whole cluster (the urls are visible
to the systems). (Abel et al., 2011) is most re-
lated work to our paper, however their focus is the
user profiling task, therefore they do not provide
a paired tweet/news data set and have to conduct
manual evaluation.

8 Conclusion

We propose a Linking-Tweets-to-News task,
which potentially benefits many NLP applications
where off-the-shelf NLP tools can be applied to
the most relevant news. We also collect a gold
standard dataset by crawling tweets each with a url
referring to a news article. We formalize the link-
ing task as a short text modeling problem, and ex-
tract Twitter/news specific features to extract text-
to-text relations, which are incorporated into a la-
tent variable model. We achieve significant im-
provement over baselines.
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Abstract

We propose a computational framework
for identifying linguistic aspects of polite-
ness. Our starting point is a new corpus
of requests annotated for politeness, which
we use to evaluate aspects of politeness
theory and to uncover new interactions
between politeness markers and context.
These findings guide our construction of
a classifier with domain-independent lexi-
cal and syntactic features operationalizing
key components of politeness theory, such
as indirection, deference, impersonaliza-
tion and modality. Our classifier achieves
close to human performance and is effec-
tive across domains. We use our frame-
work to study the relationship between po-
liteness and social power, showing that po-
lite Wikipedia editors are more likely to
achieve high status through elections, but,
once elevated, they become less polite. We
see a similar negative correlation between
politeness and power on Stack Exchange,
where users at the top of the reputation
scale are less polite than those at the bot-
tom. Finally, we apply our classifier to
a preliminary analysis of politeness vari-
ation by gender and community.

1 Introduction

Politeness is a central force in communication, ar-
guably as basic as the pressure to be truthful, in-
formative, relevant, and clear (Grice, 1975; Leech,
1983; Brown and Levinson, 1978). Natural lan-
guages provide numerous and diverse means for
encoding politeness and, in conversation, we con-
stantly make choices about where and how to use
these devices. Kaplan (1999) observes that “peo-
ple desire to be paid respect” and identifies hon-
orifics and other politeness markers, like please,

as “the coin of that payment”. In turn, polite-
ness markers are intimately related to the power
dynamics of social interactions and are often a
decisive factor in whether those interactions go
well or poorly (Gyasi Obeng, 1997; Chilton, 1990;
Andersson and Pearson, 1999; Rogers and Lee-
Wong, 2003; Holmes and Stubbe, 2005).

The present paper develops a computational
framework for identifying and characterizing po-
liteness marking in requests. We focus on re-
quests because they involve the speaker imposing
on the addressee, making them ideal for exploring
the social value of politeness strategies (Clark and
Schunk, 1980; Francik and Clark, 1985). Requests
also stimulate extensive use of what Brown and
Levinson (1987) call negative politeness: speaker
strategies for minimizing (or appearing to mini-
mize) the imposition on the addressee, for exam-
ple, by being indirect (Would you mind) or apolo-
gizing for the imposition (I’m terribly sorry, but)
(Lakoff, 1973; Lakoff, 1977; Brown and Levin-
son, 1978).

Our investigation is guided by a new corpus
of requests annotated for politeness. The data
come from two large online communities in which
members frequently make requests of other mem-
bers: Wikipedia, where the requests involve edit-
ing and other administrative functions, and Stack
Exchange, where the requests center around a di-
verse range of topics (e.g., programming, garden-
ing, cycling). The corpus confirms the broad out-
lines of linguistic theories of politeness pioneered
by Brown and Levinson (1987), but it also reveals
new interactions between politeness markings and
the morphosyntactic context. For example, the po-
liteness of please depends on its syntactic position
and the politeness markers it co-occurs with.

Using this corpus, we construct a polite-
ness classifier with a wide range of domain-
independent lexical, sentiment, and dependency
features operationalizing key components of po-
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liteness theory, including not only the negative
politeness markers mentioned above but also el-
ements of positive politeness (gratitude, positive
and optimistic sentiment, solidarity, and inclusive-
ness). The classifier achieves near human-level ac-
curacy across domains, which highlights the con-
sistent nature of politeness strategies and paves the
way to using the classifier to study new data.

Politeness theory predicts a negative correlation
between politeness and the power of the requester,
where power is broadly construed to include so-
cial status, authority, and autonomy (Brown and
Levinson, 1987). The greater the speaker’s power
relative to her addressee, the less polite her re-
quests are expected to be: there is no need for her
to incur the expense of paying respect, and failing
to make such payments can invoke, and hence re-
inforce, her power. We support this prediction by
applying our politeness framework to Wikipedia
and Stack Exchange, both of which provide in-
dependent measures of social status. We show
that polite Wikipedia editors are more likely to
achieve high status through elections; however,
once elected, they become less polite. Similarly,
on Stack Exchange, we find that users at the top of
the reputation scale are less polite than those at the
bottom.

Finally, we briefly address the question of how
politeness norms vary across communities and so-
cial groups. Our findings confirm established re-
sults about the relationship between politeness and
gender, and they identify substantial variation in
politeness across different programming language
subcommunities on Stack Exchange.

2 Politeness data

Requests involve an imposition on the addressee,
making them a natural domain for studying the
inter-connections between linguistic aspects of po-
liteness and social variables.

Requests in online communities We base our
analysis on two online communities where re-
quests have an important role: the Wikipedia
community of editors and the Stack Exchange
question-answer community.1 On Wikipedia, to
coordinate on the creation and maintenance of
the collaborative encyclopedia, editors can in-
teract with each other on user talk-pages;2 re-

1http://stackexchange.com/about
2http://en.wikipedia.org/wiki/

Wikipedia:User_pages

quests posted on a user talk-page, although pub-
lic, are generally directed to the owner of the talk-
page. On Stack Exchange, users often comment
on existing posts requesting further information or
proposing edits; these requests are generally di-
rected to the authors of the original posts.

Both communities are not only rich in user-
to-user requests, but these requests are also part
of consequential conversations, not empty social
banter; they solicit specific information or con-
crete actions, and they expect a response.

Politeness annotation Computational studies of
politeness, or indeed any aspect of linguistic prag-
matics, demand richly labeled data. We there-
fore label a large portion of our request data
(over 10,000 utterances) using Amazon Mechan-
ical Turk (AMT), creating the largest corpus with
politeness annotations (see Table 1 for details).3

We choose to annotate requests containing ex-
actly two sentences, where the second sentence
is the actual request (and ends with a question
mark). This provides enough context to the an-
notators while also controlling for length effects.
Each annotator was instructed to read a batch of
13 requests and consider them as originating from
a co-worker by email. For each request, the anno-
tator had to indicate how polite she perceived the
request to be by using a slider with values rang-
ing from “very impolite” to “very polite”.4 Each
request was labeled by five different annotators.

We vetted annotators by restricting their resi-
dence to be in the U.S. and by conducting a lin-
guistic background questionnaire. We also gave
them a paraphrasing task shown to be effective
for verifying and eliciting linguistic attentiveness
(Munro et al., 2010), and we monitored the an-
notation job and manually filtered out annotators
who submitted uniform or seemingly random an-
notations.

Because politeness is highly subjective and an-
notators may have inconsistent scales, we ap-
plied the standard z-score normalization to each
worker’s scores. Finally, we define the politeness
score (henceforth politeness) of a request as the
average of the five scores assigned by the annota-
tors. The distribution of resulting request scores
(shown in Figure 1) has an average of 0 and stan-

3Publicly available at http://www.mpi-sws.org/
˜cristian/Politeness.html

4We used non-categorical ratings for finer granularity and
to help account for annotators’ different perception scales.
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domain #requests #annotated #annotators

Wiki 35,661 4,353 219
SE 373,519 6,604 212

Table 1: Summary of the request data and its po-
liteness annotations.

Figure 1: Distribution of politeness scores. Posi-
tive scores indicate requests perceived as polite.

dard deviation of 0.7 for both domains; positive
values correspond to polite requests (i.e., requests
with normalized annotations towards the “very po-
lite” extreme) and negative values to impolite re-
quests. A summary of all our request data is shown
in Table 1.

Inter-annotator agreement To evaluate the re-
liability of the annotations we measure the inter-
annotator agreement by computing, for each batch
of 13 documents that were annotated by the same
set of 5 users, the mean pairwise correlation of the
respective scores. For reference, we compute the
same quantities after randomizing the scores by
sampling from the observed distribution of polite-
ness scores. As shown in Figure 2, the labels are
coherent and significantly different from the ran-
domized procedure (p < 0.0001 according to a
Wilcoxon signed rank test).5

Binary perception Although we did not im-
pose a discrete categorization of politeness, we
acknowledge an implicit binary perception of the
phenomenon: whenever an annotator moved a
slider in one direction or the other, she made a
binary politeness judgment. However, the bound-

5The commonly used Cohen/Fleiss Kappa agreement
measures are not suitable for this type of annotation, in which
labels are continuous rather than categorical.

Figure 2: Inter-annotator pairwise correlation,
compared to the same measure after randomizing
the scores.

Quartile: 1st 2nd 3rd 4th

Wiki 62% 8% 3% 51%
SE 37% 4% 6% 46%

Table 2: The percentage of requests for which all
five annotators agree on binary politeness. The
4th quartile contains the requests with the top 25%
politeness scores in the data. (For reference, ran-
domized scoring yields agreement percentages of
<20% for all quartiles.)

ary between somewhat polite and somewhat im-
polite requests can be blurry. To test this intuition,
we break the set of annotated requests into four
groups, each corresponding to a politeness score
quartile. For each quartile, we compute the per-
centage of requests for which all five annotators
made the same binary politeness judgment. As
shown in Table 2, full agreement is much more
common in the 1st (bottom) and 4th (top) quar-
tiles than in the middle quartiles. This suggests
that the politeness scores assigned to requests that
are only somewhat polite or somewhat impolite
are less reliable and less tied to an intuitive notion
of binary politeness. This discrepancy motivates
our choice of classes in the prediction experiments
(Section 4) and our use of the top politeness quar-
tile (the 25% most polite requests) as a reference
in our subsequent discussion.

3 Politeness strategies

As we mentioned earlier, requests impose on the
addressee, potentially placing her in social peril if
she is unwilling or unable to comply. Requests
therefore naturally give rise to the negative po-
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liteness strategies of Brown and Levinson (1987),
which are attempts to mitigate these social threats.
These strategies are prominent in Table 3, which
describes the core politeness markers we analyzed
in our corpus of Wikipedia requests. We do not
include the Stack Exchange data in this analysis,
reserving it as a “test community” for our predic-
tion task (Section 4).

Requests exhibiting politeness markers are au-
tomatically extracted using regular expression
matching on the dependency parse obtained by the
Stanford Dependency Parser (de Marneffe et al.,
2006), together with specialized lexicons. For ex-
ample, for the hedges marker (Table 3, line 19),
we match all requests containing a nominal subject
dependency edge pointing out from a hedge verb
from the hedge list created by Hyland (2005). For
each politeness strategy, Table 3 shows the aver-
age politeness score of the respective requests (as
described in Section 2; positive numbers indicate
polite requests), and their top politeness quartile
membership (i.e., what percentage fall within the
top quartile of politeness scores). As discussed at
the end of Section 2, the top politeness quartile
gives a more robust and more intuitive measure of
politeness. For reference, a random sample of re-
quests will have a 0 politeness score and a 25% top
quartile membership; in both cases, larger num-
bers indicate higher politeness.

Gratitude and deference (lines 1–2) are ways
for the speaker to incur a social cost, helping to
balance out the burden the request places on the
addressee. Adopting Kaplan (1999)’s metaphor,
these are the coin of the realm when it comes to
paying the addressee respect. Thus, they are indi-
cators of positive politeness.

Terms from the sentiment lexicon (Liu et al.,
2005) are also tools for positive politeness, either
by emphasizing a positive relationship with the ad-
dressee (line 4), or being impolite by using nega-
tive sentiment that damages this positive relation-
ship (line 5). Greetings (line 3) are another way to
build a positive relationship with the addressee.

The remainder of the cues in Table 3 are neg-
ative politeness strategies, serving the purpose of
minimizing, at least in appearance, the imposition
on the addressee. Apologizing (line 6) deflects the
social threat of the request by attuning to the impo-
sition itself. Being indirect (line 9) is another way
to minimize social threat. This strategy allows the
speaker to avoid words and phrases convention-

ally associated with requests. First-person plural
forms like we and our (line 15) are also ways of
being indirect, as they create the sense that the
burden of the request is shared between speaker
and addressee (We really should . . . ). Though in-
directness is not invariably interpreted as polite-
ness marking (Blum-Kulka, 2003), it is nonethe-
less a reliable marker of it, as our scores indicate.
What’s more, direct variants (imperatives, state-
ments about the addressee’s obligations) are less
polite (lines 10–11).

Indirect strategies also combine with hedges
(line 19) conveying that the addressee is unlikely
to accept the burden (Would you by any chance
. . . ?, Would it be at all possible . . . ?). These too
serve to provide the addressee with a face-saving
way to deny the request. We even see subtle effects
of modality at work here: the irrealis, counterfac-
tual forms would and could are more polite than
their ability (dispositional) or future-oriented vari-
ants can and will; compare lines 12 and 13. This
parallels the contrast between factuality markers
(impolite; line 20) and hedging (polite; line 19).

Many of these features are correlated with each
other, in keeping with the insight of Brown and
Levinson (1987) that politeness markers are of-
ten combined to create a cumulative effect of in-
creased politeness. Our corpora also highlight in-
teractions that are unexpected (or at least unac-
counted for) on existing theories of politeness. For
example, sentence-medial please is polite (line 7),
presumably because of its freedom to combine
with other negative politeness strategies (Could
you please . . . ). In contrast, sentence-initial please
is impolite (line 8), because it typically signals a
more direct strategy (Please do this), which can
make the politeness marker itself seem insincere.
We see similar interactions between pronominal
forms and syntactic structure: sentence-initial you
is impolite (You need to . . . ), whereas sentence-
medial you is often part of the indirect strategies
we discussed above (Would/Could you . . . ).

4 Predicting politeness

We now show how our linguistic analysis can be
used in a machine learning model for automati-
cally classifying requests according to politeness.
A classifier can help verify the predictive power,
robustness, and domain-independent generality of
the linguistic strategies of Section 3. Also, by pro-
viding automatic politeness judgments for large
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Strategy Politeness In top quartile Example

1. Gratitude 0.87*** 78%*** I really appreciate that you’ve done them.
2. Deference 0.78*** 70%*** Nice work so far on your rewrite.
3. Greeting 0.43*** 45%*** Hey, I just tried to . . .
4. Positive lexicon 0.12*** 32%*** Wow! / This is a great way to deal. . .
5. Negative lexicon -0.13*** 22%** If you’re going to accuse me . . .

6. Apologizing 0.36*** 53%*** Sorry to bother you . . .

7. Please 0.49*** 57%*** Could you please say more. . .
8. Please start −0.30* 22% Please do not remove warnings . . .

9. Indirect (btw) 0.63*** 58%** By the way, where did you find . . .
10. Direct question −0.27*** 15%*** What is your native language?
11. Direct start −0.43*** 9%*** So can you retrieve it or not?

12. Counterfactual modal 0.47*** 52%*** Could/Would you . . .
13. Indicative modal 0.09 27% Can/Will you . . .

14. 1st person start 0.12*** 29%** I have just put the article . . .
15. 1st person pl. 0.08* 27% Could we find a less complex name . . .
16. 1st person 0.08*** 28%*** It is my view that ...
17. 2nd person 0.05*** 30%*** But what’s the good source you have in mind?
18. 2nd person start −0.30*** 17%** You’ve reverted yourself . . .

19. Hedges 0.14*** 28% I suggest we start with . . .
20. Factuality −0.38*** 13%*** In fact you did link, . . .

Table 3: Positive (1-5) and negative (6–20) politeness strategies and their relation to human perception of
politeness. For each strategy we show the average (human annotated) politeness scores for the requests
exhibiting that strategy (compare with 0 for a random sample of requests; a positive number indicates
the strategy is perceived as being polite), as well as the percentage of requests exhibiting the respective
strategy that fall in the top quartile of politeness scores (compare with 25% for a random sample of
requests). Throughout the paper: for politeness scores, statistical significance is calculated by comparing
the set of requests exhibiting the strategy with the rest using a Mann-Whitney-Wilcoxon U test; for top
quartile membership a binomial test is used.

amounts of new data on a scale unfeasible for hu-
man annotation, it can also enable a detailed anal-
ysis of the relation between politeness and social
factors (Section 5).

Task setup To evaluate the robustness and
domain-independence of the analysis from Sec-
tion 3, we run our prediction experiments on two
very different domains. We treat Wikipedia as a
“development domain” since we used it for de-
veloping and identifying features and for training
our models. Stack Exchange is our “test domain”
since it was not used for identifying features. We
take the model (features and weights) trained on
Wikipedia and use them to classify requests from
Stack Exchange.

We consider two classes of requests: polite
and impolite, defined as the top and, respectively,
bottom quartile of requests when sorted by their
politeness score (based on the binary notion of
politeness discussed in Section 2). The classes
are therefore balanced, with each class consisting
of 1,089 requests for the Wikipedia domain and
1,651 requests for the Stack Exchange domain.

We compare two classifiers — a bag of words
classifier (BOW) and a linguistically informed
classifier (Ling.) — and use human labelers as a
reference point. The BOW classifier is an SVM
using a unigram feature representation.6 We con-
sider this to be a strong baseline for this new

6Unigrams appearing less than 10 times are excluded.
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classification task, especially considering the large
amount of training data available. The linguisti-
cally informed classifier (Ling.) is an SVM using
the linguistic features listed in Table 3 in addition
to the unigram features. Finally, to obtain a ref-
erence point for the prediction task we also collect
three new politeness annotations for each of the re-
quests in our dataset using the same methodology
described in Section 2. We then calculate human
performance on the task (Human) as the percent-
age of requests for which the average score from
the additional annotations matches the binary po-
liteness class of the original annotations (e.g., a
positive score corresponds to the polite class).

Classification results We evaluate the classi-
fiers both in an in-domain setting, with a standard
leave-one-out cross validation procedure, and in a
cross-domain setting, where we train on one do-
main and test on the other (Table 4). For both our
development and our test domains, and in both the
in-domain and cross-domain settings, the linguis-
tically informed features give 3-4% absolute im-
provement over the bag of words model. While
the in-domain results are within 3% of human per-
formance, the greater room for improvement in the
cross-domain setting motivates further research on
linguistic cues of politeness.

The experiments in this section confirm that
our theory-inspired features are indeed effective in
practice, and generalize well to new domains. In
the next section we exploit this insight to automat-
ically annotate a much larger set of requests (about
400,000) with politeness labels, enabling us to re-
late politeness to several social variables and out-
comes. For new requests, we use class probabil-
ity estimates obtained by fitting a logistic regres-
sion model to the output of the SVM (Witten and
Frank, 2005) as predicted politeness scores (with
values between 0 and 1; henceforth politeness, by
abuse of language).

5 Relation to social factors

We now apply our framework to studying the rela-
tionship between politeness and social variables,
focussing on social power dynamics. Encour-
aged by the close-to-human performance of our
in-domain classifiers, we use them to assign po-
liteness labels to our full dataset and then compare
these labels to independent measures of power and
status in our data. The results closely match those
obtained with human-labeled data alone, thereby

In-domain Cross-domain
Train Wiki SE Wiki SE
Test Wiki SE SE Wiki

BOW 79.84% 74.47% 64.23% 72.17%
Ling. 83.79% 78.19% 67.53% 75.43%

Human 86.72% 80.89% 80.89% 86.72%

Table 4: Accuracies of our two classifiers for
Wikipedia (Wiki) and Stack Exchange (SE), for
in-domain and cross-domain settings. Human per-
formance is included as a reference point. The ran-
dom baseline performance is 50%.

supporting the use of computational methods to
pursue questions about social variables.

5.1 Relation to social outcome
Earlier, we characterized politeness markings as
currency used to pay respect. Such language is
therefore costly in a social sense, and, relatedly,
tends to incur costs in terms of communicative ef-
ficiency (Van Rooy, 2003). Are these costs worth
paying? We now address this question by studying
politeness in the context of the electoral system of
the Wikipedia community of editors.

Among Wikipedia editors, status is a salient so-
cial variable (Anderson et al., 2012). Administra-
tors (admins) are editors who have been granted
certain rights, including the ability to block other
editors and to protect or delete articles.7 Ad-
mins have a higher status than common editors
(non-admins), and this distinction seems to be
widely acknowledged by the community (Burke
and Kraut, 2008b; Leskovec et al., 2010; Danescu-
Niculescu-Mizil et al., 2012). Aspiring editors
become admins through public elections,8 so we
know when the status change from non-admin to
admins occurred and can study users’ language
use in relation to that time.

To see whether politeness correlates with even-
tual high status, we compare, in Table 5, the po-
liteness levels of requests made by users who will
eventually succeed in becoming administrators
(Eventual status: Admins) with requests made by
users who are not admins (Non-admins).9 We ob-
serve that admins-to-be are significantly more po-

7http://en.wikipedia.org/wiki/
Wikipedia:Administrators

8http://en.wikipedia.org/wiki/
Wikipedia:Requests_for_adminship

9We consider only requests made up to one month before
the election, to avoid confusion with pre-election behavior.
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Eventual status Politeness Top quart.

Admins 0.46** 30%***

Non-admins 0.39*** 25%
Failed 0.37** 22%

Table 5: Politeness and status. Editors who
will eventually become admins are more polite
than non-admins (p<0.001 according to a Mann-
Whitney-Wilcoxon U test) and than editors who
will eventually fail to become admins (p<0.001).
Out of their requests, 30% are rated in the top po-
liteness quartile (significantly more than the 25%
of a random sample; p<0.001 according to a bi-
nomial test). This analysis was conducted on 31k
requests (1.4k for Admins, 28.9k for Non-admins,
652 for Failed).

lite than non-admins. One might wonder whether
this merely reflects the fact that not all users aspire
to become admins, and those that do are more po-
lite. To address this, we also consider users who
ran for adminship but did not earn community ap-
proval (Eventual status: Failed). These users are
also significantly less polite than their successful
counterparts, indicating that politeness indeed cor-
relates with a positive social outcome here.

5.2 Politeness and power

We expect a rise in status to correlate with a de-
cline in politeness (as predicted by politeness the-
ory, and discussed in Section 1). The previous sec-
tion does not test this hypothesis, since all editors
compared in Table 5 had the same (non-admin)
status when writing the requests. However, our
data does provide three ways of testing this hy-
pothesis.

First, after the adminship elections, successful
editors get a boost in power by receiving admin
privileges. Figure 3 shows that this boost is mir-
rored by a significant decrease in politeness (blue,
diamond markers). Losing an election has the op-
posite effect on politeness (red, circle markers),
perhaps as a consequence of reinforced low status.

Second, Stack Exchange allows us to test more
situational power effects.10 On the site, users re-
quest, from the community, information they are
lacking. This informational asymmetry between
the question-asker and his audience puts him at

10We restrict all experiments in this section to the largest
subcommunity of Stack Exchange, namely Stack Overflow.
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Figure 3: Successful and failed candidates be-
fore and after elections. Editors that will even-
tually succeed (diamond marker) are significantly
more polite than those that will fail (circle mark-
ers). Following the elections, successful editors
become less polite while unsuccessful editors be-
come more polite.

a social disadvantage. We therefore expect the
question-asker to be more polite than the people
who respond. Table 6 shows that this expectation
is born out: comments posted to a thread by the
original question-asker are more polite than those
posted by other users.

Role Politeness Top quart.

Question-asker 0.65*** 32%***

Answer-givers 0.52*** 20%***

Table 6: Politeness and dependence. Requests
made in comments posted by the question-asker
are significantly more polite than the other re-
quests. Analysis conducted on 181k requests
(106k for question-askers, 75k for answer-givers).

Third, Stack Exchange allows us to examine
power in the form of authority, through the com-
munity’s reputation system. Again, we see a neg-
ative correlation between politeness and power,
even after controlling for the role of the user mak-
ing the requests (i.e., Question-asker or Answer-
giver). Table 7 summarizes the results.11

Human validation The above analyses are
based on predicted politeness from our classifier.
This allows us to use the entire request data cor-

11Since our data does not contain time stamps for reputa-
tion scores, we only consider requests that were issued in the
six months prior to the available snapshot.
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Reputation level Politeness Top quart.

Low reputation 0.68*** 27%***

Middle reputation 0.66*** 25%
High reputation 0.64*** 23%***

Table 7: Politeness and Stack Exchange reputation
(texts by question-askers only). High-reputation
users are less polite. Analysis conducted on 25k
requests (4.5k low, 12.5k middle, 8.4k high).

pus to test our hypotheses and to apply precise
controls to our experiments (such as restricting
our analysis to question-askers in the reputation
experiment). In order to validate this methodol-
ogy, we turned again to human annotation: we
collected additional politeness annotation for the
types of requests involved in the newly designed
experiments. When we re-ran our experiments on
human-labeled data alone we obtained the same
qualitative results, with statistical significance al-
ways lower than 0.01.12

Prediction-based interactions The human val-
idation of classifier-based results suggests that
our prediction framework can be used to explore
differences in politeness levels across factors of
interest, such as communities, geographical re-
gions and gender, even where gathering suffi-
cient human-annotated data is infeasible. We
mention just a few such preliminary results here:
(i) Wikipedians from the U.S. Midwest are most
polite (when compared to other census-defined
regions), (ii) female Wikipedians are generally
more polite (consistent with prior studies in which
women are more polite in a variety of domains;
(Herring, 1994)), and (iii) programming language
communities on Stack Exchange vary significantly
by politeness (Table 8; full disclosure: our analy-
ses were conducted in Python).

6 Related work

Politeness has been a central concern of modern
pragmatic theory since its inception (Grice, 1975;
Lakoff, 1973; Lakoff, 1977; Leech, 1983; Brown
and Levinson, 1978), because it is a source of
pragmatic enrichment, social meaning, and cul-
tural variation (Harada, 1976; Matsumoto, 1988;

12However, due to the limited size of the human-labeled
data, we could not control for the role of the user in the Stack
Exchange reputation experiment.

PL name Politeness Top quartile

Python 0.47*** 23%
Perl 0.49 24%
PHP 0.51 24%
Javascript 0.53** 26%**

Ruby 0.59*** 28%*

Table 8: Politeness of requests from different lan-
guage communities on Stack Exchange.

Ide, 1989; Blum-Kulka and Kasper, 1990; Blum-
Kulka, 2003; Watts, 2003; Byon, 2006). The start-
ing point for most research is the theory of Brown
and Levinson (1987). Aspects of this theory
have been explored from game-theoretic perspec-
tives (Van Rooy, 2003) and implemented in lan-
guage generation systems for interactive narratives
(Walker et al., 1997), cooking instructions, (Gupta
et al., 2007), translation (Faruqui and Pado, 2012),
spoken dialog (Wang et al., 2012), and subjectivity
analysis (Abdul-Mageed and Diab, 2012), among
others.

In recent years, politeness has been studied in
online settings. Researchers have identified vari-
ation in politeness marking across different con-
texts and media types (Herring, 1994; Brennan
and Ohaeri, 1999; Duthler, 2006) and between
different social groups (Burke and Kraut, 2008a).
The present paper pursues similar goals using or-
ders of magnitude more data, which facilitates a
fuller survey of different politeness strategies.

Politeness marking is one aspect of the broader
issue of how language relates to power and status,
which has been studied in the context of workplace
discourse (Bramsen et al., ; Diehl et al., 2007;
Peterson et al., 2011; Prabhakaran et al., 2012;
Gilbert, 2012; McCallum et al., 2007) and so-
cial networking (Scholand et al., 2010). However,
this research focusses on domain-specific textual
cues, whereas the present work seeks to lever-
age domain-independent politeness cues, build-
ing on the literature on how politeness affects
worksplace social dynamics and power structures
(Gyasi Obeng, 1997; Chilton, 1990; Andersson
and Pearson, 1999; Rogers and Lee-Wong, 2003;
Holmes and Stubbe, 2005). Burke and Kraut
(2008b) study the question of how and why spe-
cific individuals rise to administrative positions
on Wikipedia, and Danescu-Niculescu-Mizil et al.
(2012) show that power differences on Wikipedia
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are revealed through aspects of linguistic accom-
modation. The present paper complements this
work by revealing the role of politeness in social
outcomes and power relations.

7 Conclusion

We construct and release a large collection of
politeness-annotated requests and use it to evalu-
ate key aspects of politeness theory. We build a
politeness classifier that achieves near-human per-
formance and use it to explore the relation between
politeness and social factors such as power, status,
gender, and community membership. We hope the
publicly available collection of annotated requests
enables further study of politeness and its relation
to social factors, as this paper has only begun to
explore this area.
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Abstract

Recently, researchers have begun explor-
ing methods of scoring student essays with
respect to particular dimensions of qual-
ity such as coherence, technical errors,
and relevance to prompt, but there is rel-
atively little work on modeling thesis clar-
ity. We present a new annotated corpus
and propose a learning-based approach to
scoring essays along the thesis clarity di-
mension. Additionally, in order to pro-
vide more valuable feedback on why an
essay is scored as it is, we propose a sec-
ond learning-based approach to identify-
ing what kinds of errors an essay has that
may lower its thesis clarity score.

1 Introduction

Automated essay scoring, the task of employing
computer technology to evaluate and score writ-
ten text, is one of the most important educational
applications of natural language processing (NLP)
(see Shermis and Burstein (2003) and Shermis et
al. (2010) for an overview of the state of the art
in this task). A major weakness of many ex-
isting scoring engines such as the Intelligent Es-
say AssessorTM (Landauer et al., 2003) is that they
adopt a holistic scoring scheme, which summa-
rizes the quality of an essay with a single score and
thus provides very limited feedback to the writer.
In particular, it is not clear which dimension of
an essay (e.g., style, coherence, relevance) a score
should be attributed to. Recent work addresses this
problem by scoring a particular dimension of es-
say quality such as coherence (Miltsakaki and Ku-
kich, 2004), technical errors, Relevance to Prompt
(Higgins et al., 2004), and organization (Persing
et al., 2010). Essay grading software that provides
feedback along multiple dimensions of essay qual-
ity such as E-rater/Criterion (Attali and Burstein,
2006) has also begun to emerge.

Nevertheless, there is an essay scoring dimen-
sion for which few computational models have
been developed —thesis clarity. Thesis clarity
refers to how clearly an author explains thethesis
of her essay, i.e., the position she argues for with
respect to the topic on which the essay is written.1

An essay with a high thesis clarity score presents
its thesis in a way that is easy for the reader to
understand, preferably but not necessarily directly,
as in essays with explicit thesis sentences. It addi-
tionally contains no errors such as excessive mis-
spellings that make it more difficult for the reader
to understand the writer’s purpose.

Our goals in this paper are two-fold. First, we
aim to develop a computational model for scoring
the thesis clarity of student essays. Because there
are many reasons why an essay may receive a low
thesis clarity score, our second goal is to build a
system for determining why an essay receives its
score. We believe the feedback provided by this
system will be more informative to a student than
would a thesis clarity score alone, as it will help
her understand which aspects of her writing need
to be improved in order to better convey her the-
sis. To this end, we identify five common errors
that impact thesis clarity, and our system’s pur-
pose is to determine which of these errors occur
in a given essay. We evaluate our thesis clarity
scoring model and error identification system on a
data set of 830 essays annotated with both thesis
clarity scores and errors.

In sum, our contributions in this paper are three-
fold. First, we develop a scoring model and error
identification system for the thesis clarity dimen-
sion on student essays. Second, we use features
explicitly designed for each of the identified error

1An essay’s thesis is the overall message of theentire es-
say. This concept is unbound from the the concept of thesis
sentences, as even an essay that never explicitly states itsthe-
sis in any of its sentences may still have an overall message
that can be inferred from the arguments it makes.
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Topic Languages Essays
Most university degrees are the-
oretical and do not prepare stu-
dents for the real world. They are
therefore of very little value.

13 131

The prison system is outdated.
No civilized society should pun-
ish its criminals: it should reha-
bilitate them.

11 80

In his novel Animal Farm,
George Orwell wrote “All men
are equal but some are more
equal than others.” How true is
this today?

10 64

Table 1: Some examples of writing topics.

types in order to train our scoring model, in con-
trast to many existing systems for other scoring di-
mensions, which use more general features devel-
oped without the concept of error classes. Third,
we make our data set consisting of thesis clarity
annotations of 830 essays publicly available in or-
der to stimulate further research on this task. Since
progress in thesis clarity modeling is hindered in
part by the lack of a publicly annotated corpus, we
believe that our data set will be a valuable resource
to the NLP community.

2 Corpus Information

We use as our corpus the 4.5 million word Interna-
tional Corpus of Learner English (ICLE) (Granger
et al., 2009), which consists of more than 6000 es-
says written by university undergraduates from 16
countries and 16 native languages who are learn-
ers of English as a Foreign Language. 91% of the
ICLE texts are argumentative. We select a sub-
set consisting of 830 argumentative essays from
the ICLE to annotate and use for training and test-
ing of our models of essay thesis clarity. Table 1
shows three of the thirteen topics selected for an-
notation. Fifteen native languages are represented
in the set of essays selected for annotation.

3 Corpus Annotation

For each of the 830 argumentative essays, we ask
two native English speakers to (1) score it along
the thesis clarity dimension and (2) determine the
subset of the five pre-defined errors that detracts
from the clarity of its thesis.
Scoring. Annotators evaluate the clarity of each
essay’s thesis using a numerical score from 1 to
4 at half-point increments (see Table 2 for a de-
scription of each score). This contrasts with pre-
vious work on essay scoring, where the corpus is

Score Description of Thesis Clarity
4 essay presents avery clear thesisand requires

little or no clarification
3 essay presents amoderately clear thesisbut

could benefit from some clarification
2 essay presents anunclear thesis and would

greatly benefit from further clarification
1 essay presentsno thesis of any kindand it is

difficult to see what the thesis could be

Table 2: Descriptions of the meaning of scores.

annotated with a binary decision (i.e.,good or bad)
for a given scoring dimension (e.g., Higgins et al.
(2004)). Hence, our annotation scheme not only
provides a finer-grained distinction of thesis clar-
ity (which can be important in practice), but also
makes the prediction task more challenging.

To ensure consistency in annotation, we ran-
domly select 100 essays to have graded by both
annotators. Analysis of these essays reveals that,
though annotators only exactly agree on the the-
sis clarity score of an essay 36% of the time, the
scores they apply are within 0.5 points in 62% of
essays and within 1.0 point in 85% of essays. Ta-
ble 3 shows the number of essays that receive each
of the seven scores for thesis clarity.

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
essays 4 9 52 78 168 202 317

Table 3: Distribution of thesis clarity scores.

Error identification. To identify what kinds of
errors make an essay’s thesis unclear, we ask one
of our annotators to write 1–4 sentence critiques
of thesis clarity on 527 essays, and obtain our list
of five common error classes by categorizing the
things he found to criticize. We present our anno-
tators with descriptions of these five error classes
(see Table 4), and ask them to assign zero or more
of the error types to each essay.

It is important to note that we ask our anno-
tators to mark an essay with one of these errors
only when the error makes the thesis less clear. So
for example, an essay whose thesis is irrelevant to
the prompt but is explicitly and otherwise clearly
stated would not be marked as having a Relevance
to Prompt error. If the irrelevant thesis is stated
in such a way that its inapplicability to the prompt
causes the reader to be confused about what the
essay’s purpose is, however, then the essay would
be assigned a Relevance to Prompt error.

To measure inter-annotator agreement on error
identification, we ask both annotators to identify
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Id Error Description
CP Confusing Phrasing The thesis is phrased oddly, making it hard to understand thewriter’s point.

IPR Incomplete Prompt Response The thesis seems to leave some part of a multi-part prompt unaddressed.
R Relevance to Prompt The apparent thesis’s weak relation to the prompt causes confusion.

MD Missing Details The thesis leaves out important detail needed to understandthe writer’s point.
WP Writer Position The thesis describes a position on the topic without making it clear that this is

the position the writer supports.

Table 4: Descriptions of thesis clarity errors.

the errors in the same 100 essays that were doubly-
annotated with thesis clarity scores. We then com-
pute Cohen’s Kappa (Carletta, 1996) on each er-
ror from the two sets of annotations, obtaining an
average Kappa value of 0.75, which indicates fair
agreement. Table 5 shows the number of essays
assigned to each of the five thesis clarity errors.
As we can see, Confusing Phrasing, Incomplete
Prompt Response, and Relevance to Prompt are
the major error types.

error CP IPR R MD WP
essays 152 123 142 47 39

Table 5: Distribution of thesis clarity errors.

Relationship between clarity scores and error
classes. To determine the relationship between
thesis clarity scores and the five error classes, we
train a linear SVM regressor using the SVMlight

software package (Joachims, 1999) with the five
error types as independent variables and the re-
duction in thesis clarity score due to errors as the
dependent variable. More specifically, each train-
ing example consists of a target, which we set to
the essay’s thesis clarity score minus 4.0, and six
binary features, each of the first five representing
the presence or absence of one of the five errors in
the essay, and the sixth being a bias feature which
we always set to 1. Representing the reduction in
an essay’s thesis clarity score with its thesis clarity
score minus 4.0 allows us to more easily interpret
the error and bias weights of the trained system,
as under this setup, each error’s weight should be a
negative number reflecting how many points an es-
say loses due to the presence of that error. The bias
feature allows for the possibility that an essay may
lose points from its thesis clarity score for prob-
lems not accounted for in our five error classes.
By setting this bias feature to 1, we tell our learner
that an essay’s default score may be less than 4.0
because these other problems may lower the aver-
age score of otherwise perfect essays.

After training, we examined the weight param-
eters of the learned regressor and found that they

were all negative:−0.6 for CP,−0.5998 for IPR,
−0.8992 for R,−0.6 for MD, −0.8 for WP, and
−0.1 for the bias. These results are consistent
with our intuition that each of the enumerated er-
ror classes has a negative impact on thesis clarity
score. In particular, each has a demonstrable neg-
ative impact, costing essays an average of more
than 0.59 points when it occurs. Moreover, this set
of errors accounts for a large majority of all errors
impacting thesis clarity because unenumerated er-
rors cost essays an average of only one-tenth of
one point on the four-point thesis clarity scale.

4 Error Classification

In this section, we describe in detail our system for
identifying thesis clarity errors.

4.1 Model Training and Application

We recast the problem of identifying which the-
sis clarity errors apply to an essay as a multi-label
classification problem, wherein each essay may be
assigned zero or more of the five pre-defined er-
ror types. To solve this problem, we train five bi-
nary classifiers, one for each error type, using a
one-versus-all scheme. So in the binary classifi-
cation problem for identifying errorei, we create
one training instance from each essay in the train-
ing set, labeling the instance as positive if the es-
say hasei as one of its labels, and negative other-
wise. Each instance is represented by seven types
of features, including two types of baseline fea-
tures (Section 4.2) and five types of features we
introduce for error identification (Section 4.3).

After creating training instances for errorei, we
train a binary classifier,bi, for identifying which
test essays contain errorei. We use SVMlight for
classifier training with the regularization param-
eter, C, set toci. To improve classifier perfor-
mance, we perform feature selection. While we
employ seven types of features (see Sections 4.2
and 4.3), only the word n-gram features are sub-
ject to feature selection.2 Specifically, we employ

2We do not apply feature selection to the remaining fea-
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the topni n-gram features as selected according to
information gain computed over the training data
(see Yang and Pedersen (1997) for details). Fi-
nally, since each classifier assigns a real value to
each test essay presented to it indicating its con-
fidence that the essay should be assigned errorei,
we employ a classification thresholdti to decide
how high this real value must be in order for our
system to conclude that an essay contains errorei.

Using held-out validation data, we jointly tune
the three parameters in the previous paragraph,ci,
ni, andti, to optimize the F-score achieved bybi

for errorei.3 However, an exact solution to this op-
timization problem is computationally expensive.
Consequently, we find a local maximum by em-
ploying the simulated annealing algorithm (Kirk-
patrick et al., 1983), altering one parameter at a
time to optimize F-score by holding the remaining
parameters fixed.

After training the classifiers, we use them to
classify the test set essays. The test instances are
created in the same way as the training instances.

4.2 Baseline Features

Our Baseline system for error classification em-
ploys two types of features. First, since labeling
essays with thesis clarity errors can be viewed as
a text categorization task, we employ lemmatized
word unigram, bigram, and trigram features that
occur in the essay that have not been removed by
the feature selection parameterni. Because the
essays vary greatly in length, we normalize each
essay’s set of word features to unit length.

The second type of baseline features is based on
random indexing (Kanerva et al., 2000). Random
indexing is “an efficient, scalable and incremen-
tal alternative” (Sahlgren, 2005) to Latent Seman-
tic Indexing (Deerwester et al., 1990; Landauer

ture types since each of them includes only a small number
of overall features that are expected to be useful.

3For parameter tuning, we employ the following values.
ci may be assigned any of the values102, 103, 104, 105, or
106. ni may be assigned any of the values 3000, 4000, 5000,
or ALL , whereALL means all features are used. Forti, we
split the range of classification valuesbi returns for the test set
into tenths.ti may take the values 0.0, 0.1, 0.2,. . ., 1.0, and
X, where 0.0 classifies all instances as negative, 0.1 classifies
only instancesbi assigned values in the top tenth of the range
as positive, and so on, andX is the default threshold, labeling
essays as positive instances ofei only if bi returns for them a
value greater than 0. It was necessary to assignti in this way
because the range of values classifiers return varies greatly
depending on which error type we are classifying and which
other parameters we use. This method gives us reasonably
fine-grained thresholds without having to try an unreasonably
large number of values forti.

and Dutnais, 1997) which allows us to automat-
ically generate a semantic similarity measure be-
tween any two words. We train our random in-
dexing model on over 30 million words of the En-
glish Gigaword corpus (Parker et al., 2009) using
the S-Space package (Jurgens and Stevens, 2010).
We expect that features based on random index-
ing may be particularly useful for the Incomplete
Prompt Response and Relevance to Prompt errors
because they may help us find text related to the
prompt even if some of its components have been
rephrased (e.g., an essay may talk about “jail”
rather than “prison”, which is mentioned in one
of the prompts). For each essay, we therefore gen-
erate four random indexing features, one encoding
the entire essay’s similarity to the prompt, another
encoding the essay’s highest individual sentence’s
similarity to the prompt, a third encoding the high-
est entire essay similarity to one of the prompt sen-
tences, and finally one encoding the highest indi-
vidual sentence similarity to an individual prompt
sentence. Since random indexing does not pro-
vide a straightforward way to measure similar-
ity between groups of words such as sentences
or essays, we use Higgins and Burstein’s (2007)
method to generate these features.

4.3 Novel Features

Next, we introduce five types of novel features.

Spelling. One problem we note when examining
the information gain top-ranked features for the
Confusing Phrasing error is that there are very few
common confusing phrases that can contribute to
this error. Errors of this type tend to be unique, and
hence are not very useful for error classification
(because we are not likely to see the same error
in the training and test sets). We notice, however,
that there are a few misspelled words at the top of
the list. This makes sense because a thesis sen-
tence containing excessive misspellings may be
less clear to the reader. Even the most common
spelling errors, however, tend to be rare. Further-
more, we ask our annotators to only annotate an
error if it makes the thesis less clear. The mere
presence of an awkward phrase or misspelling is
not enough to justify the Confusing Phrasing label.
Hence, we introduce amisspelling feature whose
value is the number of spelling errors in an essay’s
most-misspelled sentence.4

4We employ SCOWL (http://wordlist.
sourceforge.net/ ) as our dictionary, assuming that a
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Keywords. Improving the prediction of major-
ity classes can greatly enhance our system’s over-
all performance. Hence, since we have introduced
the misspelling feature to enhance our system’s
performance on one of the more frequently occur-
ring errors (Confusing Phrasing), it makes sense
to introduce another type of feature to improve
performance on the other two most frequent er-
rors, Incomplete Prompt Response and Relevance
to Prompt. For this reason, we introducekeyword
features. To use this feature, we first examine each
of the 13 essay prompts, splitting it into its com-
ponent pieces. For our purposes, a component of
a prompt is a prompt substring such that, if an es-
say does not address it, it may be assigned the In-
complete Prompt Response label. Then, for each
component, we manually select the most impor-
tant (primary) and second most important (sec-
ondary) words that it would be good for a writer
to use to address the component. To give an ex-
ample, the lemmatized version of the third com-
ponent of the second essay in Table 1 is “it should
rehabilitate they”. For this component we selected
“rehabilitate” as a primary keyword and “society”
as a secondary keyword. To compute one of our
keyword features, we compute the random index-
ing similarity between the essay and each group of
primary keywords taken from components of the
essay’s prompt and assign the feature the lowest
of these values. If this feature has a low value, that
suggests that the essay may have an Incomplete
Prompt Response error because the essay proba-
bly did not respond to the part of the prompt from
which this value came. To compute another of the
keyword features, we count the numbers of com-
bined primary and secondary keywords the essay
contains from each component of its prompt, and
divide each number by the total number of primary
and secondary features for that component. If the
greatest of these fractions has a low value, that in-
dicates the essay’s thesis might not be very Rele-
vant to the Prompt.5

Aggregated word n-gram features. Other
ways we could measure our system’s performance
(such as macro F-score) would consider our
system’s performance on the less frequent errors
no less important than its performance on the

word that does not appear in the dictionary is misspelled.
5Space limitations preclude a complete listing of the key-

word features. See our website athttp://www.hlt.
utdallas.edu/ ˜ persingq/ICLE/ for the complete
list.

most frequent errors. For this reason, it now
makes sense for us to introduce a feature tailored
to help our system do better at identifying the
least-frequent error types, Missing Details and
Writer Position, each of which occurs in fewer
than 50 essays. To help with identification of
these error classes, we introduce aggregated
word n-gram features. While we mention in the
previous section one of the reasons regular word
n-gram features can be expected to help with
these error classes, one of the problems with
regular word n-gram features is that it is fairly
infrequent for the exact same useful phrase to
occur too frequently. Additionally, since there are
numerous word n-grams, some infrequent ones
may just by chance only occur in positive training
set instances, causing the learner to think they
indicate the positive class when they do not. To
address these problems, for each of the five error
classesei, we construct two Aggregated word
featuresAw+i andAw−i. For each essay,Aw+i

counts the number of word n-grams we believe
indicate that an essay is a positive example ofei,
and Aw−i counts the number of word n-grams
we believe indicate an essay is not an example of
ei. Aw+ n-grams for the Missing Details error
tend to include phrases like “there is something”
or “this statement”, whileAw− ngrams are often
words taken directly from an essay’s prompt.
N-grams used for Writer Position’sAw+ tend
to suggest the writer is distancing herself from
whatever statement is being made such as “every
person”, but n-grams for this error’sAw− feature
are difficult to find. SinceAw+i andAw−i are
so error specific, they are only included in an
essay’s feature representation when it is presented
to learnerbi. So while aggregated word n-grams
introduce ten new features, each learnerbi only
sees two of these (Aw+i andAw−i).

We construct the lists of word n-grams that are
aggregated for use as theAw+ and Aw− fea-
ture values in the following way. For each error
classei, we sort the list of all features occurring
at least ten times in the training set by information
gain. A human annotator then manually inspects
the top thousand features in each of the five lists
and sorts each list’s features into three categories.
The first category forei’s list consists of features
that indicate an essay may be a positive instance.
Each word n-gram from this list that occurs in an
essay increases the essay’sAw+i value by one.
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Similarly, any word n-gram sorted into the second
category, which consists of features the annotator
thinks indicate a negative instance ofei, increases
the essay’sAw− value by one. The third category
just contains all the features the annotator did not
believe were useful enough to either class, and we
make no further use of those features. For most er-
ror types, only about 12% of the top 1000 features
get sorted into one of the first two categories.

POS n-grams. We might further improve our
system’s performance on the Missing Details er-
ror type by introducing a feature that aggregates
part-of-speech (POS) tag n-grams in the same way
that theAw features aggregate word n-gram fea-
tures. For this reason, we include POS tag 1, 2,
3, and 4-grams in the set of features we sort in
the previous paragraph. For each errorei, we se-
lect POS tag n-grams from the top thousand fea-
tures of the information gain sorted list to count
toward theAp+i andAp−i aggregation features.
We believe this kind of feature may help improve
performance on Missing Details because the list
of features aggregated to generate theAp+i fea-
ture’s value includes POS n-gram features like CC
“ NN ” (scare quotes). This feature type may also
help with Confusing Phrasing because the list of
POS tag n-grams our annotator generated for its
Ap+i contains useful features like DT NNS VBZ
VBN (e.g., “these signals has been”), which cap-
tures noun-verb disagreement.

Semantic roles. Our last aggregated feature is
generated using FrameNet-style semantic role la-
bels obtained using SEMAFOR (Das et al., 2010).
For each sentence in our data set, SEMAFOR
identifies each semantic frame occurring in the
sentence as well as each frame element that par-
ticipates in it. For example, a semantic frame
may describe an event that occurs in a sentence,
and the event’s frame elements may be the peo-
ple or objects that participate in the event. For
a more concrete example, consider the sentence
“They said they do not believe that the prison sys-
tem is outdated”. This sentence contains a State-
ment frame because a statement is made in it. One
of the frame elements participating in the frame is
the Speaker “they”. From this frame, we would
extract a feature pairing the frame together with
its frame element to get the feature “Statement-
Speaker-they”. This feature indicates that the es-
say it occurs in might be a positive instance of the
Writer Position error since it tells us the writer is

attributing some statement being made to someone
else. Hence, this feature along with several oth-
ers like “Awareness-Cognizer-we all” are useful
when constructing the lists of frame features for
Writer Position’s aggregatedframe featuresAf+i

andAf−i. Like every other aggregated feature,
Af+i andAf−i are generated for every errorei.

5 Score Prediction

Because essays containing thesis clarity errors
tend to have lower thesis clarity scores than essays
with fewer errors, we believe that thesis clarity
scores can be predicted for essays by utilizing the
same features we use for identifying thesis clarity
errors. Because our score prediction system uses
the same feature types we use for thesis error iden-
tification, each essay’s vector space representation
remains unchanged. Only its label changes to one
of the values in Table 2 in order to reflect its thesis
clarity score. To make use of the fact that some
pairs of scores are more similar than others (e.g.,
an essay with a score of 3.5 is more similar to an
essay with a score of 4.0 than it is to one with a
score of 1.0), we cast thesis clarity score predic-
tion as a regression rather than classification task.

Treating thesis clarity score prediction as a re-
gression problem removes our need for a classi-
fication threshold parameter like the one we use
in the error identification problem, but if we use
SVMlight’s regression option, it does not remove
the need for tuning a regularization parameter,C,
or a feature selection parameter,n.6 We jointly
tune these two parameters to optimize perfor-
mance on held-out validation data by performing
an exhaustive search in the parameter space.7

After we select the features, construct the essay
instances, train a regressor on training set essays,
and tune parameters on validation set essays, we
can use the regressor to obtain thesis clarity scores
on test set essays.

6Before tuning the feature selection parameter, we have to
sort the list of n-gram features occurring the training set.To
enable the use of information gain as the sorting criterion,we
treat each distinct score as its own class.

7The absence of the classification threshold parameter and
the fact that we do not need to train multiple learners, one for
each score, make it feasible for us to do two things. First, we
explore a wider range of values for the two parameters: we
allow C to take any value from100, 101, 102, 103, 104, 105,
106, or 107, and we allown to take any value from 1000,
2000, 3000, 4000, 5000, orALL . Second, we exhaustively
explore the space defined by these parameters in order to ob-
tain an exact solution to the parameter optimization problem.
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6 Evaluation

In this section, we evaluate our systems for error
identification and scoring. All the results we re-
port are obtained via five-fold cross-validation ex-
periments. In each experiment, we use 3/5 of our
labeled essays for model training, another 1/5 for
parameter tuning, and the final 1/5 for testing.

6.1 Error Identification

Evaluation metrics. To evaluate our thesis clar-
ity error type identification system, we compute
precision, recall, micro F-score, and macro F-
score, which are calculated as follows. Lettpi be
the number of test essays correctly labeled as posi-
tive by errorei’s binary classifierbi; pi be the total
number of test essays labeled as positive bybi; and
gi be the total number of test essays that belong to
ei according to the gold standard. Then, the preci-
sion (Pi), recall (Ri), and F-score (Fi) for bi and
the macro F-score (̂F) of the combined system for
one test fold are calculated by

Pi =
tpi

pi
,Ri =

tpi

gi
, Fi =

2PiRi

Pi + Ri
, F̂ =

∑
i Fi

5
.

However, the macro F-score calculation can be
seen as giving too much weight to the less frequent
errors. To avoid this problem, we also calculate
for each system the micro precision, recall, and F-
score (P, R, and F), where

P =

∑
i tpi∑
i pi

,R =

∑
i tpi∑
i gi

,F =
2PR

P + R
.

Since we perform five-fold cross-validation,
each value we report for each of these measures
is an average over its values for the five folds.8

Results and discussion. Results on error iden-
tification, expressed in terms of precision, recall,
micro F-score, and macro F-score are shown in
the first four columns of Table 6. OurBaseline
system, which only uses word n-gram and random
indexing features, seems to perform uniformly
poorly across both micro and macro F-scores (F
and F̂; see row 1). The per-class results9 show
that, since micro F-score places more weight on
the correct identification of the most frequent er-
rors, the system’s micro F-score (31.1%) is fairly
close to the average of the scores obtained on the
three most frequent error classes, CP, IPR, and R,

8This averaging explains why the formula for F does not
exactly hold in the Table 6 results.

9Per-class results are not shown due to space limitations.

Error Identification Scoring
System P R F F̂ S1 S2 S3

1 B 24.8 44.7 31.1 24.0 .658 .517 .403
2 Bm 24.2 44.2 31.2 25.3 .654 .515 .402
3 Bmk 29.2 44.2 34.9 26.7 .663 .490 .369
4 Bmkw 28.5 49.6 35.5 31.4 .651 .484 .374
5 Bmkwp 34.2 49.6 40.4 34.6 .671 .483 .377
6 Bmkwpf 33.6 54.4 41.4 37.3 .672 .486 .382

Table 6: Five-fold cross-validation results for the-
sis clarity error identification and scoring.

and remains unaffected by very low F-scores on
the two remaining infrequent classes.10

When we add themisspelling feature to the
baseline, resulting in the system calledBm
(row 2), the micro F-score sees a very small, in-
significant improvement.11 What is pleasantly sur-
prising, however, is that, even though the mis-
spelling features were developed for the Confus-
ing Phrasing error type, they actually have more
of a positive impact on Missing Details and Writer
Position, bumping their individual error F-scores
up by about 5 and 3 percent respectively. This sug-
gests that spelling difficulties may be correlated
with these other essay-writing difficulties, despite
their apparent unrelatedness. This effect is strong
enough to generate the small, though insignificant,
gain in macro F-score shown in the table.

When we addkeyword features to the system,
micro F-score increases significantly by 3.7 points
(row 3). The micro per-class results reveal that,
as intended, keyword features improve Incomplete
Prompt Response and Relevance to Prompt’s F-
scores reveals that they do by 6.4 and 9.2 percent-
age points respectively. The macro F-scores reveal
this too, though the macro F-score gains are 3.2
points and 11.5 points respectively. The macro F-
score of the overall system would likely have im-
proved more than shown in the table if the addition
of keyword features did not simultaneously reduce
Missing Details’s score by several points.

While we hoped that adding aggregatedword
n-gram features to the system (row 4) would be
able to improve performance on Confusing Phras-
ing due to the presence of phrases such as “in uni-
versity be” in the error’sAw+i list, there turned
out to be few such common phrases in the data set,

10Since parameters for optimizing micro F-score and
macro F-score are selected independently, the per-class F-
scores associated with micro F-score are different than those
used for calculating macro F-score. Hence, when we discuss
per-class changes influencing micro F-score, we refer to the
former set, and otherwise we refer to the latter set.

11All significance tests are pairedt-tests, withp < 0.05.
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so performance on this class remains mostly un-
changed. This feature type does, however, result
in major improvements to micro and macro perfor-
mance on Missing Details and Writer Position, the
other two classes this feature was designed to help.
Indeed, the micro F-score versions of Missing De-
tails and Writer Position improve by 15.3 and 10.8
percentage points respectively. Since these are mi-
nority classes, however, the large improvements
result in only a small, insignificant improvement
in the overall system’s micro F-score. The macro
F-score results for these classes, however, improve
by 6.5% and 17.6% respectively, giving us a nearly
5-point, statistically significant bump in macro F-
score after we add this feature.

Confusing Phrasing has up to now stubbornly
resisted any improvement, even when we added
features explicitly designed to help our system do
better on this error type. When we add aggregated
part of speech n-gram features on top of the pre-
vious system, that changes dramatically. Adding
these features makes both our system’s F-scores
on Confusing Phrasing shoot up almost 8%, re-
sulting in a significant, nearly 4.9% improvement
in overall micro F-score and a more modest but
insignificant 3.2% improvement in macro F-score
(row 5). The micro F-score improvement can
also be partly attributed to a four point improve-
ment in Incomplete Prompt Response’s micro F-
score. The 13.7% macro F-score improvement of
the Missing Details error plays a larger role in the
overall system’s macro F-score improvement than
Confusing Phrasing’s improvement, however.

The improvement we see in micro F-score when
we add aggregatedframe features (row 6) can be
attributed almost solely to improvements in classi-
fication of the minority classes. This is surprising
because, as we mentioned before, minority classes
tend to have a much smaller impact on overall
micro F-score. Furthermore, the overall micro
F-score improvement occurrs despite declines in
the performances on two of the majority class er-
rors. Missing Details and Writer Position’s mi-
cro F-score performances increase by 19.1% and
13.4%. The latter is surprising only because of
the magnitude of its improvement, as this feature
type was explicitly intended to improve its perfor-
mance. We did not expect this aggregated feature
type to be especially useful for Missing Details er-
ror identification because very few of these types
of features occur in itsAf+i list, and there are

none in itsAf−i list. The few that are in the for-
mer list, however, occur fairly often and look like
fairly good indicators of this error (both the exam-
ples “Event-Event-it” and “Categorization-Item-
that” occur in the positive list, and both do seem
vague, indicating more details are to be desired).

Overall, this system improves our base-
line’s macro F-score performance significantly by
13.3% and its micro F-score performance signifi-
cantly by 10.3%. As we progressed, adding each
new feature type to the baseline system, there was
no definite and consistent pattern to how the pre-
cisions and recalls changed in order to produce
the universal increases in the F-scores that we ob-
served for each new system. Both just tended to
jerkily progress upward as new feature types were
added. This confirms our intuition about these fea-
tures – namely that they do not all uniformly im-
prove our performance in the same way. Some aim
to improve precision by telling us when essays are
less likely to be positive instances of an error class,
such as any of theAw−i, Ap−i, orAf−i features,
and others aim to tell us when an essay is more
likely to be a positive instance of an error.

6.2 Scoring

Scoring metrics. We design three evaluation
metrics to measure the error of our thesis clarity
scoring system. TheS1 metric measures the fre-
quency at which a system predicts the wrong score
out of the seven possible scores. Hence, a system
that predicts the right score only 25% of the time
would receive anS1 score of 0.75.

The S2 metric measures the average distance
between the system’s score and the actual score.
This metric reflects the idea that a system that
estimates scores close to the annotator-assigned
scores should be preferred over a system whose
estimations are further off, even if both systems
estimate the correct score at the same frequency.

Finally, the S3 metric measures the average
square of the distance between a system’s the-
sis clarity score estimations and the annotator-
assigned scores. The intuition behind this metric
is that not only should we prefer a system whose
estimations are close to the annotator scores, but
we should also prefer one whose estimations are
not too frequently very far away from the annota-
tor scores. These three scores are given by:

1

N

∑

Aj 6=E′
j

1,
1

N

N∑

i=1

|Aj − Ej|,
1

N

N∑

i=1

(Aj − Ej)
2
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whereAj, Ej, andE′
j are the annotator assigned,

system estimated, and rounded system estimated
scores12 respectively for essayj, and N is the
number of essays.

Results and discussion. Results on scoring are
shown in the last three columns of Table 6. We
see that the thesis clarity score predicting variation
of theBaseline system, which employs as features
only word n-grams and random indexing features,
predicts the wrong score 65.8% of the time. Its
predicted score is on average 0.517 points off of
the actual score, and the average squared distance
between the predicted and actual scores is 0.403.

We observed earlier that a high number of mis-
spellings may be positively correlated with one
or more unrelated errors. Adding themisspelling
feature to the scoring systems, however, only
yields minor, insignificant improvements to their
performances under the three scoring metrics.

While addingkeyword features on top of this
system does not improve the frequency with which
the right score is predicted, it both tends to move
the predictions closer to the actual thesis clar-
ity score value (as evidenced by the significant
improvement inS2) and ensures that predicted
scores will not too often stray too far from the
actual value (as evidenced by the significant im-
provement inS3). Overall, the scoring model em-
ploying theBmk feature set performs significantly
better than theBaseline scoring model with re-
spect to two out of three scoring metrics.

The only remaining feature type whose addition
yields a significant performance improvement is
the aggregatedword feature type, which improves
systemBmk’s S2 score significantly while having
an insignificant impact on the otherS metrics.

Neither of the remaining aggregative features
yields any significant improvements in perfor-
mance. This is a surprising finding since, up un-
til we introduced aggregatedpart-of-speech tag n-
gram features into our regressor, each additional
feature that helped with error classification made
at least a small but positive contribution to at least
two out of the threeS scores. These aggregative
features, which proved to be very powerful when
assigning error labels, are not as useful for thesis

12Since our regressor assigns each essay a real value rather
than an actual valid thesis clarity score, it would be difficult
to obtain a reasonableS1 score without rounding the system
estimated score to one of the possible values. For that rea-
son, we round the estimated score to the nearest of the seven
scores the human annotators were permitted to assign (1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0) only when calculatingS1.

S1 (Bmkw) S2 (Bmkwp) S3 (Bmk)
Gold .25 .50 .75 .25 .50 .75 .25 .50 .75
1.0 3.5 3.5 3.5 3.0 3.2 3.5 3.1 3.2 3.3
1.5 2.5 3.0 3.0 2.8 3.1 3.2 2.6 3.0 3.2
2.0 3.0 3.0 3.5 3.0 3.2 3.5 3.0 3.1 3.4
2.5 3.0 3.5 3.5 3.0 3.3 3.6 3.0 3.3 3.5
3.0 3.0 3.5 3.5 3.1 3.4 3.5 3.1 3.3 3.5
3.5 3.5 3.5 4.0 3.2 3.4 3.6 3.2 3.4 3.5
4.0 3.5 3.5 4.0 3.4 3.6 3.8 3.4 3.5 3.7

Table 7: Regressor scores for top three systems.

clarity scoring.
To more closely examine the behavior of the

best scoring systems, in Table 7 we chart the dis-
tributions of scores they predict for each gold stan-
dard score. As an example of how to read this ta-
ble, consider the number 2.8 appearing in row 1.5
in the .25 column of theS2 (Bmkwp) region. This
means that 25% of the time, when systemBmkwp
(which obtains the bestS2 score) is presented with
a test essay having a gold standard score of 1.5,
it predicts that the essay has a score less than or
equal to 2.8 for theS2 metric.

From this table, we see that each of the best sys-
tems has a strong bias toward predicting more fre-
quent scores as there are no numbers less than 3.0
in the 50% columns, and about 82.8% of all essays
have gold standard scores of 3.0 or above. Never-
theless, no system relies entirely on bias, as evi-
denced by the fact that each column in the table
has a tendency for its scores to ascend as the gold
standard score increases, implying that the sys-
tems have some success at predicting lower scores
for essays with lower gold standard scores.

Finally, we note that the difference in error
weighting between theS2 andS3 scoring metrics
appears to be having its desired effect, as there is a
strong tendency for each entry in theS3 subtable
to be less than or equal to its corresponding entry
in the S2 subtable due to the greater penalty the
S3 metric imposes for predictions that are very far
away from the gold standard scores.

7 Conclusion

We examined the problem of modeling thesis clar-
ity errors and scoring in student essays. In addition
to developing these models, we proposed novel
features for use in our thesis clarity error model
and employed these features, each of which was
explicitly designed for one or more of the error
types, to train our scoring model. We make our
thesis clarity annotations publicly available in or-
der to stimulate further research on this task.
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Abstract

We present a corpus analysis of how Ital-
ian connectives are translated into LIS, the
Italian Sign Language. Since corpus re-
sources are scarce, we propose an align-
ment method between the syntactic trees
of the Italian sentence and of its LIS trans-
lation. This method, and clustering ap-
plied to its outputs, highlight the differ-
ent ways a connective can be rendered in
LIS: with a corresponding sign, by affect-
ing the location or shape of other signs, or
being omitted altogether. We translate
these findings into a computational model
that will be integrated into the pipeline of
an existing Italian-LIS rendering system.
Initial experiments to learn the four possi-
ble translations with Decision Trees give
promising results.

1 Introduction

Automatic translation between a spoken language
and a signed language gives rise to some of the
same difficulties as translation between spoken
languages, but adds unique challenges of its own.
Contrary to what one might expect, sign languages
are not artificial languages, but natural languages
that spontaneously arose within deaf communities;
although they are typically named after the region
where they are used, they are not derived from the
local spoken language and tend to bear no similar-
ity to it. Therefore, translation from any spoken
language into the signed language of that specific
region is at least as complicated as between any
pairs of unrelated languages.

The problem of automatic translation is com-
pounded by the fact that the amount of computa-
tional resources to draw on is much smaller than
is typical for major spoken languages. Moreover,
the fact that sign languages employ a different

transmission modality (gestures and expressions
instead of sounds) means that existing writing sys-
tems are not easily adaptable to them. The result-
ing lack of a shared written form does nothing to
improve the availability of sign language corpora;
bilingual corpora, which are of particular impor-
tance to a translation system, are especially rare.
In fact, various projects around the world are try-
ing to ameliorate this sad state of affairs for spe-
cific Sign Languages (Lu and Huenerfauth, 2010;
Braffort et al., 2010; Morrissey et al., 2010).

In this paper, we describe the work we per-
formed as concerns the translation of connectives
from the Italian language into LIS, the Italian Sign
Language (Lingua Italiana dei Segni). Because the
communities of signers in Italy are relatively small
and fragmented, and the language has a relatively
short history, there is far less existing research and
material to draw on than for, say, ASL (American
Sign Language) or BSL (British Sign Language).

Our work was undertaken within the purview of
the ATLAS project (Bertoldi et al., 2010; Lom-
bardo et al., 2010; Lombardo et al., 2011; Prinetto
et al., 2011; Mazzei, 2012; Ahmad et al., 2012),
which developed a full pipeline for translating Ital-
ian into LIS. ATLAS is part of a recent crop of
projects devoted to developing automatic transla-
tion from language L spoken in geographic area
G into the sign language spoken in G (Dreuw et
al., 2010; López-Ludeña et al., 2011; Almohimeed
et al., 2011; Lu and Huenerfauth, 2012). Input is
taken in the form of written Italian text, parsed,
and converted into a semantic representation of its
contents; from this semantic representation, LIS
output is produced, using a custom serialization
format called AEWLIS (which we will describe
later). This representation is then augmented with
space positioning information, and fed into a fi-
nal renderer component that performs the signs
using a virtual actor. ATLAS focused on a lim-
ited domain for which a bilingual Italian/LIS cor-

270



pus was available: weather forecasts, for which
the Italian public broadcasting corporation (RAI)
had long been producing special broadcasts with
a signed translation. This yielded a corpus of 376
LIS sentences with corresponding Italian text: this
corpus, converted into AEWLIS format, was the
main data source for the project. Still, it is a very
small corpus, hence the main project shied away
from statistical NLP techniques, relying instead on
rule-based approaches developed with the help of
a native Italian/LIS bilingual speaker; a similar ap-
proach is taken e.g. in (Almohimeed et al., 2011)
for Arabic.

1.1 Why connectives?

The main semantic-bearing elements of an Italian
sentence, such as nouns or verbs, typically have
a LIS sign as their direct translation. We focus
on a different class of elements, comprising con-
junctions and prepositions, but also some adverbs
and prepositional phrases; collectively, we refer
to them as connectives. Since they are mainly
structural elements, they are more heavily affected
by differences in the syntax and grammar of Ital-
ian and LIS (and, presumably, in those of any
spoken language and the “corresponding” SL).
Specifically, as we will see later, some connectives
are translated with a sign, some connectives are
dropped, whereas others affect the positioning of
other signs, or just their syntactic proximity.

It should be noted that our usage of the term
“connectives” is somewhat unorthodox. For ex-
ample, while prepositions can be seen as con-
nectives (Ferrari, 2008), only a few adverbs can
work as connectives. From the Italian Treebank,
we extracted all words or phrases that belonged
to a syntactic category that can be a connective
(conjunction, preposition, adverb or prepositional
phrase). We then found that we could better serve
the needs of ATLAS by running our analysis on
the entire resulting list, without filtering it by elim-
inating the entries that are not actual connectives.
In fact, semantic differences re-emerge through
our analysis: e.g., the temporal adverbs “domani”
and “dopodomani” are nearly always preserved,
as they do carry key information (especially for
weather forecasting) and are not structural ele-
ments.

In performing our analysis, we pursued a dif-
ferent path from the main project, relying entirely
on the bilingual corpus. Although the use of sta-

tistical techniques was hampered by the small size
of the corpus, at the same time it presented an in-
teresting opportunity to attack the problem from
a different angle. In this paper we describe how
we uncovered the translation distributions of the
different connectives from Italian to LIS via tree
alignment.

2 Corpus Analysis

The corpus consists of 40 weather forecasts in Ital-
ian and LIS. The Italian spoken utterance and LIS
signing were transcribed from the original videos
– one example of an Italian sentence and its LIS
equivalent are shown in Figure 1. An English
word-by-word translation is provided for the Ital-
ian sentence, followed by a more fluent transla-
tion; the LIS glosses are literally translated. Note
that as concerns LIS, this simply includes the gloss
for the corresponding sign. The 40 weather fore-
cast comprise 374 Italian sentences and 376 LIS
sentences, stored in 372 AEWLIS files. In most
cases, a file corresponds to one Italian sentence
and one corresponding LIS sentences; however,
there are 4 files where an Italian sentence is split
into two LIS sentences, and 2 files where two Ital-
ian sentences are merged into one LIS sentence.

AEWLIS is an XML-based format (see Fig-
ure 2) which represents each sign in the LIS sen-
tence as an element, in the order in which they oc-
cur in the sentence. A sign’s lemma is represented
by the Italian word with the same meaning, always
written in uppercase, and with its part of speech
(tipoAG in Figure 2); there are also IDs referenc-
ing the lemma’s position in a few dictionaries, but
these are not always present. The AEWLIS file
also stores several additional attributes, such as:
a parent reference that represents the syntax of
the LIS sentence; the syntactic role “played” by
the sign in the LIS sentence; the facial expres-
sion accompanying the gesture; the location in the
signing space (which may be an absolute location
or a reference to a previous sign’s: compare HR
(High Right) and atLemma in Figure 2). These
attributes are stored as elements grouped by type,
and reference the corresponding sign element by
its ordinal position in the sentence. The additional
attributes are not always available: morphologi-
cal variations are annotated only when they differ
from an assumed standard form of the sign, while
the syntactic structure was annotated for only 89
sentences.
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(1) (Ita.) Anche
Also

sulla
on

Sardegna
Sardinia

qualche
a few

annuvolamento
cloud covers

pomeridiano,
afternoon[adj],

possibilità
chance

di
of

qualche
a few

breve
brief

scroscio
downpour

di
of

pioggia,
rain,

ma
but

tendenza
trend

poi
then

a
towards

schiarite.
sunny spells.

“Also on Sardinia skies will become overcast in the afternoon, chance of a few brief downpours of rain, but then a trend
towards a mix of sun and clouds”.

(2) (LIS) POMERIGGIO
Afternoon

SARDEGNA
Sardinia

AREA
area

NUVOLA
cloud

PURE
also

ACQUAZZONE
downpour

POTERE
can[modal]

MA
but

POI
then

NUVOLA
cloud

DIMINUIRE
decrease

Figure 1: Italian sentence and its LIS translation

<Lemmi>
<NuovoLemma lemma="POMERIGGIO" tipoAG="NOME" ... endTime="2.247" idSign=""/>
<NuovoLemma lemma="sardegna" tipoAG="NOME_PROPRIO" ... endTime="2.795" idSign="2687"/>
<NuovoLemma lemma="area" tipoAG="NOME" ... endTime="4.08" idSign="2642"/>
<NuovoLemma lemma="nuvola" tipoAG="NOME" ... endTime="5.486" idSign="2667"/>
<NuovoLemma lemma="pure" tipoAG="AVVERBIO" ... endTime="6.504" idSign="2681"/>
...

</Lemmi><SentenceAttribute>
<Parent>

<Timestamp time="1" value="ID:3"/> <Timestamp time="2" value="ID:2"/>
<Timestamp time="3" value="ID:3"/> <Timestamp time="4" value="root_1"/>
<Timestamp time="5" value="ID:3"/> ...

</Parent>
...
<Sign_Spatial_Location>

<Timestamp time="1" value=""/> <Timestamp time="2" value="HR"/>
<Timestamp time="3" value="HL"/> <Timestamp time="4" value="atLemma(ID:2, Distant)"/>
<Timestamp time="5" value=""/> ...

</Sign_Spatial_Location>
...
<Facial>

<Timestamp time="1" value=""/> <Timestamp time="2" value="eye brows:raise"/>
<Timestamp time="3" value="eye brows:raise"/> <Timestamp time="4" value="eye brows:-lwrd"/>
<Timestamp time="5" value=""/> ...

</Facial>
</SentenceAttribute>

Figure 2: Example excerpt from an AEWLIS file

2.1 Distributional statistics for connectives
The list of Italian connectives we considered was
extracted from the Italian Treebank developed
at the Institute for Computational Linguistics in
Pisa, Italy (Montemagni et al., 2003) by searching
for conjunctions, prepositions and adverbs. This
yielded a total of 777 potential connectives. Of
those, only 104 occur in our corpus. A simple
count of the occurrences of connectives in the Ital-
ian and LIS versions of the corpus yields the fol-
lowing results:

(a) 78 connectives (2068 occurrences total) only
occur in the Italian version, for example AL-
MENO (at least), CON (with), INFATTI (in-
deed), PER (for) .

(b) 8 connectives (67 occurrences total) only oc-
cur in the LIS version, for example CIRCA
(about), as in “Here I am”), PURE (also, ad-
ditionally).

(c) 25 connectives (925 occurrences total) occur
in both versions.

For the third category, we have computed the
ratio of the number of occurrences in Italian over
the number of occurrences in LIS; the ratios are
plotted in logarithmic scale in Figure 3. 0 on the
scale corresponds to an ITA/LIS ratio equal to 1;
positive numbers indicate that there are more oc-
currences in ITA, negative numbers that there are
more occurrences in LIS. We can recognize three
clusters by ratio:

(c1) 9 connectives occurring in both languages,
but mainly in Italian, for example POCO (a
little), PIÚ (more), SE (if), QUINDI (hence).

(c2) 13 connectives occurring in both languages
with similar frequency, for example SOLO
(only), POI (then), O (or), MA (but).

(c3) 3 connectives occurring in both languages,
but mainly in LIS: MENO (less), ADESSO
(now), INVECE (instead).
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both

Page 1

abbastanza (enough)
adesso (now)

ancora (still, yet)
chiaro (clear)

domani (tomorrow)
dopodomani (day after tomorrow)

ecco (here)
invece (instead)

ma (but)
meglio (better)

meno (less)
o (or)

oggi (today)
ora (now)

ovunque (everywhere)
più (more)

poco (a little)
poi (then)

proprio (just, precisely)
qui (here)

quindi (hence)
se (if)

sicuro (sure)
solo (only)

tanto (much)

-0.5 0 0.5 1 1.5

Figure 3: Ratio of ITA/LIS occurrences in loga-
rithmic scale.

3 The effect of the Italian connectives on
the LIS translation

From this basic frequency analysis we can already
notice that a large number of connectives only ap-
pear in Italian, or have far more occurrences in
Italian than in LIS. This is unsurprising, consider-
ing that LIS sentences tend to be shorter than Ital-
ian sentences in terms of number of signs/words (a
fact which probably correlates with the increased
energy and time requirements intrinsic into artic-
ulating a message using one’s arms rather than
one’s tongue). However, our goal is to predict
when a connective should be dropped and when
it should be preserved. Furthermore, even if the
connective does not appear in the LIS sentence as
a directly corresponding sign, that does not mean
that its presence in the Italian sentence has no ef-
fect on the translation. We hypothesize four dif-
ferent possible realizations for a connective in the
Italian sentence:

• the connective word or phrase may map to a
corresponding connective sign;

• the connective is not present as a sign, but
may affect the morphology of the signs which
translate words syntactically adjacent to the

connective;

• the connective is not present as a sign, but
its presence may be reflected by the fact that
words connected by it map to signs which are
close to each other in the LIS syntax tree;

• the connective is dropped altogether.

The second hypothesis deserves some explana-
tion. The earliest treatments of LIS assumed that
each sign (lemma) could be treated as invariant.
Attempts to represent LIS in writing simply re-
placed each sign with a chosen Italian word (or
phrase, if necessary) with the same meaning. Al-
though this is still a useful way of representing the
basic lemma, more recent studies have noted that
LIS signs can undergo significant morphological
variations which are lost under such a scheme. The
AEWLIS format, in fact, was designed to preserve
them.

Of course, morphological variations in LIS are
not phonetic, like in a spoken language, but ges-
tural (Volterra, 1987; Romeo, 1991). For exam-
ple, the location in which a gesture is performed
may be varied, or its speed, or the facial expres-
sions that accompany it (Geraci et al., 2008). One
particularly interesting axis of morphology is the
positioning of the gesture in the signing space in
front of the signer. This space is implicitly divided
into a grid with a few different positions from left
to right and from top to bottom (see HR – High
Right, and LH – High Left, in Figure 2). Two or
more signs can then be placed in different posi-
tions in this virtual space, and by performing other
signs in the same positions the signer can express
a backreference to the previously established en-
tity at that location. One can even have a move-
ment verb where the starting and ending positions
of the gesture are positioned independently to in-
dicate the source and destination of the movement.
In other words, these morphological variations can
perform a similar function to gender and num-
ber agreement in Italian backreferences, but they
can also assume roles that in Italian would be per-
formed by prepositions, which are connectives. In
fact, as we will see later on, Italian prepositions are
never translated as signs, but are often associated
with morphological variations on related signs.

3.1 Tree Alignment
Two of our four translation hypotheses involve a
notion of distance on the syntax tree, and a no-
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19_f08_2011-06-08_10_04_10.xml
Anche sulla Sardegna qualche annuvolamento pomeridiano, possibilità di qualche breve scroscio di pioggia, ma tendenza poi a schiarite

pomeriggio Sardegna area nuvola pure acquazzone potere ma poi nuvola diminuire

sulla

Anche

Sardegna annuvolamento

qualchepomeridiano ,

possibilità

, ma

di

scroscio

qualche breve di

pioggia

tendenza

poi a

schiarite

NUVOLA

POMERIGGIOAREA

PURE

POTERE

SARDEGNA ACQUAZZONEMA

NUVOLA DIMINUIRE

POI

Figure 4: Example of integrated syntax trees.

tion of signs corresponding to words. Therefore,
it is not sufficient to consider the LIS sentence
and the Italian sentence separately. Instead, their
syntax trees must be reconstructed and aligned.
Tree alignment in a variety of forms has been
extensively used in machine translation systems
(Gildea, 2003; Eisner, 2003; May and Knight,
2007). As far as we know, we are the first
to attempt the usage of tree alignment to aid in
the translation between a spoken and a sign lan-
guage, partly because corpora that include sync-
tactic trees for sign language sentences hardly ex-
ist. (López-Ludeña et al., 2011) does use align-
ment techniques for translation from Spanish to
Spanish Sign Language (SSL), but it is limited to
alignment between words or phrases in Spanish,
and glosses or sequences of glosses in SSL.

We have developed a pipeline that takes in input
the corpus files, parses the Italian sentence with

an existing parser, and retrieves / builds a parse
tree for the LIS sentence. The two trees are then
aligned by exploiting the word/sign alignment. A
sample output is shown in Figure 4.

Italian sentence parsing. Since the corpus con-
tains the Italian sentences in plain, unstructured
text form, they need to be parsed. We used the
DeSR parser, a dependency parser pre-trained on a
very large Italian corpus (Attardi et al., 2007; Cia-
ramita and Attardi, 2011). This parser produced
the syntax trees and POS tagging that we used for
the Italian part of the corpus.

LIS syntax tree. One of the attributes allowed
by AEWLIS is “parent”, which points a sign to its
parent in the syntax tree, or marks it as a root (see
Figure 2). These hand-built syntax trees are avail-
able in roughly 1/4 of the AEWLIS files. Because
the size of our corpus is already limited, and be-
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cause no tools are available to generate LIS syn-
tax trees, for the remaining 3/4 of the corpus we
fell back on a simple linear tree where each sign is
connected to its predecessor. This solution at least
maintains locality in most cases.

Word Alignment. Having obtained syntax trees
for the two sentences, we then needed to align
them. For this purpose we used the Berkeley Word
Aligner (BWA) 1 (Denero, 2007), a general tool
for aligning sentences in bilingual corpora. BWA
takes as input a series of matching sentences in
two different languages, trains multiple unsuper-
vised alignment models, and selects the optimal
result using a testing set of manual alignments.
The output is a list of aligned word indices for
each input sentence pair. On our data set, BWA
performance is as follows: Precision = 0.736364,
Recall = 0.704348, AER = 0.280000.

Integration. The result is an integrated syntax
tree representation of the Italian and LIS ver-
sions of the sentence, with arcs bridging aligned
word/sign pairs. Since some connectives consist
of multi-word phrases, the word nodes which are
part of one are merged into a super-node that in-
herits all connections to other nodes. Figure 4
shows the end result for the Italian and LIS sen-
tences in Figure 1 (the two sentences are repeated
for convenience at the bottom of Figure 4). The
rectangular boxes are words in the Italian sen-
tence, while the rounded boxes are signs in the LIS
sentence. The Italian tree has its root(s) at the bot-
tom, while the LIS tree has its root(s) at the top.
Solid arrows point from children to parent nodes
in the syntax tree. Gray-shaded boxes represent
connectives (words or signs, as indicated by the
border of the box). Bold dashed lines show word
alignment. Edges with round heads show relation-
ships where a sign has a location attribute refer-
encing another sign. Arrows with an empty tri-
angular head trace the paths described in the next
section.

3.2 Subtree alignment and path processing

At this point individual words are aligned, but that
is not sufficient. Our hypotheses on the effect of
connectives on translation requires us to align a
tree fragment surrounding the Italian connective
with the corresponding tree fragment on the LIS

1http://code.google.com/p/
berkeleyaligner/

side - where the connective may be missing. In ef-
fect, since we have hypothesized that the presence
of a connective can affect the translation of the two
subtrees that it connects, we would like to be able
to align each of those subtrees to its translation.
However, given the differences between the two
languages, it is not easy to give a clear definition
of this mapping - let alone to compute it.

Instead, we can take a step back to word-level
alignment. We make the observation that, if two
words belong to two different subtrees linked by a
connective, so that the path between the two words
goes through the connective, then the frontier be-
tween the LIS counterparts of those two subtrees
should also lie along the path between the signs
aligned with those two words. If the connective is
preserved in translation as a sign, we should ex-
pect to find it along that path; if it is not, its ef-
fect should still be seen along that path, either in
the form of morphological variations to the signs
along the path, or in the shortness of the path itself.

The first step, then, is to split the Italian syntax
tree by removing the connective. This yields one
subtree containing the connective’s parent node, if
any, and one subtree for each of the connective’s
children, if any. The parent subtree typically con-
tains most of the rest of the sentence, so only the
direct ancestors of the connective are considered.
Then, each pair of words belonging to different
subtrees is linked by a path that goes through the
connective in the original tree. Of these words, we
select the ones that have aligned signs, and then
we compute the path between each pair of signs
aligned to words belonging to different subtrees.
This gives us a set of paths to consider in the LIS
syntax tree.

For example, let us consider the connective “di”
between “possibilità” and “scroscio” in Figure 4.

• This node connects two subtrees: a child sub-
tree containing “qualche, breve, scroscio, di,
pioggia”, and a parent subtree containing the
rest of the sentence.

• From each subtree, a set of paths is gener-
ated: all paths extending from the connective
to the leaves of the child subtree (for exam-
ple “scroscio, qualche” or “scroscio, di, pi-
oggia”), and the path of direct ancestors in
the parent tree (“sulla, annuvolamento, pos-
sibilità”).

• Iterate through the cartesian product of each
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Table 1: Translation candidates for connectives with more than 10 occurrences
Connective ITA Occurrences Sign Location Close Missing

domani 71 67 (94.37%) 1 (1.41%) 2 (2.82%) 4 (5.63%)
dopodomani 15 14 (93.33%) 0 (0.00%) 0 (0.00%) 1 (6.67%)

mentre 28 26 (92.86%) 5 (17.86%) 0 (0.00%) 1 (3.57%)
o 37 37 (100.00%) 2 (5.41%) 6 (16.22%) 0 (0.00%)

però 10 9 (90.00%) 1 (10.00%) 1 (10.00%) 1 (10.00%)
ancora 72 44 (61.11%) 1 (1.39%) 3 (4.17%) 25 (34.72%)
invece 17 9 (52.94%) 1 (5.88%) 2 (11.76%) 6 (35.29%)

ma 51 29 (56.86%) 1 (1.96%) 2 (3.92%) 21 (41.18%)
poi 22 10 (45.45%) 2 (9.09%) 0 (0.00%) 10 (45.45%)

abbastanza 11 4 (36.36%) 1 (9.09%) 0 (0.00%) 6 (54.55%)
anche 89 33 (37.08%) 5 (5.62%) 1 (1.12%) 53 (59.55%)

ora 17 6 (35.29%) 1 (5.88%) 1 (5.88%) 10 (58.82%)
proprio 11 5 (45.45%) 0 (0.00%) 0 (0.00%) 6 (54.55%)
quindi 35 9 (25.71%) 1 (2.86%) 0 (0.00%) 25 (71.43%)
come 16 0 (0.00%) 1 (6.25%) 1 (6.25%) 14 (87.50%)
dove 28 0 (0.00%) 1 (3.57%) 0 (0.00%) 27 (96.43%)

generalmente 13 0 (0.00%) 0 (0.00%) 0 (0.00%) 13 (100.00%)
per quanto riguarda 14 0 (0.00%) 0 (0.00%) 1 (7.14%) 13 (92.86%)

piuttosto 13 0 (0.00%) 0 (0.00%) 0 (0.00%) 13 (100.00%)
più 57 0 (0.00%) 3 (5.26%) 2 (3.51%) 52 (91.23%)

poco 63 2 (3.17%) 3 (4.76%) 0 (0.00%) 58 (92.06%)
sempre 13 1 (7.69%) 0 (0.00%) 0 (0.00%) 12 (92.31%)

soprattutto 16 1 (6.25%) 1 (6.25%) 0 (0.00%) 14 (87.50%)
a 111 0 (0.00%) 18 (16.22%) 30 (27.03%) 66 (59.46%)

con 91 0 (0.00%) 20 (21.98%) 11 (12.09%) 62 (68.13%)
da 97 0 (0.00%) 26 (26.80%) 18 (18.56%) 62 (63.92%)
di 510 2 (0.39%) 92 (18.04%) 140 (27.45%) 312 (61.18%)
e 206 17 (8.25%) 34 (16.50%) 25 (12.14%) 140 (67.96%)
in 168 6 (3.57%) 37 (22.02%) 16 (9.52%) 113 (67.26%)
per 120 0 (0.00%) 7 (5.83%) 35 (29.17%) 82 (68.33%)
su 327 4 (1.22%) 121 (37.00%) 38 (11.62%) 190 (58.10%)

verso 18 0 (0.00%) 6 (33.33%) 1 (5.56%) 12 (66.67%)

pair of sets (in this case we have only one
pair), and consider the full path formed by the
two paths connected by the connective node
(for instance, “sulla, annuvolamento, possib-
lità, di, scroscio, breve”).

• For each of these paths, take the signs aligned
to words on different sides of the target con-
nective, and find the shortest path between
those signs in the LIS syntax tree; we call this
the aligned path. For example, from “pos-
sibilità” and “scroscio” we find “POTERE,
ACQUAZZONE”. If this process generates
multiple paths, only the maximal ones are
kept.

By looking at words within a certain distance of
the connective, at their aligned signs, and at the
distance between those signs in the aligned path,
the program then produces one or more “transla-
tion candidates” for each occurrence of a connec-
tive:

• Sign: if the connective word is aligned to a
connective sign in LIS, that is its direct trans-
lation;

• Location: if morphology variations (cur-
rently limited to the “location” attribute, see
Figure 2) are present on a sign aligned to an
It. word belonging to one of the examined
paths, and the word is less than 2 steps away
from the connective, that morphological vari-
ation in LIS may capture the function of the
connective;

• Close: if two It. words are connected by
a connective, and they map to signs which
have a very short path between them (up to
3 nodes, including the two signs), the con-
nective may be reflected simply in this close
connection between the translated subtrees in
the LIS syntax tree;

• Missing: if none of the above hypotheses are
possible, we hypothesize that the connective
has been simply dropped.

Table 1 shows the results of this analysis. It in-
cludes only connectives with more than 10 occur-
rences. For each connective and translation hy-
pothesis, the shading of the cell is proportional to
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the fraction of occurrences where that hypothesis
is possible; this fraction is also given as a percent.
Note that Sign, Location and Close candidates are
not mutually exclusive: for instance, an occur-
rence of a connective might be directly aligned
with a sign, but at the same time it might fit the
criteria for a Location candidate. For this reason,
the sum of the percents in the four columns is not
necessarily 100.

k-means clustering (MacQueen, 1967; Lloyd,
1982) has been applied to the connectives, with
the aforementioned fractions as the features. The
resulting five clusters are represented by the row
groupings in the table.

The first cluster contains words which clearly
have a corresponding sign in LIS, such as “do-
mani” (tomorrow). “Domani” and “dopodomani”
are not actually connectives, while “mentre”, “o”
and “però” are. It is interesting to note that, while
a logician might expect “e” (and) and “o” (or) to
be treated similarly, they actually work quite dif-
ferently in LIS: there is a specific sign for “o”, but
there is no sign for “e”. Instead, signs are sim-
ply juxtaposed in LIS where “e” would be used in
Italian.

The words in the second cluster also have a di-
rect sign translation, but they are missing in the
LIS translation around half of the time. Several
words represent connections with previous state-
ments or situations, such as “ancora” (again), “in-
vece” (instead), “ma” (but). These appear to be
often dropped in LIS when they reference a previ-
ous sentence, e.g. a sentence-initial “ma”; or when
they are redundant in Italian, e.g. “ma” in “ma an-
che” (“but also”). Therefore, we think can see two
phenomena at play here: a stronger principle of
economy in LIS, and a reduced number of explicit
connections across sentences.

The third cluster is similar to the second cluster,
but with a higher percent of dropped connectives.
This is probably related to the semantics of these
five words. “Abbastanza” means “quite, enough”,
and in general indicates a medium quantity, not
particularly large nor particularly small. It is no
surprise that this word is more likely to succumb
to principles of economy in language. “Anche”
means “also”, and is either translated as “PURE”
(also) or dropped. This does not seem to depend
on the specific circumstances of its usage; rather, it
seems to be largely a stylistic choice by the trans-
lator. “Proprio” (“precisely”, “just”) has a corre-

sponding sign “PROPRIO”, but since it does not
convey essential information it is a good candidate
for dropping. “Quindi”, meaning “therefore”, has
its own sign “QUINDI”, but once again the causal
relationship it conveys is usually not essential to
understanding what the weather will be, and thus
it is frequently dropped.

The fourth cluster consists of connectives which
are largely simply dropped. Some of these are el-
ements that just contribute to the discourse flow
in Italian, such as “per quanto riguarda” (“con-
cerning”); in fact, this connective mainly oc-
curs in sentence-initial position in the Italian sen-
tences in our corpus and denotes a change of
topic from the previous sentence, corroborating
our hypothesis of a reduced use of explicit inter-
sentence connections in LIS. It may seem strange
for comparative and intensity markers such as
“più” (more) or “poco” (a little) to be so consis-
tently dropped, but it turns out that intensity varia-
tions for weather phenomena are often embedded
into a specific sign, for example “NUVOLOSITÀ
AUMENTARE” (increasing cloud cover).

The fifth cluster contains all Italian prepositions
(with 10 or more occurrences in the corpus), none
of which is translated as a sign (the 6 occurrences
for “in”, the 4 for “su” and the 2 for “di” are due
to alignment errors). We can conclude that prepo-
sitions do not exist in LIS as parts of speech; how-
ever, the prepositions in this cluster are often asso-
ciated with morphological variations in the spatial
positioning of related signs, which suggests that
the role associated with these prepositions in Ital-
ian is performed by these variations in LIS. The
conjunction “e” (and) also ends up in this cluster,
although it has 8 legitimate sign alignments with
“pure” (“too”); the rest are alignment errors. Un-
surprisingly, all connectives in this class also have
high ratings for the “close” hypothesis.

4 Rule extraction

We trained a classifier to help a LIS generator de-
termine how an Italian connective should be trans-
lated. Because the translation pipeline we plan to
integrate with is rule-based, we chose a Decision
Tree as our classifier: this allows rules to be easily
extracted from the classification model.

In order to identify a single class for each exam-
ple, we ranked the four possible translation can-
didates as follows: Sign is the strongest, then
Location, then Close, and finally Missing is the
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child1 align = None ∩ word = Per quanto riguarda ∩ parent align = None⇒Missing

child1 align = None ∩ word = Per quanto riguarda ∩ parent align = PREVEDERE⇒ Close

child1 align = None ∩ word = o⇒ Align(O)

child1 align = None ∩ word = su ∩ child2 align mykind = location ∩ child2 align = SICILIA⇒ Location

Figure 5: Some rules extracted from the decision tree

weakest. Then, each example is labeled with
the strongest translation candidate available for it:
thus, for example, if the connective word appears
to be translated with a connective sign, and the
words it connects are also aligned to signs which
are close to each other syntactically, then the class
is Sign, not Close.

Our training data suffers from large imbalance
between the “missing” class and the others. A
classifier that simply labels all examples as “miss-
ing” would have an accuracy above 60%, and in
fact, that is the classifier that we obtain if we at-
tempt to automatically optimize the parameters of
a Decision Tree (DT). We also note that, for con-
nectives where both options are possible, choosing
to translate them can make the sentence more ver-
bose, but choosing to drop them risks losing part of
the sentence’s meaning: the worse risk is the lat-
ter. Following accepted practice with unbalanced
datasets (Chawla et al., 2004), we rebalanced the
classes by duplicating all examples of the Align,
Location and Close classes, but not those of the
Missing class.

On our data set of connectives with at least
10 occurrences, we trained a DT using AdaBoost
(Freund and Schapire, 1997). The features include
the word neighboring the connective in the Ital-
ian syntax tree, their aligned signs if any, part of
speech tags, and semantic categories such as time
or location. The resulting tree is very large, but
we provide a few examples of the rules that can be
extracted from it in Figure 5.

Bootstrap evaluation shows our DT to have an
accuracy of 83.58% ± 1.03%. In contrast, a base-
line approach of taking the most common class for
each connective results in an accuracy of 68.70%
± 0.88%. Furthermore, the baseline classifier has
abysmal recall for the Close and Location classes
(0.00% and 0.85%, respectively), which our DT
greatly improves upon (86.73% and 75.32%).

In order to estimate the impact of the lack of
a LIS syntax tree in most of the corpus, we also
learned and evaluated a DT using only the 1/4 of
the corpus for which LIS syntax trees are avail-
able. The accuracy is 81.44% ± 2.03%, versus a

baseline of 71.55% ± 1.74%. The recall for Close
and Location is 89.22% and 73.58%, vs. 0.00%
and 3.51% for the baseline. These results are com-
parable with the those obtained on the whole cor-
pus, confirming that linear trees are a reasonable
fallback.

Both clustering and classification were per-
formed using RapidMiner 5.3. 2

5 Conclusions and Future Work

The small size of our corpus, with around 375
bilingual sentences, posed a large challenge to
the use of statistical methods; on the other hand,
having no access to a LIS speaker prevented us
from simply relying on a rule-based approach. By
combining syntax tree processing with several ma-
chine learning techniques, we were able to analyze
the corpus and detect patterns that show linguis-
tic substance. We have produced initial results in
terms of rule extraction, and we will be integrat-
ing these rules into the full Italian-LIS translation
system to produce improved translation of connec-
tives.
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Verónica López-Ludeña, Rubén San-Segundo,
Juan Manuel Montero, Ricardo Córdoba, Javier
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Abstract

Even though the quality of unsupervised
dependency parsers grows, they often fail
in recognition of very basic dependencies.
In this paper, we exploit a prior knowledge
of STOP-probabilities (whether a given
word has any children in a given direc-
tion), which is obtained from a large raw
corpus using the reducibility principle. By
incorporating this knowledge into Depen-
dency Model with Valence, we managed to
considerably outperform the state-of-the-
art results in terms of average attachment
score over 20 treebanks from CoNLL 2006
and 2007 shared tasks.

1 Introduction

The task of unsupervised dependency parsing
(which strongly relates to the grammar induction
task) has become popular in the last decade, and
its quality has been greatly increasing during this
period.

The first implementation of Dependency Model
with Valence (DMV) (Klein and Manning, 2004)
with a simple inside-outside inference algo-
rithm (Baker, 1979) achieved 36% attachment
score on English and was the first system outper-
forming the adjacent-word baseline.1

Current attachment scores of state-of-the-art un-
supervised parsers are higher than 50% for many
languages (Spitkovsky et al., 2012; Blunsom and
Cohn, 2010). This is still far below the super-
vised approaches, but their indisputable advan-
tage is the fact that no annotated treebanks are
needed and the induced structures are not bur-
dened by any linguistic conventions. Moreover,

1The adjacent-word baseline is a dependency tree in
which each word is attached to the previous (or the follow-
ing) word. The attachment score of 35.9% on all the WSJ
test sentences was taken from (Blunsom and Cohn, 2010).

supervised parsers always only simulate the tree-
banks they were trained on, whereas unsupervised
parsers have an ability to be fitted to different par-
ticular applications.

Some of the current approaches are based on
the DMV, a generative model where the gram-
mar is expressed by two probability distributions:
Pchoose(cd|ch, dir), which generates a new child
cd attached to the head ch in the direction dir (left
or right), and Pstop(STOP |ch, dir , · · · ), which
makes a decision whether to generate another
child of ch in the direction dir or not.2 Such a
grammar is then inferred using sampling or varia-
tional methods.

Unfortunately, there are still cases where the in-
ferred grammar is very different from the gram-
mar we would expect, e.g. verbs become leaves
instead of governing the sentences. Rasooli and
Faili (2012) and Bisk and Hockenmaier (2012)
made some efforts to boost the verbocentricity of
the inferred structures; however, both of the ap-
proaches require manual identification of the POS
tags marking the verbs, which renders them use-
less when unsupervised POS tags are employed.

The main contribution of this paper is a consid-
erable improvement of unsupervised parsing qual-
ity by estimating the Pstop probabilities externally
using a very large corpus, and employing this prior
knowledge in the standard inference of DMV. The
estimation is done using the reducibility principle
introduced in (Mareček and Žabokrtský, 2012).
The reducibility principle postulates that if a word
(or a sequence of words) can be removed from
a sentence without violating its grammatical cor-
rectness, it is a leaf (or a subtree) in its dependency
structure. For the purposes of this paper, we as-
sume the following hypothesis:

If a sequence of words can be removed from

2The Pstop probability may be conditioned by additional
parameters, such as adjacency adj or fringe word cf , which
will be described in Section 4.
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Figure 1: Example of a dependency tree. Se-
quences of words that can be reduced are under-
lined.

a sentence without violating its grammatical cor-
rectness, no word outside the sequence depends on
any word in the sequence.

Our hypothesis is a generalization of the origi-
nal hypothesis since it allows a reducible sequence
to form several adjacent subtrees.

Let’s outline the connection between the Pstop

probabilities and the property of reducibility. Fig-
ure 1 shows an example of a dependency tree. Se-
quences of reducible words are marked by thick
lines below the sentence. Consider for example
the word “further”. It can be removed and thus,
according to our hypothesis, no other word de-
pends on it. Therefore, we can deduce that the
Pstop probability for such word is high both for
the left and for the right direction. The phrase
“for further discussions” is reducible as well and
we can deduce that the Pstop of its first word
(“for”) in the left direction is high since it cannot
have any left children. We do not know anything
about its right children, because they can be lo-
cated within the sequence (and there is really one
in Figure 1). Similarly, the word “discussions”,
which is the last word in this sequence, cannot
have any right children and we can estimate that its
right Pstop probability is high. On the other hand,
non-reducible words such, as the verb “asked” in
our example, can have children, and therefore their
Pstop can be estimated as low for both directions.

The most difficult task in this approach is to au-
tomatically recognize reducible sequences. This
problem, together with the estimation of the stop-
probabilities, is described in Section 3. Our
model, not much different from the classic DMV,
is introduced in Section 4. Section 5 describes the
inference algorithm based on Gibbs sampling. Ex-
periments and results are discussed in Section 6.
Section 7 concludes the paper.

2 Related Work

Reducibility: The notion of reducibility belongs
to the traditional linguistic criteria for recogniz-

ing dependency relations. As mentioned e.g. by
Kübler et al. (2009), the head h of a construction c
determines the syntactic category of c and can of-
ten replace c. In other words, the descendants of h
can be often removed without making the sentence
incorrect. Similarly, in the Dependency Analysis
by Reduction (Lopatková et al., 2005), the authors
assume that stepwise deletions of dependent ele-
ments within a sentence preserve its syntactic cor-
rectness. A similar idea of dependency analysis
by splitting a sentence into all possible acceptable
fragments is used by Gerdes and Kahane (2011).

We have directly utilized the aforementioned
criteria for dependency relations in unsuper-
vised dependency parsing in our previous pa-
per (Mareček and Žabokrtský, 2012). Our depen-
dency model contained a submodel which directly
prioritized subtrees that form reducible sequences
of POS tags. Reducibility scores of given POS tag
sequences were estimated using a large corpus of
Wikipedia articles. The weakness of this approach
was the fact that longer sequences of POS tags
are very sparse and no reducibility scores could
be estimated for them. In this paper, we avoid this
shortcoming by estimating the STOP probabilities
for individual POS tags only.

Another task related to reducibility is sentence
compression (Knight and Marcu, 2002; Cohn and
Lapata, 2008), which was used for text summa-
rization. The task is to shorten the sentences while
retaining the most important pieces of informa-
tion, using the knowledge of the grammar. Con-
versely, our task is to induce the grammar using
the sentences and their shortened versions.

Dependency Model with Valence (DMV) has
been the most popular approach to unsupervised
dependency parsing in the recent years. It was in-
troduced by Klein and Manning (2004) and fur-
ther improved by Smith (2007) and Cohen et al.
(2008). Headden III et al. (2009) introduce the
Extended Valence Grammar and add lexicaliza-
tion and smoothing. Blunsom and Cohn (2010)
use tree substitution grammars, which allow learn-
ing of larger dependency fragments by employ-
ing the Pitman-Yor process. Spitkovsky et al.
(2010) improve the inference using iterated learn-
ing of increasingly longer sentences. Further im-
provements were achieved by better dealing with
punctuation (Spitkovsky et al., 2011b) and new
“boundary” models (Spitkovsky et al., 2012).
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Other approaches to unsupervised dependency
parsing were described e.g. in (Søgaard, 2011),
(Cohen et al., 2011), and (Bisk and Hockenmaier,
2012). There also exist “less unsupervised” ap-
proaches that utilize an external knowledge of the
POS tagset. For example, Rasooli and Faili (2012)
identify the last verb in the sentence, minimize
its probability of reduction and thus push it to
the root position. Naseem et al. (2010) make use
of manually-specified universal dependency rules
such as Verb→Noun, Noun→Adjective. McDon-
ald et al. (2011) identify the POS tags by a cross-
lingual transfer. Such approaches achieve better
results; however, they are useless for grammar in-
duction from plain text.

3 STOP-probability estimation

3.1 Recognition of reducible sequences

We introduced a simple procedure for recog-
nition of reducible sequences in (Mareček and
Žabokrtský, 2012): The particular sequence of
words is removed from the sentence and if the
remainder of the sentence exists elsewhere in the
corpus, the sequence is considered reducible. We
provide an example in Figure 2. The bigram “this
weekend” in the sentence “The next competition
is this weekend at Lillehammer in Norway.” is re-
ducible since the same sentence without this bi-
gram, i.e., “The next competition is at Lilleham-
mer in Norway.”, is in the corpus as well. Simi-
larly, the prepositional phrase “of Switzerland” is
also reducible.

It is apparent that only very few reducible se-
quences can be found by this procedure. If we
use a corpus containing about 10,000 sentences, it
is possible that we found no reducible sequences
at all. However, we managed to find a sufficient
amount of reducible sequences in corpora contain-
ing millions of sentences, see Section 6.1 and Ta-
ble 1.

3.2 Computing the STOP-probability
estimations

Recall our hypothesis from Section 1: If a se-
quence of words is reducible, no word outside the
sequence can depend on any word in the sequence.
Or, in terms of dependency structure: A reducible
sequence consists of one or more adjacent sub-
trees. This means that the first word of a reducible
sequence does not have any left children and, sim-
ilarly, the last word in a reducible sequence does

Martin Fourcade was sixth , maintaining his lead at the top of 
the overall World Cup standings , although Svendsen is now 
only 59 points away from the Frenchman in second . The next 
competition is this weekend at Lillehammer in Norway .

Larinto saw off allcomers at Kuopio with jumps of 129.5 and 
124m for a total 240.9 points , just 0.1 points ahead of 
compatriot Matti Hautamaeki , who landed efforts of 127 and 
129.5m . Third place went to Simon Ammann . Andreas 
Kofler , who won at the weekend at Kuusamo , was fourth but 
stays top of the season standings with 150 points .

Third place went to Simon Ammann of Switzerland . Ammann 
is currently just fifth , overall with 120 points . The next 
competition is at Lillehammer in Norway .

Figure 2: Example of reducible sequences of
words found in a large corpus.

not have any right children. We make use of this
property directly for estimating Pstop probabili-
ties.

Hereinafter, P est
stop(ch, dir) denotes the STOP-

probability we want to estimate from a large cor-
pus; ch is the head’s POS tag and dir is the direc-
tion in which the STOP probability is estimated.
If ch is very often in the first position of reducible
sequences, P est

stop(ch, left) will be high. Similarly,
if ch is often in the last position of reducible se-
quences, P est

stop(ch, right) will be high.
For each POS tag ch in the given corpus,

we first compute its left and right “raw” score
Sstop(ch, left) and Sstop(ch, right) as the relative
number of times a word with POS tag ch was in
the first (or last) position in a reducible sequence
found in the corpus. We do not deal with se-
quences longer than a trigram since they are highly
biased.

Sstop(ch, left) =
# red.seq. [ch, . . . ] + λ

# ch in the corpus

Sstop(ch, right) =
# red.seq. [. . . , ch] + λ

# ch in the corpus

Note that the Sstop scores are not probabilities.
Their main purpose is to sort the POS tags accord-
ing to their “reducibility”.

It may happen that for many POS tags there
are no reducible sequences found. To avoid zero
scores, we use a simple smoothing by adding λ to
each count:

λ =
# all reducible sequences

W
,
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where W denotes the number of words in the
given corpus. Such smoothing ensures that more
frequent irreducible POS tags get a lower Sstop
score than the less frequent ones.

Since reducible sequences found are very
sparse, the values of Sstop(ch, dir) scores are very
small. To convert them to estimated probabilities
P est
stop(ch, dir), we need a smoothing that fulfills

the following properties:

(1) P est
stop is a probability and therefore its value

must be between 0 and 1.

(2) The number of no-stop decisions (no matter
in which direction) equals to W (number of
words) since such decision is made before
each word is generated. The number of stop
decisions is 2W since they come after gener-
ating the last children in both the directions.
Therefore, the average P est

stop(h, dir) over all
words in the treebank should be 2/3.

After some experimenting, we chose the follow-
ing normalization formula

P est
stop(ch, dir) =

Sstop(ch, dir)

Sstop(ch, dir) + ν

with a normalization constant ν. The condition
(1) is fulfilled for any positive value of ν. Its exact
value is set in accordance with the requirement (2)
so that the average value of P est

stop is 2/3.

∑

dir∈{l,r}

∑

c∈C
count(c)P est

stop(c, dir) =
2

3
· 2W,

where count(c) is the number of words with POS
tag c in the corpus. We find the unique value of ν
that fulfills the previous equation numerically us-
ing a binary search algorithm.

4 Model

We use the standard generative Dependency
Model with Valence (Klein and Manning, 2004).
The generative story is the following: First, the
head of the sentence is generated. Then, for each
head, all its left children are generated, then the
left STOP, then all its right children, and then the
right STOP. When a child is generated, the al-
gorithm immediately recurses to generate its sub-
tree. When deciding whether to generate another
child in the direction dir or the STOP symbol,
we use the P dmv

stop (STOP |ch, dir , adj , cf ) model.

The new child cd in the direction dir is generated
according to the Pchoose(cd|ch, dir) model. The
probability of the whole dependency tree T is the
following:

Ptree(T ) = Pchoose(head(T )|ROOT , right)

· Ptree(D(head(T )))

Ptree(D(ch)) =∏

dir∈{l,r}

∏

cd∈
deps(dir,h)

P dmv
stop (¬STOP |ch, dir , adj , cf )

Pchoose(cd|ch, dir)Ptree(D(cd))

P dmv
stop (STOP |ch, dir , adj , cf ),

where Ptree(D(ch)) is probability of the subtree
governed by h in the tree T .

The set of features on which the P dmv
stop and

Pchoose probabilities are conditioned varies among
the previous works. Our P dmv

stop depends on the
head POS tag ch, direction dir , adjacency adj ,
and fringe POS tag cf (described below). The
use of adjacency is standard in DMV and enables
us to have different P dmv

stop for situations when no
child was generated so far (adj = 1). That is,
P dmv
stop (ch, dir , adj = 1, cf ) decides whether the

word ch has any children in the direction dir at
all, whereas P dmv

stop (h, dir , adj = 0, cf ) decides
whether another child will be generated next to
the already generated one. This distinction is of
crucial importance for us: although we know how
to estimate the STOP probabilities for adj = 1
from large data, we do not know anything about
the STOP probabilities for adj = 0.

The last factor cf , called fringe, is the POS tag
of the previously generated sibling in the current
direction dir . If there is no such sibling (in case
adj = 1), the head ch is used as the fringe cf .
This is a relatively novel idea in DMV, introduced
by Spitkovsky et al. (2012). We decided to use
the fringe word in our model since it gives slightly
better results.

We assume that the distributions of Pchoose and
P dmv
stop are good if the majority of the probabil-

ity mass is concentrated on few factors; therefore,
we apply a Chinese Restaurant process (CRP) on
them.

The probability of generating a new child node
cd attached to ch in the direction dir given the his-
tory (all the nodes we have generated so far) is
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computed using the following formula:

Pchoose(cd|ch, dir) =

=
αc

1
|C| + count−(cd, ch, dir)

αc + count−(ch, dir)
,

where count−(cd, ch, dir) denotes the number of
times a child node cd has been attached to ch
in the direction dir in the history. Similarly,
count−(ch, dir) is the number of times something
has been attached to ch in the direction dir . The
αc is a hyperparameter and |C| is the number of
distinct POS tags in the corpus.3

The STOP probability is computed in a similar
way:

P dmv
stop (STOP |ch, dir , adj , cf ) =

=
αs

2
3 + count−(STOP , ch, dir , adj , cf )

αs + count−(ch, dir , adj , cf )

where count−(STOP , ch, dir , adj , cf ) is the
number of times a head ch had the last child cf
in the direction dir in the history.

The contribution of this paper is the inclusion
of the stop-probability estimates into the DMV.
Therefore, we introduce a new model P dmv+est

stop ,
in which the probability based on the previously
generated data is linearly combined with the prob-
ability estimates based on large corpora (Sec-
tion 3).

P dmv+est
stop (STOP |ch, dir , 1, cf ) =

= (1− β) · αs
2
3 + count−(STOP , ch, dir , 1, cf )

αs + count−(ch, dir , 1, cf )

+β · P est
stop(ch, dir)

P dmv+est
stop (STOP |ch, dir , 0, cf ) =

= P dmv
stop (STOP |ch, dir , 0, cf )

The hyperparameter β defines the ratio between
the CRP-based and estimation-based probability.
The definition of the P dmv+est

stop for adj = 0 equals
the basic P dmv

stop since we are able to estimate only
the probability whether a particular head POS tag
ch can or cannot have children in a particular di-
rection, i.e if adj = 1.

3The number of classes |C| is often used in the denomi-
nator. We decided to put its reverse value into the numerator
since we observed such model to perform better for a constant
value of αc over different languages and tagsets.

Finally, we obtain the probability of the whole
generated treebank as a product over the trees:

Ptreebank =
∏

T∈treebank
Ptree(T ).

An important property of the CRP is the fact that
the factors are exchangeable – i.e. no matter how
the trees are ordered in the treebank, the Ptreebank

is always the same.

5 Inference

We employ the Gibbs sampling algorithm (Gilks
et al., 1996). Unlike in (Mareček and Žabokrtský,
2012), where edges were sampled individually,
we sample whole trees from all possibilities on a
given sentence using dynamic programming. The
algorithm works as follows:

1. A random projective dependency tree is as-
signed to each sentence in the corpus.

2. Sampling: We go through the sentences in a
random order. For each sentence, we sam-
ple a new dependency tree based on all other
trees that are currently in the corpus.

3. Step 2 is repeated in many iterations. In
this work, the number of iterations was set
to 1000.

4. After the burn-in period (which was set to the
first 500 iterations), we start collecting counts
of edges between particular words that ap-
peared during the sampling.

5. Parsing: Based on the collected counts, we
compute the final dependency trees using
the Chu-Liu/Edmonds’ algorithm (1965) for
finding maximum directed spanning trees.

5.1 Sampling
Our goal is to sample a new projective dependency
tree T with probability proportional to Ptree(T ).
Since the factors are exchangeable, we can deal
with any tree as if it was the last one in the corpus.

We use dynamic programming to sample a
tree with N nodes in O(N4) time. Neverthe-
less, we sample trees using a modified probabil-
ity P ′tree(T ). In Ptree(T ), the probability of an
edge depends on counts of all other edges, includ-
ing the edges in the same tree. We instead use
P ′tree(T ), where the counts are computed using
only the other trees in the corpus, i.e., probabilities
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of edges of T are independent. There is a stan-
dard way to sample using the real Ptree(T ) – we
can use P ′tree(T ) as a proposal distribution in the
Metropolis-Hastings algorithm (Hastings, 1970),
which then produces trees with probabilities pro-
portional to Ptree(T ) using acceptance-rejection
scheme. We do not take this approach and we
sample proportionally to P ′tree(T ) only, because
we believe that for large enough corpora, the two
distributions are nearly identical.

To sample a tree containing words w1, . . . , wN
with probability proportional to P ′tree(T ), we first
compute three tables:
• ti(g, i, j) for g < i or g > j is the sum of

probabilities of any tree on words wi, . . . , wj
whose root is a child of wg, but not an outer-
most child in its direction;
• to(g, i, j) is the same, but the tree is the out-

ermost child of wg;
• fo(g, i, j) for g < i or g > j is the

sum of probabilities of any forest on words
wi, . . . , wj , such that all the trees are children
of wg and are the outermost children of wg in
their direction.

All the probabilities are computed using the P ′tree .
If we compute the tables inductively from the
smallest trees to the largest trees, we can precom-
pute all the O(N3) values in O(N4) time.

Using these tables, we sample the tree recur-
sively, starting from the root. At first, we sam-
ple the root r proportionally to the probability of
a tree with the root r, which is a product of the
probability of left children of r and right chil-
dren of r. The probability of left children of r
is either P ′stop(STOP |r, left) if r has no children,
or P ′stop(¬STOP |r, left)fo(r, 1, r− 1) otherwise;
the probability of right children is analogous.

After sampling the root, we sample the ranges
of its left children, if any. We sample the first left
child range l1 proportionally either to to(r, 1, r−1)
if l1 = 1, or to ti(r, l1, r − 1)fo(r, 1, l1 − 1)
if l1 > 1. Then we sample the second left child
range l2 proportionally either to to(r, 1, l1 − 1)
if l2 = 1, or to ti(r, l2, l1 − 1)fo(r, 1, l2 − 1)
if l2 > 1, and so on, while there are any left
children. The right children ranges are sampled
similarly. Finally, we recursively sample the chil-
dren, i.e., their roots, their children and so on. It
is simple to verify using the definition of Ptree that
the described method indeed samples trees propor-
tionally to P ′tree .

5.2 Parsing
Beginning the 500th iteration, we start collecting
counts of individual dependency edges during the
remaining iterations. After each iteration is fin-
ished (all the trees in the corpus are re-sampled),
we increment the counter of all directed pairs of
nodes which are connected by a dependency edge
in the current trees.

After the last iteration, we use these collected
counts as weights and compute maximum directed
spanning trees using the Chu-Liu/Edmonds’ algo-
rithm (Chu and Liu, 1965). Therefore, the result-
ing trees consist of edges maximizing the sum of
individual counts:

TMST = argmax
T

∑

e∈T
count(e)

It is important to note that the MST algorithm
may produce non-projective trees. Even if we
average the strictly projective dependency trees,
some non-projective edges may appear in the re-
sult. This might be an advantage since correct
non-projective edges can be predicted; however,
this relaxation may introduce mistakes as well.

6 Experiments

6.1 Data
We use two types of resources in our experiments.
The first type are CoNLL treebanks from the year
2006 (Buchholz and Marsi, 2006) and 2007 (Nivre
et al., 2007), which we use for inference and for
evaluation. As is the standard practice in unsuper-
vised parsing evaluation, we removed all punctu-
ation marks from the trees. In case a punctuation
node was not a leaf, its children are attached to the
parent of the removed node.

For estimating the STOP probabilities (Sec-
tion 3), we use the Wikipedia articles from W2C
corpus (Majliš and Žabokrtský, 2012), which pro-
vide sufficient amount of data for our purposes.
Statistics across languages are shown in Table 1.

The Wikipedia texts were automatically tok-
enized and segmented to sentences so that their
tokenization was similar to the one in the CoNLL
evaluation treebanks. Unfortunately, we were not
able to find any segmenter for Chinese that would
produce a desired segmentation; therefore, we re-
moved Chinese from evaluation.

The next step was to provide the Wikipedia
texts with POS tags. We employed the TnT tag-
ger (Brants, 2000) which was trained on the re-
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language tokens red. language tokens red.
(mil.) seq. (mil.) seq.

Arabic 19.7 546 Greek 20.9 1037
Basque 14.1 645 Hungarian 26.3 2237
Bulgarian 18.8 1808 Italian 39.7 723
Catalan 27.0 712 Japanese 2.6 31
Czech 20.3 930 Portuguese 31.7 4765
Danish 15.9 576 Slovenian 13.7 513
Dutch 27.1 880 Spanish 53.4 1156
English 85.0 7603 Swedish 19.2 481
German 56.9 1488 Turkish 16.5 5706

Table 1: Wikipedia texts statistics: total number of
tokens and number of reducible sequences found
in them.

spective CoNLL training data. The quality of such
tagging is not very high since we do not use any
lexicons or pretrained models. However, it is suf-
ficient for obtaining usable stop probability esti-
mates.

6.2 Estimated STOP probabilities

We applied the algorithm described in Section 3 on
the prepared Wikipedia corpora and obtained the
stop-probabilities P est

stop in both directions for all
the languages and their POS tags. To evaluate the
quality of our estimations, we compare them with
P tb
stop , the stop probabilities computed directly on

the evaluation treebanks. The comparisons on five
selected languages are shown in Figure 3. The in-
dividual points represent the individual POS tags,
their size (area) shows their frequency in the par-
ticular treebank. The y-axis shows the stop prob-
abilities estimated on Wikipedia by our algorithm,
while the x-axis shows the stop probabilities com-
puted on the evaluation CoNLL data. Ideally, the
computed and estimated stop probabilities should
be the same, i.e. all the points should be on the
diagonal.

Let’s focus on the graphs for English. Our
method correctly recognizes that adverbs RB and
adjectives JJ are often leaves (their stop proba-
bilities in both directions are very high). More-
over, the estimates for RB are even higher than
JJ, which will contribute to attaching adverbs to
adjectives and not reversely. Nouns (NN, NNS)
are somewhere in the middle, the stop probabili-
ties for proper nouns (NNP) are estimated higher,
which is correct since they have much less modi-
fiers then the common nouns NN. The determin-
ers are more problematic. Their estimated stop
probability is not very high (about 0.65), while in
the real treebank they are almost always leaves.
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Figure 3: Comparison of P est
stop probabilities esti-

mated from raw Wikipedia corpora (y-axis) and
of P tb

stop probabilities computed from CoNLL tree-
banks (x-axis). The area of each point shows the
relative frequency of an individual tag.
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This is caused by the fact that determiners are of-
ten obligatory in English and cannot be simply
removed as, e.g., adjectives. The stop probabil-
ities of prepositions (IN) are also very well rec-
ognized. While their left-stop is very probable
(prepositions always start prepositional phrases),
their right-stop probability is very low. The verbs
(the most frequent verbal tag is VBD) have very
low both right and left-stop probabilities. Our es-
timation assigns them the stop probability about
0.3 in both directions. This is quite high, but still,
it is one of the lowest among other more frequent
tags, and thus verbs tend to be the roots of the de-
pendency trees. We could make similar analyses
for other languages, but due to space reasons we
only provide graphs for Czech, German, Spanish,
and Hungarian in Figure 3.

6.3 Settings
After a manual tuning, we have set our hyperpa-
rameters to the following values:

αc = 50, αs = 1, β = 1/3
We have also found that the Gibbs sampler does
not always converge to a similar grammar. For a
couple of languages, the individual runs end up
with very different trees. To prevent such differ-
ences, we run each inference 50 times and take the
run with the highest final Ptreebank (see Section 4)
for the evaluation.

6.4 Results
Table 2 shows the results of our unsupervised
parser and compares them with results previously
reported in other works. In order to see the im-
pact of using the estimated stop probabilities (us-
ing model P dmv+est

stop ), we provide results for clas-
sical DMV (using model P dmv

stop ) as well. We do
not provide results for Chinese since we do not
have any appropriate tokenizer at our disposal (see
Section 3), and also for Turkish from CoNLL 2006
since the data is not available to us.

We now focus on the third and fourth column of
Table 2. The addition of estimated stop probabil-
ities based on large corpora improves the parsing
accuracy on 15 out of 20 treebanks. In many cases,
the improvement is substantial, which means that
the estimated stop probabilities forced the model
to completely rebuild the structures. For exam-
ple, in Bulgarian, if the P dmv

stop model is used,
all the prepositions are leaves and the verbs sel-
dom govern sentences. If the P dmv+est

stop model
is used, prepositions correctly govern nouns and

verbs move to roots. We observe similar changes
on Swedish as well. Unfortunately, there are also
negative examples, such as Hungarian, where the
addition of the estimated stop probabilities de-
creases the attachment score from 60.1% to 34%.
This is probably caused by not very good estimates
of the right-stop probability (see the last graph in
Figure 3). Nevertheless, the estimated stop proba-
bilities increase the average score over all the tree-
banks by more than 12% and therefore prove its
usefulness.

In the last two columns of Table 2, we provide
results of two other works reported in the last year.
The first one (spi12) is the DMV-based grammar
inducer by Spitkovsky et al. (2012),4 the second
one (mar12) is our previous work (Mareček and
Žabokrtský, 2012). Comparing with (Spitkovsky
et al., 2012), our parser reached better accuracy on
12 out of 20 treebanks. Although this might not
seem as a big improvement, if we compare the av-
erage scores over the treebanks, our system signif-
icantly wins by more than 6%. The second system
(mar12) outperforms our parser only on one tree-
bank (on Italian by less than 3%) and its average
score over all the treebanks is only 40%, i.e., more
than 8% lower than the average score of our parser.

To see the theoretical upper bound of our model
performance, we replaced the P est

stop estimates by
the P tb

stop estimates computed from the evaluation
treebanks and run the same inference algorithm
with the same setting. The average attachment
score of such reference DMV is almost 65%. This
shows a huge space in which the estimation of
STOP probabilities could be further improved.

7 Conclusions and Future Work

In this work, we studied the possibility of esti-
mating the DMV stop-probabilities from a large
raw corpus. We proved that such prior knowledge
about stop-probabilities incorporated into the stan-
dard DMV model significantly improves the unsu-
pervised dependency parsing and, since we are not
aware of any other fully unsupervised dependency
parser with higher average attachment score over
CoNLL data, we state that we reached a new state-
of-the-art result.5

4Possibly the current state-of-the-art results. They were
compared with many previous works.

5A possible competitive work may be the work by Blun-
som and Cohn (2010), who reached 55% accuracy on English
as well. However, they do not provide scores measured on
other CoNLL treebanks.
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CoNLL this work other systems
language year P dmv

stop P dmv+est
stop reference P dmv+tb

stop spi12 mar12
Arabic 06 10.6 (±8.7) 38.2 (±0.5) 61.2 10.9 26.5
Arabic 07 22.0 (±0.1) 35.3 (±0.2) 65.3 44.9 27.9
Basque 07 41.1 (±0.2) 35.5 (±0.2) 52.3 33.3 26.8
Bulgarian 06 25.9 (±1.4) 54.9 (±0.2) 73.2 65.2 46.0
Catalan 07 34.9 (±3.4) 67.0 (±1.7) 72.0 62.1 47.0
Czech 06 32.3 (±3.8) 52.4 (±5.2) 64.0 55.1 49.5
Czech 07 32.9 (±0.8) 51.9 (±5.2) 62.1 54.2 48.0
Danish 06 30.8 (±4.3) 41.6 (±1.1) 60.0 22.2 38.6
Dutch 06 25.7 (±5.7) 47.5 (±0.4) 58.9 46.6 44.2
English 07 36.5 (±5.9) 55.4 (±0.2) 63.7 29.6 49.2
German 06 29.9 (±4.6) 52.4 (±0.7) 65.5 39.1 44.8
Greek 07 42.5 (±6.0) 26.3 (±0.1) 64.7 26.9 20.2
Hungarian 07 60.8 (±0.2) 34.0 (±0.3) 68.3 58.2 51.8
Italian 07 34.5 (±0.3) 39.4 (±0.5) 64.5 40.7 43.3
Japanese 06 64.8 (±3.4) 61.2 (±1.7) 76.4 22.7 50.8
Portuguese 06 35.7 (±4.3) 69.6 (±0.1) 77.3 72.4 50.6
Slovenian 06 50.1 (±0.2) 35.7 (±0.2) 50.2 35.2 18.1
Spanish 06 38.1 (±5.9) 61.1 (±0.1) 65.6 28.2 51.9
Swedish 06 28.0 (±2.3) 54.5 (±0.4) 61.6 50.7 48.2
Turkish 07 51.6 (±5.5) 56.9 (±0.2) 67.0 44.8 15.7

Average: 36.4 48.7 64.7 42.2 40.0

Table 2: Attachment scores on CoNLL 2006 and 2007 data. Standard deviations are provided in brack-
ets. DMV model using standard P dmv

stop probability is compared with DMV with P dmv+est
stop , which in-

corporates STOP estimations based on reducibility principle. The reference DMV uses P tb
stop , which are

computed directly on the treebanks. The results reported in previous works by Spitkovsky et al. (2012),
and Mareček and Žabokrtský (2012) follows.

In future work, we would like to focus
on unsupervised parsing without gold POS
tags (see e.g. Spitkovsky et al. (2011a) and
Christodoulopoulos et al. (2012)). We suppose
that many of the current works on unsupervised
dependency parsers use gold POS tags only as a
simplification of this task, and that the ultimate
purpose of this effort is to develop a fully unsu-
pervised induction of linguistic structure from raw
texts that would be useful across many languages,
domains, and applications.

The software which implements the algorithms
described in this paper, together with P est

stop estima-
tions computed on Wikipedia texts, can be down-
loaded at

http://ufal.mff.cuni.cz/˜marecek/udp/.
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Abstract

In this paper, we consider the problem
of cross-formalism transfer in parsing.
We are interested in parsing constituency-
based grammars such as HPSG and CCG
using a small amount of data specific for
the target formalism, and a large quan-
tity of coarse CFG annotations from the
Penn Treebank. While all of the target
formalisms share a similar basic syntactic
structure with Penn Treebank CFG, they
also encode additional constraints and se-
mantic features. To handle this appar-
ent discrepancy, we design a probabilistic
model that jointly generates CFG and tar-
get formalism parses. The model includes
features of both parses, allowing trans-
fer between the formalisms, while pre-
serving parsing efficiency. We evaluate
our approach on three constituency-based
grammars — CCG, HPSG, and LFG, aug-
mented with the Penn Treebank-1. Our ex-
periments show that across all three for-
malisms, the target parsers significantly
benefit from the coarse annotations.1

1 Introduction

Over the last several decades, linguists have in-
troduced many different grammars for describing
the syntax of natural languages. Moreover, the
ongoing process of developing new formalisms is
intrinsic to linguistic research. However, before
these grammars can be used for statistical pars-
ing, they require annotated sentences for training.
The difficulty of obtaining such annotations is a
key limiting factor that inhibits the effective use of
these grammars.

1The source code for the work is available at
http://groups.csail.mit.edu/rbg/code/
grammar/acl2013.

The standard solution to this bottleneck has re-
lied on manually crafted transformation rules that
map readily available syntactic annotations (e.g,
the Penn Treebank) to the desired formalism. De-
signing these transformation rules is a major un-
dertaking which requires multiple correction cy-
cles and a deep understanding of the underlying
grammar formalisms. In addition, designing these
rules frequently requires external resources such
as Wordnet, and even involves correction of the
existing treebank. This effort has to be repeated
for each new grammar formalism, each new anno-
tation scheme and each new language.

In this paper, we propose an alternative ap-
proach for parsing constituency-based grammars.
Instead of using manually-crafted transformation
rules, this approach relies on a small amount of
annotations in the target formalism. Frequently,
such annotations are available in linguistic texts
that introduce the formalism. For instance, a
textbook on HPSG (Pollard and Sag, 1994) il-
lustrates grammatical constructions using about
600 examples. While these examples are infor-
mative, they are not sufficient for training. To
compensate for the annotation sparsity, our ap-
proach utilizes coarsely annotated data readily
available in large quantities. A natural candidate
for such coarse annotations is context-free gram-
mar (CFG) from the Penn Treebank, while the
target formalism can be any constituency-based
grammars, such as Combinatory Categorial Gram-
mar (CCG) (Steedman, 2001), Lexical Functional
Grammar (LFG) (Bresnan, 1982) or Head-Driven
Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994). All of these formalisms share a sim-
ilar basic syntactic structure with Penn Treebank
CFG. However, the target formalisms also encode
additional constraints and semantic features. For
instance, Penn Treebank annotations do not make
an explicit distinction between complement and
adjunct, while all the above grammars mark these
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roles explicitly. Moreover, even the identical syn-
tactic information is encoded differently in these
formalisms. An example of this phenomenon is
the marking of subject. In LFG, this informa-
tion is captured in the mapping equation, namely
↑ SBJ =↓, while Penn Treebank represents it as
a functional tag, such as NP-SBJ. Figure 1 shows
derivations in the three target formalisms we con-
sider, as well as a CFG derivation. We can see that
the derivations of these formalisms share the same
basic structure, while the formalism-specific infor-
mation is mainly encoded in the lexical entries and
node labels.

To enable effective transfer the model has to
identify shared structural components between
the formalisms despite the apparent differences.
Moreover, we do not assume parallel annotations.
To this end, our model jointly parses the two cor-
pora according to the corresponding annotations,
enabling transfer via parameter sharing. In partic-
ular, we augment each target tree node with hidden
variables that capture the connection to the coarse
annotations. Specifically, each node in the target
tree has two labels: an entry which is specific to
the target formalism, and a latent label containing
a value from the Penn Treebank tagset, such as NP
(see Figure 2). This design enables us to repre-
sent three types of features: the target formalism-
specific features, the coarse formalism features,
and features that connect the two. This model-
ing approach makes it possible to perform transfer
to a range of target formalisms, without manually
drafting formalism-specific rules.

We evaluate our approach on three
constituency-based grammars — CCG, HPSG,
and LFG. As a source of coarse annotations,
we use the Penn Treebank.2 Our results clearly
demonstrate that for all three formalisms, pars-
ing accuracy can be improved by training with
additional coarse annotations. For instance, the
model trained on 500 HPSG sentences achieves
labeled dependency F-score of 72.3%. Adding
15,000 Penn Treebank sentences during training
leads to 78.5% labeled dependency F-score, an
absolute improvement of 6.2%. To achieve similar
performance in the absence of coarse annotations,
the parser has to be trained on about 1,500
sentences, namely three times what is needed
when using coarse annotations. Similar results are

2While the Penn Treebank-2 contains richer annotations,
we decided to use the Penn Treebank-1 to demonstrate the
feasibility of transfer from coarse annotations.

CFG CCG 

LFG 

I                eat               apples 
NP                VB                   NP 

VP 

S 

I                eat                apples 
NP        (S[dcl]\NP)/NP         NP 

S[dcl]\NP 

S[dcl] 

 I               eat                 apples 
[Pron.I]     [   SBJ,   OBJ]       [N.3pl] 

ROOT 

↑=↓
↑ ↑

=↓SBJ!↑ =↓OBJ!↑

↑=↓

HPSG 

  I              eat                 apples 
[N.no3sg]   [N<V.bse>N]        [N.3pl] 

head_comp 

subj_head 

Figure 1: Derivation trees for CFG as well as
CCG, HPSG and LFG formalisms.

also observed on CCG and LFG formalisms.

2 Related Work

Our work belongs to a broader class of research
on transfer learning in parsing. This area has gar-
nered significant attention due to the expense asso-
ciated with obtaining syntactic annotations. Trans-
fer learning in parsing has been applied in differ-
ent contexts, such as multilingual learning (Sny-
der et al., 2009; Hwa et al., 2005; McDonald et
al., 2006; McDonald et al., 2011; Jiang and Liu,
2009), domain adaptation (McClosky et al., 2010;
Dredze et al., 2007; Blitzer et al., 2006), and cross-
formalism transfer (Hockenmaier and Steedman,
2002; Miyao et al., 2005; Cahill et al., 2002; Rie-
zler et al., 2002; Chen and Shanker, 2005; Candito
et al., 2010).

There have been several attempts to map anno-
tations in coarse grammars like CFG to annota-
tions in richer grammar, like HPSG, LFG, or CCG.
Traditional approaches in this area typically rely
on manually specified rules that encode the rela-
tion between the two formalisms. For instance,
mappings may specify how to convert traces and
functional tags in Penn Treebank to the f-structure
in LFG (Cahill, 2004). These conversion rules
are typically utilized in two ways: (1) to create a
new treebank which is consequently used to train a
parser for the target formalism (Hockenmaier and
Steedman, 2002; Clark and Curran, 2003; Miyao
et al., 2005; Miyao and Tsujii, 2008), (2) to trans-
late the output of a CFG parser into the target for-
malism (Cahill et al., 2002).

The design of these rules is a major linguis-
tic and computational undertaking, which requires
multiple iterations over the data to increase cov-
erage (Miyao et al., 2005; Oepen et al., 2004).
By nature, the mapping rules are formalism spe-
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cific and therefore not transferable. Moreover, fre-
quently designing such mappings involves modifi-
cation to the original annotations. For instance,
Hockenmaier and Steedman (2002) made thou-
sands of POS and constituent modifications to the
Penn Treebank to facilitate transfer to CCG. More
importantly, in some transfer scenarios, determin-
istic rules are not sufficient, due to the high am-
biguity inherent in the mapping. Therefore, our
work considers an alternative set-up for cross-
formalism transfer where a small amount of an-
notations in the target formalism is used as an al-
ternative to using deterministic rules.

The limitation of deterministic transfer rules
has been recognized in prior work (Riezler et al.,
2002). Their method uses a hand-crafted LFG
parser to create a set of multiple parsing candi-
dates for a given sentence. Using the partial map-
ping from CFG to LFG as the guidance, the re-
sulting trees are ranked based on their consistency
with the labeled LFG bracketing imported from
CFG. In contrast to this method, we neither require
a parser for the target formalism, nor manual rules
for partial mapping. Consequently, our method
can be applied to many different target grammar
formalisms without significant engineering effort
for each one. The utility of coarse-grained tree-
banks is determined by the degree of structural
overlap with the target formalism.

3 The Learning Problem

Recall that our goal is to learn how to parse the tar-
get formalisms while using two annotated sources:
a small set of sentences annotated in the target for-
malism (e.g., CCG), and a large set of sentences
with coarse annotations. For the latter, we use the
CFG parses from the Penn Treebank. For sim-
plicity we focus on the CCG formalism in what
follows. We also generalize our model to other
formalisms, as explained in Section 5.4.

Our notations are as follows: an input sentence
is denoted by S. A CFG parse is denoted by yCFG
and a CCG parse is denoted by yCCG. Clearly the
set of possible values for yCFG and yCCG is deter-
mined by S and the grammar. The training set is a
set of N sentences S1, . . . , SN with CFG parses
y1CFG, . . . , y

N
CFG, and M sentences S̄1, . . . , S̄M

with CCG parses y1CCG, . . . , y
M
CCG. It is impor-

tant to note that we do not assume we have parallel
data for CCG and CFG.

Our goal is to use such a corpus for learning

eat apples 

coarse feature on yCFG 
VP VP,NP 

VP    (S[dcl]\NP)/NP 

VP    S[dcl]\NP 

NP    NP 

formalism feature on yCCG 
S[dcl]\NP (S[dcl]\NP)/NP,NP 

joint feature on yCFG, yCCG 
VP, S[dcl]\NP 
(VP, (S[dcl]\NP)/NP), (NP, NP) 

Figure 2: Illustration of the joint CCG-CFG representa-
tion. The shadowed labels correspond to the CFG deriva-
tion yCFG, whereas the other labels correspond to the CCG
derivation yCCG. Note that the two derivations share the
same (binarized) tree structure. Also shown are features that
are turned on for this joint derivation (see Section 6).

how to generate CCG parses to unseen sentences.

4 A Joint Model for Two Formalisms

The key idea behind our work is to learn a joint
distribution over CCG and CFG parses. Such a
distribution can be marginalized to obtain a distri-
bution over CCG or CFG and is thus appropriate
when the training data is not parallel, as it is in our
setting.

It is not immediately clear how to jointly model
the CCG and CFG parses, which are structurally
quite different. Furthermore, a joint distribution
over these will become difficult to handle com-
putationally if not constructed carefully. To ad-
dress this difficulty, we make several simplifying
assumptions. First, we assume that both parses are
given in normal form, i.e., they correspond to bi-
nary derivation trees. CCG parses are already pro-
vided in this form in CCGBank. CFG parses in the
Penn Treebank are not binary, and we therefore bi-
narize them, as explained in Section 5.3.

Second, we assume that any yCFG and yCCG
jointly generated must share the same derivation
tree structure. This makes sense. Since both for-
malisms are constituency-based, their trees are ex-
pected to describe the same constituents. We de-
note the set of valid CFG and CCG joint parses for
sentence S by Y(S).

The above two simplifying assumptions make
it easy to define joint features on the two parses,
as explained in Section 6. The representation and
features are illustrated in Figure 2.

We shall work within the discriminative frame-
work, where given a sentence we model a dis-
tribution over parses. As is standard in such
settings, the distribution will be log-linear in a
set of features of these parses. Denoting y =
(yCFG, yCCG), we seek to model the distribution
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p(y|S) corresponding to the probability of gen-
erating a pair of parses (CFG and CCG) given a
sentence. The distribution thus has the following
form:

pjoint(y|S; θ) =
1

Z(S; θ)
ef(y,S)·θ . (1)

where θ is a vector of parameters to be learned
from data, and f(y, S) is a feature vector. Z(S; θ)
is a normalization (partition) function normalized
over y ∈ Y(S) the set of valid joint parses.

The feature vector contains three types of fea-
tures: CFG specific, CCG specific and joint CFG-
CCG. We denote these by fCFG, fCCG, fjoint.
These depend on yCCG, yCFG and y respectively.
Accordingly, the parameter vector θ is a concate-
nation of θCCG, θCFG and θjoint.

As mentioned above, we can use Equation 1
to obtain distributions over yCCG and yCFG via
marginalization. For the distribution over yCCG
we do precisely this, namely use:

pCCG(yCCG|S; θ) =
∑

yCFG

pjoint(y|S; θ) (2)

For the distribution over yCFG we could have
marginalized pjoint over yCCG. However, this
computation is costly for each sentence, and has
to be repeated for all the sentences. Instead, we
assume that the distribution over yCFG is a log-
linear model with parameters θCFG (i.e., a sub-
vector of θ) , namely:

pCFG(yCFG|S; θCFG) =
efCFG(yCFG,S)·θCFG

Z(S; θCFG)
.

(3)
Thus, we assume that both pjoint and pCFG have
the same dependence on the fCFG features.

The Likelihood Objective: Given the models
above, it is natural to use maximum likelihood to
find the optimal parameters. To do this, we define
the following regularized likelihood function:

L(θ) =
N∑

i=1

log
(
pCFG(yiCFG|Si, θCFG)

)
+

M∑

i=1

log
(
pCCG(yiCCG|S̄i, θ)

)
− λ

2
‖θ‖22

where pCCG and pCFG are defined in Equations
2 and 3 respectively. The last term is the l2-norm
regularization. Our goal is then to find a θ that
maximizes L(θ).

Training Algorithm: For maximizing L(θ)
w.r.t. θ we use the limited-memory BFGS algo-
rithm (Nocedal and Wright, 1999). Calculating
the gradient of L(θ) requires evaluating the ex-
pected values of f(y, S) and fCFG under the dis-
tributions pjoint and pCFG respectively. This can
be done via the inside-outside algorithm.3

Parsing Using the Model: To parse a sentence
S, we calculate the maximum probability assign-
ment for pjoint(y|S; θ).4 The result is both a CFG
and a CCG parse. Here we will mostly be inter-
ested in the CCG parse. The joint parse with max-
imum probability is found using a standard CYK
chart parsing algorithm. The chart construction
will be explained in Section 5.

5 Implementation

This section introduces important implementa-
tion details, including supertagging, feature for-
est pruning and binarization methods. Finally,
we explain how to generalize our model to other
constituency-based formalisms.

5.1 Supertagging

When parsing a target formalism tree, one needs
to associate each word with a lexical entry. How-
ever, since the number of candidates is typically
more than one thousand, the size of the chart ex-
plodes. One effective way of reducing the number
of candidates is via supertagging (Clark and Cur-
ran, 2007). A supertagger is used for selecting a
small set of lexical entry candidates for each word
in the sentence. We use the tagger in (Clark and
Curran, 2007) as a general suppertagger for all the
grammars considered. The only difference is that
we use different lexical entries in different gram-
mars.

5.2 Feature Forest Pruning

In the BFGS algorithm (see Section 4), feature ex-
pectation is computed using the inside-outside al-
gorithm. To perform this dynamic programming
efficiently, we first need to build the packed chart,
namely the feature forest (Miyao, 2006) to rep-
resent the exponential number of all possible tree

3To speed up the implementation, gradient computation
is parallelized, using the Message Passing Interface pack-
age (Gropp et al., 1999).

4An alternative approach would be to marginalize over
yCFG and maximize over yCCG. However, this is a harder
computational problem.
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structures. However, a common problem for lex-
icalized grammars is that the forest size is too
large. In CFG, the forest is pruned according to
the inside probability of a simple generative PCFG
model and a prior (Collins, 2003). The basic idea
is to prune the trees with lower probability. For the
target formalism, a common practice is to prune
the forest using the supertagger (Clark and Cur-
ran, 2007; Miyao, 2006). In our implementation,
we applied all pruning techniques, because the for-
est is a combination of CFG and target grammar
formalisms (e.g., CCG or HPSG).

5.3 Binarization

We assume that the derivation tree in the target for-
malism is in a normal form, which is indeed the
case for the treebanks we consider. As mentioned
in Section 4, we would also like to work with bi-
narized CFG derivations, such that all trees are in
normal form and it is easy to construct features
that link the two (see Section 6).

Since Penn Treebank trees are not binarized, we
construct a simple procedure for binarizing them.
The procedure is based on the available target for-
malism parses in the training corpus, which are bi-
narized. We illustrate it with an example. In what
follows, we describe derivations using the POS of
the head words of the corresponding node in the
tree. This makes it possible to transfer binariza-
tion rules between formalisms.

Suppose we want to learn the binarization rule
of the following derivation in CFG:

NN→ (DT JJ NN) (4)

We now look for binary derivations with these
POS in the target formalism corpus, and take the
most common binarization form. For example, we
may find that the most common binarization to bi-
narize the CFG derivation in Equation 4 is:

NN→ (DT (JJ NN))

If no (DT JJ NN) structure is observed in the
CCG corpus, we first apply the binary branching
on the children to the left of the head, and then on
the children to the right of the head.

We also experiment with using fixed binariza-
tion rules such as left/right branching, instead of
learning them. This results in a drop on the depen-
dency F-score by about 5%.

5.4 Implementation in Other Formalisms

We introduce our model in the context of CCG,
but the model can easily be generalized to other
constituency-based grammars, such as HPSG and
LFG. In a derivation tree, the formalism-specific
information is mainly encoded in the lexical en-
tries and the applied grammar rules, rather than the
tree structures. Therefore we only need to change
the node labels and lexical entries to the language-
specific ones, while the framework of the model
remains the same.

6 Features

Feature functions in log-linear models are de-
signed to capture the characteristics of each
derivation in the tree. In our model, as mentioned
in Section 1, the features are also defined to en-
able information transfer between coarse and rich
formalisms. In this section, we first introduce how
different types of feature templates are designed,
and then show an example of how the features help
transfer the syntactic structure information. Note
that the same feature templates are used for all the
target grammar formalisms.

Recall that our y contains both the CFG and
CCG parses, and that these use the same derivation
tree structure. Each feature will consider either the
CFG derivation, the CCG derivation or these two
derivations jointly.

The feature construction is similar to construc-
tions used in previous work (Miyao, 2006). The
features are based on the atomic features listed in
Table 1. These will be used to construct f(y, S) as
explained next.

hl lexical entries/CCG categories of the head word
r grammar rules, i.e. HPSG schema, resulting CCG

categories, LFG mapping equations
sy CFG syntactic label of the node (e.g. NP, VP)
d distance between the head words of the children
c whether a comma exists between the head words

of the children
sp the span of the subtree rooted at the node
hw surface form of the head word of the node
hp part-of-speech of the head word
pi part-of-speech of the i-th word in the sentence

Table 1: Templates of atomic features.

We define the following feature templates:
fbinary for binary derivations, funary for unary
derivations, and froot for the root nodes. These
use the atomic features in Table 1, resulting in the
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following templates:

fbinary =

〈 r, syp, d, c
syl, spl, hwl, hpl, hll,
syr, spr, hwr, hpr, hlr,
pst−1, pst−2, pen+1, pen+2

〉

funary = 〈r, syp, hw, hp, hl〉

froot = 〈sy, hw, hp, hl〉
In the above we used the following notation: p, l, r
denote the parent node and left/right child node,
and st, en denote the starting and ending index of
the constituent.

We also consider templates with subsets of the
above features. The final list of binary feature tem-
plates is shown in Table 2. It can be seen that some
features depend only on the CFG derivations (i.e.,
those without r,hl), and are thus in fCFG(y, S).
Others depend only on CCG derivations (i.e.,
those without sy), and are in fCCG(y, S). The
rest depend on both CCG and CFG and are thus
in fjoint(y, S).

Note that after binarization, grandparent and
sibling information becomes very important in en-
coding the structure. However, we limit the fea-
tures to be designed locally in a derivation in order
to run inside-outside efficiently. Therefore we use
the preceding and succeeding POS tag information
to approximate the grandparent and sibling infor-
mation. Empirically, these features yield a signifi-
cant improvement on the constituent accuracy.

fCFG

〈d,wl,r, hpl,r, syp,l,r〉, 〈d,wl,r, syp,l,r〉,
〈c, wl,r, hpl,r, syp,l,r〉, 〈c, wl,r, syp,l,r〉,
〈d, c, hpl,r, syp,l,r〉, 〈d, c, syp,l,r〉,
〈c, spl,r, hpl,r, syp,l,r〉, 〈c, spl,r, syp,l,r〉,
〈pst−1, syp,l,r〉, 〈pen+1, syp,l,r〉,
〈pst−1, pen+1, syp,l,r〉,
〈pst−1, pst−2, syp,l,r〉, 〈pen+1, pen+2, syp,l,r〉,
〈pst−1, pst−2, pen+1, pen+2, syp,l,r〉,

fCCG

〈r, d, c, hwl,r, hpl,r, hll,r〉, 〈r, d, c, hwl,r, hpl,r〉
〈r, d, c, hwl,r, hll,r〉,
〈r, c, spl,r, hwl,r, hpl,r, hll,r〉
〈r, c, spl,r, hwl,r, hpl,r, 〉, 〈r, c, spl,r, hwl,r, hll,r〉
〈r, d, c, hpl,r, hll,r〉, 〈r, d, c, hpl,r〉, 〈r, d, c, hll,r〉
〈r, c, hpl,r, hll,r〉, 〈r, c, hpl,r〉, 〈r, c, hll,r〉

fjoint
〈r, d, c, syl,r, hll,r〉, 〈r, d, c, syl,r〉
〈r, c, spl,r, syl,r, hll,r〉, 〈r, c, spl,r, syl,r〉

Table 2: Binary feature templates used in f(y, S).
Unary and root features follow a similar pattern.

In order to apply the same feature templates to
other target formalisms, we only need to assign
the atomic features r and hl with the formalism-
specific values. We do not need extra engineering
work on redesigning the feature templates.

eat apples 
VP    (S[dcl]\NP)/NP 

VP    S[dcl]\NP 

NP    NP 

VP VP,NP 

S[dcl]\NP (S[dcl]\NP)/NP,NP 

VP, S[dcl]\NP 
(VP, (S[dcl]\NP)/NP), (NP, NP) 

CCGbank 

VP 

Penn Treebank 

VP NP 

write letters 

VP VP,NP 
fCFG (y,S) : fCFG (y,S) :

fCCG (y,S) :

f joint (y,S) :

Figure 3: Example of transfer between CFG and
CCG formalisms.

Figure 3 gives an example in CCG of how
features help transfer the syntactic information
from Penn Treebank and learn the correspondence
to the formalism-specific information. From the
Penn Treebank CFG annotations, we can learn
that the derivation VP→(VP, NP) is common, as
shown on the left of Figure 3. In a CCG tree, this
tendency will encourage the yCFG (latent) vari-
ables to take this CFG parse. Then weights on the
fjoint features will be learned to model the con-
nection between the CFG and CCG labels. More-
over, the formalism-specific features fCCG can
also encode the formalism-specific syntactic and
semantic information. These three types of fea-
tures work together to generate a tree skeleton and
fill in the CFG and CCG labels.

7 Evaluation Setup

Grammar Train Dev. Test
CCG

Sec. 02-21
Sec. 00 Sec. 23HPSG

LFG 140 sents. in 560 sents. in
PARC700 PARC700

Table 3: Training/Dev./Test split on WSJ sections
and PARC700 for different grammar formalisms.

Datasets: As a source of coarse annotations, we
use the Penn Treebank-1 (Marcus et al., 1993). In
addition, for CCG, HPSG and LFG, we rely on
formalism-specific corpora developed in prior re-
search (Hockenmaier and Steedman, 2002; Miyao
et al., 2005; Cahill et al., 2002; King et al., 2003).
All of these corpora were derived via conversion
of Penn Treebank to the target formalisms. In par-
ticular, our CCG and HPSG datasets were con-
verted from the Penn Treebank based on hand-
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Figure 4: Model performance with 500 target formalism trees and different numbers of CFG trees,
evaluated using labeled/unlabeled dependency F-score and unlabeled PARSEVAL.

crafted rules (Hockenmaier and Steedman, 2002;
Miyao et al., 2005). Table 3 shows which sec-
tions of the treebanks were used in training, test-
ing and development for both formalisms. Our
LFG training dataset was constructed in a sim-
ilar fashion (Cahill et al., 2002). However, we
choose to use PARC700 as our LFG tesing and de-
velopment datasets, following the previous work
by (Kaplan et al., 2004). It contains 700 man-
ually annotated sentences that are randomly se-
lected from Penn Treebank Section 23. The split
of PARC700 follows the setting in (Kaplan et al.,
2004). Since our model does not assume parallel
data, we use distinct sentences in the source and
target treebanks. Following previous work (Hock-
enmaier, 2003; Miyao and Tsujii, 2008), we only
consider sentences not exceeding 40 words, except
on PARC700 where all sentences are used.

Evaluation Metrics: We use two evaluation
metrics. First, following previous work, we eval-
uate our method using the labeled and unlabeled
predicate-argument dependency F-score. This
metric is commonly used to measure parsing qual-
ity for the formalisms considered in this paper.
The detailed definition of this measure as applied
for each formalism is provided in (Clark and Cur-
ran, 2003; Miyao and Tsujii, 2008; Cahill et al.,
2004). For CCG, we use the evaluation script
from the C&C tools.5 For HPSG, we evaluate
all types of dependencies, including punctuations.
For LFG, we consider the preds-only dependen-
cies, which are the dependencies between pairs
of words. Secondly, we also evaluate using unla-
beled PARSEVAL, a standard measure for PCFG
parsing (Petrov and Klein, 2007; Charniak and
Johnson, 2005; Charniak, 2000; Collins, 1997).
The dependency F-score captures both the target-

5Available at http://svn.ask.it.usyd.edu.au/trac/candc/wiki

grammar labels and tree-structural relations. The
unlabeled PARSEVAL is used as an auxiliary mea-
sure that enables us to separate these two aspects
by focusing on the structural relations exclusively.

Training without CFG Data: To assess the
impact of coarse data in the experiments be-
low, we also consider the model trained only on
formalism-specific annotations. When no CFG
sentences are available, we assign all the CFG la-
bels to a special value shared by all the nodes. In
this set-up, the model reduces to a normal log-
linear model for the target formalism.

Parameter Settings: During training, all the
feature parameters θ are initialized to zero. The
hyperparameters used in the model are tuned on
the development sets. We noticed, however, that
the resulting values are consistent across differ-
ent formalisms. In particular, we set the l2-norm
weight to λ = 1.0, the supertagger threshold to
β = 0.01, and the PCFG pruning threshold to
α = 0.002.

8 Experiment and Analysis

Impact of Coarse Annotations on Target For-
malism: To analyze the effectiveness of annota-
tion transfer, we fix the number of annotated trees
in the target formalism and vary the amount of
coarse annotations available to the algorithm dur-
ing training. In particular, we use 500 sentences
with formalism-specific annotations, and vary the
number of CFG trees from zero to 15,000.

As Figure 4 shows, CFG data boosts parsing ac-
curacy for all the target formalisms. For instance,
there is a gain of 6.2% in labeled dependency
F-score for HPSG formalism when 15,000 CFG
trees are used. Moreover, increasing the number
of coarse annotations used in training leads to fur-
ther improvement on different evaluation metrics.
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Figure 5: Model performance with different target formalism trees and zero or 15,000 CFG trees. The
first row shows the results of labeled dependency F-score and the second row shows the results of unla-
beled PARSEVAL.

Tradeoff between Target and Coarse Annota-
tions: We also assess the relative contribution
of coarse annotations when the size of annotated
training corpus in the target formalism varies. In
this set of experiments, we fix the number of CFG
trees to 15,000 and vary the number of target an-
notations from 500 to 4,000. Figure 5 shows
the relative contribution of formalism-specific an-
notations compared to that of the coarse annota-
tions. For instance, Figure 5a shows that the pars-
ing performance achieved using 2,000 CCG sen-
tences can be achieved using approximately 500
CCG sentences when coarse annotations are avail-
able for training. More generally, the result con-
vincingly demonstrates that coarse annotations are
helpful for all the sizes of formalism-specific train-
ing data. As expected, the improvement margin
decreases when more formalism-specific data is
used.

Figure 5 also illustrates a slightly different char-
acteristics of transfer performance between two
evaluation metrics. Across all three grammars,
we can observe that adding CFG data has a
more pronounced effect on the PARSEVAL mea-
sure than the dependency F-score. This phe-
nomenon can be explained as follows. The un-
labeled PARSEVAL score (Figure 5d-f) mainly re-
lies on the coarse structural information. On
the other hand, predicate-argument dependency F-
score (Figure 5a-c) also relies on the target gram-
mar information. Because that our model only
transfers structural information from the source

treebank, the gains of PARSEVAL are expected to
be larger than that of dependency F-score.

Grammar Parser # Grammar trees
1,000 15,000

CCG C&C 74.1 / 83.4 82.6 / 90.1
Model 76.8 / 85.5 84.7 / 90.9

HPSG Enju 75.8 / 80.6 84.2 / 87.3
Model 76.9 / 82.0 84.9 / 88.3

LFG
Pipeline

Annotator 68.5 / 74.0 82.6 / 85.9

Model 69.8 / 76.6 81.1 / 84.7

Table 4: The labeled/unlabeled dependency F-
score comparisons between our model and state-
of-the-art parsers.

Comparison to State-of-the-art Parsers: We
would also like to demonstrate that the above
gains of our transfer model are achieved using
an adequate formalism-specific parser. Since our
model can be trained exclusively on formalism-
specific data, we can compare it to state-of-the-
art formalism-specific parsers. For this experi-
ment, we choose the C&C parser (Clark and Cur-
ran, 2003) for CCG, Enju parser (Miyao and Tsu-
jii, 2008) for HPSG and pipeline automatic an-
notator (Cahill et al., 2004) with Charniak parser
for LFG. For all three parsers, we use the imple-
mentation provided by the authors with the default
parameter values. All the models are trained on
either 1,000 or 15,000 sentences annotated with
formalism-specific trees, thus evaluating their per-
formances on small scale or large scale of data.
As Table 4 shows, our model is competitive with
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all the baselines described above. It’s not sur-
prising that Cahill’s model outperforms our log-
linear model because it relies heavily on hand-
crafted rules optimized for the dataset.

Correspondence between CFG and Target For-
malisms: Finally, we analyze highly weighted
features. Table 5 shows such features for HPSG;
similar patterns are also found for the other
grammar formalisms. The first two features are
formalism-specific ones, the first for HPSG and
the second for CFG. They show that we correctly
learn a frequent derivation in the target formalism
and CFG. The third one shows an example of a
connection between CFG and the target formal-
ism. Our model correctly learns that a syntactic
derivation with children VP and NP is very likely
to be mapped to the derivation (head comp)→
([N〈V〉N],[N.3sg]) in HPSG.

Feature type Features with high weight

Target
formalism

Template
(r)→ (hll, hpl)(hlr, pr)

Examples
(head comp)→

([N〈V〉N],VB)([N.3sg],NN)

Coarse
formalism

Template
(syp)→ (syl, hpl)(syr, hpr)

Examples
(VP)→(VP,VB)(NP,NN)

Joint
features

Template
(r)→ (hll, syl)(ler, syr)

Examples
(head comp)→

([N〈V〉N],VP)([N.3sg],NP)

Table 5: Example features with high weight.

9 Conclusions

We present a method for cross-formalism trans-
fer in parsing. Our model utilizes coarse syn-
tactic annotations to supplement a small num-
ber of formalism-specific trees for training on
constituency-based grammars. Our experimen-
tal results show that across a range of such for-
malisms, the model significantly benefits from the
coarse annotations.
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Abstract
We propose a new variant of Tree-
Adjoining Grammar that allows adjunc-
tion of full wrapping trees but still bears
only context-free expressivity. We provide
a transformation to context-free form, and
a further reduction in probabilistic model
size through factorization and pooling of
parameters. This collapsed context-free
form is used to implement efficient gram-
mar estimation and parsing algorithms.
We perform parsing experiments the Penn
Treebank and draw comparisons to Tree-
Substitution Grammars and between dif-
ferent variations in probabilistic model de-
sign. Examination of the most probable
derivations reveals examples of the lin-
guistically relevant structure that our vari-
ant makes possible.

1 Introduction

While it is widely accepted that natural language
is not context-free, practical limitations of ex-
isting algorithms motivate Context-Free Gram-
mars (CFGs) as a good balance between model-
ing power and asymptotic performance (Charniak,
1996). In constituent-based parsing work, the pre-
vailing technique to combat this divide between
efficient models and real world data has been to
selectively strengthen the dependencies in a CFG
by increasing the grammar size through methods
such as symbol refinement (Petrov et al., 2006).

Another approach is to employ a more power-
ful grammatical formalism and devise constraints
and transformations that allow use of essential ef-
ficient algorithms such as the Inside-Outside al-
gorithm (Lari and Young, 1990) and CYK pars-
ing. Tree-Adjoining Grammar (TAG) is a natural

starting point for such methods as it is the canoni-
cal member of the mildly context-sensitive family,
falling just above CFGs in the hierarchy of for-
mal grammars. TAG has a crucial advantage over
CFGs in its ability to represent long distance in-
teractions in the face of the interposing variations
that commonly manifest in natural language (Joshi
and Schabes, 1997). Consider, for example, the
sentences

These pretzels are making me thirsty.
These pretzels are not making me thirsty.
These pretzels that I ate are making me thirsty.

Using a context-free language model with
proper phrase bracketing, the connection between
the words pretzels and thirsty must be recorded
with three separate patterns, which can lead to
poor generalizability and unreliable sparse fre-
quency estimates in probabilistic models. While
these problems can be overcome to some extent
with large amounts of data, redundant representa-
tion of patterns is particularly undesirable for sys-
tems that seek to extract coherent and concise in-
formation from text.

TAG allows a linguistically motivated treatment
of the example sentences above by generating the
last two sentences through modification of the
first, applying operations corresponding to nega-
tion and the use of a subordinate clause. Un-
fortunately, the added expressive power of TAG
comes with O(n6) time complexity for essential
algorithms on sentences of length n, as opposed to
O(n3) for the CFG (Schabes, 1990). This makes
TAG infeasible to analyze real world data in a rea-
sonable time frame.

In this paper, we define OSTAG, a new way to
constrain TAG in a conceptually simple way so
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Figure 1: A simple Tree-Substitution Grammar using S as its start symbol. This grammar derives the
sentences from a quote of Isaac Asimov’s - “I do not fear computers. I fear the lack of them.”

that it can be reduced to a CFG, allowing the use of
traditional cubic-time algorithms. The reduction is
reversible, so that the original TAG derivation can
be recovered exactly from the CFG parse. We pro-
vide this reduction in detail below and highlight
the compression afforded by this TAG variant on
synthetic formal languages.

We evaluate OSTAG on the familiar task of
parsing the Penn Treebank. Using an automati-
cally induced Tree-Substitution Grammar (TSG),
we heuristically extract an OSTAG and estimate
its parameters from data using models with var-
ious reduced probabilistic models of adjunction.
We contrast these models and investigate the use
of adjunction in the most probable derivations of
the test corpus, demonstating the superior model-
ing performance of OSTAG over TSG.

2 TAG and Variants

Here we provide a short history of the relevant
work in related grammar formalisms, leading up
to a definition of OSTAG. We start with context-
free grammars, the components of which are
〈N,T,R, S〉, where N and T are the sets of non-
terminal and terminal symbols respectively, and S
is a distinguished nonterminal, the start symbol.
The rules R can be thought of as elementary trees
of depth 1, which are combined by substituting a
derived tree rooted at a nonterminalX at some leaf
node in an elementary tree with a frontier node
labeled with that same nonterminal. The derived
trees rooted at the start symbol S are taken to be
the trees generated by the grammar.

2.1 Tree-Substitution Grammar
By generalizing CFG to allow elementary trees in
R to be of depth greater than or equal to 1, we

get the Tree-Substitution Grammar. TSG remains
in the family of context-free grammars, as can be
easily seen by the removal of the internal nodes
in all elementary trees; what is left is a CFG that
generates the same language. As a reversible al-
ternative that preserves the internal structure, an-
notation of each internal node with a unique index
creates a large number of deterministic CFG rules
that record the structure of the original elementary
trees. A more compact CFG representation can be
obtained by marking each node in each elemen-
tary tree with a signature of its subtree. This trans-
form, presented by Goodman (2003), can rein in
the grammar constant G, as the crucial CFG algo-
rithms for a sentence of length n have complexity
O(Gn3).

A simple probabilistic model for a TSG is a set
of multinomials, one for each nonterminal in N
corresponding to its possible substitutions in R. A
more flexible model allows a potentially infinite
number of substitution rules using a Dirichlet Pro-
cess (Cohn et al., 2009; Cohn and Blunsom, 2010).
This model has proven effective for grammar in-
duction via Markov Chain Monte Carlo (MCMC),
in which TSG derivations of the training set are re-
peatedly sampled to find frequently occurring el-
ementary trees. A straightforward technique for
induction of a finite TSG is to perform this non-
parametric induction and select the set of rules that
appear in at least one sampled derivation at one or
several of the final iterations.

2.2 Tree-Adjoining Grammar

Tree-adjoining grammar (TAG) (Joshi, 1985;
Joshi, 1987; Joshi and Schabes, 1997) is an exten-
sion of TSG defined by a tuple 〈N,T,R,A, S〉,
and differs from TSG only in the addition of a
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VP

always VP

VP* quickly

+ S

NP VP

runs

⇒ S

NP VP

always VP

VP

runs

quickly

Figure 2: The adjunction operation combines the auxiliary tree (left) with the elementary tree (middle)
to form a new derivation (right). The adjunction site is circled, and the foot node of the auxiliary tree is
denoted with an asterisk. The OSTAG constraint would disallow further adjunction at the bold VP node
only, as it is along the spine of the auxiliary tree.

set of auxiliary trees A and the adjunction oper-
ation that governs their use. An auxiliary tree α
is an elementary tree containing a single distin-
guished nonterminal leaf, the foot node, with the
same symbol as the root of α. An auxiliary tree
with root and foot node X can be adjoined into an
internal node of an elementary tree labeled with
X by splicing the auxiliary tree in at that internal
node, as pictured in Figure 2. We refer to the path
between the root and foot nodes in an auxiliary
tree as the spine of the tree.

As mentioned above, the added power afforded
by adjunction comes at a serious price in time
complexity. As such, probabilistic modeling for
TAG in its original form is uncommon. However,
a large effort in non-probabilistic grammar induc-
tion has been performed through manual annota-
tion with the XTAG project(Doran et al., 1994).

2.3 Tree Insertion Grammar

Tree Insertion Grammars (TIGs) are a longstand-
ing compromise between the intuitive expressivity
of TAG and the algorithmic simplicity of CFGs.
Schabes and Waters (1995) showed that by re-
stricting the form of the auxiliary trees in A and
the set of auxiliary trees that may adjoin at par-
ticular nodes, a TAG generates only context-free
languages. The TIG restriction on auxiliary trees
states that the foot node must occur as either the
leftmost or rightmost leaf node. This introduces
an important distinction between left, right, and
wrapping auxiliary trees, of which only the first
two are allowed in TIG. Furthermore, TIG disal-
lows adjunction of left auxiliary trees on the spines
of right auxiliary trees, and vice versa. This is
to prevent the construction of wrapping auxiliary
trees, whose removal is essential for the simplified

complexity of TIG.
Several probabilistic models have been pro-

posed for TIG. While earlier approaches such as
Hwa (1998) and Chiang (2000) relied on hueristic
induction methods, they were nevertheless sucess-
ful at parsing. Later approaches (Shindo et al.,
2011; Yamangil and Shieber, 2012) were able to
extend the non-parametric modeling of TSGs to
TIG, providing methods for both modeling and
grammar induction.

2.4 OSTAG
Our new TAG variant is extremely simple. We al-
low arbitrary initial and auxiliary trees, and place
only one restriction on adjunction: we disallow
adjunction at any node on the spine of an aux-
iliary tree below the root (though we discuss re-
laxing that constraint in Section 4.2). We refer to
this variant as Off Spine TAG (OSTAG) and note
that it allows the use of full wrapping rules, which
are forbidden in TIG. This targeted blocking of
recursion has similar motivations and benefits to
the approximation of CFGs with regular languages
(Mohri and jan Nederhof, 2000).

The following sections discuss in detail the
context-free nature of OSTAG and alternative
probabilistic models for its equivalent CFG form.
We propose a simple but empirically effective
heuristic for grammar induction for our experi-
ments on Penn Treebank data.

3 Transformation to CFG

To demonstrate that OSTAG has only context-
free power, we provide a reduction to context-free
grammar. Given an OSTAG 〈N,T,R,A, S〉, we
define the set N of nodes of the corresponding
CFG to be pairs of a tree inR orA together with an
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α: S

T

x

T

y
β: T

a T* a
γ: T

b T* b

S → X Y S → X Y
X → x X → x
Y → y Y → y
X → A
X → B
Y → A′

Y → B′

A → a X ′ a X → a X a
A′ → a Y ′ a Y → a Y a
X ′ → X
Y ′ → Y

B → b X ′′ b X → b X b
B′ → b Y ′′ b Y → b Y b
X ′′ → X
Y ′′ → Y

(a) (b) (c)

Figure 3: (a) OSTAG for the language wxwRvyvR where w, v ∈ {a|b}+ and R reverses a string. (b) A
CFG for the same language, which of necessity must distinguish between nonterminalsX and Y playing
the role of T in the OSTAG. (c) Simplified CFG, conflating nonterminals, but which must still distinguish
between X and Y .

address (Gorn number (Gorn, 1965)) in that tree.
We take the nonterminals of the target CFG gram-
mar to be nodes or pairs of nodes, elements of the
setN +N ×N . We notate the pairs of nodes with
a kind of “applicative” notation. Given two nodes
η and η′, we notate a target nonterminal as η(η′).

Now for each tree τ and each interior node η
in τ that is not on the spine of τ , with children
η1, . . . , ηk, we add a context-free rule to the gram-
mar

η → η1 · · · ηk (1)

and if interior node η is on the spine of τ with
ηs the child node also on the spine of τ (that is,
dominating the foot node of τ ) and η′ is a node (in
any tree) where τ is adjoinable, we add a rule

η(η′)→ η1 · · · ηs(η′) · · · ηk . (2)

Rules of type (1) handle the expansion of a node
not on the spine of an auxiliary tree and rules of
type (2) a spinal node.

In addition, to initiate adjunction at any node η′

where a tree τ with root η is adjoinable, we use a
rule

η′ → η(η′) (3)

and for the foot node ηf of τ , we use a rule

ηf (η)→ η (4)

The OSTAG constraint follows immediately
from the structure of the rules of type (2). Any
child spine node ηs manifests as a CFG nonter-
minal ηs(η′). If child spine nodes themselves al-
lowed adjunction, we would need a type (3) rule
of the form ηs(η

′) → ηs(η
′)(η′′). This rule itself

would feed adjunction, requiring further stacking
of nodes, and an infinite set of CFG nonterminals
and rules. This echoes exactly the stacking found
in the LIG reduction of TAG .

To handle substitution, any frontier node η that
allows substitution of a tree rooted with node η′

engenders a rule
η → η′ (5)

This transformation is reversible, which is to
say that each parse tree derived with this CFG im-
plies exactly one OSTAG derivation, with substi-
tutions and adjunctions coded by rules of type (5)
and (3) respectively. Depending on the definition
of a TAG derivation, however, the converse is not
necessarily true. This arises from the spurious am-
biguity between adjunction at a substitution site
(before applying a type (5) rule) versus the same
adjunction at the root of the substituted initial tree
(after applying a type (5) rule). These choices
lead to different derivations in CFG form, but their
TAG derivations can be considered conceptually
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identical. To avoid double-counting derivations,
which can adversely effect probabilistic modeling,
type (3) and type (4) rules in which the side with
the unapplied symbol is a nonterminal leaf can be
omitted.

3.1 Example
The grammar of Figure 3(a) can be converted to
a CFG by this method. We indicate for each CFG
rule its type as defined above the production arrow.
All types are used save type (5), as substitution
is not employed in this example. For the initial
tree α, we have the following generated rules (with
nodes notated by the tree name and a Gorn number
subscript):

αε
1−→ α1 α2 α1

3−→ βε(α1)

α1
1−→ x α1

3−→ γε(α1)

α2
1−→ y α2

3−→ βε(α2)

α2
3−→ γε(α2)

For the auxiliary trees β and γ we have:

βε(α1)
2−→ a β1(α1) a

βε(α2)
2−→ a β1(α2) a

β1(α1)
4−→ α1

β1(α2)
4−→ α2

γε(α1)
2−→ b γ1(α1) b

γε(α2)
2−→ b γ1(α2) b

γ1(α1)
4−→ α1

γ1(α2)
4−→ α2

The grammar of Figure 3(b) is simply a renaming
of this grammar.

4 Applications

4.1 Compact grammars
The OSTAG framework provides some leverage in
expressing particular context-free languages more
compactly than a CFG or even a TSG can. As
an example, consider the language of bracketed
palindromes

Pal = aiw aiw
R ai

1 ≤ i ≤ k
w ∈ {bj | 1 ≤ j ≤ m}∗

containing strings like a2 b1b3 a2 b3b1 a2. Any
TSG for this language must include as substrings
some subpalindrome constituents for long enough
strings. Whatever nonterminal covers such a

string, it must be specific to the a index within
it, and must introduce at least one pair of bs as
well. Thus, there are at least m such nontermi-
nals, each introducing at least k rules, requiring at
least km rules overall. The simplest such gram-
mar, expressed as a CFG, is in Figure 4(a). The
ability to use adjunction allows expression of the
same language as an OSTAG with k +m elemen-
tary trees (Figure 4(b)). This example shows that
an OSTAG can be quadratically smaller than the
corresponding TSG or CFG.

4.2 Extensions

The technique in OSTAG can be extended to ex-
pand its expressiveness without increasing gener-
ative capacity.

First, OSTAG allows zero adjunctions on each
node on the spine below the root of an auxiliary
tree, but any non-zero finite bound on the num-
ber of adjunctions allowed on-spine would simi-
larly limit generative capacity. The tradeoff is in
the grammar constant of the effective probabilis-
tic CFG; an extension that allows k levels of on
spine adjunction has a grammar constant that is
O(|N |(k+2)).

Second, the OSTAG form of adjunction is con-
sistent with the TIG form. That is, we can extend
OSTAG by allowing on-spine adjunction of left- or
right-auxiliary trees in keeping with the TIG con-
straints without increasing generative capacity.

4.3 Probabilistic OSTAG

One major motivation for adherence to a context-
free grammar formalism is the ability to employ
algorithms designed for probabilistic CFGs such
as the CYK algorithm for parsing or the Inside-
Outside algorithm for grammar estimation. In this
section we present a probabilistic model for an OS-
TAG grammar in PCFG form that can be used in
such algorithms, and show that many parameters
of this PCFG can be pooled or set equal to one and
ignored. References to rules of types (1-5) below
refer to the CFG transformation rules defined in
Section 3. While in the preceeding discussion we
used Gorn numbers for clarity, our discussion ap-
plies equally well for the Goodman transform dis-
cussed above, in which each node is labeled with a
signature of its subtree. This simply redefines η in
the CFG reduction described in Section 3 to be a
subtree indicator, and dramatically reduces redun-
dancy in the generated grammar.
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S → ai Ti ai
Ti → bj Ti bj
Ti → ai

αi | 1 ≤ i ≤ k: S

ai T

ai

ai

βj | 1 ≤ j ≤ m: T

bj T* bj
(a) (b)

Figure 4: A CFG (a) and more compact OSTAG (b) for the language Pal

The first practical consideration is that CFG
rules of type (2) are deterministic, and as such
we need only record the rule itself and no asso-
ciated parameter. Furthermore, these rules employ
a template in which the stored symbol appears in
the left-hand side and in exactly one symbol on
the right-hand side where the spine of the auxil-
iary tree proceeds. One deterministic rule exists
for this template applied to each η, and so we may
record only the template. In order to perform CYK
or IO, it is not even necessary to record the index
in the right-hand side where the spine continues;
these algorithms fill a chart bottom up and we can
simply propagate the stored nonterminal up in the
chart.

CFG rules of type (4) are also deterministic and
do not require parameters. In these cases it is not
necessary to record the rules, as they all have ex-
actly the same form. All that is required is a check
that a given symbol is adjoinable, which is true for
all symbols except nonterminal leaves and applied
symbols. Rules of type (5) are necessary to cap-
ture the probability of substitution and so we will
require a parameter for each.

At first glance, it would seem that due to the
identical domain of the left-hand sides of rules of
types (1) and (3) a parameter is required for each
such rule. To avoid this we propose the follow-
ing factorization for the probabilistic expansion of
an off spine node. First, a decision is made as to
whether a type (1) or (3) rule will be used; this cor-
responds to deciding if adjunction will or will not
take place at the node. If adjunction is rejected,
then there is only one type (1) rule available, and
so parameterization of type (1) rules is unneces-
sary. If we decide on adjunction, one of the avail-
able type (3) rules is chosen from a multinomial.
By conditioning the probability of adjunction on
varying amounts of information about the node,
alternative models can easily be defined.

5 Experiments

As a proof of concept, we investigate OSTAG in
the context of the classic Penn Treebank statistical
parsing setup; training on section 2-21 and testing
on section 23. For preprocessing, words that oc-
cur only once in the training data are mapped to
the unknown categories employed in the parser of
Petrov et al. (2006). We also applied the annota-
tion from Klein and Manning (2003) that appends
“-U” to each nonterminal node with a single child,
drastically reducing the presence of looping unary
chains. This allows the use of a coarse to fine
parsing strategy (Charniak et al., 2006) in which
a sentence is first parsed with the Maximum Like-
lihood PCFG and only constituents whose prob-
ability exceeds a cutoff of 10−4 are allowed in
the OSTAG chart. Designed to facilitate sister ad-
junction, we define our binarization scheme by ex-
ample in which the added nodes, indicated by @,
record both the parent and head child of the rule.

NP

@NN-NP

@NN-NP

DT @NN-NP

JJ NN

SBAR

A compact TSG can be obtained automatically
using the MCMC grammar induction technique of
Cohn and Blunsom (2010), retaining all TSG rules
that appear in at least one derivation in after 1000
iterations of sampling. We use EM to estimate the
parameters of this grammar on sections 2-21, and
use this as our baseline.

To generate a set of TAG rules, we consider
each rule in our baseline TSG and find all possi-
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All 40 #Adj #Wrap

TSG 85.00 86.08 – –
TSG′ 85.12 86.21 – –
OSTAG1 85.42 86.43 1336 52
OSTAG2 85.54 86.56 1952 44
OSTAG3 85.86 86.84 3585 41

Figure 5: Parsing F-Score for the models under
comparison for both the full test set and sentences
of length 40 or less. For the OSTAG models, we
list the number of adjunctions in the MPD of the
full test set, as well as the number of wrapping
adjunctions.

ble auxiliary root and foot node pairs it contains.
For each such root/foot pair, we include the TAG
rule implied by removal of the structure above the
root and below the foot. We also include the TSG
rule left behind when the adjunction of this auxil-
iary tree is removed. To be sure that experimental
gains are not due to this increased number of TSG
initial trees, we calculate parameters using EM for
this expanded TSG and use it as a second base-
line (TSG′). With our full set of initial and aux-
iliary trees, we use EM and the PCFG reduction
described above to estimate the parameters of an
OSTAG.

We investigate three models for the probabil-
ity of adjunction at a node. The first uses a con-
servative number of parameters, with a Bernoulli
variable for each symbol (OSTAG1). The second
employs more parameters, conditioning on both
the node’s symbol and the symbol of its leftmost
child (OSTAG2).The third is highly parameterized
but most prone to data sparsity, with a separate
Bernoulli distribution for each Goodman index η
(OSTAG3). We report results for Most Probable
Derivation (MPD) parses of section 23 in Figure
5.

Our results show that OSTAG outperforms both
baselines. Furthermore, the various parameteri-
zations of adjunction with OSTAG indicate that,
at least in the case of the Penn Treebank, the
finer grained modeling of a full table of adjunction
probabilities for each Goodman index OSTAG3

overcomes the danger of sparse data estimates.
Not only does such a model lead to better parsing
performance, but it uses adjunction more exten-
sively than its more lightly parameterized alterna-
tives. While different representations make direct

comparison inappropriate, the OSTAG results lie
in the same range as previous work with statistical
TIG on this task, such as Chiang (2000) (86.00)
and Shindo et al. (2011) (85.03).

The OSTAG constraint can be relaxed as de-
scribed in Section 4.2 to allow any finite number of
on-spine adjunctions without sacrificing context-
free form. However, the increase to the grammar
constant quickly makes parsing with such models
an arduous task. To determine the effect of such a
relaxation, we allow a single level of on-spine ad-
junction using the adjunction model of OSTAG1,
and estimate this model with EM on the training
data. We parse sentences of length 40 or less in
section 23 and observe that on-spine adjunction is
never used in the MPD parses. This suggests that
the OSTAG constraint is reasonable, at least for
the domain of English news text.

We performed further examination of the MPD
using OSTAG for each of the sentences in the test
corpus. As an artifact of the English language, the
majority have their foot node on the left spine and
would also be usable by TIG, and so we discuss
the instances of wrapping auxiliary trees in these
derivations that are uniquely available to OSTAG.
We remove binarization for clarity and denote the
foot node with an asterisk.

A frequent use of wrapping adjunction is to co-
ordinate symbols such as quotes, parentheses, and
dashes on both sides of a noun phrase. One com-
mon wrapping auxiliary tree in our experiments is

NP

“ NP* ” PP

This is used frequently in the news text of
the Wall Street Journal for reported speech when
avoiding a full quotation. This sentence is an ex-
ample of the way the rule is employed, using what
Joshi and Schabes (1997) referred to as “factoring
recursion from linguistic constraints” with TAG.
Note that replacing the quoted noun phrase and
its following prepositional phrase with the noun
phrase itself yields a valid sentence, in line with
the linguistic theory underlying TAG.

Another frequent wrapping rule, shown below,
allows direct coordination between the contents of
an appositive with the rest of the sentence.
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NP

NP , CC

or

NP* ,

This is a valuable ability, as it is common to
use an appositive to provide context or explanation
for a proper noun. As our information on proper
nouns will most likely be very sparse, the apposi-
tive may be more reliably connected to the rest of
the sentence. An example of this from one of the
sentences in which this rule appears in the MPD is
the phrase “since the market fell 156.83, or 8 %,
a week after Black Monday”. The wrapping rule
allows us to coordinate the verb “fell” with the pat-
tern “X %” instead of 156.83, which is mapped to
an unknown word category.

These rules highlight the linguistic intuitions
that back TAG; if their adjunction were undone,
the remaining derivation would be a valid sen-
tence that simply lacks the modifying structure of
the auxiliary tree. However, the MPD parses re-
veal that not all useful adjunctions conform to this
paradigm, and that left-auxiliary trees that are not
used for sister adjunction are susceptible to this
behavior. The most common such tree is used to
create noun phrases such as

P&G’s share of [the Japanese market]
the House’s repeal of [a law]
Apple’s family of [Macintosh Computers]
Canada’s output of [crude oil]

by adjoining the shared unbracketed syntax onto
the NP dominating the bracketed text. If adjunc-
tion is taken to model modification, this rule dras-
tically changes the semantics of the unmodified
sentence. Furthermore, in some cases removing
the adjunction can leave a grammatically incorrect
sentence, as in the third example where the noun
phrase changes plurality.

While our grammar induction method is a crude
(but effective) heuristic, we can still highlight the
qualities of the more important auxiliary trees
by examining aggregate statistics over the MPD
parses, shown in Figure 6. The use of left-
auxiliary trees for sister adjunction is a clear trend,
as is the predominant use of right-auxiliary trees
for the complementary set of “regular” adjunc-
tions, which is to be expected in a right branch-
ing language such as English. The statistics also

All Wrap Right Left

Total 3585 (1374) 41 (26) 1698 (518) 1846 (830)
Sister 2851 (1180) 17 (11) 1109 (400) 1725 (769)
Lex 2244 (990) 28 (19) 894 (299) 1322 (672)
FLex 1028 (558) 7 (2) 835 (472) 186 (84)

Figure 6: Statistics for MPD auxiliary trees us-
ing OSTAG3. The columns indicate type of aux-
iliary tree and the rows correspond respectively to
the full set found in the MPD, those that perform
sister adjunction, those that are lexicalized, and
those that are fully lexicalized. Each cell shows
the number of tokens followed by the number of
types of auxiliary tree that fit its conditions.

reflect the importance of substitution in right-
auxiliary trees, as they must capture the wide va-
riety of right branching modifiers of the English
language.

6 Conclusion

The OSTAG variant of Tree-Adjoining Grammar
is a simple weakly context-free formalism that
still provides for all types of adjunction and is
a bit more concise than TSG (quadratically so).
OSTAG can be reversibly transformed into CFG
form, allowing the use of a wide range of well
studied techniques in statistical parsing.

OSTAG provides an alternative to TIG as a
context-free TAG variant that offers wrapping ad-
junction in exchange for recursive left/right spine
adjunction. It would be interesting to apply both
OSTAG and TIG to different languages to deter-
mine where the constraints of one or the other are
more or less appropriate. Another possibility is the
combination of OSTAG with TIG, which would
strictly expand the abilities of both approaches.

The most important direction of future work for
OSTAG is the development of a principled gram-
mar induction model, perhaps using the same tech-
niques that have been successfully applied to TSG
and TIG. In order to motivate this and other re-
lated research, we release our implementation of
EM and CYK parsing for OSTAG1. Our system
performs the CFG transform described above and
optionally employs coarse to fine pruning and re-
laxed (finite) limits on the number of spine adjunc-
tions. As a TSG is simply a TAG without adjunc-
tion rules, our parser can easily be used as a TSG
estimator and parser as well.

1bllip.cs.brown.edu/download/bucketparser.tar
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Abstract
We present a fast and scalable online
method for tuning statistical machine trans-
lation models with large feature sets. The
standard tuning algorithm—MERT—only
scales to tens of features. Recent discrimi-
native algorithms that accommodate sparse
features have produced smaller than ex-
pected translation quality gains in large
systems. Our method, which is based on
stochastic gradient descent with an adaptive
learning rate, scales to millions of features
and tuning sets with tens of thousands of
sentences, while still converging after only
a few epochs. Large-scale experiments on
Arabic-English and Chinese-English show
that our method produces significant trans-
lation quality gains by exploiting sparse fea-
tures. Equally important is our analysis,
which suggests techniques for mitigating
overfitting and domain mismatch, and ap-
plies to other recent discriminative methods
for machine translation.

1 Introduction
Sparse, overlapping features such as words and n-
gram contexts improve many NLP systems such as
parsers and taggers. Adaptation of discriminative
learning methods for these types of features to sta-
tistical machine translation (MT) systems, which
have historically used idiosyncratic learning tech-
niques for a few dense features, has been an active
research area for the past half-decade. However, de-
spite some research successes, feature-rich models
are rarely used in annual MT evaluations. For exam-
ple, among all submissions to theWMT and IWSLT
2012 shared tasks, just one participant tuned more
than 30 features (Hasler et al., 2012a). Slow uptake
of these methods may be due to implementation
complexities, or to practical difficulties of configur-
ing them for specific translation tasks (Gimpel and
Smith, 2012; Simianer et al., 2012, inter alia).

We introduce a new method for training feature-
rich MT systems that is effective yet comparatively
easy to implement. The algorithm scales to millions
of features and large tuning sets. It optimizes a lo-
gistic objective identical to that of PRO (Hopkins
and May, 2011) with stochastic gradient descent, al-
though other objectives are possible. The learning
rate is set adaptively using AdaGrad (Duchi et al.,
2011), which is particularly effective for the mixture
of dense and sparse features present in MT models.
Finally, feature selection is implemented as efficient
L1 regularization in the forward-backward splitting
(FOBOS) framework (Duchi and Singer, 2009). Ex-
periments show that our algorithm converges faster
than batch alternatives.
To learn good weights for the sparse features,

most algorithms—including ours—benefit from
more tuning data, and the natural source is the train-
ing bitext. However, the bitext presents two prob-
lems. First, it has a single reference, sometimes of
lower quality than the multiple references in tun-
ing sets from MT competitions. Second, large bi-
texts often comprise many text genres (Haddow and
Koehn, 2012), a virtue for classical dense MT mod-
els but a curse for high dimensional models: bitext
tuning can lead to a significant domain adaptation
problem when evaluating on standard test sets. Our
analysis separates and quantifies these two issues.

We conduct large-scale translation quality exper-
iments on Arabic-English and Chinese-English. As
baselines we use MERT (Och, 2003), PRO, and
the Moses (Koehn et al., 2007) implementation
of k-best MIRA, which Cherry and Foster (2012)
recently showed to work as well as online MIRA
(Chiang, 2012) for feature-rich models. The first
experiment uses standard tuning and test sets from
the NIST OpenMT competitions. The second ex-
periment uses tuning and test sets sampled from the
large bitexts. The new method yields significant
improvements in both experiments. Our code is
included in the Phrasal (Cer et al., 2010) toolkit,
which is freely available.
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2 Adaptive Online Algorithms
Machine translation is an unusual machine learning
setting because multiple correct translations exist
and decoding is comparatively expensive. When we
have a large feature set and therefore want to tune
on a large data set, batch methods are infeasible.
Online methods can converge faster, and in practice
they often find better solutions (Liang and Klein,
2009; Bottou and Bousquet, 2011, inter alia).
Recall that stochastic gradient descent (SGD),

a fundamental online method, updates weights w
according to

wt = wt−1 − η∇`t(wt−1) (1)

with loss function1 `t(w) of the tth example,
(sub)gradient of the loss with respect to the param-
eters ∇`t(wt−1), and learning rate η.

SGD is sensitive to the learning rate η, which is
difficult to set in an MT system that mixes frequent
“dense” features (like the language model) with
sparse features (e.g., for translation rules). Further-
more, η applies to each coordinate in the gradient,
an undesirable property in MT where good sparse
features may fire very infrequently. We would in-
stead like to take larger steps for sparse features and
smaller steps for dense features.

2.1 AdaGrad
AdaGrad is a method for setting an adaptive learn-
ing rate that comes with good theoretical guaran-
tees. The theoretical improvement over SGD is
most significant for high-dimensional, sparse fea-
tures. AdaGrad makes the following update:

wt = wt−1 − ηΣ
1/2
t ∇`t(wt−1) (2)

Σ−1
t = Σ−1

t−1 +∇`t(wt−1)∇`t(wt−1)>

=

t∑

i=1

∇`i(wi−1)∇`i(wi−1)> (3)

A diagonal approximation to Σ can be used for a
high-dimensional vector wt. In this case, AdaGrad
is simple to implement and computationally cheap.
Consider a single dimension j, and let scalars vt =
wt,j , gt = ∇j`t(wt−1), Gt =

∑t
i=1 g

2
i , then the

update rule is

vt = vt−1 − η G−1/2
t gt (4)

Gt = Gt−1 + g2
t (5)

Compared to SGD, we just need to storeGt = Σ−1
t,jj

for each dimension j.
1We specify the loss function for MT in section 3.1.

2.2 Prior Online Algorithms in MT
AdaGrad is related to two previous online learning
methods for MT.

MIRA Chiang et al. (2008) described an adaption
of MIRA (Crammer et al., 2006) to MT. MIRA
makes the following update:

wt = arg min
w

1

2η
‖w − wt−1‖22 + `t(w) (6)

The first term expresses conservativity: the weight
should change as little as possible based on a sin-
gle example, ensuring that it is never beneficial to
overshoot the minimum.

The relationship to SGD can be seen by lineariz-
ing the loss function `t(w) ≈ `t(wt−1) + (w −
wt−1)>∇`t(wt−1) and taking the derivative of (6).
The result is exactly (1).

AROW Chiang (2012) adapted AROW (Cram-
mer et al., 2009) to MT. AROW models the current
weight as a Gaussian centered at wt−1 with covari-
ance Σt−1, and does the following update upon
seeing training example xt:

wt,Σt =

arg min
w,Σ

1

η
DKL(N (w,Σ)||N (wt−1,Σt−1))

+ `t(w) +
1

2η
x>t Σxt (7)

The KL-divergence term expresses a more general,
directionally sensitive conservativity. Ignoring the
third term, the Σ that minimizes the KL is actu-
ally Σt−1. As a result, the first two terms of (7)
generalize MIRA so that we may be more conser-
vative in some directions specified by Σ. To see
this, we can write out the KL-divergence between
two Gaussians in closed form, and observe that the
terms involving w do not interact with the terms
involving Σ:

wt = arg min
w

1

2η
(w − wt−1)>Σ−1

t−1(w − wt−1)

+ `t(w) (8)

Σt = arg min
Σ

1

2η
log

( |Σt−1|
|Σ|

)
+

1

2η
Tr
(
Σ−1
t−1Σ

)

+
1

2η
x>t Σxt (9)

The third term in (7), called the confidence term,
gives us adaptivity, the notion that we should have
smaller variance in the direction v as more data xt
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is seen in direction v. For example, if Σ is diagonal
and xt are indicator features, the confidence term
then says that the weight for a rarer feature should
have more variance and vice-versa. Recall that for
generalized linear models∇`t(w) ∝ xt; if we sub-
stitute xt = αt∇`t(w) into (9), differentiate and
solve, we get:

Σ−1
t = Σ−1

t−1 + xtx
>
t

= Σ−1
0 +

t∑

i=1

α2
i∇`i(wi−1)∇`i(wi−1)>

(10)

The precision Σ−1
t generally grows as more data

is seen. Frequently updated features receive an espe-
cially high precision, whereas the model maintains
large variance for rarely seen features.
If we substitute (10) into (8), linearize the loss

`t(w) as before, and solve, then we have the lin-
earized AROW update

wt = wt−1 − ηΣt∇`t(wt−1) (11)

which is also an adaptive update with per-coordinate
learning rates specified by Σt (as opposed to Σ

1/2
t

in AdaGrad).

2.3 Comparing AdaGrad, MIRA, AROW
Compare (3) to (10) and observe that if we set
Σ−1

0 = 0 and αt = 1, then the only difference
between the AROW update (11) and the AdaGrad
update (2) is a square root. Under a constant gradi-
ent, AROW decays the step size more aggressively
(1/t) compared to AdaGrad (1/

√
t), and it is sensi-

tive to the specification of Σ−1
0 .

Informally, SGD can be improved in the conser-
vativity direction using MIRA so the updates do
not overshoot. Second, SGD can be improved in
the adaptivity direction using AdaGrad where the
decaying stepsize is more robust and the adaptive
stepsize allows better weight updates to features
differing in sparsity and scale. Finally, AROW com-
bines both adaptivity and conservativity. For MT,
adaptivity allows us to deal withmixed dense/sparse
features effectively without specific normalization.
Why do we choose AdaGrad over AROW?

MIRA/AROW requires selecting the loss function
`(w) so that wt can be solved in closed-form, by
a quadratic program (QP), or in some other way
that is better than linearizing. This usually means
choosing a hinge loss. On the other hand, Ada-
Grad/linearized AROW only requires that the gradi-
ent of the loss function can be computed efficiently.

Algorithm 1 Adaptive online tuning for MT.
Require: Tuning set {fi, e1:ki }i=1:M

1: Set w0 = 0
2: Set t = 1
3: repeat
4: for i in 1 . . .M in random order do
5: Decode n-best list Ni for fi
6: Sample pairs {dj,+, dj,−}j=1:s from Ni
7: Compute Dt = {φ(dj,+)− φ(dj,−)}j=1:s

8: Set gt = ∇`(Dt; wt−1)}
9: Set Σ−1

t = Σ−1
t−1 + gtg

>
t . Eq. (3)

10: Update wt = wt−1 − ηΣ
1/2
t gt . Eq. (2)

11: Regularize wt . Eq. (15)
12: Set t = t+ 1
13: end for
14: until convergence

Linearized AROW, however, is less robust than Ada-
Grad empirically2 and lacks known theoretical guar-
antees. Finally, by using AdaGrad, we separate
adaptivity from conservativity. Our experiments
suggest that adaptivity is actually more important.

3 Adaptive Online MT

Algorithm 1 shows the full algorithm introduced in
this paper. AdaGrad (lines 9–10) is a crucial piece,
but the loss function, regularization technique, and
parallelization strategy described in this section are
equally important in the MT setting.

3.1 Pairwise Logistic Loss Function
Algorithm 1 lines 5–8 describe the gradient com-
putation. We cast MT tuning as pairwise ranking
(Herbrich et al., 1999, inter alia), which Hopkins
and May (2011) applied to MT. The pairwise ap-
proach results in simple, convex loss functions suit-
able for online learning. The idea is that for any
two derivations, the ranking predicted by the model
should be consistent with the ranking predicted by
a gold sentence-level metric G like BLEU+1 (Lin
and Och, 2004).
Consider a single source sentence f with asso-

ciated references e1:k. Let d be a derivation in an
n-best list of f that has the target e = e(d) and the
feature map φ(d). Let M(d) = w · φ(d) be the
model score. For any derivation d+ that is better
than d− under G, we desire pairwise agreement
such that

G
(
e(d+), e1:k

)
> G

(
e(d−), e1:k

)

⇐⇒ M(d+) > M(d−)

2According to experiments not reported in this paper.
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Ensuring pairwise agreement is the same as ensur-
ing w · [φ(d+)− φ(d−)] > 0.
For learning, we need to select derivation pairs

(d+, d−) to compute difference vectors x+ =
φ(d+) − φ(d−). Then we have a 1-class separa-
tion problem trying to ensure w · x+ > 0. The
derivation pairs are sampled with the algorithm of
Hopkins and May (2011).

We compute difference vectors Dt = {x1:s
+ } (Al-

gorithm 1 line 7) from s pairs (d+, d−) for source
sentence ft. We use the familiar logistic loss:

`t(w) = `(Dt, w) = −
∑

x+∈Dt
log

1

1 + e−w·x+

(12)
Choosing the hinge loss instead of the logistic

loss results in the 1-class SVM problem. The 1-
class separation problem is equivalent to the binary
classification problem with x+ = φ(d+)− φ(d−)
as positive data and x− = −x+ as negative data,
which may be plugged into an existing logistic re-
gression solver.
We find that Algorithm 1 works best with mini-

batches instead of single examples. In line 4 we
simply partition the tuning set so that i becomes a
mini-batch of examples.

3.2 Updating and Regularization
Algorithm 1 lines 9–11 compute the adaptive learn-
ing rate, update the weights, and apply regulariza-
tion. Section 2.1 explained the AdaGrad learn-
ing rate computation. To update and regularize
the weights we apply the Forward-Backward Split-
ting (FOBOS) (Duchi and Singer, 2009) framework,
which separates the two operations. The two-step
FOBOS update is

wt− 1
2

= wt−1 − ηt−1∇`t−1(wt−1) (13)

wt = arg min
w

1

2
‖w − wt− 1

2
‖22 + ηt−1r(w)

(14)

where (13) is just an unregularized gradient descent
step and (14) balances the regularization term r(w)
with staying close to the gradient step.

Equation (14) permits efficient L1 regulariza-
tion, which is well-suited for selecting good features
from exponentially many irrelevant features (Ng,
2004). It is well-known that feature selection is very
important for feature-rich MT. For example, sim-
ple indicator features like lexicalized re-ordering
classes are potentially useful yet bloat the the fea-
ture set and, in the worst case, can negatively impact

Algorithm 2 “Stale gradient” parallelization
method for Algorithm 1.
Require: Tuning set {fi, e1:ki }i=1:M

1: Initialize threadpool p1, . . . , pj
2: Set t = 1
3: repeat
4: for i in 1 . . .M in random order do
5: Wait until any thread p is idle
6: Send (fi, e

1:k
i , t) to p . Alg. 1 lines 5–8

7: while ∃ p′ done with gradient gt′ do . t′ ≤ t
8: Update wt = wt−1 − ηgt′ . Alg. 1 lines 9–11
9: Set t = t+ 1
10: end while
11: end for
12: until convergence

search. Some of the features generalize, but many
do not. This was well understood in previous work,
so heuristic filtering was usually applied (Chiang
et al., 2009, inter alia). In contrast, we need only
select an appropriate regularization strength λ.
Specifically, when r(w) = λ‖w‖1, the closed-

form solution to (14) is

wt = sign(wt− 1
2
)
[
|wt− 1

2
| − ηt−1λ

]
+

(15)

where [x]+ = max(x, 0) is the clipping function
that in this case sets a weight to 0 when it falls
below the threshold ηt−1λ. It is straightforward to
adapt this to AdaGrad with diagonal Σ by setting
each dimension of ηt−1,j = ηΣ

1
2
t,jj and by taking

element-wise products.
We find that∇`t−1(wt−1) only involves several

hundred active features for the current example
(or mini-batch). However, naively following the
FOBOS framework requires updating millions of
weights. But a practical benefit of FOBOS is that
we can do lazy updates on just the active dimensions
without any approximations.

3.3 Parallelization
Algorithm 1 is inherently sequential like standard
online learning. This is undesirable in MT where
decoding is costly. We therefore parallelize the algo-
rithm with the “stale gradient” method of Langford
et al. (2009) (Algorithm 2). A fixed threadpool of
workers computes gradients in parallel and sends
them to a master thread, which updates a central
weight vector. Crucially, the weight updates need
not be applied in order, so synchronization is unnec-
essary; the workers only idle at the end of an epoch.
The consequence is that the update in line 8 of Al-
gorithm 2 is with respect to gradient gt′ with t′ ≤ t.
Langford et al. (2009) gave convergence results for
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stale updating, but the bounds do not apply to our
setting since we use L1 regularization. Neverthe-
less, Gimpel et al. (2010) applied this framework
to other non-convex objectives and obtained good
empirical results.

Our asynchronous, stochastic method has practi-
cal appeal for MT. During a tuning run, the online
method decodes the tuning set under many more
weight vectors than a MERT-style batch method.
This characteristic may result in broader exploration
of the search space, and make the learner more ro-
bust to local optima local optima (Liang and Klein,
2009; Bottou and Bousquet, 2011, inter alia). The
adaptive algorithm identifies appropriate learning
rates for the mixture of dense and sparse features.
Finally, large data structures such as the language
model (LM) and phrase table exist in shared mem-
ory, obviating the need for remote queries.

4 Experiments
We built Arabic-English and Chinese-English MT
systems with Phrasal (Cer et al., 2010), a phrase-
based system based on alignment templates (Och
and Ney, 2004). The corpora3 in our experiments
(Table 1) derive from several LDC sources from
2012 and earlier. We de-duplicated each bitext ac-
cording to exact string match, and ensured that no
overlap existed with the test sets. We produced
alignments with the Berkeley aligner (Liang et al.,
2006b) with standard settings and symmetrized via
the grow-diag heuristic.
For each language we used SRILM (Stolcke,

2002) to estimate 5-gram LMs with modified
Kneser-Ney smoothing. We included the monolin-
gual English data and the respective target bitexts.

4.1 Feature Templates
The baseline “dense” model contains 19 features:
the nine Moses baseline features, the hierarchical
lexicalized re-ordering model of Galley and Man-
ning (2008), the (log) count of each rule, and an
indicator for unique rules.
To the dense features we add three high di-

mensional “sparse” feature sets. Discrimina-
3We tokenized the English with packages from the Stan-

ford Parser (Klein and Manning, 2003) according to the Penn
Treebank standard (Marcus et al., 1993), the Arabic with the
Stanford Arabic segmenter (Green and DeNero, 2012) accord-
ing to the Penn Arabic Treebank standard (Maamouri et al.,
2008), and the Chinese with the Stanford Chinese segmenter
(Chang et al., 2008) according to the Penn Chinese Treebank
standard (Xue et al., 2005).

Bilingual Monolingual
Sentences Tokens Tokens

Ar-En 6.6M 375M 990MZh-En 9.3M 538M

Table 1: Bilingual and monolingual corpora used
in these experiments. The monolingual English
data comes from the AFP and Xinhua sections of
English Gigaword 4 (LDC2009T13).

tive phrase table (PT): indicators for each rule
in the phrase table. Alignments (AL): indica-
tors for phrase-internal alignments and deleted
(unaligned) source words. Discriminative re-
ordering (LO): indicators for eight lexicalized re-
ordering classes, including the six standard mono-
tone/swap/discontinuous classes plus the two sim-
pler Moses monotone/non-monotone classes.

4.2 Tuning Algorithms
The primary baseline is the dense feature set tuned
with MERT (Och, 2003). The Phrasal implemen-
tation uses the line search algorithm of Cer et al.
(2008), uniform initialization, and 20 random start-
ing points.4 We tuned according to BLEU-4 (Pap-
ineni et al., 2002).

We built high dimensional baselines with two dif-
ferent algorithms. First, we tuned with batch PRO
using the default settings in Phrasal (L2 regulariza-
tion with σ=0.1). Second, we ran the k-best batch
MIRA (kb-MIRA) (Cherry and Foster, 2012) imple-
mentation in Moses. We did implement an online
version of MIRA, and in small-scale experiments
found that the batch variant worked just as well.
Cherry and Foster (2012) reported the same result,
and their implementation is available in Moses. We
ran their code with standard settings.
Moses5 also contains the discriminative phrase

table implementation of (Hasler et al., 2012b),
which is identical to our implementation using
Phrasal. Moses and Phrasal accept the same phrase
table and LM formats, so we kept those data struc-
tures in common. The two decoders also use the
same multi-stack beam search (Och and Ney, 2004).
For our method, we used uniform initialization,

16 threads, and a mini-batch size of 20. We found
that η=0.02 and λ=0.1 worked well on development
sets for both languages. To compute the gradients

4Other system settings for all experiments: distortion limit
of 5, a maximum phrase length of 7, and an n-best size of 200.

5v1.0 (28 January 2013)
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Model #features Algorithm Tuning Set MT02 MT03 MT04 MT09

Dense 19 MERT MT06 45.08 51.32 52.26 51.42 48.44
Dense 19 This paper MT06 44.19 51.42 52.52 50.16 48.13

+PT 151k kb-MIRA MT06 42.08 47.25 48.98 47.08 45.64
+PT 23k PRO MT06 44.31 51.06 52.18 50.23 47.52
+PT 50k This paper MT06 50.61 51.71 52.89 50.42 48.74
+PT+AL+LO 109k PRO MT06 44.87 51.25 52.43 50.05 47.76
+PT+AL+LO 242k This paper MT06 57.84 52.45 53.18 51.38 49.37
Dense 19 MERT MT05/6/8 49.63 51.60 52.29 51.73 48.68
+PT+AL+LO 390k This paper MT05/6/8 58.20 53.61 54.99 52.79 49.94
(Chiang, 2012)* 10-20k MIRA MT04/6 – – – – 45.90
(Chiang, 2012)* 10-20k AROW MT04/6 – – – – 47.60

#sentences 728 663 1,075 1,313

Table 2: Ar-En results [BLEU-4 % uncased] for the NIST tuning experiment. The tuning and test sets
each have four references. MT06 has 1,717 sentences, while the concatenated MT05/6/8 set has 4,213
sentences. Bold indicates statistical significance relative to the best baseline in each block at p < 0.001;
bold-italic at p < 0.05. We assessed significance with the permutation test of Riezler and Maxwell (2005).
(*) Chiang (2012) used a similar-sized bitext, but two LMs trained on twice as much monolingual data.

Model #features Algorithm Tuning Set MT02 MT03 MT04

Dense 19 MERT MT06 33.90 35.72 33.71 34.26
Dense 19 This paper MT06 32.60 36.23 35.14 34.78
+PT 105k kb-MIRA MT06 29.46 30.67 28.96 30.05
+PT 26k PRO MT06 33.70 36.87 34.62 34.80
+PT 66k This paper MT06 33.90 36.09 34.86 34.73

+PT+AL+LO 148k PRO MT06 34.81 36.31 33.81 34.41
+PT+AL+LO 344k This paper MT06 38.99 36.40 35.07 34.84
Dense 19 MERT MT05/6/8 32.36 35.69 33.83 34.33
+PT+AL+LO 487k This paper MT05/6/8 37.64 37.81 36.26 36.15

#sentences 878 919 1,597

Table 3: Zh-En results [BLEU-4 % uncased] for the NIST tuning experiment. MT05/6/8 has 4,103
sentences. OpenMT 2009 did not include Zh-En, hence the asymmetry with Table 2.

we sampled 15 derivation pairs for each tuning ex-
ample and scored them with BLEU+1.

4.3 NIST OpenMT Experiment
The first experiment evaluates our algorithm when
tuning and testing on standard test sets, each with
four references. When we add features, our algo-
rithm tends to overfit to a standard-sized tuning set
like MT06. We thus concatenated MT05, MT06,
and MT08 to create a larger tuning set.
Table 2 shows the Ar-En results. Our algorithm

is competitive with MERT in the low dimensional
“dense” setting, and compares favorably to PRO

with the PT feature set. PRO does not benefit
from additional features, whereas our algorithm im-
proves with both additional features and data. The
underperformance of kb-MIRA may result from
a difference between Moses and Phrasal: Moses
MERT achieves only 45.62 on MT09. Moses PRO
with the PT feature set is slightly worse, e.g., 44.52
on MT09. Nevertheless, kb-MIRA does not im-
prove significantly over MERT, and also selects an
unnecessarily large model.

The full feature set PT+AL+LO does help. With
the PT feature set alone, our algorithm tuned on
MT05/6/8 scores well below the best model, e.g.

316



Model #features Algorithm Tuning Set #refs bitext5k-test MT04

Dense 19 MERT MT06 45.08 4 39.28 51.42
+PT 72k This paper MT05/6/8 51.29 4 39.50 50.60
+PT 79k This paper bitext5k 44.79 1 43.85 45.73
+PT+AL+LO 647k This paper bitext15k 45.68 1 43.93 45.24

Table 4: Ar-En results [BLEU-4 % uncased] for the bitext tuning experiment. Statistical significance is
relative to the Dense baseline. We include MT04 for comparison to the NIST genre.

Model #features Algorithm Tuning Set #refs bitext5k-test MT04

Dense 19 MERT MT06 33.90 4 33.44 34.26
+PT 97k This paper MT05/6/8 34.45 4 35.08 35.19
+PT 67k This paper bitext5k 36.26 1 36.01 33.76
+PT+AL+LO 536k This paper bitext15k 37.57 1 36.30 34.05

Table 5: Zh-En results [BLEU-4 % uncased] for the bitext tuning experiment.

48.56 BLEU on MT09. For Ar-En, our algorithm
thus has the desirable property of benefiting from
more and better features, and more data.
Table 3 shows Zh-En results. Somewhat sur-

prisingly our algorithm improves over MERT in
the dense setting. When we add the discrimina-
tive phrase table, our algorithm improves over kb-
MIRA, and over batch PRO on two evaluation sets.
With all features and the MT05/6/8 tuning set, we
improve significantly over all other models. PRO
learns a smaller model with the PT+AL+LO fea-
ture set which is surprising given that it applies L2

regularization (AdaGrad uses L1). We speculate
that this may be an consequence of stochastic learn-
ing. Our algorithm decodes each example with
a new weight vector, thus exploring more of the
search space for the same tuning set.

4.4 Bitext Tuning Experiment
Tables 2 and 3 show that adding tuning examples
improves translation quality. Nevertheless, even
the larger tuning set is small relative to the bitext
from which rules were extracted. He and Deng
(2012) and Simianer et al. (2012) showed significant
translation quality gains by tuning on the bitext.
However, their bitexts matched the genre of their
test sets. Our bitexts, like those of most large-scale
systems, do not. Domain mismatch matters for the
dense feature set (Haddow and Koehn, 2012). We
show that it also matters for feature-rich MT.
Before aligning each bitext, we randomly sam-

pled and sequestered 5k and 15k sentence tuning
sets, and a 5k test set. We prevented overlap be-

DA DB |A| |B| |A ∩B|
MT04 MT06 70k 72k 5.9k
MT04 MT568 70k 96k 7.6k
MT04 bitext5k 70k 67k 4.4k
MT04 bitext15k 70k 310k 10.5k
5ktest bitext5k 82k 67k 5.6k
5ktest bitext15k 82k 310k 14k

Table 6: Number of overlapping phrase table (+PT)
features on various Zh-En dataset pairs.

tween the tuning sets and the test set. We then
tuned a dense model with MERT on MT06, and
feature-rich models on both MT05/6/8 and the bi-
text tuning set. Table 4 shows the Ar-En results.
When tuned on bitext5k the translation quality gains
are significant for bitext5k-test relative to tuning on
MT05/6/8, which has multiple references. However,
the bitext5k models do not generalize as well to the
NIST evaluation sets as represented by the MT04
result. Table 5 shows similar trends for Zh-En.

5 Analysis

5.1 Feature Overlap Analysis
How many sparse features appear in both the tun-
ing and test sets? In Table 6, A is the set of phrase
table features that received a non-zero weight when
tuned on datasetDA (same forB). ColumnDA lists
several Zh-En test sets used and column DB lists
tuning sets. Our experiments showed that tuning
on MT06 generalizes better to MT04 than tuning
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on bitext5k, whereas tuning on bitext5k general-
izes better to bitext5k-test than tuning on MT06.
These trends are consistent with the level of fea-
ture overlap. Phrase table features in A ∩ B are
overwhelmingly short, simple, and correct phrases,
suggesting L1 regularization is effective for feature
selection. It is also important to balance the number
of features with how well weights can be learned
for those features, as tuning on bitext15k produced
higher coverage for MT04 but worse generalization
than tuning on MT06.

5.2 Domain Adaptation Analysis
To understand the domain adaptation issue we com-
pared the non-zero weights in the discriminative
phrase table (PT) for Ar-En models tuned on bi-
text5k and MT05/6/8. Table 7 illustrates a statisti-
cal idiosyncrasy in the data for the American and
British spellings of program/programme. The mass
is concentrated along the diagonal, probably be-
cause MT05/6/8 was prepared by NIST, an Amer-
ican agency, while the bitext was collected from
many sources including Agence France Presse.
Of course, this discrepancy is consequential for

both dense and feature-rich models. However, we
observe that the feature-rich models fit the tuning
data more closely. For example, the MT05/6/8
model learns rules like l .

×A
	
KQK.

	áÒ
	

�
�
JK
 → program

includes, l .
×A

	
KQK. → program of, and l .

×A
	
KQ�. Ë @

�
è

	
Y

	
¯A

	
K→

program window. Crucially, it does not learn the
basic rule l .

×A
	
KQK. → program.

In contrast, the bitext5k model contains ba-
sic rules such l .

×A
	
KQK. → programme, l .

×A
	
KQ�. Ë @ @

	
Yë

→ this programme, and l .
×A

	
KQ�. Ë @ ½Ë

	
X → that pro-

gramme. It also contains more elaborate rules such
as l .

×A
	
KQ�. Ë @

�
HA

�
®

	
®

	
K

�
I

	
KA¿ → programme expenses

were and �
éËñë



AÖÏ @

�
éJ




KA

	
�

	
®Ë @

�
HCgQË@ l .

×@QK.→manned
space flight programmes. We observed similar
trends for ‘defense/defence’, ‘analyze/analyse’, etc.
This particular genre problem could be addressed
with language-specific pre-processing, but our sys-
tem solves it in a data-driven manner.

5.3 Re-ordering Analysis
We also analyzed re-ordering differences. Arabic
matrix clauses tend to be verb-initial, meaning that
the subject and verb must be swapped when translat-
ing to English. To assess re-ordering differences—
if any—between the dense and feature-rich models,
we selected all MT09 segments that began with one

# bitext5k # MT05/6/8

programme 185 0
program 19 449

PT rules w/ programme 353 79
PT rules w/ program 9 31

Table 7: Top: comparison of token counts in two
Ar-En tuning sets for programme and program. Bot-
tom: rule counts in the discriminative phrase table
(PT) for models tuned on the two tuning sets. Both
spellings correspond to the Arabic l .

×A
	
KQK. .

of seven common verbs: ÈA
�
¯ qaal ‘said’, hQå� SrH

‘declared’, PA
�

�


@ ashaar ‘indicated’, 	

àA¿ kaan ‘was’,

Q»
	
X dhkr ‘commented’, 	

¬A
	

�


@ aDaaf ‘added’, 	áÊ«



@

acln ‘announced’. We compared the output of the
MERT Dense model to our method with the full
feature set, both tuned on MT06. Of the 208 source
segments, 32 of the translation pairs contained dif-
ferent word order in the matrix clause. Our feature-
rich model was correct 18 times (56.3%), Dense
was correct 4 times (12.5%), and neither method
was correct 10 times (31.3%).

(1) ref: lebanese prime minister , fuad siniora ,
announced
a. and lebanese prime minister fuad siniora

that
b. the lebanese prime minister fouad siniora

announced

(2) ref: the newspaper and television reported
a. she said the newspaper and television
b. television and newspaper said

In (1) the dense model (1a) drops the verb while the
feature-rich model correctly re-orders and inserts
it after the subject (1b). The coordinated subject
in (2) becomes an embedded subject in the dense
output (2a). The feature-rich model (2b) performs
the correct re-ordering.

5.4 Runtime Comparison
Table 8 compares our method to standard implemen-
tations of the other algorithms. MERT parallelizes
easily but runtime increases quadratically with n-
best list size. PRO runs (single-threaded) L-BFGS
to convergence on every epoch, a potentially slow
procedure for the larger feature set. Moreover, both

318



epochs min.

MERT Dense 22 180

PRO +PT 25 35
kb-MIRA* +PT 26 25
This paper +PT 10 10

PRO +PT+AL+LO 13 150
This paper +PT+AL+LO 5 15

Table 8: Epochs to convergence (“epochs”) and
approximate runtime per epoch in minutes (“min.”)
for selected Zh-En experiments tuned on MT06.
All runs executed on the same dedicated system
with the same number of threads. (*) Moses and
kb-MIRA are written in C++, while all other rows
refer to Java implementations in Phrasal.

the Phrasal and Moses PRO implementations use
L2 regularization, which regularizes every weight
on every update. kb-MIRA makes multiple passes
through the n-best lists during each epoch. The
Moses implementation parallelizes decoding but
weight updating is sequential.

The core of our method is an inner product be-
tween the adaptive learning rate vector and the gra-
dient. This is easy to implement and is very fast
even for large feature sets. Since we applied lazy
regularization, this inner product usually involves
hundred-dimensional vectors. Finally, our method
does not need to accumulate n-best lists, a practice
that slows down the other algorithms.

6 Related Work

Our work relates most closely to that of Hasler et al.
(2012b), who tuned models containing both sparse
and dense features with Moses. A discriminative
phrase table helped them improve slightly over a
dense, online MIRA baseline, but their best results
required initialization with MERT-tuned weights
and re-tuning a single, shared weight for the dis-
criminative phrase table with MERT. In contrast,
our algorithm learned good high dimensional mod-
els from a uniform starting point.
Chiang (2012) adapted AROW to MT and ex-

tended previous work on online MIRA (Chiang et
al., 2008; Watanabe et al., 2007). It was not clear if
his improvements came from the novel Hope/Fear
search, the conservativity gain from MIRA/AROW
by solving the QP exactly, adaptivity, or sophis-
ticated parallelization. In contrast, we show that

AdaGrad, which ignores conservativity and only
capturing adaptivity, is sufficient.
Simianer et al. (2012) investigated SGD with a

pairwise perceptron objective. Their best algorithm
used iterative parameter mixing (McDonald et al.,
2010), which we found to be slower than the stale
gradient method in section 3.3. They regularized
once at the end of each epoch, whereas we regular-
ized each weight update. An empirical comparison
of these two strategies would be an interesting fu-
ture contribution.

Watanabe (2012) investigated SGD and even ran-
domly selected pairwise samples as we did. He
considered both softmax and hinge losses, observ-
ing better results with the latter, which solves a QP.
Their parallelization strategy required a line search
at the end of each epoch.

Many other discriminative techniques have been
proposed based on: ramp loss (Gimpel, 2012);
hinge loss (Cherry and Foster, 2012; Haddow et
al., 2011; Arun and Koehn, 2007); maximum en-
tropy (Xiang and Ittycheriah, 2011; Ittycheriah and
Roukos, 2007; Och and Ney, 2002); perceptron
(Liang et al., 2006a); and structured SVM (Till-
mann and Zhang, 2006). These works use radically
different experimental setups, and to our knowl-
edge only (Cherry and Foster, 2012) and this work
compare to at least two high dimensional baselines.
Broader comparisons, though time-intensive, could
help differentiate these methods.

7 Conclusion and Outlook
We introduced a new online method for tuning
feature-rich translation models. The method is
faster per epoch than MERT, scales to millions of
features, and converges quickly. We used efficient
L1 regularization for feature selection, obviating
the need for the feature scaling and heuristic filter-
ing common in prior work. Those comfortable with
implementing vanilla SGD should find our method
easy to implement. Even basic discriminative fea-
tures were effective, so we believe that our work
enables fresh approaches to more sophisticated MT
feature engineering.
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Abstract
In this paper, we propose a novel re-
ordering model based on sequence label-
ing techniques. Our model converts the
reordering problem into a sequence label-
ing problem, i.e. a tagging task. Results
on five Chinese-English NIST tasks show
that our model improves the baseline sys-
tem by 1.32 BLEU and 1.53 TER on av-
erage. Results of comparative study with
other seven widely used reordering mod-
els will also be reported.

1 Introduction

The systematic word order difference between two
languages poses a challenge for current statistical
machine translation (SMT) systems. The system
has to decide in which order to translate the given
source words. This problem is known as the re-
ordering problem. As shown in (Knight, 1999), if
arbitrary reordering is allowed, the search problem
is NP-hard.

Many ideas have been proposed to address
the reordering problem. Within the phrase-based
SMT framework there are mainly three stages
where improved reordering could be integrated:
In the preprocessing: the source sentence is re-
ordered by heuristics, so that the word order of
source and target sentences is similar. (Wang et
al., 2007) use manually designed rules to reorder
parse trees of the source sentences. Based on shal-
low syntax, (Zhang et al., 2007) use rules to re-
order the source sentences on the chunk level and
provide a source-reordering lattice instead of a sin-
gle reordered source sentence as input to the SMT
system. Designing rules to reorder the source sen-
tence is conceptually clear and usually easy to im-
plement. In this way, syntax information can be in-
corporated into phrase-based SMT systems. How-
ever, one disadvantage is that the reliability of the
rules is often language pair dependent.

In the decoder: we can add constraints or mod-
els into the decoder to reward good reordering op-
tions or penalize bad ones. For reordering con-
straints, early work includes ITG constraints (Wu,
1995) and IBM constraints (Berger et al., 1996).
(Zens and Ney, 2003) did comparative study over
different reordering constraints. This paper fo-
cuses on reordering models. For reordering mod-
els, we can further roughly divide the existing
methods into three genres:
• The reordering is a classification problem.

The classifier will make decision on next
phrase’s relative position with current phrase.
The classifier can be trained with maximum
likelihood like Moses lexicalized reordering
(Koehn et al., 2007) and hierarchical lexical-
ized reordering model (Galley and Manning,
2008) or be trained under maximum entropy
framework (Zens and Ney, 2006).
• The reordering is a decoding order problem.

(Mariño et al., 2006) present a translation
model that constitutes a language model of
a sort of bilanguage composed of bilingual
units. From the reordering point of view, the
idea is that the correct reordering is a suit-
able order of translation units. (Feng et al.,
2010) present a simpler version of (Mariño et
al., 2006)’s model which utilize only source
words to model the decoding order.
• The reordering can be solved by outside

heuristics. We can put human knowledge into
the decoder. For example, the simple jump
model using linear distance tells the decoder
that usually the long range reordering should
be avoided. (Cherry, 2008) uses information
from dependency trees to make the decod-
ing process keep syntactic cohesion. (Feng
et al., 2012) present a method that utilizes
predicate-argument structures from semantic
role labeling results as soft constraints.

In the reranking framework: in principle, all
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the models in previous category can be used in
the reranking framework, because in the rerank-
ing we have all the information (source and tar-
get words/phrases, alignment) about the transla-
tion process. (Och et al., 2004) describe the use of
syntactic features in the rescoring step. However,
they report the syntactic features contribute very
small gains. One disadvantage of carrying out re-
ordering in reranking is the representativeness of
the N-best list is often a question mark.

In this paper, we propose a novel tagging style
reordering model which is under the category
“The reordering is a decoding order problem”.
Our model converts the decoding order problem
into a sequence labeling problem, i.e. a tagging
task. The remainder of this paper is organized
as follows: Section 2 introduces the basement
of this research: the principle of statistical ma-
chine translation. Section 3 describes the proposed
model. Section 4 briefly describes several reorder-
ing models with which we compare our method.
Section 5 provides the experimental configuration
and results. Conclusion will be given in Section 6.

2 Translation System Overview

In statistical machine translation, we are given a
source language sentence fJ1 = f1 . . . fj . . . fJ .
The objective is to translate the source into a tar-
get language sentence eI1 = e1 . . . ei . . . eI . The
strategy is to choose the target sentence with the
highest probability among all others:

êÎi = argmax
I,eI1

{Pr(eI1|fJ1 )} (1)

We model Pr(eI1|fJ1 ) directly using a log-linear
combination of several models (Och and Ney,
2002):

Pr(eI1|fJ1 ) =
exp

( M∑
m=1

λmhm(e
I
1, f

J
1 )
)

∑

I′ ,e′
I
′

1

exp
( M∑
m=1

λmhm(e
′I′

1 , f
J
1 )
)

(2)
The denominator is to make the Pr(eI1|fJ1 ) to be a
probability distribution and it depends only on the
source sentence fJ1 . For search, the decision rule
is simply:

êÎi = argmax
I,eI1

{ M∑

m=1

λmhm(e
I
1, f

J
1 )
}

(3)

The model scaling factors λM1 are trained with
Minimum Error Rate Training (MERT). In this pa-
per, the phrase-based machine translation system

is utilized (Och et al., 1999; Zens et al., 2002;
Koehn et al., 2003).

3 Tagging-style Reordering Model

In this section, we describe the proposed novel
model. First we will describe the training process.
Then we explain how to use the model in the de-
coder.

3.1 Modeling

Figure 1 shows the modeling steps. The first step
is word alignment training. Figure 1(a) is an ex-
ample after GIZA++ training. If we regard this
alignment as a translation result, i.e. given the
source sentence f71 , the system translates it into
the target sentence e71, then the alignment link set
{a1 = 3, a3 = 2, a4 = 4, a4 = 5, a5 = 7, a6 =
6, a7 = 6} reveals the decoding process, i.e. the
alignment implies the order in which the source
words should be translated, e.g. the first generated
target word e1 has no alignment, we can regard it
as a translation from a NULL source word; then
the second generated target word e2 is translated
from f3. We reorder the source side of the align-
ment to get Figure 1(b). Figure 1(b) implies the
source sentence decoding sequence information,
which is depicted in Figure 1(c). Using this ex-
ample we describe the strategies we used for spe-
cial cases in the transformation from Figure 1(b)
to Figure 1(c):
• ignore the unaligned target word, e.g. e1

• the unaligned source word should follow its
preceding word, the unaligned feature is kept
with a ∗ symbol, e.g. f∗2 is after f1

• when one source word is aligned to multi-
ple target words, only keep the alignment that
links the source word to the first target word,
e.g. f4 is linked to e5 and e6, only f4 − e5
is kept. In other words, we use this strategy
to guarantee that every source word appears
only once in the source decoding sequence.

• when multiple source words are aligned to
one target word, put together the source
words according to their original relative po-
sitions, e.g. e6 is linked to f6 and f7. So in
the decoding sequence, f6 is before f7.

Now Figure 1(c) shows the original source sen-
tence and its decoding sequence. By using the
strategies above, it is guaranteed that the source
sentence and its decoding sequence have the ex-
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f1 f2 f3 f4 f5 f6 f7

e1 e2 e3 e4 e5 e6 e7

(a)

f3 f1 f2 f4 f6 f7 f5

e1 e2 e3 e4 e5 e6 e7

(b)

f1 f∗2 f3 f4 f5 f6 f7

f3 f1 f2 f4 f6 f7 f5

(c)

f1 f∗2 f3 f4 f5 f6 f7

+1 +1 −2 0 +2 −1 −1

(d)
BEGIN-Rmono Unalign Lreorder-Rmono Lmono-Rmono Lmono-Rreorder Lreorder-Rmono END-Lmono

f1 f∗2 f3 f4 f5 f6 f7

(e)
Figure 1: modeling process illustration.

actly same length. Hence the relation can be mod-
eled by a function F (f) which assigns a value for
each source word f . Figure 1(d) manifests this
function. The positive function values mean that
compared to the original position in the source
sentence, its position in the decoding sequence
should move rightwards. If the function value is
0, the word’s position in original source sentence
and its decoding sequence is same. For example,
f1 is the first word in the source sentence but it is
the second word in the decoding sequence. So its
function value is +1 (move rightwards one posi-
tion).

Now Figure 1(d) converts the reordering prob-
lem into a sequence labeling or tagging problem.
To make the computational cost to a reasonable
level, we do a final step simplification in Figure
1(e). Suppose the longest sentence length is 100,
then according to Figure 1(d), there are 200 tags
(from -99 to +99 plus the unalign tag). As we will
see later, this number is too large for our task. We
instead design nine tags. For a source word fj in
one source sentence fJ1 , the tag of fj will be one
of the following:
Unalign fj is an unaligned source word
BEGIN-Rmono j = 1 and fj+1 is translated af-

ter fj (Rmono for right monotonic)
BEGIN-Rreorder j = 1 and fj+1 is translated

before fj (Rreorder for right reordered)
END-Lmono j = J and fj−1 translated before

fj (Lmono for left monotonic)
END-Lreorder j = J and fj−1 translated after

fj (Lreorder for left reordered)
Lmono-Rmono 1 < j < J and fj−1 translated

before fj and fj translated before fj+1

Lreorder-Rmono 1 < j < J and fj−1 translated
after fj and fj translated before fj+1

Lmono-Rreorder 1 < j < J and fj−1 translated
before fj and fj translated after fj+1

Lreorder-Rreorder 1 < j < J and fj−1 trans-

lated after fj and fj translated after fj+1

Up to this point, we have converted the reorder-
ing problem into a tagging problem with nine tags.
The transformation in Figure 1 is conducted for
all the sentence pairs in the bilingual training cor-
pus. After that, we have built an “annotated” cor-
pus for the training. For this supervised learning
task, we choose the approach conditional random
fields (CRFs) (Lafferty et al., 2001; Sutton and
Mccallum, 2006; Lavergne et al., 2010) and recur-
rent neural network (RNN) (Elman, 1990; Jordan,
1990; Lang et al., 1990).

For the first method, we adopt the linear-chain
CRFs. However, even for the simple linear-chain
CRFs, the complexity of learning and inference
grows quadratically with respect to the number of
output labels and the amount of structural features
which are with regard to adjacent pairs of labels.
Hence, to make the computational cost as low as
possible, two measures have been taken. Firstly,
as described above we reduce the number of tags
to nine. Secondly, we add source sentence part-of-
speech (POS) tags to the input. For features with
window size one to three, both source words and
its POS tags are used. For features with window
size four and five, only POS tags are used.

As the second method, we use recurrent neu-
ral network (RNN). RNN is closely related with
Multilayer Perceptrons (MLP) (Rumelhart et al.,
1986), but the output of one ore more hidden lay-
ers is reused as additional inputs for the network in
the next time step. This structure allows the RNN
to learn whole sequences without restricting itself
to a fixed input window. A plain RNN has only ac-
cess to the previous events in the input sequence.
Hence we adopt the bidirectional RNN (BRNN)
(Schuster and Paliwal, 1997) which reads the input
sequence from both directions before making the
prediction. The long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) is applied to
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counter the effects that long distance dependen-
cies are hard to learn with gradient descent. This
is often referred to as vanishing gradient problem
(Bengio et al., 1994).

3.2 Decoding

Once the model training is finished, we make in-
ference on develop and test corpora which means
that we get the labels of the source sentences that
need to be translated. In the decoder, we add
a new model which checks the labeling consis-
tency when scoring an extended state. During
the search, a sentence pair (fJ1 , e

I
1) will be for-

mally splitted into a segmentation SK1 which con-
sists of K phrase pairs. Each sk = (ik; bk, jk)
is a triple consisting of the last position ik of
the kth target phrase ẽk. The start and end po-
sition of the kth source phrase f̃k are bk and jk.
Suppose the search state is now extended with a
new phrase pair (f̃k, ẽk): f̃k := fbk . . . fjk and
ẽk := eik−1+1 . . . eik . We have access to the
old coverage vector, from which we know if the
new phrase’s left neighboring source word fbk−1
and right neighboring source word fjk+1 have
been translated. We also have the word alignment
within the new phrase pair, which is stored dur-
ing the phrase extraction process. Based on the
old coverage vector and alignment, we can repeat
the transformation in Figure 1 to calculate the la-
bels for the new phrase. The added model will
then check the consistence between the calculated
labels and the labels predicted by the reordering
model. The number of source words that have in-
consistent labels is the penalty and is then added
into the log-linear framework as a new feature.

4 Comparative Study

The second part of this paper is comparative study
on reordering models. Here we briefly describe
those models which will be compared to later.

4.1 Moses lexicalized reordering model

A B

Figure 2: lexicalized reordering model illustration.

Moses (Koehn et al., 2007) contains a word-
based orientation model, which has three types of
reordering: (m) monotone order, (s) switch with
previous phrase and (d) discontinuous. Figure 2
is an example. The definitions of reordering types
are as follows:

monotone for current phrase, if a word alignment
to the bottom left (point A) exists and there is no
word alignment point at the bottom right position
(point B) .
swap for current phrase, if a word alignment to
the bottom right (point B) exists and there is no
word alignment point at the bottom left position
(point A) .
discontinuous all other cases

Our implementation is same with the default
behavior of Moses lexicalized reordering model.
We count how often each extracted phrase pair is
found with each of the three reordering types. The
add-0.5 smoothing is then applied. Finally, the
probability is estimated with maximum likelihood
principle.

4.2 Maximum entropy reordering model

Figure 3 is an illustration of (Zens and Ney, 2006) .
j is the source word position which is aligned to
the last target word of the current phrase. j

′
is

the last source word position of the current phrase.
j
′′

is the source word position which is aligned to
the first target word position of the next phrase.
(Zens and Ney, 2006) proposed a maximum en-
tropy classifier to predict the orientation of the
next phrase given the current phrase. The orien-
tation class cj,j′ ,j′′ is defined as:

cj,j′ ,j′′=





left, if j
′′
<j

right, if j
′′
>j and j′′ − j′>1

monotone, if j
′′
>j and j′′ − j′=1

(4)
The orientation probability is modeled in a log-
linear framework using a set of N feature func-
tions hn(fJ1 , e

I
1, i, j, cj,j′ ,j′′ ), n = 1, . . . , N . The

whole model is:
pλN1

(cj,j′ ,j′′ |fJ1 , eI1, i, j)

=
exp(

N∑
n=1

λnhn(fJ1 ,e
I
1,i,j,cj,j′ ,j′′ ))

∑

c
′
exp(

N∑
n=1

λnhn(fJ1 ,e
I
1,i,j,c

′ ))

(5)

Different features can be used, we use the source
and target word features to train the model.
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Figure 3: phrase orientation: left, right and monotone. j is the source word position aligned to the last target word of current
phrase. j

′
is the last source word position of current phrase. j

′′
is the source word position aligned to the first target word

position of the next phrase.

f1 f2 f3 f4 f5 f6 f7

e1 e2 e3 e4 e5 e6 e7

Figure 4: bilingual LM illustration. The bilingual sequence
is e1 , e2 f3 , e3 f1 , e4 f4 , e5 f4 , e6 f6 f7 , e7 f5 .

4.3 Bilingual LM

The previous two models belong to “The reorder-
ing is a classification problem”. Now we turn
to “The reordering is a decoding order problem”.
(Mariño et al., 2006) implement a translation
model using n-grams. In this way, the translation
system can take full advantage of the smoothing
and consistency provided by standard back-off n-
gram models. Figure 4 is an example. The in-
terpretation is that given the sentence pair (f71 , e

7
1)

and its alignment, the correct translation order is
e1 , e2 f3 , e3 f1 , e4 f4 , e5 f4 , e6 f6 f7 , e7 f5 .
Notice the bilingual units have been ordered ac-
cording to the target side, as the decoder writes
the translation in a left-to-right way. Using the ex-
ample we describe the strategies used for special
cases:
• keep the unaligned target word, e.g. e1
• remove the unaligned source word, e.g. f2
• when one source word aligned to multiple

target words, duplicate the source word for
each target word, e.g. e4 f4 , e5 f4
• when multiple source words aligned to one

target word, put together the source words for
that target word, e.g. e6 f6 f7

After the operation in Figure 4 was done for
all bilingual sentence pairs, we get a decoding
sequence corpus. We build a 9-gram LM us-
ing SRILM toolkit (Stolcke, 2002) with modified
Kneser-Ney smoothing.

The model is added as an additional feature in
Equation (2). To use the bilingual LM, the search
state must be augmented to keep the bilingual unit

decoding sequence. In search, the bilingual LM
is applied similar to the standard target side LM.
The bilingual sequence of phrase pairs will be ex-
tracted using the same strategy in Figure 4 . Sup-
pose the search state is now extended with a new
phrase pair (f̃ , ẽ). F̃ is the bilingual sequence for
the new phrase pair (f̃ , ẽ) and F̃ i is the ith unit
within F̃ . F̃

′
is the bilingual sequence history

for current state. We compute the feature score
hbilm(F̃ , F̃

′
) of the extended state as follows:

hbilm(F̃ , F̃
′
)=λ ·

|F̃ |∑

i=1

log p(F̃ i|F̃ ′ , F̃ 1, · · · , F̃ i−1)

(6)
λ is the scaling factor for this model. |F̃ | is the
length of the bilingual decoding sequence.

4.4 Source decoding sequence LM

(Feng et al., 2010) present an simpler version of
the above bilingual LM where they use only the
source side to model the decoding order. The
source word decoding sequence in Figure 4 is then
f3 , f1 , f2 , f4 , f6 , f7 , f5 . We also build a 9-gram
LM based on the source word decoding sequences.
The usage of the model is same as bilingual LM.

4.5 Syntactic cohesion model

The previous two models belong to “The reorder-
ing is a decoding order problem”. Now we turn to
“The reordering can be solved by outside heuris-
tics”. (Cherry, 2008) proposed a syntactic cohe-
sion model. The core idea is that the syntactic
structure of the source sentence should be pre-
served during translation. This structure is repre-
sented by a source sentence dependency tree. The
algorithm is as follows: given the source sentence
and its dependency tree, during the translation pro-
cess, once a hypothesis is extended, check if the
source dependency tree contains a subtree T such
that:
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• Its translation is already started (at least one
node is covered)
• It is interrupted by the new added phrase (at

least one word in the new source phrase is not
in T )
• It is not finished (after the new phrase is

added, there is still at least one free node in
T )

If so, we say this hypothesis violates the subtree
T , and the model returns the number of subtrees
that this hypothesis violates.

4.6 Semantic cohesion model

(Feng et al., 2012) propose two structure features
from semantic role labeling (SRL) results. Simi-
lar to the previous model, the SRL information is
used as soft constraints. During decoding process,
the first feature will report how many event layers
that one search state violates and the second fea-
ture will report the amount of semantic roles that
one search state violates. In this paper, the two
features have been used together. So when the se-
mantic cohesion model is used, both features will
be triggered.

4.7 Tree-based jump model

(Wang et al., 2007) present a pre-reordering
method for Chinese-English translation task. In
Section 3.6 of (Zhang, 2013), instead of doing
hard reordering decision, the author uses the rules
as soft constraints in the decoder. In this paper,
we use the similar method as described in (Zhang,
2013). Our strategy is: firstly, we parse the source
sentences to get constituency trees. Then we ma-
nipulate the trees using heuristics described by
(Wang et al., 2007) . The leaf nodes in the revised
tree constitute the reordered source sentence. Fi-
nally, in the log-linear framework (Equation 2) a
new jump model is added which uses the reordered
source sentence to calculate the cost. For example,
the original sentence f1f2f3f4f5 is now converted
by rules into the new sentence f1f5f3f2f4 . For
decoding, we still use the original sentence. Sup-
pose previously translated source phrase is f1 and
the current phrase is f5 . Then the standard jump
model gives cost qDist = 4 and the new tree-based
jump model will return a cost qDist new = 1 .

5 Experiments

In this section, we describe the baseline setup, the
CRFs training results, the RNN training results

and translation experimental results.

5.1 Experimental Setup
Our baseline is a phrase-based decoder, which in-
cludes the following models: an n-gram target-
side language model (LM), a phrase translation
model and a word-based lexicon model. The latter
two models are used for both directions: p(f |e)
and p(e|f). Additionally we use phrase count
features, word and phrase penalty. The reorder-
ing model for the baseline system is the distance-
based jump model which uses linear distance.
This model does not have hard limit. We list the
important information regarding the experimental
setup below. All those conditions have been kept
same in this work.
• lowercased training data from the GALE task

(Table 1, UN corpus not included)
alignment trained with GIZA++

• tuning corpus: NIST06
test corpora: NIST02 03 04 05 and 08
• 5-gram LM (1 694 412 027 running words)

trained by SRILM toolkit (Stolcke, 2002)
with modified Kneser-Ney smoothing
training data: target side of bilingual data.
• BLEU (Papineni et al., 2001) and TER

(Snover et al., 2005) reported
all scores calculated in lowercase way.
• Wapiti toolkit (Lavergne et al., 2010) used for

CRFs; RNN is built by the RNNLIB toolkit.

Chinese English
Sentences 5 384 856
Running Words 115 172 748 129 820 318
Vocabulary 1 125 437 739 251

Table 1: translation model and LM training data statistics

Table 1 contains the data statistics used for
translation model and LM. For the reordering
model, we take two further filtering steps. Firstly,
we delete the sentence pairs if the source sentence
length is one. When the source sentence has only
one word, the translation will be always mono-
tonic and the reordering model does not need to
learn this. Secondly, we delete the sentence pairs if
the source sentence contains more than three con-
tiguous unaligned words. When this happens, the
sentence pair is usually low quality hence not suit-
able for learning. The main purpose of the two
filtering steps is to further lay down the computa-
tional burden. The label distribution is depicted in
Figure 5. We can see that most words are mono-
tonic. We then divide the corpus to three parts:
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UNALIGN

Amount of Tags

Figure 5: Tags distribution illustration.

train, validation and test. The source side data
statistics for the reordering model training is given
in Table 2 (target side has only nine labels).

train validation test
Sentences 2 973 519 400 000 400 000
Running Words 62 263 295 8 370 361 8 382 086
Vocabulary 454 951 149686 150 007

Table 2: tagging-style model training data statistics

5.2 CRFs Training Results
The toolkit Wapiti (Lavergne et al., 2010) is used
in this paper. We choose the classical optimization
algorithm limited memory BFGS (L-BFGS) (Liu
and Nocedal, 1989). For regularization, Wapiti
uses both the `1 and `2 penalty terms, yielding the
elastic-net penalty of the form

ρ1· ‖ θ ‖1 +
ρ2
2
· ‖ θ ‖22 (7)

In this work, we use as many features as pos-
sible because `1 penalty ρ1 ‖ θ ‖1 is able to
yield sparse parameter vectors, i.e. using a `1

penalty term implicitly performs the feature selec-
tion. The computational costs are given here: on
a cluster with two AMD Opteron(tm) Processor
6176 (total 24 cores), the training time is about 16
hours, peak memory is around 120G. Several ex-
periments have been done to find the suitable hy-
perparameter ρ1 and ρ2, we choose the model with
lowest error rate on validation corpus for trans-
lation experiments. The error rate of the chosen
model on test corpus (the test corpus in Table 2)
is 25.75% for token error rate and 69.39% for se-
quence error rate. Table 3 is the feature template
we set initially which generates 722 999 637 fea-
tures. Some examples are given in Table 4. After
training 36 902 363 features are kept.

5.3 RNN Training Results
We also applied RNN to the task as an alternative
approach to CRFs. The here used RNN implemen-
tation is RNNLIB which has support for long short
term memory (LSTM) (Graves, 2008). We used
a one of k encoding for the input word and also
for the labels. After testing several configurations
over the validation corpus we used a network with

Feature Templates

1-gram source word features
x[-4,0], x[-3,0], x[-2,0], x[-1,0]

x[0,0], x[1,0], x[2,0], x[3,0], x[4,0]

1-gram source POS features
x[-4,1], x[-3,1], x[-2,1], x[-1,1]

x[0,1], x[1,1], x[2,1], x[3,1], x[4,1]

2-gram source word features
x[-1,0]/x[0,0], x[ 0,0]/x[1,0]
x[-1,1]/x[0,1], x[0,1]/x[1,1]

3-gram source word features
x[-1,0]/x[0,0]/x[1,0]
x[-2,0]/x[-1,0]/x[0,0]
x[0,0]/x[1,0]/x[2,0]

3-gram source POS features
x[0,1]/x[1,1]/x[2,1]

x[-2,1]/x[-1,1]/x[0,1]
x[-1,1]/x[0,1]/x[1,1]

4-gram source POS features
x[0,1]/x[1,1]/x[2,1]/x[3,1]

x[0,1]/x[-1,1]/x[-2,1]/x[-3,1]
x[-1,1]/x[0,1]/x[1,1]/x[2,1]
x[-2,1]/x[-1,1]/x[0,1]/x[1,1]

5-gram source POS features
x[0,1]/x[1,1]/x[2,1]/x[3,1]/x[4,1]

x[-4,1]/x[-3,1]/x[-2,1]/x[-1,1]/x[0,1]
x[-2,1]/x[-1,1]/x[0,1]/x[1,1]/x[2,1]

bigram output label feature
x[-1,2]/x[0,2]

Table 3: feature templates for CRFs training

Words POS Label

基于 P BEGIN-Rmono
这 DT Lmono-Rmono
种 M Lmono-Rmono
看法 NN Lmono-Rmono
, PU Lmono-Rmono
本人 PN Lmono-Rmono
是 VC UNALIGN � Current label
支持 VV Lmono-Rmono
修正案 NN Lmono-Rmono
的 DEC UNALIGN
。 PU END-Lmono

Table 4: feature examples. x[row,col] specifies a token in the
input data. row specfies the relative position from the cur-
rent label and col specifies the absolute position of the col-
umn. So for the current lable in this table, x[−1, 2]/x[0, 2]
is Lmono-Rmono/UNALIGN and x[−1, 1]/x[0, 1]/x[1, 1] is
PN/VC/VV.

LSTM 200 nodes in the hidden layer. The RNN
has a token error rate of 27.31% and a sentence
error rate of 77.00% over the test corpus in Ta-
ble 2. The RNN is trained on a similar computer
as above. RNNLIB utilizes only one thread. The
training time is about three and a half days and
peak memory consumption is 1G .

5.4 Comparison of CRFs and RNN errors

CRFs performs better than RNN (token error rate
25.75% vs 27.31%). Both error rate values are
much higher than what we usually see in part-of-
speech tagging task. The main reason is that the
“annotated” corpus is converted from word align-
ment which contains lots of error. However, as we
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hhhhhhhhhhReference
Prediction Unalign BEGIN-Rm BEGIN-Rr END-Lm END-Lr Lm-Rm Lr-Rm Lm-Rr Lr-Rr

Unalign 687724 15084 850 7347 716 493984 107364 43457 9194
BEGIN-Rmono 3537 338315 6209 0 0 0 0 0 0
BEGIN-Rreorder 419 12557 17054 0 0 0 0 0 0
END-Lmono 1799 0 0 365635 3196 0 0 0 0
END-Lreorder 510 0 0 5239 7913 0 0 0 0
Lmomo-Rmono 188627 0 0 0 0 4032738 176682 150952 13114
Lreorder-Rmono 88177 0 0 0 0 369232 433027 27162 15275
Lmomo-Rreorder 32342 0 0 0 0 268570 24558 296033 10645
Lreorder-Rreorder 9865 0 0 0 0 34746 20382 16514 45342

Recall 50.36% 97.20% 56.79% 98.65% 57.92% 88.40% 46.42% 46.83% 35.74%
Precision 67.89% 92.45% 70.73% 96.67% 66.92% 77.56% 56.83% 55.42% 48.46%

Table 5: CRF Confusion Matrix. Abbreviations: Lmono(Lm) Lreorder(Lr) Rmono(Rm) Rreorder(Rr)
hhhhhhhhhhReference

Prediction Unalign BEGIN-Rm BEGIN-Rr END-Lm END-Lr Lm-Rm Lr-Rm Lm-Rr Lr-Rr

Unalign 589100 17299 901 7870 1000 639555 82413 24277 3305
BEGIN-Rmono 1978 339686 6397 0 0 0 0 0 0
BEGIN-Rreorder 186 13812 16032 0 0 0 0 0 0
END-Lmono 2258 0 0 364121 4251 0 0 0 0
END-Lreorde 699 0 0 4693 8269 1 0 0 0
Lmomo-Rmono 142777 1 0 0 0 4232113 105266 78692 3264
Lreorder-Rmono 96278 0 1 0 0 491989 323272 14635 6698
Lmomo-Rreorder 31118 0 0 0 0 380483 18144 198068 4335
Lreorder-Rreorder 12366 0 1 0 0 50121 25196 17008 22157

Recall 43.13% 97.59% 53.39% 98.24% 60.53% 92.77% 34.65% 31.33% 17.47%
Precision 67.19% 91.61% 68.71% 96.66% 61.16% 73.04% 58.32% 59.54% 55.73%

Table 6: RNN Confusion Matrix. Abbreviations: Lmono(Lm) Lreorder(Lr) Rmono(Rm) Rreorder(Rr)

will show later, the model trained with both CRFs
and RNN help to improve the translation quality.

Table 5 and Table 6 demonstrate the confusion
matrix of the CRFs and RNN errors over the test
corpus. The rows represent the correct tag that the
classifier should have predicted and the columns
are the actually predicted tags. E.g. the number
687724 in first row and first column of Table 5
tells that there are 687724 correctly labeled Un-
align tags. The number 15084 in first row and
second column of Table 5 represents that there are
15084 Unalign tags labeled incorrectly to Begin-
Rmono. Therefore, numbers on the diagonal from
the upper left to the lower right corner represent
the amount of correctly classified tags and all other
numbers show the amount of false labels. The
many zeros show that both classifier rarely make
mistake for the label “BEGIN-∗” which only oc-
cur at the beginning of a sentence. The same is
true for the “END-∗” labels.

5.5 Translation Results

Results are summarized in Table 7. Please read
the caption for the meaning of abbreviations. An
Index column is added for score reference conve-
nience (B for BLEU; T for TER). For the proposed
model, significance testing results on both BLEU

and TER are reported (B2 and B3 compared to B1,
T2 and T3 compared to T1). We perform bootstrap
resampling with bounds estimation as described
in (Koehn, 2004). The 95% confidence threshold

(denoted by ‡ in the table) is used to draw signifi-
cance conclusions. We add a column avg. to show
the average improvements.

From Table 7 we see that the proposed reorder-
ing model using CRFs improves the baseline by
0.98 BLEU and 1.21 TER on average, while the
proposed reordering model using RNN improves
the baseline by 1.32 BLEU and 1.53 TER on av-
erage. For line B2 B3 and T2 T3, most scores
are better than their corresponding baseline values
with more than 95% confidence. The results show
that our proposed idea improves the baseline sys-
tem and RNN trained model performs better than
CRFs trained model, in terms of both automatic
measure and significance test. To investigate why
RNN has lower performance for the tagging task
but achieves better BLEU, we build a 3-gram LM
on the source side of the training corpus in Table
2 and perplexity values are listed in Table 8. The
perplexity of the test corpus for reordering model
comparison is much lower than those NIST cor-
pora for translation experiments. In other words,
there exists mismatch of the data for reordering
model training and actual MT data. This could
explain why CRFs is superior to RNN for labeling
problem while RNN is better for MT tasks.

For the comparative study, the best method is
the tree-based jump model (JUMPTREE). Our
proposed model ranks the second position. The
difference is tiny: on average only 0.08 BLEU (B3
and B10) and 0.15 TER (T3 and T10). Even with
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Systems NIST02 NIST03 NIST04 NIST05 NIST08 avg. Index

BLEU scores
baseline 33.60 34.29 35.73 32.15 26.34 - B1
baseline+CRFs 34.53 35.19 36.56‡ 33.30‡ 27.41‡ 0.98 B2
baseline+RNN 35.30‡ 35.34‡ 37.03‡ 33.80‡ 27.23‡ 1.32 B3
baseline+LRM 34.87 34.90 36.40 33.43 27.45 0.99 B4
baseline+MERO 34.91 34.83 36.29 33.69 26.66 0.85 B5
baseline+BILM 35.21 35.00 36.83 33.64 27.39 1.19 B6
baseline+SRCLM 34.55 34.52 36.18 32.84 27.03 0.50 B7
baseline+SRL 35.05 34.93 36.71 33.22 26.89 0.93 B8
baseline+SC 34.96 34.52 36.37 33.35 26.90 0.79 B9
baseline+JUMPTREE 35.10 35.53 37.12 34.18 27.19 1.40 B10
baseline+LRM+MERO+BILM+SRCLM+SRL+SC+JUMPTREE 36.77 36.16 38.10 35.67 28.52 2.62 B11
baseline+LRM+MERO+BILM+SRCLM+SRL+SC+JUMPTREE+RNN 36.99 37.00 38.79 35.86 28.99 3.10 B12

TER scores
baseline 61.36 60.48 59.12 60.94 65.17 - T1
baseline+CRFs 60.14‡ 58.91‡ 57.91‡ 59.77‡ 64.30‡ 1.21 T2
baseline+RNN 59.38‡ 58.87‡ 57.60‡ 59.56‡ 63.99‡ 1.53 T3
baseline+LRM 60.07 59.08 58.42 59.74 64.50 1.05 T4
baseline+MERO 60.19 59.58 58.51 59.49 64.68 0.92 T5
baseline+BILM 60.23 59.93 58.59 60.09 64.72 0.70 T6
baseline+SRCLM 60.27 59.55 58.40 60.16 64.61 0.82 T7
baseline+SRL 60.05 59.55 58.14 59.69 64.74 0.98 T8
baseline+SC 59.90 59.37 58.27 59.69 64.44 1.08 T9
baseline+JUMPTREE 59.53 58.54 57.67 58.90 64.04 1.68 T10
baseline+LRM+MERO+BILM+SRCLM+SRL+SC+JUMPTREE 59.16 57.84 56.83 58.03 63.20 2.40 T11
baseline+LRM+MERO+BILM+SRCLM+SRL+SC+JUMPTREE+RNN 58.67 57.67 56.27 58.00 63.09 2.67 T12

Table 7: Experimental results. CRFs and RNN mean the tagging-style model trained with CRFs or RNN; LRM for lexicalized
reordering model (Koehn et al., 2007) ; MERO for maximum entropy reordering model (Zens and Ney, 2006) ; BILM for
bilingual language model (Mariño et al., 2006) and SRCLM for its simpler version source decoding sequence model (Feng et
al., 2010) ; SC for syntactic cohesion model (Cherry, 2008) ; SRL for semantic cohesion model (Feng et al., 2012); JUMPTREE
for our tree-based jump model based on (Wang et al., 2007).

Running Words OOV Perplexity
Test in Table 2 8 382 086 33854 74.364
NIST02 22 749 195 176.806
NIST03 24 180 290 274.679
NIST04 49 612 320 170.507
NIST05 29 966 228 279.402
NIST08 32 502 511 408.067

Table 8: perplexity

a strong system (B11 and T11), our model is still
able to provide improvements (B12 and T12).

6 Conclusion

In this paper, a novel tagging style reordering
model has been proposed. By our method, the re-
ordering problem is converted into a sequence la-
beling problem so that the whole source sentence
is taken into consideration for reordering decision.
By adding an unaligned word tag, the unaligned
word phenomenon is automatically implanted in
the proposed model. The model is utilized as soft
constraints in the decoder. In practice, we do not
experience decoding memory increase nor speed
slow down.

We choose CRFs and RNN to accomplish the
sequence labeling task. The CRFs achieves lower
error rate on the tagging task but RNN trained
model is better for the translation task. Experi-
mental results show that our model is stable and
improves the baseline system by 0.98 BLEU and
1.21 TER (trained by CRFs) and 1.32 BLEU and
1.53 TER (trained by RNN). Most of the scores

are better than their corresponding baseline values
with more than 95% confidence. We also compare
our method with several other popular reorder-
ing models. Our model ranks the second position
which is slightly worse than the tree-based jump
model. However, the tree-based jump model re-
lies on manually designed reordering rules which
does not exist for many language pairs while our
model can be easily adapted to other translation
tasks. We also show that the proposed model is
able to improve a very strong baseline system.

The main contributions of the paper are: pro-
pose the tagging-style reordering model and im-
prove the translation quality; compare two se-
quence labeling techniques CRFs and RNN; com-
pare our method with seven other reordering mod-
els. To our best knowledge, it is the first time that
the above two comparisons have been reported .
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Abstract

Most modern machine translation systems
use phrase pairs as translation units, al-
lowing for accurate modelling of phrase-
internal translation and reordering. How-
ever phrase-based approaches are much
less able to model sentence level effects
between different phrase-pairs. We pro-
pose a new model to address this im-
balance, based on a word-based Markov
model of translation which generates tar-
get translations left-to-right. Our model
encodes word and phrase level phenom-
ena by conditioning translation decisions
on previous decisions and uses a hierar-
chical Pitman-Yor Process prior to pro-
vide dynamic adaptive smoothing. This
mechanism implicitly supports not only
traditional phrase pairs, but also gapping
phrases which are non-consecutive in the
source. Our experiments on Chinese to
English and Arabic to English translation
show consistent improvements over com-
petitive baselines, of up to +3.4 BLEU.

1 Introduction

Recent years have witnessed burgeoning develop-
ment of statistical machine translation research,
notably phrase-based (Koehn et al., 2003) and
syntax-based approaches (Chiang, 2005; Galley
et al., 2006; Liu et al., 2006). These approaches
model sentence translation as a sequence of sim-
ple translation decisions, such as the application
of a phrase translation in phrase-based methods
or a grammar rule in syntax-based approaches.
In order to simplify modelling, most MT mod-
els make an independence assumption, stating that
the translation decisions in a derivation are in-
dependent of one another. This conflicts with
the intuition behind phrase-based MT, namely that
translation decisions should be dependent on con-

text. On one hand, the use of phrases can mem-
orize local context and hence helps to generate
better translation compared to word-based models
(Brown et al., 1993; Och and Ney, 2003). On the
other hand, this mechanism requires each phrase
to be matched strictly and to be used as a whole,
which precludes the use of discontinuous phrases
and leads to poor generalisation to unseen data
(where large phrases tend not to match).

In this paper we propose a new model to drop
the independence assumption, by instead mod-
elling correlations between translation decisions,
which we use to induce translation derivations
from aligned sentences (akin to word alignment).
We develop a Markov model over translation de-
cisions, in which each decision is conditioned on
previous n most recent decisions. Our approach
employs a sophisticated Bayesian non-parametric
prior, namely the hierarchical Pitman-Yor Process
(Teh, 2006; Teh et al., 2006) to represent back-
off from larger to smaller contexts. As a result,
we need only use very simple translation units
– primarily single words, but can still describe
complex multi-word units through correlations be-
tween their component translation decisions. We
further decompose the process of generating each
target word into component factors: finishing the
translating, jumping elsewhere in the source, emit-
ting a target word and deciding the fertility of the
source words.

Overall our model has the following features:
1. enabling model parameters to be shared be-

tween similar translation decisions, thereby
obtaining more reliable statistics and gener-
alizing better from small training sets.

2. learning a much richer set of transla-
tion fragments, such as gapping phrases,
e.g., the translation for the German werde
. . . ankommen in English is will arrive . . . .

3. providing a unifying framework spanning
word-based and phrase-based model of trans-
lation, while incorporating explicit transla-
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tion, insertion, deletion and reordering com-
ponents.

We demonstrate our model on Chinese-English
and Arabic-English translation datasets. The
model produces uniformly better translations than
those of a competitive phrase-based baseline,
amounting to an improvement of up to 3.4 BLEU
points absolute.

2 Related Work

Word based models have a long history in machine
translation, starting with the venerable IBM trans-
lation models (Brown et al., 1993) and the hid-
den Markov model (Vogel et al., 1996). These
models are still in wide-spread use today, albeit
only as a preprocessing step for inferring word
level alignments from sentence-aligned parallel
corpora. They combine a number of factors, in-
cluding distortion and fertility, which have been
shown to improve word-alignment and translation
performance over simpler models. Our approach
is similar to these works, as we also develop a
word-based model, and explicitly consider simi-
lar translation decisions, alignment jumps and fer-
tility. We extend these works in two important
respects: 1) while they assume a simple parame-
terisation by making iid assumptions about each
translation factor, we instead allow for rich cor-
relations by modelling sequences of translation
decisions; and 2) we develop our model in the
Bayesian framework, using a hierarchical Pitman-
Yor Process prior with rich backoff semantics be-
tween high and lower order sequences of transla-
tion decisions. Together this results in a model
with rich expressiveness but can still generalize
well to unseen data.

More recently, a number of authors have pro-
posed Markov models for machine translation.
Vaswani et al. (2011) propose a rule Markov
model for a tree-to-string model which models
correlations between pairs of mininal rules, and
use Kneser-Ney smoothing to alleviate the prob-
lems of data sparsity. Similarly, Crego et al.
(2011) develop a bilingual language model which
incorporates words in the source and target lan-
guages to predict the next unit, which they use as
a feature in a translation system. This line of work
was extended by Le et al. (2012) who develop a
novel estimation algorithm based around discrimi-
native projection into continuous spaces. Also rel-
evant is Durrani et al. (2011), who present a se-
quence model of translation including reordering.

Our work also uses bilingual information, using
the source words as part of the conditioning con-
text. In contrast to these approaches which pri-
marily address the decoding problem, we focus on
the learning problem of inferring alignments from
parallel sentences. Additionally, we develop a full
generative model using a Bayesian prior, and in-
corporate additional factors besides lexical items,
namely jumps in the source and word fertility.

Another aspect of this paper is the implicit sup-
port for phrase-pairs that are discontinous in the
source language. This idea has been developed
explicitly in a number of previous approaches, in
grammar based (Chiang, 2005) and phrase-based
systems (Galley and Manning, 2010). The latter is
most similar to this paper, and shows that discon-
tinuous phrases compliment standard contiguous
phrases, improving expressiveness and translation
performance. Unlike their work, here we develop
a complimentary approach by constructing a gen-
erative model which can induce these rich rules
directly from sentence-aligned corpora.

3 Model

Given a source sentence, our model infers a la-
tent derivation which produces a target translation
and meanwhile gives a word alignment between
the source and the target. We consider a pro-
cess in which the target string is generated using
a left-to-right order, similar to the decoding strat-
egy used by phrase-based machine translation sys-
tems (Koehn et al., 2003). During this process we
maintain a position in the source sentence, which
can jump around to allow for different sentence
ordering in the target vs. source languages. In
contrast to phrase-based models, we use words as
our basic translation unit, rather than multi-word
phrases. Furthermore, we decompose the deci-
sions involved in generating each target word to
a number of separate factors, where each factor is
modelled separately and conditioned on a rich his-
tory of recent translation decisions.

3.1 Markov Translation

Our model generates target translation left-to-
right word by word. The generative process
employs the following recursive procedure to
construct the target sentence conditioned on the
source:
i← 1
while Not finished do

Decide whether to finish the translation, ξi
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Step Source sentence Translation finish jump emission
0 Je le prends
1 Je le prends I no monotone Je→ I
2 Je le prends I ’ll no insert null→ ’ll
3 Je le prends I ’ll take no forward prends→ take
4 Je le prends I ’ll take that no backward le→ that
5 Je le prends I ’ll take that one no stay le→ one
6 Je le prends I ’ll take that one yes

Figure 1: Translation agenda of Je le prends→ I ’ll take that one.

if ξi = false then
Select a source word to jump to
Emit a target word for the source word

end if
i← i+ 1

end while
In the generation of each target word, our model
includes three separate factors: the binary finish
decision, a jump decision to move to a different
source word, and emission which translates or oth-
erwise inserts a word in the target string. This gen-
erative process resembles the sequence of transla-
tion decisions considered by a standard MT de-
coder (Koehn et al., 2003), but note that our ap-
proach differs in that there is no constraint that all
words are translated exactly once. Instead source
words can be skipped or repeatedly translated.
This makes the approach more suitable for learn-
ing alignments, e.g., to account for word fertilities
(see §3.3), while also permitting inference using
Gibbs sampling (§4).

More formally, we can express our probabilistic
model as

pbs(e
I
1, a

I
1|fJ1 ) =

I+1∏

i=1

p(ξi|f i−1ai−n, e
i−1
i−n)

×
I∏

i=1

p(τi|f i−1ai−n, e
i−1
i−n)

×
I∏

i=1

p(ei|τi, f iai−n, ei−1i−n) (1)

where ξi is the finish decision for target posi-
tion i, τi is the jump decision to source word fai
and f i

ai−n is the source words for target positions
i − n, i − n + 1, ..., i. Each of the three distribu-
tions (finish, jump and emission) is drawn respec-
tive from hierarchical Pitman-Yor Process priors,
as described in Section 3.2.

The jump decision τi in Equation 1 demands
further explanation. Instead of modelling jump
distances explicitly, which poses problems for

generalizing between different lengths of sen-
tences and general parameter explosion, we con-
sider a small handful of types of jump based on
the distance between the current source word ai
and the previous source word ai−1, i.e., di =
ai − ai−1.1 We bin jumps into five types:
a) insert;
b) backward, if di < 0;
c) stay, if di = 0;
d) monotone, if di = 1;
e) forward, if di > 1.
The special jump type insert handles null align-
ments, denoted ai = 0 which licence spurious in-
sertions in the target string.

To illustrate this translation process, Figure 1
shows the example translation <Je le prends, I ’ll
take that one>. Initially we set the source position
before the first source word Je. Then in step 1,
we decide not to finish (finish=no), jump to source
word Je and translate it as I. Next, we again de-
cide not to finish, jump to the null source word
and insert ’ll. The process continues until in step
6 we elect to finish (finish=yes), at which point the
translation is complete, with target string I ’ll take
that one.

3.2 Hierarchical Pitman-Yor Process

The Markov assumption limits the context of each
distribution to the n most recent translation deci-
sions, which limits the number of model param-
eters. However for any non-trivial value n >
0, overfitting is a serious concern. We counter
the problem of a large parameter space using a
Bayesian non-parametric prior, namely the hier-
archical Pitman-Yor Process (PYP). The PYP de-
scribes distributions over possibly infinite event
spaces that follow a power law, with few events
taking the majority of the probability mass and a
long tail of less frequent events. We consider a hi-
erarchical PYP, where a sequence of chained PYP

1For a target position aligned to null, we denote its source
word as null and set its aligned source position as that of the
previous target word that is aligned to non-null.
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priors allow backoff from larger to smaller con-
texts such that our model can learn rich contextual
models for known (large) contexts while also still
being able to generalize well to unseen contexts
(using smaller histories).

3.2.1 Pitman-Yor Process
A PYP (Pitman and Yor, 1997) is defined by its
discount parameter 0 ≤ a < 1, strength parameter
b > −a and base distribution G0. For a distri-
bution drawn from a PYP, G ∼ PYP(a, b,G0),
marginalising out G leads to a simple distribution
which can be described using a variant of the Chi-
nese Restaurant Process (CRP). In this analogy we
imagine a restaurant has an infinite number of ta-
bles and each table can accommodate an infinite
number of customers. Each customer (a sample
from G) walks in one at a time and seats them-
selves at a table. Finally each table is served a
communal dish (a draw from G0), which is served
to each customer seated at the table. The assign-
ment of customers to tables is such that popular
tables are more likely to be chosen, and this rich-
get-richer dynamic produces power-law distribu-
tions with few events (the dishes at popular tables)
dominating the distribution.

More formally, at time n a customer enters and
selects a table k which is either a table having been
seated (1 ≤ k ≤ K−) or an empty table (k =
K− + 1) by

p(tn = k|t−n) =
{

c−tk−a
n−1+b 1 ≤ k ≤ K−
aK−+b
n−1+b k = K− + 1

where tn is the table selected by the customer n,
t−n is the seating arrangement of previous n − 1
customers, c−tk is the number of customers seated
at table k in t−n andK− = K(t−n) is the number
of tables in t−n.

If the customer sits at an empty table, a dish h
is served to his table by the probability of G0(h),
otherwise, he can only share with others the dish
having been served to his table.2 Overall, the prob-
ability of the customer being served a dish h is

p(on = h|t−n,o−n) =
c−oh − aK−h
n− 1 + b

+
(aK− + b)

n− 1 + b
G0(h)

where on is the dish served to the customer n, o−n
is the dish accommodation of previous n− 1 cus-
tomers, c−oh is the number of customers who are

2We also say the customer is served with this dish.

served with the dish h in o−n and K−h is the num-
ber of tables served with the dish h in t−n.

The hierarchical PYP (hPYP; Teh (2006)) is an
extension of the PYP in which the base distribu-
tion G0 is itself a PYP distribution. This parent
(base) distribution can itself have a PYP as a base
distribution, giving rise to hierarchies of arbitrary
depth. Like the PYP, inference under the hPYP
can be also described in terms of CRP whereby
each table in one restaurant corresponds to a dish
in the next deeper level, and is said to share the
same dish. Whenever an empty table is seated in
one level, a customer must enter the restaurant in
the next deeper level and find a table to sit. This
process continues until the customer is assigned a
shared table or the deepest level of the hierarchy
is reached. A similar process occurs when a cus-
tomer leaves, where newly emptied tables must be
propagated up the hierarchy in the form of depart-
ing customers. There is not space for a complete
treatment of the hPYP and the particulars of infer-
ence; we refer the interested reader to Teh (2006).

3.2.2 A Hierarchical PYP Translation Model
We draw the distributions for the various transla-
tion factors from respective hierarchical PYP pri-
ors, as shown in Figure 2 for the finish, jump and
emission factors. For the emission factor (Fig-
ure 2c), we draw the target word ei from a distribu-
tion conditioned on the last two source and target
words, as well as the current source word, fai and
the current jump type τi. Here the draw of a tar-
get word corresponds to a customer entering and
which target word to emit corresponds to which
dish to be served to the customer in the CRP. The
hierarchical prior encodes a backoff path in which
the jump type is dropped first, followed by pairs of
source and target words from least recent to most
recent. The final backoff stages drop the current
source word, terminating with the uniform base
distribution over the target vocabulary V .

The distributions over the other two factors in
Figure 2 follow a similar pattern. Note however
that these distributions don’t condition on the cur-
rent source word, and consequently have fewer
levels of backoff. The terminating base distribu-
tion for the finish factor is a uniform distribution
with equal probability for finishing versus contin-
uing. The jump factor has an additional condition-
ing variable t which encodes whether the previous
alignment is near the start or end of the source sen-
tence. This information affects which of the jump
values are legal from the current position, such
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(c) Emission factor

Figure 2: Distributions over the translation factors and their hierarchical priors.

that a jump could not go outside the bounds of the
source sentence. Accordingly we maintain sepa-
rate distributions for each setting, and each has a
different uniform base distribution parameterized
according to the number of possible jump types.

3.3 Fertility
For each target position, our Markov model may
select a source word which has been covered,
which means a source word may be linked to sev-
eral target positions. Therefore, we introduce fer-
tility to denote the number of target positions a
source word is linked to in a sentence pair. Brown
et al. (1993) have demonstrated the usefulness of
fertility in probability estimation: IBM models 3–
5 exhibit large improvements over models 1–2. On
these grounds, we include fertility to produce our
advanced model,

pad(e
I
1, a

I
1|fJ1 )=pbs(eI1, aI1|fJ1 )

J∏

j=1

p(φj |f jj−n) (2)

where φj is the fertility of source word fj in the
sentence pair < fJ1 , e

I
1 > and pbs is the basic

model defined in Eq. 1. In order to avoid prob-
lems of data sparsity, we bin fertility into three
types, a) zero, if φ = 0; b) single, if φ = 1;
and c) multiple, if φ > 1.

We draw the fertility variables from a hierarchi-
cal PYP distribution, using three levels of backoff,

φj |f jj−1 ∼ G
φ

fjj−1

Gφ
fjj−1

∼ PYP(aφ3 , bφ3 , Gφfj )

Gφfj ∼ PYP(a
φ
2 , b

φ
2 , G

φ)

Gφ ∼ PYP(aφ1 , bφ1 , Gφ0 )

Gφ0 ∼ U(
1

3
)

where we condition the fertility of each word to-
ken on the token to its left, which we drop during
the first stage of backoff to simple word-based fer-
tility. The last level of backoff further generalises
to a shared fertility across all words. In this way
we gain the benefits of local context on fertility,
while including more general levels to allow wider
applicability.

4 Gibbs Sampling

To train the model, we use Gibbs sampling, a
Markov Chain Monte Carlo (MCMC) technique
for posterior inference. Specifically we seek to
infer the latent sequence of translation decisions
given a corpus of sentence pairs. Given the struc-
ture of our model, a word alignment uniquely
specifies the translation decisions and the se-
quence follows the order of the target sentence left
to right. Our Gibbs sampler operates by sampling
an update to the alignment of each target word
in the corpus. It visits each sentence pair in the
corpus in a random order and resamples the align-
ments for each target position as follows. First we
discard the alignment to the current target word
and decrement the counts of all factors affected
by this alignment in their top level distributions
(which will percolate down to the lower restau-
rants). Next we calculate posterior probabilities
for all possible alignment to this target word based
on the table occupancies in the hPYP. Finally we
draw an alignment and increment the table counts
for the translation decisions affected by the new
alignment.

More specifically, we consider sampling from
Equation 2 with n = 2. When changing the align-
ment to a target word ei from j′ to j, the fin-
ish, jump and emission for three target positions
i, i+ 1, i+ 2 and fertility for two source positions
j, j′ may be affected. This leads to the following
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decrement increment
ξ(no | null, ’ll, Je, I) ξ(no | null, ’ll, Je, I)
ξ(no | p..s, take, null, ’ll) ξ(no | Je, take, null, ’ll)
ξ(no | le, that, p..s, take) ξ(no | le, that, Je, take)
τ(f | null, ’ll, Je, I) τ(s| null, ’ll, Je, I)
τ(b | p..s, take, null, ’ll) τ(m| Je, take, null, ’ll)
τ(s | le, that, p..s, take) τ(s| le, that, Je, take)
e(take |f , p..s, null, ’ll, Je, I) e(take |s, Je, null, ’ll, Je, I)
e(that |b, le, p..s, take, null, ’ll) e(that |m, le, Je, take, null, ’ll)
e(one |s, le, le, that, p..s, take) e(one |s, le, le, that, Je, take)
φ(single | p..s, le) φ(multiple | Je, <s>)

Table 1: The count update when changing the
aligned source word of take from prends to Je in
Figure 1. Key: f–forward s–stay b–backward m–
monotone p..s–prends.

posterior probability

p(ai = j|t−i,o−i) ∝
i+2∏

l=i

p(ξl)p(τl)p(el)

× p(φj + 1)p(φj′ − 1)

p(φj)p(φj′)
(3)

where φj , φj′ are the fertilities before changing the
link and for brevity we omit the conditioning con-
texts. For example, in Figure 1, we sample for
target word take and change the aligned source
word from prends to Je, then the items for which
we need to decrement and increment the counts by
one are shown in Table 1 and the posterior prob-
ability corresponding to the new alignment is the
product of the hierarchical PYP probabilities of all
increment items divided by the probability of the
fertility of prends being single.

Maintaining the current state of the hPYP as
events are incremented and decremented is non-
trivial and the naive approach requires significant
book-keeping and has poor runtime behaviour. For
this we adopt the approach of Blunsom et al.
(2009b), who present a method for maintaining
table counts without needing to record the table
assignments for each translation decision. Briefly,
this algorithm samples the table assignment during
the increment and decrement operations, which is
then used to maintain aggregate table statistics.
This can be done efficiently and without the need
for explicit table assignment tracking.

4.1 Hyperparameter Inference
In our model, we treat all hyper-parameters
{(ax, bx), x ∈ (ξ, τ, e, φ)} as latent random vari-
ables rather than fixed parameters. This means our
model is parameter free, and requires no user inter-
vention when adapting to different data sets. For

the discount parameter, we employ a uniform Beta
distribution ax ∼ Beta(1, 1) while for the strength
parameter, we employ a vague Gamma distribu-
tion bx ∼ Gamma(10, 0.1). All restaurants in
the same level share the same hyper-prior and the
hyper-parameters for all levels are resampled us-
ing slice sampling (Johnson and Goldwater, 2009)
every 10 iterations.

4.2 Parallel Implementation

As mentioned above, the hierarchical PYP takes
into consideration a rich history to evaluate the
probabilities of translation decisions. But this
leads to difficulties when applying the model to
large data sets, particularly in terms of tracking
the table and customer counts. We apply the tech-
nique from Blunsom et al. (2009a) of using multi-
ple processors to perform approximate Gibbs sam-
pling which they showed achieved equivalent per-
formance to the exact Gibbs sampler. Each pro-
cess performs sampling on a subset of the corpus
using local counts, and communicates changes to
these counts after each full iteration. All the count
deltas are then aggregated by each process to re-
fresh the counts at the end of each iteration. In
this way each process uses slightly “out-of-date”
counts, but can process the data independently of
the other processes. We found that this approxi-
mation improved the runtime significantly with no
noticeable effect on accuracy.

5 Experiments

In principle our model could be directly used as a
MT decoder or as a feature in a decoder. However
in this paper we limit our focus to inducing word
alignments, i.e., by using the model to infer align-
ments which are then used in a standard phrase-
based translation pipeline. We leave full decod-
ing for later work, which we anticipate would fur-
ther improve performance by exploiting gapping
phrases and other phenomena that implicitly form
part of our model but are not represented in the
phrase-based decoder. Decoding under our model
would be straight-forward in principle, as the gen-
erative process was designed to closely parallel the
search procedure in the phrase-based model.3

Three data sets were used in the experi-
ments: two Chinese to English data sets on small
(IWSLT) and larger corpora (FBIS), and Arabic

3However the reverse translation probability would be in-
tractable, as this does not decompose following a left-to-right
generation order in the target language.

338



to English translation. Our experiments seek to
test how the model compares to a GIZA++ base-
line, quantifies the effect of each factor in the
probabilistic model (i.e., jump, fertility), and the
effect of different initialisations of the sampler.
We present results on translation quality and word
alignment.

5.1 Data Setup
The Markov order of our model in all experiments
was set to n = 2, as shown in Equation 2. For each
data set, Gibbs sampling was performed on the
training set in each direction (source-to-target and
target-to-source), initialized using GIZA++.4 We
used the grow heuristic to combine the GIZA++
alignments in both directions (Koehn et al., 2003),
which we then intersect with the predictions of
GIZA++ in the relevant translation direction. This
initialisation setup gave the best results (we com-
pare other initialisations in §5.2). The two Gibbs
samplers were “burned in” for the first 1000 it-
erations, after which we ran a further 500 itera-
tions selecting every 50th sample. A phrase ta-
ble was constructed using these 10 sets of multi-
ple alignments after combining each pair of direc-
tional alignments using the grow-diag-final heuris-
tic. Using multiple samples in this way constitutes
Monte Carlo averaging, which provides a better
estimate of uncertainty cf. using a single sample.5

The alignment used for the baseline results was
produced by combining bidirectional GIZA++
alignments using the grow-diag-final heuristic.
We used the Moses machine translation decoder
(Koehn et al., 2007), using the default features
and decoding settings. We compared the perfor-
mance of Moses using the alignment produced by
our model and the baseline alignment, evaluating
translation quality using BLEU (Papineni et al.,
2002) with case-insensitive n-gram matching with
n = 4. We used minimum error rate training (Och,
2003) to tune the feature weights to maximise the
BLEU score on the development set.

5.2 IWSLT Corpus
The first experiments are on the IWSLT data set
for Chinese-English translation. The training data
consists of 44k sentences from the tourism and
travel domain. For the development set we use
both ASR devset 1 and 2 from IWSLT 2005, and

4All GIZA++ alignments used in our experiments were
produced by IBM model4.

5The effect on translation scores is modest, roughly
amounting to +0.2 BLEU versus using a single sample.

System Dev IWSLT05
baseline 45.78 49.98
Markov+fs+e 49.13 51.54
Markov+fs+e+j 49.68 52.55
Markov+fs+e+j+ft 51.32 53.41

Table 2: Impact of adding factors to our Markov
model, showing BLEU scores on IWSLT. Key: fs–
finish e–emission j–jump ft–fertility.

for the test set we use the IWSLT 2005 test set.
The language model is a 3-gram language model
trained using the SRILM toolkit (Stolcke, 2002)
on the English side of the training data. Because
the data set is small, we performed Gibbs sampling
on a single processor.

First we check the effect of the model factors
jump and fertility. Both emission and finish fac-
tors are indispensable to the generative translation
process, and consequently these two factors are in-
cluded in all runs. Table 2 shows translation result
for various models, including a baseline and our
Markov model with different combinations of fac-
tors. Note that even the simplest Markov model far
outperforms the GIZA++ baseline (+1.5 BLEU)
despite the baseline (IBM model 4) including a
number of advanced features (e.g., jump, fertility)
that are not present in the basic Markov model.
This improvement is a result of the Markov model
making use of rich bilingual contextual informa-
tion coupled with sophisticated backoff, as op-
posed to GIZA++ which considers much more lo-
cal events, with nothing larger than word-class bi-
grams. Our model shows large improvements as
the extra factors are included. Jump yields an im-
provement of +1 BLEU by capturing consistent re-
ordering patterns. Adding fertility results in a fur-
ther +1 BLEU point improvement. Like the IBM
models, our approach allows each source word to
produce any number of target words. This capac-
ity allows for many non-sensical alignments such
as dropping many source words, or aligning sin-
gle source words to several target words. Explic-
itly modelling fertility allows for more consistent
alignments, especially for special words such as
punctuation which usually have a fertility of one.

Next we check the stability of our model with
different initialisations. We compare different
combination techniques for merging the GIZA++
alignments: grow-diag-final (denoted as gdf ), in-
tersection and grow. Table 3 shows that the dif-
ferent initialisations have only a small effect on
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system gdf intersection grow
baseline 49.98 48.44 50.11

our model 52.96 52.79 53.41

Table 3: Machine translation performance in
BLEU % on the IWSLT 2005 Chinese-English test
set. The Gibbs samplers were initialized with three
different alignments, shown as columns.

the results of our model. While the baseline re-
sults vary by up to 1.7 BLEU points for the differ-
ent alignments, our Markov model provided more
stable results with the biggest difference of 0.6.
Among the three initialisations, we get the best
result with the initialisation of grow. Gdf of-
ten introduces alignment links involving function
words which should instead be aligned to null. In-
tersection includes many fewer alignments, typi-
cally only between content words, and the sparsity
means that words can only have a fertility of ei-
ther 0 or 1. This leads to the initialisation being a
strong mode which is difficult to escape from dur-
ing sampling. Despite this problem, it has only
a mild negative effect on the performance of our
model, which is probably due to improvements
in the alignments for words that truly should be
dropped or aligned only to one word. Grow pro-
vides a good compromise between gdf and inter-
section, and we use this initialisation in all our
subsequent experiments.

Figure 3 shows an example comparing align-
ments produced by our model and the GIZA++
baseline, in both cases after combining the two di-
rectional models. Note that GIZA++ has linked
many function words which should be left un-
aligned, by using rare English terms as garbage
collectors. Consequently this only allows for the
extraction of few large phrase-pairs (e.g. <在
找, ’m looking for>) and prevents the extraction
of some good phrases (e.g. <烧烤 类型 的,
grill-type>, for “家” and “点 的” are wrongly
aligned to “grill-type”). In contrast, our model
better aligns the function words, such that many
more useful phrase pairs can be extracted, i.e.,
<在, ’m>,<找, looking for>,<烧烤类型, grill-
type> and their combinations with neighbouring
phrase pairs.

5.3 FBIS Corpus

Theoretically, Bayesian models should out-
perform maximum likelihood approaches on small
data sets, due to their improved modelling of un-

(a) GIZA++ baseline

我 在 找 一 家 好 点 的 , 安
静
的 烧
烤
类
型
的 餐
馆
。

i
'm
looking
for
a
nice
,
quiet
grill-type
restaurant
.

(b) our model

Figure 3: Comparison of an alignment inferred by
the baseline vs. our approach.

certainty. For larger datasets, however, the dif-
ference between the two techniques should nar-
row. Hence one might expect that upon moving
to larger translation datasets our gains might evap-
orate. This chain of reasoning ignores the fact that
our model is considerably richer than the baseline
IBM models, in that we model rich contextual cor-
relations between translation decisions, and con-
sequently our approach has a lower inductive bias.
For this reason our model should continue to im-
prove with more data, by inferring better estimates
of translation decision n-grams. A caveat though
is that inference by sampling becomes less effi-
cient on larger data sets due to stronger modes,
requiring more iterations for convergence.

To test whether our improvements carry over to
larger datasets, we assess the performance of our
model on the FBIS Chinese-English data set. Here
the training data consists of the non-UN portions
and non-HK Hansards portions of the NIST train-
ing corpora distributed by the LDC, totalling 303k
sentence pairs with 8m and 9.4m words of Chi-
nese and English, respectively. For the develop-
ment set we use the NIST 2002 test set, and eval-
uate performance on the test sets from NIST 2003
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NIST02 NIST03 NIST05
baseline 33.31 30.09 29.01
our model 33.83 31.02 30.23

Table 4: Translation performance on Chinese to
English translation, showing BLEU% for models
trained on the FBIS data set.

and 2005. The language model is a 3-gram LM
trained on Xinhua portion of the Gigaword corpus
using the SRILM toolkit with modified Kneser-
Ney smoothing. As the FBIS data set is large, we
employed 3-processor MPI for each Gibbs sam-
pler, which ran in half the time compared to using
a single processor.

Table 4 shows the results on the FBIS data set.
Our model outperforms the baseline on both test
sets by about 1 BLEU. This provides evidence that
our model performs well in the large data setting,
with our rich modelling of context still proving
useful. The non-parametric nature of the model al-
lows for rich dynamic backoff behaviour such that
it can learn accurate models in both high and low
data scenarios.

5.4 Arabic English translation
Translation between Chinese and English is very
difficult, particularly due to word order differences
which are not handled well by phrase-based ap-
proaches. In contrast Arabic to English translation
needs less reordering, and phrase-based models
produce better translations. This translation task
is a good test for the generality of our approach.
Our Ar-En training data comprises several LDC
corpora,6 using the same experimental setup as in
Blunsom et al. (2009a). Overall there are 276k
sentence pairs and 8.21m and 8.97m words in Ara-
bic and English, respectively. We evaluate on the
NIST test sets from 2003 and 2005, and the 2002
test set was used for MERT training.

Table 5 shows the results. On all test sets our
approach outperforms the baseline, and for the
NIST03 test set the improvement is substantial,
with a +0.74 BLEU improvement. In general
the improvements are more modest than for the
Chinese-English results above. We suggest that
this is due to the structure of Arabic-English trans-
lation better suiting the modelling assumptions be-
hind IBM model 4, particularly its bias towards
monotone translations. Consequently the addi-

6LDC2004E72, LDC2004T17, LDC2004T18,
LDC2006T02

F1% NIST02 NIST03 NIST05
baseline 64.9 57.00 48.75 48.93
our model 65.7 57.14 49.49 48.96

Table 5: Translation performance on Arabic to
English translation, showing BLEU%. Also shown
is word-alignment alignment accuracy.

tional context provided by our model is less im-
portant. Table 5 also reports alignment results on
manually aligned Ar-En sentence pairs,7 measur-
ing the F1 score for the GIZA++ baseline align-
ments and the alignment from the final sample
with our model.8 Our model outperforms the base-
line, although the improvement is modest.

6 Conclusions and Future Work

This paper proposes a word-based Markov model
of translation which correlates translation deci-
sions by conditioning on recent decisions, and
incorporates a hierarchical Pitman-Yor process
prior permitting elaborate backoff behaviour. The
model can learn sequences of translation deci-
sions, akin to phrases in standard phrase-based
models, while simultaneously learning word level
phenomena. This mechanism generalises the
concept of phrases in phrase-based MT, while
also capturing richer phenomena such as gapping
phrases in the source. Experiments show that our
model performs well both on the small and large
datasets for two different translation tasks, con-
sistently outperforming a competitive baseline. In
this paper the model was only used to infer word
alignments; in future work we intend to develop
a decoding algorithm for directly translating with
the model.
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Abstract

Semi-supervised learning (SSL) methods
augment standard machine learning (ML)
techniques to leverage unlabeled data.
SSL techniques are often effective in text
classification, where labeled data is scarce
but large unlabeled corpora are readily
available. However, existing SSL tech-
niques typically require multiple passes
over the entirety of the unlabeled data,
meaning the techniques are not applicable
to large corpora being produced today.

In this paper, we show that improving
marginal word frequency estimates using
unlabeled data can enable semi-supervised
text classification that scales to massive
unlabeled data sets. We present a novel
learning algorithm, which optimizes a
Naive Bayes model to accord with statis-
tics calculated from the unlabeled corpus.
In experiments with text topic classifica-
tion and sentiment analysis, we show that
our method is both more scalable and more
accurate than SSL techniques from previ-
ous work.

1 Introduction

Semi-supervised Learning (SSL) is a Machine
Learning (ML) approach that utilizes large
amounts of unlabeled data, combined with a
smaller amount of labeled data, to learn a tar-
get function (Zhu, 2006; Chapelle et al., 2006).
SSL is motivated by a simple reality: the amount
of available machine-readable data is exploding,
while human capacity for hand-labeling data for
any given ML task remains relatively constant.
Experiments in text classification and other do-
mains have demonstrated that by leveraging un-
labeled data, SSL techniques improve machine
learning performance when human input is limited

(e.g., (Nigam et al., 2000; Mann and McCallum,
2010)).

However, current SSL techniques have scal-
ability limitations. Typically, for each target
concept to be learned, a semi-supervised classi-
fier is trained using iterative techniques that exe-
cute multiple passes over the unlabeled data (e.g.,
Expectation-Maximization (Nigam et al., 2000) or
Label Propagation (Zhu and Ghahramani, 2002)).
This is problematic for text classification over
large unlabeled corpora like the Web: new tar-
get concepts (new tasks and new topics of interest)
arise frequently, and performing even a single pass
over a large corpus for each new target concept is
intractable.

In this paper, we present a new SSL text classi-
fication approach that scales to large corpora. In-
stead of utilizing unlabeled examples directly for
each given target concept, our approach is to pre-
compute a small set of statistics over the unlabeled
data in advance. Then, for a given target class and
labeled data set, we utilize the statistics to improve
a classifier.

Specifically, we introduce a method that ex-
tends Multinomial Naive Bayes (MNB) to lever-
age marginal probability statistics P (w) of each
word w, computed over the unlabeled data. The
marginal statistics are used as a constraint to im-
prove the class-conditional probability estimates
P (w|+) and P (w|−) for the positive and negative
classes, which are often noisy when estimated over
sparse labeled data sets. We refer to the technique
as MNB with Frequency Marginals (MNB-FM).

In experiments with large unlabeled data sets
and sparse labeled data, we find that MNB-
FM is both faster and more accurate on aver-
age than standard SSL methods from previous
work, including Label Propagation, MNB with
Expectation-Maximization,, and the recent Semi-
supervised Frequency Estimate (SFE) algorithm
(Su et al., 2011). We also analyze how MNB-
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FM improves accuracy, and find that surprisingly
MNB-FM is especially useful for improving class-
conditional probability estimates for words that
never occur in the training set.

The paper proceeds as follows. We formally de-
fine the task in Section 2. Our algorithm is defined
in Section 3. We present experimental results in
Section 4, and analysis in Section 5. We discuss
related work in Section 6 and conclude in Section
7 with a discussion of future work.

2 Problem Definition

We consider a semi-supervised classification task,
in which the goal is to produce a mapping
from an instance space X consisting of T -tuples
of non-negative integer-valued features w =
(w1, . . . , wT ), to a binary output space Y =
{−,+}. In particular, our experiments will fo-
cus on the case in which the wi’s represent word
counts in a given document, in a corpus of vocab-
ulary size T .

We assume the following inputs:

• A set of zero or more labeled documents
DL = {(wd, yd)|d = 1, . . . , n}, drawn i.i.d.
from a distribution P (w, y) for w ∈ X and
y ∈ Y .

• A large set of unlabeled documents DU =
{(wd)|d = n+1, . . . , n+u} drawn from the
marginal distribution P (w) =

∑

y

P (w, y).

The goal of the task is to output a classifer
f : X → Y that performs well in predicting the
classes of given unlabeled documents. The met-
rics of evaluation we focus on in our experiments
are detailed in Section 4.

Our semi-supervised technique utilizes statis-
tics computed over the labeled corpus, denoted as
follows. We use N+

w to denote the sum of the
occurrences of word w over all documents in the
positive class in the labeled data DL. Also, let
N+ =

∑n
w∈DL N

+
w be the sum value of all word

counts in the labeled positive documents. The
count of the remaining words in the positive doc-
uments is represented as N+

¬w = N+ −N+
w . The

quantitiesN−,N−w , andN−¬w are defined similarly
for the negative class.

3 MNB with Feature Marginals

We now introduce our algorithm, which scalably
utilizes large unlabeled data stores for classifica-

tion tasks. The technique builds upon the multino-
mial Naive Bayes model, and is denoted as MNB
with Feature Marginals (MNB-FM).

3.1 MNB-FM Method
In the text classification setting , each feature value
wd represents count of observations of word w in
document d. MNB makes the simplifying assump-
tion that word occurrences are conditionally inde-
pendent of each other given the class (+ or −) of
the example. Formally, let the probability P (w|+)
of the w in the positive class be denoted as θ+w . Let
P (+) denote the prior probability that a document
is of the positive class, and P (−) = 1−P (+) the
prior for the negative class. Then MNB represents
the class probability of an example as:

P (+|d) =

∏

w∈d
(θ+w )

wdP (+)

∏

w∈d
(θ−w )

wdP (−) +
∏

w∈d
(θ+w )

wdP (+)

(1)
MNB estimates the parameters θ+w from the

corresponding counts in the training set. The
maximum-likelihood estimate of θ+w is N+

w /N
+,

and to prevent zero-probability estimates we em-
ploy “add-1” smoothing (typical in MNB) to ob-
tain the estimate:

θ+w =
N+
w + 1

N+ + |T | .

After MNB calculates θ+w and θ−w from the train-
ing set for each feature in the feature space, it can
then classify test examples using Equation 1.

MNB-FM attempts to improve MNB’s esti-
mates of θ+w and θ−w , using statistics computed over
the unlabeled data. Formally, MNB-FM leverages
the equality:

P (w) = θ+wPt(+) + θ−wPt(−) (2)

The left-hand-side of Equation 2, P (w), repre-
sents the probability that a given randomly drawn
token from the unlabeled data happens to be the
word w. We write Pt(+) to denote the probabil-
ity that a randomly drawn token (i.e. a word oc-
currence) from the corpus comes from the posi-
tive class. Note that Pt(+) can differ from P (+),
the prior probability that a document is positive,
due to variations in document length. Pt(−) is de-
fined similarly for the negative class. MNB-FM is
motivated by the insight that the left-hand-side of
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Equation 2 can be estimated in advance, without
knowledge of the target class, simply by counting
the number of tokens of each word in the unla-
beled data.

MNB-FM then uses this improved estimate of
P (w) as a constraint to improve the MNB param-
eters on the right-hand-side of Equation 2. We
note that Pt(+) and Pt(−), even for a small train-
ing set, can typically be estimated reliably— ev-
ery token in the training data serves as an obser-
vation of these quantities. However, for large and
sparse feature spaces common in settings like text
classification, many features occur in only a small
fraction of examples—meaning θ+w and θ−w must
be estimated from only a handful of observations.
MNB-FM attempts to improve the noisy estimates
θ+w and θ−w utilizing the robust estimate for P (w)
computed over unlabeled data.

Specifically, MNB-FM proceeds by assuming
the MLEs for P (w) (computed over unlabeled
data), Pt(+), and Pt(−) are correct, and re-
estimates θ+w and θ−w under the constraint in Equa-
tion 2.

First, the maximum likelihood estimates of θ+w
and θ−w given the training data DL are:

argmax
θ+w ,θ

−
w

P (DL|θ+w , θ−w )

= argmax
θ+w ,θ

−
w

θ+(N+
w )

w (1− θ+w )(N
+
¬w)

θ−(N
−
w )

w (1− θ−w )(N
−
¬w)

= argmax
θ+w ,θ

−
w

N+
w ln(θ+w ) +N+

¬w ln(1− θ+w )+

N−w ln(θ−w ) +N−¬w ln(1− θ−w )
(3)

We can rewrite the constraint in Equation 2 as:

θ−w = K − θ+wL
where for compactness we represent:

K =
P (w)

Pt(−)
;L =

Pt(+)

Pt(−)
.

Substituting the constraint into Equation 3
shows that we wish to choose θ+w as:

argmax
θ+w

N+
w ln(θ+w ) +N+

¬w ln(1− θ+w )+

N−w ln(K − Lθ+w ) +N−¬w ln(1−K + Lθ+w )

The optimal values for θ+w are thus located at the
solutions of:

0 =
N+
w

θ+w
+

N+
¬w

θ+w − 1
+

LN−w
Lθ+w −K

+
LN−¬w

Lθ+w −K + 1

Both θ+w and θ−w are constrained to valid prob-
abilities in [0,1] when θ+w ∈ [0, KL ]. If N+

¬w and
N−w have non-zero counts, vertical asymptotes ex-
ist at 0 and K

L and guarantee a solution in this
range. Otherwise, a valid solution may not ex-
ist. In that case, we default to the add-1 Smooth-
ing estimates used by MNB. Finally, after optimiz-
ing the values θ+w and θ−w for each word w as de-
scribed above, we normalize the estimates to ob-
tain valid conditional probability distributions, i.e.
with

∑
w θ

+
w =

∑
w θ
−
w = 1

3.2 MNB-FM Example

The following concrete example illustrates how
MNB-FM can improve MNB parameters using the
statistic P (w) computed over unlabeled data. The
example comes from the Reuters Aptemod text
classification task addressed in Section 4, using
bag-of-words features for the Earnings class. In
one experiment with 10 labeled training examples,
we observed 5 positive and 5 negative examples,
with the word “resources” occurring three times
in the set (once in the positive class, twice in the
negative class).

MNB uses add-1 smoothing to estimate the con-
ditional probability of the word “resources” in
each class as θ+w = 1+1

216+33504 = 5.93e-5, and

θ−w = 2+1
547+33504 = 8.81e-5. Thus, θ+w

θ−w
= 0.673

implying that “resources” is a negative indicator
of the Earnings class. However, this estimate is
inaccurate. In fact, over the full dataset, the pa-
rameter values we observe are θ+w = 93

168549 =
5.70e-4 and θ−w = 263

564717 = 4.65e-4, with a ratio

of θ+w
θ−w

= 1.223. Thus, in actuality, the word “re-
sources” is a mild positive indicator of the Earn-
ings class. Yet because MNB estimates its param-
eters from only the sparse training data, it can be
inaccurate.

The optimization in MNB-FM seeks to accord
its parameter estimates with the feature frequency,
computed from unlabeled data, of P (w) = 4.89e-
4. We see that compared with P (w), the θ+w and
θ−w that MNB estimates from the training data are
both too low by almost an order of magnitude.
Further, the maximum likelihood estimate for θ−w
(based on an occurrence count of 2 out of 547 ob-
servations) is somewhat more reliable than that for
θ+w (1 of 216 observations). As a result, θ+w is ad-
justed upward relatively more than θ−w via MNB-
FM’s constrained ML estimation. MNB-FM re-
turns θ+w = 6.52e-5 and θ−w = 6.04e-5. The ratio
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θ+w
θ−w

is 1.079, meaning MNB-FM correctly identi-
fies the word “resources” as an indicator of the
positive class.

The above example illustrates how MNB-FM
can leverage frequency marginal statistics com-
puted over unlabeled data to improve MNB’s
conditional probability estimates. We analyze
how frequently MNB-FM succeeds in improving
MNB’s estimates in practice, and the resulting im-
pact on classification accuracy, below.

4 Experiments

In this section, we describe our experiments quan-
tifying the accuracy and scalability of our pro-
posed technique. Across multiple domains, we
find that MNB-FM outperforms a variety of ap-
proaches from previous work.

4.1 Data Sets
We evaluate on two text classification tasks: topic
classification, and sentiment detection. In topic
classification, the task is to determine whether a
test document belongs to a specified topic. We
train a classifier separately (i.e., in a binary clas-
sification setting) for each topic and measure clas-
sification performance for each class individually.

The sentiment detection task is to determine
whether a document is written with a positive or
negative sentiment. In our case, the goal is to de-
termine if the given text belongs to a positive re-
view of a product.

4.1.1 RCV1
The Reuters RCV1 corpus is a standard large cor-
pus used for topic classification evaluations (Lewis
et al., 2004). It includes 804,414 documents with
several nested target classes. We consider the 5
largest base classes after punctuation and stop-
words were removed. The vocabulary consisted
of 288,062 unique words, and the total number of
tokens in the data set was 99,702,278. Details of
the classes can be found in Table 1.

4.1.2 Reuters Aptemod
While MNB-FM is designed to improve the scala-
bility of SSL to large corpora, some of the com-
parison methods from previous work were not
tractable on the large topic classification data set
RCV1. To evaluate these methods, we also exper-
imented with the Reuters ApteMod dataset (Yang
and Liu, 1999), consisting of 10,788 documents
belonging to 90 classes. We consider the 10 most

Class # Positive
CCAT 381327 (47.40%)
GCAT 239267 (29.74%)
MCAT 204820 (25.46%)
ECAT 119920 (14.91%)
GPOL 56878 (7.07%)

Table 1: RCV1 dataset details

Class # Positive
Earnings 3964 (36.7%)
Acquisitions 2369 (22.0%)
Foreign 717 (6.6%)
Grain 582 (5.4%)
Crude 578 (5.4%)
Trade 485 (4.5%)
Interest 478 (4.4%)
Shipping 286 (2.7%)
Wheat 283 (2.6%)
Corn 237 (2.2%)

Table 2: Aptemod dataset details

frequent classes, with varying degrees of posi-
tive/negative skew. Punctuation and stopwords
were removed during preprocessing. The Apte-
mod data set contained 33,504 unique words and
a total of 733,266 word tokens. Details of the
classes can be found in Table 2.

4.1.3 Sentiment Classification Data

In the domain of Sentiment Classification, we
tested on the Amazon dataset from (Blitzer et al.,
2007). Stopwords listed in an included file were
ignored for our experiments and we only the con-
sidered unigram features. Unlike the two Reuters
data sets, each category had a unique set of doc-
uments of varying size. For our experiments, we
only used the 10 largest categories. Details of the
categories can be found in Table 3.

In the Amazon Sentiment Classification data
set, the task is to determine whether a review is
positive or negative based solely on the reviewer’s
submitted text. As such, the positive and negative

Class # Instances # Positive Vocabulary
Music 124362 113997 (91.67%) 419936
Books 54337 47767 (87.91%) 220275
Dvd 46088 39563 (85.84%) 217744
Electronics 20393 15918 (78.06%) 65535
Kitchen 18466 14595 (79.04%) 47180
Video 17389 15017 (86.36%) 106467
Toys 12636 10151 (80.33%) 37939
Apparel 8940 7642 (85.48%) 22326
Health 6507 5124 (78.75%) 24380
Sports 5358 4352 (81.22%) 24237

Table 3: Amazon dataset details
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labels are equally relevant. For our metrics, we
calculate the scores for both the positive and neg-
ative class and report the average of the two (in
contrast to the Reuters data sets, in which we only
report the scores for the positive class).

4.2 Comparison Methods

In addition to Multinomial Naive Bayes (discussed
in Section 3), we evaluate against a variety of
supervised and semi-supervised techniques from
previous work, which provide a representation of
the state of the art. Below, we detail the compar-
ison methods that we re-implemented for our ex-
periments.

4.2.1 NB + EM
We implemented a semi-supervised version of
Naive Bayes with Expectation Maximization,
based on (Nigam et al., 2000). We found that 15
iterations of EM was sufficient to ensure approxi-
mate convergence of the parameters.

We also experimented with different weighting
factors to assign to the unlabeled data. While per-
forming per-data-split cross-validation was com-
putationally prohibitive for NB+EM, we per-
formed experiments on one class from each data
set that revealed weighting unlabeled examples at
1/5 the weight of a labeled example performed
best. We found that our re-implementation of
NB+EM slightly outperformed published results
on a separate data set (Mann and McCallum,
2010), validating our design choices.

4.2.2 Logistic Regression
We implemented Logistic Regression using L2-
Normalization, finding this to outperform L1-
Normalized and non-normalized versions. The
strength of the normalization was selected for each
training data set of each size utilized in our exper-
iments.

The strength of the normalization in the logis-
tic regression required cross-validation, which we
limited to 20 values logarithmically spaced be-
tween 10−4 and 104. The optimal value was se-
lected based upon the best average F1 score over
the 10 folds. We selected a normalization param-
eter separately for each subset of the training data
during experimentation.

4.2.3 Label Propagation
For our large unlabeled data set sizes, we found
that a standard Label Propogation (LP) approach,

which considers propagating information between
all pairs of unlabeled examples, was not tractable.
We instead implemented a constrained version of
LP for comparison.

In our implementation, we limit the number of
edges in the propagation graph. Each node prop-
agates to only to its 10 nearest neighbors, where
distance is calculated as the cosine distance be-
tween the tf-idf representation of two documents.
We found the tf-idf weighting to improve perfor-
mance over that of simple cosine distance. Propa-
gation was run for 100 iterations or until the en-
tropy dropped below a predetermined threshold,
whichever occurred first. Even with these aggres-
sive constraints, Label Propagation was intractable
to execute on some of the larger data sets, so we
do not report LP results for the RCV1 dataset or
for the 5 largest Amazon categories.

4.2.4 SFE
We also re-implemented a version of the recent
Semi-supervised Frequency Estimate approach
(Su et al., 2011). SFE was found to outperform
MNB and NB+EM in previous work. Consis-
tent with our MNB implementation, we use Add-
1 Smoothing in our SFE calculations although its
use is not specifically mentioned in (Su et al.,
2011).

SFE also augments multinomial Naive Bayes
with the frequency information P (w), although in
a manner distinct from MNB-FM. In particular,
SFE uses the equality P (+|w) = P (+, w)/P (w)
and estimates the rhs using P (w) computed over
all the unlabeled data, rather than using only la-
beled data as in standard MNB. The primary dis-
tinction between MNB-FM and SFE is that SFE
adjusts sparse estimates P (+, w) in the same way
as non-sparse estimates, whereas MNB-FM is de-
signed to adjust sparse estimates more than non-
sparse ones. Further, it can be shown that as P (w)
of a word w in the unlabeled data becomes larger
than that in the labeled data, SFE’s estimate of the
ratio P (w|+)/P (w|−) approaches one. Depend-
ing on the labeled data, such an estimate can be ar-
bitrarily inaccurate. MNB-FM does not have this
limitation.

4.3 Results

For each data set, we evaluate on 50 randomly
drawn training splits, each comprised of 1,000 ran-
domly selected documents. Each set included at
least one positive and one negative document. We
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Data Set MNB-FM SFE MNB NBEM LProp Logist.
Apte (10) 0.306 0.271 0.336 0.306 0.245 0.208
Apte (100) 0.554 0.389 0.222 0.203 0.263 0.330
Apte (1k) 0.729 0.614 0.452 0.321 0.267 0.702
Amzn (10) 0.542 0.524 0.508 0.475 0.470* 0.499
Amzn (100) 0.587 0.559 0.456 0.456 0.498* 0.542
Amzn (1k) 0.687 0.611 0.465 0.455 0.539* 0.713
RCV1 (10) 0.494 0.477 0.387 0.485 - 0.272
RCV1 (100) 0.677 0.613 0.337 0.470 - 0.518
RCV1 (1k) 0.772 0.735 0.408 0.491 - 0.774

* Limited to 5 of 10 Amazon categories

Table 4: F1, training size in parentheses

respected the order of the training splits such that
each sample was a strict subset of any larger train-
ing sample of the same split.

We evaluate on the standard metric of F1 with
respect to the target class. For Amazon, in which
both the “positive” and “negative” classes are po-
tential target classes, we evaluate using macro-
averaged scores.

The primary results of our experiments are
shown in Table 4. The results show that MNB-FM
improves upon the MNB classifier substantially,
and also tends to outperform the other SSL and
supervised learning methods we evaluated. MNB-
FM is the best performing method over all data
sets when the labeled data is limited to 10 and 100
documents, except for training sets of size 10 in
Aptemod, where MNB has a slight edge.

Tables 5 and 6 present detailed results of the
experiments on the RCV1 data set. These exper-
iments are limited to the 5 largest base classes
and show the F1 performance of MNB-FM and
the various comparison methods, excluding Label
Propagation which was intractable on this data set.

Class MNB-FM SFE MNB NBEM Logist.
CCAT 0.641 0.643 0.580 0.639 0.532
GCAT 0.639 0.686 0.531 0.732 0.466
MCAT 0.572 0.505 0.393 0.504 0.225
ECAT 0.306 0.267 0.198 0.224 0.096
GPOL 0.313 0.283 0.233 0.326 0.043
Average 0.494 0.477 0.387 0.485 0.272

Table 5: RCV1: F1, |DL|= 10

Class MNB-FM SFE MNB NBEM Logist.
CCAT 0.797 0.793 0.624 0.713 0.754
GCAT 0.849 0.848 0.731 0.837 0.831
MCAT 0.776 0.737 0.313 0.516 0.689
ECAT 0.463 0.317 0.017 0.193 0.203
GPOL 0.499 0.370 0.002 0.089 0.114
Average 0.677 0.613 0.337 0.470 0.518

Table 6: RCV1: F1, |DL|= 100

Method 1000 5000 10k 50k 100k
MNB-FM 1.44 1.61 1.69 2.47 5.50
NB+EM 2.95 3.43 4.93 10.07 16.90
MNB 1.15 1.260 1.40 2.20 3.61
Labelprop 0.26 4.17 10.62 67.58 -

Table 7: Runtimes of SSL methods (sec.)

The runtimes of our methods can be seen in Ta-
ble 7. The results show the runtimes of the SSL
methods discussed in this paper as the size of the
unlabeled dataset grows. As expected, we find that
MNB-FM has runtime similar to MNB, and scales
much better than methods that take multiple passes
over the unlabeled data.

5 Analysis

From our experiments, it is clear that the perfor-
mance of MNB-FM improves on MNB, and in
many cases outperforms all existing SSL algo-
rithms we evaluated. MNB-FM improves the con-
ditional probability estimates in MNB and, sur-
prisingly, we found that it can often improve these
estimates for words that do not even occur in the
training set.

Tables 8 and 9 show the details of the improve-
ments MNB-FM makes on the feature marginal
estimates. We ran MNB-FM and MNB on the
RCV1 class MCAT and stored the computed fea-
ture marginals for direct comparison. For each
word in the vocabulary, we compared each clas-
sifier’s conditional probability ratios, i.e. θ+/θ−,
to the true value over the entire data set. We com-
puted which classifier was closer to the correct ra-
tio for each word. These results were averaged
over 5 iterations. From the data, we can see that
MNB-FM improves the estimates for many words
not seen in the training set as well as the most com-
mon words, even with small training sets.

5.1 Ranking Performance

We also analyzed how well the different meth-
ods rank, rather than classify, the test documents.
We evaluated ranking using the R-precision met-
ric, equal to the precision (i.e. fraction of positive
documents classified correctly) of the R highest-
ranked test documents, where R is the total num-
ber of positive test documents.

Logistic Regression performed particularly well
on the R-Precision Metric, as can be seen in Tables
10, 11, and 12. Logistic Regression performed
less well in the F1 metric. We find that NB+EM
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Fraction Improved vs MNB Avg Improvement vs MNB Probability Mass
Word Freq. Known Half Known Unknown Known Half Known Unknown Known Half Known Unknown
0-10−6 - 0.165 0.847 - -0.805 0.349 - 0.02% 7.69%
10−6-10−5 0.200 0.303 0.674 0.229 -0.539 0.131 0.00% 0.54% 14.77%
10−5-10−4 0.322 0.348 0.592 -0.597 -0.424 0.025 0.74% 10.57% 32.42%
10−4-10−3 0.533 0.564 0.433 0.014 0.083 -0.155 7.94% 17.93% 7.39%
> 10−3 - - - - - - - - -

Table 8: Analysis of Feature Marginal Improvement of MNB-FM over MNB (|DL| = 10). “Known”
indicates words occurring in both positive and negative training examples, “Half Known” indicates words
occurring in only positive or negative training examples, while “Unknown” indicates words that never
occur in labelled examples. Data is for the RCV1 MCAT category. MNB-FM improves estimates by a
substantial amount for unknown words and also the most common known and half-known words.

Fraction Improved vs MNB Avg Improvement vs MNB Probability Mass
Word Freq. Known Half Known Unknown Known Half Known Unknown Known Half Known Unknown
0-10−6 0.567 0.243 0.853 0.085 -0.347 0.143 0.00% 0.22% 7.49%
10−6-10−5 0.375 0.310 0.719 -0.213 -0.260 0.087 0.38% 4.43% 10.50%
10−5-10−4 0.493 0.426 0.672 -0.071 -0.139 0.067 18.68% 20.37% 4.67%
10−4-10−3 0.728 0.669 - 0.233 0.018 - 31.70% 1.56% -
> 10−3 - - - - - - - - -

Table 9: Analysis of Feature Marginal Improvement of MNB-FM over MNB (|DL| = 100). Data is
for the RCV1 MCAT category (see Table 8). MNB-FM improves estimates by a substantial amount for
unknown words and also the most common known and half-known words.

performs particularly well on the R-precision met-
ric on ApteMod, suggesting that its modelling as-
sumptions are more accurate for that particular
data set (NB+EM performs significantly worse on
the other data sets, however). MNB-FM performs
essentially equivalently well, on average, to the
best competing method (Logistic Regression) on
the large RCV1 data set. However, these experi-
ments show that MNB-FM offers more advantages
in document classification than in document rank-
ing.

The ranking results show that LR may be pre-
ferred when ranking is important. However, LR
underperforms in classification tasks (in terms of
F1, Tables 4-6). The reason for this is that LR’s
learned classification threshold becomes less accu-
rate when datasets are small and classes are highly

Class MNB-FM SFE MNB NBEM LProp Logist.
Apte (10) 0.353 0.304 0.359 0.631 0.490 0.416
Apte (100) 0.555 0.421 0.343 0.881 0.630 0.609
Apte (1k) 0.723 0.652 0.532 0.829 0.754 0.795
Amzn (10) 0.536 0.527 0.516 0.481 0.535* 0.544
Amzn (100) 0.614 0.562 0.517 0.480 0.573* 0.639
Amzn (1k) 0.717 0.650 0.562 0.483 0.639* 0.757
RCV1 (10) 0.505 0.480 0.421 0.450 - 0.512
RCV1 (100) 0.683 0.614 0.474 0.422 - 0.689
RCV1 (1k) 0.781 0.748 0.535 0.454 - 0.802

* Limited to 5 of 10 Amazon categories

Table 10: R-Precision, training size in parentheses

skewed. In these cases, LR classifies too fre-
quently in favor of the larger class which is detri-
mental to its performance. This effect is visible
in Tables 5 and 6, where LR’s performance sig-
nificantly drops for the ECAT and GPOL classes.
ECAT and GPOL represent only 14.91% and
7.07% of the RCV1 dataset, respectively.

6 Related Work

To our knowledge, MNB-FM is the first approach
that utilizes a small set of statistics computed over

Data SetMNB-FM SFE MNB NBEM Logist.
CCAT 0.637 0.631 0.620 0.498 0.653
GCAT 0.663 0.711 0.600 0.792 0.671
MCAT 0.580 0.492 0.477 0.510 0.596
ECAT 0.291 0.217 0.214 0.111 0.297
GPOL 0.354 0.352 0.193 0.341 0.341
Average 0.505 0.480 0.421 0.450 0.512

Table 11: RCV1: R-Precision, DL= 10

Class MNB-FM SFE MNB NBEM Logist.
CCAT 0.805 0.797 0.765 0.533 0.809
GCAT 0.849 0.858 0.780 0.869 0.843
MCAT 0.782 0.753 0.579 0.533 0.774
ECAT 0.471 0.293 0.203 0.119 0.498
GPOL 0.509 0.370 0.042 0.056 0.520
Average 0.683 0.614 0.474 0.422 0.689

Table 12: RCV1: R-Precision, DL= 100
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a large unlabeled data set as constraints to im-
prove a semi-supervised classifier. Our exper-
iments demonstrate that MNB-FM outperforms
previous approaches across multiple text classi-
fication techniques including topic classification
and sentiment analysis. Further, the MNB-FM ap-
proach offers scalability advantages over most ex-
isting semi-supervised approaches.

Current popular Semi-Supervised Learning ap-
proaches include using Expectation-Maximization
on probabilistic models (e.g. (Nigam et al.,
2000)); Transductive Support Vector Machines
(Joachims, 1999); and graph-based methods such
as Label Propagation (LP) (Zhu and Ghahramani,
2002) and their more recent, more scalable vari-
ants (e.g. identifying a small number of represen-
tative unlabeled examples (Liu et al., 2010)). In
general, these techniques require passes over the
entirety of the unlabeled data for each new learn-
ing task, intractable for massive unlabeled data
sets. Naive implementations of LP cannot scale
to large unlabeled data sets, as they have time
complexity that increases quadratically with the
number of unlabeled examples. Recent LP tech-
niques have achieved greater scalability through
the use of parallel processing and heuristics such
as Approximate-Nearest Neighbor (Subramanya
and Bilmes, 2009), or by decomposing the sim-
ilarity matrix (Lin and Cohen, 2011). Our ap-
proach, by contrast, is to pre-compute a small
set of marginal statistics over the unlabeled data,
which eliminates the need to scan unlabeled data
for each new task. Instead, the complexity of
MNB-FM is proportional only to the number of
unique words in the labeled data set.

In recent work, Su et al. propose the Semi-
supervised Frequency Estimate (SFE), which like
MNB-FM utilizes the marginal probabilities of
features computed from unlabeled data to im-
prove the Multinomial Naive Bayes (MNB) clas-
sifier (Su et al., 2011). SFE has the same scal-
ability advantages as MNB-FM. However, unlike
our approach, SFE does not compute maximum-
likelihood estimates using the marginal statistics
as a constraint. Our experiments show that MNB-
FM substantially outperforms SFE.

A distinct method for pre-processing unlabeled
data in order to help scale semi-supervised learn-
ing techniques involves dimensionality reduction
or manifold learning (Belkin and Niyogi, 2004),
and for NLP tasks, identifying word representa-

tions from unlabeled data (Turian et al., 2010). In
contrast to these approaches, MNB-FM preserves
the original feature set and is more scalable (the
marginal statistics can be computed in a single
pass over the unlabeled data set).

7 Conclusion

We presented a novel algorithm for efficiently
leveraging large unlabeled data sets for semi-
supervised learning. Our MNB-FM technique op-
timizes a Multinomial Naive Bayes model to ac-
cord with statistics of the unlabeled corpus. In ex-
periments across topic classification and sentiment
analysis, MNB-FM was found to be more accu-
rate and more scalable than several supervised and
semi-supervised baselines from previous work.

In future work, we plan to explore utilizing
richer statistics from the unlabeled data, beyond
word marginals. Further, we plan to experiment
with techniques for unlabeled data sets that also
include continuous-valued features. Lastly, we
also wish to explore ensemble approaches that
combine the best supervised classifiers with the
improved class-conditional estimates provided by
MNB-FM.
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Abstract

We present two latent variable models for
learning character types, or personas, in
film, in which a persona is defined as a
set of mixtures over latent lexical classes.
These lexical classes capture the stereo-
typical actions of which a character is the
agent and patient, as well as attributes by
which they are described. As the first
attempt to solve this problem explicitly,
we also present a new dataset for the
text-driven analysis of film, along with
a benchmark testbed to help drive future
work in this area.

1 Introduction

Philosophers and dramatists have long argued
whether the most important element of narrative
is plot or character. Under a classical Aristotelian
perspective, plot is supreme;1 modern theoretical
dramatists and screenwriters disagree.2

Without addressing this debate directly, much
computational work on narrative has focused on
learning the sequence of events by which a story
is defined; in this tradition we might situate sem-
inal work on learning procedural scripts (Schank
and Abelson, 1977; Regneri et al., 2010), narrative
chains (Chambers and Jurafsky, 2008), and plot
structure (Finlayson, 2011; Elsner, 2012; McIn-
tyre and Lapata, 2010; Goyal et al., 2010).

We present a complementary perspective that
addresses the importance of character in defining

1“Dramatic action . . . is not with a view to the representa-
tion of character: character comes in as subsidiary to the ac-
tions . . . The Plot, then, is the first principle, and, as it were,
the soul of a tragedy: Character holds the second place.” Po-
etics I.VI (Aristotle, 335 BCE).

2“Aristotle was mistaken in his time, and our scholars are
mistaken today when they accept his rulings concerning char-
acter. Character was a great factor in Aristotle’s time, and no
fine play ever was or ever will be written without it” (Egri,
1946, p. 94); “What the reader wants is fascinating, complex
characters” (McKee, 1997, 100).

a story. Our testbed is film. Under this perspec-
tive, a character’s latent internal nature drives the
action we observe. Articulating narrative in this
way leads to a natural generative story: we first de-
cide that we’re going to make a particular kind of
movie (e.g., a romantic comedy), then decide on a
set of character types, or personas, we want to see
involved (the PROTAGONIST, the LOVE INTER-
EST, the BEST FRIEND). After picking this set, we
fill out each of these roles with specific attributes
(female, 28 years old, klutzy); with this cast of
characters, we then sketch out the set of events by
which they interact with the world and with each
other (runs but just misses the train, spills coffee
on her boss) – through which they reveal to the
viewer those inherent qualities about themselves.
This work is inspired by past approaches that in-
fer typed semantic arguments along with narra-
tive schemas (Chambers and Jurafsky, 2009; Reg-
neri et al., 2011), but seeks a more holistic view
of character, one that learns from stereotypical at-
tributes in addition to plot events. This work also
naturally draws on earlier work on the unsuper-
vised learning of verbal arguments and semantic
roles (Pereira et al., 1993; Grenager and Manning,
2006; Titov and Klementiev, 2012) and unsuper-
vised relation discovery (Yao et al., 2011).

This character-centric perspective leads to two
natural questions. First, can we learn what those
standard personas are by how individual charac-
ters (who instantiate those types) are portrayed?
Second, can we learn the set of attributes and ac-
tions by which we recognize those common types?
How do we, as viewers, recognize a VILLIAN?

At its most extreme, this perspective reduces
to learning the grand archetypes of Joseph Camp-
bell (1949) or Carl Jung (1981), such as the HERO

or TRICKSTER. We seek, however, a more fine-
grained set that includes not only archetypes, but
stereotypes as well – characters defined by a fixed
set of actions widely known to be representative of
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a class. This work offers a data-driven method for
answering these questions, presenting two proba-
blistic generative models for inferring latent char-
acter types.

This is the first work that attempts to learn ex-
plicit character personas in detail; as such, we
present a new dataset for character type induction
in film and a benchmark testbed for evaluating fu-
ture work.3

2 Data

2.1 Text

Our primary source of data comes from 42,306
movie plot summaries extracted from the
November 2, 2012 dump of English-language
Wikipedia.4 These summaries, which have a
median length of approximately 176 words,5

contain a concise synopsis of the movie’s events,
along with implicit descriptions of the characters
(e.g., “rebel leader Princess Leia,” “evil lord Darth
Vader”). To extract structure from this data, we
use the Stanford CoreNLP library6 to tag and
syntactically parse the text, extract entities, and
resolve coreference within the document. With
this structured representation, we extract linguistic
features for each character, looking at immediate
verb governors and attribute syntactic dependen-
cies to all of the entity’s mention headwords,
extracted from the typed dependency tuples pro-
duced by the parser; we refer to “CCprocessed”
syntactic relations described in de Marneffe and
Manning (2008):
• Agent verbs. Verbs for which the entity is an

agent argument (nsubj or agent).
• Patient verbs. Verbs for which the entity is

the patient, theme or other argument (dobj,
nsubjpass, iobj, or any prepositional argu-
ment prep *).
• Attributes. Adjectives and common noun

words that relate to the mention as adjecti-
val modifiers, noun-noun compounds, appos-
itives, or copulas (nsubj or appos governors,
or nsubj, appos, amod, nn dependents of an
entity mention).

3All datasets and software for replication can be found at
http://www.ark.cs.cmu.edu/personas.

4http://dumps.wikimedia.org/enwiki/
5More popular movies naturally attract more attention on

Wikipedia and hence more detail: the top 1,000 movies by
box office revenue have a median length of 715 words.

6http://nlp.stanford.edu/software/
corenlp.shtml

These three roles capture three different ways in
which character personas are revealed: the actions
they take on others, the actions done to them, and
the attributes by which they are described. For ev-
ery character we thus extract a bag of (r, w) tu-
ples, where w is the word lemma and r is one
of {agent verb,patient verb, attribute} as iden-
tified by the above rules.

2.2 Metadata

Our second source of information consists of char-
acter and movie metadata drawn from the Novem-
ber 4, 2012 dump of Freebase.7 At the movie
level, this includes data on the language, country,
release date and detailed genre (365 non-mutually
exclusive categories, including “Epic Western,”
“Revenge,” and “Hip Hop Movies”). Many of the
characters in movies are also associated with the
actors who play them; since many actors also have
detailed biographical information, we can ground
the characters in what we know of those real peo-
ple – including their gender and estimated age at
the time of the movie’s release (the difference be-
tween the release date of the movie and the actor’s
date of birth).

Across all 42,306 movies, entities average 3.4
agent events, 2.0 patient events, and 2.1 attributes.
For all experiments described below, we restrict
our dataset to only those events that are among the
1,000 most frequent overall, and only characters
with at least 3 events. 120,345 characters meet this
criterion; of these, 33,559 can be matched to Free-
base actors with a specified gender, and 29,802 can
be matched to actors with a given date of birth. Of
all actors in the Freebase data whose age is given,
the average age at the time of movie is 37.9 (stan-
dard deviation 14.1); of all actors whose gender
is known, 66.7% are male.8 The age distribution
is strongly bimodal when conditioning on gender:
the average age of a female actress at the time of a
movie’s release is 33.0 (s.d. 13.4), while that of a
male actor is 40.5 (s.d. 13.7).

3 Personas

One way we recognize a character’s latent type
is by observing the stereotypical actions they

7http://download.freebase.com/
datadumps/

8Whether this extreme 2:1 male/female ratio reflects an
inherent bias in film or a bias in attention on Freebase (or
Wikipedia, on which it draws) is an interesting research ques-
tion in itself.
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perform (e.g., VILLAINS strangle), the actions
done to them (e.g., VILLAINS are foiled and ar-
rested) and the words by which they are described
(VILLAINS are evil). To capture this intuition, we
define a persona as a set of three typed distribu-
tions: one for the words for which the character is
the agent, one for which it is the patient, and one
for words by which the character is attributively
modified. Each distribution ranges over a fixed set
of latent word classes, or topics. Figure 1 illus-
trates this definition for a toy example: a ZOMBIE

persona may be characterized as being the agent
of primarily eating and killing actions, the patient
of killing actions, and the object of dead attributes.
The topic labeled eat may include words like eat,
drink, and devour.
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Figure 1: A persona is a set of three distributions
over latent topics. In this toy example, the ZOM-
BIE persona is primarily characterized by being
the agent of words from the eat and kill topics, the
patient of kill words, and the object of words from
the dead topic.

4 Models

Both models that we present here simultaneously
learn three things: 1.) a soft clustering over words
to topics (e.g., the verb “strangle” is mostly a type
of Assault word); 2.) a soft clustering over top-
ics to personas (e.g., VILLIANS perform a lot of
Assault actions); and 3.) a hard clustering over
characters to personas (e.g., Darth Vader is a VIL-
LAIN.) They each use different evidence: since
our data includes not only textual features (in the
form of actions and attributes of the characters) but
also non-textual information (such as movie genre,
age and gender), we design a model that exploits
this additional source of information in discrimi-
nating between character types; since this extra-
linguistic information may not always be avail-
able, we also design a model that learns only from
the text itself. We present the text-only model first

α

θ

p

zψ

w

r

φ

γ

ν

W

E

D

α

p me

md

βµ σ2

zψ

w

r

φ

γ

ν

W

E

D

P Number of personas (hyperparameter)
K Number of word topics (hyperparameter)
D Number of movie plot summaries
E Number of characters in movie d
W Number of (role, word) tuples used by character e
φk Topic k’s distribution over V words.
r Tuple role: agent verb, patient verb, attribute
ψp,r Distribution over topics for persona p in role r
θd Movie d’s distribution over personas
pe Character e’s persona (integer, p ∈ {1..P})
j A specific (r, w) tuple in the data
zj Word topic for tuple j
wj Word for tuple j
α Concentration parameter for Dirichlet model
β Feature weights for regression model

µ, σ2 Gaussian mean and variance (for regularizing β)
md Movie features (from movie metadata)
me Entity features (from movie actor metadata)
νr , γ Dirichlet concentration parameters

Figure 2: Above: Dirichlet persona model (left)
and persona regression model (right). Bottom:
Definition of variables.

for simplicity. Throughout, V is the word vocab-
ulary size, P is the number of personas, and K is
the number of topics.

4.1 Dirichlet Persona Model

In the most basic model, we only use informa-
tion from the structured text, which comes as a
bag of (r, w) tuples for each character in a movie,
where w is the word lemma and r is the rela-
tion of the word with respect to the character (one
of agent verb, patient verb or attribute, as out-
lined in §2.1 above). The generative story runs as
follows. First, let there be K latent word topics;
as in LDA (Blei et al., 2003), these are words that
will be soft-clustered together by virtue of appear-
ing in similar contexts. Each latent word cluster
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φk ∼ Dir(γ) is a multinomial over the V words in
the vocabulary, drawn from a Dirichlet parameter-
ized by γ. Next, let a persona p be defined as a set
of three multinomials ψp over these K topics, one
for each typed role r, each drawn from a Dirichlet
with a role-specific hyperparameter (νr).

Every document (a movie plot summary) con-
tains a set of characters, each of which is associ-
ated with a single latent persona p; for every ob-
served (r, w) tuple associated with the character,
we sample a latent topic k from the role-specific
ψp,r. Conditioned on this topic assignment, the
observed word is drawn from φk. The distribu-
tion of these personas for a given document is de-
termined by a document-specific multinomial θ,
drawn from a Dirichlet parameterized by α.

Figure 2 (above left) illustrates the form of the
model. To simplify inference, we collapse out the
persona-topic distributions ψ, the topic-word dis-
tributions φ and the persona distribution θ for each
document. Inference on the remaining latent vari-
ables – the persona p for each character type and
the topic z for each word associated with that char-
acter – is conducted via collapsed Gibbs sampling
(Griffiths and Steyvers, 2004); at each iteration,
for each character e, we sample their persona pe:

P (pe = k | p−e, z, α, ν) ∝
(
c−ed,k + αk

)
×∏j

(c−erj ,k,zj
+νrj )

(c−erj ,k,?
+Kνrj )

(1)

Here, c−ed,k is the count of all characters in docu-
ment d whose current persona sample is also k
(not counting the current character e under con-
sideration);9 j ranges over all (rj , wj) tuples asso-
ciated with character e. Each c−erj ,k,zj is the count
of all tuples with role rj and current topic zj used
with persona k. c−erj ,k,? is the same count, summing
over all topics z. In other words, the probabil-
ity that character e embodies persona k is propor-
tional to the number of other characters in the plot
summary who also embody that persona (plus the
Dirichlet hyperparameter αk) times the contribu-
tion of each observed word wj for that character,
given its current topic assignment zj .

Once all personas have been sampled, we sam-

9The−e superscript denotes counts taken without consid-
ering the current sample for character e.

ple the latent topics for each tuple as the following.

P (zj = k | p, z−j , w, r, ν, γ) ∝
(c−jrj ,p,k

+νrj )

(c−jrj ,p,?+Kνrj )
×

(c−jk,wj
+γ)

(c−jk,?+V γ)

(2)

Here, conditioned on the current sample p for
the character’s persona, the probability that tuple
j originates in topic k is proportional to the num-
ber of other tuples with that same role rj drawn
from the same topic for that persona (c−jrj ,p,k), nor-
malized by the number of other rj tuples associ-
ated with that persona overall (c−jrj ,p,?), multiplied
by the number of times word wj is associated with
that topic (c−jk,wj ) normalized by the total number
of other words associated with that topic overall
(c−jk,?).

We optimize the values of the Dirichlet hyper-
parameters α, ν and γ using slice sampling with a
uniform prior every 20 iterations for the first 500
iterations, and every 100 iterations thereafter. Af-
ter a burn-in phase of 10,000 iterations, we collect
samples every 10 iterations (to lessen autocorrela-
tion) until a total of 100 have been collected.

4.2 Persona Regression
To incorporate observed metadata in the form of
movie genre, character age and character gen-
der, we adopt an “upstream” modeling approach
(Mimno and McCallum, 2008), letting those ob-
served features influence the conditional probabil-
ity with which a given character is expected to as-
sume a particular persona, prior to observing any
of their actions. This captures the increased likeli-
hood, for example, that a 25-year-old male actor in
an action movie will play an ACTION HERO than
he will play a VALLEY GIRL.

To capture these effects, each character’s la-
tent persona is no longer drawn from a document-
specific Dirichlet; instead, the P -dimensional sim-
plex is the output of a multiclass logistic regres-
sion, where the document genre metadata md and
the character age and gender metadatame together
form a feature vector that combines with persona-
specific feature weights to form the following log-
linear distribution over personas, with the proba-
bility for persona k being:

P (p = k | md,me, β) =
exp([md;me]

>βk)
1+

PP−1
j=1 exp([md;me]>βj)

(3)
The persona-specific β coefficients are learned

through Monte Carlo Expectation Maximization
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(Wei and Tanner, 1990), in which we alternate be-
tween the following:

1. Given current values for β, for all characters
e in all plot summaries, sample values of pe
and zj for all associated tuples.

2. Given input metadata features m and the as-
sociated sampled values of p, find the values
of β that maximize the standard multiclass lo-
gistic regression log likelihood, subject to `2
regularization.

Figure 2 (above right) illustrates this model. As
with the Dirichlet persona model, inference on p
for step 1 is conducted with collapsed Gibbs sam-
pling; the only difference in the sampling prob-
ability from equation 1 is the effect of the prior,
which here is deterministically fixed as the output
of the regression.

P (pe = k | p−e, z, ν,md,me, β) ∝
exp([md;me]

>βk)×
∏
j

(c−erj ,k,zj
+νrj )

(c−erj ,k,?
+Kνrj )

(4)

The sampling equation for the topic assign-
ments z is identical to that in equation 2. In
practice we optimize β every 1,000 iterations, un-
til a burn-in phase of 10,000 iterations has been
reached; at this point we following the same sam-
pling regime as for the Dirichlet persona model.

5 Evaluation

We evaluate our methods in two quantitative ways
by measuring the degree to which we recover two
different sets of gold-standard clusterings. This
evaluation also helps offer guidance for model se-
lection (in choosing the number of latent topics
and personas) by measuring performance on an
objective task.

5.1 Character Names

First, we consider all character names that occur in
at least two separate movies, generally as a conse-
quence of remakes or sequels; this includes proper
names such as “Rocky Balboa,” “Oliver Twist,”
and “Indiana Jones,” as well as generic type names
such as “Gang Member” and “The Thief”; to mini-
mize ambiguity, we only consider character names
consisting of at least two tokens. Each of these
names is used by at least two different characters;
for example, a character named “Jason Bourne”
is portrayed in The Bourne Identity, The Bourne
Supremacy, and The Bourne Ultimatum. While

these characters are certainly free to assume dif-
ferent roles in different movies, we believe that,
in the aggregate, they should tend to embody the
same character type and thus prove to be a natu-
ral clustering to recover. 970 character names oc-
cur at least twice in our data, and 2,666 individual
characters use one of those names. Let those 970
character names define 970 unique gold clusters
whose members include the individual characters
who use that name.

5.2 TV Tropes

As a second external measure of validation, we
consider a manually created clustering presented
at the website TV Tropes,10 a wiki that col-
lects user-submitted examples of common tropes
(narrative, character and plot devices) found in
television, film, and fiction, among other me-
dia. While TV Tropes contains a wide range of
such conventions, we manually identified a set of
72 tropes that could reasonably be labeled char-
acter types, including THE CORRUPT CORPO-
RATE EXECUTIVE, THE HARDBOILED DETEC-
TIVE, THE JERK JOCK, THE KLUTZ and THE

SURFER DUDE.
We manually aligned user-submitted examples

of characters embodying these 72 character types
with the canonical references in Freebase to cre-
ate a test set of 501 individual characters. While
the 72 character tropes represented here are a more
subjective measure, we expect to be able to at least
partially recover this clustering.

5.3 Variation of Information

To measure the similarity between the two clus-
terings of movie characters, gold clusters G and
induced latent persona clusters C, we calculate the
variation of information (Meilă, 2007):

V I(G, C) = H(G) +H(C)− 2I(G, C) (5)

= H(G|C) +H(C|G) (6)

VI measures the information-theoretic distance
between the two clusterings: a lower value means
greater similarity, and VI = 0 if they are iden-
tical. Low VI indicates that (induced) clusters
and (gold) clusters tend to overlap; i.e., knowing a
character’s (induced) cluster usually tells us their
(gold) cluster, and vice versa. Variation of infor-
mation is a metric (symmetric and obeys triangle

10http://tvtropes.org
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Character Names §5.1 TV Tropes §5.2
K Model P = 25 P = 50 P = 100 P = 25 P = 50 P = 100

25
Persona regression 7.73 7.32 6.79 6.26 6.13 5.74
Dirichlet persona 7.83 7.11 6.44 6.29 6.01 5.57

50
Persona regression 7.59 7.08 6.46 6.30 5.99 5.65
Dirichlet persona 7.57 7.04 6.35 6.23 5.88 5.60

100
Persona regression 7.58 6.95 6.32 6.11 6.05 5.49
Dirichlet persona 7.64 6.95 6.25 6.24 5.91 5.42

Table 1: Variation of information between learned personas and gold clusters for different numbers of
topics K and personas P . Lower values are better. All values are reported in bits.

Character Names §5.1 TV Tropes §5.2
K Model P = 25 P = 50 P = 100 P = 25 P = 50 P = 100

25
Persona regression 62.8 (↑41%) 59.5 (↑40%) 53.7 (↑33%) 42.3 (↑31%) 38.5 (↑24%) 33.1 (↑25%)
Dirichlet persona 54.7 (↑27%) 50.5 (↑26%) 45.4 (↑17%) 39.5 (↑20%) 31.7 (↑28%) 25.1 (↑21%)

50 Persona regression 63.1 (↑42%) 59.8 (↑42%) 53.6 (↑34%) 42.9 (↑30%) 39.1 (↑33%) 31.3 (↑20%)
Dirichlet persona 57.2 (↑34%) 49.0 (↑23%) 44.7 (↑16%) 39.7 (↑30%) 31.5 (↑32%) 24.6 (↑22%)

100 Persona regression 63.1 (↑42%) 57.7 (↑39%) 53.0 (↑34%) 43.5 (↑33%) 32.1 (↑28%) 26.5 (↑22%)
Dirichlet persona 55.3 (↑30%) 49.5 (↑24%) 45.2 (↑18%) 39.7 (↑34%) 29.9 (↑24%) 23.6 (↑19%)

Table 2: Purity scores of recovering gold clusters. Higher values are better. Each absolute purity score
is paired with its improvement over a controlled baseline of permuting the learned labels while keeping
the cluster proportions the same.

inequality), and has a number of other desirable
properties.

Table 1 presents the VI between the learned per-
sona clusters and gold clusters, for varying num-
bers of personas (P = {25, 50, 100}) and top-
ics (K = {25, 50, 100}). To determine signifi-
cance with respect to a random baseline, we con-
duct a permutation test (Fisher, 1935; Pitman,
1937) in which we randomly shuffle the labels of
the learned persona clusters and count the num-
ber of times in 1,000 such trials that the VI of
the observed persona labels is lower than the VI
of the permuted labels; this defines a nonparamet-
ric p-value. All results presented are significant at
p < 0.001 (i.e. observed VI is never lower than
the simulation VI).

Over all tests in comparison to both gold clus-
terings, we see VI improve as both P and, to
a lesser extent, K increase. While this may be
expected as the number of personas increase to
match the number of distinct types in the gold
clusters (970 and 72, respectively), the fact that VI
improves as the number of latent topics increases
suggests that more fine-grained topics are helpful
for capturing nuanced character types.11

The difference between the persona regression
model and the Dirichlet persona model here is not

11This trend is robust to the choice of cluster metric: here
VI and F -score have a correlation of −0.87; as more latent
topics and personas are added, clustering improves (causing
the F -score to go up and the VI distance to go down).

significant; while VI allows us to compare mod-
els with different numbers of latent clusters, its re-
quirement that clusterings be mutually informative
places a high overhead on models that are funda-
mentally unidirectional (in Table 1, for example,
the room for improvement between two models
of the same P and K is naturally smaller than
the bigger difference between different P or K).
While we would naturally prefer a text-only model
to be as expressive as a model that requires po-
tentially hard to acquire metadata, we tease apart
whether a distinction actually does exist by evalu-
ating the purity of the gold clusters with respect to
the labels assigned them.

5.4 Purity
For gold clusters G = {g1 . . . gk} and inferred
clusters C = {c1 . . . cj} we calculate purity as:

Purity =
1

N

∑

k

max
j
|gk ∩ cj | (7)

While purity cannot be used to compare models of
different persona size P , it can help us distinguish
between models of the same size. A model can
attain perfect purity, however, by placing all char-
acters into a single cluster; to control for this, we
present a controlled baseline in which each char-
acter is assigned a latent character type label pro-
portional to the size of the latent clusters we have
learned (so that, for example, if one latent per-
sona cluster contains 3.2% of the total characters,
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Batman

Jim 
Gordon

dark, major, henchman
shoot, aim, overpower
sentence, arrest, assign

Tony 
Stark

Jason 
Bourne

The 
Joker

shoot, aim, overpower
testify, rebuff, confess
hatch, vow, undergo

Van Helsing

Colin 
Sullivan

Dracula

The Departed

The Dark 
Knight

Iron Man

The Bourne 
Identity

approve, die, suffer
relent, refuse, agree
inherit live imagine

Jack 
Dawson Rachel

Titanic

Figure 3: Dramatis personae of The Dark Knight (2008), illustrating 3 of the 100 character types learned
by the persona regression model, along with links from other characters in those latent classes to other
movies. Each character type is listed with the top three latent topics with which it is associated.

the probability of selecting that persona at random
is 3.2%). Table 2 presents each model’s absolute
purity score paired with its improvement over its
controlled permutation (e.g., ↑41%).

Within each fixed-size partition, the use of
metadata yields a substantial improvement over
the Dirichlet model, both in terms of absolute pu-
rity and in its relative improvement over its sized-
controlled baseline. In practice, we find that while
the Dirichlet model distinguishes between charac-
ter personas in different movies, the persona re-
gression model helps distinguish between differ-
ent personas within the same movie.

6 Exploratory Data Analysis

As with other generative approaches, latent per-
sona models enable exploratory data analysis. To
illustrate this, we present results from the persona
regression model learned above, with 50 latent
lexical classes and 100 latent personas. Figure 3
visualizes this data by focusing on a single movie,
The Dark Knight (2008); the movie’s protagonist,
Batman, belongs to the same latent persona as De-
tective Jim Gordon, as well as other action movie
protagonists Jason Bourne and Tony Stark (Iron
Man). The movie’s antagonist, The Joker, belongs
to the same latent persona as Dracula from Van
Helsing and Colin Sullivan from The Departed, il-
lustrating the ability of personas to be informed
by, but still cut across, different genres.

Table 3 presents an exhaustive list of all 50 top-

ics, along with an assigned label that consists of
the single word with the highest PMI for that class.
Of note are topics relating to romance (unite,
marry, woo, elope, court), commercial transac-
tions (purchase, sign, sell, owe, buy), and the clas-
sic criminal schema from Chambers (2011) (sen-
tence, arrest, assign, convict, promote).

Table 4 presents the most frequent 14 personas
in our dataset, illustrated with characters from
the 500 highest grossing movies. The personas
learned are each three separate mixtures of the
50 latent topics (one for agent relations, one for
patient relations, and one for attributes), as illus-
trated in figure 1 above. Rather than presenting
a 3 × 50 histogram for each persona, we illus-
trate them by listing the most characteristic top-
ics, movie characters, and metadata features asso-
ciated with it. Characteristic actions and features
are defined as those having the highest smoothed
pointwise mutual information with that class; ex-
emplary characters are those with the highest pos-
terior probability of being drawn from that class.
Among the personas learned are canonical male
action heroes (exemplified by the protagonists of
The Bourne Supremacy, Speed, and Taken), super-
heroes (Hulk, Batman and Robin, Hector of Troy)
and several romantic comedy types, largely char-
acterized by words drawn from the FLIRT topic,
including flirt, reconcile, date, dance and forgive.
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Label Most characteristic words Label Most characteristic words
UNITE unite marry woo elope court SWITCH switch confirm escort report instruct
PURCHASE purchase sign sell owe buy INFATUATE infatuate obsess acquaint revolve concern
SHOOT shoot aim overpower interrogate kill ALIEN alien child governor bandit priest
EXPLORE explore investigate uncover deduce CAPTURE capture corner transport imprison trap
WOMAN woman friend wife sister husband MAYA maya monster monk goon dragon
WITCH witch villager kid boy mom INHERIT inherit live imagine experience share
INVADE invade sail travel land explore TESTIFY testify rebuff confess admit deny
DEFEAT defeat destroy transform battle inject APPLY apply struggle earn graduate develop
CHASE chase scare hit punch eat EXPEL expel inspire humiliate bully grant
TALK talk tell reassure assure calm DIG dig take welcome sink revolve
POP pop lift crawl laugh shake COMMAND command abduct invade seize surrender
SING sing perform cast produce dance RELENT relent refuse agree insist hope
APPROVE approve die suffer forbid collapse EMBARK embark befriend enlist recall meet
WEREWOLF werewolf mother parent killer father MANIPULATE manipulate conclude investigate conduct
DINER diner grandfather brother terrorist ELOPE elope forget succumb pretend like
DECAPITATE decapitate bite impale strangle stalk FLEE flee escape swim hide manage
REPLY reply say mention answer shout BABY baby sheriff vampire knight spirit
DEMON demon narrator mayor duck crime BIND bind select belong refer represent
CONGRATULATE congratulate cheer thank recommend REJOIN rejoin fly recruit include disguise
INTRODUCE introduce bring mock read hatch DARK dark major henchman warrior sergeant
HATCH hatch don exist vow undergo SENTENCE sentence arrest assign convict promote
FLIRT flirt reconcile date dance forgive DISTURB disturb frighten confuse tease scare
ADOPT adopt raise bear punish feed RIP rip vanish crawl drive smash
FAIRY fairy kidnapper soul slave president INFILTRATE infiltrate deduce leap evade obtain
BUG bug zombie warden king princess SCREAM scream faint wake clean hear

Table 3: Latent topics learned for K = 50 and P = 100. The words shown for each class are those with
the highest smoothed PMI, with the label being the single word with the highest PMI.

Freq Actions Characters Features
0.109 DARKm, SHOOTa,

SHOOTp

Jason Bourne (The Bourne Supremacy), Jack Traven
(Speed), Jean-Claude (Taken)

Action, Male, War
film

0.079 CAPTUREp,
INFILTRATEa, FLEEa

Aang (The Last Airbender), Carly (Transformers: Dark of
the Moon), Susan Murphy/Ginormica (Monsters vs. Aliens)

Female, Action,
Adventure

0.067 DEFEATa, DEFEATp,
INFILTRATEa

Glenn Talbot (Hulk), Batman (Batman and Robin), Hector
(Troy)

Action, Animation,
Adventure

0.060 COMMANDa, DEFEATp,
CAPTUREp

Zoe Neville (I Am Legend), Ursula (The Little Mermaid),
Joker (Batman)

Action, Adventure,
Male

0.046 INFILTRATEa,
EXPLOREa, EMBARKa

Peter Parker (Spider-Man 3), Ethan Hunt (Mission:
Impossible), Jason Bourne (The Bourne Ultimatum)

Male, Action, Age
34-36

0.036 FLIRTa, FLIRTp,
TESTIFYa

Mark Darcy (Bridget Jones: The Edge of Reason), Jerry
Maguire (Jerry Maguire), Donna (Mamma Mia!)

Female, Romance
Film, Comedy

0.033 EMBARKa, INFILTRATEa,
INVADEa

Perseus (Wrath of the Titans), Maximus Decimus Meridius
(Gladiator), Julius (Twins)

Male, Chinese
Movies, Spy

0.027 CONGRATULATEa,
CONGRATULATEp,
SWITCHa

Professor Albus Dumbledore (Harry Potter and the
Philosopher’s Stone), Magic Mirror (Shrek), Josephine
Anwhistle (Lemony Snicket’s A Series of Unfortunate
Events)

Age 58+, Family
Film, Age 51-57

0.025 SWITCHa, SWITCHp,
MANIPULATEa

Clarice Starling (The Silence of the Lambs), Hannibal
Lecter (The Silence of the Lambs), Colonel Bagley (The
Last Samurai)

Age 58+, Male,
Age 45-50

0.022 REPLYa, TALKp, FLIRTp Graham (The Holiday), Abby Richter (The Ugly Truth),
Anna Scott (Notting Hill)

Female, Comedy,
Romance Film

0.020 EXPLOREa, EMBARKa,
CAPTUREp

Harry Potter (Harry Potter and the Philosopher’s Stone),
Harry Potter (Harry Potter and the Chamber of Secrets),
Captain Leo Davidson (Planet of the Apes)

Adventure, Family
Film, Horror

0.018 FAIRYm, COMMANDa,
CAPTUREp

Captain Jack Sparrow (Pirates of the Caribbean: At
World’s End), Shrek (Shrek), Shrek (Shrek Forever After)

Action, Family
Film, Animation

0.018 DECAPITATEa,
DECAPITATEp, RIPa

Jericho Cane (End of Days), Martin Riggs (Lethal Weapon
2), Gabriel Van Helsing (Van Helsing)

Horror, Slasher,
Teen

0.017 APPLYa, EXPELp,
PURCHASEp

Oscar (Shark Tale), Elizabeth Halsey (Bad Teacher), Dre
Parker (The Karate Kid)

Female, Teen,
Under Age 22

Table 4: Of 100 latent personas learned, we present the top 14 by frequency. Actions index the latent
topic classes presented in table 3; subscripts denote whether the character is predominantly the agent (a),
patient (p) or is modified by an attribute (m).
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7 Conclusion

We present a method for automatically inferring
latent character personas from text (and metadata,
when available). While our testbed has been tex-
tual synopses of film, this approach is easily ex-
tended to other genres (such as novelistic fiction)
and to non-fictional domains as well, where the
choice of portraying a real-life person as embody-
ing a particular kind of persona may, for instance,
give insight into questions of media framing and
bias in newswire; self-presentation of individual
personas likewise has a long history in communi-
cation theory (Goffman, 1959) and may be use-
ful for inferring user types for personalization sys-
tems (El-Arini et al., 2012). While the goal of this
work has been to induce a set of latent character
classes and partition all characters among them,
one interesting question that remains is how a spe-
cific character’s actions may informatively be at
odds with their inferred persona, given the choice
of that persona as the single best fit to explain the
actions we observe. By examining how any indi-
vidual character deviates from the behavior indica-
tive of their type, we might be able to paint a more
nuanced picture of how a character can embody a
specific persona while resisting it at the same time.
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Marina Meilă. 2007. Comparing clusterings—an in-
formation based distance. Journal of Multivariate
Analysis, 98(5):873–895.

David Mimno and Andrew McCallum. 2008. Topic
models conditioned on arbitrary features with
dirichlet-multinomial regression. In Proceedings of
UAI.

360



Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of english words. In
Proceedings of the 31st Annual Meeting of the ACL.

E. J. G. Pitman. 1937. Significance tests which may
be applied to samples from any population. Supple-
ment to the Journal of the Royal Statistical Society,
4(1):119–130.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the ACL.

Michaela Regneri, Alexander Koller, Josef Ruppen-
hofer, and Manfred Pinkal. 2011. Learning script
participants from unlabeled data. In Proceedings of
the Conference on Recent Advances in Natural Lan-
guage Processing.

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
plans, goals, and understanding: An inquiry into
human knowledge structures. Lawrence Erlbaum,
Hillsdale, NJ.

Ivan Titov and Alexandre Klementiev. 2012. A
bayesian approach to unsupervised semantic role in-
duction. In Proceedings of the 13th Conference of
EACL.

Greg C. G. Wei and Martin A. Tanner. 1990. A Monte
Carlo implementation of the EM algorithm and the
poor man’s data augmentation algorithms. Journal
of the American Statistical Association, 85:699–704.

Limin Yao, Aria Haghighi, Sebastian Riedel, and An-
drew McCallum. 2011. Structured relation discov-
ery using generative models. In Proceedings of the
Conference on EMNLP.

361



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 362–371,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Scalable Decipherment for Machine Translation via Hash Sampling

Sujith Ravi
Google

Mountain View, CA 94043
sravi@gooogle.com

Abstract

In this paper, we propose a new Bayesian
inference method to train statistical ma-
chine translation systems using only non-
parallel corpora. Following a probabilis-
tic decipherment approach, we first intro-
duce a new framework for decipherment
training that is flexible enough to incorpo-
rate any number/type of features (besides
simple bag-of-words) as side-information
used for estimating translation models. In
order to perform fast, efficient Bayesian
inference in this framework, we then de-
rive a hash sampling strategy that is in-
spired by the work of Ahmed et al. (2012).
The new translation hash sampler enables
us to scale elegantly to complex mod-
els (for the first time) and large vocab-
ulary/corpora sizes. We show empirical
results on the OPUS data—our method
yields the best BLEU scores compared to
existing approaches, while achieving sig-
nificant computational speedups (several
orders faster). We also report for the
first time—BLEU score results for a large-
scale MT task using only non-parallel data
(EMEA corpus).

1 Introduction

Statistical machine translation (SMT) systems
these days are built using large amounts of bilin-
gual parallel corpora. The parallel corpora are
used to estimate translation model parameters in-
volving word-to-word translation tables, fertilities,
distortion, phrase translations, syntactic transfor-
mations, etc. But obtaining parallel data is an ex-
pensive process and not available for all language

pairs or domains. On the other hand, monolin-
gual data (in written form) exists and is easier to
obtain for many languages. Learning translation
models from monolingual corpora could help ad-
dress the challenges faced by modern-day MT sys-
tems, especially for low resource language pairs.
Recently, this topic has been receiving increasing
attention from researchers and new methods have
been proposed to train statistical machine trans-
lation models using only monolingual data in the
source and target language. The underlying moti-
vation behind most of these methods is that statis-
tical properties for linguistic elements are shared
across different languages and some of these sim-
ilarities (mappings) could be automatically identi-
fied from large amounts of monolingual data.

The MT literature does cover some prior work
on extracting or augmenting partial lexicons using
non-parallel corpora (Rapp, 1995; Fung and McK-
eown, 1997; Koehn and Knight, 2000; Haghighi
et al., 2008). However, none of these meth-
ods attempt to train end-to-end MT models, in-
stead they focus on mining bilingual lexicons from
monolingual corpora and often they require par-
allel seed lexicons as a starting point. Some of
them (Haghighi et al., 2008) also rely on addi-
tional linguistic knowledge such as orthography,
etc. to mine word translation pairs across related
languages (e.g., Spanish/English). Unsupervised
training methods have also been proposed in the
past for related problems in decipherment (Knight
and Yamada, 1999; Snyder et al., 2010; Ravi and
Knight, 2011a) where the goal is to decode un-
known scripts or ciphers.

The body of work that is more closely related to
ours include that of Ravi and Knight (2011b) who
introduced a decipherment approach for training
translation models using only monolingual cor-
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pora. Their best performing method uses an EM
algorithm to train a word translation model and
they show results on a Spanish/English task. Nuhn
et al. (2012) extend the former approach and im-
prove training efficiency by pruning translation
candidates prior to EM training with the help of
context similarities computed from monolingual
corpora.

In this work we propose a new Bayesian in-
ference method for estimating translation mod-
els from scratch using only monolingual corpora.
Secondly, we introduce a new feature-based repre-
sentation for sampling translation candidates that
allows one to incorporate any amount of additional
features (beyond simple bag-of-words) as side-
information during decipherment training. Fi-
nally, we also derive a new accelerated sampling
mechanism using locality sensitive hashing in-
spired by recent work on fast, probabilistic infer-
ence for unsupervised clustering (Ahmed et al.,
2012). The new sampler allows us to perform fast,
efficient inference with more complex translation
models (than previously used) and scale better to
large vocabulary and corpora sizes compared to
existing methods as evidenced by our experimen-
tal results on two different corpora.

2 Decipherment Model for Machine
Translation

We now describe the decipherment problem for-
mulation for machine translation.
Problem Formulation: Given a source text f
(i.e., source word sequences f1...fm) and a mono-
lingual target language corpus, our goal is to deci-
pher the source text and produce a target transla-
tion.

Contrary to standard machine translation train-
ing scenarios, here we have to estimate the transla-
tion model Pθ(f |e) parameters using only mono-
lingual data. During decipherment training, our
objective is to estimate the model parameters in or-
der to maximize the probability of the source text
f as suggested by Ravi and Knight (2011b).

argmax
θ

∏

f

∑

e

P (e) · Pθ(f |e) (1)

For P (e), we use a word n-gram language
model (LM) trained on monolingual target text.
We then estimate the parameters of the translation
model Pθ(f |e) during training.

Translation Model: Machine translation is a
much more complex task than solving other de-
cipherment tasks such as word substitution ci-
phers (Ravi and Knight, 2011b; Dou and Knight,
2012). The mappings between languages involve
non-determinism (i.e., words can have multiple
translations), re-ordering of words can occur as
grammar and syntax varies with language, and
in addition word insertion and deletion operations
are also involved.

Ideally, for the translation model P (f |e) we
would like to use well-known statistical models
such as IBM Model 3 and estimate its parame-
ters θ using the EM algorithm (Dempster et al.,
1977). But training becomes intractable with com-
plex translation models and scalability is also an
issue when large corpora sizes are involved and the
translation tables become huge to fit in memory.
So, instead we use a simplified generative process
for the translation model as proposed by Ravi and
Knight (2011b) and used by others (Nuhn et al.,
2012) for this task:

1. Generate a target (e.g., English) string e =
e1...el, with probability P (e) according to an
n-gram language model.

2. Insert a NULL word at any position in the
English string, with uniform probability.

3. For each target word token ei (including
NULLs), choose a source word translation fi,
with probability Pθ(fi|ei). The source word
may be NULL.

4. Swap any pair of adjacent source words
fi−1, fi, with probability P (swap); set to
0.1.

5. Output the foreign string f = f1...fm, skip-
ping over NULLs.

Previous approaches (Ravi and Knight, 2011b;
Nuhn et al., 2012) use the EM algorithm to es-
timate all the parameters θ in order to maximize
likelihood of the foreign corpus. Instead, we pro-
pose a new Bayesian inference framework to esti-
mate the translation model parameters. In spite of
using Bayesian inference which is typically slow
in practice (with standard Gibbs sampling), we
show later that our method is scalable and permits
decipherment training using more complex trans-
lation models (with several additional parameters).
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2.1 Adding Phrases, Flexible Reordering and
Fertility to Translation Model

We now extend the generative process (described
earlier) to more complex translation models.
Non-local Re-ordering: The generative process
described earlier limits re-ordering to local or ad-
jacent word pairs in a source sentence. We ex-
tend this to allow re-ordering between any pair of
words in the sentence.
Fertility: We also add a fertility model Pθfert to
the translation model using the formula:

Pθfert =
∏

i

nθ(φi|ei) · pφ01 (2)

nθ(φi|ei) =
αfert · P0(φi|ei) + C−i(ei, φi)

αfert + C−i(ei)
(3)

where, P0 represents the base distribution
(which is set to uniform) in a Chinese Restau-
rant Process (CRP)1 for the fertility model and
C−i represents the count of events occurring in
the history excluding the observation at position i.
φi is the number of source words aligned to (i.e.,
generated by) the target word ei. We use sparse
Dirichlet priors for all the translation model com-
ponents.2 φ0 represents the target NULL word fer-
tility and p1 is the insertion probability which is
fixed to 0.1. In addition, we set a maximum thresh-
old for fertility values φi ≤ γ ·m, where m is the
length of the source sentence. This discourages
a particular target word (e.g., NULL word) from
generating too many source words in the same sen-
tence. In our experiments, we set γ = 0.3. We en-
force this constraint in the training process during
sampling.3

Modeling Phrases: Finally, we extend the trans-
lation candidate set in Pθ(fi|ei) to model phrases
in addition to words for the target side (i.e., ei can
now be a word or a phrase4 previously seen in the
monolingual target corpus). This greatly increases
the training time since in each sampling step, we
now have many more ei candidates to choose
from. In Section 4, we describe how we deal

1Each component in the translation model (word/phrase
translations Pθ(fi|ei), fertility Pθfert , etc.) is modeled using
a CRP formulation.

2i.e., All the concentration parameters are set to low val-
ues; αf |e = αfert = 0.01.

3We only apply this constraint when training on source
text/corpora made of long sentences (>10 words) where the
sampler might converge very slowly. For short sentences, a
sparse prior on fertility αfert typically discourages a target
word from being aligned to too many different source words.

4Phrase size is limited to two words in our experiments.

with this problem by using a fast, efficient sam-
pler based on hashing that allows us to speed up
the Bayesian inference significantly whereas stan-
dard Gibbs sampling would be extremely slow.

3 Feature-based representation for
Source and Target

The model described in the previous section while
being flexible in describing the translation pro-
cess, poses several challenges for training. As
the source and target vocabulary sizes increase the
size of the translation table (|Vf | · |Ve|) increases
significantly and often becomes too huge to fit in
memory. Additionally, performing Bayesian in-
ference with such a complex model using stan-
dard Gibbs sampling can be very slow in prac-
tice. Here, we describe a new method for doing
Bayesian inference by first introducing a feature-
based representation for the source and target
words (or phrases) from which we then derive a
novel proposal distribution for sampling transla-
tion candidates.

We represent both source and target words in
a vector space similar to how documents are rep-
resented in typical information retrieval settings.
But unlike documents, here each word w is as-
sociated with a feature vector w1...wd (where wi

represents the weight for the feature indexed by i)
which is constructed from monolingual corpora.
For instance, context features for word w may in-
clude other words (or phrases) that appear in the
immediate context (n-gram window) surrounding
w in the monolingual corpus. Similarly, we can
add other features based on topic models, orthog-
raphy (Haghighi et al., 2008), temporal (Klemen-
tiev et al., 2012), etc. to our representation all of
which can be extracted from monolingual corpora.

Next, given two high dimensional vectors u and
v it is possible to calculate the similarity between
the two words denoted by s(u,v). The feature
construction process is described in more detail
below:
Target Language: We represent each word (or
phrase) ei with the following contextual features
along with their counts: (a) f−context: every (word
n-gram, position) pair immediately preceding ei
in the monolingual corpus (n=1, position=−1), (b)
similar features f+context to model the context fol-
lowing ei, and (c) we also throw in generic context
features fscontext without position information—
every word that co-occurs with ei in the same sen-
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tence. While the two position-features provide
specific context information (may be sparse for
large monolingual corpora), this feature is more
generic and captures long-distance co-occurrence
statistics.
Source Language: Words appearing in a source
sentence f are represented using the correspond-
ing target translation e = e1...em generated for
f in the current sample during training. For each
source word fj ∈ f , we look at the corresponding
word ej in the target translation. We then extract
all the context features of ej in the target trans-
lation sample sentence e and add these features
(f−context, f+context, fscontext) with weights to the
feature representation for fj .

Unlike the target word feature vectors (which
can be pre-computed from the monolingual tar-
get corpus), the feature vector for every source
word fj is dynamically constructed from the tar-
get translation sampled in each training iteration.
This is a key distinction of our framework com-
pared to previous approaches that use contextual
similarity (or any other) features constructed from
static monolingual corpora (Rapp, 1995; Koehn
and Knight, 2000; Nuhn et al., 2012).

Note that as we add more and more features for
a particular word (by training on larger monolin-
gual corpora or adding new types of features, etc.),
it results in the feature representation becoming
more sparse (especially for source feature vectors)
which can cause problems in efficiency as well
as robustness when computing similarity against
other vectors. In the next section, we will describe
how we mitigate this problem by projecting into a
low-dimensional space by computing hash signa-
tures.

In all our experiments, we only use the features
described above for representing source and tar-
get words. We note that the new sampling frame-
work is easily extensible to many additional fea-
ture types (for example, monolingual topic model
features, etc.) which can be efficiently handled by
our inference algorithm and could further improve
translation performance but we leave this for fu-
ture work.

4 Bayesian MT Decipherment via Hash
Sampling

The next step is to use the feature representations
described earlier and iteratively sample a target
word (or phrase) translation candidate ei for every

word fi in the source text f . This involves choos-
ing from |Ve| possible target candidates in every
step which can be highly inefficient (and infeasi-
ble for large vocabulary sizes). One possible strat-
egy is to compute similarity scores s(wfi ,we′) be-
tween the current source word feature vector wfi

and feature vectors we′∈Ve for all possible candi-
dates in the target vocabulary. Following this, we
can prune the translation candidate set by keeping
only the top candidates e∗ according to the sim-
ilarity scores. Nuhn et al. (2012) use a similar
strategy to obtain a more compact translation table
that improves runtime efficiency for EM training.
Their approach requires calculating and sorting all
|Ve| · |Vf | distances in timeO(V 2 · log(V )), where
V = max(|Ve|, |Vf |).
Challenges: Unfortunately, there are several ad-
ditional challenges which makes inference very
hard in our case. Firstly, we would like to in-
clude as many features as possible to represent
the source/target words in our framework besides
simple bag-of-words context similarity (for exam-
ple, left-context, right-context, and other general-
purpose features based on topic models, etc.). This
makes the complexity far worse (in practice) since
the dimensionality of the feature vectors d is a
much higher value than |Ve|. Computing similar-
ity scores alone (naı̈vely) would incur O(|Ve| · d)
time which is prohibitively huge since we have to
do this for every token in the source language cor-
pus. Secondly, for Bayesian inference we need to
sample from a distribution that involves comput-
ing probabilities for all the components (language
model, translation model, fertility, etc.) described
in Equation 1. This distribution needs to be com-
puted for every source word token fi in the corpus,
for all possible candidates ei ∈ Ve and the process
has to be repeated for multiple sampling iterations
(typically more than 1000). Doing standard col-
lapsed Gibbs sampling in this scenario would be
very slow and intractable.

We now present an alternative fast, efficient
inference strategy that overcomes many of the
challenges described above and helps acceler-
ate the sampling process significantly. First,
we set our translation models within the con-
text of a more generic and widely known fam-
ily of distributions—mixtures of exponential fam-
ilies. Then we derive a novel proposal distribu-
tion for sampling translation candidates and intro-
duce a new sampler for decipherment training that
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is based on locality sensitive hashing (LSH).
Hashing methods such as LSH have been

widely used in the past in several scenarios in-
cluding NLP applications (Ravichandran et al.,
2005). Most of these approaches employ LSH
within heuristic methods for speeding up nearest-
neighbor look up and similarity computation tech-
niques. However, we use LSH hashing within
a probabilistic framework which is very different
from the typical use of LSH.

Our work is inspired by some recent work by
Ahmed et al. (2012) on speeding up Bayesian in-
ference for unsupervised clustering. We use a sim-
ilar technique as theirs but a different approximate
distribution for the proposal, one that is better-
suited for machine translation models and without
some of the additional overhead required for com-
puting certain terms in the original formulation.
Mixtures of Exponential Families: The transla-
tion models described earlier (Section 2) can be
represented as mixtures of exponential families,
specifically mixtures of multinomials. In exponen-
tial families, distributions over random variables
are given by:

p(x; θ) = exp(〈φ(x), θ〉)− g(θ) (4)

where, φ : X → F is a map from x to the space
of sufficient statistics and θ ∈ F . The term g(θ)
ensures that p(x; θ) is properly normalized. X is
the domain of observations X = x1, ..., xm drawn
from some distribution p. Our goal is to estimate
p. In our case, this refers to the translation model
from Equation 1.

We also choose corresponding conjugate
Dirichlet distributions for priors which have the
property that the posterior distribution p(θ|X)
over θ remains in the same family as p(θ).

Note that the (translation) model in our
case consists of multiple exponential families
components—a multinomial pertaining to the lan-
guage model (which remains fixed5), and other
components pertaining to translation probabilities
Pθ(fi|ei), fertility Pθfert , etc. To do collapsed
Gibbs sampling under this model, we would per-
form the following steps during sampling:
1. For a given source word token fi draw target

5A high value for the LM concentration parameter α en-
sures that the LM probabilities do not deviate too far from the
original fixed base distribution during sampling.

translation

ei ∼ p(ei|F,E−i)
∝ p(e) · p(fi|ei, F−i, E−i)
· pfert(·|ei, F−i, E−i) · ... (5)

where, F is the full source text and E the full
target translation generated during sampling.
2. Update the sufficient statistics for the changed
target translation assignments.

For large target vocabularies, computing
p(fi|ei, F−i, E−i) dominates the inference pro-
cedure. We can accelerate this step significantly
using a good proposal distribution via hashing.
Locality Sensitive Hash Sampling: For general
exponential families, here is a Taylor approxima-
tion for the data likelihood term (Ahmed et al.,
2012):

p(x|·) ≈ exp(〈φ(x), θ∗〉)− g(θ∗) (6)

where, θ∗ is the expected parameter (sufficient
statistics).
For sampling the translation model, this involves
computing an expensive inner product 〈φ(fi), θ∗e′〉
for each source word fi which has to be repeated
for every translation candidate e′, including candi-
dates that have very low probabilities and are un-
likely to be chosen as the translation for fj .

So, during decipherment training a standard
collapsed Gibbs sampler will waste most of its
time on expensive computations that will be dis-
carded in the end anyways. Also, unlike some
standard generative models used in other unsu-
pervised learning scenarios (e.g., clustering) that
model only observed features (namely words ap-
pearing in the document), here we would like to
enrich the translation model with a lot more fea-
tures (side-information).

Instead, we can accelerate the computation of
the inner product 〈φ(fi), θ∗e′〉 using a hash sam-
pling strategy similar to (Ahmed et al., 2012).
The underlying idea here is to use binary hash-
ing (Charikar, 2002) to explore only those can-
didates e′ that are sufficiently close to the best
matching translation via a proposal distribution.
Next, we briefly introduce some notations and ex-
isting theoretical results related to binary hashing
before describing the hash sampling procedure.

For any two vectors u, v ∈ Rn,

〈u, v〉 = ‖u‖ · ‖v‖ · cos](u, v) (7)
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](u, v) = πPr{sgn[〈u,w〉] 6= sgn[〈v, w〉]}
(8)

where, w is a random vector drawn from a sym-
metric spherical distribution and the term inside
Pr{·} represents the relation between the signs of
the two inner products.

Let hl(v) ∈ {0, 1}l be an l-bit binary hash of v
where: [hl(v)]i := sgn[〈v, wi〉]; wi ∼ Um. Then
the probability of matching signs is given by:

zl(u, v) :=
1

l
‖h(u)− h(v)‖1 (9)

So, zl(u, v) measures how many bits differ be-
tween the hash vectors h(u) and h(v) associated
with u, v. Combining this with Equations 6 and 7
we can estimate the unnormalized log-likelihood
of a source word fi being translated as target e′

via:

sl(fi, e
′) ∝ ‖θe′‖ · ‖φ(fi)‖ · cosπzl(φ(fi), θe′)

(10)
For each source word fi, we now sample from

this new distribution (after normalization) instead
of the original one. The binary hash representa-
tion for the two vectors yield significant speedups
during sampling since Hamming distance compu-
tation between h(u) and h(v) is highly optimized
on modern CPUs. Hence, we can compute an es-
timate for the inner product quite efficiently.6

Updating the hash signatures: During training,
we compute the target candidate projection h(θe′)
and corresponding norm only once7 which is dif-
ferent from the setup of Ahmed et al. (2012). The
source word projection φ(fi) is dynamically up-
dated in every sampling step. Note that doing this
naı̈vely would scale slowly as O(Dl) where D is
the total number of features but instead we can up-
date the hash signatures in a more efficient manner
that scales as O(Di>0 l) where Di>0 is the number
of non-zero entries in the feature representation for
the source word φ(fi). Also, we do not need to
store the random vectors w in practice since these
can be computed on the fly using hash functions.
The inner product approximation also yields some
theoretical guarantees for the hash sampler.8

6We set l = 32 bits in our experiments.
7In practice, we can ignore the norm terms to further

speed up sampling since this is only an estimate for the pro-
posal distribution and we follow this with the Metropolis
Hastings step.

8For further details, please refer to (Ahmed et al., 2012).

4.1 Metropolis Hastings
In each sampling step, we use the distribution
from Equation 10 as a proposal distribution in
a Metropolis Hastings scheme to sample target
translations for each source word.

Once a new target translation e′ is sampled
for source word fi from the proposal distribution
q(·) ∝ exps

l(fi,e
′), we accept the proposal (and

update the corresponding hash signatures) accord-
ing to the probability r

r =
q(eoldi ) · pnew(·)
q(enewi ) · pold(·)

(11)

where, pold(·), pnew(·) are the true conditional
likelihood probabilities according to our model
(including the language model component) for the
old, new sample respectively.

5 Training Algorithm

Putting together all the pieces described in the pre-
vious section, we perform the following steps:
1. Initialization: We initialize the starting sample
as follows: for each source word token, randomly
sample a target word. If the source word also ex-
ists in the target vocabulary, then choose identity
translation instead of the random one.9

2. Hash Sampling Steps: For each source word
token fi, run the hash sampler:

(a) Generate a proposal distribution by comput-
ing the hamming distance between the feature vec-
tors for the source word and each target translation
candidate. Sample a new target translation ei for
fi from this distribution.

(b) Compute the acceptance probability for the
chosen translation using a Metropolis Hastings
scheme and accept (or reject) the sample. In prac-
tice, computation of the acceptance probability
only needs to be done every r iterations (where
r can be anywhere from 5 or 100).
Iterate through steps (2a) and (2b) for every word
in the source text and then repeat this process for
multiple iterations (usually 1000).
3. Other Sampling Operators: After every k it-
erations,10 perform the following sampling opera-
tions:

(a) Re-ordering: For each source word token fi
at position i, randomly choose another position j

9Initializing with identity translation rather than random
choice helps in some cases, especially for unknown words
that involve named entities, etc.

10We set k = 3 in our experiments.
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Corpus Language Sent. Words Vocab.
OPUS Spanish 13,181 39,185 562

English 19,770 61,835 411
EMEA French 550,000 8,566,321 41,733

Spanish 550,000 7,245,672 67,446

Table 1: Statistics of non-parallel corpora used
here.

in the source sentence and swap the translations ei
with ej . During the sampling process, we compute
the probabilities for the two samples—the origi-
nal and the swapped versions, and then sample an
alignment from this distribution.

(b) Deletion: For each source word token,
delete the current target translation (i.e., align it
with the target NULL token). As with the re-
ordering operation, we sample from a distribution
consisting of the original and the deleted versions.
4. Decoding the foreign sentence: Finally, once
the training is done (i.e., after all sampling iter-
ations) we choose the final sample as our target
translation output for the source text.

6 Experiments and Results

We test our method on two different corpora.
To evaluate translation quality, we use BLEU
score (Papineni et al., 2002), a standard evaluation
measure used in machine translation.

First, we present MT results on non-parallel
Spanish/English data from the OPUS cor-
pus (Tiedemann, 2009) which was used by Ravi
and Knight (2011b) and Nuhn et al. (2012).
We show that our method achieves the best
performance (BLEU scores) on this task while
being significantly faster than both the previous
approaches. We then apply our method to a
much larger non-parallel French/Spanish corpus
constructed from the EMEA corpus (Tiedemann,
2009). Here the vocabulary sizes are much larger
and we show how our new Bayesian decipherment
method scales well to this task inspite of using
complex translation models. We also report the
first BLEU results on such a large-scale MT task
under truly non-parallel settings (without using
any parallel data or seed lexicon).

For both the MT tasks, we also report BLEU
scores for a baseline system using identity trans-
lations for common words (words appearing in
both source/target vocabularies) and random trans-
lations for other words.

6.1 MT Task and Data

OPUS movie subtitle corpus (Tiedemann, 2009):
This is a large open source collection of parallel
corpora available for multiple language pairs. We
use the same non-parallel Spanish/English corpus
used in previous works (Ravi and Knight, 2011b;
Nuhn et al., 2012). The details of the corpus are
listed in Table 1. We use the entire Spanish source
text for decipherment training and evaluate the fi-
nal English output to report BLEU scores.
EMEA corpus (Tiedemann, 2009): This is a par-
allel corpus made out of PDF documents (arti-
cles from the medical domain) from the Euro-
pean Medicines Agency. We reserve the first 1k
sentences in French as our source text (also used
in decipherment training). To construct a non-
parallel corpus, we split the remaining 1.1M lines
as follows: first 550k sentences in French, last
550k sentences in Spanish. The latter is used to
construct a target language model used for deci-
pherment training. The corpus statistics are shown
in Table 1.

6.2 Results

OPUS: We compare the MT results (BLEU
scores) from different systems on the OPUS cor-
pus in Table 2. The first row displays baseline
performance. The next three rows 1a–1c display
performance achieved by two methods from Ravi
and Knight (2011b). Rows 2a, 2b show results
from the of Nuhn et al. (2012). The last two rows
display results for the new method using Bayesian
hash sampling. Overall, using a 3-gram language
model (instead of 2-gram) for decipherment train-
ing improves the performance for all methods. We
observe that our method produces much better re-
sults than the others even with a 2-gram LM. With
a 3-gram LM, the new method achieves the best
performance; the highest BLEU score reported on
this task. It is also interesting to note that the hash
sampling method yields much better results than
the Bayesian inference method presented in (Ravi
and Knight, 2011b). This is due to the accelerated
sampling scheme introduced earlier which helps it
converge to better solutions faster.

Table 2 (last column) also compares the effi-
ciency of different methods in terms of CPU time
required for training. Both our 2-gram and 3-gram
based methods are significantly faster than those
previously reported for EM based training meth-
ods presented in (Ravi and Knight, 2011b; Nuhn
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Method BLEU Time (hours)
Baseline system (identity translations) 6.9

1a. EM with 2-gram LM (Ravi and Knight, 2011b) 15.3 ∼850h
1b. EM with whole-segment LM (Ravi and Knight, 2011b) 19.3
1c. Bayesian IBM Model 3 with 2-gram LM (Ravi and Knight, 2011b) 15.1
2a. EM+Context with 2-gram LM (Nuhn et al., 2012) 15.2 50h
2b. EM+Context with 3-gram LM (Nuhn et al., 2012) 20.9 200h
3. Bayesian (standard) Gibbs sampling with 2-gram LM 222h
4a. Bayesian Hash Sampling∗ with 2-gram LM (this work) 20.3 2.6h
4b. Bayesian Hash Sampling∗ with 3-gram LM (this work) 21.2 2.7h

(∗sampler was run for 1000 iterations)

Table 2: Comparison of MT performance (BLEU scores) and efficiency (running time in CPU hours)
on the Spanish/English OPUS corpus using only non-parallel corpora for training. For the Bayesian
methods 4a and 4b, the samplers were run for 1000 iterations each on a single machine (1.8GHz Intel
processor). For 1a, 2a, 2b, we list the training times as reported by Nuhn et al. (2012) based on their EM
implementation for different settings.

Method BLEU
Baseline system (identity translations) 3.0
Bayesian Hash Sampling with 2-gram LM

vocab=full (Ve), add fertility=no 4.2
vocab=pruned∗, add fertility=yes 5.3

Table 3: MT results on the French/Spanish EMEA
corpus using the new hash sampling method. ∗The
last row displays results when we sample target
translations from a pruned candidate set (most fre-
quent 1k Spanish words + identity translation can-
didates) which enables the sampler to run much
faster when using more complex models.

et al., 2012). This is very encouraging since Nuhn
et al. (2012) reported obtaining a speedup by prun-
ing translation candidates (to ∼1/8th the original
size) prior to EM training. On the other hand, we
sample from the full set of translation candidates
including additional target phrase (of size 2) can-
didates which results in a much larger vocabulary
consisting of 1600 candidates (∼4 times the orig-
inal size), yet our method runs much faster and
yields better results. The table also demonstrates
the siginificant speedup achieved by the hash sam-
pler over a standard Gibbs sampler for the same
model (∼85 times faster when using a 2-gram
LM).

We also compare the results against MT per-
formance from parallel training—MOSES sys-
tem (Koehn et al., 2007) trained on 20k sentence
pairs. The comparable number for Table 2 is 63.6
BLEU.

Spanish (e) French (f)
el → les
la → la

por → des
sección → rubrique

administración → administration

Table 4: Sample (1-best) Spanish/French transla-
tions produced by the new method on the EMEA
corpus using word translation models trained with
non-parallel corpora.

EMEA Results Table 3 shows the results achieved
by our method on the larger task involving EMEA
corpus. Here, the target vocabulary Ve is much
higher (67k). In spite of this challenge and the
model complexity, we can still perform decipher-
ment training using Bayesian inference. We report
the first BLEU score results on such a large-scale
task using a 2-gram LM. This is achieved without
using any seed lexicon or parallel corpora. The re-
sults are encouraging and demonstrates the ability
of the method to scale to large-scale settings while
performing efficient inference with complex mod-
els, which we believe will be especially useful for
future MT application in scenarios where parallel
data is hard to obtain. Table 4 displays some sam-
ple 1-best translations learned using this method.

For comparison purposes, we also evaluate MT
performance on this task using parallel training
(MOSES trained with hundred sentence pairs) and
observe a BLEU score of 11.7.
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7 Discussion and Future Work

There exists some work (Dou and Knight, 2012;
Klementiev et al., 2012) that uses monolingual
corpora to induce phrase tables, etc. These when
combined with standard MT systems such as
Moses (Koehn et al., 2007) trained on parallel cor-
pora, have been shown to yield some BLEU score
improvements. Nuhn et al. (2012) show some
sample English/French lexicon entries learnt us-
ing EM algorithm with a pruned translation can-
didate set on a portion of the Gigaword corpus11

but do not report any actual MT results. In ad-
dition, as we showed earlier our method can use
Bayesian inference (which has a lot of nice proper-
ties compared to EM for unsupervised natural lan-
guage tasks (Johnson, 2007; Goldwater and Grif-
fiths, 2007)) and still scale easily to large vocabu-
lary, data sizes while allowing the models to grow
in complexity. Most importantly, our method pro-
duces better translation results (as demonstrated
on the OPUS MT task). And to our knowledge,
this is the first time that anyone has reported MT
results under truly non-parallel settings on such a
large-scale task (EMEA).

Our method is also easily extensible to out-
of-domain translation scenarios similar to (Dou
and Knight, 2012). While their work also uses
Bayesian inference with a slice sampling scheme,
our new approach uses a novel hash sampling
scheme for decipherment that can easily scale
to more complex models. The new decipher-
ment framework also allows one to easily incorpo-
rate additional information (besides standard word
translations) as features (e.g., context features,
topic features, etc.) for unsupervised machine
translation which can help further improve the per-
formance in addition to accelerating the sampling
process. We already demonstrated the utility of
this system by going beyond words and incorpo-
rating phrase translations in a decipherment model
for the first time.

In the future, we can obtain further speedups
(especially for large-scale tasks) by parallelizing
the sampling scheme seamlessly across multiple
machines and CPU cores. The new framework can
also be stacked with complementary techniques
such as slice sampling, blocked (and type) sam-
pling to further improve inference efficiency.

11http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?
catalogId=LDC2003T05

8 Conclusion

To summarize, our method is significantly faster
than previous methods based on EM or Bayesian
with standard Gibbs sampling and obtains better
results than any previously published methods for
the same task. The new framework also allows
performing Bayesian inference for decipherment
applications with more complex models than pre-
viously shown. We believe this framework will
be useful for further extending MT models in the
future to improve translation performance and for
many other unsupervised decipherment applica-
tion scenarios.
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Abstract

The English ’s possessive construction oc-
curs frequently in text and can encode
several different semantic relations; how-
ever, it has received limited attention from
the computational linguistics community.
This paper describes the creation of a se-
mantic relation inventory covering the use
of ’s, an inter-annotator agreement study
to calculate how well humans can agree
on the relations, a large collection of pos-
sessives annotated according to the rela-
tions, and an accurate automatic annota-
tion system for labeling new examples.
Our 21,938 example dataset is by far the
largest annotated possessives dataset we
are aware of, and both our automatic clas-
sification system, which achieves 87.4%
accuracy in our classification experiment,
and our annotation data are publicly avail-
able.

1 Introduction

The English ’s possessive construction occurs fre-
quently in text—approximately 1.8 times for every
100 hundred words in the Penn Treebank1(Marcus
et al., 1993)—and can encode a number of
different semantic relations including ownership
(John’s car), part-of-whole (John’s arm), extent (6
hours’ drive), and location (America’s rivers). Ac-
curate automatic possessive interpretation could
aid many natural language processing (NLP) ap-
plications, especially those that build semantic
representations for text understanding, text gener-
ation, question answering, or information extrac-
tion. These interpretations could be valuable for
machine translation to or from languages that al-
low different semantic relations to be encoded by

†The authors were affiliated with the USC Information
Sciences Institute at the time this work was performed.

the possessive/genitive.
This paper presents an inventory of 17 semantic

relations expressed by the English ’s-construction,
a large dataset annotated according to the this in-
ventory, and an accurate automatic classification
system. The final inter-annotator agreement study
achieved a strong level of agreement, 0.78 Fleiss’
Kappa (Fleiss, 1971) and the dataset is easily the
largest manually annotated dataset of possessive
constructions created to date. We show that our
automatic classication system is highly accurate,
achieving 87.4% accuracy on a held-out test set.

2 Background

Although the linguistics field has devoted signif-
icant effort to the English possessive (§6.1), the
computational linguistics community has given it
limited attention. By far the most notable excep-
tion to this is the line of work by Moldovan and
Badulescu (Moldovan and Badulescu, 2005; Bad-
ulescu and Moldovan, 2009), who define a tax-
onomy of relations, annotate data, calculate inter-
annotator agreement, and perform automatic clas-
sification experiments. Badulescu and Moldovan
(2009) investigate both ’s-constructions and of
constructions in the same context using a list of 36
semantic relations (including OTHER). They take
their examples from a collection of 20,000 ran-
domly selected sentences from Los Angeles Times
news articles used in TREC-9. For the 960 ex-
tracted ’s-possessive examples, only 20 of their se-
mantic relations are observed, including OTHER,
with 8 of the observed relations occurring fewer
than 10 times. They report a 0.82 Kappa agree-
ment (Siegel and Castellan, 1988) for the two
computational semantics graduates who annotate
the data, stating that this strong result “can be ex-
plained by the instructions the annotators received

1Possessive pronouns such as his and their are treated as
’s constructions in this work.
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prior to annotation and by their expertise in Lexi-
cal Semantics.”

Moldovan and Badulescu experiment with sev-
eral different classification techniques. They find
that their semantic scattering technique signifi-
cantly outperforms their comparison systems with
its F-measure score of 78.75. Their SVM system
performs the worst with only 23.25% accuracy—
suprisingly low, especially considering that 220 of
the 960 ’s examples have the same label.

Unfortunately, Badulescu and Moldovan (2009)
have not publicly released their data2. Also, it is
sometimes difficult to understand the meaning of
the semantic relations, partly because most rela-
tions are only described by a single example and,
to a lesser extent, because the bulk of the given
examples are of -constructions. For example, why
President of Bolivia warrants a SOURCE/FROM re-
lation but University of Texas is assigned to LOCA-
TION/SPACE is unclear. Their relations and pro-
vided examples are presented below in Table 1.

Relation Examples
POSSESSION Mary’s book
KINSHIP Mary’s brother
PROPERTY John’s coldness
AGENT investigation of the crew
TEMPORAL last year’s exhibition
DEPICTION-DEPICTED a picture of my niece
PART-WHOLE the girl’s mouth
CAUSE death of cancer
MAKE/PRODUCE maker of computer
LOCATION/SPACE Univerity of Texas
SOURCE/FROM President of Bolivia
TOPIC museum of art
ACCOMPANIMENT solution of the problem
EXPERIENCER victim of lung disease
RECIPIENT Josephine’s reward
ASSOCIATED WITH contractors of shipyard
MEASURE hundred (sp?) of dollars
THEME acquisition of the holding
RESULT result of the review
OTHER state of emergency

Table 1: The 20 (out of an original 36) seman-
tic relations observed by Badulescu and Moldovan
(2009) along with their examples.

3 Dataset Creation

We created the dataset used in this work from
three different sources, each representing a distinct
genre—newswire, non-fiction, and fiction. Of the

2Email requests asking for relation definitions and the
data were not answered, and, thus, we are unable to provide
an informative comparison with their work.

21,938 total examples, 15,330 come from sections
2–21 of the Penn Treebank (Marcus et al., 1993).
Another 5,266 examples are from The History of
the Decline and Fall of the Roman Empire (Gib-
bon, 1776), a non-fiction work, and 1,342 are from
The Jungle Book (Kipling, 1894), a collection of
fictional short stories. For the Penn Treebank, we
extracted the examples using the provided gold
standard parse trees, whereas, for the latter cases,
we used the output of an open source parser (Tratz
and Hovy, 2011).

4 Semantic Relation Inventory

The initial semantic relation inventory for pos-
sessives was created by first examining some of
the relevant literature on possessives, including
work by Badulescu and Moldovan (2009), Barker
(1995), Quirk et al. (1985), Rosenbach (2002), and
Taylor (1996), and then manually annotating the
large dataset of examples. Similar examples were
grouped together to form initial categories, and
groups that were considered more difficult were
later reexamined in greater detail. Once all the
examples were assigned to initial categories, the
process of refining the definitions and annotations
began.

In total, 17 relations were created, not including
OTHER. They are shown in Table 3 along with ap-
proximate (best guess) mappings to relations de-
fined by others, specifically those of Quirk et al.
(1985), whose relations are presented in Table 2,
as well as Badulescu and Moldovan’s (2009) rela-
tions.

Relation Examples
POSSESSIVE my wife’s father
SUBJECTIVE boy’s application
OBJECTIVE the family’s support
ORIGIN the general’s letter
DESCRIPTIVE a women’s college
MEASURE ten days’ absense
ATTRIBUTE the victim’s courage
PARTITIVE the baby’s eye
APPOSITION (marginal) Dublin’s fair city

Table 2: The semantic relations proposed by Quirk
et al. (1985) for ’s along with some of their exam-
ples.

4.1 Refinement and Inter-annotator
Agreement

The semantic relation inventory was refined us-
ing an iterative process, with each iteration involv-
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Relation Example HDFRE JB PTB Mappings
SUBJECTIVE Dora’s travels 1083 89 3169 Q:SUBJECTIVE, B:AGENT
PRODUCER’S PRODUCT Ford’s Taurus 47 44 1183 Q:ORIGIN, B:MAKE/PRODUCE

B:RESULT
OBJECTIVE Mowgli’s capture 380 7 624 Q:OBJECTIVE, B:THEME
CONTROLLER/OWNER/USER my apartment 882 157 3940 QB:POSSESSIVE
MENTAL EXPERIENCER Sam’s fury 277 22 232 Q:POSSESSIVE, B:EXPERIENCER
RECIPIENT their bonuses 12 6 382 Q:POSSESSIVE, B:RECIPIENT
MEMBER’S COLLECTION John’s family 144 31 230 QB:POSSESSIVE
PARTITIVE John’s arm 253 582 451 Q:PARTITIVE, B:PART-WHOLE
LOCATION Libya’s people 24 0 955 Q:POSSESSIVE, B:SOURCE/FROM

B:LOCATION/SPACE
TEMPORAL today’s rates 0 1 623 Q:POSSESSIVE, B:TEMPORAL
EXTENT 6 hours’ drive 8 10 5 QB:MEASURE
KINSHIP Mary’s kid 324 156 264 Q:POSSESSIVE, B:KINSHIP
ATTRIBUTE picture’s vividness 1013 34 1017 Q:ATTRIBUTE, B:PROPERTY
TIME IN STATE his years in Ohio 145 32 237 QB:POSSESSIVE
POSSESSIVE COMPOUND the [men’s room] 0 0 67 Q:DESCRIPTIVE
ADJECTIVE DETERMINED his fellow Brit 12 0 33
OTHER RELATIONAL NOUN his friend 629 112 1772 QB:POSSESSIVE
OTHER your Lordship 33 59 146 B:OTHER

Table 3: Possessive semantic relations along with examples, counts, and approximate mappings to other
inventories. Q and B represent Quirk et al. (1985) and Badulescu and Moldovan (2009), respectively.
HDFRE, JB, PTB: The History of the Decline and Fall of the Roman Empire, The Jungle Book, and the
Penn Treebank, respectively.

ing the annotation of a random set of 50 exam-
ples. Each set of examples was extracted such
that no two examples had an identical possessee
word. For a given example, annotators were in-
structed to select the most appropriate option but
could also record a second-best choice to provide
additional feedback. Figure 1 presents a screen-
shot of the HTML-based annotation interface. Af-
ter the annotation was complete for a given round,
agreement and entropy figures were calculated and
changes were made to the relation definitions and
dataset. The number of refinement rounds was ar-
bitrarily limited to five. To measure agreement,
in addition to calculating simple percentage agree-
ment, we computed Fleiss’ Kappa (Fleiss, 1971),
a measure of agreement that incorporates a cor-
rection for agreement due to chance, similar to
Cohen’s Kappa (Cohen, 1960), but which can be
used to measure agreement involving more than
two annotations per item. The agreement and en-
tropy figures for these five intermediate annotation
rounds are given in Table 4. In all the possessive
annotation tables, Annotator A refers to the pri-
mary author and the labels B and C refer to two
additional annotators.

To calculate a final measure of inter-annotator
agreement, we randomly drew 150 examples from
the dataset not used in the previous refinement it-
erations, with 50 examples coming from each of

Figure 1: Screenshot of the HTML template page
used for annotation.

the three original data sources. All three annota-
tors initially agreed on 82 of the 150 examples,
leaving 68 examples with at least some disagree-
ment, including 17 for which all three annotators
disagreed.

Annotators then engaged in a new task in which
they re-annotated these 68 examples, in each case
being able to select only from the definitions pre-
viously chosen for each example by at least one
annotator. No indication of who or how many
people had previously selected the definitions was
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Figure 2: Semantic relation distribution for the dataset presented in this work. HDFRE: History of the
Decline and Fall of the Roman Empire; JB: Jungle Book; PTB: Sections 2–21 of the Wall Street Journal
portion of the Penn Treebank.

given3. Annotators were instructed not to choose
a definition simply because they thought they had
chosen it before or because they thought some-
one else had chosen it. After the revision pro-
cess, all three annotators agreed in 109 cases and
all three disagreed in only 6 cases. During the re-
vision process, Annotator A made 8 changes, B
made 20 changes, and C made 33 changes. Anno-
tator A likely made the fewest changes because he,
as the primary author, spent a significant amount
of time thinking about, writing, and re-writing the
definitions used for the various iterations. Anno-
tator C’s annotation work tended to be less consis-
tent in general than Annotator B’s throughout this
work as well as in a different task not discussed
within this paper, which probably why Annotator
C made more changes than Annotator B. Prior to
this revision process, the three-way Fleiss’ Kappa
score was 0.60 but, afterwards, it was at 0.78. The
inter-annotator agreement and entropy figures for
before and after this revision process, including
pairwise scores between individual annotators, are
presented in Tables 5 and 6.

4.2 Distribution of Relations

The distribution of semantic relations varies some-
what by the data source. The Jungle Book’s dis-
tribution is significantly different from the oth-

3Of course, if three definitions were present, it could be
inferred that all three annotators had initially disagreed.

ers, with a much larger percentage of PARTITIVE

and KINSHIP relations. The Penn Treebank and
The History of the Decline and Fall of the Ro-
man Empire were substantially more similar, al-
though there are notable differences. For instance,
the LOCATION and TEMPORAL relations almost
never occur in The History of the Decline and Fall
of the Roman Empire. Whether these differences
are due to variations in genre, time period, and/or
other factors would be an interesting topic for fu-
ture study. The distribution of relations for each
data source is presented in Figure 2.

Though it is harder to compare across datasets
using different annotation schemes, there are
at least a couple notable differences between
the distribution of relations for Badulescu and
Moldovan’s (2009) dataset and the distribution of
relations used in this work. One such difference is
the much higher percentage of examples labeled as
TEMPORAL—11.35% vs only 2.84% in our data.
Another difference is a higher incidence of the
KINSHIP relation (6.31% vs 3.39%), although it
is far less frequent than it is in The Jungle Book
(11.62%).

4.3 Encountered Ambiguities

One of the problems with creating a list of rela-
tions expressed by ’s-constructions is that some
examples can potentially fit into multiple cate-
gories. For example, Joe’s resentment encodes
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both SUBJECTIVE relation and MENTAL EXPE-
RIENCER relations and UK’s cities encodes both
PARTITIVE and LOCATION relations. A represen-
tative list of these types of issues along with ex-
amples designed to illustrate them is presented in
Table 7.

5 Experiments

For the automatic classification experiments, we
set aside 10% of the data for test purposes, and
used the the remaining 90% for training. We used
5-fold cross-validation performed using the train-
ing data to tweak the included feature templates
and optimize training parameters.

5.1 Learning Approach
The LIBLINEAR (Fan et al., 2008) package was
used to train linear Support Vector Machine
(SVMs) for all the experiments in the one-against-
the-rest style. All training parameters took their
default values with the exception of the C pa-
rameter, which controls the tradeoff between mar-
gin width and training error and which was set to
0.02, the point of highest performance in the cross-
validation tuning.

5.2 Feature Generation
For feature generation, we conflated the pos-
sessive pronouns ‘his’, ‘her’, ‘my’, and ‘your’
to ‘person.’ Similarly, every term match-
ing the case-insensitive regular expression
(corp|co|plc|inc|ag|ltd|llc)\\.?) was replaced with
the word ‘corporation.’

All the features used are functions of the follow-
ing five words.

• The possessor word
• The possessee word
• The syntactic governor of the possessee word
• The set of words between the possessor and

possessee word (e.g., first in John’s first kiss)
• The word to the right of the possessee

The following feature templates are used to gener-
ate features from the above words. Many of these
templates utilize information from WordNet (Fell-
baum, 1998).

• WordNet link types (link type list) (e.g., at-
tribute, hypernym, entailment)

• Lexicographer filenames (lexnames)—top
level categories used in WordNet (e.g.,
noun.body, verb.cognition)

• Set of words from the WordNet definitions
(gloss terms)

• The list of words connected via WordNet
part-of links (part words)

• The word’s text (the word itself)
• A collection of affix features (e.g., -ion, -er,

-ity, -ness, -ism)
• The last {2,3} letters of the word
• List of all possible parts-of-speech in Word-

Net for the word
• The part-of-speech assigned by the part-of-

speech tagger
• WordNet hypernyms
• WordNet synonyms
• Dependent words (all words linked as chil-

dren in the parse tree)
• Dependency relation to the word’s syntactic

governor

5.3 Results
The system predicted correct labels for 1,962 of
the 2,247 test examples, or 87.4%. The accuracy
figures for the test instances from the Penn Tree-
bank, The Jungle Book, and The History of the De-
cline and Fall of the Roman Empire were 88.8%,
84.7%, and 80.6%, respectively. The fact that the
score for The Jungle Book was the lowest is some-
what surprising considering it contains a high per-
centage of body part and kinship terms, which tend
to be straightforward, but this may be because the
other sources comprise approximately 94% of the
training examples.

Given that human agreement typically repre-
sents an upper bound on machine performance
in classification tasks, the 87.4% accuracy figure
may be somewhat surprising. One explanation is
that the examples pulled out for the inter-annotator
agreement study each had a unique possessee
word. For example, “expectations”, as in “ana-
lyst’s expectations”, occurs 26 times as the pos-
sessee in the dataset, but, for the inter-annotator
agreement study, at most one of these examples
could be included. More importantly, when the
initial relations were being defined, the data were
first sorted based upon the possessee and then the
possessor in order to create blocks of similar ex-
amples. Doing this allowed multiple examples to
be assigned to a category more quickly because
one can decide upon a category for the whole lot
at once and then just extract the few, if any, that be-
long to other categories. This is likely to be both
faster and more consistent than examining each
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Agreement (%) Fleiss’ κ Entropy
Iteration A vs B A vs C B vs C A vs B A vs C B vs C All A B C
1 0.60 0.68 0.54 0.53 0.62 0.46 0.54 3.02 2.98 3.24
2 0.64 0.44 0.50 0.59 0.37 0.45 0.47 3.13 3.40 3.63
3 0.66 0.66 0.72 0.57 0.58 0.66 0.60 2.44 2.47 2.70
4 0.64 0.30 0.38 0.57 0.16 0.28 0.34 2.80 3.29 2.87
5 0.72 0.66 0.60 0.67 0.61 0.54 0.61 3.21 3.12 3.36

Table 4: Intermediate results for the possessives refinement work.

Agreement (%) Fleiss’ κ Entropy
Portion A vs B A vs C B vs C A vs B A vs C B vs C All A B C
PTB 0.62 0.62 0.54 0.56 0.56 0.46 0.53 3.22 3.17 3.13
HDFRE 0.82 0.78 0.72 0.77 0.71 0.64 0.71 2.73 2.75 2.73
JB 0.74 0.56 0.54 0.70 0.50 0.48 0.56 3.17 3.11 3.17
All 0.73 0.65 0.60 0.69 0.61 0.55 0.62 3.43 3.35 3.51

Table 5: Final possessives annotation agreement figures before revisions.

Agreement (%) Fleiss’ κ Entropy
Source A vs B A vs C B vs C A vs B A vs C B vs C All A B C
PTB 0.78 0.74 0.74 0.75 0.70 0.70 0.72 3.30 3.11 3.35
HDFRE 0.78 0.76 0.76 0.74 0.72 0.72 0.73 3.03 2.98 3.17
JB 0.92 0.90 0.86 0.90 0.87 0.82 0.86 2.73 2.71 2.65
All 0.83 0.80 0.79 0.80 0.77 0.76 0.78 3.37 3.30 3.48

Table 6: Final possessives annotation agreement figures after revisions.

First Relation Second Relation Example
PARTITIVE CONTROLLER/... BoA’s Mr. Davis
PARTITIVE LOCATION UK’s cities
PARTITIVE OBJECTIVE BoA’s adviser
PARTITIVE OTHER RELATIONAL NOUN BoA’s chairman
PARTITIVE PRODUCER’S PRODUCT the lamb’s wool
CONTROLLER/... PRODUCER’S PRODUCT the bird’s nest
CONTROLLER/... OBJECTIVE his assistant
CONTROLLER/... LOCATION Libya’s oil company
CONTROLLER/... ATTRIBUTE Joe’s strength
CONTROLLER/... MEMBER’S COLLECTION the colonel’s unit
CONTROLLER/... RECIPIENT Joe’s trophy
RECIPIENT OBJECTIVE Joe’s reward
SUBJECTIVE PRODUCER’S PRODUCT Joe’s announcement
SUBJECTIVE OBJECTIVE its change
SUBJECTIVE CONTROLLER/... Joe’s employee
SUBJECTIVE LOCATION Libya’s devolution
SUBJECTIVE MENTAL EXPERIENCER Joe’s resentment
OBJECTIVE MENTAL EXPERIENCER Joe’s concern
OBJECTIVE LOCATION the town’s inhabitants
KINSHIP OTHER RELATIONAL NOUN his fiancee

Table 7: Ambiguous/multiclass possessive examples.

example in isolation. This advantage did not ex-
ist in the inter-annotator agreement study.

5.4 Feature Ablation Experiments

To evaluate the importance of the different types
of features, the same experiment was re-run multi-
ple times, each time including or excluding exactly
one feature template. Before each variation, the C

parameter was retuned using 5-fold cross valida-
tion on the training data. The results for these runs
are shown in Table 8.

Based upon the leave-one-out and only-one fea-
ture evaluation experiment results, it appears that
the possessee word is more important to classifica-
tion than the possessor word. The possessor word
is still valuable though, with it likely being more
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valuable for certain categories (e.g., TEMPORAL

and LOCATION) than others (e.g., KINSHIP). Hy-
pernym and gloss term features proved to be about
equally valuable. Curiously, although hypernyms
are commonly used as features in NLP classifica-
tion tasks, gloss terms, which are rarely used for
these tasks, are approximately as useful, at least in
this particular context. This would be an interest-
ing result to examine in greater detail.

6 Related Work

6.1 Linguistics

Semantic relation inventories for the English ’s-
construction have been around for some time; Tay-
lor (1996) mentions a set of 6 relations enumerated
by Poutsma (1914–1916). Curiously, there is not
a single dominant semantic relation inventory for
possessives. A representative example of semantic
relation inventories for ’s-constructions is the one
given by Quirk et al. (1985) (presented earlier in
Section 2).

Interestingly, the set of relations expressed by
possessives varies by language. For example,
Classical Greek permits a standard of comparison
relation (e.g., “better than Plato”) (Nikiforidou,
1991), and, in Japanese, some relations are ex-
pressed in the opposite direction (e.g., “blue eye’s
doll”) while others are not (e.g., “Tanaka’s face”)
(Nishiguchi, 2009).

To explain how and why such seemingly dif-
ferent relations as whole+part and cause+effect
are expressed by the same linguistic phenomenon,
Nikiforidou (1991) pursues an approach of
metaphorical structuring in line with the work
of Lakoff and Johnson (1980) and Lakoff (1987).
She thus proposes a variety of such metaphors as
THINGS THAT HAPPEN (TO US) ARE (OUR) POS-
SESSIONS and CAUSES ARE ORIGINS to explain
how the different relations expressed by posses-
sives extend from one another.

Certainly, not all, or even most, of the linguis-
tics literature on English possessives focuses on
creating lists of semantic relations. Much of the
work covering the semantics of the ’s construc-
tion in English, such as Barker’s (1995) work,
dwells on the split between cases of relational
nouns, such as sister, that, by their very definition,
hold a specific relation to other real or conceptual
things, and non-relational, or sortal nouns (Löb-
ner, 1985), such as car.

Vikner and Jensen’s (2002) approach for han-

dling these disparate cases is based upon Puste-
jovsky’s (1995) generative lexicon framework.
They coerce sortal nouns (e.g., car) into being
relational, purporting to create a uniform analy-
sis. They split lexical possession into four types:
inherent, part-whole, agentive, and control, with
agentive and control encompassing many, if not
most, of the cases involving sortal nouns.

A variety of other issues related to possessives
considered by the linguistics literature include ad-
jectival modifiers that significantly alter interpre-
tation (e.g., favorite and former), double geni-
tives (e.g., book of John’s), bare possessives (i.e.,
cases where the possessee is omitted, as in “Eat
at Joe’s”), possessive compounds (e.g., driver’s
license), the syntactic structure of possessives,
definitiveness, changes over the course of his-
tory, and differences between languages in terms
of which relations may be expressed by the geni-
tive. Representative work includes that by Barker
(1995), Taylor (1996), Heine (1997), Partee and
Borschev (1998), Rosenbach (2002), and Vikner
and Jensen (2002).

6.2 Computational Linguistics

Though the relation between nominals in the
English possessive construction has received lit-
tle attention from the NLP community, there is
a large body of work that focuses on similar
problems involving noun-noun relation interpreta-
tion/paraphrasing, including interpreting the rela-
tions between the components of noun compounds
(Butnariu et al., 2010), disambiguating preposition
senses (Litkowski and Hargraves, 2007), or anno-
tating the relation between nominals in more arbi-
trary constructions within the same sentence (Hen-
drickx et al., 2009).

Whereas some of these lines of work use fixed
inventories of semantic relations (Lauer, 1995;
Nastase and Szpakowicz, 2003; Kim and Bald-
win, 2005; Girju, 2009; Ó Séaghdha and Copes-
take, 2009; Tratz and Hovy, 2010), other work al-
lows for a nearly infinite number of interpretations
(Butnariu and Veale, 2008; Nakov, 2008). Recent
SemEval tasks (Butnariu et al., 2009; Hendrickx et
al., 2013) pursue this more open-ended strategy. In
these tasks, participating systems recover the im-
plicit predicate between the nouns in noun com-
pounds by creating potentially unique paraphrases
for each example. For instance, a system might
generate the paraphrase made of for the noun com-

378



Feature Type Word(s) Results
L R C G B N LOO OO

Gloss Terms � 0.867 (0.04) 0.762 (0.08)
Hypernyms � 0.870 (0.04) 0.760 (0.16)
Synonyms � 0.873 (0.04) 0.757 (0.32)
Word Itself � 0.871 (0.04) 0.745 (0.08)
Lexnames � 0.871 (0.04) 0.514 (0.32)
Last Letters � 0.870 (0.04) 0.495 (0.64)
Lexnames � 0.872 (0.04) 0.424 (0.08)
Link types � 0.874 (0.02) 0.398 (0.64)
Link types � 0.870 (0.04) 0.338 (0.32)
Word Itself � 0.870 (0.04) 0.316 (0.16)
Last Letters � 0.872 (0.02) 0.303 (0.16)
Gloss Terms � 0.872 (0.02) 0.271 (0.04)
Hypernyms � 0.875 (0.02) 0.269 (0.08)
Word Itself � 0.874 (0.02) 0.261 (0.08)
Synonyms � 0.874 (0.02) 0.260 (0.04)
Lexnames � 0.874 (0.02) 0.247 (0.04)
Part-of-speech List � 0.873 (0.02) 0.245 (0.16)
Part-of-speech List � 0.874 (0.02) 0.243 (0.16)
Dependency � 0.872 (0.02) 0.241 (0.16)
Part-of-speech List � 0.874 (0.02) 0.236 (0.32)
Link Types � 0.874 (0.02) 0.236 (0.64)
Word Itself � 0.870 (0.02) 0.234 (0.32)
Assigned Part-of-Speech � 0.874 (0.02) 0.228 (0.08)
Affixes � 0.873 (0.02) 0.227 (0.16)
Assigned Part-of-Speech � 0.873 (0.02) 0.194 (0.16)
Hypernyms � 0.873 (0.02) 0.186 (0.04)
Lexnames � 0.870 (0.04) 0.170 (0.64)
Text of Dependents � 0.874 (0.02) 0.156 (0.08)
Parts List � 0.873 (0.02) 0.141 (0.16)
Affixes � 0.870 (0.04) 0.114 (0.32)
Affixes � 0.873 (0.02) 0.105 (0.04)
Parts List � 0.874 (0.02) 0.103 (0.16)

Table 8: Results for leave-one-out and only-one feature template ablation experiment results for all
feature templates sorted by the only-one case. L, R, C, G, B, and N stand for left word (possessor), right
word (possessee), pairwise combination of outputs for possessor and possessee, syntactic governor of
possessee, all tokens between possessor and possessee, and the word next to the possessee (on the right),
respectively. The C parameter value used to train the SVMs is shown in parentheses.

pound pepperoni pizza. Computer-generated re-
sults are scored against a list of human-generated
options in order to rank the participating systems.
This approach could be applied to possessives in-
terpretation as well.

Concurrent with the lack of NLP research on
the subject is the absence of available annotated
datasets for training, evaluation, and analysis. The
NomBank project (Meyers et al., 2004) provides
coarse annotations for some of the possessive con-
structions in the Penn Treebank, but only those
that meet their criteria.

7 Conclusion

In this paper, we present a semantic relation in-
ventory for ’s possessives consisting of 17 rela-
tions expressed by the English ’s construction, the

largest available manually-annotated collection of
possessives, and an effective method for automat-
ically assigning the relations to unseen examples.
We explain our methodology for building this in-
ventory and dataset and report a strong level of
inter-annotator agreement, reaching 0.78 Kappa
overall. The resulting dataset is quite large, at
21,938 instances, and crosses multiple domains,
including news, fiction, and historical non-fiction.
It is the only large fully-annotated publicly-
available collection of possessive examples that
we are aware of. The straightforward SVM-
based automatic classification system achieves
87.4% accuracy—the highest automatic posses-
sive interpretation accuracy figured reported to
date. These high results suggest that SVMs are
a good choice for automatic possessive interpre-
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tation systems, in contrast to Moldovan and Bad-
ulescu (2005) findings. The data and software
presented in this paper are available for down-
load at http://www.isi.edu/publications/licensed-
sw/fanseparser/index.html.

8 Future Work

Going forward, we would like to examine the var-
ious ambiguities of possessives described in Sec-
tion 4.3. Instead of trying to find the one-best
interpretation for a given possessive example, we
would like to produce a list of all appropriate in-
tepretations.

Another avenue for future research is to study
variation in possessive use across genres, includ-
ing scientific and technical genres. Similarly, one
could automatically process large volumes of text
from various time periods to investigate changes
in the use of the possessive over time.
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Abstract

This paper presents novel methods for
modeling numerical common sense: the
ability to infer whether a given number
(e.g., three billion) is large, small, or nor-
mal for a given context (e.g., number of
people facing a water shortage). We first
discuss the necessity of numerical com-
mon sense in solving textual entailment
problems. We explore two approaches for
acquiring numerical common sense. Both
approaches start with extracting numeri-
cal expressions and their context from the
Web. One approach estimates the distribu-
tion of numbers co-occurring within a con-
text and examines whether a given value is
large, small, or normal, based on the distri-
bution. Another approach utilizes textual
patterns with which speakers explicitly ex-
presses their judgment about the value of
a numerical expression. Experimental re-
sults demonstrate the effectiveness of both
approaches.

1 Introduction

Textual entailment recognition (RTE) involves a
wide range of semantic inferences to determine
whether the meaning of a hypothesis sentence (h)
can be inferred from another text (t) (Dagan et
al., 2006). Although several evaluation campaigns
(e.g., PASCAL/TAC RTE challenges) have made
significant progress, the RTE community recog-
nizes the necessity of a deeper understanding of
the core phenomena involved in textual inference.
Such recognition comes from the ideas that cru-
cial progress may derive from decomposing the
complex RTE task into basic phenomena and from
solving each basic phenomenon separately (Ben-
tivogli et al., 2010; Sammons et al., 2010; Cabrio
and Magnini, 2011; Toledo et al., 2012).

Given this background, we focus on solving one
of the basic phenomena in RTE: semantic infer-
ence related to numerical expressions. The spe-
cific problem we address is acquisition of numeri-
cal common sense. For example,

(1) t : Before long, 3b people will face a water
shortage in the world.

h : Before long, a serious water shortage
will occur in the world.

Although recognizing the entailment relation be-
tween t and h is frustratingly difficult, we assume
this inference is decomposable into three phases:

3b people face a water shortage.

⇔ 3,000,000,000 people face a water shortage.

|= many people face a water shortage.

|= a serious water shortage.

In the first phase, it is necessary to recognize 3b
as a numerical expression and to resolve the ex-
pression 3b into the exact amount 3,000,000,000.
The second phase is much more difficult because
we need subjective but common-sense knowledge
that 3,000,000,000 people is a large number.

In this paper, we address the first and sec-
ond phases of inference as an initial step towards
semantic processing with numerical expressions.
The contributions of this paper are four-fold.

1. We examine instances in existing RTE cor-
pora, categorize them into groups in terms of
the necessary semantic inferences, and dis-
cuss the impact of this study for solving RTE
problems with numerical expressions.

2. We describe a method of normalizing numer-
ical expressions referring to the same amount
in text into a unified semantic representation.

3. We present approaches for aggregating nu-
merical common sense from examples of nu-
merical expressions and for judging whether
a given amount is large, small, or normal.
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4. We demonstrate the effectiveness of this ap-
proach, reporting experimental results and
analyses in detail. Although it would be ideal
to evaluate the impact of this study on the
overall RTE task, we evaluate each phase sep-
arately. We do this because the existing RTE
data sets tend to exhibit very diverse linguis-
tic phenomena, and it is difficult to employ
such data for evaluating the real impact of
this study.

2 Related work

Surprisingly, NLP research has paid little atten-
tion to semantic processing of numerical expres-
sions. This is evident when we compare with tem-
poral expressions, for which corpora (e.g., ACE-
20051, TimeBank2) were developed with annota-
tion schemes (e.g., TIMEX3, TimeML4).

Several studies deal with numerical expressions
in the context of information extraction (Bakalov
et al., 2011), information retrieval (Fontoura et al.,
2006; Yoshida et al., 2010), and question answer-
ing (Moriceau, 2006). Numbers such as prod-
uct prices and weights have been common targets
of information extraction. Fontoura et al. (2006)
and Yoshida et al. (2010) presented algorithms and
data structures that allow number-range queries
for searching documents. However, these studies
do not interpret the quantity (e.g., 3,000,000,000)
of a numerical expression (e.g., 3b people), but
rather treat numerical expressions as strings.

Banerjee et al. (2009) focused on quantity con-
sensus queries, in which there is uncertainty about
the quantity (e.g., weight airbus A380 pounds).
Given a query, their approach retrieves documents
relevant to the query and identifies the quantities
of numerical expressions in the retrieved docu-
ments. They also proposed methods for enumer-
ating and ranking the candidates for the consen-
sus quantity intervals. Even though our study
shares a similar spirit (modeling of consensus for
quantities) with Banerjee et al. (2009), their goal
is different: to determine ground-truth values for
queries.

In question answering, to help “sanity check”
answers with numerical values that were

1http://www.itl.nist.gov/iad/mig/
tests/ace/ace05/

2http://www.timeml.org/site/timebank/
timebank.html

3http://timex2.mitre.org/
4http://timeml.org/site/index.html

way out of common-sense ranges, IBM’s PI-
QUANT (Prager et al., 2003; Chu-Carroll et al.,
2003) used information in Cyc (Lenat, 1995).
For example, their question-answering system
rejects 200 miles as a candidate answer for the
height of Mt. Everest, since Cyc knows mountains
are between 1,000 and 30,000 ft. high. They
also consider the problem of variations in the
precision of numbers (e.g., 5 million, 5.1 million,
5,200,390) and unit conversions (e.g., square
kilometers and acres).

Some recent studies delve deeper into the se-
mantic interpretation of numerical expressions.
Aramaki et al. (2007) focused on the physical size
of an entity to predict the semantic relation be-
tween entities. For example, knowing that a book
has a physical size of 20 cm × 25 cm and that a li-
brary has a size of 10 m × 10 m, we can estimate
that a library contains a book (content-container
relation). Their method acquires knowledge about
entity size from the Web (by issuing queries like
“book (*cm x *cm)”), and integrates the knowl-
edge as features for the classification of relations.

Davidov and Rappoport (2010) presented a
method for the extraction from the Web and ap-
proximation of numerical object attributes such as
height and weight. Given an object-attribute pair,
the study expands the object into a set of compa-
rable objects and then approximates the numerical
values even when no exact value can be found in a
text. Aramaki et al. (2007) and Davidov and Rap-
poport (2010) rely on hand-crafted patterns (e.g.,
“Object is * [unit] tall”), focusing on a specific set
of numerical attributes (e.g., height, weight, size).
In contrast, this study can handle any kind of target
and situation that is quantified by numbers, e.g.,
number of people facing a water shortage.

Recently, the RTE community has started to
pay some attention to the appropriate processing
of numerical expressions. Iftene (2010) presented
an approach for matching numerical ranges ex-
pressed by a set of phrases (e.g., more than and at
least). Tsuboi et al. (2011) designed hand-crafted
rules for matching intervals expressed by temporal
expressions. However, these studies do not nec-
essarily focus on semantic processing of numeri-
cal expressions; thus, these studies do not normal-
ize units of numerical expressions nor make infer-
ences with numerical common sense.

Sammons et al. (2010) reported that most sys-
tems submitted to RTE-5 failed on examples
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where numeric reasoning was necessary. They ar-
gued the importance of aligning numerical quanti-
ties and performing numerical reasoning in RTE.
LoBue and Yates (2011) identified 20 categories
of common-sense knowledge that are prevalent in
RTE. One of the categories comprises arithmetic
knowledge (including computations, comparisons,
and rounding). They concluded that many kinds
of the common-sense knowledge have received
scarce attention from researchers even though the
knowledge is essential to RTE. These studies pro-
vided a closer look at the phenomena involved in
RTE, but they did not propose a solution for han-
dling numerical expressions.

3 Investigation of textual-entailment
pairs with numerical expressions

In this section, we investigate textual entailment
(TE) pairs in existing corpora in order to study
the core phenomena that establish an entailment
relation. We used two Japanese TE corpora:
RITE (Shima et al., 2011) and Odani et al. (2008).
RITE is an evaluation workshop of textual entail-
ment organized by NTCIR-9, and it targets the
English, Japanese, and Chinese languages. We
used the Japanese portions of the development
and training data. Odani et al. (2008) is another
Japanese corpus that was manually created. The
total numbers of text-hypothesis (T -H) pairs are
1,880 (RITE) and 2,471 (Odani).

We manually selected sentence pairs in which
one or both of the sentences contained a numerical
expression. Here, we define the term numerical
expression as an expression containing a number
or quantity represented by a numeral and a unit.
For example, 3 kilometers is a numerical expres-
sion with the numeral 3 and the unit kilometer.
Note that intensity of 4 is not a numerical expres-
sion because intensity is not a unit.

We obtained 371 pairs from the 4,351 T -H
pairs. We determined the inferences needed to
prove ENTAILMENT or CONTRADICTION of the
hypotheses, and classified the 371 pairs into 11
categories. Note that we ignored T -H pairs in
which numerical expressions were unnecessary
to prove the entailment relation (e.g., Socrates
was sentenced to death by 500 jury members and
Socrates was sentenced to death). Out of 371
pairs, we identified 114 pairs in which numerical
expressions played a central role in the entailment
relation.

Table 1 summarizes the categories of TE phe-
nomena we found in the data set. The largest cate-
gory is numerical matching (32 pairs). We can in-
fer an entailment relation in this category by align-
ing two numerical expressions, e.g., 2.2 million
|= over 800 thousand. This is the most funda-
mental task in numerical reasoning, interpreting
the amount (number, unit, and range) in a numer-
ical expression. We address this task in Section
4.1. The second largest category requires com-
mon sense about numerical amounts. In order to
recognize textual entailment of pairs in this cat-
egory, we need common-sense knowledge about
humans’ subjective judgment of numbers. We
consider this problem in Section 5.

To summarize, this study covers 37.9% of the
instances in Table 1, focusing on the first and sec-
ond categories. Due to space limitations, we omit
the explanations for the other phenomena, which
require such things as lexical knowledge, arith-
metic operations, and counting. The coverage of
this study might seem small, but it is difficult to
handle varied phenomena with a unified approach.
We believe that this study forms the basis for in-
vestigating other phenomena of numerical expres-
sions in the future.

4 Collecting numerical expressions from
the Web

In this paper, we explore two approaches to acquir-
ing numerical common sense. Both approaches
start with extracting numerical expressions and
their context from the Web. We define a context
as the verb and its arguments that appear around a
numerical expression.

For instance, the context of 3b people in the sen-
tence 3b people face a water shortage is “face”
and “water shortage.” In order to extract and
aggregate numerical expressions in various doc-
uments, we converted the numerical expressions
into semantic representations (to be described in
Section 4.1), and extracted their context (to be de-
scribed in Section 4.2).

The first approach for acquiring numerical com-
mon sense estimates the distribution of numbers
that co-occur within a context, and examines
whether a given value is large, small, or normal
based on that distribution (to be described in Sec-
tion 5.1). The second approach utilizes textual
patterns with which speakers explicitly expresses
their judgment about the value of a numerical ex-
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Category Definition Example #

Numerical matching
Aligning numerical expres-
sions in T and H, considering
differences in unit, range, etc.

t: It is said that there are about 2.2 million alcoholics in the whole country.
h: It is estimated that there are over 800 thousand people who are alcoholics. 32

Numerical common sense
Inferring by interpreting the
numerical amount (large or
small).

t: In the middle of the 21st century, 7 billion people, corresponding to 70% of the
global population, will face a water shortage.
h: It is concerning that a serious water shortage will spread around the world in the
near future.

12

Lexical knowledge Inferring by using numerical
aspects of word meanings.

t: Mr. and Ms. Sato celebrated their 25th wedding anniversary.
h: Mr. and Ms. Sato celebrated their silver wedding anniversary. 12

Arithmetic Arithmetic operations includ-
ing addition and subtraction.

t: The number of 2,000-yen bills in circulation has increased to 450 million, in
contrast with 440 million 5,000-yen bills.
h: The number of 2,000-yen bills in circulation exceeds the number of 5,000-yen
bills by 10 million bills.

11

Numeric-range expression
of verbs

Numerical ranges expressed by
verbs (e.g., exceed).

t: It is recorded that the maximum wave height reached 13.8 meters during the Sea
of Japan Earthquake Tsunami in May 1983.
h: During the Sea of Japan Earthquake, the height of the tsunami exceeded 10 meters.

9

Simple Rewrite Rule This includes various simple
rules for rewriting.

t: The strength of Taro’s grip is No. 1 in his class.
h: Taro’s grip is the strongest in his class. 7

State change Expressing the change of a
value by a multiplier or ratio.

t: Consumption of pickled plums is 1.5 times the rate of 20 years ago.
h: Consumption of pickled plums has increased. 6

Ordinal numbers Inference by interpreting ordi-
nal numbers.

t: Many precious lives were sacrificed in the Third World War.
h: So far, there have been at least three World Wars. 6

Temporal expression

Inference by interpreting tem-
poral expressions such as an-
niversary, age, and ordinal
numbers.

t: Mr. and Ms. Sato celebrate their 25th wedding anniversary.
h: Mr. and Ms. Sato got married 25 years ago. 3

Count Counting up the number of var-
ious entities.

t: In Japan, there are the Asian Triopsidae, the American Triopsidae, and the Euro-
pean Triopsidae.
h: In Japan, there are 3 types of Triopsidae.

3

Others 15

All 116

Table 1: Frequency and simple definitions for each category of the entailment phenomena in the survey.

Numerical Semantic representation
Expression Value Unit Mod.

about seven grams 7 g about
roughly 7 kg 7000 g about
as heavy as 7 tons 7 × 106 g large
as cheap as $1 1 $ small
30–40 people [30, 40] nin (people)
more than 30 cars 30 dai (cars) over
7 km per hour 7000 m/h

Table 2: Normalized representation examples

pression (to be explained in Section 5.2).
In this study, we acquired numerical common

sense from a collection of 8 billion sentences in
100 million Japanese Web pages (Shinzato et al.,
2012). For this reason, we originally designed
text patterns specialized for Japanese dependency
trees. For the sake of the readers’ understand-
ing, this paper uses examples with English trans-
lations for explaining language-independent con-
cepts, and both Japanese and English translations
for explaining language-dependent concepts.

4.1 Extracting and normalizing numerical
expressions

The first step for collecting numerical expres-
sions is to recognize when a numerical expression
is mentioned and then to normalize it into a seman-
tic representation. This is the most fundamental

String Operation
gram(s) set-unit: ‘g’
kilogram(s) set-unit: ‘g’; multiply-value: 1,000
kg set-unit: ‘g’; multiply-value: 1,000
ton(s) set-unit: ‘g’; multiply-value: 1,000,000
nin (people) set-unit: ‘nin’ (person)
about set-modifier: ‘about’
as many as set-modifier: ‘large’
as little as set-modifier: ‘small’

Table 3: An example of unit/modifier dictionary

step in numerical reasoning and has a number of
applications. For example, this step handles cases
of numerical matching, as in Table 1.

The semantic representation of a numerical ex-
pression consists of three fields: the value or range
of the real number(s)5, the unit (a string), and the
optional modifiers. Table 2 shows some exam-
ples of numerical expressions and their semantic
representations. During normalization, we identi-
fied spelling variants (e.g., kilometer and km) and
transformed auxiliary units into their correspond-
ing canonical units (e.g., 2 tons and 2,000 kg to
2,000,000 grams). When a numerical expression
is accompanied by a modifier such as over, about,
or more than, we updated the value and modifier
fields appropriately.

5Internally, all values are represented by ranges (e.g., 75
is represented by the range [75, 75]).
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We developed an extractor and a normalizer for
Japanese numerical expressions6. We will outline
the algorithm used in the normalizer with an exam-
ple sentence: “Roughly three thousand kilograms
of meats have been provided every day.”

1. Find numbers in the text by using regular ex-
pressions and convert the non-Arabic num-
bers into their corresponding Arabic num-
bers. For example, we find three thousand7

and represent it as 3, 000.

2. Check whether the words that precede or fol-
low the number are units that are registered in
the dictionary. Transform any auxiliary units.
In the example, we find that kilograms8 is a
unit. We multiply the value 3, 000 by 1, 000,
and obtain the value 3, 000, 000 with the unit
g.

3. Check whether the words that precede or fol-
low the number have a modifier that is regis-
tered in the dictionary. Update the value and
modifier fields if necessary. In the example,
we find roughly and set about in the modifier
field.

We used a dictionary9 to perform procedures 2
and 3 (Table 3). If the words that precede or fol-
low an extracted number match an entry in the dic-
tionary, we change the semantic representation as
described in the operation.

The modifiers ‘large’ and ‘small’ require elab-
oration because the method in Section 5.2 relies
heavily on these modifiers. We activated the mod-
ifier ‘large’ when a numerical expression occurred
with the Japanese word mo, which roughly cor-
responds to as many as, as large as, or as heavy
as in English10. Similarly, we activated the modi-
fier ‘small’ when a numerical expression occurred
with the word shika, which roughly corresponds
to as little as, as small as, or as light as11. These
modifiers are important for this study, reflecting
the writer’s judgment about the amount.

6The software is available at http://www.cl.
ecei.tohoku.ac.jp/∼katsuma/software/
normalizeNumexp/

7In Japanese 3, 000 is denoted by the Chinese symbols “
三千”.

8We write kilograms as “キログラム” in Japanese.
9The dictionary is bundled with the tool. See Footnote 6.

10In Japanese, we can use the word mo with a numerical
expression to state that the amount is ‘large’ regardless of
how large it is (e.g., large, big, many, heavy).

11Similarly, we can use the word shika with any adjective.

ᙼࡣ 㖟⾜࡛ ཭㐩࡟ 㸱㸮㸮ࣝࢻ Ώࡓࡋ㸬

He gave to a friend$300 at the bank.

Japanese:

English:

nsubj
dobj

prep_to
prep_at

Number: {value: 300; unit: ‘$’ }

Context: {verb: ‘give’ ; nsubj: ‘he’ ; 

 prep_to: ‘friend’ ; prep_at: ‘bank’ }

Figure 1: Example of context extraction

4.2 Extraction of context

The next step in acquiring numerical common
sense is to capture the context of numerical ex-
pressions. Later, we will aggregate numbers that
share the same context (see Section 5). The con-
text of a numerical expression should provide suf-
ficient information to determine what it measures.
For example, given the sentence, “He gave $300 to
a friend at the bank,” it would be better if we could
generalize the context to someone gives money to
a friend for the numerical expression $300. How-
ever, it is a nontrivial task to design an appropriate
representation of varying contexts. For this rea-
son, we employ a simple rule to capture the con-
text of numerical expressions: we represent the
context with the verb that governs the numerical
expression and its typed arguments.

Figure 1 illustrates the procedure for extracting
the context of a numerical expression12. The com-
ponent in Section 4.1 recognizes $300 as a numer-
ical expression, then normalizes it into a semantic
representation. Because the numerical expression
is a dependent of the verb gave, we extract the verb
and its arguments (except for the numerical ex-
pression itself) as the context. After removing in-
flections and function words from the arguments,
we obtain the context representation of Figure 1.

5 Acquiring numerical common sense

In this section, we present two approaches for ac-
quiring numerical common sense from a collec-
tion of numerical expressions and their contexts.
Both approaches start with collecting the numbers
(in semantic representation) and contexts of nu-
merical expressions from a large number of sen-
tences (Shinzato et al., 2012), and storing them

12The English dependency tree might look peculiar be-
cause it is translated from the Japanese dependency tree.

386



in a database. When a context and a value are
given for a prediction (hereinafter called the query
context and query value, respectively), these ap-
proaches judge whether the query value is large,
small, or normal.

5.1 Distribution-based approach

Given a query context and query value, this
approach retrieves numbers associated with the
query context and draws a distribution of normal-
ized numbers. This approach considers the dis-
tribution estimated for the query context and de-
termines if the value is within the top 5 percent
(large), within the bottom 5 percent (small), or is
located in between these regions (normal).

The underlying assumption of this approach is
that the real distribution of a query (e.g., money
given to a friend) can be approximated by the dis-
tribution of numbers co-occurring with the context
(e.g., give and friend) on the Web. However, the
context space generated in Section 4.2 may be too
sparse to find numbers in the database, especially
when a query context is fine-grained. Therefore,
when no item is retrieved for the query context,
we employ a backoff strategy to drop some of the
uninformative elements in the query context: ele-
ments are dropped from the context based on the
type of argument, in this order: he (prep to), kara
(prep from), ha (nsubj), yori (prep from), made
(prep to), nite (prep at), de (prep at, prep by), ni
(prep at), wo (dobj), ga (nsubj), and verb.

5.2 Clue-based approach

This approach utilizes textual clues with which a
speaker explicitly expresses his or her judgment
about the amount of a numerical expression. We
utilize large and small modifiers (described in Sec-
tion 4.1), which correspond to textual clues mo
(as many as, as large as) and shika (only, as
few as), respectively, for detecting humans’ judg-
ments. For example, we can guess that $300 is
large if we find an evidential sentence13, He gave
as much as $100 to a friend.

Similarly to the distribution-based approach,
this approach retrieves numbers associated with
the query context. This approach computes the

13Although the sentence states a judgment about $100, we
can infer that $300 is also large because $300 > $100.

largeness L(x) of a value x:

L(x) =
pl(x)

ps(x) + pl(x)
, (1)

pl(x) =

∣∣{r|rv < x ∧ rm 3 large}
∣∣

∣∣{r|rm 3 large}
∣∣ , (2)

ps(x) =

∣∣{r|rv > x ∧ rm 3 small}
∣∣

∣∣{r|rm 3 small}
∣∣ . (3)

In these equations, r denotes a retrieved item for
the query context, and rv and rm represent the nor-
malized value and modifier flags, respectively, of
the item r. The numerator of Equation 2 counts
the number of numerical expressions that support
the judgment that x is large14, and its denominator
counts the total number of numerical expressions
with large as a modifier. Therefore, pl(x) com-
putes the ratio of times there is textual evidence
that says that x is large, to the total number of
times there is evidences with large as a modifier.
In an analogous way, ps(x) is defined to be the ra-
tio for evidence that says x is small. Hence, L(x)
approaches 1 if everyone on the Web claims that
x is large, and approaches 0 if everyone claims
that x is small. This approach predicts large if
L(x) > 0.95, small if L(x) < 0.05, and normal
otherwise.

6 Experiments

6.1 Normalizing numerical expressions
We evaluated the method that we described in Sec-
tion 4.1 for extracting and normalizing numerical
expressions. In order to prepare a gold-standard
data set, we obtained 1,041 sentences by randomly
sampling about 1% of the sentences containing
numbers (Arabic digits and/or Chinese numerical
characters) in a Japanese Web corpus (100 million
pages) (Shinzato et al., 2012). For every numer-
ical expression in these sentences, we manually
determined a tuple of the normalized value, unit,
and modifier. Here, non-numerical expressions
such as temporal expressions, telephone numbers,
and postal addresses, which were very common,
were beyond the scope of the project15. We ob-
tained 329 numerical expressions from the 1,041
sentences.

We evaluated the correctness of the extraction
and normalization by measuring the precision and

14This corresponds to the events where we find an evidence
expression “as many as rv”, where rv < x.

15If a tuple was extracted from a non-numerical expres-
sion, we regarded this as a false positive
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recall using the gold-standard data set16. Our
method performed with a precision of 0.78 and a
recall of 0.92. Most of the false negatives were
caused by the incompleteness of the unit dictio-
nary. For example, the proposed method could not
identify 1Ghz as a numerical expression because
the unit dictionary did not register Ghz but GHz.
It is trivial to improve the recall of the method by
enriching the unit dictionary.

The major cause of false positives was the se-
mantic ambiguity of expressions. For example, the
proposed method identified Seven Hills as a nu-
merical expression although it denotes a location
name. In order to reduce false positives, it may
be necessary to utilize broader contexts when lo-
cating numerical expressions; this could be done
by using, for example, a named entity recognizer.
This is the next step to pursue in future work.

However, these errors do not have a large effect
on the estimation of the distribution of the numer-
ical values that occur with specific named entities
and idiomatic phrases. Moreover, as explained in
Section 5, we draw distributions for fine-grained
contexts of numerical expressions. For these rea-
sons, we think that the current performance is suf-
ficient for acquiring numerical common sense.

6.2 Acquisition of numerical common sense

6.2.1 Preparing an evaluation set
We built a gold-standard data set for numerical
common sense. We applied the method in Sec-
tion 4.1 to sentences sampled at random from the
Japanese Web corpus (Shinzato et al., 2012), and
we extracted 2,000 numerical expressions. We
asked three human judges to annotate every nu-
merical expression with one of six labels, small,
relatively small, normal, relatively large, large,
and unsure. The label relatively small could be
applied to a numerical expression when the judge
felt that the amount was rather small (below the
normal) but hesitated to label it small. The la-
bel relatively large was defined analogously. We
gave the following criteria for labeling an item as
unsure: when the judgment was highly dependent
on the context; when the sentence was incompre-
hensible; and when it was a non-numerical expres-
sions (false positives of the method are discussed
in Section 4.1).

Table 4 reports the inter-annotator agreement.
16All fields (value, unit, modifier) of the extracted tuple

must match the gold-standard data set.

Agreement # expressions
3 annotators 735 (36.7%)
2 annotators 963 (48.2%)
no agreement 302 (15.1%)

Total 2000 (100.0%)

Table 4: Inter-annotator agreement
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Figure 2: Distributions of numbers with large and
small modifiers for the context human’s height.

For the evaluation of numerical expressions in the
data set, we used those for which at least two anno-
tators assigned the same label. After removing the
unsure instances, we obtained 640 numerical ex-
pressions (20 small, 35 relatively small, 152 nor-
mal, 263 relatively large, and 170 large) as the
evaluation set.

6.2.2 Results
The proposed method extracted about 23 million
pairs of numerical expressions and their context
from the corpus (with 100 million Web pages).
About 15% of the extracted pairs were accom-
panied by either a large or small modifier. Fig-
ure 2 depicts the distributions of the context hu-
man’s height produced by the distribution-based
and clue-based approaches. These distributions
are quite reasonable as common-sense knowledge:
we can interpret that numbers under 150 cm are
perceived as small and those above 180 cm as
large.

We measured the correctness of the proposed
methods on the gold-standard data. For this
evaluation, we employed two criteria for correct-
ness: strict and lenient. With the strict crite-
rion, the method must predict a label identical to
that in the gold-standard. With the lenient crite-
rion, the method was also allowed to predict either
large/small or normal when the gold-standard la-
bel was relatively large/small.

Table 5 reports the precision (P), recall (R), F1
(F1), and accuracy (Acc) of the proposed methods.
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No. System Gold Sentence Remark

1 small small
I think that three men can
create such a great thing in
the world.

Correct

2 normal normal I have two cats. Correct
3 large large It’s above 32 centigrade. Correct

4 large large I earned 10 million yen from
horse racing. Correct

5 small normal There are 2 reasons. Difficulty in judging small. Since a few people say, “There are
only 2 reasons,” our approach predicted a small label.

6 small large
Ten or more people came,
and my eight-mat room was
packed.

Difficulty in modeling the context because this sentence omits
the locational argument for the verb came. We should extract
the context as the number of people who came to my eight-mat
room instead of the number of people who came.

7 small normal
I have two friends who
have broken up with their
boyfriends recently.

Difficulty in modeling the context. We should extract context as
the number of friends who have broken up with their boyfriends
recently instead of the number of friends.

8 small large
Lack of knowledge. We extract the context as the number of
heads of a turtle, but no corresponding information was found
on the Web.

Table 6: Output example and error analysis. We present translations of the sentences, which were origi-
nally in Japanese.

Approach Label P R F1 Acc
large+ 0.892 0.498 0.695

Distribution normal+ 0.753 0.935 0.844 0.760
small+ 0.273 0.250 0.262
large 0.861 0.365 0.613

Distribution normal 0.529 0.908 0.719 0.590
small 0.222 0.100 0.161
large+ 0.923 0.778 0.851

Clue normal+ 0.814 0.765 0.790 0.770
small+ 0.228 0.700 0.464
large 0.896 0.659 0.778

Clue normal 0.593 0.586 0.590 0.620
small 0.164 0.550 0.357

Table 5: Precision (P), recall (R), F1 score (F1),
and accuracy (Acc) of the acquisition of numerical
common sense.

Labels with the suffix ‘+’ correspond to the lenient
criterion. The clue-based approach achieved 0.851
F1 (for large), 0.790 F1 (for normal), and 0.464
(for small) with the lenient criterion. The perfor-
mance is surprisingly good, considering the sub-
jective nature of this task.

The clue-based approach was slightly better
than the distribution-based approach. In particu-
lar, the clue-based approach is good at predicting
large and small labels, whereas the distribution-
based approach is good at predicting normal la-
bels. We found some targets for which the distri-
bution on the Web is skewed from the ‘real’ dis-
tribution. For example, let us consider the distri-
bution of the context ”the amount of money that a
person wins in a lottery”. We can find a number
of sentences like if you won the 10-million-dollar
lottery, .... In other words, people talk about a
large amount of money even if they did not win
any money at all. In order to remedy this problem,

we may need to enrich the context representation
by introducing, for example, the factuality of an
event.

6.2.3 Discussion
Table 6 shows some examples of predictions from
the clue-based approach. Because of space limita-
tions, we mention only the false instances of this
approach.

The clue-based approach tends to predict small
even if the gold-standard label is normal. About
half of the errors of the clue-based approach were
of this type; this is why the precision for small and
the recall for normal are low. The cause of this er-
ror is exemplified by the sentence, “there are two
reasons.” Human judges label normal to the nu-
merical expression two reasons, but the method
predicts small. This is because a few people say
there are only two reasons, but no one says there
are as many as two reasons. In order to handle
these cases, we may need to incorporate the distri-
bution information with the clue-based approach.

We found a number of examples for which
modeling the context is difficult. Our approach
represents the context of a numerical expression
with the verb that governs the numerical expres-
sion and its typed arguments. However, this ap-
proach sometimes misses important information,
especially when an argument of the verb is omit-
ted (Example 6). The approach also suffers from
the relative clause in Example 7, which conveys an
essential context of the number. These are similar
to the scope-ambiguity problem such as encoun-
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tered with negation and quantification; it is diffi-
cult to model the scope when a numerical expres-
sion refers to a situation.

Furthermore, we encountered some false exam-
ples even when we were able to precisely model
the context. In Example 8, the proposed method
was unable to predict the label correctly because
no corresponding information was found on the
Web. The proposed method might more easily pre-
dict a label if we could generalize the word turtle
as animal. It may be worth considering using lan-
guage resources (e.g., WordNet) to generalize the
context.

7 Conclusions

We proposed novel approaches for acquiring nu-
merical common sense from a collection of texts.
The approaches collect numerical expressions and
their contexts from the Web, and acquire numeri-
cal common sense by considering the distributions
of normalized numbers and textual clues such as
mo (as many as) and shika (only, as few as). The
experimental results showed that our approaches
can successfully judge whether a given amount
is large, small, or normal. The implementations
and data sets used in this study are available on
the Web17. We believe that acquisition of numer-
ical common sense is an important step towards a
deeper understanding of inferences with numbers.

There are three important future directions for
this research. One is to explore a more sophis-
ticated approach for precisely modeling the con-
texts of numbers. Because we confirmed in this
paper that these two approaches have different
characteristics, it would be interesting to incorpo-
rate textual clues into the distribution-based ap-
proach by using, for example, machine learning
techniques. Finally, we are planning to address the
‘third phase’ of the example explained in Section
1: associating many people face a water shortage
with a serious water shortage.
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Abstract

Generative probabilistic models have been
used for content modelling and template
induction, and are typically trained on
small corpora in the target domain. In
contrast, vector space models of distribu-
tional semantics are trained on large cor-
pora, but are typically applied to domain-
general lexical disambiguation tasks. We
introduce Distributional Semantic Hidden
Markov Models, a novel variant of a hid-
den Markov model that integrates these
two approaches by incorporating contex-
tualized distributional semantic vectors
into a generative model as observed emis-
sions. Experiments in slot induction show
that our approach yields improvements in
learning coherent entity clusters in a do-
main. In a subsequent extrinsic evalua-
tion, we show that these improvements are
also reflected in multi-document summa-
rization.

1 Introduction

Detailed domain knowledge is crucial to many
NLP tasks, either as an input for language un-
derstanding, or as the goal itself, to acquire such
knowledge. For example, in information extrac-
tion, a list of slots in the target domain is given
to the system, and in natural language generation,
content models are trained to learn the content
structure of texts in the target domain for infor-
mation structuring and automatic summarization.

Generative probabilistic models have been one
popular approach to content modelling. An impor-
tant advantage of this approach is that the structure
of the model can be adapted to fit the assumptions
about the structure of the domain and the nature
of the end task. As this field has progressed, the
formal structures that are assumed to represent a

domain have increased in complexity and become
more hierarchical. Earlier work assumes a flat set
of topics (Barzilay and Lee, 2004), which are ex-
pressed as states of a latent random variable in the
model. Later work organizes topics into a hierar-
chy from general to specific (Haghighi and Van-
derwende, 2009; Celikyilmaz and Hakkani-Tur,
2010). Recently, Cheung et al. (2013) formalized
a domain as a set of frames consisting of proto-
typical sequences of events, slots, and slot fillers
or entities, inspired by classical AI work such as
Schank and Abelson’s (1977) scripts. We adopt
much of this terminology in this work. For exam-
ple, in the CRIMINAL INVESTIGATIONS domain,
there may be events such as a murder, an investi-
gation of the crime, an arrest, and a trial. These
would be indicated by event heads such as kill, ar-
rest, charge, plead. Relevant slots would include
VICTIM, SUSPECT, AUTHORITIES, PLEA, etc.

One problem faced by this line of work is that,
by their nature, these models are typically trained
on a small corpus from the target domain, on the
order of hundreds of documents. The small size of
the training corpus makes it difficult to estimate re-
liable statistics, especially for more powerful fea-
tures such as higher-order N-gram features or syn-
tactic features.

By contrast, distributional semantic models are
trained on large, domain-general corpora. These
methods model word meaning using the contexts
in the training corpus in which the word appears.
The most popular approach today is a vector space
representation, in which each dimension corre-
sponds to some context word, and the value at that
dimension corresponds to the strength of the as-
sociation between the context word and the target
word being modelled. A notion of word similarity
arises naturally from these models by comparing
the similarity of the word vectors, for example by
using a cosine measure. Recently, these models
have been extended by considering how distribu-
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tional representations can be modified depending
on the specific context in which the word appears
(Mitchell and Lapata, 2008, for example). Con-
textualization has been found to improve perfor-
mance in tasks like lexical substitution and word
sense disambiguation (Thater et al., 2011).

In this paper, we propose to inject contextual-
ized distributional semantic vectors into genera-
tive probabilistic models, in order to combine their
complementary strengths for domain modelling.
There are a number of potential advantages that
distributional semantic models offer. First, they
provide domain-general representations of word
meaning that cannot be reliably estimated from the
small target-domain corpora on which probabilis-
tic models are trained. Second, the contextualiza-
tion process allows the semantic vectors to implic-
itly encode disambiguated word sense and syntac-
tic information, without further adding to the com-
plexity of the generative model.

Our model, the Distributional Semantic Hidden
Markov Model (DSHMM), incorporates contextu-
alized distributional semantic vectors into a gen-
erative probabilistic model as observed emissions.
We demonstrate the effectiveness of our model in
two domain modelling tasks. First, we apply it to
slot induction on guided summarization data over
five different domains. We show that our model
outperforms a baseline version of our method that
does not use distributional semantic vectors, as
well as a recent state-of-the-art template induction
method. Then, we perform an extrinsic evaluation
using multi-document summarization, wherein we
show that our model is able to learn event and slot
topics that are appropriate to include in a sum-
mary. From a modelling perspective, these results
show that probabilistic models for content mod-
elling and template induction benefit from distri-
butional semantics trained on a much larger cor-
pus. From the perspective of distributional seman-
tics, this work broadens the variety of problems to
which distributional semantics can be applied, and
proposes methods to perform inference in a prob-
abilistic setting beyond geometric measures such
as cosine similarity.

2 Related Work

Probabilistic content models were proposed by
Barzilay and Lee (2004), and related models have
since become popular for summarization (Fung
and Ngai, 2006; Haghighi and Vanderwende,

2009), and information ordering (Elsner et al.,
2007; Louis and Nenkova, 2012). Other related
generative models include topic models and struc-
tured versions thereof (Blei et al., 2003; Gruber
et al., 2007; Wallach, 2008). In terms of domain
learning in the form of template induction, heuris-
tic methods involving multiple clustering steps
have been proposed (Filatova et al., 2006; Cham-
bers and Jurafsky, 2011). Most recently, Cheung
et al. (2013) propose PROFINDER, a probabilis-
tic model for frame induction inspired by content
models. Our work is similar in that we assume
much of the same structure within a domain and
consequently in the model as well (Section 3), but
whereas PROFINDER focuses on finding the “cor-
rect” number of frames, events, and slots with a
nonparametric method, this work focuses on in-
tegrating global knowledge in the form of distri-
butional semantics into a probabilistic model. We
adopt one of their evaluation procedures and use it
to compare with PROFINDER in Section 5.

Vector space models form the basis of modern
information retrieval (Salton et al., 1975), but only
recently have distributional models been proposed
that are compositional (Mitchell and Lapata, 2008;
Clark et al., 2008; Grefenstette and Sadrzadeh,
2011, inter alia), or that contextualize the meaning
of a word using other words in the same phrase
(co-compositionality) (Erk and Padó, 2008; Dinu
and Lapata, 2010; Thater et al., 2011). We re-
cently showed how such models can be evaluated
for their ability to support semantic inference for
use in complex NLP tasks like question answering
or automatic summarization (Cheung and Penn,
2012).

Combining distributional information and prob-
abilistic models has actually been explored in pre-
vious work. Usually, an ad-hoc clustering step
precedes training and is used to bias the initializa-
tion of the probabilistic model (Barzilay and Lee,
2004; Louis and Nenkova, 2012), or the clustering
is interleaved with iterations of training (Fung et
al., 2003). By contrast, our method better modu-
larizes the two, and provides a principled way to
train the model. More importantly, previous ad-
hoc clustering methods only use distributional in-
formation derived from the target domain itself;
initializing based on domain-general distributional
information can be problematic because it can bias
training towards a local optimum that is inappro-
priate for the target domain, leading to poor per-
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Figure 1: Graphical representation of our model.
Distributions that generate the latent variables and
hyperparameters are omitted for clarity.

formance.

3 Distributional Semantic Hidden
Markov Models

We now describe the DSHMM model. This model
can be thought of as an HMM with two layers
of latent variables, representing events and slots
in the domain. Given a document consisting of
a sequence of T clauses headed by propositional
heads ~H (verbs or event nouns), and argument
noun phrases ~A, a DSHMM models the joint prob-
ability of observations ~H , ~A, and latent random
variables ~E and ~S representing domain events and
slots respectively; i.e., P ( ~H, ~A, ~E, ~S).

The basic structure of our model is similar to
PROFINDER. Each timestep in the model gener-
ates one clause in the document. More specifi-
cally, it generates the event heads and arguments
which are crucial in identifying events and slots.
We assume that event heads are verbs or event
nouns, while arguments are the head words of their
syntactically dependent noun phrases. We also as-
sume that the sequence of clauses and the clause-
internal syntactic structure are fixed, for example
by applying a dependency parser. Within each
clause, a hierarchy of latent and observed variables
maps to corresponding elements in the clause (Ta-
ble 1), as follows:

Event Variables At the top-level, a categorical
latent variable Et with NE possible states repre-
sents the event that is described by clause t. Its
value is conditioned on the previous time step’s
event variable, following the standard, first-order
Markov assumption (PE(Et|Et−1), or PEinit(E1)

Node Component Textual unit
Et Event Clause
Sta Slot Noun phrase
Ht Event head Verb/event noun
Ata Event argument Noun phrase

Table 1: The correspondence between nodes in our
graphical model, the domain components that they
model, and the related elements in the clause.

for the first clause). The internal structure of the
clause is generated by conditioning on the state of
Et, including the head of the clause, and the slots
for each argument in the clause.

Slot Variables Categorical latent variables with
NS possible states represent the slot that an argu-
ment fills, and are conditioned on the event vari-
able in the clause, Et (i.e., PS(Sta|Et), for the
ath slot variable). The state of Sta is then used to
generate an argument Ata.

Head and Argument Emissions The head of
the clause Ht is conditionally dependent on Et,
and each argument Ata is likewise conditioned on
its slot variable Sta. Unlike in most applications of
HMMs in text processing, in which the represen-
tation of a token is simply its word or lemma iden-
tity, tokens in DSHMM are also associated with a
vector representation of their meaning in context
according to a distributional semantic model (Sec-
tion 3.1). Thus, the emissions can be decomposed
into pairs Ht = (lemma(Ht), sem(Ht)) and
Ata = (lemma(Ata), sem(Ata)), where lemma
and sem are functions that return the lemma iden-
tity and the semantic vector respectively. The
probability of the head of a clause is thus:

PH(Ht|Et) = PHlemm(lemma(Ht)|Et) (1)

× PHsem(sem(Ht)|Et),

and the probability of a clausal argument is like-
wise:

PA(Ata|Sta) = PAlemm(lemma(Ata)|Sta) (2)

× PAsem(sem(Ata)|Sta).

All categorical distributions are smoothed using
add-δ smoothing (i.e., uniform Dirichlet priors).
Based on the independence assumptions described
above, the joint probability distribution can be fac-
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tored into:

P ( ~H, ~A, ~E, ~S) = PEinit(E1) (3)

×
T∏

t=2

PE(Et|Et−1)
T∏

t=1

PH(Ht|Et)

×
T∏

t=1

Ct∏

a=1

PS(Sta|Et)PA(Ata|Sta).

3.1 Vector Space Models of Semantics
In this section, we describe several methods for
producing the semantic vectors associated with
each event head or argument; i.e., the function
sem. We chose several simple, but widely studied
models, to investigate whether they can be effec-
tively integrated into DSHMM. We start with a de-
scription of the training of a basic model without
any contextualization, then describe several con-
textualized models based on recent work.

Simple Vector Space Model In the basic ver-
sion of the model (SIMPLE), we train a term-
context matrix, where rows correspond to target
words, and columns correspond to context words.
Training begins by counting context words that ap-
pear within five words of the target word, ignor-
ing stopwords. We then convert the raw counts
to positive pointwise mutual information scores,
which has been shown to improve word similarity
correlation results (Turney and Pantel, 2010). We
set thresholds on the frequencies of words for in-
clusion as target and context words (given in Sec-
tion 4). Target words which fall below the thresh-
old are modelled as UNK. All the methods below
start from this basic vector representation.

Component-wise Operators Mitchell and Lap-
ata (2008) investigate using component-wise op-
erators to combine the vectors of verbs and their
intransitive subjects. We use component-wise op-
erators to contextualize our vectors, but by com-
bining with all of the arguments, and regardless
of the event head’s category. Let event head h
be the syntactic head of a number of arguments
a1, a2, ...am, and ~vh, ~va1 , ~va2 , ...~vam be their re-
spective vector representations according to the
SIMPLE method. Then, their contextualized vec-
tors ~cM&L

h ,~cM&L
a1 , ...~cM&L

am would be:

~cM&L
h = ~vh � (

m⊙

i=1

~vam) (4)

~cM&L
ai = ~vai � ~vh,∀i = 1...m, (5)

where � represents a component-wise operator,
addition or multiplication, and

⊙
represents its

repeated application. We tested component-wise
addition (M&L+) and multiplication (M&L×).

Selectional Preferences Erk and Padó (2008)
(E&P) incorporate inverse selectional preferences
into their contextualization function. The intu-
ition is that a word should be contextualized such
that its vector representation becomes more sim-
ilar to the vectors of other words that its depen-
dency neighbours often take in the same syntactic
position. For example, suppose catch is the head
of the noun ball, in the relation of a direct object.
Then, the vector for ball would be contextualized
to become similar to the vectors for other frequent
direct objects of catch, such as baseball, or cold.
Likewise, the vector for catch would be contextu-
alized to become similar to the vectors for throw,
hit, etc. Formally, let h take a as its argument in
relation r. Then:

~cE&P
h = ~vh ×

m∏

i=1

∑

w∈L
freq(w, r, ai) · ~vw, (6)

~cE&P
a = ~va ×

∑

w∈L
freq(h, r, w) · ~vw, (7)

where freq(h, r, a) is the frequency of h occur-
ring as the head of a in relation r in the train-
ing corpus, L is the lexicon, and × represents
component-wise multiplication.

Dimensionality Reduction and Vector Emission
After contextualization, we apply singular value
decomposition (SVD) for dimensionality reduc-
tion to reduce the number of model parameters,
keeping the k most significant singular values and
vectors. In particular, we apply SVD to the m-by-
n term-context matrix M produced by the SIM-
PLE method, resulting in the truncated matrices
M ≈ UkΣkV

T
k , where Uk is a m-by-k matrix, Σk

is k-by-k, and Vk is n-by-k. This takes place af-
ter contextualization, so the component-wise op-
erators apply in the original semantic space. Af-
terwards, the contextualized vector in the original
space, ~c, can be transformed into a vector in the
reduced space, ~cR, by ~cR = Σ−1k V T

k ~c.
Distributional semantic vectors are traditionally

compared by measures which ignore vector mag-
nitudes, such as cosine similarity, but a multivari-
ate Gaussian is sensitive to magnitudes. Thus, the
final step is to normalize ~cR into a unit vector by
dividing it by its L2 norm, ||~cR||.
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We model the emission of these contextualized
vectors in DSHMM as multivariate Gaussian dis-
tributions, so the semantic vector emissions can be
written as PHsem, P

A
sem ∼ N (µ,Σ), where µ ∈ Rk

is the mean and Σ ∈ Rk×k is the covariance
matrix. To avoid overfitting, we regularize the
covariance using its conjugate prior, the Inverse-
Wishart distribution. We follow the “neutral” set-
ting of hyperparameters given by Ormoneit and
Tresp (1995), so that the MAP estimate for the co-
variance matrix for (event or slot) state i becomes:

Σi =

∑
j rij(xj − µi)(xj − µi)T + βI∑

j rij + 1
, (8)

where j indexes all the relevant semantic vectors
xj in the training set, rij is the posterior respon-
sibility of state i for vector xj , and β is the re-
maining hyperparameter that we tune to adjust the
amount of regularization. To further reduce model
complexity, we set the off-diagonal entries of the
resulting covariance matrix to zero.

3.2 Training and Inference

Inference in DSHMM is accomplished by the stan-
dard Inside-Outside and tree-Viterbi algorithms,
except that the tree structure is fixed, so there
is no need to sum over all possible subtrees.
Model parameters are learned by the Expectation-
Maximization (EM) algorithm. We tune the hy-
perparameters (NE , NS , δ, β, k) and the number
of EM iterations by two-fold cross-validation1.

3.3 Summary and Generative Process

In summary, the following steps are applied to
train a DSHMM:

1. Train a distributional semantic model on a
large, domain-general corpus.

2. Preprocess and generate contextualized vec-
tors of event heads and arguments in the
small corpus in the target domain.

3. Train the DSHMM using the EM algorithm.
The formal generative process is as follows:
1. Draw categorical distributions PEinit;
PE , PS , PHlemm (one per event state);
PAlemm (one per slot state) from Dirichlet
priors.

2. Draw multivariate Gaussians PHsem, P
A
sem for

each event and slot state, respectively.
1The topic cluster splits and the hyperparameter set-

tings are available at http://www.cs.toronto.edu/
˜jcheung/dshmm/dshmm.html.

3. Generate the documents, clause by clause.

Generating a clause at position t consists of
these steps:

1. Generate the event state Et ∼ PE (or PEinit).
2. Generate the event head components
lemm(Ht) ∼ PHlemm, sem(Ht) ∼ PHsem.

3. Generate a number of slot states Sta ∼ PS .
4. For each slot, generate the argument compo-

nents lemm(Ata) ∼ PAlemm, sem(Ata) ∼
PAsem.

4 Experiments

We trained the distributional semantic models us-
ing the Annotated Gigaword corpus (Napoles et
al., 2012), which has been automatically prepro-
cessed and is based on Gigaword 5th edition. This
corpus contains almost ten million news articles
and more than 4 billion tokens. We used those ar-
ticles marked as “stories” — the vast majority of
them. We modelled the 50,000 most common lem-
mata as target words, and the 3,000 most common
lemmata as context words.

We then trained DSHMM and conducted our
evaluations on the TAC 2010 guided summa-
rization data set (Owczarzak and Dang, 2010).
Lemmatization and extraction of event heads and
arguments are done by preprocessing with the
Stanford CoreNLP tool suite (Toutanova et al.,
2003; de Marneffe et al., 2006). This data set con-
tains 46 topic clusters of 20 articles each, grouped
into five topic categories or domains. For exam-
ple, one topic cluster in the ATTACK category is
about the Columbine Massacre. Each topic cluster
contains eight human-written “model” summaries
(“model” here meaning a gold standard). Half of
the articles and model summaries in a topic cluster
are used in the guided summarization task, and the
rest are used in the update summarization task.

We chose this data set because it allows us
to conduct various domain-modelling evaluations.
First, templates for the domains are provided, and
the model summaries are annotated with slots
from the template, allowing for an intrinsic eval-
uation of slot induction (Section 5). Second, it
contains multiple domain instances for each of the
domains, and each domain instance comes anno-
tated with eight model summaries, allowing for an
extrinsic evaluation of our system (Section 6).
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5 Guided Summarization Slot Induction

We first evaluated our models on their ability to
produce coherent clusters of entities belonging to
the same slot, adopting the experimental proce-
dure of Cheung et al. (2013).

As part of the official TAC evaluation proce-
dure, model summaries were manually segmented
into contributors, and labelled with the slot in
the TAC template that the contributor expresses.
For example, a summary fragment such as On 20
April 1999, a massacre occurred at Columbine
High School is segmented into the contributors:
(On 20 April 1999, WHEN); (a massacre oc-
curred, WHAT); and (at Columbine High School,
WHERE).

In the slot induction evaluation, this annotation
is used as follows. First, the maximal noun phrases
are extracted from the contributors and clustered
based on the TAC slot of the contributor. These
clusters of noun phrases then become the gold
standard clusters against which automatic systems
are compared. Noun phrases are considered to be
matched if the lemmata of their head words are the
same and they are extracted from the same sum-
mary. This accounts for the fact that human an-
notators often only label the first occurrence of a
word that belongs to a slot in a summary, and fol-
lows the standard evaluation procedure in previ-
ous information extraction tasks, such as MUC-4.
Pronouns and demonstratives are ignored. This
extraction process is noisy, because the meaning
of some contributors depends on an entire verb
phrase, but we keep this representation to allow
a direct comparison to previous work.

Because we are evaluating unsupervised sys-
tems, the clusters produced by the systems are not
labelled, and must be matched to the gold stan-
dard clusters. This matching is performed by map-
ping to each gold cluster the best system cluster
according to F1. The same system cluster may be
mapped multiple times, because several TAC slots
can overlap. For example, in the NATURAL DIS-
ASTERS domain, an earthquake may fit both the
WHAT slot as well as the CAUSE slot, because it
generated a tsunami.

We trained a DSHMM separately for each of the
five domains with different semantic models, tun-
ing hyperparameters by two-fold cross-validation.
We then extracted noun phrase clusters from the
model summaries according to the slot labels pro-
duced by running the Viterbi algorithm on them.

Method P R F1
HMM w/o semantics 13.8 64.1 22.6*
DSHMM w/ SIMPLE 20.9 27.5 23.7
DSHMM w/ E&P 20.7 27.9 23.8
PROFINDER 23.7 25.0 24.3
DSHMM w/ M&L+ 19.7 36.3 25.6*
DSHMM w/ M&L× 22.1 33.2 26.5*

Table 2: Slot induction results on the TAC guided
summarization data set. Asterisks (*) indicate
that the model is statistically significantly differ-
ent from PROFINDER in terms of F1 at p < 0.05.

Results We compared DSHMM to two base-
lines. Our first baseline is PROFINDER, a state-
of-the-art template inducer which Cheung et al.
(2013) showed to outperform the previous heuris-
tic clustering method of Chambers and Jurafsky
(2011). Our second baseline is our DSHMM

model, without the semantic vector component,
(HMM w/o semantics). To calculate statistical
significance, we use the paired bootstrap method,
which can accommodate complex evaluation met-
rics like F1 (Berg-Kirkpatrick et al., 2012).

Table 2 shows that performance of the mod-
els. Overall, PROFINDER significantly outper-
forms the HMM baseline, but not any of the
DSHMM models by F1. DSHMM with contextu-
alized semantic vectors achieves the highest F1s,
and are significantly better than PROFINDER. All
of the differences in precision and recall between
PROFINDER and the other models are significant.
The baseline HMM model has highly imbalanced
precision and recall. We think this is because the
model is unable to successfully produce coher-
ent clusters, so the best-case mapping procedure
during evaluation picked large clusters that have
high recall. PROFINDER has slightly higher preci-
sion, which may be due to its non-parametric split-
merge heuristic. We plan to investigate whether
this learning method could improve DSHMM’s
performance further. Importantly, the contextual-
ization of the vectors seems to be beneficial, at
least with the M&L component-wise operators.
In the next section, we show that the improve-
ment from contextualization transfers to multi-
document summarization results.
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6 Multi-document Summarization: An
Extrinsic Evaluation

We next evaluated our models extrinsically in the
setting of extractive, multi-document summariza-
tion. To use the trained DSHMM for extractive
summarization, we need a decoding procedure for
selecting sentences in the source text to include in
the summary. Inspired by the KLSUM and HI-
ERSUM methods of Haghighi and Vanderwende
(2009), we develop a criterion based on Kullback-
Leibler (KL) divergence between distributions es-
timated from the source text, and those estimated
from the summary. The assumption here is that
these distributions should match in a good sum-
mary. We describe two methods to use this crite-
rion: a basic unsupervised method (Section 6.1),
and a supervised variant that makes use of in-
domain summaries to learn the salient slots and
events in the domain (Section 6.2).

6.1 A KL-based Criterion

There are four main component distributions from
our model that should be considered during extrac-
tion: (1) the distribution of events, (2) the distri-
bution of slots, (3) the distribution of event heads,
and (4) the distribution of arguments. We estimate
(1) as the context-independent probability of being
in a certain event state, which can be calculated
using the Inside-Outside algorithm. Given a col-
lection of documents D which make up the source
text, the distribution of event topics P̂E(E) is es-
timated as:

P̂E(E = e) =
1

Z

∑

d∈D

∑

t

Int(e)Outt(e)

P (d)
, (9)

where Int(e) and Outt(e) are the values of the
inside and outside trellises at timestep t for some
event state e, and Z is a normalization constant.
The distribution for a set of sentences in a can-
didate summary, Q̂E(E), is identical, except the
summation is over the clauses in the candidate
summary. Slot distributions P̂S(S) and Q̂S(S) (2)
are defined analogously, where the summation oc-
curs along all the slot variables.

For (3) and (4), we simply use the MLE es-
timates of the lemma emissions, where the esti-
mates are made over the source text and the can-
didate summary instead of over the entire train-
ing set. All of the candidate summary distribu-
tions (i.e., the “Q̂ distributions”) are smoothed by

a small amount, so that the KL-divergence is al-
ways finite. Our KL criterion combines the above
components linearly, weighting the lemma distri-
butions by the probability of their respective event
or slot state:

KLScore = (10)

DKL(P̂E ||Q̂E) +DKL(P̂S ||Q̂S)

+

NE∑

e=1

P̂E(e)DKL(P̂H(H|e)||Q̂H(H|e))

+

NS∑

s=1

P̂S(s)DKL(P̂A(A|s)||Q̂A(A|s))

To produce a summary, sentences from the
source text are greedily added such thatKLScore
is minimized at each step, until the desired sum-
mary length is reached, discarding sentences with
fewer than five words.

6.2 Supervised Learning

The above unsupervised method results in sum-
maries that closely mirror the source text in terms
of the event and slot distributions, but this ig-
nores the fact that not all such topics should be
included in a summary. It also ignores genre-
specific, stylistic considerations about character-
istics of good summary sentences. For example,
Woodsend and Lapata (2012) find several factors
that indicate sentences should not be included in
an extractive summary, such as the presence of
personal pronouns. Thus, we implemented a sec-
ond method, in which we modify the KL criterion
above by estimating P̂E and P̂S from other model
summaries that are drawn from the same domain
(i.e. topic category), except for those summaries
that are written for the specific topic cluster to be
used for evaluation.

6.3 Method and Results

We used the best performing models from the slot
induction task and the above unsupervised and su-
pervised methods based on KL-divergence to pro-
duce 100-word summaries of the guided summa-
rization source text clusters. We did not com-
pare against PROFINDER, as its structure is dif-
ferent and would have required a different proce-
dure than the KL-criterion we developed above.
As shown in the previous evaluation, however, the
HMM baseline without semantics and DSHMM

with SIMPLE perform similarly in terms of F1,
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Method ROUGE-1 ROUGE-2 ROUGE-SU4
unsup. sup. unsup. sup. unsup. sup.

Leading baseline 28.0 − 5.39 − 8.6 −
HMM w/o semantics 32.3 32.7 6.45 6.49 10.1 10.2
DSHMM w/ SIMPLE 32.1 32.7 5.81 6.50 9.8 10.2
DSHMM w/ M&L+ 32.1 33.4 6.27 6.82 10.0 10.6
DSHMM w/ M&L× 32.4 34.3* 6.35 7.11ˆ 10.2 11.0*
DSHMM w/ E&P 32.8 33.8* 6.38 7.31* 10.3 10.8*

Table 3: TAC 2010 summarization results by three settings of ROUGE. Asterisks (*) indicate that the
model is statistically significantly better than the HMM model without semantics at a 95% confidence
interval, a caret ˆ indicates that the value is marginally so.

so we consider these competitive baselines. We
did not evaluate with the update summarization
task, because our method has not been adapted to
it. For the evaluation measure, we used the stan-
dard ROUGE suite of automatic evaluation mea-
sures (Lin, 2004). Note that the evaluation con-
ditions of TAC 2010 are different, and thus those
results are not directly comparable to ours. For in-
stance, top performing systems in TAC 2010 make
use of manually constructed lists of entities known
to fit the slots in the provided templates and sam-
ple topic statements, which our method automat-
ically learns. We include the leading baseline re-
sults from the competition as a point of reference,
as it is a well-known and non-trivial one for news
articles. This baseline summary consists of the
leading sentences from the most recent document
in the source text cluster up to the word length
limit.

Table 3 shows the summarization results for the
three most widely-used settings of ROUGE. All
of our models outperform the leading baseline by
a large margin, demonstrating the effective of the
KL-criterion. In terms of unsupervised perfor-
mance, all of our models perform similarly. Be-
cause the unsupervised method mimics the distri-
butions in the source text at all levels, the method
may negate the benefit of learning and simply pro-
duce summaries that match the source text in the
word distributions, thus being an approximation
of KLSUM. Looking at the supervised results,
however, the semantic vector models show clear
gains in ROUGE, whereas the baseline method
does not obtain much benefit from supervision. As
in the previous evaluation, the models with con-
textualized semantic vectors provide the best per-
formance. M&L× performs very well, as in slot
induction, but E&P also performs well, unlike in

the previous evaluation. This result reinforces the
importance of the contextualization procedure for
distributional semantic models.

Analysis To better understand what is gained by
supervision using in-domain summaries, we ana-
lyzed the best performing M&L× model’s output
summaries for one document cluster from each
domain. For each event state, we calculated the
ratio P̂Esumm(e)/P̂Esource(e), for the probability of
an event state e as estimated from the training
summaries and the the source text respectively.
Likewise, we calculated P̂Ssumm(s)/P̂Ssource(s) for
the slot states. This ratio indicates the change in
state’s probability after supervision; the greater the
ratio, the more preferred that state becomes after
training. We selected the most preferred and dis-
preferred event and slot for each document clus-
ter, and took the three most probable lemmata
from the associated lemma distribution (Table 4).
It seems that supervision is beneficial because it
picks out important event heads and arguments in
the domain, such as charge, trial, and murder in
the TRIALS domain. It also helps the summarizer
avoid semantically generic words (be or have),
pronouns, quotatives, and common but irrelevant
words (home, city, restaurant in TRIALS).

7 Conclusion

We have shown that contextualized distributional
semantic vectors can be successfully integrated
into a generative probabilistic model for domain
modelling, as demonstrated by improvements in
slot induction and multi-document summariza-
tion. The effectiveness of our model stems from
the use of a large domain-general corpus to train
the distributional semantic vectors, and the im-
plicit syntactic and word sense information pro-
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Domain Event Heads Slot Arguments
+ − + −

ATTACKS
say2, cause,
doctor

say2, be, have
attack, hostage,
troops

he, it, they

TRIALS
charge, trial,
accuse

say, be, have
prison, murder,
charge

home, city, restau-
rant

RESOURCES
reduce, increase,
university

say, be, have
government,
effort, program

he, they, it

DISASTERS
flood, strengthen,
engulf

say, be, have
production,
statoil, barrel

he, it, they

HEALTH
be, department,
have

say, do, make
food, product,
meat

she, people, way

Table 4: Analysis of the most probable event heads and arguments in the most preferred (+) and dispre-
ferred (−) events and slots after supervised training.

vided by the contextualization process. Our ap-
proach is modular, and allows principled train-
ing of the probabilistic model using standard tech-
niques. While we have focused on the overall clus-
tering of entities and the distribution of event and
slot topics in this work, we would also like to in-
vestigate discourse modelling and content struc-
turing. Finally, our work shows that the applica-
tion of distributional semantics to NLP tasks need
not be confined to lexical disambiguation. We
would like to see modern distributional semantic
methods incorporated into an even greater variety
of applications.
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Abstract
In this paper we present a method for extracting
bilingual terminologies from comparable corpora.
In our approach we treat bilingual term extrac-
tion as a classification problem. For classification
we use an SVM binary classifier and training data
taken from the EUROVOC thesaurus. We test our
approach on a held-out test set from EUROVOC
and perform precision, recall and f-measure eval-
uations for 20 European language pairs. The per-
formance of our classifier reaches the 100% pre-
cision level for many language pairs. We also
perform manual evaluation on bilingual terms ex-
tracted from English-German term-tagged compa-
rable corpora. The results of this manual evalu-
ation showed 60-83% of the term pairs generated
are exact translations and over 90% exact or partial
translations.

1 Introduction
Bilingual terminologies are important for various
applications of human language technologies, in-
cluding cross-language information search and re-
trieval, statistical machine translation (SMT) in
narrow domains and computer-aided assistance
to human translators. Automatic construction of
bilingual terminology mappings has been investi-
gated in many earlier studies and various methods
have been applied to this task. These methods may
be distinguished by whether they work on parallel
or comparable corpora, by whether they assume
monolingual term recognition in source and target
languages (what Moore (2003) calls symmetrical
approaches) or only in the source (asymmetric ap-
proaches), and by the extent to which they rely on
linguistic knowledge as opposed to simply statis-
tical techniques.

We focus on techniques for bilingual term ex-
traction from comparable corpora – collections of
source-target language document pairs that are not
direct translations but are topically related. We

choose to focus on comparable corpora because
for many less widely spoken languages and for
technical domains where new terminology is con-
stantly being introduced, parallel corpora are sim-
ply not available. Techniques that can exploit such
corpora to deliver bilingual terminologies are of
significant practical interest in these cases.

The rest of the paper is structured as follows.
In Section 2 we outline our method. In Section
3 we review related work on bilingual term ex-
traction. Section 4 describes feature extraction for
term pair classification. In Section 5 we present
the data used in our evaluations and discuss our
results. Section 6 concludes the paper.

2 Method

The method we present below for bilingual term
extraction is a symmetric approach, i.e. it assumes
a method exists for monolingual term extraction in
both source and target languages. We do not pre-
scribe what a term must be. In particular we do not
place any particular syntactic restrictions on what
constitutes an allowable term, beyond the require-
ment that terms must be contiguous sequences of
words in both source and target languages.

Our method works by first pairing each term ex-
tracted from a source language document S with
each term extracted from a target language doc-
ument T aligned with S in the comparable cor-
pus. We then treat term alignment as a binary
classification task, i.e. we extract features for each
source-target language potential term pair and de-
cide whether to classify the pair as a term equiv-
alent or not. For classification purposes we use
an SVM binary classifier. The training data for
the classifier is derived from EUROVOC (Stein-
berger et al., 2002), a term thesaurus covering
the activities of the EU and the European Parlia-
ment. We have run our approach on the 21 official
EU languages covered by EUROVOC, construct-
ing 20 language pairs with English as the source
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language. Considering all these languages allows
us to directly compare our method’s performance
on resource-rich (e.g. German, French, Spanish)
and under-resourced languages (e.g. Latvian, Bul-
garian, Estonian). We perform two different tests.
First, we evaluate the performance of the classifier
on a held-out term-pair list from EUROVOC us-
ing the standard measures of recall, precision and
F-measure. We run this evaluation on all 20 lan-
guage pairs. Secondly, we test the system’s per-
formance on obtaining bilingual terms from com-
parable corpora. This second test simulates the
situation of using the term alignment system in a
real world scenario. For this evaluation we col-
lected English-German comparable corpora from
Wikipedia, performed monolingual term tagging
and ran our tool over the term tagged corpora to
extract bilingual terms.

3 Related Work
Previous studies have investigated the extraction
of bilingual terms from parallel and comparable
corpora. For instance, Kupiec (1993) uses statisti-
cal techniques and extracts bilingual noun phrases
from parallel corpora tagged with terms. Daille
et al. (1994), Fan et al. (2009) and Okita et
al. (2010) also apply statistical methods to extract
terms/phrases from parallel corpora. In addition
to statistical methods Daille et al. use word trans-
lation information between two words within the
extracted terms as a further indicator of the correct
alignment. More recently, Bouamor et al. (2012)
use vector space models to align terms. The en-
tries in the vectors are co-occurrence statistics be-
tween the terms computed over the entire corpus.

Bilingual term alignment methods that work on
comparable corpora use essentially three sorts of
information: (1) cognate information, typically es-
timated using some sort of transliteration similar-
ity measure (2) context congruence, a measure of
the extent to which the words that the source term
co-occurs with have the same sort of distribution
and co-occur with words with the same sort dis-
tribution as do those words that co-occur with the
candidate term and (3) translation of component
words in the term and/or in context words, where
some limited dictionary exists. For example, in
Rapp (1995), Fung and McKeown (1997), Morin
et. al. (2007), Cao and Li (2002) and Ismail
and Manandhar (2010) the context of text units
is used to identify term mappings. Transliteration
and cognate-based information is exploited in Al-

Onaizan and Knight (2002), Knight and Graehl
(1998), Udupa et. al. (2008) and Aswani and
Gaizauskas (2010).

Very few approaches have treated term align-
ment as a classification problem suitable for ma-
chine learning (ML) techniques. So far as we
are aware, only Cao and Li (2002), who treat
only base noun phrase (NP) mapping, consider the
problem this way. However, it naturally lends it-
self to being viewed as a classification task, as-
suming a symmetric approach, since the differ-
ent information sources mentioned above can be
treated as features and each source-target language
potential term pairing can be treated as an in-
stance to be fed to a binary classifier which decides
whether to align them or not. Our work differs
from that of Cao and Li (2002) in several ways.
First they consider only terms consisting of noun-
noun pairs. Secondly for a given source language
term 〈N1, N2〉, target language candidate terms
are proposed by composing all translations (given
by a bilingual dictionary) ofN1 into the target lan-
guage with all translations ofN2. We remove both
these restrictions. By considering all terms pro-
posed by monolingual term extractors we consider
terms that are syntactically much richer than noun-
noun pairs. In addition, the term pairs we align are
not constrained by an assumption that their com-
ponent words must be translations of each other as
found in a particular dictionary resource.

4 Feature extraction
To align or map source and target terms we use an
SVM binary classifier (Joachims, 2002) with a lin-
ear kernel and the trade-off between training error
and margin parameter c = 10. Within the classi-
fier we use language dependent and independent
features described in the following sections.

4.1 Dictionary based features

The dictionary based features are language depen-
dent and are computed using bilingual dictionar-
ies which are created with GIZA++ (Och and Ney,
2000; Och and Ney, 2003). The DGT-TM par-
allel data (Steinberger et al., 2012) was input to
GIZA++ to obtain the dictionaries. Dictionary en-
tries have the form 〈s, ti, pi〉, where s is a source
word, ti is the i-th translation of s in the dictio-
nary and pi is the probability that s is translated
by ti, the pi’s summing to 1 for each s in the dic-
tionary. From the dictionaries we removed all en-
tries with pi < 0.05. In addition we also removed
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every entry from the dictionary where the source
word was less than four characters and the target
word more than five characters in length and vice
versa. This step is performed to try to eliminate
translation pairs where a stop word is translated
into a non-stop word. After performing these fil-
tering steps we use the dictionaries to extract the
following language dependent features:

• isFirstWordTranslated is a binary feature in-
dicating whether the first word in the source
term is a translation of the first word in the
target term. To address the issue of com-
pounding, e.g. for languages like German
where what is a multi-word term in En-
glish may be expressed as a single com-
pound word, we check whether the com-
pound source term has an initial prefix that
matches the translation of the first target
word, provided that translation is at least 5
character in length.
• isLastWordTranslated is a binary feature in-

dicating whether the last word in the source
term is a translation of the last word in the
target term. As with the previous feature in
case of compound terms we check whether
the source term ends with the translation of
the target last word.
• percentageOfTranslatedWords returns the

percentage of words in the source term which
have their translations in the target term. To
address compound terms we check for each
source word translation whether it appears
anywhere within the target term.
• percentageOfNotTranslatedWords returns

the percentage of words of the source term
which have no translations in the target term.
• longestTranslatedUnitInPercentage returns

the ratio of the number of words within the
longest contiguous sequence of source words
which has a translation in the target term to
the length of the source term, expressed as a
percentage. For compound terms we proceed
as with percentageOfTranslatedWords.
• longestNotTranslatedUnitInPercentage re-

turns the percentage of the number of words
within the longest sequence of source words
which have no translations in the target term.

These six features are direction-dependent and
are computed in both directions, reversing which
language is taken as the source and which as

the target. We also compute another feature av-
eragePercentageOfTranslatedWords which builds
the average between the feature values of percent-
ageOfTranslatedWords from source to target and
target to source. Thus in total we have 13 dic-
tionary based features. Note for non-compound
terms if we compare two words for equality we do
not perform string match but rather use the Lev-
enshtein Distance (see Section 4.2) between the
two words and treat them as equal if the Leven-
shtein Distance returns >= 0.95. This is per-
formed to capture words with morphological dif-
ferences. We set 0.95 experimentally.

4.2 Cognate based features

Dictionaries mostly fail to return translation en-
tries for named entities (NEs) or specialized termi-
nology. Because of this we also use cognate based
methods to perform the mapping between source
and target words or vice versa. Aker et al. (2012)
have applied (1) Longest Common Subsequence
Ratio, (2) Longest Common Substring Ratio, (3)
Dice Similarity, (4) Needleman-Wunsch Distance
and (5) Levenshtein Distance in order to extract
parallel phrases from comparable corpora. We
adopt these measures within our classifier. Each
of them returns a score between 0 and 1.

• Longest Common Subsequence Ratio
(LCSR): The longest common subsequence
(LCS) measure measures the longest com-
mon non-consecutive sequence of characters
between two strings. For instance, the words
“dollars” and “dolari” share a sequence of
5 non-consecutive characters in the same
ordering. We make use of dynamic program-
ming (Cormen et al., 2001) to implement
LCS, so that its computation is efficient and
can be applied to a large number of possible
term pairs quickly. We normalize relative to
the length of the longest term:

LCSR(X,Y ) =
len[LCS(X,Y )]

max[len(X), len(Y )]

where LCS is the longest common subse-
quence between two strings and characters
in this subsequence need not be contiguous.
The shorthand len stands for length.
• Longest Common Substring Ratio (LC-

STR): The longest common substring
(LCST) measure is similar to the LCS
measure, but measures the longest common
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consecutive string of characters that two
strings have in common. I.e. given two terms
we need to find the longest character n-gram
the terms share. The formula we use for the
LCSTR measure is a ratio as in the previous
measure:

LCSTR(X,Y ) =
len[LCST (X,Y )]

max[len(X), len(Y )]

• Dice Similarity:

dice =
2 ∗ LCST

len(X) + len(Y )

• Needlemann Wunsch Distance (NWD):

NWD =
LCST

min[len(X) + len(Y )]

• Levenshtein Distance (LD): This method
computes the minimum number of operations
necessary to transform one string into an-
other. The allowable operations are insertion,
deletion, and substitution. Compared to the
previous methods, which all return scores be-
tween 0 and 1, this method returns a score s
that lies between 0 and n. The number n rep-
resents the maximum number of operations
to convert an arbitrarily dissimilar string to a
given string. To have a uniform score across
all cognate methods we normalize s so that
it lies between 0 and 1, subtracting from 1 to
convert it from a distance measure to a simi-
larty measure:

LDnormalized = 1− LD

max[len(X), len(Y )]

4.3 Cognate based features with term
matching

The cognate methods assume that the source and
target language strings being compared are drawn
from the same character set and fail to capture
the corresponding terms if this is not the case.
For instance, the cognate methods are not directly
applicable to the English-Bulgarian and English-
Greek language pairs, as both the Bulgarian and
Greek alphabets, which are Cyrillic-based, differ
from the English Latin-based alphabet. However,
the use of distinct alphabets is not the only prob-
lem when comparing source and target terms. Al-
though most EU languages use the Latin alpha-
bet, the occurrence of special characters and di-
acritics, as well spelling and phonetic variations,

are further challenges which are faced by term or
entity mapping methods, especially in determin-
ing the variants of the same mention of the entity
(Snae, 2007; Karimi et al., 2011).1 We address this
problem by mapping a source term to the target
language writing system or vice versa. For map-
ping we use simple character mappings between
the writing systems, such as α → a, φ → ph,
etc., from Greek to English. The rules allow one
character on the lefthand side (source language) to
map onto one or more characters on the righthand
side (target language). We created our rules man-
ually based on sound similarity between source
and target language characters. We created map-
ping rules for 20 EU language pairs using primar-
ily Wikipedia as a resource for describing phonetic
mappings to English.

After mapping a term from source to target lan-
guage we apply the cognate metrics described in
4.2 to the resulting mapped term and the original
term in the other language. Since we perform both
target to source and source to target mapping, the
number of cognate feature scores on the mapped
terms is 10 – 5 due to source to target mapping
and 5 due to target to source mapping.

4.4 Combined features

We also combined dictionary and cognate based
features. The combined features are as follows:

• isFirstWordCovered is a binary feature indi-
cating whether the first word in the source
term has a translation (i.e. has a translation
entry in the dictionary regardless of the score)
or transliteration (i.e. if one of the cognate
metric scores is above 0.72) in the target term.
The threshold 0.7 for transliteration similar-
ity is set experimentally using the training
data. To do this we iteratively ran feature
extraction, trained the classifier and recorded
precision on the training data using a thresh-
old value chosen from the interval [0, 1] in
steps of 0.1. We selected as final threshold
value, the lowest value for which the preci-
sion score was the same as when the thresh-
old value was set to 1.
• isLastWordCovered is similar to the previ-

ous feature one but indicates whether the last
word in the source term has a translation or

1Assuming the terms are correctly spelled, otherwise the
misspelling is another problem.

2Note that we use the cognate scores obtained on the char-
acter mapped terms.
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transliteration in the target term. If this is the
case, 1 is returned otherwise 0.
• percentageOfCoverage returns the percent-

age of source term words which have a trans-
lation or transliteration in the target term.
• percentageOfNonCoverage returns the per-

centage of source term words which have nei-
ther a translation nor transliteration in the tar-
get term.
• difBetweenCoverageAndNonCoverage

returns the difference between the last two
features.

Like the dictionary based features, these five
features are direction-dependent and are computed
in both directions – source to target and target to
source, resulting in 10 combined features.

In total we have 38 features – 13 features based
on dictionary translation as described in Section
4.1, 5 cognate related features as outlined in Sec-
tion 4.2, 10 cognate related features derived from
character mappings over terms as described in
Section 4.3 and 10 combined features.

5 Experiments

5.1 Data Sources

In our experiments we use two different data re-
sources: EUROVOC terms and comparable cor-
pora collected from Wikipedia.

5.1.1 EUROVOC terms

EUROVOC is a term thesaurus covering the ac-
tivities of the EU and the European Parliament in
particular. It contains 6797 term entries in 24 dif-
ferent languages including 22 EU languages and
Croatian and Serbian (Steinberger et al., 2002).

5.1.2 Comparable Corpora

We also built comparable corpora in the infor-
mation technology (IT) and automotive domains
by gathering documents from Wikipedia for the
English-German language pair. First, we man-
ually chose one seed document in English as a
starting point for crawling in each domain3. We
then identified all articles to which the seed doc-
ument is linked and added them to the crawling
queue. This process is performed recursively for
each document in the queue. Since our aim is to
build a comparable corpus, we only added English

3http://en.wikipedia.org/wiki/Information technology for
IT and http://en.wikipedia.org/wiki/Automotive industry for
automotive domain.

documents which have an inter-language link in
Wikipedia to a German document. We set a max-
imum depth of 3 in the recursion to limit size of
the crawling set, i.e. documents are crawled only
if they are within 3 clicks of the seed documents.
A score is then calculated to represent the impor-
tance of each document di in this domain:

scoredi =
n∑

j=1

freqdij
depthdj

where n is the total number of documents in the
queue, freqdij is 1 if di is linked to dj , or 0 other-
wise, and depthdj is the number of clicks between
dj and the seed document. After all documents in
the queue were assigned a score, we gathered the
top 1000 documents and used inter-language link
information to extract the corresponding article in
the target language.

We pre-processed each Wikipedia article by
performing monolingual term tagging using
TWSC (Pinnis et al., 2012). TWSC is a term ex-
traction tool which identifies terms ranging from
one to four tokens in length. First, it POS-tags
each document. For German POS-tagging we
use TreeTagger (Schmid, 1995). Next, it uses
term grammar rules, in the form of sequences of
POS tags or non-stop words, to identify candidate
terms. Finally, it filters the candidate terms us-
ing various statistical measures, such as pointwise
mutual information and TF*IDF.

5.2 Performance test of the classifier

To test the classifier’s performance we evaluated it
against a list of positive and negative examples of
bilingual term pairs using the measures of preci-
sion, recall and F -measure. We used 21 EU offi-
cial languages, including English, and paired each
non-English language with English, leading to 20
language pairs.4 In the evaluation we used 600
positive term pairs taken randomly from the EU-
ROVOC term list. We also created around 1.3M
negative term pairs by pairing a source term with
200 randomly chosen distinct target terms. We
select such a large number to simulate the real
application scenario where the classifier will be
confronted with a huge number of negative cases

4Note that we do not use the Maltese-English language
pair, as for this pair we found that 5861 out of 6797 term
pairs were identical, i.e. the English and the Maltese terms
were the same. Excluding Maltese, the average number of
identical terms between a non-English language and English
in the EUROVOC data is 37.7 (out of a possible 6797).
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Table 1: Wikipedia term pairs processed and judged as pos-
itive by the classifier.

Processed Positive
DE IT 11597K 3249
DE Automotive 12307K 1772

and a relatively small number of positive pairs.
The 600 positive examples contain 200 single term
pairs (i.e. single word on both sides), 200 term
pairs with a single word on only one side (either
source or target) and 200 term pairs with more
than one word on each side. For training we took
the remaining 6200 positive term pairs from EU-
ROVOC and constructed another 6200 term pairs
as negative examples, leading to total of 12400
term pairs. To construct the 6200 negative exam-
ples we used the 6200 terms on the source side
and paired each source term with an incorrect tar-
get term. Note that we ensure that in both train-
ing and testing the set of negative and positive
examples do not overlap. Furthermore, we per-
formed data selection for each language pair sep-
arately. This means that the same pairs found
in, e.g., English-German are not necessarily the
same as in English-Italian. The reason for this is
that the translation lengths, in number of words,
vary between language pairs. For instance adult
education is translated into Erwachsenenbildung
in German and contains just a single word (al-
though compound). The same term is translated
into istruzione degli adulti in Italian and contains
three words. For this reason we carry out the data
preparation process separately for each language
pair in order to obtain the three term pair sets con-
sisting of term pairs with only a single word on
each side, term pairs with a single word on just
one side and term pairs with multiple words on
both sides.

5.3 Manual evaluation

For this evaluation we used the Wikipedia com-
parable corpora collected for the English-German
(EN-DE) language pair. For each pair of
Wikipedia articles we used the terms tagged by
TWSC and aligned each source term with every
target term. This means if both source and target
articles contain 100 terms then this leads to 10K
term pairs. We extracted features for each pair
of terms and ran the classifier to decide whether
the pair is positive or negative. Table 1 shows the
number of term pairs processed and the count of
pairs classified as positive. Table 2 shows five

positive term pairs extracted from the English-
German comparable corpora for each of the IT and
automotive domains. We manually assessed a sub-
set of the positive examples. We asked human as-
sessors to categorize each term pair into one of the
following categories:

1. Equivalence: The terms are exact transla-
tions/transliterations of each other.

2. Inclusion: Not an exact transla-
tion/transliteration, but an exact transla-
tion/transliteration of one term is entirely
contained within the term in the other lan-
guage, e.g: “F1 car racing” vs “Autorennen
(car racing)”.

3. Overlap: Not category 1 or 2, but the terms
share at least one translated/transliterated
word, e.g: “hybrid electric vehicles” vs “hy-
bride bauteile (hybrid components)”.

4. Unrelated: No word in either term is a trans-
lation/transliteration of a word in the other.

In the evaluation we randomly selected 300
pairs for each domain and showed them to two
German native speakers who were fluent in En-
glish. We asked the assessors to place each of the
term pair into one of the categories 1 to 4.

5.4 Results and Discussion

5.4.1 Performance test of the classifier

The results of the classifier evaluation are shown
in Table 3. The results show that the overall per-
formance of the classifier is very good. In many
cases the precision scores reach 100%. The low-
est precision score is obtained for Lithuanian (LT)
with 67%. For this language we performed an er-
ror analysis. In total there are 221 negative ex-
amples classified as positive. All these terms are
multi-term, i.e. each term pair contains at least
two words on each side. For the majority of the
misclassified terms – 209 in total – 50% or more
of the words on one side are either translations or
cognates of words on the other side. Of these, 187
contained 50% or more translation due to cognate
words – examples of such cases are capital in-
crease – kapitalo eksportas or Arab organisation
– Arabu lyga with the cognates capital – kapitalo
and Arab – Arabu respectively. For the remain-
der, 50% or more of the words on one side are
dictionary translations of words on the other side.
In order to understand the reason why the classi-
fier treats such cases as positive we examined the
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Table 2: Example positive pairs for English-German.
IT Automotive
chromatographic technique — chromatographie methode distribution infrastructure — versorgungsinfrastruktur
electrolytic capacitor — elektrolytkondensatoren ambient temperature — außenlufttemperatur
natural user interfaces — natürliche benutzerschnittstellen higher cetane number — erhöhter cetanzahl
anode voltage — anodenspannung fuel tank — kraftstoffpumpe
digital subscriber loop — digitaler teilnehmeranschluss hydrogen powered vehicle — wasserstoff fahrzeug

Table 3: Classifier performance results on EUROVOC data (P stands for precision, R for recall and F for F -measure). Each
language is paired with English. The test set contains 600 positive and 1359400 negative examples.

ET HU NL DA SV DE LV FI PT SL FR IT LT SK CS RO PL ES EL BG
P 1 1 .98 1 1 .98 1 1 .7 1 1 1 .67 .81 1 1 1 1 1 1
R .67 .72 .82 .69 .81 .77 .78 .65 .82 .66 .66 .7 .77 .84 .72 .78 .69 .8 .78 .79
F .80 .83 .89 .81 .89 .86 .87 .78 .75 .79 .79 .82 .71 .91 .83 .87 .81 .88 .87 .88

training data and found 467 positive pairs which
had the same characteristics as the negative exam-
ples in the testing set classified. We removed these
467 entries from the training set and re-trained the
classifier. The results with the new classifier are
99% precision, 68% recall and 80% F score.

In addition to Lithuanian, two further lan-
guages, Portuguese (PT) and Slovak (SK), also
had substantially lower precision scores. For these
languages we also removed positive entries falling
into the same problem categories as the LT ones
and trained new classifiers with the filtered train-
ing data. The precision results increased substan-
tially for both PT and SK – 95% precision, 76%
recall, 84% F score for PT and 94% precision,
72% recall, 81% F score for SK. The recall scores
are lower than the precision scores, ranging from
65% to 84%. We have investigated the recall prob-
lem for FI, which has the lowest recall score at
65%. We observed that all the missing term pairs
were not cognates. Thus, the only way these terms
could be recognized as positive is if they are found
in the GIZA++ dictionaries. However, due to data
sparsity in these dictionaries this did not happen in
these cases. For these term pairs either the source
or target terms were not found in the dictionar-
ies. For instance, for the term pair offshoring —
uudelleensijoittautuminen the GIZA++ dictionary
contains the entry offshoring but according to the
dictionary it is not translated into uudelleensijoit-
tautuminen, which is the matching term in EU-
ROVOC.

5.4.2 Manual evaluation

The results of the manual evaluation are shown in
Table 4. From the results we can see that both as-
sessors judge above 80% of the IT domain terms
as category 1 – the category containing equivalent

Table 4: Results of the EN-DE manual evaluation by two
annotators. Numbers reported per category are percentages.

Domain Ann. 1 2 3 4
IT P1 81 6 6 7

P2 83 7 7 3
Automotive P1 66 12 16 6

P2 60 15 16 9

term pairs. Only a small proportion of the term
pairs are judged as belonging to category 4 (3–7%)
– the category containing unrelated term pairs. For
the automotive domain the proportion of equiva-
lent term pairs varies between 60 and 66%. For
unrelated term pairs this is below 10% for both as-
sessors.

We investigated the inter-annotator agreement.
Across the four classes the percentage agreement
was 83% for the automotive domain term pairs and
86% for the IT domain term pairs. The kappa
statistic, κ, was .69 for the automotive domain
pairs and .52 for the IT domain. We also consid-
ered two class agreement where we treated term
pairs within categories 2 and 3 as belonging to
category 4 (i.e. as “incorrect” translations). In
this case, for the automotive domain the percent-
age agreement was 90% and κ = 0.72 and for the
IT domain percentage agreement was 89% with
κ = 0.55. The agreement in the automotive do-
main is higher than in the IT one although both
judges were computer scientists. We analyzed
the differences and found that they differ in cases
where the German and the English term are both in
English. One of the annotators treated such cases
as correct translation, whereas the other did not.

We also checked to ensure our technique was
not simply rediscovering our dictionaries. Since
the GIZA++ dictionaries contain only single
word–single word mappings, we examined the
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newly aligned term pairs that consisted of one
word on both source and target sides. Taking both
the IT and automotive domains together, our al-
gorithm proposed 5021 term pairs of which 2751
(55%) were word-word term pairs. 462 of these
(i.e. 17% of the word-word term pairs or 9% of
the overall set of aligned term pairs) were already
in either the EN-DE or DE-EN GIZA++ dictionar-
ies. Thus, of our newly extracted term pairs a rela-
tively small proportion are rediscovered dictionary
entries. We also checked our evaluation data to see
what proportion of the assessed term pairs were
already to be found in the GIZA++ dictionaries.
A total of 600 term pairs were put in front of the
judges of which 198 (33%) were word-word term
pairs. Of these 15 (less than 8% of the word-word
pairs and less then 3% of the overall assessed set of
assessed term pairs) were word-word pairs already
in the dictionaries. We conclude that our evalua-
tion results are not unduly affected by assessing
term pairs which were given to the algorithm.

Error analysis For both domains we performed
an error analysis for the unrelated, i.e. category
4 term pairs. We found that in both domains the
main source of errors is due to terms with different
meanings but similar spellings such as the follow-
ing example (1).

(1) accelerator — decelerator

For this example the cognate methods, e.g. the
Levenshtein similarity measure, returns a score of
0.81. This problem could be addressed in different
ways. First, it could be resolved by applying a very
high threshold for the cognate methods. Any cog-
nate score below that threshold could be regarded
as zero – as we did for the combined features (cf.
Section 4.4). However, setting a similarity thresh-
old higher than 0.9 – to filter out cases as in (1)
– will cause real cognates with greater variation
in the spellings to be missed. This will, in par-
ticular, affect languages with a lot of inflection,
such as Latvian. Another approach to address this
problem would be to take the contextual or dis-
tributional properties of the terms into considera-
tion. To achieve this, training data consisting of
term pairs along with contextual information is re-
quired. However, such training data does not cur-
rently exist (i.e. resources like EUROVOC do not
contain contextual information) and it would need
to be collected as a first step towards applying this
approach to the problem.

Partial Translation The assessors assigned 6 –
7% of the term pairs in the IT domain and 12 –
16% in the automotive domain to categories 2 and
3. In both categories the term pairs share transla-
tions or cognates.

Clearly, if humans such as professional transla-
tors are the end users of these terms, then it could
be helpful for them to find some translation units
within the terms. In category 2 this will be the en-
tire translation of one term in the other such as the
following examples.5

(2) visible graphical interface — grafische be-
nutzerschnittstelle

(3) modern turbocharger systems — moderne
turbolader

In example (3) the a translation of the German
term is to be found entirely within in the English
term but the English term has the additional word
visible, a translation of which is not found in the
German term. In example (4), again the transla-
tion of the German term is entirely found in the
English term, but as in the previous example, one
of the English words – systems – in this case, has
no match within the German term. In category 3
there are only single word translation overlaps be-
tween the terms as shown in the following exam-
ples.

(4) national standard language —
niederländischen standardsprache

(5) thermoplastic material — thermoplastische
elastomere

In example (5) standard language is translated
to standardsprache and in example (6) thermo-
plastic to thermoplastische. The other words
within the terms are not translations of each other.

Another application of the extracted term pairs
is to use them to enhance existing parallel corpora
to train SMT systems. In this case, including the
partially correct terms may introduce noise. This
is especially the case for the terms within category
3. However, the usefulness of terms in both these
scenarios requires further investigation, which we
aim to do in future work.

5In our data it is always the case that the target term is
entirely translated within the English one and the other way
round.
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6 Conclusion

In this paper we presented an approach to align
terms identified by a monolingual term extractor in
bilingual comparable corpora using a binary clas-
sifier. We trained the classifier using data from
the EUROVOC thesaurus. Each candidate term
pair was pre-processed to extract various features
which are cognate-based or dictionary-based. We
measured the performance of our classifier using
Information Retrieval (IR) metrics and a manual
evaluation. In the IR evaluation we tested the per-
formance of the classifier on a held out test set
taken from EUROVOC. We used 20 EU language
pairs with English being always the source lan-
guage. The performance of our classifier in this
evaluation reached the 100% precision level for
many language pairs. In the manual evaluation
we had our algorithm extract pairs of terms from
Wikipedia articles – articles forming comparable
corpora in the IT and automotive domains – and
asked native speakers to categorize a selection of
the term pairs into categories reflecting the level
of translation of the terms. In the manual evalu-
ation we used the English-German language pair
and showed that over 80% of the extracted term
pairs were exact translations in the IT domain and
over 60% in the automotive domain. For both do-
mains over 90% of the extracted term pairs were
either exact or partial translations.

We also performed an error analysis and high-
lighted problem cases, which we plan to address
in future work. Exploring ways to add contextual
or distributional features to our term representa-
tions is also an avenue for future work, though it
clearly significantly complicates the approach, one
of whose advantages is its simplicitiy. Further-
more, we aim to extend the existing dictionaries
and possibly our training data with terms extracted
from comparable corpora. Finally, we plan to in-
vestigate the usefulness of the terms in different
application scenarios, including computer assisted
translation and machine translation.
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Abstract

Expensive feature engineering based on
WordNet senses has been shown to
be useful for document level sentiment
classification. A plausible reason for
such a performance improvement is the
reduction in data sparsity. However,
such a reduction could be achieved with
a lesser effort through the means of
syntagma based word clustering. In
this paper, the problem of data sparsity
in sentiment analysis, both monolingual
and cross-lingual, is addressed through
the means of clustering. Experiments
show that cluster based data sparsity
reduction leads to performance better than
sense based classification for sentiment
analysis at document level. Similar idea
is applied to Cross Lingual Sentiment
Analysis (CLSA), and it is shown that
reduction in data sparsity (after translation
or bilingual-mapping) produces accuracy
higher than Machine Translation based
CLSA and sense based CLSA.

1 Introduction

Data sparsity is the bane of Natural Language
Processing (NLP) (Xue et al., 2005; Minkov et al.,
2007). Language units encountered in the test data
but absent in the training data severely degrade the
performance of an NLP task. NLP applications
innovatively handle data sparsity through various
means. A special, but very common kind of
data sparsityviz., word sparsity, can be addressed
in one of the two obvious ways: 1) sparsity
reduction throughparadigmatically relatedwords
or 2) sparsity reduction throughsyntagmatically
relatedwords.

Paradigmatic analysis of text is the analysis
of concepts embedded in the text (Cruse, 1986;
Chandler, 2012). WordNet is a byproduct of such
an analysis. In WordNet, paradigms are manually
generated based on the principles of lexical and
semantic relationship among words (Fellbaum,
1998). WordNets are primarily used to address the
problem of word sense disambiguation. However,
at present there are many NLP applications
which use WordNet. One such application is
Sentiment Analysis (SA) (Pang and Lee, 2002).
Recent research has shown that word sense based
semantic features can improve the performance of
SA systems (Rentoumi et al., 2009; Tamara et al.,
2010; Balamurali et al., 2011) compared to word
based features.

Syntagmatic analysis of text concentrates on
the surface properties of the text. Compared
to paradigmatic property extraction, syntagmatic
processing is relatively light weight. One of
the obvious syntagmas iswords, and words are
grouped into equivalence classes or clusters, thus
reducing the model parameters of a statistical NLP
system (Brown et al., 1992). When used as
an additional feature with word based language
models, it has been shown to improve the system
performanceviz., machine translation (Uszkoreit
and Brants, 2008; Stymne, 2012), speech
recognition (Martin et al., 1995; Samuelsson and
Reichl, 1999), dependency parsing (Koo et al.,
2008; Haffari et al., 2011; Zhang and Nivre, 2011;
Tratz and Hovy, 2011) and NER (Miller et al.,
2004; Faruqui and Padó, 2010; Turian et al., 2010;
Täckström et al., 2012).

In this paper, the focus is on alleviating the
data sparsity faced by supervised approaches
for SA through the means of cluster based
features. As WordNets are essentially word

412



clusters wherein words with the same meaning
are clubbed together, they address the problem of
data sparsity at word level. The abstraction and
dimensionality reduction thus achieved attributes
to the superior performance for SA systems that
employs WordNet senses as features. However,
WordNets are manually created. Automatic
creation of the same is challenging and not much
successful because of the linguistic complexity
involved. In case of SA, manually creating the
features based on WordNet senses is a tedious and
an expensive process. Moreover, WordNets are
not present for many languages. All these factors
make the paradigmatic property based cluster
features like WordNet senses a less promising
pursuit for SA.

The syntagmatic analysis essentially makes use
of distributional similarity and may in many
circumstances subsume the paradigmatic analysis.
In the current work, this particular insight is
used to solve the data sparsity problem in
the sentiment analysis by leveraging unlabelled
monolingual corpora. Specifically, experiments
are performedto investigate whether features
developed from manually crafted clusterings
(coming from WordNet) can be replaced by those
generated from clustering based on syntagmatic
properties.

Further, cluster based features are used to
address the problem of scarcity of sentiment
annotated data in a language. Popular
approaches for Cross-Lingual Sentiment Analysis
(CLSA) (Wan, 2009; Duh et al., 2011) depend
on Machine Translation (MT) for converting
the labeled data from one language to the
other (Hiroshi et al., 2004; Banea et al., 2008;
Wan, 2009). However, many languages which
are truly resource scarce, do not have an MT
system or existing MT systems are not ripe to
be used for CLSA (Balamurali et al., 2013). To
perform CLSA, this study leverages unlabelled
parallel corpus to generate the word alignments.
These word alignments are then used to link
cluster based features to obliterate the language
gap for performing SA. No MT systems or
bilingual dictionaries are used for this study.
Instead, language gap for performing CLSA is
bridged using linked cluster orcross-lingual
clusters (explained in section 4) with the
help of unlabelled monolingual corpora. The
contributions of this paper are two fold:

1. Features created from manually built and
finer clusters can be replaced by inexpensive
cluster based features generated solely from
unlabelled corpora.Experiments performed
on four publicly available datasets in three
languagesviz., English, HindiandMarathi1

suggest that cluster based features can
considerably boost the performance of an SA
system. Moreover, state of the art result
is obtained for one of the publicly available
dataset.

2. An alternative and effective approach for
CLSA is demonstrated using clusters as
features. Word clustering is a powerful
mechanism to “transfer” a sentiment
classifier from one language to another. Thus
can be used in truly resource scarce scenarios
like that ofEnglish-MarathiCLSA.

The rest of the paper is organized as follows:
section 2 presents related work. Section 3 explains
different word cluster based features employed
to reduce data sparsity for monolingual SA. In
section 4, alternative CLSA approaches based
on word clustering are elucidated. Experimental
details are explained in section 5. Results and
discussions are presented in section 6 and section
7 respectively. Finally, section 8 concludes
the paper pointing to some future research
possibilities.

2 Related Work

The problem of SA at document level is defined
as the classification of document into different
polarity classes (positive and negative) (Turney,
2002). Both supervised (Benamara et al., 2007;
Martineau and Finin, 2009) and unsupervised
approaches (Mei et al., 2007; Lin and He, 2009)
exist for this task.

Supervised approaches are popular because
of their superior classification accuracy (Mullen
and Collier, 2004; Pang and Lee, 2008).
Feature engineering plays an important role
in these systems. Apart from the commonly
used bag-of-words features based on
unigrams/bigrams/ngrams (Dave et al., 2003;
Ng et al., 2006; Martineau and Finin, 2009),

1Hindi and Marathi belong to the Indo-Aryan subgroup
of the Indo-European language family and are two widely
spoken Indian languages with a speaker population of 450
million and 72 million respectively.
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syntax (Matsumoto et al., 2005; Nakagawa et
al., 2010), semantic (Balamurali et al., 2011)
and negation (Ikeda et al., 2008) have also been
explored for this task. There has been research
related to clustering and sentiment analysis. In
Rooney et al. (2011), documents are clustered
based on the context of each document and
sentiment labels are attached at the cluster level.
Zhai et al. (2011) attempts to cluster features of a
product to perform sentiment analysis on product
reviews. In this work, word clusters (syntagmatic
and paradigmatic) encoding a mixture of syntactic
and semantic information are used for feature
engineering.

In situations where labeled data is not present
in a language, approaches based on cross-lingual
sentiment analysis are used. Most often these
methods depend on an intermediary machine
translation system (Wan, 2009; Brooke et al.,
2009) or a bilingual dictionary (Ghorbel and
Jacot, 2011; Lu et al., 2011) to bridge the
language gap. Given the subtle and different
ways the sentiment can be expressed which itself
manifested as a result of cultural diversity amongst
different languages, an MT system has to be of a
superior quality to capture them.

3 Clustering for Sentiment Analysis

The goal of this paper, to remind the reader, is to
investigate whether superior word cluster features
based on manually crafted and fine grained lexical
resource like WordNet can be replaced with the
syntagmatic property based word clusters created
from unlabelled monolingual corpora.

In this section, different clustering approaches
are presented for feature engineering in a
monolingual setting.

3.1 Approach 1: Clustering based on
WordNet Sense

A synonymous set of words in a WordNet is called
a synset. Each synset can be considered as a word
cluster comprising of semantically similar words.
Balamurali et al. (2011) showed that WordNet
synsets can act as good features for document level
sentiment classification.

Motivation for their study stems from the fact
that different senses of a word can have different
polarities. To empirically prove the superiority
of sense based features, different variants of
a travel review domain corpus were generated

by using automatic/manual sense disambiguation
techniques. Thereafter, accuracies of classifiers
based on different sense-based and word-based
features were compared. The results suggested
that WordNet synset based features performed
better than word-based features.

In this study, synset identifiers are extracted
from manually/automatically sense annotated
corpora and used as features for creating sentiment
classifiers. The classifier thus build is used as
a baseline. Apart from this, another baseline
employing word based features are used for a
comprehensive comparison.

3.2 Approach 2: Syntagmatic Property based
Clustering

For this particular study, a co-occurrence based
algorithm is used to create word clusters. As
the algorithm is based on co-occurrence, one
can extract the classes that have the flavour of
syntagmatic grouping, depending on the nature
of underlying statistics. Agglomerative clustering
algorithm by Brown et al. (1992) is used for this
purpose. It is a hard clustering algorithmi.e.,each
word belongs to one cluster only.

Formally, as mentioned in Brown et al. (1992),
let C be a hard clustering function which maps
vocabularyV to one of theK clusters. Then,
the likelihood (L()) of a sequence of word tokens,
w = [wj ]

m
j=1, with wj ∈ V , can be factored as,

L(w;C) =

m∏

j=1

p(wj|C(wj))p(C(wj)|C(wj−1)))

(1)
Words are assigned to clusters such that the

above quantity is maximized. For the purpose
of sentiment classification, cluster identifiers
representing words in the document are used as
features for training.

4 Clustering for Cross Lingual
Sentiment Analysis

Existing approaches for CLSA depend on an
intermediary machine translation system to bridge
the language gap (Hiroshi et al., 2004; Banea et
al., 2008). Machine translation is very resource
intensive. If a language is truly resource scarce, it
is mostly unlikely to have an MT system. Given
that sentiment analysis is a less resource intensive
task compared to machine translation, the use of
an MT system is hard to justify for performing
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CLSA. As a viable alternative, cluster linkages
could be learned from a bilingual parallel corpus
and theselinkages can be used to bridge the
language gap for CLSA.

In this section, three approaches using clusters
as features for CLSA are compared. The language
whose annotated data is used for training is
called the source language (S), while the language
whose documents are to be sentiment classified is
referred to as the target language (T ).

4.1 Approach 1: Projection based on Sense
(PS)

In this approach, a Multidict is used to bridge the
language gap for SA. A Multidict is an instance
of WordNet where the same sense from different
languages are linked (Mohanty et al., 2008).
An entry in the multidict will have a WordNet
sense identifier fromS and the corresponding
WordNet sense identifier fromT . The approach
of projection based on sense is explained in
Algorithm 1. Note that after theSense Mark
operation, each document will be represented as
a vector of WordNet sense identifiers.

Algorithm 1 Projection based on sense
Input: Polarity labeled data in source language

(S) and data in target language (T ) to be
labeled

Output: Classified documents
1: Sense mark the polarity labeled data fromS
2: Project the sense marked corpora fromS to T

using a Multidict
3: Model the sentiment classifier using the data

obtained in step-2
4: Sense mark the unlabelled data fromT
5: Test the sentiment classifier on data obtained

in step-4 using model obtained in step-3

Sense identifiers are the features for the
classifier. For those sense identifiers which do not
have a corresponding entry in the Multidict, no
projection is performed.

4.2 Approach 2: Direct Cluster Linking
(DCL)

Given a parallel bilingual corpus, word clusters in
S can be aligned to clusters inT . Word alignments
are created using parallel corpora. Given two
aligned word sequenceswS = [wS

j ]mj=1 and

wT = [wT
k ]nk=1, let αT |S be a set of scored

alignments from the source language to the target

language. Here, an alignment from theak
th source

word to thekth target word, with scoresk,ak
> ε

is represented as (wT
k , wS

ak
, sk,ak

) ∈ αT |S . To
simplify, k ∈ αT |S is used to denote those target
words wT

k that are aligned to some source word
wS

ak
.

The source and the target side clusters are linked
using the Equation (2).

LC(l) = argmax
t

∑

k∈αT |S ∪ αS|T

s.t.CT (wT
k )=t

CS (wS
ak

)=l

sk,ak
(2)

Here, a target side clustert ∈ CT is linked to
a source side clusterl ∈ CS such that the total
alignment score between words inl and words in
t is maximum.CS andCT stands for source and
target side cluster list respectively.LC(l) gives
the target side clustert to which l is linked.

4.3 Approach 3: Cross-Lingual Clustering
(XC)

Direct cluster linking approach suffers from the
size of alignment dataset in the form of parallel
corpora. The size of the alignment dataset is
typically smaller than the monolingual dataset.
To circumvent this problem, Täckström et al.
(2012) introduced cross-lingual clustering. In
cross-lingual clustering, the objective function
maximizes the joint likelihood of monolingual
and cross-lingual factors. Given a list of
words and clusters it belongs to, a clustering
algorithm tries to obtain word-cluster association
which maximizes the joint likelihood of words
and clusters. Whereas in case of cross-
lingual clustering, the same clustering can be
explained in terms of maximizing the likelihood
of monolingual word-cluster pairs of the source,
the target and alignments between them.

Formally, as stated in Täckström et al. (2012),
Using the model of Uszkoreit and Brants (2008),
the likelihood of a sequence of word tokens,
w = [wj ]

m
j=1, with wj ∈ V , can be factored as,

L(w;C) =

m∏

j=1

p(wj|C(wj))p(C(wj)|wj−1))

(3)
Note this is different from the likelihood
estimation of Brown et al. (1992) (Equation (1)),
whereC(wj) was conditioned onC(wj−1). This
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makes the computation easier as suggested in the
original paper. The Equation (3) in a cross lingual
setting will be transformed as given below:

LS,T (wS , wT ;αT |S , αS|T , CS , CT ) =

LS(...).LT (...).LT |S(...).LS|T (...) (4)

Here,LT |S(...) andLS|T (...) are factors based on
word alignments, which can be represented as:

LT |S(wT ;αT |S , CT , CS) =
∏

k∈αT |S

p(wT
k |CT (wT

k ))p(CT (wT
k )|CS(wS

ak
)))

(5)

Based on the optimization objective in
Equation (4), a pseudo algorithm is defined in
Algorithm 2. For more information, readers are
requested to refer Täckström et al. (2012).

Algorithm 2 Cross-lingual Clustering (XC)
Input: Source and target language corpus
Output: Cross-lingual clusters

1: ##CS, CT randomly initialized
2: for i← 1 to N do
3: FindCS

∗ ≈ argmaxCS LS(wS ;CS)
4: ProjectCS

∗ to CT

5: FindCT
∗ ≈ argmaxCT LT (wT ;CT )

6: ProjectCT
∗ to CS

7: end for

An MT based CLSA approach is used as the
baseline. Training data fromS is translated toT
and classification model is learned using unigram
based features. Thereafter, the classifier is directly
tested on data fromT .

5 Experimental Setup

Analysis was performed on three languages,viz.,
English (En), Hindi (Hi) and Marathi (Mar).
CLSA was performed on two language
pairs, English-Hindi and English-Marathi.
For clustering the words, monolingual data of
Indian Languages Corpora Initiative (ILCI)2 was
used. It should also be noted that sentiment
annotated data was also included in the data used
for the word clusterings process. For Brown
clustering, an implementation by Liang (2005)
was used. Cross-lingual clustering for CLSA

2http://sanskrit.jnu.ac.in/ilci/index.
jsp

was implemented as directed in Täckström et al.
(2012).

Monolingual SA: For experiments inEnglish,
two polarity datasets were used. The first
one (En-TD) by Ye et al. (2009) contains user-
written reviews on travel destinations. The
dataset consists of approximately 600 positive
and 591 negative reviews. Reviews were also
manually sense annotated using WordNet 2.1.
The sense annotation was performed by two
annotators with an inter-annotation agreement of
93%. The second dataset (En-PD)3 on product
reviews (music instruments) from Amazon by
Blitzer et al. (2007) contains 1000 positive and
1000 negative reviews. This dataset was sense
annotated using an automatic WSD engine which
was trained on tourism domain (Khapra et al.,
2010). Experiments using this dataset were
done to study the effect of domain on CLSA.
For experiments inHindi and Marathi, polarity
datasets by Balamurali et al. (2012) were used.4

These are reviews collected from variousHindi
and Marathi blogs and Sunday editorials.Hindi
dataset consist of 98 positive and 100 negative
reviews. WhereasMarathi dataset contains 75
positive and 75 negative reviews. Apart from
being marked with polarity labels at document
level, they are also manually sense annotated using
Hindi andMarathi WordNet respectively.

CLSA: The same datasets used in SA are also
used for CLSA. Three approaches (as described
in section 4) were tested forEnglish-Hindi
and English-Marathi language pairs. To create
alignments,English-Hindi and English-Marathi
parallel corpora from ILCI were used.English-
Hindi parallel corpus contains 45992 sentences
and English-Marathi parallel corpus contains
47881 sentences. To create alignments, GIZA++5

was used (Och and Ney, 2003).
As a preprocessing step, all stop words

were removed. Stemming was performed on
English and Hindi whereas for Marathi data,
Morphological Analyzer was used to reduce the
words to their respective lemmas.

All experiments were performed using C-SVM

3http://www.cs.jhu.edu/ ˜ mdredze/
datasets/sentiment/

4http://www.cfilt.iitb.ac.
in/resources/senti/MPLC_tour_
downloaderInfo.php

5http://www-i6.informatik.rwth-aachen.
de/Colleagues/och/software/GIZA++.html
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Features En-TD En-PD Hi Mar
Words 87.02 77.60 77.36 92.28
WordNet Sense (Paradigmatic) 89.13 74.5085.80 96.88
Clusters (Syntagmatic) 97.45 87.80 83.50z 98.66

Table 1: Classification accuracy for monolingual sentimentanalysis. For English, results are reported on
two publicly available datasets based on Travel Domain (TD)and Product Domain (PD).

Features Words Clust-200 Clust-500 Clust-1000 Clust-1500 Clust-2000 Clust-2500 Clust-3000
En-TD 87.02 97.37 97.45 96.94 96.94 96.52 96.52 96.52
En-PD 77.60 73.20 82.30 84.30 86.35 86.45 87.80 87.40

Table 2: Classification accuracy (in %) versus cluster size (number of clusters to be used).

(linear kernel with parameter optimized over
training set using 5 fold cross validation) available
as a part of LibSVM package6. SVM was used
since it is known to perform well for sentiment
classification (Pang et al., 2002). Results reported
are based on the average of ten-fold cross-
validation accuracies. Standard text metrics are
used for reporting the experimental results.

6 Results

Monolingual classification results are shown in
Table71. Table shows accuracies of SA systems
developed on feature set based on words, senses
and clusters. It must be noted that accuracies
reported for cluster based features are with
respect to the best accuracy based on different
cluster sizes. The improvements in results of
cluster features based approach is found to be
statistically significant over the word features
based approach and sense features based approach
at 95% confidence level when tested using a paired
t-test (except forHindi cluster features based
approach). But in general, their accuracies do not
significantly vary after cluster size crosses 1500.

Table 2 shows the classification accuracy
variation when cluster size is altered. For,
En-TD and En-PD experiments, the cluster size
was varied between 200-3000 with an interval
of 500 (after a size of 500). In the En-TD
experiment, the best accuracy is achieved for
cluster size 500, which is lesser than the number of
unique-words/unique-senses (6435/6004) present
in the data. Similarly, for the En-PD experiment,

6http://www.csie.ntu.edu.tw/ ˜ cjlin/
libsvm

7All results reported here are based on 10-fold except for
Marathi (2-fold-5-repeats), as it had comparatively lesser data
samples.

the optimal cluster size of 2500 is also lesser
than the number of unique-words/unique-senses
(30468/4735) present in the data.

To see the effect of training data size variation
for different SA approaches in the En-TD
experiment, the training data size is varied
between 50 to 500. For this, a test set consisting
of 100 positive and 100 negative documents is
fixed. The training data size is varied by selecting
different number of documents from rest of the
dataset (∼500 negative and∼500 positive) as a
training set. For each training data set 10 repeats
are performed,e.g., for training data size of 50, 50
negative and 50 positive documents are randomly
selected from the training data pool of∼500
negative and∼500 positive. This was repeated
10 times (with replacement). The results of this
experiment are presented in Figure 1.
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Figure 1: Training data variation on En-TD
dataset.

Cross-lingual SA accuracies are presented in
Table 3. As in monolingual case, the reported
accuracies are for features based on the best
cluster size.
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Target Language MT PS DCL XC
T=Hi 63.13 53.80 51.51 66.16

T=Mar NA 54.00 56.00 60.30

Table 3: Cross-Lingual SA accuracy (%) onT=Hi andT=Mar with S=En for different approaches
(MT=Machine Translation,PS=Projection based on Sense,DCL=Direct Cluster Linking ,XC=Cross-
Lingual Clustering. There is no MT system available for (S=En, T=Mar ).

7 Discussions

In this section, some important observations from
the results are discussed.

1. Syntagmatic analysis may be used in lieu
of paradigmatic analysis for SA: The results
suggest that word cluster based features using
syntagmatic analysis is comparatively better than
cluster (sense) based features using paradigmatic
analysis. For two datasets inEnglish and for
the one inMarathi this holds true. ForEnglish,
the gap between classification accuracy based on
sense features and cluster features is around 10%.
A state-of-art accuracy is obtained for the public
dataset on travel domain (En-TD).

The difference in accuracy reduces as the
language gets morphologically rich. In a
morphologically rich language, morphology
encompasses syntactical information, limiting the
context it can provide for clustering. This can be
seen from the classification results onMarathi.
However for Hindi, classifier built on features
based on syntagmatic analysis trails the one based
on paradigmatic analysis.

Compared to Marathi, Hindi is a less
morphologically rich language, hence, a better
result was expected. However, a contrary result
was obtained.z In Hindi, the subject and the
object of the sentence are linked using a case
marker. Upon error analysis, it was found that
there was a lot of irregular compounding based
on case markers. Case markers were compounded
with the succeeding word. This is a deviation
from the real scenario which would have resulted
in incorrect clustering leading to an unexpected
result. However, the same would not have
occurred for a classifier developed on sense based
features as it was manually sense tagged.

Clustering induces a reduction in the data
sparsity. For example, onEn-PD, percentage of
features present in the test set and not present in
the training set to those present in the test set
are 34.17%, 11.24%, 0.31%for words, synsets

and cluster based features respectively. The
improvement in the performance of classifiers
may be attributed to this feature size reduction.
However, it must be noted that clustering based
on unlabelled corpora is less taxing than manually
creating paradigmatic property based clusters like
WordNet synsets.

Barring one instance, both cluster based
features outperform word based features. The
reason for the drop in the accuracy of approach
based on sense features forEn-PD dataset
is the domain specific nature of sentiment
analysis (Blitzer et al., 2007), which is explained
in the next point.

2. Domain issues are resolved while using
cluster based features: For En-PD, the classifier
developed using sense features based on
paradigmatic analysis performs inferior to
word based features. Compared to other datasets
used for analysis, this dataset was sense annotated
using an automatic WSD engine. This engine was
trained on a travel domain corpus and as WSD
is also domain specific, the final classification
performance suffered. Additionally, as the target
domain was on products, the automatic WSD
engine employed had an in-domain accuracy
of 78%. The sense disambiguation accuracy of
the same would have lowered in a cross-domain
setting. This might have had a degrading effect on
the SA accuracy.

However, it was seen that classifier developed
on cluster features based on syntagmatic analysis
do not suffer from this. Such clusters
obliterate domain relates issues. In addition, as
more unlabelled data is included for clustering,
the classification accuracy improves.8 Thus,
clustering may be employed to tackle other
specific domain related issues in SA.

8It was observed that adding 0.1 million unlabelled
documents, SA accuracy improved by 1%. This was observed
in the case of English for which there is abundant unlabelled
corpus.
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3. Cluster based features using syntagmatic
analysis requires lesser training data: Cluster
based features drastically reduces the dimension
of the feature vector. For instance, the size
of sense based features for En-TD dataset was
1/6th of the size of word based features. This
reduces the perplexity of the classification model.
The reduction in the perplexity leads to the
reduction of training documents to attain the same
classification accuracy without any dimensionality
reduction. This is evident from Figure 1
where accuracy of the cluster features based on
unlabelled corpora are higher even with lesser
training data.

4. Effect of cluster size: The cluster size
(number of clusters employed) has an implication
on the purity of each cluster with respect to the
application. The system performance improved
upon increasing the cluster size and converged
after attaining a certain level of accuracy. In
general, it was found that the best classification
accuracy was obtained for a cluster size between
1000 and 2500. As evident from Table 2, once
the optimal accuracy is obtained, no significant
changes were observed by increasing the cluster
size.

5. Clustering based CLSA is effective:
For target language asHindi, CLSA accuracy
based on cross-lingual clustering (syntagmatic)
outperforms the one based on MT (refer to
Table 3). This was true for the constraint
clustering approach based on cross-lingual
clustering. Whereas, sentiment classifier using
sense (PS) or direct cluster linking (DCL) is
not very effective. In case of PS approach, the
coverage of the multidict was a problem. The
number of a linkages between sense fromEnglish
to Hindi is only around1/3rd the size of Princeton
WordNet (Fellbaum, 1998). Similarly in case
of DCL approach, monolingual likelihood is
different from the cross-lingual likelihood in
terms of the linkages.

6. A note on CLSA for truly resource scarce
languages: Note that there is no publicly available
MT system forEnglish to Marathi. Moreover,
the digital content inMarathi language does not
have a standard encoding format. This impedes
the automatic crawling of the web for corpora
creation for SA. Much manual effort has to be put
to collect enough corpora for analysis. However,
even in these languages, unlabelled corpora is

easy to obtain. Marathi was chosen to depict
a truly resource scarce SA scenario. Cluster
features based classifier comparatively performed
well with 60% classification accuracy. An MT
based system would have suffered in this case as
Marathi, as stated earlier, is a morphologically
rich language and as compared to English, has a
different word ordering. This could degrade the
accuracy of the machine translation itself, limiting
the performance of an MT based CLSA system.
All this is obliterated by the use of a cluster based
CLSA approach. Moreover, as more monolingual
copora is added for clustering, the cross lingual
cluster linkages could be refined. This can further
boost the CLSA accuracy.

8 Conclusion and Future Work

This paper explored feasibility of using word
cluster based features in lieu of features based on
WordNet senses for sentiment analysis to alleviate
the problem of data sparsity. Abstractly, the
motivation was to see if highly effective features
based on paradigmatic property based clustering
could be replaced with the inexpensive ones based
on syntagmatic property for SA.

The study was performed for both monolingual
SA and cross-lingual SA. It was found that
cluster features based on syntagmatic analysis
are better than the WordNet sense features based
on paradigmatic analysis for SA. Invesitgation
revealed that a considerable decrease in the
training data could be achieved while using such
class based features. Moreover, as syntagma based
word clusters are homogenous, it was able to
address domain specific nature of SA as well.

For CLSA, clusters linked together using
unlabelled parallel corpora do away with the need
of translating labelled corpora from one language
to another using an intermediary MT system or
bilingual dictionary. Such a method outperforms
an MT based CLSA approach. Further, this
approach was found to be useful in cases where
there are no MT systems to perform CLSA and
the language of analysis is truly resource scarce.
Thus, wider implication of this study is that many
widely spoken yet resource scare languages like
Pashto, Sundanese, Hausa, GujaratiandPunjabi
which do not have an MT system could now be
analysed for sentiment. The approach presented
here for CLSA will still require a parallel corpora.
However, the size of the parallel corpora required
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for CLSA can considerably be much lesser than
the size of the parallel corpora required to train an
MT system.

A naive cluster linkage algorithm based on word
alignments was used to perform CLSA. As a
result, there were many erroneous linkages which
lowered the final SA accuracy. Better cluster-
linking approaches could be explored to alleviate
this problem. There are many applications which
use WordNet like IR, IEetc. It would be
interesting to see if these could be replaced by
clusters based on the syntagmatic property.
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Abstract

Supervised training procedures for seman-
tic parsers produce high-quality semantic
parsers, but they have difficulty scaling
to large databases because of the sheer
number of logical constants for which
they must see labeled training data. We
present a technique for developing seman-
tic parsers for large databases based on
a reduction to standard supervised train-
ing algorithms, schema matching, and pat-
tern learning. Leveraging techniques from
each of these areas, we develop a semantic
parser for Freebase that is capable of pars-
ing questions with an F1 that improves by
0.42 over a purely-supervised learning al-
gorithm.

1 Introduction

Semantic parsing is the task of translating natural
language utterances to a formal meaning represen-
tation language (Chen et al., 2010; Liang et al.,
2009; Clarke et al., 2010; Liang et al., 2011; Artzi
and Zettlemoyer, 2011). There has been recent in-
terest in producing such semantic parsers for large,
heterogeneous databases like Freebase (Krishna-
murthy and Mitchell, 2012; Cai and Yates, 2013)
and Yago2 (Yahya et al., 2012), which has driven
the development of semi-supervised and distantly-
supervised training methods for semantic parsing.
Previous purely-supervised approaches have been
limited to smaller domains and databases, such as
the GeoQuery database, in part because of the cost
of labeling enough samples to cover all of the log-
ical constants involved in a domain.

This paper investigates a reduction of the prob-
lem of building a semantic parser to three stan-
dard problems in semantics and machine learning:
supervised training of a semantic parser, schema
matching, and pattern learning. Figure 1 provides
a visualization of our system architecture. We
apply an existing supervised training algorithm
for semantic parsing to a labeled data set. We
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Test questions 
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Relations 
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Learning 
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PCCG Grammar and 
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Figure 1: We reduce the task of learning a large-
scale semantic parser to a combination of 1) a
standard supervised algorithm for learning seman-
tic parsers; 2) our MATCHER algorithm for find-
ing correspondences between words and database
symbols; and 3) our LEXTENDER algorithm for
integrating (word, database symbol) matches into
a semantic parsing lexicon.

apply schema matching techniques to the prob-
lem of finding correspondences between English
words w and ontological symbols s. And we ap-
ply pattern learning techniques to incorporate new
(w, s) pairs into the lexicon of the trained seman-
tic parser.

This reduction allows us to apply standard tech-
niques from each problem area, which in com-
bination provide a large improvement over the
purely-supervised approaches. On a dataset of
917 questions taken from 81 domains of the Free-
base database, a standard learning algorithm for
semantic parsing yields a parser with an F1 of
0.21, in large part because of the number of log-
ical symbols that appear during testing but never
appear during training. Our techniques can extend
this parser to new logical symbols through schema
matching, and yield a semantic parser with an F1
of 0.63 on the same task. On a more challenging
task where training and test data are divided so that
all logical constants in test are never observed dur-
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ing training, our approach yields a semantic parser
with an F1 of 0.6, whereas the purely supervised
approach cannot parse a single test question cor-
rectly. These results indicate that it is possible to
automatically extend semantic parsers to symbols
for which little or no training data has been ob-
served.

The rest of this paper is organized as follows.
The next section discusses related work. Section 3
describes our MATCHER algorithm for performing
schema matching between a knowledge base and
text. Section 4 explains how we use MATCHER’s
schema matching to extend a standard semantic
parser to logical symbols for which it has seen no
labeled training data. Section 5 analyzes the per-
formance of MATCHER and our semantic parser.
Section 6 concludes.

2 Previous Work

Two existing systems translate between natural
language questions and database queries over
large-scale databases. Yahya et al. (2012) re-
port on a system for translating natural language
queries to SPARQL queries over the Yago2 (Hof-
fart et al., 2013) database. Yago2 consists of
information extracted from Wikipedia, WordNet,
and other resources using manually-defined ex-
traction patterns. The manual extraction patterns
pre-define a link between natural language terms
and Yago2 relations. Our techniques automate
the process of identifying matches between tex-
tual phrases and database relation symbols, in or-
der to scale up to databases with more relations,
like Freebase. A more minor difference between
Yahya et al.’s work and ours is that their system
handles SPARQL queries, which do not handle ag-
gregation queries like argmax and count. We
rely on an existing semantic parsing technology
to learn the language that will translate into such
aggregation queries. On the other hand, their test
questions involve more conjunctions and complex
semantics than ours. Developing a dataset with
more complicated semantics in the queries is part
of our ongoing efforts.

Krishnamurthy and Mitchell (2012) also cre-
ate a semantic parser for Freebase covering 77
of Freebase’s over 2000 relations. Like our
work, their technique uses distant supervision to
drive training over a collection of sentences gath-
ered from the Web, and they do not require any
manually-labeled training data. However, their

technique does require manual specification of
rules that construct CCG lexical entries from de-
pendency parses. In comparison, we fully auto-
mate the process of constructing CCG lexical en-
tries for the semantic parser by making it a pre-
diction task. We also leverage synonym-matching
techniques for comparing relations extracted from
text with Freebase relations. Finally, we test our
results on a dataset of 917 questions covering
over 600 Freebase relations, a more extensive test
than the 50 questions used by Krishnamurthy and
Mitchell.

Numerous methods exist for comparing two re-
lations based on their sets of tuples. For instance,
the DIRT system (Lin and Pantel, 2001) uses the
mutual information between the (X,Y ) argument
pairs for two binary relations to measure the sim-
ilarity between them, and clusters relations ac-
cordingly. More recent examples of similar tech-
niques include the Resolver system (Yates and Et-
zioni, 2009) and Poon and Domingos’s USP sys-
tem (Poon and Domingos, 2009). Our techniques
for comparing relations fit into this line of work,
but they are novel in their application of these
techniques to the task of comparing database re-
lations and relations extracted from text.

Schema matching (Rahm and Bernstein, 2001;
Ehrig et al., 2004; Giunchiglia et al., 2005) is a
task from the database and knowledge representa-
tion community in which systems attempt to iden-
tify a “common schema” that covers the relations
defined in a set of databases or ontologies, and the
mapping between each individual database and the
common schema. Owing to the complexity of the
general case, researchers have resorted to defining
standard similarity metrics between relations and
attributes, as well as machine learning algorithms
for learning and predicting matches between rela-
tions (Doan et al., 2004; Wick et al., 2008b; Wick
et al., 2008a; Nottelmann and Straccia, 2007;
Berlin and Motro, 2006). These techniques con-
sider only matches between relational databases,
whereas we apply these ideas to matches between
Freebase and extracted relations. Schema match-
ing in the database sense often considers com-
plex matches between relations (Dhamanka et al.,
2004), whereas as our techniques are currently re-
stricted to matches involving one database relation
and one relation extracted from text.
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3 Textual Schema Matching

3.1 Problem Formulation
The textual schema matching task is to identify
natural language words and phrases that corre-
spond with each relation and entity in a fixed
schema for a relational database. To formalize this
task, we first introduce some notation.

A schema S = (E,R,C, I) consists of a
set of entities E, a set of relations R, a set of
categories C, and a set of instances I . Categories
are one-argument predicates (e.g., film(e)), and
relations are two- (or more-) argument predicates
(e.g., directed by(e1, e2)). Instances are
known tuples of entities that make a relation
or category true, such as film(Titanic)
or directed by(Titanic, James
Cameron). For a given r ∈ R (or c ∈ C),
IS(r) indicates the set of known instances of r in
schema S (and likewise for IS(c)). Examples of
such schemas include Freebase (Bollacker et al.,
2008) and Yago2 (Hoffart et al., 2013). We say a
schema is a textual schema if it has been extracted
from free text, such as the Nell (Carlson et al.,
2010) and ReVerb (Fader et al., 2011) extracted
databases.

Given a textual schema T and a database
schema D, the textual schema matching task is to
identify an alignment or matching M ⊂ RT ×RD
such that (rT , rD) ∈ M if and only if rT can
be used to refer to rD in normal language usage.
The problem would be greatly simplified if
M were a 1-1 function, but in practice most
database relations can be referred to in many
ways by natural language users: for instance,
film actor can be referenced by the English
verbs “played,” “acted,” and “starred,” along
with morphological variants of them. In addi-
tion, many English verbs can refer to several
different relations in Freebase: “make” can refer
to computer processor manufacturer
or distilled spirits producer, among
many others. Our MATCHER algorithm for textual
schema matching handles this by producing a
confidence score for every possible (rT , rD) pair,
which downstream applications can then use to
reason about the possible alignments.

Even worse than the ambiguities in alignment,
some textual relations do not correspond with
any database relation exactly, but instead they
correspond with a projection of a relation, or a
join between multiple relations, or another com-

plex view of a database schema. As a sim-
ple example, “actress” corresponds to a subset
of the Freebase film actor relation that inter-
sects with the set {x: gender(x, female)}.
MATCHER can only determine that “actress”
aligns with film actor or not; it cannot pro-
duce an alignment between “actress” and a join of
film actor and gender. These more complex
alignments are an important consideration for fu-
ture work, but as our experiments will show, quite
useful alignments can be produced without han-
dling these more complex cases.

3.2 Identifying candidate matches

MATCHER uses a generate-and-test architecture
for determining M . It uses a Web search engine
to issue queries for a database relation rD consist-
ing of all the entities in a tuple t ∈ ID(rD). 1000
tuples for each rD are randomly chosen for issu-
ing queries. The system then retrieves matching
snippets from the search engine results. It uses
the top 10 results for each search engine query. It
then counts the frequency of each word type in the
set of retrieved snippets for rD. The top 500 non-
stopword word types are chosen as candidates for
matches with rD. We denote the candidate set for
rD as C(rD).

MATCHER’s threshold of 500 candidates for
C(rD) results in a maximum possible recall of just
less than 0.8 for the alignments in our dataset, but
even if we double the threshold to 1000, the re-
call improves only slightly to 0.82. We therefore
settled on 500 as a point with an acceptable upper
bound on recall, while also producing an accept-
able number of candidate terms for further pro-
cessing.

3.3 Pattern-based match selection

The candidate pool C(rD) of 500 word types is
significantly smaller than the set of all textual re-
lations, but it is also extremely noisy. The can-
didates may include non-relation words, or other
frequent but unrelated words. They may also in-
clude words that are highly related to rD, but not
actually corresponding textual relations. For in-
stance, the candidate set for film director in
Freebase includes words like “directed,” but also
words like “film,” “movie,” “written,” “produced,”
and “starring.” We use a series of filters based on
synonym-detection techniques to help select the
true matching candidates from C(rD).
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Pattern Condition Example

1. “rT in E” rT ends with “-ed” and E has
type datetime or location

“founded in 1989”

2. “rT by E” rT ends with “-ed” “invented by Edison”
3. “rT such as E” rT ends with “-s” “directors such as Tarantino”
4. “E is a(n) rT ” all cases “Paul Rudd is an actor”

Table 1: Patterns used by MATCHER as evidence of a match between rD and rT . E represents an entity
randomly selected from the tuples in ID(rD).

The first type of evidence we consider for
identifying true matches from C(rD) consists of
pattern-matching. Relation words that express rD
will often be found in complex grammatical con-
structions, and often they will be separated from
their entity arguments by long-distance dependen-
cies. However, over a large corpus, one would ex-
pect that in at least some cases, the relation word
will appear in a simple, relatively-unambiguous
grammatical construction that connects rT with
entities from rD. For instance, entities e from the
relationship automotive designer appear in
the pattern “designed by e” more than 100 times
as often as the next most-common patterns, “con-
sidered by e” and “worked by e.”

MATCHER use searches over the Web to count
the number of instances where a candidate rT ap-
pears in simple patterns that involve entities from
rD. Greater counts for these patterns yield greater
evidence of a correct match between rD and rT .
Table 1 provides a list of patterns that we consider.
For each rD and each rT ∈ C(rD), MATCHER

randomly selects 10 entities from rD’s tuples to
include in its pattern queries. Two of the patterns
are targeted at past-tense verbs, and the other two
patterns at nominal relation words.

MATCHER computes statistics similar to point-
wise mutual information (PMI) (Turney, 2001) to
measure how related rD and rT are, for each pat-
tern p. Let c(p, rD, rT ) indicate the sum of all the
counts for a particular pattern p, database relation,
and textual relation:

fp(rT , rD) =
c(p, rD, rT )∑

r′D

c(p, r′D, rT ) ∗
∑

r′T

c(p, rD, r
′
T )

For the sum over all r′D, we use all r′D in Freebase
for which rT was extracted as a candidate.

One downside of the pattern-matching evidence
is the sheer number of queries it requires. Freebase

currently has over 2,000 relations. For each rD,
we have up to 500 candidate rT , up to 4 patterns,
and up to 10 entities per pattern. To cover all of
Freebase, MATCHER needs 2, 000×500×4×10 =
40 million queries, or just over 1.25 years if it
issues 1 query per second (we covered approxi-
mately one-quarter of Freebase’s relations in our
experiments). Using more patterns and more en-
tities per pattern are desirable for accumulating
more evidence about candidate matches, but there
is a trade-off with the time required to issue the
necessary queries.

3.4 Comparing database relations with
extracted relations

Open Information Extraction (Open IE) systems
(Banko et al., 2007) can often provide a large set of
extracted tuples for a given rT , which MATCHER

can then use to make much more comprehensive
comparisons with the full tuple set for rD than the
pattern-matching technique allows.

MATCHER employs a form of PMI to compute
the degree of relatedness between rD and rT . In
its simplest form, MATCHER computes:

PMI(rT , rD) =
|ID(rD) ∩ IT (rT )|
|ID(rD)| · |IT (rT )| (1)

While this PMI statistic is already quite useful, we
have found that in practice there are many cases
where an exact match between tuples in ID(rD)
and tuples in IT (rT ) is too strict of a criterion.
MATCHER uses a variety of approximate matches
to compute variations of this statistic. Considered
as predictors for the true matches inM , these vari-
ations of the PMI statistic have a lower precision,
in that they are more likely to have high values
for incorrect matches. However, they also have a
higher recall: that is, they will have a high value
for correct candidates in C(rD) when the strict
version of PMI does not. Table 2 lists all the vari-
ations used by MATCHER.
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Statistics for (rT , rD)

sκ(rT , rD) =

∑

tD∈ID(rD)

∑

tT∈IT (rT )
κ(tD, tT )

|ID(rD)|·|IT (rT )|

s′κ(rT , rD) = sκ(rT ,rD)∑

r′D

sκ(r′D, rT )

s′′(rT , rD) = |IT (rT )|
|ID(rD)|

Table 2: MATCHER statistics: for each κ func-
tion for comparing two tuples (given in Table 3),
MATCHER computes the statistics above to com-
pare rD and rT . The PMI statistic in Equation
1 corresponds to sκ where κ =strict match over
Φ =full tuples.

κ(t1, t2) for comparing tuples t1, t2

strict match:

{
1, if Φ(t1) = Φ′(t2)

0, otherwise.

type match:





1, if ∀kcat(Φ(t1)k)

= cat(Φ′(t2)k)

0, otherwise.

Table 3: MATCHER’s κ functions for computing
whether two tuples are similar. cat maps an entity
to a category (or type) in the schema. MATCHER

has a different κ function for each possible com-
bination of Φ and Φ′ functions, which are given in
Table 4.

MATCHER uses an API for the ReVerb Open
IE system1 (Fader et al., 2011) to collect I(rT ),
for each rT . The API for ReVerb allows for rela-
tional queries in which some subset of the entity
strings, entity categories, and relation string are
specified. The API returns all matching triples;
types must match exactly, but relation or argument
strings in the query will match any relation or ar-
gument that contains the query string as a sub-
string. MATCHER queries ReVerb with three dif-
ferent types of queries for each rT , specifying the
types for both arguments, or just the type of the
first argument, or just the second argument. Types
for arguments are taken from the types of argu-
ments for a potentially matching rD in Freebase.
To avoid overwhelming the ReVerb servers, for
our experiments we limited MATCHER to queries

1http://openie.cs.washington.edu/

Φ(t) for tuple t = (e1, . . . , en)

∀iei (projection to one dimension)
(e1, . . . , en) (full tuple)
∀σ(·)(eσ(1), . . . , eσ(n)) (permutation)

Table 4: MATCHER’s Φ functions for projecting
or permuting a tuple. σ indicates a permutation of
the indices.

for the top 80 rT ∈ C(rD), when they are ranked
according to frequency during the candidate iden-
tification process.

3.5 Regression models for scoring candidates

Pattern statistics, the ReVerb statistics from Ta-
ble 2, and the count of rT during the candidate
identification step all provide evidence for correct
matches between rD and rT . MATCHER uses a re-
gression model to combine these various statistics
into a score for (rT , rD). The regression model
is a linear regression with least-squares parameter
estimation; we experimented with support vector
regression models with non-linear kernels, with
no significant improvements in accuracy. Section
5 explains the dataset we use to train this model.
Unlike a classifier, MATCHER does not output any
single matching M . However, downstream appli-
cations can easily convert MATCHER’s output into
a matchingM by, for instance, selecting the topK
candidate rT values for each rD, or by selecting all
(rT , rD) pairs with a score over a chosen thresh-
old. Our experiments analyze MATCHER’s suc-
cess by comparing its performance across a range
of different values for the number of rT matches
for each rD.

4 Extending a Semantic Parser Using a
Schema Alignment

An alignment between textual relations and
database relations has many possible uses: for ex-
ample, it might be used to allow queries over a
database to be answered using additional infor-
mation stored in an extracted relation store, or
it might be used to deduce clusters of synony-
mous relation words in English. Here, we de-
scribe an application in which we build a question-
answering system for Freebase by extending a
standard learning technique for semantic parsing
with schema alignment information.

As a starting point, we used the UBL system
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developed by Kwiatkowski et al. (2010) to learn
a semantic parser based on probabilistic Com-
binatory Categorial Grammar (PCCG). Source
code for UBL is freely available. Its authors
found that it achieves results competitive with the
state-of-the-art on a variety of standard semantic
parsing data sets, including Geo250 English (0.85
F1). Using a fixed CCG grammar and a procedure
based on unification in second-order logic, UBL
learns a lexicon Λ from the training data which
includes entries like:

Example Lexical Entries

New York City ` NP : new york

neighborhoods in `
S\NP/NP : λxλy.neighborhoods(x, y)

Example CCG Grammar Rules

X/Y : f Y : g ⇒ X : f(g)
Y : g X\Y : f ⇒ X : f(g)

Using Λ, UBL selects a logical form z
for a sentence S by selecting the z with the
most likely parse derivations y: h(S) =
arg maxz

∑
y p(y, z|x; θ,Λ). The probabilistic

model is a log-linear model with features for lex-
ical entries used in the parse, as well as indi-
cator features for relation-argument pairs in the
logical form, to capture selectional preferences.
Inference (parsing) and parameter estimation are
driven by standard dynamic programming algo-
rithms (Clark and Curran, 2007), while lexicon
induction is based on a novel search procedure
through the space of possible higher-order logic
unification operations that yield the desired logi-
cal form for a training sentence.

Our Freebase data covers 81 of the 86 core do-
mains in Freebase, and 635 of its over 2000 re-
lations, but we wish to develop a semantic parser
that can scale to all of Freebase. UBL gets us part
of the way there, by inducing a PCCG grammar, as
well as lexical entries for function words that must
be handled in all domains. It can also learn lexical
entries for relations rD that appear in the training
data. However, UBL has no way to learn lexical
entries for the many valid (rT , rD) pairs that do
not appear during training.

We use MATCHER’s learned alignment to ex-
tend the semantic parser that we get from UBL
by automatically adding in lexical entries for Free-

base relations. Essentially, for each (rT , rD) from
MATCHER’s output, we wish to construct a lexi-
cal entry that states that rT ’s semantics resembles
λxλy.rD(x, y). However, this simple process is
complicated by the fact that the semantic parser re-
quires two additional types of information for each
lexical entry: a syntactic category, and a weight.
Furthermore, for many cases the appropriate se-
mantics are significantly more complex than this
pattern.

To extend the learned semantic parser to a se-
mantic parser for all of Freebase, we introduce a
prediction task, which we call semantic lexicon ex-
tension: given a matching M together with scores
for each pair in M , predict the syntactic category
Syn, lambda-calculus semantics Sem, and weight
W for a full lexical entry for each (rT , rD) ∈ M .
One advantage of the reduction approach to learn-
ing a semantic parser is that we can automatically
construct training examples for this prediction task
from the other components in the reduction. We
use the output lexical entries learned by UBL as
(potentially noisy) examples of true lexical entries
for (rT , rD) pairs where rT matches the word in
one of UBL’s lexical entries, and rD forms part
of the semantics in the same lexical entry. For
(rT , rD) pairs in M where rD occurs in UBL’s
lexical entries, but not paired with rT , we create
dummy “negative” lexical entries with very low
weights, one for each possible syntactic category
observed in all lexical entries. Note that in or-
der to train LEXTENDER, we need the output of
MATCHER for the relations in UBL’s training data,
as well as UBL’s output lexicon from the training
data.

Our system for this prediction task, which we
call LEXTENDER (for Lexicon eXtender), factors
into three components: P (Sem|rD, rT , score),
P (Syn|Sem, rD, rT , score), and
P (W |Syn, Sem, rD, rT , score). This factoriza-
tion is trivial in that it introduces no independence
assumptions, but it helps in designing models
for the task. We set the event space for random
variable Sem to be the set of all lambda calculus
expressions observed in UBL’s output lexicon,
modulo the names of specific Freebase relations.
For instance, if the lexicon includes two entries
whose semantics are λxλy . film actor(x, y) and
λxλy . book author(x, y), the event space would
include the single expression in which relations
film actor and book author were replaced by
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a new variable: λpλxλy.p(x, y). The final
semantics for a lexical entry is then constructed
by substituting rD for p, or more formally, by a
function application Sem(rD). The event space
for Syn consists of all syntactic categories in
UBL’s output lexicon, and W ranges over R.

LEXTENDER’s model for Sem and Syn are
Naı̈ve Bayes classifiers (NBC), with features for
the part-of-speech for rT (taken from a POS tag-
ger), the suffix of rT , the number of arguments of
rD, and the argument types of rD. For Syn, we
add a feature for the predicted value of Sem. For
W , we use a linear regression model whose fea-
tures are the score from MATCHER, the probabili-
ties from the Syn and Sem NBC models, and the
average weight of all lexical entries in UBL with
matching syntax and semantics. Using the pre-
dictions from these models, LEXTENDER extends
UBL’s learned lexicon with all possible lexical en-
tries with their predicted weights, although typi-
cally only a few lexical entries have high enough
weight to make a difference during parsing. Prun-
ing entries with low weights could improve the
memory and time requirements for parsing, but
these were not an issue in our experiments, so we
did not investigate this further.

5 Experiments

We conducted experiments to test the ability of
MATCHER and LEXTENDER to produce a se-
mantic parser for Freebase. We first analyze
MATCHER on the task of finding matches between
Freebase relations and textual relations. We then
compare the performance of the semantic parser
learned by UBL with its extension provided by
LEXTENDER on a dataset of English questions
posed to Freebase.

5.1 Experimental Setup

Freebase (Bollacker et al., 2008) is a free,
online, user-contributed, relational database
(www.freebase.com) covering many different
domains of knowledge. The full schema and
contents are available for download. The “Free-
base Commons” subset of Freebase, which is our
focus, consists of 86 domains, an average of 25
relations per domain (total of 2134 relations),
and 615,000 known instances per domain (53
million instances total). As a reference point,
the GeoQuery database — which is a standard
benchmark database for semantic parsing —

Examples

1. What are the neighborhoods in New
York City?
λx . neighborhoods(new york, x)

2. How many countries use the rupee?
count(x) . countries used(rupee, x)

3. How many Peabody Award winners are
there?
count(x) . ∃y . award honor(y) ∧

award winner(y, x) ∧
award(y, peabody award)

Figure 2: Example questions with their logical
forms. The logical forms make use of Freebase
symbols as logical constants, as well as a few ad-
ditional symbols such as count and argmin, to
allow for aggregation queries.

contains a single domain (geography), 8 relations,
and 880 total instances.

Our dataset contains 917 questions (on aver-
age, 6.3 words per question) and a meaning repre-
sentation for each question written in a variant of
lambda calculus2. 81 domains are represented in
the data set, and the lambda calculus forms contain
635 distinct Freebase relations. The most com-
mon domains, film and business, each took
up no more than 6% of the overall dataset. Sev-
eral examples are listed in Fig. 2. The ques-
tions were provided by two native English speak-
ers. No restrictions were placed on the type of
questions they should produce, except that they
should produce questions for multiple domains.
By inspection, a large majority of the questions
appear to be answerable from Freebase, although
no instructions were given to restrict questions
to this sort. We also created a dataset of align-
ments from these annotated questions by creating
an alignment for each Freebase relation mentioned
in the logical form for a question, paired with a
manually-selected word from the question.

5.2 Alignment Tests

We measured the precision and recall of
MATCHER’s output against the manually la-
beled data. Let M be the set of (rT , rD) matches
produced by the system, and G the set of matches
in the gold-standard manual data. We define

2The data is available from the second author’s website.
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Figure 3: MATCHER’s Pattern features and Extrac-
tions features complement one another, so that in
combination they outperform either subset on its
own, especially at the high-recall end of the curve.

precision and recall as:

P =
|M ∩G|
|M | , R =

|M ∩G|
|G|

Figure 3 shows a Precision-Recall (PR) curve
for MATCHER and three baselines: a “Frequency”
model that ranks candidate matches for rD by their
frequency during the candidate identification step;
a “Pattern” model that uses MATCHER’s linear re-
gression model for ranking, but is restricted to
only the pattern-based features; and an “Extrac-
tions” model that similarly restricts the ranking
model to ReVerb features. We have three folds in
our data; the alignments for relation rD in one fold
are predicted by models trained on the other two
folds. Once all of the alignments in all three folds
are scored, we generate points on the PR curve by
applying a threshold to the model’s ranking, and
treating all alignments above the threshold as the
set of predicted alignments.

All regression models for learning alignments
outperform the Frequency ranking by a wide mar-
gin. The Pattern model outperforms the Extrac-
tions model at the high-precision, low-recall end
of the curve. At the high-recall points, the Pat-
tern model drops quickly in precision. However,
the combination of the two kinds of features in
MATCHER yields improved precision at all levels
of recall.

5.3 Semantic Parsing Tests
While our alignment tests can tell us in relative
terms how well different models are performing,
it is difficult to assess these models in absolute
terms, since alignments are not typical applica-
tions that people care about in their own right. We

now compare our alignments on a semantic pars-
ing task for Freebase.

In a first semantic parsing experiment, we train
UBL, MATCHER, and LEXTENDER on a random
sample of 70% of the questions, and test them
on the remaining 30%. In a second test, we fo-
cus on the hard case where all questions from the
test set contain logical constants that have never
been seen before during training. We split the
data into 3 folds, making sure that no Freebase do-
main has symbols appearing in questions in more
than one fold. We then perform 3-fold cross-
validation for all of our supervised models. We
varied the number of matches that the alignment
model (MATCHER, Pattern, Extractions, or Fre-
quency) could make for each Freebase relation,
and measured semantic parsing performance as a
function of the number of matches.

Figure 4 shows the F1 scores for these se-
mantic parsers, judged by exact match between
the top-scoring logical form from the parser and
the manually-produced logical form. Exact-match
tests are overly-strict, in the sense that the sys-
tem may be judged incorrect even when the log-
ical form that is produced is logically equivalent
to the correct logical form. However, by inspec-
tion such cases appear to be very rare in our data,
and the exact-match criterion is often used in other
semantic parsing experimental settings.

The semantic parsers produced by
MATCHER+LEXTENDER and the other alignment
techniques significantly outperform the baseline
semantic parser learned by UBL, which achieves
an overall F1 of 0.21 on these questions in the
70/30 split of the data, and an F1 of 0 in the
cross-domain experiment. Purely-supervised
approaches to this data are severely limited, since
they have almost no chance of correctly parsing
questions that refer to logical symbols that never
appeared during training. However, MATCHER

and LEXTENDER combine with UBL to produce
an effective semantic parser. The best semantic
parser we tested, which was produced by UBL,
MATCHER, and LEXTENDER with 9 matches per
Freebase relation, had a precision of 0.67 and a
recall of 0.59 on the 70/30 split experiment.

The difference in alignment performance be-
tween MATCHER, Pattern, and Extractions carries
over to semantic parsing. MATCHER drops in F1
with more matches as additional matches tend to
be low-quality and low-probability, whereas Pat-
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Figure 4: Semantic parsers produced by UBL+MATCHER+LEXTENDER outperform the purely-
supervised baseline semantic parser on a random 70/30 split of the data (left) by as much as
0.42 in F1. In the case of this split and in the case of a cross-domain experiment (right),
UBL+MATCHER+LEXTENDER outperforms UBL+Pattern+LEXTENDER by as much as 0.06 in F1.

tern and Extractions keep improving as more low-
probability alignments are added. Interestingly,
the Extractions model begins to overtake the Pat-
tern model in F1 at higher numbers of matches,
and all three models trend toward convergence in
F1 with increasing numbers of matches. Neverthe-
less, MATCHER clearly improves over both, and
reaches a higher F1 than either Pattern or Extrac-
tions using a small number of matches, which cor-
responds to a smaller lexicon and a leaner model.

To place these results in context, many different
semantic parsers for databases like GeoQuery and
ATIS (including parsers produced by UBL) have
achieved F1 scores of 0.85 and higher. However,
in all such tests, the test questions refer to logi-
cal constants that also appeared during training, al-
lowing supervised techniques for learning seman-
tic parsers to achieve strong accuracy. As we have
argued, Freebase is large enough that is difficult
to produce enough labeled training data to cover
all of its logical constants. An unsupervised se-
mantic parser for GeoQuery has achieved an F1
score of 0.66 (Goldwasser et al., 2011), impres-
sive in its own right and slightly better than our F1
score. However, this parser was given questions
which it knew a priori to contain words that re-
fer to the logical constants in the database. Our
MATCHER and LEXTENDER systems address a
different challenge: how to learn a semantic parser
for Freebase given the Web and a set of initial la-
beled questions.

6 Conclusion

Scaling semantic parsing to large databases re-
quires an engineering effort to handle large
datasets, but also novel algorithms to extend se-

mantic parsing models to testing examples that
look significantly different from labeled training
data. The MATCHER and LEXTENDER algo-
rithms represent an initial investigation into such
techniques, with early results indicating that se-
mantic parsers can handle Freebase questions on a
large variety of domains with an F1 of 0.63.

We hope that our techniques and datasets will
spur further research into this area. In particu-
lar, more research is needed to handle more com-
plex matches between database and textual rela-
tions, and to handle more complex natural lan-
guage queries. As mentioned in section 3.1, words
like “actress” cannot be addressed by the cur-
rent methodology, since MATCHER assumes that
a word maps to a single Freebase relation, but
the closest Freebase equivalent to the meaning of
“actress” involves the two relations film actor
and gender. Another limitation is that our cur-
rent methodology focuses on finding matches for
nouns and verbs. Other important limitations of
the current methodology include:

• the assumption that function words have no
domain-specific meaning, which prepositions
in particular can violate;

• low accuracy when there are few relevant re-
sults among the set of extracted relations;

• and the restriction to a single database (Free-
base) for finding answers.

While significant challenges remain, the reduction
of large-scale semantic parsing to a combination
of schema matching and supervised learning of-
fers a new path toward building high-coverage se-
mantic parsers.
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Abstract

Shift-reduce dependency parsers give
comparable accuracies to their chart-
based counterparts, yet the best shift-
reduce constituent parsers still lag behind
the state-of-the-art. One important reason
is the existence of unary nodes in phrase
structure trees, which leads to different
numbers of shift-reduce actions between
different outputs for the same input. This
turns out to have a large empirical impact
on the framework of global training and
beam search. We propose a simple yet
effective extension to the shift-reduce
process, which eliminates size differences
between action sequences in beam-search.
Our parser gives comparable accuracies
to the state-of-the-art chart parsers. With
linear run-time complexity, our parser is
over an order of magnitude faster than the
fastest chart parser.

1 Introduction

Transition-based parsers employ a set of shift-
reduce actions and perform parsing using a se-
quence of state transitions. The pioneering mod-
els rely on a classifier to make local decisions, and
search greedily for a transition sequence to build a
parse tree. Greedy, classifier-based parsers have
been developed for both dependency grammars
(Yamada and Matsumoto, 2003; Nivre et al., 2006)
and phrase-structure grammars (Sagae and Lavie,
2005). With linear run-time complexity, they were
commonly regarded as a faster but less accurate
alternative to graph-based chart parsers (Collins,
1997; Charniak, 2000; McDonald et al., 2005).

Various methods have been proposed to address
the disadvantages of greedy local parsing, among
which a framework of beam-search and global
discriminative training have been shown effective
for dependency parsing (Zhang and Clark, 2008;
Huang and Sagae, 2010). While beam-search
reduces error propagation compared with greedy
search, a discriminative model that is globally op-
timized for whole sequences of transition actions
can avoid local score biases (Lafferty et al., 2001).
This framework preserves the most important ad-
vantage of greedy local parsers, including linear
run-time complexity and the freedom to define ar-
bitrary features. With the use of rich non-local fea-
tures, transition-based dependency parsers achieve
state-of-the-art accuracies that are comparable to
the best-graph-based parsers (Zhang and Nivre,
2011; Bohnet and Nivre, 2012). In addition, pro-
cessing tens of sentences per second (Zhang and
Nivre, 2011), these transition-based parsers can be
a favorable choice for dependency parsing.

The above global-learning and beam-search
framework can be applied to transition-based
phrase-structure (constituent) parsing also (Zhang
and Clark, 2009), maintaining all the afore-
mentioned benefits. However, the effects were
not as significant as for transition-based depen-
dency parsing. The best reported accuracies of
transition-based constituent parsers still lag behind
the state-of-the-art (Sagae and Lavie, 2006; Zhang
and Clark, 2009). One difference between phrase-
structure parsing and dependency parsing is that
for the former, parse trees with different numbers
of unary rules require different numbers of actions
to build. Hence the scoring model needs to disam-
biguate between transitions sequences with differ-
ent sizes. For the same sentence, the largest output
can take twice as many as actions to build as the
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smallest one. This turns out to have a significant
empirical impact on parsing with beam-search.

We propose an extension to the shift-reduce pro-
cess to address this problem, which gives signifi-
cant improvements to the parsing accuracies. Our
method is conceptually simple, requiring only one
additional transition action to eliminate size dif-
ferences between different candidate outputs. On
standard evaluations using both the Penn Tree-
bank and the Penn Chinese Treebank, our parser
gave higher accuracies than the Berkeley parser
(Petrov and Klein, 2007), a state-of-the-art chart
parser. In addition, our parser runs with over 89
sentences per second, which is 14 times faster than
the Berkeley parser, and is the fastest that we are
aware of for phrase-structure parsing. An open
source release of our parser (version 0.6) is freely
available on the Web.1

In addition to the above contributions, we apply
a variety of semi-supervised learning techniques to
our transition-based parser. These techniques have
been shown useful to improve chart-based pars-
ing (Koo et al., 2008; Chen et al., 2012), but little
work has been done for transition-based parsers.
We therefore fill a gap in the literature by report-
ing empirical results using these methods. Experi-
mental results show that semi-supervised methods
give a further improvement of0.9% in F-score on
the English data and2.4% on the Chinese data.
Our Chinese results are the best that we are aware
of on the standard CTB data.

2 Baseline parser

We adopt the parser of Zhang and Clark (2009) for
our baseline, which is based on the shift-reduce
process of Sagae and Lavie (2005), and employs
global perceptron training and beam search.

2.1 Vanilla Shift-Reduce

Shift-reduce parsing is based on a left-to-right
scan of the input sentence. At each step, a tran-
sition action is applied to consume an input word
or construct a new phrase-structure. A stack
is used to maintain partially constructed phrase-
structures, while the input words are stored in a
buffer. The set of transition actions are

• SHIFT: pop the front word from the buffer,
and push it onto the stack.

1http://sourceforge.net/projects/zpar/

Axioms [φ, 0, false,0]

Goal [S, n, true, C]

Inference Rules:

[S, i, false, c]
SHIFT

[S|w, i + 1, false, c + cs]

[S|s1s0, i, false, c]
REDUCE-L/R-X

[S|X, i, false, c + cr]

[S|s0, i, false, c]
UNARY-X

[S|X, i, false, c + cu]

[S, n, false, c]
FINISH

[S, n, true, c + cf ]

Figure 1: Deduction system of the baseline shift-
reduce parsing process.

• REDUCE-L/R-X: pop the top two con-
stituents off the stack, combine them into a
new constituent with label X, and push the
new constituent onto the stack.

• UNARY-X: pop the top constituent off the
stack, raise it to a new constituent with la-
bel X, and push the new constituent onto the
stack.

• FINISH: pop the root node off the stack and
ends parsing.

The deduction system for the process is shown
in Figure 1, where the item is formed as〈stack,
buffer front index, completion mark, score〉, and
cs, cr, andcu represent the incremental score of
the SHIFT, REDUCE, andUNARY parsing steps,
respectively; these scores are calculated according
to the context features of the parser state item.n
is the number of words in the input.

2.2 Global Discriminative Training and
Beam-Search

For a given input sentence, the initial state has an
empty stack and a buffer that contains all the input
words. An agenda is used to keep thek best state
items at each step. At initialization, the agenda
contains only the initial state. At each step, every
state item in the agenda is popped and expanded
by applying a valid transition action, and the top
k from the newly constructed state items are put
back onto the agenda. The process repeats until
the agenda is empty, and the best completed state
item (recorded ascandidate output) is taken for
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Description Templates
unigrams s0tc, s0wc, s1tc, s1wc, s2tc

s2wc, s3tc, s3wc, q0wt, q1wt
q2wt, q3wt, s0lwc, s0rwc
s0uwc, s1lwc, s1rwc, s1uwc

bigrams s0ws1w, s0ws1c, s0cs1w, s0cs1c,
s0wq0w, s0wq0t, s0cq0w, s0cq0t,
q0wq1w, q0wq1t, q0tq1w, q0tq1t,
s1wq0w, s1wq0t, s1cq0w, s1cq0t

trigrams s0cs1cs2c, s0ws1cs2c, s0cs1wq0t
s0cs1cs2w, s0cs1cq0t, s0ws1cq0t
s0cs1wq0t, s0cs1cq0w

Table 1: A summary of baseline feature templates,
wheresi represents theith item on the stackS and
qi denotes theith item in the queueQ. w refers to
the head lexicon,t refers to the head POS, andc
refers to the constituent label.

the output.
The score of a state item is the total score of the

transition actions that have been applied to build
the item:

C(α) =
N∑

i=1

Φ(ai) · ~θ

HereΦ(ai) represents the feature vector for theith
actionai in state itemα. It is computed by apply-
ing the feature templates in Table 1 to the context
of α. N is the total number of actions inα.

The model parameter~θ is trained with the aver-
aged perceptron algorithm, applied to state items
(sequence of actions) globally. We apply the early
update strategy (Collins and Roark, 2004), stop-
ping parsing for parameter updates when the gold-
standard state item falls off the agenda.

2.3 Baseline Features

Our baseline features are adopted from Zhang and
Clark (2009), and are shown in Table 1 Heresi

represents theith item on the top of the stackS
andqi denotes theith item in the front end of the
queueQ. The symbolw denotes the lexical head
of an item; the symbolc denotes the constituent
label of an item; the symbolt is the POS of a lex-
ical head. These features are adapted from Zhang
and Clark (2009). We remove Chinese specific
features and make the baseline parser language-
independent.

3 Improved hypotheses comparison

Unlike dependency parsing, constituent parse
trees for the same sentence can have different
numbers of nodes, mainly due to the existence
of unary nodes. As a result, completed state

NP

NN

address

NNS

issues

VP

VB

address

NP

NNS

issues

Figure 2: Example parse trees of the same sen-
tence with different numbers of actions.

items for the same sentence can have different
numbers of unary actions. Take the phrase “ad-
dress issues” for example, two possible parses
are shown in Figure 2 (a) and (b), respectively.
The first parse corresponds to the action sequence
[SHIFT, SHIFT, REDUCE-R-NP, FINISH], while
the second parse corresponds to the action se-
quence [SHIFT, SHIFT, UNARY-NP, REDUCE-L-
VP, FINISH], which consists of one more action
than the first case. In practice, variances between
state items can be much larger than the chosen ex-
ample. In the extreme case where a state item does
not contain any unary action, the number of ac-
tions is 2n, wheren is the number of words in
the sentence. On the other hand, if the maximum
number of consequent unary actions is 2 (Sagae
and Lavie, 2005; Zhang and Clark, 2009), then the
maximum number of actions a state item can have
is 4n.

The significant variance in the number of ac-
tions N can have an impact on the linear sepa-
rability of state items, for which the feature vec-
tors are

∑N
i=1 Φ (ai). This turns out to have a sig-

nificant empirical influence on perceptron training
with early-update, where the training of the model
interacts with search (Daume III, 2006).

One way of improving the comparability of
state items is to reduce the differences in their
sizes, and we use apadding method to achieve
this. The idea is to extend the set of actions by
adding anIDLE action, so that completed state
items can be further expanded using theIDLE ac-
tion. The action does not change the state itself,
but simply adds to the number of actions in the
sequence. A feature vector is extracted for the
IDLE action according to the final state context,
in the same way as other actions. Using theIDLE
action, the transition sequence for the two parses
in Figure 2 can be [SHIFT, SHIFT, REDUCE-
NP, FINISH, IDLE] and [SHIFT, SHIFT, UNARY-
NP, REDUCE-L-VP, FINISH], respectively. Their
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Axioms [φ, 0, false, 0, 0]

Goal [S, n, true, m : 2n ≤ m ≤ 4n, C]

Inference Rules:

[S, i, false, k,c]
SHIFT

[S|w, i + 1, false, k + 1, c + cs]

[S|s1s0, i, false, k, c]
REDUCE-L/R-X

[S|X, i, false, k + 1, c + cr]

[S|s0, i, false, k, c]
UNARY-X

[S|X, i, false, k + 1, c + cu]

[S, n, false, k, c]
FINISH

[S, n, true, k + 1, c + cf ]

[S,n, true, k, c]
IDLE

[S, n, true, k + 1, c + ci]

Figure 3: Deductive system of the extended tran-
sition system.

corresponding feature vectors have about the same
sizes, and are more linearly separable. Note that
there can be more than one action that are padded
to a sequence of actions, and the number of IDLE
actions depends on the size difference between the
current action sequence and the largest action se-
quence without IDLE actions.

Given this extension, the deduction system is
shown in Figure 3. We add the number of actions
k to an item. The initial item (Axioms) hask = 0,
while the goal item has2n ≤ k ≤ 4n. Given this
process, beam-search decoding can be made sim-
pler than that of Zhang and Clark (2009). While
they used acandidate output to record the best
completed state item, and finish decoding when
the agenda contains no more items, we can sim-
ply finish decoding when all items in the agenda
are completed, and output the best state item in
the agenda. With this new transition process, we
experimented with several extended features,and
found that the templates in Table 2 are useful to
improve the accuracies further. Heresill denotes
the left child ofsi’s left child. Other notations can
be explained in a similar way.

4 Semi-supervised Parsing with Large
Data

This section discusses how to extract informa-
tion from unlabeled data or auto-parsed data to
further improve shift-reduce parsing accuracies.
We consider three types of information, including

s0llwc, s0lrwc, s0luwc
s0rlwc, s0rrwc, s0ruwc
s0ulwc, s0urwc, s0uuwc
s1llwc, s1lrwc, s1luwc
s1rlwc, s1rrwc, s1ruwc

Table 2: New features for the extended parser.

paradigmatic relations, dependency relations, and
structural relations. These relations are captured
by word clustering, lexical dependencies, and a
dependency language model, respectively. Based
on the information, we propose a set of novel fea-
tures specifically designed for shift-reduce con-
stituent parsing.

4.1 Paradigmatic Relations: Word
Clustering

Word clusters are regarded as lexical intermedi-
aries for dependency parsing (Koo et al., 2008)
and POS tagging (Sun and Uszkoreit, 2012). We
employ the Brown clustering algorithm (Liang,
2005) on unannotated data (word segmentation is
performed if necessary). In the initial state of clus-
tering, each word in the input corpus is regarded
as a cluster, then the algorithm repeatedly merges
pairs of clusters that cause the least decrease in
the likelihood of the input corpus. The clustering
results are a binary tree with words appearing as
leaves. Each cluster is represented as a bit-string
from the root to the tree node that represents the
cluster. We define a functionCLU(w) to return the
cluster ID (a bit string) of an input wordw.

4.2 Dependency Relations: Lexical
Dependencies

Lexical dependencies represent linguistic relations
between words: whether a word modifies another
word. The idea of exploiting lexical dependency
information from auto-parsed data has been ex-
plored before for dependency parsing (Chen et al.,
2009) and constituent parsing (Zhu et al., 2012).

To extract lexical dependencies, we first run the
baseline parser on unlabeled data. To simplify
the extraction process, we can convert auto-parsed
constituency trees into dependency trees by using
Penn2Malt.2 From the dependency trees, we ex-
tract bigram lexical dependencies〈w1, w2, L/R〉
where the symbolL (R) means thatw1 (w2) is the
head ofw2 (w1). We also extract trigram lexical

2http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
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dependencies〈w1, w2, w3, L/R〉, whereL means
that w1 is the head ofw2 andw3, meanwhilew2

andw3 are required to be siblings.
Following the strategy of Chen et al. (2009),

we assign categories to bigram and trigram items
separately according to their frequency counts.
Specifically, top-10% most frequent items are as-
signed to the category ofHigh Frequency (HF);
otherwise if an item is among top20%, we assign
it to the category ofMiddle Frequency (MF); oth-
erwise the category ofLow Frequency (LF). Here-
after, we refer to the bigram and trigram lexical
dependency lists asBLD andTLD, respectively.

4.3 Structural Relations: Dependency
Language Model

The dependency language model is proposed by
Shen et al. (2008) and is used as additional in-
formation for graph-based dependency parsing in
Chen et al. (2012). Formally, given a depen-
dency treey of an input sentencex, we can
denote byH(y) the set of words that have at
least one dependent. For eachxh ∈ H(y), we
have a corresponding dependency structureDh =
(xLk, . . . xL1, xh, xR1, . . . , xRm). The probability
P (Dh) is defined to be

P (Dh) = PL(Dh) × PR(Dh)

wherePL(Dh) can be in turn defined as:

PL(Dh) ≈ P (xL1|xh)
×P (xL2|xL1, xh)
× . . .
×P (xLk|xLk−1, . . . , xLk−N+1, xh)

PR(Dh) can be defined in a similar way.
We build dependency language models on auto-

parsed data. Again, we convert constituency trees
into dependency trees for the purpose of simplic-
ity. From the dependency trees, we build a bigram
and a trigram language model, which are denoted
by BLM and TLM, respectively. The following
are the templates of the records of the dependency
language models.

(1) 〈xLi, xh, P (xLi|xh)〉
(2) 〈xRi, xh, P (xRi|xh)〉
(3) 〈xLi, xLi−1, xh, P (xLi|xLi−1, xh)〉
(4) 〈xRi, xRi−1, xh, P (xRi|xRi−1, xh)〉

Here the templates (1) and (2) belong to BLM
and the templates (3) and (4) belong to TLM. To

Stat Train Dev Test Unlabeled

EN
# sent 39.8k 1.7k 2.4k 3,139.1k
# word 950.0k 40.1k 56.7k 76,041.4k

CH # sent 18.1k 350 348 11,810.7k
# word 493.8k 8.0k 6.8k 269,057.2k

Table 4: Statistics on sentence and word numbers
of the experimental data.

use the dependency language models, we employ
a map functionΦ(r) to assign a category to each
recordr according to its probability, as in Chen et
al. (2012). The following is the map function.

Φ(r) =





HP if P (r) ∈ top−10%
MP else ifP (r) ∈ top−30%
LP otherwise

4.4 Semi-supervised Features

We design a set of features based on the infor-
mation extracted from auto-parsed data or unan-
notated data. The features are summarized in Ta-
ble 3. HereCLU returns a cluster ID for a word.
The functionsBLDl/r(·), TLDl/r(·), BLMl/r(·),
andTLMl/r(·) check whether a given word com-
bination can be found in the corresponding lists.
For example,BLDl(s1w, s0w) returns a category
tag (HF, MF, or LF) if 〈s1w, s0w,L〉 exits in the
list BLD, else it returnsNONE.

5 Experiments

5.1 Set-up

Labeled English data employed in this paper were
derived from the Wall Street Journal (WSJ) corpus
of the Penn Treebank (Marcus et al., 1993). We
used sections 2-21 as labeled training data, section
24 for system development, and section 23 for fi-
nal performance evaluation. For labeled Chinese
data, we used the version 5.1 of the Penn Chinese
Treebank (CTB) (Xue et al., 2005). Articles 001-
270 and 440-1151 were used for training, articles
301-325 were used as development data, and arti-
cles 271-300 were used for evaluation.

For both English and Chinese data, we used ten-
fold jackknifing (Collins, 2000) to automatically
assign POS tags to the training data. We found that
this simple technique could achieve an improve-
ment of0.4% on English and an improvement of
2.0% on Chinese. For English POS tagging, we
adopted SVMTool,3 and for Chinese POS tagging

3http://www.lsi.upc.edu/∼nlp/SVMTool/
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Word Cluster Features
CLU(s1w) CLU(s0w) CLU(q0w)
CLU(s1w)s1t CLU(s0w)s0t CLU(q0w)q0w

Lexical Dependency Features
BLDl(s1w, s0w) BLDl(s1w, s0w)◦s1t◦s0t BLDr(s1w, s0w)
BLDr(s1w, s0w)◦s1t◦s0t BLDl(s1w, q0w)◦s1t◦q0t BLDl(s1w, q0w)
BLDr(s1w, q0w) BLDr(s1w, q0w)◦s1t◦q0t BLDl(s0w, q0w)
BLDl(s0w, q0w)◦s0t◦q0t BLDr(s0w, q0w)◦s0t◦q0t BLDr(s0w, q0w)
TLDl(s1w, s1rdw, s0w) TLDl(s1w, s1rdw, s0w)◦s1t◦s0t TLDr(s1w, s0ldw, s0w)
TLDr(s1w, s0ldw, s0w)◦s1t◦s0t TLDl(s0w, s0rdw, q0w)◦s0t◦q0t TLDl(s0w, s0rdw, q0w)
TLDr(s0w, NONE, q0w) TLDr(s0w, NONE, q0w)◦s0t◦q0t

Dependency Language Model Features
BLMl(s1w, s0w) BLMl(s1w, s0w)◦s1t◦s0t BLMr(s1w, s0w)
BLMr(s1w, s0w)◦s1t◦s0t BLMl(s0w, q0w) BLMl(s0w, q0w)◦s0t◦q0t
BLMr(s0w, q0w)◦s0t◦q0t BLMr(s0w, q0w) TLMl(s1w, s1rdw, s0w)
TLMl(s1w, s1rdw, s0w)◦s1t◦s0t TLMr(s1w, s0ldw, s0w) TLMr(s1w, s0ldw, s0w)◦s1t◦s0t

Table 3: Semi-supervised features designed on the base of word clusters, lexical dependencies, and
dependency language models. Here the symbolsi denotes a stack item,qi denotes a queue item,w
represents a word, andt represents a POS tag.

Lan. System LR LP F1

E
N

G Baseline 88.4 88.7 88.6
+padding 88.8 89.5 89.1
+features 89.0 89.7 89.3

C
H

N Baseline 85.6 86.3 86.0
+padding 85.5 87.2 86.4
+features 85.5 87.6 86.5

Table 5: Experimental results on the English and
Chinese development sets with the padding tech-
nique and new supervised features addedincre-
mentally.

we employed the Stanford POS tagger.4

We took the WSJ articles from the TIPSTER
corpus (LDC93T3A) as unlabeled English data. In
addition, we removed from the unlabeled English
data the sentences that appear in the WSJ corpus
of the Penn Treebank. For unlabeled Chinese data,
we used Chinese Gigaword (LDC2003T09), on
which we conducted Chinese word segmentation
by using a CRF-based segmenter. Table 4 summa-
rizes data statistics on sentence and word numbers
of the data sets listed above.

We used EVALB to evaluate parser perfor-
mances, including labeled precision (LP), labeled
recall (LR), and bracketing F1.5 For significance
tests, we employed the randomized permutation-
based tool provided by Daniel Bikel.6

In both training and decoding, we set the beam
size to 16, which achieves a good tradeoff be-
tween efficiency and accuracy. The optimal iter-
ation number of perceptron learning is determined
4http://nlp.stanford.edu/software/tagger.shtml
5http://nlp.cs.nyu.edu/evalb
6http://www.cis.upenn.edu/∼dbikel/software.html#comparator

Lan. Features LR LP F1

E
N

G +word cluster 89.3 90.0 89.7
+lexical dependencies 89.7 90.3 90.0
+dependency LM 90.0 90.6 90.3

C
H

N +word cluster 85.7 87.5 86.6
+lexical dependencies 87.2 88.6 87.9
+dependency LM 87.2 88.7 88.0

Table 6: Experimental results on the English and
Chinese development sets with different types of
semi-supervised features addedincrementally to
the extended parser.

on the development sets. For word clustering, we
set the cluster number to 50 for both the English
and Chinese experiments.

5.2 Results on Development Sets

Table 5 reports the results of the extended parser
(baseline + padding + supervised features) on the
English and Chinese development sets. We inte-
grated the padding method into the baseline parser,
based on which we further incorporated the super-
vised features in Table 2. From the results we find
that the padding method improves the parser accu-
racies by0.5% and0.4% on English and Chinese,
respectively. Incorporating the supervised features
in Table 2 gives further improvements of0.2% on
English and0.1% on Chinese.

Based on the extended parser, we experimented
different types of semi-supervised features by
adding the features incrementally. The results are
shown in Table 6. By comparing the results in Ta-
ble 5 and the results in Table 6 we can see that the
semi-supervised features achieve an overall im-
provement of1.0% on the English data and an im-
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Type Parser LR LP F1

SI

Ratnaparkhi (1997) 86.3 87.5 86.9
Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5
Sagae & Lavie (2005)∗ 86.1 86.0 86.0
Sagae & Lavie (2006)∗ 87.8 88.1 87.9
Baseline 90.0 89.9 89.9
Petrov & Klein (2007) 90.1 90.2 90.1
Baseline+Padding 90.2 90.7 90.4
Carreras et al. (2008) 90.7 91.4 91.1

RE
Charniak & Johnson (2005) 91.2 91.8 91.5
Huang (2008) 92.2 91.2 91.7

SE

Zhu et al. (2012)∗ 90.4 90.5 90.4
Baseline+Padding+Semi 91.1 91.5 91.3
Huang & Harper (2009) 91.1 91.6 91.3
Huang et al. (2010)† 91.4 91.8 91.6
McClosky et al. (2006) 92.1 92.5 92.3

Table 7: Comparison of our parsers and related
work on the English test set. ∗ Shift-reduce
parsers.† The results of self-training with a sin-
gle latent annotation grammar.

Type Parser LR LP F1

SI

Charniak (2000)∗ 79.6 82.1 80.8
Bikel (2004)† 79.3 82.0 80.6
Baseline 82.1 83.1 82.6
Baseline+Padding 82.1 84.3 83.2
Petrov & Klein (2007) 81.9 84.8 83.3

RE Charniak & Johnson (2005)∗ 80.8 83.8 82.3

SE
Zhu et al. (2012) 80.6 81.9 81.2
Baseline+Padding+Semi 84.4 86.8 85.6

Table 8: Comparison of our parsers and related
work on the test set of CTB5.1.∗ Huang (2009)
adapted the parsers to Chinese parsing on CTB5.1.
† We run the parser on CTB5.1 to get the results.

provement of1.5% on the Chinese data.

5.3 Final Results

Here we report the final results on the English and
Chinese test sets. We compared the final results
with a large body of related work. We grouped the
parsers into three categories: single parsers (SI),
discriminative reranking parsers (RE), and semi-
supervised parsers (SE). Table 7 shows the com-
parative results on the English test set and Table 8
reports the comparison on the Chinese test set.

From the results we can see that our extended
parser (baseline + padding + supervised features)
outperforms the Berkeley parser by0.3% on En-
glish, and is comparable with the Berkeley parser
on Chinese (−0.1% less). Here+padding means
the padding technique and the features in Table 2.
After integrating semi-supervised features, the
parsing accuracy on English is improved to91.3%.
We note that the performance is on the same level

Parser #Sent/Second
Ratnaparkhi (1997) Unk
Collins (1999) 3.5
Charniak (2000) 5.7
Sagae & Lavie (2005)∗ 3.7‡

Sagae & Lavie (2006)† 2.2‡

Petrov & Klein (2007) 6.2
Carreras et al. (2008) Unk

This Paper
Baseline 100.7
Baseline+Padding 89.5
Baseline+Padding+Semi 46.8

Table 9: Comparison of running times on the En-
glish test set, where the time for loading models
is excluded. ∗ The results of SVM-based shift-
reduce parsing with greedy search.† The results of
MaxEnt-based shift-reduce parser with best-first
search. ‡ Times reported by authors running on
different hardware.

as the performance of self-trained parsers, except
for McClosky et al. (2006), which is based on the
combination of reranking and self-training. On
Chinese, the final parsing accuracy is85.6%. To
our knowledge, this is by far the best reported per-
formance on this data set.

The padding technique, supervised features,
and semi-supervised features achieve an overall
improvement of1.4% over the baseline on En-
glish, which is significant on the level ofp <
10−5. The overall improvement on Chinese is
3.0%, which is also significant on the level of
p < 10−5.

5.4 Comparison of Running Time

We also compared the running times of our parsers
with the related single parsers. We ran timing tests
on an Intel 2.3GHz processor with 8GB mem-
ory. The comparison is shown in Table 9. From
the table, we can see that incorporating semi-
supervised features decreases parsing speed, but
the semi-supervised parser still has the advantage
of efficiency over other parsers. Specifically, the
semi-supervised parser is 7 times faster than the
Berkeley parser. Note that Sagae & Lavie (2005)
and Sagae & Lavie (2006) are also shift-reduce
parsers, and their running times were evaluated on
different hardwares. In practice, the running times
of the shift-reduce parsers should be much shorter
than the reported times in the table.

5.5 Error Analysis

We conducted error analysis for the three sys-
tems: the baseline parser, the extended parser with
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Figure 5: Comparison of parsing accuracies of
the baseline, extended parser, and semi-supervised
parsers on spans of different lengths.

the padding technique, and the semi-supervised
parser, focusing on the English test set. The analy-
sis was performed in four dimensions: parsing ac-
curacies on different phrase types, on constituents
of different span lengths, on different sentence
lengths, and on sentences with different numbers
of unknown words.

5.5.1 Different Phrase Types

Table 10 shows the parsing accuracies of the base-
line, extended parser, and semi-supervised parser
on different phrase types. Here we only consider
the nine most frequent phrase types in the English
test set. In the table, the phrase types are ordered
from left to right in the descending order of their
frequencies. We also show the improvements of
the semi-supervised parser over the baseline parser
(the last row in the table). As the results show, the
extended parser achieves improvements on most
of the phrase types with two exceptions: Preposi-
tion Prase (PP) and Quantifier Phrase (QP). Semi-
supervised features further improve parsing accu-
racies over the extended parser (QP is an excep-
tion). From the last row, we can see that improve-
ments of the semi-supervised parser over the base-
line on VP, S, SBAR, ADVP, and ADJP are above
the average improvement (1.4%).

5.5.2 Different Span Lengths

Figure 5 shows a comparison of the three parsers
on spans of different lengths. Here we consider
span lengths up to 8. As the results show, both
the padding extension and semi-supervised fea-
tures are more helpful on relatively large spans:
the performance gaps between the three parsers
are enlarged with increasing span lengths.
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Figure 6: Comparison of parsing accuracies of
the baseline, extended parser, and semi-supervised
parser on sentences of different lengths.

5.5.3 Different Sentence Lengths

Figure 6 shows a comparison of parsing accura-
cies of the three parsers on sentences of different
lengths. Each number on the horizontal axis repre-
sents the sentences whose lengths are between the
number and its previous number. For example, the
number 30 refers to the sentences whose lengths
are between 20 and 30. From the results we can
see that semi-supervised features improve parsing
accuracy on both short and long sentences. The
points at 70 are exceptions. In fact, sentences with
lengths between 60 and 70 have only 8 instances,
and the statistics on such a small number of sen-
tences are not reliable.

5.5.4 Different Numbers of Unknown Words

Figure 4 shows a comparison of parsing accura-
cies of the baseline, extended parser, and semi-
supervised parser on sentences with different num-
bers of unknown words. As the results show,
the padding method is not very helpful on sen-
tences with large numbers of unknown words,
while semi-supervised features help significantly
on this aspect. This conforms to the intuition that
semi-supervised methods reduce data sparseness
and improve the performance on unknown words.

6 Conclusion

In this paper, we addressed the problem of dif-
ferent action-sequence lengths for shift-reduce
phrase-structure parsing, and designed a set of
novel non-local features to further improve pars-
ing. The resulting supervised parser outperforms
the Berkeley parser, a state-of-the-art chart parser,
in both accuracies and speeds. In addition, we in-
corporated a set of semi-supervised features. The

441



System NP VP S PP SBAR ADVP ADJP WHNP QP
Baseline 91.9 90.1 89.8 88.1 85.7 84.6 72.1 94.8 89.3
Extended 92.1 90.7 90.2 87.9 86.6 84.5 73.6 95.5 88.6

Semi-supervised 93.2 92.0 91.5 89.3 88.2 86.8 75.1 95.7 89.1
Improvements +1.3 +1.9 +1.7 +1.2 +2.5 +2.2 +3.0 +0.9 -0.2

Table 10: Comparison of parsing accuracies of the baseline,extended parser, and semi-supervised parsers
on different phrase types.
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Figure 4: Comparison of parsing accuracies of the baseline,extended parser, and semi-supervised parser
on sentences of different unknown words.

final parser reaches an accuracy of91.3% on En-
glish and85.6% on Chinese, by far the best re-
ported accuracies on the CTB data.
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Nonconvex Global Optimization for Latent-Variable Models∗
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Abstract

Many models in NLP involve latent vari-
ables, such as unknown parses, tags, or
alignments. Finding the optimal model pa-
rameters is then usually a difficult noncon-
vex optimization problem. The usual prac-
tice is to settle for local optimization meth-
ods such as EM or gradient ascent.

We explore how one might instead search
for a global optimum in parameter space,
using branch-and-bound. Our method
would eventually find the global maxi-
mum (up to a user-specified ε) if run for
long enough, but at any point can return
a suboptimal solution together with an up-
per bound on the global maximum.

As an illustrative case, we study a gener-
ative model for dependency parsing. We
search for the maximum-likelihood model
parameters and corpus parse, subject to
posterior constraints. We show how to for-
mulate this as a mixed integer quadratic
programming problem with nonlinear con-
straints. We use the Reformulation Lin-
earization Technique to produce convex
relaxations during branch-and-bound. Al-
though these techniques do not yet pro-
vide a practical solution to our instance
of this NP-hard problem, they sometimes
find better solutions than Viterbi EM with
random restarts, in the same time.

1 Introduction

Rich models with latent linguistic variables are
popular in computational linguistics, but in gen-
eral it is not known how to find their optimal pa-
rameters. In this paper, we present some “new” at-
tacks for this common optimization setting, drawn
from the mathematical programming toolbox.

We focus on the well-studied but unsolved task
of unsupervised dependency parsing (i.e., depen-

∗This research was partially funded by the JHU Human
Language Technology Center of Excellence.
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Figure 1: Each node contains a local upper bound
for its subspace, computed by a relaxation. The
node branches on a single model parameter θm to
partition its subspace. The lower bound, -400, is
given by the best solution seen so far, the incum-
bent. The upper bound, -298, is the min of all re-
maining leaf nodes. The node with a local bound
of -467.5 can be pruned because no solution within
its subspace could be better than the incumbent.

dency grammar induction). This may be a par-
ticularly hard case, but its structure is typical.
Many parameter estimation techniques have been
attempted, including expectation-maximization
(EM) (Klein and Manning, 2004; Spitkovsky et
al., 2010a), contrastive estimation (Smith and Eis-
ner, 2006; Smith, 2006), Viterbi EM (Spitkovsky
et al., 2010b), and variational EM (Naseem et al.,
2010; Cohen et al., 2009; Cohen and Smith, 2009).
These are all local search techniques, which im-
prove the parameters by hill-climbing.

The problem with local search is that it gets
stuck in local optima. This is evident for gram-
mar induction. An algorithm such as EM will find
numerous different solutions when randomly ini-
tialized to different points (Charniak, 1993; Smith,
2006). A variety of ways to find better local op-
tima have been explored, including heuristic ini-
tialization of the model parameters (Spitkovsky
et al., 2010a), random restarts (Smith, 2006),
and annealing (Smith and Eisner, 2006; Smith,
2006). Others have achieved accuracy improve-
ments by enforcing linguistically motivated pos-
terior constraints on the parameters (Gillenwater
et al., 2010; Naseem et al., 2010), such as requir-
ing most sentences to have verbs or encouraging
nouns to be children of verbs or prepositions.

We introduce a method that performs global
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search with certificates of ε-optimality for both
the corpus parse and the model parameters. Our
search objective is log-likelihood. We can also im-
pose posterior constraints on the latent structure.

As we show, maximizing the joint log-
likelihood of the parses and the parameters can be
formulated as a mathematical program (MP) with
a nonconvex quadratic objective and with integer
linear and nonlinear constraints. Note that this ob-
jective is that of hard (Viterbi) EM—we do not
marginalize over the parses as in classical EM.1

To globally optimize the objective function,
we employ a branch-and-bound algorithm that
searches the continuous space of the model param-
eters by branching on individual parameters (see
Figure 1). Thus, our branch-and-bound tree serves
to recursively subdivide the global parameter hy-
percube. Each node represents a search problem
over one of the resulting boxes (i.e., orthotopes).

The crucial step is to prune nodes high in the
tree by determining that their boxes cannot contain
the global maximum. We compute an upper bound
at each node by solving a relaxed maximization
problem tailored to its box. If this upper bound is
worse than our current best solution, we can prune
the node. If not, we split the box again via another
branching decision and retry on the two halves.

At each node, our relaxation derives a linear
programming problem (LP) that can be efficiently
solved by the dual simplex method. First, we lin-
early relax the constraints that grammar rule prob-
abilities sum to 1—these constraints are nonlin-
ear in our parameters, which are log-probabilities.
Second, we linearize the quadratic objective by ap-
plying the Reformulation Linearization Technique
(RLT) (Sherali and Adams, 1990), a method of
forming tight linear relaxations of various types
of MPs: the reformulation step multiplies together
pairs of the original linear constraints to generate
new quadratic constraints, and then the lineariza-
tion step replaces quadratic terms in the new con-
straints with auxiliary variables.

Finally, if the node is not pruned, we search
for a better incumbent solution under that node
by projecting the solution of the RLT relaxation
back onto the feasible region. In the relaxation, the
model parameters might sum to slightly more than

1This objective might not be a great sacrifice: Spitkovsky
et al. (2010b) present evidence that hard EM can outperform
soft EM for grammar induction in a hill-climbing setting. We
use it because it is a quadratic objective. However, maximiz-
ing it remains NP-hard (Cohen and Smith, 2010).

one and the parses can consist of fractional depen-
dency edges. We project in order to compute the
true objective and compare with other solutions.

Our results demonstrate that our method can ob-
tain higher likelihoods than Viterbi EM with ran-
dom restarts. Furthermore, we show how posterior
constraints inspired by Gillenwater et al. (2010)
and Naseem et al. (2010) can easily be applied
in our framework to obtain competitive accuracies
using a simple model, the Dependency Model with
Valence (Klein and Manning, 2004). We also ob-
tain an ε-optimal solution on a toy dataset.

We caution that the linear relaxations are very
loose on larger boxes. Since we have many dimen-
sions, the binary branch-and-bound tree may have
to grow quite deep before the boxes become small
enough to prune. This is why nonconvex quadratic
optimization by LP-based branch-and-bound usu-
ally fails with more than 80 variables (Burer and
Vandenbussche, 2009). Even our smallest (toy)
problems have hundreds of variables, so our exper-
imental results mainly just illuminate the method’s
behavior. Nonetheless, we offer the method as
a new tool which, just as for local search, might
be combined with other forms of problem-specific
guidance to produce more practical results.

2 The Constrained Optimization Task

We begin by describing how for our typical model,
the Viterbi EM objective can be formulated as a
mixed integer quadratic programming (MIQP)
problem with nonlinear constraints (Figure 2).

Other locally normalized log-linear generative
models (Berg-Kirkpatrick et al., 2010) would have
a similar formulation. In such models, the log-
likelihood objective is simply a linear function of
the feature counts. However, the objective be-
comes quadratic in unsupervised learning, be-
cause the feature counts are themselves unknown
variables to be optimized. The feature counts are
constrained to be derived from the latent variables
(e.g., parses), which are unknown discrete struc-
tures that must be encoded with integer variables.
The nonlinear constraints ensure that the model
parameters are true log-probabilities.

Concretely, (1) specifies the Viterbi EM objec-
tive: the total log-probability of the best parse
trees under the parameters θ, given by a sum of
log-probabilities θm of the individual steps needed
to generate the tree, as encoded by the features
fm. The (nonlinear) sum-to-one constraints on the

445



Variables:
θm Log-probability for feature m
fm Corpus-wide feature count for m
esij Indicator of an arc from i to j in tree s
Indices and constants:
m Feature / model parameter index
s Sentence index
c Conditional distribution index
M Number of model parameters
C Number of conditional distributions
Mc cth Set of feature indices that sum to 1.0
S Number of sentences
Ns Number of words in the sth sentence
Objective and constraints:

max
∑

m

θmfm (1)

s.t.
∑

m∈Mc

exp(θm) = 1, ∀c (2)

A

[
f
e

]
≤ b (Model constraints) (3)

θm ≤ 0, fm, esij ∈ Z, ∀m, s, i, j (4)

Figure 2: Viterbi EM as a mathematical program

probabilities are in (2). The linear constraints in
(3) will ensure that the arc variables for each sen-
tence es encode a valid latent dependency tree,
and that the f variables count up the features of
these trees. The final constraints (4) simply spec-
ify the range of possible values for the model pa-
rameters and their integer count variables.

Our experiments use the dependency model
with valence (DMV) (Klein and Manning, 2004).
This generative model defines a joint distribution
over the sentences and their dependency trees.

We encode the DMV using integer linear con-
straints on the arc variables e and feature counts
f . These will constitute the model constraints in
(3). The constraints must declaratively specify that
the arcs form a valid dependency tree and that the
resulting feature values are as defined by the DMV.

Tree Constraints To ensure that our arc vari-
ables, es, form a dependency tree, we employ the
same single-commodity flow constraints of Mag-
nanti and Wolsey (1994) as adapted by Martins et
al. (2009) for parsing. We also use the projectivity
constraints of Martins et al. (2009).

The single-commodity flow constraints simul-
taneously enforce that each node has exactly one
parent, the special root node (position 0) has no in-

coming arcs, and the arcs form a connected graph.
For each sentence, s, the variable φsij indicates

the amount of flow traversing the arc from i to j in
sentence s. The constraints below specify that the
root node emits Ns units of flow (5), that one unit
of flow is consumed by each each node (6), that
the flow is zero on each disabled arc (7), and that
the arcs are binary variables (8).

Single-commodity flow (Magnanti & Wolsey, 1994)
Ns∑

j=1

φs0j = Ns, ∀j (5)

Ns∑

i=0

φsij −
Ns∑

k=1

φsjk = 1, ∀j (6)

φsij ≤ Nsesij , ∀i, j (7)

esij ∈ {0, 1}, ∀i, j (8)

Projectivity is enforced by adding a constraint
(9) for each arc ensuring that no edges will cross
that arc if it is enabled. Xij is the set of arcs (k, l)
that cross the arc (i, j).

Projectivity (Martins et al., 2009)∑

(k,l)∈Xij
eskl ≤ Ns(1− esij), ∀s, i, j (9)

DMV Feature Counts The DMV generates a
dependency tree recursively as follows. First
the head word of the sentence is generated, t ∼
Discrete(θroot), where θroot is a subvector of θ.
To generate its children on the left side, we flip
a coin to decide whether an adjacent child is gen-
erated, d ∼ Bernoulli(θdec.L.0,t). If the coin flip
d comes up continue, we sample the word of that
child as t′ ∼ Discrete(θchild.L,t). We continue gen-
erating non-adjacent children in this way, using
coin weights θdec.L.≥ 1,t until the coin comes up
stop. We repeat this procedure to generate chil-
dren on the right side, using the model parameters
θdec.R.0,t, θchild.R,t, and θdec.R.≥ 1,t. For each new
child, we apply this process recursively to gener-
ate its descendants.

The feature count variables for the DMV are en-
coded in our MP as various sums over the edge
variables. We begin with the root/child feature
counts. The constraint (10) defines the feature
count for model parameter θroot,t as the number
of all enabled arcs connecting the root node to a
word of type t, summing over all sentences s. The
constraint in (11) similarly defines fchild.L,t,t′ to be
the number of enabled arcs connecting a parent of
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type t to a left child of type t′. Wst is the index set
of tokens in sentences s with word type t.

DMV root/child feature counts

froot,t =

Ns∑

s=1

∑

j∈Wst

es0j , ∀t (10)

fchild.L,t,t′ =

Ns∑

s=1

∑

j<i

δ
[
i∈Wst ∧
j∈Wst′

]
esij , ∀t, t′ (11)

The decision feature counts require the addi-
tion of an auxiliary count variables f (si)m ∈ Z in-
dicating how many times decision feature m fired
at some position in the corpus s, i. We then need
only add a constraint that the corpus wide fea-
ture count is the sum of these token-level feature
counts fm =

∑S
s=1

∑Ns
i=1 f

(si)
m , ∀m.

Below we define these auxiliary variables for
1 ≤ s ≤ S and 1 ≤ i ≤ Ns. The helper vari-
able ns,i,l counts the number of enabled arcs to the
left of token i in sentence s. Let t denote the word
type of token i in sentence s. Constraints (11) -
(16) are defined analogously for the right side fea-
ture counts.

DMV decision feature counts

ns,i,l =

i−1∑

j=1

esij (12)

ns,i,l/Ns ≤ f (s,i)dec.L.0,t,cont ≤ 1 (13)

f
(s,i)
dec.L.0,t,stop = 1− f (s,i)dec.L.0,t,cont (14)

f
(s,i)
dec.L.≥ 1,t,stop = f

(s,i)
dec.L.0,t,cont (15)

f
(s,i)
dec.L.≥ 1,t,cont = ns,i,l − f (s,i)dec.L.0,t,cont (16)

3 A Branch-and-Bound Algorithm

The mixed integer quadratic program with nonlin-
ear constraints, given in the previous section, max-
imizes the nonconvex Viterbi EM objective and is
NP-hard to solve (Cohen and Smith, 2010). The
standard approach to optimizing this program is
local search by the hard (Viterbi) EM algorithm.
Yet local search can only provide a lower (pes-
simistic) bound on the global maximum.

We propose a branch-and-bound algorithm,
which will iteratively tighten both pessimistic and
optimistic bounds on the optimal solution. This
algorithm may be halted at any time, to obtain the
best current solution and a bound on how much
better the global optimum could be.

A feasible solution is an assignment to all

the variables—both model parameters and corpus
parse—that satisfies all constraints. Our branch-
and-bound algorithm maintains an incumbent so-
lution: the best known feasible solution according
to the objective function. This is updated as better
feasible solutions are found.

Our algorithm implicitly defines a search tree in
which each node corresponds to a region of model
parameter space. Our search procedure begins
with only the root node, which represents the full
model parameter space. At each node we perform
three steps: bounding, projecting, and branching.

In the bounding step, we solve a relaxation of
the original problem to provide an upper bound on
the objective achievable within that node’s subre-
gion. A node is pruned when Lglobal + ε|Lglobal| ≥
Ulocal, where Lglobal is the incumbent score, Ulocal
is the upper bound for the node, and ε > 0. This
ensures that its entire subregion will not yield a
ε-better solution than the current incumbent.

The overall optimistic bound is given by the
worst optimistic bound of all current leaf nodes.

The projecting step, if the node is not pruned,
projects the solution of the relaxation back to the
feasible region, replacing the current incumbent if
this projection provides a better lower bound.

In the branching step, we choose a variable θm
on which to divide. Each of the child nodes re-
ceives a lower θmin

m and upper θmax
m bound for θm.

The child subspaces partition the parent subspace.
The search tree is defined by a variable order-

ing and the splitting procedure. We do binary
branching on the variable θm with the highest re-
gret, defined as zm − θmfm, where zm is the
auxiliary objective variable we will introduce in
§ 4.2. Since θm is a log-probability, we split its
current range at the midpoint in probability space,
log((exp θmin

m + exp θmax
m )/2).

We perform best-first search, ordering the nodes
by the the optimistic bound of their parent. We
also use the LP-guided rule (Martin, 2000; Achter-
berg, 2007, section 6.1) to perform depth-first
plunges in search of better incumbents.

4 Relaxations

The relaxation in the bounding step computes an
optimistic bound for a subspace of the model pa-
rameters. This upper bound would ideally be not
much greater than the true maximum achievable
on that region, but looser upper bounds are gener-
ally faster to compute.
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We present successive relaxations to the orig-
inal nonconvex mixed integer quadratic program
with nonlinear constraints from (1)–(4). First, we
show how the nonlinear sum-to-one constraints
can be relaxed into linear constraints and tight-
ened. Second, we apply a classic approach to
bound the nonconvex quadratic objective by a lin-
ear concave envelope. Finally, we present our full
relaxation based on the Reformulation Lineariza-
tion Technique (RLT) (Sherali and Adams, 1990).
We solve these LPs by the dual simplex algorithm.

4.1 Relaxing the sum-to-one constraint
In this section, we use cutting planes to create a
linear relaxation for the sum-to-one constraint (2).
When relaxing a constraint, we must ensure that
any assignment of the variables that was feasible
(i.e. respected the constraints) in the original prob-
lem must also be feasible in the relaxation. In most
cases, the relaxation is not perfectly tight and so
will have an enlarged space of feasible solutions.

We begin by weakening constraint (2) to
∑

m∈Mc

exp(θm) ≤ 1 (17)

The optimal solution under (17) still satisfies the
original equality constraint (2) because of the
maximization. We now relax (17) by approx-
imating the surface z =

∑
m∈Mc

exp(θm) by
the max of N lower-bounding linear functions on
R|Mc|. Instead of requiring z ≤ 1, we only require
each of these lower bounds to be ≤ 1, slightly
enlarging the feasible space into a convex poly-
tope. Figure 3a shows the feasible region con-
structed from N=3 linear functions on two log-
probabilities θ1, θ2.

Formally, for each c, we define the ith linear
lower bound (i = 1, . . . , N ) to be the tangent hy-

perplane at some point θ̂
(i)
c = [θ̂

(i)
c,1, . . . , θ̂

(i)
c,|Mc|] ∈

R|Mc|, where each coordinate is a log-probability
θ̂
(i)
c,m < 0. We require each of these linear func-

tions to be ≤ 1:

Sum-to-one Relaxation∑

m∈Mc

(
θm + 1− θ̂(i)c,m

)
exp

(
θ̂(i)c,m

)
≤ 1, ∀i, ∀c

(18)

4.2 “Relaxing” the objective
Our true maximization objective

∑
m θmfm in (1)

is a sum of quadratic terms. If the parameters θ

(a)
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Figure 3: In (a), the area under the curve corre-
sponds to those points (θ1, θ2) that satisfy (17)
(z ≤ 1), with equality (2) achieved along the curve
(z = 1). The shaded area shows the enlarged fea-
sible region under the linear relaxation. In (b),
the curved lower surface represents a single prod-
uct term in the objective. The piecewise-linear up-
per surface is its concave envelope (raised by 20
for illustration; in reality they touch).

were fixed, the objective would become linear in
the latent features. Although the parameters are
not fixed, the branch-and-bound algorithm does
box them into a small region, where the quadratic
objective is “more linear.”

Since it is easy to maximize a concave function,
we will maximize the concave envelope—the con-
cave function that most tightly upper-bounds our
objective over the region. This turns out to be
piecewise linear and can be maximized with an LP
solver. Smaller regions yield tighter bounds.

Each node of the branch-and-bound tree speci-
fies a region via bounds constraints θmin

m < θm <
θmax
m , ∀m. In addition, we have known bounds
fmin
m ≤ fm ≤ fmax

m , ∀m for the count variables.
McCormick (1976) described the concave enve-

lope for a single quadratic term subject to bounds
constraints (Figure 3b). In our case:

θmfm ≤ min[fmax
m θm + θmin

m fm − θmin
m fmax

m ,

fmin
m θm + θmax

m fm − θmax
m fmin

m ]

We replace our objective
∑

m θmfm with
∑

m zm,
where we would like to constrain each auxiliary
variable zm to be = θmfm or (equivalently) ≤
θmfm, but instead settle for making it ≤ the con-
cave envelope—a linear programming problem:

Concave Envelope Objective

max
∑

m

zm (19)

s.t. zm ≤ fmax
m θm + θmin

m fm − θmin
m fmax

m (20)

zm ≤ fmin
m θm + θmax

m fm − θmax
m fmin

m (21)
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4.3 Reformulation Linearization Technique
The Reformulation Linearization Technique
(RLT)2 (Sherali and Adams, 1990) is a method
of forming tighter relaxations of various types of
MPs. The basic method reformulates the problem
by adding products of existing constraints. The
quadratic terms in the objective and in these new
constraints are redefined as auxiliary variables,
thereby linearizing the program.

In this section, we will show how the RLT can
be applied to our grammar induction problem and
contrast it with the concave envelope relaxation
presented in section 4.2.

Consider the original MP in equations (1) -
(4), with the nonlinear sum-to-one constraints in
(2) replaced by our linear constraints proposed in
(18). If we remove the integer constraints in (4),
the result is a quadratic program with purely linear
constraints. Such problems have the form

max xTQx (22)

s.t. Ax ≤ b (23)

−∞ < Li ≤ xi ≤ Ui <∞, ∀i (24)

where the variables are x ∈ Rn, A is an m × n
matrix, and b ∈ Rm, and Q is an n× n indefinite3

matrix. Without loss of generality we assume Q is
symmetric. The application of the RLT here was
first considered by Sherali and Tuncbilek (1995).

For convenience of presentation, we repre-
sent both the linear inequality constraints and the
bounds constraints, under a different parameteri-
zation using the matrix G and vector g.
[

(bi −Aix) ≥ 0, 1 ≤ i ≤ m
(Uk − xk) ≥ 0, 1 ≤ k ≤ n
(−Lk + xk) ≥ 0, 1 ≤ k ≤ n

]
≡
[
(gi −Gix) ≥ 0,
1 ≤ i ≤ m+ 2n

]

The reformulation step forms all possible products
of these linear constraints and then adds them to
the original quadratic program.

(gi −Gix)(gj −Gjx) ≥ 0, ∀1 ≤ i ≤ j ≤ m+ 2n

In the linearization step, we replace all
quadratic terms in the quadratic objective and new
quadratic constraints with auxiliary variables:

wij ≡ xixj , ∀1 ≤ i ≤ j ≤ n
2The key idea underlying the RLT was originally intro-

duced in Adams and Sherali (1986) for 0-1 quadratic pro-
gramming. It has since been extended to various other set-
tings; see Sherali and Liberti (2008) for a complete survey.

3In the general case, that Q is indefinite causes this pro-
gram to be nonconvex, making this problem NP-hard to solve
(Vavasis, 1991; Pardalos, 1991).

This yields the following RLT relaxation:

RLT Relaxation

max
∑

1≤i≤j≤n
Qijwij (25)

s.t. gigj −
n∑

k=1

gjGikxk −
n∑

k=1

giGjkxk

+

n∑

k=1

n∑

l=1

GikGjlwkl ≥ 0,

∀1 ≤ i ≤ j ≤ m+ 2n (26)

Notice above that we have omitted the original
inequality constraints (23) and bounds (24), be-
cause they are fully enforced by the new RLT con-
straints (26) from the reformulation step (Sherali
and Tuncbilek, 1995). In our experiments, we
keep the original constraints and instead explore
subsets of the RLT constraints.

If the original QP contains equality constraints
of the form Gex = ge, then we can form con-
straints by multiplying this one by each variable
xi. This gives us the following new set of con-
straints, for each equality constraint e: gexi +∑n

j=1−Gejwij = 0, ∀1 ≤ i ≤ n.

Theoretical Properties The new constraints in
eq. (26) will impose the concave envelope con-
straints (20)–(21) (Anstreicher, 2009).

The constraints presented above are consid-
ered to be first-level constraints corresponding to
the first-level variables wij . However, the same
technique can be applied repeatedly to produce
polynomial constraints of higher degree. These
higher level constraints/variables have been shown
to provide increasingly tighter relaxations (Sher-
ali and Adams, 1990) at the cost of a large num-
ber of variables and constraints. In the case where
x ∈ {0, 1}n the degree-n RLT constraints will re-
strict to the convex hull of the feasible solutions
(Sherali and Adams, 1990).

This is in direct contrast to the concave enve-
lope relaxation presented in section 4.2 which re-
laxes to the convex hull of each quadratic term in-
dependently. This demonstrates the key intuition
of the RLT relaxation: The products of constraints
are implied (and unnecessary) in the original vari-
able space. Yet when we project to a higher-
dimentional space by including the auxiliary vari-
ables, the linearized constraints cut off portions of
the feasible region given by only the concave en-
velope relaxation in eqs. (20)-(21) .
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4.4 Adding Posterior Constraints

It is a simple extension to impose posterior con-
straints within our framework. Here we empha-
size constraints that are analogous to the universal
linguistic constraints from Naseem et al. (2010).
Since we optimize the Viterbi EM objective, we
directly constrain the counts in the single corpus
parse rather than expected counts from a distribu-
tion over parses. Let E be the index set of model
parameters corresponding to edge types from Ta-
ble 1 of Naseem et al. (2010), and Ns be the num-
ber of words in the sth sentence. We impose
the constraint that 75% of edges come from E :∑

m∈E fm ≥ 0.75
(∑S

s=1Ns

)
.

5 Projections

A pessimistic bound, from the projecting step, will
correspond to a feasible but not necessarily opti-
mal solution to the original problem. We propose
several methods for obtaining pessimistic bounds
during the branch-and-bound search, by projecting
and improving the solutions found by the relax-
ation. A solution to the relaxation may be infea-
sible in the original problem for two reasons: the
model parameters might not sum to one, and/or the
parse may contain fractional edges.

Model Parameters For each set of model pa-
rameters Mc that should sum-to-one, we project
the model parameters onto the Mc − 1 simplex
by one of two methods: (1) normalize the infeasi-
ble parameters or (2) find the point on the simplex
that has minimum Euclidean distance to the infea-
sible parameters using the algorithm of Chen and
Ye (2011). For both methods, we can optionally
apply add-λ smoothing before projecting.

Parses Since we are interested in projecting the
fractional parse onto the space of projective span-
ning trees, we can simply employ a dynamic pro-
gramming parsing algorithm (Eisner and Satta,
1999) where the weight of each edge is given as
the fraction of the edge variable.

Only one of these projection techniques is
needed. We then either use parsing to fill in the
optimal parse trees given the projected model pa-
rameters, or use supervised parameter estimation
to fill in the optimal model parameters given the
projected parses. These correspond to the Viterbi
E step and M step, respectively. We can locally

improve the projected solution by continuing with
a few additional iterations of Viterbi EM.

Related models could use very similar projec-
tion techniques. Given a relaxed joint solution to
the parameters and the latent variables, one must
be able to project it to a nearby feasible one, by
projecting either the fractional parameters or the
fractional latent variables into the feasible space
and then solving exactly for the other.

6 Related Work

The goal of this work was to better understand and
address the non-convexity of maximum-likelihood
training with latent variables, especially parses.

Gimpel and Smith (2012) proposed a concave
model for unsupervised dependency parsing us-
ing IBM Model 1. This model did not include a
tree constraint, but instead initialized EM on the
DMV. By contrast, our approach incorporates the
tree constraints directly into our convex relaxation
and embeds the relaxation in a branch-and-bound
algorithm capable of solving the original DMV
maximum-likelihood estimation problem.

Spectral learning constitutes a wholly differ-
ent family of consistent estimators, which achieve
efficiency because they sidestep maximizing the
nonconvex likelihood function. Hsu et al. (2009)
introduced a spectral learner for a large class of
HMMs. For supervised parsing, spectral learn-
ing has been used to learn latent variable PCFGs
(Cohen et al., 2012) and hidden-state dependency
grammars (Luque et al., 2012). Alas, there are
not yet any spectral learning methods that recover
latent tree structure, as in grammar induction.

Several integer linear programming (ILP) for-
mulations of dependency parsing (Riedel and
Clarke, 2006; Martins et al., 2009; Riedel et al.,
2012) inspired our definition of grammar induc-
tion as a MP. Recent work uses branch-and-bound
for decoding with non-local features (Qian and
Liu, 2013). These differ from our work by treating
the model parameters as constants, thereby yield-
ing a linear objective.

For semi-supervised dependency parsing, Wang
et al. (2008) used a convex objective, combin-
ing unsupervised least squares loss and a super-
vised large margin loss, This does not apply to our
unsupervised setting. Branch-and-bound has also
been applied to semi-supervised SVM training, a
nonconvex search problem (Chapelle et al., 2007),
with a relaxation derived from the dual.
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7 Experiments

We first analyze the behavior of our method on a
toy synthetic dataset. Next, we compare various
parameter settings for branch-and-bound by esti-
mating the total solution time. Finally, we com-
pare our search method to Viterbi EM on a small
subset of the Penn Treebank.

All our experiments use the DMV for unsuper-
vised dependency parsing of part-of-speech (POS)
tag sequences. For Viterbi EM we initialize the pa-
rameters of the model uniformly, breaking parser
ties randomly in the first E-step (Spitkovsky et
al., 2010b). This initializer is state-of-the-art for
Viterbi EM. We also apply add-one smoothing
during each M-step. We use random restarts, and
select the model with the highest likelihood.

We add posterior constraints to Viterbi EM’s E-
step. First, we run a relaxed linear programming
(LP) parser, then project the (possibly fractional)
parses back to the feasible region. If the resulting
parse does not respect the posterior constraints, we
discard it. The posterior constraint in the LP parser
is tighter4 than the one used in the true optimiza-
tion problem, so the projections tends to be feasi-
ble under the true (looser) posterior constraints. In
our experiments, all but one projection respected
the constraints. We solve all LPs with CPLEX.

7.1 Synthetic Data

For our toy example, we generate sentences from a
synthetic DMV over three POS tags (Verb, Noun,
Adjective) with parameters chosen to favor short
sentences with English word order.

In Figure 4 we show that the quality of the root
relaxation increases as we approach the full set of
RLT constraints. That the number of possible RLT
constraints increases quadratically with the length
of the corpus poses a serious challenge. For just
20 sentences from this synthetic model, the RLT
generates 4,056,498 constraints.

For a single run of branch-and-bound, Figure 5
shows the global upper and lower bounds over
time.5 We consider five relaxations, each using
only a subset of the RLT constraints. Max.0k
uses only the concave envelope (20)-(21). Max.1k
uses the concave envelope and also randomly sam-
ples 1,000 other RLT constraints, and so on for
Max.10k and Max.100k. Obj.Filter includes all

480% of edges must come from E as opposed to 75%.
5The initial incumbent solution for branch-and-bound is

obtained by running Viterbi EM with 10 random restarts.
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Figure 4: The bound quality at the root improves
as the proportion of RLT constraints increases, on
5 synthetic sentences. A random subset of 70%
of the 320,126 possible RLT constraints matches
the relaxation quality of the full set. This bound is
very tight: the relaxations in Figure 5 solve hun-
dreds of nodes before such a bound is achieved.
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Figure 5: The global upper and lower bounds
improve over time for branch-and-bound using
different subsets of RLT constraints on 5 syn-
thetic sentences. Each solves the problem to ε-
optimality for ε = 0.01. A point marks every 200
nodes processed. (The time axis is log-scaled.)

constraints with a nonzero coefficient for one of
the RLT variables zm from the linearized ob-
jective. The rightmost lines correspond to RLT
Max.10k: despite providing the tightest (local)
bound at each node, it processed only 110 nodes in
the time it took RLT Max.1k to process 1164. RLT
Max.0k achieves the best balance of tight bounds
and speed per node.

7.2 Comparing branch-and-bound strategies

It is prohibitively expensive to repeatedly run our
algorithm to completion with a variety of param-
eter settings. Instead, we estimate the size of the
branch-and-bound tree and the solution time using
a high-variance estimate that is effective for com-
parisons (Lobjois and Lemaı̂tre, 1998).

Given a fixed set of parameters for our algo-
rithm and an ε-optimality stopping criterion, we
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RLT Re-
laxation

Avg. ms
per node

# Sam-
ples

Est. #
Nodes

Est. #
Hours

Obj.Filter 63 10000 3.2E+08 4.6E+09
Max.0k 6 10000 1.7E+10 7.8E+10
Max.1k 15 10000 3.5E+08 4.2E+09
Max.10k 161 10000 1.3E+09 3.4E+10
Max.100k 232259 5 1.7E+09 9.7E+13

Table 1: Branch-and-bound node count and com-
pletion time estimates. Each standard deviation
was close in magnitude to the estimate itself. We
ran for 8 hours, stopping at 10,000 samples on 8
synthetic sentences.

can view the branch-and-bound tree T as fixed and
finite in size. We wish to estimate some cost asso-
ciated with the tree C(T ) =

∑
α∈nodes(T ) f(α).

Letting f(α) = 1 estimates the number of nodes;
if f(α) is the time to solve a node, then we es-
timate the total solution time using the Monte
Carlo method of Knuth (1975). Table 1 gives
these estimates, for the same five RLT relaxations.
Obj.Filter yields the smallest estimated tree size.

7.3 Real Data
In this section, we compare our global search
method to Viterbi EM with random restarts each
with or without posterior constraints. We use 200
sentences of no more than 10 tokens from the WSJ
portion of the Penn Treebank. We reduce the tree-
bank’s gold part-of-speech (POS) tags to a univer-
sal set of 12 tags (Petrov et al., 2012) plus a tag
for auxiliaries, ignoring punctuation. Each search
method is run for 8 hours. We obtain the initial
incumbent solution for branch-and-bound by run-
ning Viterbi EM for 45 minutes. The average time
to solve a node’s relaxation ranges from 3 seconds
for RLT Max.0k to 42 seconds for RLT Max.100k.

Figure 6a shows the log-likelihood of the in-
cumbent solution over time. In our global search
method, like Viterbi EM, the posterior constraints
lead to lower log-likelihoods. RLT Max.0k finds
the highest log-likelihood solution.

Figure 6b compares the unlabeled directed de-
pendency accuracy of the incumbent solution. In
both global and local search, the posterior con-
straints lead to higher accuracies. Viterbi EM
with posterior constraints demonstrates the oscil-
lation of incumbent accuracy: starting at 58.02%
accuracy, it finds several high accuracy solutions
early on (61.02%), but quickly abandons them to
increase likelihood, yielding a final accuracy of
60.65%. RLT Max.0k with posterior constraints
obtains the highest overall accuracy of 61.09% at
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Figure 6: Likelihood (a) and accuracy (b) of in-
cumbent solution so far, on a small real dataset.

306 min and the highest final accuracy 60.73%.

8 Discussion

In principle, our branch-and-bound method can
approach ε-optimal solutions to Viterbi training of
locally normalized generative models, including
the NP-hard case of grammar induction with the
DMV. The method can also be used with posterior
constraints or a regularized objective.

Future work includes algorithmic improve-
ments for solving the relaxation and the develop-
ment of tighter relaxations. The Dantzig-Wolfe
decomposition (Dantzig and Wolfe, 1960) or La-
grangian Relaxation (Held and Karp, 1970) might
satisfy both of these goals by pushing the inte-
ger tree constraints into a subproblem solved by
a dynamic programming parser. Recent work on
semidefinite relaxations (Anstreicher, 2009) sug-
gests they may provide tighter bounds at the ex-
pense of greater computation time.

Perhaps even more important than tightening
the bounds at each node are search heuristics (e.g.,
surface cues) and priors (e.g., universal grammar)
that guide our global search by deciding which
node to expand next (Chomsky and Lasnik, 1993).
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Abstract

Natural language parsing has typically
been done with small sets of discrete cat-
egories such as NP and VP, but this rep-
resentation does not capture the full syn-
tactic nor semantic richness of linguistic
phrases, and attempts to improve on this
by lexicalizing phrases or splitting cate-
gories only partly address the problem at
the cost of huge feature spaces and sparse-
ness. Instead, we introduce a Compo-
sitional Vector Grammar (CVG), which
combines PCFGs with a syntactically un-
tied recursive neural network that learns
syntactico-semantic, compositional vector
representations. The CVG improves the
PCFG of the Stanford Parser by 3.8% to
obtain an F1 score of 90.4%. It is fast
to train and implemented approximately as
an efficient reranker it is about 20% faster
than the current Stanford factored parser.
The CVG learns a soft notion of head
words and improves performance on the
types of ambiguities that require semantic
information such as PP attachments.

1 Introduction

Syntactic parsing is a central task in natural lan-
guage processing because of its importance in me-
diating between linguistic expression and mean-
ing. For example, much work has shown the use-
fulness of syntactic representations for subsequent
tasks such as relation extraction, semantic role la-
beling (Gildea and Palmer, 2002) and paraphrase
detection (Callison-Burch, 2008).

Syntactic descriptions standardly use coarse
discrete categories such as NP for noun phrases
or PP for prepositional phrases. However, recent
work has shown that parsing results can be greatly
improved by defining more fine-grained syntactic

(riding,V,       )    (a,Det,       )        (bike,NN,       )

(a bike,NP,       )

(riding a bike,VP,       )

Discrete Syntactic – Continuous Semantic 
Representations in the Compositional Vector Grammar

Figure 1: Example of a CVG tree with (cate-
gory,vector) representations at each node. The
vectors for nonterminals are computed via a new
type of recursive neural network which is condi-
tioned on syntactic categories from a PCFG.

categories, which better capture phrases with simi-
lar behavior, whether through manual feature engi-
neering (Klein and Manning, 2003a) or automatic
learning (Petrov et al., 2006). However, subdi-
viding a category like NP into 30 or 60 subcate-
gories can only provide a very limited represen-
tation of phrase meaning and semantic similarity.
Two strands of work therefore attempt to go fur-
ther. First, recent work in discriminative parsing
has shown gains from careful engineering of fea-
tures (Taskar et al., 2004; Finkel et al., 2008). Fea-
tures in such parsers can be seen as defining effec-
tive dimensions of similarity between categories.
Second, lexicalized parsers (Collins, 2003; Char-
niak, 2000) associate each category with a lexical
item. This gives a fine-grained notion of semantic
similarity, which is useful for tackling problems
like ambiguous attachment decisions. However,
this approach necessitates complex shrinkage esti-
mation schemes to deal with the sparsity of obser-
vations of the lexicalized categories.

In many natural language systems, single words
and n-grams are usefully described by their distri-
butional similarities (Brown et al., 1992), among
many others. But, even with large corpora, many

455



n-grams will never be seen during training, espe-
cially when n is large. In these cases, one cannot
simply use distributional similarities to represent
unseen phrases. In this work, we present a new so-
lution to learn features and phrase representations
even for very long, unseen n-grams.

We introduce a Compositional Vector Grammar
Parser (CVG) for structure prediction. Like the
above work on parsing, the model addresses the
problem of representing phrases and categories.
Unlike them, it jointly learns how to parse and how
to represent phrases as both discrete categories and
continuous vectors as illustrated in Fig. 1. CVGs
combine the advantages of standard probabilistic
context free grammars (PCFG) with those of re-
cursive neural networks (RNNs). The former can
capture the discrete categorization of phrases into
NP or PP while the latter can capture fine-grained
syntactic and compositional-semantic information
on phrases and words. This information can help
in cases where syntactic ambiguity can only be re-
solved with semantic information, such as in the
PP attachment of the two sentences: They ate udon
with forks. vs. They ate udon with chicken.

Previous RNN-based parsers used the same
(tied) weights at all nodes to compute the vector
representing a constituent (Socher et al., 2011b).
This requires the composition function to be ex-
tremely powerful, since it has to combine phrases
with different syntactic head words, and it is hard
to optimize since the parameters form a very deep
neural network. We generalize the fully tied RNN
to one with syntactically untied weights. The
weights at each node are conditionally dependent
on the categories of the child constituents. This
allows different composition functions when com-
bining different types of phrases and is shown to
result in a large improvement in parsing accuracy.

Our compositional distributed representation al-
lows a CVG parser to make accurate parsing de-
cisions and capture similarities between phrases
and sentences. Any PCFG-based parser can be im-
proved with an RNN. We use a simplified version
of the Stanford Parser (Klein and Manning, 2003a)
as the base PCFG and improve its accuracy from
86.56 to 90.44% labeled F1 on all sentences of the
WSJ section 23. The code of our parser is avail-
able at nlp.stanford.edu.

2 Related Work
The CVG is inspired by two lines of research:
Enriching PCFG parsers through more diverse

sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations
As mentioned in the introduction, there are several
approaches to improving discrete representations
for parsing. Klein and Manning (2003a) use
manual feature engineering, while Petrov et
al. (2006) use a learning algorithm that splits
and merges the syntactic categories in order
to maximize likelihood on the treebank. Their
approach splits categories into several dozen
subcategories. Another approach is lexicalized
parsers (Collins, 2003; Charniak, 2000) that
describe each category with a lexical item, usually
the head word. More recently, Hall and Klein
(2012) combine several such annotation schemes
in a factored parser. We extend the above ideas
from discrete representations to richer continuous
ones. The CVG can be seen as factoring discrete
and continuous parsing in one model. Another
different approach to the above generative models
is to learn discriminative parsers using many well
designed features (Taskar et al., 2004; Finkel et
al., 2008). We also borrow ideas from this line of
research in that our parser combines the generative
PCFG model with discriminatively learned RNNs.

Deep Learning and Recursive Deep Learning
Early attempts at using neural networks to de-
scribe phrases include Elman (1991), who used re-
current neural networks to create representations
of sentences from a simple toy grammar and to
analyze the linguistic expressiveness of the re-
sulting representations. Words were represented
as one-on vectors, which was feasible since the
grammar only included a handful of words. Col-
lobert and Weston (2008) showed that neural net-
works can perform well on sequence labeling lan-
guage processing tasks while also learning appro-
priate features. However, their model is lacking
in that it cannot represent the recursive structure
inherent in natural language. They partially cir-
cumvent this problem by using either independent
window-based classifiers or a convolutional layer.
RNN-specific training was introduced by Goller
and Küchler (1996) to learn distributed represen-
tations of given, structured objects such as logi-
cal terms. In contrast, our model both predicts the
structure and its representation.
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Henderson (2003) was the first to show that neu-
ral networks can be successfully used for large
scale parsing. He introduced a left-corner parser to
estimate the probabilities of parsing decisions con-
ditioned on the parsing history. The input to Hen-
derson’s model consists of pairs of frequent words
and their part-of-speech (POS) tags. Both the orig-
inal parsing system and its probabilistic interpre-
tation (Titov and Henderson, 2007) learn features
that represent the parsing history and do not pro-
vide a principled linguistic representation like our
phrase representations. Other related work in-
cludes (Henderson, 2004), who discriminatively
trains a parser based on synchrony networks and
(Titov and Henderson, 2006), who use an SVM to
adapt a generative parser to different domains.

Costa et al. (2003) apply recursive neural net-
works to re-rank possible phrase attachments in
an incremental parser. Their work is the first to
show that RNNs can capture enough information
to make correct parsing decisions, but they only
test on a subset of 2000 sentences. Menchetti et
al. (2005) use RNNs to re-rank different parses.
For their results on full sentence parsing, they re-
rank candidate trees created by the Collins parser
(Collins, 2003). Similar to their work, we use the
idea of letting discrete categories reduce the search
space during inference. We compare to fully tied
RNNs in which the same weights are used at every
node. Our syntactically untied RNNs outperform
them by a significant margin. The idea of untying
has also been successfully used in deep learning
applied to vision (Le et al., 2010).

This paper uses several ideas of (Socher et al.,
2011b). The main differences are (i) the dual
representation of nodes as discrete categories and
vectors, (ii) the combination with a PCFG, and
(iii) the syntactic untying of weights based on
child categories. We directly compare models with
fully tied and untied weights. Another work that
represents phrases with a dual discrete-continuous
representation is (Kartsaklis et al., 2012).

3 Compositional Vector Grammars

This section introduces Compositional Vector
Grammars (CVGs), a model to jointly find syntac-
tic structure and capture compositional semantic
information.

CVGs build on two observations. Firstly, that a
lot of the structure and regularity in languages can
be captured by well-designed syntactic patterns.

Hence, the CVG builds on top of a standard PCFG
parser. However, many parsing decisions show
fine-grained semantic factors at work. Therefore
we combine syntactic and semantic information
by giving the parser access to rich syntactico-
semantic information in the form of distributional
word vectors and compute compositional semantic
vector representations for longer phrases (Costa
et al., 2003; Menchetti et al., 2005; Socher et
al., 2011b). The CVG model merges ideas from
both generative models that assume discrete syn-
tactic categories and discriminative models that
are trained using continuous vectors.

We will first briefly introduce single word vec-
tor representations and then describe the CVG ob-
jective function, tree scoring and inference.

3.1 Word Vector Representations

In most systems that use a vector representa-
tion for words, such vectors are based on co-
occurrence statistics of each word and its context
(Turney and Pantel, 2010). Another line of re-
search to learn distributional word vectors is based
on neural language models (Bengio et al., 2003)
which jointly learn an embedding of words into an
n-dimensional feature space and use these embed-
dings to predict how suitable a word is in its con-
text. These vector representations capture inter-
esting linear relationships (up to some accuracy),
such as king−man+woman ≈ queen (Mikolov
et al., 2013).

Collobert and Weston (2008) introduced a new
model to compute such an embedding. The idea
is to construct a neural network that outputs high
scores for windows that occur in a large unla-
beled corpus and low scores for windows where
one word is replaced by a random word. When
such a network is optimized via gradient ascent the
derivatives backpropagate into the word embed-
ding matrix X . In order to predict correct scores
the vectors in the matrix capture co-occurrence
statistics.

For further details and evaluations of these em-
beddings, see (Turian et al., 2010; Huang et al.,
2012). The resulting X matrix is used as follows.
Assume we are given a sentence as an ordered list
of m words. Each word w has an index [w] = i
into the columns of the embedding matrix. This
index is used to retrieve the word’s vector repre-
sentation aw using a simple multiplication with a
binary vector e, which is zero everywhere, except
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at the ith index. So aw = Lei ∈ Rn. Henceforth,
after mapping each word to its vector, we represent
a sentence S as an ordered list of (word,vector)
pairs: x = ((w1, aw1), . . . , (wm, awm)).

Now that we have discrete and continuous rep-
resentations for all words, we can continue with
the approach for computing tree structures and
vectors for nonterminal nodes.

3.2 Max-Margin Training Objective for
CVGs

The goal of supervised parsing is to learn a func-
tion g : X → Y , where X is the set of sentences
and Y is the set of all possible labeled binary parse
trees. The set of all possible trees for a given sen-
tence xi is defined as Y (xi) and the correct tree
for a sentence is yi.

We first define a structured margin loss ∆(yi, ŷ)
for predicting a tree ŷ for a given correct tree.
The loss increases the more incorrect the proposed
parse tree is (Goodman, 1998). The discrepancy
between trees is measured by counting the number
of nodes N(y) with an incorrect span (or label) in
the proposed tree:

∆(yi, ŷ) =
∑

d∈N(ŷ)

κ1{d /∈ N(yi)}. (1)

We set κ = 0.1 in all experiments. For a given
set of training instances (xi, yi), we search for the
function gθ, parameterized by θ, with the smallest
expected loss on a new sentence. It has the follow-
ing form:

gθ(x) = arg max
ŷ∈Y (x)

s(CVG(θ, x, ŷ)), (2)

where the tree is found by the Compositional Vec-
tor Grammar (CVG) introduced below and then
scored via the function s. The higher the score of
a tree the more confident the algorithm is that its
structure is correct. This max-margin, structure-
prediction objective (Taskar et al., 2004; Ratliff
et al., 2007; Socher et al., 2011b) trains the CVG
so that the highest scoring tree will be the correct
tree: gθ(xi) = yi and its score will be larger up to
a margin to other possible trees ŷ ∈ Y(xi):

s(CVG(θ, xi, yi)) ≥ s(CVG(θ, xi, ŷ)) + ∆(yi, ŷ).

This leads to the regularized risk function for m

training examples:

J(θ) =
1

m

m∑

i=1

ri(θ) +
λ

2
‖θ‖22, where

ri(θ) = max
ŷ∈Y (xi)

(
s(CVG(xi, ŷ)) + ∆(yi, ŷ)

)

− s(CVG(xi, yi)) (3)

Intuitively, to minimize this objective, the score of
the correct tree yi is increased and the score of the
highest scoring incorrect tree ŷ is decreased.

3.3 Scoring Trees with CVGs
For ease of exposition, we first describe how to
score an existing fully labeled tree with a standard
RNN and then with a CVG. The subsequent sec-
tion will then describe a bottom-up beam search
and its approximation for finding the optimal tree.

Assume, for now, we are given a labeled
parse tree as shown in Fig. 2. We define
the word representations as (vector, POS) pairs:
((a,A), (b, B), (c, C)), where the vectors are de-
fined as in Sec. 3.1 and the POS tags come from
a PCFG. The standard RNN essentially ignores all
POS tags and syntactic categories and each non-
terminal node is associated with the same neural
network (i.e., the weights across nodes are fully
tied). We can represent the binary tree in Fig. 2
in the form of branching triplets (p → c1c2).
Each such triplet denotes that a parent node p has
two children and each ck can be either a word
vector or a non-terminal node in the tree. For
the example in Fig. 2, we would get the triples
((p1 → bc), (p2 → ap1)). Note that in order
to replicate the neural network and compute node
representations in a bottom up fashion, the parent
must have the same dimensionality as the children:
p ∈ Rn.

Given this tree structure, we can now compute
activations for each node from the bottom up. We
begin by computing the activation for p1 using
the children’s word vectors. We first concatenate
the children’s representations b, c ∈ Rn×1 into a

vector
[
b
c

]
∈ R2n×1. Then the composition

function multiplies this vector by the parameter
weights of the RNN W ∈ Rn×2n and applies an
element-wise nonlinearity function f = tanh to
the output vector. The resulting output p(1) is then
given as input to compute p(2).

p(1) = f

(
W

[
b
c

])
, p(2) = f

(
W

[
a
p1

])
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(A, a=       )        (B, b=       )       (C, c=       )

P(1), p(1)=       

 P(2), p(2)=        

Standard Recursive Neural Network

= f   W
b
c

= f   W
a
p(1)

Figure 2: An example tree with a simple Recursive
Neural Network: The same weight matrix is repli-
cated and used to compute all non-terminal node
representations. Leaf nodes are n-dimensional
vector representations of words.

In order to compute a score of how plausible of
a syntactic constituent a parent is the RNN uses a
single-unit linear layer for all i:

s(p(i)) = vT p(i),

where v ∈ Rn is a vector of parameters that need
to be trained. This score will be used to find the
highest scoring tree. For more details on how stan-
dard RNNs can be used for parsing, see Socher et
al. (2011b).

The standard RNN requires a single composi-
tion function to capture all types of compositions:
adjectives and nouns, verbs and nouns, adverbs
and adjectives, etc. Even though this function is
a powerful one, we find a single neural network
weight matrix cannot fully capture the richness of
compositionality. Several extensions are possible:
A two-layered RNN would provide more expres-
sive power, however, it is much harder to train be-
cause the resulting neural network becomes very
deep and suffers from vanishing gradient prob-
lems. Socher et al. (2012) proposed to give ev-
ery single word a matrix and a vector. The ma-
trix is then applied to the sibling node’s vector
during the composition. While this results in a
powerful composition function that essentially de-
pends on the words being combined, the number
of model parameters explodes and the composi-
tion functions do not capture the syntactic com-
monalities between similar POS tags or syntactic
categories.

Based on the above considerations, we propose
the Compositional Vector Grammar (CVG) that
conditions the composition function at each node
on discrete syntactic categories extracted from a

(A, a=       )        (B, b=       )       (C, c=       )

P(1), p(1)=       

 P(2), p(2)=        

Syntactically Untied Recursive Neural Network

= f   W(B,C) b
c

= f   W(A,P  ) a
p(1)

(1)

Figure 3: Example of a syntactically untied RNN
in which the function to compute a parent vector
depends on the syntactic categories of its children
which we assume are given for now.

PCFG. Hence, CVGs combine discrete, syntactic
rule probabilities and continuous vector composi-
tions. The idea is that the syntactic categories of
the children determine what composition function
to use for computing the vector of their parents.
While not perfect, a dedicated composition func-
tion for each rule RHS can well capture common
composition processes such as adjective or adverb
modification versus noun or clausal complementa-
tion. For instance, it could learn that an NP should
be similar to its head noun and little influenced by
a determiner, whereas in an adjective modification
both words considerably determine the meaning of
a phrase. The original RNN is parameterized by a
single weight matrixW . In contrast, the CVG uses
a syntactically untied RNN (SU-RNN) which has
a set of such weights. The size of this set depends
on the number of sibling category combinations in
the PCFG.

Fig. 3 shows an example SU-RNN that com-
putes parent vectors with syntactically untied
weights. The CVG computes the first parent vec-
tor via the SU-RNN:

p(1) = f

(
W (B,C)

[
b
c

])
,

where W (B,C) ∈ Rn×2n is now a matrix that de-
pends on the categories of the two children. In
this bottom up procedure, the score for each node
consists of summing two elements: First, a single
linear unit that scores the parent vector and sec-
ond, the log probability of the PCFG for the rule
that combines these two children:

s
(
p(1)
)

=
(
v(B,C)

)T
p(1) + logP (P1 → B C),

(4)
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where P (P1 → B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P1, p1)→ (B, b)(C, c)) (5)

= P (p1 → b c|P1 → B C)P (P1 → B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p1 has syntactic category
P1, we compute the second parent vector via:

p(2) = f

(
W (A,P1)

[
a

p(1)

])
.

The score of the last parent in this trigram is com-
puted via:

s
(
p(2)
)

=
(
v(A,P1)

)T
p(2) + logP (P2 → A P1).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(θ, x, ŷ)) =
∑

d∈N(ŷ)

s
(
pd
)
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees maxŷ∈Y (x).
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W (AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)

460



3.6 Subgradient Methods and AdaGrad
The objective function is not differentiable due to
the hinge loss. Therefore, we generalize gradient
ascent via the subgradient method (Ratliff et al.,
2007) which computes a gradient-like direction.
Let θ = (X,W (··), v(··)) ∈ RM be a vector of all
M model parameters, where we denote W (··) as
the set of matrices that appear in the training set.
The subgradient of Eq. 3 becomes:

∂J

∂θ
=
∑

i

∂s(xi, ŷmax)

∂θ
− ∂s(xi, yi)

∂θ
+ θ,

where ŷmax is the tree with the highest score. To
minimize the objective, we use the diagonal vari-
ant of AdaGrad (Duchi et al., 2011) with mini-
batches. For our parameter updates, we first de-
fine gτ ∈ RM×1 to be the subgradient at time step
τ and Gt =

∑t
τ=1 gτg

T
τ . The parameter update at

time step t then becomes:

θt = θt−1 − α (diag(Gt))
−1/2 gt, (7)

where α is the learning rate. Since we use the di-
agonal of Gt, we only have to store M values and
the update becomes fast to compute: At time step
t, the update for the i’th parameter θt,i is:

θt,i = θt−1,i −
α√∑t
τ=1 g

2
τ,i

gt,i. (8)

Hence, the learning rate is adapting differ-
ently for each parameter and rare parameters get
larger updates than frequently occurring parame-
ters. This is helpful in our setting since some W
matrices appear in only a few training trees. This
procedure found much better optima (by ≈3% la-
beled F1 on the dev set), and converged more
quickly than L-BFGS which we used previously
in RNN training (Socher et al., 2011a). Training
time is roughly 4 hours on a single machine.

3.7 Initialization of Weight Matrices
In the absence of any knowledge on how to com-
bine two categories, our prior for combining two
vectors is to average them instead of performing a
completely random projection. Hence, we initial-
ize the binary W matrices with:

W (··) = 0.5[In×nIn×n0n×1] + ε,

where we include the bias in the last column and
the random variable is uniformly distributed: ε ∼

U [−0.001, 0.001]. The first block is multiplied by
the left child and the second by the right child:

W (AB)



a
b
1


 =

[
W (A)W (B)bias

]


a
b
1




= W (A)a+W (B)b+ bias.

4 Experiments

We evaluate the CVG in two ways: First, by a stan-
dard parsing evaluation on Penn Treebank WSJ
and then by analyzing the model errors in detail.

4.1 Cross-validating Hyperparameters

We used the first 20 files of WSJ section 22
to cross-validate several model and optimization
choices. The base PCFG uses simplified cate-
gories of the Stanford PCFG Parser (Klein and
Manning, 2003a). We decreased the state split-
ting of the PCFG grammar (which helps both by
making it less sparse and by reducing the num-
ber of parameters in the SU-RNN) by adding
the following options to training: ‘-noRightRec -
dominatesV 0 -baseNP 0’. This reduces the num-
ber of states from 15,276 to 12,061 states and 602
POS tags. These include split categories, such as
parent annotation categories like VPˆS. Further-
more, we ignore all category splits for the SU-
RNN weights, resulting in 66 unary and 882 bi-
nary child pairs. Hence, the SU-RNN has 66+882
transformation matrices and scoring vectors. Note
that any PCFG, including latent annotation PCFGs
(Matsuzaki et al., 2005) could be used. However,
since the vectors will capture lexical and semantic
information, even simple base PCFGs can be sub-
stantially improved. Since the computational com-
plexity of PCFGs depends on the number of states,
a base PCFG with fewer states is much faster.

Testing on the full WSJ section 22 dev set (1700
sentences) takes roughly 470 seconds with the
simple base PCFG, 1320 seconds with our new
CVG and 1600 seconds with the currently pub-
lished Stanford factored parser. Hence, increased
performance comes also with a speed improve-
ment of approximately 20%.

We fix the same regularization of λ = 10−4

for all parameters. The minibatch size was set to
20. We also cross-validated on AdaGrad’s learn-
ing rate which was eventually set to α = 0.1 and
word vector size. The 25-dimensional vectors pro-
vided by Turian et al. (2010) provided the best
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Parser dev (all) test≤ 40 test (all)
Stanford PCFG 85.8 86.2 85.5
Stanford Factored 87.4 87.2 86.6
Factored PCFGs 89.7 90.1 89.4
Collins 87.7
SSN (Henderson) 89.4
Berkeley Parser 90.1
CVG (RNN) 85.7 85.1 85.0
CVG (SU-RNN) 91.2 91.1 90.4
Charniak-SelfTrain 91.0
Charniak-RS 92.1

Table 1: Comparison of parsers with richer state
representations on the WSJ. The last line is the
self-trained re-ranked Charniak parser.

performance and were faster than 50-,100- or 200-
dimensional ones. We hypothesize that the larger
word vector sizes, while capturing more seman-
tic knowledge, result in too many SU-RNN matrix
parameters to train and hence perform worse.

4.2 Results on WSJ

The dev set accuracy of the best model is 90.93%
labeled F1 on all sentences. This model re-
sulted in 90.44% on the final test set (WSJ sec-
tion 23). Table 1 compares our results to the
two Stanford parser variants (the unlexicalized
PCFG (Klein and Manning, 2003a) and the fac-
tored parser (Klein and Manning, 2003b)) and
other parsers that use richer state representations:
the Berkeley parser (Petrov and Klein, 2007),
Collins parser (Collins, 1997), SSN: a statistical
neural network parser (Henderson, 2004), Fac-
tored PCFGs (Hall and Klein, 2012), Charniak-
SelfTrain: the self-training approach of McClosky
et al. (2006), which bootstraps and parses addi-
tional large corpora multiple times, Charniak-RS:
the state of the art self-trained and discrimina-
tively re-ranked Charniak-Johnson parser combin-
ing (Charniak, 2000; McClosky et al., 2006; Char-
niak and Johnson, 2005). See Kummerfeld et al.
(2012) for more comparisons. We compare also
to a standard RNN ‘CVG (RNN)’ and to the pro-
posed CVG with SU-RNNs.

4.3 Model Analysis

Analysis of Error Types. Table 2 shows a de-
tailed comparison of different errors. We use
the code provided by Kummerfeld et al. (2012)
and compare to the previous version of the Stan-
ford factored parser as well as to the Berkeley
and Charniak-reranked-self-trained parsers (de-
fined above). See Kummerfeld et al. (2012) for
details and comparisons to other parsers. One of

Error Type Stanford CVG Berkeley Char-RS
PP Attach 1.02 0.79 0.82 0.60
Clause Attach 0.64 0.43 0.50 0.38
Diff Label 0.40 0.29 0.29 0.31
Mod Attach 0.37 0.27 0.27 0.25
NP Attach 0.44 0.31 0.27 0.25
Co-ord 0.39 0.32 0.38 0.23
1-Word Span 0.48 0.31 0.28 0.20
Unary 0.35 0.22 0.24 0.14
NP Int 0.28 0.19 0.18 0.14
Other 0.62 0.41 0.41 0.50

Table 2: Detailed comparison of different parsers.

the largest sources of improved performance over
the original Stanford factored parser is in the cor-
rect placement of PP phrases. When measuring
only the F1 of parse nodes that include at least one
PP child, the CVG improves the Stanford parser
by 6.2% to an F1 of 77.54%. This is a 0.23 re-
duction in the average number of bracket errors
per sentence. The ‘Other’ category includes VP,
PRN and other attachments, appositives and inter-
nal structures of modifiers and QPs.
Analysis of Composition Matrices. An analy-
sis of the norms of the binary matrices reveals
that the model learns a soft vectorized notion of
head words: Head words are given larger weights
and importance when computing the parent vec-
tor: For the matrices combining siblings with cat-
egories VP:PP, VP:NP and VP:PRT, the weights in
the part of the matrix which is multiplied with the
VP child vector dominates. Similarly NPs dom-
inate DTs. Fig. 5 shows example matrices. The
two strong diagonals are due to the initialization
described in Sec. 3.7.
Semantic Transfer for PP Attachments. In this
small model analysis, we use two pairs of sen-
tences that the original Stanford parser and the
CVG did not parse correctly after training on
the WSJ. We then continue to train both parsers
on two similar sentences and then analyze if the
parsers correctly transferred the knowledge. The
training sentences are He eats spaghetti with a
fork. and She eats spaghetti with pork. The very
similar test sentences are He eats spaghetti with a
spoon. and He eats spaghetti with meat. Initially,
both parsers incorrectly attach the PP to the verb
in both test sentences. After training, the CVG
parses both correctly, while the factored Stanford
parser incorrectly attaches both PPs to spaghetti.
The CVG’s ability to transfer the correct PP at-
tachments is due to the semantic word vector sim-
ilarity between the words in the sentences. Fig. 4
shows the outputs of the two parsers.
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(a) Stanford factored parser
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(b) Compositional Vector Grammar
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Figure 4: Test sentences of semantic transfer for PP attachments. The CVG was able to transfer se-
mantic word knowledge from two related training sentences. In contrast, the Stanford parser could not
distinguish the PP attachments based on the word semantics.
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Figure 5: Three binary composition matrices
showing that head words dominate the composi-
tion. The model learns to not give determiners
much importance. The two diagonals show clearly
the two blocks that are multiplied with the left and
right children, respectively.

5 Conclusion

We introduced Compositional Vector Grammars
(CVGs), a parsing model that combines the speed
of small-state PCFGs with the semantic richness
of neural word representations and compositional
phrase vectors. The compositional vectors are
learned with a new syntactically untied recursive
neural network. This model is linguistically more
plausible since it chooses different composition
functions for a parent node based on the syntac-
tic categories of its children. The CVG obtains
90.44% labeled F1 on the full WSJ test set and is
20% faster than the previous Stanford parser.
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Abstract

In spoken dialog systems, statistical state
tracking aims to improve robustness to
speech recognition errors by tracking a
posterior distribution over hidden dialog
states. Current approaches based on gener-
ative or discriminative models have differ-
ent but important shortcomings that limit
their accuracy. In this paper we discuss
these limitations and introduce a new ap-
proach for discriminative state tracking
that overcomes them by leveraging the
problem structure. An offline evaluation
with dialog data collected from real users
shows improvements in both state track-
ing accuracy and the quality of the pos-
terior probabilities. Features that encode
speech recognition error patterns are par-
ticularly helpful, and training requires rel-
atively few dialogs.

1 Introduction

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog
in a process called dialog state tracking. For ex-
ample, in a bus schedule information system, the
dialog state might indicate the user’s desired bus
route, origin, and destination. Dialog state track-
ing is difficult because automatic speech recog-
nition (ASR) and spoken language understand-
ing (SLU) errors are common, and can cause the
system to misunderstand the user’s needs. At
the same time, state tracking is crucial because
the system relies on the estimated dialog state to
choose actions – for example, which bus schedule

information to present to the user.
The dialog state tracking problem can be for-

malized as follows (Figure 1). Each system turn
in the dialog is one datapoint. For each datapoint,
the input consists of three items: a set of K fea-
tures that describes the current dialog context, G
dialog state hypotheses, and for each dialog state
hypothesis, M features that describe that dialog
state hypothesis. The task is to assign a probabil-
ity distribution over the G dialog state hypotheses,
plus a meta-hypothesis which indicates that none
of the G hypotheses is correct.

Note that G varies across turns (datapoints) –
for example, in the first turn of Figure 1, G = 3,
and in the second and third turns G = 5. Also
note that the dialog state tracker is not predicting
the contents of the dialog state hypotheses; the di-
alog state hypotheses contents are given by some
external process, and the task is to predict a proba-
bility distribution over them, where the probability
assigned to a hypothesis indicates the probability
that it is correct. It is a requirement that the G
hypotheses are disjoint; with the special “every-
thing else” meta-hypothesis, exactly one hypoth-
esis is correct by construction. After the dialog
state tracker has output its distribution, this distri-
bution is passed to a separate, downstream process
that chooses what action to take next (e.g., how to
respond to the user).

Dialog state tracking can be seen an analogous
to assigning a probability distribution over items
on an ASR N-best list given speech input and the
recognition output, including the contents of the
N-best list. In this task, the general features de-
scribe the recognition overall (such as length of
utterance), and the hypothesis-specific features de-
scribe each N-best entry (such as decoder cost).

∗ Work done while at Microsoft Research
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Another analogous task is assigning a probabil-
ity distribution over a set of URLs given a search
query and the URLs. Here, general features de-
scribe the whole set of results, e.g., number of
words in the query, and hypothesis-specific fea-
tures describe each URL, e.g., the fraction of
query words contained in page.

For dialog state tracking, most commercial sys-
tems use hand-crafted heuristics, selecting the
SLU result with the highest confidence score,
and discarding alternatives. In contrast, statisti-
cal approaches compute a posterior distribution
over many hypotheses for the dialog state. The
key insight is that dialog is a temporal process in
which correlations between turns can be harnessed
to overcome SLU errors. Statistical state track-
ing has been shown to improve task completion
in end-to-end spoken dialog systems (Bohus and
Rudnicky (2006); Young et al. (2010); Thomson
and Young (2010)).

Two types of statistical state tracking ap-
proaches have been proposed. Generative ap-
proaches (Horvitz and Paek (1999); Williams and
Young (2007); Young et al. (2010); Thomson and
Young (2010)) use generative models that capture
how the SLU results are generated from hidden
dialog states. These models can be used to track
an arbitrary number of state hypotheses, but can-
not easily incorporate large sets of potentially in-
formative features (e.g. from ASR, SLU, dialog
history), resulting in poor probability estimates.
As an illustration, in Figure 1, a generative model
might fail to assign the highest score to the correct
hypothesis (61C) after the second turn. In contrast,
discriminative approaches use conditional mod-
els, trained in a discriminative fashion (Bohus and
Rudnicky (2006)) to directly estimate the distribu-
tion over a set of state hypotheses based on a large
set of informative features. They generally pro-
duce more accurate distributions, but in their cur-
rent form they can only track a handful of state hy-
potheses. As a result, the correct hypothesis may
be discarded: for instance, in Figure 1, a discrim-
inative model might consider only the top 2 SLU
results, and thus fail to consider the correct 61C
hypothesis at all.

The main contribution of this paper is to de-
velop a new discriminative model for dialog state
tracking that can operate over an arbitrary number
of hypotheses and still compute accurate proba-
bility estimates. We also explore the relative im-

portance of different feature sets for this task, and
measure the amount of data required to reliably
train our model.

2 Data and experimental design

We use data from the public deployment of two
systems in the Spoken Dialog Challenge (Black
et al. (2010)) which provide bus schedule infor-
mation for Pittsburgh, USA. The systems, DS1
and DS2, were fielded by AT&T, and are de-
scribed in Williams et al. (2010) and Williams
(2012). Both systems followed a highly directed
flow, separately collecting 5 slots. All users were
asked for their bus route, origin, and destination;
then, they were optionally prompted for a date and
time. Each slot was explicitly or implicitly con-
firmed before collecting the next. At the end, bus
times were presented. The two systems differed in
acoustic models, confidence scoring model, state
tracking method and parameters, number of sup-
ported routes (8 vs 40, for DS1 and DS2 respec-
tively), presence of minor bugs, and user popu-
lation. These differences yield distinctions in the
distributions in the two corpora (Williams (2012)).

In both systems, a dialog state hypothesis con-
sists of a value of the user’s goal for a certain
slot: for example, a state hypothesis for the origin
slot might be “carnegie mellon university”. The
number G of state hypotheses (e.g. slot values)
observed so far depends on the dialog, and turn
within that dialog. For instance, in Fig. 1, G pro-
gressively takes values 3, 5 and 5. Dialog state
hypotheses with identical contents (e.g., the same
bus route) are merged. The correctness of the SLU
results was manually labeled by professional an-
notators.

2.1 Experimental setup

To perform a comparative analysis of various state
tracking algorithms, we test them offline, i.e., by
re-running state tracking against the SLU results
from deployment. However, care must be taken:
when the improved state-tracker is installed into a
dialog system and used to drive action selection,
the distribution of the resulting dialog data (which
is an input for the state tracker) will change. In
other words, it is known a priori that the train
and test distributions will be mismatched. Hence,
when conducting offline experiments, if train and
test data were drawn from the same matched dis-
tribution, this may overstate performance.
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Figure 1: Overview of dialog state tracking. In this example, the dialog state contains the user’s desired
bus route. At each turn, the system produces a spoken output. The user’s spoken response is processed
to extract a set of spoken language understanding (SLU) results, each with a local confidence score. A
set of G dialog state hypotheses is formed by considering all SLU results observed so far, including
the current turn and all previous turns. For each state hypothesis, a feature extractor produces a set of
M hypothesis-specific features, plus a single set of K general features that describes the current dialog
context. The dialog state tracker uses these features to produce a distribution over theG state hypotheses,
plus a meta-hypothesis rest which accounts for the possibility that none of the G hypotheses are correct.

dataset train set test set

MATCH1 half calls from DS2 remaining calls in DS2
MATCH2 half calls from DS1,

half from DS2
remaining calls from
DS1 and DS2

MISMATCH all calls from DS1 all calls from DS2

Table 1: Train-test data splits

To account for this effect, we explicitly study
train/test mismatch through three partitions of data
from DS1 and DS2 (see Table 1): MATCH1 con-
tains matched train/test data from the DS2 dataset;
MATCH2 contains matched train/test data from
both datasets; finally, MISMATCH contains mis-
matched train/test data. While the MISMATCH

condition may not identically replicate the mis-
match observed from deploying a new state tracker
online (since online characteristics depend on user
behavior) training on DS1 and testing on DS2 at
least ensures the presence of some real-world mis-
match.

We assess performance via two metrics: accu-
racy and L2 norm. Accuracy indicates whether the
state hypothesis with the highest assigned proba-
bility is correct, where rest is correct iff none of
the SLU results prior to the current turn include the
user’s goal. High accuracy is important as a dialog
system must ultimately commit to a single inter-
pretation of the user’s needs – e.g., it must commit
to a route in order to provide bus timetable infor-
mation. In addition, the L2 norm (or Brier score,
Murphy (1973)) also captures how well calibrated
the output probabilities are, which is crucial to de-
cision theoretic methods for action selection. The
L2 norm is computed between the output poste-
rior and the ground-truth vector, which has 1 in
the position of the correct item and 0 elsewhere.
Both metrics are computed for each slot in each
turn, and reported by averaging across all turns
and slots.
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2.2 Hand-crafted baseline state tracker

As a baseline, we construct a hand-crafted state
tracking rule that follows a strategy common in
commercial systems: it returns the SLU result
with the maximum confidence score, ignoring all
other hypotheses. Although this is very a simple
rule, it is very often effective. For example, if the
user says “no” to an explicit confirmation or “go
back” to an implicit confirmation, they are asked
the same question again, which gives an opportu-
nity for a higher confidence score. Of the G pos-
sible hypotheses for a slot, we denote the number
actually assigned a score by a model as G̃, so in
this heuristic baseline G̃ = 1.

The performance of this baseline (BASELINE

in Table 3) is relatively strong because the top
SLU result is by far most likely to be correct, and
because the confidence score was already trained
with slot-specific speech data (Williams and Bal-
akrishnan (2009), Williams (2012)). However,
this simple rule can’t make use of SLU results on
the N-best list, or statistical priors; these limita-
tions motivate the use of statistical state trackers,
introduced next.

3 Generative state tracking

Generative state tracking approaches leverage
models that describe how SLU results are gener-
ated from a hidden dialog state, denoted g. The
user’s true (unobserved) action u is conditioned on
g and the system action a via a user action model
P (u|g, a), and also on the observed SLU result
ũ via a model of how SLU results are generated
P (ũ|u). Given a prior distribution b(g) and a re-
sult ũ, an updated distribution b′(g) can be com-
puted by summing over all hidden user actions u:

b′(g) = η
∑

u

P (ũ|u) · P (u|g, a)b(g) (1)

where η is a normalizing constant (Williams and
Young (2007)). Generative approaches model the
posterior over all possible dialog state hypotheses,
including those not observed in the SLU N-best
lists. In general this is computationally intractable
because the number of states is too large. One ap-
proach to scaling up is to group g into a few par-
titions, and to track only states suggested by ob-
served SLU results (Young et al. (2010); Williams
(2010); Gašić and Young (2011)). Another ap-
proach is to factor the components of a dialog

state, make assumptions about conditional inde-
pendence between the components, and apply ap-
proximate inference techniques such as loopy be-
lief propagation (Thomson and Young (2010)).

In deployment, DS1 and DS2 used the AT&T
Statistical Dialog Toolkit (ASDT) for dialog state
tracking (Williams (2010); AT&T Statistical Dia-
log Toolkit). ASDT implements a generative up-
date of the form of Eq 1, and uses partitions to
maintain tractability. Component models were
learned from dialog data from a different dia-
log system. A maximum of G̃ = 20 state hy-
potheses were tracked for each slot. The per-
formance (GENONLINE in Table 3), was worse
than BASELINE: an in-depth analysis attributed
this to the mismatch between train and test data
in the component models, and to the underlying
flawed assumption of eq. 1 that observations at
different turns are independent conditioned on the
dialog state – in practice, confusions made by
speech recognition are highly correlated (Williams
(2012)).

For all datasets, we re-estimated the models on
the train set and re-ran generative tracking with
an unlimited number of partitions (i.e., G̃ = G);
see GENOFFLINE in Table 3. The re-estimated
tracker improved accuracy in MATCH conditions,
but degraded accuracy in the MISMATCH condi-
tion. This can be partly attributed to the difficulty
in estimating accurate initial priors b(g) for MIS-
MATCH, where the bus route, origin, and destina-
tion slot values in train and test systems differed
significantly.

4 Discriminative State Tracking:
Preliminaries and existing work

In contrast to generative models, discriminative
approaches to dialog state tracking directly predict
the correct state hypothesis by leveraging discrim-
inatively trained conditional models of the form
b(g) = P (g|f), where f are features extracted
from various sources, e.g. ASR, SLU, dialog his-
tory, etc. In this work we will use maximum en-
tropy models. We begin by briefly introducing
these models in the next subsection. We then de-
scribe the features used, and finally review exist-
ing discriminative approaches for state tracking
which serve as a starting point for the new ap-
proach we introduce in Section 5.
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4.1 Maximum entropy models
The maximum entropy framework (Berger et al.
(1996)) models the conditional probability distri-
bution of the label y given features x, p(y|x) via
an exponential model of the form:

P (y|x, λ) = exp(
∑

i∈I λiφi(x, y))∑
y∈Y exp(

∑
i∈I λiφi(x, y))

(2)

where φi(x, y) are feature functions jointly de-
fined on features and labels, and λi are the model
parameters. The training procedure optimizes the
parameters λi to maximize the likelihood over the
data instances subject to regularization penalties.
In this work, we optimize the L1 penalty using a
cross-validation process on the train set, and we
use a fixed L2 penalty based on heuristic based on
the dataset size. The same optimization is used for
all models.

4.2 Features
Discriminative approaches for state tracking rely
on informative features to predict the correct di-
alog state. In this work we designed a set of
hypothesis-specific features that convey informa-
tion about the correctness of a particular state hy-
pothesis, and a set of general features that convey
information about the correctness of the rest meta-
hypothesis.

Hypothesis-specific features can be grouped
into 3 categories: base, history and confusion fea-
tures. Base features consider information about
the current turn, including rank of the current SLU
result (current hypothesis), the SLU result confi-
dence score(s) in the current N-best list, the differ-
ence between the current hypothesis score and the
best hypothesis score in the current N-best list, etc.
History features contain additional useful informa-
tion about past turns. Those include the number of
times an SLU result has been observed before, the
number of times an SLU result has been observed
before at a specific rank such as rank 1, the sum
and average of confidence scores of SLU results
across all past recognitions, the number of possi-
ble past user negations or confirmations of the cur-
rent SLU result etc.

Confusion features provide information about
likely ASR errors and confusability. Some recog-
nition results are more likely to be incorrect than
others – background noise tends to trigger certain
results, especially short bus routes like “p”. More-
over, similar sounding phrases are more likely to

be confused. The confusion features were com-
puted on a subset of the training data. For each
SLU result we computed the fraction of the time
that the result was correct, and the binomial 95%
confidence interval for that estimate. Those two
statistics were pre-computed for all SLU results
in the training data subset, and were stored in a
lookup table. At runtime, when an SLU hypoth-
esis is recognized, its statistics from this lookup
table are used as features. Similar statistics were
computed for prior probability of an SLU result
appearing on an N-best list, and prior probability
of SLU result appearance at specific rank positions
of an N-best list, prior probability of confusion be-
tween pairs of SLU results, and others.

General features provide aggregate information
about dialog history and SLU results, and are
shared across different SLU results of an N-best
list. For example, from the current turn, we use
the number of distinct SLU results, the entropy
of the confidence scores, the best path score of
the word confusion network, etc. We also include
features that contain aggregate information about
the sequence of all N-best lists up to the current
turn, such as the mean and variance of N-best list
lengths, the number of distinct SLU results ob-
served so far, the entropy of their corresponding
confidence scores, and others.

We denote the number of hypothesis-specific
features as M , and the number of general features
asK. K andM are each in the range of 100−200,
although M varies depending on whether history
and confusion features are included. For a given
dialog turn with G state hypotheses, there are a to-
tal of G ∗M +K distinct features.

4.3 Fixed-length discriminative state
tracking

In past work, Bohus and Rudnicky (2006) intro-
duced discriminative state tracking, casting the
problem as standard multiclass classification. In
this setup, each turn constitutes one data instance.
Since in dialog state tracking the number of state
hypotheses varies across turns, Bohus and Rud-
nicky (2006) chose a subset of G̃ state hypothe-
ses to score. In this work we used a similar
setup, where we considered the top G1 SLU re-
sults from the current N-best list at turn t, and the
top G2 and G3 SLU results from the previous N-
best lists at turns t − 1 and t − 2. The problem
can then be formulated as multiclass classification
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over G̃+1 = G1+G2+G3+1 classes, where the
correct class indicates which of these hypotheses
(or rest) is correct. We experimented with differ-
ent values and found that G1 = 3, G2 = 2, and
G3 = 1 (G̃ = 6) yielded the best performance.

Feature functions are defined in the standard
way, with one feature function φ and weight λ for
each (feature,class) pair. Formally, φ of eq. 2 is
defined as φi,j(x, y) = xiδ(y, j), where δ(y, j) =
1 if y = j and 0 otherwise. i indexes over the
G̃M +K features and j over the G̃ + 1 classes.1

The two-dimensional subscript i, j if used for clar-
ity of notation, but is otherwise identical in role to
the one-dimension subscript i in Eq 2. Figure 2 il-
lustrates the relationship between hypotheses and
weights.

Results are reported as DISCFIXED in Table 3.
In the MATCH conditions, performance is gener-
ally higher than the other baselines, particularly
when confusion features are included. In the MIS-
MATCH condition, performance is worse that the
BASELINE.

A strength of this approach is that it enables
features from every hypothesis to independently
affect every class. However, the total number
of feature functions (hence weights to learn) is
(G̃ + 1) × (G̃M +K), which increases quadrat-
ically with the number of hypotheses considered
G̃. Although regularization can help avoid over-
fitting per se, it becomes a more challenging task
with more features. Learning weights for each
(feature,class) pair has the drawback that the ef-
fect of hypothesis-specific features such as confi-
dence have to be learned separately for every hy-
pothesis. Also, although we know in advance that
posteriors for a dialog state hypothesis are most
dependent on the features corresponding to that
hypothesis, in this approach the features from all
hypotheses are pooled together and the model is
left to discover these correspondences via learn-
ing. Furthermore, items lower down on the SLU
N-best list are much less likely to be correct: an
item at a very deep position (say 19) might never
be correct in the training data – when this occurs,
it is unreasonable to expect posteriors to be esti-
mated accurately.

As a result of these issues, in practice G̃ is lim-
ited to being a small number – here we found that
increasing G̃ > 6 degraded performance. Yet with

1Although in practice, maximum entropy model con-
straints render weights for one class redundant.

G̃ = 6, we found that in 10% of turns, the correct
state hypothesis was present but was being dis-
carded by the model, which substantially reduces
the upper-bound on tracker performance. In the
next section, we introduce a novel discriminative
state tracking approach that addresses the above
limitations, and enables jointly considering an ar-
bitrary number of state hypotheses, by exploiting
the structure inherent in the dialog state tracking
problem.

5 Dynamic discriminative state tracking

The key idea in the proposed approach is to use
feature functions that link hypothesis-specific fea-
tures to their corresponding dialog state hypoth-
esis. This approach makes it straightforward to
model relationships such as “higher confidence for
an SLU result increases the probability of its cor-
responding state hypothesis being correct”. This
formulation also decouples the number of models
parameters (i.e. weights to learn) from the number
of hypotheses considered, allowing an arbitrary
number of dialog states hypotheses to be scored.

Figure 2: The DISCFIXED model is a traditional
maximum entropy model for classification. Every
feature in every hypothesis is linked to every hy-
pothesis, requiring (G̃+ 1)(G̃M +K) weights.

We begin by re-stating how features are in-
dexed. Recall each dialog state hypothesis has M
hypothesis-specific features; for each hypothesis,
we concatenate these M features with the K gen-
eral features, which are identical for all hypothe-
ses. For the meta-hypothesis rest, we again con-
catenateM+K features, where theM hypothesis-
specific features take special undefined values. We
write xgi to refer to the ith feature of hypothesis g,
where i ranges from 1 to M +K and g from 1 to
G+ 1.
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Figure 3: The DISCDYN model presented in this
paper exploits the structure of the state tracking
problem. Features are linked to only their own
hypothesis, and weights are shared across all hy-
potheses, requiring M +K weights.

algorithm description

BASELINE simple hand-crafted rule
GENONLINE generative update, in deployed system
GENOFFLINE generative update, re-trained and run offline
DISCFIXED discr. fixed size multiclass (7 classes)
DISCDYN1 discr. joint dynamic estimation
DISCDYN2 discr. joint dynamic estimation, using indicator

encoding of ordinal features
DISCDYN3 discr. joint dynamic estimation, using indicator

encoding and ordinal-ordinal conjunctions
DISCIND discr. separate estimation

Table 2: Description of the various implemented
state tracking algorithms

The model is based on M + K feature func-
tions. However, unlike in traditional maximum
entropy models such as the fixed-position model
above, these features functions are dynamically
defined when presented with each turn. Specif-
ically, for a turn with G hypotheses, we define
φi(x, y = g) = xgi , where y ranges over the
set of possible dialog states G + 1 (and as above
i ∈ 1 . . .M +K). The feature function φi is dy-
namic in that the domain of y – i.e., the number of
dialog state hypotheses to score – varies from turn
to turn. With feature functions defined this way,
standard maximum entropy optimization is then
applied to learn the corresponding set of M + K
weights, denoted λi. Fig. 3 shows the relationship
of hypotheses and weights.

In practice, this formulation – in which general
features are duplicated across every dialog state
hypothesis – may require some additional feature
engineering: for every hypothesis g and general
feature i, the value of that general feature xgi will

be multiplied by the same weight λi. The result
is that any setting of λi affects all scores identi-
cally, with no net change to the resulting poste-
rior. Nonetheless, general features do contain use-
ful information for state tracking; to make use of
them, we add conjunctions (combinations) of gen-
eral and hypothesis-specific features.

We use 3 different feature variants. In DIS-
CDYN1, we use the original feature set, ignor-
ing the problem described above (so that the gen-
eral features contribute no information), result-
ing in M + K weights. DISCDYN2 adds indi-
cator encodings of the ordinal-valued hypothesis-
specific features. For example, rank is encoded
as a vector of boolean indicators, where the first
indicator is nonzero if rank = 1, the second is
nonzero if rank = 2, and the third if rank ≥
3. This provides a more detailed encoding of
the ordinal-valued hypothesis-specific features, al-
though it still ignores information from the gen-
eral features. This encoding increases the number
of weights to learn to about 2(M +K).

Finally, DISCDYN3 extends DISCDYN2 by in-
cluding conjunctions of the ordinal-valued general
features with ordinal-valued hypothesis-specific
features. For example, if the 3-way hypothesis-
specific indicator feature for rank described above
were conjoined with a 4-way general indicator
feature for dialog state, the result would be an in-
dicator of dimension 3 × 4 = 12. This expansion
results in approximately 10(M + K) weights to
learn in DISCDYN3.2

For comparison, we also estimated a simpler
alternative model, called DISCIND. This model
consists of 2 binary classifiers: the first one
scores each hypothesis in isolation, using the M
hypothesis-specific features for that hypothesis +
the K general features for that turn, and outputs a
(single) probability that the hypothesis is correct.
For this classifier, each hypothesis (not each turn)
defines a data instance. The second binary clas-
sifier takes the K general features, and outputs a
probability that the rest meta-hypothesis is correct.
For this second classifier, each turn defines one
data instance. The output of these two models is
then calibrated with isotonic regression (Zadrozny
and Elkan (2002)) and normalized to generate the
posterior over all hypotheses.

2We explored adding all possible conjunctions, including
real-valued features, but this increased memory and computa-
tional requirements dramatically without performance gains.
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Metric Accuracy (larger numbers better) L2 (smaller numbers better)
Dataset MATCH1 MATCH2 MISMATCH MATCH1 MATCH2 MISMATCH

Features b bc bch b bc bch b bc bch b bc bch b bc bch b bc bch

BASELINE 61.5 61.5 61.5 63.4 63.4 63.4 62.5 62.5 62.5 27.1 27.1 27.1 25.5 25.5 25.5 27.3 27.3 27.3
GENONLINE 54.4 54.4 54.4 55.8 55.8 55.8 54.8 54.8 54.8 34.8 34.8 34.8 32.0 32.0 32.0 34.8 34.8 34.8
GENOFFLINE 57.1 57.1 57.1 60.1 60.1 60.1 51.8 51.8 51.8 37.6 37.6 37.6 33.4 33.4 33.4 42.0 42.0 42.0
DISCFIXED 61.9 66.7 65.3 63.6 69.7 68.8 59.1 61.9 59.3 27.2 23.6 24.4 25.8 21.9 22.4 28.9 27.8 27.8
DISCDYN1 62.0 70.9 71.1 64.4 72.4 72.9 59.4 61.8 62.3 26.3 21.3 20.9 25.0 20.4 20.1 27.7 26.3 25.9
DISCDYN2 62.6 71.3 71.5 65.7 72.1 72.2 61.9 63.2 63.1 26.3 21.4 21.2 24.4 20.5 20.4 26.9 25.8 25.4
DISCDYN3 63.6 70.1 70.9 65.9 72.1 70.7 60.7 62.1 62.9 26.2 21.5 21.4 24.3 20.6 20.7 27.1 25.9 26.1
DISCIND 62.4 69.8 70.5 63.4 71.5 71.8 59.9 63.3 62.2 26.7 23.3 22.5 25.7 21.8 20.7 28.4 27.3 28.8

Table 3: Performance of the different algorithms on each dataset using three feature combinations. Base
features are denoted as b, ASR/SLU confusion features as c and history features as h. Performance for
the feature combinations bh is omitted for space; it is between b and bc.

6 Results and discussion

The implemented state tracking methods are sum-
marized in Table 2, and our results are presented in
Table 3. These results suggest several conclusions.
First, discriminative approaches for state track-
ing broadly outperform generative methods. Since
discriminative methods incorporate many features
and are trained directly to optimize performance,
this is perhaps unsurprising for the MATCH con-
ditions. It is interesting that discriminative meth-
ods are also superior in the more realistic MIS-
MATCH setting, albeit with smaller gains. This
result suggests that discriminative methods have
good promise when deployed into real systems,
where mismatch between training and test distri-
butions is expected.

Second, the dynamic discriminative DISCDYN

models also outperformed the fixed-length dis-
criminative methods. This shows the benefit of
a model which can score every dialog state hy-
potheses, rather than a fixed subset. Third, the
three variants of the DISCDYN model, which pro-
gressively contain more detailed feature encoding
and conjunctions, perform similarly. This suggests
that a relatively simple encoding is sufficient to
achieve good performance, as the feature indica-
tors and conjunctions present in DISCDYN2 and
DISCDYN3 give only a small additional increase.

Among the discriminative models, the jointly-
optimized DISCDYN versions also slightly out-
perform the simpler, independently-optimized DI-
SCIND version. This is to be expected, for two rea-
sons: first, DISCIND is trained on a per-hypothesis
basis, while the DISCDYN models are trained on a
per-turn basis, which is the true performance met-
ric. For example, some turns have 1 hypothesis
and others have 100, but DISCIND training counts

all hypotheses equally. Second, model parameters
in DISCIND are trained independently of compet-
ing hypotheses. However, they should rather be
adjusted specifically so that the correct item re-
ceives a larger score than incorrect items – not
merely to increase scores for correct items and de-
crease scores for incorrect items in isolation – and
this is what is done in the DISCDYN models.

The analysis of various feature sets indicates
that the ASR/SLU error correlation (confusion)
features yield the largest improvement – c.f. fea-
ture set bc compared to b in Table 3. The im-
provement is smallest for MISMATCH, which un-
derscores the challenges of mismatched train and
test conditions during a realistic runtime scenario.
Note, however, that we have constructed a highly
mismatched case where we train on DS1 (that sup-
ports just 8 routes) and test on DS2 (that supports
40 routes). Therefore, many route, origin and des-
tination slot values in the test data do not appear
in the training data. Hence, it is unsurprising that
the positive effect of confusion features would de-
crease.

While Table 3 shows performance measures av-
eraged across all turns, Table 4 breaks down per-
formance measures by slot, using the full feature
set bch and the realistic MISMATCH dataset. Re-
sults here show a large variation in performance
across the different slots. For the date and time
slots, there is an order of magnitude less data than
for the other slots; however performance for dates
is quite good, whereas times is rather poor. We
believe this is because the SLU confusion features
can be estimated well for slots with small cardinal-
ities (there are 7 possible values for the day), and
less well for slots with large cardinalities (there are
24 × 60 = 1440 possible time values). This sug-
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Accuracy (larger numbers better)
algorithms rout origin dest. date time

BASELINE 53.81 66.49 67.78 71.88 52.32
GENONLINE 50.02 54.11 59.05 75.78 35.02
GENOFFLINE 48.12 58.82 58.98 72.66 20.25
DISCFIXED 52.83 67.81 70.67 71.88 33.34
DISCDYN1 54.28 68.24 68.53 79.69 40.51
DISCDYN2 56.18 68.42 70.10 80.47 40.51
DISCDYN3 54.52 66.24 67.96 82.81 43.04
DISCIND 54.25 68.84 70.79 78.13 38.82

L2 metric (smaller numbers better)
algorithms route origin dest. date time

BASELINE 33.15 24.67 24.68 21.61 32.35
GENONLINE 35.50 35.10 31.13 19.86 52.58
GENOFFLINE 46.42 35.73 37.76 19.97 70.30
DISCFIXED 34.09 23.92 23.35 17.59 40.15
DISCDYN1 31.30 23.01 23.07 15.29 37.02
DISCDYN2 30.53 22.40 22.74 13.58 37.59
DISCDYN3 31.58 23.86 23.68 13.93 37.52
DISCIND 36.50 23.45 23.41 15.20 45.43

Table 4: Performance per slot on dataset MIS-
MATCH using the full feature set bch.

(a) MISMATCH dataset (b) MATCH2 dataset

Figure 4: Accuracy vs. amount of training data

gests that the amount of data required to estimate a
good model may depend on the cardinality of slot
values.

Finally, in Figure 4 we show how performance
varies with different amounts of training data for
the MATCH2 and MISMATCH datasets, where the
full training set size is approximately 5600 and
4400 turns, respectively. In both cases asymptotic
performance is reached after about 2000 turns, or
about 150 dialogs. This is particularly encour-
aging, as it suggests models could be learned or
adapted online with relatively little data, or could
even be individually tailored to particular users.

7 Conclusion and Future Work

Dialog state tracking is crucial to the successful
operation of spoken dialog systems. Recently de-
veloped statistical approaches are promising as
they fully utilize the dialog history, and can in-
corporate priors from past usage data. However,

existing methodologies are either limited in their
accuracy or their coverage, both of which hamper
performance.

In this paper, we have introduced a new model
for discriminative state tracking. The key idea is to
exploit the structure of the problem, in which each
dialog state hypothesis has features drawn from
the same set. In contrast to past approaches to dis-
criminative state tracking which required a num-
ber of parameters quadratic in the number of state
hypotheses, our approach uses a constant number
of parameters, invariant to the number of state hy-
potheses. This is a crucial property that enables
generalization and dealing with an unlimited num-
ber of hypotheses, overcoming a key limitation in
previous models.

We evaluated the proposed method and com-
pared it to existing generative and discrimina-
tive approaches on a corpus of real-world human-
computer dialogs chosen to include a mismatch
between training and test, as this will be found
in deployments. Results show that the proposed
model exceeds both the accuracy and probabil-
ity quality of all baselines when using the rich-
est feature set, which includes information about
common ASR confusions and dialog history. The
model can be trained efficiently, i.e. only about
150 training dialogs are necessary.

The next step is to incorporate this approach
into a deployed dialog system, and use the esti-
mated posterior over dialog states as input to the
action selection process. In future, we also hope
to explore unsupervised online adaptation, where
the trained model can be updated as test data is
processed.
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Abstract

To overcome the shortage of labeled data
for implicit discourse relation recogni-
tion, previous works attempted to auto-
matically generate training data by remov-
ing explicit discourse connectives from
sentences and then built models on these
synthetic implicit examples. However, a
previous study (Sporleder and Lascarides,
2008) showed that models trained on these
synthetic data do not generalize very well
to natural (i.e. genuine) implicit discourse
data. In this work we revisit this issue and
present a multi-task learning based system
which can effectively use synthetic data
for implicit discourse relation recognition.
Results on PDTB data show that under the
multi-task learning framework our models
with the use of the prediction of explicit
discourse connectives as auxiliary learn-
ing tasks, can achieve an averaged F1 im-
provement of 5.86% over baseline models.

1 Introduction

The task of implicit discourse relation recognition
is to identify the type of discourse relation (a.k.a.
rhetorical relation) hold between two spans of
text, where there is no discourse connective (a.k.a.
discourse marker, e.g., but, and) in context to ex-
plicitly mark their discourse relation (e.g., Con-
trast or Explanation). It can be of great benefit
to many downstream NLP applications, such as
question answering (QA) (Verberne et al., 2007),
information extraction (IE) (Cimiano et al., 2005),
and machine translation (MT), etc. This task is
quite challenging due to two reasons. First, with-
out discourse connective in text, the task is quite
difficult in itself. Second, implicit discourse rela-
tion is quite frequent in text. For example, almost
half the sentences in the British National Corpus

held implicit discourse relations (Sporleder and
Lascarides, 2008). Therefore, the task of implicit
discourse relation recognition is the key to im-
proving end-to-end discourse parser performance.

To overcome the shortage of manually anno-
tated training data, (Marcu and Echihabi, 2002)
proposed a pattern-based approach to automat-
ically generate training data from raw corpora.
This line of research was followed by (Sporleder
and Lascarides, 2008) and (Blair-Goldensohn,
2007). In these works, sentences containing cer-
tain words or phrases (e.g. but, although) were
selected out from raw corpora using a pattern-
based approach and then these words or phrases
were removed from these sentences. Thus the
resulting sentences were used as synthetic train-
ing examples for implicit discourse relation recog-
nition. Since there is ambiguity of a word or
phrase serving for discourse connective (i.e., the
ambiguity between discourse and non-discourse
usage or the ambiguity between two or more dis-
course relations if the word or phrase is used as a
discourse connective), the synthetic implicit data
would contain a lot of noises. Later, with the re-
lease of manually annotated corpus, such as Penn
Discourse Treebank 2.0 (PDTB) (Prasad et al.,
2008), recent studies performed implicit discourse
relation recognition on natural (i.e., genuine) im-
plicit discourse data (Pitler et al., 2009) (Lin et al.,
2009) (Wang et al., 2010) with the use of linguis-
tically informed features and machine learning al-
gorithms.

(Sporleder and Lascarides, 2008) conducted a
study of the pattern-based approach presented by
(Marcu and Echihabi, 2002) and showed that the
model built on synthetical implicit data has not
generalize well on natural implicit data. They
found some evidence that this behavior is largely
independent of the classifiers used and seems to
lie in the data itself (e.g., marked and unmarked
examples may be too dissimilar linguistically and
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removing unambiguous markers in the automatic
labelling process may lead to a meaning shift in
the examples). We state that in some cases it is
true while in other cases it may not always be so.
A simple example is given here:

(E1) a. We can’t win.
b. [but] We must keep trying.

We may find that in this example whether the in-
sertion or the removal of connective but would
not lead to a redundant or missing information be-
tween the above two sentences. That is, discourse
connectives can be inserted between or removed
from two sentences without changing the seman-
tic relations between them in some cases. An-
other similar observation is in the annotation pro-
cedure of PDTB. To label implicit discourse re-
lation, annotators inserted connective which can
best express the relation between sentences with-
out any redundancy1. We see that there should
be some linguistical similarities between explicit
and implicit discourse examples. Therefore, the
first question arises: can we exploit this kind of
linguistic similarity between explicit and implicit
discourse examples to improve implicit discourse
relation recognition?

In this paper, we propose a multi-task learning
based method to improve the performance of im-
plicit discourse relation recognition (as main task)
with the help of relevant auxiliary tasks. Specif-
ically, the main task is to recognize the implicit
discourse relations based on genuine implicit dis-
course data and the auxiliary task is to recognize
the implicit discourse relations based on synthetic
implicit discourse data. According to the princi-
ple of multi-task learning, the learning model can
be optimized by the shared part of the main task
and the auxiliary tasks without bring unnecessary
noise. That means, the model can learn from syn-
thetic implicit data while it would not bring unnec-
essary noise from synthetic implicit data.

Although (Sporleder and Lascarides, 2008) did
not mention, we speculate that another possible
reason for the reported worse performance may
result from noises in synthetic implicit discourse
data. These synthetic data can be generated from
two sources: (1) raw corpora with the use of
pattern-based approach in (Marcu and Echihabi,

1According to the PDTB Annotation Manual (PDTB-
Group, 2008), if the insertion of connective leads to “redun-
dancy”, the relation is annotated as Alternative lexicalizations
(AltLex), not implicit.

2002) and (Sporleder and Lascarides, 2008), and
(2) manually annotated explicit data with the re-
moval of explicit discourse connectives. Obvi-
ously, the data generated from the second source
is cleaner and more reliable than that from the
first source. Therefore, the second question to ad-
dress in this work is: whether synthetic implicit
discourse data generated from explicit discourse
data source (i.e., the second source) can lead to
a better performance than that from raw corpora
(i.e., the first source)? To answer this question,
we will make a comparison of synthetic discourse
data generated from two corpora, i.e., the BILLIP
corpus and the explicit discourse data annotated in
PDTB.

The rest of this paper is organized as follows.
Section 2 reviews related work on implicit dis-
course relation classification and multi-task learn-
ing. Section 3 presents our proposed multi-task
learning method for implicit discourse relation
classification. Section 4 provides the implemen-
tation technique details of the proposed multi-task
method. Section 5 presents experiments and dis-
cusses results. Section 6 concludes this work.

2 Related Work

2.1 Implicit discourse relation classification
2.1.1 Unsupervised approaches
Due to the lack of benchmark data for implicit
discourse relation analysis, earlier work used un-
labeled data to generate synthetic implicit dis-
course data. For example, (Marcu and Echi-
habi, 2002) proposed an unsupervised method
to recognize four discourse relations, i.e., Con-
trast, Explanation-evidence, Condition and Elab-
oration. They first used unambiguous pattern to
extract explicit discourse examples from raw cor-
pus. Then they generated synthetic implicit dis-
course data by removing explicit discourse con-
nectives from sentences extracted. In their work,
they collected word pairs from synthetic data set
as features and used machine learning method to
classify implicit discourse relation. Based on this
work, several researchers have extended the work
to improve the performance of relation classifica-
tion. For example, (Saito et al., 2006) showed that
the use of phrasal patterns as additional features
can help a word-pair based system for discourse
relation prediction on a Japanese corpus. Further-
more, (Blair-Goldensohn, 2007) improved previ-
ous work with the use of parameter optimization,
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topic segmentation and syntactic parsing. How-
ever, (Sporleder and Lascarides, 2008) showed
that the training model built on a synthetic data
set, like the work of (Marcu and Echihabi, 2002),
may not be a good strategy since the linguistic dis-
similarity between explicit and implicit data may
hurt the performance of a model on natural data
when being trained on synthetic data.

2.1.2 Supervised approaches
This line of research work approaches this relation
prediction problem by recasting it as a classifica-
tion problem. (Soricut and Marcu, 2003) parsed
the discourse structures of sentences on RST Bank
data set (Carlson et al., 2001) which is annotated
based on Rhetorical Structure Theory (Mann and
Thompson, 1988). (Wellner et al., 2006) pre-
sented a study of discourse relation disambigua-
tion on GraphBank (Wolf et al., 2005). Recently,
(Pitler et al., 2009) (Lin et al., 2009) and (Wang
et al., 2010) conducted discourse relation study on
PDTB (Prasad et al., 2008) which has been widely
used in this field.

2.1.3 Semi-supervised approaches
Research work in this category exploited both la-
beled and unlabeled data for discourse relation
prediction. (Hernault et al., 2010) presented a
semi-supervised method based on the analysis of
co-occurring features in labeled and unlabeled
data. Very recently, (Hernault et al., 2011) in-
troduced a semi-supervised work using structure
learning method for discourse relation classifica-
tion, which is quite relevant to our work. However,
they performed discourse relation classification on
both explicit and implicit data. And their work is
different from our work in many aspects, such as,
feature sets, auxiliary task, auxiliary data, class la-
bels, learning framework, and so on. Furthermore,
there is no explicit conclusion or evidence in their
work to address the two questions raised in Sec-
tion 1.

Unlike their previous work, our previous work
(Zhou et al., 2010) presented a method to predict
the missing connective based on a language model
trained on an unannotated corpus. The predicted
connective was then used as a feature to classify
the implicit relation.

2.2 Multi-task learning

Multi-task learning is a kind of machine learning
method, which learns a main task together with

other related auxiliary tasks at the same time, us-
ing a shared representation. This often leads to
a better model for the main task, because it al-
lows the learner to use the commonality among
the tasks. Many multi-task learning methods have
been proposed in recent years, (Ando and Zhang,
2005a), (Argyriou et al., 2008), (Jebara, 2004),
(Bonilla et al., 2008), (Evgeniou and Pontil, 2004),
(Baxter, 2000), (Caruana, 1997), (Thrun, 1996).
One group uses task relations as regularization
terms in the objective function to be optimized.
For example, in (Evgeniou and Pontil, 2004) the
regularization terms make the parameters of mod-
els closer for similar tasks. Another group is pro-
posed to find the common structure from data and
then utilize the learned structure for multi-task
learning (Argyriou et al., 2008) (Ando and Zhang,
2005b).

3 Multi-task Learning for Discourse
Relation Prediction

3.1 Motivation

The idea of using multi-task learning for implicit
discourse relation classification is motivated by
the observations that we have made on implicit
discourse relation.

On one hand, since building a hand-annotated
implicit discourse relation corpus is costly and
time consuming, most previous work attempted to
use synthetic implicit discourse examples as train-
ing data. However, (Sporleder and Lascarides,
2008) found that the model trained on synthetic
implicit data has not performed as well as expected
in natural implicit data. They stated that the reason
is linguistic dissimilarity between explicit and im-
plicit discourse data. This indicates that straightly
using synthetic implicit data as training data may
not be helpful.

On the other hand, as shown in Section 1, we
observe that in some cases explicit discourse rela-
tion and implicit discourse relation can express the
same meaning with or without a discourse connec-
tive. This indicates that in certain degree they must
be similar to each other. If it is true, the synthetic
implicit relations are expected to be helpful for im-
plicit discourse relation classification. Therefore,
what we have to do is to find a way to train a model
which has the capabilities to learn from their sim-
ilarity and to ignore their dissimilarity as well.

To solve it, we propose a multi-task learn-
ing method for implicit discourse relation classi-
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fication, where the classification model seeks the
shared part through jointly learning main task and
multiple auxiliary tasks. As a result, the model can
be optimized by the similar shared part without
bringing noise in the dissimilar part. Specifically,
in this work, we use alternating structure optimiza-
tion (ASO) (Ando and Zhang, 2005a) to construct
the multi-task learning framework. ASO has been
shown to be useful in a semi-supervised learning
configuration for several NLP applications, such
as, text chunking (Ando and Zhang, 2005b) and
text classification (Ando and Zhang, 2005a).

3.2 Multi-task learning and ASO

Generally, multi-task learning(MTL) considers m
prediction problems indexed by ℓ ∈ {1, ..., m},
each with nℓ samples (Xℓ

i , Y
ℓ
i ) for i ∈ {1, ...nℓ}

(Xi are input feature vectors and Yi are corre-
sponding classification labels) and assumes that
there exists a common predictive structure shared
by these m problems. Generally, the joint linear
model for MTL is to predict problem ℓ in the fol-
lowing form:

fℓ(Θ, X) = wT
ℓ X + vT

ℓ ΘX, ΘΘT = I, (1)

where I is the identity matrix, wℓ and vℓ are weight
vectors specific to each problem ℓ, and Θ is the
structure matrix shared by all the m predictors.
The main goal of MTL is to learn a common good
feature map ΘX for all the m problems. Several
MTL methods have been presented to learn ΘX
for all the m problems. In this work, we adopt the
ASO method.

Specifically, the ASO method adopted singu-
lar value decomposition (SVD) to obtain Θ and
m predictors that minimize the empirical risk
summed over all the m problems. Thus, the prob-
lem of optimization becomes the minimization of
the joint empirical risk written as:

m∑

ℓ=1

( nℓ∑

i=1

L(fℓ(Θ, Xℓ
i ), Yi)

nℓ
+ λ||Wℓ||2

)
(2)

where loss function L(.) quantifies the difference
between the prediction f(Xi) and the true out-
put Yi for each predictor, and λ is a regulariza-
tion parameter for square regularization to control
the model complexity. To minimize the empirical
risk, ASO repeats the following alternating opti-
mization procedure until a convergence criterion
is met:

1) Fix (Θ, Vℓ), and find m predictors fℓ that
minimize the above joint empirical risk.

2) Fix m predictors fℓ, and find (Θ, Vℓ) that
minimizes the above joint empirical risk.

3.3 Auxiliary tasks

There are two main principles to create auxiliary
tasks. First, the auxiliary tasks should be auto-
matically labeled in order to reduce the cost of
manual labeling. Second, since the MTL model
learns from the shared part of main task and aux-
iliary tasks, the auxiliary tasks should be quite rel-
evant/similar to the main task. It is generally be-
lieved that the more the auxiliary tasks are relevant
to the main task, the more the main task can ben-
efit from the auxiliary tasks. Following these two
principles, we create the auxiliary tasks by gener-
ating automatically labeled data as follows.

Previous work (Marcu and Echihabi, 2002) and
(Sporleder and Lascarides, 2008) adopted prede-
fined pattern-based approach to generate synthetic
labeled data, where each predefined pattern has
one discourse relation label. In contrast, we adopt
an automatic approach to generate synthetic la-
beled data, where each discourse connective be-
tween two texts serves as their relation label. The
reason lies in the very strong connection between
discourse connectives and discourse relations. For
example, the connective but always indicates a
contrast relation between two texts. And (Pitler et
al., 2008) proved that using only connective itself,
the accuracy of explicit discourse relation classifi-
cation is over 93%.

To build the mapping between discourse con-
nective and discourse relation, for each connec-
tive, we count the times it appears in each relation
and regard the relation in which it appears most
frequently as its most relevant relation. Based on
this mapping between connective and relation, we
extract the synthetic labeled data containing the
connective as training data for auxiliary tasks.

For example, and appears 3, 000 times in PDTB
as a discourse connective. Among them, it is man-
ually annotated as an Expansion relation for 2, 938
times. So we regard the Expansion relation as its
most relevant relation and generate a mapping pat-
tern like: “and → Expansion”. Then we extract
all sentences which contain discourse “and” and
remove this connective “and” from sentences to
generate synthetic implicit data. The resulting sen-
tences are used in auxiliary task and automatically

479



marked as Expansion relation.

4 Implementation Details of Multi-task
Learning Method

4.1 Data sets for main and auxiliary tasks

To examine whether there is a difference in syn-
thetic implicit data generated from unannotated
and annotated corpus, we use two corpora. One
is a hand-annotated explicit discourse corpus, i.e.,
the explicit discourse relations in PDTB, denoted
as exp. Another is an unannotated corpus, i.e.,
BLLIP (David McClosky and Johnson., 2008).

4.1.1 Penn Discourse Treebank
PDTB (Prasad et al., 2008) is the largest hand-
annotated corpus of discourse relation so far. It
contains 2, 312 Wall Street Journal (WSJ) articles.
The sense label of discourse relations is hierarchi-
cally with three levels, i.e., class, type and sub-
type. The top level contains four major seman-
tic classes: Comparison (denoted as Comp.), Con-
tingency (Cont.), Expansion (Exp.) and Temporal
(Temp.). For each class, a set of types is used to
refine relation sense. The set of subtypes is to fur-
ther specify the semantic contribution of each ar-
gument. In this paper, we focus on the top level
(class) and the second level (type) relations be-
cause the subtype relations are too fine-grained
and only appear in some relations.

Both explicit and implicit discourse relations
are labeled in PDTB. In our experiment, the im-
plicit discourse relations are used in the main task
and for evaluation. While the explicit discourse
relations are used in the auxiliary task. A detailed
description of the data sources for different tasks
is given below.

Data set for main task Following previous
work in (Pitler et al., 2009) and (Zhou et al., 2010),
the implicit relations in sections 2-20 are used as
training data for the main task (denoted as imp)
and the implicit relations in sections 21-22 are
for evaluation. Table 1 shows the distribution of
implicit relations. There are too few training in-
stances for six second level relations (indicated by
* in Table 1), so we removed these six relations in
our experiments.

Data set for auxiliary task All explicit in-
stances in sections 00-24 in PDTB, i.e., 18, 459
instances, are used for auxiliary task (denoted as
exp). Following the method described in Section
3.3, we build the mapping patterns between con-

Top level Second level train test
Temp 736 83

Synchrony 203 28
Asynchronous 532 55

Cont 3333 279
Cause 3270 272
Pragmatic Cause* 64 7
Condition* 1 0
Pragmatic condition* 1 0

Comp 1939 152
Contrast 1607 134
Pragmatic contrast* 4 0
Concession 183 17
Pragmatic concession* 1 0

Exp 6316 567
Conjunction 2872 208
Instantiation 1063 119
Restatement 2405 213
Alternative 147 9
Exception* 0 0
List 338 12

Table 1: Distribution of implicit discourse rela-
tions in the top and second level of PDTB

nectives and relations in PDTB and generate syn-
thetic labeled data by removing the connectives.
According to the most relevant relation sense of
connective removed, the resulting instances are
grouped into different data sets.

4.1.2 BLLIP
BLLIP North American News Text (Complete) is
used as unlabeled data source to generate syn-
thetic labeled data. In comparison with the syn-
thetic labeled data generated from the explicit re-
lations in PDTB, the synthetic labeled data from
BLLIP contains more noise. This is because the
former data is manually annotated whether a word
serves as discourse connective or not, while the
latter does not manually disambiguate two types
of ambiguity, i.e., whether a word serves as dis-
course connective or not, and the type of discourse
relation if it is a discourse connective. Finally, we
extract 26, 412 instances from BLLIP (denoted as
BLLIP) and use them for auxiliary task.

4.2 Feature representation

For both main task and auxiliary tasks, we adopt
the following three feature types. These features
are chosen due to their superior performance in
previous work (Pitler et al., 2009) and our previ-
ous work (Zhou et al., 2010).

Verbs: Following (Pitler et al., 2009), we ex-
tract the pairs of verbs from both text spans. The
number of verb pairs which have the same highest
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Levin verb class levels (Levin, 1993) is counted
as a feature. Besides, the average length of verb
phrases in each argument is included as a feature.
In addition, the part of speech tags of the main
verbs (e.g., base form, past tense, 3rd person sin-
gular present, etc.) in each argument, i.e., MD,
VB, VBD, VBG, VBN, VBP, VBZ, are recorded
as features, where we simply use the first verb in
each argument as the main verb.

Polarity: This feature records the number of
positive, negated positive, negative and neutral
words in both arguments and their cross product
as well. For negated positives, we first locate the
negated words in text span and then define the
closely behind positive word as negated positive.
The polarity of each word in arguments is de-
rived from Multi-perspective Question Answering
Opinion Corpus (MPQA) (Wilson et al., 2009).

Modality: We examine six modal words (i.e.,
can, may, must, need, shall, will) including their
various tenses or abbreviation forms in both argu-
ments. This feature records the presence or ab-
sence of modal words in both arguments and their
cross product.

4.3 Classifiers used multi-task learning

We extract the above linguistically informed fea-
tures from two synthetic implicit data sets (i.e.,
BLLIP and exp) to learn the auxiliary classifier and
from the natural implicit data set (i.e., imp) to learn
the main classifier. Under the ASO-based multi-
task learning framework, the model of main task
learns from the shared part of main task and aux-
iliary tasks. Specifically, we adopt multiple binary
classification to build model for main task. That
is, for each discourse relation, we build a binary
classifier.

5 Experiments and Results

5.1 Experiments

Although previous work has been done on PDTB
(Pitler et al., 2009) and (Lin et al., 2009), we can-
not make a direct comparison with them because
various experimental conditions, such as, differ-
ent classification strategies (multi-class classifica-
tion, multiple binary classification), different data
preparation (feature extraction and selection), dif-
ferent benchmark data collections (different sec-
tions for training and test, different levels of dis-
course relations), different classifiers with various
parameters (MaxEnt, Naı̈ve Bayes, SVM, etc) and

even different evaluation methods (F1, accuracy)
have been adopted by different researchers.

Therefore, to address the two questions raised in
Section 1 and to make the comparison reliable and
reasonable, we performed experiments on the top
and second level of PDTB using single task learn-
ing and multi-task learning, respectively. The sys-
tems using single task learning serve as baseline
systems. Under the single task learning, various
combinations of exp and BLLIP data are incorpo-
rated with imp data for the implicit discourse rela-
tion classification task.

We hypothesize that synthetical implicit data
would contribute to the main task, i.e., the implicit
discourse relation classification. Specifically, the
natural implicit data (i.e., imp) are used to create
main task and the synthetical implicit data (exp or
BLLIP) are used to create auxiliary tasks for the
purpose of optimizing the objective functions of
main task. If the hypothesis is correct, the perfor-
mance of main task would be improved by auxil-
iary tasks created from synthetical implicit data.
Thus in the experiments of multi-task learning,
only natural implicit examples (i.e., imp) data are
used for main task training while different combi-
nations of synthetical implicit examples (exp and
BLLIP) are used for auxiliary task training.

We adopt precision, recall and their combina-
tion F1 for performance evaluation. We also per-
form one-tailed t-test to validate if there is signif-
icant difference between two methods in terms of
F1 performance analysis.

5.2 Results

Table 2 summarizes the experimental results under
single and multi-task learning on the top level of
four PDTB relations with respect to different com-
binations of synthetic implicit data. For each rela-
tion, the first three rows indicate the results of us-
ing different single training data under single task
learning and the last three rows indicate the results
using different combinations of training data un-
der single task and multi-task learning. The best
F1 for every relation is shown in bold font. From
this table, we can find that on four relations, our
multi-task learning systems achieved the best per-
formance using the combination of exp and BLLIP
synthetic data.

Table 3 summarizes the best single task and the
best multi-task learning results on the second level
of PDTB. For four relations, i.e., Synchrony, Con-
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Single-task Multi-task
Level 1 class Data P R F1 Data Data P R F1

(main) (aux)
Comp. imp 21.43 37.50 27.27 - - - - -

BLLIP 12.68 53.29 20.48 - - - - -
exp 15.25 50.66 23.44 - - - - -
imp + exp 16.94 40.13 23.83 imp exp 22.94 49.34 30.90
imp + BLLIP 13.56 44.08 20.74 imp BLLIP 20.47 63.16 30.92
imp + exp + BLLIP 14.54 38.16 21.05 imp exp + BLLIP 23.47 48.03 31.53

Cont. imp 37.65 43.73 40.46 - - - - -
BLLIP 33.72 31.18 32.40 - - - - -
exp 35.24 26.52 30.27 - - - - -
imp + exp 39.00 13.98 20.58 imp exp 39.94 45.52 42.55
imp + BLLIP 37.30 24.73 29.74 imp BLLIP 37.80 63.80 47.47
imp + exp + BLLIP 39.37 31.18 34.80 imp exp + BLLIP 35.90 70.25 47.52

Exp. imp 56.59 66.67 61.21 - - - - -
BLLIP 53.29 40.04 45.72 - - - - -
exp 57.97 58.38 58.17 - - - - -
imp + exp 57.32 65.61 61.18 imp exp 59.14 67.90 63.22
imp + BLLIP 56.28 65.61 60.59 imp BLLIP 53.80 99.82 69.92
imp + exp + BLLIP 55.81 65.26 60.16 imp exp + BLLIP 53.90 99.82 70.01

Temp. imp 16.46 63.86 26.17 - - - - -
BLLIP 17.31 43.37 24.74 - - - - -
exp 15.46 36.14 21.66 - - - - -
imp + exp 15.35 39.76 22.15 imp exp 18.60 63.86 28.80
imp + BLLIP 14.74 33.73 20.51 imp BLLIP 18.12 67.47 28.57
imp + exp + BLLIP 15.94 39.76 22.76 imp exp + BLLIP 19.08 65.06 29.51

Table 2: Performance of precision, recall and F1 for 4 Level 1 relation classes. “-” indicates N.A.

Single-task Multi-task
Level 2 type Data P R F1 Data Data P R F1

(main) (aux)
Asynchronous imp 11.36 74.55 19.71 imp exp + BLLIP 23.08 21.82 22.43
Synchrony imp - - - imp exp + BLLIP - - -
Cause imp 36.38 64.34 46.48 imp exp + BLLIP 36.01 67.65 47.00
Contrast imp 20.07 42.54 27.27 imp exp + BLLIP 20.70 52.99 29.77
Concession imp - - - imp exp + BLLIP - - -
Conjunction imp 26.35 63.46 37.24 imp exp + BLLIP 26.29 73.56 38.73
Instantiation imp 22.78 53.78 32.00 imp exp + BLLIP 22.55 57.98 32.47
Restatement imp 23.11 67.61 34.45 imp exp + BLLIP 26.93 53.99 35.94
Alternative imp - - - imp exp + BLLIP - - -
List imp - - - imp exp + BLLIP - - -

Table 3: Performance of precision, recall and F1 for 10 Level 2 relation types. “-” indicates 0.00.

cession, Alternative and List, the classifier labels
no instances due to the small percentages for these
four types.

Table 4 summarizes the one-tailed t-test results
on the top level of PDTB between the best single
task learning system (i.e., imp) and three multi-
task learning systems (imp:exp+BLLIP indicates
that imp is used for main task and the combi-
nation of exp and BLLIP are for auxiliary task).
The systems with insignificant performance differ-
ences are grouped into one set and ”>” and ”>>”
denote better than at significance level 0.01 and

0.001 respectively.

5.3 Discussion

From Table 2 to Table 4, several findings can be
found as follows.

We can see that the multi-task learning sys-
tems perform consistently better than the single
task learning systems for the prediction of implicit
discourse relations. Our best multi-task learning
system achieves an averaged F1 improvement of
5.86% over the best single task learning system on
the top level of PDTB relations. Specifically, for
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Class One-tailed t-test results
Comp. (imp:exp+BLLIP, imp:exp, imp:BLLIP) >> (imp)
Cont. (imp:exp+BLLIP, imp:BLLIP) >> (imp:exp) > (imp)
Exp. (imp:exp+BLLIP, imp:BLLIP) >> (imp:exp) > (imp)
Temp. (imp:exp+BLLIP, imp:exp, imp:BLLIP) >> (imp)

Table 4: Statistical significance tests results.

the relations Comp., Cont., Exp., Temp., our best
multi-task learning system achieve 4.26%, 7.06%,
8.8% and 3.34% F1 improvements over the best
single task learning system. It indicates that using
synthetic implicit data as auxiliary task greatly im-
proves the performance of the main task. This is
confirmed by the following t-tests in Table 4.

In contrast to the performance of multi-task
learning, the performance of the best single task
learning system has been achieved on natural im-
plicit discourse data alone. This finding is con-
sistent with (Sporleder and Lascarides, 2008). It
indicates that under single task learning, directly
adding synthetic implicit data to increase the num-
ber of training data cannot be helpful to implicit
discourse relation classification. The possible rea-
sons result from (1) the different nature of implicit
and explicit discourse data in linguistics and (2)
the noise brought from synthetic implicit data.

Based on the above analysis, we state that it is
the way of utilizing synthetic implicit data that is
important for implicit discourse relation classifica-
tion.

Although all three multi-task learning systems
outperformed single task learning systems, we
find that the two synthetic implicit data sets have
not been shown a universally consistent perfor-
mance on four top level PDTB relations. On one
hand, for the relations Comp. and Temp., the per-
formance of the two synthetic implicit data sets
alone and their combination are comparable to
each other and there is no significant difference
between them. On the other hand, for the rela-
tions Cont. and Exp., the performance of exp data
is inferior to that of BLLIP and their combination.
This is contrary to our original expectation that exp
data which has been manually annotated for dis-
course connective disambiguation should outper-
form BLLIP which contains a lot of noise. This
finding indicates that under the multi-task learn-
ing, it may not be worthy of using manually anno-
tated corpus to generate auxiliary data. It is quite
promising since it can provide benefits to reducing

the cost of human efforts on corpus annotation.

5.4 Ambiguity Analysis
Although our experiments show that synthetic im-
plicit data can help implicit discourse relation clas-
sification under multi-task learning framework,
the overall performance is still quite low (44.64%
in F1). Therefore, we analyze the types of ambi-
guity in relations and connectives in order to mo-
tivate possible future work.

5.4.1 Ambiguity of implicit relation
Without explicit discourse connective, the implicit
discourse relation instance can be understood in
two or more different ways. Given the example
E2 in PDTB, the PDTB annotators explain it as
Contingency or Expansion relation and manually
insert corresponding implicit connective for one
thing or because to express its relation.

(E2) Arg1:Now the stage is set for the battle to
play out
Arg2:The anti-programmers are getting
some helpful thunder from Congress
Connective1:because
Sense1:Contingency.Cause.Reason
Connective2:for one thing
Sense2:Expansion.Instantiation

(wsj 0118)

Thus the ambiguity of implicit discourse rela-
tions makes this task difficult in itself.

5.4.2 Ambiguity of discourse connectives
As we mentioned before, even given an explicit
discourse connective in text, its discourse rela-
tion still can be explained in two or more differ-
ent ways. And for different connectives, the am-
biguity of relation senses is quite different. That
is, the most frequent sense is not always the only
sense that a connective expresses. In example E3,
“since” is explained by annotators to express Tem-
poral or Contingency relation.

(E3) Arg1:MiniScribe has been on the rocks
Arg2:since it disclosed early this year that
its earnings reports for 1988 weren’t accu-
rate.
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Sense1:Temporal.Asynchronous.Succession
Sense2:Contingency.Cause.Reason

(wsj 0003)

In PDTB, “since” appears 184 times in explicit
discourse relations. It expresses Temporal relation
for 80 times, Contingency relation for 94 times
and both Temporal and Contingency for 10 time
(like example E3). Therefore, although we use its
most frequent sense, i.e., Contingency, to automat-
ically extract sentences and label them, almost less
than half of them actually express Temporal rela-
tion. Thus the ambiguity of discourse connectives
is another source which has brought noise to data
when we generate synthetical implicit discourse
relation.

6 Conclusions

In this paper, we present a multi-task learning
method to improve implicit discourse relation
classification by leveraging synthetic implicit dis-
course data. Results on PDTB show that under
the framework of multi-task learning, using syn-
thetic discourse data as auxiliary task significantly
improves the performance of main task. Our best
multi-task learning system achieves an averaged
F1 improvement of 5.86% over the best single task
learning system on the top level of PDTB rela-
tions. Specifically, for the relations Comp., Cont.,
Exp., Temp., our best multi-task learning system
achieves 4.26%, 7.06%, 8.8%, and 3.34% F1 im-
provements over a state of the art baseline system.
This indicates that it is the way of utilizing syn-
thetic discourse examples that is important for im-
plicit discourse relation classification.

Acknowledgements

This research is supported by grants from Na-
tional Natural Science Foundation of China
(No.60903093), Shanghai Pujiang Talent Program
(No.09PJ1404500), Doctoral Fund of Ministry of
Education of China (No. 20090076120029) and
Shanghai Knowledge Service Platform Project
(No. ZF1213).

References
R.K. Ando and T. Zhang. 2005a. A framework for

learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learn-
ing Research, 6:1817–1853.

R.K. Ando and T. Zhang. 2005b. A high-performance
semi-supervised learning method for text chunking.

pages 1–9. Association for Computational Linguis-
tics. Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics.

A. Argyriou, C.A. Micchelli, M. Pontil, and Y. Ying.
2008. A spectral regularization framework for
multi-task structure learning. Advances in Neural
Information Processing Systems, 20:2532.

J. Baxter. 2000. A model of inductive bias learning. J.
Artif. Intell. Res. (JAIR), 12:149–198.

S.J. Blair-Goldensohn. 2007. Long-answer question
answering and rhetorical-semantic relations. Ph.D.
thesis.

E. Bonilla, K.M. Chai, and C. Williams. 2008. Multi-
task gaussian process prediction. Advances in Neu-
ral Information Processing Systems, 20(October).

L. Carlson, D. Marcu, and M.E. Okurowski. 2001.
Building a discourse-tagged corpus in the frame-
work of rhetorical structure theory. pages 1–10. As-
sociation for Computational Linguistics. Proceed-
ings of the Second SIGdial Workshop on Discourse
and Dialogue-Volume 16.

R. Caruana. 1997. Multitask learning. Machine
Learning, 28(1):41–75.

P. Cimiano, U. Reyle, and J. Saric. 2005. Ontology-
driven discourse analysis for information extraction.
Data and Knowledge Engineering, 55(1):59–83.

Eugene Charniak David McClosky and Mark Johnson.
2008. Bllip north american news text, complete.

T. Evgeniou and M. Pontil. 2004. Regularized multi–
task learning. pages 109–117. ACM. Proceedings
of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining.

H. Hernault, D. Bollegala, and M. Ishizuka. 2010. A
semi-supervised approach to improve classification
of infrequent discourse relations using feature vector
extension. pages 399–409. Association for Compu-
tational Linguistics. Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing.

H. Hernault, D. Bollegala, and M. Ishizuka. 2011.
Semi-supervised discourse relation classification
with structural learning. In Proceedings of the 12th
international conference on Computational linguis-
tics and intelligent text processing - Volume Part
I, CICLing’11, pages 340–352, Berlin, Heidelberg.
Springer-Verlag.

T. Jebara. 2004. Multi-task feature and kernel se-
lection for svms. page 55. ACM. Proceedings of
the twenty-first international conference on Machine
learning.

B. Levin. 1993. English verb classes and alternations:
A preliminary investigation, volume 348. University
of Chicago press Chicago, IL:.

484



Z. Lin, M.Y. Kan, and H.T. Ng. 2009. Recogniz-
ing implicit discourse relations in the penn discourse
treebank. pages 343–351. Association for Compu-
tational Linguistics. Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1.

W.C. Mann and S.A. Thompson. 1988. Rhetorical
structure theory: Toward a functional theory of text
organization. Text-Interdisciplinary Journal for the
Study of Discourse, 8(3):243–281.

D. Marcu and A. Echihabi. 2002. An unsupervised
approach to recognizing discourse relations. pages
368–375. Association for Computational Linguis-
tics. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics.

PDTB-Group. 2008. The penn discourse treebank 2.0
annotation manual. Technical report, Institute for
Research in Cognitive Science, University of Penn-
sylvania.

E. Pitler, M. Raghupathy, H. Mehta, A. Nenkova,
A. Lee, and A. Joshi. 2008. Easily identifiable dis-
course relations. Citeseer. Proceedings of the 22nd
International Conference on Computational Linguis-
tics (COLING 2008), Manchester, UK, August.

E. Pitler, A. Louis, and A. Nenkova. 2009. Automatic
sense prediction for implicit discourse relations in
text. pages 683–691. Association for Computational
Linguistics. Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The penn discourse treebank 2.0. In
In Proceedings of LREC.

M. Saito, K. Yamamoto, and S. Sekine. 2006. Us-
ing phrasal patterns to identify discourse relations.
pages 133–136. Association for Computational Lin-
guistics. Proceedings of the Human Language Tech-
nology Conference of the NAACL, Companion Vol-
ume: Short Papers on XX.

R. Soricut and D. Marcu. 2003. Sentence level dis-
course parsing using syntactic and lexical informa-
tion. pages 149–156. Association for Computational
Linguistics. Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology-Volume 1.

C. Sporleder and A. Lascarides. 2008. Using automat-
ically labelled examples to classify rhetorical rela-
tions: An assessment. Natural Language Engineer-
ing, 14(03):369–416.

S. Thrun. 1996. Is learning the n-th thing any easier
than learning the first? Advances in Neural Infor-
mation Processing Systems, pages 640–646.

S. Verberne, L. Boves, N. Oostdijk, and P.A. Coppen.
2007. Evaluating discourse-based answer extraction
for why-question answering. pages 735–736. ACM.
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval.

W.T. Wang, J. Su, and C.L. Tan. 2010. Kernel based
discourse relation recognition with temporal order-
ing information. pages 710–719. Association for
Computational Linguistics. Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics.

B. Wellner, J. Pustejovsky, C. Havasi, A. Rumshisky,
and R. Sauri. 2006. Classification of discourse co-
herence relations: An exploratory study using multi-
ple knowledge sources. pages 117–125. Association
for Computational Linguistics. Proceedings of the
7th SIGdial Workshop on Discourse and Dialogue.

T. Wilson, J. Wiebe, and P. Hoffmann. 2009. Rec-
ognizing contextual polarity: An exploration of fea-
tures for phrase-level sentiment analysis. Computa-
tional Linguistics, 35(3):399–433.

F. Wolf, E. Gibson, A. Fisher, and M. Knight. 2005.
The discourse graphbank: A database of texts an-
notated with coherence relations. Linguistic Data
Consortium.

Z.M. Zhou, Y. Xu, Z.Y. Niu, M. Lan, J. Su, and C.L.
Tan. 2010. Predicting discourse connectives for im-
plicit discourse relation recognition. pages 1507–
1514. Association for Computational Linguistics.
Proceedings of the 23rd International Conference on
Computational Linguistics: Posters.

485



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 486–496,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Combining Intra- and Multi-sentential Rhetorical Parsing for
Document-level Discourse Analysis

Shafiq Joty∗

sjoty@qf.org.qa
Qatar Computing Research Institute

Qatar Foundation
Doha, Qatar

Giuseppe Carenini, Raymond Ng, Yashar Mehdad
{carenini, rng, mehdad}@cs.ubc.ca

Department of Computer Science
University of British Columbia

Vancouver, Canada

Abstract

We propose a novel approach for develop-
ing a two-stage document-level discourse
parser. Our parser builds a discourse tree
by applying an optimal parsing algorithm
to probabilities inferred from two Con-
ditional Random Fields: one for intra-
sentential parsing and the other for multi-
sentential parsing. We present two ap-
proaches to combine these two stages of
discourse parsing effectively. A set of
empirical evaluations over two different
datasets demonstrates that our discourse
parser significantly outperforms the state-
of-the-art, often by a wide margin.

1 Introduction

Discourse of any kind is not formed by inde-
pendent and isolated textual units, but by related
and structured units. Discourse analysis seeks
to uncover such structures underneath the surface
of the text, and has been shown to be benefi-
cial for text summarization (Louis et al., 2010;
Marcu, 2000b), sentence compression (Sporleder
and Lapata, 2005), text generation (Prasad et al.,
2005), sentiment analysis (Somasundaran, 2010)
and question answering (Verberne et al., 2007).

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988), one of the most influential the-
ories of discourse, represents texts by labeled hier-
archical structures, called Discourse Trees (DTs),
as exemplified by a sample DT in Figure 1. The
leaves of a DT correspond to contiguous Elemen-
tary Discourse Units (EDUs) (six in the exam-
ple). Adjacent EDUs are connected by rhetori-
cal relations (e.g., Elaboration, Contrast), form-
ing larger discourse units (represented by internal

∗This work was conducted at the University of British
Columbia, Vancouver, Canada.

nodes), which in turn are also subject to this re-
lation linking. Discourse units linked by a rhetori-
cal relation are further distinguished based on their
relative importance in the text: nucleus being the
central part, whereas satellite being the peripheral
one. Discourse analysis in RST involves two sub-
tasks: discourse segmentation is the task of identi-
fying the EDUs, and discourse parsing is the task
of linking the discourse units into a labeled tree.

While recent advances in automatic discourse
segmentation and sentence-level discourse parsing
have attained accuracies close to human perfor-
mance (Fisher and Roark, 2007; Joty et al., 2012),
discourse parsing at the document-level still poses
significant challenges (Feng and Hirst, 2012) and
the performance of the existing document-level
parsers (Hernault et al., 2010; Subba and Di-
Eugenio, 2009) is still considerably inferior com-
pared to human gold-standard. This paper aims
to reduce this performance gap and take discourse
parsing one step further. To this end, we address
three key limitations of existing parsers as follows.

First, existing discourse parsers typically model
the structure and the labels of a DT separately
in a pipeline fashion, and also do not consider
the sequential dependencies between the DT con-
stituents, which has been recently shown to be crit-
ical (Feng and Hirst, 2012). To address this limi-
tation, as the first contribution, we propose a novel
document-level discourse parser based on proba-
bilistic discriminative parsing models, represented
as Conditional Random Fields (CRFs) (Sutton et
al., 2007), to infer the probability of all possible
DT constituents. The CRF models effectively rep-
resent the structure and the label of a DT con-
stituent jointly, and whenever possible, capture the
sequential dependencies between the constituents.

Second, existing parsers apply greedy and sub-
optimal parsing algorithms to build the DT for a
document. To cope with this limitation, our CRF
models support a probabilistic bottom-up parsing
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But he 
added:

"Some people use the purchasers’
 index as a leading indicator,

some use it as a
 coincident indicator.

But the thing it’s 
supposed to measure

-- manufacturing 
strength --

it missed altogether 
last month." <P>

Elaboration

Same-UnitContrast

Contrast

Attribution

(1)

(2) (3)

(4) (5)

(6)

Figure 1: Discourse tree for two sentences in RST-DT. Each of the sentences contains three EDUs. The
second sentence has a well-formed discourse tree, but the first sentence does not have one.

algorithm which is non-greedy and optimal.

Third, existing discourse parsers do not dis-
criminate between intra-sentential (i.e., building
the DTs for the individual sentences) and multi-
sentential parsing (i.e., building the DT for the
document). However, we argue that distinguish-
ing between these two conditions can result in
more effective parsing. Two separate parsing
models could exploit the fact that rhetorical re-
lations are distributed differently intra-sententially
vs. multi-sententially. Also, they could indepen-
dently choose their own informative features. As
another key contribution of our work, we devise
two different parsing components: one for intra-
sentential parsing, the other for multi-sentential
parsing. This provides for scalable, modular and
flexible solutions, that can exploit the strong cor-
relation observed between the text structure (sen-
tence boundaries) and the structure of the DT.

In order to develop a complete and robust dis-
course parser, we combine our intra-sentential
and multi-sentential parsers in two different ways.
Since most sentences have a well-formed dis-
course sub-tree in the full document-level DT (for
example, the second sentence in Figure 1), our first
approach constructs a DT for every sentence us-
ing our intra-sentential parser, and then runs the
multi-sentential parser on the resulting sentence-
level DTs. However, this approach would disre-
gard those cases where rhetorical structures vio-
late sentence boundaries. For example, consider
the first sentence in Figure 1. It does not have a
well-formed sub-tree because the unit containing
EDUs 2 and 3 merges with the next sentence and
only then is the resulting unit merged with EDU
1. Our second approach, in an attempt of dealing
with these cases, builds sentence-level sub-trees
by applying the intra-sentential parser on a sliding
window covering two adjacent sentences and by
then consolidating the results produced by over-

lapping windows. After that, the multi-sentential
parser takes all these sentence-level sub-trees and
builds a full rhetorical parse for the document.

While previous approaches have been tested on
only one corpus, we evaluate our approach on
texts from two very different genres: news articles
and instructional how-to-do manuals. The results
demonstrate that our contributions provide con-
sistent and statistically significant improvements
over previous approaches. Our final result com-
pares very favorably to the result of state-of-the-art
models in document-level discourse parsing.

In the rest of the paper, after discussing related
work in Section 2, we present our discourse pars-
ing framework in Section 3. In Section 4, we de-
scribe the intra- and multi-sentential parsing com-
ponents. Section 5 presents the two approaches
to combine the two stages of parsing. The exper-
iments and error analysis, followed by future di-
rections are discussed in Section 6. Finally, we
summarize our contributions in Section 7.

2 Related work

The idea of staging document-level discourse
parsing on top of sentence-level discourse parsing
was investigated in (Marcu, 2000a; LeThanh et al.,
2004). These approaches mainly rely on discourse
markers (or cues), and use hand-coded rules to
build DTs for sentences first, then for paragraphs,
and so on. However, often rhetorical relations
are not explicitly signaled by discourse markers
(Marcu and Echihabi, 2002), and discourse struc-
tures do not always correspond to paragraph struc-
tures (Sporleder and Lascarides, 2004). Therefore,
rather than relying on hand-coded rules based on
discourse markers, recent approaches employ su-
pervised machine learning techniques with a large
set of informative features.

Hernault et al., (2010) presents the publicly
available HILDA parser. Given the EDUs in a doc-
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Figure 2: Distributions of six most frequent relations in
intra-sentential and multi-sentential parsing scenarios.

ument, HILDA iteratively employs two Support
Vector Machine (SVM) classifiers in pipeline to
build the DT. In each iteration, a binary classifier
first decides which of the adjacent units to merge,
then a multi-class classifier connects the selected
units with an appropriate relation label. They eval-
uate their approach on the RST-DT corpus (Carl-
son et al., 2002) of news articles. On a different
genre of instructional texts, Subba and Di-Eugenio
(2009) propose a shift-reduce parser that relies on
a classifier for relation labeling. Their classifier
uses Inductive Logic Programming (ILP) to learn
first-order logic rules from a set of features includ-
ing compositional semantics. In this work, we ad-
dress the limitations of these models (described in
Section 1) introducing our novel discourse parser.

3 Our Discourse Parsing Framework

Given a document with sentences already seg-
mented into EDUs, the discourse parsing prob-
lem is determining which discourse units (EDUs
or larger units) to relate (i.e., the structure), and
how to relate them (i.e., the labels or the discourse
relations) in the resulting DT. Since we already
have an accurate sentence-level discourse parser
(Joty et al., 2012), a straightforward approach to
document-level parsing could be to simply apply
this parser to the whole document. However this
strategy would be problematic because of scalabil-
ity and modeling issues. Note that the number of
valid trees grows exponentially with the number
of EDUs in a document.1 Therefore, an exhaus-
tive search over the valid trees is often unfeasible,
even for relatively small documents.

For modeling, the problem is two-fold. On the
one hand, it appears that rhetorical relations are
distributed differently intra-sententially vs. multi-
sententially. For example, Figure 2 shows a com-
parison between the two distributions of six most

1For n + 1 EDUs, the number of valid discourse trees is
actually the Catalan number Cn.
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Figure 3: Discourse parsing framework.

frequent relations on a development set containing
20 randomly selected documents from RST-DT.
Notice that relations Attribution and Same-Unit
are more frequent than Joint in intra-sentential
case, whereas Joint is more frequent than the other
two in multi-sentential case. On the other hand,
different kinds of features are applicable and in-
formative for intra-sentential vs. multi-sentential
parsing. For example, syntactic features like dom-
inance sets (Soricut and Marcu, 2003) are ex-
tremely useful for sentence-level parsing, but are
not even applicable in multi-sentential case. Like-
wise, lexical chain features (Sporleder and Las-
carides, 2004), that are useful for multi-sentential
parsing, are not applicable at the sentence level.

Based on these observations, our discourse
parsing framework comprises two separate mod-
ules: an intra-sentential parser and a multi-
sentential parser (Figure 3). First, the intra-
sentential parser produces one or more discourse
sub-trees for each sentence. Then, the multi-
sentential parser generates a full DT for the doc-
ument from these sub-trees. Both of our parsers
have the same two components: a parsing model
assigns a probability to every possible DT, and
a parsing algorithm identifies the most probable
DT among the candidate DTs in that scenario.
While the two models are rather different, the
same parsing algorithm is shared by the two mod-
ules. Staging multi-sentential parsing on top of
intra-sentential parsing in this way allows us to ex-
ploit the strong correlation between the text struc-
ture and the DT structure as explained in detail in
Section 5. Before describing our parsing models
and the parsing algorithm, we introduce some ter-
minology that we will use throughout the paper.

Following (Joty et al., 2012), a DT can be for-
mally represented as a set of constituents of the
form R[i,m, j], referring to a rhetorical relation
R between the discourse unit containing EDUs i
through m and the unit containing EDUs m+1
through j. For example, the DT for the sec-
ond sentence in Figure 1 can be represented as
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{Elaboration-NS[4,4,5], Same-Unit-NN[4,5,6]}.
Notice that a relation R also specifies the nuclear-
ity statuses of the discourse units involved, which
can be one of Nucleus-Satellite (NS), Satellite-
Nucleus (SN) and Nucleus-Nucleus (NN).

4 Parsing Models and Parsing Algorithm

The job of our intra-sentential and multi-sentential
parsing models is to assign a probability to each
of the constituents of all possible DTs at the sen-
tence level and at the document level, respectively.
Formally, given the model parameters Θ, for each
possible constituent R[i,m, j] in a candidate DT
at the sentence or document level, the parsing
model estimates P (R[i,m, j]|Θ), which specifies
a joint distribution over the label R and the struc-
ture [i,m, j] of the constituent.

4.1 Intra-Sentential Parsing Model

Recently, we proposed a novel parsing model
for sentence-level discourse parsing (Joty et
al., 2012), that outperforms previous approaches
by effectively modeling sequential dependencies
along with structure and labels jointly. Below we
briefly describe the parsing model, and show how
it is applied to obtain the probabilities of all possi-
ble DT constituents at the sentence level.

Figure 4 shows the intra-sentential parsing
model expressed as a Dynamic Conditional Ran-
dom Field (DCRF) (Sutton et al., 2007). The ob-
served nodes Uj in a sequence represent the dis-
course units (EDUs or larger units). The first layer
of hidden nodes are the structure nodes, where
Sj∈{0, 1} denotes whether two adjacent discourse
units Uj−1 and Uj should be connected or not.
The second layer of hidden nodes are the relation
nodes, with Rj∈{1 . . .M} denoting the relation
between two adjacent unitsUj−1 andUj , whereM
is the total number of relations in the relation set.
The connections between adjacent nodes in a hid-
den layer encode sequential dependencies between
the respective hidden nodes, and can enforce con-
straints such as the fact that a Sj= 1 must not fol-
low a Sj−1= 1. The connections between the two
hidden layers model the structure and the relation
of a DT (sentence-level) constituent jointly.

To obtain the probability of the constituents
of all candidate DTs for a sentence, we apply
the parsing model recursively at different levels
of the DT and compute the posterior marginals
over the relation-structure pairs. To illustrate the
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Figure 4: A chain-structured DCRF as our intra-
sentential parsing model.

process, let us assume that the sentence contains
four EDUs. At the first (bottom) level, when all
the units are the EDUs, there is only one possible
unit sequence to which we apply our DCRF
model (Figure 5(a)). We compute the posterior
marginals P (R2, S2=1|e1, e2, e3, e4,Θ), P (R3,
S3=1|e1, e2, e3, e4,Θ) and P (R4, S4=1|e1, e2, e3,
e4,Θ) to obtain the probability of the con-
stituents R[1, 1, 2], R[2, 2, 3] and R[3, 3, 4],
respectively. At the second level, there are
three possible unit sequences (e1:2, e3, e4),
(e1,e2:3, e4) and (e1,e2,e3:4). Figure 5(b) shows
their corresponding DCRFs. The posterior
marginals P (R3, S3=1|e1:2,e3,e4,Θ), P (R2:3

S2:3=1|e1,e2:3,e4,Θ), P (R4, S4=1|e1,e2:3,e4,Θ)
and P (R3:4, S3:4=1|e1,e2,e3:4,Θ) computed from
the three sequences correspond to the probability
of the constituents R[1, 2, 3], R[1, 1, 3], R[2, 3, 4]
and R[2, 2, 4], respectively. Similarly, we attain
the probability of the constituents R[1, 1, 4],
R[1, 2, 4] and R[1, 3, 4] by computing their
respective posterior marginals from the three
possible sequences at the third (top) level.
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Figure 5: Our parsing model applied to the sequences at
different levels of a sentence-level DT. (a) Only possible se-
quence at the first level, (b) Three possible sequences at the
second level, (c) Three possible sequences at the third level.

At this point what is left to be explained is
how we generate all possible sequences for a
given number of EDUs in a sentence. Algorithm
1 demonstrates how we do that. More specifi-
cally, to compute the probabilities of each DT con-
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stituent R[i, k, j], we need to generate sequences
like (e1, · · · , ei−1, ei:k, ek+1:j , ej+1, · · · , en) for
1 ≤ i ≤ k < j ≤ n. In doing so, we may
generate some duplicate sequences. Clearly, the
sequence (e1, · · · , ei−1, ei:i, ei+1:j , ej+1, · · · , en)
for 1 ≤ i ≤ k < j < n is already considered
for computing the probability of R[i+ 1, j, j+ 1].
Therefore, it is a duplicate sequence that we ex-
clude from our list of all possible sequences.

Input: Sequence of EDUs: (e1, e2, · · · , en)
Output: List of sequences: L
for i = 1→ n− 1 do

for j = i+ 1→ n do
if j == n then

for k = i→ j − 1 do
L.append
((e1, .., ei−1, ei:k, ek+1:j , ej+1, .., en))

end
else

for k = i+ 1→ j − 1 do
L.append
((e1, .., ei−1, ei:k, ek+1:j , ej+1, .., en))

end
end

end
end

Algorithm 1: Generating all possible sequences
for a sentence with n EDUs.

Once we obtain the probability of all possible
DT constituents, the discourse sub-trees for the
sentences are built by applying an optimal prob-
abilistic parsing algorithm (Section 4.4) using one
of the methods described in Section 5.

4.2 Multi-Sentential Parsing Model
Given the discourse units (sub-trees) for all the
sentences of a document, a simple approach to
build the rhetorical tree of the document would be
to apply a new DCRF model, similar to the one
in Figure 4 (with different parameters), to all the
possible sequences generated from these units to
infer the probability of all possible higher-order
constituents. However, the number of possible se-
quences and their length increase with the number
of sentences in a document. For example, assum-
ing that each sentence has a well-formed DT, for
a document with n sentences, Algorithm 1 gener-
ates O(n3) sequences, where the sequence at the
bottom level has n units, each of the sequences at
the second level has n-1 units, and so on. Since
the model in Figure 4 has a “fat” chain structure,
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Figure 6: A CRF as a multi-sentential parsing model.

we could use forwards-backwards algorithm for
exact inference in this model (Sutton and McCal-
lum, 2012). However, forwards-backwards on a
sequence containing T units costs O(TM2) time,
where M is the number of relations in our rela-
tion set. This makes the chain-structured DCRF
model impractical for multi-sentential parsing of
long documents, since learning requires to run in-
ference on every training sequence with an overall
time complexity of O(TM2n3) per document.

Our model for multi-sentential parsing is shown
in Figure 6. The two observed nodes Ut−1 and
Ut are two adjacent discourse units. The (hidden)
structure node S∈{0, 1} denotes whether the two
units should be connected or not. The hidden node
R∈{1 . . .M} represents the relation between the
two units. Notice that like the previous model, this
is also an undirected graphical model. It becomes
a CRF if we directly model the hidden (output)
variables by conditioning its clique potential (or
factor) φ on the observed (input) variables:

P (Rt, St|x,Θ) =
1

Z(x,Θ)
φ(Rt, St|x,Θ) (1)

where x represents input features extracted from
the observed variables Ut−1 and Ut, and Z(x,Θ)
is the partition function. We use a log-linear rep-
resentation of the factor:

φ(Rt, St|x,Θ) = exp(ΘT f(Rt, St, x)) (2)

where f(Rt, St, x) is a feature vector derived from
the input features x and the labels Rt and St, and
Θ is the corresponding weight vector. Although,
this model is similar in spirit to the model in Fig-
ure 4, we now break the chain structure, which
makes the inference much faster (i.e., complex-
ity of O(M2)). Breaking the chain structure also
allows us to balance the data for training (equal
number instances with S=1 and S=0), which dra-
matically reduces the learning time of the model.

We apply our model to all possible adjacent
units at all levels for the multi-sentential case, and
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compute the posterior marginals of the relation-
structure pairs P (Rt, St=1|Ut−1, Ut,Θ) to obtain
the probability of all possible DT constituents.

4.3 Features Used in our Parsing Models

Table 1 summarizes the features used in our pars-
ing models, which are extracted from two adjacent
unitsUt−1 andUt. Since most of these features are
adopted from previous studies (Joty et al., 2012;
Hernault et al., 2010), we briefly describe them.

Organizational features include the length of
the units as the number of EDUs and tokens.
It also includes the distances of the units from
the beginning and end of the sentence (or text in
the multi-sentential case). Text structural fea-
tures indirectly capture the correlation between
text structure and rhetorical structure by counting
the number of sentence and paragraph boundaries
in the units. Discourse markers (e.g., because, al-
though) carry informative clues for rhetorical re-
lations (Marcu, 2000a). Rather than using a fixed
list of discourse markers, we use an empirically
learned lexical N-gram dictionary following (Joty
et al., 2012). This approach has been shown to
be more robust and flexible across domains (Bi-
ran and Rambow, 2011; Hernault et al., 2010). We
also include part-of-speech (POS) tags for the be-
ginning and end N tokens in a unit.

8 Organizational features Intra & Multi-Sentential
Number of EDUs in unit 1 (or unit 2).
Number of tokens in unit 1 (or unit 2).
Distance of unit 1 in EDUs to the beginning (or to the end).
Distance of unit 2 in EDUs to the beginning (or to the end).
4 Text structural features Multi-Sentential
Number of sentences in unit 1 (or unit 2).
Number of paragraphs in unit 1 (or unit 2).
8 N-gram features N∈{1, 2, 3} Intra & Multi-Sentential
Beginning (or end) lexical N-grams in unit 1.
Beginning (or end) lexical N-grams in unit 2.
Beginning (or end) POS N-grams in unit 1.
Beginning (or end) POS N-grams in unit 2.
5 Dominance set features Intra-Sentential
Syntactic labels of the head node and the attachment node.
Lexical heads of the head node and the attachment node.
Dominance relationship between the two units.
8 Lexical chain features Multi-Sentential
Number of chains start in unit 1 and end in unit 2.
Number of chains start (or end) in unit 1 (or in unit 2).
Number of chains skipping both unit 1 and unit 2.
Number of chains skipping unit 1 (or unit 2).
2 Contextual features Intra & Multi-Sentential
Previous and next feature vectors.
2 Substructure features Intra & Multi-Sentential
Root nodes of the left and right rhetorical sub-trees.

Table 1: Features used in our parsing models.

Lexico-syntactic features dominance sets
(Soricut and Marcu, 2003) are very effective for
intra-sentential parsing. We include syntactic
labels and lexical heads of head and attachment
nodes along with their dominance relationship
as features. Lexical chains (Morris and Hirst,
1991) are sequences of semantically related words
that can indicate topic shifts. Features extracted
from lexical chains have been shown to be useful
for finding paragraph-level discourse structure
(Sporleder and Lascarides, 2004). We compute
lexical chains for a document following the ap-
proach proposed in (Galley and McKeown, 2003),
that extracts lexical chains after performing word
sense disambiguation. Following (Joty et al.,
2012), we also encode contextual and rhetorical
sub-structure features in our models. The rhetori-
cal sub-structure features incorporate hierarchical
dependencies between DT constituents.

4.4 Parsing Algorithm
Given the probability of all possible DT con-
stituents in the intra-sentential and multi-sentential
scenarios, the job of the parsing algorithm is to
find the most probable DT for that scenario. Fol-
lowing (Joty et al., 2012), we implement a prob-
abilistic CKY-like bottom-up algorithm for com-
puting the most likely parse using dynamic pro-
gramming. Specifically, with n discourse units,
we use the upper-triangular portion of the n×n
dynamic programming table D. Given Ux(0) and
Ux(1) are the start and end EDU Ids of unit Ux:

D[i, j] = P (R[Ui(0), Uk(1), Uj(1)]) (3)

where, k = argmax
i≤p≤j

P (R[Ui(0), Up(1), Uj(1)]).

Note that, in contrast to previous studies on
document-level parsing (Hernault et al., 2010;
Subba and Di-Eugenio, 2009; Marcu, 2000b),
which use a greedy algorithm, our approach finds
a discourse tree that is globally optimal.

5 Document-level Parsing Approaches

Now that we have presented our intra-sentential
and our multi-sentential parsers, we are ready to
describe how they can be effectively combined to
perform document-level discourse analysis. Re-
call that a key motivation for a two-stage parsing is
that it allows us to capture the correlation between
text structure and discourse structure in a scalable,
modular and flexible way. Below we describe two
different approaches to model this correlation.
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5.1 1S-1S (1 Sentence-1 Sub-tree)

A key finding from several previous studies on
sentence-level discourse analysis is that most sen-
tences have a well-formed discourse sub-tree in
the full document-level DT (Joty et al., 2012;
Fisher and Roark, 2007). For example, Figure 7(a)
shows 10 EDUs in 3 sentences (see boxes), where
the DTs for the sentences obey their respective
sentence boundaries. The 1S-1S approach aims to
maximally exploit this finding. It first constructs
a DT for every sentence using our intra-sentential
parser, and then it provides our multi-sentential
parser with the sentence-level DTs to build the
rhetorical parse for the whole document.
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Figure 7: Two possible DTs for three sentences.

5.2 Sliding Window

While the assumption made by 1S-1S clearly sim-
plifies the parsing process, it totally ignores the
cases where discourse structures violate sentence
boundaries. For example, in the DT shown in Fig-
ure 7(b), sentence S2 does not have a well-formed
sub-tree because some of its units attach to the
left (4-5, 6) and some to the right (7). Vliet and
Redeker (2011) call these cases as ‘leaky’ bound-
aries. Even though less than 5% of the sentences
have leaky boundaries in RST-DT, in other corpora
this can be true for a larger portion of the sen-
tences. For example, we observe over 12% sen-
tences with leaky boundaries in the Instructional
corpus of (Subba and Di-Eugenio, 2009). How-
ever, we notice that in most cases where discourse
structures violate sentence boundaries, its units are
merged with the units of its adjacent sentences, as
in Figure 7(b). For example, this is true for 75%
cases in our development set containing 20 news
articles from RST-DT and for 79% cases in our
development set containing 20 how-to-do manuals
from the Instructional corpus. Based on this obser-
vation, we propose a sliding window approach.

In this approach, our intra-sentential parser
works with a window of two consecutive sen-
tences, and builds a DT for the two sentences. For
example, given the three sentences in Figure 7, our

intra-sentential parser constructs a DT for S1-S2
and a DT for S2-S3. In this process, each sentence
in a document except the first and the last will be
associated with two DTs: one with the previous
sentence (say DTp) and one with the next (say
DTn). In other words, for each non-boundary sen-
tence, we will have two decisions: one from DTp
and one from DTn. Our parser consolidates the
two decisions and generates one or more sub-trees
for each sentence by checking the following three
mutually exclusive conditions one after another:
• Same in both: If the sentence has the same (in
terms of both structure and labels) well-formed
sub-tree in both DTp and DTn, we take this sub-
tree for the sentence. For example, in Figure 8(a),
S2 has the same sub-tree in the two DTs, i.e. a DT
for S1-S2 and a DT for S2-S3. The two decisions
agree on the DT for the sentence.
• Different but no cross: If the sentence has a
well-formed sub-tree in both DTp and DTn, but
the two sub-trees vary either in structure or in la-
bels, we pick the most probable one. For example,
consider the DT for S1-S2 in Figure 8(a) and the
DT for S2-S3 in Figure 8(b). In both cases S2 has
a well-formed sub-tree, but they differ in structure.
We pick the sub-tree which has the higher proba-
bility in the two dynamic programming tables.
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Figure 8: Extracting sub-trees for S2.

• Cross: If either or both of DTp and DTn seg-
ment the sentence into multiple sub-trees, we pick
the one with more sub-trees. For example, con-
sider the two DTs in Figure 8(c). In the DT for
S1-S2, S2 has three sub-trees (4-5,6,7), whereas
in the DT for S2-S3, it has two (4-6,7). So, we ex-
tract the three sub-trees for S2 from the first DT. If
the sentence has the same number of sub-trees in
both DTp and DTn, we pick the one with higher
probability in the dynamic programming tables.

At the end, the multi-sentential parser takes all
these sentence-level sub-trees for a document, and
builds a full rhetorical parse for the document.
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6 Experiments

6.1 Corpora
While previous studies on document-level parsing
only report their results on a particular corpus, to
show the generality of our method, we experiment
with texts from two very different genres. Our
first corpus is the standard RST-DT (Carlson et
al., 2002), which consists of 385 Wall Street Jour-
nal articles, and is partitioned into a training set
of 347 documents and a test set of 38 documents.
53 documents, selected from both sets were anno-
tated by two annotators, based on which we mea-
sure human agreement. In RST-DT, the original 25
rhetorical relations defined by (Mann and Thomp-
son, 1988) are further divided into a set of 18
coarser relation classes with 78 finer-grained rela-
tions. Our second corpus is the Instructional cor-
pus prepared by (Subba and Di-Eugenio, 2009),
which contains 176 how-to-do manuals on home-
repair. The corpus was annotated with 26 informa-
tional relations (e.g., Preparation-Act, Act-Goal).

6.2 Experimental Setup
We experiment with our discourse parser on the
two datasets using our two different parsing ap-
proaches, namely 1S-1S and the sliding window.
We compare our approach with HILDA (Hernault
et al., 2010) on RST-DT, and with the ILP-based
approach of (Subba and Di-Eugenio, 2009) on the
Instructional corpus, since they are the state-of-
the-art on the respective genres. On RST-DT, the
standard split was used for training and testing
purposes. The results for HILDA were obtained
by running the system with default settings on the
same inputs we provided to our system. Since we
could not run the ILP-based system of (Subba and
Di-Eugenio, 2009) (not publicly available) on the
Instructional corpus, we report the performances
presented in their paper. They used 151 documents
for training and 25 documents for testing. Since
we did not have access to their particular split,
we took 5 random samples of 151 documents for
training and 25 documents for testing, and report
the average performance over the 5 test sets.

To evaluate the parsing performance, we use
the standard unlabeled (i.e., hierarchical spans)
and labeled (i.e., nuclearity and relation) preci-
sion, recall and F-score as described in (Marcu,
2000b). To compare with previous studies, our
experiments on RST-DT use the 18 coarser rela-
tions. After attaching the nuclearity statuses (NS,

SN, NN) to these relations, we get 41 distinct re-
lations. Following (Subba and Di-Eugenio, 2009)
on the Instructional corpus, we use 26 relations,
and treat the reversals of non-commutative rela-
tions as separate relations. That is, Goal-Act and
Act-Goal are considered as two different relations.
Attaching the nuclearity statuses to these relations
gives 76 distinct relations. Analogous to previous
studies, we map the n-ary relations (e.g., Joint)
into nested right-branching binary relations.

6.3 Results and Error Analysis

Table 2 presents F-score parsing results for our
parsers and the existing systems on the two cor-
pora.2 On both corpora, our parser, namely, 1S-1S
(TSP 1-1) and sliding window (TSP SW), outper-
form existing systems by a wide margin (p<7.1e-
05).3 On RST-DT, our parsers achieve absolute
F-score improvements of 8%, 9.4% and 11.4%
in span, nuclearity and relation, respectively, over
HILDA. This represents relative error reductions
of 32%, 23% and 21% in span, nuclearity and rela-
tion, respectively. Our results are also close to the
upper bound, i.e. human agreement on this corpus.

On the Instructional genre, our parsers deliver
absolute F-score improvements of 10.5%, 13.6%
and 8.14% in span, nuclearity and relations, re-
spectively, over the ILP-based approach. Our
parsers, therefore, reduce errors by 36%, 27% and
13% in span, nuclearity and relations, respectively.

If we compare the performance of our parsers
on the two corpora, we observe higher results
on RST-DT. This can be explained in at least
two ways. First, the Instructional corpus has a
smaller amount of data with a larger set of rela-
tions (76 when nuclearity attached). Second, some
frequent relations are (semantically) very similar
(e.g., Preparation-Act, Step1-Step2), which makes
it difficult even for the human annotators to distin-
guish them (Subba and Di-Eugenio, 2009).

Comparison between our two models reveals
that TSP SW significantly outperforms TSP 1-1
only in finding the right structure on both corpora
(p<0.01). Not surprisingly, the improvement is
higher on the Instructional corpus. A likely ex-
planation is that the Instructional corpus contains
more leaky boundaries (12%), allowing the sliding

2Precision, Recall and F-score are the same when manual
segmentation is used (see Marcu, (2000b), page 143).

3Since we did not have access to the output or to the sys-
tem of (Subba and Di-Eugenio, 2009), we were not able to
perform a significance test on the Instructional corpus.
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RST-DT Instructional
Metrics HILDA TSP 1-1 TSP SW Human ILP TSP 1-1 TSP SW
Span 74.68 82.47* 82.74*† 88.70 70.35 79.67 80.88†
Nuclearity 58.99 68.43* 68.40* 77.72 49.47 63.03 63.10
Relation 44.32 55.73* 55.71* 65.75 35.44 43.52 43.58

Table 2: Parsing results of different models using manual (gold) segmentation. Performances significantly superior to HILDA
(with p<7.1e-05) are denoted by *. Significant differences between TSP 1-1 and TSP SW (with p<0.01) are denoted by †.
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Figure 9: Confusion matrix for relation labels on the
RST-DT test set. Y-axis represents true and X-axis repre-
sents predicted relations. The relations are Topic-Change
(T-C), Topic-Comment (T-CM), Textual Organization (T-
O), Manner-Means (M-M), Comparison (CMP), Evaluation
(EV), Summary (SU), Condition (CND), Enablement (EN),
Cause (CA), Temporal (TE), Explanation (EX), Background
(BA), Contrast (CO), Joint (JO), Same-Unit (S-U), Attribu-
tion (AT) and Elaboration (EL).

window approach to be more effective in finding
those, without inducing much noise for the labels.
This clearly demonstrates the potential of TSP SW
for datasets with even more leaky boundaries e.g.,
the Dutch (Vliet and Redeker, 2011) and the Ger-
man Potsdam (Stede, 2004) corpora.

Error analysis reveals that although TSP SW
finds more correct structures, a corresponding im-
provement in labeling relations is not present be-
cause in a few cases, it tends to induce noise from
the neighboring sentences for the labels. For ex-
ample, when parsing was performed on the first
sentence in Figure 1 in isolation using 1S-1S, our
parser rightly identifies the Contrast relation be-
tween EDUs 2 and 3. But, when it is considered
with its neighboring sentences by the sliding win-
dow, the parser labels it as Elaboration. A promis-
ing strategy to deal with this and similar problems
that we plan to explore in future, is to apply both
approaches to each sentence and combine them by
consolidating three probabilistic decisions, i.e. the
one from 1S-1S and the two from sliding window.

To further analyze the errors made by our parser
on the hardest task of relation labeling, Figure 9
presents the confusion matrix for TSP 1-1 on the
RST-DT test set. The relation labels are ordered
according to their frequency in the RST-DT train-
ing set. In general, the errors are produced by two
different causes acting together: (i) imbalanced
distribution of the relations, and (ii) semantic sim-
ilarity between the relations. The most frequent
relation Elaboration tends to mislead others es-
pecially, the ones which are semantically similar
(e.g., Explanation, Background) and less frequent
(e.g., Summary, Evaluation). The relations which
are semantically similar mislead each other (e.g.,
Temporal:Background, Cause:Explanation).

These observations suggest two ways to im-
prove our parser. We would like to employ a more
robust method (e.g., ensemble methods with bag-
ging) to deal with the imbalanced distribution of
relations, along with taking advantage of a richer
semantic knowledge (e.g., compositional seman-
tics) to cope with the errors caused by semantic
similarity between the rhetorical relations.

7 Conclusion

In this paper, we have presented a novel discourse
parser that applies an optimal parsing algorithm
to probabilities inferred from two CRF models:
one for intra-sentential parsing and the other for
multi-sentential parsing. The two models exploit
their own informative feature sets and the distribu-
tional variations of the relations in the two parsing
conditions. We have also presented two novel ap-
proaches to combine them effectively. Empirical
evaluations on two different genres demonstrate
that our approach yields substantial improvement
over existing methods in discourse parsing.
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Abstract
This paper proposes a new method for
significantly improving the performance
of pairwise coreference models. Given a
set of indicators, our method learns how
to best separate types of mention pairs
into equivalence classes for which we con-
struct distinct classification models. In ef-
fect, our approach finds an optimal fea-
ture space (derived from a base feature set
and indicator set) for discriminating coref-
erential mention pairs. Although our ap-
proach explores a very large space of pos-
sible feature spaces, it remains tractable
by exploiting the structure of the hierar-
chies built from the indicators. Our exper-
iments on the CoNLL-2012 Shared Task
English datasets (gold mentions) indicate
that our method is robust relative to dif-
ferent clustering strategies and evaluation
metrics, showing large and consistent im-
provements over a single pairwise model
using the same base features. Our best
system obtains a competitive 67.2 of aver-
age F1 over MUC, B3, and CEAF which,
despite its simplicity, places it above the
mean score of other systems on these
datasets.

1 Introduction

Coreference resolution is the problem of partition-
ing a sequence of noun phrases (or mentions), as
they occur in a natural language text, into a set of
referential entities. A common approach to this
problem is to separate it into two modules: on
the one hand, one defines a model for evaluating
coreference links, in general a discriminative clas-
sifier that detects coreferential mention pairs. On

the other hand, one designs a method for group-
ing the detected links into a coherent global out-
put (i.e. a partition over the set of entity men-
tions). This second step is typically achieved
using greedy heuristics (McCarthy and Lehnert,
1995; Soon et al., 2001; Ng and Cardie, 2002;
Bengston and Roth, 2008), although more so-
phisticated clustering approaches have been used,
too, such as cutting graph methods (Nicolae and
Nicolae, 2006; Cai and Strube, 2010) and Integer
Linear Programming (ILP) formulations (Klenner,
2007; Denis and Baldridge, 2009). Despite its
simplicity, this two-step strategy remains competi-
tive even when compared to more complex models
utilizing a global loss (Bengston and Roth, 2008).

In this kind of architecture, the performance of
the entire coreference system strongly depends on
the quality of the local pairwise classifier.1 Con-
sequently, a lot of research effort on coreference
resolution has focused on trying to boost the per-
formance of the pairwise classifier. Numerous
studies are concerned with feature extraction, typ-
ically trying to enrich the classifier with more
linguistic knowledge and/or more world knowl-
edge (Ng and Cardie, 2002; Kehler et al., 2004;
Ponzetto and Strube, 2006; Bengston and Roth,
2008; Versley et al., 2008; Uryupina et al., 2011).
A second line of work explores the use of dis-
tinct local models for different types of mentions,
specifically for different types of anaphoric men-
tions based on their grammatical categories (such
as pronouns, proper names, definite descriptions)
(Morton, 2000; Ng, 2005; Denis and Baldridge,
2008).2 An important justification for such spe-

1There are however no theoretical guarantees that improv-
ing pair classification will always result in overall improve-
ments if the two modules are optimized independently.

2Sometimes, distinct sample selections are also adopted
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cialized models is (psycho-)linguistic and comes
from theoretical findings based on salience or ac-
cessibility (Ariel, 1988). It is worth noting that,
from a machine learning point of view, this is re-
lated to feature extraction in that both approaches
in effect recast the pairwise classification problem
in higher dimensional feature spaces.

In this paper, we claim that mention pairs
should not be processed by a single classifier, and
instead should be handled through specific mod-
els. But we are furthermore interested in learning
how to construct and select such differential mod-
els. Our argument is therefore based on statisti-
cal considerations, rather than on purely linguis-
tic ones3. The main question we raise is, given
a set of indicators (such as grammatical types,
distance between two mentions, or named entity
types), how to best partition the pool of mention
pair examples in order to best discriminate coref-
erential pairs from non coreferential ones. In ef-
fect, we want to learn the “best” subspaces for our
different models: that is, subspaces that are neither
too coarse (i.e., unlikely to separate the data well)
nor too specific (i.e., prone to data sparseness and
noise). We will see that this is also equivalent to
selecting a single large adequate feature space by
using the data.

Our approach generalizes earlier approaches in
important ways. For one thing, the definition
of the different models is no longer restricted to
grammatical typing (our model allows for various
other types of indicators) or to the sole typing of
the anaphoric mention (our models can also be
specific to a particular type antecedent or to the
two types of the mention pair). More importantly,
we propose an original method for learning the
best set of models that can be built from a given
set of indicators and a training set. These models
are organized in a hierarchy, wherein each leaf cor-
responds to a mutually disjoint subset of mention
pair examples and the classifier that can be trained
from it. Our models are trained using the Online
Passive-Aggressive algorithm or PA (Crammer et
al., 2006), a large margin version of the percep-
tron. Our method is exact in that it explores the full
space of hierarchies (of size at least 22

n
) definable

on an indicator sequence, while remaining scal-
able by exploiting the particular structure of these

during the training of the distinct local models (Ng and
Cardie, 2002; Uryupina, 2004).

3However it should be underlined that the statistical view-
point is complementary to the linguistic work.

hierarchies with dynamic programming. This ap-
proach also performs well, and it largely outper-
forms the single model. As will be shown based
on a variety of experiments on the CoNLL-2012
Shared Task English datasets, these improvements
are consistent across different evaluation metrics
and for the most part independent of the clustering
decoder that was used.

The rest of this paper is organized as follows.
Section 2 discusses the underlying statistical hy-
potheses of the standard pairwise model and de-
fines a simple alternative framework that uses a
simple separation of mention pairs based on gram-
matical types. Next, in section 3, we generalize the
method by introducing indicator hierarchies and
explain how to learn the best models associated
with them. Section 4 provides a brief system de-
scription and Section 5 evaluates the various mod-
els on CoNLL-2012 English datasets.

2 Modeling pairs

Pairwise models basically employ one local clas-
sifier to decide whether two mentions are corefer-
ential or not. When using machine learning tech-
niques, this involves certain assumptions about the
statistical behavior of mention pairs.

2.1 Statistical assumptions

Let us adopt a probabilistic point of view to de-
scribe the prototype of pairwise models. Given
a document, the number of mentions is fixed and
each pair of mentions follows a certain distribution
(that we partly observe in a feature space). The ba-
sic idea of pairwise models is to consider mention
pairs independently from each other (that is why a
decoder is necessary to enforce transitivity).

If we use a single classifier to process all
pairs, then they are supposed to be identically dis-
tributed. We claim that pairs should not be pro-
cessed by a single classifier because they are not
identically distributed (or a least the distribution is
too complex for the classifier); rather, we should
separate different “types” on pairs and create a
specific model for each of them.

Separating different kinds of pairs and handling
them with different specific models can lead to
more accurate global models. For instance, some
coreference resolution systems process different
kinds of anaphors separately, which suggests for
example that pairs containing an anaphoric pro-
noun behave differently from pairs with non-
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pronominal anaphors. One could rely on a rich set
of features to capture complex distributions, but
here we actually have a rather limited set of ele-
mentary features (see section 4) and, for instance,
using products of features must be done carefully
to avoid introducing noise in the model. Instead
of imposing heuristic product of features, we will
show that a clever separation of instances leads to
significant improvements of the pairwise model.

2.2 Feature spaces

2.2.1 Definitions
We first introduce the problem more formally. Ev-
ery pair of mentions mi and mj is modeled by a
random variable:

Pij : Ω → X ×Y
ω 7→ (xij(ω), yij(ω))

where Ω classically represents randomness, X is
the space of objects (“mention pairs”) that is not
directly observable and yij(ω) ∈ Y = {+1,−1}
are the labels indicating whether mi and mj are
coreferential or not. To lighten the notations, we
will not always write the index ij. Now we define
a mapping:

φF : X → F
x 7→ x

that casts pairs into a feature space F through
which we observe them. For us, F is simply a
vector space over R (in our case many features are
Boolean; they are cast into R as 0 and 1).

For technical coherence, we assume that
φF1(x(ω)) and φF2(x(ω)) have the same values
when projected on the feature space F1 ∩ F2:
it means that common features from two feature
spaces have the same values.

From this formal point of view, the task of
coreference resolution consists in fixing φF , ob-
serving labeled samples {(φF (x), y)t}t∈TrainSet
and, given partially observed new variables
{(φF (x))t}t∈TestSet, recovering the correspond-
ing values of y.

2.2.2 Formalizing the statistical assumptions
We claimed before that all mention pairs seemed
not to be identically distributed since, for exam-
ple, pronouns do not behave like nominals. We
can formulate this more rigorously: since the ob-
ject space X is not directly observable, we do not

know its complexity. In particular, when using a
mapping to a too small feature space, the classifier
cannot capture the distribution very well: the data
is too noisy.

Now if we say that pronominal anaphora do not
behave like other anaphora, we distinguish two
kinds of pair i.e. we state that the distribution of
pairs in X is a mixture of two distributions, and
we deterministically separate pairs to their specific
distribution part. In this way, we may separate
positive and negative pairs more easily if we cast
each kind of pair into a specific feature space. Let
us call these feature spaces F1 and F2. We can ei-
ther create two independent classifiers on F1 and
F2 to process each kind of pair or define a single
model on a larger feature space F = F1 ⊕ F2. If
the model is linear (which is our case), these ap-
proaches happen to be equivalent.

So we can actually assume that the random vari-
ables Pij are identically distributed, but drawn
from a complex mixture. A new issue arises: we
need to find a mapping φF that renders the best
view on the distribution of the data.

From a theoretical viewpoint, the higher the di-
mension of the feature space (imagine taking the
direct sum of all feature spaces), the more we get
details on the distribution of mention pairs and the
more we can expect to separate positives and neg-
atives accurately. In practice, we have to cope
with data sparsity: there will not be enough data
to properly train a linear model on such a space.
Finally, we seek a feature space situated between
the two extremes of a space that is too big (sparse-
ness) or too small (noisy data). The core of this
work is to define a general method for choosing
the most adequate space F among a huge num-
ber of possibilities when we do not know a priori
which is the best.

2.2.3 Linear models
In this work, we try to linearly separate pos-
itive and negative instances in the large space
F with the Online Passive-Aggressive (PA) algo-
rithm (Crammer et al., 2006): the model learns a
parameter vector w that defines a hyperplane that
cuts the space into two parts. The predicted class
of a pair x with feature vector φF (x) is given by:

CF (x) := sign(wT · φF (x))

Linearity implies an equivalence between: (i)
separating instances of two types, t1 and t2, in two
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independent models with respective feature spaces
F1 and F2 and parameters w1 and w2, and (ii) a
single model on F1⊕F2. To see why, let us define
the map:

φF1⊕F2(x) :=





(
φF1(x)T 0

)T
if x typed t1(

0 φF2(x)T
)T

if x typed t2

and the parameter vector w =

(
w1

w2

)
∈ F1 ⊕

F2. Then we have:

CF1⊕F2(x) =

{
CF1(x) if x typed t1
CF2(x) if x typed t2

Now we check that the same property applies
when the PA fits its parameter w. For each new
instance of the training set, the weight is updated
according to the following rule4:

wt+1 = arg min
w∈F

1

2
‖w −wt‖2 s.t. l(w; (xt, yt)) = 0

where l(w; (xt, yt)) = min(0, 1−yt(w·φF (xt))),
so that when F = F1 ⊕ F2, the minimum if x is

typed t1 is wt+1 =

(
w1
t+1

w2
t

)
and if x is typed

t2 is wt+1 =

(
w1
t

w2
t+1

)
where the wi

t+1 corre-

spond to the updates in space Fi independently
from the rest. This result can be extended easily
to the case of n feature spaces. Thus, with a deter-
ministic separation of the data, a large model can
be learned using smaller independent models.

2.3 An example: separation by gramtype
To motivate our approach, we first introduce a
simple separation of mention pairs which cre-
ates 9 models obtained by considering all possi-
ble pairs of grammatical types {nominal, name,
pronoun} for both mentions in the pair (a simi-
lar fine-grained separation can be found in (Chen
et al., 2011)). This is equivalent to using 9 differ-
ent feature spacesF1, . . . ,F9 to capture the global
distribution of pairs. With the PA, this is also a sin-
gle model with feature space F = F1 ⊕ · · · ⊕ F9.
We will call it the GRAMTYPE model.

As we will see in Section 5, these separated
models significantly outperform a single model

4The parameter is updated to obtain a margin of a least 1.
It does not change if the instance is already correctly classi-
fied with such margin.

that uses the same base feature set. But we would
like to define a method that adapts a feature space
to the data by choosing the most adequate separa-
tion of pairs.

3 Hierarchizing feature spaces

In this section, we have to keep in mind that sep-
arating the pairs in different models is the same
as building a large feature space in which the pa-
rameter w can be learned by parts in independent
subspaces.

3.1 Indicators on pairs

For establishing a structure on feature spaces, we
use indicators which are deterministic functions
on mention pairs with a small number of outputs.
Indicators classify pairs in predefined categories in
one-to-one correspondence with independent fea-
ture spaces. We can reuse some features of the sys-
tem as indicators, e.g. the grammatical or named
entity types. We can also employ functions that
are not used as features, e.g. the approximate po-
sition of one of the mentions in the text.

The small number of outputs of an indica-
tor is required for practical reasons: if a cate-
gory of pairs is too refined, the associated fea-
ture space will suffer from data sparsity. Accord-
ingly, distance-based indicators must be approxi-
mated by coarse histograms. In our experiments
the outputs never exceeded a dozen values. One
way to reduce the output span of an indicator is
to binarize it like binarizing a tree (many possible
binarizations). This operation produces a hierar-
chy of indicators which is exactly the structure we
exploit in what follows.

3.2 Hierarchies for separating pairs

We define hierarchies as combinations of indi-
cators creating finer categories of mention pairs:
given a finite sequence of indicators, a mention
pair is classified by applying the indicators suc-
cessively, each time refining a category into sub-
categories, just like in a decision tree (each node
having the same number of children as the number
of outputs of its indicator). We allow the classifi-
cation to stop before applying the last indicator,
but the behavior must be the same for all the in-
stances. So a hierarchy is basically a sub-tree of
the complete decision tree that contains copies of
the same indicator at each level.

If all the leaves of the decision tree have the
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same depth, this corresponds to taking the Carte-
sian product of outputs of all indicators for in-
dexing the categories. In that case, we refer to
product-hierarchies. The GRAMTYPE model can
be seen as a two level product-hierarchy (figure 1).

Figure 1: GRAMTYPE seen as a product-hierarchy

Product-hierarchies will be the starting point of
our method to find a feature space that fits the data.

Now choosing a relevant sequence of indicators
should be achieved through linguistic intuitions
and theoretical work (gramtype separation is one
of them). The system will find by itself the best
usage of the indicators when optimizing the hier-
archy. The sequence is a parameter of the model.

3.3 Relation with feature spaces

Like we did for the GRAMTYPE model, we asso-
ciate a feature space Fi to each leaf of a hierarchy.
Likewise, the sum F =

⊕
iFi defines a large fea-

ture space. The corresponding parameter w of the
model can be obtained by learning the wi in Fi.

Given a sequence of indicators, the number of
different hierarchies we can define is equal to the
number of sub-trees of the complete decision tree
(each non-leaf node having all its children). The
minimal case is when all indicators are Boolean.
The number of full binary trees of height at most
n can be computed by the following recursion:
T (1) = 1 and T (n + 1) = 1 + T (n)2. So
T (n) ≥ 22

n
: even with small values of n, the

number of different hierarchies (or large feature
spaces) definable with a sequence of indicators is
gigantic (e.g. T (10) ≈ 3.8.1090).

Among all the possibilities for a large feature
space, many are irrelevant because for them the
data is too sparse or too noisy in some subspaces.
We need a general method for finding an ade-
quate space without enumerating and testing each
of them.

3.4 Optimizing hierarchies
Let us assume now that the sequence of indicators
is fixed, and let n be its length. To find the best
feature space among a very high number of pos-
sibilities, we need a criterion we can apply with-
out too much additional computation. For that we
only evaluate the feature space locally on pairs,
i.e. without applying a decoder on the output. We
employ 3 measures on pairwise classification re-
sults: precision, recall and F1-score. Now select-
ing the best space for one of these measures can
be achieved by using dynamic programming tech-
niques. In the rest of the paper, we will optimize
the F1-score.

Training the hierarchy Starting from the
product-hierarchy, we associate a classifier and its
proper feature space to each node of the tree5. The
classifiers are then trained as follows: for each in-
stance there is a unique path from the root to a leaf
of the complete tree. Each classifier situated on
the path is updated with this instance. The number
of iterations of the Passive-Aggressive is fixed.

Computing scores After training, we test all the
classifiers on another set of pairs6. Again, a classi-
fier is tested on an instance only if it is situated on
the path from the root to the leaf associated with
the instance. We obtain TP/FP/FN numbers7 on
pair classifications that are sufficient to compute
the F1-score. As for training, the data on which a
classifier at a given node is evaluated is the same
as the union of all data used to evaluate the clas-
sifiers corresponding to the children of this node.
Thus we are able to compare the scores obtained
at a node to the “union of the scores” obtained at
its children.

Cutting down the hierarchy For the moment
we have a complete tree with a classifier at each
node. We use a dynamic programming technique
to compute the best hierarchy by cutting this tree
and only keeping classifiers situated at the leaf.
The algorithm assembles the best local models (or
feature spaces) together to create larger models. It
goes from the leaves to the root and cuts the sub-
tree starting at a node whenever it does not pro-

5In the experiments, the classifiers use a copy of a same
feature space, but not the same data, which corresponds to
crossing the features with the categories of the decision tree.

6The training set is cut into two parts, for training and
testing the hierarchy. We used 10-fold cross-validation in our
experiments.

7True positives, false positives and false negatives.
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vide a better score than the node itself, or on the
contrary propagates the score of the sub-tree when
there is an improvement. The details are given in
algorithm 1.

list← list of nodes given by a breadth-first1

search for node in reversed list do
if node.children 6= ∅ then2

if sum-score(node.children) >3

node.score then
node.TP/FP/FN←4

sum-num(node.children)
else5

node.children← ∅6

end7

end8

end9

Algorithm 1: Cutting down a hierarchy

Let us briefly discuss the correctness and com-
plexity of the algorithm. Each node is seen two
times so the time complexity is linear in the num-
ber of nodes which is at least O(2n). However,
only nodes that have encountered at least one
training instance are useful and there are O(n ×
k) such nodes (where k the size of the training
set). So we can optimize the algorithm to run
in time O(n × k)8. If we scan the list obtained
by breadth-first search backwards, we are ensured
that every node will be processed after its chil-
dren. (node.children) is the set of children of
node, and (node.score) its score. sum-num pro-
vides TP/FP/FN by simply adding those of the
children and sum-score computes the score based
on these new TP/FP/FN numbers. (line 6) cuts the
children of a node when they are not used in the
best score. The algorithm thus propagates the best
scores from the leaves to the root which finally
gives a single score corresponding to the best hi-
erarchy. Only the leaves used to compute the best
score are kept, and they define the best hierarchy.

Relation between cutting and the global feature
space We can see the operation of cutting as re-
placing a group of subspaces by a single subspace
in the sum (see figure 2). So cutting down the
product-hierarchy amounts to reducing the global
initial feature space in an optimal way.

8In our experiments, cutting down the hierarchy was
achieved very quickly, and the total training time was about
five times longer than with a single model.

Figure 2: Cutting down the hierarchy reduces the
feature space

To sum up, the whole procedure is equivalent to
training more than O(2n) perceptrons simultane-
ously and selecting the best performing.

4 System description

Our system consists in the pairwise model ob-
tained by cutting a hierarchy (the PA with selected
feature space) and using a greedy decoder to cre-
ate clusters from the output. It is parametrized by
the choice of the initial sequence of indicators.

4.1 The base features

We used classical features that can be found in
details in (Bengston and Roth, 2008) and (Rah-
man and Ng, 2011): grammatical type and sub-
type of mentions, string match and substring, ap-
position and copula, distance (number of sepa-
rating mentions/sentences/words), gender/number
match, synonymy/hypernym and animacy (using
WordNet), family name (based on lists), named
entity types, syntactic features (gold parse) and
anaphoricity detection.

4.2 Indicators

As indicators we used: left and right grammati-
cal types and subtypes, entity types, a boolean in-
dicating if the mentions are in the same sentence,
and a very coarse histogram of distance in terms of
sentences. We systematically included right gram-
type and left gramtype in the sequences and added
other indicators, producing sequences of different
lengths. The parameter was optimized by docu-
ment categories using a development set after de-
coding the output of the pairwise model.

4.3 Decoders

We tested 3 classical greedy link selection strate-
gies that form clusters from the classifier decision:
Closest-First (merge mentions with their closest
coreferent mention on the left) (Soon et al., 2001),
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Best-first (merge mentions with the mention on
the left having the highest positive score) (Ng
and Cardie, 2002; Bengston and Roth, 2008), and
Aggressive-Merge (transitive closure on positive
pairs) (McCarthy and Lehnert, 1995). Each of
these decoders is typically (although not always)
used in tandem with a specific sampling selec-
tion at training. Thus, Closest-First for instance is
used in combination with a sample selection that
generates training instances only for the mentions
that occur between the closest antecedent and the
anaphor (Soon et al., 2001).

P R F1
SINGLE MODEL 22.28 63.50 32.99

RIGHT-TYPE 29.31 45.23 35.58
GRAMTYPE 39.12 45.83 42.21

BEST HIERARCHY 45.27 51.98 48.40

Table 1: Pairwise scores on CoNLL-2012 test.

5 Experiments

5.1 Data

We evaluated the system on the English part of the
corpus provided in the CoNLL-2012 Shared Task
(Pradhan et al., 2012), referred to as CoNLL-2012
here. The corpus contains 7 categories of doc-
uments (over 2K documents, 1.3M words). We
used the official train/dev/test data sets. We evalu-
ated our system in the closed mode which requires
that only provided data is used.

5.2 Settings

Our baselines are a SINGLE MODEL, the GRAM-
TYPE model (section 2) and a RIGHT-TYPE

model, defined as the first level of the gramtype
product hierarchy (i.e. grammatical type of the
anaphora (Morton, 2000)), with each greedy de-
coder and also the original sampling with a single
model associated with those decoders.

The hierarchies were trained with 10-fold cross-
validation on the training set (the hierarchies are
cut after cumulating the scores obtained by cross-
validation) and their parameters are optimized by
document category on the development set: the
sequence of indicators obtaining the best average
score after decoding was selected as parameter for
the category. The obtained hierarchy is referred to
as the BEST HIERARCHY in the results. We fixed
the number of iterations for the PA for all models.

In our experiments, we consider only the gold
mentions. This is a rather idealized setting but our
focus is on comparing various pairwise local mod-
els rather than on building a full coreference reso-
lution system. Also, we wanted to avoid having to
consider too many parameters in our experiments.

5.3 Evaluation metrics

We use the three metrics that are most commonly
used9, namely:

MUC (Vilain et al., 1995) computes for each
true entity cluster the number of system clusters
that are needed to cover it. Precision is this quan-
tity divided by the true cluster size minus one. Re-
call is obtained by reversing true and predicated
clusters. F1 is the harmonic mean.

B3 (Bagga and Baldwin, 1998) computes recall
and precision scores for each mention, based on
the intersection between the system/true clusters
for that mention. Precision is the ratio of the in-
tersection and the true cluster sizes, while recall is
the ratio of the intersection to the system cluster
sizes. Global recall, precision, and F1 scores are
obtained by averaging over the mention scores.

CEAF (Luo, 2005) scores are obtained by com-
puting the best one-to-one mapping between the
system/true partitions, which is equivalent to find-
ing the best optimal alignment in the bipartite
graph formed out of these partitions. We use the
φ4 similarity function from (Luo, 2005).

These metrics were recently used in the CoNLL-
2011 and -2012 Shared Tasks. In addition, these
campaigns use an unweighted average over the F1
scores given by the three metrics. Following com-
mon practice, we use micro-averaging when re-
porting our scores for entire datasets.

5.4 Results

The results obtained by the system are reported in
table 2. The original sampling for the single model
associated to Closest-First and Best-First decoder
are referred to as SOON and NGCARDIE.

The P/R/F1 pairwise scores before decoding are
given in table 1. BEST HIERARCHY obtains a
strong improvement in F1 (+15), a better precision
and a less significant diminution of recall com-
pared to GRAMTYPE and RIGHT-TYPE.

9BLANC metric (Recasens and Hovy, 2011) results are
not reported since they are not used to compute the CoNLL-
2012 global score. However we can mention that in our ex-
periments, using hierarchies had a positive effect similar to
what was observed on B3 and CEAF.
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MUC B3 CEAF
Closest-First P R F1 P R F1 P R F1 Mean

SOON 79.49 93.72 86.02 26.23 89.43 40.56 49.74 19.92 28.44 51.67
SINGLE MODEL 78.95 75.15 77.0 51.88 68.42 59.01 37.79 43.89 40.61 58.87

RIGHT-TYPE 79.36 67.57 72.99 69.43 56.78 62.47 41.17 61.66 49.37 61.61
GRAMTYPE 80.5 71.12 75.52 66.39 61.04 63.6 43.11 59.93 50.15 63.09

BEST HIERARCHY 83.23 73.72 78.19 73.5 67.09 70.15 47.3 60.89 53.24 67.19

MUC B3 CEAF
Best-First P R F1 P R F1 P R F1 Mean

NGCARDIE 81.02 93.82 86.95 23.33 93.92 37.37 40.31 18.97 25.8 50.04
SINGLE MODEL 79.22 73.75 76.39 40.93 75.48 53.08 30.52 37.59 33.69 54.39

RIGHT-TYPE 77.13 65.09 70.60 48.11 66.21 55.73 31.07 47.30 37.50 54.61
GRAMTYPE 77.21 65.89 71.1 49.77 67.19 57.18 32.08 47.83 38.41 55.56

BEST HIERARCHY 78.11 69.82 73.73 53.62 70.86 61.05 35.04 46.67 40.03 58.27

MUC B3 CEAF
Aggressive-Merge P R F1 P R F1 P R F1 Mean
SINGLE MODEL 83.15 88.65 85.81 35.67 88.18 50.79 36.3 28.27 31.78 56.13

RIGHT-TYPE 83.48 89.79 86.52 36.82 88.08 51.93 45.30 33.84 38.74 59.07
GRAMTYPE 83.12 84.27 83.69 44.73 81.58 57.78 45.02 42.94 43.95 61.81

BEST HIERARCHY 83.26 85.2 84.22 45.65 82.48 58.77 46.28 43.13 44.65 62.55

Table 2: CoNLL-2012 test (gold mentions): Closest-First, Best-First and Aggressive-Merge decoders.

Despite the use of greedy decoders, we observe
a large positive effect of pair separation in the
pairwise models on the outputs. On the mean
score, the use of distinct models versus a sin-
gle model yields F1 increases from 6.4 up to 8.3
depending on the decoder. Irrespective of the
decoder being used, GRAMTYPE always outper-
forms RIGHT-TYPE and single model and is al-
ways outperformed by BEST HIERARCHY model.

Interestingly, we see that the increment in pair-
wise and global score are not proportional: for
instance, the strong improvement of F1 between
RIGHT-TYPE and GRAMTYPE results in a small
amelioration of the global score.

Depending on the document category, we found
some variations as to which hierarchy was learned
in each setting, but we noticed that parameters
starting with right and left gramtypes often pro-
duced quite good hierarchies: for instance right
gramtype → left gramtype → same sentence →
right named entity type.

We observed that product-hierarchies did not
performed well without cutting (especially when
using longer sequences of indicators, because of
data sparsity) and could obtain scores lower than
the single model. Hopefully, after cutting them the

results always became better as the resulting hier-
archy was more balanced.

Looking at the different metrics, we notice that
overall, pair separation improves B3 and CEAF
(but not always MUC) after decoding the output:
GRAMTYPE provides a better mean score than the
single model, and BEST HIERARCHY gives the
highest B3, CEAF and mean score.

The best classifier-decoder combination reaches
a score of 67.19, which would place it above the
mean score (66.41) of the systems that took part
in the CoNLL-2012 Shared Task (gold mentions
track). Except for the first at 77.22, the best
performing systems have a score around 68-69.
Considering the simple decoding strategy we em-
ployed, our current system sets up a strong base-
line.

6 Conclusion and perspectives

In this paper, we described a method for select-
ing a feature space among a very large number of
choices by using linearity and by combining indi-
cators to separate the instances. We employed dy-
namic programming on hierarchies of indicators
to compute the feature space providing the best
pairwise classifications efficiently. We applied this
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method to optimize the pairwise model of a coref-
erence resolution system. Using different kinds
of greedy decoders, we showed a significant im-
provement of the system.

Our approach is flexible in that we can use a va-
riety of indicators. In the future we will apply the
hierarchies on finer feature spaces to make more
accurate optimizations. Observing that the gen-
eral method of cutting down hierarchies is not re-
stricted to modeling mention pairs, but can be ap-
plied to problems having Boolean aspects, we aim
at employing hierarchies to address other tasks in
computational linguistics (e.g. anaphoricity detec-
tion or discourse and temporal relation classifica-
tion wherein position information may help sepa-
rating the data).

In this work, we have only considered standard,
heuristic linking strategies like Closest-First. So,
a natural extension of this work is to combine our
method for learning pairwise models with more
sophisticated decoding strategies (like Bestcut or
using ILP). Then we can test the impact of hierar-
chies with more realistic settings.

Finally, the method for cutting hierarchies
should be compared to more general but similar
methods, for instance polynomial kernels for SVM
and tree-based methods (Hastie et al., 2001). We
also plan to extend our method by breaking the
symmetry of our hierarchies. Instead of cutting
product-hierarchies, we will employ usual tech-
niques to build decision trees10 and apply our cut-
ting method on their structure. The objective is
twofold: first, we will get rid of the sequence of
indicators as parameter. Second, we will avoid
fragmentation or overfitting (which can arise with
classification trees) by deriving an optimal large
margin linear model from the tree structure.
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Abstract

Techniques that compare short text seg-
ments using dependency paths (or simply,
paths) appear in a wide range of automated
language processing applications including
question answering (QA). However, few
models in ad hoc information retrieval (IR)
use paths for document ranking due to
the prohibitive cost of parsing a retrieval
collection. In this paper, we introduce a
flexible notion of paths that describe chains
of words on a dependency path. These
chains, or catenae, are readily applied in
standard IR models. Informative catenae
are selected using supervised machine
learning with linguistically informed fea-
tures and compared to both non-linguistic
terms and catenae selected heuristically
with filters derived from work on paths.
Automatically selected catenae of 1-2
words deliver significant performance
gains on three TREC collections.

1 Introduction
In the past decade, an increasing number of

techniques have used complex and effective
syntactic and semantic features to determine the
similarity, entailment or alignment between short
texts. These approaches are motivated by the idea
that sentence meaning can be flexibly captured by
the syntactic and semantic relations between words,
and encoded in dependency parse tree fragments.
Dependency paths (or simply, paths) are compared
using techniques such as tree edit distance (Pun-
yakanok et al., 2004; Heilman and Smith, 2010),
relation probability (Gao et al., 2004) and parse tree
alignment (Wang et al., 2007; Park et al., 2011).

Much work on sentence similarity using
dependency paths focuses on question answering
(QA) where textual inference requires attention
to linguistic detail. Dependency-based techniques
can also be highly effective for ad hoc information

retrieval (IR) (Park et al., 2011). However, few
path-based methods have been explored for ad
hoc IR, largely because parsing large document
collections is computationally prohibitive.

In this paper, we explore a flexible application
of dependency paths that overcomes this difficulty.
We reduce paths to chains of words called catenae
(Osborne and Groß, 2012) that capture salient
semantic content in an underspecified manner.
Catenae can be used as lexical units in a reformu-
lated query to explicitly indicate important word
relationships while retaining efficient and flexible
proximity matching. Crucially, this does not
require parsing documents. Moreover, catenae are
compatible with a variety of existing IR models.

We hypothesize that catenae identify most units
of salient knowledge in text. This is because
they are a condition for ellipsis, in which salient
knowledge can be successfully omitted from text
(Osborne and Groß, 2012). To our knowledge, this
paper is the first time that catenae are proposed
as a means for term selection in IR, and where
ellipsis is considered as a means for identification
of semantic units.

We also extend previous work with development
of a linguistically informed, supervised machine
learning technique for selection of informative
catenae. Previous heuristic filters for dependency
paths (Lin and Pantel, 2001; Shen et al., 2005;
Cui et al., 2005) can exclude informative relations.
Alternatively, treating all paths as equally infor-
mative (Punyakanok et al., 2004; Park et al., 2011;
Moschitti, 2008) can generate noisy word relations
and is computationally intensive.

The challenge of path selection is that no
explicit information in text indicates which paths
are relevant. Consider the catenae captured by
heuristic filters for the TREC1 query, ‘What
role does blood-alcohol level play in automobile
accident fatalities’ (#358, Table 1). It may appear
obvious that the component words of ‘role play’

1Text REtrieval Conference, see http://trec.nist.gov/
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blood alcohol

level play

auto accident

accident fatal

role play

play fatal

blood alcohol play

play accident fatal

auto accident fatal

level play fatal

role play fatal

role level play

blood alcohol

level play

auto accident

accident fatal

role blood

alcohol level

play auto

blood alcohol

level play

auto accident

accident fatal

role play

play fatal

Catenae Sequential dependenceGovernor3dependent

Query: What role does blood-alcohol level play in automobile* accident fatalities*?    (*abbreviated to `auto', `fatal')

auto accident

accident fatal

play fatal

play accident fatal

auto accident fatal

Predicate3argument

auto accident

accident fatal

auto accident fatal

level play fatal

role play fatal

Nominal end slots

Table 1: Catenae derived from dependency paths, as selected by heuristic methods. Selections are
compared to sequential bigrams that use no linguistic knowledge.

and ‘level play’ do not have an important semantic
relationship relative to the query, yet these catenae
are described by parent-child relations that are
commonly used to filter paths in text processing
applications. Alternative filters that avoid such
trivial word combinations also omit descriptions of
key entities such as ‘blood alcohol’, and identify
longer catenae that may be overly restrictive.
These shortcomings suggest that an optimized
selection process may improve performance of
techniques that use dependency paths in ad hoc IR.

We identify three previously proposed selection
methods, and compare them on the task of catenae
selection for ad hoc IR. Selections are tested
using three TREC collections: Robust04, WT10G,
and GOV2. This provides a diverse platform for
experiments. We also develop a linguistically
informed machine learning technique for catenae
selection that captures both key aspects of heuristic
filters, and novel characteristics of catenae and
paths. The basic idea is that selection, or weighting,
of catenae can be improved by features that are
specific to paths, rather than generic for all terms.

Results show that our selection method is more
effective in identifying key catenae compared
to previously proposed filters. Integration of the
identified catenae in queries also improves IR ef-
fectiveness compared to a highly effective baseline
that uses sequential bigrams with no linguistic
knowledge. This model represents the obvious
alternative to catenae for term selection in IR.

The rest of this paper is organised as follows.
§2 reviews related work, §3 describes catenae
and their linguistic motivation and §4 describes
our selection method. §5 evaluates classification
experiments using the supervised filter. §6 presents
the results of experiments in ad hoc IR. Finally, §7
concludes the paper.

2 Related work
Techniques that compare short text segments

using dependency paths are applied to a wide range
of automated language processing tasks, including
paraphrasing, summarization, entailment detection,
QA, machine translation and the evaluation of
word, phrase and sentence similarity. A generic
approach uses a matching function to compare a
dependency path between any two stemmed terms
x and y in a sentence A with any dependency path
between x and y in sentence B. The match score
for A and B is computed over all dependency
paths in A.

In QA this approach improves question repre-
sentation, answer selection and answer ranking
compared to methods that use bag-of-words
and ngram features (Surdeanu et al., 2011). For
example, Lin and Pantel (2001) present a method
to derive paraphrasing rules for QA using analysis
of paths that connect two nouns; Echihabi and
Marcu (2003) align all paths in questions with
trees for heuristically pruned answers; Cui et
al. (2005) score answers using a variation of the
IBM translation model 1; Wang et al. (2007)
use quasi-synchronous translation to map all
parent-child paths in a question to any path in an
answer; and Moschitti (2008) explores syntactic
and semantic kernels for QA classification.

In ad hoc IR, most models of term dependence
use word co-occurrence and proximity (Song and
Croft, 1999; Metzler and Croft, 2005; Srikanth and
Srihari, 2002; van Rijsbergen, 1993). Syntactic
language models for IR are a significant departure
from this trend (Gao et al., 2004; Lee et al., 2006;
Cai et al., 2007; Maisonnasse et al., 2007) that
use dependency paths to address long-distance
dependencies and normalize spurious differences
in surface text. Paths are constrained in both
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prd
loc

pmod
loc

pmod

Is    polio under control  in   China ?

X1
X2

X3
X4

X5
X6

polio
polio control
control
control China
China
polio control China

polio       under        control

control       in       China

polio       under        control       in        China 

loc pmod

loc pmod

loc pmod loc pmod

Catenae 'stoplisted. Dependency paths

Figure 1: Catenae are an economical and intuitive
representation of dependency paths.

queries and documents to parent-child relations.
In contrast, (Park et al., 2011) present a quasi-
synchronous translation model for IR that does not
limit paths. This is based on the observation that
semantically related words have a variety of direct
and indirect relations. All of these models require
parsing of an entire document collection.

Techniques using dependency paths in both QA
and ad hoc IR show promising results, but there
is no clear understanding of which path constraints
result in the greatest IR effectiveness. We directly
compare selections of catenae as a simplified
representation of paths.

In addition, a vast number of methods have
been presented for term weighting and selection
in ad hoc IR. Our supervised selection extends the
successful method presented by Bendersky and
Croft (2008) for selection and weighting of query
noun phrases (NPs). It also extends work for deter-
mining the variability of governor-dependent pairs
(Song et al., 2008). In contrast to this work, we
apply linguistic features that are specific to catenae
and dependency paths, and select among units
containing more than two content-bearing words.

3 Catenae as semantic units

Catenae (Latin for ‘chain’, singular catena) are
dependency-based syntactic units. This section
outlines their unique semantic properties.

A catena is defined on a dependency graph that
has lexical nodes (or words) linked by binary asym-
metrical relations called dependencies. Depen-
dencies hold between a governor and a dependent
and may be syntactic or semantic in nature (Nivre,
2005). A dependency graph is usually acyclic such
that each node has only one governor, and one root
node of the tree does not depend on any other node.

A catena is a word, or sequence of words that are
continuous with respect to a walk on a dependency

Is polio under control in China, and is polio under control in India?

Antecedent

First conjunct:
Antecedent clause

Second conjunct:
Elliptical/target clause

Elided text Remnant

Figure 2: Ellipsis in a coordinated construct.

graph. For example, Fig. 1 shows a dependency
parse that generates 21 catenae in total: (using
i for Xi) 1, 2, 3, 4, 5, 6, 12, 23, 34, 45, 56, 123,
234, 345, 456, 1234, 2345, 3456, 12345, 23456,
123456. We process catenae to remove stop words
on the INQUERY stoplist (Allan et al., 2000) and
lexical units containing 18 TREC description stop
words such as ‘describe’. This results in a reduced
set of catenae as shown in Fig. 1.

A dependency path is ordered and includes both
word tokens and the relations between them. In
contrast, a catena is a set of word types that may
be ordered or partially ordered. A catena is an
economical, intuitive lexical unit that corresponds
to a dependency path and is argued to play an
important role in syntax (Osborne et al., 2012).

In this paper, we explore catenae instead of paths
for ad hoc IR due to their suitability for efficient IR
models and flexible representation of language se-
mantics. Specifically, we note that catenae identify
words that can be omitted in elliptical constructions
(Osborne et al., 2012). They thus represent salient
semantic information in text. To clarify this insight,
we briefly review catenae in ellipsis.

3.1 Semantic units in ellipsis

Fig. 2 shows terminology for the phenomenon
of ellipsis. The omitted words are called elided
text, and words that could be omitted, but are not,
we call elliptical candidates.

Ellipsis relies on the logical structure of a
coordinated construction in which two or more
elements, such as sentences, are joined by a
conjunctive word or phrase such as ‘and’ or
‘more than’. A coordinated structure is required
because the omitted words are ‘filled in’ by
assuming a parallel relation p between the first
and second conjunct. In ellipsis, p is omitted and
its arguments are retained in text. In order for
ellipsis to be successful and grammatically correct,
p must be salient shared knowledge at the time of
communication (Prince, 1986; Steedman, 1990). If
p is salient then the omitted text can be inferred. If
p is not salient then the omission of words merely
results in ungrammatical, or incoherent, sentences.

This framework is practically illustrated in Fig.
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   Is polio under control in China, and 3is polio under control. in India ?
   Is polio under control in China, and is cancer under observation 3in China7 ?
* Is polio under control in China, and 3is7 cancer 2under. observation 3in China7 ?
* Is polio under control in China, and 3is polio. under 2control in7 India ?

Ellipsis candidates marked in italics: they are catenae

a7                                         in India    ?
b7   is cancer under observation        ?
c7 *    cancer            observation        ?
d7 *                under                 India   ?

Is polio under control in China, and...

Ellided sentences

Figure 3: For ellipsis to be successful, elided words must be catenae. Ellipsis candidates are catenae2.

Is    polio under control  in   China ?

X1 X2

X3
X4

X5 X6

Figure 4: A parse in which ‘polio China’ is a
catena.

3 for the query, ‘Is polio under control in China?’.
Sentences marked by * are incoherent, and it is
evident that the omitted words do not form a salient
semantic unit. They also do not form catenae. In
contrast, the omitted words in successful ellipsis
do form catenae, and they represent informative
word combinations with respect to the query. This
observation leads us to an ellipsis hypothesis:

Ellipsis hypothesis: For queries formulated
into coordinated structures, the subset of
catenae that are elliptical candidates identify
the salient semantic units in the query.

3.2 Limitations of paths and catenae

The prediction of salient semantic units by cate-
nae is quite robust. However, there are two prob-
lems that can limit the effectiveness of any tech-
nique that uses catenae or dependency paths in IR.

1) Syntactic ambiguity: We make the simpli-
fying assumption that the most probable parse of
a query is accurate and sufficient for the extraction
of relevant catenae. However, this is not always
true. For example, the sentence ‘Is polio under
control in China, and under observation ?’
constitutes successful ellipsis. The elided words
‘polio in china’ are relevant to a base query, ‘Is
polio under control in China?’. Unfortunately,
in Fig. 1 the elided text does not qualify as a
catena. A parse with alternative prepositional
phrase attachment is shown in Fig. 4. Here, the
successfully elided text does qualify as a catena.
This highlights the fact that a single dependency
parse may only partially represent the ambiguous
semantics of a query. More accurate parsing does
not address this problem.

2) Rising: Automatic extraction of catenae is
limited by the phenomenon of rising. Let the

used  a  toxic chemical  as   a  weapon

X4
X3X2

X1

X5

X6
X7

Standard structure

A  toxic chemical used  as   a  weapon

X3
X2X1 X4g

X5

X6
X7

Rising structure

Figure 5: A parse with and without rising. The
dashed dependency edge marks where a head is
not also the governor and the g-script marks the
governor of the risen catena.

governor of a catena be the word that licenses
it (in Fig. 5 ‘used’ licenses ‘a toxic chemical’
e.g. ‘used what?’). Let the head of a catena be
its parent in a dependency tree. Rising occurs
when the head is not the same as the governor.
This is frequently seen with wh-fronting questions
that start who, what etc., as well as with many
other syntactic discontinuities (Osborne and Groß,
2012). More specifically, rising occurs when a
catena is separated from its governor by words
that its governor does not dominate, or the catena
dominates the governor, as in Fig. 5. Note that
in the risen structure, the words for the catena
‘chemical as a weapon’ are discontinuous on the
surface, interrupted by the word ‘used’.

4 Selection method for catenae
Catenae describe relatively few of the possible

word combinations in a sentence, but still include
many combinations that do not result in successful
ellipsis and are not informative for IR.

This section describes our supervised method
for selection of informative catenae. Candidate
catenae are identified using two constraints that
enable more efficient extraction: stopwords are
removed, and stopped catenae must contain fewer
than four words (single words are permitted). We
use a pseudo-projective joint dependency parse
and semantic role labelling system (Johansson and
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Nugues, 2008) to generate the dependency parse.
This enables us to explore semantic classification
features and is highly accurate. However, any
dependency parser may be applied instead. For
comparison, catenae extracted from 500 queries
using the Stanford dependency parser (de Marneffe
et al., 2006) overlap with 77% of catenae extracted
from the same queries using the applied parser.

4.1 Feature Classes

Four feature classes are presented in Table 2:

Ellipsis candidates: The ellipsis hypothesis
suggests that informative catenae are elliptical
candidates. However, queries are not in the
coordinated structures required for ellipsis. To
enable extraction of characteristic features we (a)
construct a coordinated query by adding the query
to itself; and (b) elide catenae from the second
conjunct. For example, for the query, Is polio
under control in China? we have:

(a) Is polio under control in China, and is
polio under control in China?
(b) Is polio under control in China, and is
polio in China?

We refer to the words in (b) as the query remainder
and use this to identify features detailed in Table 2.

Dependency path features: Part-of-speech
tags and semantic roles have been used to filter
dependency paths. We identify several features that
use these characteristics from prior work (Table 2).

In addition, variability in the separation distance
in documents observed for words that have
governor-dependent relations in queries has been
proposed for identification of promising paths
(Song et al., 2008). We also observe that due to the
phenomenon of rising, words that form catenae can
be discontinuous in text, and the ability of catenae
to match similar word combinations is limited by
variability of how they appear in documents. Thus,
we propose features for separation distance, but use
efficient collection statistics rather than summing
statistics for every document in a collection.

Co-occurrence features: A governor w1 tends
to subcategorize for its dependents wn. This
means that w1 often determines the choice of wn.
We conclude that co-occurrence is an important
feature of dependency relations (Mel’c̆uk, 2003).
In addition, term frequencies and inverse document
frequencies calculated using word co-occurrence
measures are commonly used in IR. We use
features previously proposed for filtering terms in
IR (Bendersky and Croft, 2008) with two methods

to normalize co-occurrence counts for catenae of
different lengths: a factor |c||c|, where |c| is the
number of words in catena c (Hagen et al., 2011),
and the average score for a feature type over all
pairwise word combinations in c.

IR performance predictors: Catenae take the
same form as typical IR search terms. For this
reason, we also use predictors of IR effectiveness
previously applied to IR terms.

In general, path and co-occurrence features are
similar to those applied by Surdeanu et al. (2011)
but we do not parse documents. Path features
are also similar to Song et al. (2008), but more
efficient and suited to units of variable length.
Ellipsis features have not been used before.

5 Experimental setup

5.1 Classification

Catenae selection is framed as a supervised
classification problem trained on binary human
judgments of informativeness: how well catenae
represent a query and discriminate between
relevant and non-relevant documents in a col-
lection. Kappa for two annotators on catenae
in 100 sample queries was 0.63, and test-retest
reliability for individual judges was similar (0.62)3.
Although this is low, human annotations produced
consistently better classification accuracy than
other labelling methods explored.

We use the Weka (Hall et al., 2009) Ad-
aBoost.M1 meta-classifier (Freund and Schapire,
1996) with unpruned C4.5 decision trees as base
learners to classify catenae as informative or
not. Adaboost.M1 boosts decisions over T weak
learners for T features using weighted majority
voting. At each round, predictions of a new learner
are focused on incorrectly classified examples
from the previous round. Adaboost.M1 was
selected in preference to other algorithms because
it performed better in preliminary experiments,
leverages many weak features to advantage, and
usually does not overfit (Schapire et al., 1997).

Predictions are made using 10-fold cross-
validation. There are roughly three times the
number of uninformative catenae compared to
informative catenae. In addition, the number of
training examples is small (1295 to 5163 per collec-
tion). To improve classifier accuracy, the training
data for each collection is supplemented and
balanced by generating examples from queries for

3Catenae, judgments and annotation details available at
ciir.cs.umass.edu/˜tmaxwell
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isSeq

Minimum perplexity of ngrams with length 2, 3, and 
4 in a window of up to a 3 words around the site of 
catenae omission. This is the area where 
ungrammaticality may be introduced. For the 
remainder R=`ABCDE&ABE' we compute ppl1 for 
I&ABE, &AB, ABE, &A, AB, BEJ.

R_ppl1

R_strict

Compliance with strict handKcoded rules for 
grammaticality of a remainder. Rules include 
unlikely orderings of punctuation and partKofK
speech MPOSQ tags Me.g. ,, Q, poor placement of 
determiners and punctuation, and orphaned words, 
such as adjectives without the nouns they modify.

R_relax

A relaxed version of handKcoded rules for R_strict. 
Some rules were observed to be overly aggressive in 
detection of ungrammatical remainders.

Ellipsis candidate features (E)

Co-occurrence features (C)

IR performance prediction features (I)

c_ppl1

Dependency path features (D) (continued)

Dependency paths traverse nodes including 
stopwords and may be filtered based on POS tags. 
We use perplexity for the sequence of POS tags in 
catenae before removing stopwords. This is 
computed using a POS language model built on 
ukWaC parsed wikipedia data MBaroni et al., 2009Q.

phClass

Phrasal class for a catena, with options NP, VP and 
Other. A catena has a NP or VP class if it is, or is 
entirely contained by, an NP or VP MSong et al., 
2008Q.

NP_split

Unsuccessful ellipsis often results if elided words 
only partly describe a base NP. Boolean feature for 
presence of a partial NP in the remainder. NPs Mand 
PPsQ are identified using the MontyLingua toolkit.

PP_split
As for NP_split, defined for prepositional phrases 

(PP). 

F_split As for NP_split, defined for finite clauses.

semRole

Boolean feature indicating whether a catena 
describes all, or part of, a predicateKargument 
structure MPASQ. Previous work approximated PAS 
by using paths between head nouns and verbs, and 
all paths excluding those within base chunks.

c_len
Length of a stopped catenae. Longer terms tend to 
reduce IR recall.

Boolean indicating if catena words are sequential in 
stoplisted surface text. 

cf_ow

Frequency of a catena in the retrieval collection, 
words appearing ordered in a window the length of 
the catena. 

cf_uw As for cf_ow, but words may appear unordered.

cf_uw8
As for cf_uw, but the window has a length of 8 
words.

idf_ow

Inverse document frequency MidfQ where document 
frequency MdfQ of a catena is calculated using cf_ow 

windows. Let N  be the number of documents in 
the retrieval collection, then:

                      
idf(Ci) = log2

N

df(Ci)

and idf(Ci) = N  if df(Ci) = 0.

idf_uw As for idf_ow, but words may appear unordered.

idf_uw8
As for idf_uw, but the window has a length of 8 
words.

gf

Google ngrams frequency MBrants and Franz, 2006Q 
from a web crawl of approximately one trillion 
English word tokens. Counts from a large collection 
are expected to be more reliable than those from 
smaller test collections.

WIG

Normalized Weighted Information Gain MWIGQ is 
the change in information over top ranked 
documents between a random ranked list and an 
actual ranked list retrieved with a catena c MZhou 
and Croft, 2007Q. 

    
wig(c) =

1
k

∑
d∈Dk(c)

log p(c|d) − log p(c|C)

−log p(c|C)

where Dk are the top k=50 documents retrieved 

with catena c from collection C, and p(c|·) are 
maximum likelihood estimates. A second feature 
uses the average WIG score for all pairwise word 
combinations in c.

qf_in

Frequency of appearance in queries from the Live 
Search 2006 search query log Mapproximately 15 
million queriesQ. Query log frequencies are a 
measure of the likelihood that a catena will appear 
in any query. 

wf_in
As for qf_in, but using frequency counts in 
Wikipedia titles instead of queries.

sepMode

Most frequent separation distance of words in 
catena c in the retrieval collection, with possible 
values S = 81, 2, 3, long=. 1 means that all words are 
adjacent, 2 means separation by 0-1 words, and long 

means containment in a window of size 4 ∗ |c|.

H_c

Entropy for separation distance s of words in catena 
c in the retrieval collection.fs is the frequency of c 
in window size s, and fS is the frequency of c in a 

window of size 4 ∗ |c| . All f are normalized for 

catena length using |c||c| MHagen et al., 2011Q.

              
Hc =

∑

s∈S

fs + 0.5

fS + 0.5
log2

fs + 0.5

fS + 0.5

sepRatio

Where fs and fS are defined as for H_c:

                        
sepRatioc =

fs>2 + 0.5

fS + 0.5

wRatio

For words w in catena c; fS is defined as for H_c.

                   
wRatioc =

0.5 + 1
|c|

∑
w∈c fw

fS + 0.5

nomEnd

Boolean indicating whether the words at each end 
of the catena are nouns Mor the catena is a single 
nounQ.

Dependency path features (D)

Table 2: Classifier features.

512



Feature Classes

Pr

 

ROB04

WT10G

GOV2

 

D-CIE-CIE-DE-D-CI

R

86.2 72.8

79.3 67.1

77.0 68.0

Pr R

83.5 67.5

76.9 59.7

70.9 61.8

Pr R

86.2 71.7

77.2 65.6

72.8 63.9

Pr R

86.2 72.0

79.6 66.1

75.5 67.2

 

Table 3: Average classifier precision (Pr) and recall
(R) over 10 folds. Pr is % positive predictions
that are correct. R is % positive labeled instances
predicted as positive. A combination of all classes
marginally performs best.

other collections used in this paper, plus TREC8-
QA. For example, training data for Robust04
includes data from WT10G, GOV2 and TREC8-
QA. Any examples that replicate catenae in the test
collection are excluded. For Robust04, WT10G
and GOV2 respectively, 30%, 82% and 69% of the
training data is derived from other collections.

5.2 Classification results

Average classification precision and recall is
shown in Table 3. Co-occurrence and IR effective-
ness prediction features (CI) was the most influen-
tial class, and accounted for 70% of all features in
the model. Performance is marginally better using
all features (E-D-CI) with a moderate improvement
over human agreement on the annotation task. The
E-D-CI filter is used in subsequent experiments.

Catenae were predicted for all queries. Predic-
tions were more accurate for Robust04 than the
other two collections. One potential explanation
is that Robust04 queries are longer on average
(up to 32 content words per query, compared to
up to 16 words) so they generate a more diverse
set of catenae that are more easily distinguished
with respect to informativeness. The proportion
of training data specific to the retrieval collection
may also be a factor. Longer queries produce a
greater number of catenae, so less training data
from other collections is required.

6 Evaluation framework

6.1 Baseline IR models

Baselines are a unigram query likelihood (QL)
model (bag of words) and a highly effective
sequential dependence (SD) variant of the Markov
random field (MRF) model (Metzler and Croft,
2005). SD uses a linear combination of three
cliques of terms, where each clique is prioritized
by a weight λc. The first clique contains individual
words (query likelihood QL), λ1 = 0.85. The
second clique contains query bigrams that match

document bigrams in 2-word ordered windows
(‘#1’), λ2 = 0.1. The third clique uses the same
bigrams as clique 2 with an 8-word unordered
window (‘#uw8’), λ3 = 0.05. For example, the
query new york city in Indri4 query language is:

#weight(
λ1 #combine(new york city)
λ2 #combine(#1(new york) #1(york city))
λ3 #combine(#uw8(new york) #uw8(york city)))

SD is a competitive baseline in IR (Bendersky
and Croft, 2008; Park et al., 2011; Xue et al.,
2010). Our reformulated model uses the same
query format as SD, but the second and third
cliques contain filtered catenae instead of query
bigrams. In addition, because catenae may be
multi-word units, we adjust the unordered window
size to 4 ∗ |c|. So, if two catenae ‘york’ and ‘new
york city’ are selected, the last clique has the form:

λ3 #combine( york #uw12(new york city))

This query representation enables word relations
to be explicitly indicated while maintaining
efficient and flexible matching of catenae in
documents. Moreover, it does not use dependency
relations between words during retrieval, so there
is no need to parse a collection.

6.2 Baseline catenae selection

We explore four filters for catenae. Three are
based on previous work and describe heuristic
features of promising catenae. The fourth is our
novel supervised classifier.

NomEnd: Catenae starting and ending with
nouns, or containing only one word that is a noun.
Paths between nouns are used by Lin and Pantel
(2001).

SemRol: Catenae in which all component
words are either predicates or argument heads.
This is based on work that uses paths between head
nouns and verbs (Shen et al., 2005), semantic roles
(Moschitti, 2008), and all dependency paths except
those that occur between words in the same base
chunk (e.g. noun / verb phrase) (Cui et al., 2005).

GovDep: Cantenae containing words with a
governor-dependent relation. Many IR models
use this form of path filtering e.g. (Gao et al.,
2004; Wang et al., 2007). Relations are ‘collapsed’
by removing stopwords to reduce the distance
between content nodes in a dependency graph.

4http://www.lemurproject.org/
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ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

QL 25.25 28.69 19.55 22.77 25.77 31.26
SD 26.57† 30.02† 20.63 24.31† 28.00† 33.30†
NomEnd 25.91† 29.35‡ 20.81† 24.27† 27.41† 32.94†
GovDep 26.26† 29.63† 21.06 24.23† 27.87† 33.51†
SemRol 25.70† 29.06 19.78 22.93 26.76 32.49†
SFeat 27.04† 30.11† 20.84† 24.31† 28.43† 33.84†
SF-12 27.03† 30.20† 21.62† 24.81† 28.57† 34.01†

Table 4: IR results using filtered catenae consistently improve over non-linguistic methods.
Significance(p < .05) shown compared to QL (†) and SD (‡).

ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

SF-12 27.03 30.20 21.62 24.81 28.57 34.01
SF-123 26.83 30.34 21.34 24.64 28.77 34.24
SF-NE 26.51 29.86 21.42 24.55 27.96 33.26
SF-GD 26.22 29.48 20.33 23.72 28.30 33.83
Gold 27.92 31.15 22.56 25.69 29.65 35.08

Table 5: Results with supervised selection of catenae with specified length (SF-12, SF-123) are more
effective than combinations of SFeat with heuristic NomEnd (SF-NE) or GovDep (SF-GD).

6.3 Experiments

Experiments compare queries reformulated
using catenae selected by baseline filters and our
supervised selection method (SFeat) to SD and
a bag-of-words model (QL). We also compare IR
effectiveness of all catenae filtered using SFeat
with approaches that combine SFeat with baseline
filters. All models are implemented using the Indri
retrieval engine version 4.12.

6.4 Results

Results in Table 4 show significant improvement
in mean average precision (MAP) of queries using
catenae compared to QL. Consistent improvements
over SD are also demonstrated for supervised
selection applied to all catenae (SFeat) and catenae
with only 1-2 words (SF-12) across all collections
(Table 5). Overall, changes are small and fairly
robust, with one half to two thirds of all queries
showing less than 10% change in MAP.

Unlike sFeat, other filters tend to decrease per-
formance compared to SD. Governor-dependent
relations for WT10G are an exception and we spec-
ulate that this is due to a negative influence of 3-
word catenae for this collection. Manual inspection
suggests that WT10G queries are short and have
relatively simple syntactic structure (e.g. few PP
attachment ambiguities). This means that 3-word
catenae (in all models except GovDep) tend to in-
clude uninformative words, such as ‘reasons’ in
‘fasting religious reasons’. In contrast, 3-word cate-

nae in other collections tend to identify query sub-
concepts or phrases, such as ‘science plants water’.

Classification results for catenae separated by
length, such that the classifier for catenae with a
specific length are trained on examples of catenae
with the same length, confirm this intuition. The
rejection rate for 3-word catenae is twice as high
for WT10G as for other collections. It is also
more difficult to distinguish informative 3-word
catenae compared to catenae with 1-2 words. To
assess the impact of classification accuracy on IR
effectiveness, Table 5 shows results with oracle
knowledge of annotator judgments.

The SF-12 model combines catenae predicted for
lengths 1 and 2. Its strong performance across all
collections suggests that most of the benefit derived
from catenae in IR is found in governor-dependent
and single word units, where single words are
important (GovDep uses only 2-word catenae).
Another major observation (Table 5) is that mixing
baseline heuristic filters with a supervised ap-
proach is not as successful as supervised selection
alone. In particular, performance decreases for
filtered governor-dependent pairs. This suggests
that some important word relations in GovDep and
NomEnd are captured by triangulation.

Finally, we review selected catenae for queries
that perform significantly better or worse than SD
(> 75% change in MAP). The best IR effectiveness
occurs when selected catenae clearly focus on the
most important aspect of a query. Poor perfor-
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mance is caused by a lack of focus in a catenae set,
even though selected catenae are reasonable, or an
emphasis on words that are not central to the query.
The latter can occur when words that are not es-
sential to query semantics appear in many catenae
due to their position in the dependency graph.

7 Conclusion
We presented a flexible implementation of

dependency paths for long queries in ad hoc IR that
does not require dependency parsing a collection.
Our supervised selection technique for catenae
addresses the need to balance a representation of
language expressiveness with effective, efficient
statistical methods. This is a core challenge in
computational linguistics.

It is not possible to directly compare perfor-
mance of our approach with ad hoc techniques in
IR that parse a retrieval collection. However, we
note that a recent result using query translation
based on dependency paths (Park et al., 2011)
reports 14% improvement over query likelihood
(QL). Our approach achieves 7% improvement
over QL on the same collection. We conclude that
catenae do not replace path-based techniques, but
may offer some insight into their application, and
have particular value when it is not practical to
parse target documents to determine text similarity.
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Abstract

Paratactic syntactic structures are noto-
riously difficult to represent in depen-
dency formalisms. This has painful con-
sequences such as high frequency of pars-
ing errors related to coordination. In other
words, coordination is a pending prob-
lem in dependency analysis of natural lan-
guages. This paper tries to shed some
light on this area by bringing a system-
atizing view of various formal means de-
veloped for encoding coordination struc-
tures. We introduce a novel taxonomy of
such approaches and apply it to treebanks
across a typologically diverse range of 26
languages. In addition, empirical obser-
vations on convertibility between selected
styles of representations are shown too.

1 Introduction

In the last decade, dependency parsing has grad-
ually been receiving visible attention. One of
the reasons is the increased availability of depen-
dency treebanks, be they results of genuine depen-
dency annotation projects or converted automat-
ically from previously existing phrase-structure
treebanks.

In both cases, a number of decisions have to be
made during the construction or conversion of a
dependency treebank. The traditional notion of
dependency does not always provide unambiguous
solutions, e.g. when it comes to attaching func-
tional words. Worse, dependency representation is
at a loss when it comes to representing paratactic
linguistic phenomena such as coordination, whose
nature is symmetric (two or more conjuncts play
the same role), as opposed to the head-modifier
asymmetry of dependencies.1

1We use the term modifier (or child) for all types of de-
pendent nodes including arguments.

The dominating solution in treebank design is to
introduce artificial rules for the encoding of coor-
dination structures within dependency trees using
the same means that express dependencies, i.e., by
using edges and by labeling of nodes or edges. Ob-
viously, any tree-shaped representation of a coor-
dination structure (CS) must be perceived only as
a “shortcut” since relations present in coordination
structures form an undirected cycle, as illustrated
already by Tesnière (1959). For example, if a noun
is modified by two coordinated adjectives, there
is a (symmetric) coordination relation between the
two conjuncts and two (asymmetric) dependency
relations between the conjuncts and the noun.

However, as there is no obvious linguistic in-
tuition telling us which tree-shaped CS encoding
is better and since the degree of freedom has sev-
eral dimensions, one can find a number of distinct
conventions introduced in particular dependency
treebanks. Variations exist both in topology (tree
shape) and labeling. The main goal of this pa-
per is to give a systematic survey of the solutions
adopted in these treebanks.

Naturally, the interplay of dependency and co-
ordination links in a single tree leads to serious
parsing issues.2 The present study does not try to
decide which coordination style is the best from
the parsing point of view.3 However, we believe
that our survey will substantially facilitate experi-
ments in this direction in the future, at least by ex-
ploring and describing the space of possible can-
didates.

2CSs have been reported to be one of the most frequent
sources of parsing errors (Green and Žabokrtský, 2012; Mc-
Donald and Nivre, 2007; Kübler et al., 2009; Collins, 2003).
Their impact on quality of dependency-based machine trans-
lation can also be substantial; as documented on an English-
to-Czech dependency-based translation system (Popel and
Žabokrtský, 2009), 39% of serious translation errors which
are caused by wrong parsing have to do with coordination.

3There might be no such answer, as different CS conven-
tions might serve best for different applications or for differ-
ent parser architectures.
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The rest of the paper is structured as follows.
Section 2 describes some known problems related
to CS. Section 3 shows possible “styles” for rep-
resenting CS. Section 4 lists treebanks whose CS
conventions we studied. Section 5 presents empir-
ical observations on CS convertibility. Section 6
concludes the paper.

2 Related work

Let us first recall the basic well-known character-
istics of CSs.

In the simplest case of a CS, a coordinating
conjunction joins two (usually syntactically and
semantically compatible) words or phrases called
conjuncts. Even this simplest case is difficult to
represent within a dependency tree because, in the
words of Lombardo and Lesmo (1998): Depen-
dency paradigms exhibit obvious difficulties with
coordination because, differently from most lin-
guistic structures, it is not possible to characterize
the coordination construct with a general schema
involving a head and some modifiers of it.
Proper formal representation of CSs is further
complicated by the following facts:

• CSs with more than two conjuncts (multi-
conjunct CSs) exist and are frequent.
• Besides “private” modifiers of individual

conjuncts, there are modifiers shared by
all conjuncts, such as in “Mary came and
cried”. Shared modifiers may appear along-
side with private modifiers of particular con-
juncts.
• Shared modifiers can be coordinated, too:

“big and cheap apples and oranges”.
• Nested (embedded) coordinations are possi-

ble: “John and Mary or Sam and Lisa”.
• Punctuation (commas, semicolons, three

dots) is frequently used in CSs, mostly with
multi-conjunct coordinations or juxtaposi-
tions which can be interpreted as CSs with-
out conjunctions (e.g. “Don’t worry, be
happy!”).
• In many languages, comma or other punctu-

ation mark may play the role of the main co-
ordinating conjunction.
• The coordinating conjunction may be a mul-

tiword expression (“as well as”).
• Deficient CSs with a single conjunct exist.
• Abbreviations like “etc.” comprise both the

conjunction and the last conjunct.
• Coordination may form very intricate struc-

tures when combined with ellipsis. For ex-
ample, a conjunct can be elided while its ar-
guments remain in the sentence, such as in
the following traditional example: “I gave
the books to Mary and the records to Sue.”

• The border between paratactic and hypotactic
surface means of expressing coordination re-
lations is fuzzy. Some languages can use en-
clitics instead of conjunctions/prepositions,
e.g. Latin “Senatus Populusque Romanus”.
Purely hypotactic surface means such as the
preposition in “John with Mary” occur too.4

• Careful semantic analysis of CSs discloses
additional complications: if a node is mod-
ified by a CS, it might happen that it is
the node itself (and not its modifiers) what
should be semantically considered as a con-
junct. Note the difference between “red and
white wine” (which is synonymous to “red
wine and white wine”) and “red and white
flag of Poland”. Similarly, “five dogs and
cats” has a different meaning than “five dogs
and five cats”.

Some of these issues were recognized already
by Tesnière (1959). In his solution, conjuncts are
connected by vertical edges directly to the head
and by horizontal edges to the conjunction (which
constitutes a cycle in every CS). Many different
models have been proposed since, out of which the
following are the most frequently used ones:

• MS = Mel’čuk style used in the Meaning-
Text Theory (MTT): the first conjunct is the
head of the CS, with the second conjunct at-
tached as a dependent of the first one, third
conjunct under the second one, etc. Coor-
dinating conjunction is attached under the
penultimate conjunct, and the last conjunct
is attached under the conjunction (Mel’čuk,
1988),
• PS = Prague Dependency Treebank (PDT)

style: all conjuncts are attached under the
coordinating conjunction (along with shared
modifiers, which are distinguished by a spe-
cial attribute) (Hajič et al., 2006),

4As discussed by Stassen (2000), all languages seem to
have some strategy for expressing coordination. Some of
them lack the paratactic surface means (the so called WITH-
languages), but the hypotactic surface means are present al-
most always.
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• SS = Stanford parser style:5 the first conjunct
is the head and the remaining conjuncts (as
well as conjunctions) are attached under it.

One can find various arguments supporting the
particular choices. MTT possesses a complex
set of linguistic criteria for identifying the gov-
ernor of a relation (see Mazziotta (2011) for an
overview), which lead to MS. MS is preferred in
a rule-based dependency parsing system of Lom-
bardo and Lesmo (1998). PS is advocated by
Štěpánek (2006) who claims that it can represent
shared modifiers using a single additional binary
attribute, while MS would require a more complex
co-indexing attribute. An argumentation of Tratz
and Hovy (2011) follows a similar direction: We
would like to change our [MS] handling of coordi-
nating conjunctions to treat the coordinating con-
junction as the head [PS] because this has fewer
ambiguities than [MS]. . .

We conclude that the influence of the choice of
coordination style is a well-known problem in de-
pendency syntax. Nevertheless, published works
usually focus only on a narrow ad-hoc selection of
few coordination styles, without giving any sys-
tematic perspective.

Choosing a file format presents a different prob-
lem. Despite various efforts to standardize lin-
guistic annotation,6 no commonly accepted stan-
dard exists. The primitive format used for CoNLL
shared tasks is widely used in dependency parsing,
but its weaknesses have already been pointed out
(cf. Straňák and Štěpánek (2010)). Moreover, par-
ticular treebanks vary in their contents even more
than in their format, i.e. each treebank has its own
way of representing prepositions or different gran-
ularity of syntactic labels.

3 Variations in representing
coordination structures

Our analysis of variations in representing coordi-
nation structures is based on observations from a
set of dependency treebanks for 26 languages.7

5We use the already established MS-PS-SS distinction to
facilitate literature overview; as shown in Section 3, the space
of possible coordination styles is much richer.

6For example, TEI (TEI Consortium, 2013), PML (Hana
and Štěpánek, 2012), SynAF (ISO 24615, 2010).

7The primary data sources are the following: Ancient
Greek: Ancient Greek Dependency Treebank (Bamman and
Crane, 2011), Arabic: Prague Arabic Dependency Tree-
bank 1.0 (Smrž et al., 2008), Basque: Basque Dependency
Treebank (larger version than CoNLL 2007 generously pro-

In accordance with the usual conventions, we as-
sume that each sentence is represented by one de-
pendency tree, in which each node corresponds
to one token (word or punctuation mark). Apart
from that, we deliberately limit ourselves to CS
representations that have shapes of connected sub-
graphs of dependency trees.

We limit our inventory of means of expressing
CSs within dependency trees to (i) tree topology
(presence or absence of a directed edge between
two nodes, Section 3.1), and (ii) node labeling
(additional attributes stored insided nodes, Sec-
tion 3.2).8 Further, we expect that the set of pos-
sible variations can be structured along several di-
mensions, each of which corresponds to a certain
simple characteristic (such as choosing the left-
most conjunct as the CS head, or attaching shared
modifiers below the nearest conjunct). Even if it
does not make sense to create the full Cartesian
product of all dimensions because some values
cannot be combined, it allows to explore the space
of possible CS styles systematically.9

3.1 Topological variations

We distinguish the following dimensions of topo-
logical variations of CS styles (see Figure 1):

Family – configuration of conjuncts. We di-
vide the topological variations into three main
groups, labeled as Prague (fP), Moscow (fM), and

vided by IXA Group) (Aduriz and others, 2003), Bulgarian:
BulTreeBank (Simov and Osenova, 2005), Czech: Prague
Dependency Treebank 2.0 (Hajič et al., 2006), Danish: Dan-
ish Dependency Treebank (Kromann et al., 2004), Dutch:
Alpino Treebank (van der Beek and others, 2002), English:
Penn TreeBank 3 (Marcus et al., 1993), Finnish: Turku De-
pendency Treebank (Haverinen et al., 2010), German: Tiger
Treebank (Brants et al., 2002), Greek (modern): Greek De-
pendency Treebank (Prokopidis et al., 2005), Hindi, Ben-
gali and Telugu: Hyderabad Dependency Treebank (Husain
et al., 2010), Hungarian: Szeged Treebank (Csendes et al.,
2005), Italian: Italian Syntactic-Semantic Treebank (Mon-
temagni and others, 2003), Latin: Latin Dependency Tree-
bank (Bamman and Crane, 2011), Persian: Persian Depen-
dency Treebank (Rasooli et al., 2011), Portuguese: Floresta
sintá(c)tica (Afonso et al., 2002), Romanian: Romanian De-
pendency Treebank (Călăcean, 2008), Russian: Syntagrus
(Boguslavsky et al., 2000), Slovene: Slovene Dependency
Treebank (Džeroski et al., 2006), Spanish: AnCora (Taulé
et al., 2008), Swedish: Talbanken05 (Nilsson et al., 2005),
Tamil: TamilTB (Ramasamy and Žabokrtský, 2012), Turk-
ish: METU-Sabanci Turkish Treebank (Atalay et al., 2003).

8Edge labeling can be trivially converted to node labeling
in tree structures.

9The full Cartesian product of variants in Figure 1 would
result in topological 216 variants, but only 126 are applicable
(the inapplicable combinations are marked with “—” in Fig-
ure 1). Those 126 topological variants can be further com-
bined with labeling variants defined in Section 3.2.
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Main family
Prague family (code fP)

[14 treebanks]
Moscow family (code fM)

[5 treebanks]
Stanford family (code fS)

[6 treebanks]
Choice of head

Head on left (code hL)
[10 treebanks]

dogs

and

,  cats

rats
,     cats  and  rats

dogs

Head on right (code hR)
[14 treebanks]

Mixed head (code hM) [1 treebank] A mixture of hL and hR

Attachment of shared modifiers

Shared modifier
below the nearest conjunct
(code sN)
[15 treebanks]

Shared modifier below head
(code sH)
[11 treebanks]

lazy

lazy   dogs     ,      cats     rats

and

lazy

dogs  , la

lazy

dogs  ,

and

cats

rats

lazy   dogs    ,    cats   and

rats

Attachment of coordinating conjunction

Coordinating conjunction
below previous conjunct (code cP)
[2 treebanks]

—
dogs

and  rats

,  cats ,     cats          rats

dogs

and

Coordinating conjunction
below following conjunct (code cF)
[1 treebank]

—

and  rats

dogs

rats

,  cats

and

,     cats          rats

dogs

and

Coordinating conjunction
between two conjuncts (code cB)
[8 treebanks]

—

dogs

and

,  cats

rats
,     cats  and  rats

dogs

Coordinating conjunction as the head (code cH)
is the only applicable style for the Prague family [14 treebanks]

— —

Placement of punctuation
values pP [7 treebanks], pF [1 treebank] and pB [15 treebanks] are analogous to cP, cF and cB
(but applicable also to the Prague family)

Figure 1: Different coordination styles, variations in tree topology. Example phrase: “(lazy) dogs, cats
and rats”. Style codes are described in Section 3.1.

Stanford (fS) families.10 This first dimension dis-
tinguishes the configuration of conjuncts: in the
Prague family, all the conjuncts are siblings gov-
erned by one of the conjunctions (or a punctuation
fulfilling its role); in the Moscow family, the con-
juncts form a chain where each node in the chain
depends on the previous (or following) node; in
the Stanford family, the conjuncts are siblings ex-
cept for the first (or last) conjunct, which is the

10Names are chosen purely as a mnemonic device, so that
Prague Dependency Treebank belongs to the Prague family,
Mel’čuk style belongs to the Moscow family, and Stanford
parser style belongs to the Stanford family.

head.11

Choice of head – leftmost or rightmost. In
the Prague family, the head can be either the left-
most12 (hL) or the rightmost (hR) conjunction or
punctuation. Similarly, in the Moscow and Stan-
ford families, the head can be either the leftmost
(hL) or the rightmost (hR) conjunct. A third op-

11Note that for CSs with just two conjuncts, fM and fS
may look exactly the same (depending on the attachment of
conjunctions and punctuation as described below).

12For simplicity, we use the terms left and right even if
their meaning is reversed for languages with right-to-left
writing systems such as Arabic or Persian.
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tion (hM) is to mix hL and hR based on some cri-
terion, e.g. the Persian treebank uses hR for coor-
dination of verbs and hL otherwise. For the exper-
iments in Section 5, we choose the head which is
closer to the parent of the whole CS, with the mo-
tivation to make the edge between CS head and its
parent shorter, which may improve parser training.

Attachment of shared modifiers. Shared mod-
ifiers may appear before the first conjunct or after
the last one. Therefore, it seems reasonable to at-
tach shared modifiers either to the CS head (sH),
or to the nearest (i.e. first or last) conjunct (sN).

Attachment of coordinating conjunctions. In
the Moscow family, conjunctions may be either
part of the chain of conjuncts (cB), or they may be
put outside of the chain and attached to the previ-
ous (cP) or following (cF) conjunct. In the Stan-
ford family, conjunctions may be either attached
to the CS head (and therefore between conjuncts)
(cB), or they may be attached to the previous (cP)
or the following (cF) conjunct. The cB option in
both Moscow and Stanford families, treats con-
junctions in the same way as conjuncts (with re-
spect to topology only). In the Prague family, there
is just one option available (cH) – one of the con-
junctions is the CS head while the others are at-
tached to it.

Attachment of punctuation. Punctuation to-
kens separating conjuncts (commas, semicolons
etc.) could be treated the same way as conjunc-
tions. However, in most treebanks it is treated
differently, so we consider it as well. The val-
ues pP, pF and pB are analogous to cP, cF and
cB except that punctuation may be also attached
to the conjunction in case of pP and pF (other-
wise, a comma before the conjunction would be
non-projectively attached to the member follow-
ing the conjunction).

The three established styles mentioned in Sec-
tion 2 can be defined in terms of the newly intro-
duced abbreviations: PS = fPhRsHcHpB, MS =
fMhLsNcBp?, and SS = fShLsNcBp?.13

3.2 Labeling variations

Most state-of-the-art dependency parsers can pro-
duce labeled edges. However, the parsers produce
only one label per edge. To fully capture CSs,
we need more than one label, because there are
several aspects involved (see the initial assump-

13The question marks indicate that the original Mel’čuk
and Stanford parser styles ignore punctuation.

tions in Section 3): We need to identify the co-
ordinating conjunction (its POS tag might not be
enough), conjuncts, shared modifiers, and punctu-
ation that separates conjuncts. Besides that, there
should be a label classifying the dependency rela-
tion between the CS and its parent.

Some of the information can be retrieved from
the topology of the tree and the “main label” of
each node, but not everything. The additional in-
formation can be attached to the main label, but
such approach obscures the logical structure.

In the Prague family, there are two possible
ways to label a conjunction and conjuncts:

Code dU (“dependency labeled at the upper
level of the CS”). The dependency relation of the
whole CS to its parent is represented by the label
of the conjunction, while the conjuncts are marked
with a special label for conjuncts (e.g. ccof in the
Hyderabad Dependency Treebank).

Code dL (“lower level”). The CS is represented
by a coordinating conjunction (or punctuation if
there is no conjunction) with a special label (e.g.
Coord in PDT). Subsequently, each conjunct has
its own label that reflects the dependency relation
towards the parent of the whole CS, therefore, con-
juncts of the same CS can have different labels,
e.g. “Who[SUBJ] and why[ADV] did it?”

Most Prague family treebanks use sH, i.e.
shared modifiers are attached to the head (coor-
dinating conjunction). Each child of the head has
to belong to one of three sets: conjuncts, shared
modifiers, and punctuation or additional conjunc-
tions. In PDT, conjuncts, punctuation and addi-
tional conjunctions are recognized by specific la-
bels. Any other children of the head are shared
modifiers.

In the Stanford and Moscow families, one of
the conjuncts is the head. In practice, it is never la-
beled as a conjunct explicitly, because the fact that
it is a conjunct can be deduced from the presence
of conjuncts among its children. Usually, the other
conjuncts are labeled as conjuncts; conjunctions
and punctuation also have a special label. This
type of labeling corresponds to the dU type.

Alternatively (as found in the Turkish treebank,
dL), all conjuncts in the Moscow chain have their
own dependency labels and the fact that they are
conjuncts follows from the COORDINATION la-
bels of the conjunction and punctuation nodes be-
tween them.

To represent shared modifiers in the Stan-
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ford and Moscow families, an additional label
is needed again to distinguish between private
and shared modifiers since they cannot be distin-
guished topologically. Moreover, if nested CSs
are allowed, a binary label is not sufficient (i.e.
“shared” versus “private”) because it also has to
indicate which conjuncts the shared modifier be-
longs to.14

We use the following binary flag codes for cap-
turing which CS participants are distinguished in
the annotation: m01 = shared modifiers anno-
tated; m10 = conjuncts annotated; m11 = both
annotated; m00 = neither annotated.

4 Coordination Structures in Treebanks

In this section, we identify the CS styles defined
in the previous section as used in the primary tree-
bank data sources; statistical observations (such
as the amount of annotated shared modifiers) pre-
sented here, as well as experiments on CS-style
convertibility presented in Section 5.2, are based
on the normalized shapes of the treebanks as con-
tained in the HamleDT 1.0 treebank collection
(Zeman et al., 2012).15

Some of the treebanks were downloaded indi-
vidually from the web, but most of them came
from previously published collections for depen-
dency parsing campaigns: six languages from
CoNLL-2006 (Buchholz and Marsi, 2006), seven
languages from CoNLL-2007 (Nivre et al., 2007),
two languages from CoNLL-2009 (Hajič and oth-
ers, 2009), three languages from ICON-2010 (Hu-
sain et al., 2010). Obviously, there is a certain
risk that the CS-related information contained in
the source treebanks was slightly biased by the
properties of the CoNLL format upon conversion.
In addition, many of the treebanks were natively
dependency-based (cf. the 2nd column of Table 1),
but some were originally based on constituents
and thus specific converters to the CoNLL for-
mat had to be created (for instance, the Span-
ish phrase-structure trees were converted to de-
pendencies using a procedure described by Civit
et al. (2006); similarly, treebank-specific convert-
ers have been used for other languages). Again,

14This is not needed in Prague family where shared modi-
fiers are attached to the conjunction provided that each shared
modifier is shared by conjuncts that form a full subtree to-
gether with their coordinating conjunctions; no exceptions
were found during the annotation process of the PDT.

15A subset of the treebanks whose license
terms permit redistribution is available directly at
http://ufal.mff.cuni.cz/hamledt/.

Danish Romanian

hunde

rotter

,   katte   og c

tter

câini           şi

pisici     şobolani

Hungarian

kutyák    ,    macskák    és    patkányok

Figure 2: Annotation styles of a few treebanks do
not fit well into the multidimensional space de-
fined in Section 3.1.

there is some risk that the CS-related information
contained in treebanks resulting from such conver-
sions is slightly different from what was intended
in the very primary annotation.

There are several other languages (e.g. Esto-
nian or Chinese) which are not included in our
study, despite of the fact that constituency tree-
banks do exist for them. The reason is that the
choice of their CS style would be biased, because
no independent converters exist – we would have
to convert them to dependencies ourselves. We
also know about several more dependency tree-
banks that we have not processed yet.

Table 1 shows 26 languages whose treebanks
we have studied from the viewpoint of their CS
styles. It gives the basic quantitative properties of
the treebanks, their CS style in terms of the tax-
onomy introduced in Section 3, as well as statis-
tics related to CSs: the average number of CSs per
100 tokens, the average number of conjuncts per
one CS, the average number of shared modifiers
per one CS,16 and the percentage of nested CSs
among all CSs. The reader can return to Figure
1 to see the basic statistics on the “popularity” of
individual design decisions among the developers
of dependency treebanks or constituency treebank
converters.

CS styles of most treebanks are easily classifi-
able using the codes introduced in Section 3, plus
a few additional codes:

• p0 = punctuation was removed from the tree-
bank.

16All non-Prague family treebanks are marked sN and
m00 or m10, (i.e. shared modifiers not marked in the origi-
nal annotation, but attached to the head conjunct) because we
found no counterexamples (modifiers attached to a conjunct,
but not the nearest one). The HamleDT normalization proce-
dure contains a few heuristics to detect shared modifiers, but
it cannot recover the missing distinction reliably, so the num-
bers in the “SMs/CJ” column are mostly underestimated.
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Language Orig. Data Sents. Tokens Original CS CSs / CJs / SMs / Nested RT
type set style code 100 tok. CS CS CS[%] UAS

Ancient
Greek dep prim. 31 316 461 782 fP hR sH cH pB dL m11 6.54 2.17 0.16 10.3 97.86
Arabic dep C07 3 043 116 793 fP hL sH cH pB dL m00 3.76 2.42 0.13 10.6 96.69
Basque dep prim. 11 225 151 593 fP hR sN cH pP dU m00 3.37 2.09 0.03 5.1 99.32
Bengali dep I10 1 129 7 252 fP hR sH cH pP dU m11 4.87 1.71 0.05 24.1 99.97
Bulgarian phr C06 13 221 196 151 fS hL sN cB pB dU m10 2.99 2.19 0.00 0.0 99.74
Czech dep C07 25 650 437 020 fP hR sH cH pB dL m11 4.09 2.16 0.20 14.6 99.42
Danish dep C06 5 512 100 238 fS* hL sN cP pB dU m10 3.68 1.93 0.13 7.5 99.76
Dutch phr C06 13 735 200 654 fP hR sN cH pP dU m10 2.06 2.17 0.05 3.3 99.47
English phr C07 40 613 991 535 fP hR sH cH pB dU m10 2.07 2.33 0.05 6.3 99.84
Finnish dep prim. 4 307 58 576 fS hL sN cB pB dU m10 4.06 2.41 0.00 6.4 99.70
German phr C09 38 020 680 710 fM hL sN cP pP dU m10 2.79 2.09 0.01 0.0 99.73
Greek dep C07 2 902 70 223 fP hR sH cH pB dL m11 3.25 2.48 0.18 7.2 99.43
Hindi dep I10 3 515 77 068 fP hR sH cH pP dU m11 2.45 1.97 0.04 10.3 98.35
Hungarian phr C07 6 424 139 143 fT hX sN cX pX dL m00 2.37 1.90 0.01 2.2 99.84
Italian dep C07 3 359 76 295 fS hL sN cB pB dU m10 3.32 2.02 0.03 3.8 99.51
Latin dep prim. 3 473 53 143 fP hR sH cH pB dL m11 6.74 2.24 0.41 12.3 97.45
Persian dep prim. 12 455 189 572 fM*hM sN cB pP dU m00 4.18 2.10 0.18 3.7 99.82
Portuguese phr C06 9 359 212 545 fS hL sN cB pB dU m10 2.51 1.95 0.26 11.1 99.16
Romanian dep prim. 4 042 36 150 fP* hR sN cH p0 dU m10 1.80 2.00 0.00 0.0 100.00
Russian dep prim. 34 895 497 465 fM hL sN cB p0 dU m10 4.02 2.02 0.07 3.9 99.86
Slovene dep C06 1 936 35 140 fP hR sH cH pB dL m00 4.31 2.49 0.00 10.8 98.87
Spanish phr C09 15 984 477 810 fS hL sN cB pB dU m10 2.79 1.98 0.14 12.7 99.24
Swedish phr C06 11 431 197 123 fM hL sN cF pF dU m10 3.94 2.19 0.13 0.7 99.66
Tamil dep prim. 600 9 581 fP hR sH cH pB dL m11 1.66 2.46 0.22 3.8 99.67
Telugu dep I10 1 450 5 722 fP hR sH cH pP dU m11 3.48 1.59 0.06 5.0 100.00
Turkish dep C07 5 935 69 695 fM hR sN cB pB dL m10 3.81 2.04 0.00 34.3 99.23

Table 1: Overview of analyzed treebanks. prim. = primary source; C06–C09 = CoNLL 2006–2009;
I10 = ICON 2010; SM = shared modifier; CJ = conjunct; Nested CS = portion of CSs participating in
nested CSs (both as the inner and outer CS); RT UAS = unlabeled attachment score of the roundtrip
experiment described in Section 5. Style codes are defined in Sections 3 and 4.

• fM* = Persian treebank uses a mix of fM and
fS: fS for coordination of verbs and fM oth-
erwise.

Figure 2 shows three other anomalies:

• fS* = Danish treebank employs a mixture of
fS and fM, where the last conjunct is attached
indirectly via the conjunction.

• fP* = Romanian treebank omits punctuation
tokens and multi-conjunct coordinations get
split.

• fT = Hungarian Szeged treebank uses
“Tesnière family” – disconnected graphs for
CSs where conjuncts (and conjunction and
punctuation) are attached directly to the par-
ent of CS, and so the other style dimensions
are not applicable (hX, cX, pX).

5 Empirical Observations on
Convertibility of Coordination Styles

The various styles cannot represent the CS-related
information to the same extent. For example,

it is not possible to represent nested CSs in the
Moscow and Stanford families without signifi-
cantly changing the number of possible labels.17

The dL style (which is most easily applicable to
the Prague family) can represent coordination of
different dependency relations. This is again not
possible in the other styles without adding e.g. a
special “prefix” denoting the relations.

We can see that the Prague family has a greater
expressive power than the other two families: it
can represent complex CSs using just one addi-
tional binary label, distinguishing between shared
modifiers and conjuncts. A similar additional label
is needed in the other styles to distinguish between
shared and private modifiers.

Because of the different expressive power, con-
verting a CS from one style to another may
lead to a loss of information. For example, as

17Mel’čuk uses “grouping” to nest CSs – cf. related so-
lutions involving coindexing or bubble trees (Kahane, 1997).
However, these approaches were not used in any of the re-
searched treebanks. To combine grouping with shared modi-
fiers, each group in a tree should have a different identifier.
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there is no way of representing shared modifiers
in the Moscow family without an additional at-
tribute, converting a CS with shared modifiers
from Prague to Moscow family makes the modi-
fiers private. When converting back, one can use
certain heuristics to handle the most obvious cases,
but sometimes the modifiers will stay private (very
often, the nature of a modifier depends on context
or is debatable even for humans, e.g. “Young boys
and girls”).

5.1 Transformation algorithm

We developed an algorithm to transform one CS
style to another. Two subtasks must be solved by
the algorithm: identification of individual CSs and
their participants, and transforming of the individ-
ual CSs.

Obviously, the individual CSs cannot be trans-
formed independently because of coordination
nesting. For instance, when transforming a nested
coordination from the Prague style to the Moscow
style (e.g. to fMhL), the leftmost conjunct in the
inner (lower) coordination must climb up to be-
come the head of the inner CS, but then it must
climb up once again to become the head of the
outer (upper) CS too. This shows that inner CSs
must be transformed first.

We tackle this problem by a depth-first recur-
sion. When going down the tree, we only recog-
nize all the participants of the CSs, classify them
and gather them in a separate data structure (one
for each visited CS). The following four types
of CS participants are distinguished: coordinat-
ing conjunctions, conjuncts, shared modifiers, and
punctuations that separate conjuncts.18 No change
of the tree is performed during these descent steps.

When returning back from the recursion (i.e.,
when climbing from a node back up to its par-
ent), we test whether the abandoned node is the
topmost node of some CS. If so, then this CS is
transformed, which means that its participants are
rehanged and relabelled according the the target
CS style.

This procedure naturally guarantees that the in-

18Conjuncts are explicitly marked in most styles. Coordi-
nating conjunctions can be usually identified with the help of
dependency labels and POS tags. Punctuation separating con-
juncts can be detected with high accuracy using simple rules.
If shared modifiers are not annotated (code m00 or m10),
one can imagine rule-based heuristics or special classifiers
trained to distinguish shared modifiers. For the experiments
in this section, we use the HamleDT gold annotation attribute
is shared modifier.

ner CSs are transformed first and that all CSs are
transformed when the recursions returns to the
root.

5.2 Roundtrip experiment

The number of possible conversion directions ob-
viously grows quadratically with the number of
styles. So far, we limited ourselves only to con-
versions from/to the style of the HamleDT tree-
bank collection, which contains all the treebanks
under our study already converted into a com-
mon scheme. The common scheme is based
on the conventions of PDT, whose CS style is
fPhRsHcHpB.19

We selected nine styles (3 families times 3 head
choices) and transformed all the HamleDT scheme
treebanks to these nine styles and back, which we
call a roundtrip. Resulting averaged unlabeled at-
tachment scores (UAS, evaluated against the Ham-
leDT scheme) in the last column of Table 1 indi-
cate that the percentage of transformation errors
(i.e. tokens attached to a different parent after the
roundtrip) is lower than 1% for 20 out of the 26
languages.20 A manual inspection revealed two
main error sources. First, as noted above, the Stan-
ford and Moscow families have lower expressive
power than the Prague family, so naturally, the in-
verse transformation was ambiguous and the trans-
formation heuristics were not capable of identify-
ing the correct variant every time. Second, we also
encountered inconsistencies in the original tree-
banks (which we were not trying to fix in Ham-
leDT for now).

6 Conclusions and Future Work

We described a (theoretically very large) space of
possible representations of CSs within the depen-
dency framework. We pointed out a range of de-
tails that make CSs a really complex phenomenon;
anyone dealing with CSs in treebanking should
take these observations into account.

We proposed a taxonomy of those approaches

19As documented in Zeman et al. (2012), the normalization
procedures used in HamleDT embrace many other phenom-
ena as well (not only those related to coordination), and in-
volve both structural transformation and dependency relation
relabeling.

20Table 1 shows that Latin and Ancient Greek treebanks
have on average more than 6 CSs per 100 tokens, more than
2 conjuncts per CS, and Latin has also the highest number of
shared modifiers per CS. Therefore the percentage of nodes
affected by the roundtrip is the highest for these languages
and the lower roundtrip UAS is not surprising.
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that have been argued for in literature or employed
in real treebanks.

We studied 26 existing treebanks of different
languages. For each value of each dimension in
Figure 1, we found at least one treebank where the
value is used; even so, several treebanks take their
own unique path that cannot be clearly classified
under the taxonomy (the taxonomy could indeed
be extended, for the price of being less clearly ar-
ranged).

We discussed the convertibility between the var-
ious styles and implemented a universal tool that
transforms between any two styles of the taxon-
omy. The tool achieves a roundtrip accuracy close
to 100%. This is important because it opens the
door to easily switching coordination styles for
parsing experiments, phrase-to-dependency con-
version etc.

While the focus of this paper is to explore and
describe the expressive power of various annota-
tion styles, we did not address the learnability of
the styles by parsers. That will be a complemen-
tary point of view, and thus a natural direction of
future work for us.
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Marie Mikulová, Zdeněk Žabokrtský, and Magda
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Jan Štěpánek. 2006. Capturing a Sentence Struc-
ture by a Dependency Relation in an Annotated Syn-
tactical Corpus (Tools Guaranteeing Data Consis-
tence) (in Czech). Ph.D. thesis, Charles Univer-

526



sity in Prague, Faculty of Mathematics and Physics,
Prague, Czech Republic.
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Abstract

We present GlossBoot, an effective
minimally-supervised approach to ac-
quiring wide-coverage domain glossaries
for many languages. For each language
of interest, given a small number of
hypernymy relation seeds concerning a
target domain, we bootstrap a glossary
from the Web for that domain by means of
iteratively acquired term/gloss extraction
patterns. Our experiments show high
performance in the acquisition of domain
terminologies and glossaries for three
different languages.

1 Introduction

Much textual content, such as that available on
the Web, contains a great deal of information fo-
cused on specific areas of knowledge. However,
it is not infrequent that, when reading a domain-
specific text, we humans do not know the mean-
ing of one or more terms. To help the human
understanding of specialized texts, repositories of
textual definitions for technical terms, called glos-
saries, are compiled as reference resources within
each domain of interest. Interestingly, electronic
glossaries have been shown to be key resources
not only for humans, but also in Natural Language
Processing (NLP) tasks such as Question Answer-
ing (Cui et al., 2007), Word Sense Disambiguation
(Duan and Yates, 2010; Faralli and Navigli, 2012)
and ontology learning (Navigli et al., 2011; Ve-
lardi et al., 2013).

Today large numbers of glossaries are available
on the Web. However most such glossaries are
small-scale, being made up of just some hundreds
of definitions. Consequently, individual glossaries
typically provide a partial view of a given domain.
Moreover, there is no easy way of retrieving the
subset of Web glossaries which appertains to a do-
main of interest. Although online services such

as Google Define allow the user to retrieve defi-
nitions for an input term, such definitions are ex-
tracted from Web glossaries and put together for
the given term regardless of their domain. As a re-
sult, gathering a large-scale, full-fledged domain
glossary is not a speedy operation.

Collaborative efforts are currently producing
large-scale encyclopedias, such as Wikipedia,
which are proving very useful in NLP (Hovy et al.,
2013). Interestingly, wikipedias also include man-
ually compiled glossaries. However, such glos-
saries still suffer from the same above-mentioned
problems, i.e., being incomplete or over-specific,1

and hard to customize according to a user’s needs.
To automatically obtain large domain glos-

saries, over recent years computational ap-
proaches have been developed which extract tex-
tual definitions from corpora (Navigli and Velardi,
2010; Reiplinger et al., 2012) or the Web (Fujii
and Ishikawa, 2000). The former methods start
from a given set of terms (possibly automatically
extracted from a domain corpus) and then har-
vest textual definitions for these terms from the
input corpus using a supervised system. Web-
based methods, instead, extract text snippets from
Web pages which match pre-defined lexical pat-
terns, such as “X is a Y”, along the lines of Hearst
(1992). These approaches typically perform with
high precision and low recall, because they fall
short of detecting the high variability of the syn-
tactic structure of textual definitions. To address
the low-recall issue, recurring cue terms occurring
within dictionary and encyclopedic resources can
be automatically extracted and incorporated into
lexical patterns (Saggion, 2004). However, this
approach is term-specific and does not scale to ar-
bitrary terminologies and domains.

In this paper we propose GlossBoot, a novel
approach which reduces human intervention to a
bare minimum and exploits the Web to learn a

1http://en.wikipedia.org/wiki/Portal:Contents/Glossaries
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Figure 1: The GlossBoot bootstrapping process for glossary learning.

full-fledged domain glossary. Given a domain and
a language of interest, we bootstrap the glossary
learning process with just a few hypernymy rela-
tions (such as computer is-a device), with the only
condition that the (term, hypernym) pairs must be
specific enough to implicitly identify the domain
in the target language. Hence we drop the require-
ment of a large domain corpus, and also avoid the
use of training data or a manually defined set of
lexical patterns. To the best of our knowledge, this
is the first approach which jointly acquires large
amounts of terms and glosses from the Web with
minimal supervision for any target domain and
language.

2 GlossBoot

Our objective is to harvest a domain glossary G
containing pairs of terms/glosses in a given lan-
guage. To this end, we automatically populate a
set of HTML patterns P which we use to extract
definitions from Web glossaries. Initially, both
P := ∅ and G := ∅. We incrementally populate
the two sets by means of an initial seed selection
step and four iterative steps (cf. Figure 1):

Step 1. Initial seed selection: first, we manu-
ally select a set of K hypernymy relation seeds
S = {(t1, h1), . . . , (tK , hK)}, where the pair (ti,
hi) contains a term ti and its generalization hi
(e.g., (firewall, security system)). This is the only
human input to the entire glossary learning pro-
cess. The selection of the input seeds plays a key
role in the bootstrapping process, in that the pat-
tern and gloss extraction process will be driven by
these seeds. The chosen hypernymy relations thus
have to be as topical and representative as pos-
sible for the domain of interest (e.g., (compiler,
computer program) is an appropriate pair for com-
puter science, while (byte, unit of measurement)
is not, as it might cause the extraction of several
glossaries of units and measures).

We now set the iteration counter k to 1 and start
the first iteration of the glossary bootstrapping pro-

cess (steps 2-5). After each iteration k, we keep
track of the set of glosses Gk, acquired during it-
eration k.

Step 2. Seed queries: for each seed pair (ti, hi),
we submit the following query to a Web search
engine: “ti” “hi” glossaryKeyword2 (where
glossaryKeyword is the term in the target lan-
guage referring to glossary (i.e., glossary for En-
glish, glossaire for French etc.)) and collect the
top-ranking results for each query.3 Each result-
ing page is a candidate glossary for the domain
implicitly identified by our relation seeds S.

Step 3. Pattern and glossary extraction: we
initialize the glossary for iteration k as follows:
Gk := ∅. Next, from each resulting page, we har-
vest all the text snippets s starting with ti and end-
ing with hi (e.g., “firewall</b> – a <i>security
system” where ti = firewall and hi = security sys-
tem), i.e., s = ti . . . hi. For each such text snippet
s, we perform the following substeps:

(a) extraction of the term/gloss separator: we
start from ti and move right until we extract
the longest sequence pM of HTML tags and
non-alphanumeric characters, which we call the
term/gloss separator, between ti and the glossary
definition (e.g., “</b> -” between “firewall” and
“a” in the above example).

(b) gloss extraction: we expand the snippet s
to the right of hi in search of the entire gloss
of ti, i.e., until we reach a block element (e.g.,
<span>, <p>, <div>), while ignoring format-
ting elements such as <b>, <i> and <a> which
are typically included within a definition sen-
tence. As a result, we obtain the sequence
ti pM glosss(ti) pR, where glosss(ti) is our gloss
for seed term ti in snippet s (which includes hi by
construction) and pR is the HTML block element

2In what follows we use the typewriter font for
keywords and term/gloss separators.

3We use the Google Ajax APIs, which return the 64 top-
ranking search results.
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Generalized pattern HTML text snippet
<strong> * </strong> - * </span> <strong>Interrupt</strong> - The suspension of normal

program execution to perform a higher priority service rou-
tine as requested by a peripheral device. </span>

<dt> * </dt><dd> * </dd> <dt>Netiquette</dt><dd>The established conventions
of online politeness are called netiquette.</dd>

<h3> * </h3><p> * </p> <h3>Compiler</h3><p>A program that translates
source code, such as C++ or Pascal, into directly executable
machine code.</p>

<span> * </span> - * </p> <span>Signature</span> - A function’s name and param-
eter list. </p>

<span> * </span>: * <span> <span>Blog</span>: Short for “web log”, a blog is an
online journal. <span>

Table 1: Examples of generalized patterns together with matching HTML text snippets.

Figure 2: An example of decomposition during pattern extraction for a snippet matching the seed pair
(firewall, security system).

to the right of the extracted gloss. In Figure 2 we
show the decomposition of our example snippet
matching the seed (firewall, security system).

(c) pattern instance extraction: we extract the
following pattern instance:

pL ti pM glosss(ti) pR,

where pL is the longest sequence of HTML tags
and non-alphanumeric characters obtained when
moving to the left of ti (see Figure 2).

(d) pattern extraction: we generalize the above
pattern instance to the following pattern:

pL ∗ pM ∗ pR,

i.e., we replace ti and glosss(ti) with *. For the
above example, we obtain the following pattern:

<p><b> * </b> - * </p>.

Finally, we add the generalized pattern to the set
of patterns P , i.e., P := P ∪ {pL ∗ pM ∗ pR}.
We also add the first sentence of the retrieved gloss
glosss(ti) to our glossary Gk, i.e., Gk := Gk ∪
{(ti, first(glosss(ti)))}, where first(g) returns
the first sentence of gloss g.

(e) pattern matching: finally, we look for addi-
tional pairs of terms/glosses in the Web page con-
taining the snippet s by matching the page against
the generalized pattern pL ∗ pM ∗ pR. We then

add toGk the new (term, gloss) pairs matching the
generalized pattern. In Table 1 we show some non-
trivial generalized patterns together with matching
HTML text snippets.

As a result of step 3, we obtain a glossary Gk

for the terms discovered at iteration k.

Step 4. Gloss ranking and filtering: impor-
tantly, not all the extracted definitions pertain to
the domain of interest. In order to rank the glosses
obtained at iteration k by domain pertinence, we
assume that the terms acquired at previous itera-
tions belong to the target domain, i.e., they are do-
main terms at iteration k. Formally, we define the
terminology T k−1

1 of the domain terms accumu-
lated up until iteration k − 1 as follows: T k−1

1 :=⋃k−1
i=1 T

i, where T i := {t : ∃(t, g) ∈ Gi}. For the
base step k = 1, we define T 0

1 := {t : ∃(t, g) ∈
G1}, i.e., we use the first-iteration terminology it-
self.

To rank the glosses, we first transform each ac-
quired gloss g to its bag-of-word representation
Bag(g), which contains all the single- and multi-
word expressions in g. We use the lexicon of the
target language’s Wikipedia together with T k−1

1 in
order to obtain the bag of content words.4 Then we

4In fact Wikipedia is only utilized in the multi-word iden-
tification phase. We do not use Wikipedia for discovering
new terms.
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Term Gloss Hypernym # Seeds Score
dynamic packet filter A firewall facility that can monitor the state of ac-

tive connections and use this information to determine
which network packets to allow through the firewall

firewall 2 0.75

die An integrated circuit chip cut from a finished wafer. integrated circuit 1 0.75
constructor a method used to help create a new object and ini-

tialise its data
method 0 1.00

Table 2: Examples of extracted terms, glosses and hypernyms (seeds are in bold, domain terms, i.e., in
T k−1
1 , are underlined, non-domain terms in italics).

calculate the domain score of a gloss g as follows:

score(g) =
|Bag(g) ∩ T k−1

1 |
|Bag(g)| . (1)

Finally, we use a threshold θ (whose tuning is
described in the experimental section) to remove
from Gk those glosses g whose score(g) < θ.

In Table 2 we show some glosses in the com-
puter science domain (second column, domain
terms are underlined) together with their scores
(last column).

Step 5. Seed selection for next iteration: we
now aim at selecting the new set of hypernymy
relation seeds to be used to start the next iteration.
We perform three substeps:

(a) Hypernym extraction: for each newly-
acquired term/gloss pair (t, g) ∈ Gk, we automati-
cally extract a candidate hypernym h from the tex-
tual gloss g. To do this we use a simple unsuper-
vised heuristic which just selects the first term in
the gloss.5 We show an example of hypernym ex-
traction for some terms in Table 2 (we report the
term in column 1, the gloss in column 2 and the
hypernyms extracted by the first term hypernym
extraction heuristic in column 3).

(b) (Term, Hypernym)-ranking: we sort all the
glosses in Gk by the number of seed terms found
in each gloss. In the case of ties (i.e., glosses with
the same number of seed terms), we further sort
the glosses by the score given in Formula 1. We
show an example of rank for some glosses in Table
2, where seed terms are in bold, domain terms (i.e.,
in T k−1

1 ) are underlined, and non-domain terms
are shown in italics.

5While more complex strategies could be used, such as
supervised classifiers (Navigli and Velardi, 2010), we found
that this heuristic works well because, even when it is not a
hypernym, the first term plays the role of a cue word for the
defined term.

(c) New seed selection: we select the (term, hy-
pernym) pairs corresponding to the K top-ranking
glosses.

Finally, if k equals the maximum number of it-
erations, we stop. Else, we increment the iteration
counter (i.e., k := k + 1) and jump to step (2) of
our glossary bootstrapping algorithm after replac-
ing S with the new set of seeds.

The output of glossary bootstrapping is a do-
main glossary G :=

⋃
i=1,...,maxG

i, which
includes a domain terminology T := {t :
∃(t, g) ∈ G} (i.e., T := Tmax1 ) and a set of
glosses glosses(t) for each term t ∈ T (i.e.,
glosses(t) := {g : ∃(t, g) ∈ G}).

3 Experimental Setup

3.1 Domains and Gold Standards

For our experiments we focused on four differ-
ent domains, namely, Computing, Botany, Envi-
ronment, and Finance, and on three languages,
namely, English, French and Italian. Note that not
all the four domains are clear-cut. For instance, the
Environment domain is quite interdisciplinary, in-
cluding terms from fields such as Chemistry, Biol-
ogy, Law, Politics, etc.

For each domain and language we selected
as gold standards well-reputed glossaries on
the Web, such as: the Utah computing glos-
sary,6 the Wikipedia glossary of botanical terms,7

a set of Wikipedia glossaries about environ-
ment,8 and the Reuters glossary for Finance9

(full list at http://lcl.uniroma1.it/
glossboot/). We report the size of the four
gold-standard datasets in Table 4.

6http://www.math.utah.edu/∼wisnia/glossary.html
7http://en.wikipedia.org/wiki/Glossary of botanical terms
8http://en.wikipedia.org/wiki/List of environmental issues,

http://en.wikipedia.org/wiki/Glossary of environmental science,
http://en.wikipedia.org/wiki/Glossary of climate change

9http://glossary.reuters.com/index.php/Main Page
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Computing Botany Environment Finance
chip circuit leaf organ sewage waste eurobond bond

destructor method grass plant acid rain rain asset play stock
compiler program cultivar variety ecosystem system income stock security
scanner device gymnosperm plant air monitoring sampling financial intermediary institution
firewall security system flower reproductive organ global warming temperature derivative financial product

Table 3: Hypernymy relation seeds used to bootstrap glossary learning in the four domains for the English
language.

3.2 Seed Selection

For each domain and language we manually se-
lected five seed hypernymy relations, shown for
the English language in Table 3. The seeds
were selected by the authors on the basis of
just two conditions: i) the seeds should cover
different aspects of the domain and should, in-
deed, identify the domain implicitly, ii) at least
10,000 results should be returned by the search
engine when querying it with the seeds plus the
glossaryKeyword (see step (2) of GlossBoot).
The seed selection was not fine-tuned (i.e., it was
not adjusted to improve performance), so it might
well be that better seeds would provide better
results (see, e.g., (Kozareva and Hovy, 2010b)).
However, this type of consideration is beyond the
scope of this paper.

3.2.1 Evaluation measures
We performed experiments to evaluate the quality
of both terms and glosses, as jointly extracted by
GlossBoot.

Terms. For each domain and language we cal-
culated coverage, extra-coverage and precision of
the acquired terms T . Coverage is the ratio of ex-
tracted terms in T also contained in the gold stan-
dard T̂ to the size of T̂ . Extra-coverage is calcu-
lated as the ratio of the additional extracted terms
in T \ T̂ over the number of gold standard terms
T̂ . Finally, precision is the ratio of extracted terms
in T deemed to be within the domain. To calcu-
late precision we randomly sampled 5% of the re-
trieved terms and asked two human annotators to
manually tag their domain pertinence (with adju-
dication in case of disagreement; κ = .62, indicat-
ing substantial agreement). Note that by sampling
on the entire set T , we calculate the precision of
both terms in T ∩ T̂ , i.e., in the gold standard, and
terms in T \ T̂ , i.e., not in the gold standard, which
are not necessarily outside the domain.

Glosses. We calculated the precision of the ex-
tracted glosses as the ratio of glosses which were
both well-formed textual definitions and specific

Botany Comput. Environ. Finance

E
N

Gold std. terms 772 421 713 1777
GlossBoot terms 5598 3738 4120 5294

glosses 11663 4245 5127 6703

FR

Gold std. terms 662 278 117 109
GlossBoot terms 3450 3462 1941 1486

glosses 5649 3812 2095 1692

IT

Gold std. terms 205 244 450 441
GlossBoot terms 1965 3356 1630 3601

glosses 2678 5891 1759 5276

Table 4: Size of the gold-standard and
automatically-acquired glossaries for the four
domains in the three languages of interest.

to the target domain. Precision was determined on
a random sample of 5% of the acquired glosses for
each domain and language. The annotation was
made by two annotators, with κ = .675, indicat-
ing substantial agreement.

3.3 Parameter tuning
We tuned the minimum and maximum length of
both pL and pR (see step (3) of GlossBoot) and
the threshold θ that we use to filter out non-domain
glosses (see step (4) of GlossBoot) using an extra
domain, i.e., the Arts domain. To do this, we cre-
ated a development dataset made up of the full set
of 394 terms from the Tate Gallery glossary,10 and
bootstrapped our glossary extraction method with
just one seed, i.e., (fresco, painting). We chose an
optimal value of θ = 0.1 on the basis of a har-
monic mean of coverage and precision. Note that,
since precision also concerns terms not in the gold
standard, we had to manually validate a sample of
the extracted terms for each of the 21 tested values
of θ ∈ {0, 0.05, 0.1, . . . , 1.0}.

4 Results and Discussion

4.1 Terms
The size of the extracted terminologies for the four
domains after five iterations are reported in Table
4. In Table 5 we show examples of the possi-
ble scenarios for terms: in-domain extracted terms

10http://www.tate.org.uk/collections/glossary/
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In-domain In-domain Out-of-domain In-domain
(in gold std, ∈ T̂ ∩ T ) (not in gold std, ∈ T \ T̂ ) (not in gold std, ∈ T \ T̂ ) (missed, ∈ T̂ \ T )

Computing software, inheritance, mi-
croprocessor

clipboard, even parity, su-
doer

gs1-128 label, grayscale,
quantum dots

openwindows, sun mi-
crosystems, hardwired

Botany pollinium, stigma, spore vegetation, dichogamous,
fertilisation

ion, free radicals, mana-
mana

nomenclature, endemism,
insectivorous

Environment carcinogen, footprint, solar
power

frigid soil, biosafety, fire
simulator

epidermis, science park,
alum

g8, best practice,
polystyrene

Finance cash, bond, portfolio trustor, naked option, mar-
ket price

precedent, immigration,
heavy industry

co-location, petrodollars,
euronext

Table 5: Examples of extracted (and missed) terms.

Botany Comput. Environ. Finance

E
N

Precision 95% 98% 94% 98%
Coverage 85% 40% 35% 32%
Extra-coverage 640% 848% 542% 266%

FR

Precision 80% 97% 83% 98%
Coverage 97% 27% 14% 26%
Extra-coverage 425% 1219% 1646% 1350%

IT

Precision 89% 98% 76% 99%
Coverage 42% 27% 11% 73%
Extra-coverage 511% 1349% 356% 746%

Table 6: Precision, coverage and extra-coverage of
the term extraction phase after 5 iterations.

which are also found in the gold standard (col-
umn 2), in-domain extracted terms but not in the
gold standard (column 3), out-of-domain extracted
terms (column 4), and domain terms in the gold
standard but not extracted by our approach (col-
umn 5).

A quantitative evaluation is provided in Table
6, which shows the percentage results in terms of
precision, coverage, and extra-coverage after 5 it-
erations of GlossBoot. For the English language
we observe good coverage (between 32% and 40%
on three domains, with a high peak of 85% cover-
age on Botany) and generally very high precision
values. Moreover for the French and the Italian
languages we observe a peak in the Botany and Fi-
nance domains respectively, while the lowest per-
formances in terms of precision and coverage are
observed for Environment, i.e., the most interdis-
ciplinary domain.

In all three languages GlossBoot provides very
high extra coverage of domain terms, i.e., addi-
tional terms which are not in the gold standard but
are returned by our system. The figures, shown in
Table 6, range between 266% (4726/1777) for the
English Finance domain and 1646% (1926/117)
for the French Environment domain. These re-
sults, together with the generally high precision
values, indicate the larger extent of our boot-
strapped glossaries compared to our gold stan-
dards.

Botany Computing Environm. Finance
Min Max Min Max Min Max Min Max
26% 68% 8% 39% 5% 33% 14% 30%

Table 7: Coverage ranges for single-seed term ex-
traction for the English language.

Number of seeds. Although the choice of se-
lecting five hypernymy relation seeds is quite arbi-
trary, it shows that we can acquire a reliable termi-
nology with minimal human intervention. Now, an
obvious question arises: what if we bootstrapped
GlossBoot with fewer hypernym seeds, e.g., just
one seed? To answer this question we replicated
our English experiments on each single (term, hy-
pernym) pair in our seed set. In Table 7 we show
the coverage ranges – i.e., the minimum and max-
imum coverage values – for the five seeds on each
domain. We observe that the maximum coverage
can attain values very close to those obtained with
five seeds. However, the minimum coverage val-
ues are much lower. So, if we adopt a 1-seed boot-
strapping policy there is a high risk of acquiring
a poorer terminology unless we select the single
seed very carefully, whereas we have shown that
just a few seeds can cope with domain variabil-
ity. Similar considerations can be made regarding
different seed set sizes (we also tried 2, 3 and 4).
So five is not a magic number, just one which can
guarantee an adequate coverage of the domain.

Number of iterations. In order to study the cov-
erage trend over iterations we selected 5 seeds for
our tuning domain (i.e., Arts, see Section 3.3).
Figure 3 shows the size (left graph), coverage,
extra-coverage and precision (middle graph) of the
acquired glossary after each iteration, from 1 to
20. As expected, (extra-)coverage grows over iter-
ations, while precision drops. Stopping at iteration
5, as we do, is optimal in terms of the harmonic
mean of precision and coverage (right graph in
Figure 3).
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Figure 3: Size, coverage and precision trends for Arts (tuning domain) over 20 iterations for English.

Botany Comput. Environm. Finance
EN 96% 94% 97% 97%
FR 88% 89% 88% 95%
IT 94% 98% 83% 99%

Table 8: Precision of the glosses for the four do-
mains and for the three languages.

4.2 Glosses
We show the results of gloss evaluation in Ta-
ble 8. Precision ranges between 83% and 99%,
with three domains performing above 92% on av-
erage across languages, and the Environment do-
main performing relatively worse because of its
highly interdisciplinary nature (89% on average).
We observe that these results are strongly corre-
lated with the precision of the extracted terms (cf.
Table 6), because the retrieved glosses of domain
terms are usually in-domain too, and follow a def-
initional style because they come from glossaries.
Note, however, that the gloss precision can also
be higher than term precision, because many perti-
nent glosses might be extracted for the same term,
cf. Table 4.

5 Comparative Evaluation

5.1 Comparison with Google Define
We performed a comparison with Google De-
fine,11 a state-of-the-art definition search service.
This service inputs a term query and outputs a list
of glosses. First, we randomly sampled 100 terms
from our gold standard for each domain and each
of the three languages. Next, for each domain and
language, we manually calculated the fraction of
terms for which an in-domain definition was pro-
vided by Google Define and GlossBoot. Table 9
shows the coverage results.

Google Define outperforms our system on all
four domains (with a few exceptions). However

11Accessible from Google search by means of the
define: keyword.

Botany Comput. Environm. Finance

E
N Google Define 90% 87% 84% 82%

GlossBoot 77% 47% 44% 51%

FR

Google Define 40% 48% 36% 82%
GlossBoot 88% 42% 22% 32%

IT

Google Define 52% 74% 78% 80%
GlossBoot 64% 38% 44% 92%

Table 9: Number of domain glosses (from a ran-
dom sample of 100 gold standard terms per do-
main) retrieved using Google Define and Gloss-
Boot.

we note that Google Define: i) requires knowing
the domain term to be defined in advance, whereas
we jointly acquire thousands of terms and glosses
starting from just a few seeds; ii) does not discrim-
inate between glosses pertaining to the target do-
main and glosses concerning other fields or senses,
whereas we extract domain-specific glosses.

5.2 Comparison with TaxoLearn
We also compared GlossBoot with a recent ap-
proach to glossary learning embedded into a
framework for graph-based taxonomy learning
from scratch, called TaxoLearn (Navigli et al.,
2011). Since this approach requires the manual
selection of a domain corpus to automatically ex-
tract terms and glosses, we decided to keep a level
playing field and experimented with the same do-
main used by the authors, i.e., Artificial Intelli-
gence (AI). TaxoLearn was applied to the entire
set of IJCAI 2009 proceedings, resulting in the ex-
traction of 427 terms and 834 glosses.12 As re-
gards GlossBoot, we selected 10 seeds to cover all
the fields of AI, obtaining 5827 terms and 6716
glosses after 5 iterations, one order of magnitude
greater than TaxoLearn.

As for the precision of the extracted terms, we
randomly sampled 50% of them for each system.
We show in Table 10 (first row) the estimated term

12Available at: http://lcl.uniroma1.it/taxolearn
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GlossBoot TaxoLearn
Term Precision 82.3% (2398/2913) 77.0% (164/213)
Gloss Precision 82.8% (2780/3358) 78.9% (329/417)

Table 10: Estimated term and gloss precision of
GlossBoot and TaxoLearn for the Artificial Intel-
ligence domain.

precision for GlossBoot and TaxoLearn. The pre-
cision value for GlossBoot is lower than the preci-
sion values of the four domains in Table 6, due
to the AI domain being highly interdisciplinary.
TaxoLearn obtained a lower precision because it
acquires a full-fledged taxonomy for the domain,
thus also including higher-level concepts which do
not necessarily pertain to the domain.

We performed a similar evaluation for the pre-
cision of the acquired glosses, by randomly sam-
pling 50% of them for each system. We show in
Table 10 (second row) the estimated gloss preci-
sion of GlossBoot and TaxoLearn. Again, Gloss-
Boot outperforms TaxoLearn, retrieving a larger
amount of glosses (6716 vs. 834) with higher pre-
cision. We remark, however, that in TaxoLearn
glossary extraction is a by-product of the taxon-
omy learning process.

Finally, we note that we cannot compare with
approaches based on lexical patterns (such as
(Kozareva and Hovy, 2010a)), because they are
not aimed at learning glossaries, but just at re-
trieving sentence snippets which contain pairs of
terms/hypernyms (e.g., “supervised systems such
as decision trees”).

6 Related Work

There are several techniques in the literature for
the automated acquisition of definitional knowl-
edge. Fujii and Ishikawa (2000) use an n-gram
model to determine the definitional nature of text
fragments, whereas Klavans and Muresan (2001)
apply pattern matching techniques at the lexical
level guided by cue phrases such as “is called”
and “is defined as”. Cafarella et al. (2005) de-
veloped a Web search engine which handles more
general and complex patterns like “cities such as
ProperNoun(Head(NP ))” in which it is possi-
ble to constrain the results with syntactic proper-
ties. More recently, a domain-independent super-
vised approach was presented which learns Word-
Class Lattices (WCLs), i.e. lattice-based definition
classifiers that are applied to candidate sentences
containing the input terms (Navigli and Velardi,
2010). WCLs have been shown to perform with

high precision in several domains (Velardi et al.,
2013).

To avoid the burden of manually creating a
training dataset, definitional patterns can be ex-
tracted automatically. Reiplinger et al. (2012) ex-
perimented with two different approaches for the
acquisition of lexical-syntactic patterns. The first
approach involves bootstrapping patterns from a
domain corpus, and then manually refining the ac-
quired patterns. The second approach, instead,
involves automatically acquiring definitional sen-
tences by using a more sophisticated syntactic and
semantic processing. The results shows high pre-
cision in both cases.

However, these approaches to glossary learning
extract unrestricted textual definitions from open
text. In order to filter out non-domain definitions,
Velardi et al. (2008) automatically extract a do-
main terminology from an input corpus which they
later use for assigning a domain score to each har-
vested definition and filtering out non-domain can-
didates. The extraction of domain terms from cor-
pora can be performed either by means of statis-
tical measures such as specificity and cohesion
(Park et al., 2002), or just TF*IDF (Kim et al.,
2009).

To avoid the use of a large domain corpus, ter-
minologies can be obtained from the Web by using
Doubly-Anchored Patterns (DAPs) which, given a
(term, hypernym) pair, harvest sentences match-
ing manually-defined patterns like “<hypernym>
such as <term>, and *” (Kozareva et al., 2008).
Kozareva and Hovy (2010a) further extend this
term extraction process by harvesting new hy-
pernyms using the corresponding inverse patterns
(called DAP−1) like “* such as <term1>, and
<term2>”. Similarly to our approach, they drop
the requirement of a domain corpus and start
from a small number of (term, hypernym) seeds.
However, while Doubly-Anchored Patterns have
proven useful in the induction of domain tax-
onomies (Kozareva and Hovy, 2010a), they cannot
be applied to the glossary learning task, because
the extracted sentences are not formal definitions.

In contrast, GlossBoot performs the novel task
of multilingual glossary learning from the Web by
bootstrapping the extraction process with a few
(term, hypernym) seeds. Bootstrapping techniques
(Brin, 1998; Agichtein and Gravano, 2000; Paşca
et al., 2006) have been successfully applied to
several tasks, including high-precision semantic
lexicon extraction from large corpora (Riloff and
Jones, 1999; Thelen and Riloff, 2002; McIntosh
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Domain Term Gloss

E
N

Botany deciduous losing foliage at the end of the growing season.
Computing information space The abstract concept of everything accessible using networks: the Web.
Finance discount The difference between the lower price paid for a security and the security’s

face amount at issue.

FR

Botany insectivore Qui capture des insectes et en absorbe les matières nutritives.
Computing notebook C’est l’appellation d’un petit portable d’une taille proche d’une feuille A4.
Environment écosystème Ensemble des êtres vivants et des éléments non vivants d’un milieu qui sont

liés vitalement entre eux.

IT

Computing link Collegamento tra diverse pagine web, può essere costituito da immagini o
testo.

Environment effetto serra Riscaldamento dell’atmosfera terrestre dovuto alla presenza di gas
nell’atmosfera (anidride carbonica, metano e vapore acqueo) che osta-
colano l’uscita delle radiazioni infrarosse emesse dal suolo terreste verso
l’alto.

Finance spread Indica la differenza tra la quotazione di acquisto e quella di vendita.

Table 11: An excerpt of the domain glossaries acquired for the three languages.

and Curran, 2008; McIntosh and Curran, 2009),
learning semantic relations (Pantel and Pennac-
chiotti, 2006), extracting surface text patterns for
open-domain question answering (Ravichandran
and Hovy, 2002), semantic tagging (Huang and
Riloff, 2010) and unsupervised Word Sense Dis-
ambiguation (Yarowsky, 1995). By exploiting the
(term, hypernym) seeds to bootstrap the itera-
tive acquisition of extraction patterns from Web
glossary pages, we can cover the high variabil-
ity of textual definitions, including both sentences
matching the above-mentioned lexico-syntactic
patterns (e.g., “a corpus is a collection of docu-
ments”) and glossary-style definitions (e.g., “cor-
pus: a collection of document”) independently of
the target domain and language.

7 Conclusions

In this paper we have presented GlossBoot, a
new, minimally-supervised approach to multilin-
gual glossary learning. Starting from a few hyper-
nymy relation seeds which implicitly identify the
domain of interest, we apply a bootstrapping ap-
proach which iteratively obtains HTML patterns
from Web glossaries and then applies them to the
extraction of term/gloss pairs. To our knowledge,
GlossBoot is the first approach to large-scale glos-
sary learning which jointly acquires thousands of
terms and glosses for a target domain and language
with minimal supervision.

The gist of GlossBoot is our glossary bootstrap-
ping approach, thanks to which we can drop the
requirements of existing techniques such as the
availability of domain text corpora, which often
do not contain enough definitions, and the man-

ual specification of lexical patterns, which typi-
cally extract sentence snippets, instead of formal
glosses.

GlossBoot will be made available to the re-
search community as open-source software. Be-
yond the immediate usability of its output and
its effective use for domain Word Sense Disam-
biguation (Faralli and Navigli, 2012), we wish
to show the benefit of GlossBoot in gloss-driven
approaches to ontology learning (Navigli et al.,
2011; Velardi et al., 2013) and semantic network
enrichment (Navigli and Ponzetto, 2012). In Ta-
ble 11 we show an excerpt of the acquired glos-
saries. All the glossaries and gold standards cre-
ated for our experiments are available from the au-
thors’ Web site http://lcl.uniroma1.it/
glossboot/.

We remark that the terminologies covered with
GlossBoot are not only precise, but also one or-
der of magnitude greater than those covered in
individual online glossaries. As future work we
plan to study the ability of GlossBoot to acquire
domain glossaries at different levels of specificity
(i.e., domains vs. subdomains). We also plan to
exploit the acquired HTML patterns for imple-
menting an open-source glossary crawler, along
the lines of Google Define.
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Abstract
Crowdsourcing, which offers new ways
of cheaply and quickly gathering large
amounts of information contributed by
volunteers online, has revolutionised the
collection of labelled data. Yet, to create
annotated linguistic resources from this
data, we face the challenge of having to
combine the judgements of a potentially
large group of annotators. In this paper
we investigate how to aggregate individual
annotations into a single collective anno-
tation, taking inspiration from the field of
social choice theory. We formulate a gen-
eral formal model for collective annotation
and propose several aggregation methods
that go beyond the commonly used major-
ity rule. We test some of our methods on
data from a crowdsourcing experiment on
textual entailment annotation.

1 Introduction

In recent years, the possibility to undertake large-
scale annotation projects with hundreds or thou-
sands of annotators has become a reality thanks to
online crowdsourcing methods such as Amazon’s
Mechanical Turk and Games with a Purpose. Al-
though these techniques open the door to a true
revolution for the creation of annotated corpora,
within the computational linguistics community
there so far is no clear understanding of how the
so-called “wisdom of the crowds” could or should
be used to develop useful annotated linguistic re-
sources. Those who have looked into this increas-
ingly important issue have mostly concentrated on
validating the quality of multiple non-expert an-
notations in terms of how they compare to ex-
pert gold standards; but they have only used sim-
ple aggregation methods based on majority voting
to combine the judgments of individual annotators
(Snow et al., 2008; Venhuizen et al., 2013).

In this paper, we take a different perspective and
instead focus on investigating different aggrega-
tion methods for deriving a single collective an-
notation from a diverse set of judgments. For this
we draw inspiration from the field of social choice
theory, a theoretical framework for combining the
preferences or choices of several individuals into
a collective decision (Arrow et al., 2002). Our aim
is to explore the parallels between the task of ag-
gregating the preferences of the citizens participat-
ing in an election and the task of combining the
expertise of speakers taking part in an annotation
project. Our contribution consists in the formula-
tion of a general formal model for collective an-
notation and, in particular, the introduction of sev-
eral families of aggregation methods that go be-
yond the commonly used majority rule.

The remainder of this paper is organised as fol-
lows. In Section 2 we introduce some basic termi-
nology and argue that there are four natural forms
of collective annotation. We then focus on one of
them and present a formal model for it in Sec-
tion 3. We also formulate some basic principles
of aggregation within this model in the same sec-
tion. Section 4 introduces three families of ag-
gregation methods: bias-correcting majority rules,
greedy methods for identifying (near-)consensual
coalitions of annotators, and distance-based aggre-
gators. We test the former two families of aggrega-
tors, as well as the simple majority rule commonly
used in similar studies, in a case study on data ex-
tracted from a crowdsourcing experiment on tex-
tual entailment in Section 5. Section 6 discusses
related work and Section 7 concludes.

2 Four Types of Collective Annotation

An annotation task consists of a set of items, each
of which is associated with a set of possible cate-
gories (Artstein and Poesio, 2008). The categories
may be the same for all items or they may be item-
specific. For instance, dialogue act annotation
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(Allen and Core, 1997; Carletta et al., 1997) and
word similarity rating (Miller and Charles, 1991;
Finkelstein et al., 2002) involve choosing from
amongst a set of categories—acts in a dialogue
act taxonomy or values on a scale, respectively—
which remains fixed for all items in the annotation
task. In contrast, in tasks such as word sense la-
belling (Kilgarriff and Palmer, 2000; Palmer et al.,
2007; Venhuizen et al., 2013) and PP-attachment
annotation (Rosenthal et al., 2010; Jha et al., 2010)
coders need to choose a category amongst a set of
options specific to each item—the possible senses
of each word or the possible attachment points in
each sentence with a prepositional phrase.

In either case (one set of categories for all items
vs. item-specific sets of categories), annotators are
typically asked to identify, for each item, the cat-
egory they consider the best match. In addition,
they may be given the opportunity to indicate that
they cannot judge (the “don’t know” or “unclear”
category). For large-scale annotation projects run
over the Internet it is furthermore very likely that
an annotator will not be confronted with every sin-
gle item, and it makes sense to distinguish items
not seen by the annotator from items labelled as
“don’t know”. We refer to this form of annotation,
i.e., an annotation task where coders have the op-
tion to (i) label items with one of the available cat-
egories, to (ii) choose “don’t know”, or to (iii) not
label an item at all, as plain annotation.

Plain annotation is the most common form of
annotation and it is the one we shall focus on in
this paper. However, other, more complex, forms
of annotation are also possible and of interest. For
instance, we may ask coders to rank the avail-
able categories (resulting in, say, a weak or par-
tial order over the categories); we may ask them to
provide a qualitative ratings of the available cat-
egories for each item (e.g., excellent match, good
match, etc.); or we may ask for quantitative rat-
ings (e.g., numbers from 1 to 100).1 We refer to
these forms of annotation as complex annotation.

We want to investigate how to aggregate the
information available for each item once annota-
tions by multiple annotators have been collected.
In line with the terminology used in social choice
theory and particularly judgment aggregation (Ar-

1Some authors have combined qualitative and quantitative
ratings; e.g., for the Graded Word Sense dataset of Erk et al.
(2009) coders were asked to classify each relevant WordNet
sense for a given item on a 5-point scale: 1 completely differ-
ent, 2 mostly different, 3 similar, 4 very similar, 5 identical.

row, 1963; List and Pettit, 2002), let us call an ag-
gregation method independent if the outcome re-
garding a given item j only depends on the cate-
gories provided by the annotators regarding j it-
self (but not on, say, the categories assigned to a
different item j′). Independent aggregation meth-
ods are attractive due to their simplicity. They also
have some conceptual appeal: when deciding on
j maybe we should only concern ourselves with
what people have to say regarding j? On the other
hand, insisting on independence prevents us from
exploiting potentially useful information that cuts
across items. For instance, if a particular anno-
tator almost always chooses category c, then we
should maybe give less weight to her selecting c
for the item j at hand than when some other anno-
tator chooses c for j. This would call for methods
that do not respect independence, which we shall
refer to as general aggregation. Note that when
studying independent aggregation methods, with-
out loss of generality, we may assume that each
annotation task consists of just a single item.

In view of our discussion above, there are four
classes of approaches to collective annotation:

(1) Independent aggregation of plain annota-
tions. This is the simplest case, resulting in a
fairly limited design space. When, for a given
item, each annotator has to choose between
k categories (or abstain) and we do not per-
mit ourselves to use any other information,
then the only reasonable choice is to imple-
ment the plurality rule (Taylor, 2005), under
which the winning category is the category
chosen by the largest number of annotators.
In case there are exactly two categories avail-
able, the plurality rule is also called the ma-
jority rule. The only additional consideration
to make here (besides how to deal with ties)
is whether or not we may want to declare no
winner at all in case the plurality winner does
not win by a sufficiently significant margin or
does not make a particular quota. This is the
most common approach in the literature (see,
e.g., Venhuizen et al., 2013).

(2) Independent aggregation of complex annota-
tions. This is a natural generalisation of the
first approach, resulting in a wider range of
possible methods. We shall not explore it
here, but only point out that in case annotators
provide linear orders over categories, there is
a close resemblance to classical voting the-
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ory (Taylor, 2005); in case only partial orders
can be elicited, recent work in computational
social choice on the generalisation of classi-
cal voting rules may prove helpful (Pini et al.,
2009; Endriss et al., 2009); and in case an-
notators rate categories using qualitative ex-
pressions such as excellent match, the method
of majority judgment of Balinski and Laraki
(2011) should be considered.

(3) General aggregation of plain annotations.
This is the approach we shall discuss be-
low. It is related to voting in combinato-
rial domains studied in computational social
choice (Chevaleyre et al., 2008), and to both
binary aggregation (Dokow and Holzman,
2010; Grandi and Endriss, 2011) and judg-
ment aggregation (List and Pettit, 2002).

(4) General aggregation of complex annotations.
While appealing due to its great level of gen-
erality, this approach can only be tackled suc-
cessfully once approaches (2) and (3) are suf-
ficiently well understood.

3 Formal Model

Next we present our model for general aggregation
of plain annotations into a collective annotation.

3.1 Terminology and Notation

An annotation task is defined in terms of m items,
with each item j ∈ {1, . . . ,m} being associated
with a finite set of possible categories Cj . Anno-
tators are asked to provide an answer for each of
the items of the annotation task. In the context of
plain annotations, a valid answer for item j is an
element of the set Aj = Cj ∪ {?,⊥}.2 Here ?
represents the answer “don’t know” and we use ⊥
to indicate that the annotator has not answered (or
even seen) the item at all. An annotation is a vec-
tor of answers by one annotator, one answer for
each item of the annotation task at hand, i.e., an
annotation is an element of the Cartesian product
A = A1 × A2 × · · · × Am. A typical element of
A will be denoted as A = (a1, . . . , am).

Let N = {1, . . . , n} be a finite set of n anno-
tators (or coders). A profile A = (A1, . . . , An) ∈
An, for a given annotation task, is a vector of an-
notations, one for each annotator. That is, A is an

2As discussed earlier, in the context of complex annota-
tions, an answer could also be, say, a partial order on Cj or a
function associating elements of Cj with numerical ratings.

Item 1 Item 2 Item 3

Annotator 1 B A A
Annotator 2 B B B
Annotator 3 A B A

Majority B B A

Table 1: A profile with a collective annotation.

n×m-matrix; e.g., a3,7 is the answer that the 3rd
annotator provides for the 7th item.

We want to aggregate the information provided
by the annotators into a (single) collective anno-
tation. For the sake of simplicity, we use A also
as the domain of possible collective annotations
(even though the distinction between ? and⊥may
not be strictly needed here; they both indicate that
we do not want to commit to any particular cate-
gory). An aggregator is a function F : An → A,
mapping any given profile into a collective annota-
tion, i.e., a labelling of the items in the annotation
task with corresponding categories (or ? or⊥). An
example is the plurality rule (also known as the
majority rule for binary tasks with |Cj | = 2 for
all items j), which annotates each item with the
category chosen most often.

Note that the collective annotation need not
coincide with any of the individual annotations.
Take, for example, a binary annotation task in
which three coders label three items with category
A or B as shown in Table 1. Here using the major-
ity rule to aggregate the annotations would result
in a collective annotation that does not fully match
any annotation by an individual coder.

3.2 Basic Properties
A typical task in social choice theory is to formu-
late axioms that formalise specific desirable prop-
erties of an aggregator F (Arrow et al., 2002). Be-
low we adapt three of the most basic axioms that
have been considered in the social choice litera-
ture to our setting and we briefly discuss their rel-
evance to collective annotation tasks.

We will require some additional notation: for
any profileA, item j, and possible answer a ∈ Aj ,
let NA

j:a denote the set of annotators who chose
answer a for item j under profileA.

• F is anonymous if it treats coders symmetri-
cally, i.e., if for every permutation π : N → N ,
F (A1, . . . , An) = F (Aπ(1), . . . , Aπ(n)). In so-
cial choice theory, this is a fairness constraint.
For us, fairness per se is not a desideratum,
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but when we do not have any a priori informa-
tion regarding the expertise of annotators, then
anonymity is a natural axiom to adopt.

• F is neutral if it treats all items symmetri-
cally, i.e., if for every two items j and j′ with
the same set of possible categories (i.e., with
Cj = Cj′) and for every profile A, it is the case
that whenever NA

j:a = NA
j′:a for all answers

a ∈ Aj = Aj′ , then F (A)j = F (A)j′ . That
is, if the patterns of individual annotations of j
and j′ are the same, then also their collective
annotation should coincide. In social choice
theory, neutrality is also considered a basic fair-
ness requirement (avoiding preferential treat-
ment one candidate in an election). In the con-
text of collective annotation there may be good
reasons to violate neutrality: e.g., we may use
an aggregator that assigns different default cat-
egories to different items and that can override
such a default decision only in the presence of
a significant majority (note that this is different
from anonymity: we will often not have any in-
formation on our annotators, but we may have
tangible information on items).3

• F is independent if the collective annotation of
any given item j only depends on the individual
annotations of j. Formally, F is independent if,
for every item j and every two profiles A and
A′, it is the case that wheneverNA

j:a = NA′
j:a for

all answers a ∈ Aj , then F (A)j = F (A′)j .
In social choice theory, independence is often
seen as a desirable albeit hard (or even impos-
sible) to achieve property (Arrow, 1963). For
collective annotation, we strongly believe that
it is not a desirable property: by considering
how annotators label other items we can learn
about their biases and we should try to exploit
this information to obtain the best possible an-
notation for the item at hand.

Note that the plurality/majority rule is indepen-
dent. All of the methods we shall propose in Sec-
tion 4 are both anonymous and neutral—except to
the extent to which we have to violate basic sym-
metry requirements in order to break ties between
categories chosen equally often for a given item.
None of our aggregators is independent.

3It would also be of interest to formulate a neutrality ax-
iom w.r.t. categories (rather than items). For two categories,
this idea has been discussed under the name of domain-
neutrality in the literature (Grandi and Endriss, 2011), but
for larger sets of categories it has not yet been explored.

Some annotation tasks might be subject to in-
tegrity constraints that determine the internal con-
sistency of an annotation. For example, if our
items are pairs of words and the possible cate-
gories include synonymous and antonymous, then
if item 1 is about words A and B, item 2 about
words B and C, and item 3 about words A and
C, then any annotation that labels items 1 and 2
as synonymous should not label item 3 as antony-
mous. Thus, a further desirable property that will
play a role for some annotation tasks is collective
rationality (Grandi and Endriss, 2011): if all in-
dividual annotations respect a given integrity con-
straint, then so should the collective annotation.

We can think of integrity constraints as impos-
ing top-down expert knowledge on an annotation.
However, for some annotation tasks, no integrity
constraints may be known to us in advance, even
though we may have reasons to believe that the
individual annotators do respect some such con-
straints. In that case, selecting one of the indi-
vidual annotations in the profile as the collective
annotation is the only way to ensure that these in-
tegrity constraints will be satisfied by the collec-
tive annotation (Grandi and Endriss, 2011). Of
course, to do so we would need to assume that
there is at least one annotator who has labelled all
items (and to be able to design a high-quality ag-
gregator in this way we should have a sufficiently
large number of such annotators to choose from),
which may not always be possible, particularly in
the context of crowdsourcing.

4 Three Families of Aggregators

In this section we instantiate our formal model by
proposing three families of methods for aggrega-
tion. Each of them is inspired, in part, by standard
approaches to desigining aggregation rules devel-
oped in social choice theory and, in part, by the
specific needs of collective annotation. Regard-
ing the latter point, we specifically emphasise the
fact that not all annotators can be expected to be
equally reliable (in general or w.r.t. certain items)
and we try to integrate the process of aggregation
with a process whereby less reliable annotators are
either given less weight or are excluded altogether.

4.1 Bias-Correcting Majority Rules

We first want to explore the following idea: If a
given annotator annotates most items with 0, then
we might want to assign less significance to that
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choice for any particular item.4 That is, if an an-
notator appears to be biased towards a particular
category, then we might want to try to correct for
this bias during aggregation.

What follows applies only to annotation tasks
where every item is associated with the same set of
categories. For ease of exposition, let us further-
more assume that there are only two categories, 0
and 1, and that annotators do not make use of the
option to annotate with ? (“don’t know”).

For every annotator i ∈ N and every cate-
gory X ∈ {0, 1}, fix a weight wXi ∈ R. The
bias-correcting majority (BCM) rule for this fam-
ily of weights is defined as follows. Given profile
A, the collective category for item j will be 1 in
case

∑
ai,j=1w

1
i >

∑
ai,j=0w

0
i , and 0 otherwise.5

That is, we compute the overall weight for cate-
gory 1 by adding up the corresponding weights for
those coders that chose 1 for item j, and we do
accordingly for the overall weight for category 0;
finally, we choose as collective category that cate-
gory with the larger overall weight. Note that for
wXi ≡ 1 we obtain the simple majority rule.

Below we define three intuitively appealing
families of weights, and thereby three BCM rules.
However, before we do so, we first require some
additional notation. Fix a profile of annotations.
For X ∈ {0, 1}, let Freqi(X) denote the relative
frequency with which annotator i has chosen cat-
egory X . For instance, if i has annotated 20 items
and has chosen 1 in five cases, then Freqi(1) =
0.25. Similarly, let Freq(X) denote the frequency
of X across the entire profile.

Here are three ways of making the intuitive idea
of bias correction concrete:

(1) The complement-based BCM rule (ComBCM)
is defined by weights wXi = Freqi(1−X).
That is, the weight of annotator i for cate-
gory X is equal to her relative frequency of
having chosen the other category 1−X . For
example, if you annotate two items with 1 and
eight with 0, then each of your 1-annotations
will have weight 0.8, while each of your
0-annotations will only have weight 0.2.

(2) The difference-based BCM rule (DiffBCM) is
defined by weights wXi = 1 + Freq(X) −

4A similar idea is at the heart of cumulative voting, which
requires a voter to distribute a fixed number of points amongst
the candidates (Glasser, 1959; Brams and Fishburn, 2002).

5For the sake of simplicity, our description here presup-
poses that ties are always broken in favour of 0. Other tie-
breaking rules (e.g., random tie-breaking) are possible.

Freqi(X). Recall that Freq(X) is the rela-
tive frequency ofX in the entire profile, while
Freqi(X) is the relative frequency of X in
the annotation of i. Hence, if i assigns cat-
egory X less often than the general popula-
tion, then her weight on X-choices will be in-
creased by the difference (and vice versa in
case she assigns X more often than the popu-
lation at large). For example, if you assign 1
in two out of ten cases, while in general cat-
egory 1 appears in exactly 50% of all annota-
tions, then your weight for a choice of 1 will
be 1 + 0.5− 0.2 = 1.3, while you weight for
a choice of 0 will only be 0.7.

(3) The relative BCM rule (RelBCM) is defined
by weights wXi = Freq(X)

Freqi(X) . The idea is very
similar to the DiffBCM rule. For the exam-
ple given above, your weight for a choice of
1 would be 0.5/0.2 = 2.5, while your weight
for a choice of 0 would be 0.5/0.8 = 0.625.

The main difference between the ComBCM rule
and the other two rules is that the former only takes
into account the possible bias of individual anno-
tators, while the latter two factor in as well the
possible skewness of the data (as reflected by the
labelling behaviour of the full set of annotators).

In addition, while ComBCM is specific to the
case of two categories, DiffBCM and RelBCM
immediately generalise to any number of cate-
gories. In this case, we add up the category-
specific weights as before and then choose the cat-
egory with maximal support (i.e., we generalise
the majority rule underlying the family of BCM
rules to the plurality rule).

We stress that our bias-correcting majority rules
do not violate anonymity (nor neutrality for that
matter). If we were to give less weight to a given
annotator based on, say, her name, this would con-
stitute a violation of anonymity; if we do so due to
properties of the profile at hand and if we do so in
a symmetric manner, then it does not.

4.2 Greedy Consensus Rules
Now consider the following idea: If for a given
item there is almost complete consensus amongst
those coders that annotated it with a proper cate-
gory (i.e., those who did not choose ? or ⊥), then
we should probably adopt their choice for the col-
lective annotation. Indeed, most aggregators will
make this recommendation. Furthermore, the fact
that there is almost full consensus for one item
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may cast doubts on the reliability of coders who
disagree with this near-consensus choice and we
might want to disregard their views not only w.r.t.
that item but also as far as the annotation of other
items is concerned. Next we propose a family of
aggregators that implement this idea.

For simplicity, suppose that the only proper cat-
egories available are 0 and 1 and that annotators
do not make use of ? (but it is easy to generalise
to arbitrary numbers of categories and scenarios
where different items are associated with different
categories). Fix a tolerance value t ∈ {0, . . . ,m}.
The greedy consensus rule GreedyCRt works as
follows. First, initialise the set N ? with the full
population of annotators N . Then iterate the fol-
lowing two steps:

(1) Find the item with the strongest majority for
either 0 or 1 amongst coders in N ? and lock
in that value for the collective annotation.

(2) Eliminate all coders from N ? who disagree
on more than t items with the values locked
in for the collective annotation so far.

Repeat this process until the categories for all m
items have been settled.6 We may think of this as
a “greedy” way of identifying a coalitionN ? with
high inter-annotator agreement and then applying
the majority rule to this coalition to obtain the col-
lective annotation.

To be precise, the above is a description of an
entire family of aggregators: Whenever there is
more than one item with a majority of maximal
strength, we could choose to lock in any one of
them. Also, when there is a split majority between
annotators in N ? voting 0 and those voting 1, we
have to use a tie-breaking rule to make a decision.
Additional heuristics may be used to make these
local decisions, or they may be left to chance.

Note that in case t = m, GreedyCRt is sim-
ply the majority rule (as no annotator will ever get
eliminated). In case t = 0, we end up with a coali-
tion of annotators that unanimously agree with all
of the categories chosen for the collective annota-
tion. However, this coalition of perfectly aligned

6There are some similarities to Tideman’s Ranked Pairs
method for preference aggregation (Tideman, 1987), which
works by fixing the relative rankings of pairs of alternatives
in order of the strength of the supporting majorities. In pref-
erence aggregation (unlike here), the population of voters is
not reduced in the process; instead, decisions against the ma-
jority are taken whenever this is necessary to guarantee the
transitivity of the resulting collective preference order.

annotators need not be the largest such coalition
(due to the greedy nature of our rule).

Note that greedy consensus rules, as defined
here, are both anonymous and neutral. Specifi-
cally, it is important not to confuse possible skew-
ness of the data with a violation of neutrality of the
aggregator.

4.3 Distance-based Aggregation
Our third approach is based on the notion of dis-
tance. We first define a metric on choices to be
able to say how distant two choices are. This in-
duces an aggregator that, for a given profile, re-
turns a collective choice that minimises the sum
of distances to the individual choices in the pro-
file.7 This opens up a wide range of possibilities;
we only sketch some of them here.

A natural choice is the adjusted Hamming dis-
tanceH : A×A → R>0, which counts how many
items two annotations differ on:

H(A,A′) =

m∑

j=1

δ(aj , a
′
j)

Here δ is the adjusted discrete distance defined as
δ(x, y) = 0 if x = y or x ∈ {?,⊥} or y ∈ {?,⊥},
and as δ(x, y) = 1 in all other cases.8

Once we have fixed a distance d on A (such
as H), this induces an aggregator Fd:

Fd(A) = argmin
A∈A

n∑

i=1

d(A,Ai)

To be precise, Fd is an irresolute aggregator that
might return a set of best annotations with minimal
distance to the profile.

Note that FH is simply the plurality rule. This
is so because every element of the Cartesian prod-
uct is a possible annotation. In the presence of in-
tegrity constraints excluding some combinations,
however, a distance-based rule allows for more so-
phisticated forms of aggregation (by choosing the
optimal annotation w.r.t. all feasible annotations).

We may also try to restrict the computation of
distances to a subset of “reliable” annotators. Con-
sider the following idea: If a group of annota-
tors is (fairly) reliable, then they should have a

7This idea has been used in voting (Kemeny, 1959), belief
merging (Konieczny and Pino Pérez, 2002), and judgment
aggregation (Miller and Osherson, 2009).

8This δ, divided by m, is the same thing as what Artstein
and Poesio (2008) call the agreement value agrj for item j.
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(fairly) high inter-annotator agreement. By this
reasoning, we should choose a group of annota-
tors ANN ⊆ N that maximises inter-annotator
agreement in ANN and work with the aggrega-
tor argminA∈A

∑
i∈ANN d(A,Ai). But this is too

simplistic: any singleton ANN = {i} will result
in perfect agreement. That is, while we can eas-
ily maximise agreement, doing so in a naı̈ve way
means ignoring most of the information collected.
In other words, we face the following dilemma:

• On the one hand, we should choose a small set
ANN (i.e., select few annotators to base our col-
lective annotation on), as that will allow us to
increase the (average) reliability of the annota-
tors taken into account.

• On the other hand, we should choose a large set
ANN (i.e., select many annotators to base our
collective annotation on), as that will increase
the amount of information exploited.

One pragmatic approach is to fix a minimum qual-
ity threshold regarding one of the two dimensions
and optimise in view of the other.9

5 A Case Study

In this section, we report on a case study in
which we have tested our bias-correcting major-
ity and greedy consensus rules.10 We have used
the dataset created by Snow et al. (2008) for
the task of recognising textual entailment, orig-
inally proposed by Dagan et al. (2006) in the
PASCAL Recognizing Textual Entailment (RTE)
Challenge. RTE is a binary classification task con-
sisting in judging whether the meaning of a piece
of text (the so-called hypothesis) can be inferred
from another piece of text (the entailing text).
The original RTE1 Challenge testset consists of
800 text-hypothesis pairs (such as T : “Chrétien
visited Peugeot’s newly renovated car factory”,
H: “Peugeot manufactures cars”) with a gold
standard annotation that classifies each item as ei-
ther true (1)—in case H can be inferred from T—
or false (0). Exactly 400 items are annotated as
0 and exactly 400 as 1. Bos and Markert (2006)
performed an independent expert annotation of

9GreedyCRt is a greedy (rather than optimal) implemen-
tation of this basic idea, with the tolerance value t fixing a
threshold on (a particular form of) inter-annotator agreement.

10Since the annotation task and dataset used for our case
study do not involve any interesting integrity constraints, we
have not tested any distance-based aggregation rules.

this testset, obtaining 95% agreement between the
RTE1 gold standard and their own annotation.

The dataset of Snow et al. (2008) includes 10
non-expert annotations for each of the 800 items
in the RTE1 testset, collected with Amazon’s Me-
chanical Turk. A quick examination of the dataset
shows that there are a total of 164 annotators who
have annotated between 20 items (124 annotators)
and 800 items each (only one annotator). Non-
expert annotations with category 1 (rather than 0)
are slightly more frequent (Freq(1) ≈ 0.57).

We have applied our aggregators to this data and
compared the outcomes with each other and to the
gold standard. The results are summarised in Ta-
ble 2 and discussed in the sequel. For each pair
we report the observed agreement Ao (proportion
of items on which two annotations agree) and, in
brackets, Cohen’s kappa κ = Ao−Ae

1−Ae , with Ae be-
ing the expected agreement for independent anno-
tators (Cohen, 1960; Artstein and Poesio, 2008).

Note that there are several variants of the major-
ity rule, depending on how we break ties. In Ta-
ble 2, Maj1�0 is the majority rule that chooses 1 in
case the number of annotators choosing 1 is equal
to the number of annotators choosing 0 (and ac-
cordingly for Maj0�1). For 65 out of the 800 items
there has been a tie (i.e., five annotators choose 0
and another five choose 1). This means that the tie-
breaking rule used can have a significant impact
on results. Snow et al. (2008) work with a major-
ity rule where ties are broken uniformly at random
and report an observed agreement (accuracy) be-
tween the majority rule and the gold standard of
89.7%. This is confirmed by our results: 89.7%
is the mean of 87.5% (our result for Maj1�0) and
91.9% (our result for Maj0�1). If we break ties
in the optimal way (in view of approximating the
gold standard (which of course would not actu-
ally be possible without having access to that gold
standard), then we obtain an observed agreement
of 93.8%, but if we are unlucky and ties happen to
get broken in the worst possible way, we obtain an
observed agreement of only 85.6%.

For none of our bias-correcting majority rules
did we encounter any ties. Hence, for these ag-
gregators the somewhat arbitrary choices we have
to make when breaking ties are of no significance,
which is an important point in their favour. Ob-
serve that all of the bias-correcting majority rules
approximate the gold standard better than the ma-
jority rule with uniformly random tie-breaking.

545



Annotation Maj1�0 Maj0�1 ComBCM DiffBCM RelBCM GreedyCR0 GreedyCR15

Gold Standard 87.5% (.75) 91.9% (.84) 91.1% (.80) 91.5% (.81) 90.8% (.80) 86.6% (.73) 92.5% (.85)
Maj1�0 91.9% (.84) 88.9% (.76) 94.3% (.87) 94.0% (.87) 87.6% (.75) 91.5% (.83)
Maj0�1 96.0% (.91) 97.6% (.95) 96.9% (.93) 89.0% (.78) 96.1% (.92)
ComBCM 94.6% (.86) 94.4% (.86) 88.8% (.75) 93.9% (.86)
DiffBCM 98.8% (.97) 88.6% (.75) 94.8% (.88)
RelBCM 88.4% (.74) 93.8% (.86)
GreedyCR0 90.6% (.81)

Table 2: Observed agreement (and κ) between collective annotations and the gold standard.

Recall that the greedy consensus rule is in fact
a family of aggregators: whenever there is more
than one item with a maximal majority, we may
lock in any one of them. Furthermore, when there
is a split majority, then ties may be broken either
way. The results reported here refer to an imple-
mentation that always chooses the lexicographi-
cally first item amongst all those with a maximal
majority and that breaks ties in favour of 1. These
parameters yield neither the best or the worst ap-
proximations of the gold standard. We tested a
range of tolerance values. As an example, Table 2
includes results for tolerance values 0 and 15. The
coalition found for tolerance 0 consists of 46 an-
notators who all completely agree with the col-
lective annotation; the coalition found for toler-
ance 15 consists of 156 annotators who all dis-
agree with the collective annotation on at most
15 items. While GreedyCR0 appears to perform
rather poorly, GreedyCR15 approximates the gold
standard particularly well. This is surprising and
suggests, on the one hand, that eliminating only
the most extreme outlier annotators is a useful
strategy, and on the other hand, that a high-quality
collective annotation can be obtained from a group
of annotators that disagree substantially.11

6 Related Work

There is an increasing number of projects using
crowdsourcing methods for labelling data. On-
line Games with a Purpose, originally conceived
by von Ahn and Dabbish (2004) to annotate im-
ages, have been used for a variety of linguis-
tic tasks: Lafourcade (2007) created JeuxDeMots
to develop a semantic network by asking players
to label words with semantically related words;
Phrase Detectives (Chamberlain et al., 2008) has
been used to gather annotations on anaphoric co-
reference; and more recently Basile et al. (2012)

11Recall that 124 out of 164 coders only annotated 20 items
each; a tolerance value of 15 thus is fairly lenient.

have developed the Wordrobe set of games for
annotating named entities, word senses, homo-
graphs, and pronouns. Similarly, crowdsourcing
via microworking sites like Amazon’s Mechanical
Turk has been used in several annotation experi-
ments related to tasks such as affect analysis, event
annotation, sense definition and word sense disam-
biguation (Snow et al., 2008; Rumshisky, 2011;
Rumshisky et al., 2012), amongst others.12

All these efforts face the problem of how to ag-
gregate the information provided by a group of
volunteers into a collective annotation. However,
by and large, the emphasis so far has been on is-
sues such as experiment design, data quality, and
costs, with little attention being paid to the aggre-
gation methods used, which are typically limited
to some form of majority vote (or taking averages
if the categories are numeric). In contrast, our fo-
cus has been on investigating different aggregation
methods for arriving at a collective annotation.

Our work has connections with the literature on
inter-annotator agreement. Agreement scores such
as kappa are used to assess the quality of an anno-
tation but do not play a direct role in constructing
one single annotation from the labellings of sev-
eral coders.13 The methods we have proposed, in
contrast, do precisely that. Still, agreement plays
a prominent role in some of these methods. In our
discussion of distance-based aggregation, we sug-
gested how agreement can be used to select a sub-
set of annotators whose individual annotations are
minimally distant from the resulting collective an-
notation. Our greedy consensus rule also makes
use of agreement to ensure a minimum level of
consensus. In both cases, the aggregators have the
effect of disregarding some outlier annotators.

12See also the papers presented at the NAACL 2010 Work-
shop on Creating Speech and Language Data with Amazon’s
Mechanical Turk (tinyurl.com/amtworkshop2010).

13Creating a gold standard often involves adjudication of
disagreements by experts, or even the removal of cases with
disagreement from the dataset. See, e.g., the papers cited by
Beigman Klebanov and Beigman (2009).
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Other researchers have explored ways to di-
rectly identify “low-quality” annotators. For in-
stance, Snow et al. (2008) and Raykar et al. (2010)
propose Bayesian methods for identifying and cor-
recting annotators’ biases, while Ipeirotis et al.
(2010) propose an algorithm for assigning a qual-
ity score to annotators that distinguishes intrinsic
error rate from an annotator’s bias. In our ap-
proach, we do not directly rate annotators or re-
calibrate their annotations—rather, some outlier
annotators get to play a marginal role in the re-
sulting collective annotation as a side effect of the
aggregation methods themselves.

Although in our case study we have tested our
aggregators by comparing their outcomes to a gold
standard, our approach to collective annotation it-
self does not assume that there is in fact a ground
truth. Instead, we view collective annotations as
reflecting the views of a community of speakers.14

This contrasts significantly with, for instance, the
machine learning literature, where there is a fo-
cus on estimating the hidden true label from a set
of noisy labels using maximum-likelihood estima-
tors (Dawid and Skene, 1979; Smyth et al., 1995;
Raykar et al., 2010).

In application domains where it is reasonable to
assume the existence of a ground truth and where
we are able to model the manner in which individ-
ual judgments are being distorted relative to this
ground truth, social choice theory provides tools
(using again maximum-likelihood estimators) for
the design of aggregators that maximise chances
of recovering the ground truth for a given model of
distortion (Young, 1995; Conitzer and Sandholm,
2005). In recent work, Mao et al. (2013) have dis-
cussed the use of these methods in the context of
crowdsourcing. Specifically, they have designed
an experiment in which the ground truth is defined
unambiguously and known to the experiment de-
signer, so as to be able to extract realistic models
of distortion from the data collected in a crowd-
sourcing exercise.

7 Conclusions

We have presented a framework for combining
the expertise of speakers taking part in large-scale

14In some domains, such as medical diagnosis, it makes
perfect sense to assume that there is a ground truth. However,
in tasks related to linguistic knowledge and language use such
an assumption seems far less justified. Hence, a collective
annotation may be the closest we can get to a representation
of the linguistic knowledge/use of a linguistic community.

annotation projects. Such projects are becoming
more and more common, due to the availability
of online crowdsourcing methods for data annota-
tion. Our work is novel in several respects. We
have drawn inspiration from the field of social
choice theory to formulate a general formal model
for aggregation problems, which we believe sheds
light on the kind of issues that arise when trying
to build annotated linguistic resources from a po-
tentially large group of annotators; and we have
proposed several families of concrete methods for
aggregating individual annotations that are more
fine-grained that the standard majority rule that so
far has been used across the board. We have tested
some of our methods on a gold standard testset for
the task of recognising textual entailment.

Our aim has been conceptual, namely to point
out that it is important for computational linguists
to reflect on the methods used when aggregat-
ing annotation information. We believe that so-
cial choice theory offers an appropriate general
methodology for supporting this reflection. Im-
portantly, this does not mean that the concrete ag-
gregation methods developed in social choice the-
ory are immediately applicable or that all the ax-
ioms typically studied in social choice theory are
necessarily relevant to aggregating linguistic an-
notations. Rather, what we claim is that it is the
methodology of social choice theory which is use-
ful: to formally state desirable properties of ag-
gregators as axioms and then to investigate which
specific aggregators satisfy them. To put it dif-
ferently: at the moment, researchers in compu-
tational linguistics simply use some given aggre-
gation methods (almost always the majority rule)
and judge their quality on how they fare in specific
experiments—but there is no principled reflection
on the methods themselves. We believe that this
should change and hope that the framework out-
lined here can provide a suitable starting point.

In future work, the framework we have pre-
sented here should be tested more extensively, not
only against a gold standard but also in terms of
the usefulness of the derived collective annotations
for training supervised learning systems. On the
theoretial side, it would be interesting to study the
axiomatic properties of the methods of aggrega-
tion we have proposed here in more depth and to
define axiomatic properties of aggregators that are
specifically tailored to the task of collective anno-
tation of linguistic resources.
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Abstract

This paper discusses the construction of
a parallel treebank currently involving ten
languages from six language families. The
treebank is based on deep LFG (Lexical-
Functional Grammar) grammars that were
developed within the framework of the
ParGram (Parallel Grammar) effort. The
grammars produce output that is maxi-
mally parallelized across languages and
language families. This output forms the
basis of a parallel treebank covering a
diverse set of phenomena. The treebank
is publicly available via the INESS tree-
banking environment, which also allows
for the alignment of language pairs. We
thus present a unique, multilayered paral-
lel treebank that represents more and dif-
ferent types of languages than are avail-
able in other treebanks, that represents

deep linguistic knowledge and that allows
for the alignment of sentences at sev-
eral levels: dependency structures, con-
stituency structures and POS information.

1 Introduction

This paper discusses the construction of a parallel
treebank currently involving ten languages that
represent several different language families, in-
cluding non-Indo-European. The treebank is based
on the output of individual deep LFG (Lexical-
Functional Grammar) grammars that were deve-
loped independently at different sites but within
the overall framework of ParGram (the Parallel
Grammar project) (Butt et al., 1999a; Butt et al.,
2002). The aim of ParGram is to produce deep,
wide coverage grammars for a variety of lan-
guages. Deep grammars provide detailed syntactic
analysis, encode grammatical functions as well as
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other grammatical features such as tense or aspect,
and are linguistically well-motivated. The Par-
Gram grammars are couched within the linguis-
tic framework of LFG (Bresnan, 2001; Dalrymple,
2001) and are constructed with a set of grammati-
cal features that have been commonly agreed upon
within the ParGram group. ParGram grammars are
implemented using XLE, an efficient, industrial-
strength grammar development platform that in-
cludes a parser, a generator and a transfer sys-
tem (Crouch et al., 2012). XLE has been devel-
oped in close collaboration with the ParGram
project. Over the years, ParGram has continu-
ously grown and includes grammars for Ara-
bic, Chinese, English, French, German, Georgian,
Hungarian, Indonesian, Irish, Japanese, Mala-
gasy, Murrinh-Patha, Norwegian, Polish, Spanish,
Tigrinya, Turkish, Urdu, Welsh and Wolof.

ParGram grammars produce output that has
been parallelized maximally across languages ac-
cording to a set of commonly agreed upon uni-
versal proto-type analyses and feature values. This
output forms the basis of the ParGramBank paral-
lel treebank discussed here. ParGramBank is con-
structed using an innovative alignment methodol-
ogy developed in the XPAR project (Dyvik et al.,
2009) in which grammar parallelism is presup-
posed to propagate alignment across different pro-
jections (section 6). This methodology has been
implemented with a drag-and-drop interface as
part of the LFG Parsebanker in the INESS infras-
tructure (Rosén et al., 2012; Rosén et al., 2009).
ParGramBank has been constructed in INESS and
is accessible in this infrastructure, which also of-
fers powerful search and visualization.

In recent years, parallel treebanking1 has gained
in importance within NLP. An obvious applica-
tion for parallel treebanking is machine transla-
tion, where treebank size is a deciding factor for
whether a particular treebank can support a par-
ticular kind of research project. When conduct-
ing in-depth linguistic studies of typological fea-
tures, other factors such as the number of in-
cluded languages, the number of covered phe-
nomena, and the depth of linguistic analysis be-
come more important. The treebanking effort re-
ported on in this paper supports work of the lat-
ter focus, including efforts at multilingual depen-
dency parsing (Naseem et al., 2012). We have

1Throughout this paper ‘treebank’ refers to both phrase-
structure resources and their natural extensions to depen-
dency and other deep annotation banks.

created a parallel treebank whose prototype in-
cludes ten typologically diverse languages and re-
flects a diverse set of phenomena. We thus present
a unique, multilayered parallel treebank that rep-
resents more languages than are currently avail-
able in other treebanks, and different types of lan-
guages as well. It contains deep linguistic knowl-
edge and allows for the parallel and simultane-
ous alignment of sentences at several levels. LFG’s
f(unctional)-structure encodes dependency struc-
tures as well as information that is equivalent to
Quasi-Logical Forms (van Genabith and Crouch,
1996). LFG’s c(onstituent)-structure provides in-
formation about constituency, hierarchical rela-
tions and part-of-speech. Currently, ParGramBank
includes structures for the following languages
(with the ISO 639-3 code and language fam-
ily): English (eng, Indo-European), Georgian (kat,
Kartvelian), German (deu, Indo-European), Hun-
garian (hun, Uralic), Indonesian (ind, Austrone-
sian), Norwegian (Bokmål) (nob, Indo-European),
Polish (pol, Indo-European), Turkish (tur, Altaic),
Urdu (urd, Indo-European) and Wolof (wol, Niger-
Congo). It is freely available for download under
the CC-BY 3.0 license via the INESS treebanking
environment and comes in two formats: a Prolog
format and an XML format.2

This paper is structured as follows. Section
2 discusses related work in parallel treebanking.
Section 3 presents ParGram and its approach to
parallel treebanking. Section 4 focuses on the tree-
bank design and its construction. Section 5 con-
tains examples from the treebank, focusing on ty-
pological aspects and challenges for parallelism.
Section 6 elaborates on the mechanisms for paral-
lel alignment of the treebank.

2 Related Work

There have been several efforts in parallel tree-
banking across theories and annotation schemes.

Kuhn and Jellinghaus (2006) take a mini-
mal approach towards multilingual parallel tree-
banking. They bootstrap phrasal alignments over
a sentence-aligned parallel corpus of English,
French, German and Spanish and report concrete
treebank annotation work on a sample of sen-
tences from the Europarl corpus. Their annotation

2http://iness.uib.no. The treebank is in the
public domain (CC-BY 3.0). The use of the INESS platform
itself is not subject to any licensing. To access the treebank,
click on ‘Treebank selection’ and choose the ParGram collec-
tion.
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scheme is the “leanest” possible scheme in that it
consists solely of a bracketing for a sentence in
a language (where only those units that play the
role of a semantic argument or modifier in a larger
unit are bracketed) and a correspondence relation
of the constituents across languages.

Klyueva and Marec̆ek (2010) present a small
parallel treebank using data and tools from two
existing treebanks. They take a syntactically an-
notated gold standard text for one language and
run an automated annotation on the parallel text
for the other language. Manually annotated Rus-
sian data are taken from the SynTagRus treebank
(Nivre et al., 2008), while tools for parsing the cor-
responding text in Czech are taken from the Tec-
toMT framework (Popel and Žabokrtský, 2010).

The SMULTRON project is concerned with con-
structing a parallel treebank of English, German
and Swedish. The sentences have been POS-tagged
and annotated with phrase structure trees. These
trees have been aligned on the sentence, phrase
and word level. Additionally, the German and
Swedish monolingual treebanks contain lemma in-
formation. The treebank is distributed in TIGER-
XML format (Volk et al., 2010).

Megyesi et al. (2010) discuss a parallel English-
Swedish-Turkish treebank. The sentences in each
language are annotated morphologically and syn-
tactically with automatic tools, aligned on the
sentence and the word level and partially hand-
corrected.3

A further parallel treebanking effort is Par-
TUT, a parallel treebank (Sanguinetti and Bosco,
2011; Bosco et al., 2012) which provides depen-
dency structures for Italian, English and French
and which can be converted to a CCG (Combina-
tory Categorial Grammar) format.

Closest to our work is the ParDeepBank, which
is engaged in the creation of a highly paral-
lel treebank of English, Portuguese and Bulgar-
ian. ParDeepBank is couched within the linguistic
framework of HPSG (Head-Driven Phrase Struc-
ture Grammar) and uses parallel automatic HPSG

grammars, employing the same tools and imple-
mentation strategies across languages (Flickinger
et al., 2012). The parallel treebank is aligned on
the sentence, phrase and word level.

In sum, parallel treebanks have so far fo-
cused exclusively on Indo-European languages

3The paper mentions Hindi as the fourth language, but
this is not yet available: http://stp.lingfil.uu.
se/˜bea/turkiska/home-en.html.

(with Turkish providing the one exception) and
generally do not extend beyond three or four
languages. In contrast, our ParGramBank tree-
bank currently includes ten typologically differ-
ent languages from six different language families
(Altaic, Austronesian, Indo-European, Kartvelian,
Niger-Congo, Uralic).

A further point of comparison with ParDeep-
Bank is that it relies on dynamic treebanks, which
means that structures are subject to change dur-
ing the further development of the resource gram-
mars. In ParDeepBank, additional machinery is
needed to ensure correct alignment on the phrase
and word level (Flickinger et al., 2012, p. 105).
ParGramBank contains finalized analyses, struc-
tures and features that were designed collabora-
tively over more than a decade, thus guaranteeing
a high degree of stable parallelism. However, with
the methodology developed within XPAR, align-
ments can easily be recomputed from f-structure
alignments in case of grammar or feature changes,
so that we also have the flexible capability of
allowing ParGramBank to include dynamic tree-
banks.

3 ParGram and its Feature Space

The ParGram grammars use the LFG formalism
which produces c(onstituent)-structures (trees)
and f(unctional)-structures as the syntactic anal-
ysis. LFG assumes a version of Chomsky’s Uni-
versal Grammar hypothesis, namely that all lan-
guages are structured by similar underlying prin-
ciples (Chomsky, 1988; Chomsky, 1995). Within
LFG, f-structures encode a language universal
level of syntactic analysis, allowing for crosslin-
guistic parallelism at this level of abstraction. In
contrast, c-structures encode language particular
differences in linear word order, surface morpho-
logical vs. syntactic structures, and constituency
(Dalrymple, 2001). Thus, while the Chomskyan
framework is derivational in nature, LFG departs
from this view by embracing a strictly representa-
tional approach to syntax.

ParGram tests the LFG formalism for its uni-
versality and coverage limitations to see how far
parallelism can be maintained across languages.
Where possible, analyses produced by the gram-
mars for similar constructions in each language are
parallel, with the computational advantage that the
grammars can be used in similar applications and
that machine translation can be simplified.
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The ParGram project regulates the features and
values used in its grammars. Since its inception
in 1996, ParGram has included a “feature com-
mittee”, which collaboratively determines norms
for the use and definition of a common multilin-
gual feature and analysis space. Adherence to fea-
ture committee decisions is supported technically
by a routine that checks the grammars for com-
patibility with a feature declaration (King et al.,
2005); the feature space for each grammar is in-
cluded in ParGramBank. ParGram also conducts
regular meetings to discuss constructions, analy-
ses and features.

For example, Figure 1 shows the c-structure
of the Urdu sentence in (1) and the c-structure
of its English translation. Figure 2 shows the f-
structures for the same sentences. The left/upper
c- and f-structures show the parse from the En-
glish ParGram grammar, the right/lower ones from
Urdu ParGram grammar.4,5 The c-structures en-
code linear word order and constituency and thus
look very different; e.g., the English structure is
rather hierarchical while the Urdu structure is flat
(Urdu is a free word-order language with no evi-
dence for a VP; Butt (1995)). The f-structures, in
contrast, are parallel aside from grammar-specific
characteristics such as the absence of grammati-
cal gender marking in English and the absence of
articles in Urdu.6

(1) ? Aj� J
K.
Q

�
�ºK
Q

�
K A

	
JK� @ ú




	
G

	
àA�»

kisAn=nE apnA
farmer.M.Sg=Erg self.M.Sg
TrEkTar bEc-A
tractor.M.Sg sell-Perf.M.Sg
‘Did the farmer sell his tractor?’

With parallel analyses and parallel features, maxi-
mal parallelism across typologically different lan-
guages is maintained. As a result, during the con-
struction of the treebank, post-processing and con-
version efforts are kept to a minimum.

4The Urdu ParGram grammar makes use of a translitera-
tion scheme that abstracts away from the Arabic-based script;
the transliteration scheme is detailed in Malik et al. (2010).

5In the c-structures, dotted lines indicate distinct func-
tional domains; e.g., in Figure 1, the NP the farmer and the
VP sell his tractor belong to different f-structures: the former
maps onto the SUBJ f-structure, while the latter maps onto the
topmost f-structure (Dyvik et al., 2009). Section 6 elaborates
on functional domains.

6The CASE feature also varies: since English does not
distinguish between accusative, dative, and other oblique
cases, the OBJ is marked with a more general obl CASE.

Figure 1: English and Urdu c-structures

We emphasize the fact that ParGramBank is
characterized by a maximally reliable, human-
controlled and linguistically deep parallelism
across aligned sentences. Generally, the result of
automatic sentence alignment procedures are par-
allel corpora where the corresponding sentences
normally have the same purported meaning as
intended by the translator, but they do not nec-
essarily match in terms of structural expression.
In building ParGramBank, conscious attention is
paid to maintaining semantic and constructional
parallelism as much as possible. This design fea-
ture renders our treebank reliable in cases when
the constructional parallelism is reduced even at f-
structure. For example, typological variation in the
presence or absence of finite passive constructions
represents a case of potential mismatch. Hungar-
ian, one of the treebank languages, has no produc-
tive finite passives. The most common strategy in
translation is to use an active construction with a
topicalized object, with no overt subject and with
3PL verb agreement:

(2) A fá-t ki-vág-t-ák.
the tree-ACC out-cut-PAST-3PL

‘The tree was cut down.’

In this case, a topicalized object in Hungarian has
to be aligned with a (topical) subject in English.
Given that both the sentence level and the phrase
level alignments are human-controlled in the tree-
bank (see sections 4 and 6), the greatest possible
parallelism is reliably captured even in such cases
of relative grammatical divergence.
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Figure 2: Parallel English and Urdu f-structures

4 Treebank Design and Construction

For the initial seeding of the treebank, we focused
on 50 sentences which were constructed manu-
ally to cover a diverse range of phenomena (tran-
sitivity, voice alternations, interrogatives, embed-
ded clauses, copula constructions, control/raising
verbs, etc.). We followed Lehmann et al. (1996)
and Bender et al. (2011) in using coverage of
grammatical constructions as a key component for
grammar development. (3) lists the first 16 sen-
tences of the treebank. An expansion to 100 sen-
tences is scheduled for next year.

(3) a. Declaratives:
1. The driver starts the tractor.
2. The tractor is red.

b. Interrogatives:
3. What did the farmer see?
4. Did the farmer sell his tractor?

c. Imperatives:
5. Push the button.
6. Don’t push the button.

d. Transitivity:
7. The farmer gave his neighbor an old
tractor.
8. The farmer cut the tree down.
9. The farmer groaned.

e. Passives and traditional voice:
10. My neighbor was given an old tractor
by the farmer.
11. The tree was cut down yesterday.
12. The tree had been cut down.
13. The tractor starts with a shudder.

f. Unaccusative:
14. The tractor appeared.

g. Subcategorized declaratives:
15. The boy knows the tractor is red.
16. The child thinks he started the tractor.

The sentences were translated from English
into the other treebank languages. Currently, these
languages are: English, Georgian, German, Hun-
garian, Indonesian, Norwegian (Bokmål), Polish,
Turkish, Urdu and Wolof. The translations were
done by ParGram grammar developers (i.e., expert
linguists and native speakers).

The sentences were automatically parsed with
ParGram grammars using XLE. Since the pars-
ing was performed sentence by sentence, our re-
sulting treebank is automatically aligned at the
sentence level. The resulting c- and f-structures
were banked in a database using the LFG Parse-
banker (Rosén et al., 2009). The structures were
disambiguated either prior to banking using XLE

or during banking with the LFG Parsebanker and
its discriminant-based disambiguation technique.
The banked analyses can be exported and down-
loaded in a Prolog format using the LFG Parse-
banker interface. Within XLE, we automatically
convert the structures to a simple XML format and
make these available via ParGramBank as well.

The Prolog format is used with applications
which use XLE to manipulate the structures, e.g.
for further semantic processing (Crouch and King,
2006) or for sentence condensation (Crouch et al.,
2004).
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5 Challenges for Parallelism

We detail some challenges in maintaining paral-
lelism across typologically distinct languages.

5.1 Complex Predicates
Some languages in ParGramBank make extensive
use of complex predicates. For example, Urdu uses
a combination of predicates to express concepts
that in languages like English are expressed with
a single verb, e.g., ‘memory do’ = ‘remember’,
‘fear come’ = ‘fear’. In addition, verb+verb com-
binations are used to express permissive or as-
pectual relations. The strategy within ParGram is
to abstract away from the particular surface mor-
phosyntactic expression and aim at parallelism
at the level of f-structure. That is, monoclausal
predications are analyzed via a simple f-structure
whether they consist of periphrastically formed
complex predicates (Urdu, Figure 3), a simple
verb (English, Figure 4), or a morphologically de-
rived form (Turkish, Figure 5).

In Urdu and in Turkish, the top-level PRED

is complex, indicating a composed predicate. In
Urdu, this reflects the noun-verb complex predi-
cate sTArT kar ‘start do’, in Turkish it reflects a
morphological causative. Despite this morphosyn-
tactic complexity, the overall dependency struc-
ture corresponds to that of the English simple verb.

(4) ù
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J � ñ » Q

�
� º K
Q

�
K Pñ



J K
 @P

�
X

DrAIvar TrEkTar=kO
driver.M.Sg.Nom tractor.M.Sg=Acc
sTArT kartA hE
start.M.Sg do.Impf.M.Sg be.Pres.3Sg
‘The driver starts the tractor.’

(5) sürücü traktör-ü çalış-tır-ıyor
driver.Nom tractor-Acc work-Caus-Prog.3Sg
‘The driver starts the tractor.’

The f-structure analysis of complex predicates
is thus similar to that of languages which do not
use complex predicates, resulting in a strong syn-
tactic parallelism at this level, even across typo-
logically diverse languages.

5.2 Negation
Negation also has varying morphosyntactic sur-
face realizations. The languages in ParGramBank
differ with respect to their negation strategies.
Languages such as English and German use inde-
pendent negation: they negate using words such as

Figure 3: Complex predicate: Urdu analysis of (4)

Figure 4: Simple predicate: English analysis of (4)

adverbs (English not, German nicht) or verbs (En-
glish do-support). Other languages employ non-
independent, morphological negation techniques;
Turkish, for instance, uses an affix on the verb, as
in (6).
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Figure 5: Causative: Turkish analysis of (5)

(6) düğme-ye bas-ma
button-Dat push-Neg.Imp
‘Don’t push the button.’

Within ParGram we have not abstracted away
from this surface difference. The English not in
(6) functions as an adverbial adjunct that modifies
the main verb (see top part of Figure 6) and infor-
mation would be lost if this were not represented
at f-structure. However, the same cannot be said of
the negative affix in Turkish — the morphological
affix is not an adverbial adjunct. We have there-
fore currently analyzed morphological negation as
adding a feature to the f-structure which marks the
clause as negative, see bottom half of Figure 6.

5.3 Copula Constructions
Another challenge to parallelism comes from co-
pula constructions. An approach advocating a uni-
form treatment of copulas crosslinguistically was
advocated in the early years of ParGram (Butt et
al., 1999b), but this analysis could not do justice to
the typological variation found with copulas. Par-
GramBank reflects the typological difference with
three different analyses, with each language mak-
ing a language-specific choice among the three
possibilities that have been identified (Dalrymple
et al., 2004; Nordlinger and Sadler, 2007; Attia,
2008; Sulger, 2011; Laczkó, 2012).

The possible analyses are demonstrated here
with respect to the sentence The tractor is red.
The English grammar (Figure 7) uses a raising ap-
proach that reflects the earliest treatments of cop-
ulas in LFG (Bresnan, 1982). The copula takes
a non-finite complement whose subject is raised
to the matrix clause as a non-thematic subject of
the copula. In contrast, in Urdu (Figure 8), the

Figure 6: Different f-structural analyses for nega-
tion (English vs. Turkish)

copula is a two-place predicate, assigning SUBJ

and PREDLINK functions. The PREDLINK function
is interpreted as predicating something about the
subject. Finally, in languages like Indonesian (Fig-
ure 9), there is no overt copula and the adjective is
the main predicational element of the clause.

Figure 7: English copula example
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Figure 8: Urdu copula example

Figure 9: Indonesian copula example

5.4 Summary

This section discussed some challenges for main-
taining parallel analyses across typologically di-
verse languages. Another challenge we face is
when no corresponding construction exists in a
language, e.g. with impersonals as in the English
It is raining. In this case, we provide a translation
and an analysis of the structure of the correspond-
ing translation, but note that the phenomenon be-
ing exemplified does not actually exist in the lan-
guage. A further extension to the capabilities of
the treebank could be the addition of pointers from
the alternative structure used in the translation to
the parallel aligned set of sentences that corre-
spond to this alternative structure.

6 Linguistically Motivated Alignment

The treebank is automatically aligned on the sen-
tence level, the top level of alignment within Par-
GramBank. For phrase-level alignments, we use
the drag-and-drop alignment tool in the LFG Parse-
banker (Dyvik et al., 2009). The tool allows the
alignment of f-structures by dragging the index
of a subsidiary source f-structure onto the index
of the corresponding target f-structure. Two f-
structures correspond if they have translationally
matching predicates, and the arguments of each
predicate correspond to an argument or adjunct in
the other f-structure. The tool automatically com-
putes the alignment of c-structure nodes on the
basis of the manually aligned corresponding f-
structures.7

7Currently we have not measured inter-annotator agree-
ment (IAA) for the f-structure alignments. The f-structure
alignments were done by only one person per language pair.
We anticipate that multiple annotators will be needed for this

This method is possible because the c-structure
to f-structure correspondence (the φ relation) is
encoded in the ParGramBank structures, allow-
ing the LFG Parsebanker tool to compute which c-
structure nodes contributed to a given f-structure
via the inverse (φ−1) mapping. A set of nodes
mapping to the same f-structure is called a ‘func-
tional domain’. Within a source and a target
functional domain, two nodes are automatically
aligned only if they dominate corresponding word
forms. In Figure 10 the nodes in each func-
tional domain in the trees are connected by whole
lines while dotted lines connect different func-
tional domains. Within a functional domain, thick
whole lines connect the nodes that share align-
ment; for simplicity the alignment is only indi-
cated for the top nodes. The automatically com-
puted c-structural alignments are shown by the
curved lines. The alignment information is stored
as an additional layer and can be used to ex-
plore alignments at the string (word), phrase (c-
)structure, and functional (f-)structure levels.

We have so far aligned the treebank pairs
English-Urdu, English-German, English-Polish
and Norwegian-Georgian. As Figure 10 illustrates
for (7) in an English-Urdu pairing, the English ob-
ject neighbor is aligned with the Urdu indirect ob-
ject (OBJ-GO) hamsAyA ‘neighbor’, while the En-
glish indirect object (OBJ-TH) tractor is aligned
with the Urdu object TrEkTar ‘tractor’. The c-
structure correspondences were computed auto-
matically from the f-structure alignments.
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kisAn=nE apnE
farmer.M.Sg=Erg self.Obl
hamsAyE=kO purAnA
neighbor.M.Sg.Obl=Acc old.M.Sg
TrEkTar di-yA
tractor.M.Sg give-Perf.M.Sg
‘The farmer gave his neighbor an old tractor.’

The INESS platform additionally allows for the
highlighting of connected nodes via a mouse-over
technique. It thus provides a powerful and flexible
tool for the semi-automatic alignment and subse-

task in the future, in which case we will measure IAA for this
step.
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Figure 10: Phrase-aligned treebank example English-Urdu: The farmer gave his neighbor an old tractor.

quent inspection of parallel treebanks which con-
tain highly complex linguistic structures.8

7 Discussion and Future Work

We have discussed the construction of ParGram-
Bank, a parallel treebank for ten typologically
different languages. The analyses in ParGram-
Bank are the output of computational LFG Par-
Gram grammars. As a result of ParGram’s cen-
trally agreed upon feature sets and prototypical
analyses, the representations are not only deep
in nature, but maximally parallel. The representa-
tions offer information about dependency relations
as well as word order, constituency and part-of-
speech.

In future ParGramBank releases, we will pro-
vide more theory-neutral dependencies along with
the LFG representations. This will take the form of
triples (King et al., 2003). We also plan to provide
a POS-tagged and a named entity marked up ver-
sion of the sentences; these will be of use for more
general NLP applications and for systems which
use such markup as input to deeper processing.

8One reviewer inquires about possibilities of linking
(semi-)automatically between languages, for example using
lexical resources such as WordNets or Panlex. We agree that
this would be desirable, but unrealizable, since many of the
languages included in ParGramBank do not have a WordNet
resource and are not likely to achieve an adequate one soon.

Third, the treebank will be expanded to include
100 more sentences within the next year. We also
plan to include more languages as other ParGram
groups contribute structures to ParGramBank.

ParGramBank, including its multilingual sen-
tences and all annotations, is made freely avail-
able for research and commercial use under the
CC-BY 3.0 license via the INESS platform, which
supports alignment methodology developed in the
XPAR project and provides search and visualiza-
tion methods for parallel treebanks. We encourage
the computational linguistics community to con-
tribute further layers of annotation, including se-
mantic (Crouch and King, 2006), abstract knowl-
edge representational (Bobrow et al., 2007), Prop-
Bank (Palmer et al., 2005), or TimeBank (Mani
and Pustejovsky, 2004) annotations.
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Abstract

Distributional thesauri are now widely
used in a large number of Natural Lan-
guage Processing tasks. However, they
are far from containing only interesting
semantic relations. As a consequence,
improving such thesaurus is an impor-
tant issue that is mainly tackled indirectly
through the improvement of semantic sim-
ilarity measures. In this article, we pro-
pose a more direct approach focusing on
the identification of the neighbors of a
thesaurus entry that are not semantically
linked to this entry. This identification re-
lies on a discriminative classifier trained
from unsupervised selected examples for
building a distributional model of the entry
in texts. Its bad neighbors are found by ap-
plying this classifier to a representative set
of occurrences of each of these neighbors.
We evaluate the interest of this method for
a large set of English nouns with various
frequencies.

1 Introduction

The work we present in this article focuses on the
automatic building of a thesaurus from a corpus.
As illustrated by Table 1, such thesaurus gives for
each of its entries a list of words, called seman-
tic neighbors, that are supposed to be semanti-
cally linked to the entry. Generally, each neigh-
bor is associated with a weight that characterizes
the strength of its link with the entry and all the
neighbors of an entry are sorted according to the
decreasing order of their weight.

The term semantic neighbor is very generic and
can have two main interpretations according to the
kind of semantic relations it is based on: one re-
lies only on paradigmatic relations, such as hy-
pernymy or synonymy, while the other consid-

ers syntagmatic relations, called collocation rela-
tions by (Halliday and Hasan, 1976) in the context
of lexical cohesion or “non-classical relations” by
(Morris and Hirst, 2004). The distinction between
these two interpretations refers to the distinction
between the notions of semantic similarity and se-
mantic relatedness as it was done in (Budanitsky
and Hirst, 2006) or in (Zesch and Gurevych, 2010)
for instance. However, the limit between these two
notions is sometimes hard to find in existing work
as terms semantic similarity and semantic relat-
edness are often used interchangeably. Moreover,
semantic similarity is frequently considered as in-
cluded into semantic relatedness and the two prob-
lems are often tackled by using the same methods.
In the remainder of this article, we will use the
term semantic similarity with its generic sense and
the term semantic relatedness for referring more
specifically to similarity based on syntagmatic re-
lations.

Following work such as (Grefenstette, 1994), a
widespread way to build a thesaurus from a cor-
pus is to use a semantic similarity measure for ex-
tracting the semantic neighbors of the entries of
the thesaurus. Three main ways of implement-
ing such measures can be distinguished. The first
one relies on handcrafted resources in which se-
mantic relations are clearly identified. Work based
on WordNet-like lexical networks for building se-
mantic similarity measures such as (Budanitsky
and Hirst, 2006) or (Pedersen et al., 2004) falls
into this category. These measures typically ex-
ploit the hierarchical structure of these networks,
based on hypernymy relations. The second ap-
proach makes use of a less structured source of
knowledge about words such as the definitions of
classical dictionaries or the glosses of WordNet.
WordNet’s glosses were used to support Lesk-
like measures in (Banerjee and Pedersen, 2003)
and more recently, measures were also defined
from Wikipedia or Wiktionaries (Gabrilovich and
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Markovitch, 2007). The last option is the corpus-
based approach, based on the distributional hy-
pothesis (Firth, 1957): each word is characterized
by the set of contexts from a corpus in which it ap-
pears and the semantic similarity of two words is
computed from the contexts they share. This per-
spective was first adopted by (Grefenstette, 1994)
and (Lin, 1998) and then, explored in details in
(Curran and Moens, 2002b), (Weeds, 2003) or
(Heylen et al., 2008).

The problem of improving the results of the
“classical” implementation of the distributional
approach as it can be found in (Curran and Moens,
2002a) for instance was already tackled by some
work. A part of these proposals focus on the
weighting of the elements that are part of the
contexts of words such as (Broda et al., 2009),
in which the weights of context elements are
turned into ranks, or (Zhitomirsky-Geffet and Da-
gan, 2009), followed and extended by (Yamamoto
and Asakura, 2010), that proposes a bootstrap-
ping method for modifying the weights of con-
text elements according to the semantic neighbors
found by an initial distributional similarity mea-
sure. However, another part of these proposals
implies more radical changes. The use of dimen-
sionality reduction techniques, for instance Latent
Semantic Analysis in (Padó and Lapata, 2007), the
multi-prototype (Reisinger and Mooney, 2010) or
examplar-based models (Erk and Pado, 2010), the
Deep Learning approach of (Huang et al., 2012) or
the redefinition of the distributional approach in a
Bayesian framework (Kazama et al., 2010) can be
classified into this second category.

The work we present in this article takes place
in the framework defined by (Grefenstette, 1994)
for implementing the distributional approach but
proposes a new method for improving a thesaurus
built in this context based on the identification of
its bad semantic neighbors rather than on the adap-
tation of the weight of their features.

2 Principles

Our work shares with (Zhitomirsky-Geffet and
Dagan, 2009) the use of a kind of bootstrapping as
it starts from a distributional thesaurus and to some
extent, exploits it for its improvement. However, it
adopts a more indirect approach: instead of select-
ing the “best” semantic neighbors of an entry in
the thesaurus for adapting the weights of distribu-
tional context elements, it focuses on the detection

of its bad semantic neighbors, that is to say the
neighbors of the entry that are actually not seman-
tically similar to the entry. In Table 1, waterworks
for the entry cabdriver and hollowness for the en-
try machination are two examples of such kind of
neighbors. By discarding these bad neighbors or
at least by downgrading them, the rank of true se-
mantic neighbors is expected to be lower. This
makes the thesaurus more interesting to use since
the quality of such thesaurus strongly decreases as
the rank of the neighbors of its entries increases
(see Section 4.1 for an illustration), which means
in practice that only the first neighbors of an entry
can be generally exploited.

The approach we propose for identifying the
bad semantic neighbors of a thesaurus entry re-
lies on the distributional hypothesis, as the method
for the initial building of the thesaurus, but im-
plements it in a different way. This hypothesis
roughly specifies that from a semantic viewpoint,
the meaning of a word can be characterized by the
set of contexts in which this word occurs. As a
consequence, two words are considered as seman-
tically similar if they occur in a large enough set
of shared contexts. In work such as (Curran and
Moens, 2002a), this hypothesis is implemented by
collecting for each entry the words it co-occurs
with in a large corpus. This co-occurrence can
be based either on the position of the word in the
text in relation to the entry or on the presence
of a syntactic relation between the entry and the
word. As a result, the distributional representa-
tion of a word takes the unstructured form of a
bag of words or the more structured form of a
set of pairs {syntactic relation, word}. A vari-
ant of this approach was proposed in (Kazama et
al., 2010) where the distributional representation
of a word is modeled as a multinomial distribution
with Dirichlet as prior.

However, this approach globally faces a certain
lack of diversity and complexity of the features of
its models. For instance, features such as ngrams
of words or ngrams of parts of speech are not con-
sidered whereas they are widely used in tasks such
as word sense disambiguation (WSD) for instance,
probably because they would lead to very large
models and because similarity measures such as
the Cosine measure are not necessarily suitable
for heterogeneous representations (Alexandrescu
and Kirchhoff, 2007). Hence, we propose in this
article to build a discriminative model for repre-
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abnormality defect [0.30], disorder [0.23], deformity [0.22], mutation [0.21], prolapse [0.21], anomaly [0.21] . . .
agreement accord [0.44], deal [0.41], pact [0.38], treaty [0.36], negotiation [0.35], proposal [0.32], arrangement [0.30] . . .
cabdriver waterworks [0.23], toolmaker [0.22], weaponeer [0.17], valkyry [0.17], wang [0.17], amusement-park [0.17] . . .
machination hollowness [0.15], share-price [0.12], clockmaker [0.12], huguenot [0.12], wrangling [0.12], alternation [0.12] . . .

Table 1: First neighbors of some entries of the distributional thesaurus of section 3.2

senting the contexts of a word since this kind of
models are known to integrate easily a wide set
of different types of features. This model aims
more precisely at discriminating from a semantic
viewpoint a word in context, i.e. in a sentence,
from all other words and more particularly, from
those of its neighbors in a distributional thesaurus
that are likely to be actually not semantically sim-
ilar to it. The underlying hypothesis follows the
distributional principles: a word and a synonym
should appear in the same contexts, which means
that they are characterized by the same features.
As a consequence, a model based on these fea-
tures that can identify a word in a sentence is likely
to identify also a synonym of this word in a sen-
tence, and by extension, to identify a word that
is paradigmatically linked to it. More precisely,
we found that such model is specifically effective
for discarding the bad neighbors of the entries of a
distributional thesaurus.

3 Improving a distributional thesaurus

3.1 Overview

The principles presented in the previous section
face one major problem compared to the “classi-
cal” distributional approach : the semantic similar-
ity of two words can be evaluated directly by com-
puting the similarity of their distributional repre-
sentations. However, in our case, since this rep-
resentation is a discriminative model, the similar-
ity of two words can not be evaluated through the
direct comparison of their models. These models
have to be applied to words in context for being
exploited. As a consequence, for deciding whether
a neighbor of a thesaurus entry is a bad neighbor
or not, the discriminative model of the entry has
to be applied to occurrences of this neighbor in
texts. Hence, the method we propose for improv-
ing a distributional thesaurus applies the following
process to each of its entries:
• building of a classifier for determining

whether a word in a sentence corresponds or
not to the entry;
• selection of a set of examples sentences for

each of the neighbors of the entry in the the-

saurus;
• application of the classifier to these sen-

tences;
• identification of bad neighbors according to

the results of the classifier;
• reranking of entry’s neighbors according to

bad neighbors.

3.2 Building of the initial thesaurus

Before introducing our method for improving dis-
tributional thesauri, we first present the way we
build such a thesaurus. As in (Lin, 1998) or (Cur-
ran and Moens, 2002a), this building is based on
the definition of a semantic similarity measure
from a corpus. The corpus used for defining this
measure was the AQUAINT-2 corpus, a middle-
size corpus made of around 380 million words
coming from news articles. Although our target
language is English, we chose to limit deliber-
ately the level of the tools applied for preprocess-
ing texts to part-of-speech tagging and lemmati-
zation to make possible the transposition of our
method to a large set of languages. This seems
to be a reasonable compromise between the ap-
proach of (Freitag et al., 2005), in which none
normalization of words is done, and the more
widespread use of syntactic parsers in work such
as (Lin, 1998). More precisely, we used TreeTag-
ger (Schmid, 1994) for performing the linguistic
preprocessing of the AQUAINT-2 corpus.

For the extraction of distributional data and the
characteristics of the distributional similarity mea-
sure, we adopted the options of (Ferret, 2010), re-
sulting from a kind of grid search procedure per-
formed with the extended TOEFL test proposed in
(Freitag et al., 2005) as an optimization objective.
More precisely, the following characteristics were
taken:
• distributional contexts made of the co-

occurrents collected in a 3 word window cen-
tered on each occurrence in the corpus of the
target word. These co-occurrents were re-
stricted to nouns, verbs and adjectives;
• soft filtering of contexts: removal of co-

occurrents with only one occurrence;
• weighting function of co-occurrents in con-
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texts = Pointwise Mutual Information (PMI)
between the target word and the co-occurrent;
• similarity measure between contexts, for

evaluating the semantic similarity of two
words = Cosine measure.

The building of our initial thesaurus from the
similarity measure above was performed classi-
cally by extracting the closest semantic neighbors
of each of its entries. More precisely, the selected
measure was computed between each entry and
its possible neighbors. These neighbors were then
ranked in the decreasing order of the values of this
measure and the first 100 neighbors were kept as
the semantic neighbors of the entry. Both entries
and possible neighbors were AQUAINT-2 nouns
whose frequency was higher than 10.

3.3 Building a discriminative model of words
in context

As mentioned in section 3.1, the starting point of
our reranking process is the definition of a model
for determining to what extent a word in a sen-
tence, which is not supposed to be known in the
context of this task, corresponds or not to a refer-
ence word E. This task can also be viewed as a
tagging task in which the occurrences of a target
word T are labeled with two tags: E and notE.
In the context of our global objective, we are not
of course interested by this task itself but rather by
the fact that such classifier is likely to model the
contexts in which E occurs and as a consequence,
is also likely to model its meaning according to the
distributional hypothesis.

A step further, such classifier can be viewed
as a means for testing whether or not a word
has the same meaning as E. This is a problem
close to WSD as it is performed in the context of
the pseudo-word disambiguation paradigm (Gale
et al., 1992): a pseudo-word is created with two
senses, E and notE, notE corresponding to one
or several words that are supposed to be represen-
tative of a meaning different from the meaning of
E. The objective is then to build a classifier for
distinguishing the pseudo-senses E and notE. As
a consequence of this view, we adopt the same
kind of features as the ones used for WSD for
building our classifier. More precisely, we follow
(Lee and Ng, 2002), a reference work for WSD,
by adopting a Support Vector Machines (SVM)
classifier with a linear kernel and three kinds of
features for characterizing each considered occur-

rence in a text of the reference word E:
• neighboring words;
• Part-of-Speech (POS) of neighboring words;
• local collocations.
Only features based on syntactic relations are

not taken from (Lee and Ng, 2002) since their use
would have not been coherent with the window
based approach of the building of our initial the-
saurus.

For the neighboring words features, we con-
sider all plain words (common and proper nouns,
verbs and adjectives) and adverbs that are present
in the same sentence of an occurrence of E. Each
neighboring word is represented under its lemma
form as a binary feature whose value is equal to 1
when it is present in the same sentence as E.

For the second type of features, we take more
precisely the POS of the three words before E and
those of the three words after E. Each pair {POS,
position} corresponds to a binary feature for the
SVM classifier. A special empty symbol is used
for the POS when the position goes beyond the end
or the beginning of the current sentence. Since we
analyze texts with TreeTagger, the tagset is very
close to the set of Penn Treebank tags.

Finally, the local collocations features corre-
spond to pairs of words, named collocations, in
the neighborhood of E. A collocation is speci-
fied by the notation Ci,j , with i and j referring to
the position of the first and the second word of the
collocation. In our case, i and j take their values
in the interval [−3,+3], similarly to POS. More
precisely, the following 11 types of collocations
are extracted for each occurrence of E: C−1,−1,
C1,1, C−2,−2, C2,2 C−2,−1, C−1,1, C1,2, C−3,−1,
C−2,1, C−1,2 and C1,3. As for POS, a special
empty symbol stands for words beyond the end
or the beginning of the sentence and similarly to
neighboring words features, words in collocations
are given under their lemma form. Each instance
of the 11 types of collocations is represented by a
tuple 〈lemma1, position1, lemma2, position2〉 and
leads to a binary feature for the SVM classifier.

In accordance with the process of section 3.1,
a specific SVM classifier is trained for each entry
of our initial thesaurus, which requires the unsu-
pervised selection of a set of positive and nega-
tive examples. The case of positive examples is
simple: a fixed number of sentences containing at
least one occurrence of the target entry are ran-
domly chosen in the corpus used for building our

564



initial thesaurus and the first occurrence of this en-
try in the sentence is taken as a positive example.
Since we want to characterize words as much as
possible from a semantic viewpoint, the selection
of negative examples is guided by our initial the-
saurus. Choosing a neighbor of the entry with a
high rank would guarantee in principle few false
negative examples, that is to say words1 which are
semantically similar to the entry, since the number
of such neighbors strongly decreases as the rank
of neighbors increases as we will illustrate it in
section 4.1. In practice, taking neighbors with a
rather small rank as negative examples is a bet-
ter option because these examples are more useful
in terms of discrimination as they are close to the
transition zone between negative and positive ex-
amples. Moreover, in order to limit the risk of se-
lecting only false negative examples, three neigh-
bors are taken as negative examples, at ranks 10,
15 and 202. For each of these negative examples,
a fixed number of sentences is selected follow-
ing the same principles as for positive examples,
which means that on average, the number of neg-
ative examples is equal to three times the number
of positive examples. This ratio reflects the fact
that among the neighbors of an entry, the number
of those that are semantically similar to the entry
is far lower than the number of those that are not.

3.4 Identification of bad neighbors and
thesaurus reranking

Once a word-in-context classifier was trained for
an entry, it is used for identifying the bad neigh-
bors of this entry, that is to say the neighbors that
are not semantically similar to it. As this classifier
can only be applied to words in context, a fixed
number of representative occurrences have to be
selected from our reference corpus for each neigh-
bor of the entry. This selection is performed sim-
ilarly to the selection of positive and negative ex-
amples in the previous section. The application of
our word-in-context classifier to each of these oc-
currences determines whether the context of this
occurrence is likely to be compatible with the con-
text of an occurrence of the entry.

In practice, the decision of the classifier is rarely

1More precisely, an example here is an occurrence of a
word in a text but by extension, we also use the term example
for referring to the word itself.

2It should be noted that these ranks come from the eval-
uation of section 4.1 but their choice is not the result of an
optimization process.

positive, which is not surprising: even if two
words are semantically equivalent, each one is
characterized by specific usages, especially in a
given corpus, and some features of our classifier,
such as the collocation features, are more likely
to capture such specificities than the unigrams of
“classical” distributional contexts. As a conse-
quence, we consider that a positive outcome of our
classifier is a significant hint about the presence of
a word that is semantically similar to the entry and
we keep a neighbor as a “good” neighbor if at least
a fixed number G of its occurrences, among those
selected as reference, are tagged positively by our
word-in-context classifier. Conversely, a neighbor
is defined as “bad” if the number of its reference
occurrences tagged positively by our classifier is
lower or equal to G.

The neighbors of an entry identified as bad
neighbors are not fully discarded. They are rather
downgraded to the end of the list of neighbors.
Among the downgraded neighbors, their initial or-
der is left unchanged. It should be noted that
the word-in-context classifier is not applied to the
neighbors whose occurrences are used for its train-
ing as it would frequently lead to downgrade these
neighbors, which is not necessarily optimum as we
chose them with a rather low rank.

4 Experiments and evaluation

4.1 Initial thesaurus evaluation

Table 2 shows the results of the evaluation of our
initial thesaurus, achieved by comparing the se-
lected semantic neighbors with two complemen-
tary reference resources: WordNet 3.0 synonyms
(Miller, 1990) [W], which characterize a semantic
similarity based on paradigmatic relations, and the
Moby thesaurus (Ward, 1996) [M], which gathers
a larger set of types of relations and is more rep-
resentative of semantic relatedness3. The fourth
column of Table 2, which gives the average num-
ber of synonyms and similar words in our refer-
ences for the AQUAINT-2 nouns, also illustrates
the difference of these two resources in terms of
richness. A fusion of the two resources is also
considered [WM]. As our objective is to evalu-
ate the extracted semantic neighbors and not the
ability to rebuild the reference resources, these re-

3The Moby thesaurus includes more precisely both
paradigmatic and syntactic relations but we will sometimes
use the term synonym as a shortcut for referring to all the
words associated to one of its entries.
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freq. ref. #eval.
words

#syn. /
word

recall R-prec. MAP P@1 P@5 P@10 P@100

W 10,473 2.9 24.6 8.2 9.8 11.7 5.1 3.4 0.7
all M 9,216 50.0 9.5 6.7 3.2 24.1 16.4 13.0 4.8
# 14,670 WM 12,243 38.7 9.8 7.7 5.6 22.5 14.1 10.8 3.8

W 3,690 3.7 28.3 11.1 12.5 17.2 7.7 5.1 1.0
high M 3,732 69.4 11.4 10.2 4.9 41.3 28.0 21.9 7.9
# 4,378 WM 4,164 63.2 11.5 11.0 6.5 41.3 26.8 20.8 7.3

W 3,732 2.6 28.6 10.4 12.5 13.6 5.8 3.7 0.7
middle M 3,306 41.3 9.3 6.5 3.1 18.7 13.1 10.4 3.8
# 5,175 WM 4,392 32.0 9.8 9.3 7.4 20.9 12.3 9.3 3.2

W 3,051 2.3 11.9 2.1 3.3 2.6 1.2 0.9 0.3
low M 2,178 30.1 2.8 1.2 0.5 2.5 1.5 1.5 0.9
# 5,117 WM 3,687 18.9 3.5 2.1 2.4 3.3 1.7 1.5 0.7

Table 2: Evaluation of semantic neighbor extraction

sources were filtered to discard entries and syn-
onyms that are not part of the AQUAINT-2 vo-
cabulary (see the difference between the number
of words in the first column and the number of
evaluated words of the third column). Since the
frequency of words is an important factor in dis-
tributional approaches, we give our results glob-
ally but also for three ranges of frequencies that
split our set of nouns into roughly equal parts:
high frequency (frequency > 1000), middle fre-
quency (100 < frequency ≤ 1000) and low fre-
quency (10 < frequency ≤ 100). These results
take the form of several measures and start at the
fifth column by the proportion of the synonyms
and similar words of our references that are found
among the first 100 extracted neighbors of each
noun. As these neighbors are ranked according to
their similarity value with their target word, the
evaluation measures are taken from the Informa-
tion Retrieval field by replacing documents with
synonyms and queries with target words (see the
four last columns of Table 2). The R-precision (R-
prec.) is the precision after the first R neighbors
were retrieved, R being the number of reference
synonyms; the Mean Average Precision (MAP) is
the average of the precision value after a reference
synonym is found; precision at different cut-offs is
given for the 1, 5, 10 and 100 first neighbors. All
these values are given as percentages.

The results of Table 2 lead to three main ob-
servations. First, the level of results heavily de-
pends on the frequency range of target words:
the best results are obtained for high frequency
words while evaluation measures significantly de-
crease for words whose frequency is low. Sec-

ond, the characteristics of the reference resources
have a significant impact on results. WordNet
provides a restricted number of synonyms for
each noun while the Moby thesaurus contains for
each entry a large number of synonyms and sim-
ilar words. As a consequence, the precisions
at different cut-offs have a significantly higher
value with Moby as reference than with Word-
Net as reference. Finally, the results of Ta-
ble 2 are compatible with those of (Lin, 1998)
for instance (R-prec. = 11.6 and MAP = 8.1
with WM as reference for all entries of the the-
saurus at http://webdocs.cs.ualberta.
ca/lindek/Downloads/sim.tgz) if we
take into account the fact that the thesaurus of Lin
was built from a much larger corpus and with syn-
tactic co-occurrences.

4.2 Implementation issues
The implementation of the method we have pre-
sented in section 3 raises several issues. One of
these concerns the occurrences to select from texts
of both the entries of the thesaurus and their neigh-
bors. These occurrences are used both for the
training of our word-in-context classifier and for
the identification of bad neighbors. In practice, we
extract randomly from our reference corpus, i.e.
the AQUAINT-2 corpus, a fixed number of sen-
tences, equal to 250, for each word of the vocab-
ulary of our initial thesaurus and exploit them for
the two tasks. This extraction is performed on the
basis of the lemma form of these words. It should
be noted that 250 is the upper limit of the num-
ber of occurrences by word since the frequency
in the corpus of many words is lower than 250.
When this limit is not reached, all the available oc-
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currences are taken, which may be no more than
11 occurrences for certain low-frequency words.
The upper limit of 250 is halfway between the 385
training examples on average for the Lexical Sam-
ple Task of Senseval 1 and the 118 training exam-
ples on average for the same task of Senseval 2.

The training of our word-in-context classifier
is also an important issue. As mentioned before,
this classifier is a linear SVM. Hence, only its C
regularization parameter can be optimized. Since
we have one specific classifier for each thesaurus
entry, such optimization has globally a high cost,
even for a linear kernel. Hence, we have first eval-
uated through a 5-fold cross-validation method the
results of these classifiers with a default value of
C, equal to 1. Table 3 gives their average accu-
racy value along with their standard deviation for
all the entries of the thesaurus and for the three
frequency ranges of Table 2.

all high middle low
accuracy 86.2 86.1 86.0 86.5
standard deviation 6.1 4.2 5.7 7.6

Table 3: Results of word-in-context classifiers

This table shows a global high level of result
along with similar values for all the frequency
ranges of entries4. Hence, we have decided not to
optimize the C parameter and to adopt the default
value of 1 for all the word-in-context classifiers.

0 5 10 15 20

12

13

14

15

16

G threshold

MAP (W)

R−prec. (W)

Figure 1: R-precision and MAP for various values
of the G threshold

The last and the most important implementation
issue is the setting of the threshold G for deter-
mining whether a neighbor is likely to be a bad

4The standard deviation is a little bit higher for the lowest
frequencies but it should be noted that the low number of
examples for low frequency entries does not seem to have
a strong impact on the results of such classifier.

neighbor. For this setting, we have randomly cho-
sen a subset of 859 entries of our initial thesaurus
that corresponds to 10% of the entries with at least
one true neighbor in any of our references. Fig-
ure 1 gives the results of the reranked thesaurus
for these entries in terms of R-precision and MAP
against reference W5 for various values of G. Al-
though the level of these measures does not change
a lot for G > 5, the graph of Figure 1 shows that
G = 15 appears to be an optimal value. Hence,
this is the value used for the detailed evaluation of
the next section.

4.3 Evaluation of the reranked thesaurus
Table 4 gives the evaluation of the application of
our reranking method to the initial thesaurus ac-
cording to the same principles as in section 4.1.
The value of each measure comes with its differ-
ence with the corresponding value for the initial
thesaurus. As the recall measure and the precision
for the last rank do not change in a reranking pro-
cess, they are not given again.

The first thing to notice is that at the global
scale, all measures for all references are signifi-
cantly improved6, which means that our hypothe-
sis about the possibility for a discriminative clas-
sifier to capture the meaning of a word tends to
be validated. It is an interesting result since the
features upon which this classifier was built were
taken from WSD and were not specifically se-
lected for this task. As a consequence, there is
probably some room for improvement.

If we go into details, Table 4 clearly shows two
main trends. First, the improvement of results is
particularly effective for middle frequency entries,
then for low frequency and finally, for high fre-
quency entries. Because of their already high level
in the initial thesaurus, results for high frequency
entries are difficult to improve but it is important
to note that our selection of bad neighbors has a
very low error rate, which at least preserves these
results. This is confirmed by the fact that, with
WordNet as reference, only 744 neighbors were
found wrongly downgraded, spread over 686 en-
tries, which represents only 5% of all downgraded
neighbors. The second main trend of Table 4 con-

5The use of W as reference is justified by the fact that the
number of synonyms for an entry in W is more compatible,
especially for R-precision, with the real use of the resulting
thesaurus in an application.

6The statistical significance of differences with the initial
thesaurus was evaluated by a paired Wilcoxon test with p-
value < 0.05 and < 0.01 († and ‡ for non significance).
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freq. ref. R-prec. MAP P@1 P@5 P@10
W 9.1 (0.9) 10.7 (0.9) 12.8 (1.1) 5.6 (0.5) 3.7 (0.3)

all M 7.2 (0.5) 3.5 (0.3) 26.5 (2.4) 17.9 (1.5) 14.0 (1.0)
WM 8.4 (0.7) 6.1 (0.5) 24.8 (2.3) 15.4 (1.3) 11.7 (0.9)
W 11.3 (0.2) † 12.6 (0.1) 17.3 (0.1) ‡ 7.8 (0.1) ‡ 5.1 (0.0)

high M 10.3 (0.1) 4.9 (0.0) 42.1 (0.8) 28.4 (0.4) 22.1 (0.2)
WM 11.1 (0.1) 6.6 (0.1) 42.0 (0.7) 27.2 (0.4) 20.9 (0.1)
W 11.8 (1.4) 13.8 (1.3) 15.7 (2.1) 6.5 (0.7) 4.1 (0.4)

middle M 7.3 (0.8) 3.6 (0.5) 23.3 (4.6) 16.0 (2.9) 12.4 (2.0)
WM 10.3 (1.0) 8.1 (0.7) 25.1 (4.2) 14.6 (2.3) 10.9 (1.6)
W 3.2 (1.1) 4.6 (1.3) 3.9 (1.3) 1.8 (0.6) 1.3 (0.4)

low M 1.8 (0.6) 0.8 (0.3) 4.4 (1.9) 2.9 (1.4) 2.6 (1.1)
WM 3.1 (1.0) 3.3 (0.9) 5.1 (1.8) 2.9 (1.2) 2.3 (0.8)

Table 4: Results of the reranking of semantic neighbors

cerns the type of semantic relations: results with
Moby as reference are improved in a larger ex-
tent than results with WordNet as reference. This
suggests that our procedure is more effective for
semantically related words than for semantically
similar words, which can be considered as a lit-
tle bit surprising since the notion of context in our
discriminative classifier seems a priori more strict
than in “classical” distributional contexts. How-
ever, this point must be investigated further as a
significant part of the relations in Moby, even if
they do no represent the largest part of them, are
paradigmatic relations.

WordNet respect, admiration, regard

Moby

admiration, appreciation, accep-
tance, dignity, regard, respect, ac-
count, adherence, consideration,
estimate, estimation, fame, great-
ness, reverence + 79 words more

initial

cordiality, gratitude, admiration,
comradeship, back-scratching,
perplexity, respect, ruination,
appreciation, neighbourliness . . .

reranking

gratitude, admiration, respect,
appreciation, neighborliness, trust,
empathy, goodwill, reciprocity,
half-staff, affection, self-esteem,
reverence, longing, regard . . .

Table 5: Impact of our reranking for the entry es-
teem

Table 5 illustrates more precisely the impact of
our reranking procedure for the middle frequency
entry esteem. Its WordNet row gives all the refer-
ence synonyms for this entry in WordNet while its
Moby row gives the first reference related words

for this entry in Moby. In our initial thesaurus, the
first two neighbors of esteem that are present in our
reference resources are admiration (rank 3) and re-
spect (rank 7). The reranking produces a thesaurus
in which these two words appear as the second
and the third neighbors of the entry because neigh-
bors without clear relation with it such as back-
scratching were downgraded while its third syn-
onym in WordNet is raised from rank 22 to rank
15. Moreover, the number of neighbors among the
first 15 ones that are present in Moby increases
from 3 to 5.

5 Related work

The building of distributional thesaurus is gener-
ally viewed as an application or a mode of eval-
uation of work about semantic similarity or se-
mantic relatedness. As a consequence, the im-
provement of such thesaurus is generally not di-
rectly addressed but is a possible consequence
of the improvement of semantic similarity mea-
sures. However, the extent of this improvement
is rarely evaluated as most of the work about se-
mantic similarity is evaluated on datasets such as
the WordSim-353 test collection (Gabrilovich and
Markovitch, 2007), which are only partially repre-
sentative of the results for thesaurus building.

If we consider more specifically the problem of
improving semantic similarity, and by the way the-
sauri, in a given paradigm, (Broda et al., 2009),
(Zhitomirsky-Geffet and Dagan, 2009) and (Ya-
mamoto and Asakura, 2010), which all take place
in the paradigm defined by (Grefenstette, 1994),
are the closest works to ours. (Broda et al., 2009)
proposes a new weighting scheme of words in
distributional contexts that replaces the weight of
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word by a function of its rank in the context, which
is a way to be less dependent on the values of a par-
ticular weighting function. (Zhitomirsky-Geffet
and Dagan, 2009) shares with our work the use
of bootstrapping by relying on an initial thesaurus
to derive means of improving it. More specifi-
cally, (Zhitomirsky-Geffet and Dagan, 2009) as-
sumes that the first neighbors of an entry are more
relevant than the others and as a consequence, that
their most significant features are also representa-
tive of the meaning of the entry. The neighbors
of the entry are reranked according to this hypoth-
esis by increasing the weight of these features to
favor their influence in the distributional contexts
that support the evaluation of the similarity be-
tween the entry and its neighbors. (Yamamoto and
Asakura, 2010) is a variant of (Zhitomirsky-Geffet
and Dagan, 2009) that takes into account a larger
number of features for the reranking process. One
main difference between all these works and ours
is that they assume that the initial thesaurus was
built by relying on distributional contexts repre-
sented as bags-of-words. Our method does not
make this assumption as its reranking is based on
a classifier built in an unsupervised way7 from and
applied to the corpus used for building the initial
thesaurus. As a consequence, it could even be ap-
plied to other paradigms than (Grefenstette, 1994).

If we focus more specifically on the improve-
ment of distributional thesauri, (Ferret, 2012) is
the most comparable work to ours, both because
it is specifically focused on this task and it is
based on the same evaluation framework. (Fer-
ret, 2012) selects in an unsupervised way a set
of positive and negative examples of semantically
similar words from the initial thesaurus, uses them
for training a classifier deciding whether or not a
pair of words are semantically similar and finally,
applies this classifier to the neighbors of each en-
try for reranking them. One of the objectives of
(Ferret, 2012) was to rebalance the initial the-
saurus in favor of low frequency entries. Although
this objective was reached, the resulting thesaurus
tends to have a lower performance than the initial
thesaurus for high frequency entries and for syn-
onyms. The problem with high frequency entries
comes from the fact that applying a machine learn-
ing classifier to its training examples does not lead
to a perfect result. The problem with synonyms

7It is a supervised classifier but its training set is selected
in an unsupervised way.

arises from the imbalance between semantic simi-
larity and semantic relatedness among training ex-
amples: most of selected examples were pairs of
words linked by semantic relatedness because this
kind of relations are more frequent among seman-
tic neighbors than relations based on semantic sim-
ilarity.

In both cases, the method proposed in (Ferret,
2012) faces the problem of relying only on the dis-
tributional thesaurus it tries to improve. This is an
important difference with the method presented in
this article, which mainly exploits the context of
the occurrences of words in the corpus used for the
building the initial thesaurus. As a consequence, at
a global scale, our reranked thesaurus outperforms
the final thesaurus of (Ferret, 2012) for nearly all
measures. The only exceptions are the P@1 values
for M and WM as reference. However, it should be
noted that values for both MAP and R-precision,
which are more reliable measures than P@1, are
identical for the two thesauri and the same refer-
ences.

6 Conclusion and perspectives

In this article, we have presented a new approach
for reranking the semantic neighbors of a distribu-
tional thesaurus. This approach relies on the unsu-
pervised building of discriminative classifiers ded-
icated to the identification of its entries in texts,
with the objective to characterize their meaning
according to the distributional hypothesis. The
classifier built for an entry is then applied to a
set of occurrences of its neighbors for identifying
and downgrading those that are not semantically
related to the entry. The proposed method was
tested on a large thesaurus of nouns for English
and led to a significant improvement of this the-
saurus, especially for middle and low frequency
entries and for semantic relatedness. We plan to
extend this work by taking into account the no-
tion of word sense as it is done in (Reisinger and
Mooney, 2010) or (Huang et al., 2012): since we
rely on occurrences of words in texts, this exten-
sion should be quite straightforward by turning our
word-in-context classifiers into true word sense
classifiers.
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Abstract

We consider the problem of grounding the
meaning of words in the physical world
and focus on the visual modality which we
represent by visual attributes. We create
a new large-scale taxonomy of visual at-
tributes covering more than 500 concepts
and their corresponding 688K images. We
use this dataset to train attribute classi-
fiers and integrate their predictions with
text-based distributional models of word
meaning. We show that these bimodal
models give a better fit to human word as-
sociation data compared to amodal models
and word representations based on hand-
crafted norming data.

1 Introduction

Recent years have seen increased interest in
grounded language acquisition, where the goal is
to extract representations of the meaning of nat-
ural language tied to the physical world. The
language grounding problem has assumed sev-
eral guises in the literature such as semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Kate and Mooney, 2007; Lu et
al., 2008; Börschinger et al., 2011), mapping nat-
ural language instructions to executable actions
(Branavan et al., 2009; Tellex et al., 2011), associ-
ating simplified language to perceptual data such
as images or video (Siskind, 2001; Roy and Pent-
land, 2002; Gorniak and Roy, 2004; Yu and Bal-
lard, 2007), and learning the meaning of words
based on linguistic and perceptual input (Bruni
et al., 2012b; Feng and Lapata, 2010; Johns and
Jones, 2012; Andrews et al., 2009; Silberer and
Lapata, 2012).

In this paper we are concerned with the latter
task, namely constructing perceptually grounded

distributional models. The motivation for models
that do not learn exclusively from text is twofold.
From a cognitive perspective, there is mounting
experimental evidence suggesting that our inter-
action with the physical world plays an impor-
tant role in the way we process language (Barsa-
lou, 2008; Bornstein et al., 2004; Landau et al.,
1998). From an engineering perspective, the abil-
ity to learn representations for multimodal data has
many practical applications including image re-
trieval (Datta et al., 2008) and annotation (Chai
and Hung, 2008), text illustration (Joshi et al.,
2006), object and scene recognition (Lowe, 1999;
Oliva and Torralba, 2007; Fei-Fei and Perona,
2005), and robot navigation (Tellex et al., 2011).

One strand of research uses feature norms as a
stand-in for sensorimotor experience (Johns and
Jones, 2012; Andrews et al., 2009; Steyvers, 2010;
Silberer and Lapata, 2012). Feature norms are ob-
tained by asking native speakers to write down at-
tributes they consider important in describing the
meaning of a word. The attributes represent per-
ceived physical and functional properties associ-
ated with the referents of words. For example,
apples are typically green or red, round, shiny,
smooth, crunchy, tasty, and so on; dogs have four
legs and bark, whereas chairs are used for sit-
ting. Feature norms are instrumental in reveal-
ing which dimensions of meaning are psychologi-
cally salient, however, their use as a proxy for peo-
ple’s perceptual representations can itself be prob-
lematic (Sloman and Ripps, 1998; Zeigenfuse and
Lee, 2010). The number and types of attributes
generated can vary substantially as a function of
the amount of time devoted to each concept. It is
not entirely clear how people generate attributes
and whether all of these are important for repre-
senting concepts. Finally, multiple participants are
required to create a representation for each con-
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cept, which limits elicitation studies to a small
number of concepts and the scope of any compu-
tational model based on feature norms.

Another strand of research focuses exclusively
on the visual modality, even though the grounding
problem could involve auditory, motor, and hap-
tic modalities as well. This is not entirely sur-
prising. Visual input represents a major source of
data from which humans can learn semantic rep-
resentations of linguistic and non-linguistic com-
municative actions (Regier, 1996). Furthermore,
since images are ubiquitous, visual data can be
gathered far easier than some of the other modali-
ties. Distributional models that integrate the visual
modality have been learned from texts and im-
ages (Feng and Lapata, 2010; Bruni et al., 2012b)
or from ImageNet (Deng et al., 2009), e.g., by
exploiting the fact that images in this database
are hierarchically organized according to WordNet
synsets (Leong and Mihalcea, 2011). Images are
typically represented on the basis of low-level fea-
tures such as SIFT (Lowe, 2004), whereas texts
are treated as bags of words.

Our work also focuses on images as a way
of physically grounding the meaning of words.
We, however, represent them by high-level vi-
sual attributes instead of low-level image fea-
tures. Attributes are not concept or category spe-
cific (e.g., animals have stripes and so do cloth-
ing items; balls are round, and so are oranges and
coins), and thus allow us to express similarities
and differences across concepts more easily. Fur-
thermore, attributes allow us to generalize to un-
seen objects; it is possible to say something about
them even though we cannot identify them (e.g., it
has a beak and a long tail). We show that this
attribute-centric approach to representing images
is beneficial for distributional models of lexical
meaning. Our attributes are similar to those pro-
vided by participants in norming studies, however,
importantly they are learned from training data (a
database of images and their visual attributes) and
thus generalize to new images without additional
human involvement.

In the following we describe our efforts to cre-
ate a new large-scale dataset that consists of 688K
images that match the same concrete concepts
used in the feature norming study of McRae et al.
(2005). We derive a taxonomy of 412 visual at-
tributes and explain how we learn attribute clas-
sifiers following recent work in computer vision
(Lampert et al., 2009; Farhadi et al., 2009). Next,

we show that this attribute-based image represen-
tation can be usefully integrated with textual data
to create distributional models that give a better fit
to human word association data over models that
rely on human generated feature norms.

2 Related Work

Grounding semantic representations with visual
information is an instance of multimodal learn-
ing. In this setting the data consists of multiple
input modalities with different representations and
the learner’s objective is to extract a unified repre-
sentation that fuses the modalities together. The
literature describes several successful approaches
to multimodal learning using different variants of
deep networks (Ngiam et al., 2011; Srivastava and
Salakhutdinov, 2012) and data sources including
text, images, audio, and video.

Special-purpose models that address the fusion
of distributional meaning with visual information
have been also proposed. Feng and Lapata (2010)
represent documents and images by a common
multimodal vocabulary consisting of textual words
and visual terms which they obtain by quantizing
SIFT descriptors (Lowe, 2004). Their model is es-
sentially Latent Dirichlet Allocation (LDA, Blei et
al., 2003) trained on a corpus of multimodal docu-
ments (i.e., BBC news articles and their associated
images). Meaning in this model is represented as
a vector whose components correspond to word-
topic distributions. A related model has been pro-
posed by Bruni et al. (2012b) who obtain distinct
representations for the textual and visual modali-
ties. Specifically, they extract a visual space from
images contained in the ESP-Game data set (von
Ahn and Dabbish, 2004) and a text-based seman-
tic space from a large corpus collection totaling
approximately two billion words. They concate-
nate the two modalities and subsequently project
them to a lower-dimensionality space using Sin-
gular Value Decomposition (Golub et al., 1981).

Traditionally, computer vision algorithms de-
scribe visual phenomena (e.g., objects, scenes,
faces, actions) by giving each instance a categor-
ical label (e.g., cat, beer garden, Brad Pitt, drink-
ing). The ability to describe images by their at-
tributes allows to generalize to new instances for
which there are no training examples available.
Moreover, attributes can transcend category and
task boundaries and thus provide a generic de-
scription of visual data.

Initial work (Ferrari and Zisserman, 2007)
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focused on simple color and texture attributes
(e.g., blue, stripes) and showed that these can be
learned in a weakly supervised setting from im-
ages returned by a search engine when using the
attribute as a query. Farhadi et al. (2009) were
among the first to use visual attributes in an ob-
ject recognition task. Using an inventory of 64 at-
tribute labels, they developed a dataset of approx-
imately 12,000 instances representing 20 objects
from the PASCAL Visual Object Classes Chal-
lenge 2008 (Everingham et al., 2008). Visual
semantic attributes (e.g., hairy, four-legged) were
used to identify familiar objects and to describe
unfamiliar objects when new images and bound-
ing box annotations were provided. Lampert et al.
(2009) showed that attribute-based representations
can be used to classify objects when there are no
training examples of the target classes available.
Their dataset contained over 30,000 images repre-
senting 50 animal concepts and used 85 attributes
from the norming study of Osherson et al. (1991).
Attribute-based representations have also been ap-
plied to the tasks of face detection (Kumar et al.,
2009), action identification (Liu et al., 2011), and
scene recognition (Patterson and Hays, 2012).

The use of visual attributes in models of distri-
butional semantics is novel to our knowledge. We
argue that they are advantageous for two reasons.
Firstly, they are cognitively plausible; humans em-
ploy visual attributes when describing the proper-
ties of concept classes. Secondly, they occupy the
middle ground between non-linguistic low-level
image features and linguistic words. Attributes
crucially represent image properties, however by
being words themselves, they can be easily inte-
grated in any text-based distributional model thus
eschewing known difficulties with rendering im-
ages into word-like units.

A key prerequisite in describing images by
their attributes is the availability of training data
for learning attribute classifiers. Although our
database shares many features with previous work
(Lampert et al., 2009; Farhadi et al., 2009) it dif-
fers in focus and scope. Since our goal is to
develop distributional models that are applicable
to many words, it contains a considerably larger
number of concepts (i.e., more than 500) and at-
tributes (i.e., 412) based on a detailed taxonomy
which we argue is cognitively plausible and ben-
eficial for image and natural language processing
tasks. Our experiments evaluate a number of mod-
els previously proposed in the literature and in

Attribute Categories Example Attributes
color patterns (25) is red, has stripes
diet (35) eats nuts, eats grass
shape size (16) is small, is chubby
parts (125) has legs, has wheels
botany;anatomy (25;78) has seeds, has fur
behavior (in)animate (55) flies, waddles, pecks
texture material (36) made of metal, is shiny
structure (3) 2 pieces, has pleats

Table 1: Attribute categories and examples of at-
tribute instances. Parentheses denote the number
of attributes per category.

all cases show that the attribute-based represen-
tation brings performance improvements over just
using the textual modality. Moreover, we show
that automatically computed attributes are compa-
rable and in some cases superior to those provided
by humans (e.g., in norming studies).

3 The Attribute Dataset

Concepts and Images We created a dataset of
images and their visual attributes for the nouns
contained in McRae et al.’s (2005) feature norms.
The norms cover a wide range of concrete con-
cepts including animate and inanimate things
(e.g., animals, clothing, vehicles, utensils, fruits,
and vegetables) and were collected by presenting
participants with words and asking them to list
properties of the objects to which the words re-
ferred. To avoid confusion, in the remainder of
this paper we will use the term attribute to refer to
properties of concepts and the term feature to refer
to image features, such as color or edges.

Images for the concepts in McRae et al.’s (2005)
production norms were harvested from ImageNet
(Deng et al., 2009), an ontology of images based
on the nominal hierarchy of WordNet (Fellbaum,
1998). ImageNet has more than 14 million im-
ages spanning 21K WordNet synsets. We chose
this database due to its high coverage and the high
quality of its images (i.e., cleanly labeled and high
resolution). McRae et al.’s norms contain 541 con-
cepts out of which 516 appear in ImageNet1 and
are represented by 688K images overall. The av-
erage number of images per concept is 1,310 with
the most popular being closet (2,149 images) and
the least popular prune (5 images).

1Some words had to be modified in order to match the cor-
rect synset, e.g., tank (container) was found as storage tank.
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behavior eats, walks, climbs, swims, runs
diet drinks water, eats anything
shape size is tall, is large
anatomy has mouth, has head, has nose, has tail, has claws,

has jaws, has neck, has snout, has feet, has tongue
color patterns is black, is brown, is white

botany has skin, has seeds, has stem, has leaves, has pulp
color patterns purple, white, green, has green top
shape size is oval, is long
texture material is shiny

behavior rolls
parts has step through frame, has fork, has 2 wheels, has chain, has pedals

has gears, has handlebar, has bell, has breaks has seat, has spokes
texture material made of metal
color patterns different colors, is black, is red, is grey, is silver

Table 2: Human-authored attributes for bear, eggplant, and bike.

The images depicting each concept were ran-
domly partitioned into a training, development,
and test set. For most concepts the development
set contained a maximum of 100 images and the
test set a maximum of 200 images. Concepts with
less than 800 images in total were split into 1/8
test and development set each, and 3/4 training set.
The development set was used for devising and re-
fining our attribute annotation scheme. The train-
ing and test sets were used for learning and eval-
uating, respectively, attribute classifiers (see Sec-
tion 4).

Attribute Annotation Our aim was to develop a
set of visual attributes that are both discriminating
and cognitively plausible, i.e., humans would gen-
erally use them to describe a concrete concept. As
a starting point, we thus used the visual attributes
from McRae et al.’s (2005) norming study. At-
tributes capturing other primary sensory informa-
tion (e.g., smell, sound), functional/motor proper-
ties, or encyclopaedic information were not taken
into account. For example, is purple is a valid vi-
sual attribute for an eggplant, whereas a vegetable
is not, since it cannot be visualized. Collating all
the visual attributes in the norms resulted in a to-
tal of 673 which we further modified and extended
during the annotation process explained below.

The annotation was conducted on a per-concept
rather than a per-image basis (as for example in
Farhadi et al. (2009)). For each concept (e.g., bear
or eggplant), we inspected the images in the devel-
opment set and chose all McRae et al. (2005) vi-
sual attributes that applied. If an attribute was gen-
erally true for the concept, but the images did not

provide enough evidence, the attribute was never-
theless chosen and labeled with <no evidence>.
For example, a plum has a pit, but most images in
ImageNet show plums where only the outer part
of the fruit is visible. Attributes supported by
the image data but missing from the norms were
added. For example, has lights and has bumper
are attributes of cars but are not included in the
norms. Attributes were grouped in eight general
classes shown in Table 1. Annotation proceeded
on a category-by-category basis, e.g., first all food-
related concepts were annotated, then animals, ve-
hicles, and so on. Two annotators (both co-authors
of this paper) developed the set of attributes for
each category. One annotator first labeled con-
cepts with their attributes, and the other annota-
tor reviewed the annotations, making changes if
needed. Annotations were revised and compared
per category in order to ensure consistency across
all concepts of that category.

Our methodology is slightly different from
Lampert et al. (2009) in that we did not simply
transfer the attributes from the norms to the con-
cepts in question but refined and extended them
according to the visual data. There are several
reasons for this. Firstly, it makes sense to se-
lect attributes corroborated by the images. Sec-
ondly, by looking at the actual images, we could
eliminate errors in McRae et al.’s (2005) norms.
For example, eight study participants erroneously
thought that a catfish has scales. Thirdly, dur-
ing the annotation process, we normalized syn-
onymous attributes (e.g., has pit and has stone)
and attributes that exhibited negligible variations
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has 2 pieces, has pointed end, has strap, has thumb, has buckles, has heels
has shoe laces, has soles, is black, is brown, is white, made of leather, made of rubber

climbs, climbs trees, crawls, hops, jumps, eats, eats nuts, is small, has bushy tail
has 4 legs, has head, has neck, has nose, has snout, has tail, has claws
has eyes, has feet, has toes,

diff colours, has 2 legs, has 2 wheels, has windshield, has floorboard, has stand, has tank
has mudguard, has seat, has exhaust pipe, has frame, has handlebar, has lights, has mirror
has step-through frame, is black, is blue, is red, is white, made of aluminum, made of steel

Table 3: Attribute predictions for sandals, squirrel, and motorcycle.

in meaning (e.g., has stem and has stalk). Finally,
our aim was to collect an exhaustive list of vi-
sual attributes for each concept which is consis-
tent across all members of a category. This is un-
fortunately not the case in McRae et al.’s norms.
Participants were asked to list up to 14 different
properties that describe a concept. As a result, the
attributes of a concept denote the set of properties
humans consider most salient. For example, both,
lemons and oranges have pulp. But the norms pro-
vide this attribute only for the second concept.

On average, each concept was annotated with
19 attributes; approximately 14.5 of these were
not part of the semantic representation created by
McRae et al.’s (2005) participants for that con-
cept even though they figured in the representa-
tions of other concepts. Furthermore, on average
two McRae et al. attributes per concept were dis-
carded. Examples of concepts and their attributes
from our database2 are shown in Table 2.

4 Attribute-based Classification

Following previous work (Farhadi et al., 2009;
Lampert et al., 2009) we learned one classifier per
attribute (i.e., 350 classifiers in total).3 The train-
ing set consisted of 91,980 images (with a maxi-
mum of 350 images per concept). We used an L2-
regularized L2-loss linear SVM (Fan et al., 2008)
to learn the attribute predictions. We adopted the
training procedure of Farhadi al. (2009).4 To learn
a classifier for a particular attribute, we used all
images in the training data. Images of concepts
annotated with the attribute were used as positive
examples, and the rest as negative examples. The

2Available from http://homepages.inf.ed.ac.uk/
mlap/index.php?page=resources.

3We only trained classifiers for attributes corroborated by
the images and excluded those labeled with <no evidence>.

4http://vision.cs.uiuc.edu/attributes/

data was randomly split into a training and valida-
tion set of equal size in order to find the optimal
cost parameter C. The final SVM for the attribute
was trained on the entire training data, i.e., on all
positive and negative examples.

The SVM learners used the four different fea-
ture types proposed in Farhadi et al. (2009),
namely color, texture, visual words, and edges.
Texture descriptors were computed for each pixel
and quantized to the nearest 256 k-means centers.
Visual words were constructed with a HOG spa-
tial pyramid. HOG descriptors were quantized
into 1000 k-means centers. Edges were detected
using a standard Canny detector and their orien-
tations were quantized into eight bins. Color de-
scriptors were sampled for each pixel and quan-
tized to the nearest 128 k-means centers. Shapes
and locations were represented by generating his-
tograms for each feature type for each cell in a grid
of three vertical and horizontal blocks. Our clas-
sifiers used 9,688 features in total. Table 3 shows
their predictions for three test images.

Note that attributes are predicted on an image-
by-image basis; our task, however, is to describe a
concept w by its visual attributes. Since concepts
are represented by many images we must some-
how aggregate their attributes into a single repre-
sentation. For each image iw ∈ Iw of concept w,
we output an F-dimensional vector containing pre-
diction scores scorea(iw) for attributes a = 1, ...,F.
We transform these attribute vectors into a single
vector pw ∈ [0,1]1×F , by computing the centroid
of all vectors for concept w. The vector is nor-
malized to obtain a probability distribution over
attributes given w:

pw =
(∑iw∈Iw scorea(iw))a=1,...,F

∑F
a=1 ∑iw∈Iw scorea(iw)

(1)

We additionally impose a threshold δ on pw by set-
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Figure 1: Attribute classifier performance for dif-
ferent thresholds δ (test set).

ting each entry less than δ to zero.
Figure 1 shows the results of the attribute pre-

diction on the test set on the basis of the computed
centroids; specifically, we plot recall against pre-
cision based on threshold δ.5 Table 4 shows the
10 nearest neighbors for five example concepts
from our dataset. Again, we measure the cosine
similarity between a concept and all other con-
cepts in the dataset when these are represented by
their visual attribute vector pw.

5 Attribute-based Semantic Models

We evaluated the effectiveness of our attribute
classifiers by integrating their predictions with tra-
ditional text-only models of semantic representa-
tion. These models have been previously proposed
in the literature and were also described in a recent
comparative study (Silberer and Lapata, 2012).

We represent the visual modality by attribute
vectors computed as shown in Equation (1). The
linguistic environment is approximated by textual
attributes. We used Strudel (Baroni et al., 2010)
to obtain these attributes for the nouns in our
dataset. Given a list of target words, Strudel ex-
tracts weighted word-attribute pairs from a lem-
matized and pos-tagged text corpus (e.g., egg-
plant–cook-v, eggplant–vegetable-n). The weight
of each word-attribute pair is a log-likelihood ratio
score expressing the pair’s strength of association.
In our experiments we learned word-attribute pairs
from a lemmatized and pos-tagged (2009) dump
of the English Wikipedia.6 In the remainder of
this section we will briefly describe the models we

5Threshold values ranged from 0 to 0.9 with 0.1 stepsize.
6The corpus can be downloaded from http://wacky.

sslmit.unibo.it/doku.php?id=corpora.

Concept Nearest Neighbors
boat ship, sailboat, yacht, submarine, canoe,

whale, airplane, jet, helicopter, tank (army)
rooster chicken, turkey, owl, pheasant, peacock, stork,

pigeon, woodpecker, dove, raven
shirt blouse, robe, cape, vest, dress, coat, jacket,

skirt, camisole, nightgown
spinach lettuce, parsley, peas, celery, broccoli, cab-

bage, cucumber, rhubarb, zucchini, asparagus
squirrel chipmunk, raccoon, groundhog, gopher, por-

cupine, hare, rabbit, fox, mole, emu

Table 4: Ten most similar concepts computed on
the basis of averaged attribute vectors and ordered
according to cosine similarity.

used in our study and how the textual and visual
modalities were fused to create a joint representa-
tion.

Concatenation Model Variants of this model
were originally proposed in Bruni et al. (2011)
and Johns and Jones (2012). Let T ∈ RN×D de-
note a term-attribute co-occurrence matrix, where
each cell records a weighted co-occurrence score
of a word and a textual attribute. Let P ∈ [0,1]N×F

denote a visual matrix, representing a probability
distribution over visual attributes for each word.
A word’s meaning can be then represented by the
concatenation of its normalized textual and visual
vectors.

Canonical Correlation Analysis The second
model uses Canonical Correlation Analysis (CCA,
Hardoon et al. (2004)) to learn a joint semantic
representation from the textual and visual modali-
ties. Given two random variables x and y (or two
sets of vectors), CCA can be seen as determining
two sets of basis vectors in such a way, that the cor-
relation between the projections of the variables
onto these bases is mutually maximized (Borga,
2001). In effect, the representation-specific de-
tails pertaining to the two views of the same phe-
nomenon are discarded and the underlying hidden
factors responsible for the correlation are revealed.

The linguistic and visual views are the same as
in the simple concatenation model just explained.
We use a kernelized version of CCA (Hardoon et
al., 2004) that first projects the data into a higher-
dimensional feature space and then performs CCA
in this new feature space. The two kernel matrices
are KT = T T ′ and KP = PP′. After applying CCA
we obtain two matrices projected onto l basis vec-
tors, T̃ ∈RN×l , resulting from the projection of the
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textual matrix T onto the new basis and P̃ ∈RN×l ,
resulting from the projection of the corresponding
visual attribute matrix. The meaning of a word is
then represented by T̃ or P̃.

Attribute-topic Model Andrews et al. (2009)
present an extension of LDA (Blei et al., 2003)
where words in documents and their associated
attributes are treated as observed variables that
are explained by a generative process. The
idea is that each document in a document col-
lection D is generated by a mixture of com-
ponents {x1, ...,xc, ...,xC} ∈ C , where a compo-
nent xc comprises a latent discourse topic coupled
with an attribute cluster. Inducing these attribute-
topic components from D with the extended LDA
model gives two sets of parameters: word prob-
abilities given components PW (wi|X = xc) for wi,
i = 1, ...,n, and attribute probabilities given com-
ponents PA(ak|X = xc) for ak, k = 1, ...,F . For ex-
ample, most of the probability mass of a compo-
nent x would be reserved for the words shirt, coat,
dress and the attributes has 1 piece, has seams,
made of material and so on.

Word meaning in this model is represented by
the distribution PX |W over the learned compo-
nents. Assuming a uniform distribution over com-
ponents xc in D , PX |W can be approximated as:

PX=xc|W=wi
=

P(wi|xc)P(xc)

P(wi)
≈ P(wi|xc)

C
∑

l=1
P(wi|xl)

(2)

where C is the total number of components.
In our work, the training data is a corpus D of

textual attributes (rather than documents). Each
attribute is represented as a bag-of-concepts,
i.e., words demonstrating the property expressed
by the attribute (e.g., vegetable-n is a property of
eggplant, spinach, carrot). For some of these con-
cepts, our classifiers predict visual attributes. In
this case, the concepts are paired with one of their
visual attributes. We sample attributes for a con-
cept w from their distribution given w (Eq. (1)).

6 Experimental Setup

Evaluation Task We evaluated the distribu-
tional models presented in Section 5 on the
word association norms collected by Nelson et al.
(1998).7 These were established by presenting
a large number of participants with a cue word
(e.g., rice) and asking them to name an associate

7From http://w3.usf.edu/FreeAssociation/.

word in response (e.g., Chinese, wedding, food,
white). For each cue, the norms provide a set
of associates and the frequencies with which they
were named. We can thus compute the prob-
ability distribution over associates for each cue.
Analogously, we can estimate the degree of sim-
ilarity between a cue and its associates using our
models. The norms contain 63,619 unique cue-
associate pairs. Of these, 435 pairs were covered
by McRae et al. (2005) and our models. We also
experimented with 1,716 pairs that were not part
of McRae et al.’s study but belonged to concepts
covered by our attribute taxonomy (e.g., animals,
vehicles), and were present in our corpus and Ima-
geNet. Using correlation analysis (Spearman’s ρ),
we examined the degree of linear relationship be-
tween the human cue-associate probabilities and
the automatically derived similarity values.8

Parameter Settings In order to integrate the vi-
sual attributes with the models described in Sec-
tion 5 we must select the appropriate threshold
value δ (see Eq. (1)). We optimized this value
on the development set and obtained best results
with δ = 0. We also experimented with thresh-
olding the attribute prediction scores and with ex-
cluding attributes with low precision. In both
cases, we obtained best results when using all at-
tributes. We could apply CCA to the vectors rep-
resenting each image separately and then compute
a weighted centroid on the projected vectors. We
refrained from doing this as it involves additional
parameters and assumes input different from the
other models. We measured the similarity between
two words using the cosine of the angle. For the
attribute-topic model, the number of predefined
components C was set to 10. In this model, sim-
ilarity was measured as defined by Griffiths et al.
(2007). The underlying idea is that word associa-
tion can be expressed as a conditional distribution.

With regard to the textual attributes, we
obtained a 9,394-dimensional semantic space
after discarding word-attribute pairs with a
log-likelihood ratio score less than 19.9 We also
discarded attributes co-occurring with less than
two different words.

8Previous work (Griffiths et al., 2007) which also predicts
word association reports how many times the word with the
highest score under the model was the first associate in the
human norms. This evaluation metric assumes that there are
many associates for a given cue which unfortunately is not
the case in our study which is restricted to the concepts rep-
resented in our attribute taxonomy.

9Baroni et al. (2010) use a similar threshold of 19.51.
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Nelson Concat CCA TopicAttr TextAttr
Concat 0.24
CCA 0.30 0.72
TopicAttr 0.26 0.55 0.28
TextAttr 0.21 0.80 0.83 0.34
VisAttr 0.23 0.65 0.52 0.40 0.39

Table 5: Correlation matrix for seen Nelson et al.
(1998) cue-associate pairs and five distributional
models. All correlation coefficients are statisti-
cally significant (p< 0.01, N = 435).

7 Results

Our experiments were designed to answer four
questions: (1) Do visual attributes improve the
performance of distributional models? (2) Are
there performance differences among different
models, i.e., are some models better suited to the
integration of visual information? (3) How do
computational models fare against gold standard
norming data? (4) Does the attribute-based repre-
sentation bring advantages over more conventional
approaches based on raw image features?

Our results are broken down into seen (Table 5)
and unseen (Table 6) concepts. The former are
known to the attribute classifiers and form part
of our database, whereas the latter are unknown
and are not included in McRae et al.’s (2005)
norms. We report the correlation coefficients we
obtain when human-derived cue-associate proba-
bilities (Nelson et al., 1998) are compared against
the simple concatenation model (Concat), CCA,
and Andrews et al.’s (2009) attribute-topic model
(TopicAttr). We also report the performance of
a distributional model that is based solely on the
output of our attribute classifiers, i.e., without any
textual input (VisAttr) and conversely the perfor-
mance of a model that uses textual information
only (i.e., Strudel attributes) without any visual in-
put (TextAttr). The results are displayed as a cor-
relation matrix so that inter-model correlations can
also be observed.

As can be seen in Table 5 (second column), two
modalities are in most cases better than one when
evaluating model performance on seen data. Dif-
ferences in correlation coefficients between mod-
els with two versus one modality are all statis-
tically significant (p< 0.01 using a t-test), with
the exception of Concat when compared against
VisAttr. It is also interesting to note that Topi-
cAttr is the least correlated model when compared
against other bimodal models or single modali-

Nelson Concat CCA TopicAttr TextAttr
Concat 0.11
CCA 0.15 0.66
TopicAttr 0.17 0.69 0.48
TextAttr 0.11 0.65 0.25 0.39
VisAttr 0.13 0.57 0.87 0.57 0.34

Table 6: Correlation matrix for unseen Nelson
et al. (1998) cue-associate pairs and five distribu-
tional models. All correlation coefficients are sta-
tistically significant (p< 0.01, N = 1,716).

ties. This indicates that the latent space obtained
by this model is most distinct from its constituent
parts (i.e., visual and textual attributes). Perhaps
unsuprisingly Concat, CCA, VisAttr, and TextAttr
are also highly intercorrelated.

On unseen pairs (see Table 6), Concat fares
worse than CCA and TopicAttr, achieving simi-
lar performance to TextAttr. CCA and TopicAttr
are significantly better than TextAttr and VisAttr
(p< 0.01). This indicates that our attribute classi-
fiers generalize well beyond the concepts found in
our database and can produce useful visual infor-
mation even on unseen images. Compared to Con-
cat and CCA, TopicAttr obtains a better fit with the
human association norms on the unseen data.

To answer our third question, we obtained dis-
tributional models from McRae et al.’s (2005)
norms and assessed how well they predict Nelson
et al.’s (1998) word-associate similarities. Each
concept was represented as a vector with dimen-
sions corresponding to attributes generated by par-
ticipants of the norming study. Vector components
were set to the (normalized) frequency with which
participants generated the corresponding attribute
when presented with the concept. We measured
the similarity between two words using the co-
sine coefficient. Table 7 presents results for dif-
ferent model variants which we created by ma-
nipulating the number and type of attributes in-
volved. The first model uses the full set of at-
tributes present in the norms (All Attributes). The
second model (Text Attributes) uses all attributes
but those classified as visual (e.g., functional, en-
cyclopaedic). The third model (Visual Attributes)
considers solely visual attributes.

We observe a similar trend as with our compu-
tational models. Taking visual attributes into ac-
count increases the fit with Nelson’s (1998) associ-
ation norms, whereas visual and textual attributes
on their own perform worse. Interestingly, CCA’s
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Models Seen
All Attributes 0.28
Text Attributes 0.20
Visual Attributes 0.25

Table 7: Model performance on seen Nelson et
al. (1998) cue-associate pairs; models are based
on gold human generated attributes (McRae et al.,
2005). All correlation coefficients are statistically
significant (p< 0.01, N = 435).

Models Seen Unseen
Concat 0.22 0.10
CCA 0.26 0.15
TopicAttr 0.23 0.19
TextAttr 0.20 0.08
VisAttr 0.21 0.13
MixLDA 0.16 0.11

Table 8: Model performance on a subset of Nelson
et al. (1998) cue-associate pairs. Seen are concepts
known to the attribute classifiers and covered by
MixLDA (N = 85). Unseen are concepts covered
by LDA but unknown to the attribute classifiers
(N = 388). All correlation coefficients are statisti-
cally significant (p< 0.05).

performance is comparable to the All Attributes
model (see Table 5, second column), despite us-
ing automatic attributes (both textual and visual).
Furthermore, visual attributes obtained through
our classifiers (see Table 5) achieve a marginally
lower correlation coefficient against human gener-
ated ones (see Table 7).

Finally, to address our last question, we com-
pared our approach against Feng and Lapata
(2010) who represent visual information via quan-
tized SIFT features. We trained their MixLDA
model on their corpus consisting of 3,361 BBC
news documents and corresponding images (Feng
and Lapata, 2008). We optimized the model pa-
rameters on a development set consisting of cue-
associate pairs from Nelson et al. (1998), exclud-
ing the concepts in McRae et al. (2005). We
used a vocabulary of approximately 6,000 words.
The best performing model on the development set
used 500 visual terms and 750 topics and the asso-
ciation measure proposed in Griffiths et al. (2007).
The test set consisted of 85 seen and 388 unseen
cue-associate pairs that were covered by our mod-
els and MixLDA.

Table 8 reports correlation coefficients for our
models and MixLDA against human probabili-
ties. All attribute-based models significantly out-
perform MixLDA on seen pairs (p< 0.05 using a
t-test). MixLDA performs on a par with the con-
catenation model on unseen pairs, however CCA,
TopicAttr, and VisAttr are all superior. Although
these comparisons should be taken with a grain
of salt, given that MixLDA and our models are
trained on different corpora (MixLDA assumes
that texts and images are collocated, whereas our
images do not have collateral text), they seem to
indicate that attribute-based information is indeed
beneficial.

8 Conclusions

In this paper we proposed the use of automatically
computed visual attributes as a way of physically
grounding word meaning. Our results demonstrate
that visual attributes improve the performance of
distributional models across the board. On a
word association task, CCA and the attribute-topic
model give a better fit to human data when com-
pared against simple concatenation and models
based on a single modality. CCA consistently out-
performs the attribute-topic model on seen data (it
is in fact slightly better over a model that uses gold
standard human generated attributes), whereas the
attribute-topic model generalizes better on unseen
data (see Tables 5, 6, and 8). Since the attribute-
based representation is general and text-based we
argue that it can be conveniently integrated with
any type of distributional model or indeed other
grounded models that rely on low-level image fea-
tures (Bruni et al., 2012a; Feng and Lapata, 2010)

In the future, we would like to extend our
database to actions and show that this attribute-
centric representation is useful for more applied
tasks such as image description generation and ob-
ject recognition. Finally, we have only scratched
the surface in terms of possible models for inte-
grating the textual and visual modality. Interest-
ing frameworks which we plan to explore are deep
belief networks and Bayesian non-parametrics.
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Abstract

Developing natural language processing
tools for low-resource languages often re-
quires creating resources from scratch.
While a variety of semi-supervised meth-
ods exist for training from incomplete
data, there are open questions regarding
what types of training data should be used
and how much is necessary. We dis-
cuss a series of experiments designed to
shed light on such questions in the con-
text of part-of-speech tagging. We obtain
timed annotations from linguists for the
low-resource languages Kinyarwanda and
Malagasy (as well as English) and eval-
uate how the amounts of various kinds
of data affect performance of a trained
POS-tagger. Our results show that an-
notation of word types is the most im-
portant, provided a sufficiently capable
semi-supervised learning infrastructure is
in place to project type information onto
a raw corpus. We also show that finite-
state morphological analyzers are effective
sources of type information when few la-
beled examples are available.

1 Introduction

Low-resource languages present a particularly dif-
ficult challenge for natural language processing
tasks. For example, supervised learning meth-
ods can provide high accuracy for part-of-speech
(POS) tagging (Manning, 2011), but they per-
form poorly when little supervision is avail-
able. Good results in weakly-supervised tagging
have been obtained by training sequence models
such as hidden Markov models (HMM) using the
Expectation-Maximization algorithm (EM), how-
ever most work in this area has still relied on rel-
atively large amounts of data, both annotated and

unannotated, as well as an assumption that the an-
notations are very clean (Kupiec, 1992; Merialdo,
1994).

The ability to learn taggers using very little data
is enticing: only a tiny fraction of the world’s lan-
guages have enough data for standard supervised
models to work well. The collection or develop-
ment of resources is a time-consuming and expen-
sive process, creating a significant barrier for an
under-studied language where there are few ex-
perts and little funding. It is thus important to
develop approaches that achieve good accuracy
based on the amount of data that can be reasonably
obtained, for example, in just a few hours by a lin-
guist doing fieldwork on a non-native language.

Previous work explored learning taggers from
weak information, but the type, amount, quality,
and sources of data raise questions about the appli-
cability of those results to real-world low-resource
scenarios (Toutanova and Johnson, 2008; Ravi and
Knight, 2009; Hasan and Ng, 2009; Garrette and
Baldridge, 2012). Most research simulated weak
supervision with tag dictionaries extracted from
existing large, expertly-annotated corpora. These
resources have been developed over long periods
of time by trained annotators who collaborate to
produce high-quality analyses. They are also bi-
ased towards including only the most likely tag
for each word type, resulting in a cleaner dictio-
nary than one would find in a real scenario. As
such, these experiments do not reflect real-world
constraints.

One exception to this work is Goldberg et al.
(2008): they use a manually-constructed lexicon
for Hebrew in order to learn an HMM tagger. How-
ever, this lexicon was constructed by trained lexi-
cographers over a long period of time and achieves
very high coverage of the language with very good
quality, much better than could be achieved by
our non-expert linguistics graduate student anno-
tators in just a few hours. Cucerzan and Yarowsky
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(2002) learn a POS-tagger from existing linguis-
tic resources, namely a dictionary and a refer-
ence grammar, but these resources are not avail-
able, much less digitized, for most under-studied
languages. Haghighi and Klein (2006) develop a
model in which a POS-tagger is learned from a list
of POS tags and just three “prototype” word types
for each tag, but their approach requires a vector
space to compute the distributional similarity be-
tween prototypes and other word types in the cor-
pus. Such distributional models are not feasible
for low-resource languages because they require
immense amounts of raw text, much more than is
available in these settings (Abney and Bird, 2010).
Further, they extracted their prototype lists directly
from a labeled corpus, something we are specif-
ically avoiding. Täckström et al. (2013) evalu-
ate the use of mixed type and token constraints
generated by projecting information from a high-
resource language to a low-resource language via
a parallel corpus. However, large parallel corpora
are not available for most low-resource languages.
These are also expensive resources to create and
would take considerably more effort to produce
than the monolingual resources that our annotators
were able to generate in a four-hour timeframe.
Of course, if they are available, such parallel text
links could be incorporated into our approach.

In our previous work, we developed a differ-
ent strategy based on generalizing linguistic input
with a computational model: linguists annotated
either types or tokens for two hours, these anno-
tations are projected onto a corpus of unlabeled
tokens using label propagation and HMMs, and
a final POS-tagger is trained on this larger auto-
labeled corpus (Garrette and Baldridge, 2013).
That approach uses much more realistic types
and quantities of resources than previous work;
nonetheless, it leaves many open questions regard-
ing the effectiveness of incrementally more anno-
tation, the role of unannotated data, and whether
there is a good balance to be found using a combi-
nation of type- and token-supervision. We also did
not consider morphological analyzers as a form
of type supervision, as suggested by Merialdo
(1994).

This paper addresses these questions via a se-
ries of experiments designed to quantify the ef-
fect on performance given by the amount of time
spent finding or annotating training materials. We
specifically look at the impact of four types of data

collection:

1. Time annotating sentences (token supervision)
2. Time creating tag dictionary (type supervision)
3. Time constructing a finite state transducer

(FST) to analyze word-type morphology
4. Amount of raw data available for training

We explore these strategies in the context of POS-
tagging for Kinyarwanda and Malagasy. We also
include experiments for English, pretending as
though it is a low-resource language. The over-
whelming take away from our results is that type
supervision—when backed by an effective semi-
supervised learning approach—is the most impor-
tant source of linguistic information. Also, mor-
phological analyzers help for morphologically rich
languages when there are few labeled types or to-
kens (and, it never hurts to use them). Finally, per-
formance improves with more raw data, though we
see diminishing returns past 400,000 tokens. With
just four hours of type annotation, our system ob-
tains good accuracy across the three languages:
89.8% on English, 81.9% on Kinyarwanda, and
81.2% on Malagasy.

Our results compare favorably with previous
work despite using considerably less supervision
and a more difficult set of tags. For example, Li et
al. (2012) use the entirety of English Wiktionary
directly as a tag dictionary to obtain 87.1% accu-
racy on English, below our result. Täckström et al.
(2013) average 88.8% across 8 major languages,
but for Turkish, a morphologically rich language,
they achieve only 65.2%, significantly below our
81.9% for morphologically-rich Kinyarwanda.

2 Data

Kinyarwanda (KIN) and Malagasy (MLG) are low-
resource, KIN is morphologically rich, and English
(ENG) is used for comparison. For each language,
sentences were divided into four sets: training data
to be labeled by annotators, raw training data, de-
velopment data, and test data.

Data sources The KIN texts are transcripts of
testimonies by survivors of the Rwandan geno-
cide provided by the Kigali Genocide Memorial
Center. The MLG texts are articles from the web-
sites1 Lakroa and La Gazette and Malagasy Global
Voices.2 Texts in both KIN and MLG were tok-

1www.lakroa.mg and www.lagazette-dgi.com
2mg.globalvoicesonline.org/
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KIN MLG ENG - Experienced ENG - Novice
time type token type token type token type token
1:00 801 559 (1093) 660 422 (899) 910 522 (1124) 210 308 (599)
2:00 1814 948 (2093) 1363 785 (1923) 2660 1036 (2375) 631 646 (1429)
3:00 2539 1324 (3176) 2043 1082 (3064) 4561 1314 (3222) 1350 953 (2178)
4:00 3682 1651 (4119) 2773 1378 (4227) 6598 1697 (4376) 2185 1220 (2933)

Table 1: Annotations for each language and annotator as time increases. Shows the number of tag
dictionary entries from type annotation vs. token. (The count of labeled tokens is shown in parentheses).
For brevity, the table only shows hourly progress.

enized and labeled with POS tags by two linguis-
tics graduate students, each of which was studying
one of the languages. The KIN and MLG data have
12 and 23 distinct POS tags, respectively.

The Penn Treebank (PTB) (Marcus et al., 1993)
is used as ENG data. Section 01 was used for
token-supervised annotation, sections 02-14 were
used as raw data, 15-18 for development of the
FST, 19-21 as a dev set and 22-24 as a test set.
The PTB uses 45 distinct POS tags.

Collecting annotations Linguists with non-
native knowledge of KIN and MLG produced anno-
tations for four hours (in 30-minute intervals) for
two tasks. In the first task, type-supervision, the
annotator was given a list of the words in the tar-
get language (ranked from most to least frequent),
and they annotated each word type with its poten-
tial POS tags. The word types and frequencies used
for this task were taken from the raw training data
and did not include the test sets. In the second
task, token-supervision, full sentences were anno-
tated with POS tags. The 30-minute intervals allow
us to investigate the incremental benefit of addi-
tional annotation of each type as well as how both
annotation types might be combined within a fixed
annotation budget.

Baldridge and Palmer (2009) found that anno-
tator expertise greatly influences effectiveness of
active learning for morpheme glossing, a related
task. To see how differences in annotator speed
and quality impact our task, we obtained ENG data
from an experienced annotator and a novice one.

Ngai and Yarowsky (2000) investigated the ef-
fectiveness of rule-writing versus annotation (us-
ing active learning) for chunking, and found the
latter to be far more effective. While we do not
explore a rule-writing approach to POS-tagging,
we do consider the impact of rule-based morpho-
logical analyzers as a component in our semi-
supervised POS-tagging system.

ENG - Exp. ENG - Nov.
time type tok type tok
1:00 0.05 0.03 0.01 0.02
2:00 0.15 0.05 0.03 0.03
3:00 0.24 0.06 0.07 0.05
4:00 0.32 0.08 0.11 0.06

Table 2: Tag dictionary recall against the test set
for ENG annotators on type and token annotations.

Annotations Table 1 gives statistics for all lan-
guages and annotators showing progress during
the 4-hour tasks. With token-annotation, tag
dictionary growth slows because high-frequency
words are repeatedly annotated, producing only
additional frequency and sequence information.
In contrast, every type-annotation label is a new
tag dictionary entry. For types, growth increases
over time, reflecting the fact that high-frequency
words (which are addressed first) tend to be more
ambiguous and thus require more careful thought
than later words. For ENG, we can compare the
tagging speed of the experienced annotator with
the novice: 50% more tokens and 3 times as many
types. The token-tagging speed stayed fairly con-
stant for the experienced annotator, but the novice
increased his rate, showing the result of practice.

Checking the annotators’ output against the
gold tags in the PTB shows that both had good
tagging accuracy on tokens: 94-95%. Comparing
the tag dictionary entries versus the test data, pre-
cision starts in the high 80%s and falls to to the
mid-70%s in all cases. However, the differences
in recall, shown in Table 2, are more interesting.
On types, the experienced annotator maxed out at
32%, but the novice only reaches 11%. More-
over, the maximum for token annotations is much
lower due to high repeat-annotation. The discrep-
ancies between experienced and novice, and be-
tween type and token recall explain a great deal of
the performance disparity seen in the experiments.
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3 Morphological Transducers

Finite-state transducers (FSTs) accept regular lan-
guages and can be constructed easily using regu-
lar expressions, which makes them quite useful for
phonology, morphology and limited areas of syn-
tax (Karttunen, 2001). Past work has used FSTs
for direct POS-tagging (Roche and Schabes, 1995),
but this requires tight coupling between the FST

and target tagset. We use FSTs for morphologi-
cal analysis: the FST accepts a word type and pro-
duces a set of morphological features. If there are
multiple possible analyses for a given word type,
the FST returns them all. For instance the Kin-
yarwanda verb sibatarazuka “he is not yet resur-
rected” is analyzed in several ways:

• +NEG+CL2+1PL+V+arazuk+IMP
• +NEG+CL2+NOT.YET+PRES+zuk+IMP
• +NEG+CL2+NOT.YET+razuk+IMP

FSTs are particularly valuable for their ability
to analyze out-of-vocabulary items. By looking
for known affixes, FSTs can guess the stem of
a word and produce an analysis despite not hav-
ing knowledge of that stem. For morphologically
complex languages like KIN, this ability is espe-
cially useful. Other factors, such as a large num-
ber of morphologically-conditioned phonological
changes (seen in MLG) make out-of-vocabulary
guessing more challenging because of the large
number of potential stems (high ambiguity).

Development of the FSTs for all three languages
was done by iteratively adding rules and lexical
items with the goal of increasing coverage on a
raw dataset. To accomplish this on a fixed time
budget, the most frequently occurring unanalyzed
tokens were examined, and their stems plus any
observable morphological or phonological pat-
terns were added to the transducer. Addition-
ally, developers searched for known morpholog-
ical alternations to locate instances of phonolog-
ical change for inclusion. Coverage was checked
against a raw dataset which did not include the test
data used for the POS experiments.

The KIN and MLG FSTs were created by
English-speaking linguists who were familiar with
their respective language. They also used dictio-
naries and grammars. Each FST was developed
in 10 hours. To evaluate the benefits of more de-
velopment time, a version of the English FST was
saved every 30 minutes, as shown in Table 3.

elapsed
time

tokens types
count pct count pct

2:00 130k 61% 2.1k 12%
4:00 159k 75% 4.1k 24%
6:00 170k 80% 6.7k 39%
8:00 182k 86% 7.7k 44%

10:00 192k 91% 10.7k 62%

Table 3: Coverage of the English morphological
FST during development. For brevity, showing 2-
hour increments instead of 30-minute segments.

tokens types
cov. ambig. cov. ambig.

KIN 86% 2.62 82% 5.31
MLG 78% 2.98 37% 1.13
ENG 91% 1.19 62% 1.97

Table 4: Coverage and ambiguity of the final FST

for each language.

4 Approach

Learning under low-resource conditions is more
difficult than scenarios in most previous POS work
because the vast majority of the word types in the
training and test data are not covered by the an-
notations. When most words are unknown, learn-
ing algorithms such as EM struggle (Garrette and
Baldridge, 2012). Recall that most work on learn-
ing POS-taggers from tag dictionaries used tag dic-
tionaries culled from test sets (even when consid-
ering incomplete dictionaries). We thus build on
our previous approach, which exploits extremely
sparse, human-generated annotations that are pro-
duced without knowledge of which words appear
in the test set (Garrette and Baldridge, 2013).

This approach generalizes a small initial tag dic-
tionary to include unannotated word types appear-
ing in raw data. It estimates word/tag pair and
tag-transition frequency information using model-
minimization, which also reduces noise intro-
duced by automatic tag dictionary expansion. The
approach exploits type annotations effectively to
learn parameters for out-of-vocabulary words and
infer missing frequency and sequence informa-
tion. This pipeline is described in detail in the
previous work, so we give only a brief overview
and describe our additions.

The purpose of tag dictionary expansion is to es-
timate label distributions for tokens in a raw cor-
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pus, including words missing in the annotations.
For this, a graph connecting annotated words to
unannotated words via features is constructed and
POS labels are pushed between these items using
label propagation (LP) (Talukdar and Crammer,
2009). LP has been used successfully for extend-
ing POS labels from high-resource languages to
low via parallel corpora (Das and Petrov, 2011;
Täckström et al., 2013; Ding, 2011) or high- to
low-resource domains (Subramanya et al., 2010),
among other tasks. These works have typically
used n-gram features (capturing basic syntax) and
character affixes (basic morphology).

The character n-gram affix-as-morphology ap-
proach produces many features, but only a fraction
of them represent actual morphemes. Incorrect
features end up pushing noise around the graph,
so affixes can lead to more false labels that drown
out the true labels. While affixes may be suffi-
cient for languages with limited morphology, their
effectiveness diminishes for morphology-rich lan-
guages, which have much higher type-to-token ra-
tios. More types means sparser word frequency
statistics and more out-of-vocabulary items, and
thus problems for EM. Here, we modify the LP

graph by supplementing or replacing generic af-
fix features with a focused set of morphological
features produced by an FST. These targeted mor-
phological features are effective during LP because
words that share them are much more likely to ac-
tually share POS tags.

FSTs produce multiple analyses, which is actu-
ally advantageous for LP. Ambiguities need not be
resolved since we just take the union of all mor-
phological features for all analyses and use them
as features in the graph. Note that each FST pro-
duces its own POS-tags as features, but these do
not correspond to the target POS tagset used by the
tagger. This is important because it decouples FST

development and the final POS task. Thus, any FST

for the language, regardless of its provenance, can
be used with any target POS tagset.

Since the LP graph contains a node for each cor-
pus token, and each node is labeled with a distri-
bution over POS tags, the graph provides a corpus
of sentences labeled with noisy tag distributions
along with an expanded tag dictionary. This out-
put is useful as input to EM because it contains
labels for all seen word types as well as sequence
and frequency information. There is a high degree
of noise in the LP output, so we employ the model

minimization strategy of Ravi et al. (2010), which
finds a minimal set of tag bigrams needed to ex-
plain the sentences in the raw corpus. It outputs
a corpus of tagged sentences, which are used as
a good starting point for EM training of an HMM.
The expanded tag dictionary constrains the EM

search space by providing a limited tagset for each
word type, steering EM towards a desirable result.

Because the HMM trained by EM will con-
tain zero-probabilities for words that did not ap-
pear in the training corpus, we use the “auto-
supervision” step from our previous work: a Max-
imum Entropy Markov Model tagger is trained
on a corpus that is noisily labeled by the HMM

(Garrette and Baldridge, 2012). While training
an HMM before the MEMM is not strictly neces-
sary, our tests have shown that this generative-
then-discriminative combination generally results
in around 3% accuracy improvement.

5 Experiments3

To better understand the effect that each type of
supervision has on tagger accuracy, we perform a
series of experiments, with KIN and MLG as true
low-resource languages. English experiments, for
which we had both experienced and novice an-
notators, allow for further exploration into issues
concerning data collection and preparation.

The overall best accuracies achieved by lan-
guage are 81.9% for KIN using all types, 81.2% for
MLG using half types and half tokens, and 89.8%
for ENG using all types and the maximal amount
of raw data. All of these best values were achieved
using both FST and affix LP features.

All results described in this section are averaged
over five folds of raw data.

5.1 Types versus tokens

Our primary question was the relationship be-
tween annotation type and time. Annotation must
be done by someone familiar with the target lan-
guage, linguistics, and the target POS tagset. For
many low-resource languages, such people, and
the time they have to spend, are likely to be in
short supply. To make the best use of their time,
we need to know which annotations are most use-

3Code and all MLG data available at github.com/
dhgarrette/low-resource-pos-tagging-2013
We are unable to provide the KIN or ENG data for down-
load due to licensing restrictions. However, ENG data may
be shared with those holding a license for the Penn Treebank
and KIN data may be shared on a case-by-case basis.
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(b) KIN token annotations − Elapsed Annotation Time
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(c) MLG type annotations − Elapsed Annotation Time
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(d) MLG token annotations − Elapsed Annotation Time
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Figure 1: Annotation time vs. tagger accuracy for type-only and token-only annotations.
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Figure 2: Annotation time vs. tagger accuracy for
ENG type-only and token-only annotations with
affix and FST LP features.

ful so that efforts can be concentrated there. Ad-
ditionally, it is useful to identify when returns on
annotation effort diminish so that annotators do
not spend time doing work that is unlikely to add
much value.

The annotators produced four hours each of
type and token annotations, each in 30-minute in-
crements. To assess the effects of annotation time,

we trained taggers cumulatively on each increment
and determine the value of each additional half-
hour of effort. Results are shown for KIN and MLG

in Figure 1 and ENG in Figure 2. In all scenarios,
the use of LP (and model minimization) delivers
huge performance gains. Additionally, the use of
FST features, usually along with affixes, yielded
better results than without. This indicates the LP

procedure makes effective use of the morpholog-
ical features produced by the FST and that the af-
fix features are able to capture missing information
without adding too much noise to the LP graph.

Furthermore, performance is considerably bet-
ter when type annotations are used than only to-
kens. Type annotations plateau much faster, so
a shorter amount of time must be spent annotat-
ing types than if token annotations are used. For
KIN it takes approximately 1.5 hours to reach near-
maximum accuracy for types, but 2.5 hours for to-
kens. This difference is due to the fact that the type
annotations started with the most frequent words
whereas the token annotations were on random
sentences. Thus, type annotations quickly cover a
significant portion of the language’s tokens. With
annotations directly on tokens, some of the highest

588



(a) KIN − Type/Token Annotation Mixture
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(b) MLG − Type/Token Annotation Mixture
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Figure 3: Annotation mixture vs. tagger accuracy. X-axis labels give annotation proportions, e.g. “t2/s6”
indicates 2/8 of the time (1 hour) was spent annotating types and 6/8 (3 hours), full sentences.
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Figure 4: Annotation mixture vs. tagger accuracy
on ENG using affix and FST LP features for experi-
enced (Exp.) and novice (Nov.) annotators.

frequency types are covered, but annotation time
is also ineffectively used on low-frequency types
that happen to appear in those sentences.

Finally, the use of FST features yields the largest
gains for KIN, but only when small amounts of
annotation are available. This makes sense: KIN

is a morphologically rich language, so sparsity is
greater and crude affixes capture less actual mor-
phology. With little annotated data, LP relies heav-
ily on morphological features to make clean links
between words. But, with more annotations, the
gains of the FST over affix features alone dimin-
ishes: the affix features eventually capture enough
of the morphology to make up the difference.

Figure 2 shows the dramatic differences be-
tween the experienced and novice ENG annota-
tors.4 For the former, results using types and to-

4The ENG graph omits “No LP” results since they fol-
lowed patterns similar to KIN and MLG. Additionally, the
results without FST features are not shown because they were
nearly identical (though slightly lower) than with the FST.

kens were similar after 30 minutes, but type an-
notations proved much more useful beyond that.
In contrast, the novice annotated types much more
slowly, so early on there were not enough anno-
tated types for the training to be as effective. Even
so, after three hours of annotation, type annota-
tions still win with the novice, and even beat the
experienced annotator labeling tokens.

5.2 Mixing type and token annotations

Because type and token annotations are each bet-
ter at providing different information — a tag dic-
tionary of high-frequency words vs. sequence and
frequency information — it is reasonable to ex-
pect that a combination of the two might yield
higher performance by each contributing differ-
ent but complementary information during train-
ing. This matters in low-resource settings because
type or token annotations will likely be produced
by the same people, so there is a tradeoff between
spending resources on one form of annotation over
the other. Understanding the best mixture of an-
notations can inform us on how to maximize the
benefit of a set annotation budget. To this end, we
ran experiments fixing the annotation time to four
hours while varying the mix of type and token an-
notations. Results are shown for KIN and MLG in
Figure 3 and ENG in Figure 4.

For KIN and ENG, tagger accuracy increases as
the proportion of type annotations increases for all
LP feature configurations. For MLG, however, as
the reliance on the FST increases, the optimal mix-
ture shifts toward higher type proportions. When
only affix features are used, the optimal mixture is
1 hour of types and 3 hours of tokens. When FST

and affix features are used, the optimum is 2 hours
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each of types and tokens. When only FST features
are used, it is best to use 3.5 hours of types and
only 30 minutes of tokens. Because the FST op-
erates on word types, it is effective at exploiting
type annotations. Thus, when the LP focuses more
on FST features, it becomes more desirable to have
larger amounts of type annotations.

Types clearly win for ENG. The experienced an-
notator was much faster at annotating types and
the speed difference was less pronounced for to-
kens, so accuracy is most similar when only token
annotations are used. The performance disparity
grows with increasing the type proportion.

Täckström et al. (2013) explore the use of
mixed type and token annotations in which a tag-
ger is learned by projecting information via par-
allel text. In their experiments, they—like us—
found that type information is more valuable than
token information. However, they were able to see
gains through the complementary effects of mix-
ing type and token annotations. It is likely that this
difference in our results is due to the amount of an-
notated data used. It seems that the amount of type
information collected in four hours is not sufficient
to saturate the system, meaning that switching to
annotating tokens tends to hurt performance.

5.3 FST development
The third set of experiments evaluate how the
amount of time spent developing an FST affects
the performance of trained tagger. To do this,
we had our ENG FST developer save progress af-
ter each hour (for ten hours). The results show
that, for ENG, the FST provided no value, regard-
less of how much time was spent on its develop-
ment. Moreover, since large gains in accuracy can
be achieved by spending a small amount of time
just annotating word types with POS tags, we are
led to conclude that time should be spent annotat-
ing types or tokens instead of developing an FST.
While it is likely that FST development time would
have a greater impact for morphologically rich
languages, we suspect that greater gains can still
be obtained by instead annotating types. Nonethe-
less, FSTs never seems to hurt performance, so if
one is readily available, it should be used.

5.4 The effect of more raw data
In addition to annotations, semi-supervised tagger
training requires a corpus of raw text. Raw data
can be easier to acquire since it does not need
the attention of a linguist. Even so, for many
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Figure 5: Amount of raw data vs. tagger accuracy
for ENG using high vs. low amounts of annotation
and using LP vs. no LP., for experienced annotator
(novice results were similar).

low-resource languages, the amount of digitized
text, such as transcripts or websites, is very lim-
ited and may, in fact, require substantial effort
to accumulate, even with assistance from compu-
tational tools (Bird, 2011). Therefore, the col-
lection of raw data can be considered another
time-sensitive task for which the tradeoffs with
previously-discussed annotation efforts must con-
tend.

It could be the case that more raw data for train-
ing could make up for additional annotation and
FST development effort or make the LP proce-
dure unnecessary. Figure 5 shows that that in-
creased raw data does provide increasing gains,
but they diminish after 200k tokens. The best per-
formance is achieved by using more annotation
and LP. Most importantly, however, removing ei-
ther annotations or LP results in a significant de-
cline in accuracy, such that even with 600k train-
ing tokens, we are unable to achieve the results of
high annotation and LP using only 100k tokens.

5.5 Correcting existing annotations

For all of the ENG experiments, we also ran “or-
acle” experiments using gold tags for the same
sentences or a tag dictionary containing the same
number of type/tag entries as the annotator pro-
duced, but containing only the most frequent
entries as determined by the gold-labeled cor-
pus. Using this simulated “perfect annotator” data
shows we lose accuracy due to annotator mistakes:
for our experienced annotator and maximal FST,
using 4 hours of types the oracle accuracy is 90.5
vs. 88.5 while using only tokens we see 83.9 vs.
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81.5. This indicates that there are gains to be made
by correcting mistakes in the annotations. This
is true even after the point of diminishing returns
on the learning curve, meaning that even when
adding more annotations no longer improves per-
formance, progress can still be made by correcting
errors, so it may be reasonable to ask annotators to
attempt to correct errors in their past annotations.
Automated techniques for facilitating error identi-
fication can be employed for this (Dickinson and
Meurers, 2003).

6 Conclusions and Future Work

Care must be taken when drawing conclusions
from small-scale annotation studies such as those
presented in this paper. Nonetheless, we have
explored realistic annotation scenarios for POS-
tagging for low-resource languages and found sev-
eral consistent patterns. Most importantly, it is
clear that type annotations are the most useful in-
put one can obtain from a linguist—provided a
semi-supervised algorithm for projecting that in-
formation reliably onto raw tokens is available. In
a sense, this result validates the research trajectory
of efforts of the past two decades put into learning
taggers from tag dictionaries: papers have succes-
sively removed layers of unrealistic assumptions,
and in doing so have produced pipelines for type-
supervision that easily beat token-supervision pre-
pared in comparable amounts of time.

The result of most immediate practical value is
that we show it is possible to train effective POS-
taggers on actual low-resource languages given
only a relatively small amount of unlabeled text
and a few hours of annotation by a non-native
linguist. Instead of having annotators label full
sentences as one might expect the natural choice
would be, it is much more effective to simply
extract a list of the most frequent word types in
the language and concentrate efforts on annotat-
ing these types with their potential parts of speech.
Furthermore, for languages with rich morphology,
a morphological transducer can yield significant
performance gains when large amounts of other
annotated resources are unavailable. (And it never
hurts performance.)

Finally, additional raw text does improve per-
formance. However, using substantial amounts of
raw text is unlikely to produce gains larger than
only a few hours spent annotating types. Thus,
when deciding whether to spend time locating

larger volumes of digitized text or to spend time
annotating types, choose types.

Despite the consistent superiority of type anno-
tations in our experiments, it of course may be the
case that techniques such as active learning may
better select sentences for token annotation, so this
should be explored in future work.
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Abstract

This paper demonstrates the need and im-
pact of subcategorization information for
SMT. We combine (i) features on source-
side syntactic subcategorization and (ii)
an external knowledge base with quantita-
tive, dependency-based information about
target-side subcategorization frames. A
manual evaluation of an English-to-
German translation task shows that the
subcategorization information has a posi-
tive impact on translation quality through
better prediction of case.

1 Introduction

When translating from a morphologically poor
language to a morphologically rich language we
are faced with two major problems: (i) the rich-
ness of the target-language morphology causes
data sparsity problems, and (ii) information about
morphological features on the target side is not
sufficiently contained in the source language mor-
phology.

We address these two problems using a two-
step procedure. We first replace inflected forms
by their stems or lemmas: building a translation
system on a stemmed representation of the target
side leads to a simpler translation task, and the
morphological information contained in the source
and target language parts of the translation model
is more balanced. In the second step, the stemmed
output of the translation is then inflected: the mor-
phological features are predicted, and the inflected
forms are generated using the stem and predicted
morphological features.

In this paper, we focus on improving case pre-
diction for noun phrases (NPs) in German trans-
lations. The NP feature case is extremely dif-
ficult to predict in German: while the NP fea-
tures gender and number are part of the stem or

can be derived from the source-side input, respec-
tively, the prediction of case requires information
about the subcategorization of the entire clause.
This is due to German being a less configurational
language than English, which encodes grammati-
cal relations (e.g. subject-hood, object-hood, etc.)
through the position of constituents. German sen-
tences exhibit a freer constituent order, and thus
case is an important indicator of the grammatical
functions of noun phrases. Correct case predic-
tion is a crucial factor for the adequacy of SMT
output, cf. the example in table 1 providing an
erroneously inflected output (this is taken from a
baseline “simple inflection prediction” system, cf.
section 5.2). The translation of the English input
sentence in terms of stems is perfectly acceptable;
after the inflection step, however, the translation
of NP4 ongoing military actions represents a geni-
tive modifier of the subject NP2, instead of a direct
object NP of the verb anordnen (to order). The
meaning is thus why the government of the ongo-
ing military actions ordered, which has only one
NP and is completely wrong.

The translation in table 1 needs verb subcatego-
rization information. This is demonstrated by the
invented examples (1) and (2):

(1) [Der Mitarbeiter]NPnom hat [den Bericht]NPacc [dem
Kollegen]NPdat gegeben.

[The employee]NPnom gave [his colleague]NPdat [the
report]NPacc

(2) [Der Mitarbeiter]NPnom hat [dem Bericht]NPdat [des
Kollegen]NPgen zugestimmt.

[The employee]NPnom agreed [on the report]PP [of
his colleague]PP

Both inflected sentences rely on the stem sequence
[d Mitarbeiter] [d Bericht] [d Kollege] 〈verb〉,

so the case assignment can only be determined by
the verb: While geben ( to give) has a strong pref-
erence for selecting a ditransitive subcategoriza-
tion frame1, including an agentive subject (nomi-

1A ditransitive verb takes a subject and two objects.

593



input [why]1 [the government]2 [ordered]3 [the ongoing military actions]4

output stemmed [warum]1 [d Regierung]2 [d anhaltend militärisch Aktion]4 [angeordnet]3
inflected [warum]1 [die Regierung]2 [der anhaltenden militärischen Aktionen]4 [angeordnet]3

Table 1: Example for case confusion in SMT output when using a simple prediction system.

native case), a benefactive (dative case) and a pa-
tient (accusative case), zustimmen (to agree) has
a strong preference for only selecting an agentive
subject (nominative case) and an indirect object
theme (dative case). So in the latter case the NP
[d Kollege] cannot receive case from the verb and
is instead the genitive modifier of the dative NP.

While for examples (1) and (2) knowledge
about the syntactic verb subcategorization func-
tions is sufficient to correctly predict the NP cases,
examples (3) to (6) require subcategorization in-
formation at the syntax-semantic interface.

(3) [Der Mitarbeiter]NPnom hat [dem Kollegen]NPdat
[den Bericht]NPacc gegeben.

(4) [Der Mitarbeiter]NPnom hat [den Bericht]NPacc [dem
Kollegen]NPdat gegeben.

(5) [Dem Kollegen]NPdat hat [der Mitarbeiter]NPnom
[den Bericht]NPacc gegeben.

(6) [Den Bericht]NPacc hat [der Mitarbeiter]NPnom [dem
Kollegen]NPdat gegeben.

In all four examples, the verb and the participat-
ing noun phrases Mitarbeiter (employee), Kollege
(colleague) and Bericht (report) are identical, and
the noun phrases are assigned the same case. How-
ever, given that the stemmed output of the trans-
lation does not tell us anything about case fea-
tures, in order to predict the appropriate cases of
the three noun phrases, we either rely on ordering
heuristics (such that the nominative NP is more
likely to be in the beginning of the sentence (the
German Vorfeld) than the accusative or dative NP,
even though all three of these would be grammati-
cal), or we need fine-grained subcategorization in-
formation beyond pure syntax. For example, both
Mitarbeiter and Kollege would satisfy the agentive
subject role of the verb geben better than Bericht,
and Bericht is more likely to be the patient of
geben.

The contribution of this paper is to improve the
prediction of case in our SMT system by imple-
menting and combining two alternative routes to
integrate subcategorization information from the
syntax-semantic interface: (i) We regard the trans-
lation as a function of the source language in-
put, and project the syntactic functions of the En-
glish nouns to their German translations in the

SMT output. This subcategorization model is nec-
essary when there are several plausible solutions
for the syntactic functions of a noun in combina-
tion with a verb. For example, both Mitarbeiter
and Kollege are plausible subjects and direct ob-
jects of the verb geben, so the information about
these nouns’ roles in the input sentence allows
for disambiguation. (ii) The case of an NP is de-
rived from an external knowledge base comprising
quantitative, dependency-based information about
German verb subcategorization frames and noun
modification. The verb subcategorization infor-
mation is not restricted to syntactic noun func-
tions but models association strength for verb–
noun pairs with regard to the entire subcatego-
rization frame plus the syntactic functions of the
nouns. For example, the database can tell us that
while the verb geben is very likely to subcatego-
rize a ditransitive frame, the verb zustimmen is
very likely to subcategorize only a direct object,
next to the obligatory subject (subcat frame pre-
diction). Furthermore, we can retrieve the infor-
mation that the noun Bericht is less likely to ap-
pear as subject of geben than the nouns Mitar-
beiter and Kollege (verb–noun subcat case pre-
diction). And we can look up that the noun Aktion
is very unlikely to be a genitive modification of
Regierung (cf. table 1), while Kollege is a plausi-
ble genitive modification of Bericht (noun–noun
modification case prediction, cf. example (2)).

In summary, model (i) applies when there are no
obvious preferences concerning verb–noun sub-
categorization or noun–noun modification. Model
(ii) predicts case relying on the subcategoriza-
tion and modification preferences. The combina-
tion of our two models approaches a simplified
level of semantic role definition but only relies on
dependency information that is considerably eas-
ier and cheaper to define and obtain than a very
high quality semantic parser and/or a corpus an-
notated with semantic role information. Integrat-
ing semantic role information into SMT has been
demonstrated by various researchers to improve
translation quality (cf. Wu and Fung (2009a), Wu
and Fung (2009b), Liu and Gildea (2008), Liu
and Gildea (2010)). Our approach is in line with
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Wu and Fung (2009b) who demonstrated that on
the one hand 84% of verb syntactic functions in
a 50-sentence test corpus projected from Chinese
to English, and that on the other hand about 15%
of the subjects were not translated into subjects,
but their semantic roles were preserved across lan-
guage. These two findings correspond to the ex-
pected uses of our models (i) and (ii), respectively.

2 Previous work

Previous work has already introduced the idea of
generating inflected forms as a post-processing
step for a translation system that has been
stripped of (most) target-language-specific fea-
tures. Toutanova et al. (2008) and Jeong et al.
(2010) built translation systems that predict in-
flected word forms based on a large array of mor-
phological and syntactic features, obtained from
both source and target side. Kholy and Habash
(2012) and Green and DeNero (2012) work on En-
glish to Arabic translation and model gender, num-
ber and definiteness, focusing primarily on im-
proving fluency.

Fraser et al. (2012) used a phrase-based system
to transfer stems and generated inflected forms
based on the stems and their morphological fea-
tures. For case prediction, they trained a CRF with
access to lemmas and POS-tags within a given
window. We re-implemented the system by Fraser
et al. as a hierarchical machine translation system
using a string-to-tree setup. In contrast to the flat
phrase-based setting of Fraser et al. (2012), syn-
tactic trees on the SMT output allow us to work
with verb–noun structures, which are relevant for
case prediction. While the CRF used for case pre-
diction in Fraser et al. (2012) has access to lexi-
cal information, it is limited to a certain window
size and has no direct information about the rela-
tion of verb–noun pairs occurring in the sentence.
Using a window of a limited size is particularly
problematic for German, as there can be large gaps
between the verb and its subcategorized nouns; in-
troducing information about the relation of verbs
and nouns helps to bridge such gaps. Furthermore,
that model was not able to make effective use of
source-side features.

One of the objectives of using an inflection
prediction model is morphologically well-formed
output. Kirchhoff et al. (2012) evaluated user re-
actions to different error types in machine trans-
lation and came to the result that morphological

well-formedness has only a marginal impact on
the comprehensibility of SMT output in the case
of English-Spanish translation. As already dis-
cussed, German case is essential to the meaning
of the sentence, so this result will not hold for Ger-
man output.

3 Translation pipeline

This section presents an overview of our two-step
translation process. In the first step, English in-
put is translated to German stems. In the sec-
ond step, morphological features are predicted and
inflected forms are generated based on the word
stems and the morphological features. In subsec-
tions 3.1 to 3.4, we present the simple version of
the inflection prediction system; our new features
are described in sections 4.2 and 4.3.

3.1 Stemmed representation/feature markup

We first parse the German side of the parallel
training data with BitPar (Schmid, 2004). This
maps each surface form appearing in normal text
to a stem and morphological features (case, gen-
der, number). We use this representation to create
the stemmed representation for training the trans-
lation model. With the exception of stem-markup
(discussed below), all morphological features are
removed from the stemmed representation. The
stem markup is used as part of the input to the fea-
ture prediction; the basic idea is that the given fea-
ture values are picked up by the prediction model
and then propagated over the phrase.

Nouns, as the head of NPs and PPs, are anno-
tated with gender and number. We consider gen-
der as part of the stem, whereas the value for num-
ber is derived from the source-side: if marked for
number, singular/plural nouns are distinguished
during word alignment and then translated accord-
ingly. Prepositions are also annotated with case;
many prepositions are restricted to only one case,
some are ambiguous and allow for either dative
or accusative. Other words which are subject to
feature prediction (e.g. adjectives, articles) are re-
duced to their stems with no feature markup, as
are all remaining words. As sole exception, we
keep the inflected forms of verbs (verbal inflec-
tion is not modelled). In addition to the transla-
tion model, the target-side language model, as well
as the reference data for parameter tuning use this
representation.
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3.2 Building a stemmed translation model

We use a hierarchical translation system. Instead
of translating phrases, a hierarchical system ex-
tracts translation rules (Galley et al., 2004) which
allow the decoder to provide a tree spanning over
the translated sentence. In order to avoid sparsity
during rule extraction, we use a string-to-tree
setup, where only the target-side part of the data
is parsed. Translation rules are of the following
form:
[X]1 allows [X]2 → [NP]1 [NP]2 erlaubt
[X]1 allows [X]2 → [NP]1 erlaubt [NP]2

This example illustrates how rules can cover the
different word ordering possibilities in German.

PP nodes are annotated with their respective
case, as well as with the lemma of the preposition
they contain. In our experiments, this enriched an-
notation has small improvements over the simpler
setting with only head categories (details omit-
ted). This outcome, in particular that adding the
lemma of the preposition to the PP node helps to
improve translation quality, has been observed be-
fore in tree restructuring work for improving trans-
lation (Huang and Knight, 2006).

3.3 Feature prediction and generation of
inflected forms

In this section we discuss our focus, which is pre-
diction of case, but also the prediction of num-
ber, gender and strong/weak adjectival inflection.
The latter feature is German-specific; its values2

(strong/weak) depend on the combination of the
other features, as well as on the type of determiner
(e.g. definite/indefinite/none).

Morphological features are predicted on four
separate CRF models, one for each feature. The
models for case, number and gender are indepen-
dent of another, whereas the model for adjecti-
val inflection requires information about these fea-
tures, and is thus the last one to be computed, tak-
ing the output of the 3 other models as part of its
input. In contrast, the adjectival inflection model
in Fraser et al. (2012) is independent from the
other features. Each model has access to stems,
POS-tags and the feature to be modelled within a
window of four positions to the right and the left
of the current position3.

2Note that the values for strong/weak inflection are not
always the same over the phrase, but follow a certain pattern
depending on the settings of case, number and gender.

3Preliminary experiments showed that larger windows do
not improve translation quality.

Table 2 illustrates the different steps of the in-
flection process: the markup (number and gender
on nouns) in the stemmed output of the SMT sys-
tem is part of the input to the respective feature
prediction. For gender and number, the values
given on the stems of the nouns are then propa-
gated over the phrase. While the case of prepo-
sitional phrases is determined by the case annota-
tion on prepositions, the case of nominal phrases
is computed only based on the respective contexts.
After predicting all morphological features, the in-
formation required to generate inflected forms is
complete: based on the stems and the features, we
use the morphological tool SMOR (Schmid et al.,
2004) for the generation of inflected forms.

One general problem with feature-prediction is
that the ill-formed SMT output is not well repre-
sented by the training data which consists of well-
formed sentences. This problem was also men-
tioned by Stymne and Cancedda (2011) and Kholy
and Habash (2012). They deal with this problem
by translating the training data and annotating it
with the respective features, and then adding this
new data set to the original training data. As
this method comes with its own problems, such as
transferring the morphological annotation to not
necessarily isomorphically translated text, we do
not use translated data as part of the training data.
Instead, we limit the power of the CRF model
through experimenting with the removal of fea-
tures, until we had a system that was robust to this
problem.

3.4 Dealing with word formation issues

To reduce data sparsity, we split portmanteau
prepositions. Portmanteaus are compounds of
prepositions and articles, e.g. zur = zu der (to the).
Being components of nominal phrases, they have
to agree in all morphological features with the rest
of the phrase. As only some combinations of arti-
cles and prepositions can form a portmanteau, the
decision of whether to merge prepositions and ar-
ticles is made after feature prediction. Since our
focus is case prediction, we do not do special mod-
elling of German compounds.

4 Using subcategorization information

Within the area of (automatic) lexical acquisition,
the definition of lexical verb information has been
a major focus, because verbs play a central role
for the structure and the meaning of sentences and

596



SMT output predicted features inflected forms gloss
beeinflussen<VVFIN> – beeinflussen influence
d<ART> Fem.Acc.Sg.St die the
politisch<ADJ> Fem.Acc.Sg.Wk politische political
Stabilität<NN><Fem><Sg> Fem.Acc.Sg.Wk Stabilität stability

Table 2: Overview of the inflection process: the stem markup is highlighted in the SMT output.

discourse. On the one hand, this has led to a range
of manually or semi-automatically developed lex-
ical resources focusing on verb information, such
as the Levin classes (Levin, 1993), VerbNet (Kip-
per Schuler, 2006), FrameNet4 (Fillmore et al.,
2003), and PropBank (Palmer et al., 2005). On the
other hand, we find automatic approaches to the
induction of verb subcategorization information at
the syntax-semantics interface for a large num-
ber of languages, e.g. Briscoe and Carroll (1997)
for English; Sarkar and Zeman (2000) for Czech;
Schulte im Walde (2002a) for German; Messiant
(2008) for French. This basic kind of verb knowl-
edge has been shown to be useful in many NLP
tasks such as information extraction (Surdeanu et
al., 2003; Venturi1 et al., 2009), parsing (Carroll et
al., 1998; Carroll and Fang, 2004) and word sense
disambiguation (Kohomban and Lee, 2005; Mc-
Carthy et al., 2007).

4.1 Extracting subcategorization information
As described in the introductory section, we make
use of two5 major kinds of subcategorization in-
formation. Verb–noun tuples referring to spe-
cific syntactic functions within verb subcatego-
rization (verb–noun subcat case prediction) are
integrated with an associated probability for ac-
cusative (direct object), dative (indirect object)
and nominative (subject).6 Further to the sub-
ject and object noun phrases, the subcategoriza-
tion information provides quantitative triples for
verb–preposition–noun pairs, thus predicting the
case of NPs within prepositional phrases (we do
this only when the prepositions are ambiguious,
i.e., they could subcategorize either a dative or
an accusative NP). In addition to modelling sub-
categorization information, it is also important to
differentiate between subcategorized noun phrases
(such as object or subject), and noun phrases

4Even though the FrameNets approach does not only in-
clude knowledge about verbal predicates, the actual lexicons
are skewed towards verb behaviour.

5The third kind of information, subcat frame prediction
is implicit, since verb–noun tuples rely on specific frames.

6Genitive objects can also occur in German verb subcate-
gorization frames, but this is extremely rare and verb-specific
and thus not considered in our model.

V-SUBJ V-OBJAcc V-OBJDat
EP 454,350 332,847 53,711
HGC 712,717 329,830 160,377
Both 1,089,492 607,541 206,764

Table 3: Number of verb-noun types extracted
from Europarl (EP) and newspaper data (HGC).

that modify nouns (noun–noun modification case
prediction). Typically, these NP modifiers are
genitive NPs. To this end, we integrate noun-
nounGen tuples with their respective frequencies.
These preferences for a certain function (i.e. sub-
ject, object or modifier) are passed on to the sys-
tem at the level of nouns and integrated into the
CRF through the derived probabilities.

The tuples and triples are obtained from
dependency-parsed data by extracting all occur-
rences of the respective relations; table 3 gives an
overview of the number of extracted tuple types.
For the subcategorization information, the verb-
noun tuples (verb-subject, verb-objectAcc, verb-
objectDat) are then grouped as follows:

tuple gloss Acc Dat Nom
SchemaN folgenV pattern follow 0 322 19

We compute the probabilities for the verb-noun tu-
ple to occur in the respective functions based on
the relative frequencies. In the case of SchemaN
folgenV , we find that the function of Schema as da-
tive object is predominant (to follow a pattern), but
it can also occur in the subject position (the pat-
tern follows). The fact that two functions are pos-
sible for this noun are reflected in their probabili-
ties. The probabilities are discretized into 5 buck-
ets (Bp=0, B0<p≤0.25, B0.25<p≤0.5, B0.5<p≤0.75,
B0.75<p≤1). In contrast, noun modification in
noun-nounGen construction is represented by co-
occurrence frequencies.7

7The frequencies are bucketed to the powers of ten, i.e.
f = 1, 2 ≤ f ≤ 10, 11 ≤ f ≤ 100 , etc. and also f = 0:
this representation allows for a more fine-grained distinction
in the low-to-mid frequency range, providing a good basis
for the decision of whether a given noun-noun pair is a true
noun-nounGen structure or just a random co-occurrence of
two nouns.
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Gloss Stem Tag Acc Dat Nom Verb Gen N1 Gold
1 companies Unternehmen<NN> NN 0.00 0.00 1.00 erhalten – – Nom
2 should sollten<VVFIN> VVFIN – – – – – – –
3 financial finanziell<ADJ> ADJ – – – – – – Acc
4 funding Mittel<NN> NN 1.00 0.00 0.00 erhalten – – Acc
5 for für APPR<Acc> PRP – – – – – – –
6 the d<ART> ART – – – – – – Acc
7 introduction Einführung<NN> NN – – – – – – Acc
8 new neu<ADJ> ADJ – – – – – – Gen
9 technologies Technologie<NN> NN – – – – 100 Einführung<NN> Gen
10 obtain erhalten<VVINF> VVINF – – – – – – –

Table 4: Adding subcategorization information into SMT output. (EN input: companies should obtain
financial funding for the introduction of new technologies). On the right, the correct labels are given.

4.2 Integrating subcategorization knowledge

There are two possibilities to integrate subcat-
egorization information into the case prediction
model: (i) It can be integrated into the data set
using the tree-structure provided by the decoder.
Here, verb-noun tuples are extracted from VP and
S structures, and then the probabilities for the dif-
ferent functions are looked up. Similarly, for two
adjacent NPs, the occurrence frequencies of the
respective two nouns are looked up in the list of
noun-nounGen constructions. (ii) The subcatego-
rization information can be integrated based on
the verb-noun tuples obtained by using tuples ob-
tained from source-side dependencies.

The classification task of the CRF consists in
predicting a sequence of labels: case values for
NPs/PPs or no value otherwise, cf. table 4. The
model has access to the basic features stem and
tag, as well as the new features based on subcat-
egorizaion information (explained below), using
unigrams within a window of up to four positions
to the right and the left of the current position, as
well as bigrams and trigrams for stems and tags
(current item + left and/or right item).

An example for integrating subcategorization
features is given in table 4. The first word Un-
ternehmen (companies) is annotated as subject of
erhalten (obtain) with probability 1, and Mittel
(funding) is annotated as direct object of erhal-
ten with probability 1. The word Technologie
(technology) has been marked as a candidate for
a genitive in a noun-nounGen construction8; the
co-occurrence frequency of the tuple Einführung-
Technologie (introduction - technology) lies in the
bucket 11. . . 100.

In addition to the probability/frequency of the
respective functions, we also provide the CRF
with bigrams containing the two parts of the tuple,

8There is no annotation on Einführung as the preposition
für is always in accusative case.

DE stemmed output

warum<PWAV>
die<ART>
Regierung<NN><Sg><Fem>
die<ART>
anhaltend<ADJ>
militärisch<ADJ>
Aktion<NN><Pl><Fem>
angeordnet<VVFIN>

derived features

SUBJ  V:anordnen

OBJ  V:anordnen

SUBJ

OBJ

EN input

why
the 
government
ordered
the
ongoing
military
actions

Figure 1: Deriving features from dependency-
parsed English data via the word alignment.

i.e. verb+noun or the two nouns of possible noun-
nounGen constructions. As can be seen in the ex-
ample in table 4, the subject (line 1) and the verb
(line 10) are far apart from each other. By pro-
viding the parts of the tuple as unigrams, bigrams
or trigrams to the CRF, all relevant information
is available: verb, noun and the probabilities for
the potential functions of the noun in the sentence.
In addition to bridging the long distance between
verbs and subcategorized nouns, a very common
problem for German, this type of precise informa-
tion also helps to close the gap between the well-
formed training data and the broken SMT-output
as it replaces to a certain extent the target-language
context information (n-grams of stems or lemmas
within a small window).

4.3 Integrating source-side features

For predicting case in SMT output, information
about an NP’s function in the input sentence is
essential. Syntax-semantic functions can be iso-
morphic (e.g., English subjects and objects may
have the same function in a German translation),
but this is not necessarily the case. Despite this,
an important advantage of integrating source-side
features is that the well-formed source-side text
can be reliably parsed, whereas SMT output is of-
ten disfluent and cannot be reliably parsed.

The English features are obtained from
dependency-parsed data (Choi and Palmer, 2012).
The relevant annotation of the parser is transferred
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to the SMT output via word alignment. We focus
on English subjects, direct objects and noun-of-
noun structures (often equivalent to noun-nounGen
phrases on the German side): these structures
are generally likely to correspond to each other
within source and target language. In contrast
to the subcategorization-based information, the
difference between well-formed training data and
disfluent SMT output tends to work to our benefit
here: while the parallel sentences of the training
data were manually translated with the objective
to produce good target-language sentences, the
syntactic structures of the source and target
sentences are often diverging. In contrast, the
SMT system often produces more isomorphic
translations, which is helpful for annotating
source-side features on the target language.

Figure 1 shows the process of integrating
source-side features: for each German noun that
is aligned with an English noun labelled as subject
or direct object, this annotation is transferred to the
target-side. Using the English dependency struc-
tures, the verb subcategorizing the respective noun
is identified, and via the alignment, the equivalent
German verb is obtained. Similarly, candidates for
noun-nounGen structures are identified by extract-
ing and aligning English noun-of-noun phrases.

5 Experiments and evaluation

In this section, we present experiments using dif-
ferent feature combinations. We also present a
manual evaluation of our best system which shows
that the new features improve translation quality.

5.1 Data and experimental setup

We use the hierarchical translation system that
comes with the Moses SMT-package and GIZA++
to compute the word alignment, using the “grow-
diag-final-and” heuristics. The rule table was
computed with the default parameter setting for
GHKM extraction (Galley et al., 2004) in the im-
plementation by Williams and Koehn (2012).

Our training data contains 1,485,059 parallel
sentences9; the German part of the parallel data
is used as the target-side language model. The dev
and test sets (1025/1026 lines) are wmt-2009-a/b.

For predicting the grammatical features, we
used the Wapiti Toolkit (Lavergne et al., 2010).10

9English/German data released for the 2009 ACL Work-
shop on Machine Translation shared task.

10To eliminate irrelevant features, we use L1 regulariza-

We train four CRFs on data prepared as shown
in section 3. The corpora used for the extrac-
tion of subcategorization tuples were Europarl and
German newspaper data (200 million words). We
choose this particular data combination in order to
provide data that matches the training data, as well
as to add new data of the test set’s domain (news).
The German part of Europarl was dependency-
parsed with Bohnet (2010), and subcategorization
information was extracted as described in Scheible
et al. (2013); the newspaper data (HGC - Huge
German Corpus) was parsed with Schmid (2000),
and subcategorization information was extracted
as described in Schulte im Walde (2002b).

5.2 Results

We report results of two types of systems (ta-
ble 5): first, a regular translation system built on
surface forms (i.e., normal text) and second, four
inflection prediction systems. The first inflection
prediction system (1) uses a simple case predic-
tion model, whereas the remaining systems are
enriched with (2) subcategorization information
(cf. section 4.2), (3) source-side features (cf. sec-
tion 4.3), and (4) both source-side features and
subcategorization information. In (2) and (4), the
subcategorization information was included using
tuples obtained from source-side dependencies11.
The simple prediction system corresponds to that
presented in section 3; for all inflection predic-
tion systems, the same SMT output and models for
number, gender and strong/weak inflection were
used; thus the only difference with the simple pre-
diction system is the model for case prediction.

We present three types of evaluation: BLEU
scores (Papineni et al., 2001), prediction accuracy
on clean data and a manual evaluation of the best
system in section 5.3.

Table 5 gives results in case-insensitive BLEU.
While the inflection prediction systems (1-4) are
significantly12 better than the surface-form sys-
tem (0), the different versions of the inflection sys-
tems are not distinguishable in terms of BLEU;
however, our manual evaluation shows that the
new features have a positive impact on translation
quality.

tion; the regularization parameter is optimized on held out
data.

11Using tuples extracted from the target-side parse tree
(produced by the decoder) results in a BLEU score of 14.00.

12We used Kevin Gimpel’s implementation of pairwise
bootstrap resampling with 1000 samples.

599



0 1 2 3 4
surface simple subcat. features source-side source-side
system prediction (tuples from EN side) features + subcat. featues

BLEU 13.43 14.02 14.05 14.10 14.17
Clean – 85.05 % 85.65 % 85.61 % 85.81 %

Table 5: Results of the simple prediction vs. three systems enriched with extra features.

One problem with using BLEU as an evalua-
tion metric is that it is a precision-oriented met-
ric and tends to reward fluency rather than ade-
quacy (see (Wu and Fung, 2009a; Liu and Gildea,
2010)). As we are working on improving ade-
quacy, this will not be fully reflected by BLEU.
Furthermore, not all components of an NP do nec-
essarily change their inflection with a new case
value; it might happen that the only indicator for
the case of an NP is the determiner: er sieht [den
alten Mann]NPacc (he sees the old man) vs. er
folgt [dem alten Mann]NPdat (he follows the old
man). While the case marking of NPs is essential
for comprehensibility, one changed word per noun
phrase is hardly enough to be reflected by BLEU.

An alternative to study the effectiveness of the
case prediction model is to evaluate the prediction
accuracy on parsed clean data, i.e. not on SMT
output. In this case, we measure (using the dev
set) how often the case of an NP is predicted cor-
rectly13. In all cases, the prediction accuracy is
better for the enriched systems. This shows that
the additional features improve the model, but also
that a gain in prediction accuracy on clean data is
not necessarily related to a gain in BLEU. We ob-
served that the more complex the model, the less
robust it is to differences between the test data
and the training data. Related to this problem,
we observed that high-order n-gram POS/lemma-
based features in the simple prediction (sequences
of lemmas and tags) are given too much weight in
training and thus make it difficult for the new fea-
tures to have a larger impact, so we restricted the
n-gram order of this type of feature to trigrams.

5.3 Manual evaluation of the best system

In order to provide a better understanding of the
impact of the presented features, in particular to
see whether there is an improvement in adequacy,
we carried out a manual evaluation comparing sys-

13The numbers in table 5 are artificially high and downplay
the difference as they also include cases which are very easy
to predict, such as nouns in PPs where only one value for case
is possible. We measure how many case labels were correctly
predicted, not correct inflected forms.

enriched simple equal
preferred preferred

person 1 23 11 12
(a) person 2 21 8 17

person 3 26 11 9
person 1 23 5 18

(b) person 2 21 11 14
person 3 29 8 9

(c) agreement 17 2 6

Table 6: Manual evaluation of 46 sentences: with-
out (a) and with (b) access to EN input, and the
annotators’ agreement in the second part (c).

tem (4) with the simple prediction system (1).
From the set of different sentences between the
simple prediction system and the enriched system
(144 of 1026), we evaluated those where the En-
glish input sentence was between 8 and 25 words
long (46 sentences in total). We specifically re-
stricted the test set in order to provide sentences
which are less difficult to annotate, as longer sen-
tences are often very disfluent and too hard to rate.
Most of the sentences in the evaluation set differ
only in the realization of one NP. For comparing
the two systems, the sentences were presented in
random order to 3 native speakers of German.

The evaluation consists of two parts: first, the
participants were asked to decide which sentence
is better without being given the English input
(this measures fluency). In the second part, they
should to mark that sentence which better repro-
duces the content of the English input sentence
(this measures adequacy). The test set is the same
for both tasks, the only difference being that the
English input is given in the second part. The re-
sults are given in table 6. Summarizing we can
say that the participants prefer the enriched sys-
tem over the simple system in both parts; there is a
high agreement (17 cases) in decisions over those
sentences which were rated as enriched better.

When looking at the pairwise inter-annotator
agreement for the task of annotating the test-set
with the 3 possible labels enriched preferred, sim-
ple preferred and no preference, we find that the
annotators P1 and P2 have a substantial agreement
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input hundreds of policemen were on alert , and [a helicopter]Subj circled the area with searchlights .
1 simple Hunderte von Polizisten auf Trab , und [einen Helikopter]Acc eingekreist das Gebiet mit searchlights .

enriched Hunderte von Polizisten auf Trab , und [ein Helikopter]Nom eingekreist das Gebiet mit searchlights .

input while 38 %percent put [their trust]Obj in viktor orbán .
2 simple während 38 % [ihres Vertrauens]Gen schenken in Viktor Orbán .

enriched während 38 % [ihr Vertrauen]Acc schenken in Viktor Orbán .
input more than $ 100 billion will enter [the monetary markets]Obj by means of public sales .

3 simple mehr als 100 Milliarden Dollar werden durch öffentlichen Verkauf [der Geldmärkte]Gen treten .
enriched mehr als 100 Milliarden Dollar werden durch öffentlichen Verkauf [die Geldmärkte]Acc treten .

Table 7: Output from the simple system (1) and the enriched system (4).

in terms of Kappa (κ = 0.6184), whereas the agree-
ment of P3 with P1/P2 respectively leads to lower
scores (κ = 0.4467 and κ = 0.3596). However, the
annotators tend to agree well on sentences with
the label enriched preferred, but largely disagree
on sentences labelled as either simple preferred or
no preference. The number of decisions where all
three annotators agree on a label when given the
English input is listed in table 6(c): for example,
only two sentences were given the label baseline is
better by all three annotators. This outcome shows
how difficult it is to rate disfluent SMT output. For
evaluating the case prediction system, the distinc-
tion between enriched preferred and enriched dis-
preferred is the most important question to answer.
Redefining the annotation task to annotating only
two values by grouping the labels simple preferred
and no preference into one annotation possibility
leads to κ = 0.7391, κ = 0.4048 and κ = 0.5652.

5.4 Examples

Table 7 shows some examples for output from the
simple system and the system using source-side
and subcategorization features. In the first sen-
tence, the subject NP a helicopter was inflected
as a direct object in the simple system, but as a
subject in the enriched system, which was pre-
ferred by all three annotators. In the second sen-
tence, the NP their trust, i.e. a direct object of put,
was incorrectly predicted as genitive-modifier of
38 % (i.e. 38 % of their trust) in the simple sys-
tem. The enriched system made use of the prefer-
ence for accusative for the pair Vertrauen schenken
(place trust), correctly inflecting this NP as di-
rect object. Interestingly, only two annotators pre-
ferred the enriched system, whereas one was unde-
cided. The third sentence illustrates how difficult
it is to rate case marking on disfluent SMT output:
there are two possibilities to translate enter the
money market; the direct equivalent of the English
phrase (den GeldmarktAcc betreten), or via the use

of a prepositional phrase (auf den GeldmarktAcc
treten: “to step into the money market”). The
SMT-output contains a mix of both, i.e. the verb
treten (instead of betreten), but without the prepo-
sition, which cannot lead to a fully correct inflec-
tion. While the inflection of the simple system (a
genitive construction meaning the public sales of
the money market) is definitely wrong, the inflec-
tion obtained in the enriched system is not use-
ful either, due to the structure of the translation14.
This difficulty is also reflected by the annotators,
who gave twice the label no preference and once
the label enriched better.

6 Conclusion

We illustrated the necessity of using external
knowledge sources like subcategorization infor-
mation for modelling case for English to Ger-
man translation. We presented a translation sys-
tem making use of a subcategorization database
together with source-side features. Our method
is language-independent with regard to the source
language; furthermore, no language-specific high-
quality semantic annotation is needed for the tar-
get language, but the data required to model the
subcategorization preferences can be obtained us-
ing standard NLP techniques. We showed in a
manual evaluation that the proposed features have
a positive impact on translation quality.
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2010. Practical very large scale CRFs. In Proceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 504–513.
Association for Computational Linguistics, July.

Beth Levin. 1993. English Verb Classes and Alterna-
tions. The University of Chicago Press.

Ding Liu and Daniel Gildea. 2008. Improved Tree-
to-String Transducers for Machine Translation. In
ACL Workshop on Statistical Machine Translation.

Ding Liu and Daniel Gildea. 2010. Semantic Role
Features for Machine Translation. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (COLING) 2010.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2007. Unsupervised Acquisition of Pre-
dominant Word Senses. Computational Linguistics,
33(4):553–590.

Cédric Messiant. 2008. A Subcategorization Acqui-
sition System for French Verbs. In Proceedings of
the Student Research Workshop at the 46th Annual
Meeting of the Association for Computational Lin-
guistics, pages 55–60, Columbus, OH.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated Re-
source of Semantic Roles. Computational Linguis-
tics, 31(1):71–106.

Kishore A. Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2001. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. Technical
Report RC22176 (W0109-022), IBM Research Di-
vision, Thomas J. Watson Research Center.

Anoop Sarkar and Daniel Zeman. 2000. Automatic
Extraction of Subcategorization Frames for Czech.
In Proceedings of the 18th International Conference
on Computational Linguistics, Saarbrücken, Ger-
many.

602



Silke Scheible, Sabine Schulte im Walde, Marion
Weller, and Max Kisselew. 2013. A Compact but
Linguistically Detailed Database for German Verb
Subcategorisation relying on Dependency Parses
from a Web Corpus. In Proceedings of the 8th Web
as Corpus Workshop, Lancaster, UK. To appear.

Helmut Schmid, Arne Fitschen, and Ulrich Heid.
2004. SMOR: a German Computational Morphol-
ogy Covering Derivation, Composition, and Inflec-
tion. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation
(LREC).

Helmut Schmid. 2000. LoPar: Design and Imple-
mentation. Arbeitspapiere des Sonderforschungs-
bereichs 340 ‘Linguistic Theory and the Foun-
dations of Computational Linguistics’ 149, Insti-
tut für Maschinelle Sprachverarbeitung, Universität
Stuttgart.

Helmut Schmid. 2004. Efficient Parsing of Highly
Ambiguous Context-Free Grammars with Bit Vec-
tors.

Sabine Schulte im Walde. 2002a. A Subcategorisa-
tion Lexicon for German Verbs induced from a Lex-
icalised PCFG. In Proceedings of the 3rd Confer-
ence on Language Resources and Evaluation, vol-
ume IV, pages 1351–1357, Las Palmas de Gran Ca-
naria, Spain.

Sabine Schulte im Walde. 2002b. A Subcategorisa-
tion Lexicon for German Verbs induced from a Lex-
icalised PCFG. In Proceedings of the 3rd Confer-
ence on Language Resources and Evaluation, vol-
ume IV, pages 1351–1357, Las Palmas de Gran Ca-
naria, Spain.

Sara Stymne and Nicola Cancedda. 2011. Productive
Generation of Compound Words in Statistical Ma-
chine Translation. In Proceedings of the Sixth Work-
shop on Machine Translation.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and
Paul Aarseth. 2003. Using Predicate-Argument
Structures for Information Extraction. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 8–15, Sap-
poro, Japan.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying Morphology Generation Models to
Machine Translation. In Proceedings of the 46th An-
nual Meeting of the Association for Computational
Linguistics (ACL): Human Language Technologies.

Giulia Venturi1, Simonetta Montemagni, Simone
Marchi, Yutaka Sasaki, Paul Thompson, John Mc-
Naught, and Sophia Ananiadou. 2009. Bootstrap-
ping a Verb Lexicon for Biomedical Information
Extraction. In Alexander Gelbukh, editor, Linguis-
tics and Intelligent Text Processing, pages 137–148.
Springer, Heidelberg.

Philip Williams and Phillipp Koehn. 2012. GHKM-
Rule Extraction and Scope-3 Parsing in Moses. In
Proceedings of the 7th Workshop on Statistical Ma-
chine Translation, ACL.

Dekai Wu and Pascale Fung. 2009a. Can Semantic
Role Labeling Improve SMT? In Proceedings of the
13th Annual Conference of the European Associa-
tion for Machine Translation (EAMT).

Dekai Wu and Pascale Fung. 2009b. Semantic Roles
for SMT: A Hybrid two-pass Model. In Proceed-
ings of the North American Chapter of the Associa-
tion for Computational Linguistics and Human Lan-
guage Technologies Conference (NAACL-HLT).

603



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 604–614,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Name-aware Machine Translation

Haibo Li† Jing Zheng‡ Heng Ji† Qi Li† Wen Wang‡

† Computer Science Department and Linguistics Department

Queens College and Graduate Center, City University of New York

New York, NY, USA 10016

{lihaibo.c, hengjicuny, liqiearth}@gmail.com

‡ Speech Technology & Research Laboratory

SRI International

Menlo Park, CA, USA 94025

{zj, wwang}@speech.sri.com

Abstract

We propose a Name-aware Machine
Translation (MT) approach which can
tightly integrate name processing into MT
model, by jointly annotating parallel cor-
pora, extracting name-aware translation
grammar and rules, adding name phrase
table and name translation driven decod-
ing. Additionally, we also propose a new
MT metric to appropriately evaluate the
translation quality of informative words,
by assigning different weights to differ-
ent words according to their importance
values in a document. Experiments on
Chinese-English translation demonstrated
the effectiveness of our approach on en-
hancing the quality of overall translation,
name translation and word alignment over
a high-quality MT baseline1.

1 Introduction

A shrinking fraction of the world’s Web pages are
written in English, therefore the ability to access
pages across a range of languages is becoming in-
creasingly important. This need can be addressed
in part by cross-lingual information access tasks
such as entity linking (McNamee et al., 2011; Cas-
sidy et al., 2012), event extraction (Hakkani-Tur
et al., 2007), slot filling (Snover et al., 2011) and
question answering (Parton et al., 2009; Parton
and McKeown, 2010). A key bottleneck of high-
quality cross-lingual information access lies in the
performance of Machine Translation (MT). Tradi-
tional MT approaches focus on the fluency and
accuracy of the overall translation but fall short
in their ability to translate certain content word-
s including critical information, especially names.

1Some of the resources and open source programs devel-
oped in this work are made freely available for research pur-
pose at http://nlp.cs.qc.cuny.edu/NAMT.tgz

A typical statistical MT system can only trans-
late 60% person names correctly (Ji et al., 2009).
Incorrect segmentation and translation of names
which often carry central meanings of a sentence
can also yield incorrect translation of long con-
texts. Names have been largely neglected in the
prior MT research due to the following reasons:

• The current dominant automatic MT scoring
metrics (such as Bilingual Evaluation Under-
study (BLEU) (Papineni et al., 2002)) treat
all words equally, but names have relative low
frequency in text (about 6% in newswire and
only 3% in web documents) and thus are vast-
ly outnumbered by function words and com-
mon nouns, etc..
• Name translations pose a greater complexity

because the set of names is open and highly
dynamic. It is also important to acknowledge
that there are many fundamental differences
between the translation of names and other
tokens, depending on whether a name is ren-
dered phonetically, semantically, or a mixture
of both (Ji et al., 2009).
• The artificial settings of assigning low

weights to information translation (compared
to overall word translation) in some large-
scale government evaluations have discour-
aged MT developers to spend time and ex-
plore resources to tackle this problem.

We propose a novel Name-aware MT (NAMT)
approach which can tightly integrate name pro-
cessing into the training and decoding processes of
an end-to-end MT pipeline, and a new name-aware
metric to evaluate MT which can assign different
weights to different tokens according to their im-
portance values in a document. Compared to pre-
vious methods, the novel contributions of our ap-
proach are:

1. Tightly integrate joint bilingual name tag-
ging into MT training by coordinating tagged
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names in parallel corpora, updating word seg-
mentation, word alignment and grammar ex-
traction (Section 3.1).

2. Tightly integrate name tagging and transla-
tion into MT decoding via name-aware gram-
mar (Section 3.2).

3. Optimize name translation and context trans-
lation simultaneously and conduct name
translation driven decoding with language
model (LM) based selection (Section 3.2).

4. Propose a new MT evaluation metric which
can discriminate names and non-informative
words (Section 4).

2 Baseline MT

As our baseline, we apply a high-performing
Chinese-English MT system (Zheng, 2008; Zheng
et al., 2009) based on hierarchical phrase-based
translation framework (Chiang, 2005). It is based
on a weighted synchronous context-free grammar
(SCFG). All SCFG rules are associated with a set
of features that are used to compute derivation
probabilities. The features include:

• Relative frequency in two directions P (γ|α)
andP (α|γ), estimating the likelihoods of one
side of the rule r: X →< γ, α > translating
into the other side, where γ and α are strings
of terminals and non-terminals in the source
side and target side. Non-terminals in γ and
α are in one-to-one correspondence.
• Lexical weights in two directions: Pw(γ|α)

andPw(α|γ), estimating likelihoods of word-
s in one side of the rule r: X →< γ, α >
translating into the other side (Koehn et al.,
2003).
• Phrase penalty: a penalty exp(1) for a rule

with no non-terminal being used in deriva-
tion.
• Rule penalty: a penalty exp(1) for a rule

with at least one non-terminal being used in
derivation.
• Glue rule penalty: a penalty exp(1) if a glue

rule used in derivation.
• Translation length: number of words in trans-

lation output.

Our previous work showed that combining mul-
tiple LMs trained from different sources can lead
to significant improvement. The LM used for de-
coding is a log-linear combination of four word
n-gram LMs which are built on different English

corpora (details described in section 5.1), with
the LM weights optimized on a development set
and determined by minimum error rate training
(MERT), to estimate the probability of a word giv-
en the preceding words. All four LMs were trained
using modified Kneser-Ney smoothing algorithm
(Chen and Goodman, 1996) and converted into
Bloom filter LMs (Talbot and Brants, 2008) sup-
porting memory map.

The scaling factors for all features are optimized
by minimum error rate training algorithm to max-
imize BLEU score (Och, 2003). Given an input
sentence in the source language, translation into
the target language is cast as a search problem,
where the goal is to find the highest-probability
derivation that generates the source-side sentence,
using the rules in our SCFG. The source-side
derivation corresponds to a synchronous target-
side derivation and the terminal yield of this target-
side derivation is the output of the system. We em-
ploy our CKY-style chart decoder, named SRInter-
p, to solve the search problem.

3 Name-aware MT

We tightly integrate name processing into the
above baseline to construct a NAMT model. Fig-
ure 1 depicts the general procedure.

3.1 Training

This basic training process of NAMT requires us
to apply a bilingual name tagger to annotate par-
allel training corpora. Traditional name tagging
approaches for single languages cannot address
this requirement because they were all built on da-
ta and resources which are specific to each lan-
guage without using any cross-lingual features.
In addition, due to separate decoding processes
the results on parallel data may not be consistent
across languages. We developed a bilingual joint
name tagger (Li et al., 2012) based on condition-
al random fields that incorporates both monolin-
gual and cross-lingual features and conducts join-
t inference, so that name tagging from two lan-
guages can mutually enhance each other and there-
fore inconsistent results can be corrected simulta-
neously. This joint name tagger achieved 86.3%
bilingual pair F-measure with manual alignment
and 84.4% bilingual pair F-measure with automat-
ic alignment as reported in (Li et al., 2012). Given
a parallel sentence pair we first apply Giza++ (Och
and Ney, 2003) to align words, and apply this join-
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Figure 1: Architecture of Name-aware Machine Translation System.

t bilingual name tagger to extract three types of
names: (Person (PER), Organization (ORG) and
Geo-political entities (GPE)) from both the source
side and the target side. We pair two entities from
two languages, if they have the same entity type
and are mapped together by word alignment. We
ignore two kinds of names: multi-word names
with conflicting boundaries in two languages and
names only identified in one side of a parallel sen-
tence.

We built a NAMT system from such name-
tagged parallel corpora. First, we replace tagged
name pairs with their entity types, and then
use Giza++ and symmetrization heuristics to re-
generate word alignment. Since the name tags ap-
pear very frequently, the existence of such tags
yields improvement in word alignment quality.
The re-aligned parallel corpora are used to train
our NAMT system based on SCFG. Since the joint
name tagger ensures that each tagged source name
has a corresponding translation on the target side
(and vice versa), we can extract SCFG rules by
treating the tagged names as non-terminals.

However, the original parallel corpora contain
many high-frequency names, which can already be
handled well by the baseline MT. Some of these
names carry special meanings that may influence
translations of the neighboring words, and thus re-
placing them with non-terminals can lead to infor-
mation loss and weaken the translation model. To
address this issue, we merged the name-replaced
parallel data with the original parallel data and ex-
tract grammars from the combined corpus. For ex-
ample, given the following sentence pair:

• -ýÍù�e¿�Ëe�åÉ²� .
• China appeals to world for non involvement

in Angola conflict .

after name tagging it becomes

• GPEÍù�e¿�Ëe GPE²� .
• GPE appeals to world for non involvement in

GPE conflict .

Both sentence pairs are kept in the combined data
to build the translation model.

3.2 Decoding
During decoding phase, we extract names with
the baseline monolingual name tagger described
in (Li et al., 2012) from a source document. It-
s performance is comparable to the best report-
ed results on Chinese name tagging on Automat-
ic Content Extraction (ACE) data (Ji and Grish-
man, 2006; Florian et al., 2006; Zitouni and Flo-
rian, 2008; Nguyen et al., 2010). Then we ap-
ply a state-of-the-art name translation system (Ji
et al., 2009) to translate names into the target lan-
guage. The name translation system is composed
of the following steps: (1) Dictionary matching
based on 150,041 name translation pairs; (2) Sta-
tistical name transliteration based on a structured
perceptron model and a character based MT mod-
el (Dayne and Shahram, 2007); (3) Context infor-
mation extraction based re-ranking.

In our NAMT framework, we add the following
extensions to name translation.

We developed a name origin classifier based on
Chinese last name list (446 name characters) and
name structure parsing features to distinguish Chi-
nese person names and foreign person names (Ji,
2009), so that pinyin conversion is applied for Chi-
nese names while name transliteration is applied
only for foreign names. This classifier works rea-
sonably well in most cases (about 92% classifica-
tion accuracy), except when a common Chinese
last name appears as the first character of a foreign
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name, such as “1�” which can be translated ei-
ther as “Jolie” or “Zhu Li”.

For those names with fewer than five instances
in the training data, we use the name translation
system to provide translations; for the rest of the
names, we leave them to the baseline MT mod-
el to handle. The joint bilingual name tagger was
also exploited to mine bilingual name translation
pairs from parallel training corpora. The mapping
score between a Chinese name and an English
name was computed by the number of aligned to-
kens. A name pair is extracted if the mapping
score is the highest among all combinations and
the name types on both sides are identical. It is
necessary to incorporate word alignment as addi-
tional constraints because the order of names is of-
ten changed after translation. Finally, the extract-
ed 9,963 unique name translation pairs were also
used to create an additional name phrase table for
NAMT. Manual evaluation on 2,000 name pairs
showed the accuracy is 86%.

The non-terminals in SCFG rules are rewritten
to the extracted names during decoding, therefore
allow unseen names in the test data to be trans-
lated. Finally, based on LMs, our decoder ex-
ploits the dynamically created phrase table from
name translation, competing with originally ex-
tracted rules, to find the best translation for the
input sentence.

4 Name-aware MT Evaluation

Traditional MT evaluation metrics such as
BLEU (Papineni et al., 2002) and Translation Ed-
it Rate (TER) (Snover et al., 2006) assign the
same weights to all tokens equally. For exam-
ple, incorrect translations of “the” and “Bush” will
receive the same penalty. However, for cross-
lingual information processing applications, we
should acknowledge that certain informationally
critical words are more important than other com-
mon words. In order to properly evaluate the trans-
lation quality of NAMT methods, we propose to
modify the BLEU metric so that they can dynam-
ically assign more weights to names during evalu-
ation.

BLEU considers the correspondence between a
system translation and a human translation:

BLEU = BP · exp
( N∑

n=1

wn log pn

)
(1)

where BP is brevity penalty defined as follows:

BP =

{
1 if c > r,

e(1−r/c) if c ≤ r.
(2)

where wn is a set of positive weights summing to
one and usually uniformly set as wn = 1/N , c is
the length of the system translation and r is the
length of reference translation, and pn is modified
n-gram precision defined as:

pn =

∑
C∈Candidates

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈Candidates

∑
n-gram′∈C′

Countclip(n-gram′)

(3)
where C and C ′ are translation candidates in the
candidate sentence set, if a source sentence is
translated to many candidate sentences.

As in BLEU metric, we first count the maxi-
mum number of times an n-gram occurs in any s-
ingle reference translation. The total count of each
candidate n-gram is clipped at sentence level by it-
s maximum reference count. Then we add up the
weights of clipped n-grams and divide them by the
total weight of all n-grams.

Based on BLEU score, we design a name-aware
BLEU metric as follows. Depending on whether a
token t is contained in a name in reference trans-
lation, we assign a weight weightt to t as follows:

weightt ={
1− e−tf(t,d)·idf(t,D), if t never appears in names
1 + PE

Z
, if t occurs in name(s)

(4)

where PE is the sum of penalties of non-name
tokens and Z is the number of tokens within all
names:

PE =
∑

t never appears in names

e−tf(t,d)·idf(t,D) (5)

In this paper, the tf · idf score is computed at sen-
tence level, therefore, D is the sentence set and
each d ∈ D is a sentence.

The weight of an n-gram in reference translation
is the sum of weights of all tokens it contains.

weightngram =
∑

t∈ngram
weightt (6)

Next, we compute the weighted modified n-
gram precision Countweight−clip(n-gram) as fol-
lows:
Countweight−clip(n-gram) =

∑

if the ngrami is correctly translated

weightngrami
(7)
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The Countclip(n-gram) in the equation 3 is
substituted with aboveCountweight−clip(n-gram).
When we sum up the total weight of all n-grams of
a candidate translation, some n-grams may contain
tokens which do not exist in reference translation.
We assign the lowest weight of tokens in reference
translation to these rare tokens.

We also add an item, name penalty NP , to
penalize the output sentences which contain too
many or too few names:

NP = e−(
u
v
−1)2/2σ (8)

where u is the number of name tokens in system
translation and v is the number of name tokens in
reference translation.

Finally the name-aware BLEU score is defined
as:

BLEUNA = BP ·NP · exp
( N∑

n=1

wn logwpn

)
(9)

This new metric can also be applied to evalu-
ate MT approaches which emphasize other types
of facts such as events, by simply replacing name
tokens by other fact tokens.

5 Experiments

In this section we present the experimental results
of NAMT compared to the baseline MT.

5.1 Data Set
We used a large Chinese-English MT training cor-
pus from various sources and genres (including
newswire, web text, broadcast news and broadcast
conversations) for our experiments. We also used
some translation lexicon data and Wikipedia trans-
lations. The majority of the data sets were col-
lected or made available by LDC for U.S. DARPA
Translingual Information Detection, Extraction
and Summarization (TIDES) program, Global Au-
tonomous Language Exploitation (GALE) pro-
gram, Broad Operational Language Translation
(BOLT) program and National Institute of Stan-
dards and Technology (NIST) MT evaluations.
The training corpus includes 1,686,458 sentence
pairs. The joint name tagger extracted 1,890,335
name pairs (295,087 Persons, 1,269,056 Geo-
political entities and 326,192 Organizations).

Four LMs, denoted LM1, LM2, LM3, and
LM4, were trained from different English cor-
pora. LM1 is a 7-gram LM trained on the tar-

get side of Chinese-English and Egyptian Arabic-
English parallel text, English monolingual discus-
sion forums data R1-R4 released in BOLT Phase
1 (LDC2012E04, LDC2012E16, LDC2012E21,
LDC2012E54), and English Gigaword Fifth Edi-
tion (LDC2011T07). LM2 is a 7-gram LM trained
only on the English monolingual discussion fo-
rums data listed above. LM3 is a 4-gram LM
trained on the web genre among the target side
of all parallel text (i.e., web text from pre-BOLT
parallel text and BOLT released discussion fo-
rum parallel text). LM4 is a 4-gram LM trained
on the English broadcast news and conversation
transcripts released under the DARPA GALE pro-
gram. Note that for LM4 training data, some tran-
scripts were quick transcripts and quick rich tran-
scripts released by LDC, and some were generated
by running flexible alignment of closed captions or
speech recognition output from LDC on the audio
data (Venkataraman et al., 2004).

In order to demonstrate the effectiveness and
generality of our approach, we evaluated our ap-
proach on seven test sets from multiple genres and
domains. We asked four annotators to annotate
names in four reference translations of each sen-
tence and an expert annotator to adjudicate result-
s. The detailed statistics and name distribution of
each test data set is shown in Table 1. The per-
centage of names occurred fewer than 5 times in
training data are listed in the brackets in the last
column of the table.

5.2 Overall Performance
Besides the new name-aware MT metric, we also
adopt two traditional metrics, TER to evaluate the
overall translation performance and Named Entity
Weak Accuracy (NEWA) (Hermjakob et al., 2008)
to evaluate the name translation performance.

TER measures the amount of edits required to
change a system output into one of the reference
translations. Specifically:

TER =
# of edits

average # of reference words
(10)

Possible edits include insertion, substitution dele-
tion and shifts of words.

The NEWA metric is defined as follows. Us-
ing a manually assembled name variant table, we
also support the matching of name variants (e.g.,
“World Health Organization” and “WHO”).

NEWA =
Count # of correctly translated names

Count # of names in references
(11)
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Corpus Genre Sentence # Word # Token # GPE(%) PER(%) ORG(%) All names
in source in reference (% occurred < 5)

BOLT 1 forum 1,200 20,968 24,193 875(82.9) 90(8.5) 91(8.6) 1,056 (51.4)
BOLT 2 forum 1,283 23,707 25,759 815(73.7) 141(12.8) 149(13.5) 1,105 (65.9)
BOLT 3 forum 2,000 38,595 42,519 1,664(80.4) 204(9.8) 204(9.8) 2,072 (47.4)
BOLT 4 forum 1,918 41,759 47,755 1,852(80.0) 348(25.0) 113(5.0) 2,313 (53.3)
BOLT 5 blog 950 23,930 26,875 352(42.5) 235(28.3) 242(29.2) 829 (55.3)

NIST2006 news&blog 1,664 38,442 45,914 1,660(58.2) 568(19.9) 625(21.9) 2,853 (73.1)
NIST2008 news&blog 1,357 32,646 37,315 700(47.9) 367(25.1) 395(27.0) 1,462 (72.0)

Table 1: Statistics and Name Distribution of Test Data Sets.

Metric System BOLT 1 BOLT 2 BOLT 3 BOLT 4 BOLT 5 NIST2006 NIST2008

BLEU
Baseline 14.2 14.0 17.3 15.6 15.3 35.5 29.3
NPhrase 14.1 14.4 17.1 15.4 15.3 35.4 29.3
NAMT 14.2 14.6 16.9 15.7 15.5 36.3 30.0

Name-aware BLEU
Baseline 18.2 17.9 18.6 17.6 18.3 36.1 31.7
NPhrase 18.1 18.8 18.5 18.1 18.0 35.8 31.8
NAMT 18.4 19.5 19.7 18.2 18.9 39.4 33.1

TER
Baseline 70.6 71.0 69.4 70.3 67.1 58.7 61.0
NPhrase 70.6 70.4 69.4 70.4 67.1 58.7 60.9
NAMT 70.3 70.2 69.2 70.1 66.6 57.7 60.5

NEWA

All
Baseline 69.7 70.1 73.9 72.3 60.6 66.5 60.4
NPhrase 69.8 71.1 73.8 72.5 60.6 68.3 61.9
NAMT 71.4 72.0 77.7 75.1 62.7 72.9 63.2

GPE
Baseline 72.8 78.4 80.0 78.7 81.3 79.2 76.0
NPhrase 73.6 79.3 79.2 78.9 82.3 82.6 79.5
NAMT 74.2 80.2 82.8 80.4 79.3 85.5 79.3

PER
Baseline 53.3 44.7 45.1 49.4 48.9 54.2 51.2
NPhrase 52.2 45.4 48.9 48.5 47.6 55.1 50.9
NAMT 55.6 45.4 58.8 55.2 56.2 60.0 52.3

ORG
Baseline 56.0 49.0 52.9 38.1 41.7 44.0 41.3
NPhrase 50.5 50.3 54.4 40.7 41.3 42.2 40.7
NAMT 60.4 52.3 55.4 41.6 45.0 51.0 44.8

Table 2: Translation Performance (%).

For better comparison with NAMT, besides the
original baseline, we develop the other baseline
system by adding name translation table into the
phrase table (NPhrase).

Table 2 presents the performance of overal-
l translation and name translation. We can see
that except for the BOLT3 data set with BLEU
metric, our NAMT approach consistently outper-
formed the baseline system for all data sets with
all metrics, and provided up to 23.6% relative er-
ror reduction on name translation. According to
Wilcoxon Matched-Pairs Signed-Ranks Test, the
improvement is not significant with BLEU metric,
but is significant at 98% confidence level with all
of the other metrics. The gains are more signifi-
cant for formal genres than informal genres main-
ly because most of the training data for name tag-
ging and name translation were from newswire.
Furthermore, using external name translation table
only did not improve translation quality in most
test sets except for BOLT2. Therefore, it is im-
portant to use name-replaced corpora for rule ex-
traction to fully take advantage of improved word
alignment.

Many errors from the baseline MT approach oc-

curred because some parts of out-of-vocabulary
names were mistakenly segmented into common
words. For example, the baseline MT system mis-
takenly translated a person name “Y¢÷ (Sun
Honglei)” into “Sun red thunder”. In informal
genres such as discussion forums and web blogs,
even common names often appear in rare form-
s due to misspelling or morphing. For example,
“e8l (Obama)” was mistakenly translated into
“Ma Olympic”. Such errors can be compounded
when word re-ordering was applied. For example,
the following sentence: “í����ÏØ�/:
'J��/i
y (Guo Meimei’s strength real-
ly is formidable, I really admire her)” was mis-
takenly translated into “Guo the strength of the
America and the America also really strong , ah
, really admire her” by the baseline MT system
because the person name “í�� (Guomeimei)”
was mistakenly segmented into three words “í
(Guo)”, “� (the America)” and “� (the Ameri-
ca)”. But our NAMT approach successfully iden-
tified and translated this name and also generated
better overall translation: “Guo Meimei ’s power
is also really strong , ah , really admire her”.
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Figure 2: Scores based on Automatic Metrics and Human
Evaluation.

5.3 Name-aware BLEU vs The Human
Evaluation

In order to investigate the correlation between
name-aware BLEU scores and human judgment
results, we asked three bi-lingual speakers to judge
our translation output from the baseline system
and the NAMT system, on a Chinese subset of 250
sentences (each sentence has two corresponding
translations from baseline and NAMT) extracted
randomly from 7 test corpora. The annotators rat-
ed each translation from 1 (very bad) to 5 (very
good) and made their judgments based on whether
the translation is understandable and conveys the
same meaning.

We computed the name-aware BLEU scores on
the subset and also the aggregated average scores
from human judgments. Figure 2 shows that
NAMT consistently achieved higher scores with
both name-aware BLEU metric and human judge-
ment. Furthermore, we calculated three Pearson
product-moment correlation coefficients between
human judgment scores and name-aware BLEU s-
cores of these two MT systems. Give the sample
size and the correlation coefficient value, the high
significance value of 0.99 indicates that name-
aware BLEU tracks human judgment well.

5.4 Word Alignment
It is also important to investigate the impact of our
NAMT approach on improving word alignmen-
t. We conducted the experiment on the Chinese-
English Parallel Treebank (Li et al., 2010) with
ground-truth word alignment. The detailed pro-
cedure following NAMT framework is as follows:
(1) Ran the joint bilingual name tagger; (2) Re-
placed each name string with its name type (PER,
ORG or GPE), and ran Giza++ on the replaced
sentences; (3) Ran Giza++ on the words within

Words Method P R F 
Baseline Giza++ 69.8 47.8 56.7 
Joint Name 
Tagging 

70.4 48.1 57.1 
 
Overall 
Words 

Ground-truth 
Name Tagging 
(Upper-bound) 

71.3 48.9 58.0 

Baseline Giza++ 86.0 31.4 46.0 Words 
Within 
Names 

Joint Name 
Tagging 

77.6 37.2 50.3 

 

 
 
 
 
 
 
 
 

 

Table 3: Impact of Joint Bilingual Name Tagging on Word
Alignment (%).

each name pair. (4) Merged (2) and (3) to pro-
duce the final word alignment results. In order to
compare with the upper-bound gains, we also mea-
sured the performance of applying ground-truth
name tagging with the above procedures.

The experiment results are shown in Table 3.
For the words within names, our approach provid-
ed significant gains by enhancing F-measure from
46.0% to 50.3%. Only 10.6% words are within
names, therefore the upper-bound gains on over-
all word alignment is only 1.3%. Our joint name
tagging approach achieved 0.4% (statistically sig-
nificant) improvement over the baseline. In Fig-
ure 3 we categorized the sentences according to
the percentage of name words in each sentence and
measured the improvement for each category. We
can clearly see that as the sentences include more
names, the gains achieved by our approach tend to
be greater.

5.5 Remaining Error Analysis

Although the proposed model has significantly en-
hanced translation quality, some challenges re-
main. We analyze some major sources of the re-
maining errors as follows.

1. Name Structure Parsing.
We found that the gains of our NAMT approach

were mainly achieved for names with one or two
components. When the name structure becomes
too complicated to parse, name tagging and name
translation are likely to produce errors, especially
for long nested organizations. For example, “ä0
¿ÀßbÍ�@” (Anti-malfeasance Bureau of
Gutian County Procuratorate) consists of a nested
organization name with a GPE as modifier: “ä
0¿Àßb” (Gutian County Procuratorate) and
an ORG name: “Í�@” (Anti-malfeasance Bu-
reau).

2. Name abbreviation tagging and translation.
Some organization abbreviations are also dif-

ficult to extract because our name taggers have
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Figure 3: Word alignment gains according to the percentage
of name words in each sentence.

not incorporated any coreference resolution tech-
niques. For example, without knowing that “FAW”
refers to “First Automotive Works” in “FAW has
also utilized the capital market to directly fi-
nance, and now owns three domestic listed compa-
nies”, our system mistakenly labeled it as a GPE.
The same challenge exists in name alignment and
translation (for example, “�i (Min Ge)” refer-
s to “ -ýý�Zi}ÔX�” (Revolutionary
Committee of the Chinese Kuomintang).

3. Cross-lingual information transfer
English monolingual features normally gener-

ate higher confidence than Chinese features for
ORG names. On the other hand, some good prop-
agated Chinese features were not able to correct
English results. For example, in the following sen-
tence pair: “9n-ý����T�ý¾�r	
¹¾��... (in accordance with the tripartite a-
greement reached by China, Laos and the UNHCR
on)...”, even though the tagger can successfully la-
bel “T�ý¾�r/UNHCR” as an organization
because it is a common Chinese name, English
features based on previous GPE contexts still in-
correctly predicted “UNHCR” as a GPE name.

6 Related Work

Two types of humble strategies were previously
attempted to build name translation components
which operate in tandem and loosely integrate into
conventional statistical MT systems:

1. Pre-processing: identify names in the source
texts and propose name translations to the
MT system; the name translation results can
be simply but aggressively transferred from
the source to the target side using word align-
ment, or added into phrase table in order to

enable the LM to decide which translations to
choose when encountering the names in the
texts (Ji et al., 2009). Heuristic rules or su-
pervised models can be developed to create
“do-not-translate” list (Babych and Hartley,
2003) or learn “when-to-transliterate” (Her-
mjakob et al., 2008).

2. Post-processing: in a cross-lingual informa-
tion retrieval or question answering frame-
work, online query names can be utilized
to obtain translation and post-edit MT out-
put (Parton et al., 2009; Ma and McKeown,
2009; Parton and McKeown, 2010; Parton et
al., 2012).

It is challenging to decide when to use name
translation results. The simple transfer method en-
sures all name translations appear in the MT out-
put, but it heavily relies on word alignment and
does not take into account word re-ordering or
the words found in a name’s context; therefore it
could mistakenly break some context phrase struc-
tures due to name translation or alignment errors.
The LM selection method often assigns an inap-
propriate weight to the additional name transla-
tion table because it is constructed independent-
ly from translation of context words; therefore af-
ter weighted voting most correct name translations
are not used in the final translation output. Our
experimental results 2 confirmed this weakness.
More importantly, in these approaches the MT
model was still mostly treated as a “black-box”
because neither the translation model nor the LM
was updated or adapted specifically for names.

Recently the wider idea of incorporating seman-
tics into MT has received increased interests. Most
of them designed some certain semantic represen-
tations, such as predicate-argument structure or
semantic role labeling (Wu and Fung, 2009; Liu
and Gildea, 2009; Meyer et al., 2011; Bojar and
Wu, 2012), word sense disambiguation (Carpu-
at and Wu, 2007b; Carpuat and Wu, 2007a) and
graph-structured grammar representation (Jones et
al., 2012). Lo et al. (2012) proposed a semantic
role driven MT metric. However, none of these
work declaratively exploited results from informa-
tion extraction for MT.

Some statistical MT systems (e.g. (Zens et al.,
2005), (Aswani and Gaizauskas, 2005)) have at-
tempted to use text normalization to improve word
alignment for dates, numbers and job titles. But
little reported work has shown the impact of joint
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name tagging on overall word alignment.
Most of the previous name translation work

combined supervised transliteration approaches
with LM based re-scoring (Knight and Graehl,
1998; Al-Onaizan and Knight, 2002; Huang et
al., 2004). Some recent research used compara-
ble corpora to mine name translation pairs (Feng
et al., 2004; Kutsumi et al., 2004; Udupa et al.,
2009; Ji, 2009; Fung and Yee, 1998; Rapp, 1999;
Shao and Ng, 2004; Lu and Zhao, 2006; Hassan
et al., 2007). However, most of these approaches
required large amount of seeds, suffered from In-
formation Extraction errors, and relied on phonet-
ic similarity, context co-occurrence and documen-
t similarity for re-scoring. In contrast, our name
pair mining approach described in this paper does
not require any machine translation or translitera-
tion features.

7 Conclusions and Future Work

We developed a name-aware MT framework
which tightly integrates name tagging and name
translation into training and decoding of MT. Ex-
periments on Chinese-English translation demon-
strated the effectiveness of our approach over a
high-quality MT baseline in both overall transla-
tion and name translation, especially for formal
genres. We also proposed a new name-aware eval-
uation metric. In the future we intend to improve
the framework by training a discriminative model
to automatically assign weights to combine name
translation and baseline translation with additional
features including name confidence values, name
types and global validation evidence, as well as
conducting LM adaptation through bilingual top-
ic modeling and clustering based on name anno-
tations. We also plan to jointly optimize MT and
name tagging by propagating multiple word seg-
mentation and name annotation hypotheses in lat-
tice structure to statistical MT and conduct lattice-
based decoding (Dyer et al., 2008). Furthermore,
we are interested in extending this framework to
translate other out-of-vocabulary terms.
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Abstract
In this paper we show that even for the
case of 1:1 substitution ciphers—which
encipher plaintext symbols by exchang-
ing them with a unique substitute—finding
the optimal decipherment with respect to a
bigram language model is NP-hard. We
show that in this case the decipherment
problem is equivalent to the quadratic as-
signment problem (QAP). To the best of
our knowledge, this connection between
the QAP and the decipherment problem
has not been known in the literature be-
fore.

1 Introduction

The decipherment approach for MT has recently
gained popularity for training and adapting trans-
lation models using only monolingual data. The
general idea is to find those translation model
parameters that maximize the probability of the
translations of a given source text in a given lan-
guage model of the target language.

In general, the process of translation has a wide
range of phenomena like substitution and reorder-
ing of words and phrases. In this paper we only
study models that substitute tokens—i.e. words
or letters—with a unique substitute. It therefore
serves as a very basic case for decipherment and
machine translation.

Multiple techniques like integer linear program-
ming (ILP), A∗ search, genetic algorithms, and
Bayesian inference have been used to tackle the
decipherment problem for 1:1 substitution ciphers.
The existence of such a variety of different ap-
proaches for solving the same problem already
shows that there is no obvious way to solve the
problem optimally.

In this paper we show that decipherment of 1:1
substitution ciphers is indeed NP-hard and thus ex-

plain why there is no single best approach to the
problem. The literature on decipherment provides
surprisingly little on the analysis of the complexity
of the decipherment problem. This might be re-
lated to the fact that a statistical formulation of the
decipherment problem has not been analyzed with
respect to n-gram language models: This paper
shows the close relationship of the decipherment
problem to the quadratic assignment problem. To
the best of our knowledge the connection between
the decipherment problem and the quadratic as-
signment problem was not known.

The remainder of this paper is structured as
follows: In Section 2 we review related work.
Section 3 introduces the decipherment problem
and describes the notation and definitions used
throughout this paper. In Section 4 we show that
decipherment using a unigram language model
corresponds to solving a linear sum assignment
problem (LSAP). Section 5 shows the connection
between the quadratic assignment problem and de-
cipherment using a bigram language model. Here
we also give a reduction of the traveling sales-
man problem (TSP) to the decipherment problem
to highlight the additional complexity in the deci-
pherment problem.

2 Related Work

In recent years a large number of publications
on the automatic decipherment of substitution ci-
phers has been published. These publications were
mostly dominated by rather heuristic methods and
did not provide a theoretical analysis of the com-
plexity of the decipherment problem: (Knight and
Yamada, 1999) and (Knight et al., 2006) use the
EM algorithm for various decipherment problems,
like e.g. word substitution ciphers. (Ravi and
Knight, 2008) and (Corlett and Penn, 2010) are
able to obtain optimal (i.e. without search errors)
decipherments of short cryptograms given an n-
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gram language model. (Ravi and Knight, 2011),
(Nuhn et al., 2012), and (Dou and Knight, 2012)
treat natural language translation as a deciphering
problem including phenomena like reordering, in-
sertion, and deletion and are able to train transla-
tion models using only monolingual data.

In this paper we will show the connection be-
tween the decipherment problem and the linear
sum assignment problem as well as the quadratic
assignment problem: Regarding the linear sum as-
signment problem we will make use of definitions
presented in (Burkard and ela, 1999). Concern-
ing the quadratic assignment problem we will use
basic definitions from (Beckmann and Koopmans,
1957). Further (Burkard et al., 1998) gives a good
overview over the quadratic assignment problem,
including different formulations, solution meth-
ods, and an analysis of computational complexity.
The paper also references a vast amount of fur-
ther literature that might be interesting for future
research.

3 Definitions

In the following we will use the machine trans-
lation notation and denote the ciphertext with
fN1 = f1 . . . fj . . . fN which consists of cipher
tokens fj ∈ Vf . We denote the plaintext with
eN1 = e1 . . . ei . . . eN (and its vocabulary Ve re-
spectively). We define

e0 = f0 = eN+1 = fN+1 = $ (1)

with “$” being a special sentence boundary token.
We use the abbreviations V e = Ve ∪ {$} and V f

respectively.
A general substitution cipher uses a table

s(e|f) which contains for each cipher token f a
probability that the token f is substituted with the
plaintext token e. Such a table for substituting
cipher tokens {A,B,C,D} with plaintext tokens
{a, b, c, d} could for example look like

a b c d
A 0.1 0.2 0.3 0.4
B 0.4 0.2 0.1 0.3
C 0.4 0.1 0.2 0.3
D 0.3 0.4 0.2 0.1

The 1:1 substitution cipher encrypts a given
plaintext into a ciphertext by replacing each plain-
text token with a unique substitute: This means
that the table s(e|f) contains all zeroes, except for

one “1.0” per f ∈ Vf and one “1.0” per e ∈ Ve.
For example the text

abadcab
would be enciphered to

BCBADBC
when using the substitution

a b c d
A 0 0 0 1
B 1 0 0 0
C 0 1 0 0
D 0 0 1 0

We formalize the 1:1 substitutions with a bijective
function φ : Vf → Ve. The general decipher-
ment goal is to obtain a mapping φ such that the
probability of the deciphered text is maximal:

φ̂ = argmax
φ

p(φ(f1)φ(f2)φ(f3)...φ(fN )) (2)

Here p(. . . ) denotes the language model. De-
pending on the structure of the language model
Equation 2 can be further simplified.

Given a ciphertext fN1 , we define the unigram
count Nf of f ∈ V f as1

Nf =

N+1∑

i=0

δ(f, fi) (3)

This implies that Nf are integer counts > 0. We
similarly define the bigram count Nff ′ of f, f ′ ∈
V f as

Nff ′ =
N+1∑

i=1

δ(f, fi−1) · δ(f ′, fi) (4)

This definition implies that

(a) Nff ′ are integer counts > 0 of bigrams found
in the ciphertext fN1 .

(b) Given the first and last token of the cipher f1
and fN , the bigram counts involving the sen-
tence boundary token $ need to fulfill

N$f = δ(f, f1) (5)

Nf$ = δ(f, fN ) (6)

(c) For all f ∈ Vf
∑

f ′∈Vf
Nff ′ =

∑

f ′∈Vf
Nf ′f (7)

must hold.
1Here δ denotes the Kronecker delta.
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Similarly, we define language model matrices S
for the unigram and the bigram case. The uni-
gram language model Sf is defined as

Sf = log p(f) (8)

which implies that

(a) Sf are real numbers with

Sf ∈ [−∞, 0] (9)

(b) The following normalization constraint holds:
∑

f∈Vf
exp(Sf ) = 1 (10)

Similarly for the bigram language model matrix
Sff ′ , we define

Sff ′ = log p(f ′|f) (11)

This definition implies that

(a) Sff ′ are real numbers with

Sff ′ ∈ [−∞, 0] (12)

(b) For the sentence boundary symbol, it holds
that

S$$ = −∞ (13)

(c) For all f ∈ Vf the following normalization
constraint holds:

∑

f ′∈Vf

exp(Sff ′) = 1 (14)

4 Decipherment Using Unigram LMs

4.1 Problem Definition
When using a unigram language model, Equa-
tion 2 simplifies to finding

φ̂ = argmax
φ

N∏

i=1

p(φ(fi)) (15)

which can be rewritten as

φ̂ = argmax
φ

∑

f∈Vf
NfSφ(f) (16)

When defining cff ′ = Nf log p(f
′), for f, f ′ ∈

Vf , Equation 16 can be brought into the form of

φ̂ = argmax
φ

∑

f∈Vf
cfφ(f) (17)

Figure 1 shows an illustration of this problem.

A

B

C

a

b

c

Ve Vf

cij A B C
a NA log p(a) NB log p(a) NC log p(a)
b NA log p(b) NB log p(b) NC log p(b)
c NA log p(c) NB log p(c) NC log p(c)

Figure 1: Linear sum assignment problem for a
cipher with Ve = {a, b, c}, Vf = {A,B,C}, uni-
gram counts Nf , and unigram probabilities p(e).

4.2 The Linear Sum Assignment Problem

The practical problem behind the linear sum
assignment problem can be described as fol-
lows: Given jobs {j1, . . . , jn} and workers
{w1, . . . , wn}, the task is to assign each job ji to a
worker wj . Each assignment incurs a cost cij and
the total cost for assigning all jobs and workers is
to be minimized.

This can be formalized as finding the assign-
ment

φ̂ = argmin
φ

n∑

i=1

ciφ(i) (18)

The general LSAP can be solved in polynomial
time using the Hungarian algorithm (Kuhn, 1955).
However, since the matrix cij occurring for the de-
cipherment using a unigram language model can
be represented as the product cij = ai · bj the
decipherment problem can be solved more easily:
In the Section “Optimal Matching”, (Bauer, 2010)
shows that in this case the optimal assignment is
found by sorting the jobs ji by ai and workers wj
by bj and then assigning the jobs ji to workers wj
that have the same rank in the respective sorted
lists. Sorting and then assigning the elements can
be done in O(n log n).

5 Decipherment Using Bigram LMs

5.1 Problem Definition

When using a 2-gram language model, Equation 2
simplifies to

φ̂ = argmax
φ




N+1∏

j=1

p(φ(fj)|φ(fj−1))



 (19)
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x

y

l1
l2

l3
l4

Assignments
l1 l2 l3 l4

(a) f1 f2 f3 f4
(b) f1 f4 f3 f2

Flows
f1 f2 f3 f4

f1 1
f2 1
f3 1
f4 1

Figure 2: Hypothetical quadratic assignment prob-
lem with locations l1 . . . l4 and facilities f1 . . . f4
with all flows being zero except f1 ↔ f2 and
f3 ↔ f4. The distance between locations l1 . . . l4
is implicitly given by the locations in the plane,
implying a euclidean metric. Two example assign-
ments (a) and (b) are shown, with (b) having the
lower overall costs.

Using the definitions from Section 3, Equation 19
can be rewritten as

φ̂ = argmax
φ




∑

f∈Vf

∑

f ′∈Vf
Nff ′Sφ(f)φ(f ′)



 (20)

(Bauer, 2010) arrives at a similar optimization
problem for the “combined method of frequency
matching” using bigrams and mentions that it can
be seen as a combinatorial problem for which an
efficient way of solving is not known. However,
he does not mention the close connection to the
quadratic assignment problem.

5.2 The Quadratic Assignment Problem

The quadratic assignment problem was introduced
by (Beckmann and Koopmans, 1957) for the fol-
lowing real-life problem:

Given a set of facilities {f1, . . . , fn} and a set
of locations {l1, . . . , ln} with distances for each
pair of locations, and flows for each pair of facili-
ties (e.g. the amount of supplies to be transported
between a pair of facilities) the problem is to as-
sign the facilities to locations such that the sum
of the distances multiplied by the corresponding
flows (which can be interpreted as total transporta-
tion costs) is minimized. This is visualized in Fig-
ure 2.

Following (Beckmann and Koopmans, 1957)
we can express the quadratic assignment problem

as finding

φ̂ = argmin
φ





n∑

i=1

n∑

j=1

aijbφ(i)φ(j) +

n∑

i=1

ciφ(i)





(21)

where A = (aij), B = (bij), C = (cij) ∈ Nn×n
and φ a permutation

φ : {1, . . . , n} → {1, . . . , n}. (22)

This formulation is often referred to as Koopman-
Beckman QAP and often abbreviated as
QAP (A,B,C). The so-called pure or ho-
mogeneous QAP

φ̂ = argmin
φ





n∑

i=1

n∑

j=1

aijbφ(i)φ(j)



 (23)

is obtained by setting cij = 0, and is often denoted
as QAP (A,B).

In terms of the real-life problem presented in
(Beckmann and Koopmans, 1957) the matrix A
can be interpreted as distance matrix for loca-
tions {l1 . . . ln} and B as flow matrix for facilities
{f1 . . . fn}.

(Sahni and Gonzalez, 1976) show that the
quadratic assignment problem is strongly NP-
hard.

We will now show the relation between the
quadratic assignment problem and the decipher-
ment problem.

5.3 Decipherment Problem � Quadratic
Assignment Problem

Every decipherment problem is directly a
quadratic assignment problem, since the ma-
trices Nff ′ and Sff ′ are just special cases of
the general matrices A and B required for the
quadratic assignment problem. Thus a reduction
from the decipherment problem to the quadratic
assignment problem is trivial. This means that all
algorithms capable of solving QAPs can directly
be used to solve the decipherment problem.

5.4 Quadratic Assignment Problem �
Decipherment Problem

Given QAP (A,B) with integer matrices A =
(aij), B = (bij) i, j ∈ {1, . . . , n} we construct
the count matrix Nff ′ and language model ma-
trix Sff ′ in such a way that the solution for the
decipherment problem implies the solution to the
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quadratic assignment problem, and vice versa. We
will use the vocabularies V e = V f = {1, . . . , n+
3}, with n + 3 being the special sentence bound-
ary token “$”. The construction of Nff ′ and Sff ′
is shown in Figure 3.

To show the validity of our construction, we will

1. Show that Nff ′ is a valid count matrix.

2. Show that Sff ′ is a valid bigram language
model matrix.

3. Show that the decipherment problem and
the newly constructed quadratic assignment
problem are equivalent.

We start by showing that Nff ′ is a valid count
matrix:

(a) By construction, Nff ′ has integer counts that
are greater or equal to 0.

(b) By construction, Nff ′ at boundaries is:

• N$f = δ(f, 1)

• Nf$ = δ(f, n+ 2)

(c) Regarding the properties
∑
f ′
Nff ′ =

∑
f ′
Nf ′f :

• For all f ∈ {1, . . . , n} the count proper-
ties are equivalent to

ãf∗ +
∑

f ′
ãff ′ = ã∗f +

∑

f ′
ãf ′f + δ(f, 1)

(24)

which holds by construction of ã∗f and
ãf∗.
• For f = n+1 the count property is equiv-

alent to

1 +
∑

f ′
ãf ′∗ = 2 +

∑

f ′
ã∗f ′ (25)

which follows from Equation (24) by
summing over all f ∈ {1, . . . , n}.
• For f = n+2 and f = n+3, the condi-

tion is fulfilled by construction.

We now show that Sff ′ is a valid bigram lan-
guage model matrix:

(a) By construction, Sff ′ ∈ [−∞, 0] holds.

(b) By construction, S$$ = −∞ holds.

(c) By the construction of b̃f∗, the values Sff ′ ful-
fill
∑

f ′ exp(Sff ′) = 1 for all f . This works
since all entries b̃ff ′ are chosen to be smaller
than −log(n+ 2).

We now show the equivalence of the quadratic
assignment problem and the newly constructed de-
cipherment problem. For this we will use the defi-
nitions

Ã = {1, . . . , n} (26)

B̃ = {n+ 1, n+ 2, n+ 3} (27)

We first show that solutions of the constructed
decipherment problem with score > −∞ fulfill
φ(f) = f for f ∈ B̃.

All mappings φ, with φ(f) = f ′ for any f ∈
Ã and f ′ ∈ B̃ will induce a score of −∞ since
for f ∈ Ã all Nff > 0 and Sf ′f ′ = −∞ for
f ′ ∈ B̃. Thus any φ with score > −∞ will fulfill
φ(f) ∈ B̃ for f ∈ B̃. Further, by enumerating all
six possible permutations, it can be seen that only
the φ with φ(f) = f for f ∈ B̃ induces a score of
> −∞. Thus we can rewrite

n+3∑

f=1

n+3∑

f ′=1

Nff ′Sφ(f)φ(f ′) (28)

to
∑

f∈Ã

∑

f∈Ã
Nff ′Sφ(f)φ(f ′)

︸ ︷︷ ︸
(AA)

+
∑

f∈Ã

∑

f ′∈B̃
Nff ′Sφ(f)f ′

︸ ︷︷ ︸
(AB)

+

∑

f∈B̃

∑

f ′∈Ã
Nff ′Sfφ(f ′)

︸ ︷︷ ︸
(BA)

+
∑

f∈B̃

∑

f ′∈B̃
Nff ′Sff ′

︸ ︷︷ ︸
(BB)

Here

• (AB) is independent of φ since

∀f ∈ Ã, f ′ ∈ {n+ 1, n+ 3} : Sff ′ = S1f ′

(29)

and

∀f ∈ Ã : Nf,n+2 = 0 (30)

• (BA) is independent of φ since

∀f ′ ∈ Ã, f ∈ B̃ : Sff ′ = Sf1 (31)

• (BB) is independent of φ.
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Nff ′ =




ã11 ã12 · · · ã1n ã1∗ 0 0
ã21 ã22 · · · ã2n ã2∗ 0 0

...
...

. . .
...

...
...

...
ãn1 ãn2 · · · ãnn ãn∗ 0 0

ã∗1 ã∗2 · · · ã∗n 0 2 0
0 0 · · · 0 1 0 1

1 0 · · · 0 0 0 0




Sff ′ =




b̃11 b̃12 · · · b̃1n ε2 b̃1∗ ε2
b̃21 b̃22 · · · b̃2n ε2 b̃2∗ ε2

...
...

. . .
...

...
...

...
b̃n1 b̃n2 · · · b̃nn ε2 b̃n∗ ε2
ε1 ε1 · · · ε1 −∞ ε1 −∞
ε2 ε2 · · · ε2 ε2 −∞ ε2
ε0 ε0 · · · ε0 −∞ −∞ −∞




ãff ′ = aff ′ −min
f̃ f̃ ′
{af̃ f̃ ′}+ 1 b̃ff ′ = bff ′ −max

f̃ f̃ ′
{bf̃ f̃ ′} − log(n+ 2)

ãf∗ = max





n∑

f ′=1

af ′f − aff ′ , 0



+ δ(f, 1) b̃f∗ = log


1−

n∑

f ′=1

exp(b̃ff ′)−
2

n+ 2




ã∗f ′ = max





n∑

f=1

aff ′ − af ′f , 0



 εi = − log(n+ i)

Figure 3: Construction of matrices Nff ′ and Sff ′ of the decipherment problem from matrices A = (aij)
and B = (bij) of the quadratic assignment problem QAP (A,B).

Thus, with some constant c, we can finally rewrite
Equation 28 as

c+
n∑

f=1

n∑

f ′=1

Nff ′Sφ(f)φ(f ′) (32)

Inserting the definition of Nff ′ and Sff ′ (simpli-
fied using constants c′, and c′′) we obtain

c+
n∑

f=1

n∑

f ′=1

(aff ′ + c′)(bφ(f)φ(f ′) + c′′) (33)

which is equivalent to the original quadratic as-
signment problem

argmax





n∑

f=1

n∑

f ′=1

aff ′bφ(f)φ(f ′)



 (34)

Thus we have shown that a solution to the
quadratic assignment problem in Equation 34 is
a solution to the decipherment problem in Equa-
tion 20 and vice versa. Assuming that calculat-
ing elementary functions can be done inO(1), set-
ting up Nff ′ and Sff ′ can be done in polynomial
time.2 Thus we have given a polynomial time re-
duction from the quadratic assignment problem to

2This is the case if we only require a fixed number of dig-
its precision for the log and exp operations.

the decipherment problem: Since the quadratic as-
signment problem is NP-hard, it follows that the
decipherment problem is NP-hard, too.

5.5 Traveling Salesman Problem �
Decipherment Problem

Using the above construction we can immediately
construct a decipherment problem that is equiva-
lent to the traveling salesman problem by using
the quadratic assignment problem formulation of
the traveling salesman problem.

Without loss of generality3 we assume that the
TSP’s distance matrix fulfills the constraints of a
bigram language model matrix Sff ′ . Then the
count matrix Nff ′ needs to be chosen as

Nff ′ =




0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0




(35)

which fulfills the constraints of a bigram count
matrix.

3The general case can be covered using the reduction
shown in Section 5.
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This matrix corresponds to a ciphertext of the
form

$abcd$ (36)

and represents the tour of the traveling salesman in
an intuitive way. The mapping φ then only decides
in which order the cities are visited, and only costs
between two successive cities are counted.

This shows that the TSP is only a special case
of the decipherment problem.

6 Conclusion

We have shown the correspondence between solv-
ing 1:1 substitution ciphers and the linear sum as-
signment problem and the quadratic assignment
problem: When using unigram language models,
the decipherment problem is equivalent to the lin-
ear sum assignment problem and solvable in poly-
nomial time. For a bigram language model, the de-
cipherment problem is equivalent to the quadratic
assignment problem and is NP-hard.

We also pointed out that all available algorithms
for the quadratic assignment problem can be di-
rectly used to solve the decipherment problem.

To the best of our knowledge, this correspon-
dence between the decipherment problem and the
quadratic assignment problem has not been known
previous to our work.
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Abstract
This paper studies the problem of non-
monotonic sentence alignment, motivated
by the observation that coupled sentences
in real bitexts do not necessarily occur
monotonically, and proposes a semisuper-
vised learning approach based on two as-
sumptions: (1) sentences with high affinity
in one language tend to have their counter-
parts with similar relatedness in the other;
and (2) initial alignment is readily avail-
able with existing alignment techniques.
They are incorporated as two constraints
into a semisupervised learning framework
for optimization to produce a globally op-
timal solution. The evaluation with real-
world legal data from a comprehensive
legislation corpus shows that while exist-
ing alignment algorithms suffer severely
from non-monotonicity, this approach can
work effectively on both monotonic and
non-monotonic data.

1 Introduction

Bilingual sentence alignment is a fundamental
task to undertake for the purpose of facilitating
many important natural language processing ap-
plications such as statistical machine translation
(Brown et al., 1993), bilingual lexicography (Kla-
vans et al., 1990), and cross-language informa-
tion retrieval (Nie et al., 1999). Its objective is to
identify correspondences between bilingual sen-
tences in given bitexts. As summarized by Wu
(2010), existing sentence alignment techniques
rely mainly on sentence length and bilingual lex-
ical resource. Approaches based on the former
perform effectively on cognate languages but not
on the others. For instance, the statistical cor-
relation of sentence length between English and
Chinese is not as high as that between two Indo-
European languages (Wu, 1994). Lexicon-based

approaches resort to word correspondences in a
bilingual lexicon to match bilingual sentences. A
few sentence alignment methods and tools have
also been explored to combine the two. Moore
(2002) proposes a multi-pass search procedure us-
ing both sentence length and an automatically-
derived bilingual lexicon. Hunalign (Varga et al.,
2005) is another sentence aligner that combines
sentence length and a lexicon. Without a lexicon,
it backs off to a length-based algorithm and then
automatically derives a lexicon from the align-
ment result. Soon after, Ma (2006) develops the
lexicon-based aligner Champollion, assuming that
different words have different importance in align-
ing two sentences.

Nevertheless, most existing approaches to sen-
tence alignment follow the monotonicity assump-
tion that coupled sentences in bitexts appear in
a similar sequential order in two languages and
crossings are not entertained in general (Langlais
et al., 1998; Wu, 2010). Consequently the task of
sentence alignment becomes handily solvable by
means of such basic techniques as dynamic pro-
gramming. In many scenarios, however, this pre-
requisite monotonicity cannot be guaranteed. For
example, bilingual clauses in legal bitexts are of-
ten coordinated in a way not to keep the same
clause order, demanding fully or partially crossing
pairings. Figure 1 shows a real excerpt from a leg-
islation corpus. Such monotonicity seriously im-
pairs the existing alignment approaches founded
on the monotonicity assumption.

This paper is intended to explore the problem of
non-monotonic alignment within the framework
of semisupervised learning. Our approach is mo-
tivated by the above observation and based on
the following two assumptions. First, monolin-
gual sentences with high affinity are likely to have
their translations with similar relatedness. Follow-
ing this assumption, we propose the conception
of monolingual consistency which, to the best of
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British Overseas citizen" ( ) means a person who has the

status of a British Overseas citizen under the British Nationality Act

1981 (1981 c. 61 U.K.)

British protected person" ( ) means a person who has

the status of a British protected person under the British Nationality Act

1981 (1981 c. 61 U.K.)

...

1. Interpretation of words and expressions

British citizen" ( ) means a person who has the status of a

British citizen under the British Nationality Act 1981 (1981 c. 61 U.K.)

British Dependent Territories citizen" ( ) means a person

who has or had the status of a British Dependent Territories citizen

under the British Nationality Act 1981 (1981 c. 61 U.K.)

British enactment" and "imperial enactment" ( ) Mean-

(a) any Act of Parliament; (b) any Order in Council; and (c) any rule,

regulation, proclamation, order, notice, rule of court, by-law or other

instrument made under or by virtue of any such Act or Order in Council

(British Overseas citizen) 1981

(1981 c. 61 U.K.)

(British Dependent Territories citizen) 1981

(1981 c. 61 U.K.)

1.

(British citizen) 1981 (1981

c. 61 U.K.)

(British enactment, imperial enactment) (a)

(b) (c)

...

"

"

"

"

"

Figure 1: A real example of non-monotonic sentence alignment from BLIS corpus.

our knowledge, has not been taken into account in
any previous work of alignment. Second, initial
alignment of certain quality can be obtained by
means of existing alignment techniques. Our ap-
proach attempts to incorporate both monolingual
consistency of sentences and bilingual consistency
of initial alignment into a semisupervised learning
framework to produce an optimal solution. Ex-
tensive evaluations are performed using real-world
legislation bitexts from BLIS, a comprehensive
legislation database maintained by the Depart-
ment of Justice, HKSAR. Our experimental results
show that the proposed method can work effec-
tively while two representatives of existing align-
ers suffer severely from the non-monotonicity.

2 Methodology

2.1 The Problem
An alignment algorithm accepts as input a bi-
text consisting of a set of source-language sen-
tences, S = {s1, s2, . . . , sm}, and a set of target-
language sentences, T = {t1, t2, . . . , tn}. Dif-
ferent from previous works relying on the mono-
tonicity assumption, our algorithm is generalized
to allow the pairings of sentences in S and T
to cross arbitrarily. Figure 2(a) illustrates mono-
tonic alignment with no crossing correspondences
in a bipartite graph and 2(b) non-monotonic align-
ment with scrambled pairings. Note that it is rela-
tively straightforward to identify the type of many-
to-many alignment in monotonic alignment using
techniques such as dynamic programming if there
is no scrambled pairing or the scrambled pairings
are local, limited to a short distance. However,
the situation of non-monotonic alignment is much

more complicated. Sentences to be merged into a
bundle for matching against another bundle in the
other language may occur consecutively or discon-
tinuously. For the sake of simplicity, we will not
consider non-monotonic alignment with many-to-
many pairings but rather assume that each sen-
tence may align to only one or zero sentence in
the other language.

Let F represent the correspondence relation be-
tween S and T , and therefore F ⊂ S × T . Let
matrix F denote a specific alignment solution of
F , where Fij is a real score to measure the likeli-
hood of matching the i-th sentence si in S against
the j-th sentence tj in T . We then define an align-
ment function A : F → A to produce the final
alignment, where A is the alignment matrix for S
and T , with Aij = 1 for a correspondence be-
tween si and tj and Aij = 0 otherwise.

2.2 Semisupervised Learning

A semisupervised learning framework is intro-
duced to incorporate the monolingual and bilin-
gual consistency into alignment scoring

Q(F ) = Qm(F ) + λQb(F ), (1)

where Qm(F ) is the term for monolingual con-
straint to control the consistency of sentences with
high affinities, Qb(F ) for the constraint of initial
alignment obtained with existing techniques, and
λ is the weight between them. Then, the optimal
alignment solution is to be derived by minimizing
the cost function Q(F ), i.e.,

F ∗ = argmin
F

Q(F ). (2)
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s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

(a)

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

(b)

Figure 2: Illustration of monotonic (a) and non-monotonic alignment (b), with a line representing the
correspondence of two bilingual sentences.

In this paper, Qm(F ) is defined as

1

4

m∑

i,j=1

Wij

n∑

k,l=1

Vkl

(
Fik√
DiiEkk

− Fjl√
DjjEll

)2

, (3)

whereW and V are the symmetric matrices to rep-
resent the monolingual sentence affinity matrices
in S and T , respectively, and D and E are the di-
agonal matrices with entries Dii =

∑
jWij and

Eii =
∑

j Vij . The idea behind (3) is that to min-
imize the cost function, the translations of those
monolingual sentences with close relatedness re-
flected inW and V should also keep similar close-
ness. The bilingual constraint term Qb(F ) is de-
fined as

Qb(F ) =
m∑

i=1

n∑

j=1

(
Fij − Âij

)2
, (4)

where Â is the initial alignment matrix obtained
by A : F̂ → Â. Note that F̂ is the initial relation
matrix between S and T .

The monolingual constraint term Qm(F ) de-
fined above corresponds to the smoothness con-
straint in the previous semisupervised learning
work by Zhou et al. (2004) that assigns higher
likelihood to objects with larger similarity to share
the same label. On the other hand, Qb(F ) corre-
sponds to their fitting constraint, which requires
the final alignment to maintain the maximum con-
sistency with the initial alignment.

Taking the derivative of Q(F ) with respect to
F , we have

∂Q(F )
∂F

= 2F − 2SFT + 2λF − 2λÂ, (5)

where S and T are the normalized matrices of W
and V , calculated by S = D−1/2WD−1/2 and

T = E−1/2V E−1/2. Then, the optimal F ∗ is to
be found by solving the equation

(1 + λ)F ∗ − SF ∗T = λÂ, (6)

which is equivalent to αF ∗ − F ∗β = γ with
α = (1 + λ)S−1, β = T and γ = λS−1Â.
This is in fact a Sylvester equation (Barlow et al.,
1992), whose numerical solution can be found by
many classical algorithms. In this research, it is
solved using LAPACK,1 a software library for nu-
merical linear algebra. Non-positive entries in F ∗

indicate unrealistic correspondences of sentences
and are thus set to zero before applying the align-
ment function.

2.3 Alignment Function

Once the optimal F ∗ is acquired, the remaining
task is to design an alignment function A to con-
vert it into an alignment solution. An intuitive ap-
proach is to use a heuristic search for local op-
timization (Kit et al., 2004), which produces an
alignment with respect to the largest scores in
each row and each column. However, this does not
guarantee a globally optimal solution. Figure 3 il-
lustrates a mapping relation matrix onto an align-
ment matrix, which also shows that the optimal
alignment cannot be achieved by heuristic search.

Banding is another approach frequently used to
convert a relation matrix to alignment (Kay and
Röscheisen, 1993). It is founded on the observa-
tion that true monotonic alignment paths usually
lie close to the diagonal of a relation matrix. How-
ever, it is not applicable to our task due to the non-
monotonicity involved. We opt for converting a
relation matrix into specific alignment by solving

1http://www.netlib.org/lapack/
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00.4 0 0.5 0 00
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00 0 0 0 00

0.40 0 0 0.2 00

0.50 0 0 0 00.6

00.1 0 0 0 00.8

2
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1
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01 0 0 0 00

00 0 1 0 00

00 0 0 0 00

00 0 0 1 00

10 0 0 0 00

00 0 0 0 01

Figure 3: Illustration of sentence alignment from relation matrix to alignment matrix. The scores marked
with arrows are the best in each row/column to be used by the heuristic search. The right matrix repre-
sents the corresponding alignment matrix by our algorithm.

the following optimization

A =argmax
X

m∑

i=1

n∑

j=1

XijFij (7)

s.t.
m∑

i=1

Xij ≤ 1,
n∑

j=1

Xij ≤ 1, Xij ∈ {0, 1}

This turns sentence alignment into a problem to
be resolved by binary linear programming (BIP),
which has been successfully applied to word align-
ment (Taskar et al., 2005). Given a scoring matrix,
it guarantees an optimal solution.

2.4 Alignment Initialization
Once the above alignment function is available,
the initial alignment matrix Â can be derived from
an initial relation matrix F̂ obtained by an avail-
able alignment method. This work resorts to an-
other approach to initializing the relation matrix.
In many genres of bitexts, such as government
transcripts or legal documents, there are a certain
number of common strings on the two sides of bi-
texts. In legal documents, for example, transla-
tions of many key terms are usually accompanied
with their source terms. Also, common number-
ings can be found in enumerated lists in bitexts.
These kinds of anchor strings provide quite reli-
able information to link bilingual sentences into
pairs, and thus can serve as useful cues for sen-
tence alignment. In fact, they can be treated as a
special type of highly reliable “bilexicon”.

The anchor strings used in this work are derived
by searching the bitexts using word-level inverted
indexing, a basic technique widely used in infor-
mation retrieval (Baeza-Yates and Ribeiro-Neto,
2011). For each index term, a list of postings is

created. Each posting includes a sentence identi-
fier, the in-sentence frequency and positions of this
term. The positions of terms are intersected to find
common anchor strings. The anchor strings, once
found, are used to calculate the initial affinity F̂ij
of two sentences using Dice’s coefficient

F̂ij =
2|C1i ∩ C2j |
|C1i|+ |C2j |

(8)

where C1i and C2j are the anchor sets in si and tj ,
respectively, and | · | is the cardinality of a set.

Apart from using anchor strings, other avenues
for the initialization are studied in the evaluation
section below, i.e., using another aligner and an
existing lexicon.

2.5 Monolingual Affinity
Although various kinds of information from a
monolingual corpus have been exploited to boost
statistical machine translation models (Liu et al.,
2010; Su et al., 2012), we have not yet been
exposed to any attempt to leverage monolingual
sentence affinity for sentence alignment. In our
framework, an attempt to this can be made through
the computation of W and V . Let us take W as an
example, where the entry Wij represents the affin-
ity of sentence si and sentence sj , and it is set to
0 for i = j in order to avoid self-reinforcement
during optimization (Zhou et al., 2004).

When two sentences in S or T are not too short,
or their content is not divergent in meaning, their
semantic similarity can be estimated in terms of
common words. Motivated by this, we define Wij

(for i 6= j) based on the Gaussian kernel as

Wij = exp

(
− 1

2σ2

(
1− vTi vj
‖vi‖ ‖vj‖

)2
)

(9)
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where σ is the standard deviation parameter, vi
and vj are vectors of si and sj with each com-
ponent corresponding to the tf-idf value of a par-
ticular term in S (or T ), and ‖·‖ is the norm of
a vector. The underlying assumption here is that
words appearing frequently in a small number of
sentences but rarely in the others are more signifi-
cant in measuring sentence affinity.

Although semantic similarity estimation is a
straightforward approach to deriving the two affin-
ity matrices, other approaches are also feasible. An
alternative approach can be based on sentence
length under the assumption that two sentences
with close lengths in one language tend to have
their translations also with close lengths.

2.6 Discussion

The proposed semisupervised framework for non-
monotonic alignment is in fact generalized be-
yond, and can also be applied to, monotonic align-
ment. Towards this, we need to make use of sen-
tence sequence information. One way to do it is
to incorporate sentence positions into Equation (1)
by introducing a position constraint Qp(F ) to en-
force that bilingual sentences in closer positions
should have a higher chance to match one another.
For example, the new constraint can be defined as

Qp(F ) =
m∑

i=1

n∑

j=1

|pi − qj |F 2
ij ,

where pi and qj are the absolute (or relative) posi-
tions of two bilingual sentences in their respective
sequences. Another way follows the banding as-
sumption that the actual couplings only appear in
a narrow band along the main diagonal of relation
matrix. Accordingly, all entries of F ∗ outside this
band are set to zero before the alignment function
is applied. Kay and Röscheisen (1993) illustrate
that this can be done by modeling the maximum
deviation of true couplings from the diagonal as
O(
√
n).

3 Evaluation

3.1 Data Set

Our data set is acquired from the Bilingual
Laws Information System (BLIS),2 an electronic
database of Hong Kong legislation maintained
by the Department of Justice, HKSAR. BLIS

2http://www.legislation.gov.hk

provides Chinese-English bilingual texts of ordi-
nances and subsidiary legislation in effect on or af-
ter 30 June 1997. It organizes the legal texts into a
hierarchy of chapters, sections, subsections, para-
graphs and subparagraphs, and displays the con-
tent of a such hierarchical construct (usually a sec-
tion) on a single web page.

By web crawling, we have collected in total
31,516 English and 31,405 Chinese web pages,
forming a bilingual corpus of 31,401 bitexts after
filtering out null pages. A text contains several to
two hundred sentences. Many bitexts exhibit par-
tially non-monotonic order of sentences. Among
them, 175 bitexts are randomly selected for man-
ual alignment. Sentences are identified based on
punctuations. OpenNLP Tokenizer3 is applied to
segment English sentences into tokens. For Chi-
nese, since there is no reliable segmenter for this
genre of text, we have to treat each Chinese char-
acter as a single token. In addition, to calculate the
monolingual sentence affinity, stemming of En-
glish words is performed with the Porter Stemmer
(Porter, 1980) after anchor string mining.

The manual alignment of the evaluation data set
is performed upon the initial alignment by Hu-
nalign (Varga et al., 2005), an effective sentence
aligner that uses both sentence length and a bilex-
icon (if available). For this work, Hunalign re-
lies solely on sentence length. Its output is then
double-checked and corrected by two experts in
bilingual studies, resulting in a data set of 1747
1-1 and 70 1-0 or 0-1 sentence pairs.

The standard deviation σ in (9) is an important
parameter for the Gaussian kernel that has to be
determined empirically (Zhu et al., 2003; Zhou et
al., 2004). In addition, theQ function also involves
another parameter λ to adjust the weight of the
bilingual constraint. This work seeks an approach
to deriving the optimal parameters without any ex-
ternal training data beyond the initial alignment. A
three-fold cross-validation is thus performed on
the initial 1-1 alignment and the parameters that
give the best average performance are chosen.

3.2 Monolingual Consistency

To demonstrate the validity of the monolingual
consistency, the semantic similarity defined by
vTi vj
‖vi‖‖vj‖ is evaluated as follows. 500 pairs of En-
glish sentences with the highest similarities are se-
lected, excluding null pairings (1-0 or 0-1 type).

3http://opennlp.apache.org/
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Figure 4: Demonstration of monolingual consis-
tency. The horizontal axis is the similarity of En-
glish sentence pairs and the vertical is the similar-
ity of the corresponding pairs in Chinese.

Type Total
initAlign NonmoAlign

Pred Corr Pred Corr

1-0 70 662 66 70 50
1-1 1747 1451 1354 1747 1533

Table 1: Performance of the initial alignment and
our aligner, where the Pred and Corr columns are
the numbers of predicted and correct pairings.

All of these high-affinity pairs have a similarity
score higher than 0.72. A number of duplicate
sentences (e.g., date) with exceptionally high sim-
ilarity 1.0 are dropped. Also, the similarity of the
corresponding translations of each selected pair
is calculated. These two sets of similarity scores
are then plotted in a scatter plot, as in Figure 4.
If the monolingual consistency assumption holds,
the plotted points would appear nearby the diag-
onal. Figure 4 confirms this, indicating that sen-
tence pairs with high affinity in one language do
have their counterparts with similarly high affinity
in the other language.

3.3 Impact of Initial Alignment

The 1-1 initial alignment plays the role of labeled
instances for the semisupervised learning. It is
of critical importance to the learning performance.
As shown in Table 1, our alignment function pre-
dicts 1451 1-1 pairings by virtue of anchor strings,
among which 1354 pairings are correct, yielding
a relatively high precision in the non-monotonic
circumstance. It also predicts null alignment for
many sentences that contain no anchor. This ex-
plains why it outputs 662 1-0 pairings when there
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Figure 5: Performance of non-monotonic align-
ment along the percentage of initial 1-1 alignment.

are only 70 1-0 true ones. Starting from this initial
alignment, our aligner (let us call it NonmoAlign)
discovers 179 more 1-1 pairings.

A question here is concerned with how the scale
of initial alignment affects the final alignment. To
examine this, we randomly select 20%, 40%, 60%
and 80% of the 1451 1-1 detected pairings as the
initial alignments for a series of experiments. The
random selection for each proportion is performed
ten times and their average alignment performance
is taken as the final result and plotted in Figure 5.
An observation from this figure is that the aligner
consistently discovers significantly more 1-1 pair-
ings on top of an initial 1-1 alignment, which has
to be accounted for by the monolingual consis-
tency. Another observation is that the alignment
performance goes up along the increase of the
percentage of initial alignment while performance
gain slows down gradually. When the percentage
is very low, the aligner still works quite effectively.

3.4 Non-Monotonic Alignment

To test our aligner with non-monotonic sequences
of sentences, we have them randomly scrambled
in our experimental data. This undoubtedly in-
creases the difficulty of sentence alignment, espe-
cially for the traditional approaches critically rely-
ing on monotonicity.

The baseline methods used for comparison are
Moore’s aligner (Moore, 2002) and Hunalign
(Varga et al., 2005). Hunalign is configured with
the option [-realign], which triggers a three-step
procedure: after an initial alignment, Hunalign
heuristically enriches its dictionary using word co-
occurrences in identified sentence pairs; then, it
re-runs the alignment process using the updated
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Type
Moore Hunalign NonmoAlign

P R F1 P R F1 P R F1

1-1 0.104 0.104 0.104 0.407 0.229 0.293 0.878 0.878 0.878
1-0 0.288 0.243 0.264 0.033 0.671 0.062 0.714 0.714 0.714

Micro 0.110 0.110 0.110 0.184 0.246 0.210 0.871 0.871 0.871

Table 2: Performance comparison with the baseline methods.

dictionary. According to Varga et al (2005), this
setting gives a higher alignment quality than oth-
erwise. In addition, Hunalign can use an external
bilexicon. For a fair comparison, the identified an-
chor set is fed to Hunalign as a special bilexicon.
The performance of alignment is measured by pre-
cision (P), recall (R) and F-measure (F1). Micro-
averaged performance scores of precision, recall
and F-measure are also computed to measure the
overall performance on 1-1 and 1-0 alignment.
The final results are presented in Table 2, show-
ing that both Moore’s aligner and Hunalign under-
perform ours on non-monotonic alignment. The
particularly poor performance of Moore’s aligner
has to be accounted for by its requirement of more
than thousands of sentences in bitext input for re-
liable estimation of its parameters. Unfortunately,
our available data has not reached that scale yet.

3.5 Partially Non-Monotonic Alignment

Full non-monotonic bitexts are rare in practice.
But partial non-monotonic ones are not. Unlike
traditional alignment approaches, ours does not
found its performance on the degree of monotonic-
ity. To test this, we construct five new versions of
the data set for a series of experiments by ran-
domly choosing and scrambling 0%, 10%, 20%,
40%, 60% and 80% sentence parings. In the-
ory, partial non-monotonicity of various degrees
should have no impact on the performance of our
aligner. It is thus not surprised that it achieves
the same result as reported in last subsection.
NonmoAlign initialized with Hunalign (marked
as NonmoAlign Hun) is also tested. The experi-
mental results are presented in Figure 6. It shows
that both Moore’s aligner and Hunalign work rel-
atively well on bitexts with a low degree of non-
monotonicity, but their performance drops dra-
matically when the non-monotonicity is increased.
Despite the improvement at low non-monotonicity
by seeding our aligner with Hunalign, its per-
formance decreases likewise when the degree of
non-monotonicity increases, due to the quality de-
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Figure 6: Performance of alignment approaches at
different degrees of non-monotonicity.

crease of the initial alignment by Hunalign.

3.6 Monotonic Alignment

The proposed alignment approach is also expected
to work well on monotonic sentence alignment.
An evaluation is conducted for this using a mono-
tonic data set constructed from our data set by
discarding all its 126 crossed pairings. Of the
two strategies discussed above, banding is used
to help our aligner incorporate the sequence in-
formation. The initial relation matrix is built with
the aid of a dictionary automatically derived by
Hunalign. Entries of the matrix are derived by
employing a similar strategy as in Varga et al.
(2005). The evaluation results are presented in Ta-
ble 3, which shows that NonmoAlign still achieves
very competitive performance on monotonic sen-
tence alignment.

4 Related Work

The research of sentence alignment originates in
the early 1990s. Gale and Church (1991) and
Brown (1991) report the early works using length
statistics of bilingual sentences. The general idea
is that the closer two sentences are in length, the
more likely they are to align. A notable difference
of their methods is that the former uses sentence
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Type
Moore Hunalign NonmoAlign

P R F1 P R F1 P R F1

1-1 0.827 0.828 0.827 0.999 0.972 0.986 0.987 0.987 0.987
1-0 0.359 0.329 0.343 0.330 0.457 0.383 0.729 0.729 0.729

Micro 0.809 0.807 0.808 0.961 0.951 0.956 0.976 0.976 0.976

Table 3: Performance of monotonic alignment in comparison with the baseline methods.

length in number of characters while the latter in
number of tokens. Both use dynamic program-
ming to search for the best alignment. As shown in
Chen (1993) and Wu (1994), however, sentence-
length based methods suffer when the texts to be
aligned contain small passages, or the languages
involved share few cognates. The subsequent stage
of sentence alignment research is accompanied by
the advent of a handful of well-designed alignment
tools. Moore (2002) proposes a three-pass proce-
dure to find final alignment. Its bitext input is ini-
tially aligned based on sentence length. This step
generates a set of strictly-selected sentence pairs
for use to train an IBM translation model 1 (Brown
et al., 1993). Its final step realigns the bitext using
both sentence length and the discovered word cor-
respondences. Hunalign (Varga et al., 2005), orig-
inally proposed as an ingredient for building paral-
lel corpora, has demonstrated an outstanding per-
formance on sentence alignment. Like many other
aligners, it employs a similar strategy of combin-
ing sentence length and lexical data. In the ab-
sence of a lexicon, it first performs an initial align-
ment wholly relying on sentence length and then
automatically builds a lexicon based on this align-
ment. Using an available lexicon, it produces a
rough translation of the source text by converting
each token to the one of its possible counterparts
that has the highest frequency in the target corpus.
Then, the relation matrix of a bitext is built of sim-
ilarity scores for the rough translation and the ac-
tual translation at sentence level. The similarity of
two sentences is calculated in terms of their com-
mon pairs and length ratio.

To deal with noisy input, Ma (2006) proposes
a lexicon-based sentence aligner - Champollion.
Its distinctive feature is that it assigns different
weights to words in terms of their tf-idf scores,
assuming that words with low sentence frequen-
cies in a text but high occurrences in some local
sentences are more indicative of alignment. Un-
der this assumption, the similarity of any two sen-
tences is calculated accordingly and then a dy-

namic programming algorithm is applied to pro-
duce final alignment. Following this work, Li et
al. (2010) propose a revised version of Champol-
lion, attempting to improve its speed without per-
formance loss. For this purpose, the input bitexts
are first divided into smaller aligned fragments be-
fore applying Champollion to derive finer-grained
sentence pairs. In another related work by Deng et
al. (2007), a generative model is proposed, accom-
panied by two specific alignment strategies, i.e.,
dynamic programming and divisive clustering. Al-
though a non-monotonic search process that toler-
ates two successive chunks in reverse order is in-
volved, their work is essentially targeted at mono-
tonic alignment.

5 Conclusion

In this paper we have proposed and tested
a semisupervised learning approach to non-
monotonic sentence alignment by incorporating
both monolingual and bilingual consistency. The
utility of monolingual consistency in maintain-
ing the consonance of high-affinity monolingual
sentences with their translations has been demon-
strated. This work also exhibits that bilingual con-
sistency of initial alignment of certain quality is
useful to boost alignment performance. Our eval-
uation using real-world data from a legislation
corpus shows that the proposed approach outper-
forms the baseline methods significantly when the
bitext input is composed of non-monotonic sen-
tences. Working on partially non-monotonic data,
this approach also demonstrates a superior per-
formance. Although initially proposed for non-
monotonic alignment, it works well on monotonic
alignment by incorporating the constraint of sen-
tence sequence.
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translation alignment. Computational Linguistics,
19(1):121-142.

Chunyu Kit, Jonathan J. Webster, King Kui Sin, Haihua
Pan, and Heng Li. 2004. Clause alignment for bilin-
gual HK legal texts: A lexical-based approach. In-
ternational Journal of Corpus Linguistics, 9(1):29-
51.

Chunyu Kit, Xiaoyue Liu, King Kui Sin, and Jonathan
J. Webster. 2005. Harvesting the bitexts of the laws
of Hong Kong from the Web. In The 5th Workshop
on Asian Language Resources, pages 71-78.

Judith L. Klavans and Evelyne Tzoukermann. 1990.
The bicord system: Combining lexical information
from bilingual corpora and machine readable dictio-
naries. In Proceedings of COLING’90, pages 174-
179.

Philippe Langlais, Michel Simard, and Jean Véronis.
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Abstract

This paper studies the problem of mining
named entity translations from compara-
ble corpora with some “asymmetry”. Un-
like the previous approaches relying on the
“symmetry” found in parallel corpora, the
proposed method is tolerant to asymme-
try often found in comparable corpora, by
distinguishing different semantics of rela-
tions of entity pairs to selectively prop-
agate seed entity translations on weakly
comparable corpora. Our experimental
results on English-Chinese corpora show
that our selective propagation approach
outperforms the previous approaches in
named entity translation in terms of the
mean reciprocal rank by up to 0.16 for or-
ganization names, and 0.14 in a low com-
parability case.

1 Introduction

Identifying and understanding entities is a cru-
cial step in understanding text. This task is
more challenging in the presence of multilingual
text, because translating named entities (NEs),
such as persons, locations, or organizations, is
a non-trivial task. Early research on NE trans-
lation used phonetic similarities, for example,
to mine the translation ‘Mandelson’→‘曼德尔
森’[ManDeErSen] with similar sounds. However,
not all NE translations are based on translitera-
tions, as shown in Table 1—Some translations,
especially the names of most organizations, are
based on semantic equivalences. Furthermore,
names can be abbreviated in one or both lan-
guages, e.g., the ‘World Trade Organization’ (世
界贸易组织) can be called the ‘WTO’ (世贸组
织). Another challenging example is that, a trans-
lation can be arbitrary, e.g., ‘Jackie Chan’ → ‘成
龙’ [ChengLong]. There are many approaches

English Chinese
World Trade
Organization

世界贸易组织
[ShiJieMaoYiZuZhi]

WTO 世贸组织 [ShiMaoZuZhi]
Jackie Chan 成龙 [ChengLong]

Table 1: Examples of non-phonetic translations.

that deal with some of these challenges (Lam et
al., 2007; Yang et al., 2009), e.g., by combin-
ing phonetic similarity and a dictionary. How-
ever, arbitrary translations still cannot be handled
by examining the NE pair itself. Corpus-based ap-
proaches (Kupiec, 1993; Feng, 2004), by mining
external signals from a large corpus, such as par-
enthetical translation “成龙 (Jackie Chan)”, com-
plement the problem of transliteration-based ap-
proaches, but the coverage of this approach is lim-
ited to popular entities with such evidence.

The most effective known approach to NE
translation has been a holistic framework (You et
al., 2010; Kim et al., 2011; You et al., 2012) com-
bining transliteration- and corpus-based methods.
In these approaches, both 1) arbitrary translations
and 2) lesser-known entities can be handled, by
propagating the translation scores of known enti-
ties to lesser-known entities if they co-occur fre-
quently in both corpora. For example, a lesser-
known entity Tom Watson can be translated if
Mandelson and Tom Watson co-occur frequently
in an English corpus, and their Chinese transla-
tions also co-occur frequently in a Chinese corpus,
i.e., if the co-occurrences in the two corpora are
“symmetric”.

A research question we ask in this paper is:
What if comparable corpora are not comparable
enough to support this symmetry assumption? We
found that this is indeed the case. For exam-
ple, even English and Chinese news from the
same publisher may have different focus– the Chi-
nese version focuses more on Chinese Olympic
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teams and Chinese local news. In the presence of
such asymmetry, all previous approaches, building
upon symmetry, quickly deteriorate by propagat-
ing false positives. For example, co-occurrence of
Mandelson and Tom Watson may not appear in a
Chinese corpus, which may lead to the translation
of Tom Watson into another Chinese entity Gor-
don Brown which happens to co-occur with the
Chinese translation of Mandelson.

Our key contribution is to avoid such false
propagation, by discerning the semantics of rela-
tions. For example, relations between Mandelson
and Tom Watson, should be semantically differ-
ent from Chinese relations between ‘戈登·布朗’
(Gordon Brown) and ‘曼德尔森’ (Mandelson). A
naive approach would be finding documents with
a similar topic such as politics, and scientific dis-
covery, and allowing propagation only when the
topic agrees. However, we found that a topic is a
unit that is too coarse for this task because most
articles on Mandelson will invariably fall into the
same topic1. In clear contrast, we selectively prop-
agate seed translations, only when the relations in
the two corpora share the same semantics.

This selective propagation can be especially ef-
fective for translating challenging types of enti-
ties such as organizations including the WTO used
with and without abbreviation in both languages.
Applying a holistic approach (You et al., 2012)
on organizations leads to poor results, 0.06 in
terms of the F1-score. A naive approach to in-
crease the precision would be to consider multi-
type co-occurrences, hoping that highly precise
translations of some type, e.g., persons with an
F1-score of 0.69 (You et al., 2012), can be prop-
agated to boost the precision on organizations.
In our experiments, this naive multi-type prop-
agation still leads to an unsatisfactory F1-score
of 0.12. Such a low score can be explained by
the following example. When translating ‘WTO’
using the co-occurrence with ‘Mandelson’, other
co-occurrences such as (London, Mandelson) and
(EU, Mandelson) produce a lot of noise because
the right translation of WTO does not share much
phonetic/semantic similarity. Our understanding
of relation semantics, can distinguish “Mandelson
was born in London” from “Mandelson visited the
WTO”, to stop false propagations, which gener-
ates an F1-score 0.25 higher than the existing ap-

1The MRR for organization names achieved by a topic
model-based approach was 0.15 lower than our best.

proaches.

More formally, we enable selective propagation
of seed translations on weakly comparable cor-
pora, by 1) clarifying the detailed meaning of rela-
tional information of co-occurring entities, and 2)
identifying the contexts of the relational informa-
tion using statement-level context comparison. In
other words, we propagate the translation score of
a known translation pair to a neighbor pair if the
semantics of their relations in English and Chinese
corpora are equivalent to accurately propagate the
scores. For example, if we know ‘Russia’→‘俄罗
斯’(1) and join→加入(2), then from a pair of state-
ments “Russia(1) joins(2) the WTO(3)” and “俄罗斯(1)

加入(2) 世贸组织(3)”, we can propagate the trans-
lation score of (Russia, 俄罗斯)(1) to (WTO, 世
贸组织)(3). However, we do not exploit a pair of
statements “Russia joined the WTO” and “俄罗斯
谴责(2’) 摩洛哥” because 谴责(2’) does not mean
join(2). Furthermore, we mine a similar English-
Chinese document pair that can be found by com-
paring the entity relationships, such as “Mandel-
son visited Moscow” and “Mandelson met Alexei
Kudrin”, within the English document and the
Chinese document to leverage similar contexts to
assure that we use symmetric parts.

For this goal, we first extract relations among
entities in documents, such as visit and join, and
mine semantically equivalent relations across the
languages, e.g., English and Chinese, such as
join→加入. Once these relation translations are
mined, similar document pairs can be identified
by comparing each constituent relationship among
entities using their relations. Knowing document
similarity improves NE translation, and improved
NE translation can boost the accuracy of document
and relationship similarity. This iterative process
can continue until convergence.

To the best of our knowledge, our approach is
the first to translate a broad range of multilin-
gual relations and exploit them to enhance NE
translation. In particular, our approach leverages
semantically similar document pairs to exclude
incomparable parts that appear in one language
only. Our method outperforms the previous ap-
proaches in translating NE up to 0.16 in terms of
the mean reciprocal rank (MRR) for organization
names. Moreover, our method shows robustness,
with 0.14 higher MRR than seed translations, on
less comparable corpora.
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2 Related Work

This work is related to two research streams: NE
translation and semantically equivalent relation
mining.

Entity translation

Existing approaches on NE translation can be cat-
egorized into 1) transliteration-based, 2) corpus-
based, and 3) hybrid approaches.

Transliteration-based approaches (Wan and Ver-
spoor, 1998; Knight and Graehl, 1998) are the
foundations of many decent methods, but they
alone suffer from ambiguity (e.g., 史蒂夫 and
始第夫 have the same sounds) and cannot han-
dle non-transliterated cases such as ‘Jackie Chan
(成龙[ChengLong])’. Some methods (Lam et al.,
2007; Yang et al., 2009) rely on meanings of con-
stituent letters or words to handle organization
name translation such as ‘Bank of China (中国
银行)’, whose translation is derived from ‘China
(中国)’, and ‘a bank (银行)’. However, many
names often originate from abbreviation (such as
‘WTO’); hence we cannot always leverage mean-
ings.

Corpus-based approaches (Kupiec, 1993; Lin et
al., 2008; Jiang et al., 2009) exploit high-quality
bilingual evidence such as parenthetical transla-
tion, e.g., “成龙 (Jackie Chan)”, (Lin et al., 2008),
semi-structural patterns (Jiang et al., 2009), and
parallel corpus (Kupiec, 1993). However, the cov-
erage of the corpus-based approaches is limited to
popular entities with such bilingual evidences. On
the other hand, our method can cover entities with
monolingual occurrences in corpora, which signif-
icantly improves the coverage.

The most effective known approach is a holis-
tic framework that combines those two ap-
proaches (You et al., 2012; You et al., 2010; Kim
et al., 2011). You et al. (2010; 2012) leverage two
graphs of entities in each language, that are gen-
erated from a pair of corpora, with edge weights
quantified as the strength of the relatedness of en-
tities. Then, two graphs are iteratively aligned us-
ing the common neighbors of two entities. Kim et
al. (2011) build such graphs using the context sim-
ilarity, measured with a bag of words approach, of
entities in news corpora to translate NEs. How-
ever, these approaches assume the symmetry of the
two graphs. This assumption holds if two corpora
are parallel, but such resources are scarce. But our
approach exploits comparable parts from corpora.
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Figure 1: Dissimilarity of temporal distributions
of ‘WTO’ in English and Chinese corpora.

Other interesting approaches such as (Klemen-
tiev and Roth, 2006; Kim et al., 2012) rely on tem-
poral distributions of entities. That is, two entities
are considered to be similar if the two entities in
different languages have similar occurrence distri-
butions over time. However, the effectiveness of
this feature also depends on the comparability of
entity occurrences in time-stamped corpora, which
may not hold as shown in Figure 1. In clear con-
trast, our method can find and compare articles,
on different dates, describing the same NE. More-
over, our method does not require time stamps.

Semantically similar relation mining
Recently, similar relation mining in one language
has been studied actively as a key part of automatic
knowledge base construction. In automatically
constructed knowledge bases, finding semanti-
cally similar relations can improve understanding
of the Web describing content with many different
expressions. As such an effort, PATTY (Nakas-
hole et al., 2012) finds similar relations with al-
most the same support sets–the sets of NE pairs
that co-occur with the relations. However, because
of the regional locality of information, bilingual
corpora contain many NE pairs that appear in only
one of the support sets of the semantically identi-
cal relations. NELL (Mohamed et al., 2011) finds
related relations using seed pairs of one given re-
lation; then, using K-means clustering, it finds re-
lations that are semantically similar to the given
relation. Unfortunately, this method requires that
we set K manually, and extract relations for each
given relation. Therefore, this is unsuitable to sup-
port general relations.

There are only few works on translating rela-
tions or obtaining multi-lingual similar relations.
Schone et al. (2011) try to find relation patterns
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in multiple languages for given seed pairs of a re-
lation. Because this approach finds seed pairs in
Wikipedia infoboxes, the number of retrievable re-
lations is restricted to five. Kim et al. (2010) seek
more diverse types of relations, but it requires par-
allel corpora, which are scarce.

3 Framework Overview

In this section, we provide an overview of our
framework for translating NEs, using news cor-
pora in English and Chinese as a running example.
Because such corpora contain asymmetric parts,
the goal of our framework is to overcome asym-
metry by distinguishing the semantics of relations,
and leveraging document context defined by the
relations of entities.

(e) Iteration on  

 

(Section 4.5) 

(c) Relation 

Translation  

(Section 4.3) 

(d) Statement-Level 

Document Context 

Comparison  

(Section 4.4) 

(b) Seed Entity 

Translation  

(Section 4.2) 

Iterative process 

English 

Corpus 

Chinese 

Corpus 

(a) Statement Extraction 

(Section 4.1) 

Figure 2: Framework overview.

For this purpose, we build a mutual bootstrap-
ping framework (Figure 2), between entity trans-
lation and relation translation using extracted re-
lationships of entities (Figure 2 (a), Section 4.1).
More formally, we use the following process:

1. Base condition (Figure 2 (a), Section 4.2): Ini-
tializing T

(1)
N (eE , eC), a seed entity translation

score, where eE is an English entity, and eC is
a Chinese entity. T

(1)
N can be initialized by pho-

netic similarity or other NE translation methods.

2. Iteration: Obtaining T t+1
N using T t

N .

1) Using T t
N , we obtain a set of relation

translations with a semantic similarity score,
T t

R(rE , rC), for an English relation rE and a
Chinese relation rC (Figure 2 (b), Section 4.3)
(e.g., rE =visit and rC =访问).

2) Using T t
N and T t

R, we identify a set of seman-
tically similar document pairs that describe the
same event with a similarity score T t

D(dE , dC)
where dE is an English document and dC is a
Chinese document (Figure 2 (c), Section 4.4).

3) Using T t
N , T t

R and T t
D, we compute T t+1

N , an
improved entity translation score (Figure 2 (d),
Section 4.5).

Each sub-goal reinforces the result of others in
the (t + 1)-th iteration, and by iteratively running
them, we can improve the quality of translations.
Note that, hereinafter, we omit (t) for readability
when there is no ambiguity.

4 Methods

In this section, we describe our method in de-
tail. First, we explain how we extract statements,
which are units of relational information, from
documents in Section 4.1, and how we obtain seed
name translations in Section 4.2. Next, we present
our method for discovering relation translations
across languages in Section 4.3. In Section 4.4, we
use the name translations and the relation trans-
lations to compare document contexts which can
boost the precision of NE translation. In Sec-
tion 4.5, we describe how we use the resources
obtained so far to improve NE translation.

4.1 Statement Extraction
We extract relational statements, which we exploit
to propagate translation scores, from an English
news corpus and a Chinese news corpus. A rela-
tional statement, or simply a statement is a triple
(x, r, y), representing a relationship between two
names, x and y. For example, from “Mandel-
son recently visited Moscow,” we obtain this state-
ment: (Mandelson, visit, Moscow). We follow a
standard procedure to extract statements, as sim-
ilarly adopted by Nakashole et al. (2012), using
Stanford CoreNLP (Klein and Manning, 2003) to
lemmatize and parse sentences. Here, we refer
readers to existing work for further details because
this is not our key contribution.

4.2 Seed Entity Translation
We need a few seed translation pairs to initi-
ate the framework. We build a seed transla-
tion score T

(1)
N (eE , eC) indicating the similar-

ity of an English entity eE and a Chinese en-
tity eC using an existing method. For exam-
ple, most methods would give high value for
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T
(1)
N (Mandelson,曼德尔森 [ManDeErSen]). In this

work, we adopted (You et al., 2012) with (Lam
et al., 2007) as a base translation matrix to build
the seed translation function. We also use a dictio-
nary to obtain non-NE translations such as ‘gov-
ernment’. We use an English-Chinese general
word dictionary containing approximately 80,000
English-Chinese translation word pairs that was
also used by Kim et al. (2011) to measure the sim-
ilarity of context words of entities.

4.3 Relation Translation
We need to identify relations that have the equiv-
alent semantics across languages, (e.g., visit→访
问), to enable selective propagation of translation
scores. Formally, our goal is to measure a pair-
wise relation translation score TR(rE , rC) for an
English relation rE ∈ RE and a Chinese relation
rC ∈ RC where RE is a set of all English relations
and RC is a set of all Chinese relations.

We first explain a basic feature to measure the
similarity of two relations, its limitations, and how
we address the problems. A basic clue is that re-
lations of the same meaning are likely to be men-
tioned with the same entity pairs. For example,
if we have (Mandelson, visit, Moscow) as well as
(Mandelson, head to, Moscow) in the corpus, this
is a positive signal that the two relations may share
the same meaning. Such NE pairs are called sup-
port pairs of the two relations.

We formally define this clue for relations in the
same language, and then describe that in the bilin-
gual setting. A support intersection Hm(ri, rj), a
set of support pairs, for monolingual relations ri

and rj is defined as

Hm(ri, rj) = H(ri) ∩ H(rj) (1)

where H(r) is the support set of a relation r de-
fined as H(r) = {(x, y)|(x, r, y) ∈ S}, and S is
either SE , a set of all English statements, or SC , a
set of all Chinese statements that we extracted in
Section 4.1.

Likewise, we can define a support intersection
for relations in the different languages using the
translation score TN (eE , eC). For an English rela-
tion rE and a Chinese relation rC ,

Hb(rE , rC) ={(xE , xC , yE , yC)|
TN (xE , xC) ≥ θ

and TN (yE , yC) ≥ θ

for (xE , rE , yE) ∈ SE

and (xC , rC , yC) ∈ SC}

(2)

where θ = 0.6 is a harsh threshold to exclude most
of the false translations by TN .

Finally, we define a support intersection, a set
of support pairs between two relations ri and rj of
any languages,

H(ri, rj) =





Hb(r
i, rj) if ri ∈ RE and rj ∈ RC

Hb(r
j , ri) if rj ∈ RE and ri ∈ RC

Hm(ri, rj) otherwise
(3)

Intuitively, |H(ri, rj)| indicates the strength of
the semantic similarity of two relations ri and
rj of any languages. However, as shown in Ta-
ble 2, we cannot use this value directly to mea-
sure the similarity because the support intersection
of semantically similar bilingual relations (e.g.,
|H(head to,访问)| = 2) is generally very low,
and normalization cannot remedy this problem
as we can see from |H(visit,访问)| = 27 and
|H(visit)| = 1617.

Set Cardinality
H(visit) 1617
H(访问) 2788
H(visit,访问) 27
H(head to,访问) 2

Table 2: Evidence cardinality in the corpora.
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Figure 3: Network of relations. Edges indicate
that the relations have a non-empty support inter-
section, and edge labels show the size of the inter-
section.

We found that the connectivity among similar
relations is more important than the strength of
the similarity. For example, as shown in Figure 3,
visit is connected to most of the visit-relations
such as head to, 访问. Although visit is con-
nected to criticize, visit is not connected to other
criticize-relations such as denounce and blame,
whereas criticize, denounce, and blame are inter-
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Figure 4: Relation clusters and a few individual
relations. Edge labels show the size of the inter-
section.

connected. To exploit this feature, we use a ran-
dom walk-based graph clustering method.

Formally, we use Markov clustering (Van Don-
gen, 2000) on a graph G = (V, E) of relations,
where V = RE ∪ RC is a set of all English and
Chinese relations. An edge (ri, rj) indicates that
two relations in any languages are similar, and its
weight is quantified by a sigmoid function on a
linear transformation of |H(ri, rj)| that was em-
pirically found to produce good results.

Each resultant cluster forms a set of bilingual
similar relations, c = {rc1 , ..., rcM }, such as visit-
cluster, which consists of visit, head to, and访问
in Figure 4. However, this cluster may not contain
all similar relations. A relation may have multi-
ple meanings (e.g., call on) so it can be clustered
to another cluster, or a relation might not be clus-
tered when its support set is too small (e.g., fly
to). For such relations, rather than assigning zero
similarity to visit-relations, we compute a cluster
membership function based on support pairs of the
cluster members and the target relation, and then
formulate a pairwise relation translation score.

Formally, we learn the membership function
of a relation r to a cluster c using support vec-
tor regression (Joachims, 1999) with the follow-
ing features based on the support set of cluster c,
H(c) =

∪
r∈c H(r), and the support intersection

of r and c, H(r, c) =
∪

r∗∈c H(r, r∗).

• f1(r, c) = |H(r, c)|/|H(r)|: This quantifies the
degree of inclusion, H(c) ∈ H(r).

• f2(r, c) = |H(r, c)|/|H(c)|: This quantifies the
degree of inclusion, H(r) ∈ H(c).

• f3(r, c) = |Hwithin(r, c)|/|Hwithin(c)|: This is a
variation of f2 that considers only noun phrase
pairs shared at least once by relations in c.

• f4(r, c) = |Hwithin(r, c)|/|Hshared(c)|: This is a
variation of f2 that considers only noun phrase
pairs shared at least once by any pair of relations.

• f5(r, c) = |{r∗ ∈ c|H(r, r∗) > 0}|/|c|: This
is the degree of connectivity to the cluster mem-
bers.

where Hwithin(r, c) =
∪

r∗∈c H(r, c) ∩ H(r, r∗),
the intersection, considering translation, of H(r)
and noun phrase pairs shared at once by rela-
tions in c, Hwithin(c) =

∪
r∗∈c H(r∗, c − {r∗}),

and Hshared(c) =
∪

r∗∈RE∪RC
H(r∗, c), the noun

phrase pairs shared at once by any relations. The
use of Hwithin and Hshared is based on the obser-
vation that a noun phrase pair that appear in only
one relation tends to be an incorrectly chunked en-
tity such as ‘World Trade’ from the ‘World Trade
Organization’.

Based on this membership function S(r, c), we
compute pairwise relation similarity. We consider
that two relations are similar if they have at least
one cluster that the both relations belong to, which
can be measured with S(r, c). More formally,
pairwise similarity of relations ri and rj is defined
as

TR(ri, rj) = max
c∈C

S(ri, c) · S(rj , c) (4)

where C is a set of all clusters.

4.4 Statement-level Document Context
Comparison

A brute-force statement matching approach often
fails due to ambiguity created by ignoring con-
text, and missing information in TN or TR. There-
fore, we detect similar document pairs to boost
the statement matching process. Unlike the pre-
vious approaches (e.g., bag-of-words), we focus
on the relationships of entities within documents
using the extracted statements.

Formally, we compute the similarity of two
statements sE = (xE , rE , yE) and sC =
(xC , rC , yC) in different languages as follows:

TS(sE , sC) = TN (xE , xC)TR(rE , rC)TN (yE , yC)
(5)

With this definition, we can find similar statements
described with different vocabularies in different
languages.

To compare a document pair, we use the fol-
lowing equation to measure the similarity of an
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English document di
E and a Chinese document dj

C

based on their statements Si
E and Sj

C , respectively:

TD(di
E , dj

C) =

∑
(sE ,sC)∈B TS(si,r

E , sj,r
C )

|Si
E | + |Si

E | − |B| (6)

where B ⊂ Si
E×Sj

C is a greedy approximate solu-
tion of maximum bipartite matching (West, 1999)
on a bipartite graph GB = (VB = (Si

E , Sj
C), EB)

with edge weights that are defined by TS . The
maximum bipartite matching finds a subset of
edges in Si

E × Sj
C that maximize the sum of the

selected edge weights and that do not share a node
as their anchor point.

4.5 Iteration on TN

In this section, we describe how we use the state-
ment similarity function TS , and the document
similarity function TD to improve and derive the
next generation entity translation function T

(t+1)
N .

We consider that a pair of an English entity eE and
a Chinese entity eC are likely to indicate the same
real world entity if they have 1) semantically sim-
ilar relations to the same entity 2) under the same
context. Formally, we define an increment func-
tion as follows.

∆TN (eE , eC)=
∑

di
E

∑

dj
C

TD(di, dj) max
(sE ,sC)∈B∗

TS(sE , sC)

(7)
where B∗ is a subset of B ⊂ Si

E×Sj
C such that the

connected statements mention eE and eC , and B is
the greedy approximate solution of maximum bi-
partite matching for the set Si

E of statements of di
E

and the set Sj
C of statements of dj

C . In other words,
B∗ is a set of matching statement pairs mention-
ing the translation target eE and eC in the docu-
ment pair. Then, we use the following equation to
improve the original entity translation function.

T
(t+1)
N (eE , eC) = (1 − λ)

∆TN (eE , eC)∑
e∗
C

∆TN (eE , e∗
C)

+ λTN (eE , eC) (8)

where λ is a mixing parameter in [0, 1]. We set
λ = 0.6 in our experiments.

With this update, we obtain the improved NE
translations considering the relations that an en-
tity has to other entities under the same context to
achieve higher precision.

5 Experiments

In this section, we present experimental settings
and results of translating entity names using our
methods compared with several baselines.

5.1 Data and Evaluation

We processed news articles for an entire year in
2008 by Xinhua news who publishes news in
both English and Chinese, which were also used
by Kim et al. (2011) and Shao and Ng (2004). The
English corpus consists of 100,746 news articles,
and the Chinese corpus consists of 88,031 news
articles. The news corpora are not parallel but
comparable corpora, with asymmetry of entities
and relationship as the asymmetry in the number
of documents also suggest. Examples of such lo-
cality in Xinhua news include the more extensive
coverage of Chinese teams in the Olympics and
domestic sports in the Chinese news. Our frame-
work finds and leverages comparable parts from
the corpora without document-content-external in-
formation such as time stamps. We also show that,
under the decreasing comparability, our method
retains higher MRR than the baselines.

We follow the evaluation procedures used
by You et al. (2012) and Kim et al. (2011) to
fairly and precisely compare the effectiveness of
our methods with baselines. To measure perfor-
mance, we use mean reciprocal rank (MRR) to
evaluate a translation function T :

MRR(T ) =
1

|Q|
∑

(u,v)∈Q

1

rankT (u, v)
(9)

where Q is the set of gold English-Chinese trans-
lation pairs (u, v) and rankT (u, v) is the rank of
T (u, v) in {T (u,w)|w is a Chinese entity}. In ad-
dition, we use precision, recall, and F1-score.

As gold translation pairs, we use the evaluation
data used by You et al. (2012) with additional la-
bels, especially for organizations. The labeling
task is done by randomly selecting English enti-
ties and finding their Chinese translation from the
Chinese corpus. We only use entities with trans-
lations that appear in the Chinese corpus. We
present the evaluation results for persons and or-
ganizations to show the robustness of the meth-
ods. In total, we identified 490 English entities in
the English news with Chinese translations in the
Chinese news. Among the 490 entities, 221 NEs
are persons and 52 NEs are organizations.
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Person Organization
MRR P. R. F1 MRR P. R. F1

T
(2)
N 0.80 0.81 0.79 0.80 0.53 0.56 0.52 0.54

T
(1)
N 0.77 0.80 0.77 0.78 0.44 0.49 0.44 0.46

TS
PH+P 0.73 0.70 0.67 0.69 0.14 0.17 0.04 0.06

TM
PH+P 0.68 0.70 0.68 0.69 0.08 0.31 0.08 0.12

THB 0.71 0.59 0.59 0.59 0.37 0.29 0.29 0.29

TDict 0.09 1.00 0.09 0.17 0.17 1.00 0.17 0.30

Table 3: Evaluation results of the methods.

5.2 Baselines
We compare our methods with the following base-
lines.

• TS
PH+P (You et al., 2012) is a holistic method

that uses a transliteration method as base
translations, and then reinforces them to
achieve higher quality. This method uses
only a single type of entities to propagate the
translation scores.

• TM
PH+P is the holistic method revised to use

naive multi-type propagation that uses multi-
ple types of entities to reinforce the transla-
tion scores.

• THB is a linear combination of transliteration
and semantic translation methods (Lam et al.,
2007) tuned to achieve the highest MRR.

• TDict is a dictionary-only method. This dic-
tionary is used by both THB and TN .

Only the translation pairs of scores above 0.35
are used for TPH+P to maximize the F1-score to
measure precision, recall and F1-score. For our
method T

(t)
N , we use the result with (t) = 1,

the seed translations, and (t) = 2, which means
that only one pass of the whole framework is per-
formed to improve the seed translation function.
In addition, we use translation pairs with scores
above 0.05 to measure precision, recall, and F1-
score. Note that these thresholds do not affect
MRRs.

5.3 NE Translation Results
We show the result of the quantitative evaluation
in Table 3, where the highest values are boldfaced,
except TDict which shows 1.00 precision because
it is a manually created dictionary. For both the
person and organization cases, our method T

(2)
N

outperforms the state-of-the-art methods in terms

English
name

T
(2)
N T

(1)
N THB

Mandelson 曼曼曼德德德尔尔尔森森森
[ManDeErSen]

曼曼曼德德德尔尔尔森森森
[ManDeErSen]

曼曼曼德德德尔尔尔森森森
[ManDeErSen]

WTO 世世世贸贸贸组组组织织织
[ShiMaoZuZhi]

上合组织
[ShangHeZuZhi]

巴解组织
[BaJieZuZhi]

White House 白白白宫宫宫
[BaiGong]

加州
[JiaZhou]

加州
[JiaZhou]

Microsoft 微微微软软软公公公司司司
[WeiRuanGongSi]

美国司法部
[MeiGuoSiFaBu]

米罗诺夫
[MiLuoNuoFu]

Table 4: Example translations from the different
methods. Boldface indicates correct translations.
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Figure 6: MRR with decreasing comparability.

of precision, recall, F1-score and MRR. With only
one iteration of selective propagation, the seed
translation is improved to achieve the 0.09 higher
MRR.

The baselines show lower, but comparable
MRRs and F1-scores for persons that mostly con-
sist of transliterated cases. However, not all trans-
lations have phonetic similarity, especially orga-
nization names, as the low F1-score of TS

PH+P ,
0.06, for organizations suggests. The naive multi-
type propagation TM

PH+P shows decreased MRR
for both persons and organizations compared to
the single-type propagation TS

PH+P , which shows
a negative influence of diverse relation semantics
of entities of different types. THB achieves a bet-
ter MRR than TPH+P due to the semantic transla-
tion of organization names. However, despite the
increased recall of THB over that of TDict, the pre-
cision of THB is unsatisfactory because THB maps
abbreviated names such as ‘WTO’ with other NEs.
On the other hand, our method achieves the high-
est MRR and precision in both the person and or-
ganization categories.

As shown in Table 4, THB translates ‘WTO’ in-
accurately, linking it to an incorrect organization
‘巴解组织’ (Palestine Liberation Organization).
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The European Union (EU) Trade Commissioner (1) Peter Mandelson traveled to Moscow on 

Thursday for talks on … Mandelson said it is a priority to see (2) Russia join the WTO, … 

 (1) 14 , … , 

(2) , … 

(Peter Mandelson, traveled to, Moscow) 

( , , ) 

(Russia, join, WTO) 

( , , ) 

1) 2) 

Figure 5: Example of similar document pairs.

Moreover, the use of the corpora by T
(1)
N could

not fix this problem, and it finds another organi-
zation related to trade, ‘上合组织’ (Shanghai Co-
operation Organization). In contrast, our selective
propagation method T

(2)
N , which uses the wrong

seed translation by T
(1)
N , ‘上合组织’ (Shang-

hai Cooperation Organization), successfully trans-
lates the WTO using statements such as (Russia,
join, WTO), and its corresponding Chinese state-
ment (俄罗斯, 加入, 世贸组织). Similarly, both
the baseline THB and the seed translation T

(1)
N

matched Microsoft to incorrect Chinese entities
that are phonetically similar as indicated by the
underlined text. In contrast, T

(2)
N finds the correct

translation despite the phonetic dissimilarity.

5.4 NE Translation Results with Low Corpus
Comparability

We tested the methods using less comparable data
to evaluate the robustness with the following de-
rived datasets:

• D0: All news articles are used.

• D1: January-December English and July-
December Chinese articles are used.

• D2: April-September English and July-
December Chinese articles are used.

Figure 6 shows the MRR comparisons of our
method T

(2)
N and T

(1)
N on all test entities. Be-

cause the commonly appearing NEs are decreas-
ing, the performance decline is inevitable. How-
ever, we can see that the MRR of the seed trans-
lation method drops significantly on D1 and D2,
whereas our method shows 0.14 higher MRR for
both cases.

5.5 Similar Documents
In this section, we show an example of similar
documents in Figure 5. Both articles describe
the same event about the visit of Mandelson to
Moscow for the discussion on the joining of Rus-
sia to the WTO. The extracted statements are the
exact translations of each corresponding part as in-
dicated by the arrows. We stress this is an extreme
case for illustration, where the two sentences are
almost an exact translation, except for a minor
asymmetry involving the date (Thursday in En-
glish, and 14th in Chinese). In most similar doc-
uments, the asymmetry is more significant. The
seed translation score T 1

N (WTO,世贸组织) is not
enough to match the entities. However, the context
similarity, due to other similar statements such as
(1), allows us to match (2). This match helps trans-
lation of ‘WTO’ by inspecting the organization
that Russia considers to join in both documents.

6 Conclusions

This paper proposed a bootstrapping approach
for entity translation using multilingual relational
clustering. Further, the proposed method could
finds similar document pairs by comparing state-
ments to enable us to focus on comparable parts of
evidence. We validated the quality of our approach
using real-life English and Chinese corpora, and
its performance significantly exceeds that of pre-
vious approaches.

Acknowledgment

This research was supported by the MKE (The
Ministry of Knowledge Economy), Korea and Mi-
crosoft Research, under IT/SW Creative research
program supervised by the NIPA (National IT In-
dustry Promotion Agency). (NIPA-2012-H0503-
12-1036).

639



References
Donghui Feng. 2004. A new approach for english-

chinese named entity alignment. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing EMNLP, pages 372–379.

Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu,
and Qingsheng Zhu. 2009. Mining bilingual data
from the web with adaptively learnt patterns. In
Joint Conference of the ACL and the IJCNLP, pages
870–878, Stroudsburg, PA, USA.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vec-
tor Learning. MIT Press, Cambridge, MA, USA.

Seokhwan Kim, Minwoo Jeong, Jonghoon Lee, and
Gary Geunbae Lee. 2010. A cross-lingual anno-
tation projection approach for relation detection. In
COLING, pages 564–571, Stroudsburg, PA, USA.

Jinhan Kim, Long Jiang, Seung-won Hwang, Young-In
Song, and Ming Zhou. 2011. Mining entity trans-
lations from comparable corpora: a holistic graph
mapping approach. In CIKM, pages 1295–1304,
New York, NY, USA.

Jinhan Kim, Seung won Hwang, Long Jiang, Young-
In Song, and Ming Zhou. 2012. Entity transla-
tion mining from comparable corpora: Combining
graph mapping with corpus latent features. IEEE
Transactions on Knowledge and Data Engineering,
99(PrePrints).

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL ’03, pages 423–
430, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Alexandre Klementiev and Dan Roth. 2006. Named
entity transliteration and discovery from multilin-
gual comparable corpora. In Proceedings of the
main conference on Human Language Technol-
ogy Conference of the North American Chapter of
the Association of Computational Linguistics, HLT-
NAACL ’06, pages 82–88, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Comput. Linguist., 24(4):599–612,
December.

Julian Kupiec. 1993. An algorithm for finding noun
phrase correspondences in bilingual corpora. In
ACL, pages 17–22, Stroudsburg, PA, USA.

Wai Lam, Shing-Kit Chan, and Ruizhang Huang.
2007. Named entity translation matching and learn-
ing: With application for mining unseen transla-
tions. ACM Trans. Inf. Syst., 25(1), February.

Dekang Lin, Shaojun Zhao, Benjamin Van Durme, and
Marius Pasca. 2008. Mining parenthetical transla-
tions from the web by word alignment. In ACL.

Thahir Mohamed, Estevam Hruschka, and Tom
Mitchell. 2011. Discovering relations between
noun categories. In EMNLP, pages 1447–1455, Ed-
inburgh, Scotland, UK., July.

Ndapandula Nakashole, Gerhard Weikum, and
Fabian M. Suchanek. 2012. PATTY: A Taxonomy
of Relational Patterns with Semantic Types. In
EMNLP.

Patrick Schone, Tim Allison, Chris Giannella, and
Craig Pfeifer. 2011. Bootstrapping multilin-
gual relation discovery using english wikipedia and
wikimedia-induced entity extraction. In ICTAI,
pages 944–951, Washington, DC, USA.

Li Shao and Hwee Tou Ng. 2004. Mining new word
translations from comparable corpora. In COLING,
Stroudsburg, PA, USA.

S. Van Dongen. 2000. Graph Clustering by Flow Sim-
ulation. Ph.D. thesis, University of Utrecht, The
Netherlands.

Stephen Wan and Cornelia Maria Verspoor. 1998. Au-
tomatic english-chinese name transliteration for de-
velopment of multilingual resources. In ACL, pages
1352–1356, Stroudsburg, PA, USA.

Douglas Brent West. 1999. Introduction to graph the-
ory (2nd edition). Prentice Hall.

Fan Yang, Jun Zhao, and Kang Liu. 2009. A chinese-
english organization name translation system using
heuristic web mining and asymmetric alignment. In
Joint Conference of the ACL and the IJCNLP, pages
387–395, Stroudsburg, PA, USA.

Gae-won You, Seung-won Hwang, Young-In Song,
Long Jiang, and Zaiqing Nie. 2010. Mining name
translations from entity graph mapping. In EMNLP,
pages 430–439, Stroudsburg, PA, USA.

Gae-Won You, Seung-Won Hwang, Young-In Song,
Long Jiang, and Zaiqing Nie. 2012. Efficient entity
translation mining: A parallelized graph alignment
approach. ACM Trans. Inf. Syst., 30(4):25:1–25:23,
November.

640



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 641–650,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Transfer Learning Based Cross-lingual
Knowledge Extraction for Wikipedia

Zhigang Wang†, Zhixing Li †, Juanzi Li†, Jie Tang†, and Jeff Z. Pan‡
† Tsinghua National Laboratory for Information Science and Technology

DCST, Tsinghua University, Beijing, China
{wzhigang,zhxli,ljz,tangjie}@keg.cs.tsinghua.edu.cn
‡ Department of Computing Science, University of Aberdeen, Aberdeen, UK

jeff.z.pan@abdn.ac.uk

Abstract

Wikipedia infoboxes are a valuable source
of structured knowledge for global knowl-
edge sharing. However, infobox infor-
mation is very incomplete and imbal-
anced among the Wikipedias in differen-
t languages. It is a promising but chal-
lenging problem to utilize the rich struc-
tured knowledge from a source language
Wikipedia to help complete the missing in-
foboxes for a target language.

In this paper, we formulate the prob-
lem of cross-lingual knowledge extraction
from multilingual Wikipedia sources, and
present a novel framework, called Wiki-
CiKE, to solve this problem. An instance-
based transfer learning method is utilized
to overcome the problems of topic drift
and translation errors. Our experimen-
tal results demonstrate that WikiCiKE out-
performs the monolingual knowledge ex-
traction method and the translation-based
method.

1 Introduction

In recent years, the automatic knowledge extrac-
tion using Wikipedia has attracted significant re-
search interest in research fields, such as the se-
mantic web. As a valuable source of structured
knowledge, Wikipedia infoboxes have been uti-
lized to build linked open data (Suchanek et al.,
2007; Bollacker et al., 2008; Bizer et al., 2008;
Bizer et al., 2009), support next-generation in-
formation retrieval (Hotho et al., 2006), improve
question answering (Bouma et al., 2008; Fer-
rández et al., 2009), and other aspects of data ex-
ploitation (McIlraith et al., 2001; Volkel et al.,
2006; Hogan et al., 2011) using semantic web s-
tandards, such as RDF (Pan and Horrocks, 2007;

Heino and Pan, 2012) and OWL (Pan and Hor-
rocks, 2006; Pan and Thomas, 2007; Fokoue et
al., 2012), and their reasoning services.

However, most infoboxes in different Wikipedi-
a language versions are missing. Figure 1 shows
the statistics of article numbers and infobox infor-
mation for six major Wikipedias. Only 32.82%
of the articles have infoboxes on average, and the
numbers of infoboxes for these Wikipedias vary
significantly. For instance, the English Wikipedi-
a has 13 times more infoboxes than the Chinese
Wikipedia and 3.5 times more infoboxes than the
second largest Wikipedia of German language.
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Figure 1: Statistics for Six Major Wikipedias.

To solve this problem, KYLIN has been pro-
posed to extract the missing infoboxes from un-
structured article texts for the English Wikipedi-
a (Wu and Weld, 2007). KYLIN performs
well when sufficient training data are available,
and such techniques as shrinkage and retraining
have been used to increase recall from English
Wikipedia’s long tail of sparse infobox classes
(Weld et al., 2008; Wu et al., 2008). The extraction
performance of KYLIN is limited by the number
of available training samples.

Due to the great imbalance between different
Wikipedia language versions, it is difficult to gath-
er sufficient training data from a single Wikipedia.
Some translation-based cross-lingual knowledge
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extraction methods have been proposed (Adar et
al., 2009; Bouma et al., 2009; Adafre and de Rijke,
2006). These methods concentrate on translating
existing infoboxes from a richer source language
version of Wikipedia into the target language. The
recall of new target infoboxes is highly limited
by the number of equivalent cross-lingual arti-
cles and the number of existing source infoboxes.
Take Chinese-English1 Wikipedias as an example:
current translation-based methods only work for
87,603 Chinese Wikipedia articles, 20.43% of the
total 428,777 articles. Hence, the challenge re-
mains: how could we supplement the missing in-
foboxes for the rest 79.57% articles?

On the other hand, the numbers of existing in-
fobox attributes in different languages are high-
ly imbalanced. Table 1 shows the comparison
of the numbers of the articles for the attributes
in template PERSON between English and Chi-
nese Wikipedia. Extracting the missing value for
these attributes, such asawards, weight, influences
andstyle, inside the single Chinese Wikipedia is
intractable due to the rarity of existing Chinese
attribute-value pairs.

Attribute en zh Attribute en zh
name 82,099 1,486 awards 2,310 38
birth date 77,850 1,481 weight 480 12
occupation 66,768 1,279 influences 450 6
nationality 20,048 730 style 127 1

Table 1: The Numbers of Articles in TEMPLATE
PERSON between English(en) and Chinese(zh).

In this paper, we have the following hypothesis:
one can use the rich English (auxiliary) informa-
tion to assist the Chinese (target) infobox extrac-
tion. In general, we address the problem of cross-
lingual knowledge extraction by using the imbal-
ance between Wikipedias of different languages.
For each attribute, we aim to learn an extractor to
find the missing value from the unstructured arti-
cle texts in the target Wikipedia by using the rich
information in the source language. Specifically,
we treat this cross-lingual information extraction
task as a transfer learning-based binary classifica-
tion problem.

The contributions of this paper are as follows:

1. We propose a transfer learning-based cross-
lingual knowledge extraction framework

1Chinese-English denotes the task of Chinese Wikipedia
infobox completion using English Wikipedia

called WikiCiKE . The extraction perfor-
mance for the target Wikipedia is improved
by using rich infoboxes and textual informa-
tion in the source language.

2. We propose the TrAdaBoost-based extractor
training method to avoid the problems of top-
ic drift and translation errors of the source
Wikipedia. Meanwhile, some language-
independent features are introduced to make
WikiCiKE as general as possible.

3. Chinese-English experiments for four typ-
ical attributes demonstrate that WikiCiKE
outperforms both the monolingual extrac-
tion method and current translation-based
method. The increases of 12.65% for pre-
cision and 12.47% for recall in the template
named person are achieved when only 30 tar-
get training articles are available.

The rest of this paper is organized as follows.
Section 2 presents some basic concepts, the prob-
lem formalization and the overview of WikiCiKE.
In Section 3, we propose our detailed approaches.
We present our experiments in Section 4. Some re-
lated work is described in Section 5. We conclude
our work and the future work in Section 6.

2 Preliminaries

In this section, we introduce some basic con-
cepts regarding Wikipedia, formally defining the
key problem of cross-lingual knowledge extrac-
tion and providing an overview of the WikiCiKE
framework.

2.1 Wiki Knowledge Base and Wiki Article

We consider each language version of Wikipedia
as awiki knowledge base, which can be represent-
ed asK = {ai}p

i=1, whereai is a disambiguated
article inK andp is the size ofK.

Formally we define awiki article a ∈ K as a
5-tuplea = (title, text, ib, tp, C), where

• title denotes the title of the articlea,

• text denotes the unstructured text description
of the articlea,

• ib is the infobox associated witha; specif-
ically, ib = {(attri, valuei)}q

i=1 represents
the list of attribute-value pairs for the article
a,
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Figure 2: Simplified Article of “Bill Gates”.

• tp = {attri}r
i=1 is the infobox template as-

sociated withib, wherer is the number of
attributes for one specific template, and

• C denotes the set of categories to which the
articlea belongs.

Figure 2 gives an example of these five impor-
tant elements concerning the article named “Bill
Gates”.

In what follows, we will use named subscripts,
such asaBill Gates, or index subscripts, such asai,
to refer to one particular instance interchangeably.
We will use “name in TEMPLATE PERSON”
to refer to the attributeattrname in the template
tpPERSON . In this cross-lingual task, we use the
source (S) and target (T) languages to denote the
languages of auxiliary and target Wikipedias, re-
spectively. For example,KS indicates the source
wiki knowledge base, andKT denotes the target
wiki knowledge base.

2.2 Problem Formulation

Mining new infobox information from unstruc-
tured article texts is actually a multi-template,
multi-slot information extraction problem. In our
task, each template represents an infobox template
and each slot denotes an attribute. In the Wiki-
CiKE framework, for each attributeattrT in an
infobox templatetpT , we treat the task of missing
value extraction as a binary classification prob-
lem. It predicts whether a particular word (token)
from the articletext is the extraction target (Finn
and Kushmerick, 2004; Lafferty et al., 2001).

Given an attributeattrT and an instance
(word/token) xi, XS = {xi}n

i=1 and XT =
{xi}n+m

i=n+1 are the sets of instances (words/tokens)
in the source and the target language respectively.
xi can be represented as a feature vector according
to its context. Usually, we haven ≫ m in our set-
ting, with much more attributes in the source that
those in the target. The functiong : X 7→ Y maps
the instance fromX = XS ∪ XT to the true la-
bel ofY = {0, 1}, where1 represents the extrac-
tion target (positive) and0 denotes the background
information (negative). Because the number of
target instancesm is inadequate to train a good
classifier, we combine the source and target in-
stances to construct the training data set asTD =
TDS ∪ TDT , whereTDS = {xi, g(xi)}n

i=1 and
TDT = {xi, g(xi)}n+m

i=n+1 represent the source
and target training data, respectively.

Given the combined training data setTD, our
objective is to estimate a hypothesisf : X 7→ Y
that minimizes the prediction error on testing data
in the target language. Our idea is to determine the
useful part ofTDS to improve the classification
performance inTDT . We view this as a transfer
learning problem.

2.3 WikiCiKE Framework

WikiCiKE learns an extractor for a given attribute
attrT in the target Wikipedia. As shown in Fig-
ure 3, WikiCiKE contains four key components:
(1) Automatic Training Data Generation: given
the target attributeattrT and two wiki knowledge
basesKS andKT , WikiCiKE first generates the
training data setTD = TDS ∪ TDT automati-
cally. (2) WikiCiKE Training : WikiCiKE uses
a transfer learning-based classification method to
train the classifier (extractor)f : X 7→ Y by using
TDS ∪ TDT . (3) Template Classification: Wi-
kiCiKE then determines proper candidate articles
which are suitable to generate the missing value of
attrT . (4) WikiCiKE Extraction : given a candi-
date articlea, WikiCiKE uses the learned extractor
f to label each word in thetext of a, and generate
the extraction result in the end.

3 Our Approach

In this section, we will present the detailed ap-
proaches used in WikiCiKE.
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Figure 3: WikiCiKE Framework.

3.1 Automatic Training Data Generation

To generate the training data for the target at-
tribute attrT , we first determine the equivalen-
t cross-lingual attributeattrS. Fortunately, some
templates in non-English Wikipedia (e.g. Chinese
Wikipedia) explicitly match their attributes with
their counterparts in English Wikipedia. There-
fore, it is convenient to align the cross-lingual at-
tributes using English Wikipedia as bridge. For
attributes that can not be aligned in this way, cur-
rently we manually align them. The manual align-
ment is worthwhile because thousands of articles
belong to the same template may benefit from it
and at the same time it is not very costly. In Chi-
nese Wikipedia, the top 100 templates have cov-
ered nearly 80% of the articles which have been
assigned a template.

Once the aligned attribute mappingattrT ↔
attrS is obtained, we collect the articles from both
KS and KT containing the correspondingattr.
The collected articles fromKS are translated into
the target language. Then, we use a uniform au-
tomatic method, which primarily consists of word
labeling and feature vector generation, to generate
the training data setTD = {(x, g(x))} from these
collected articles.

For each collected article a =
{title, text, ib, tp, C} and its value of attr,
we can automatically label each wordx in text
according to whetherx and its neighbors are

contained by thevalue. The text andvalue are
processed as bags of words{x}text and{x}value.
Then for eachxi ∈ {x}text we have:

g(xi) =





1 xi ∈ {x}value, |{x}value| = 1

1 xi−1, xi ∈ {x}value or xi, xi+1 ∈ {x}value,

|{x}value| > 1

0 otherwise
(1)

After the word labeling, each instance
(word/token) is represented as a feature vec-
tor. In this paper, we propose a general feature
space that is suitable for most target languages.
As shown in Table 2, we classify the features
used in WikiCiKE into three categories: format
features, POS tag features and token features.

Category Feature Example
Format First token of sentence `}��L�
feature Hello World!

In first half of sentence `}��L�
Hello World!

Starts with two digits 12�31å
31th Dec.

Starts with four digits 1999t�)
1999’ssummer

Contains a cash sign 10åor 10$
Contains a percentage 10%
symbol
Stop words �,0,Ù&

of, the, a, an
Pure number 365
Part of an anchor text 5qü�

Movie Director
Begin of an anchor text 8�¾¡�

GameDesigner
POS tag POS tag of current token
features POS tags of

previous 5 tokens
POS tags of
next 5 tokens

Token Current token
features Previous 5 tokens

Next 5 tokens
Is current token
contained by title
Is one of previous 5
tokens contained by title

Table 2: Feature Definition.

The target training dataTDT is directly gener-
ated from articles in the target language Wikipedi-
a. Articles from the source language Wikipedia
are translated into the target language in advance
and then transformed into training dataTDS. In
next section, we will discuss how to train an ex-
tractor fromTD = TDS ∪ TDT .

3.2 WikiCiKE Training

Given the attributeattrT , we want to train a clas-
sifierf : X 7→ Y that can minimize the prediction
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error for the testing data in the target language.
Traditional machine learning approaches attempt
to determinef by minimizing some loss function
L on the predictionf(x) for the training instance
x and its real labelg(x), which is

f̂ = argmin
f∈Θ

∑
L(f(x), g(x)) where (x, g(x)) ∈ TDT

(2)

In this paper, we use TrAdaBoost (Dai et al.,
2007), which is an instance-based transfer learn-
ing algorithm that was first proposed by Dai to find
f̂ . TrAdaBoost requires that the source training
instancesXS and target training instancesXT be
drawn from the same feature space. In WikiCiKE,
the source articles are translated into the target
language in advance to satisfy this requirement.
Due to the topic drift problem and translation er-
rors, the joint probability distributionPS(x, g(x))
is not identical toPT (x, g(x)). We must adjust the
source training dataTDS so that they fit the dis-
tribution onTDT . TrAdaBoost iteratively updates
the weights of all training instances to optimize the
prediction error. Specifically, the weight-updating
strategy for the source instances is decided by the
loss on the target instances.

For eacht = 1 ∼ T iteration, given a weight
vector pt normalized fromwt(wt is the weight
vector before normalization), we call a basic clas-
sifier F that can address weighted instances and
then find a hypothesisf that satisfies

f̂t = argmin
f∈ΘF

∑
L(pt, f(x), g(x))

(x, g(x)) ∈ TDS ∪ TDT

(3)

Let ǫt be the prediction error of̂ft at thetth iter-
ation on the target training instancesTDT , which
is

ǫt =
1∑n+m

k=n+1 wt
k

×
n+m∑

k=n+1

(wt
k × |f̂t(xk) − yk|) (4)

With ǫt, the weight vectorwt is updated by the
function:

wt+1 = h(wt, ǫt) (5)

The weight-updating strategyh is illustrated in
Table 3.

Finally, a final classifierf̂ can be obtained by
combiningf̂T/2 ∼ f̂T .

TrAdaBoost has a convergence rate of
O(

√
ln(n/N)), wheren and N are the number

of source samples and number of maximum
iterations respectively.

TrAdaBoost AdaBoost
Target + wt wt

samples − wt × β−1
t wt × β−1

t

Source + wt × β−1 No source training
samples − wt × β sample available

+: correctly labelled −: miss-labelled
wt: weight of an instance at thetth iteration
βt = ǫt × (1 − ǫt)

β = 1/(1 +
√

2 ln nT )

Table 3: Weight-updating Strategy of TrAd-
aBoost.

3.3 Template Classification

Before using the learned classifierf to extrac-
t missing infobox value for the target attribute
attrT , we must select the correct articles to be pro-
cessed. For example, the articleaNew Y ork is not
a proper article for extracting the missing value of
the attributeattrbirth day.

If a already has an incomplete infobox, it is
clear that the correcttp is the template of its own
infobox ib. For those articles that have no infobox-
es, we use the classical 5-nearest neighbor algo-
rithm to determine their templates (Roussopoulos
et al., 1995) using their category labels, outlinks,
inlinks as features (Wang et al., 2012). Our classi-
fier achieves an average precision of 76.96% with
an average recall of 63.29%, and can be improved
further. In this paper, we concentrate on the Wiki-
CiKE training and extraction components.

3.4 WikiCiKE Extraction

Given an articlea determined by template classi-
fication, we generate the missingvalue of attr
from the correspondingtext. First, we turn the
text into a word sequence and compute the fea-
ture vector for each word based on the feature
definition in Section 3.1. Next we usef to label
each word, and we get a labeled sequencetextl as
textl = {xf(x1)

1 ...x
f(xi−1)
i−1 x

f(xi)
i x

f(xi+1)
i+1 ...x

f(xn)
n }

where the superscriptf(xi) ∈ {0, 1} represents
the positive or negative label byf . After that, we
extract the adjacent positive tokens intext as the
predict value. In particular, the longest positive to-
ken sequence and the one that contains other pos-
itive token sequences are preferred in extraction.
E.g., a positive sequence “comedy movie director”
is preferred to a shorter sequence “movie direc-
tor”.
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4 Experiments

In this section, we present our experiments to e-
valuate the effectiveness of WikiCiKE, where we
focus on the Chinese-English case; in other words,
the target language is Chinese and the source lan-
guage is English. It is part of our future work to
try other language pairs which two Wikipedias of
these languages are imbalanced in infobox infor-
mation such as English-Dutch.

4.1 Experimental Setup

4.1.1 Data Sets

Our data sets are from Wikipedia dumps2 generat-
ed on April 3, 2012. For each attribute, we collect
both labeled articles (articles that contain the cor-
responding attributeattr) and unlabeled articles
in Chinese. We split the labeled articles into two
subsetsAT and Atest(AT ∩ Atest = ∅), in which
AT is used as target training articles andAtest is
used as the first testing set. For the unlabeled arti-
cles, represented asA′

test, we manually label their
infoboxes with their texts and use them as the sec-
ond testing set. For each attribute, we also collect a
set of labeled articlesAS in English as the source
training data. Our experiments are performed on
four attributes, which areoccupation, nationality,
alma materin TEMPLATE PERSON, andcoun-
try in TEMPLATE FILM. In particular, we extract
values from the first two paragraphs of the texts
because they usually contain most of the valuable
information. The details of data sets on these at-
tributes are given in Table 4.

Attribute |AS| |AT| |Atest| |A′
test|

occupation 1,000 500 779 208
alma mater 1,000 200 215 208
nationality 1,000 300 430 208
country 1,000 500 1,000 −

|A|: the number of articles inA

Table 4: Data Sets.

4.1.2 Comparison Methods

We compare our WikiCiKE method with two dif-
ferent kinds of methods, the monolingual knowl-
edge extraction method and the translation-based
method. They are implemented as follows:

1. KE-Mon is the monolingual knowledge ex-
tractor. The difference between WikiCiKE
and KE-Mon is that KE-Mon only uses the
Chinese training data.

2http://dumps.wikimedia.org/

2. KE-Tr is the translation-based extractor. It
obtains thevaluesby two steps: finding their
counterparts (if available) in English using
Wikipedia cross-lingual links and attribute
alignments, and translating them into Chi-
nese.

We conduct two series of evaluation to compare
WikiCiKE with KE-Mon and KE-Tr, respectively.

1. We compare WikiCiKE with KE-Mon on the
first testing data setAtest, where most val-
ues can be found in the articles’ texts in those
labeled articles, in order to demonstrate the
performance improvement by using cross-
lingual knowledge transfer.

2. We compare WikiCiKE with KE-Tr on the
second testing data setA

′
test, where the

existences of values are not guaranteed in
those randomly selected articles, in order to
demonstrate the better recall of WikiCiKE.

For implementation details, theweighted-SVM
is used as the basic learnerf both in WikiCiKE
and KE-Mon (Zhang et al., 2009), and Baidu
Translation API3 is used as the translator both in
WikiCiKE and KE-Tr. The Chinese texts are pre-
processed using ICTCLAS4 for word segmenta-
tion.

4.1.3 Evaluation Metrics

Following Lavelli’s research on evaluation of in-
formation extraction (Lavelli et al., 2008), we per-
form evaluation as follows.

1. We evaluate eachattr separately.

2. For eachattr, there is exactly onevalue ex-
tracted.

3. No alternative occurrence of realvalue is
available.

4. The overlap ratio is used in this paper rather
than “exactly matching” and “containing”.

Given an extractedvalue v′ = {w′} and its
corresponding realvalue v = {w}, two measure-
ments for evaluating the overlap ratio are defined:

recall: the rate of matched tokens w.r.t. the real
value. It can be calculated using

R(v′, v) =
|v ∩ v′|

|v|
3http://openapi.baidu.com/service
4http://www.ictclas.org/
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precision: the rate of matched tokens w.r.t. the
extractedvalue. It can be calculated using

P (v′, v) =
|v ∩ v′|

|v′|

We use the average of these two measures to
evaluate the performance of our extractor as fol-
lows:

R = avg(Ri(v
′, v)) ai ∈ Atest

P = avg(Pi(v
′, v)) ai ∈ Atest and vi

′ 6= ∅

The recall andprecisionrange from 0 to 1 and
are first calculated on a single instance and then
averaged over the testing instances.

4.2 Comparison with KE-Mon

In these experiments, WikiCiKE trains extractors
on AS ∪ AT , and KE-Mon trains extractors just
on AT . We incrementally increase the number of
target training articles from 10 to 500 (if available)
to compare WikiCiKE with KE-Mon in different
situations. We use the first testing data setAtest to
evaluate the results.

Figure 4 and Table 5 show the experimental re-
sults on TEMPLATE PERSON and FILM. We can
see that WikiCiKE outperforms KE-Mon on all
three attributions especially when the number of
target training samples is small. Although there-
call for alma materand theprecisionfor nation-
ality of WikiCiKE are lower than KE-Mon when
only 10 target training articles are available, Wi-
kiCiKE performs better than KE-Mon if we take
into consideration bothprecisionandrecall.
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Figure 4: Results for TEMPLATE PERSON.

Figure 4(d) shows the average improvements
yielded by WikiCiKE w.r.t KE-Mon on TEM-
PLATE PERSON. We can see that WikiCiKE
yields significant improvements when only a few
articles are available in target language and the im-
provements tend to decrease as the number of tar-
get articles is increased. In this case, the articles
in the target language are sufficient to train the ex-
tractors alone.

#
KE-Mon WikiCiKE

P R P R
10 81.1% 63.8% 90.7% 66.3%
30 78.8% 64.5% 87.5% 69.4%
50 80.7% 66.6% 87.7% 72.3%

100 82.8% 68.2% 87.8% 72.1%
200 83.6% 70.5% 87.1% 73.2%
300 85.2% 72.0% 89.1% 76.2%
500 86.2% 73.4% 88.7% 75.6%

# Number of the target training articles.

Table 5: Results forcountry in TEMPLATE
FILM.

4.3 Comparison with KE-Tr

We compare WikiCiKE with KE-Tr on the second
testing data setA

′
test.

From Table 6 it can be clearly observed that Wi-
kiCiKE significantly outperforms KE-Tr both in
precisionand recall. The reasons why the recal-
l of KE-Tr is extremely low are two-fold. First,
because of the limit of cross-lingual links and in-
foboxes in English Wikipedia, only a very smal-
l set of values is found by KE-Tr. Furthermore,
many values obtained using the translator are in-
correct because of translation errors. WikiCiKE
uses translators too, but it has better tolerance to
translation errors because the extracted value is
from the target article texts instead of the output
of translators.

Attribute KE-Tr WikiCiKE
P R P R

occupation 27.4% 3.40% 64.8% 26.4%
nationality 66.3% 4.60% 70.0% 55.0%
alma mater 66.7% 0.70% 76.3% 8.20%

Table 6: Results of WikiCiKE vs. KE-Tr.

4.4 Significance Test

We conducted a significance test to demonstrate
that the difference between WikiCiKE and KE-
Mon is significant rather than caused by statistical
errors. As for the comparison between WikiCiKE
and KE-Tr, significant improvements brought by
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WikiCiKE can be clearly observed from Table 6
so there is no need for further significance test.
In this paper, we use McNemar’s significance test
(Dietterich and Thomas, 1998).

Table 7 shows the results of significance test
calculated for the average on all tested attributes.
When the number of target training articles is less
than 100, theχ is much less than 10.83 that cor-
responds to a significance level 0.001. It suggests
that the chance that WikiCiKE is not better than
KE-Mon is less than 0.001.

# 10 30 50 100 200 300 500
χ 179.5 107.3 51.8 32.8 4.1 4.3 0.3

# Number of the target training articles.

Table 7: Results of Significance Test.

4.5 Overall Analysis

As shown in above experiments, we can see that
WikiCiKE outperforms both KE-Mon and KE-Tr.
When only 30 target training samples are avail-
able, WikiCiKE reaches comparable performance
of KE-Mon using 300-500 target training samples.
Among all of the 72 attributes in TEMPLATE
PERSON of Chinese Wikipedia, 39 (54.17%) and
55 (76.39%) attributes have less than 30 and 200
labeled articles respectively. We can see that Wi-
kiCiKE can save considerable human labor when
no sufficient target training samples are available.

We also examined the errors by WikiCiKE and
they can be categorized into three classes. For at-
tribute occupation when 30 target training sam-
ples are used, there are 71 errors. The first cat-
egory is caused by incorrect word segmentation
(40.85%). In Chinese, there is no space between
words so we need to segment them before extrac-
tion. The result of word segmentation directly
decide the performance of extraction so it caus-
es most of the errors. The second category is be-
cause of the incomplete infoboxes (36.62%). In
evaluation of KE-Mon, we directly use the val-
ues in infoboxex as golden values, some of them
are incomplete so the correct predicted values will
be automatically judged as the incorrect in these
cases. The last category is mismatched words
(22.54%). The predicted value does not match the
golden value or a part of it. In the future, we can
improve the performance of WikiCiKE by polish-
ing the word segmentation result.

5 Related Work

Some approaches of knowledge extraction from
the open Web have been proposed (Wu et al.,
2012; Yates et al., 2007). Here we focus on the
extraction inside Wikipedia.

5.1 Monolingual Infobox Extraction

KYLIN is the first system to autonomously ex-
tract the missing infoboxes from the correspond-
ing article texts by using a self-supervised learn-
ing method (Wu and Weld, 2007). KYLIN per-
forms well when enough training data are avail-
able. Such techniques as shrinkage and retraining
are proposed to increase the recall from English
Wikipedia’s long tail of sparse classes (Wu et al.,
2008; Wu and Weld, 2010). Different from Wu’s
research, WikiCiKE is a cross-lingual knowledge
extraction framework, which leverags rich knowl-
edge in the other language to improve extraction
performance in the target Wikipedia.

5.2 Cross-lingual Infobox Completion

Current translation based methods usually con-
tain two steps: cross-lingual attribute alignmen-
t and value translation. The attribute alignmen-
t strategies can be grouped into two categories:
cross-lingual link based methods (Bouma et al.,
2009) and classification based methods (Adar et
al., 2009; Nguyen et al., 2011; Aumueller et al.,
2005; Adafre and de Rijke, 2006; Li et al., 2009).
After the first step, the value in the source lan-
guage is translated into the target language. E.
Adar’s approach gives the overall precision of
54% and recall of 40% (Adar et al., 2009). How-
ever, recall of these methods is limited by the
number of equivalent cross-lingual articles and the
number of infoboxes in the source language. It is
also limited by the quality of the translators. Wi-
kiCiKE attempts to mine the missing infoboxes
directly from the article texts and thus achieves
a higher recall compared with these methods as
shown in Section 4.3.

5.3 Transfer Learning

Transfer learning can be grouped into four cate-
gories: instance-transfer, feature-representation-
transfer, parameter-transfer and relational-
knowledge-transfer (Pan and Yang, 2010).
TrAdaBoost, the instance-transfer approach, is
an extension of the AdaBoost algorithm, and
demonstrates better transfer ability than tradition-
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al learning techniques (Dai et al., 2007). Transfer
learning have been widely studied for classifica-
tion, regression, and cluster problems. However,
few efforts have been spent in the information
extraction tasks with knowledge transfer.

6 Conclusion and Future Work

In this paper we proposed a general cross-lingual
knowledge extraction framework called Wiki-
CiKE, in which extraction performance in the tar-
get Wikipedia is improved by using rich infobox-
es in the source language. The problems of topic
drift and translation error were handled by using
the TrAdaBoost model. Chinese-English exper-
imental results on four typical attributes showed
that WikiCiKE significantly outperforms both the
current translation based methods and the mono-
lingual extraction methods. In theory, WikiCiKE
can be applied to any two wiki knowledge based
of different languages.

We have been considering some future work.
Firstly, more attributes in more infobox templates
should be explored to make our results much
stronger. Secondly, knowledge in a minor lan-
guage may also help improve extraction perfor-
mance for a major language due to the cultural and
religion differences. A bidirectional cross-lingual
extraction approach will also be studied. Last but
not least, we will try to extract multipleattr-value
pairs at the same time for each article.

Furthermore, our work is part of a more ambi-
tious agenda on exploitation of linked data. On the
one hand, being able to extract data and knowl-
edge from multilingual sources such as Wikipedi-
a could help improve the coverage of linked data
for applications. On the other hand, we are also
investigating how to possibly integrate informa-
tion, including subjective information (Sensoy et
al., 2013), from multiple sources, so as to better
support data exploitation in context dependent ap-
plications.
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Abstract
We propose the hypothesis that word ety-
mology is useful for NLP applications as
a bridge between languages. We support
this hypothesis with experiments in cross-
language (English-Italian) document cat-
egorization. In a straightforward bag-of-
words experimental set-up we add etymo-
logical ancestors of the words in the docu-
ments, and investigate the performance of
a model built on English data, on Italian
test data (and viceversa). The results show
not only statistically significant, but a large
improvement – a jump of almost 40 points
in F1-score – over the raw (vanilla bag-of-
words) representation.

1 Introduction

When exposed to a document in a language he
does not know, a reader might be able to glean
some meaning from words that are the same (e.g.
names) or similar to those in a language he knows.
As an example, let us say that an Italian speaker
is reading an English text that contains the word
expense, which he does not know. He may be re-
minded however of the Latin word expensa which
is also the etymological root of the Italian word
spesa, which usually means “cost”/”shopping”,
and may thus infer that the English word refers
to the cost of things. In the experiments presented
here we investigate whether an automatic text cat-
egorization system could benefit from knowledge
about the etymological roots of words. The cross
language text categorization (CLTC) task consists
of categorizing documents in a target language Lt
using a model built from labeled examples in a
source language Ls. The task becomes more diffi-
cult when the data consists of comparable corpora
in the two languages – documents on the same top-
ics (e.g. sports, economy) – instead of parallel cor-
pora – there exists a one-to-one correspondence

between documents in the corpora for the two lan-
guages, one document being the translation of the
other.

To test the usefulness of etymological in-
formation we work with comparable collec-
tions of news articles in English and Ital-
ian, whose articles are assigned one of four
categories: culture and school, tourism, qual-
ity of life, made in Italy. We perform a progres-
sion of experiments, which embed etymological
information deeper and deeper into the model. We
start with the basic set-up, representing the doc-
uments as bag-of-words, where we train a model
on the English training data, and use this model
to categorize documents from the Italian test data
(and viceversa). The results are better than ran-
dom, but quite low. We then add the etymological
roots of the words in the data to the bag-of-words,
and notice a large – 21 points – increase in per-
formance in terms of F1-score. We then use the
bag-of-words representation of the training data to
build a semantic space using LSA, and use the
generated word vectors to represent the training
and test data. The improvement is an additional
16 points in F1-score.

Compared to related work, presented in Sec-
tion 3, where cross language text categorization
is approached through translation or mapping of
features (i.e. words) from the source to the target
language, word etymologies are a novel source of
cross-lingual knowledge. Instead of mapping fea-
tures between languages, we introduce new fea-
tures which are shared, and thus do not need trans-
lation or other forms of mapping.

The experiments presented show unequivocally
that word etymology is a useful addition to com-
putational models, just as they are to readers
who have such knowledge. This is an interest-
ing and useful result, especially in the current
research landscape where using and exploiting
multi-linguality is a desired requirement.
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morpheme relation related morpheme
eng: ex- rel:etymological origin of eng: excentric
eng: expense rel:etymology lat: expensa
eng: -ly rel:etymological origin of eng: absurdly
eng: -ly rel:etymological origin of eng: admirably
...
ita: spesa rel:etymology lat: expensa
ita: spesa rel:has derived form ita: spese
...
ita: spesare rel:etymologically related ita: spesa
...
lat: expensa rel:etymological origin of eng: expense
lat: expensa rel:etymological origin of ita: spesa
...
lat: expensa rel:is derived from lat: expensus
...

English: muscle
↓

French: muscle
↓

Latin: musculus
↓

Latin: mus
↓

Proto Indo-European: muh2s

Figure 1: Sample entries from the Etymological WordNet, and a few etymological layers

2 Word Etymology

Word etymology gives us a glimpse into the evo-
lution of words in a language. Words may be
adopted from a language because of cultural,
scientific, economic, political or other reasons
(Hitchings, 2009). In time these words “adjust” to
the language that adopted them – their sense may
change to various degrees – but they are still se-
mantically related to their etymological roots. To
illustrate the point, we show an example that the
reader, too, may find amusing: on the ticket vali-
dation machine on Italian buses, by way of instruc-
tion, it is written Per obliterare il biglietto .... A
native/frequent English speaker would most prob-
ably key in on, and be puzzled by, the word oblit-
erare, very similar to the English obliterate, whose
most used sense is to destroy completely / cause to
physically disappear . The Italian obliterare has
the “milder” sense of cancellare – cancel (which
is also shared by the English obliterate, but is less
frequent according to Merriam-Webster), and both
come from the Latin obliterare – erase, efface,
cause to disappear. While there has been some
sense migration – in English the more (physically)
destructive sense of the word has higher promi-
nence, while in Italian the word is closer in mean-
ing to its etymological root – the Italian and the
English words are still semantically related.

Dictionaries customarily include etymologi-

cal information for their entries, and recently,
Wikipedia’s Wiktionary has joined this trend. The
etymological information can, and indeed has
been extracted and prepared for machine con-
sumption (de Melo and Weikum, 2010): Etymo-
logical WordNet1 contains 6,031,431 entries for
2,877,036 words (actually, morphemes) in 397
languages. A few sample entries from this re-
source are shown in Figure 1.

The information in Etymological WordNet is
organized around 5 relations: etymology with
its inverse etymological origin of; is derived from
with its inverse has derived form; and the sym-
metrical etymologically related. The etymology
relation links a word with its etymological ances-
tors, and it is the relation used in the experiments
presented here. Prefixes and suffixes – such as ex-
and -ly shown in Figure 1 – are filtered out, as
they bring in much noise by relating words that
merely share such a morpheme (e.g. absurdly and
admirably) but are otherwise semantically distant.
has derived form is also used, to capture morpho-
logical variations.

The depth of the etymological hierarchy (con-
sidering the etymology relations) is 10. Figure 1
shows an example of a word with several levels of
etymological ancestry.

1http://www1.icsi.berkeley.edu/
˜demelo/etymwn/
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Lexicon
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. . .
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... 0

...

wep−1 0 1 · · · 0 0
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words
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1 1 0 · · · 0 0 0 0 · · · 0 1
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... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Italian
Lexicon

wi2 0
. . . 1 1 · · · 0 1

...
... 0
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wiq−1

. . . 0 0 1 · · · 0 1
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Figure 2: Multilingual word-by-document matrix

3 Cross Language Text Categorization

Text categorization (also text classification), “the
task of automatically sorting a set of documents
into categories (or classes or topics) from a prede-
fined set” (Sebastiani, 2005), allows for the quick
selection of documents from the same domain, or
the same topic. It is a very well research area, dat-
ing back to the 60s (Borko and Bernick, 1962).
The most frequently, and successfully, used docu-
ment representation is the bag-of-words (BoWs).
Results using this representation achieve accuracy
in the 90%s. Most variations include feature filter-
ing or weighing, and variations in learning algo-
rithms (Sebastiani, 2005).

Within the area of cross-language text catego-
rization (CLTC) several methods have been ex-
plored for producing the model for a target lan-
guage Lt using information and data from the
source language Ls. In a precursor task to CLTC,
cross language information retrieval (CLIR), Du-
mais et al. (1997) find semantic correspondences
in parallel (different language) corpora through la-
tent semantic analysis (LSA). Most CLTC meth-
ods rely heavily on machine translation (MT). MT
has been used: to cast the cross-language text

categorization problem to the monolingual setting
(Fortuna and Shawe-Taylor, 2005); to cast the
cross-language text categorization problem into
two monolingual settings for active learning (Liu
et al., 2012); to translate and adapt a model built
on language Ls to language Lt (Rigutini et al.,
2005), (Shi et al., 2010); to produce parallel
corpora for multi-view learning (Guo and Xiao,
2012). Wan et al. (2011) also use machine trans-
lation, but enhance the processing through domain
adaptation by feature weighing, assuming that the
training data in one language and the test data in
the other come from different domains, or can ex-
hibit different linguistic phenomena due to linguis-
tic and cultural differences. Prettenhofer and Stein
(2010) use a word translation oracle to produce
pivots – pairs of semantically similar words – and
use the data partitions induced by these words to
find cross language structural correspondences.

In a computationally lighter framework, not de-
pendent on MT, Gliozzo and Strapparava (2006)
and Wu et al. (2008) use bilingual lexicons and
aligned WordNet synsets to obtain shared features
between the training data in language Ls and the
testing data in language Lt. Gliozzo and Strap-
parava (2005), the first to use comparable as op-

653



posed to parallel corpora for CLTC, use LSA to
build multilingual domain models.

The bag-of-word document representation
maps a document di from a corpus D into a k-
dimensional space Rk, where k is the dimension
of the (possibly filtered) vocabulary of the corpus:
W = {w1, ..., wk}. Position j in the vector
representation of di corresponds to word wj , and
it may have different values, among the most
commonly used being: binary values – wj appears
(1) or not (0) in di; frequency of occurrence of wj
in di, absolute or normalized (relative to the size
of the document or the size of the vocabulary); the
tf ∗ idf(wj , di, D).

For the task of cross language text categoriza-
tion, the problem of sharing a model across lan-
guages is that the dimensions, a.k.a the vocabu-
lary, of the two languages are largely different.
Limited overlap can be achieved through shared
names and words. As we have seen in the lit-
erature review, machine translation and bilingual
dictionaries can be used to cast these dimensions
from the source language Ls to the target language
Lt. In this work we explore expanding the shared
dimensions through word etymologies. Figure 2
shows schematically the binary k dimensional rep-
resentation for English and Italian data, and shared
dimensions.

Cross language text categorization could be
used to obtain comparable corpora for building
translation models. In such a situation, relying on
a framework that itself relies on machine transla-
tion is not helpful. Bilingual lexicons are available
for frequently studied languages, but less so for
those poorer in resources. Considering such short-
comings, we look into additional linguistic infor-
mation, in particular word etymology. This infor-
mation impacts the data representation, by intro-
ducing new shared features between the different
language corpora without the need for translation
or other forms of mapping. The newly produced
representation can be used in conjunction with any
of the previously proposed algorithms.

Word etymologies are a novel source of linguis-
tic information in NLP, possibly because resources
that capture this information in a machine readable
format are also novel. Fang et al. (2009) used lim-
ited etymological information extracted from the
Collins English Dictionary (CED) for text catego-
rization on the British National Corpus (BNC): in-
formation on the provenance of words (ranges of

probability distribution of etymologies in different
versions of Latin – New Latin, Late Latin, Me-
dieval Latin) was used in a “home-made” range
classifier.

The experiments presented in this paper use the
bag-of-word document representation with abso-
lute frequency values. To this basic representation
we add word etymological ancestors and run clas-
sification experiments. We then use LSA – previ-
ously shown by (Dumais et al., 1997) and (Gliozzo
and Strapparava, 2005) to be useful for this task –
to induce the latent semantic dimensions of docu-
ments and words respectively, hypothesizing that
word etymological ancestors will lead to semantic
dimensions that transcend language boundaries.
The vectors obtained through LSA (on the training
data only) for words that are shared by the English
training data and the Italian test data (names, and
most importantly, etymological ancestors of words
in the original documents) are then used for re-
representing the training and test data. The same
process is applied for Italian training and English
test data. Classification is done using support vec-
tor machines (SVMs).

3.1 Data

The data we work with consists of compara-
ble corpora of news articles in English and Ital-
ian. Each news article is annotated with one of
the four categories: culture and school, tourism,
quality of life, made in Italy. Table 1 shows the
dataset statistics. The average document length is
approximately 300 words.

3.2 Raw cross-lingual text categorization

As is commonly done in text categorization (Se-
bastiani, 2005), the documents in our data are
represented as bag-of-words, and classification is
done using support vector machines (SVMs).

One experimental run consists of 4 binary ex-
periments – one class versus the rest, for each of
the 4 classes. The results are reported through
micro-averaged precision, recall and F1-score for
the targeted class, as well as overall accuracy. The
high results, on a par with text categorization ex-
periments in the field, validates our experimental
set-up.

For the cross language categorization experi-
ments described in this paper, we use the data
described above, and train on one language (En-
glish/Italian), and test on the other, using the same
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English Italian
Categories Training Test Total Training Test Total
quality of life 5759 1989 7748 5781 1901 7682
made in Italy 5711 1864 7575 6111 2068 8179
tourism 5731 1857 7588 6090 2015 8105
culture and school 3665 1245 4910 6284 2104 8388
Total 20866 6955 27821 24266 8088 32354

Table 1: Dataset statistics

monolingual BoW categorization
Prec Rec F1 Acc

Train EN / Test EN 0.92 0.92 0.92 0.96
Train IT / Test IT 0.94 0.94 0.94 0.97

Table 2: Performance for monolingual raw text
categorization

experimental set-up as for the monolingual sce-
nario (4 binary problems). The categorization
baseline (BoW baseline in Figure 4) was obtained
in this set-up. This baseline is higher than the ran-
dom baseline or the positive class baseline2 (all in-
stances are assigned the target class in each of the
4 binary classification experiments) due to shared
words and names between the two languages.

3.3 Enriching the bag-of-word
representation with word etymology

As personal experience has shown us that etymo-
logical information is useful for comprehending
a text in a different language, we set out to test
whether this information can be useful in an auto-
matic processing setting. We first verified whether
the vocabularies of our two corpora, English and
Italian, have shared word etymologies. Relying
on word etymologies from the Etymological dic-
tionary, we found that from our data’s vocabulary,
518 English terms and 543 Italian terms shared
490 direct etymological ancestors. Etymological
ancestors also help cluster related terms within one
language – 887 etymological ancestors for 4727
English and 864 ancestors for 5167 Italian terms.
This overlap further increases when adding de-
rived forms (through the has derived form rela-
tion). The fact that this overlap exists strengthens
the motivation to try using etymological ancestors
for the task of text categorization.

In this first step of integrating word etymology

2In this situation the random and positive class baseline
are the same: 25% F1 score.

into the experiment, we extract for each word in
each document in the dataset its ancestors from
the Etymological dictionary. Because each word
wj in a document di has associated an absolute
frequency value fij (the number of occurrences of
wj in di), for the added etymological ancestors ek
in document Di we associate as value the sum of
frequencies of their etymological children in di:

fiek =
∑

wj∈di
wjetymology ek

fij

We make the depth of extraction a parameter,
and generate data representation when consider-
ing only direct etymological antecedents (depth 1)
and then up to a distance of N. For our dataset we
noticed that the representation does not change af-
ter N=4, so this is the maximum depth we con-
sider. The bag-of-words representation for each
document is expanded with the corresponding et-
ymological features.

expansion training data vo-
cabulary size

vocabulary over-
lap with testing

Train EN /Test IT
raw 71122 14207 (19.9%)
depth 1 78936 18275 (23.1%)
depth 2 79068 18359 (23.2%)
depth 3 79100 18380 (23.2%)
depth 4 79103 18382 (23.2%)

Train IT /Test EN
raw 78750 14110 (17.9%)
depth 1 83656 18682 (22.3%)
depth 2 83746 18785 (22.4%)
depth 3 83769 18812 (22.5%)
depth 4 83771 18814 (22.5%)

Table 3: Feature expansion with word etymologies

Table 3 shows the training data vocabulary size
and increase in the overlap between the training
and test data with the addition of etymological fea-
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tures. The increase is largest when introducing
the immediate etymological ancestors, of approx-
imately 4000 new (overlapping) features for both
combinations of training and testing. Without ety-
mological features the overlap was approximately
14000 for both configurations. The results ob-
tained with this enriched BoW representation for
etymological ancestor depth 1, 2 and 3 are pre-
sented in Figure 4.

3.4 Cross-lingual text categorization in a
latent semantic space adding etymology

Shared word etymologies can serve as a bridge be-
tween two languages as we have seen in the pre-
vious configuration. When using shared word et-
ymologies in the bag-of-words representation, we
only take advantage of the shallow association be-
tween these new features and the classes within
which they appear. But through the co-occurrence
of the etymological features and other words in
different documents in the training data, we can
induce a deeper representation for the words in
a document, that captures better the relationship
between the features (words) and the classes to
which the documents belong. We use latent se-
mantic analysis (LSA) (Deerwester et al., 1990)
to perform this representational transformation.
The process relies on the assumption that word
co-occurrences across different documents are the
surface manifestation of shared semantic dimen-
sions. Mathematically, the 〈word × document〉
matrix D is expressed as a product of three ma-
trices:

D = V ΣUT

by performing singular value decomposition
(SVD). V would correspond roughly to a 〈word
× latent semantic dimension〉 matrix, UT is the
transposed of a 〈document × latent semantic
dimension〉 matrix, and Σ is a diagonal matrix
whose values are indicative of the “strength” of the
semantic dimensions. By reducing the size of Σ,
for example by selecting the dimensions with the
top K values, we can obtain an approximation of
the original matrix D ≈ DK = VKΣKU

T
K , where

we restrict the latent semantic dimensions taken
into account to the K chosen ones. Figure 3 shows
schematically the process.

We perform this decomposition and dimension
reduction step on the 〈word × document〉 ma-
trix built from the training data only, and using
K=400. Both the training and test data are then
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Figure 3: Schematic view of LSA

re-represented through the new word vectors from
matrix VK . Because the LSA space was built only
from the training data, only the shared words and
shared etymological ancestors are used to produce
representations of the test data. The categorization
is done again with SVM. The results of this exper-
iment are shown in Figure 4, together with an LSA
baseline – using the raw data and relying on shared
words and names as overlap.

4 Discussion

The experiments whose results we present here
were produced using unfiltered data – all words in
the datasets, all etymological ancestors up to the
desired depth, no filtering based on frequency of
occurrence. Feature filtering is commonly done in
machine learning when the data has many features,
and in text categorization when using the bag-of-
words representation in particular. We chose not to
perform this step for two main reasons: (i) filter-
ing is sensitive to the chosen threshold; (ii) LSA
thrives on word co-occurrences, which would be
drastically reduced by word removal. The point
that etymology information is a useful addition to
the task of cross-language text categorization can
be made without finding the optimal filtering set-
up.

The baseline experiments show that despite
the relatively large word overlap (approx. 14000
terms), cross-language text categorization gives
low results. Adding a first batch of etymological
information – approximately 4000 shared immedi-
ate ancestors – leads to an increase of 18 points in
terms of F1-score on the BoW experimental set-up
for English training/Italian testing, and 21 points
for Italian training/English testing. Further addi-
tions of etymological ancestors at depths 2 and
3 results in an increase of 21 points in terms of
F1-score for English training/Italian testing, and
27 points for Italian training/English testing. The
higher increase in performance on this experimen-
tal configuration for Italian training/English test-
ing is explained by the higher term overlap be-
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Figure 4: CLTC results with etymological features

tween the training and test data, as evidenced by
the statistics in Table 3.

The next processing step induced a represen-
tation of the shared words that encodes deeper
level dependencies between words and documents
based on word co-occurrences in documents. The
LSA space built on the training data leads to a
vector representation of the shared words, includ-
ing the shared etymological ancestors, that cap-
tures more than the obvious word-document co-
occurrences. Using this representation leads to a
further increase of 15 points in F1-score for En-
glish training/Italian testing set-up over the BoW
representation, and 14 points over the baseline
LSA-based categorization. The increase for the
Italian training/English testing is 5 points over the
BoW representation, but 20 points over the base-
line LSA. We saw that the high performance BoW
on Italian training/English testing is due to the
high term overlap. The clue to why the increase
when using LSA is lower than for English train-
ing/Italian testing is in the way LSA operates – it
relies heavily on word co-occurrences in finding
the latent semantic dimensions of documents and
words. We expect then that in the Italian training

collection, words are “less shared” among docu-
ments, which means a lower average document
frequency. Figure 5 shows the changes in aver-
age document frequency for the two training col-
lections, starting with the raw data (depth 0), and
with additional etymological features.
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Figure 5: Document frequency changes with the
addition of etymological features

The shape of the document frequency curves
mirror the LSA results – the largest increase is the
effect of adding the set of direct etymological an-
cestors, and additions of further, more distant, an-
cestors lead to smaller improvements.
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We have performed the experiments described
above on two releases of the Etymological dictio-
nary. The results described in the paper were ob-
tained on the latest release (February 2013). The
difference in results on the two dictionary versions
was significant: a 4 and 5 points increase respec-
tively in micro-averaged F1-score in the bag-of-
words setting for English training/Italian testing
and Italian training/English testing, and a 2 and
6 points increase in the LSA setting. This indi-
cates that more etymological information is better,
and the dynamic nature of Wikipedia and the Wik-
tionary could lead to an ever increasing and better
etymological resource for NLP applications.

5 Conclusion

The motivation for this work was to test the hy-
pothesis that information about word etymology is
useful for computational approaches to language,
in particular for text classification. Cross-language
text classification can be used to build compara-
ble corpora in different languages, using a single
language starting point, preferably one with more
resources, that can thus spill over to other lan-
guages. The experiments presented have shown
clearly that etymological ancestors can be used
to provide the necessary bridge between the lan-
guages we considered – English and Italian. Mod-
els produced on English data when using etymo-
logical information perform with high accuracy
(89%) and high F1-score (80) on Italian test data,
with an increase of almost 40 points over a simple
bag-of-words model, which, for crossing language
boundaries, relies exclusively on shared names
and words. Training on Italian data and testing on
English data performed almost as well (87% accu-
racy, 75 F1-score). We plan to expand our experi-
ments to more languages with shared etymologies,
and investigate what characteristics of languages
and data indicate that etymological information is
beneficial for the task at hand.

We also plan to explore further uses for this lan-
guage bridge, at a finer semantic level. Monolin-
gual and cross-lingual textual entailment in par-
ticular would be interesting applications, because
they require finding shared meaning on two text
fragments. Word etymologies would allow recog-
nizing words with shared ancestors, and thus with
shared meaning, both within and across languages.
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Abstract 

Just as observing is more than just see-
ing, comparing is far more than mere 
matching. It takes understanding, and 
even inventiveness, to discern a useful 
basis for judging two ideas as similar in a 
particular context, especially when our 
perspective is shaped by an act of linguis-
tic creativity such as metaphor, simile or 
analogy. Structured resources such as 
WordNet offer a convenient hierarchical 
means for converging on a common 
ground for comparison, but offer little 
support for the divergent thinking that is 
needed to creatively view one concept as 
another. We describe such a means here, 
by showing how the web can be used to 
harvest many divergent views for many 
familiar ideas. These lateral views com-
plement the vertical views of WordNet, 
and support a system for idea exploration 
called Thesaurus Rex. We show also how 
Thesaurus Rex supports a novel, genera-
tive similarity measure for WordNet. 

1 Seeing is Believing (and Creating) 
Similarity is a cognitive phenomenon that is both 
complex and subjective, yet for practical reasons 
it is often modeled as if it were simple and objec-
tive. This makes sense for the many situations 
where we want to align our similarity judgments 
with those of others, and thus focus on the same 
conventional properties that others are also likely 
to focus upon. This reliance on the consensus 
viewpoint explains why WordNet (Fellbaum, 
1998) has proven so useful as a basis for compu-
tational measures of lexico-semantic similarity 

(e.g. see Pederson et al. 2004, Budanitsky & 
Hirst, 2006; Seco et al. 2006). These measures 
reduce the similarity of two lexical concepts to a 
single number, by viewing similarity as an objec-
tive estimate of the overlap in their salient quali-
ties. This convenient perspective is poorly suited 
to creative or insightful comparisons, but it is 
sufficient for the many mundane comparisons we 
often perform in daily life, such as when we or-
ganize books or look for items in a supermarket. 
So if we do not know in which aisle to locate a 
given item (such as oatmeal), we may tacitly 
know how to locate a similar product (such as 
cornflakes) and orient ourselves accordingly. 
 Yet there are occasions when the recognition 
of similarities spurs the creation of similarities, 
when the act of comparison spurs us to invent 
new ways of looking at an idea. By placing pop 
tarts in the breakfast aisle, food manufacturers 
encourage us to view them as a breakfast food 
that is not dissimilar to oatmeal or cornflakes. 
When ex-PM Tony Blair published his memoirs, 
a mischievous activist encouraged others to 
move his book from Biography to Fiction in 
bookshops, in the hope that buyers would see it 
in a new light. Whenever we use a novel meta-
phor to convey a non-obvious viewpoint on a 
topic, such as “cigarettes are time bombs”, the 
comparison may spur us to insight, to see aspects 
of the topic that make it more similar to the vehi-
cle (see Ortony, 1979; Veale & Hao, 2007).  
 In formal terms, assume agent A has an in-
sight about concept X, and uses the metaphor X 
is a Y to also provoke this insight in agent B. To 
arrive at this insight for itself, B must intuit what 
X and Y have in common. But this commonality 
is surely more than a standard categorization of 
X, or else it would not count as an insight about 
X. To understand the metaphor, B must place X 
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in a new category, so that X can be seen as more 
similar to Y. Metaphors shape the way we per-
ceive the world by re-shaping the way we make 
similarity judgments. So if we want to imbue 
computers with the ability to make and to under-
stand creative metaphors, we must first give 
them the ability to look beyond the narrow view-
points of conventional resources.  
 Any measure that models similarity as an ob-
jective function of a conventional worldview 
employs a convergent thought process. Using 
WordNet, for instance, a similarity measure can 
vertically converge on a common superordinate 
category of both inputs, and generate a single 
numeric result based on their distance to, and the 
information content of, this common generaliza-
tion. So to find the most conventional ways of 
seeing a lexical concept, one simply ascends a 
narrowing concept hierarchy, using a process de 
Bono (1970) calls vertical thinking. To find nov-
el, non-obvious and useful ways of looking at a 
lexical concept, one must use what Guilford 
(1967) calls divergent thinking and what de Bono 
calls lateral thinking. These processes cut across 
familiar category boundaries, to simultaneously 
place a concept in many different categories so 
that we can see it in many different ways.  
 de Bono argues that vertical thinking is selec-
tive while lateral thinking is generative. Whereas 
vertical thinking concerns itself with the “right” 
way or a single “best” way of looking at things, 
lateral thinking focuses on producing alternatives 
to the status quo. To be as useful for creative 
tasks as they are for conventional tasks, we need 
to re-imagine our computational similarity 
measures as generative rather than selective, ex-
pansive rather than reductive, divergent as well 
as convergent and lateral as well as vertical. 
Though WordNet is ideally structured to support 
vertical, convergent reasoning, its comprehensive 
nature means it can also be used as a solid foun-
dation for building a more lateral and divergent 
model of similarity. Here we will use the web as 
a source of diverse perspectives on familiar ide-
as, to complement the conventional and often 
narrow views codified by WordNet.  
 Section 2 provides a brief overview of past 
work in the area of similarity measurement, be-
fore section 3 describes a simple bootstrapping 
loop for acquiring richly diverse perspectives 
from the web for a wide variety of familiar ideas. 
These perspectives are used to enhance a Word-
Net-based measure of lexico-semantic similarity 
in section 4, by broadening the range of informa-
tive viewpoints the measure can select from. 

Similarity is thus modeled as a process that is 
both generative and selective. This lateral-and-
vertical approach is evaluated in section 5, on the 
Miller & Charles (1991) data-set. A web app for 
the lateral exploration of diverse viewpoints, 
named Thesaurus Rex, is also presented, before 
closing remarks are offered in section 6. 

2 Related Work and Ideas 

WordNet’s taxonomic organization of noun-
senses and verb-senses – in which very general 
categories are successively divided into increas-
ingly informative sub-categories or instance-
level ideas – allows us to gauge the overlap in 
information content, and thus of meaning, of two 
lexical concepts. We need only identify the 
deepest point in the taxonomy at which this con-
tent starts to diverge. This point of divergence is 
often called the LCS, or least common subsumer, 
of two concepts (Pederson et al., 2004). Since 
sub-categories add new properties to those they 
inherit from their parents – Aristotle called these 
properties the differentia that stop a category sys-
tem from trivially collapsing into itself – the 
depth of a lexical concept in a taxonomy is an 
intuitive proxy for its information content. Wu & 
Palmer (1994) use the depth of a lexical concept 
in the WordNet hierarchy as such a proxy, and 
thereby estimate the similarity of two lexical 
concepts as twice the depth of their LCS divided 
by the sum of their individual depths. 
 Leacock and Chodorow (1998) instead use 
the length of the shortest path between two con-
cepts as a proxy for the conceptual distance be-
tween them. To connect any two ideas in a 
hierarchical system, one must vertically ascend 
the hierarchy from one concept, change direction 
at a potential LCS, and then descend the hierar-
chy to reach the second concept. (Aristotle was 
also first to suggest this approach in his Poetics). 
Leacock and Chodorow normalize the length of 
this path by dividing its size (in nodes) by twice 
the depth of the deepest concept in the hierarchy; 
the latter is an upper bound on the distance be-
tween any two concepts in the hierarchy. Negat-
ing the log of this normalized length yields a 
corresponding similarity score. While the role of 
an LCS is merely implied in Leacock and Cho-
dorow’s use of a shortest path, the LCS is pivotal 
nonetheless, and like that of Wu & Palmer, the 
approach uses an essentially vertical reasoning 
process to identify a single “best” generalization.  
 Depth is a convenient proxy for information 
content, but more nuanced proxies can yield 
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more rounded similarity measures. Resnick 
(1995) draws on information theory to define the 
information content of a lexical concept as the 
negative log likelihood of its occurrence in a 
corpus, either explicitly (via a direct mention) or 
by presupposition (via a mention of any of its 
sub-categories or instances). Since the likelihood 
of a general category occurring in a corpus is 
higher than that of any of its sub-categories or 
instances, such categories are more predictable, 
and less informative, than rarer categories whose 
occurrences are less predictable and thus more 
informative. The negative log likelihood of the 
most informative LCS of two lexical concepts 
offers a reliable estimate of the amount of infor-
mation shared by those concepts, and thus a good 
estimate of their similarity. Lin (1998) combines 
the intuitions behind Resnick’s metric and that of 
Wu and Palmer to estimate the similarity of two 
lexical concepts as an information ratio: twice 
the information content of their LCS divided by 
the sum of their individual information contents.  
 Jiang and Conrath (1997) consider the con-
verse notion of dissimilarity, noting that two lex-
ical concepts are dissimilar to the extent that 
each contains information that is not shared by 
the other. So if the information content of their 
most informative LCS is a good measure of what 
they do share, then the sum of their individual 
information contents, minus twice the content of 
their most informative LCS, is a reliable estimate 
of their dissimilarity.  
 Seco et al. (2006) presents a minor innova-
tion, showing how Resnick’s notion of infor-
mation content can be calculated without the use 
of an external corpus. Rather, when using Res-
nick’s metric (or that of Lin, or Jiang and Con-
rath) for measuring the similarity of lexical 
concepts in WordNet, one can use the category 
structure of WordNet itself to estimate infor-
mation content. Typically, the more general a 
concept, the more descendants it will possess. 
Seco et al. thus estimate the information content 
of a lexical concept as the log of the sum of all 
its unique descendants (both direct and indirect), 
divided by the log of the total number of con-
cepts in the entire hierarchy. Not only is this in-
trinsic view of information content convenient to 
use, without recourse to an external corpus, Seco 
et al. show that it offers a better estimate of in-
formation content than its extrinsic, corpus-based 
alternatives, as measured relative to average hu-
man similarity ratings for the 30 word-pairs in 
the Miller & Charles (1991) test set. 
 A similarity measure can draw on other 

sources of information besides WordNet’s cate-
gory structures. One might eke out additional 
information from WordNet’s textual glosses, as 
in Lesk (1986), or use category structures other 
than those offered by WordNet. Looking beyond 
WordNet, entries in the online encyclopedia 
Wikipedia are not only connected by a dense 
topology of lateral links, they are also organized 
by a rich hierarchy of overlapping categories. 
Strube and Ponzetto (2006) show how Wikipedia 
can support a measure of similarity (and related-
ness) that better approximates human judgments 
than many WordNet-based measures. Nonethe-
less, WordNet can be a valuable component of a 
hybrid measure, and Agirre et al. (2009) use an 
SVM (support vector machine) to combine in-
formation from WordNet with information har-
vested from the web. Their best similarity 
measure achieves a remarkable 0.93 correlation 
with human judgments on the Miller & Charles 
word-pair set.  
 Similarity is not always applied to pairs of 
concepts; it is sometimes analogically applied to 
pairs of pairs of concepts, as in proportional 
analogies of the form A is to B as C is to D (e.g., 
hacks are to writers as mercenaries are to sol-
diers, or chisels are to sculptors as scalpels are 
to surgeons). In such analogies, one is really as-
sessing the similarity of the unstated relationship 
between each pair of concepts: thus, mercenaries 
are soldiers whose allegiance is paid for, much as 
hacks are writers with income-driven loyalties; 
sculptors use chisels to carve stone, while sur-
geons use scalpels to cut or carve flesh. Veale 
(2004) used WordNet to assess the similarity of 
A:B to C:D as a function of the combined simi-
larity of A to C and of B to D. In contrast, Tur-
ney (2005) used the web to pursue a more 
divergent course, to represent the tacit relation-
ships of A to B and of C to D as points in a high-
dimensional space. The dimensions of this space 
initially correspond to linking phrases on the 
web, before these dimensions are significantly 
reduced using singular value decomposition.  
 In the infamous SAT test, an analogy 
A:B::C:D has four other pairs of concepts that 
serve as likely distractors (e.g. singer:songwriter 
for hack:writer) and the goal is to choose the 
most appropriate C:D pair for a given A:B pair-
ing. Using variants of Wu and Palmer (1994) on 
the 374 SAT analogies of Turney (2005), Veale 
(2004) reports a success rate of 38–44% using 
only WordNet-based similarity. In contrast, Tur-
ney (2005) reports up to 55% success on the 
same analogies, partly because his approach aims 
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to match implicit relations rather than explicit 
concepts, and in part because it uses a divergent 
process to gather from the web as rich a perspec-
tive as it can on these latent relationships.  

2.1 Clever Comparisons Create Similarity 

Each of these approaches to similarity is a user 
of information, rather than a creator, and each 
fails to capture how a creative comparison (such 
as a metaphor)  can spur a listener to view a topic 
from an atypical perspective. Camac & Glucks-
berg (1984) provide experimental evidence for 
the claim that “metaphors do not use preexisting 
associations to achieve their effects […] people 
use metaphors to create new relations between 
concepts.” They also offer a salutary reminder of 
an often overlooked fact: every comparison ex-
ploits information, but each is also a source of 
new information in its own right. Thus, “this cola 
is acid” reveals a different perspective on cola 
(e.g. as a corrosive substance or an irritating 
food) than “this acid is cola” highlights for acid 
(such as e.g., a familiar substance)   
 Veale & Keane (1994) model the role of simi-
larity in realizing the long-term perlocutionary 
effect of an informative comparison. For exam-
ple, to compare surgeons to butchers is to en-
courage one to see all surgeons as more bloody, 
crude or careless. The reverse comparison, of 
butchers to surgeons, encourages one to see 
butchers as more skilled and precise. Veale & 
Keane present a network model of memory, 
called Sapper, in which activation can spread 
between related concepts, thus allowing one con-
cept to prime the properties of a neighbor. To 
interpret an analogy, Sapper lays down new acti-
vation-carrying bridges in memory between ana-
logical counterparts, such as between surgeon & 
butcher, flesh & meat, and scalpel & cleaver. 
Comparisons can thus have lasting effects on 
how Sapper sees the world, changing the pattern 
of activation that arises when it primes a concept.  
 Veale (2003) adopts a similarly dynamic view 
of similarity in WordNet, showing how an ana-
logical comparison can result in the automatic 
addition of new categories and relations to 
WordNet itself. Veale considers the problem of 
finding an analogical mapping between different 
parts of WordNet’s noun-sense hierarchy, such 
as between instances of Greek god and Norse 
god, or between the letters of different alphabets, 
such as of Greek and Hebrew. But no structural 
similarity measure for WordNet exhibits enough 
discernment to e.g. assign a higher similarity to 

Zeus & Odin (each is the supreme deity of its 
pantheon) than to a pairing of Zeus and any other 
Norse god, just as no structural measure will as-
sign a higher similarity to Alpha & Aleph or to 
Beta & Beth than to any random letter pairing.  
 A fine-grained category hierarchy permits 
fine-grained similarity judgments, and though 
WordNet is useful, its sense hierarchies are not 
especially fine-grained. However, we can auto-
matically make WordNet subtler and more dis-
cerning, by adding new fine-grained categories 
to unite lexical concepts whose similarity is not 
reflected by any existing categories. Veale 
(2003) shows how a property that is found in the 
glosses of two lexical concepts, of the same 
depth, can be combined with their LCS to yield a 
new fine-grained parent category, so e.g. “su-
preme” + deity = Supreme-deity (for Odin, Zeus, 
Jupiter, etc.) and “1st” + letter = 1st-letter (for 
Alpha, Aleph, etc.) Selected aspects of the textual 
similarity of two WordNet glosses – the key to 
similarity in Lesk (1986) – can thus be reified 
into an explicitly categorical WordNet form.  

3 Divergent  (Re)Categorization 
To tap into a richer source of concept properties 
than WordNet’s glosses, we can use web n-
grams. Consider these descriptions of a cowboy 
from the Google n-grams (Brants & Franz, 
2006). The numbers to the right are Google fre-
quency counts. 

 a lonesome cowboy   432 
 a mounted cowboy   122 
 a grizzled cowboy     74 
 a swaggering cowboy     68 

To find the stable properties that can underpin a 
meaningful fine-grained category for cowboy, we 
must seek out the properties that are so often pre-
supposed to be salient of all cowboys that one 
can use them to anchor a simile, such as "swag-
gering like a cowboy” or “as grizzled as a cow-
boy”. So for each property P suggested by 
Google n-grams for a lexical concept C, we gen-
erate a like-simile for verbal behaviors such as 
swaggering and an as-as-simile for adjectives 
such as lonesome. Each is then dispatched to 
Google as a phrasal query. We value quality over 
size, as these similes will later be used to find 
diverse viewpoints on the web via bootstrapping. 
We thus manually filter each web simile, to weed 
out any that are ill-formed, and those intended to 
be seen as ironic by their authors. This gives us a 
body of 12,000+ valid web similes. 
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 Veale (2011, 2012, 2013) notes that web uses 
of the pattern “as P as C” are rife with irony. In 
contrast, web instances of “P S such as C” – 
where S denotes a superordinate of C – are rarely 
ironic. Hao & Veale (2010) exploit this fact to 
filter ironic comparisons from web similes, by 
re-expressing each “as P as C” simile as  “P * 
such as C” (using a wildcard * to match any val-
ues for S) and looking for attested uses of this 
new form on the web. Since each hit will also 
yield a value for S via the wildcard *, and a fine-
grained category P-S for C, we use this approach 
here to harvest fine-grained categories from the 
web from most of our similes.   
 Once C is seen to be an exemplary member of 
the category P-S, such as cola in fizzy-drink, a 
targeted web search is used to find other mem-
bers of P-S, via the anchored query “P S such as 
* and C”. For example, “fizzy drinks such as * 
and cola” will retrieve web texts in which * is 
matched to soda or lemonade. Each new member 
can then be used to instantiate a further query, as 
in “fizzy drinks such as * and soda”, to retrieve 
other members of P-S, such as champagne and 
root beer. This bootstrapping process runs in 
successive cycles, using doubly-anchored pat-
terns that – following Kozareva et al. (2008) and 
Veale et al. (2009) – explicitly mention both the 
category to be populated (P-S) and a recently 
acquired member of this category (C).  
 As cautioned by Kozareva et al., it is reckless 
to bootstrap from members to categories to 
members again if each enfilade of queries is like-
ly to return noisy results. A reliable filter must be 
applied at each stage, to ensure that any member 
C that is placed in a category P-S is a sensible 
member of the category S. Only by filtering in 
this way can we stop the rapid accumulation of 
noise. For instance, a WordNet-based filter dis-
cards any categorization “P S such as X and C” 
where X does not denote a WordNet entry for 
which S does not denote a valid hypernym. Such 
a filter offers no creative latitude, however, since 
it forces every pairing of C and P-S to precisely 
obey WordNet’s category hierarchy. We thus use 
instead the near-miss filter described in Veale et 
al. (2009), in which X must denote a descendant 
of some direct hypernym of some sense of S. The 
filter does not (and cannot) determine whether P 
is salient for X. It merely assumes that if P is sa-
lient for C, it is salient for X.  
 Five successive cycles of bootstrapping are 
performed, using the 12,000+ web similes as a 
starting point. Consider cola: after 1 cycle, we 
acquire 14 new categories, such as effervescent-

beverage and sweet-beverage. After 2 cycles we 
acquire 43 categories; after 3 cycles, 72; after 4 
cycles, 93; and after 5 cycles, we acquire 102 
fine-grained perspectives on cola, such as stimu-
lating-drink and corrosive-substance. 
 

 
Figure 1. Fine-grained perspectives for cola found by 
Thesaurus Rex on the web. See also Figures 3 and 4. 

These alternative viewpoints, for a broad array of 
concepts, are gleaned from the collective intelli-
gence of the web. Some are more discerning and 
informative than others – see for instance war & 
divorce in Figure 4 – though as de Bono (1971) 
notes, lateral thinking does not privilege a nar-
row set of “correct” viewpoints, rather it gener-
ates a broad array of interesting alternatives, 
none of which are ever “wrong”, even if some 
prove more useful than others in a given context.  

4 Measuring and Creating Similarity 
Which perspectives will be most useful and in-
formative to a WordNet-based similarity metric? 
Simply, a perspective M-Cx  for a concept Cy 
can be coherently added to WordNet iff Cx de-
notes a hypernym of some sense of Cy in Word-
Net. For purposes of quantifying the similarity of 
two terms t1 and t2 – by finding the WordNet 
senses of these terms that exhibit the highest sim-
ilarity – we can augment WordNet with the per-
spectives on t1 and t2 that are coherent with 
WordNet’s hierarchy. So for t1=cola & t2=acid, 
corrosive-substance offers a coherent new per-
spective on each, slotting in beneath the match-
ing WordNet sense of substance.  
 A category system is a structured feature 
space. We estimate the similarity of C1 and C2 as 
the cosine of the angle between the feature vec-
tors that are constructed for each. The dimen-
sions of these vectors are the atomic hypernyms 
(direct or indirect) of C1 and C2 in WordNet; the 
value of a dimension H in a vector is the infor-
mation content (IC) of the WordNet hypernym H:  
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                  size(H)  

      Σc ∈ WN  size(c)) 

Here size(H) is the total number of lexical con-
cepts in category H in WordNet, excluding any 
instance-level concepts, as these illustrative indi-
viduals are not evenly distributed across Word-
Net categories.  
 We also want any fine-grained perspective M-
H to influence our similarity metric, provided it 
can be coherently tied into WordNet as a shared 
hypernym of the two lexical concepts being 
compared. The absolute information content of a 
category M-H  that is newly added to WordNet is 
given by (2): 

                                         size(M-H)  

  Σm-h ∈ WN  size(m-h)) 

where size(M-H) is the number of lexical con-
cepts in WordNet for which M-H can be added 
as a new hypernym. The denominator in (2) de-
notes the sum total of the size of all fine-grained 
categories that can be coherently added to 
WordNet for any term.   
  The IC of M-H relative to H is estimated via 
the geometric mean of ICabs(M-H) and IC(H) is 
given by (3): 

(3)  IC(M-H)    =   √ ICabs(M-H) . IC(H) 

For a shared dimension H in the feature vectors 
of concepts C1 and C2, if at least one fine-grained 
perspective M-H has been added to WordNet 
between H and C1 and between H and C2, then 
the value of dimension H for C1 and for C2 is 
given by (4): 

 (4)  weight(H)   = max(IC(H),  maxM IC(M-H)) 

When no shared perspective M-H can be added 
under H, then weight(H) = IC(H). A fine-grained 
perspective M-H will thus influence a similarity 
judgment between C1 and C2 only if M-H can be 
coherently added to WordNet as a hypernym of 
C1 and C2, and if M-H enriches our view of H. 
Unlike Resnick (1995), Lin (1998) and Seco et 
al. (2006), this vector-space approach does not 
hinge on the information content of a single 
LCS, so any shared hypernym H or perspective 
M-H can shape a similarity judgment according 
to its informativeness. 

5 Empirical Evaluation  

Many fascinating perspectives on familiar ideas 
are bootstrapped from the web using similes as a 
starting point. These perspectives drive an ex-
ploratory web-aid to lateral thinking we call The-
saurus Rex, while the cosine-distance metric 
constructed from WordNet and these many fine-
grained categories is called, simply, Rex. When 
Rex provides a numeric estimate of similarity for 
two ideas, Thesaurus Rex provides an enhanced 
insight into why these ideas are similar, e.g. by 
explaining that cola & acid are not just substanc-
es, they are corrosive substances.  
    We evaluate Rex by estimating how closely its 
judgments correlate with those of human judges 
on the 30-pair word set of Miller & Charles 
(M&C), who aggregated the judgments of multi-
ple human raters into mean ratings for these 
pairs. We evaluate three variants of Rex on 
M&C: Rex-lat, which combines WordNet with 
all of Thesaurus Rex; Rex-wn, which uses only 
WordNet, with nothing at all from Thesaurus 
Rex; and Rex-pop, which enriches WordNet with 
only popular perspectives from Thesaurus Rex. 
A perspective is considered popular if it is dis-
covered 5 or more times in the bootstrapping 
process, using 5 different anchors. While corro-
sive-substance is a popular category for acid, it 
not so for cola or juice. Popularity thus approxi-
mates what Ortony (1979) calls salience.  
 

Similarity metric r Similarity metric r 
Wu & Palmer’94* .74 Seco et al. ‘06* .84 

Resnick ‘95* .77 Agirre et al. ‘09 .93 
Leacock/Chod’98* .82 Han et al.’09 .856 

Lin ‘98* .80 Rex-wn .84 
Jiang/Conrath ‘97* -.81 Rex-lat .89 

Li et al. ‘03 .89 Rex-pop .93 

Table 1. Product-moment correlations (Pearson’s r) 
with mean human ratings on all 30 word pairs of the 
Miller & Charles similarity data-set. 
* As re-evaluated by Seco et al. (2006) for all 30 pairs 

Table 1 lists coefficients of correlation (Pear-
son’s r) with mean human ratings for a range of 
WordNet-based metrics. Table 1 includes the 
hybrid WordNet+web+SVM metric of Agirre et 
al. (2009) – who report a correlation of .93 – and 
the Mutual-Information-based PMImax metric of 
Han et al. (2009). The latter achieves good re-
sults for 27 of the 30 M&C pairs by enriching a 
PMI metric with an automatically-generated the-
saurus. Yet while informative, this thesaurus is 

         (                ) 
 

         (                          ) 
 

(2)  ICabs(M-H) =  -log 

(1)   IC(H)             =     - log 
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not organized as an explanatory system of hier-
archical categories as it is in Thesaurus Rex. 
 Rex-wn does no better than Seco et al. (2006) 
on the M&C dataset, suggesting that Rex’s vec-
tors of IC-weighted hypernyms are no more dis-
cerning than a single informative LCS. However, 
such vectors also permit Rex to incorporate addi-
tional, fine-grained perspectives from Thesaurus 
Rex, allowing Rex-lat in turn to achieve a com-
parable correlation to that of Li et al. (2003) – 
.89. Yet the formulation in (2) favors unusual or 
idiosyncratic perspectives that are unlikely to 
generalize across independent judges. The mean 
ratings of M&C are the stuff of consensus, not 
individual creativity, and outside the realm of 
creative metaphor it often makes sense to safely 
align our judgments with those of others.  
 By limiting its use of Thesaurus Rex to the 
perspectives that other judges are most likely to 
use, Rex-pop obtains a correlation of .93 with 
mean human ratings on all 30 M&C pairs. This 
result is comparable to that reported by Agirre et 
al. (2009), who use SVM-based supervised 
learning to combine the judgments of two met-
rics, one based on WordNet and another on the 
analysis of web contexts of both input terms. 
However, Rex has the greater capacity for in-
sight, since it augments the structured category 
system of WordNet with structured categories of 
its own. At each level of the WordNet hierarchy, 
Rex finds the fine-grained category that can best 
inform its judgments. Because Rex makes highly 
selective use of the diverse products of lateral 
thinking, this selectivity also produces concise 
explanations for its judgments. 

5.1 Generative Uses of Similarity 
A similarity metric offers a numerical measure of 
how closely one idea can cluster with another. It 
can also indicate how well one object may serve 
as a substitute for another, as when a letter open-
er is used as a knife, or tofu is used instead of 
meat. This need for substitution can be grist for 
creativity, yet most similarity metrics can only 
assess a suggested substitution, rather than sug-
gest one for themselves. If they are to actively 
shape a creative decision, our similarity metrics 
must be made more generative.  
 A similarity metric can learn to be generative, 
by observing how people typically cluster words 
and ideas that are made similar by their contexts 
of use. The Google 3-grams contain many in-
stances of the clustering pattern “X+s and Y+s”, 
as in “cowboys and pirates” or “doctors and law-
yers”, and so a comprehensive trawl yields many 

insights into the pairings of ideas that we implic-
itly see as comparable. We harvest all such 
Google 3-grams, to build a symmetric compara-
bility graph in which any two comparable terms 
are adjacent nodes. For any node, we can gener-
ate a diverse set of comparable ideas just by 
reading off its adjacent nodes. Thesaurus Rex can 
be used to find an embracing category for many 
such pairs of nodes, while Rex estimates the sim-
ilarity of any two adjacent nodes. A comparabil-
ity graph of 28,000 nodes is produced from the 
Google 3-grams, with a sparse adjacency matrix 
of just 1,264,827 (0.16%) non-zero entries.  
 Is this dense enough for a task requiring gen-
erative similarity? Almuhareb & Poesio (2004) 
describe one such task: they sample 214 words 
from across 13 WordNet categories, and ask if 
these 214 words can be partitioned into 13 clus-
ters that mirror the WordNet categories from 
which they were drawn. They then collect tens of 
thousands of web contexts for these 214 words, 
to extract a feature representation of each. We 
instead use Rex to generate, as features, a diverse 
set of comparable terms for each word. (We also 
assume that each word is a feature of itself). The 
Rex comparability graph suggests a pool of 8,300 
features for all 214 words. The clustering toolkit 
CLUTO is used to partition the original 214 
words into 13 clusters guided only by these com-
parability features. The resulting 13 clusters have 
an average purity of 93.4% relative to WordNet, 
suggesting that categorization tasks which re-
quire implicit comparability judgments are well 
served by a generative approach to similarity.   

5.2 Learning From Similarity Judgments  
Rex augments the narrow worldview of WordNet 
with the more diverse viewpoints it gleans from 
the web, not by viewing them as separate 
knowledge sources, but by actually updating 
WordNet itself. The relative performance of 
Rex-pop > Rex-lat > Rex-wn on the M&C da-
taset shows that selective use of a divergent per-
spective permits WordNet to better serve its 
popular role as a judge of similarity. It is worth 
asking then whether these passing additions to 
WordNet should not be made permanent.  
 Rex estimates a similarity score for each of 
the 1,264,827 pairings of comparable terms it 
finds in the Google 3-grams. These scores are 
then cached to support generative similarity, and 
to permit fast lookup of scores for common com-
parisons. This lookup table is a lightweight 
means of using Rex in a range of creative substi-
tution or generation tasks. Though the table is 
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sparse, §5.1 shows that it implicitly captures key 
nuances of category structure. The 39,826 unique 
fine-grained categories added by Rex-pop (ver-
sus the 44,238 categories added by Rex-lat) in 
the course of its 1,264,827 comparisons thus 
suggest credible enhancements to WordNet. Fig-
ure 2 graphs the distribution of new categories 
and their membership sizes when Rex-pop is 
used on this scale. 

 
Figure 2. The number of new categories (Y-axis) with 
a given membership size (X-axis) added to WordNet 
when Rex-pop/lat are used on a large, web scale. 

The Goldilocks categories are those that are not 
so small as to lack generality, and not so large as 
to lack information content. For example, Rex-
pop suggests the addition of 15,125 new fine-
grained categories to WordNet with membership 
sizes ranging from 5 to 25. This is a large but 
manageable number of categories that should be 
further considered for future addition to Word-
Net, or indeed to any similarly curated 
knowledge resource.  

6 Summary and Conclusions 
de Bono (1970) argues that the best solutions 
arise from using lateral and vertical thinking in 
unison. Lateral thinking is divergent and genera-
tive, while vertical thinking is convergent and 
analytical. The former can thus be used to create 
a pool of interesting candidates for the latter to 
selectively consider. Thesaurus Rex uses the web 
to generate a rich pool of alternate perspectives 
on familiar ideas, and Rex selects from this pool 
to perform vertical reasoning with WordNet to 
yield precise similarity judgments. Rex also uses 
the most informative perspective to concisely 
explain each comparison, or – when used in gen-
erative mode – to suggest a creative comparison. 
For instance, to highlight the potential toxicity of 
coffee, Thesaurus Rex suggests comparisons with 
alcohol, tobacco or pesticide, as all have been 
categorized as toxic substances on the web. A 
web app based on Thesaurus Rex, to support this 

kind of lateral thinking, is accessible online at 
this URL: 

http://boundinanutshell.com/therex2 

Screenshots from the Thesaurus Rex application 
are provided in Figures 3 and 4 overleaf. Be-
cause Thesaurus Rex targets the acquisition of 
fine-grained perspectives, ranging from the off-
beat to the obvious, it acquires an order-of-
magnitude more categories from the web than 
can be found in WordNet itself. Rex dips selec-
tively into this wealth of perspectives (and Rex-
pop is more selective still), though many of 
Rex’s needs can be anticipated by looking to how 
ideas are implicitly grouped into ad-hoc catego-
ries (Barsalou, 1983) in constructions such as 
“X+s and Y+s”. Using the Google n-grams as a 
source of tacit grouping constructions, we have 
created a comprehensive lookup table that pro-
vides Rex similarity scores for the most common 
(if often implicit) comparisons.  
    Comparability is not the same as similarity, 
and a non-zero similarity score does not mean 
that two concepts would ever be considered 
comparable by a human. This poses a problem 
for the generation of sensible comparisons. 
However, Rex’s lookup table captures the implic-
it pragmatics of comparability, making Rex usa-
ble in generative tasks where a metric must both 
suggest and evaluate comparisons. Human simi-
larity mechanisms are evaluative and generative, 
convergent and divergent. Our computational 
mechanisms should be no less so. 
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Figure 3.  A screenshot from the web application Thesaurus Rex, showing the fine-grained categories found by 

Thesaurus Rex for the lexical concept creativity on the web. 
 
 
 

 
 
Figure 4.  A screenshot from the web application Thesaurus Rex, showing the shared overlapping categories 

found by Thesaurus Rex for the lexical concepts divorce and war.
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Abstract 

Online discussion forums are a popular 
platform for people to voice their opinions on 
any subject matter and to discuss or debate 
any issue of interest. In forums where users 
discuss social, political, or religious issues, 
there are often heated debates among users or 
participants. Existing research has studied 
mining of user stances or camps on certain 
issues, opposing perspectives, and contention 
points. In this paper, we focus on identifying 
the nature of interactions among user pairs. 
The central questions are: How does each 
pair of users interact with each other? Does 
the pair of users mostly agree or disagree? 
What is the lexicon that people often use to 
express agreement and disagreement? We 
present a topic model based approach to 
answer these questions. Since agreement and 
disagreement expressions are usually multi-
word phrases, we propose to employ a 
ranking method to identify highly relevant 
phrases prior to topic modeling. After 
modeling, we use the modeling results to 
classify the nature of interaction of each user 
pair. Our evaluation results using real-life 
discussion/debate posts demonstrate the 
effectiveness of the proposed techniques.  

1 Introduction 

Online discussion/debate forums allow people 
with common interests to freely ask and answer 
questions, to express their views and opinions on 
any subject matter, and to discuss issues of 
common interest. A large part of such 
discussions is about social, political, and 
religious issues. On such issues, there are often 
heated discussions/debates, i.e., people agree or 
disagree and argue with one another. Such 
ideological discussions on a myriad of social and 
political issues have practical implications in the 
fields of communication and political science as 
they give social scientists an opportunity to study 
real-life discussions/debates of almost any issue 
and analyze participant behaviors in a large scale. 

In this paper, we present such an application, 
which aims to perform fine-grained analysis of 
user-interactions in online discussions.  

There have been some related works that focus 
on discovering the general topics and ideological 
perspectives in online discussions (Ahmed and 
Xing, 2010), placing users in support/oppose 
camps (Agarwal et al., 2003), and classifying 
user stances (Somasundaran and Wiebe, 2009). 
However, these works are at a rather coarser 
level and have not considered more fine-grained 
characteristics of debates/discussions where users 
interact with each other by quoting/replying each 
other to express agreement or disagreement and 
argue with one another. In this work, we want to 
mine the following information: 
1. The nature of interaction of each pair of users 

or participants who have engaged in the 
discussion of certain issues, i.e., whether the 
two persons mostly agree or disagree with 
each other in their interactions. 

2. What language expressions are often used to 
express agreement (e.g., “I agree” and “you’re 
right”) and disagreement (e.g., “I disagree” 
and “you speak nonsense”).  

We note that although agreement and 
disagreement expressions are distinct from 
traditional sentiment expressions (words and 
phrases) such as good, excellent, bad, and 
horrible, agreement and disagreement clearly 
express a kind of sentiment as well. They are 
usually emitted during interactive exchanges of 
arguments in ideological discussions. This idea 
prompted us to introduce the concept of AD-
sentiment. We define the polarity of agreement 
expressions as positive and the polarity of 
disagreement expressions as negative. We refer 
agreement and disagreement expressions as AD-
sentiment expressions, or AD-expressions for 
short. AD-expressions are crucial for the analysis 
of interactive discussions and debates just as 
sentiment expressions are instrumental in 
sentiment analysis (Liu, 2012). We thus regard 
this work as an extension to traditional sentiment 
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analysis (Pang and Lee, 2008; Liu, 2012).  
In our earlier work (Mukherjee and Liu, 

2012a), we proposed three topic models to mine 
contention points, which also extract AD-
expressions. In this paper, we further improve the 
work by coupling an information retrieval 
method to rank good candidate phrases with topic 
modeling in order to discover more accurate AD-
expressions. Furthermore, we apply the resulting 
AD-expressions to the new task of classifying the 
arguing or interaction nature of each pair of 
users. Using discovered AD-expressions for 
classification has an important advantage over 
traditional classification because they are domain 
independent. We employ a semi-supervised 
generative model called JTE-P to jointly model 
AD-expressions, pair interactions, and discussion 
topics simultaneously in a single framework. 
With such complex interactions mined, we can 
produce many useful summaries of discussions. 
For example, we can discover the most 
contentious pairs for each topic and ideological 
camps of participants, i.e., people who often 
agree with each other are likely to belong to the 
same camp. The proposed framework also 
facilitates tracking users’ ideology shifts and the 
resulting arguing nature. 

The proposed methods have been evaluated 
both qualitatively and quantitatively using a large 
number of real-life discussion/debate posts from 
four domains. Experimental results show that the 
proposed model is highly effective in performing 
its tasks and outperforms several baselines. 

2 Related Work 

There are several research areas that are related 
to our work. We compare with them below.  
Sentiment analysis: Sentiment analysis 
determines positive and negative opinions 
expressed on entities and aspects (Hu and Liu, 
2004). Main tasks include aspect extraction (Hu 
and Liu, 2004; Popescu and Etzioni, 2005), 
polarity identification (Hassan and Radev, 2010; 
Choi and Cardie, 2010) and subjectivity analysis 
(Wiebe, 2000). As discussed earlier, agreement 
and disagreement are a special form of 
sentiments and are different from the sentiment 
studied in the mainstream research. Traditional 
sentiment is mainly expressed with sentiment 
terms (e.g., great and bad), while agreement and 
disagreement are inferred by AD-expressions 
(e.g., I agree and I disagree), which we also call 
AD-sentiment expressions. Thus, this work 
expands the sentiment analysis research.  

Topic models: Our work is also related to topic 
modeling and joint modeling of topics and other 
information as we jointly model several aspects 
of discussions/debates.  

Topic models like pLSA (Hofmann, 1999) and 
LDA (Blei et al., 2003) have proved to be very 
successful in mining topics from large text 
collections. There have been various extensions 
to multi-grain (Titov and McDonald, 2008), 
labeled (Ramage et al., 2009), and sequential (Du 
et al., 2010) topic models. Yet other approaches 
extend topic models to produce author specific 
topics (Rosen-Zvi et al., 2004), author persona 
(Mimno and McCallum, 2007), social roles 
(McCallum et al., 2007), etc. However, these 
models do not model debates and hence are 
unable to discover AD-expressions and 
interaction natures of author pairs.  

Also related are topic models in sentiment 
analysis which are often referred to as Aspect 
and Sentiment models (ASMs). ASMs come in 
two main flavors: Type-1 ASMs discover aspect 
(or topic) words sentiment-wise (i.e., discovering 
positive and negative topic words and sentiments 
for each topic without separating topic and 
sentiment terms) (e.g., Lin and He, 2009; Brody 
and Elhadad, 2010, Jo and Oh, 2011). Type-2 
ASMs separately discover both aspects and 
sentiments (e.g., Mei et al., 2007; Zhao et al., 
2010). Recently, domain knowledge induced 
ASMs have also been proposed (Mukherjee and 
Liu, 2012b; Chen et al., 2013). The generative 
process of ASMs is, however, different from our 
model. Specifically, Type-1 ASMs use 
asymmetric hyper-parameters for aspects while 
Type-2 assumes that sentiments and aspects are 
emitted in the same sentence. However, AD-
expressions are emitted differently. They are 
mostly interleaved with users’ topical viewpoints 
and span different sentences. Further, we capture 
the key characteristic of discussions by encoding 
pair-wise user interactions. Existing models do 
not model pair interactions. 

In terms of discussions and comments, Yano 
et al., (2009) proposed the CommentLDA model 
which builds on the work of LinkLDA (Erosheva 
et al., 2004). Mukherjee and Liu (2012d) mined 
comment expressions. These works, however, 
don’t model pair interactions in debates. 
Support/oppose camp classification: Several 
works have attempted to put debate authors into 
support/oppose camps. Agrawal et al. (2003) 
used a graph based method. Murakami and 
Raymond (2010) used a rule-based method. In 
(Galley et al., 2004; Hillard et al., 2003), speaker 
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utterances were classified into agreement, 
disagreement and backchannel classes. 
Stances in online debates: Somasundaran and 
Wiebe (2009), Thomas et al. (2006), Bansal et al. 
(2008), Burfoot et al. (2011), and Anand et al. 
(2011) proposed methods to recognize stances in 
online debates. Some other research directions 
include subgroup detection (Abu-Jbara et al., 
2012), tolerance analysis (Mukherjee et al., 
2013), mining opposing perspectives (Lin and 
Hauptmann, 2006), linguistic accommodation 
(Mukherjee and Liu, 2012c), and contention 
point mining (Mukherjee and Liu, 2012a). For 
this work, we adopt the JTE-P model in 
(Mukherjee and Liu, 2012a), and make two 
major advances. We propose a new method to 
improve the AD-expression mining  and a new 
task of classifying pair interaction nature to 
determine whether each pair of users who have 
interacted based on replying relations mostly 
agree or disagree with each other. 

3 Model  

We now introduce the JTE-P model with 
additional details. JTE-P is a semi-supervised 
generative model motivated by the joint 
occurrence of expression types (agreement and 
disagreement), topics in discussion posts, and 
user pairwise interactions. Before proceeding, we 
make the following observation about online 
discussions. 

In a typical debate/discussion post, the user 
(author) mentions a few topics (using 
semantically related topical terms) and expresses 
some viewpoints with one or more AD-
expression types (using agreement and 
disagreement expressions). AD-expressions are 
directed towards other user(s), which we call 
target(s). In this work, we focus on explicit 
mentions (i.e., using @name or quoting other 
authors’ posts). In our crawled dataset, 77% of 
all posts exhibit explicit quoting/reply-to 
relations excluding the first posts of threads 
which start the discussions and usually have 
nobody to quote/reply-to. Such author-target 
exchanges usually go back and forth between 
pairs of users populating a thread of discussion. 
The discussion topics and AD-expressions 
emitted are thus caused by the author-pairs’ 
topical interests and their nature of interaction 
(agreeing vs. disagreeing).  

In our discussion data obtained from 
Volconvo.com, we found that a pair of users 
typically exhibited a dominant arguing nature 

(agreeing vs. disagreeing) towards each other 
across various topics or threads. We believe this 
is because our data consists of topics like 
elections, theism, terrorism, vegetarianism, etc. 
which are often heated and attract people with 
pre-determined, strong, and polarized stances1. 

This observation motivates the generative 
process of our model. Referring to the notations 
in Table 1, we explain the generative process of 
JTE-P. Given a document (post) 𝑑, its author, 𝑎𝑑, 
and the list of targets to whom 𝑎𝑑 replies/quotes 
                                                           
1 These hardened perspectives are supported by theoretical 
studies in communications like the polarization effect 
(Sunstein, 2002), and the hostile media effect, a scenario 
where partisans rigidly hold on to their stances (Hansen and 
Hyunjung, 2011). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: JTE-P Model in plate notation. 

Variable/Function Description 

𝑑; 𝑎𝑑 A document (post) 𝑑 ; author 𝑎  of 
document, 𝑑 

𝑏𝑑 = [𝑏1 … 𝑏𝑛] List of targets to whom 𝑎𝑑 
replies/quotes in d. 

𝑝 = (𝑎, 𝑎′) Pair of two authors interacting by 
reply/quote. 

𝜃𝑝𝑇; 
𝜃𝑝𝐸(𝜃𝑝,𝐴𝑔

𝐸  , 
𝜃𝑝,𝐷𝑖𝑠𝐴𝑔
𝐸 ) 

Pair 𝑝 ’s distribution over topics ; 
expression types (Agreement: 𝜃𝑝,𝐴𝑔

𝐸 , 
Disagreement: 𝜃𝑝,𝐷𝑖𝑠𝐴𝑔

𝐸 ) 

𝜑𝑡𝑇;  𝜑𝑒∈{𝐴𝑔,𝐷𝑖𝑠𝐴𝑔}
𝐸  Topic 𝑡 ’s ; Expression type 𝑒 ’s 

distribution over vocabulary terms 
𝑇;𝐸 Total number  of topics; expression types 
𝑉;𝑃 Total number of vocabulary terms; pairs 

𝑤𝑑,𝑗; 𝑁𝑑 𝑗𝑡ℎ term in 𝑑;  Total # of terms in 𝑑 
𝜓 𝑑,𝑗  Distribution over topics and AD-

expressions 

𝑥𝑑,𝑗 
Associated feature context of the 
observed term 𝑤𝑑,𝑗 

𝜆 Learned Max-Ent parameters 

𝑟𝑑,𝑗 ∈ {𝑡̂, 𝑒̂} Binary indicator/switch variable ( topic 
(𝑡̂) or AD-expression (𝑒̂) ) for 𝑤𝑑,𝑗 

𝑧𝑑,𝑗 Topic/Expression type of 𝑤𝑑,𝑗 
𝛼𝑇; 𝛼𝐸; 𝛽𝑇; 𝛽𝐸 Dirichlet priors of 𝜃𝑝𝑇;  𝜃𝑝𝐸 ;𝜑𝑡𝑇;  𝜑𝑒𝐸 

𝑛𝑝,𝑡
𝑃𝑇; 𝑛𝑝,𝑒

𝑃𝐸  # of times topic 𝑡 ; expression type 𝑒 
assigned to 𝑝 

𝑛𝑡,𝑣
𝐶𝑇; 𝑛𝑒,𝑣

𝐶𝐸  # of times term 𝑣  appears in topic 𝑡 ; 
expression type 𝑒 

Table 1: List of Notations 
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in 𝑑 , 𝑏𝑑 = [𝑏1 … 𝑏𝑛] , the document 𝑑  exhibits 
shared topics and arguing nature of various pairs, 
𝑝 = (𝑎𝑑 , 𝑐)   , where 𝑐 ∈ 𝑏𝑑 . More precisely, the 
pair specific topic and AD-expression 
distributions (𝜃𝑝𝑇 ; 𝜃𝑝𝐸 ) “shape” the topics and 
AD-expressions emitted in 𝑑  as agreement and 
disagreement on topical viewpoints are directed 
towards certain target authors. Each topic (𝜑𝑡𝑇) 
and AD-expression type (𝜑𝑒𝐸) is characterized by 
a multinomial distribution over terms 
(words/phrases). Assume we have 𝑡 = 1 …𝑇 
topics and 𝑒 = 1 …𝐸  expression types in our 
corpus. Note that in our case of discussion/debate 
forums, we hypothesize 𝐸 = 2 as in debates, we 
mostly find two expression types: agreement and 
disagreement (more details in §6.1). Like most 
generative models for text, a post (document) is 
viewed as a bag of n-grams and each n-gram 
(word/phrase) takes one value from a predefined 
vocabulary. In this work, we use up to 4-grams, 
i.e., n = 1, 2, 3, 4. Instead of using all n-grams, a 
relevance based ranking method is proposed to 
select a subset of highly relevant n-grams for 
model building (details in §4). For notational 
convenience, we use terms to denote both words 
(unigrams) and phrases (n-grams). 

JTE-P is a switching graphical model (Ahmed 
and Xing, 2010; Zhao et al., 2010) performing a 
switch between AD-expressions and topics. 𝜓𝑑,𝑗 
denotes the distribution over topics and AD-
expressions with 𝑟𝑑,𝑗 ∈ {𝑡̂, 𝑒̂} denoting the binary 
indicator/switch variable (topic or AD-
expression) for the 𝑗 th term of 𝑑 , 𝑤𝑑,𝑗 .  To 
perform the switch we use a maximum entropy 
(Max-Ent) model. The idea is motivated by the 
observation that topical and AD-expression terms 
usually play different roles in a sentence. Topical 
terms (e.g., “elections” and “income tax”) tend to 
be noun and noun phrases while AD-expression 
terms (“I refute”, “how can you say”, and 
“probably agree”) usually contain pronouns, 
verbs, wh-determiners, and modals. In order to 
utilize the part-of-speech (POS) tag information, 
we place the topic/AD-expression distribution 
𝜓𝑑,𝑗 (the prior over the indicator variable 𝑟𝑑,𝑗) in 
the term plate (see Figure 1) and set it from a 
Max-Ent model conditioned on the observed 
feature context 𝑥𝑑,𝑗  associated with 𝑤𝑑,𝑗  and the 
learned Max-Ent parameters, 𝜆 (details in §6.1). 
In this work, we use both lexical and POS 
features of the previous, current, and next POS 
tags/lexemes of the term 𝑤𝑑,𝑗  as the contextual 
information, i.e., 𝑥𝑑,𝑗 = [𝑃𝑂𝑆𝑤𝑑,𝑗−1 , 𝑃𝑂𝑆𝑤𝑑,𝑗 ,
𝑃𝑂𝑆𝑤𝑑,𝑗+1 , 𝑤𝑑,𝑗−1,𝑤𝑑,𝑗 , 𝑤𝑑,𝑗+1], which is used to 

produce the feature functions for Max-Ent. For 
phrasal terms (n-grams), all POS tags and 
lexemes of 𝑤𝑑,𝑗  are considered as contextual 
information for computing feature functions in 
Max-Ent. We now detail the generative process 
of JTE-P (plate notation in Figure 1) as follows: 

1. For each AD-expression type 𝑒, draw 𝜑𝑒𝐸~𝐷𝑖𝑟(𝛽𝐸) 
2. For each topic 𝑡, draw 𝜑𝑡𝑇~𝐷𝑖𝑟(𝛽𝑇) 
3. For each pair 𝑝, draw 𝜃𝑝𝐸~𝐷𝑖𝑟(𝛼𝐸); 𝜃𝑝𝑇~𝐷𝑖𝑟(𝛼𝐸) 
4. For each forum discussion post 𝑑 ∈ {1 …𝐷}: 

i. Given the author 𝑎𝑑 and the list of targets 𝑏𝑑 , for 
each term 𝑤𝑑,𝑗, 𝑗 ∈ {1 …𝑁𝑑}: 
a. Draw a target 𝑐~𝑈𝑛𝑖(𝑏𝑑) 
b. Form pair 𝑝 = (𝑎𝑑 , 𝑐), 𝑐 ∈ 𝑏𝑑   
c. Set 𝜓𝑑,𝑗 ← 𝑀𝑎𝑥𝐸𝑛𝑡(𝑥𝑑,𝑗; 𝜆) 
d. Draw 𝑟𝑑,𝑗~𝐵𝑒𝑟𝑛(𝜓𝑑,𝑗) 
e. if (𝑟𝑑,𝑗 = 𝑒̂) // 𝑤𝑑,𝑗 is an AD-expression term 

Draw 𝑧𝑑,𝑗~𝑀𝑢𝑙𝑡(𝜃𝑝𝐸) 
else // 𝑟𝑑,𝑗 = 𝑡̂, 𝑤𝑑,𝑗 is a topical term 

Draw 𝑧𝑑,𝑗~𝑀𝑢𝑙𝑡(𝜃𝑝𝑇) 
f. Emit 𝑤𝑑,𝑗~𝑀𝑢𝑙𝑡(𝜑𝑧𝑑,𝑗

𝑟𝑑,𝑗) 

𝐷𝑖𝑟 , 𝑀𝑢𝑙𝑡 , 𝐵𝑒𝑟𝑛 , and 𝑈𝑛𝑖  correspond to the 
Dirichlet, Multinomial, Bernoulli, and Uniform 
distributions respectively. To learn JTE-P, we 
employ approximate posterior inference using 
Monte Carlo Gibbs sampling. Denoting the 
random variables {𝑤, 𝑧,𝑝, 𝑟} associated with each 
term by singular subscripts {𝑤𝑘, 𝑧𝑘,𝑝𝑘, 𝑟𝑘}, 𝑘1…𝐾 , 
𝐾 = ∑ 𝑁𝑑𝑑 , a single Gibbs sweep consists of 
performing the following sampling. 

𝑝(𝑧𝑘 = 𝑡,𝑝𝑘 = 𝑝, 𝑟𝑘 = 𝑡̂| … ) ∝
 1
|𝑏𝑑|

𝑒𝑥𝑝�∑ 𝜆𝑖𝑓𝑖�𝑥𝑑,𝑗,𝑡̂�𝑛
𝑖=1 �

∑ 𝑒𝑥𝑝�∑ 𝜆𝑖𝑓𝑖�𝑥𝑑,𝑗,𝑦�𝑛
𝑖=1 �𝑦∈{𝑒�,𝑡�}

×   

𝑛𝑝,𝑡
𝑃𝑇

¬𝑘
+𝛼𝑇

𝑛𝑝,(·)
𝑃𝑇

¬𝑘
+𝑇𝛼𝑇

𝑛𝑡,𝑣
𝐶𝑇

¬𝑘+𝛽𝑇
𝑛𝑡,(·)
𝐶𝑇

¬𝑘
+𝑉𝛽𝑇

               (1) 

𝑝(𝑧𝑘 = 𝑒,𝑝𝑘 = 𝑝, 𝑟𝑘 = 𝑒̂| … ) ∝ 

  1
|𝑏𝑑|

𝑒𝑥𝑝�∑ 𝜆𝑖𝑓𝑖�𝑥𝑑,𝑗,𝑒̂�𝑛
𝑖=1 �

∑ 𝑒𝑥𝑝�∑ 𝜆𝑖𝑓𝑖�𝑥𝑑,𝑗,𝑦�𝑛
𝑖=1 �𝑦∈{𝑒�,𝑡�}

× 

𝑛𝑝,𝑒
𝑃𝐸

¬𝑘+𝛼𝐸
𝑛𝑝,(·)
𝑃𝐸

¬𝑘
+𝐸𝛼𝐸

𝑛𝑒,𝑣
𝐶𝐸

¬𝑘+𝛽𝐸
𝑛𝑒,(·)
𝐶𝐸

¬𝑘
+𝑉𝛽𝐸

                  (2) 

Count variables 𝑛𝑡,𝑣
𝐶𝑇 , 𝑛𝑒,𝑣

𝐶𝐸 , 𝑛𝑝,𝑡
𝑃𝑇 , and 𝑛𝑝,𝑒

𝑃𝐸   are 
detailed in Table 1. Omission of a latter index 
denoted by (·)  represents the marginalized sum 
over the latter index. 𝑘 = (𝑑, 𝑗)  denotes the 𝑗 th 
term of document 𝑑 and the subscript ¬𝑘 denotes 
the counts excluding the term at (𝑑, 𝑗). 𝜆1…𝑛  are 
the parameters of the learned Max-Ent model 
corresponding to the 𝑛  binary feature functions 
𝑓1…𝑛  for Max-Ent. These learned Max-Ent 𝜆 
parameters in conjunction with the observed 
feature context, 𝑥𝑑,𝑗  feed the supervision signal 
for topic/expression switch parameter, r which is 
updated during inference in equations (1) and (2). 
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4 Phrase Ranking based on Relevance 

We now detail our method of pre-processing n-
grams (phrases) based on relevance to select a 
subset of highly relevant n-grams for model 
building. This has two advantages: (i). A large 
number of irrelevant n-grams slow inference. (ii). 
Filtering irrelevant terms in the vocabulary 
improves the quality of AD-expressions. Before 
proceeding, we review some existing approaches. 
Topics in most topic models like LDA are 
usually unigram distributions. This offers a great 
computational advantage compared to more 
complex models which consider word ordering 
(Wallach, 2006; Wang et al., 2007). This thread 
of research models bigrams by encoding them 
into the generative process. For each word, a 
topic is sampled first, then its status as a unigram 
or bigram is sampled, and finally the word is 
sampled from a topic-specific unigram or bigram 
distribution. This method, however, is expensive 
computationally and has a limitation for arbitrary 
length n-grams. In (Tomokiyo and Hurst, 2003), 
a language model approach is used for bigram 
phrase extraction. 

Yet another thread of research post-processes 
the discovered topical unigrams to form multi-
word phrases using likelihood scores (Blei and 
Lafferty, 2009). This approach considers adjacent 
word pairs and identifies n-grams which occur 
much more often than one would expect by 
chance alone by computing likelihood ratios. 
While this is reasonable, a significant n-gram 
with high likelihood score may not necessarily be 
relevant to the problem domain. For instance, in 
our case of discovering AD-expressions, the 
likelihood score 2  of 𝑝1  = “the government of” 
happens to be more than 𝑝2  = “I completely 
disagree”. Clearly, the former is irrelevant for the 
task of discovering AD-expressions. The reason 
for this is that likelihood scores or other 
statistical test scores rely on the relative counts in 
the multi-way contingency table to compute 
significance. Since the relative counts of different 
fragments of the irrelevant phrase 𝑝1 , e.g. “the 
government”, and “government of”, happen to 
appear more than the corresponding counts in the 
contingency table of 𝑝2, the tests assign a higher 
score. This is nothing wrong per se because the 
statistical tests only judge significance of an n-
gram, but a significant n-gram may not 
necessarily be relevant in a given problem 
domain. 
                                                           
2 Computed using N-gram statistics package, NSP; http://n-
gram.sourceforge.net 

Thus, the existing approaches have some 
major shortcomings for our task. As our goal is 
to enhance the expressiveness of our models by 
considering relevant n-grams preserving the 
advantages of exchangeable modeling, we 
employ a pre-processing technique to rank n-
grams based on relevance and consider certain 
number of top ranked n-grams based on coverage 
(details follow) in our vocabulary. The idea 
works as follows. 

We first induce a unigram JTE-P whereby we 
cluster the relevant AD-expression unigrams in 
𝜑𝐴𝑔𝐸  and 𝜑𝐷𝑖𝑠𝐴𝑔𝐸 . Our notion of relevance of AD-
expressions is already encoded into the model 
using priors set from Max-Ent. Next, we rank the 
candidate phrases (n-grams) using our 
probabilistic ranking function. The ranking 
function is grounded on the following 
hypothesis: a relevant phrase is one whose 
unigrams are closely related to (or appear with 
high probabilities in) the given AD-expression 
type, 𝑒 : Agreement ( 𝐴𝑔 ) or disagreement 
(𝐷𝑖𝑠𝐴𝑔). Continuing from the previous example, 
given the expression type 𝜑𝑒=𝐷𝑖𝑠𝐴𝑔𝐸 , 𝑝2 is relevant 
while 𝑝1 is not as “government” and “disagree” 
are highly unlikely and likely respectively to be 
clustered in 𝜑𝑒=𝐷𝑖𝑠𝐴𝑔𝐸 . Thus, we want to rank 
phrases based on 𝑃(𝑅𝑒𝑙 = 1|𝑒,𝑝) where 𝑒 denotes 
the expression type (Agreement/Disagreement), 
𝑝  denotes a candidate phrase. Following the 
probabilistic relevance model in (Lafferty and 
Zhai, 2003), we use a similar technique to that in 
(Zhao et al., 2011) for deriving our relevance 
ranking function as follows: 

 𝑃(𝑅𝑒𝑙 = 1|𝑒,𝑝) = 𝑃(𝑅𝑒𝑙=1|𝑒,𝑝)
𝑃(𝑅𝑒𝑙=0|𝑒,𝑝)+𝑃(𝑅𝑒𝑙=1|𝑒,𝑝)

=
1

1+𝑃(𝑅𝑒𝑙=0|𝑒,𝑝)
𝑃(𝑅𝑒𝑙=1|𝑒,𝑝)

= 1

1+𝑃(𝑅𝑒𝑙=0,𝑝| 𝑒)
𝑃(𝑅𝑒𝑙=1,𝑝|𝑒)

=

 1

1+[𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)×𝑃(𝑅𝑒𝑙=0|𝑒)]
[𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)×𝑃(𝑅𝑒𝑙=1|𝑒)]

               (3) 

We further define 𝜀 = 𝑃(𝑅𝑒𝑙=0|𝑒)
𝑃(𝑅𝑒𝑙=1|𝑒)

. Without loss of 
generality, one can say that 𝑃(𝑅𝑒𝑙 = 0|𝑒) ≫
𝑃(𝑅𝑒𝑙 = 1|𝑒) , because there are many more 
irrelevant phrases than relevant ones, i.e., 𝜀 ≫ 1. 
Thus, taking log, from equation (3), we get, 

log𝑃(𝑅𝑒𝑙 = 1|𝑒,𝑝) = log� 1

1+𝜀×𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)
𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)

� ≈

log �𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)
𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)

× 1
𝜀
� = log �𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)

𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)
� − log 𝜀    (4) 

Thus, our ranking function actually computes the 
relevance score log �𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)

𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)
� . The last term, 

log 𝜀  being a constant is ignored because it 
cancels out while comparing candidate n-grams. 
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We now estimate the relevance score of a phrase 
𝑝 = (𝑤1,𝑤2, … ,𝑤𝑛). Using the conditional 
independence assumption of words given the 
indicator variable 𝑅𝑒𝑙 and expression type 𝑒, we 
have: 

log �𝑃(𝑝|𝑅𝑒𝑙=1,𝑒)
𝑃(𝑝|𝑅𝑒𝑙=0,𝑒)

� = ∑ log 𝑃(𝑤𝑖|𝑅𝑒𝑙=1,𝑒)
𝑃(𝑤𝑖|𝑅𝑒𝑙=0,𝑒)

𝑛
𝑖=1              (5) 

Given the expression model 𝜑𝑒𝐸  previously 
learned by inducing the unigram JTE-P, it is 
intuitive to set 𝑃(𝑤𝑖|𝑅𝑒𝑙 = 1, 𝑒)  to the point 

estimate of the posterior on 𝜑𝑒,𝑤𝑖
𝐸 =

𝑛𝑒,𝑤𝑖
𝐸𝑉 +𝛽𝐸

𝑛𝑒,(·)
𝐸𝑉 +𝑉𝛽𝐸

, 

where 𝑛𝑒,𝑤𝑖
𝐸𝑉  is the number of times 𝑤𝑖  was 

assigned to AD-expression type 𝑒  and 𝑛𝑒,(·)
𝐸𝑉  

denotes the marginalized sum over the latter 
index. On the other hand, 𝑃(𝑤𝑖|𝑅𝑒𝑙 = 0, 𝑒) can be 
estimated using a Laplace smoothed ( 𝜇  = 1) 
background model, i.e., (𝑤𝑖|𝑅𝑒𝑙 = 0, 𝑒) =

𝑛𝑤𝑖+𝜇

𝑛𝑉+𝑉𝜇
 , 

where 𝑛𝑤𝑖  denotes the number of times 𝑤𝑖 
appears in the whole corpus and 𝑛𝑉 denotes the 
number of terms in the entire corpus. 

Next, we throw light on the issue of choosing 
the number of top k phrases from the ranked 
candidate n-grams. Precisely, we want to analyze 
the coverage of our proposed ranking based on 
relevance models. By coverage, we mean that 
having selected top k candidate n-grams based on 
the proposed relevance ranking, we want to get 
an estimate of how many relevant terms from a 
sample of the collection were covered. To 
compute coverage, we randomly sampled 500 
documents from the corpus and listed the 
candidate n-grams3 in the collection of sampled 
500 documents. For this and subsequent human 
judgment tasks, we use two judges (graduate 
students well versed in English). We asked our 
judges to mark all relevant AD-expressions. 
Agreement study yielded κCohen = 0.77 showing 
substantial agreement according to scale 4 
provided in (Landis and Koch, 1977). This is 
understandable as identifying AD-expressions is 
a relatively easy task. Finally, a term was 
considered to be relevant if both judges marked it 
so. We then computed the coverage to see how 
many of the relevant terms in the random sample 
were also present in top k phrases from the 
ranked candidate n-grams. We summarize the 

                                                           
3 These are terms appearing at least 20 times in the entire 
collection. We do this for computational reasons as there 
can be many n-grams and n-grams with very low frequency 
are less likely to be relevant. 
4 No agreement (κ < 0), slight agreement (0 < κ ≤ 0.2), fair 
agreement (0.2 < κ ≤ 0.4), moderate agreement (0.4 < κ ≤ 
0.6), substantial agreement (0.6 < κ ≤ 0.8), and almost 
perfect agreement 0.8 < κ ≤ 1.0. 

coverage results below in Table 2. 

k 3000 4000 5000 

JTE-P Agreement 81.34 84.24 87.01 
Disagreement 84.96 87.86 89.64 

Table 2: Coverage (in %) of AD-expressions. 

We find that choosing top k = 5000 candidate n-
grams based on our proposed ranking, we obtain 
a coverage of 87% for agreement and 89.64 for 
disagreement expression types which are 
reasonably good. Thus, we choose top 5000 
candidate n-grams for each expression type and 
add them to the vocabulary beyond all unigrams.  

 Like expression types 𝑒1…𝐸 , we also ranked 
candidate phrases for topics 𝑡1…𝑇  using 
𝑃(𝑅𝑒𝑙 = 1|𝑡,𝑝). However, for topics, selecting k 
based on coverage of each topic is more difficult 
because we induce 50 topics and it is also much 
more difficult to manually find relevant topical 
phrases in the sampled data as a topical phrase 
may belong to more than one topic. We selected 
top 2000 ranked candidate phrases for each topic 
using 𝑃(𝑅𝑒𝑙 = 1|𝑡,𝑝) as we feel that is sufficient 
for a topic. Note that phrases for topics are not as 
crucial as for AD-expressions because topics can 
more or less be defined by unigrams. 

5 Classifying Pair Interaction Nature 

We now determine whether two users (also 
called a user pair) mostly agree or disagree with 
each other in their exchanges, i.e., their pair 
interaction or arguing nature. This is a relatively 
new task. We first summarize the closest related 
works. In (Galley et al., 2004; Hillard et al., 
2003; Thomas et al., 2006, Bansal et al., 2008), 
conversational speeches (i.e., U.S. Congress 
meeting transcripts) are classified into for or 
against an issue using various types of features: 
durational (e.g., time taken by a speaker; speech 
rate, etc.), structural (e.g., no. of speakers per 
side, no. of votes cast by a speaker on a bill, etc.), 
and lexical (e.g., first word, last word, n-grams, 
etc.). Burfoot et al., (2011) builds on the work of 
(Thomas et al., 2006) and proposes collective 
classification using speaker contextual features 
(e.g., speaker intentions based on vote labels). 
However, above works do not discover pair 
interactions (arguing nature) in debate authors. 
Online discussion forums are textual rather than 
conversational (e.g., U.S. Congress meeting 
transcripts). Thus, the durational, structural, and 
contextual features used in prior works are not 
directly applicable.  

Instead, the model posterior on 𝜃𝑝𝐸  for JTE-P 
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can actually give an estimate of the overall 
interaction nature of a pair, i.e., the probability 
masses assigned to expression types, 𝑒 =
𝐴𝑔(Agreement) and 𝑒 = 𝐷𝑖𝑠𝐴𝑔 (Disagreement). 
As 𝜃𝑝𝐸~𝐷𝑖𝑟(𝛼𝐸), we have 𝜃𝑝,𝑒=𝐴𝑔

𝐸 + 𝜃𝑝,𝑒=𝐷𝑖𝑠𝐴𝑔
𝐸 = 1. 

Hence, if the probability mass assigned to any 
one of the expression types (agreement, 
disagreement) > 0.5 then according to the model 
posterior, that expression type is dominant, i.e., if 
𝜃𝑝,𝐴𝑔
𝐸  > 0.5, the pair is agreeing else disagreeing.  
However, this approach is not the best. As we 

will see in the experiment section, supervised 
classification using labeled training data with 
discovered AD-expressions as features performs 
better.  

6 Empirical Evaluation 

We now evaluate the proposed techniques in the 
context of the JTE-P model. We first evaluate the 
discovered AD-expressions by comparing results 
with and without using the phrase ranking 
method in Section 4, and then evaluate the 
classification of interaction nature of pairs. 

6.1 Dataset and Experiment Settings 

We crawled debate/discussion forum posts from 
Volconvo.com. The forum is divided into various 
domains. Each domain consists of multiple 
threads of discussions. For each post, we 
extracted the post id, author, domain, ids of all 
posts to which it replies/quotes, and the post 
content. In all, we extracted 26137, 34986, 
22354, and 16525 posts from Politics, Religion, 
Society and Science domains respectively.  
Experiment Data: As it is not interesting to 
study pairs who only exchanged a few posts, we 
restrict to pairs with at least 20 post exchanges. 
This resulted in 1241 authors and 1461 pairs. The 
reduced dataset consists of 1095586 tokens (after 
n-gram preprocessing in §4), 40102 posts with an 
average of 27 posts or interactions per pair. Data 
from all 4 domains are combined for modeling. 
Parameter Settings: For all our experiments, we 
set the hyper-parameters to the heuristic values 
𝛼𝑇  = 50/𝑇, 𝛼𝐸  = 50/𝐸, 𝛽𝑇  = 𝛽𝐸  = 0.1 suggested 
in (Griffiths and Steyvers, 2004). We set the 
number of topics, 𝑇 = 50 and the number of AD-
expression types, 𝐸 = 2 (agreement and 
disagreement) as in discussion/debate forums, 
there are usually two expression types5. To learn 
                                                           
5 Values for 𝐸 > 2 were also tried. However, they did not 
produce any new dominant expression type. There was also 
a slight increase in the model perplexity showing that values 
of 𝐸 > 2 do not fit the debate forum data well. 

the Max-Ent parameters 𝜆, we randomly sampled 
500 terms from the held-out data (10 threads in 
our corpus which were excluded from the 
evaluation of tasks in §6.2, §6.3) appearing at 
least 10 times and labeled them as topical (361) 
or AD-expressions (139) and used the 
corresponding features of each term (in the 
context of posts where it occurs, §3) to train the 
Max-Ent model. 

6.2 AD-Expression Evaluation 

We first list some discovered top AD-expressions 
in Table 3 for qualitative inspection. From Table 
3, we can see that JTE-P can cluster many correct 
AD-expressions, e.g., “I accept”, “I agree”, 
“you’re correct”, etc. in agreement and “I 
disagree”, “don’t accept”, “I refute”, etc. in 
disagreement. In addition, it also discovers and 
clusters highly specific and more “distinctive” 
expressions beyond those used in Max-Ent 
training, e.g., “valid point”, “I do support”, and 
“rightly said” in agreement; and phrases like “can 
you prove”, “I don’t buy your”, and “you fail to” 
in disagreement. Note that terms in black in 
Table 3 were used in Max-Ent training. The 
newly discovered terms are marked blue in 
italics. Clustering errors are in red (bold). 

For quantitative evaluation, topic models are 
often compared using perplexity. However, 
perplexity does not reflect our purpose since we 
are not trying to evaluate how well the AD-
expressions in an unseen discussion data fit our 
learned models. Instead our focus is to evaluate 
how well our learned AD-expression types 
perform in clustering semantic phrases of 
agreement/disagreement. Since AD-expressions 
(according to top terms in 𝜑𝐸) produced by JTE-
P are rankings, we choose precision @ n (p@n) 
as our metric. p@n is commonly used to evaluate 
a ranking when the total number of correct items 
is unknown (e.g., Web search results, aspect 
terms in topic models for sentiment analysis 
(Zhao et al., 2010), etc.). This situation is similar 
to our AD-expression rankings, 𝜑𝐸 . Further, as 
𝜑𝐸~𝐷𝑖𝑟, the Dirichlet smoothing effect ensures 
that every term in the vocabulary has some non-
zero mass to agreement or disagreement 
expression type. Thus, it is the ranking of terms 
in each AD-expression type that matters (i.e., 
whether the model is able to rank highly relevant 
terms at the top).  

The above method evaluates the original 
ranking. Another way of evaluating the AD-
expression rankings is to evaluate only those 
newly discovered terms, i.e., beyond those 
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labeled terms used in Max-Ent training. For this 
evaluation, we remove those terms that have 
been used in Max-Ent (ME) training. We report 
both results in Table 4. We also studied inter-
rater agreement using two judges who 
independently labeled the top n terms as correct 
or incorrect. A term was marked correct if both 
judges deemed it so which was then used to 
compute p@n. Agreement using 𝜅𝐶𝑜ℎ𝑒𝑛  was 
greater than 0.78 for all p@n computations 
implying substantial and good agreements as 
identifying whether a phrase implies agreement 
or disagreement or none is an easy task. P@n 
excluding ME labeled terms (Table 4, second 

column) are slightly lower than those using all 
terms but are still decent. This is because p@n 
excluding ME labeled terms removes many 
correct AD-expressions used in training. 

Further to evaluate the sensitivity of 
performance on the amount of labeled terms for 
Max-Ent, we computed p@n across different 
sizes of labeled terms. Table 4 shows p@n for 
agreement and disagreement expressions across 
different sizes of labeled terms (L). We find that 
more labeled terms improves p@n which is 
intuitive. We used 500 labeled terms in all our 
subsequent experiments. The result in Table 4 
uses relevance ranking (§4). 

Disagreement expressions (𝜑𝑒=𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐸  ) 
I, disagree, I don’t, I disagree, argument, reject, claim, I reject, I refute, and, your, I refuse, won’t, the claim, 
nonsense, I contest, dispute, I think, completely disagree, don’t accept, don’t agree, incorrect, doesn’t, hogwash, I 
don’t buy your, I really doubt, your nonsense, true, can you prove, argument fails, you fail to, your assertions, 
bullshit, sheer nonsense, doesn’t make sense, you have no clue, how can you say, do you even, contradict yourself, … 

Agreement expressions (𝜑𝑒=𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝐸 ) 
agree, I, correct, yes, true, accept, I agree, don’t, indeed correct, your, I accept, point, that, I concede, is valid, your 
claim, not really, would agree, might, agree completely, yes indeed, absolutely, you’re correct, valid point, 
argument, the argument, proves, do accept, support, agree with you, rightly said, personally, well put, I do 
support, personally agree, doesn’t necessarily, exactly, very well put, kudos, point taken, ... 

Table 3: Top terms (comma delimited) of two expression types. Red (bold) terms denote possible errors. 
Blue (italics) terms are newly discovered; rest (black) terms have been used in Max-Ent training. 

    P@n 
 

     L 

JTE-P (all terms) JTE-P (excluding labeled ME terms) 
Agreement Disagreement Agreement Disagreement 

50 100 150 50 100 150 50 100 150 50 100 150 
100 0.62 0.63 0.61 0.64 0.62 0.63 0.58 0.56 0.57 0.60 0.59 0.58 
200 0.66 0.67 0.65 0.68 0.66 0.67 0.62 0.59 0.60 0.64 0.63 0.62 
300 0.70 0.70 0.71 0.70 0.68 0.67 0.66 0.66 0.65 0.66 0.66 0.65 
400 0.72 0.72 0.73 0.74 0.71 0.70 0.68 0.67 0.69 0.70 0.68 0.69 
500 0.76 0.77 0.75 0.76 0.73 0.74 0.70 0.71 0.70 0.72 0.71 0.70 

Table 4: Results using terms based on phrase relevance ranking for P @ n= 50, 100, 150 across 100, 200, 
…, 500 labeled examples (L) used for Max-Ent (ME) training.  

    P@n 
 

     L 

JTE-P (all terms) JTE-P (excluding ME terms) 
Agreement Disagreement Agreement Disagreement 

50 100 150 50 100 150 50 100 150 50 100 150 
500 0.66 0.69 0.69 0.72 0.70 0.70 0.66 0.65 0.64 0.68 0.66 0.65 

Table 5: Results using all tokens (without applying phrase relevance ranking) for P@50, 100, 150 and 500 
labeled examples were used for Max-Ent (ME) training). 

Feature Setting Agreeing Disagreeing 
P R F1 P R F1 

JTE-P-posterior 0.59 0.61 0.60 0.81 0.70 0.75 
W+POS 1-4 grams 0.63 0.66 0.64 0.83 0.82 0.82 

W+POS 1-4grams + IG (top 1%) 0.64 0.67 0.65 0.84 0.82 0.83 
W+POS 1-4 grams + IG (top 2%) 0.65 0.67 0.66 0.84 0.82 0.83 
W+POS 1-4 grams + χ2 (top 1%) 0.65 0.68 0.66 0.84 0.83 0.83 
W+POS 1-4 grams + χ2(top 2%) 0.64 0.68 0.69 0.84 0.82 0.83 
AD-Expressions, Φ𝐸 (top 1000) 0.73 0.74 0.73 0.87 0.87 0.87 
AD-Expressions, Φ𝐸 (top 2000) 0.77 0.81 0.78 0.90 0.88 0.89 

Table 6: Precision (P), recall (R), and F1 scores of pair interaction evaluation. Improvements in F1 using 
AD-expression features (𝜑𝐸) are statistically significant (p<0.01) using paired t-test across 5-fold CV. 
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We now compare with the performance of the 
model without using phrase relevance ranking. 
P@n results using all tokens (4356787) are 
shown in Table 5 (with 500 labeled terms for 
Max-Ent training). Clearly, P@n is lower than in 
Table 4 (last row; with phrase relevance ranking) 
because without phrase relevance ranking (Table 
5) many irrelevant terms can rank high due to co-
occurrences which may not be semantically 
related. This shows that relevance ranking of 
phrases is beneficial.   

6.3 Pair Interaction Nature 

We now evaluate the overall interaction nature of 
each pair of users. The evaluation of this task 
requires human judges to read all the posts where 
the two users forming the pair have interacted.  
Thus, it is hard to evaluate all 1461 pairs in our 
dataset. Instead, we randomly sampled 500 pairs 
(≈ 34% of the population) for evaluation. Two 
human judges were asked to independently read 
all the post interactions of 500 pairs and label 
each pair as overall “disagreeing” or overall 
“agreeing” or “none”. The 𝜅𝐶𝑜ℎ𝑒𝑛  for this task 
was 0.81. Pairs were finally labeled as agreeing 
or disagreeing if both judges deemed them so. 
This resulted in 320 disagreeing and 152 
agreeing pairs. Out of the rest 28 pairs, 10 were 
marked “none” by both judges while 18 pairs had 
disagreement in labels. We only focus on the 472 
agreeing and disagreeing pairs. 

As we have labeled data for 472 pairs, we can 
treat identifying pair arguing nature as a text 
classification problem where all interactions 
between a pair are merged in one document 
representing the pair along with the label given 
by judges: agreeing or disagreeing. To compare 
classification performance, we use two feature 
sets: (i) standard word + POS 1-4 grams and (ii) 
AD-expressions from 𝜑𝐸. We use TF-IDF as our 
feature value assignment scheme. We also try 
two well-known feature selection schemes Chi-
Squared Test (χ2) and Information Gain (IG). We 
use the linear kernel6 SVM (SVMlight system in 
(Joachims, 1999)) as our text classifier. For 
feature selection using χ2 and IG, we use two 
settings: top 1% and 2% of all features ranked 
according to the selection metric. Also, for 
estimated AD-expressions (according to 
probabilities in 𝜑𝐸 ), we experiment with top 
1000 and 2000 AD-expressions terms for both 
agreement and disagreement. We summarize 

                                                           
6  Other kernels polynomial, RBF, and sigmoid did not 
perform as well. 

comparison results using 5-fold Cross Validation 
(CV) with two classes: agreeing and disagreeing 
in Table 6. JTE-P-posterior represents the 
method using simply the model posterior on 𝜃𝑝𝐸 
to make the decision (see §5). From Table 6, we 
can make the following observations.  

Predicting agreeing arguing nature is harder 
than that of disagreeing across all feature 
settings. Feature selection improves performance. 
χ2 and IG perform similarly. AD-expressions, 
𝜑𝐸yields the best performance showing that the 
discovered AD-expressions are of high quality 
and reflect the user pair arguing nature well. 
Selecting certain top terms in 𝜑𝐸  can also be 
viewed as a form of feature selection. Although 
prediction performance using model posterior 
(JTE-P-posterior) is slightly lower than 
supervised SVM (Table 6, second row), the F1 
scores are decent. Using the discovered AD-
expressions (Table 6, last low) as features 
renders a statistically significant (see Table 6 
caption) improvement over other baseline feature 
settings. This shows that discovered AD-
expressions are useful for downstream 
applications, e.g., the task of identifying pair 
interactions. 

7 Conclusion 

This paper studied the problem of modeling user 
pair interactions in online discussions with the 
purpose of discovering the interaction or arguing 
nature of each author pair and various AD-
expressions emitted in debates. A novel 
technique was also proposed to rank n-gram 
phrases where relevance based ranking was used 
in conjunction with a semi-supervised generative 
model. This method enables us to find better AD-
expressions. Experiments using real-life online 
debate data showed the effectiveness of the 
model. In our future work, we intend to extend 
the model to account for stances, and issue 
specific interactions which would pave the way 
for user profiling and behavioral modeling. 
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Abstract

Metaphor is an important way of convey-
ing the affect of people, hence understand-
ing how people use metaphors to convey
affect is important for the communication
between individuals and increases cohe-
sion if the perceived affect of the con-
crete example is the same for the two in-
dividuals. Therefore, building computa-
tional models that can automatically iden-
tify the affect in metaphor-rich texts like
“The team captain is a rock.”, “Time is
money.”, “My lawyer is a shark.” is an
important challenging problem, which has
been of great interest to the research com-
munity.

To solve this task, we have collected
and manually annotated the affect of
metaphor-rich texts for four languages.
We present novel algorithms that integrate
triggers for cognitive, affective, perceptual
and social processes with stylistic and lex-
ical information. By running evaluations
on datasets in English, Spanish, Russian
and Farsi, we show that the developed af-
fect polarity and valence prediction tech-
nology of metaphor-rich texts is portable
and works equally well for different lan-
guages.

1 Introduction

Metaphor is a figure of speech in which a word
or phrase that ordinarily designates one thing is
used to designate another, thus making an implicit
comparison (Lakoff and Johnson, 1980; Martin,
1988; Wilks, 2007). For instance, in

“My lawyer is a shark”

the speaker may want to communicate that his/her
lawyer is strong and aggressive, and that he will

attack in court and persist until the goals are
achieved. By using the metaphor, the speaker ac-
tually conveys positive affect because having an
aggressive lawyer is good if one is being sued.

There has been a substantial body of work on
metaphor identification and interpretation (Wilks,
2007; Shutova et al., 2010). However, in this
paper we focus on an equally interesting, chal-
lenging and important problem, which concerns
the automatic identification of affect carried by
metaphors. Building such computational mod-
els is important to understand how people use
metaphors to convey affect and how affect is ex-
pressed using metaphors. The existence of such
models can be also used to improve the communi-
cation between individuals and to make sure that
the speakers perceived the affect of the concrete
metaphor example in the same way.

The questions we address in this paper are:
“How can we build computational models that can
identify the polarity and valence associated with
metaphor-rich texts?” and “Is it possible to build
such automatic models for multiple languages?”.
Our main contributions are:

• We have developed multilingual metaphor-
rich datasets in English, Spanish, Russian and
Farsi that contain annotations of the Positive
and Negative polarity and the valence (from
−3 to +3 scale) corresponding to the inten-
sity of the affect conveyed in the metaphor.

• We have proposed and developed automated
methods for solving the polarity and valence
tasks for all four languages. We model
the polarity task as a classification problem,
while the valence task as a regression prob-
lem.

• We have studied the influence of different in-
formation sources like the metaphor itself,
the context in which it resides, the source and
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target domains of the metaphor, in addition to
contextual features and trigger word lists de-
veloped by psychologists (Tausczik and Pen-
nebaker, 2010).

• We have conducted in depth experimental
evaluation and showed that the developed
methods significantly outperform baseline
methods.

The rest of the paper is organized as follows.
Section 2 describes related work, Section 3 briefly
talks about metaphors. Sections 4 and 5 describe
the polarity classification and valence prediction
tasks for affect of metaphor-rich texts. Both sec-
tions have information on the collected data for
English, Spanish, Russian and Farsi, the con-
ducted experiments and obtained results. Finally,
we conclude in Section 6.

2 Related Work

A substantial body of work has been done on de-
termining the affect (sentiment analysis) of texts
(Kim and Hovy, 2004; Strapparava and Mihalcea,
2007; Wiebe and Cardie, 2005; Yessenalina and
Cardie, 2011; Breck et al., 2007). Various tasks
have been solved among which polarity and va-
lence identification are the most common. While
polarity identification aims at finding the Positive
and Negative affect, valence is more challenging
as it has to map the affect on a [−3,+3] scale
depending on its intensity (Polanyi and Zaenen,
2004; Strapparava and Mihalcea, 2007).

Over the years researchers have developed vari-
ous approaches to identify polarity of words (Esuli
and Sebastiani, 2006), phrases (Turney, 2002; Wil-
son et al., 2005), sentences (Choi and Cardie,
2009) even documents (Pang and Lee, 2008).
Multiple techniques have been employed, from
various machine learning classifiers, to clustering
and topic models. Various domains and textual
sources have been analyzed such as Twitter, Blogs,
Web documents, movie and product reviews (Tur-
ney, 2002; Kennedy and Inkpen, 2005; Niu et al.,
2005; Pang and Lee, 2008), but yet what is miss-
ing is affect analyzer for metaphor-rich texts.

While the affect of metaphors is well stud-
ied from its linguistic and psychological aspects
(Blanchette et al., 2001; Tomlinson and Love,
2006; Crawdord, 2009), to our knowledge the
building of computational models for polarity and
valence identification in metaphor-rich texts is still

a novel task (Smith et al., 2007; Veale, 2012; Veale
and Li, 2012; Reyes and Rosso, 2012; Reyes et
al., 2013). Little (almost no) effort has been put
into multilingual computational affect models of
metaphor-rich texts. Our research specifically tar-
gets the resolution of these problems and shows
that it is possible to build such computational mod-
els. The experimental result provide valuable con-
tributions and fundings, which could be used by
the research community to build upon.

3 Metaphors

Although there are different views on metaphor in
linguistics and philosophy (Black, 1962; Lakoff
and Johnson, 1980; Gentner, 1983; Wilks, 2007),
the common among all approaches is the idea of
an interconceptual mapping that underlies the pro-
duction of metaphorical expressions. There are
two concepts or conceptual domains: the target
(also called topic in the linguistics literature) and
the source (or vehicle), and the existence of a link
between them gives rise to metaphors.

The texts “Your claims are indefensible.” and
“He attacked every weak point in my argument.”
do not directly talk about argument as a war, how-
ever the winning or losing of arguments, the attack
or defense of positions are structured by the con-
cept of war. There is no physical battle, but there
is a verbal battle and the structure of an argument
(attack, defense) reflects this (Lakoff and Johnson,
1980).

As we mentioned before, there has been a lot of
work on the automatic identification of metaphors
(Wilks, 2007; Shutova et al., 2010) and their
mapping into conceptual space (Shutova, 2010a;
Shutova, 2010b), however these are beyond the
scope of this paper. Instead we focus on an equally
interesting, challenging and important problem,
which concerns the automatic identification of af-
fect carried by metaphors. To conduct our study,
we use human annotators to collect metaphor-rich
texts (Shutova and Teufel, 2010) and tag each
metaphor with its corresponding polarity (Posi-
tive/Negative) and valence [−3,+3] scores. The
next sections describe the affect polarity and va-
lence tasks we have defined, the collected and an-
notated metaphor-rich data for each one of the En-
glish, Spanish, Russian and Farsi languages, the
conducted experiments and obtained results.
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4 Task A: Polarity Classification

4.1 Problem Formulation

Task Definition: Given metaphor-rich texts annotated with
Positive and Negative polarity labels, the goal is to build an
automated computational affect model, which can assign to
previously unseen metaphors one of the two polarity classes.

a tough pill to 
swallow  

values that gave our 
nation birth  

Clinton also came into office hoping 
to bridge Washington’s partisan 
divide.  

Thirty percent of our mortgages are 
underwater.  

The administration, in fact, could go 
further with the budget knife by 
eliminating the V-22 Osprey aircraft 

 the 'things' are going to make 
sure their ox doesn't get gored  

Figure 1: Polarity Classification

Figure 1 illustrates the polarity task in which the
metaphors were classified into Positive or Nega-
tive. For instance, the metaphor “tough pill to
swallow” has Negative polarity as it stands for
something being hard to digest or comprehend,
while the metaphor “values that gave our nation
birth” has a Positive polarity as giving birth is like
starting a new beginning.

4.2 Classification Algorithms
We model the metaphor polarity task as a classifi-
cation problem in which, for a given collection of
N training examples, where mi is a metaphor and
ci is the polarity of mi, the objective is to learn
a classification function f : mi → ci in which 1
stands for positive polarity and 0 stands for neg-
ative polarity. We tested five different machine
learning algorithms such as Nave Bayes, SVM
with polynomial kernel, SVM with RBF kernel,
AdaBoost and Stacking, out of which AdaBoost
performed the best. In our experimental study, we
use the freely available implementations in Weka
(Witten and Frank, 2005).
Evaluation Measures: To evaluate the goodness
of the polarity classification algorithms, we cal-
culate the f-score and accuracy on 10-fold cross
validation.

4.3 Data Annotation
To conduct our experimental study, we have used
annotated data provided by the Language Com-
puter Corporation (LCC)1, which developed anno-

1http://www.languagecomputer.com/

tation toolkit specifically for the task of metaphor
detection, interpretation and affect assignment.
They hired annotators to collect and annotate data
for the English, Spanish, Russian and Farsi lan-
guages. The domain for which the metaphors were
collected was Governance. It encompasses elec-
toral politics, the setting of economic policy, the
creation, application and enforcement of rules and
laws. The metaphors were collected from polit-
ical speeches, political websites, online newspa-
pers among others (Mohler et al., 2013).

The annotation toolkit allowed annotators to
provide for each metaphor the following infor-
mation: the metaphor, the context in which the
metaphor was found, the meaning of the metaphor
in the source and target domains from the per-
spective of a native speaker. For example, in the
Context: And to all nations, we will speak for the
values that gave our nation birth.; the annotators
tagged the Metaphor: values that gave our nation
birth; and listed as Source: mother gave birth to
baby; and Target: values of freedom and equal-
ity motivated the creation of America. The same
annotators also provided the affect associated with
the metaphor. The agreements of the annotators as
measured by LCC are: .83, .87, .80 and .61 for the
English, Spanish, Russian and Farsi languages.

In our study, the maximum length of a metaphor
is a sentence, but typically it has the span of a
phrase. The maximum length of a context is three
sentences before and after the metaphor, but typ-
ically it has the span of one sentence before and
after. In our study, the source and target domains
are provided by the human annotators who agree
on these definitions, however the source and target
can be also automatically generated by an inter-
pretation system or a concept mapper. The gen-
eration of source and target information is beyond
the scope of this paper, but studying their impact
on affect is important. At the same time, we want
to show that if the technology for source/target de-
tection and interpretation is not yet available, then
how far can one reach by using the metaphor itself
and the context around it. Later depending on the
availability of the information sources and toolkits
one can decide whether to integrate such informa-
tion or to ignore it. In the experimental sections,
we show how the individual information sources
and their combination affects the resolution of the
metaphor polarity and valence prediction tasks.

Table 1 shows the positive and negative class
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distribution for each one of the four languages.

Negative Positive
ENGLISH 2086 1443
SPANISH 196 434
RUSSIAN 468 418

FARSI 384 252

Table 1: Polarity Class Distribution for Four Lan-
guages

The majority of the the annotated examples are
for English. However, given the difficulty of find-
ing bilingual speakers, we still managed to collect
around 600 examples for Spanish and Farsi, and
886 examples for Russian.

4.4 N-gram Evaluation and Results

N-gram features are widely used in a variety of
classification tasks, therefore we also use them in
our polarity classification task. We studied the in-
fluence of unigrams, bigrams and a combination
of the two, and saw that the best performing fea-
ture set consists of the combination of unigrams
and bigrams. In this paper, we will refer from now
on to n-grams as the combination of unigrams and
bigrams.

Figure 2 shows a study of the influence of the
different information sources and their combina-
tion with n-gram features for English.
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Figure 2: Influence of Information Sources for
Metaphor Polarity Classification of English Texts

For each information source (metaphor, context,
source, target and their combinations), we built a
separate n-gram feature set and model, which was
evaluated on 10-fold cross validation. The results
from this study show that for English, the more
information sources one combines, the higher the
classification accuracy becomes.

Table 2 shows the influence of the information
sources for Spanish, Russian and Farsi with the n-
gram features. The best f-scores for each language
are shown in bold. For Farsi and Russian high per-
formances are obtained both with the context and
with the combination of the context, source and
target information. While for Spanish they reach
similar performance.

SPANISH RUSSIAN FARSI
Metaphor 71.6 71.0 62.4
Source 67.1 62.4 55.4
Target 68.9 67.2 62.4
Context 73.5 77.1 67.4
S+T 76.6 68.7 62.4
M+S+T 76.0 75.4 64.2
C+S+T 76.5 76.5 68.4

Table 2: N-gram features, F-scores on 10-fold val-
idation for Spanish, Russian and Farsi

4.5 LIWC as a Proxy for Metaphor Polarity

LIWC Repository: In addition to the n-gram
features, we also used the Linguistic Inquiry and
Word Count (LIWC) repository (Tausczik and
Pennebaker, 2010), which has 64 word categories
corresponding to different classes like emotional
states, psychological processes, personal concerns
among other. Each category contains a list of
words characterizing it. For instance, the LIWC
category discrepancy contains words like should,
could among others, while the LIWC category in-
hibition contains words like block, stop, constrain.
Previously LIWC was successfully used to ana-
lyze the emotional state of bloggers and tweeters
(Quercia et al., 2011) and to identify deception and
sarcasm in texts (Ott et al., 2011; González-Ibáñez
et al., 2011). When LIWC analyzes texts it gener-
ates statistics like number of words found in cat-
egory Ci divided by the total number of words in
the text. For our metaphor polarity task, we use
LIWC’s statistics of all 64 categories and feed this
information as features for the machine learning
classifiers. LIWC repository contains conceptual
categories (dictionaries) both for the English and
Spanish languages.
LIWC Evaluation and Results: In our experi-
ments LIWC is applied to English and Spanish
metaphor-rich texts since the LIWC category dic-
tionaries are available for both languages. Table 3
shows the obtained accuracy and f-score results in
English and Spanish for each one of the informa-
tion sources.
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ENGLISH SPANISH
Acc Fscore Acc Fscore

Metaphor 98.8 98.8 87.9 87.2
Source 98.6 98.6 97.3 97.3
Target 98.2 98.2 97.9 97.9
Context 91.4 91.4 93.3 93.2
S+T 98.0 98.0 76.3 75.5
M+S+T 95.8 95.7 86.8 86.0
C+S+T 87.9 88.0 79.2 78.5

Table 3: LIWC features, Accuracy and F-scores
on 10-fold validation for English and Spanish

The best performances are reached with indi-
vidual information sources like metaphor, context,
source or target instead of their combinations. The
classifiers obtain similar performance for both lan-
guages.
LIWC Category Relevance to Metaphor Polar-
ity: We also study the importance and relevance
of the LIWC categories for the metaphor polar-
ity task. We use information gain (IG) to mea-
sure the amount of information in bits about the
polarity class prediction, if the only information
available is the presence of a given LIWC cate-
gory (feature) and the corresponding polarity class
distribution. IG measures the expected reduction
in entropy (uncertainty associated with a random
feature) (Mitchell, 1997).

Figure 3 illustrates how certain categories occur
more with the positive (in red color) vs negative
(in green color) class. With the positive metaphors
we observe the LIWC categories for present tense,
social, affect and family, while for the negative
metaphors we see LIWC categories for past tense,
inhibition and anger.
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Figure 3: LIWC category relevance to Metaphor
Polarity

In addition, we show in Figure 4 examples of
the top LIWC categories according to IG ranking

for each one of the information sources.
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Figure 4: Example of LIWC Categories and
Words

For metaphor texts, these categories are I, con-
juntion, anger, discrepancy, swear words among
others; for contexts the categories are pronouns
like I, you, past tense, friends, affect and so on.
Our study shows that some of the LIWC categories
are important across all information sources, but
overall different triggers activate depending on the
information source and the length of the text used.

4.6 Comparative study

Figure 5 shows a comparison of the accuracy of
our best performing approach for each language.
For English and Spanish these are the LIWC mod-
els, while for Russian and Farsi these are the n-
gram models. We compare the performance of the
algorithms with a majority baseline, which assigns
the majority class to each example. For instance,
in English there are 3529 annotated examples, of
which 2086 are positive and 1443 are negative.
Since the positive class is the predominant one
for this language and dataset, a majority classifier
would have .59 accuracy in returning the positive
class as an answer. Similarly, we compute the ma-
jority baseline for the rest of the languages.
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Figure 5: Best Accuracy Model and Comparison
against a Majority Baseline for Metaphor Polarity
Classification

As we can see from Figure 5 that all classi-
fiers significantly outperform the majority base-
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line. For Farsi the increment is +11.90, while for
English the increment is +39.69. This means that
the built classifiers perform much better than a ran-
dom classifier.

4.7 Lessons Learned

To summarize, in this section we have defined the
task of polarity classification and we have pre-
sented a machine learning solution. We have used
different feature sets and information sources to
solve the task. We have conducted exhaustive
evaluations for four different languages namely
English, Spanish, Russian and Farsi. The learned
lessons from this study are: (1) for n-gram us-
age, the larger the context of the metaphor, the
better the classification accuracy becomes; (2) if
present source and target information can further
boost the performance of the classifiers; (3) LIWC
is a useful resource for polarity identification in
metaphor-rich texts; (4) analyzing the usages of
tense like past vs. present and pronouns are im-
portant triggers for positive and negative polarity
of metaphors; (5) some categories like family, so-
cial presence indicate positive polarity, while oth-
ers like inhibition, anger and swear words are in-
dicative of negative affect; (6) the built models sig-
nificantly outperform majority baselines.

5 Task B: Valence Prediction

5.1 Problem Formulation

Task Definition: Given metaphor-rich texts annotated
with valence score (from −3 to +3), where −3 indicates
strong negativity, +3 indicates strong positivity, 0 indi-
cates neural, the goal is to build a model that can predict
without human supervision the valence scores of new pre-
viously unseen metaphors.

The administration, in fact, could go 
further with the budget knife by 
eliminating the V-22 Osprey aircraft 

Clinton also came into office hoping 
to bridge Washington’s partisan 
divide.  

values that gave our 
nation birth  !"#

!$#

!%#

a tough pill to 
swallow  &"#

 the 'things' are going to make 
sure their ox doesn't get gored  

&$#

Thirty percent of our mortgages are 
underwater.  &%#

Figure 6: Valence Prediction

Figure 6 shows an example of the valence pre-
diction task in which the metaphor-rich texts must
be arranged by the intensity of the emotional
state provoked by the texts. For instance, −3
corresponds to very strong negativity, −2 strong
negativity, −1 weak negativity (similarly for the
positive classes). In this task we also consider
metaphors with neutral affect. They are annotated
with the 0 label and the prediction model should be
able to predict such intensity as well. For instance,
the metaphor “values that gave our nation birth”,
is considered by American people that giving birth
sets new beginning and has a positive score +1,
but “budget knife” is more positive +3 since tax
cut is more important. As any sentiment analysis
task, affect assignment of metaphors is also a sub-
jective task and the produced annotations express
the values, believes and understanding of the an-
notators.

5.2 Regression Model
We model the valence task a regression prob-
lem, in which for a given metaphor m, we seek
to predict the valence v of m. We do this via
a parametrized function f :v̂ = f(m;w), where
w ∈ Rd are the weights. The objective is to
learn w from a collection of N training examples
{< mi, vi >}Ni=1, where mi are the metaphor ex-
amples and vi ∈ R is the valence score of mi.

Support vector regression (Drucker et al., 1996)
is a well-known method for training a regression
model by solving the following optimization prob-
lem:

min
w∈Rs

1

2
||w||2 + C

N

N∑

i=1

max(0, |vi − f(mi;w)| − ε)︸ ︷︷ ︸
ε-insensitive loss function

where C is a regularization constant and ε controls
the training error. The training algorithm finds
weights w that define a function f minimizing the
empirical risk. Let h be a function from seeds into
some vector-space representation ⊆ Rd, then the
function f takes the form: f(m;w) = h(m)Tw =∑N
i=1 αiK(m,mi), where f is re-parameterized

in terms of a polynomial kernel function K with
dual weights αi. K measures the similarity be-
tween two metaphoric texts. Full details of the
regression model and its implementation are be-
yond the scope of this paper; for more details see
(Schölkopf and Smola, 2001; Smola et al., 2003).
In our experimental study, we use the freely avail-
able implementation of SVM in Weka (Witten and
Frank, 2005).
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Evaluation Measures: To evaluate the quality of
the valence prediction model, we compare the ac-
tual valence score of the metaphor given by human
annotators denoted with y against those valence
scores predicted by the regression model denoted
with x. We estimate the goodness of the regres-
sion model calculating both the correlation coef-

ficient ccx,y =
n
∑

xiyi−
∑

xi
∑

yi√
n
∑

x2i−(
∑

xi)2
√
n
∑

y2i−(
∑

yi)2

and the mean squared error msex,y =
∑n

i=i
(x−x̂)
n .

The two evaluation measures should be interpreted
in the following manner. Intuitively the higher the
correlation score is, the better the correlation be-
tween the actual and the predicted valence scores
will be. Similarly the smaller the mean squared
error rate, the better the regression model fits the
valence predictions to the actual score.

5.3 Data Annotation

To conduct our valence prediction study, we used
the same human annotators from the polarity clas-
sification task for each one of the English, Span-
ish, Russian and Farsi languages. We asked the
annotators to map each metaphor on a [−3,+3]
scale depending on the intensity of the affect asso-
ciated with the metaphor.

Table 4 shows the distribution (number of ex-
amples) for each valence class and for each lan-
guage.

-3 -2 -1 0 +1 +2 +3
ENGLISH 1057 817 212 582 157 746 540
SPANISH 106 65 27 17 40 132 262
RUSSIAN 118 42 308 13 202 149 67

FARSI 147 117 120 49 91 63 98

Table 4: Valence Score Distribution for Each Lan-
guage

5.4 Empirical Evaluation and Results

For each language and information source we built
separate valence prediction regression models. We
used the same features for the regression task as
we have used in the classification task. Those in-
clude n-grams (unigrams, bigrams and combina-
tion of the two), LIWC scores. Table 5 shows
the obtained correlation coefficient (CC) and mean
squared error (MSE) results for each one of the
four languages (English, Spanish, Russian and
Farsi) using the dataset described in Table 4.

The Farsi and Russian regression models are
based only on n-gram features, while the English
and Spanish regression models have both n-gram
and LIWC features. Overall, the CC for English

and Spanish is higher when LIWC features are
used. This means that the LIWC based valence re-
gression model approximates the predicted values
better to those of the human annotators. The better
valence prediction happens when the metaphor it-
self is used by LIWC. The MSE for English and
Spanish is the lowest, meaning that the predic-
tion is the closest to those of the human annota-
tors. In Russian and Farsi the lowest MSE is when
the combined metaphor, source and target infor-
mation sources are used. For English and Spanish
the smallest MSE or so called prediction error is
1.52 and 1.30 respectively, while for Russian and
Farsi is 1.62 and 2.13 respectively.

5.5 Lessons Learned

To summarize, in this section we have defined
the task of valence prediction of metaphor-rich
texts and we have described a regression model
for its solution. We have studied different fea-
ture sets and information sources to solve the task.
We have conducted exhaustive evaluations in all
four languages namely English, Spanish, Russian
and Farsi. The learned lessons from this study
are: (1) valence prediction is a much harder task
than polarity classification both for human annota-
tion and for the machine learning algorithms; (2)
the obtained results showed that despite its dif-
ficulty this is still a plausible problem; (3) sim-
ilarly to the polarity classification task, valence
prediction with LIWC is improved when shorter
contexts (the metaphor/source/target information
source) are considered.

6 Conclusion

People use metaphor-rich language to express af-
fect and often affect is expressed through the usage
of metaphors. Therefore, understanding that the
metaphor “I was boiling inside when I saw him.”
has Negative polarity as it conveys feeling of anger
is very important for interpersonal or multicultural
communications.

In this paper, we have introduced a novel corpus
of metaphor-rich texts for the English, Spanish,
Russian and Farsi languages, which was manu-
ally annotated with the polarity and valence scores
of the affect conveyed by the metaphors. We
have studied the impact of different information
sources such as the metaphor in isolation, the con-
text in which the metaphor was used, the source
and target domain meanings of the metaphor and
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RUSSIAN N-gram FARSI N-gram ENGLISH N-gram SPANISH N-gram ENGLISH LIWC SPANISH LIWC
CC MSE CC MSE CC MSE CC MSE CC MSE CC MSE

Metaphor .45 1.71 .25 2.25 .36 2.50 .37 2.54 .74 1.52 .87 1.20
Source .22 1.89 .11 2.42 .40 2.27 .22 2.43 .81 1.30 .85 1.28
Target .25 1.91 .15 2.47 .37 2.41 .32 2.36 .72 1.56 .85 1.29
Context .43 1.83 .32 2.38 .37 2.59 .40 2.37 .40 2.16 .67 1.92
S+T .29 1.83 .18 2.38 .40 2.40 .41 2.19 .70 1.60 .78 1.53
M+S+T .45 1.62 .29 2.13 .43 2.34 .43 2.14 .67 1.67 .78 1.53
C+S+T .42 1.85 .26 2.61 .43 2.52 .39 2.41 .44 2.08 .64 1.96

Table 5: Valence Prediction, Correlation Coefficient and Mean Squared Error for English, Spanish, Rus-
sian and Farsi

their combination in order to understand how such
information helps and impacts the interpretation
of the affect associated with the metaphor. We
have conducted exhaustive evaluation with multi-
ple machine learning classifiers and different fea-
tures sets spanning from lexical information to
psychological categories developed by (Tausczik
and Pennebaker, 2010). Through experiments car-
ried out on the developed datasets, we showed that
the proposed polarity classification and valence
regression models significantly improve baselines
(from 11.90% to 39.69% depending on the lan-
guage) and work well for all four languages. From
the two tasks, the valence prediction problem was
more challenging both for the human annotators
and the automated system. The mean squared er-
ror in valence prediction in the range [−3,+3],
where −3 indicates strong negative and +3 indi-
cates strong positive affect for English, Spanish
and Russian was around 1.5, while for Farsi was
around 2.

The current findings and learned lessons reflect
the properties of the collected data and its anno-
tations. In the future we are interested in study-
ing the affect of metaphors for domains differ-
ent than Governance. We want to conduct stud-
ies with the help of social sciences who would re-
search whether the tagging of affect in metaphors
depends on the political affiliation, age, gender or
culture of the annotators. Not on a last place, we
would like to improve the built valence prediction
models and to collect more data for Spanish, Rus-
sian and Farsi.

Acknowledgments
The author would like to thank the reviewers for
their helpful comments as well as the LCC anno-
tators who have prepared the data and made this
work possible. This research is supported by the
Intelligence Advanced Research Projects Activ-
ity (IARPA) via Department of Defense US Army
Research Laboratory contract number W911NF-

12-C-0025. The U.S. Government is authorized to
reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright anno-
tation thereon. Disclaimer: The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, ei-
ther expressed or implied, of IARPA, DoD/ARL,
or the U.S. Government.

References
Max Black. 1962. Models and Metaphors.

Isabelle Blanchette, Kevin Dunbar, John Hummel, and
Richard Marsh. 2001. Analogy use in naturalis-
tic settings: The influence of audience, emotion and
goals. Memory and Cognition, pages 730–735.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In Pro-
ceedings of the 20th international joint conference
on Artifical intelligence, IJCAI’07, pages 2683–
2688. Morgan Kaufmann Publishers Inc.

Yejin Choi and Claire Cardie. 2009. Adapting a po-
larity lexicon using integer linear programming for
domain-specific sentiment classification. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 2 -
Volume 2, EMNLP ’09, pages 590–598.

Elizabeth Crawdord. 2009. Conceptual metaphors of
affect. Emotion Review, pages 129–139.

Harris Drucker, Chris J.C. Burges, Linda Kaufman,
Alex Smola, and Vladimir Vapnik. 1996. Support
vector regression machines. In Advances in NIPS,
pages 155–161.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sen-
tiwordnet: A publicly available lexical resource
for opinion mining. In In Proceedings of the 5th
Conference on Language Resources and Evaluation
(LREC06, pages 417–422.

Dedre Gentner. 1983. Structure-mapping: A theo-
retical framework for analogy. Cognitive Science,
7(2):155–170.

689
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Abstract 

Standard methods for part-of-speech tagging 
suffer from data sparseness when used on 
highly inflectional languages (which require 
large lexical tagset inventories). For this 
reason, a number of alternative methods have 
been proposed over the years. One of the 
most successful methods used for this task, 
FDOOHG�7LHUHG�7DJJLQJ��7XIL�, 1999), exploits 
a reduced set of tags derived by removing 
several recoverable features from the lexicon 
morpho-syntactic descriptions. A second 
phase is aimed at recovering the full set of 
morpho-syntactic features. In this paper we 
present an alternative method to Tiered 
Tagging, based on local optimizations with 
Neural Networks and we show how, by 
properly encoding the input sequence in a 
general Neural Network architecture, we 
achieve results similar to the Tiered Tagging 
methodology, signif icantly faster and without 
requiring extensive linguistic knowledge as 
implied by the previously mentioned method. 

1 Introduction 

Part-of-speech tagging is a key process for 
various tasks such as `information extraction, 
text-to-speech synthesis, word sense 
disambiguation and machine translation. It is also 
known as lexical ambiguity resolution and it 
represents the process of assigning a uniquely 
interpretable label to every word inside a 
sentence. The labels are called POS tags and the 
entire inventory of POS tags is called a tagset.  

There are several approaches to part-of-speech 
tagging, such as Hidden Markov Models (HMM) 
(Brants, 2000), Maximum Entropy Classifiers 
(Berger et al., 1996; Ratnaparkhi, 1996), 
Bayesian Networks (Samuelsson, 1993), Neural 

Networks (Marques and Lopes, 1996) and 
Conditional Random Fields (CRF) (Lafferty et 
al., 2001). All  these methods are primarily 
intended for English, which uses a relatively 
small tagset inventory, compared to highly 
inflectional languages. For the later mentioned 
languages, the lexicon tagsets (called morpho-
syntactic descriptions (Calzolari and Monachini, 
1995) or MSDs) may be 10-20 times or even 
larger than the best known tagsets for English. 
For instance Czech MSD tagset requires more 
than 3000 labels (Colli ns et al., 1999), Slovene 
more than 2000 labels (Erjavec and Krek, 2008), 
and Romanian more than 1100 labels (Tufi�, 
1999). The standard tagging methods, using such 
large tagsets, face serious data sparseness 
problems due to lack of statistical evidence, 
manifested by the non-robustness of the language 
models. When tagging new texts that are not in 
the same domain as the training data, the 
accuracy decreases significantly. Even tagging 
in-domain texts may not be satisfactoril y 
accurate. 

One of the most successful methods used for 
this taVN�� FDOOHG� 7LHUHG� 7DJJLQJ� �7XIL�, 1999), 
exploits a reduced set of tags derived by 
removing several recoverable features from the 
lexicon morpho-syntactic descriptions. 
According to the MULTEXT EAST lexical 
specifications (Erjavec and Monachini, 1997), 
the Romanian tagset consists of a number of 614 
MSD tags (by exploiting the case and gender 
regular syncretism) for wordforms and 10 
punctuation tags (Tufi� et al., 1997), which is 
still  significantly larger than the tagset of 
English. The MULTEX EAST version 4 
(Erjavec, 2010) contains specifications for a total 
of 16 languages: Bulgarian, Croatian, Czech, 
Estonian, English, Hungarian, Romanian, 
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In the case of out-of-vocabulary (OOV) 
words, both approaches use suffix analysis to 
determine the most probable tags that can be 
assigned to the current word.  

To clarify how these two methods work, if we 
want to train the network to label the current 
word, using a context window of 1 (previous tag, 
current possible tags, and possible tags for the 
next word) and if we have, say 100 tags in the 
tagset, the input is a real valued vector of 300 
sub-unit elements and the output is a vector 
which contains 100 elements, also sub-unit real 
numbers. As mentioned earlier, each value in the 
output vector corresponds to a distinct tag from 
tagset and the tag assigned to the current word is 
chosen to correspond to the maximum value 
inside the output vector. 

The previously proposed methods still  suffer 
from the same issue of data sparseness when 
applied to MSD tagging. However, in our 
approach, we overcome the problem through a 
different encoding of the input data (see section 
2.1).  

The power of neural networks results mainly 
from their abilit y to attain activation functions 
over different patterns via their learning 
algorithm. By properly encoding the input 
sequence, the network chooses which input 
features contribute in determining the output 
features for MSDs (e.g. patterns composed of 
part of speech, gender, case, type etc. contribute 
independently in selecting the optimal output 
sequence). This way, we removed the need for 
explicit MSD to CTAG conversion and MSD 
recovery from CTAGs.  

2.1 The MSD binary encoding scheme 

A MSD language independently encodes a part 
of speech (POS) with the associated lexical 
attribute values as a string of positional ordered 
character codes (Erjavec, 2004). The first 
character is an upper case character denoting the 
SDUW�RI�VSHHFK��H�J��µ1¶ IRU�QRXQV��µ9¶�IRU�YHUEV��
µ$¶� IRU� DGMHFWLYHV�� HWF��� DQG� WKH� IROORZLQJ�

FKDUDFWHUV� �ORZHU� OHWWHUV� RU� µ-µ� specify the 
instantiations of the characteristic lexical 
attributes of the POS. For example, the MSD 
µ1FIVUQ¶�� specifies a noun (the first character is 
µ1¶�� the type of ZKLFK� LV� FRPPRQ� �µF¶�� WKH�
second character), feminine gender �µI¶���VLQJXODU 
number �µV¶��� LQ�QRPLQDWLYH�DFFXVDWLYH�FDVH��µU¶��
and indefinite form �µQ¶���If  a specific attribute is 
not relevant for a language, or for a given 
combination of feature-YDOXHV��WKH�FKDUDFWHU�µ-¶�LV�
used in the corresponding position. For a 

language which does not morphologically mark 
the gender and definiteness features, the earlier 
H[HPSOLILHG�06'�ZLOO�EH�HQFRGHG�DV�µ1F-sr-¶� 
 

In order to derive a binary vector for each of 
the 614 MSDs of Romanian we proceeded to: 

1. List and sort all  possible POSes of 
Romanian (16 POSes) and form a binary 
vector with 16 positions in which position k 
is equal 1 only if the respective MSD has 
the corresponding POS (i.e. the k-th POS in 
the sorted list of POSes); 

2. List and sort all possible values of all  lexical 
attributes �GLVUHJDUGLQJ�WKH�ZLOGFDUG�µ-µ� for 
all POSes (94 values) and form another 
binary vector with 94 positions such that the 
k-th position of this vector is 1 if the 
respective MSD has an attribute with the 
corresponding value; 

3. Concatenate the vectors from steps 1 and 2 
and obtain the binary codification of a MSD 
as a 110-position binary vector. 

2.2 The training and tagging procedure 

The tagger automatically assigns four dummy 
tokens (two at the beginning and two at the end) 
to the target utterance and the neural network is 
trained to automatically assign a MSD given the 
context (two previously assigned tags and the 
possible tags for the current and following two 
words) of the current word (see below for 
details).  

In our framework a training example consists 
of the features extracted for a single word inside 
an utterance as input and it¶s MSD within that 
utterance as output. The features are extracted 
from a window of 5 words centered on the 
current word. A single word is characterized by a 
vector that encodes either its assigned MSD or its 
possible MSDs. To encode the possible MSDs 
we use equation 2, where each possible attribute 
a, has a single corresponding position inside the 
encoded vector.  

 

2:=�S; L %:Sá=;

%:S;
 (2) 

 
Note that we changed the probability 

estimates to account for attributes not tags.  
 
To be precise, for every word wk, we obtain its 

input features by concatenating a number of 5 
vectors. The first two vectors encode the MSDs 
assigned to the previous two words (wk-1 and wk-
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2).The next three vectors are used to encode the 
possible MSDs for the current word (wk) and the 
following two words (wk+1 and wk+2).  

During training, we also compute a li st of 
suffixes with associated MSDs, which is used at 
run-time to build the possible MSDs vector for 
unknown words. When such words are found 
within the test data, we approximate their 
possible MSDs vector using a variation of the 
method proposed by Brants (2000).  

When the tagger is applied to a new utterance, 
the system iteratively calculates the output MSD 
for each individual word. Once a label has been 
assigned to a word, the ZRUG¶V�DVVRFLDWHG�YHFWRU�
is edited so it will  have the value of 1 for each 
attribute present in its newly assigned MSD.  

As a consequence of encoding each individual 
attribute separately for MSDs, the tagger can 
assign new tags (that were never associated with 
the current word in the training corpus). 
Although this is a nice behavior for dealing with 
unknown words it is often the case that it assigns 
attribute values that are not valid for the 
wordform. To overcome these types of errors we 
use an additional list of words with their allowed 
MSDs. For an OOV word, the li st is computed as 
a union from all MSDs that appeared with the 
suffixes that apply to that word. 

When the tagger has to assign a MSD to a 
given word, it selects one from the possible 
wordform¶V� MSDs in its wordform/MSDs 
associated list using a simple distance function: 

 

���
ØÐÉ

Í �KÞ F AÞ�
á

Þ@4

 (3) 

2 - 
The list of all possible MSDs 
for the given word 

J - 
The length of the MSD 
encoding (110 bits) 

K - 
The output of the Neural 
Network for the current word 

A - Binary encoding for a MSD in P 

3 Network hyperparameters 

In our experiments, we used a fully connected, 
feed forward neural network with 3 layers (1 
input layer, 1 hidden layer and 1 output layer) 

and a sigmoid activation function (equation 3). 
While other network architectures such as 
recurrent neural networks may prove to be more 
suitable for this task, they are extremely hard to 
train, thus, we traded the advantages of such 
architectures for the robustness and simplicity of 
the feed-forward networks. 
 

B:P; L s

sE A?ç (3) 

B:P; - Neuron output 

P - 
The weighted sum of all the 
neuron outputs from the 
previous layer 

 
Based on the size of the vectors used for MSD 

encoding, the output layer has 110 neurons and 
the input layer is composed of 550 (5 x 110) 
neurons. 

In order to fully characterize our system, we 
took into account the following parameters: 
accuracy, runtime speed, training speed, hidden 
layer configuration and the number of optimal 
training iterations. These parameters have 
complex dependencies and relations among each 
other. For example, the accuracy, the optimal 
number of training iterations, the training and the 
runtime speed are all  highly dependent on the 
hidden layer configuration. Small hidden layer 
give high training and runtime speeds, but often 
under-fit the data. If  the hidden layer is too large, 
it can easily over-fit the data and also has a 
negative impact on the training and runtime 
speed. The number of optimal training iterations 
changes with the size of the hidden layer (larger 
layers usually require more training iterations). 

To obtain the trade-offs between the above 
mentioned parameters we devised a series of 
experiments, in all  of which we used WKH�³����´�
MSD annotated corpus, which is composed of 
118,025 words. We randomly kept out 
approximately 1/10 (11,960 words) of the 
training corpus for building a cross-validation 
set. The baseline accuracy on the cross-validation 
set (i.e. returning the most probable tag) is 
93.29%. We also used an additional inflectional 
wordform/MSD lexicon composed of 
approximately 1 milli on hand-validated entries.  
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The first experiment was designed to 
determine the trade-off between the run-time 
speed and the size of the hidden layer. We made 
a series of experiments disregarding the tagging 
accuracy. 

 
Hidden size Time (ms) Words/sec 

50 1530 7816 
70 1888 6334 
90 2345 5100 
110 2781 4300 
130 3518 3399 
150 5052 2367 
170 5466 2188 
190 6734 1776 
210 7096 1685 
230 8332 1435 
250 9576 1248 
270 10350 1155 
290 11080 1079 
310 12364 967 

 
Table 1 - Execution time vs. number of neurons on 

the hidden layer 
 
Because, for a given number of neurons in the 

hidden layer, the tagging speed is independent on 
the tagging accuracy, we partially trained (using 
one iteration and only 1000 training sentences) 
several network configurations. The first network 
only had 50 neurons in the hidden layer and for 
the next networks, we incremented the hidden 
layer size by 20 neurons until  we reached 310 
neurons. The total number of tested networks is 
14. After this, we measured the time it took to 
tag the 1984 test corpus (11,960 words) for each 
individual network, as an average of 3 tagging 
runs in order to reduce the impact of the 
operating system load on the tagger (Table 1 
shows the figures). 

Determining the optimal size of the hidden 
layer is a very delicate subject and there are no 
perfect solutions, most of them being based on 
trial and error: small-sized hidden layers lead to 
under-fitting, while large hidden layers usually 
cause over-fitting. Also, because of the trade-off 
between runtime speed and the size of hidden 
layers, and if runtime speed is an important 
factor in a particular NLP application, then 
hidden layers with smaller number of neurons are 
preferable, as they surely do not over-fit the data 
and offer a noticeable speed boost. 
 

hidden 
layer 

Train set 
accuracy 

Cross 
validation 
accuracy 

50 99.18 97.95 
70 99.20 98.02 
90 99.27 98.03 
110 99.29 98.05 
130 99.35 98.12 
150 99.35 98.09 
170 99.41 98.07 
190 99.40 98.10 
210 99.40 98.21 

 
Table 2 - Train and test accuracy rates for dif ferent 

hidden layer configurations 
 

As shown in Table 1, the runtime speed of our 
system shows a constant decay when we increase 
the hidden layer size. The same decay can be 
seen in the training speed, only this time by an 
order of magnitude larger. Because training a 
single network takes a lot of time, this 
experiment was designed to estimate the size of 
the hidden layer which offers good performance 
in tagging. To do this, we individually trained a 
number of networks in 30 iterations, using 
various hidden layer configurations (50, 70, 90, 
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Figure 2 - 130 hidden layer network test and train set tagging accuracy as a function of the number of iterations 
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110, 130, 150, 170, 190, and 210 neurons) and 5 
initial random initializations of the weights. For 
each configuration, we stored the accuracy of 
reproducing the learning data (the tagging of the 
training corpus) and the accuracy on the unseen 
data (test sets). The results are shown in Table 2. 
Although a hidden layer of 210 neurons did not 
seem to over-fit the data, we stopped the 
experiment, as the training time got significantly 
longer.  

The next experiment was designed to see how 
the number of training iterations influences the 
tagging performance of networks with different 
hidden layer configurations. Intuitively, the 
training process must be stopped when the 
network begins to over-fit the data (i.e. the train 
set accuracy increases, but the test set accuracy 
drops). Our experiments indicate that this is not 
always the case, as in some situations the 
continuation of the training process leads to 
better results on the cross-validation data (as 
shown in Figure 2). So, the problem comes to 
determining which is the most stable 
configuration of the neural network (i.e. which 
hidden unit size will  be most li kely to return 
good results on the test set) and establish the 
number of iterations it takes for the system to be 
trained. To do this, we ran the training procedure 
for 100 iterations and for each training iteration, 
we computed the accuracy rate of every 
individual network on the cross-validation set 
(see Table 3 for the averaged values). As shown, 
the network configuration using 130 neurons on 
the hidden layer is most likely to produce better 
results on the cross-validation set regardless of 
the number of iterations.  

Although, some other configurations provided 
better figures for the maximum accuracy, their 
average accuracy is lower than that of the 130 
hidden unit network. Other good candidates are 
the 90 and 110 hidden unit networks, but not the 
larger valued ones, which display a lower 
average accuracy and also significantly slower 
tagging speeds.  

The most suitable network configuration for a 
given task depends on the language, MSD 
encoding size, speed and accuracy requirements. 
In our own daily applications we use the 130 
hidden unit network. After observing the 
behavior of the various networks on the cross-
validation set we determined that a good choice 
is to stop the training procedure after 40 
iterations. 

 

Hidden 
units 

Avg. acc. Max. acc. St. dev. 

50 97.94 98.31 0.127002 
70 98.03 98.31 0.12197 
50 97.94 98.37 0.139762 
70 98.03 98.43 0.124996 
90 98.07 98.39 0.134487 
110 98.08 98.45 0.127109 
130 98.14 98.44 0.136072 
150 98.01 98.36 0.143324 
170 97.94 98.36 0.122834 

 
Table 3 - Average and maximum accuracy for various 

hidden layer configuration calculated over 100 
training iterations on the test set 

 
To obtain the accuracy of the system, in our 

last experiment we used the 130 hidden unit 
network and we performed the training/testing 
procedure on the 1984 corpus, using 10-fold 
validation and 30 random initiali zations. The 
final accuracy was computed as an average 
between all  the accuracy figures measured at the 
end of the training process (after 40 iterations). 
The first 1/10 of the 1984 corpus on which we 
tuned the hyperparameters was not included in 
the test data, but was used for training. The mean 
accuracy of the system (98.41%) was measured 
as an average of 270 values. 

4 Comparison to other methods 

,Q� KLV� ZRUN�� &HDX�u (2006) presents a 
different approach to MSD tagging using the 
Maximum Entropy framework. He presents his 
results on the same corpus we used for training 
and testing (the 1984 corpus) and he compares 
his method (98.45% accuracy) with the Tiered 
Tagging methodology (97.50%) (Tufi� and 
Dragomirescu, 2004). 

Our Neural Network approach obtained 
similar (slightly lower) results (98.41%), 
although it is arguable that our split/t rain 
procedure is not identical to the one used in his 
work (no details were given as how the 1/10 of 
the training corpus was selected). Also, our POS 
tagger detected cases where the annotation in the 
Gold Standard was erroneous. One such example 
LV� LQ� ³lame de raś � �(QJOLVK� ³UD]RU� EODGHV´��
ZKHUH�³ODPH´��English ³EODGHV´��LV�D�QRXQ��³GH´�
�³for´��LV�D�SUHSRVLWLRQ�DQG�³UDV´��³VKDYLQJ´) is a 
supine verb (with a past participle form) which 
was incorrectly annotated as a noun. 
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5 Network pattern analysis 

Using feed-forward neural networks gives the 
abilit y to outline what input features contribute to 
the selection of various MSD attribute values in 
the output layer which might help in reducing the 
tagset and thus, redesigning the network 
topology with beneficial effects both on the 
speed and accuracy.  

To determine what input features contribute to 
the selection of certain MSD attribute values, one 
can analyze the weights inside the neural 
network and extract the input Æ output links that 
are formed during training. We used the network 
with 130 units on the hidden layer, which was 
previously trained for 100 iterations. Based on 
the input encoding, we divided the features into 5 
groups (one group for each MSD inside the local 
context ± two previous MSDs, current and 
following two possible MSDs). For a target 
attribute value (noun, gender feminine, gender 
masculine, etc.) and for each input group, we 
selected the top 3 input values which support the 
decision of assigning the target value to the 
attribute (features that increase the output value) 
and the top 3 features which discourage this 
decision (features that decrease the output value). 
For clarity, we will  use the following notations 
for the groups: 

x G-2: group one ± the assigned MSD for 
the word at position i-2 

x G-1: group two ± the assigned MSD for 
the word at position i-1 

x G0: group three ± the possible MSDs for 
the word at position i 

x G1: group four± the possible MSDs for 
the word at position i+1 

x G2: group five ± the possible MSDs for 
the word at position i+2 

where i corresponds to the position of the word 
which is currently being tagged. Also, we 
classify the attribute values into two categories 
(C): (P) want to see (support the decision) and 
(N) GRQ¶W�ZDQW�WR�VHH (discourage the decision). 

 
Table 4 shows partial (G-1 G0 G1) examples of 

two target attribute values (cat=Noun and gender 
=Feminine) and their corresponding input 
features used for discrimination. 

 
Target 
value 

Group C Attribute values  

Noun G-1 P 
main (of a verb), article, 
masculine (gender of a 

noun/adjective 

N 
particle, conjunctive particle, 

auxiliary (of a verb), 
demonstrative (of a pronoun) 

G0 

P noun, common/proper (of a 
noun) 

N 
adverb, pronoun, numeral, 
interrogative/relative (of a 

pronoun) 

G1 

P 
genitive/dative (of a 

noun/adjective), particle, 
punctuation 

N 

conjunctive particle, strong (of 
a pronoun), non-definite (of a 
noun/adjective), exclamation 

mark 

Fem. 

G-1 
P 

main (of a verb), preposition, 
feminine (of a 

noun/adjective) 

N 
auxiliary (of a verb), particle, 
demonstrative (of a pronoun) 

G0 

P 

feminine (of a 
noun/adjective), 

nominative/accusative (of a 
noun/adjective), past (of a 

verb) 

N 

masculine (of a 
noun/adjective), auxiliary (of a 
verb), interrogative/relative (of 

a pronoun), adverb 

G1 

P 

dative/genitive (of a 
noun/adjective), indicative (of 

a verb), feminine (of a 
noun/adjective) 

N 
conjunctive particle, future 

particle, nominative/accusative 
(of a noun/adjective) 

 
Table 4 ± P/N features for various attribute 

values. 
 
For instance, when deciding on whether to give a 
noun (N) label to current position (G0), we can 
see that the neural network has learned some 
interesting dependencies: at position G-1 we find 
an article (which frequently determines a noun) 
and at the current position it is very important for 
the word being tagged to actually be a common 
or proper noun (either by lexicon lookup or by 
suffix guessing) and not be an adverb, pronoun 
or numeral (POSes that cannot be found in the 
typical ambiguity class of a noun). At the next 
position of the target (G1) we also find a noun in 
genitive or dative, corresponding to a frequent 
construction in Romanian, H�J�� ³PD�ina 
E�LDWXOXL´� EHLQJ� D� VHTXHQFH� RI� WZR nouns, the 
second at genitive/dative. 

If  the neural network outputs the feminine 
gender to its current MSD, one may see that it 
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has actually learned the agreement rules (at least 
locally): the feminine gender is present both 
before (G-1) the target word as well as after it 
(G1). 

6 Conclusions and future work 

We presented a new approach for large tagset 
part-of-speech tagging using neural networks. An 
advantage of using this methodology is that it 
does not require extensive knowledge about the 
grammar of the target language. When building a 
new MSD tagger for a new language one is only 
required to provide the training data and create 
an appropriate MSD encoding system and as 
shown, the MSD encoding algorithm is fairly 
simple and our proposed version works for any 
other MSD compatible encoding, regardless of 
the language.  

Observing which features do not participate in 
any decision helps design custom topologies for 
the Neural Network, and provides enhancements 
in both speed and accuracy. The configurable 
nature of our system allows users to provide their 
own MSD encodings, which permits them to 
mask certain features that are not useful for a 
given NLP application.  

If  one wants to process a large amount of text 
and is interested only in assigning grammatical 
categories to words, he can use a MSD encoding 
in which he strips off  all unnecessary features. 
Thus, the number of necessary neurons would 
decrease, which assures faster training and 
tagging. This is of course possible in any other 
tagging approaches, but our framework supports 
this by masking attributes inside the MSD 
encoding configuration file, without having to 
change anything else in the training corpus. 
During testing the system only verifies if the 
MSD encodings are identical and the displayed 
accuracy directly reflects the performance of the 
system on the simplified tagging schema. 

We also proposed a methodology for selecting 
a network configurations (i.e. number of hidden 
units), which best suites the application 
requirements. In our daily applications we use a 
network with 130 hidden units, as it provides an 
optimal speed/accuracy trade-off (approx. 3400 
words per second with very good average 
accuracy).  

The tagger is implemented as part of a larger 
application that is primarily intended for text-to-
speech (TTS) synthesis. The system is free for 
non-commercial use and we provide both web 
and desktop user-interfaces. It is part of the 

METASHARE platform and available online2. 
Our primary goal was to keep the system 
language independent, thus all our design choices 
are based on the necessity to avoid using 
language specific knowledge, when possible. The 
application supports various NLP related tasks 
such as lexical stress prediction, syllabification, 
letter-to-sound conversion, lemmatization, 
diacritic restoration, prosody prediction from text 
and the speech synthesizer uses unit-selection. 

From the tagging perspective, our future plans 
include testing the system on other highly 
inflectional languages such as Czech and 
Slovene and investigating different methods for 
automatically determining a more suitable 
custom network topology, such as genetic 
algorithms. 
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Wrocław, Poland

adam.radziszewski@pwr.wroc.pl

Abstract

We present a novel approach to noun
phrase lemmatisation where the main
phase is cast as a tagging problem. The
idea draws on the observation that the
lemmatisation of almost all Polish noun
phrases may be decomposed into trans-
formation of singular words (tokens) that
make up each phrase. We perform eval-
uation, which shows results similar to
those obtained earlier by a rule-based sys-
tem, while our approach allows to separate
chunking from lemmatisation.

1 Introduction

Lemmatisation of word forms is the task of find-
ing base forms (lemmas) for each token in running
text. Typically, it is performed along POS tagging
and is considered crucial for many NLP applica-
tions. Similar task may be defined for whole noun
phrases (Degórski, 2011). By lemmatisation of
noun phrases (NPs) we will understand assigning
each NP a grammatically correct NP correspond-
ing to the same phrase that could stand as a dic-
tionary entry.

The task of NP lemmatisation is rarely con-
sidered, although it carries great practical value.
For instance, any keyword extraction system that
works for a morphologically rich language must
deal with lemmatisation of NPs. This is because
keywords are often longer phrases (Turney, 2000),
while the user would be confused to see inflected
forms as system output. Similar situation happens
when attempting at terminology extraction from
domain corpora: it is usually assumed that do-
main terms are subclass of NPs (Marciniak and
Mykowiecka, 2013).

In (1) we give an example Polish noun phrase
(‘the main city of the municipality’). Through-
out the paper we assume the usage of the tagset

of the National Corpus of Polish (Przepiórkowski,
2009), henceforth called NCP in short. The or-
thographic form (1a) appears in instrumental case,
singular. Phrase lemma is given as (1b). Lem-
matisation of this phrase consists in reverting case
value of the main noun (miasto) as well as its
adjective modifier (główne) to nominative (nom).
Each form in the example is in singular number
(sg), miasto has neuter gender (n), gmina is fem-
inine (f).

(1) a. głównym
main
inst:sg:n

miastem
city
inst:sg:n

gminy
municipality
gen:sg:f

b. główne
main
nom:sg:n

miasto
city
nom:sg:n

gminy
municipality
gen:sg:f

According to the lemmatisation principles ac-
companying the NCP tagset, adjectives are lem-
matised as masculine forms (główny), hence it is
not sufficient to take word-level lemma nor the or-
thographic form to obtain phrase lemmatisation.
Degórski (2011) discuses some similar cases. He
also notes that this is not an easy task and lemma
of a whole NP is rarely a concatenation of lem-
mas of phrase components. It is worth stressing
that even the task of word-level lemmatisation is
non-trivial for inflectional languages due to a large
number of inflected forms and even larger num-
ber of syncretisms. According to Przepiórkowski
(2007), “a typical Polish adjective may have 11
textually different forms (. . . ) but as many as 70
different tags (2 numbers× 7 cases× 5 genders)”,
which indicates the scale of the problem. What is
more, several syntactic phenomena typical for Pol-
ish complicate NP lemmatisation further. E.g., ad-
jectives may both precede and follow nouns they
modify; many English prepositional phrases are
realised in Polish using oblique case without any
proposition (e.g., there is no standard Polish coun-
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terpart for the preposition of as genitive case is
used for this purpose).

In this paper we present a novel approach to
noun phrase lemmatisation where the main phase
is cast as a tagging problem and tackled using a
method devised for such problems, namely Con-
ditional Random Fields (CRF).

2 Related works

NP lemmatisation received very little attention.
This situation may be attributed to prevalence of
works targeted at English, where the problem is
next to trivial due to weak inflection in the lan-
guage.

The only work that contains a complete de-
scription and evaluation of an approach to this
task we were able to find is the work of Degór-
ski (2011). The approach consists in incorpor-
ating phrase lemmatisation rules into a shallow
grammar developed for Polish. This is implemen-
ted by extending the Spejd shallow parsing frame-
work (Buczyński and Przepiórkowski, 2009) with
a rule action that is able to generate phrase lem-
mas. Degórski assumes that lemma of each NP
may be obtained by concatenating each token’s
orthographic form, lemma or ‘half-lemmatised’
form (e.g. grammatical case normalised to nom-
inative, while leaving feminine gender). The other
assumption is to neglect letter case: all phrases are
converted to lower case and this is not penalised
during evaluation. For development and evalu-
ation, two subsets of NCP were chosen and manu-
ally annotated with NP lemmas: development set
(112 phrases) and evaluation set (224 phrases).
Degórski notes that the selection was not entirely
random: two types of NPs were deliberately omit-
ted, namely foreign names and “a few groups for
which the proper lemmatisation seemed very un-
clear”. The final evaluation was performed in two
ways. First, it is shown that the output of the en-
tire system intersects only with 58.5% of the test
set. The high error rate is attributed to problems
with identifying NP boundaries correctly (29.5%
of test set was not recognised correctly with re-
spect to phrase boundaries). The other experiment
was to limit the evaluation to those NPs whose
boundaries were recognised correctly by the gram-
mar (70.5%). This resulted in 82.9% success rate.

The task of phrase lemmatisation bears a close
resemblance to a more popular task, namely lem-
matisation of named entities. Depending on the

type of named entities considered, those two may
be solved using similar or significantly different
methodologies. One approach, which is especially
suitable for person names, assumes that nominat-
ive forms may be found in the same source as the
inflected forms. Hence, the main challenge is to
define a similarity metric between named entities
(Piskorski et al., 2009; Kocoń and Piasecki, 2012),
which can be used to match different mentions of
the same names. Other named entity types may be
realised as arbitrary noun phrases. This calls for
more robust lemmatisation strategies.

Piskorski (2005) handles the problem of lem-
matisation of Polish named entities of various
types by combining specialised gazetteers with
lemmatisation rules added to a hand-written gram-
mar. As he notes, organisation names are often
built of noun phrases, hence it is important to un-
derstand their internal structure. Another interest-
ing observation is that such organisation names are
often structurally ambiguous, which is exempli-
fied with the phrase (2a), being a string of items
in genitive case (‘of the main library of the Higher
School of Economics’). Such cases are easier to
solve when having access to a collocation diction-
ary — it may be inferred that there are two colloc-
ations here: Biblioteka Główna and Wyższa Szkoła
Handlowa.

(2) a. Biblioteki
library
gen:sg:f

Głównej
main
gen:sg:f

Wyższej
higher
gen:sg:f

Szkoły
school
gen:sg:f

Handlowej
commercial
gen:sg:f

b. Biblioteka
library
nom:sg:f

Główna
main
nom:sg:f

Wyższej
higher
gen:sg:f

Szkoły
school
gen:sg:f

Handlowej
commercial
gen:sg:f

While the paper reports detailed figures on
named entity recognition performance, the qual-
ity of lemmatisation is assessed only for all entity
types collectively: “79.6 of the detected NEs were
lemmatised correctly” (Piskorski, 2005).

3 Phrase lemmatisation as a tagging
problem

The idea presented here is directly inspired by De-
górski’s observations. First, we will also assume
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that lemma of any NP may be obtained by concat-
enating simple transformations of word forms that
make up the phrase. As we will show in Sec. 4,
this assumption is virtually always satisfied. We
will argue that there is a small finite set of inflec-
tional transformations that are sufficient to lem-
matise nearly every Polish NP.

Consider example (1) again. Correct lemmat-
isation of the phrase may be obtained by apply-
ing a series of simple inflectional transformations
to each of its words. The first two words need to
be turned into nominative forms, the last one is
already lemmatised. This is depicted in (3a). To
show the real setting, this time we give full NCP
tags and word-level lemmas assigned as a result of
tagging. In the NCP tagset, the first part of each
tag denotes grammatical class (adj stands for ad-
jective, subst for noun). Adjectives are also spe-
cified for degree (pos — positive degree).

(3) a. głównym
główny
adj:sg:inst:n:pos

miastem
miasto
subst:sg:inst:n

gminy
gmina
subst:sg:gen:f

b. główne
adj:sg:nom:n:pos

cas=nom

miasto
subst:sg:nom:n

cas=nom

gminy
subst:sg:gen:f

=

Example (3b) consists of three rows: the lem-
matised phrase, the desired tags (tags that would
be attached to tokens of the lemmatised phrase)
and the transformations needed to obtain lemma
from orthographic forms. The notation cas=nom
means that to obtain the desired form (e.g. główne)
you need to find an entry in a morphological dic-
tionary that bears the same word-level lemma as
the inflected form (główny) and a tag that res-
ults from taking the tag of the inflected form
(adj:sg:inst:n:pos) and setting the value
of the tagset attribute cas (grammatical case) to
the value nom (nominative). The transformation
labelled = means that the inflected form is already
equal to the desired part of the lemma, hence no
transformation is needed.

A tagset note is in order. In the NCP tag-
set each tag may be decomposed into grammat-
ical class and attribute values, where the choice

of applicable attributes depends on the grammat-
ical class. For instance, nouns are specified for
number, gender and case. This assumption is im-
portant for our approach to be able to use simple
tag transformations in the form replace the value
of attribute A with the new value V (A=V). This is
not a serious limitation, since the same assumption
holds for most tagsets developed for inflectional
languages, e.g., the whole MULTEXT-East fam-
ily (Erjavec, 2012), Czech tagset (Jakubíček et al.,
2011).

Our idea is simple: by expressing phrase lem-
matisation in terms of word-level transformations
we can reduce the task to tagging problem and
apply well known Machine Learning techniques
that have been devised for solving such problems
(e.g. CRF). An important advantage is that this al-
lows to rely not only on the information contained
within the phrase to be lemmatised, but also on
tokens belonging to its local neighbourhood.

Assuming that we have already trained a statist-
ical model, we need to perform the following steps
to obtain lemmatisation of a new text:

1. POS tagging,

2. NP chunking,

3. tagging with transformations by applying the
trained model,

4. application of transformations to obtain NP
lemmas (using a morphological dictionary to
generate forms).

To train the statistical model, we need training
data labelled with such transformations. Probably
the most reliable way to obtain such data would
be to let annotators manually encode a training
corpus with such transformations. However, the
task would be extremely tedious and the annotat-
ors would probably have to undergo special train-
ing (to be able to think in terms of transforma-
tions). We decided for a simpler solution. The
annotators were given a simpler task of assigning
each NP instance a lemma and a heuristic proced-
ure was used to induce transformations by match-
ing the manually annotated lemmas to phrases’ or-
thographic forms using a morphological diction-
ary. The details of this procedure are given in the
next section.

We decided to perform the experiments using
the data from Polish Corpus of Wrocław Univer-
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sity of Technology1 (Broda et al., 2012). The
corpus (abbreviated to KPWr from now on) con-
tains manual shallow syntactic annotation which
includes NP chunks and their syntactic heads. The
main motivation to use this corpus was its very
permissive licence (Creative Commons Attribu-
tion), which will not constrain any further use of
the tools developed. What is more, it allowed us
to release the data annotated manually with phrase
lemmas and under the same licence2.

One of the assumptions of KPWr annotation is
that actual noun phrases and prepositional phrases
are labelled collectively as NP chunks. To ob-
tain real noun phrases, phrase-initial prepositions
must be stripped off3. For practical reasons we de-
cided to include automatic recognition of phrase-
initial prepositions into our model: we introduced
a special transformation for such cases (labelled
p), having the interpretation that the token belongs
to a phrase-initial preposition and should be dis-
carded when generating phrase lemma. Preposi-
tions are usually contained in single tokens. There
are some cases of multi-word units which we treat
as prepositions (secondary prepositions), e.g. ze
względu na (with respect to). This solution allows
to use our lemmatiser directly against chunker out-
put to obtain NP lemmas from both NPs and PPs.
For instance, the phrase o przenoszeniu bakterii
drogą płciową (about sexual transmission of bac-
teria) should be lemmatised to przenoszenie bak-
terii drogą płciową (sexual transmission of bac-
teria).

4 Preparation of training data

First, simple lemmatisation guidelines were de-
veloped. The default strategy is to normalise the
case to nominative and the number to singular. If
the phrase was in fact prepositional, phrase-initial
preposition should be removed first. If changing
the number would alter semantics of the phrase,
it should be left plural (e.g., warunki ‘conditions’
as in terms and conditions). Some additional ex-
ceptions concern pronouns, fixed expressions and

1We used version 1.1 downloaded from http://www.
nlp.pwr.wroc.pl/kpwr.

2The whole dataset described in this paper is avail-
able at http://nlp.pwr.wroc.pl/en/static/
kpwr-lemma.

3Note that if we decided to use the data from NCP, we
would still have to face this issue. Although an explicit dis-
tinctions is made between NPs and PPs, NPs are not annot-
ated as separate chunks when belonging to a PP chunk (an
assumption which is typical for shallow parsing).

proper names. They were introduced to obtain
lemmas that are practically most useful.

A subset of documents from KPWr corpus was
drawn randomly. Each NP/PP belonging to this
subset was annotated manually. Contrary to (De-
górski, 2011), we made no exclusions, so the ob-
tained set contains some foreign names and a num-
ber of cases which were hard to lemmatise manu-
ally. Among the latter there was one group we
found particularly interesting. It consisted of items
following the following pattern: NP in plural mod-
ified by another NP or PP in plural. For many
cases it was hard to decide if both parts were to
be reverted to singular, only the main one or per-
haps both of them should be left in plural. We
present two such cases in (4a) and (4b). For in-
stance, (4b) could be lemmatised as opis tytułu z
Wikipedii (description of a Wikipedia title), but it
was not obvious if it was better than leaving the
whole phrase as is.

(4) a. obawy ze strony autorów

‘concerns on the part of the authors’
b. opisy tytułów z Wikipedii

‘descriptions of the Wikipedia titles’

Altogether, the annotated documents contain
1669 phrases. We used the same implementa-
tion of the 2+1 model which was used to annotate
morphosyntax in NCP (Przepiórkowski and Sz-
ałkiewicz, 2012): two annotators performed the
task independently, after which their decisions
were compared and the discrepancies were high-
lighted. The annotators were given a chance to
rethink their decisions concerning the highlighted
phrases. Both annotators were only told which
phrases were lemmatised differently by the other
party but they didn’t know the other decision. The
purpose of this stage was to correct obvious mis-
takes. Their output was finally compared, result-
ing in 94% phrases labelled identically (90% be-
fore reconsidering decisions). The remaining dis-
crepancies were decided by a superannotator. The
whole set was divided randomly into the develop-
ment set (1105 NPs) and evaluation set (564 NPs).

The development set was enhanced with word-
level transformations that were induced automat-
ically in the following manner. The procedure as-
sumes the usage of a morphological dictionary ex-
tracted from Morfeusz SGJP analyser4 (Woliński,

4morfeusz-SGJP-src-20110416 package
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2006). The dictionary is stored as a set of (ortho-
graphic form, word-level lemma, tag). The pro-
cedure starts with tokenisation of the manually as-
signed lemma. Next, a heuristic identification of
phrase-initial preposition is performed. The as-
sumption is that, having cut the preposition, all the
remaining tokens of the original inflected phrase
must be matched 1:1 to corresponding tokens from
the human-assigned lemma. If any match problem
did occur, an error was reported and such a case
was examined manually. The only problems en-
countered were due to proper names unknown to
the dictionary and misspelled phrases (altogether
about 10 cases). Those cases were dealt with
manually. Also, all the extracted phrase-initial
prepositions were examined and no controversy
was found.

The input and output to the matching procedure
is illustrated in Fig. 1. The core matching hap-
pens at token level. The task is to find a suit-
able transformation for the given inflected form
from the original phrase, its tag and word-level
lemma, but also given the desired form being part
of human-assigned lemma. If the inflected form
is identical to the desired human-assigned lemma,
the ‘=’ transformation is returned without any tag
analysis. For other cases the morphological dic-
tionary is required. For instance, the inflected
form tej tagged as adj:sg:loc:f:pos should
be matched to the human-assigned form ta (the
row label H lem). The first subtask is to find
all entries in the morphological dictionary with
the orthographic form equal to human-assigned
lemma (ta), the word-level lemma equal to the
lemma assigned by the tagger (ten) and having a
tag with the same grammatical class as the tag-
ger has it (adj; we deliberately disallow trans-
formations changing the grammatical class). The
result is a set of entries with the given lemma
and orthographic form, but with different tags at-
tached. For the example considered, two tags
may be obtained: adj:sg:nom:f:pos and
adj:sg:voc:f:pos (the former is in nomin-
ative case, the latter — in vocative). Each of the
obtained tags is compared to the tag attached to
the inflected forms (adj:sg:loc:f:pos) and
this way candidate transformations are generated
(cas=nom and cas=voc here). The transform-
ations are heuristically ranked. Most importantly,

obtained from http://sgjp.pl/morfeusz/
dopobrania.html. The package is available under
2-clause BSD licence.

cas=nom is always preferred, then nmb=sg (en-
forcing singular number), then transforming the
gender to different values, preferably to masculine
inanimate (gnd=m3). The lowest possible ranking
is given to a transformation enforcing case value
other than nominative.

Original: przy tej drodze
T tags: prep: adj: subst:

loc sg:loc:f:pos sg:loc:f

T lem: przy ten droga
H lem: ta droga
Transf.: p cas=nom cas=nom

Figure 1: Matching of an NP and its lemma. The
first row shows the original inflected form. The
next three present tagger output: tags (split into
two rows) and lemmas. H lem stands for the lemma
assigned by a human. Last row presents the trans-
formations induced.

We are fully aware of limitations of this ap-
proach. This ranking was inspired only by intu-
ition obtained from the lemmatisation guidelines
and the transformations selected this way may be
wrong in a number of cases. While many trans-
formations may lead to obtaining the same lemma
for a given form, many of them will still be ac-
cidental. Different syncretisms may apply to dif-
ferent lexemes, which can negatively impact the
ability of the model to generalise from one phrase
to other. On the other hand, manual inspection of
some fragments suggest that the transformations
inferred are rarely unjustified.

The frequencies of all transformations induced
from the development set are given in Tab. 1.
Note that the first five most frequent transforma-
tion make up 98.7% of all cases. These findings
support our hypothesis that a small finite set of
transformations is sufficient to express lemmatisa-
tion of nearly every Polish NP.

We have also tested an alternative variant of
the matching procedure that included additional
transformation ‘lem’ with the meaning take the
word-level lemma assigned by the tagger as the
correct lemmatisation. This transformation could
be induced after an unsuccessful attempt to induce
the ‘=’ transformation (i.e., if the correct human-
assigned lemmatisation was not identical to ortho-
graphic form). This resulted in replacing a number
of tag-level transformations (mostly cas=nom)
with the simple ‘lem’. The advantage of this vari-

705



= 2444 72%
cas=nom 434 13%
p 292 9%
nmb=sg 97 3%
cas=nom,nmb=sg 76 2%
gnd=m3 9
cas=nom,gnd=m3,nmb=sg 7
gnd=m3,nmb=sg 6
acn,cas=nom 5
acm=rec,cas=nom 3
cas=gen 3
cas=nom,gnd=m3 3
cas=nom,gnd=m1 2
gnd=f,nmb=sg 2
cas=nom,gnd=f 1
cas=nom,gnd=f,nmb=sg 1
cas=nom,nmb=pl 1
cas=nom,nmb=sg,gnd=m3 1
Total 3387 100%

Table 1: Frequencies of transformations.

ant is that application of this transformation does
not require resorting to the dictionary. The disad-
vantage is that it is likely to worsen the general-
ising power of the model.

5 CRF and features

The choice of CRF for sequence labelling was
mainly influenced by its successful application to
chunking of Polish (Radziszewski and Pawlaczek,
2012). The work describes a feature set pro-
posed for this task, which includes word forms in a
local window, values of grammatical class, gender,
number and case, tests for agreement on number,
gender and case, as well as simple tests for letter
case.

We took this feature set as a starting point. Then
we performed some experiments with feature gen-
eration and selection. For this purpose the devel-
opment set was split into training and testing part.
The most obvious, yet most successful change was
to introduce features returning the chunk tag as-
signed to a token. As KPWr also contains inform-
ation on the location of chunks’ syntactic heads
and this information is also output by the chunker,
we could also use this in our features. Another
improvement resulted from completely removing
tests for grammatical gender and limiting the em-
ployed tests for number to the current token.

The final feature set includes the following

items:

• the word forms (turned lower-case) of tokens
occupying a local window (−2, . . . ,+2),

• word form bigrams: (−1, 0) and (0, 1),

• chunk tags (IOB2 tags concatenated with
Boolean value denoting whether the syntactic
head is placed at the position), for a local
window (−1, 0,+1)

• chunk tags (IOB2 tags only) for positions−2
and +2, and two chunk tag bigrams: (−1, 0)
and (0, 1),

• grammatical class of tokens in the window
(−2, . . . ,+2),

• grammatical class for the focus token (0) con-
catenated with the last character of the word-
form,

• values of grammatical case for tokens
(−2,−1,+1,+2),

• grammatical class of the focus token concat-
enated with its gender value,

• 2-letter prefix of the word form (lower-
cased),

• tests for agreements and letter case as in
(Radziszewski and Pawlaczek, 2012).

6 Evaluation

The performed evaluation assumed training of the
CRF on the whole development set annotated with
the induced transformations and then applying the
trained model to tag the evaluation part with trans-
formations. Transformations were then applied
and the obtained phrase lemmas were compared
to the reference annotation. This procedure in-
cludes the influence of deficiencies of the morpho-
logical dictionary. The version of KPWr used here
was tagged automatically using the WCRFT tag-
ger (Radziszewski, 2013), hence tagging errors are
also included.

Degórski (2011) reports separate figures for the
performance of the entire system (chunker + NP
lemmatiser) on the whole test set and performance
of the entire system limiting the test set only to
those phrases that the system is able to chunk cor-
rectly (i.e., to output correct phrase boundaries).
Such a choice is reasonable given that his system
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is based on rules that intermingle chunking with
lemmatisation. We cannot expect the system to
lemmatise correctly those groups which it is un-
able to capture. Our approach assumes two-stage
operation, where the chunker stage is partially in-
dependent from the lemmatisation. This is why we
decided to report performance of the whole sys-
tem on the whole test set, but also, performance
of the lemmatisation module alone on the whole
test set. This seems more appropriate, since the
chunker may be improved or completely replaced
independently, while discarding the phrases that
are too hard to parse is likely to bias the evalu-
ation of the lemmatisation stage (what is hard to
chunk is probably also hard to lemmatise).

For the setting where chunker was used, we
used the CRF-based chunker mentioned in the
previous section (Radziszewski and Pawlaczek,
2012). The chunker has been trained on the en-
tire KPWr except for the documents that belong to
the evaluation set.

Degórski (2011) uses concatenation of word-
level base forms assigned by the tagger as a
baseline. Observation of the development set sug-
gests that returning the original inflected NPs may
be a better baseline. We tested both variants. As
detection of phrase-initial prepositions is a part of
our task formulation, we had to implement it in
the baseline algorithms as well. Otherwise, the
comparison would be unfair. We decided to imple-
ment both baseline algorithms using the same CRF
model but trained on fabricated data. The training
data for the ‘take-orthographic-form’ baseline was
obtained by leaving the ‘remove-phrase-initial-
preposition’ (‘p’) transformation and replacing all
others with ‘=’. Similarly, for the ‘take-lemma’
baseline, other transformations were substituted
with ‘lem’.

The results of the full evaluation are presen-
ted in Tab. 2. The first conclusion is that the
figures are disappointingly low, but comparable
with the 58.5% success rate reported in (Degórski,
2011). The other observation is that the proposed
solution significantly outperforms both baseline,
out of which the ‘take-orthographic-form’ (orth
baseline) performs slightly better. Also, it turns
out that the variation of the matching proced-
ure using the ‘lem’ transformation (row labelled
CRF lem) performs slightly worse than the proced-
ure without this transformation (row CRF nolem).
This supports the suspicion that relying on word-

level lemmas may reduce the ability to generalise.

Algorithm Prec. Recall F
CRF nolem 55.1% 56.9% 56.0%
CRF lem 53.7% 55.5% 54.6%
orth baseline 38.6% 39.9% 39.2%
lem baseline 36.2% 37.4% 36.8%

Table 2: Performance of NP lemmatisation includ-
ing chunking errors.

Results corresponding to performance of the
lemmatisation module alone are reported in Tab. 3.
The test has been performed using chunk bound-
aries and locations of syntactic heads taken from
the reference corpus. In this settings recall and
precision have the same interpretation, hence we
simply refer to the value as accuracy (percentage
of chunks that were lemmatised correctly). The
figures are considerably higher than those repor-
ted in Tab. 2, which shows the huge impact of
chunking errors. It is worth noting that the best
accuracy achieved is only slightly lower than that
achieved by Degórski (82.9%), while our task is
harder. As mentioned above, in Degórski’s setting,
the phrases that are too hard to parse are excluded
from the test set. Those phrases are also likely to
be hard cases for lemmatisation. The other import-
ant difference stems from phrase definitions used
in both corpora; NPs in NCP are generally shorter
than the chunks allowed in KPWr. Most notably,
KPWr allows the inclusion of PP modifiers within
NP chunks (Broda et al., 2012). It seems likely
that the proposed algorithm would performed bet-
ter when trained on data from NCP which assumes
simpler NP definition. Note that the complex NP
definition in KPWr also explains the huge gap
between results of lemmatisation alone and lem-
matisation including chunking errors.

Algorithm Correct lemmas Accuracy
CRF nolem 455 / 564 80.7%
CRF lem 444 / 564 78.7%
orth baseline 314 / 564 55.7%
lem baseline 290 / 564 51.4%

Table 3: Performance of NP lemmatisation alone.

We also checked the extent to which the entries
unknown to the morphological dictionary could
lower the performance of lemmatisation. It turned
out that only 8 words couldn’t be transformed
during evaluation due to lack of the entries that
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were sought in the morphological dictionary, out
of which 5 were anyway handled correctly in the
end by using the simple heuristic to output the ‘=’
transformation when everything else fails.

A rudimentary analysis of lemmatiser output in-
dicates that the most common error is the assign-
ment of the orthographic form as phrase lemma
where something else was expected. This seems
to concern mostly many NPs that are left in plural,
even simple ones (e.g. audycje telewizyjne ‘TV
programmes’), but there are also some cases of
personal pronouns left in oblique case (was ‘you-
pl-accusative/genitive’). It seems that a part of
these cases come from tagging errors (even if the
correct transformation is obtained, the results of its
application depend on the tag and lemma attached
to the inflected form by the tagger). Not surpris-
ingly, proper names are hard cases for the model
(e.g. Pod Napięciem was lemmatised to napięcie,
which would be correct weren’t it a title).

7 Conclusions and further work

We presented a novel approach to lemmatisation
of Polish noun phrases. The main advantage
of this solution is that it allows to separate the
lemmatisation phrase from the chunking phrase.
Degórski’s rule-based approach (Degórski, 2011)
was also built on top of an existing parser but, as he
notes, to improve the lemmatisation accuracy, the
grammar underlying the parser should actually be
rewritten with lemmatisation in mind. The other
advantage of the approach presented here is that
it is able to learn from a corpus containing manu-
ally assigned phrase lemmas. Extending existing
chunk-annotated corpora with phrase lemmas cor-
responds to a relatively simple annotation task.

The performance figures obtained by our al-
gorithm are comparable with that of Degórski’s
grammar, while the conditions under which our
system was evaluated were arguably less favour-
able. To enable a better comparison it would
be desirable to evaluate our approach against the
phrases from NCP.

The main disadvantage of the approach lies in
the data preparation stage. It requires some semi-
manual work to obtain labelling with transform-
ations, which is language- and tagset-dependent.
A very interesting alternative has been suggested
by an anonymous reviewer: instead of considering
tag-level transformations that require an exhaust-
ive morphological dictionary, it would be simpler

to rely entirely on string-to-string transformations
that map inflected forms to their expected coun-
terparts. Such transformations may be expressed
in terms of simple edit scripts, which has already
been successfully applied to word-level lemmat-
isation of Polish and other languages (Chrupała
et al., 2008). This way, the training data labelled
with transformations could be obtained automatic-
ally. What is more, application of such transform-
ations also does not depend on the dictionary. It is
not obvious how this would affect the performance
of the module and, hence, needs to be evaluated.
We plan this as our further work.

Also, it would be worthwhile to evaluate the
presented solution for other Slavic languages.
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Aleksander Buczyński and Adam Przepiórkowski.
2009. Human language technology. challenges
of the information society. chapter Spejd: A
Shallow Processing and Morphological Disambigu-
ation Tool, pages 131–141. Springer-Verlag, Berlin,
Heidelberg.

Grzegorz Chrupała, Georgiana Dinu, and Josef van
Genabith. 2008. Learning morphology with Mor-
fette. In Nicoletta Calzolari, Khalid Choukri,
Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, and Daniel Tapias, editors, Proceedings
of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), Marrakech,
Morocco, may. European Language Resources As-
sociation (ELRA).

Łukasz Degórski. 2011. Towards the lemmatisation
of Polish nominal syntactic groups using a shallow

708



grammar. In Pascal Bouvry, Mieczysław A. Kłopo-
tek, Franck Leprevost, Małgorzata Marciniak, Ag-
nieszka Mykowiecka, and Henryk Rybiński, editors,
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Abstract

We describe a novel approach for automat-
ically predicting the hidden demographic
properties of social media users. Building
on prior work in common-sense knowl-
edge acquisition from third-person text,
we first learn the distinguishing attributes
of certain classes of people. For exam-
ple, we learn that people in the Female
class tend to have maiden names and en-
gagement rings. We then show that this
knowledge can be used in the analysis of
first-person communication; knowledge of
distinguishing attributes allows us to both
classify users and to bootstrap new train-
ing examples. Our novel approach enables
substantial improvements on the widely-
studied task of user gender prediction, ob-
taining a 20% relative error reduction over
the current state-of-the-art.

1 Introduction

There has been growing interest in characteriz-
ing social media users based on the content they
generate; that is, automatically labeling users with
demographic categories such as age and gender
(Burger and Henderson, 2006; Schler et al., 2006;
Rao et al., 2010; Mukherjee and Liu, 2010; Pen-
nacchiotti and Popescu, 2011; Burger et al., 2011;
Van Durme, 2012). Automatic user character-
ization has applications in targeted advertising
and personalization, and could also lead to finer-
grained assessment of public opinion (O’Connor
et al., 2010) and health (Paul and Dredze, 2011).

Consider the following tweet and suppose we
wish to predict the user’s gender:

Dirac was one of my boyhood heroes.
I’m glad I met him once. RT Paul Dirac
image by artist Eric Handy: http:...

State-of-the-art approaches cast this problem as a
classification task and train classifiers using super-
vised learning (Section 2). The features of the
classifier are indicators of specific words in the
user-generated text. While a human would as-
sume that someone with boyhood heroes is male,
a standard classifier has no way of exploiting such
knowledge unless the phrase occurs in training
data. We present an algorithm that improves user
characterization by collecting and exploiting such
common-sense knowledge.

Our work is inspired by algorithms that pro-
cesses large text corpora in order to discover the
attributes of semantic classes, e.g. (Berland and
Charniak, 1999; Schubert, 2002; Almuhareb and
Poesio, 2004; Tokunaga et al., 2005; Girju et al.,
2006; Paşca and Van Durme, 2008; Alfonseca et
al., 2010). We learn the distinguishing attributes
of different demographic groups (Section 3), and
then automatically assign users to these groups
whenever they refer to a distinguishing attribute in
their writings (Section 4). Our approach obviates
the need for expensive annotation efforts, and al-
lows us to rapidly bootstrap training data for new
classification tasks.

We validate our approach by advancing the
state-of-the-art on the most well-studied user clas-
sification task: predicting user gender (Section 5).
Our bootstrapped system, trained purely from
automatically-annotated Twitter data, significantly
reduces error over a state-of-the-art system trained
on thousands of gold-standard training examples.

2 Supervised User Characterization

The current state-of-the-art in user characteriza-
tion is to use supervised classifiers trained on an-
notated data. For each instance to be classified, the
output is a decision about a distinct demographic
property, such as Male/Female or Over/Under-18.
A variety of classification algorithms have been
employed, including SVMs (Rao et al., 2010), de-
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cision trees (Pennacchiotti and Popescu, 2011), lo-
gistic regression (Van Durme, 2012), and the Win-
now algorithm (Burger et al., 2011).

Content Features: BoW Prior classifiers use a
set of features encoding the presence of specific
words in the user-generated text. We call these
features BoW features as they encode the stan-
dard Bag-of-Words representation which has been
highly effective in text categorization and informa-
tion retrieval (Sebastiani, 2002).

User-Profile Features: Usr Some researchers
have explored features for user-profile meta-
information in addition to user content. This may
include the user’s communication behavior and
network of contacts (Rao et al., 2010), their full
name (Burger et al., 2011) and whether they pro-
vide a profile picture (Pennacchiotti and Popescu,
2011). We focus on the case where we only
have access to the user’s screen-name (a.k.a. user-
name). Using a combination of content and user-
name features “represents a use case common to
many different social media sites, such as chat
rooms and news article comment streams” (Burger
et al., 2011). We refer to features derived from a
username as Usr features in our experiments.

3 Learning Class Attributes

We aim to improve the automated classification
of users into various demographic categories by
learning and applying the distinguishing attributes
of those categories, e.g. that males have boyhood
heroes. Our approach builds on lexical-semantic
research on the topic of class-attribute extraction.
In this research, the objective is to discover vari-
ous attributes or parts of classes of entities. For
example, Berland and Charniak (1999) learn that
the class car has parts such as headlight, wind-
shield, dashboard, etc. Berland and Charniak ex-
tract these attributes by mining a corpus for fillers
of patterns such as ‘car’s X’ or ‘X of a car’. Note
their patterns explicitly include the class itself
(car). Another approach is to use patterns that are
based on instances (i.e. hyponyms or sub-classes)
of the class. For example, Paşca and Van Durme
(2007) learn the attributes of the class car via pat-
terns involving instances of cars, e.g. Chevrolet
Corvette’s X and X of a Honda Civic. For these ap-
proaches, lists of instances are typically collected
from publicly-available resources such as Word-
Net or Wikipedia (Paşca and Van Durme, 2007;

Van Durme et al., 2008), acquired automatically
from corpora (Paşca and Van Durme, 2008; Al-
fonseca et al., 2010), or simply specified by hand
(Schubert, 2002).

Creation of Instance Lists We use an instance-
based approach; our instances are derived from
collections of common nouns that are associated
with roles and occupations of people. For the
gender task that we study in our experiments, we
acquire class instances by filtering the dataset of
nouns and their genders created by Bergsma and
Lin (2006). This dataset indicates how often a
noun is referenced by a male, female, neutral or
plural pronoun. We extract prevalent common
nouns for males and females by selecting only
those nouns that (a) occur more than 200 times
in the dataset, (b) mostly occur with male or fe-
male pronouns, and (c) occur as lower-case more
often than upper-case in a web-scale N-gram cor-
pus (Lin et al., 2010). We then classify a noun as
Male (resp. Female) if the noun is indicated to
occur with male (resp. female) pronouns at least
85% of the time. Since the gender data is noisy,
we also quickly pruned by hand any instances that
were malformed or obviously incorrectly assigned
by our automatic process. This results in 652 in-
stances in total. Table 1 provides some examples.

Male: bouncer, altar boy, army officer, dictator,
assailant, cameraman, drifter, chauffeur, bad guy

Female: young lady, lesbian, ballerina, waitress,
granny, chairwoman, heiress, soprano, socialite

Table 1: Example instances used for extraction of
class attributes for the gender classification task

Attribute Extraction We next collect and rank
attributes for each class. We first look for fillers of
attribute-patterns involving each of the instances.
Let I represent an instance of one of our classes.
We find fillers of the single high-precision pattern:

{word=I ,tag=NN}| {z }
instance

{word=’s}| {z }
’s

[{word=.*}* {tag=N.*}]| {z }
attribute

(E.g. dictator ’s [former mistress]). The expres-
sion “tag=NN” means that I must be tagged as
a noun. The expression in square brackets is the
filler, i.e. the extracted attribute, A. The notation
“{word=.*}* tag=N.*” means that A can be any
sequence of tokens ending in a noun. We use an
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equivalent pattern when I is multi-token. The out-
put of this process is a set of (I ,A) pairs.

In attribute extraction, typically one must
choose between the precise results of rich pat-
terns (involving punctuation and parts-of-speech)
applied to small corpora (Berland and Charniak,
1999) and the high-coverage results of superficial
patterns applied to web-scale data, e.g. via the
Google API (Almuhareb and Poesio, 2004). We
obtain the best of both worlds by matching our
precise pattern against a version of the Google N-
gram Corpus that includes the part-of-speech tag
distributions for every N-gram (Lin et al., 2010).
We found that applying this pattern to web-scale
data is effective in extracting useful attributes. We
acquired around 20,000 attributes in total.

Finding Distinguishing Attributes Unlike
prior work, we aim to find distinguishing proper-
ties of each class; that is, the kinds of properties
that uniquely distinguish a particular category.
Prior work has mostly focused on finding “rel-
evant” attributes (Alfonseca et al., 2010) or
“correct” parts (Berland and Charniak, 1999). A
leg is a relevant and correct part of both a male and
a female (and many other living and inanimate
objects), but it does not help us distinguish males
from females in social media. We therefore rank
our attributes for each class by their strength of
association with instances of that specific class.1

To calculate the association, we first disregard
the count of each (I ,A) pair and consider each
unique pair to be a single probabilistic event.
We then convert the (I ,A) pairs to corresponding
(C,A) pairs by replacing I with the corresponding
class, C. We then calculate the pointwise mutual
information (Church and Hanks, 1990) between
each C and A over the set of events:

PMI(C,A) = log
p(C,A)

p(C)p(A)
(1)

If the PMI>0, the observed probability of a class
and attribute co-occurring is greater than the prob-
ability of co-occurrence that we would expect if C
and A were independently distributed. For each
class, we rank the attributes by their PMI scores.

1Reisinger and Paşca (2009) considered the related prob-
lem of finding the most appropriate class for each attribute;
they take an existing ontology of concepts (WordNet) as a
class hierarchy and use a Bayesian approach to decide “the
correct level of abstraction for each attribute.”

Filtering Attributes We experimented with two
different methods to select a final set of distin-
guishing attributes for each class: (1) we used
a threshold to select the top-ranked attributes for
each class, and (2) we manually filtered the at-
tributes. For the gender classification task, we
manually filtered the entire set of attributes to se-
lect around 1000 attributes that were judged to be
discriminative (two thirds of which are female).
This filtering took one annotator only a few hours
to complete. Because this process was so trivial,
we did not invest in developing annotation guide-
lines or measuring inter-annotator agreement. We
make these filter attributes available online as an
attachment to this article, available through the
ACL Anthology.

Ultimately, we discovered that manual filter-
ing was necessary to avoid certain pathological
cases in our Twitter data. For example, our PMI
scoring finds homepage to be strongly associated
with males. In our gold-standard gender data
(Section 5), however, every user has a home-
page [by dataset construction]; we might there-
fore incorrectly classify every user as Male. We
agree with Richardson et al. (1998) that “auto-
matic procedures ... provide the only credible
prospect for acquiring world knowledge on the
scale needed to support common-sense reasoning”
but “hand vetting” might be needed to ensure “ac-
curacy and consistency in production level sys-
tems.” Since our approach requires manual in-
volvement in the filtering of the attribute list, one
might argue that one should simply manually enu-
merate the most relevant attributes directly. How-
ever, the manual generation of conceptual features
by a single researcher results in substantial vari-
ability both across and within participants (McRae
et al., 2005). Psychologists therefore generate
such lists by pooling the responses across many
participants: future work may compare our “auto-
matically generate, manually prune” approach to
soliciting attributes via crowdsourcing.2

Table 2 gives examples of our extracted at-
2One can also view the work of manually filtering at-

tributes as a kind of “feature labeling.” There is evidence
from Zaidan et al. (2007) that a few hours of feature labeling
can be more productive than annotating new training exam-
ples. In fact, since Zaidan et al. (2007) label features at the
token level (e.g., in our case one would highlight “handbag”
in a given tweet), while we label features at the type level
(e.g., deciding whether to mark the word “handbag” as fem-
inine in general), our process is likely even more efficient.
Future work may also wish to consider this connection to so-
called ”annotator rationales” more deeply.
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Male: wife, widow, wives, ex-girlfriend, erec-
tion, testicles, wet dream, bride, buddies, ex-
wife, first-wife, penis, death sentence, manhood

Female: vagina, womb, maiden name, dresses,
clitoris, wedding dress, uterus, shawl, necklace,
ex-husband, ex-boyfriend, dowry, nightgown

Table 2: Example attributes for gender classes, in
descending order of class-association score

tributes. Our approach captures many multi-token
attributes; these are often distinguishing even
though the head noun is ambiguous (e.g. name
is ambiguous, maiden name is not). Our attributes
also go beyond the traditional meronyms that were
the target of earlier work. As we discuss further
in Related Work (Section 7), previous researchers
have worried about a proper definition of parts or
attributes and relied on human judgments for eval-
uation (Berland and Charniak, 1999; Girju et al.,
2006; Van Durme et al., 2008). For us, whether
a property such as dowry should be considered
an “attribute” of the class Female is immaterial;
we echo Almuhareb and Poesio (2004) who (on a
different task) noted that “while the notion of ‘at-
tribute’ is not completely clear... our results sug-
gest that trying to identify attributes is beneficial.”

4 Applying Class Attributes

To classify users using the extracted attributes, we
look for cases where users refer to such attributes
in their first-person writings. We performed a pre-
liminary analysis of a two-week sample of tweets
from the TREC Tweets2011 Corpus.3 We found
that users most often reveal their attributes in the
possessive construction, “my X” where X is an at-
tribute, quality or event that they possess (in a lin-
guistic sense). For example, we found over 1000
tweets with the phrase “my wife.” In contrast, “I
have a wife” occurs only 5 times.4

We therefore assign a user to a demographic
category as follows: We first part-of-speech tag
our data using CRFTagger (Phan, 2006) and then
look for “my X” patterns where X is a sequence
of tokens terminating in a noun, analogous to our

3
http://trec.nist.gov/data/tweets/ This corpus was de-

veloped for the TREC Microblog track (Soboroff et al., 2012).
4Note that “I am a man” occurs only 20 times. Users

also reveal their names in “my name is X” patterns in several
hundred tweets, but this is small compared to cases of self-
distinguishing attributes. Exploiting these alternative pat-
terns could nevertheless be a possible future direction.

attribute-extraction pattern (Section 3).5 When a
user uses such a “my X” construction, we match
the filler X against our attribute lists for each
class. If the filler is on a list, we call it a self-
distinguishing attribute of a user. We then apply
our knowledge of the self-distinguishing attribute
and its corresponding class in one of the following
three ways:

(1) ARules: Using Attribute-Based Rules to
Override a Classifier When human-annotated
data is available for training and testing a su-
pervised classifier, we refer to it as gold stan-
dard data. Our first technique provides a sim-
ple way to use our identified self-distinguishing
attributes in conjunction with a classifier trained
on gold-standard data. If the user has any self-
distinguishing attributes, we assign the user to the
corresponding class; otherwise, we trust the output
of the classifier.

(2) Bootstrapped: Automatic Labeling of Train-
ing Examples Even without gold standard train-
ing data, we can use our self-distinguishing at-
tributes to automatically bootstrap annotations.
We collect a large pool of unlabeled users and their
tweets, and we apply the ARules described above
to label those users that have self-distinguishing
attributes. Once an example is auto-annotated,
we delete the self-distinguishing attributes from
the user’s content. This prevents the subsequent
learning algorithm from trivially learning the rules
with which we auto-annotated the data. Next, the
auto-annotated examples are used as training data
for a supervised system.6 Finally, when applying
the Bootstrapped classifiers, we can still apply the
ARules as a post-process (although in practice this
made little difference in our final results).

(3) BootStacked: Gold Standard and Boot-
strapped Combination Although we show that
an accurate classifier can be trained using auto-
annotated Bootstrapped data alone, we also test
whether we can combine this data with any gold-
standard training examples to achieve even better
performance. We use the following simple but

5While we used an “off the shelf” POS tagger in this
work, we note that taggers optimized specifically for social
media are now available and would likely have resulted in
higher tagging accuracy (e.g. Owoputi et al. (2013)).

6Note that while our target gender task presents mutually-
exclusive output classes, we can still train classifiers for other
categories without clear opposites (e.g. for labeling users
as Parents or Doctors) by using the 1-class classification
paradigm (Koppel and Schler, 2004).
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effective method for combining data from these
two sources, inspired by prior techniques used in
the domain adaptation literature (Daumé III and
Marcu, 2006). We first use the trained Boot-
strapped system to make predictions on the entire
set of gold standard data (gold train, development,
and test sets). We then use these predictions as
features in a classifier trained on the gold standard
data. We refer to this system as the BootStacked
system in our evaluation.

5 Twitter Gender Prediction

To test the use of self-distinguishing attributes
in user classification, we apply our methods to
the task of gender classification on Twitter. This
is an important and intensely-studied task within
academia and industry. Furthermore, for this task
it is possible to semi-automatically acquire large
amounts of ground truth (Burger et al., 2011).
We can therefore benchmark our approach against
state-of-the-art supervised systems trained with
plentiful gold-standard data, giving us an idea of
how well our Bootstrapped system might compare
to theoretically top-performing systems on other
tasks, domains, and social media platforms where
such gold-standard training data is not available.

Gold Data Our data is derived from the corpus
created by Burger et al. (2011). Burger et al. ob-
served that many Twitter users link their Twitter
profile to homepages on popular blogging web-
sites. Since “many of these [sites] have well-
structured profile pages [where users] must se-
lect gender and other attributes from dropdown
menus,” they were able to link these attributes to
the Twitter users. Using this process, they created
a large multi-lingual corpus of Twitter users and
genders.

We filter non-English tweets from this corpus
using the LID system of Bergsma et al. (2012)
and also tweets containing URLs (since many of
these are spam) and re-tweets. We then filter users
with <40 tweets and randomly divide the remain-
ing users into 2282 training, 1140 development,
and 1141 test examples.

Classifier Set-up We train logistic-regression
classifiers on this gold standard data via the LI-
BLINEAR package (Fan et al., 2008). We optimize
the classifier’s regularization parameter on devel-
opment data and report final results on the held-
out test examples. We also report the results of

our new attribute-based strategies (Section 4) on
the test data. We report accuracy: the percentage
of examples labeled correctly.

Our classifiers use both BoW and Usr features
(Section 2). To increase the generality of our
BoW features, we preprocess the text by lower-
casing and converting all digits to special ‘#’ sym-
bols. We then create real-valued features that
encode the log-count of each word in the input.
While Burger et al. (2011) found “no apprecia-
ble difference in performance” when using either
binary presence/absence features or encoding the
frequency of the word, we found real-valued fea-
tures worked better in development experiments.
For the Usr features, we add special beginning and
ending characters to the username, and then create
features for all character n-grams of length two-
to-four in the modified username string. We in-
clude n-gram features with the original capitaliza-
tion pattern and separate features with the n-grams
lower-cased.

Unlabeled Data For Bootstrapped training, we
also use a pool of unlabeled Twitter data. This
pool comprises the union of 2.2 billion tweets
from 05/2009 to 10/2010 (O’Connor et al., 2010),
1.9 billion tweets collected from 07/2011 to
11/2012, and 80 million tweets collected from the
followers of 10-thousand location and language-
specific Twitter feeds. We filter this corpus as
above, except we do not put any restrictions on the
number of tweets needed per user. We also filter
any users that overlap with our gold standard data.

Bootstrapping Analysis We apply our Boot-
strapped auto-annotation strategy to this unlabeled
data, yielding 789,285 auto-annotated examples
of users and their tweets. The decisions of our
bootstrapping process reflect the true gender dis-
tribution; the auto-annotated data is 60.5% Fe-
male, remarkably close to the 60.9% proportion
in our gold standard test set. Figure 1 shows that
a wide range of self-distinguishing attributes are
used in the auto-annotation process. This is impor-
tant because if only a few attributes are used (e.g.
wife/husband or penis/vagina), we might system-
atically miss a segment of users (e.g. young people
that don’t have husbands or wives, or people that
don’t frequently talk about their genitalia). Thus a
wide range of common-sense knowledge is useful
for bootstrapping, which is one reason why auto-
matic approaches are needed to acquire it.
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Figure 1: Frequency with which attributes are used to auto-annotate examples in the bootstrapping ap-
proach. The plot identifies some attributes and their corresponding class (labeled via gender symbol).

Majority-class baseline 60.9
Supervised on 100 examples 72.0
Supervised on 2282 examples 84.0
Supervised on 100 examples + ARules 74.7
Supervised on 2282 examples + ARules 84.7
Bootstrapped 86.0
BootStacked 87.2

Table 3: Classification accuracy (%) on gold stan-
dard test data for user gender prediction on Twitter

6 Results

Our main classification results are presented in Ta-
ble 3. The majority-class baseline for this task
is to always choose Female; this achieves an ac-
curacy of 60.9%. A standard classifier trained
on 100 gold-standard training examples improves
over this baseline, to 72.0%, while one with 2282
training examples achieves 84.0%. This latter re-
sult represents the current state-of-the-art: a clas-
sifier trained on thousands of gold standard exam-
ples, making use of both Usr and BoW features.
Our performance compares favourably to Burger
et al. (2011), who achieved 81.4% using the same
features, but on a very different subset of the data
(also including tweets in other languages).7

Applying the ARules as a post-process signifi-
cantly improves performance in both cases (Mc-
Nemar’s, p<0.05). It is also possible to use the
ARules as a stand-alone system rather than as a
post-process, however the coverage is low: we find
a distinguishing attribute in 18.3% of the 695 Fe-
male instances in the test data, and make the cor-

7Note that it is possible to achieve even higher perfor-
mance on gender classification in social media if you have
further information about a user, such as their full first and
last name (Burger et al., 2011; Bergsma et al., 2013).

rect decision in 96.9% of these cases. We find a
distinguishing attribute in 11.4% of the 446 Male
instances, with 86.3% correct decisions.

The Bootstrapped system substantially im-
proves over the state-of-the-art, achieving 86% ac-
curacy and doing so without using any gold stan-
dard training data. This is important because hav-
ing thousands of gold standard annotations for ev-
ery possible user characterization task, in every
domain and social media platform, is not realis-
tic. Combining the bootstrapped classifier with
the gold standard annotations in the BootStacked
model results in further gains in performance.8

These results provide strong validation for both
the inherent utility of class-attributes knowledge in
user characterization and the effectiveness of our
specific strategies for exploiting such knowledge.

Figure 2 shows the learning curve of the Boot-
strapped classifier. Performance rises consistently
across all the auto-annotated training data; this
is encouraging because there is theoretically no
reason not to vastly increase the amount of auto-
annotated data by collecting an even larger col-
lection of tweets. Finally, note that most of the
gains of the Bootstrapped system appear to derive
from the tweet content itself, i.e. the BoW fea-
tures. However, the Usr features are also helpful
at most training sizes.

We provide some of the top-ranked features of
the Bootstrapped system in Table 4. We see that
a variety of other common-sense knowledge is
learned by the system (e.g., the association be-
tween males and urinals, boxers, fatherhood, etc.),
as well as stylistic clues (e.g. Female users using
betcha and xox in their writing). The username

8We observed no further gains in accuracy when applying
the ARules as a post-process on top of these systems.
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Figure 2: Learning curve for Bootstrapped
logistic-regression classifier, with automatically-
labeled data, for different feature classes.

features capture reasonable associations between
gender classes and particular names (such as mike,
tony, omar, etc.) and also between gender classes
and common nouns (such as guy, dad, sir, etc.).

7 Related Work

User Characterization The field of sociolin-
guistics has long been concerned with how various
morphological, phonological and stylistic aspects
of language can vary with a person’s age, gender,
social class, etc. (Fischer, 1968; Labov, 1972).
This early work therefore had an emphasis on ana-
lyzing the form of language, as opposed to its con-
tent. This emphasis continued into early machine
learning approaches, which predicted author prop-
erties based on the usage of function words, parts-
of-speech, punctuation (Koppel et al., 2002) and
spelling/grammatical errors (Koppel et al., 2005).

Recently, researchers have focused less on the
sociolinguistic implications and more on the tasks
themselves, naturally leading to classifiers with
feature representations capturing content in ad-
dition to style (Schler et al., 2006; Garera and
Yarowsky, 2009; Mukherjee and Liu, 2010). Our
work represents a logical next step for content-
based classification, a step partly suggested by
Schler et al. (2006) who noted that “those who
are interested in automatically profiling bloggers
for commercial purposes would be well served by
considering additional features - which we delib-
erately ignore in this study - such as author self-
identification.”

Male BoW features: wife, wifey, sucked, shave,
boner, boxers, missus, installed, manly, in-laws,
brah, urinal, kickoff, golf, comics, ubuntu, homo,
nhl, jedi, fatherhood, nigga, movember, algebra

Male Usr features: boy, mike, ben, guy, mr, dad,
jr, kid, tony, dog, lord, sir, omar, dude, man, big

Female BoW features: hubby, hubs, jewelry,
sewing, mascara, fabulous, bf, softball, betcha,
motherhood, perky, cozy, zumba, xox, cuddled,
belieber, bridesmaid, anorexic, jammies, pad

Female Usr features: mrs, mom, jen, lady, wife,
mary, joy, mama, pink, kim, diva, elle, woma, ms

Table 4: Examples of highly-weighted BoW (con-
tent) and Usr (username) features (in descending
order of weight) in the Bootstrapped system for
predicting user gender in Twitter.

Many recent papers have analyzed the lan-
guage of social media users, along dimensions
such as ethnicity (Eisenstein et al., 2011; Rao et
al., 2011; Pennacchiotti and Popescu, 2011; Fink
et al., 2012) time zone (Kiciman, 2010), polit-
ical orientation (Rao et al., 2010; Pennacchiotti
and Popescu, 2011) and gender (Rao et al., 2010;
Burger et al., 2011; Van Durme, 2012).

Class-Attribute Extraction The idea of using
simple patterns to extract useful semantic relations
goes back to Hearst (1992) who focused on hy-
ponyms. Hearst reports that she “tried applying
this technique to meronymy (i.e., the part/whole
relation), but without great success.” Berland and
Charniak (1999) did have success using Hearst-
style patterns for part-whole detection, which they
attribute to their “very large corpus and the use of
more refined statistical measures for ranking the
output.” Girju et al. (2006) devised a supervised
classification scheme for part/whole relation dis-
covery that integrates the evidence from multiple
patterns. These efforts focused exclusively on the
meronymy relation as used in WordNet (Miller et
al., 1990). Indeed, Berland and Charniak (1999)
attempted to filter out attributes that were regarded
as qualities (like driveability) rather than parts
(like steering wheels) by removing words end-
ing with the suffixes -ness, -ing, and -ity. In our
work, such qualities are not filtered and are ulti-
mately valuable in classification; for example, the
attributes peak fertility and loveliness are highly
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associated with females.
As subsequent research became more focused

on applications, looser definitions of class at-
tributes were adopted. Almuhareb and Poesio
(2004) automatically mined class attributes that in-
clude parts, qualities, and those with an “agen-
tive” or “telic” role with the class. Their ex-
tended set of attributes was shown to enable an
improved representation of nouns for the purpose
of clustering these nouns into semantic concepts.
Tokunaga et al. (2005) define attributes as prop-
erties that can serve as focus words in questions
about a target class; e.g. director is an attribute
of a movie since one might ask, “Who is the di-
rector of this movie?” Another line of research
has been motivated by the observation that much
of Internet search consists of people looking for
values of various class attributes (Bellare et al.,
2007; Paşca and Van Durme, 2007; Paşca and Van
Durme, 2008; Alfonseca et al., 2010). By knowing
the attributes of different classes, search engines
can better recognize that queries such as “altitude
guadalajara” or “population guadalajara” are seek-
ing values for a particular city’s “altitude” and
“population” attributes (Paşca and Van Durme,
2007). Finally, note that Van Durme et al. (2008)
compared instance-based and class-based patterns
for broad-definition attribute extraction, and found
both to be effective.

Of course, text-mining with custom-designed
patterns is not the only way to extract class-
attribute information. Experts can manually spec-
ify the attributes of entities, as in the WordNet
project (Miller et al., 1990). Others have auto-
matically extracted attribute relations from dictio-
nary definitions (Richardson et al., 1998), struc-
tured online sources such as Wikipedia infoboxes,
(Wu and Weld, 2007) and large-scale collections
of high-quality tabular web data (Cafarella et al.,
2008). Attribute extraction has also been viewed
as a sub-component or special case of the infor-
mation obtained by general-purpose knowledge
extractors (Schubert, 2002; Pantel and Pennac-
chiotti, 2006).

NLP Applications of Common-Sense Knowl-
edge The kind of information derived from
class-attribute extraction is sometimes referred to
as a type of common-sense knowledge. The need
for computer programs to represent common-
sense knowledge has been recognized since the
work of McCarthy (1959). Lenat et al. (1990)

defines common sense as “human consensus re-
ality knowledge: the facts and concepts that you
and I know and which we each assume the other
knows.”

While we are the first to exploit common-
sense knowledge in user characterization, com-
mon sense has been applied to a range of other
problems in natural language processing. In many
ways WordNet can be regarded as a collection of
common-sense relationships. WordNet has been
applied in a myriad of NLP applications, includ-
ing in seminal works on semantic-role labeling
(Gildea and Jurafsky, 2002), coreference resolu-
tion (Soon et al., 2001) and spelling correction
(Budanitsky and Hirst, 2006). Also, many ap-
proaches to the task of sentiment analysis “be-
gin with a large lexicon of words marked with
their prior polarity” (Wilson et al., 2009). Like
our class-attribute associations, the common-sense
knowledge that the word cool is positive while
unethical is negative can be learned from asso-
ciations in web-scale data (Turney, 2002). We
might also view information about synonyms or
conceptually-similar words as a kind of common-
sense knowledge. In this perspective, our work
is related to recent work that has extracted
distributionally-similar words from web-scale data
and applied this knowledge in tasks such as
named-entity recognition (Lin and Wu, 2009) and
dependency parsing (Täckström et al., 2012).

8 Conclusion

We have proposed, developed and successfully
evaluated a novel approach to user characteriza-
tion based on exploiting knowledge of user class
attributes. The knowledge is obtained using a new
algorithm that discovers distinguishing attributes
of particular classes. Our approach to discovering
distinguishing attributes represents a significant
new direction for research in class-attribute extrac-
tion, and provides a valuable bridge between the
fields of user characterization and lexical knowl-
edge extraction.

We presented three effective techniques for
leveraging this knowledge within the framework
of supervised user characterization: rule-based
post-processing, a learning-by-bootstrapping ap-
proach, and a stacking approach that integrates the
predictions of the bootstrapped system into a sys-
tem trained on annotated gold-standard training
data. All techniques lead to significant improve-
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ments over state-of-the-art supervised systems on
the task of Twitter gender classification.

While our technique has advanced the state-of-
the-art on this important task, our approach may
prove even more useful on other tasks where train-
ing on thousands of gold-standard examples is not
even an option. Currently we are exploring the
prediction of finer-grained user roles, such as stu-
dent, waitress, parent, and so forth, based on ex-
tensions to the process laid out here.
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Abstract

With the increasing amount of user gener-
ated reference texts in the web, automatic
quality assessment has become a key chal-
lenge. However, only a small amount
of annotated data is available for training
quality assessment systems. Wikipedia
contains a large amount of texts anno-
tated with cleanup templates which iden-
tify quality flaws. We show that the dis-
tribution of these labels is topically bi-
ased, since they cannot be applied freely
to any arbitrary article. We argue that it
is necessary to consider the topical restric-
tions of each label in order to avoid a sam-
pling bias that results in a skewed classifier
and overly optimistic evaluation results.
We factor out the topic bias by extracting
reliable training instances from the revi-
sion history which have a topic distribu-
tion similar to the labeled articles. This ap-
proach better reflects the situation a classi-
fier would face in a real-life application.

1 Introduction

User generated content is the main driving force
of the increasingly social web. Blogs, wikis and
forums make up a large amount of the daily infor-
mation consumed by web users. The main proper-
ties of user generated content are a low publication
threshold and little or no editorial control, which
leads to a high variance in quality. In order to nav-
igate through large repositories of information effi-
ciently and safely, users need a way to quickly as-
sess the quality of the content. Automatic quality
assessment has therefore become a key application
in today’s information society. However, there is
a lack of training data annotated with fine-grained
quality information.

Wikipedia, the largest encyclopedia on the web,

contains so-called cleanup templates, which con-
stitute a sophisticated system of user generated la-
bels that mark quality problems in articles. Re-
cently, these cleanup templates have been used for
automatically identifying articles with particular
quality flaws in order to support Wikipedia’s qual-
ity assurance process in Wikipedia. In a shared
task (Anderka and Stein, 2012b), several systems
have shown that it is possible to identify the ten
most frequent quality flaws with high recall and
fair precision.

However, quality flaw detection based on
cleanup template recognition suffers from a topic
bias that is well known from other text classifica-
tion applications such as authorship attribution or
genre identification. We discovered that cleanup
templates have implicit topical restrictions, i.e.
they cannot be applied to any arbitrary article. As
a consequence, corpora of flawed articles based
on these templates are biased towards particular
topics. We argue that it is therefore not sufficient
for evaluating a quality flaw prediction systems to
measure how well they can separate (topically re-
stricted) flawed articles from a set of random out-
liers. It is rather necessary to determine reliable
negative instances with a similar topic distribution
as the set of positive instances in order to factor
out the sampling bias. Related studies (Brooke and
Hirst, 2011) have proven that topic bias is a con-
founding factor that results in misleading cross-
validated performance while allowing only near
chance performance in practical applications.

We present an approach for factoring out the
bias from quality flaw corpora by mining reliable
negative instances for each flaw from the article
revision history. Furthermore, we employ the ar-
ticle revision history to extract reliable positive
training instances by using the version of each
article at the time it has first been identified as
flawed. This way, we avoid including articles
with outdated cleanup templates, a frequent phe-
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nomenon that can occur when a template is not
removed after fixing a problem in an article. In
our experiments, we focus on neutrality and style
flaws, since they are of particular high importance
within the Wikipedia community (Stvilia et al.,
2008; Ferschke et al., 2012a) and are recognized
beyond Wikipedia in applications such as uncer-
tainty recognition (Szarvas et al., 2012) and hedge
detection (Farkas et al., 2010).

2 Related Work

Topic bias is a known problem in text classifi-
cation. Mikros and Argiri (2007) investigate the
topic influence in authorship attribution. They
found that even simple stylometric features, such
as sentence and token length, readability mea-
sures or word length distributions show consider-
able correlations with topic. They argue that many
features that were largely considered to be topic
neutral are in fact topic-dependent variables. Con-
sequently, results obtained on multitopic corpora
are prone to be biased by the correlation of authors
with specific topics. Therefore, several authors in-
troduce topic-controlled corpora for applications
such as author identification (Koppel and Schler,
2003; Luyckx and Daelemans, 2005) or genre de-
tection (Finn and Kushmerick, 2006).

Brooke and Hirst (2011) measure the topic bias
in the International Corpus of Learner English
and found that it causes a substantial skew in clas-
sifiers for native language detection. In accor-
dance with Mikros et al., the authors found that
even non-lexicalized meta features, such as vo-
cabulary size or length statistics, depend on top-
ics and cause cross-validated performance evalua-
tions to be unrealistically high. In a practical set-
ting, these biased classifiers hardly exceed chance
performance.

As already noted above, a similar kind of topic
bias negatively influences quality flaw detection in
Wikipedia. Anderka et al. (2012) automatically
identify quality flaws by predicting the cleanup
templates in unseen articles with a one-class clas-
sification approach. Based on this work, a com-
petition on quality flaw prediction has been es-
tablished (Anderka and Stein, 2012b). The win-
ning team of the inaugural edition of the task
was able to detect the ten most common qual-
ity flaws with an average F1-Score of 0.81 us-
ing a PU learning approach (Ferretti et al., 2012).
With a binary classification approach, Ferschke et

al. (2012b) achieved an average F1-Score of 0.80,
while reaching a higher precision than the winning
team.

A closer examination of the aforementioned
quality flaw detection systems reveals a systematic
sampling bias in the training data, which leads to
an overly optimistic performance evaluation and
classifiers that are biased towards particular arti-
cle topics. Our approach factors out the topic bias
from the training data by mining topically con-
trolled training instances from the Wikipedia revi-
sion history. The results show that flaw detection
is a much harder problem in a real-life scenario.

3 Quality Flaws and
Flaw Recognition in Wikipedia

Quality standards in Wikipedia are mainly defined
by the featured article criteria1 and the Wikipedia
Manual of Style2. These policies define the char-
acteristics excellent articles have to exhibit. Other
sets of quality criteria are adaptations or relax-
ations of these standards, such as the good article
criteria or the quality grading schemes of individ-
ual interest groups in Wikipedia.

In this work, we focus on quality flaws regard-
ing neutrality and style problems. We chose these
categories due to their high importance within the
Wikipedia community (Stvilia et al., 2008; Fer-
schke et al., 2012a) and due to their relevance to
content outside of Wikipedia, such as blogs or on-
line news articles. According to the Wikipedia
policies3, an article has to be written from a neu-
tral point of view. Thus, authors must avoid stat-
ing opinions and seriously contested assertions as
facts, avoid presenting uncontested factual asser-
tions as mere opinions, prefer nonjudgmental lan-
guage and indicate the relative prominence of op-
posing views. Furthermore, authors have to adhere
to the stylistic guidelines defined in the Manual of
Style. While this subsumes a broad range of is-
sues such as formatting and article structure, we
focus on the style of writing and disregard mere
structural properties.

Any articles that violate these criteria can be
marked with cleanup templates4 to indicate their
need for improvement. These templates can
thus be regarded as proxies for quality flaws in
Wikipedia.

1
http://en.wikipedia.org/wiki/WP:FACR

2
http://en.wikipedia.org/wiki/WP:STYLE

3
http://en.wikipedia.org/wiki/WP:NPOV

4
http://en.wikipedia.org/wiki/WP:TM#Cleanup
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Flaw Description Articles Templates
Advert The article appears to be written like an advertisement and is thus not neutral 7,332 2
POV The neutrality of this article is disputed 5,086 10
Globalize The article may not represent a worldwide view of the subject 1,609 1
Peacock The article may contain wording that merely promotes the subject without

imparting verifiable information
1,195 1

N
eu

tr
al

ity

Weasel The article contains vague phrasing that often accompanies biased or unver-
ifiable information

704 4

Tone The tone of the article is not encyclopedic according to the Wikipedia Manual
of Style

4,563 6

In-universe The article describes a work or element of fiction in a primarily in-universe
stylea

2,227 1

Copy-edit The article requires copy editing for grammar, style, cohesion, tone, or
spelling

1,954 6

Trivia Contains lists of miscellaneous information 1,282 2
Essay-like The article is written like a personal reflection or essay 1,244 1
Confusing The article may be confusing or unclear to readers 1,084 1

St
yl

e

Technical The article may be too technical for most readers to understand 690 2
a According to the Wikipedia Manual of Style, an in-universe perspective describes the article subject matter from the
perspective of characters within a fictional universe as if it were real.

Table 1: Neutrality and style flaw corpora used in this work

Template Clusters Since several cleanup tem-
plates might represent different manifestations of
the same quality flaw, there is a 1 to n relation-
ship between quality flaws and cleanup templates.
For instance, the templates pov-check5, pov6 and
npov language7 can all be mapped to the same
flaw concerning the neutral point of view of an ar-
ticle. This aggregation of cleanup templates into
flaw-clusters is a subjective task. It is not al-
ways clear whether a particular template refers to
an existing flaw or should be regarded as a sep-
arate class. Too many clusters will cause defini-
tion overlaps (i.e. similar cleanup templates are
assigned to different clusters), while too few clus-
ters will result in unclear flaw definitions, since
each flaw receives a wide range of possible mani-
festations.

Template Scope Another important aspect to be
considered is the difference in the scope which
cleanup templates can have. Inline-templates are
placed directly in the text and refer to the sentence
or paragraph they are placed in. Templates with
a section parameter, refer to the section they are
placed in. The majority of templates, however, re-
fer to a whole page. The consideration of the tem-
plate scope is of particular importance for qual-
ity flaw recognition problems. For example, the
presence of a cleanup template which marks a sin-
gle section as not notable does not entail that the
whole article is not notable.

5The article has been nominated for a neutrality check
6The neutrality of the article is disputed
7The article contains a non-neutral style of writing

Topical Restriction A final aspect that has not
been taken into account by related work is that
many cleanup templates have restrictions concern-
ing the pages they may be applied to. A hard re-
striction is the page type (or namespace) a tem-
plate might be used in. For example, some tem-
plates can only be used in articles while others can
only be applied to discussion pages. This is usu-
ally enforced by maintenance scripts running on
the Wikimedia servers. A soft restriction, on the
other hand, are the topics of the articles a tem-
plate can be used in. Many cleanup templates can
only be applied to articles from certain subject ar-
eas. An example with a particularly obvious re-
striction is the template in-universe (see Table 1),
which should only be applied to articles about fic-
tion. This topical restriction is neither explicitly
defined nor automatically enforced, but it plays an
important role in the quality flaw recognition task,
as the remainder of this paper will show. While
flaws merely concerning the structural or linguis-
tic properties of an article are less restricted to
individual topics, they are still affected by a cer-
tain degree of topical preference. Many subject
areas in Wikipedia are organized in WikiProjects8,
which have their own ways of reviewing and en-
suring quality within their topical scope. Depend-
ing on the quality assurance processes established
in a WikiProject, different importance is given to
individual types of flaws. Thus, the distribution
of cleanup templates regarding structural or gram-
matical flaws is also biased towards certain topics.

8
http://en.wikipedia.org/wiki/WP:PROJ
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We will henceforth subsume the concept of topical
preference under the term topical restriction.

Quality Flaw Recognition Based on the above
definition of quality flaws, we define the qual-
ity flaw recognition task similar to Anderka et
al. (2012) as follows: Given a sample of articles
in which each article has been tagged with any
cleanup template τi from a specific template clus-
ter T f thus marking all articles in the sample with
a quality flaw f , it has to be decided whether or
not an unseen article suffers from f .

4 Data Selection and Corpus Creation

For creating our corpora, we start with selecting all
cleanup templates listed under the categories neu-
trality and style in the typology of cleanup tem-
plates provided by Anderka and Stein (2012a).
Each of the selected templates serves as the nu-
cleus of a template cluster that potentially repre-
sents a quality flaw. To each cluster, we add all
templates that are synonymous to the nucleus. The
synonyms are listed in the template description
under redirects or shortcuts. Then we iteratively
add all synonyms of the newly added template un-
til no more redirects can be found. Furthermore,
we manually inspect the lists of similar templates
in the see also sections of the template descrip-
tions and include all templates that refer to the
same concept as the other templates in the cluster.
As mentioned earlier, this is a subjective task and
largely depends on the desired granularity of the
flaw definitions. We finally merge semantically
similar template clusters to avoid too fine grained
flaw distinctions.

As a result, we obtain a total number of 94
template clusters representing 60 style flaws and
34 neutrality flaws. From each of these clusters,
we remove templates with inline or section scope
due to the reasons outlined in Section 3. We also
remove all templates that are restricted to pages
other than articles (e.g. discussion or user pages).

We use the Java Wikipedia Library (Zesch et
al., 2008) to extract all articles marked with the
selected templates. We only regard flaws with
at least 500 affected articles in the snapshot of
the English Wikipedia from January 4, 2012.
Table 1 lists the final sets of flaws used in this
work. For each flaw, the nucleus of the template
cluster is provided along with a description, the
number of affected articles, and the cluster size.
We make the corpora freely available for down-

Flaw κ F1

Advert .60 .80
Confusing .60 .80
Copy-edit .00 .50
Essay-like .60 .80
Globalize: .60 .80
In-universe .80 .90
Peacock .70 .84
POV .60 .80
Technical .90 .95
Tone .40 .70
Trivia .20 .60
Weasel .50 .74

Table 2: Agreement of human annotator with gold
standard

load under http://www.ukp.tu-darmstadt.
de/data/wiki-flaws/.

Agreement with Human Rater
Quality flaw detection in Wikipedia is based on the
assuption that cleanup templates are valid mark-
ers of quality flaws. In order to test the reliabil-
ity of these user assigned templates as quality flaw
markers, we carried out an annotation study in
which a human annotator was asked to perform the
binary flaw detection task manually. Even though
the human performance does not necessarily pro-
vide an upper boundary for the automatic classifi-
cation task, it gives insights into potentially prob-
lematic cases and ill-defined annotations. The an-
notator was provided with the template definitions
from the respective template information page as
instructions. For each of the 12 article scope flaws,
we extracted the plain text of 10 random flawed
articles and 10 random untagged articles. The an-
notator had to decide for each flaw individually
whether a given text belonged to a flawed article
or not. She was not informed about the ratio of
flawed to untagged articles.

Table 2 lists the chance corrected agreement
(Cohen’s κ) along with the F1 performance of the
human annotations against the gold standard cor-
pus. The templates copy-edit and trivia yielded
the lowest performance in the study. Even though
copy-edit templates are assigned to whole articles,
they refer to grammatical and stylistic problems of
relatively small portions of the text. This increases
the risk of overlooking a problematic span of text,
especially in longer articles. The trivia template,
on the other hand, designates sections that contain
miscellaneous information that are not well inte-
grated in the article. Upon manual inspection, we
found a wide range of possible manifestations of
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this flaw ranging from an agglomeration of inco-
herent factoids to well-structured sections that did
not exactly match the focus of the article, which is
the main reason for the low agreement.

5 Selection of Reliable Training
Instances

Independent from the classification approach used
to identify flawed articles, reliable training data is
the most important prerequisite for good predic-
tions. On the one hand, we need a set of examples
that reliably represent a particular flaw, while on
the other hand, we need counterexamples which
reliably represent articles that do not suffer from
the same flaw. The latter aspect is most impor-
tant for discriminative classification approaches,
since they rely on negative instances for training
the classifier. However, reliable negative instances
are also important for one-class classification ap-
proaches, since it is only for the counterexam-
ples (or outliers) that the performance of one-class
classifiers can be sufficiently evaluated. It is fur-
thermore important that the positive and the neg-
ative instances do not differ systematically in any
respect other than the presence or absence of the
respective flaws, since any systematic difference
will bias the classifier. In this context, the topical
restrictions of cleanup templates have to be taken
into account. In the following, we describe our
approach to extracting reliable training instances
from the quality flaw corpora.

5.1 Reliable Positives

In previous work, the latest available versions of
flawed articles have been used as positive training
instances. However, we found upon manual in-
spection of the data that a substantial number of
articles has been significantly edited between the
time tτ, at which the template was first assigned,
and the time te, at which the articles have been ex-
tracted. Using the latest version at time te can thus
include articles in which the respective flaw has
already been fixed without removing the cleanup
template. Therefore, we use the revision of the ar-
ticle at time tτ to assure that the flaw is still present
in the training instance.

We use the Wikipedia Revision Toolkit (Fer-
schke et al., 2011), an enhancement of the Java
Wikipedia Library, to gain access to the revision
history of each article. For every article in the cor-
pus of positive examples for flaw f that is marked

with template τ ∈ T f , we backtrack the revision
history chronologically, until we find the first revi-
sion rtτ−1 that is not tagged with τ . We then add
the succeeding revision rtτ to the corpus of reliable
positives for flaw f . In Section 6, we show that
the classification performance improves for most
flaws when using reliable positives instead of the
latest available article versions.

5.2 Reliable Negatives and Topical
Restriction

A central problem of the quality flaw recognition
approach is the fact that there are no articles avail-
able that are tagged to not contain a particular
quality problem. So far, two solutions to this issue
have been proposed in related work. Anderka et al.
(2012) tackle the problem with a one-class classi-
fier that is trained on the positive instances alone
thus eradicating the need for negative instances in
the training phase. However, in order to evalu-
ate the classifier, a set of outliers is needed. The
authors circumvent this issue by evaluating their
classifiers on a set of random untagged instances
and a set of featured articles and argue that the
actual performance of predicting the quality flaws
lies between the two.

Ferretti et al. (2012) follow a two step classifica-
tion approach (PU learning) that first uses a Naive
Bayes classifier trained on positive instances and
random untagged articles to pre-classify the data.
In a second phase, they use the negatives identi-
fied by the Naive Bayes classifier to train a Sup-
port Vector Machine that produces the final predic-
tions. Even though the Naive Bayes classifier was
supposed to identify reliable negatives, the authors
found no significant improvement over a random
selection of negative instances, which effectively
renders the PU learning approach redundant.

None of the above approaches consider the
issue of topical restriction mentioned in Sec-
tion 3, which introduces a systematic bias to the
data. Both approaches sample random negative in-
stances Arnd for any given set of flawed articles A f

from a set of untagged articles Au (see Fig. 1a).
In order to factor out the article topics as a ma-
jor characteristic for distinguishing flawed articles
from the set of outliers, reliable negative instances
Arel have to be sampled from the restricted topic
set Atopic that contains articles with a topic dis-
tribution similar to the flawed articles in A f (see
Fig. 1b). This will avoid the systematic bias and
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(a) Random negatives (b) Reliable negatives

Figure 1: Sampling of negative instances for a given set of flawed articles (A f ). Random negatives (Arnd)
are sampled from articles without any cleanup templates (Au). Reliable negatives (Arel) are sampled from
the set of articles (Atopic) with the same topic distribution as A f

result in a more realistic performance evaluation.
In the following, we present our approach

to extracting reliable negative training instances
that conform with the topical restrictions of the
cleanup templates. Without loss of generality, we
assume that an article, from which a cleanup tem-
plate τ ∈ T f is deleted at a point in time dτ, the
article no longer suffers from flaw f at that point
in time. Thus, the revision rdτ is a reliable negative
instance for the flaw f . Additionally, since the ar-
ticle was once tagged with τ ∈ T f , it belongs to the
the same restricted topic set Atopic as the positive
instances for flaw f .

We use the Apache Hadoop9 framework and
WikiHadoop10, an input format for Wikipedia
XML dumps, for crawling the whole revision his-
tory of the English Wikipedia on a compute clus-
ter. WikiHadoop allows each Hadoop mapper to
receive adjacent revision pairs, which makes it
possible to compare the changes made from one
revision to the next. For every template τ ∈ T f ,
we extract all adjacent revision pairs (rdτ−1, rdτ), in
which the first revision contains τ and the second
does not contain τ. Since there are occasions in
which a template is replaced by another template
from the same cluster, we ensure that rdτ does also
not contain any other template from cluster T f be-
fore we finally add the revision to the set of reli-
able negatives for flaw f .

In the remainder of this section, we evaluate the
topical similarity between the positive and the neg-
ative set of articles for each flaw using both our
method and the original approach. In Wikipedia,

9
http://hadoop.apache.org

10
https://github.com/whym/wikihadoop

the topic of an article is captured by the categories
assigned to it. In order to compare two sets of arti-
cles with respect to their topical similarity, we rep-
resent each article set as a category frequency vec-
tor. Formally, we calculate for each set the vector
~C = (wc1 ,wc2 , . . . ,wcn) with wci being the weight
of category ci, i.e. the number of times it occurs in
the set, and n being the total number of categories
in Wikipedia. We can then estimate the topical
similarity of two article sets by calculating the co-
sine similarity of their category frequency vectors
~C1 B A and ~C2 B B as

sim(A, B) =
A · B
‖A‖ ‖B‖ =

n∑
i=1

Ai × Bi

√
n∑

i=1
(Ai)2 ×

√
n∑

i=1
(Bi)2

Table 3 gives an overview of the similarity
scores between each positive training set and the
corresponding reliable negative set as well as be-
tween each positive set and a random set of un-
tagged articles. We can see that the topics of arti-
cles in the positive training sets are highly similar
to the topics of the corresponding reliable negative
articles while they show little similarity to the ar-
ticles in the random set. This implies that the sys-
tematic bias introduced by the topical restriction
has largely been eradicated by our approach.

Individual flaws have differently strong topical
restrictions. The strength of this restriction de-
pends on the size of Atopic. That is, a flaw such as
in-universe is restricted to a very narrow selection
of articles, while a flaw such as copy edit can be
applied to most articles and rather shows a topical
preference due to reasons outlined in Section 3. It
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Cosine Similarity
Flaw (A f , Arel) (A f , Arnd)

Advert .996 .118
Confusing .996 .084
Copy-edit .993 .197
Essay-like .996 .132
Globalize .992 .023
In-universe .996 .014
Peacock .995 .310
POV .994 .252
Technical .995 .018
Tone .996 .228
Trivia .980 .184
Weasel .976 .252

Table 3: Cosine similarity scores between the cat-
egory frequency vectors of the flawed article sets
and the respective random or reliable negatives

is therefore to be expected that that flaws with a
small Atopic are more prone to the topic bias.

6 Experiments

In the following, we describe our system architec-
ture and the setup of our experiments. Our system
for quality flaw detection follows the approach by
Ferschke et al. (2012b), since it has been particu-
larly designed as a modular system based on the
Unstructured Information Management Architec-
ture11, which makes it easy to extend. Instead
of using Mallet (McCallum, 2002) as a machine
learning toolkit, we employ the Weka Data Min-
ing Software (Hall et al., 2009) for classification,
since it offers a wider range of state-of-the-art ma-
chine learning algorithms. For each of the 12 qual-
ity flaws, we employ three different dataset config-
urations. The BASE configuration uses the newest
version of each flawed article as positive instances
and a random set of untagged articles as negative
instances. The RELP configuration uses reliable
positives, as described in Section 5.1, in combi-
nation with random outliers. Finally, the RELALL
configuration employs reliable positives in com-
bination with the respective reliable negatives as
described in Section 5.2.

Features
An extensive survey of features for quality flaw
recognition has been provided by Anderka et al.
(2012). We selected a subset of these features for
our experiments and grouped them into four fea-
ture sets in order to determine how well differ-
ent combinations of features perform in the task.

11
http://uima.apache.org

Category Feature type NONGRAM
NGRAM
NOW

IK
I

ALL

Lexical Article ngrams • • •
Info to noise ratio • • •

Network # External links • •
# Outlinks • •
# Outlinks per sentence • •
# Language links • •

References Has reference list • •
# References • •
# References per sentence • •

Revision # Revisions • •
# Unique contributors • •

Structure # Empty sections • •
Mean section size • •
# Sections • •
# Lists • •
Question rate • • •

Readability ARI • • •
Coleman-Liau • • •
Flesch • • •
Flesch-Kincaid • • •
Gunning Fog • • •
Lix • • •
SMOG-Grading • • •

Named
Entity

# Person entities∗ • • •

# Organization entities∗ • • •
# Location entities∗ • • •

Misc # Characters • • •
# Sentences • • •
# Tokens • • •
Average sentence length • • •
Article lead length • •
Lead to article ratio • •
# Discussions • •

∗ newly introduced feature
# number of instances

Table 4: Feature sets used in the experiments

Table 4 lists all feature types used in our experi-
ments.

Since the feature space becomes large due to the
ngram features, we prune it in two steps. First,
we filter the ngrams according to their document
frequency in the training corpus. We discard all
ngrams that occur in less than x% and more than
y% of all documents. Several values for x and
y have been evaluated in parameter tuning ex-
periments. The best results have been achieved
with x=2 and y=90. In a second step, we apply
the Information Gain feature selection approach
(Mitchell, 1997) to the remaining set to determine
the most useful features.

Learning Algorithms

We evaluated several learning algorithms from the
Weka toolkit with respect to their performance on
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Algorithm Average F1

SVM RBF Kernel 0.82
AdaBoost (decision stumps) 0.80
SVM Poly Kernel 0.79
RBF Network 0.78
SVM Linear Kernel 0.77
SVM PUK Kernel 0.76
J48 0.75
Naive Bayes 0.72
MultiBoostAB (decision stumps) 0.71
Logistic Regression 0.60
LibSVM One Class 0.67

Table 5: Average F1-scores over all flaws on RELP
using all features

the quality flaw recognition task. Table 5 shows
the average F1-score of each algorithm on the
RELP dataset using all features. The performance
has been evaluated with 10-fold cross validation
on 2,000 documents split equally into positive
and negative instances. One class classifiers are
trained on the positive instances alone. We deter-
mined the best parameters for each algorithms in
a parameter optimization run and list the results of
the best configuration.

Overall, Support Vector Machines with RBF
kernels yielded the best average results and out-
performed the other algorithms on every flaw. We
used a sequential minimal optimization (SMO) al-
gorithm (Platt, 1998) to train the SVMs and used
different γ-values for the RBF kernel function. In
contrast to Ferretti et al. (2012), we did not see sig-
nificant improvements when optimizing γ for each
individual flaw, so we determined one best setting
for each dataset. Since SVMs with RBF kernels
are a special case of RBF networks that fit a sin-
gle basis function to the data, we also used gen-
eral RBF networks that can employ multiple ba-
sis functions, but we did not achieve better results
with that approach.

One-class classification, as proposed by An-
derka et al. (2012), did not perform well within
our setup. Even though we used an out-of-the-
box one class classifier, we achieve similar re-
sults as Anderka et al. in their pessimistic setting,
which best resembles our configuration. However,
the performance still lacks behind the other ap-
proaches in our experiments. The best perform-
ing algorithm reported by Ferschke et al. (2012b),
AdaBoost with decision stumps as a weak learner,
showed the second best results in our experiments.

7 Evaluation and Discussion

The SVMs achieve a similar cross-validated per-
formance on all feature sets containing ngrams,
showing only minor improvements for individ-
ual flaws when adding non-lexical features. This
suggests that the classifiers largely depend on
the ngrams and that other features do not con-
tribute significantly to the classification perfor-
mance. While structural quality flaws can be
well captured by special purpose features or in-
tensional modeling, as related work has shown,
more subtle content flaws such as the neutrality
and style flaws are mainly captured by the word-
ing itself. Textual features beyond the ngram level,
such as syntactic and semantic qualities of the
text, could further improve the classification per-
formance of these flaws and should be addressed
in future work. Table 6 shows the performance of
the SVMs with RBF kernel12 on each dataset us-
ing the NGRAM feature set. The average perfor-
mance based on NOWIKI is slightly lower while
using ALL features results in slightly higher aver-
age F1-scores. However, the differences are not
statistically significant and thus omitted. Classi-
fiers using the NONGRAM feature set achieved av-
erage F1-scores below 0.50 on all datasets. The
results have been obtained by 10-fold cross vali-
dation on 2,000 documents per flaw.

The classifiers trained on reliable positives and
random untagged articles (RELP) outperform the
respective classifiers based on the BASE dataset
for most flaws. This confirms our original hy-
pothesis that using the appropriate revision of each
tagged article is superior to using the latest avail-
able version from the dump. The performance on
the RELALL dataset, in which the topic bias has
been factored out, yields lower F1-scores than the
two other approaches. Flaws that are restricted to
a very narrow set of topics (i.e. Atopic in Fig. 1b
is small), such as the in-universe flaw, show the
biggest drop in performance. Since the topic
bias plays a major role in the quality flaw de-
tection task, as we have shown earlier, the topic-
controlled classifier cannot take advantage of the
topic information, while the classifiers trained on
the other corpora can make use of these charac-
teristic as the most discriminative features. In the
RELALL setting, however, the differences between
the positive and negative instances are largely de-
termined by the flaws alone. Classifiers trained on

12γ=0.01 for BASE,RELP and γ=0.001 for RELALL
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such a dataset therefore come closer to recogniz-
ing the actual quality flaws, which makes them
more useful in a practical setting despite lower
cross-validated scores.

In addition to cross-validation, we performed a
cross-corpus evaluation of the classifiers for each
flaw. Therefore, we evaluated the performance of
the unbiased classifiers (trained on RELALL) on
the biased data (RELP) and vice versa. Hereby,
the positive training and test instances remain the
same in both settings, while the unbiased data con-
tains negative instances sampled from Arel and the
unbiased data from Arnd (see Figure 1). With the
NGRAM feature set, the reliable classifiers outper-
formed the unreliable classifiers on all flaws that
can be well identified with lexical cues, such as
Advert or Technical. In the biased case, we found
both topic related and flaw specific ngrams among
the most highly ranked ngram features. In the un-
biased case, most of the informative ngrams were
flaw specific expressions. Consequently, biased
classifiers fail on the unbiased dataset in which
the positive and negative class are sampled from
the same topics, which renders the highly ranked
topic ngrams unusable. Flaws that do not largely
rely on lexical cues, however, cannot be predicted
more reliably with the unbiased classifier. This
means that additional features are needed to de-
scribe these flaw. We tested this hypothesis by us-
ing the full feature set ALL and saw a substantial
improvement on the side of the unbiased classifier,
while the performance of the biased classifier re-
mained unchanged.

A direct comparison of our results to related
work is difficult, since neutrality and style flaws
have not been targeted before in a similar manner.
However, the Advert flaw was also part of the ten
flaw types in the PAN Quality Flaw Recognition
Task (Anderka and Stein, 2012b). The best system
achieved an F1 score of 0.839, which is just be-
low the results of our system on the BASE dataset,
which is similar to the PAN setup.

8 Conclusions

We showed that text classification based on
Wikipedia cleanup templates is prone to a topic
bias which causes skewed classifiers and overly
optimistic cross-validated evaluation results. This
bias is known from other text classification appli-
cations, such as authorship attribution, genre de-
tection and native language detection. We demon-

Flaw BASE RELP RELALL

Advert .86 .88 .75
Confusing .76 .80 .70
Copy edit .81 .73 .72
Essay-like .79 .83 .64
Globalize .85 .87 .69
In-universe .96 .96 .69
Peacock .77 .82 .69
POV .75 .80 .71
Technical .87 .88 .67
Tone .70 .79 .69
Trivia .72 .77 .70
Weasel .69 .77 .72

� .79 .83 .70

Table 6: F1 scores for the 10-fold cross validation
of the SVMs with RBF kernel on all datasets using
NGRAM features

strated how to avoid the topic bias when creat-
ing quality flaw corpora. Unbiased corpora are
not only necessary for training unbiased classi-
fiers, they are also invaluable resources for gaining
a deeper understanding of the linguistic properties
of the flaws. Unbiased classifiers reflect much bet-
ter the performance of quality flaw recognition “in
the wild”, because they detect actual flawed ar-
ticles rather than identifying the articles that are
prone to certain quality due to their topic or subject
matter. In our experiments, we presented a system
for identifying Wikipedia articles with style and
neutrality flaws, a novel category of quality prob-
lems that is of particular importance within and
outside of Wikipedia. We showed that selecting
a reliable set of positive training instances mined
from the revision history improves the classifica-
tion performance. In future work, we aim to ex-
tend our quality flaw detection system to not only
find articles that contain a particular flaw, but also
to identify the flaws within the articles, which can
be achieved by leveraging the positional informa-
tion of in-line cleanup templates.

Acknowledgments

This work has been supported by the Volks-
wagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. I/82806,
and by the Hessian research excellence pro-
gram “Landes-Offensive zur Entwicklung
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Richárd Farkas, Veronika Vincze, György Móra, János
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Abstract

We address the problem of informal word
recognition in Chinese microblogs. A key
problem is the lack of word delimiters in
Chinese. We exploit this reliance as an
opportunity: recognizing the relation be-
tween informal word recognition and Chi-
nese word segmentation, we propose to
model the two tasks jointly. Our joint in-
ference method significantly outperforms
baseline systems that conduct the tasks in-
dividually or sequentially.

1 Introduction

User generated content (UGC) – including mi-
croblogs, comments, SMS, chat and instant mes-
saging – collectively referred to as microtext by
Gouwset et al. (2011) or network informal lan-
guage by Xia et al. (2005), is the hallmark of the
participatory Web.

While a rich source that many applications are
interested in mining for knowledge, microtext pro-
cessing is difficult to process. One key reason
for this difficulty is the ubiquitous presence of
informal words – anomalous terms that manifest
as ad hoc abbreviations, neologisms, unconven-
tional spellings and phonetic substitutions. Such
informality is often present in oral conversation,
and user-generated microblogs reflect this infor-
mality. Natural language processing (NLP) tools
largely fail to work properly on microtext, as they
have largely been trained on formally written text
(i.e., newswire). Recent work has started to ad-
dress these shortcomings (Xia and Wong, 2006;
Kobus et al., 2008; Han and Baldwin, 2011). In-
formal words and their usage in microtext evolves
quickly, following social trends and news events.

∗This research is supported by the Singapore National
Research Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the IDM
Programme Office.

These characteristics make it difficult for lexicog-
raphers to compile lexica to keep with the pace of
language change.

We focus on this problem in the Chinese lan-
guage. Through our analysis of a gathered Chinese
microblog corpus, we observe that Chinese infor-
mal words originate from three primary sources,
as given in Table 1.

But unlike noisy words in English, Chinese in-
formal words are more difficult to mechanically
recognize for two critical reasons: first, Chinese
does not employ word delimiters; second, Chinese
informal words combine numbers, alphabetic let-
ters and Chinese characters. Techniques for En-
glish informal word detection that rely on word
boundaries and informal word orthography need
to be adapted for Chinese. Consider the micro-
text “
�g��” (meaning “Don’t tell me the
spoilers (to a movie or joke)”, also in Table 1).
If “
�” (“don’t”) and “�” (past tense marker)
are correctly recognized as two words, we may
predict the previously unseen characters “g�”
(“tell spoilers”) as an informal word, based on
the learned Chinese language patterns. However,
state-of-the-art Chinese segmenters1 incorrectly
yield “
� g ��”, preferring to chunk “�
�” (“thoroughly”) as a word, as they do not con-
sider the possibility that “g�” (“spoiler”) could
be an informal word. This example illustrates the
mutual dependency between Chinese word seg-
mentation (henceforth, CWS) and informal word
recognition (IWR) that should be solved jointly.

Hence, rather than pipeline the two processes
serially as previous work, we formulate it as a two-
layer sequential labeling problem. We employ fac-
torial conditional random field (FCRF) to solve
both CWS and IWR jointly. To our best knowl-
edge, this is the first work that shows how Chi-
nese microtext can be analyzed from raw text to

1http://www.ictclas.org/index.html
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Table 1: Our classification of Chinese informal words as originating from three primary sources. For
Phonetic Substitutions, pronunciation is indicated by the phonetic Pinyin transcription system.

Informal Word Formal Word Example Sentence English Translation

1) Phonetic
(	(mu4 you3) ¡	(mei2 you3) �Ñ:(((			úßf No taxi in the development area

Substitutions
i¸ì(hai2 zhi3 men) iPì(hai2 zi men) w��iii¸̧̧ììì Get up kids

bs �Æ(bi shi) �bs` I despise you

2) Abbreviation L8 Lb8� eLLL888' Let’s play board games
g� gÅ�2 
�ggg���� Don’t tell (me) the spoilers

3) Neologisms Ù� �Ò �ÙÙÙ���J So awesome!
Ò@ Å�-p �¦ÒÒÒ@@@� Quickly purchase it

derive joint solutions for both problems of CWS
and IWR. We also propose novel features for in-
put to the joint inference. Our techniques signif-
icantly outperform both research and commercial
state-of-the-art for these problems, including two-
step linear CRF baselines which perform the two
tasks sequentially.

We detail our methods in Section 2. In Sec-
tion 3, we first describe the details of our dataset
and baseline systems, followed by demonstrating
two sets of experiments for CWS and IWR, re-
spectively. Section 4 offers the discussion on error
analysis and limitations. We discuss related work
in Section 5, before concluding our paper.

2 Methodology

Given an input Chinese microblog post, our
method simultaneously segments the sentences
into words (the Chinese Word Segmentation,
CWS, task), and marks the component words as
informal or formal ones (the Informal Word Re-
congition, IWR, task).

2.1 Problem Formalization

The two tasks are simple to formalize. The IWR
task labels each Chinese character with either an F
(part of a formal word) or IF (informal word). For
the CWS task, we follow the widely-used BIES
coding scheme (Low et al., 2005; Hai et al., 2006),
where B, I, E and S stand for beginning of a
word, inside a word, end of a word and single-
character word, respectively. As a result, we have
two (hidden) labels to associate with each (ob-
servable) character. Figure 1 illustrates an exam-
ple microblog post graphically, where the labels
are in circles and the observations are in squares.
The two informal words in the example post are
“(	” (normalized form: “¡	”; English gloss:
“no”) and “rp” (“ºÁ<”; “luck”).

2.2 Conditional Random Field Models

Given the general performance and discrimi-
native framework, Conditional Random Fields
(CRFs) (Lafferty et al., 2001) is a suitable frame-
work for tackling sequence labeling problems.
Other alternative frameworks such as Markov
Logic Networks (MLNs) and Integer Linear Pro-
gramming (ILP) could also be considered. How-
ever, we feel that for this task, formulating effi-
cient global formulas (constraints) for MLN (ILP)
is comparatively less straightforward than in other
tasks (e.g, compared to Semantic Role Labeling,
where the rules may come directly from grammat-
ical constraints). CRFs represent a basic, simple
and well-understood framework for sequence la-
beling, making it a suitable framework for adapt-
ing to perform joint inference.

2.2.1 Linear-Chain CRF
A linear-chain CRF (LCRF; Figure 2a) predicts
the output label based on feature functions pro-
vided by the scientist on the input. In fact, the
LCRF has been used for the exact problem of
CWS (Sun and Xu, 2011), garnering state-of-the-
art performance, and as such, validate it as a strong
baseline for comparison.

2.2.2 Factorial CRF
To properly model the interplay between the
two sub-problems, we employ the factorial CRF
(FCRF) model, which is based on the dynamic
CRF (DCRF) (Sutton et al., 2007). By introduc-
ing a pairwise factor between different variables
at each position, the FCRF model results as a spe-
cial case of the DCRF. A FCRF captures the joint
distribution among various layers and jointly pre-
dicts across layers. Figure 2 illustrates both the
LCRF and FCRF models, where cliques include
within-chain edges (e.g., yt, yt+1) in both LCRF
and FCRF models, and the between-chain edges
(e.g., yt, zt) only in the FCRF.
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开 啊低值品人，车租出有没区发

F FIFIFFFFFIFIFF FF F

I EIBSEIBEBE SB S

开 啊低值pr，车租出有木区发

There charactermypoorhow,zonedevelopmenttheintaxinois is

Figure 1: A Chinese microtext (bottom layer) with annotations for IWR (top layer) and CWS (middle
layer). The bottom three lines give the normalized Chinese form, its pronuniciation in Pinyin and aligned
English translation.

yt

xt

yt+1

xt+1

yt-1

xt-1
(a) Linear-chain CRF

yt

xt

yt+1

xt+1

yt-1

xt-1

zt zt+1zt-1

(b) Two-layer Factorial CRF

Figure 2: Graphical representations of the two
types of CRFs used in this work. yt denotes the
1st layer label, zt denotes the 2nd layer label, and
xt denotes the observation sequence.

Although the FCRF can be collapsed into a
LCRF whose state space is the cross-product of
the outcomes of the state variables (i.e., 8 labels
in this case), Sutton et al. (2007) noted that such
a LCRF requires not only more parameters in the
number of variables, but also more training data
to achieve equivalent performance with an FCRF.
Given the limited scale of the state space and train-
ing data, we follow the FCRF model, using exact
Junction Tree (Jensen, 1996) inference and decod-
ing algorithm to perform prediction.

2.3 CRF Features

We use three broad feature classes – lexical,
dictionary-based and statistical features – aiming
to distinguish the output classes for the CWS and
IRW problems. Character-based sequence label-
ing is employed for word segmentation due to its
simplicity and robustness to the unknown word
problem (Xue, 2003).

A key contribution of our work is also to
propose novel features for joint inference. We

propose new features for the dictionary-based and
statistical feature classes, which we have marked
in the discussion below with “(*)”. We later
examine their efficacy in Section 3.

Lexical Features. As a foundation, we employ
lexical (n-gram) features informed by the previous
state-of-the-art for CWS (Sun and Xu, 2011; Low
et al., 2005). These features are listed below2:

• Character 1-gram: Ck(i− 4 < k < i+ 4)

• Character 2-gram: CkCk+1(i− 4 < k < i+
3)

• Character 3-gram: CkCk+1Ck+2(i − 3 <
k < i+ 2)

• Character lexicon: C−1C1

This feature is used to capture the common
indicators in Chinese interrogative sentences.
(e.g., “/
/” (“whether or not”), “}
}”
(“OK or not”))

• Whether Ck and Ck+1 are identical, for i −
4 < k < i+ 3.
This feature is used to capture the words
of employing character doubling in Chinese.
(e.g., “ÜÜ” (“see you”), “))” (“every
day”))

Dictionary-based Features. We use features
that indicate whether the input character sequence

2For notational convenience, we denote a candidate char-
acter token Ci as having a context ...Ci−1CiCi+1.... We use
Cm:n to express a subsequence starting at the position m and
ending at n. len stands for the length of the subsequence, and
offset denotes the position offset of Cm:n from the current
character Ci. We use b (beginning), m (middle) and e (end-
ing) to indicate the position of Ck (m ≤ k ≤ n) within the
string Cm:n.
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matches entries in certain lexica. We use the on-
line dictionary from Peking University as the for-
mal lexicon and the compiled informal word list
from our training instances as the informal lex-
icon. In addition, we employ additional online
word lists3 to distinguish named entities and func-
tion words from potential informal words.

As shown in Table 1, alphabetic sequences in
microblogs may refer to Chinese Pinyin or Pinyin
abbreviations, rather than English (e.g., “bs” for
bi shi; “to despise”). Hence, we added dictionary-
based features to indicate the presence of Pinyin
initials, finals and standard Pinyin expansions, us-
ing a UK English word list4. The final list of
dictionary-based features employed are:

• If Ck (i − 4 < k < i + 4) is a surname:
Surname@k

• (*) If Ck (i− 4 < k < i+ 4) is a stop word:
StopW@k

• (*) If Ck (i−4 < k < i+4) is a noun-suffix:
NSuffix@k

• (*) If Ck (i − 4 < k < i + 4) is a Pinyin
Initial: Initial@k

• (*) IfCk (i−4 < k < i+4) is a Pinyin Final:
Final@k

• If Ck (i− 4 < k < i+ 4) is a English letter:
En@k

• IfCm:n (i−4 < m < n < i+4, 0 < n−m <
5) matches one entry in the Peking University
dictionary:
FW@m:n; len@offset; FW-Ck@b-offset,
FW-Ck@n-offset or FW-Ck@e-offset

• (*) If Cm:n (i − 4 < m < n < i + 4, 0 <
n −m < 5) matches one entry in the infor-
mal word list:
IFW@m:n; len@offset; IFW-Ck@b-offset,
IFW-Ck@n-offset or IFW-Ck@e-offset

• (*) If Cm:n (i − 4 < m < n < i + 4, 0 <
n − m < 5) matches one entry in the valid
Pinyin list:
PY@m:n; len@offset; PY-Ck@b-offset, PY-
Ck@n-offset or PY-Ck@e-offset

Statistical Features. We use pointwise mutual
information (PMI) variant (Church and Hanks,

3Resources are available at http://www.sogou.
com/labs/resources.html

4http://www.bckelk.uklinux.net/menu.
html

1990) to account for global, corpus-wide informa-
tion. This measures the difference between the ob-
served probability of an event (i.e., several charac-
ters combined as an informal word) and its expec-
tation, based on the probabilities of the individual
events (i.e., the probability of the individual char-
acters occurring in the corpus). Compared with
other standard association measures such as MI,
PMI tends to assign rare events higher scores. This
makes it a useful signal for IWR, as it is sensi-
tive to informal words which often have low fre-
quency. However, the word frequency alone is
not reliable enough to distinguish informal words
from uncommon but formal words.

In response to these difficulties in differentiat-
ing linguistic registers, we compute two different
PMI scores for character-based bigrams from two
large corpora representing news and microblogs as
features. We also use the difference between the
two PMI scores as a differential feature. In ad-
dition, we also convert all the character-based bi-
grams into Pinyin-based bigrams (ignoring tones5)
and compute the Pinyin-level PMI in the same
way. These features capture inconsistent use of
the bigram across the two domains, which assists
to distinguish informal words. Note that we es-
chew smoothing in our computation of PMI, as it
is important to capture the inconsistent character
bigrams usage between the two domains. For ex-
ample, the word “rp” appears in the microblog do-
main, but not in news. If smoothing is conducted,
the character bigram “rp” will be given a non-zero
probability in both domains, not reflective of ac-
tual use. For each character Ci, we incorporate
the PMI of the character bigrams as follows:

• (*) If CkCk+1 (i − 4 < k < i + 4) is not a
Chinese word recorded in dictionaries:
CPMI-N@k+i; CPMI-M@k+i; CDiff@k+i;
PYPMI-N@k+i; PYPMI-M@k+i; PYD-
iff@k+i

3 Experiment

We discuss the dataset, baseline systems and ex-
periments results in detail in the following.

3.1 Data Preparation

We utilize the Chinese social media archive,
PrEV (Cui et al., 2012), to obtain Chinese mi-

5The informal word may have the same Pinyin transcrip-
tion as its formal counterpart without considering the differ-
ences in tones.
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croblog posts from the public timeline of Sina
Weibo6. Sina Weibo is the largest microblogging
in China, where over 100 million Chinese mi-
croblog posts are posted daily (Cao, 2012), likely
the largest public source of informal and daily
Chinese language use. Our dataset has a total of
6,678,021 messages, covering two months from
June to July of 2011. To annotate the corpus,
we employ Zhubajie7, one of China mainland’s
largest crowdsourcing (Wang et al., 2010) plat-
forms to obtain informal word annotations. In
total, we spent US$110 on assembling a sub-
set of 5, 500 posts (12, 446 sentences) in which
1, 658 unique informal words are annotated within
five weeks via Zhubajie. Each post was anno-
tated by three annotators with moderate (0.57)
inter-annotator agreement measured by Fleiss’
κ (Joseph, 1971), and conflicts were resolved by
majority voting.

We divided the annotated corpus, taking 4, 000
posts for training, and the remainder (1, 500) for
testing. Through inspection, we note that 79.8%
of the informal words annotated in the testing set
are not covered by the training set. We also follow
Wang et al. (2012)’s conventions and apply rule-
sets to preprocess the corpus’ URLs, emoticons,
“@usernames” and Hashtags as pre-segmented
words, before input to CWS and IWR. For the
CWS task, the first author manually labelled the
same corpus following the segmentation guide-
lines published with the SIGHAN-58 MSR dataset.

3.2 Baseline Systems
We implemented several baseline systems to com-
pare with proposed FCRF joint inference method.

Existing Systems. We re-implemented Xia and
Wong (2008)’s extended Support Vector Machine
(SVM) based microtext IWR system to compare
with our method. Their system only does IWR,
using the CWS and POS tagging otuput of the
ICTCLAS segmenter (Zhang et al., 2003) as in-
put. To compare our joint inference versus other
learning models, we also employed a decision tree
(DT) learner, equipped with the same feature set
as our FCRF. Both the SVM and DT models are
provided by the Weka3 (Hall et al., 2009) toolkit,
using its default configuration.

To evaluate CWS performance, we compare
with two recent segmenters. Sun and Xu (2011)’s

6http://open.weibo.com
7http://www.zhubajie.com
8http://www.sighan.org

work achieves state-of-the-art performance and
is publicly available. They employ a LCRF
taking as input both lexical and statistical fea-
tures derived from unlabeled data. As a sec-
ond baseline, we also evaluate against a widely-
used, commercially-available alternative, the re-
cently released 2011 ICTCLAS segmenter9.

Two-stage Sequential Systems. To benchmark
the improvement that the factorial CRF model
has by doing the two tasks jointly, we com-
pare with a LCRF solution that chains these two
tasks together. For completeness, we test pipelin-
ing in both directions – CWS feeding features
for IWR (LCRFcws�LCRFiwr), and the reverse
(LCRFiwr�LCRFcws). We modify the open-
source Mallet GRMM package (Sutton, 2006) to
implement both this sequential LCRF model and
our proposed FCRF model. Both models take the
whole feature set described in Section 2.3.

Upper Bound Systems. To measure the upper-
bound achievable with perfect support from the
complementary task, we also provided gold stan-
dard labels of one task (e.g., IWR) as an input
feature to the other task (e.g., CWS). These sys-
tems (hereafter denoted as LCRF�LCRF-UB and
FCRF-UB) are meant for reference only, as they
have access to answers for the opposing tasks.

Adapted SVM for Joint Classification. For
completeness, we also compared our work against
the standard SVM classification model that per-
forms both tasks by predicting the cross-product
of the CWS and IWR individual classes (in to-
tal, 8 classes). We train the SVM classifier on the
same set of features as the FCRF, by providing the
cross-product of two layer labels as gold labels.
This system (hereafter denoted as SVM-JC) was
implemented using the LibSVM package (Chang
and Lin, 2011).

3.3 Evaluation Metrics

We use the standard metrics of precision, recall
and F1 for the IWR task. Only words that exactly
match the manually-annotated labels are consid-
ered correct. For example given the sentence “�
HËËËHHH}�b” (“�HÙÙÙHHH}�b”; “How deli-
cious it is”), if the IWR component identifies “Ë
H” as an informal word, it will be considered cor-
rect, whereas both “ËH}” and “Ë” are deemed
incorrect. For CWS evaluation, we employ the
conventional scoring script provided in SIGHAN-

9http://www.ictclas.org/index.html
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5, which also provides out-of-vocabulary recall
(OOVR).

To determine statistical significance of the im-
provements, we also compute paired, one-tailed
t tests. As pointed out by Yeh and Alexan-
der (2000), the randomization method is more re-
liable in measuring the significance of F1 through
handling non-linear functions of random variables.
Thus we employ Padó (2006)’s implementation of
randomization algorithm to measure the signifi-
cance of F1.

3.4 Experimental Results

The goal of our experiments is to answer the fol-
lowing research questions:

RQ1 Do the two tasks of CWS and IWR benefit
from each other?

RQ2 Is jointly modeling both tasks more efficient
than conducting each task separately or se-
quentially?

RQ3 What is the upper bound improvement that
can be achieved with perfect support from the
opposing task?

RQ4 Are the features we designed for the joint
inference method effective?

RQ5 Is there a significant difference between the
performance of the joint inference of a cross-
product SVM and our proposed FCRF?

3.4.1 CWS Performance

Table 2: Performance comparison on the CWS
task. The two bottom-most rows show upper
bound performance. ‘‡’(‘∗’) in the top four lines
indicates statistical significance at p < 0.001
(0.05) when compared with the previous row.
Symbols in the bottom two lines indicate signifi-
cant difference between upper bound systems and
their corresponding counterparts.

Pre Rec F1 OOVR
ICTCLAS (2003) 0.640 0.767 0.698 0.551
Sun and Xu (2011) 0.661‡ 0.691‡ 0.675 0.572‡

LCRFiwr�LCRFcws 0.741‡ 0.775‡ 0.758∗ 0.607∗

FCRF 0.757‡ 0.801‡ 0.778∗ 0.633∗

LCRFiwr�LCRFcws-UB 0.807‡ 0.815‡ 0.811∗ 0.731‡

FCRF-UB 0.820‡ 0.833‡ 0.826∗ 0.758‡

In general, our FCRF yields the best perfor-
mance among all systems (top portion of Table 2),

answering RQ1. Given microblog posts as test
data, the F1 of ICTCLAS drops from 0.98510 to
0.698, clearly showing the difficulty of process-
ing microtext. The sequential LCRF model and
FCRF model both outperform the baselines, which
means with the novel features shared by the two
tasks, CWS benefits significantly from the results
of IWR. Hence our segmenter outperforms the ex-
isting segmenters by tackling one of the bottle-
necks of recognizing informal words in Chinese
microtext.

To illustrate, the sequence “...			(((			º...”
(“...			¡¡¡			º...”; “...is there anyone...”), is cor-
rectly labeled as BIES by our FCRF model but
mislabeled by baseline systems as SSBE. This is
likely due to the ignorance of the informal word
“	(	”, leading baseline systems to keep the
formal word “	º” (“someone”) as a segment.

More importantly, by jointly optimizing the
probabilities of labels on both layers, the FCRF
model slightly but significantly improves over the
sequential LCRF method, answering RQ2. Thus
we conclude that jointly modeling both tasks is
more effective than performing the tasks sequen-
tially.

For RQ3, the last two rows presents the upper-
bound systems that have access to gold standard
labels for IWR. Both upper-bound systems sta-
tistically outperform their counterparts, indicating
that there is still room to improve CWS perfor-
mance with better IWR as input. This also vali-
dates our assumption that CWS can benefit from
joint consideration of IWR. Taking the best pre-
vious work as our lower bound (0.69 F1), we see
that our FCRF methodology (0.77) makes signifi-
cant progress towards the upper bound (0.82).

3.4.2 IWR Performance
For RQ1 and RQ2, Table 3 compares the per-
formance of our method with the baseline sys-
tems on the IWR task. Overall, the FCRF
method again outperforms all the baseline sys-
tems. We note that the CRF based models achieve
much higher precision score than baseline sys-
tems, which means that the CRF based models
can make accurate predictions without enlarging
the scope of prospective informal words. Com-
pared with the CRF based models, the SVM and
DT both over-predict informal words, incurring
a larger precision penalty. Studying this phe-

10Self-declared segmentation accuracy on formal
text.http://www.ictclas.org/
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Table 3: Performance comparison on the IWR
task. ‘‡’ or ‘∗’ in the top four rows indicates sta-
tistical significance at p < 0.001 or < 0.05 com-
pared with the previous row. Symbols in the bot-
tom two rows indicate differences between upper
bound systems and their counterparts.

Pre Rec F1

SVM 0.382 0.621 0.473
DT 0.402∗ 0.714∗ 0.514∗

LCRFcws�LCRFiwr 0.858‡ 0.591‡ 0.699∗

FCRF 0.877∗ 0.655∗ 0.750∗

LCRFcws�LCRFiwr-UB 0.840 0.726∗ 0.779∗

FCRF-UB 0.878 0.752∗ 0.810∗

nomenon more closely, we find it is difficult for
the baseline systems to classify segments mixed
with formal and informal characters. Taking the
microblog “�HËËËHHH}�b” (“�HÙÙÙHHH}�
b”; “how delicious it is”) as an example, with-
out considering the possible word boundaries sug-
gested by the contextual formal words – i.e., “�
H” (“how”) and “}�” (“delicious”) – the base-
lines chunk the informal words (i.e., “ËH”) to-
gether with adjacent characters mistakenly as “Ë
H}” or, “HËH”.

As indicated by the bold figures in Table 3, the
FCRF performs slightly better than the sequential
LCRF (p < 0.05) – a weaker trend when com-
pared with the CWS case. As an example, the se-
quential LCRF method fails to recognize “1¯”
(“iPhone”) as an informal word in the sentence
“��111¯̄̄}©” (“my iPhone is fun”), where the
FCRF succeeds. Inspecting the output, the LCRF
segmenter mislabels “1¯” as SS. By jointly con-
sidering the probabilities of the two layers, the
FCRF model infers better quality segmentation la-
bels, which in turn enhances the FCRF’s capabil-
ity to recognize the sequence of two characters as
an informal word. This is further validated by
the significant performance gulf between the up-
per bound and the basic system shown in the lower
half of the table.

For RQ3, interestingly, the difference in perfor-
mance between the LCRF and FCRF upper-bound
systems is not significant. However, these are up-
per bounds, and we expect on real-world data that
CWS performance will not be perfect. As such,
we still recommend using the FCRF model, as the
joint process is more robust to noisy input from
one channel.

Table 4: F1 comparison between FCRF and
FCRF−new. (‘∗’) indicates statistical significance
at p < 0.05 when compared with the previous row.

CWS IWR
FCRF−new 0.690 0.552
FCRF 0.778∗ 0.750∗

3.4.3 Feature set evaluation
For RQ4, to evaluate the effectiveness of our
newly-introduced feature sets (those marked with
“*” in Section 2.3), we also test a FCRF
(FCRF−new) without our new features. Accord-
ing to Table 4, performance drops by a signifi-
cant amount: 0.088 F1 on CWS and 0.198 F1 on
IWR. FCRF−new makes many mistakes identical
to the baselines: segmenting informal words into
several single-character words and chunking ad-
jacent characters from informal and formal words
together.

3.4.4 Adapted SVM-JC vs. FCRF

Table 5: F1 comparison between SVM, SVM-JC
and FCRF. ‘‡’(‘∗’) indicates statistical significance
at p < 0.001 (0.05) when compared with the pre-
vious row.

CWS IWR
SVM — 0.473
SVM-JC 0.741 0.624‡

FCRF 0.778∗ 0.750∗

For RQ5, according to Table 5, our SVM trained
to predict the cross-product CWS/IWR classifica-
tion (SVM-JC) performs quite well on its own.
Unsurprisingly, it does not outperform our pro-
posed FCRF, which has access to more struc-
tural correlation among the CWS and IWR labels.
SVM-JC significantly (p < 0.001) outperforms
the baseline SVM system by 0.151 in the IWR
task, which we think is partially explained by its
good performance (0.761) on the CWS task. The
over-prediction tendency of the individual SVM
is largely solved by simultaneously modeling the
CWS task, whereas FCRF turns out to be more
effective in solving joint inference problem, al-
though in a weaker trend in terms of the statistical
significance (p < 0.05).

We conclude that the use of the FCRF model
and the addition of our new features are both es-
sential for the high performance of our system.
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4 Discussion

We wish to understand the causes of errors in our
models so that we may better understand its weak-
nesses. Manually inspecting the errors of our sys-
tem, we found three major categories of errors
which we dissect here.

For IWR, the major source of error, accounting
for more than 60% of all errors, is caused by what
we term the partially observed informal word phe-
nomenon. This refers to informal words contain-
ing multiple characters, where some of its compo-
nents have appeared in the training data as infor-
mal words individually. For instance, the single-
character informal word, “à” (“�”; “very”) ap-
pears in training multiple times, thus the unseen
informal word “àE” (“�E”; “long time”) is a
partially observed informal word. In this case, the
model incorrectly labels the known, single charac-
ter “à” with IF S as an informal word, instead of
labeling the unseen sequence “àE” with correct
labels IF B IF E. Errors then result in both tasks.

This observation motivates the use of the rela-
tion between the known informal word and its for-
mal counterpart in order to inform the model to
better predict in cases of partial observations. Fol-
lowing the same example, given that “à” is an in-
formal word, if the model also considers the prob-
ability of normalizing “à” to “�”, while con-
sidering the higher probability that the character
sequence “�E” could be a formal word, there
would be a higher likelihood of correctly predict-
ing the sequence “àE” as an informal word. So
informal word normalization is also an intrinsic
component of IWR and CWS, and we believe it
is an interesting direction for future work.

Another source of error is a side effect of mi-
crotext being extremely short. For example, in the
sentence “¥¥¥¶¶¶�*/����” (“ÞÞÞ¶¶¶�*
/����”; “Go home! Exhausted.”), the un-
seen informal word “¥¶” itself forms a short
sentence. Although it has a subsequent sentence
“*/����” (“Exhausted”) as context, and
the two are pragmatically related, (i.e., “I am ex-
hausted! [And as a result,] I want to go home.”),
the lexical relationship between the sentences is
weak; i.e., “*/����” appears frequently as
the context of various sentences, making the con-
text difficult to utilize. These phenomena makes it
difficult to recognize “¥¶” as an informal word.

A possible solution could factor in proximity,
similar to density-based matching, as in Tellex et

Table 6: Sample Chinese freestyle named entities
that are usernames.

Freestyle Named
Entity

Explanation

“´²ê��” “´²” (“durian”), “ê” (“snow”),
“��” (“charming lady”)

“É�” It is short for the cartoon name “w
õ��”.

“dj�e”, “�pp” Usernames mixed of Chinese and al-
phabetic characters

al. (2003). We can assign a higher weight to fea-
tures related to characters closer to the current
target character. In particular, for this example,
given the current target character “¥”, we can as-
sign higher weight to features generated from fea-
tures from the proximal context “¥¶”, and lower
weight to features extracted from distal contexts.

Another major group of errors come from what
we term freestyle named entities as exemplified in
Table 6; i.e., person names in the form of user IDs
and nicknames, that have less constraint on form
in terms of length, canonical structure (not sur-
names with given names; as is standard in Chinese
names) and may mix alphabetic characters. Most
of these belong to the category of Person Name
(PER), as defined in CoNLL-200311 Named En-
tity Recognition shared task. Such freestyle en-
tities are often misrecognized as informal words,
as they share some of the same stylistic markings,
and are not marked by features used to recognize
previous Chinese named entity recognition meth-
ods (Gao et al., 2005; Zhao and Kit, 2008) that
work on news or general domain text. We recog-
nize this as a challenge in Chinese microtext, but
beyond the scope of our current work.

5 Related Work

In English, IWR has typically been investigated
alongside normalization. Several recent works
(Han and Baldwin, 2011; Gouws et al., 2011; Han
et al., 2012) aim to produce informal/formal word
lexicons and mappings. These works are based on
distributional similarity and string similarity that
address concerns of lexical variation and spelling.
These methods propose two-step unsupervised ap-
proaches to first detect and then normalize de-
tected informal words using dictionaries.

In processing Chinese informal language, work
conducted by Xia and Wong address the problem

11http://www.cnts.ua.ac.be/conll2003/
ner/
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of in bulletin board system (BBS) chats. They em-
ploy pattern matching and SVM-based classifica-
tion to recognize Chinese informal sentences (not
individual words) chat (Xia et al., 2005). Both
methods had their advantages: the learning-based
method did better on recall, while the pattern
matching performed better on precision. To obtain
consistent performance on new unseen data, they
further employed an error-driven method which
performed more consistently over time-varying
data (Xia and Wong, 2006). In contrast, our
work identifies individual informal words, a finer-
grained (and more difficult) task.

While seminal, we feel that the difference in
scope (informal sentence detection rather than
word detection) shows the limitation of their work
for microblog IWR. Their chats cover only 651
unique informal words, as opposed to our study
covering almost triple the word types (1, 658).
Our corpus demonstrates a higher ratio of infor-
mal word use (a new informal word appears in
1,658
12,446 = 13% of sentences, as opposed to 651

22,400 =
2% in their BBS corpus). Further analysis of
their corpus reveals that phonetic substitution is
the primary origin of informal words in their cor-
pus – 99.2% as reported in (Wong and Xia, 2008).
In contrast, the origin for informal words in mi-
croblogs is more varied, where phonetic substitu-
tions abbreviations and neologisms, account for
53.1%, 21.4% and 18.7% of the informal word
types, respectively. Their method is best suited
for phonetic substitution, thus performing well on
their corpus but poorly on ours.

More closely related, Li and Yarowsky (2008)
tackle Chinese IWR. They bootstrap 500 infor-
mal/formal word pairs by using manually-tuned
queries to find definition sentences on the Web.
The resulting noisy list is further re-ranked based
on n-gram co-occurrence. However, their method
makes a basic assumption that informal/formal
word pairs co-occur within a definition sentence
(i.e., “<informal word> means <formal word>”)
may not hold in microblog data, as microbloggers
largely do not define the words they use.

Closely related to our work is the task of
Chinese new word detection, normally treated
as a separate process from word segmentation in
most previous works (Chen and Bai, 1998; Wu
and Jiang, 2000; Chen and Ma, 2002; Gao et al.,
2005). Aiming to improve both tasks, work by
Peng et al. (2004) and Sun et al. (2012) conduct

segmentation and detection sequentially, but in
an iterative manner rather than joint. This is
a weakness as their linear CRF model requires
re-training. Their method also requires thresholds
to be set through heuristic tuning, as to whether
the segmented words are indeed new words. We
note that the task of new word detection refers
to out-of-vocabulary (OOV) detection, and is
distinctly different from IWR (new words could
be both formal or informal words).

6 Conclusion

There is a close dependency between Chinese
word segmentation (CWS) and informal word
recognition (IWR). To leverage this, we employ a
factorial conditional random field to perform both
tasks of CWS and IWR jointly.

We propose novel features including statistical
and lexical features that improve the performance
of the inference process. We evaluate our method
on a manually-constructed data set and compare it
with multiple research and industrial baselines that
perform CWS and IWR individually or sequen-
tially. Our experimental results show our joint
inference model yields significantly better F1 for
both tasks. For analysis, we also construct upper
bound systems to assess the potential maximal im-
provement, by feeding one task with the gold stan-
dard labels from the complementary task. These
experiments further verify the necessity and ef-
fectiveness of modeling the two tasks jointly, and
point to the possibility of even better performance
with improved per-task performance.

Analyzing the classes of errors made by our sys-
tem, we identify a promising future work topic to
handle errors arising from partially observed in-
formal words – where parts of a multi-character
informal word have been observed before. We be-
lieve incorporating informal word normalization
into the inference process may help address this
important source of error.
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Damnati. 2008. Normalizing SMS: Are Two
Metaphors Better Than One? In International Con-
ference on Computational Linguistics, pages 441–
448.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Zhifei Li and David Yarowsky. 2008. Mining and
Modeling Relations between Formal and Informal
Chinese Phrases from Web Corpora. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 1031–1040.

Jin Kiat Low, Hwee Tou Ng, and Wenyuan Guo. 2005.
A Maximum Entropy Approach to Chinese Word
Segmentation. Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing.
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Abstract

We introduce the novel task of automati-
cally generating questions that are relevant
to a text but do not appear in it. One mo-
tivating example of its application is for
increasing user engagement around news
articles by suggesting relevant compara-
ble questions, such as “is Beyonce a bet-
ter singer than Madonna?”, for the user
to answer. We present the first algorithm
for the task, which consists of: (a) of-
fline construction of a comparable ques-
tion template database; (b) ranking of rel-
evant templates to a given article; and (c)
instantiation of templates only with enti-
ties in the article whose comparison un-
der the template’s relation makes sense.
We tested the suggestions generated by
our algorithm via a Mechanical Turk ex-
periment, which showed a significant im-
provement over the strongest baseline of
more than 45% in all metrics.

1 Introduction

For companies whose revenues are mainly ad-
based, e.g. Facebook, Google and Yahoo, increas-
ing user engagement is an important goal, leading
to more time spent on site and consequently to in-
creased exposure to ads. Examples for typical en-
gaging content include other articles for the user to
read, updates from the user’s social neighborhood
and votes or comments on videos, blogs etc.

In this paper we propose a new way to increase
user engagement around news articles, namely
suggesting questions for the user to answer, which
are related to the viewed article. Our motivation
is that there are questions that are “irresistible”
because they are fun, involve emotional reaction
and expect simple answers. These are comparative
questions, such as “is Beyonce a better singer than

Madonna?”, “who is better looking, Brad Pitt or
George Clooney?”, “who is faster: Superman or
Flash?” and “which camera brand do you prefer:
Canon or Nikon?” Furthermore, such questions
are social in nature since users would be inter-
ested in reading the opinions of other users, similar
to viewing other comments (Schuth et al., 2007).
Hence, a user that provided an answer may return
to view other answers, further increasing her en-
gagement with the site.

One approach for generating comparable ques-
tions would be to employ traditional question gen-
eration, which syntactically transform assertions
in a given text into questions (Mitkov et al., 2006;
Heilman and Smith, 2010; Rus et al., 2010).
Sadly, fun and engaging comparative questions
are typically not found within the text of news
articles. A different approach would be to find
concrete relevant questions within external col-
lections of manually generated comparable ques-
tions. Such collections include Community-based
Question Answering (CQA) sites such as Yahoo!
Answers and Baidu Zhidao and sites that are spe-
cialized in polls, such as Toluna. However, it
is highly unlikely that such sources will contain
enough relevant questions for any news article due
to typical sparseness issues as well as differences
in interests between askers in CQA sites and news
reporters. To better address the motivating appli-
cation above, we propose the novel task of au-
tomatically suggesting comparative questions that
are relevant to a given input news article but do not
appear in it.

To achieve broad coverage for our task, we
present an algorithm that generates synthetic con-
crete questions from question templates, such as
“Who is a better actor: #1 or #2?”. Our algorithm
consists of two parts. An offline part constructs
a database of comparative question templates that
appear in a large question corpus. For a given
news article, an online part chooses relevant tem-
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Figure 1: An example news article from OMG!

plates for the article by matching between the ar-
ticle content and typical template contexts. The
algorithm then instantiates each relevant template
with two entities that appear in the article. Yet,
for a given template, only some of the entities are
plausible slot fillers. For example, ‘Madonna’ is
not a reasonable filler for “Who is a better dad, #1
or #2?”. Thus, our algorithm employs entity filter-
ing to exclude candidate instantiations that do not
make sense.

To test the performance of our algorithm, we
conducted a Mechanical Turk experiment that as-
sessed the quality of suggested questions for news
articles on celebrities. We compared our algo-
rithm to a random baseline and to a partial ver-
sion of our algorithm that includes a template rel-
evance component but lacks filtering of candidate
instantiations. The results show that the full al-
gorithm provided 45% more correct instantiations,
but surprisingly also 46% more relevant sugges-
tions compared to the stronger baseline. These re-
sults point at the importance of both picking rel-
evant templates and smart instantiation selection
to the quality of generated questions. In addition,
they indicate that user perception of relevance is
affected by the correctness of the question.

2 Motivation and Algorithmic Overview

Before we detail our algorithm, we provide some
motivations and insights to the design choices we
took in our algorithm, which also indicate the dif-
ficulties inherent in the task.

2.1 Motivation

Given a news article, our algorithm generates a set
of comparable questions for the article from ques-
tion templates, e.g. “who is faster #1 or #2?”.
Though the template words typically do not ap-
pear in the article, they need to be relevant to it’s
content, that is they should correspond to one of
the main themes in the article or to one of the pub-

Figure 2: A high-level overview of the comparable
question generation algorithm. The offline part is
colored dark grey and the online part is colored
light blue.

lic interests of the compared entities. For example,
“who is a better dad #1 or #2?” is relevant to the
article in Figure 1, while “who is faster #1 or #2?”
is not relevant. Therefore, we need to model the
typical contents to which each template is relevant.

Looking at the structure of comparable ques-
tions, we observed that a specific comparable re-
lation, such as ‘better dad’ and ‘faster’, can usu-
ally be combined with named entities in several
syntactic ways to construct a concrete question.
We encode this information in generic compara-
ble templates, e.g. “who is a RE: #1 or #2?” and
“is #1 a RE than #2?”, where RE is a slot for a
comparable relation and #1 and #2 are slots for en-
tities. Using the above generic templates, ‘Jet Li’
and ‘Jackie Chan’ can be combined with the com-
parable relation ‘better fighter’ to generate “who
is a better fighter: Jackie Chan or Jet Li?” and “is
Jackie Chan a better fighter than Jet Li?” respec-
tively. Following, our algorithm separately main-
tains comparable relations and generic templates.

In this paper we constrain ourselves to generate
comparable questions between entities that appear
in the article. Yet, not all entities can be compared
to each other under a specific template, adding
substantial complexity to the generation of ques-
tions. Looking at Figure 1, the generated question
‘who is faster, Angelina Jolie or David Beckham?’
makes sense with respect to David Beckham, but
not with respect to Angelina Jolie, since the typi-
cal reader is rarely interested in her running skills.
Our algorithm thus needs to assess whether an in-
stantiation is correct, that is whether the compar-
ison between the two entities makes sense under
the specific template.
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Further delving into question correctness, the
above example shows the need to assess each en-
tity by itself. However, even if both entities are
independently valid for the template, their com-
parison may not make sense. For example, “who
is better looking: Will Smith or Angelina Jolie?”
doesn’t feel right, even though each entity by itself
fits the template. This is because when comparing
looks, we expect a same sex comparison.

2.2 Algorithmic Overview

The above observations led us to the design of the
automatic generation algorithm depicted in Fig-
ure 2. The algorithm’s offline part constructs, from
a large collection of questions, a database of com-
parable relations, together with their typical con-
texts. It also extracts generic templates and the
mapping to the relations that may instantiate them.
From this database, we learn: (a) a context profile
per template for relevance matching; (b) a single
entity model per template slot that identify valid
instantiations; and (c) an entity pair model that
detects pairs of entities that can be compared to-
gether under the template. In the online part, these
three models are applied to rank relevant templates
for a given article and to generate only correct
questions with respect to template instantiation.

The next two sections detail the template extrac-
tion component and the model training and appli-
cation component in our algorithm.

3 Comparable Question Mining

To suggest comparable questions our algorithm
needs a database of question templates. As dis-
cussed previously, a good source for mining such
templates are CQA sites. Specifically, in this study
we utilize all questions submitted to Yahoo! An-
swers in 2011 as our corpus. We next describe
how comparable relations and generic comparable
templates are extracted from this corpus.

3.1 Comparable Relation Extraction

An important observation for the task of compa-
rable relation extraction is that many relations are
complex multiword expressions, and thus their au-
tomatic detection is not trivial. Examples for such
relations are marked in the questions “Who is the
best rapper alive, Eminem or Jay-z?” and “Who
is the most beautiful woman in the world, Adriana
Lima or Jessica Alba?”. Therefore, we decided to
employ a Conditional Random Fields (CRF) tag-

ger (Lafferty et al., 2001) to the task, since CRF
was shown to be state-of-the-art for sequential re-
lation extraction (Mooney and Bunescu, 2005; Cu-
lotta et al., 2006; Jindal and Liu, 2006).

As a pre-processing step for detecting compara-
ble relations, our extraction algorithm identifies all
the named entities of interest in our corpus, keep-
ing only questions that contain at least two entities.
In each of remaining questions, we then substitute
the entity names with the variable slots #i in the
order of their appearance. For example, “Nnamdi
Asomugha vs. Darrelle Revis? Who is the better
cornerback?” turned into “#1 vs. #2? Who is the
better cornerback?”. This transformation helps us
to design a simpler CRF than that of (Jindal and
Liu, 2006), since our CRF utilizes the known po-
sitions of the target entities in the text.

To train the CRF model, the authors manually
tagged all comparable relation words in approx-
imately 300 transformed questions in the filtered
corpus. The local and global features for the CRF,
which we induce from each question word, are
specified in Figures 3 and 4 respectively. Though
there are many questions in Yahoo! Answers con-
taining two named entities, e.g. “Is #1 dating
#2?”, our CRF tagger is trained to detect only
comparable relations like “Who is prettier #1 or
#2?”. This is due to the labeled training set, which
contains only this kind of relations, and to our fea-
tures, which capture aspects of this specific lin-
guistic structure.

The trained model was then applied to all other
questions in the filtered corpus. This tagging pro-
cess resulted in 60,000 identified question relation
occurrences. From this output we constructed a
database consisting of all occurring relations; each
relation is accompanied by its supporting ques-
tions, those questions in which the relation occur-
rences were found. To achieve a highly accurate
database, we filtered out relations with less than
50 supporting questions, ending with 295 relations
in our database1. The authors conducted a manual
evaluation of the CRF tagger performance, which
showed 80% precision per occurrence. Yet, our
filtering above of relations with low support left
us with virtually 100% precision per relation and
per occurrence.

1We intend to make this database publicly avail-
able under Yahoo! WebscopeTM (http://webscope.
sandbox.yahoo.com).

2http://nlp.stanford.edu/software/
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(a) The word itself
(b) Whether the word is capitalized
(c) The word’s suffixes of length 1,2, and 3, which helps
in detecting comparative adjectives that ends ‘est’ or ‘er’
(d) The word’s position in the sentence
(e) The word’s Part of speech (POS) tag, based on the
Stanford POS tagger2

(f) The words in a window of ±3 around the current one
(g) The adjective before the word, if exists, which helps
detecting comparative noun phrases, e.g. ‘better driver’
and ‘best singer’
(h) The shortest word distance between the word and one
of the #i variables.
(i) The shortest word distance of the word to one of the
following connectives: ‘between’, ‘out’, ‘:’, ‘,’, ‘?’

Figure 3: CRF local features for each word

(a) WH question type of the question, e.g. what, which,
who, where
(b) The average word distance between all #i variables in
the question
(c) The conjunction tokens appearing between the #i vari-
ables, such as or, vs, and

Figure 4: CRF global features for each word

3.2 Comparable Template Extraction

Our second mining task is to extract generic com-
parable templates that appear in our corpus, as
well as identifying which comparable relation can
instantiate which generic template.

To this end, we replace each recognized rela-
tion sequence with a variable RE in the support
questions annotated with #i variables. For exam-
ple, “who is the best rapper alive, #1 or #2?” is
transformed to “who is RE, #1 or #2?”. We next
count the occurrences of each templatized ques-
tion. While some questions contain many de-
tails besides the comparable generic template, oth-
ers are simpler and contain only the generic tem-
plate. Through this counting, frequently occurring
generic templates are revealed, such as “is #1 a
RE than #2?”. We retain only generic templates
which appeared more than 50 times.

Finally, for each comparable relation we mark
as applicable only generic templates that occur at
least once in the supporting questions of this rela-
tion. For example, the template “who is RE: #1 or
#2?” was found applicable for ‘funnier’, and thus
could be used to generate the concrete question
“who is funnier: Jennifer Aniston or Courteney
Cox?”. On average, each relation was associated
with 3 generic templates.

Algorithm 1 A high level overview of the online
part of the question generation algorithm
Input: A news article
Output: A sorted list of comparable questions
1: Identify all target named entities (NEs) in the article
2: Infer the distribution of LDA topics for the article
3: For each comparable relationR in the database, compute

its relevance score to be the similarity between the topic
distributions of R and the article

4: Rank all the relations according to their relevance score
and pick the top M as relevant

5: for each relevant relation R in the order of relevance
ranking do

6: Filter out all the target NEs that do not pass the single
entity classifier for R

7: Generate all possible NE pairs from the those that
passed the single classifier

8: Filter out all the generated NE pairs that do not pass
the entity pair classifier for R

9: Pick up the top N pairs with positive classification
score to be qualified for generation

10: Instantiate R with each chosen NE pair via a ran-
domly selected generic template

11: end for

4 Online Question Generation

The online part of our automatic generation algo-
rithm takes as input a news article and generates
concrete comparable questions for it. Its high level
description is presented in Algorithm 1. The algo-
rithm starts with identifying the comparable rela-
tions in our database that are relevant to the arti-
cle. For each relevant relation, we then generate
concrete questions by picking generic templates
that are applicable for this relation and instantiat-
ing them with pairs of named entities appearing in
the article. Yet, as discussed before, only for some
entity pairs the comparison under the specific re-
lation makes sense, a quality which we refer to as
instantiation correctness (see Section 2). To this
end, we utilize two supervised models to filter in-
correct instantiations. We next detail the two as-
pects of the online part: ranking relevant relations
and correctly instantiating relations.

4.1 Ranking relevant relations

To assess how relevant a given comparable rela-
tion is to an article, we model the relation’s typ-
ical context as a distribution over latent semantic
topics. Specifically, we utilize Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) to infer latent
topics in texts.

To train an LDA model, we constructed for each
comparable relation a pseudo-document consist-
ing of all questions that contain this relation in
our corpus (the supporting questions). We then
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trained a model of 200 topics over these pseudo-
documents, resulting in a model over a lexicon of
107,835 words. An additional product of the LDA
training process is a topic distribution for each re-
lation’s pseudo-document, which we consider as
the relation’s context profile. We note that, un-
less otherwise specified, different model param-
eters were chosen based on a small held out col-
lection of articles and questions, manually anno-
tated by the authors. This collection was used to
validate that the chosen parameter values indeed
“make sense” for the task.

Given a news article, a distribution over LDA
topics is inferred from the article’s text using the
trained model. Then, a cosine similarity between
this distribution and the context profile of each
comparable relation in our database is computed
and taken as the relevance score for this relation.
Finally, we rank all relations according to their rel-
evance score and pick the top M as candidates for
instantiation (M=3 in our experiment).

4.2 Correctly instantiating relations

To generate useful questions from relevant com-
parable relations, we need to retain only correct
instantiations of these relations. To this end, we
utilize two complementing types of filters, one
for each entity by itself, and one for pairs, since
each filter considers different attributes of the en-
tities at hand. For example, for the relation ‘is
faster’, the single entity filter looks for athletes of
all kinds, for whom this comparison is of interest
to the reader. The pair filter, on the other hand, at-
tempts to pass only same sex and same profession
comparisons, e.g. male football players or female
baseball players for this relation.

We next describe the various features we ex-
tract for every entity and the supervised models
that given this feature vector representation assess
the correctness of an instantiation.

4.2.1 Entity Features
We want to represent each entity as a vector of fea-
tures that capture different aspects of entity char-
acterization. To this end, we utilize two different
broad-scale sources of information about named
entities. The first is DBPedia3, which contains
structured information on entries in Wikipedia,
many of them are named entities that appear in
news articles. The second source is the corpus of

3http://wiki.dbpedia.org/About

CQA questions, which in our study was harvested
from Yahoo! Answers (see Section 3).

For named entities with a DBPedia en-
try, we extract all the DBPedia properties of
classes subject and type as indicator features.
Some example features for Brad Pitt include
Actors from Oklahoma, AmericanAtheists, Artist
and American film producers.

One property that is currently missing from DB-
Pedia is gender, a feature that was found to be very
useful in our experiments. We automatically in-
duce this feature from the Wikipedia abstract in
each DBPedia entry. Specifically, we construct a
histogram of male and female pronouns: he and
his vs. she and her. The majority pronoun sex is
then chosen to be the gender of the named entity,
or none if the histogram is empty.

One way to utilize the CQA question corpus
could be to extract co-occurring words with each
target entity as relevant contexts. Yet, since
our questions come from Yahoo! Answers, we
decided to use another attribute of the ques-
tions, the category to which the question is as-
signed, within a hierarchy of 1,669 categories
(e.g. ‘Sports>Baseball’ and ‘Pets>Dogs’). For
each named entity, we construct a histogram of
the number of questions containing it that are as-
signed to each category. This histogram is normal-
ized into a probability distribution with Laplace
smoothing of 0.03, to incorporate the uncertainty
that lies in named entities that appear only very
few times. The categories and their probabilities
are added as features, providing a high level rep-
resentation of relevant contexts for the entity.

4.2.2 Single entity filtering
We view the task of single entity filtering as a clas-
sification task. To this end, we trained a classifier
per relation, constructing a different labeled train-
ing set for each relation. Positive examples are the
entities that instantiate this relation in our CQA
corpus. As negative examples, we take named en-
tities that were never seen instantiating the relation
in the corpus, but still occurred in some questions.
We note that our named entity tagger could recog-
nize more than 200,000 named entities, and most
of them are negative for a given relation.

For each relation we select negative examples
by sampling uniformly from its negative entity list,
assuming that the probability of hitting false neg-
atives is low for such a long list. It is known
that better classification performance is typically
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achieved for a balanced training set (Provost,
2000). In our case, we over sample to help the
classifier explore the large space of negative ex-
amples. Specifically, we sample 2,000 negative
examples and duplicate the positive set to reach
a similar number.

We utilize the Support Vector Machines (SVM)
implementation of LIBSVM (Chang and Lin,
2011) with a linear kernel as our classifier. The
feature vector of each named entity was induced
as described in Section 4.2.1. We split the labeled
dataset into 70% training set and 30% validation
set. Feature selection using information gain was
performed on the training set to throw out non-
significant features (Mitchell, 1997). The average
accuracy of the single classifiers, measured over
the validation sets, was 91%.

4.2.3 Entity pair filtering
Similar to single entity filtering, we view the task
of filtering entity pairs as a classification task,
training a separate classifier for each relation. En-
tity pairs that instantiate the given relation in the
question corpus are considered positive examples.
Yet, the space of all the pairs that never instanti-
ated the relation is huge, and the set of positive
examples is relatively much smaller compared to
the situation in the single entity classifier. In our
study, uniform negative example sampling turned
the training into a trivial task, preventing from
the classifier to choose an useful discriminative
boundary. Therefore, we generate negative exam-
ples by sampling only from pairs of named enti-
ties that both pass the single entity filter for this
relation. The risk here is that we may sample false
negative examples. Still, this sampling scheme en-
abled the classifier to identify better discriminative
features.

To generate features for a candidate pair, we
take the two feature vectors of the two entities
and induce families of pair features by compar-
ing between the two vectors. Figure 5 describes
the various features we generate. We utilize LIB-
SVM with an RBF kernel for this task, splitting
the examples into 70% training set and 30% vali-
dation set. We over sampled the positive examples
to reach up to 100 examples.

The average accuracy of the pair classifiers on
the validation set was 83%. For example, named
entities that pass the single entity filtering for
“be funny”, include Jay Leno, David Letterman
(American TV hosts), Jim Carrey, and Steve Mar-

(a) All shared DBPedia indicator features in the two vec-
tors: fDBPediaa ∩ fDBPediab , indicating them as shared,
e.g. ‘FilmMaker s’
(b) All DBPedia features that appear only in one of the
vectors, termed one-side features: fDBPediaa \ fDBPediab

and fDBPediab \ fDBPediaa , indicating them as such, e.g.
‘FilmMaker o’
(c) Wikipedia categories that are ancestors of at least two
one-side features that appear in the training set. For ex-
ample, a common ancestor of ‘Spanish actors’ and ‘Rus-
sian actors’ is ‘European actors’. These features provide
a high level perspective on one-side features
(d) The Yahoo! Answers categories in which both named
entities appear
(e) Hellinger distance (Pollard, 2001) between the proba-
bility distributions over categories of the two entities
(f) Three indicator gender features: whether both named
entities are males, both are females or are different

Figure 5: The entity pair features generated from
two single entity feature vectors fa and fb

tin (actors). The pair classifier assigned positive
scores only to {Jay Leno, David Letterman} (TV
hosts) and {Jim Carrey, Steve Martin} (actors) but
not to other pairings of these entities.

5 Evaluation

5.1 Experimental Settings

To evaluate our algorithm’s performance, we de-
signed a Mechanical Turk (MTurk) experiment in
which human annotators assess the quality of the
questions that our algorithm generates for a sam-
ple of news articles. As the source of test arti-
cles, we chose the OMG! website4, which contains
news articles on celebrities.

Test articles were selected by first randomly
sampling 5,000 news article from those that were
posted on OMG! in 2011. We then filtered out ar-
ticles that are longer than 4,000 characters, which
were found to be tiresome for annotators to read,
and those that are shorter than 300 characters,
which consist mainly of video and photos. We
were left with a pool of 1,016 articles from which
we randomly sampled 100 as the test set.

For each test article our algorithm obtained the
top three relevant comparable relations, and for
each relation selected the best instantiation (if ex-
ists). We used two baselines for performance com-
parison. The first random baseline chooses a rela-
tion randomly out of all possible relations in the
database and then instantiates it with a random
pair of entities that appear in the article. The sec-
ond relevance baseline chooses the most relevant

4http://www.omg.com/
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Relevance Correctness
Random baseline 29% 43%
Relevance baseline 37% 53%
Full algorithm 54% 77%

Table 1: Relevance and correctness percentage by
tested algorithm

relation to the article based on our algorithm, but
still instantiates it with a random pair. For each test
article, we presented to the evaluators the ques-
tions generated by the three tested algorithms in
a random order to avoid any bias. We note that
our second baseline enabled us to measure the
stand-alone contribution of the LDA-based rele-
vance model. In addition, it enabled us to measure
the relative contribution of the instantiation mod-
els on top of relevance model.

Each article was evaluated by 10 MTurk work-
ers, which were asked to mark for each displayed
question whether it is relevant and whether it is
correct (see Section 2 for relevance and correct-
ness definitions). The workers were given pre-
cise instructions along with examples before they
started the test. A control story was used to filter
out dishonest or incapable workers5.

5.2 Results

For each tested algorithm, we separately counted
the percentage of annotations that marked each
question as relevant and the percentage of anno-
tations that marked each question as instantiated
correctly, denoted relevance score and correctness
score. We then averaged these scores over all
questions that were displayed for the test articles.
The results are presented in Table 1. The differ-
ences between the full algorithm and the baselines
are statistically significant at p< 0.01 and between
baselines the differences are statistically signifi-
cant at p < 0.05 using the Wilcoxon double-sided
signed-ranks test (Wilcoxon, 1945).

Our main result is that our full algorithm sub-
stantially outperforms the stronger relevance base-
line. It improves the correctness score by 45%,
which points at the effectiveness of our two step
filtering of incorrect instantiations. It’s perfor-
mance is just under 80%, showing high quality
entity pair selection for relations. Yet, we did not
expect to see an increase of 46% in the relevance

5We intend to make the tested articles, the instructions
to annotators and their annotations publicly available under
Yahoo! WebscopeTM (http://webscope.sandbox.
yahoo.com).

metric, since both the full algorithm and the rele-
vance baseline use the same relevance component
to rank relations by. One explanation for this is
that sometimes the instantiation filter eliminates
all possible entity pairs for some relation that is
incorrectly considered relevant by the algorithm.
Thus, the filtering of entities provides also an ad-
ditional filtering perspective on relevance. In ad-
dition, it may be that humans tend to be more
permissive when assessing the relevance of a cor-
rectly instantiated question.

To illustrate the differences between baselines
and the full algorithm, Table 2 presents an exam-
ple article together with the suggested generated
questions by each algorithm. The random baseline
picked an irrelevant relation, and while the rele-
vance baseline selected a relevant relation, “a bet-
ter president”, it was instantiated incorrectly. The
full algorithm, on the other hand, both chose rel-
evant relations for all three questions and instan-
tiated them correctly. Especially, the incorrectly
instantiated relation in the relevance baseline is
now correctly instantiated with plausible presiden-
tial candidates.

Comparing between baselines, the relevance
baseline beats the random baseline by 28% in
terms of relevance. This is not surprising, since
this was the focus of this baseline. Yet, it also im-
proved correctness by 23% over the random base-
line. This is an unexpected result that indicates
that when users view relevant relations, they may
be more forgiving in their perception of unreason-
able instantiations.

For each article, our full algorithm attempts to
generate three questions, one for each of the top
three relevant questions. It is possible that for
some articles not all three questions will be gen-
erated, due to instantiation filtering. We found
that for 85% of the articles all three questions
were generated. For the remaining 15% at least
one question was always generated, and for 1

3 of
them two questions were composed. Furthermore,
we found that the relevance and correctness scores
were not affected by the position of the question.
In the case of instantiation correctness, since the
best pair was picked for each relation and this
component is quite accurate, this is somewhat ex-
pected. In the case of relevance, this indicates that
there are usually several relations in our database
that are relevant to the article.
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Ron Livingston is teaming up with Tom Hanks and HBO again after their successful 2001 collaboration on Band of Broth-
ers. The actor has been cast in HBO’s upcoming film Game Change that centers on the 2008 presidential campaign,
Deadline reports. He joins Ed Harris, Julianne Moore and Woody Harrelson. The Jay Roach-directed movie follows John
McCain (Harris) as he selects Alaska Gov. Sarah Palin (Moore) as his running mate, throughout the campaign and to their
ultimate defeat to Barack Obama. Livingston will play Mark Wallace, one of the campaign’s senior advisors and the man
who prepped Palin for her debate. Harrelson will play campaign strategist Steve Schmidt. . .

Algorithm Question
Random baseline Who is a better singer, Sarah Palin or Barack Obama ?
Relevance baseline Would Ron Livingston be a better president than Julianne Moore ?
Full algorithm Who has the best movies Tom Hanks or Julianne Moore ?
Full algorithm Is John Mccain a better leader than Barack Obama ?
Full algorithm Would Sarah Palin be a better president than John Mccain ?

Table 2: Automatically generated questions by the baselines and the full algorithm to an example article

5.3 Error Analysis

To better understand the performance of our algo-
rithm, we looked at some low quality questions
that were generated, either due to incorrect instan-
tiation or due to irrelevance to the article.

Starting with relevance, one of the repeating
mistakes was promoting relations that are related
to a list of named entities in the article, but not to
its main theme. For example, the relation ‘who is
a better actor’ was incorrectly ranked high for an
article about Ricky Gervais claiming that he has
been asked to host Globes again after he offended
Angelina Jolie, Johnny Depp, Robert Downey
Jr. and Charlie Sheen, among others during last
Globes ceremony. The reason for this mistake is
that many named entities appear as frequent terms
in LDA topics, and thus mentioning many names
that belong to a single topic drives LDA to as-
sign this topic a high probability. Yet, unlike other
cases, here entity filtering does not help ignoring
such errors, since the same entities that triggered
the ranking of the relation are also valid instantia-
tions for it.

Analyzing incorrect instantiations, many mis-
takes are due to mismatches between the two com-
pared entities that were too fine grained for our al-
gorithm to catch. For example, “who’s the better
guitarist: Paul McCartney or Ringo Starr?” was
generated since our algorithm failed to identify
that Ringo Starr is a drummer rather than a gui-
tarist, though both participants in the relation are
musicians. In other cases, strong co-occurrence of
the two celebs in our question corpus convinced
the classifiers that they can be matched. For ex-
ample, “who is a better dancer Michael Jackson
or Debbie Rowe?” was incorrectly generated,
since Debbie Rowe is not a dancer. Yet, she was
Michael Jackson’s wife and they appear together

in a lot of questions in our corpus.

6 Related Work

Traditionally, question generation focuses on con-
verting assertions in a text into question forms
(Brown et al., 2005; Mitkov et al., 2006; Myller,
2007; Heilman and Smith, 2010; Rus et al., 2010;
Agarwal et al., 2011; Olney et al., 2012). To
the best of our knowledge, there is no prior work
on our task, which is to generate relevant syn-
thetic questions whose content, except for the ar-
guments, might not appear in the text.

Our extraction of comparable relations falls
within the field of Relation Extraction, in which
CRF is a state-of-the-art method (Mooney and
Bunescu, 2005; Culotta et al., 2006). We note
that in the works of Jindal and Liu (2006) and
Li et. al. (2010) comparative questions are iden-
tified as an intermediate step for the task of ex-
tracting compared entities, which are unknown in
their setting. We, on the other hand, detect the
compared entities in a pre-processing step, and our
target is the extraction of the comparable relations
given known candidate entities.

Our algorithm ranks relevant templates based
on the similarity between an article’s content and
the typical context of each relation. Prior work
rank relevant concrete questions to a given in-
put question, focusing on strong lexical similari-
ties (Jeon et al., 2005; Cai et al., 2011; Hao and
Agichtein, 2012). We, however, do not expect to
find direct lexical similarities between candidate
relations and the article. Instead, we are interested
in a higher level topical similarity to the input ar-
ticle, for which LDA topics were shown to help
(Celikyilmaz et al., 2010).

Finally, several works present unsupervised
methods for ranking proper template instantia-
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tions, mainly as selectional preferences (Light and
Greiff, 2002; Erk, 2007; Ritter et al., 2010). How-
ever, we eventually choose instantiation candi-
dates, and thus preferred supervised methods that
enable filtering and not just ranking. Furthermore,
we target a more subtle discrimination between
entities than prior work, e.g. between quarter-
backs, singers and actors. Machine learning nat-
urally incorporates the many features that capture
different aspects of entity characterization.

7 Conclusions

We introduced the novel task of automatically gen-
erating synthetic comparable questions that are
relevant to a given news article but do not neces-
sarily appear in it. To this end, we proposed an
algorithm that consists of two parts. The offline
part identifies comparable relations in a large col-
lection of questions. Its output is a database of
comparable relations together with a context pro-
file for each relation and models that detect cor-
rect instantiations of this relation, all learned from
the question corpus. In the online part, given a
news article, the algorithm identifies relevant com-
parable relations based on the similarity between
the article content and each relation’s context pro-
file. Then, relevant relations are instantiated only
with pairs of named entities from the article whose
comparison makes sense by applying the instanti-
ation correctness models to candidate pairs.

We assessed the performance of our algorithm
via a Mechanical Turk experiment. A partial ver-
sion of our algorithm, without instantiation filter-
ing, was our strongest baseline. The full algorithm
outperformed this baseline by 45% on question
correctness, but surprisingly also by 46% on ques-
tion relevance. These results show that our super-
vised filtering methods are successful in keeping
only correct pairs, but they also serve as an ad-
ditional filtering for relevant relations, on top of
context matching.

In future work, we want to generate more di-
verse and intriguing questions by selecting rele-
vant named entities for template instantiation that
do not appear in the article. Another direction
would be take a supervised approach, training
classifiers over a labeled dataset for filtering irrel-
evant templates and incorrect instantiations. Fi-
nally, it would be interesting to see how our algo-
rithm performs on other news domains.
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Abstract 

Punctuations are not available in automatic 

speech recognition outputs, which could cre-

ate barriers to many subsequent text pro-

cessing tasks. This paper proposes a novel 

method to predict punctuation symbols for the 

stream of words in transcribed speech texts. 

Our method jointly performs parsing and 

punctuation prediction by integrating a rich set 

of syntactic features when processing words 

from left to right. It can exploit a global view 

to capture long-range dependencies for punc-

tuation prediction with linear complexity. The 

experimental results on the test data sets of 

IWSLT and TDT4 show that our method can 

achieve high-level performance in punctuation 

prediction over the stream of words in tran-

scribed speech text. 

1 Introduction 

Standard automatic speech recognizers output un-

structured streams of words. They neither perform 

a proper segmentation of the output into sentences, 

nor predict punctuation symbols. The unavailable 

punctuations and sentence boundaries in tran-

scribed speech texts create barriers to many sub-

sequent processing tasks, such as summarization, 

information extraction, question answering and 

machine translation. Thus, the segmentation of 

long texts is necessary in many real applications. 

For example, in speech-to-speech translation, 

continuously transcribed speech texts need to be 

segmented before being fed into subsequent ma-

chine translation systems (Takezawa et al., 1998; 

Nakamura, 2009). This is because current ma-

chine translation (MT) systems perform the trans-

lation at the sentence level, where various models 

used in MT are trained over segmented sentences 

and many algorithms inside MT have an exponen-

tial complexity with regard to the length of inputs. 

The punctuation prediction problem has at-

tracted research interest in both the speech pro-

cessing community and the natural language pro-

cessing community. Most previous work primar-

ily exploits local features in their statistical mod-

els such as lexicons, prosodic cues and hidden 

event language model (HELM) (Liu et al., 2005; 

Matusov et al., 2006; Huang and Zweig, 2002; 

Stolcke and Shriberg, 1996). The word-level mod-

els integrating local features have narrow views 

about the input and could not achieve satisfied 

performance due to the limited context infor-

mation access (Favre et al., 2008). Naturally, 

global contexts are required to model the punctu-

ation prediction, especially for long-range de-

pendencies. For instance, in English question sen-

tences, the ending question mark is long-range de-

pendent on the initial phrases (Lu and Ng, 2010), 

such as “could you” in Figure 1. There has been 

some work trying to incorporate syntactic features 

to broaden the view of hypotheses in the punctua-

tion prediction models (Roark et al., 2006; Favre 

et al., 2008). In their methods, the punctuation 

prediction is treated as a separated post-procedure 

of parsing, which may suffer from the problem of 

error propagation. In addition, these approaches 

are not able to incrementally process inputs and 

are not efficient for very long inputs, especially in 

the cases of long transcribed speech texts from 

presentations where the number of streaming 

words could be larger than hundreds or thousands. 

In this paper, we propose jointly performing   

punctuation prediction and transition-based de-

pendency parsing over transcribed speech text. 

When the transition-based parsing consumes the 

stream of words left to right with the shift-reduce 

decoding algorithm, punctuation symbols are pre-

dicted for each word based on the contexts of the 

parsing tree. Two models are proposed to cause 

the punctuation prediction to interact with the 

transition actions in parsing. One is to conduct 

transition actions of parsing followed by punctua-

tion predictions in a cascaded way. The other is to 

associate the conventional transition actions of 

parsing with punctuation perditions, so that pre-

dicted punctuations are directly inferred from the 
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(a). The transcribed speech text without punctuations 

 

  

 

 

 

 

(b). Transition-based parsing trees and predicted punctuations over transcribed text 

 

 

(c). Two segmentations are formed when inserting the predicted punctuation symbols into the transcribed text 

Figure 1. An example of punctuation prediction. 

parsing tree. Our models have linear complexity 

and are capable of handling streams of words with 

any length. In addition, the computation of models 

use a rich set of syntactic features, which can im-

prove the complicated punctuation predictions 

from a global view, especially for the long range 

dependencies.  

Figure 1 shows an example of how parsing 

helps punctuation prediction over the transcribed 

speech text. As illustrated in Figure 1(b), two 

commas are predicted when their preceding words 

act as the adverbial modifiers (advmod) during 

parsing. The period after the word “menu” is pre-

dicted when the parsing of an adverbial clause 

modifier (advcl) is completed. The question mark 

at the end of the input is determined when a direct 

object modifier (dobj) is identified, together with 

the long range clue that the auxiliary word occurs 

before the nominal subject (nsubj). Eventually, 

two segmentations are formed according to the 

punctuation prediction results, shown in Figure 

1(c).  

The training data used for our models is adapted 

from Treebank data by excluding all punctuations 

but keeping the punctuation contexts, so that it can 

simulate the unavailable annotated transcribed 

speech texts. In decoding, beam search is used to 

get optimal punctuation prediction results. We 

conduct experiments on both IWSLT data and 

TDT4 test data sets. The experimental results 

show that our method can achieve higher perfor-

mance than the CRF-based baseline method. 

The paper is structured as follows: Section 2 

conducts a survey of related work. The transition-

based dependency parsing is introduced in Section 

3. We explain our approach to predicting punctu-

ations for transcribed speech texts in Section 4. 

Section 5 gives the results of our experiment. The 

conclusion and future work are given in Section 6. 

2 Related Work 

Sentence boundary detection and punctuation pre-

diction have been extensively studied in the 

speech processing field and have attracted re-

search interest in the natural language processing 

field as well. Most previous work exploits local 

features for the task. Kim and Woodland (2001), 

Huang and Zweig (2002), Christensen et al. 

(2001), and Liu et al. (2005) integrate both pro-

sodic features (pitch, pause duration, etc.) and lex-

ical features (words, n-grams, etc.) to predict 

punctuation symbols during speech recognition, 

where Huang and Zweig (2002) uses a maximum 

entropy model, Christensen et al. (2001) focus on 

finite state and multi-layer perceptron methods, 

and Liu et al. (2005) uses conditional random 

fields. However, in some scenarios the prosodic 

cues are not available due to inaccessible original 

raw speech waveforms. Matusov et al. (2006) in-

tegrate segmentation features into the log-linear 

model in the statistical machine translation (SMT) 

framework to improve the translation perfor-

mance when translating transcribed speech texts. 

Lu and Ng (2010) uses dynamic conditional ran-

dom fields to perform both sentence boundary and 

sentence type prediction. They achieved promis-

ing results on both English and Chinese tran-

scribed speech texts. The above work only ex-

anyway you may find your favorite if you go through the menu so could you tell me your choice 

                   anyway you may find your favorite if you go  through the menu so could you tell me your choice 

, N N N N N N N N N N . , N N N N N ? 

anyway, you may find your favorite if you go through the menu. so, could you tell me your choice? 

nsubj nsubj poss 
aux

mark pobj 

iobj 

advmod 

advcl 

nsubj dobj 

det poss aux prep 

advmod dobj 
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ploits local features, so they were limited to cap-

turing long range dependencies for punctuation 

prediction. 

It is natural to incorporate global knowledge, 

such as syntactic information, to improve punctu-

ation prediction performance. Roark et al. (2006) 

use a rich set of non-local features including par-

ser scores to re-rank full segmentations. Favre et 

al. (2008) integrate syntactic information from a 

PCFG parser into a log-linear and combine it with 

local features for sentence segmentation. The 

punctuation prediction in these works is per-

formed as a post-procedure step of parsing, where 

a parse tree needs to be built in advance. As their 

parsing over the stream of words in transcribed 

speech text is exponentially complex, their ap-

proaches are only feasible for short input pro-

cessing. Unlike these works, we incorporate punc-

tuation prediction into the parsing which process 

left to right input without length limitations. 

Numerous dependency parsing algorithms 

have been proposed in the natural language pro-

cessing community, including transition-based 

and graph-based dependency parsing. Compared 

to graph-based parsing, transition-based parsing 

can offer linear time complexity and easily lever-

age non-local features in the models (Yamada and 

Matsumoto, 2003; Nivre et al., 2006b; Zhang and 

Clark, 2008; Huang and Sagae, 2010). Starting 

with the work from (Zhang and Nivre, 2011), in 

this paper we extend transition-based dependency 

parsing from the sentence-level to the stream of 

words and integrate the parsing with punctuation 

prediction.  

Joint POS tagging and transition-based de-

pendency parsing are studied in (Hatori et al., 

2011; Bohnet and Nivre, 2012). The improve-

ments are reported with the joint model compared 

to the pipeline model for Chinese and other richly 

inflected languages, which shows that it also 

makes sense to jointly perform punctuation pre-

diction and parsing, although these two tasks of 

POS tagging and punctuation prediction are dif-

ferent in two ways: 1). The former usually works 

on a well-formed single sentence while the latter 

needs to process multiple sentences that are very 

lengthy. 2). POS tags are must-have features to 

parsing while punctuations are not. The parsing 

quality in the former is more sensitive to the per-

formance of the entire task than in the latter. 

3 Transition-based dependency parsing 

In a typical transition-based dependency parsing 

process, the shift-reduce decoding algorithm is 

applied and a queue and stack are maintained 

(Zhang and Nivre, 2011). The queue stores the 

stream of transcribed speech words, the front of 

which is indexed as the current word. The stack 

stores the unfinished words which may be linked 

with the current word or a future word in the 

queue. When words in the queue are consumed 

from left to right, a set of transition actions is ap-

plied to build a parse tree. There are four kinds of 

transition actions conducted in the parsing process 

(Zhang and Nivre, 2011), as described in Table 1.  

 

Action Description 

Shift Fetches the current word from the 

queue and pushes it to the stack 

Reduce Pops the stack 

LeftArc Adds a dependency link from the cur-

rent word to the stack top, and  pops the 

stack 

RightArc Adds a dependency link from the stack 

top to the current word, takes away the 

current word from the queue and 

pushes it to the stack 

Table 1. Action types in transition-based parsing 

The choice of each transition action during the 

parsing is scored by a linear model that can be 

trained over a rich set of non-local features ex-

tracted from the contexts of the stack, the queue 

and the set of dependency labels. As described in 

(Zhang and Nivre, 2011), the feature templates 

could be defined over the lexicons, POS-tags and 

the combinations with syntactic information. 

In parsing, beam search is performed to search 

the optimal sequence of transition actions, from 

which a parse tree is formed (Zhang and Clark, 

2008). As each word must be pushed to the stack 

once and popped off once, the number of actions 

needed to parse a sentence is always 2n, where n 

is the length of the sentence. Thus, transition-

based parsing has a linear complexity with the 

length of input and naturally it can be extended to 

process the stream of words. 

4 Our method 

4.1 Model 

In the task of punctuation prediction, we are given 

a stream of words from an automatic transcription 

of speech text, denoted by 𝑤1
𝑛: = 𝑤1, 𝑤2, … , 𝑤𝑛 . 

We are asked to output a sequence of punctuation 

symbols 𝑆1
𝑛: = 𝑠1, 𝑠2, … , 𝑠𝑛  where 𝑠𝑖  is attached 

to 𝑤𝑖 to form a sentence like Figure 1(c). If there 

are no ambiguities, 𝑆1
𝑛  is also abbreviated as 𝑆, 
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similarly for 𝑤1
𝑛 as 𝑤. We model the search of the 

best sequence of predicted punctuation symbols 

𝑆∗ as: 

 

             𝑆∗ = argmaxS𝑃(𝑆1
𝑛|𝑤1

𝑛)                     (1) 

 

We introduce the transition-based parsing tree 

𝑇 to guide the punctuation prediction in Model (2), 

where parsing trees are constructed over the tran-

scribed text while containing no punctuations. 

  

𝑆∗ = argmax𝑆 ∑ 𝑃(𝑇|𝑤1
𝑛) × 𝑃(𝑆1

𝑛|𝑇, 𝑤1
𝑛)𝑇     (2) 

 

Rather than enumerate all possible parsing trees, 

we jointly optimize the punctuation prediction 

model and the transition-based parsing model 

with the form:  

 

(𝑆∗, 𝑇∗) = argmax(𝑆,𝑇)𝑃(𝑇|𝑤1
𝑛) ×

                                                𝑃(𝑆1
𝑛|𝑇, 𝑤1

𝑛)           (3) 

 

Let 𝑇1
𝑖 be the constructed partial tree when 𝑤1

𝑖  

is consumed from the queue. We decompose the 

Model (3) into:  

 

(𝑆∗, 𝑇∗) =

argmax(𝑆,𝑇) ∏ 𝑃(𝑇1
𝑖|𝑇1

𝑖−1, 𝑤1
𝑖) × 𝑃(𝑠𝑖|𝑇1

𝑖, 𝑤1
𝑖)𝑛

𝑖=1                                              

(4) 

 

It is noted that a partial parsing tree uniquely 

corresponds to a sequence of transition actions, 

and vice versa. Suppose 𝑇1
𝑖 corresponds to the ac-

tion sequence 𝐴1
𝑖  and let 𝑎𝑖 denote the last action 

in 𝐴1
𝑖 . As the current word 𝑤𝑖  can only be con-

sumed from the queue by either Shift or RightArc 

according to Table 1, we have 𝑎𝑖 ∈
{𝑆ℎ𝑖𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡𝐴𝑟𝑐} . Thus, we synchronize the 

punctuation prediction with the application of 

Shift and RightArc during the parsing, which is ex-

plained by Model (5).  

 

(𝑆∗, 𝑇∗) = argmax(𝑆,𝑇) ∏ 𝑃(𝑇1
𝑖 , 𝐴1

𝑖 |𝑇1
𝑖−1, 𝑤1

𝑖)
𝑛

𝑖=1

× 𝑃(𝑠𝑖|𝑎𝑖 , 𝑇1
𝑖 , 𝑤1

𝑖) 

                                                                      (5) 

 

The model is further refined by reducing the 

computation scope. When a full-stop punctuation 

is determined (i.e., a segmentation is formed), we 

discard the previous contexts and restart a new 

                                                           
1 Specially, 𝑏𝑖 is equal to 1 if there are no previous full-stop 

punctuations. 

procedure for both parsing and punctuation pre-

diction over the rest of words in the stream. In this 

way we are theoretically able to handle the unlim-

ited stream of words without needing to always 

keep the entire context history of streaming words. 

Let 𝑏𝑖 be the position index of last full-stop punc-

tuation1 before 𝑖, 𝑇𝑏𝑖

𝑖  and 𝐴𝑏𝑖

𝑖 the partial tree and 

corresponding action sequence over the words 

𝑤𝑏𝑖

𝑖 , Model (5) can be rewritten by: 

 
(𝑆∗, 𝑇∗) =
argmax(𝑆,𝑇) ∏ 𝑃(𝑇𝑏𝑖

𝑖 , 𝐴𝑏𝑖

𝑖 |𝑇𝑏𝑖

𝑖−1, 𝑤𝑏𝑖

𝑖 ) ×𝑛
𝑖=1

                                𝑃(𝑠𝑖|𝑎𝑖 , 𝑇𝑏𝑖

𝑖 , 𝑤𝑏𝑖

𝑖 )                     (6) 

 

With different computation of Model (6), we 

induce two joint models for punctuation predic-

tion: the cascaded punctuation prediction model 

and the unified punctuation prediction model.  

4.2 Cascaded punctuation prediction model 

(CPP) 

In Model (6), the computation of two sub-models 

is independent. The first sub-model is computed 

based on the context of words and partial trees 

without any punctuation knowledge, while the 

computation of the second sub-model is condi-

tional on the context from the partially built pars-

ing tree 𝑇𝑏𝑖

𝑖  and the transition action. As the words 

in the stream are consumed, each computation of 

transition actions is followed by a computation of 

punctuation prediction. Thus, the two sub-models 

are computed in a cascaded way, until the optimal 

parsing tree and optimal punctuation symbols are 

generated. We call this model the cascaded punc-

tuation prediction model (CPP). 

4.3 Unified punctuation prediction model 

(UPP) 

In Model (6), if the punctuation symbols can be 

deterministically inferred from the partial tree, 

𝑃(𝑠𝑖|𝑎𝑖, 𝑇𝑏𝑖

𝑖 , 𝑤𝑏𝑖

𝑖 ) can be omitted because it is al-

ways 1. Similar to the idea of joint POS tagging 

and parsing (Hatori et al., 2011; Bohnet and Nivre, 

2012), we propose attaching the punctuation pre-

diction onto the parsing tree by embedding 𝑠𝑖 into 

𝑎𝑖 . Thus, we extend the conventional transition 

actions illustrated in Table 1 to a new set of tran-

sition actions for the parsing, denoted by 𝐴̂: 
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𝐴̂ = {𝐿𝑒𝑓𝑡𝐴𝑟𝑐, 𝑅𝑒𝑑𝑢𝑐𝑒} ∪ {𝑆ℎ𝑖𝑓𝑡(𝑠)|𝑠 ∈ 𝑄}
∪ {𝑅𝑖𝑔ℎ𝑡𝐴𝑟𝑐(𝑠)|𝑠 ∈ 𝑄} 

 

where Q is the set of punctuation symbols to be 

predicted, 𝑠 is a punctuation symbol belonging to 

Q, Shift(s) is an action that attaches s to the current 

word on the basis of original Shift action in pars-

ing, RightArc(s) attaches 𝑠 to the current word on 

the basis of original RightArc action. 

With the redefined transition action set 𝐴̂, the 

computation of Model (6) is reformulated as:  

  
(𝑆∗, 𝑇∗) =

argmax(𝑆,𝑇) ∏ 𝑃 (𝑇𝑏𝑖

𝑖 , 𝐴̂
𝑏𝑖

𝑖
|𝑇𝑏𝑖

𝑖−1, 𝐴̂𝑏𝑖

𝑖−1
, 𝑤𝑏𝑖

𝑖 )𝑛
𝑖=1        (7) 

 

Here, the computation of parsing tree and punc-

tuation prediction is unified into one model where 

the sequence of transition action outputs uniquely 

determines the punctuations attached to the words. 

We refer to it as the unified punctuation predic-

tion model (UPP). 

 

 

 

 

 

 

 
 

(a). Parsing tree and attached punctuation symbols 

 
Shift(,), Shift(N), Shift(N), LeftArc, LeftArc, LeftArc, 

Shift(N), RightArc(?), Reduce, Reduce 
 

(b). The corresponding sequence of transition actions 

Figure 2. An example of punctuation prediction 

using the UPP model, where N is a null type punc-

tuation symbol denoting no need to attach any 

punctuation to the word. 

Figure 2 illustrates an example how the UPP 

model works. Given an input “so could you tell 

me”, the optimal sequence of transition actions in 

Figure 2(b) is calculated based on the UPP model 

to produce the parsing tree in Figure 2(a). Accord-

ing to the sequence of actions, we can determine 

the sequence of predicted punctuation symbols 

like “,NNN?” that have been attached to the words 

shown in Figure 2(a). The final segmentation with 

the predicted punctuation insertion could be “so, 

could you tell me?”. 

4.4 Model training and decoding 

In practice, the sub-models in Model (6) and (7) 

with the form of 𝑃(𝑌|𝑋) is computed with a linear 

model 𝑆𝑐𝑜𝑟𝑒(𝑌, 𝑋) as 

 

𝑆𝑐𝑜𝑟𝑒(𝑌, 𝑋) = 𝛷(𝑌, 𝑋) ∙ 𝜆 
 

where 𝛷(𝑌, 𝑋)  is the feature vector extracted 

from the output 𝑌 and the context 𝑋, and 𝜆 is the 

weight vector. For the features of the models, we 

incorporate the bag of words and POS tags as well 

as tree-based features shown in Table 2, which are 

the same as those defined in (Zhang and Nivre, 

2011).  

 

(a) ws; w0; w1; w2; ps; p0; p1; p2; wsps; w0p0; w1p1; 

w2p2; wspsw0p0; wspsw0; wspsp0; wsw0p0; 

psw0p0; wsw0; psp0; p0p1; psp0p1; p0p1p2; 

(b) pshpsp0; pspslp0; pspsrp0; psp0p0l; wsd; psd; w0d; 

p0d; wsw0d; psp0d; wsvl; psvl; wsvr; psvr; w0vl; 

p0vl; wsh; psh; ts; w0l; p0l; t0l; w0r; p0r; t0r; w1l; 

p1l; t1l; wsh2; psh2; tsh; wsl2; psl2; tsl2; wsr2; psr2; 

tsr2; w0l2; p0l2; t0l2; pspslpsl2; pspsrpsr2; pspshpsh2; 

p0p0lp0l2; wsTl; psTl; wsTr; psTr; w0Tl; p0Tl; 

Table 2. (a) Features of the bag of words and POS 

tags. (b). Tree-based features. wword; pPOS 

tag; ddistance between ws and w0; vnumber of 

modifiers; tdependency label; Tset of depend-

ency labels; s, 0, 1 and 2 index the stack top and 

three front items in the queue respectively; hhead; 

lleft/leftmost; rright/rightmost; h2head of a 

head; l2second leftmost; r2second rightmost. 

The training data for both the CPP and UPP 

models need to contain parsing trees and punctu-

ation information. Due to the absence of annota-

tion over transcribed speech data, we adapt the 

Treebank data for the purpose of model training. 

To do this, we remove all types of syntactic infor-

mation related to punctuation symbols from the 

raw Treebank data, but record what punctuation 

symbols are attached to the words. We normalize 

various punctuation symbols into two types: Mid-

dle-paused punctuation (M) and Full-stop punctu-

ation (F). Plus null type (N), there are three kinds 

of punctuation symbols attached to the words. Ta-

ble 3 illustrates the normalizations of punctuation 

symbols. In the experiments, we did not further 

distinguish the type among full-stop punctuation 

because the question mark and the exclamation 

mark have very low frequency in Treebank data. 

so could you tell me 

, N N N ? 

nsubj iobj 
aux

advmod 
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But our CPP and UPP models are both independ-

ent regarding the number of punctuation types to 

be predicted. 

 

Punctuations Normalization 

Period, question mark, 

exclamation mark 

Full-stop punctuation 

(F) 

Comma, Colon, semi-

colon 

Middle-paused punctu-

ation (M) 

Multiple Punctuations 

(e.g., !!!!?) 

Full-stop punctuation 

(F) 

Quotations, brackets, 

etc. 

Null (N) 

Table 3. Punctuation normalization in training 

data 

As the feature templates are the same for the 

model training of both CPP and UPP, the training 

instances of CPP and UPP have the same contexts 

but with different outputs. Similar to work in 

(Zhang and Clark, 2008; Zhang and Nivre, 2011), 

we train CPP and UPP by generalized perceptron 

(Collins, 2002).  

In decoding, beam search is performed to get 

the optimal sequence of transition actions in CPP 

and UPP, and the optimal punctuation symbols in 

CPP. To ensure each segment decided by a full-

stop punctuation corresponds to a single parsing 

tree, two constraints are applied in decoding for 

the pruning of deficient search paths. 

(1) Proceeding-constraint: If the partial pars-

ing result is not a single tree, the full-stop 

punctuation prediction in CPP cannot be 

performed. In UPP, if Shift(F) or 

RightArc(F) fail to result in a single parsing 

tree, they cannot be performed as well. 

(2) Succeeding-constraint: If the full-stop 

punctuation is predicted in CPP, or Shift(F) 

and RightArc(F) are performed in UPP, the 

following transition actions must be a se-

quence of Reduce actions until the stack 

becomes empty. 

5 Experiments 

5.1 Experimental setup 

Our training data of transition-based dependency 

trees are converted from phrasal structure trees in 

English Web Treebank (LDC2012T13) and the 

English portion of OntoNotes 4.0 (LDC2011T03) 

by the Stanford Conversion toolkit (Marneffe et 

al., 2006). It contains around 1.5M words in total 

and consist of various genres including weblogs, 

web texts, newsgroups, email, reviews, question-

answer sessions, newswires, broadcast news and 

broadcast conversations. To simulate the tran-

scribed speech text, all words in dependency trees 

are lowercased and punctuations are excluded be-

fore model training. In addition, every ten depend-

ency trees are concatenated sequentially to simu-

late a parsing result of a stream of words in the 

model training. 

There are two test data sets used in our experi-

ments. One is the English corpus of the IWSLT09 

evaluation campaign (Paul, 2009) that is the con-

versional speech text. The other is a subset of the 

TDT4 English data (LDC2005T16) which con-

sists of 200 hours of closed-captioned broadcast 

news.  

In the decoding, the beam size of both the tran-

sition-based parsing and punctuation prediction is 

set to 5. The part-of-speech tagger is our re-imple-

mentation of the work in (Collins, 2002).  

The evaluation metrics of our experiments are 

precision (prec.), recall (rec.) and F1-measure 

(F1). 

For the comparison, we also implement a base-

line method based on the CRF model. It incorpo-

rates the features of bag of words and POS tags 

shown in Table 2(a), which are commonly used in 

previous related work.  

5.2 Experimental results 

We test the performance of our method on both 

the correctly recognized texts and automatically 

recognized texts. The former data is used to eval-

uate the capability of punctuation prediction of 

our algorithm regardless of the noises from speech 

data, as our model training data come from formal 

text instead of transcribed speech data. The usage 

of the latter test data set aims to evaluate the ef-

fectiveness of our method in real applications 

where lots of substantial recognition errors could 

be contained. In addition, we also evaluate the 

quality of our transition-based parsing, as its per-

formance could have a big influence on the quality 

of punctuation prediction. 

5.2.1 Performance on correctly recognized 

text 

The evaluation of our method on correctly recog-

nized text uses 10% of IWSLT09 training set, 

which consists of 19,972 sentences from BTEC 

(Basic Travel Expression Corpus) and 10,061 sen-

tences from CT (Challenge Task). The average in-

put length is about 10 words and each input con-

tains 1.3 sentences on average. The evaluation re-

sults are presented in Table 4.  
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 Measure   Middle-

Paused 

Full-stop Mixed 

Baseline 

(CRF) 

prec. 33.2% 81.5% 78.8% 

rec. 25.9% 83.8% 80.7% 

F1 29.1% 82.6% 79.8% 

 

CPP 

prec. 51% 89% 89.6% 

rec. 50.3% 93.1% 92.7% 

F1 50.6% 91% 91.1% 

 

UPP 

 

prec. 52.6% 93.2% 92% 

rec. 59.7% 91.3% 92.3% 

F1 55.9% 92.2% 92.2% 

Table 4. Punctuation prediction performance on 

correctly recognized text 

   We achieved good performance on full-stop 

punctuation compared to the baseline, which 

shows our method can efficiently process sen-

tence segmentation because each segment is de-

cided by the structure of a single parsing tree. In 

addition, the global syntactic knowledge used in 

our work help capture long range dependencies of 

punctuations. The performance of middle-paused 

punctuation prediction is fairly low between all 

methods, which shows predicting middle-paused 

punctuations is a difficult task. This is because the 

usage of middle-paused punctuations is very flex-

ible, especially in conversional data. The last col-

umn in Table 4 presents the performance of the 

pure segmentation task where the middle-paused 

and full-stop punctuations are mixed and not dis-

tinguished. The performance of our method is 

much higher than that of the baseline, which 

shows our method is good at segmentation. We 

also note that UPP yields slightly better perfor-

mance than CPP on full-stop and mixed punctua-

tion prediction, and much better performance on 

middle-paused punctuation prediction. This could 

be because the interaction of parsing and punctu-

ation prediction is closer together in UPP than in 

CPP. 

5.2.2 Performance on automatically recog-

nized text 

Table 5 shows the experimental results of punctu-

ation prediction on automatically recognized text 

from TDT4 data that is recognized using SRI’s 

English broadcast news ASR system where the 

word error rate is estimated to be 18%. As the an-

notation of middle-paused punctuations in TDT4 

is not available, we can only evaluate the perfor-

mance of full-stop punctuation prediction (i.e., de-

tecting sentence boundaries). Thus, we merge 

every three sentences into one single input before 

performing full-stop prediction. The average input 

length is about 43 words. 

 

 Measure   Full-stop 

Baseline 

(CRF) 

prec. 37.7% 

rec. 60.7% 

F1 46.5% 

 

CPP 

prec. 63% 

rec. 58.6% 

F1 60.2% 

 

UPP 

 

prec. 73.9% 

rec. 51.6% 

F1 60.7% 

Table 5. Punctuation prediction performance on 

automatically recognized text 

Generally, the performance shown in Table 5 is 

not as high as that in Table 4. This is because the 

speech recognition error from ASR systems de-

grades the capability of model prediction. Another 

reason might be that the domain and style of our 

training data mismatch those of TDT4 data. The 

baseline gets a little higher recall than our method, 

which shows the baseline method tends to make 

aggressive segmentation decisions. However, 

both precision and F1 score of our method are 

much higher than the baseline. CPP has higher re-

call than UPP, but with lower precision and F1 

score. This is in line with Table 4, which consist-

ently illustrates CPP can get higher recall on full-

stop punctuation prediction for both correctly rec-

ognized and automatically recognized texts.  

5.2.3 Performance of transition-based pars-

ing 

Performance of parsing affects the quality of 

punctuation prediction in our work. In this section, 

we separately evaluate the performance of our 

transition-based parser over various domains in-

cluding the Wall Street Journal (WSJ), weblogs, 

newsgroups, answers, email messages and re-

views. We divided annotated Treebank data into 

three data sets: 90% for model training, 5% for the 

development set and 5% for the test set. The accu-

racy of our POS-tagger achieves 96.71%. The 

beam size in the decoding of both our POS-tag-

ging and parsing is set to 5. Table 6 presents the 

results of our experiments on the measures of 

UAS and LAS, where the overall accuracy is ob-

tained from a general model which is trained over 

the combination of the training data from all do-

mains.  
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We first evaluate the performance of our transi-

tion-based parsing over texts containing punctua-

tions (TCP). The evaluation results show that our 

transition-based parser achieves state-of-the-art 

performance levels, referring to the best depend-

ency parsing results reported in the shared task of 

SANCL 2012 workshop2, although they cannot be 

compared directly due to the different training 

data and test data sets used in the experiments. 

Secondly, we evaluate our parsing model in CPP 

over the texts without punctuations (TOP). Sur-

prisingly, the performance over TOP is better than 

that over TCP. The reason could be that we 

cleaned out data noises caused by punctuations 

when preparing TOP data. These results illustrate 

that the performance of transition-based parsing in 

our method does not degrade after being inte-

grated with punctuation prediction. As a by-prod-

uct of the punctuation prediction task, the outputs 

of parsing trees can benefit the subsequent text 

processing tasks. 

 

 Data sets UAS LAS 

 

 

Texts con-

taining punc-

tuations 

(TCP) 

 

WSJ 92.6% 90.3% 

Weblogs 90.7% 88.2% 

Answers 89.4% 85.7% 

Newsgroups 90.1% 87.6% 

Reviews 90.9% 88.4% 

Email Messages 89.6% 87.1% 

Overall 90.5% 88% 

 

 

Texts with-

out punctua-

tions (TOP) 

WSJ 92.6% 91.1% 

Weblogs 92.5% 91.1% 

Answers 95% 94% 

Newsgroups 92.6% 91.2% 

Reviews 92.6% 91.2% 

Email Messages 92.9% 91.7% 

Overall 92.6% 91.2% 

Table 6. The performance of our transition-based 

parser on written texts. UAS=unlabeled attach-

ment score; LAS=labeled attachment score 

6 Conclusion and Future Work  

In this paper, we proposed a novel method for 

punctuation prediction of transcribed speech texts. 

Our approach jointly performs parsing and punc-

tuation prediction by integrating a rich set of syn-

tactic features. It can not only yield parse trees, but 

also determine sentence boundaries and predict 

punctuation symbols from a global view of the in-

                                                           
2 https://sites.google.com/site/sancl2012/home/shared-

task/results 

puts. The proposed algorithm has linear complex-

ity in the size of input, which can efficiently pro-

cess the stream of words from a purely text pro-

cessing perspective without the dependences on 

either the ASR systems or subsequent tasks. The 

experimental results show that our approach out-

performs the CRF-based method on both the cor-

rectly recognized and automatically recognized 

texts. In addition, the performance of the parsing 

over the stream of transcribed words is state-of-

the-art, which can benefit many subsequent text 

processing tasks. 

    In future work, we will try our method on other 

languages such as Chinese and Japanese, where 

Treebank data is available. We would also like to 

test the MT performance over transcribed speech 

texts with punctuation symbols inserted based on 

our method proposed in this paper.  
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Abstract

Structural information in web text pro-
vides natural annotations for NLP prob-
lems such as word segmentation and pars-
ing. In this paper we propose a discrim-
inative learning algorithm to take advan-
tage of the linguistic knowledge in large
amounts of natural annotations on the In-
ternet. It utilizes the Internet as an external
corpus with massive (although slight and
sparse) natural annotations, and enables a
classifier to evolve on the large-scaled and
real-time updated web text. With Chinese
word segmentation as a case study, exper-
iments show that the segmenter enhanced
with the Chinese wikipedia achieves sig-
nificant improvement on a series of testing
sets from different domains, even with a
single classifier and local features.

1 Introduction

Problems related to information retrieval, machine
translation and social computing need fast and ac-
curate text processing, for example, word segmen-
tation and parsing. Taking Chinese word seg-
mentation for example, the state-of-the-art mod-
els (Xue and Shen, 2003; Ng and Low, 2004;
Gao et al., 2005; Nakagawa and Uchimoto, 2007;
Zhao and Kit, 2008; Jiang et al., 2009; Zhang and
Clark, 2010; Sun, 2011b; Li, 2011) are usually
trained on human-annotated corpora such as the
Penn Chinese Treebank (CTB) (Xue et al., 2005),
and perform quite well on corresponding test sets.
Since the text used for corpus annotating are usu-
ally drawn from specific fields (e.g. newswire or
finance), and the annotated corpora are limited in

 think that NLP                  has already ...

i-1 i j j+1

(a) Natural annotation by hyperlink

i-1 i j j+1

i-1 i j j+1

(b) Knowledge for word segmentation

(c) Knowledge for dependency parsing

Figure 1: Natural annotations for word segmenta-
tion and dependency parsing.

size (e.g. tens of thousands), the performance of
word segmentation tends to degrade sharply when
applied to new domains.

Internet provides large amounts of raw text, and
statistics collected from it have been used to im-
prove parsing performance (Nakov and Hearst,
2005; Pitler et al., 2010; Bansal and Klein, 2011;
Zhou et al., 2011). The Internet also gives mas-
sive (although slight and sparse) natural annota-
tions in the forms of structural information includ-
ing hyperlinks, fonts, colors and layouts (Sun,
2011a). These annotations usually imply valuable
knowledge for problems such as word segmen-
tation and parsing, based on the hypothesis that
the subsequences marked by structural informa-
tion are meaningful fragments in sentences. Fig-
ure 1 shows an example. The hyperlink indicates
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a Chinese phrase (meaning NLP), and it probably
corresponds to a connected sub-graph for depen-
dency parsing. Creators of web text give valuable
annotations during editing, the whole Internet can
be treated as a wide-coveraged and real-time up-
dated corpus.

Different from the dense and accurate annota-
tions in human-annotated corpora, natural annota-
tions in web text are sparse and slight, it makes
direct training of NLP models impracticable. In
this work we take for example a most important
problem, word segmentation, and propose a novel
discriminative learning algorithm to leverage the
knowledge in massive natural annotations of web
text. Character classification models for word seg-
mentation usually factorize the whole prediction
into atomic predictions on characters (Xue and
Shen, 2003; Ng and Low, 2004). Natural anno-
tations in web text can be used to get rid of im-
plausible predication candidates for related char-
acters, knowledge in the natural annotations is
therefore introduced in the manner of searching
space pruning. Since constraint decoding in the
pruned searching space integrates the knowledge
of the baseline model and natural annotations, it
gives predictions not worse than the normal decod-
ing does. Annotation differences between the out-
puts of constraint decoding and normal decoding
are used to train the enhanced classifier. This strat-
egy makes the usage of natural annotations simple
and universal, which facilitates the utilization of
massive web text and the extension to other NLP
problems.

Although there are lots of choices, we choose
the Chinese wikipedia as the knowledge source
due to its high quality. Structural information, in-
cluding hyperlinks, fonts and colors are used to de-
termine the boundaries of meaningful fragments.
Experimental results show that, the knowledge im-
plied in the natural annotations can significantly
improve the performance of a baseline segmenter
trained on CTB 5.0, an F-measure increment of
0.93 points on CTB test set, and an average incre-
ment of1.53 points on7 other domains. It is an ef-
fective and inexpensive strategy to build word seg-
menters adaptive to different domains. We hope to
extend this strategy to other NLP problems such
as named entity recognition and parsing.

In the rest of the paper, we first briefly intro-
duce the problems of Chinese word segmentation
and the character classification model in section

Type Templates Instances
n-gram C−2 C−2=@

C−1 C−1=�
C0 C0=g
C1 C1=,
C2 C2=�
C−2C−1 C−2C−1=@�
C−1C0 C−1C0=�g
C0C1 C0C1=g,
C1C2 C1C2=,�
C−1C1 C−1C1=�,

function Pu(C0) Pu(C0)=false
T (C−2:2) T (C−2:2)= 44444

Table 1: Feature templates and instances for
character classification-based word segmentation
model. Suppose we are considering thei-th char-
acter “g” in “...@� g ,�ó?n®²...”.

2, then describe the representation of the knowl-
edge in natural annotations of web text in section
3, and finally detail the strategy of discriminative
learning on natural annotations in section4. Af-
ter giving the experimental results and analysis in
section5, we briefly introduce the previous related
work and then give the conclusion and the expec-
tation of future research.

2 Character Classification Model

Character classification models for word segmen-
tation factorize the whole prediction into atomic
predictions on single characters (Xue and Shen,
2003; Ng and Low, 2004). Although natural anno-
tations in web text do not directly support the dis-
criminative training of segmentation models, they
do get rid of the implausible candidates for predic-
tions of related characters.

Given a sentence as a sequence ofn charac-
ters, word segmentation splits the sequence into
m(≤ n) subsequences, each of which indicates a
meaningful word. Word segmentation can be for-
malized as a character classification problem (Xue
and Shen, 2003), where each character in the sen-
tence is given a boundary tag representing its posi-
tion in a word. We adopt the boundary tags of Ng
and Low (2004),b, m, e ands, whereb, m and
e mean the beginning, the middle and the end of a
word, ands indicates a single-character word. the
decoding procedure searches for the labeled char-
acter sequencey that maximizes the score func-
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Algorithm 1 Perceptron training algorithm.
1: Input : Training corpusC
2: ~α← 0
3: for t← 1 .. T do ⊲ T iterations
4: for (x, ỹ) ∈ C do
5: y ← arg maxy Φ(x, y) · ~α
6: if y 6= ỹ then
7: ~α← ~α + Φ(x, ỹ)− Φ(x, y)

8: Output: Parameters~α

tion:

f(x) = arg max
y

S(y|~α,Φ, x)

= arg max
y

Φ(x, y) · ~α

= arg max
y

∑

(i,t)∈y

Φ(i, t, x, y) · ~α
(1)

The score of the whole sequencey is accumulated
across all its character-label pairs,(i, t) ∈ y (s.t.
1 ≤ i ≤ n and t ∈ {b,m, e, s}). The feature
functionΦ maps a labeled sequence or a character-
label pair into a feature vector,~α is the parame-
ter vector andΦ(x, y) · ~α is the inner product of
Φ(x, y) and~α.

Analogous to other sequence labeling prob-
lems, word segmentation can be solved through a
viterbi-style decoding procedure. We omit the de-
coding algorithm in this paper due to its simplicity
and popularity.

The feature templates for the classifier is shown
in Table 1.C0 denotes the current character, while
C−k/Ck denote thekth character to the left/right
of C0. The functionPu(·) returnstrue for a punc-
tuation character andfalse for others, the function
T (·) classifies a character into four types,1, 2, 3
and 4, representingnumber, date, English letter
andothers, respectively.

The classifier can be trained with online learn-
ing algorithms such as perceptron, or offline learn-
ing models such as support vector machines.
We choose the perceptron algorithm (Collins,
2002) to train the classifier for the character
classification-based word segmentation model. It
learns a discriminative model mapping from the
inputsx ∈ X to the outputs̃y ∈ Y , whereX is the
set of sentences in the training corpus andY is the
set of corresponding labeled results. Algorithm 1
shows the perceptron algorithm for tuning the pa-
rameter~α. The “averaged parameters” technology
(Collins, 2002) is used for better performance.

i-1 i j j+1

(a) Original searching space

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

i-1 i j j+1

(b) Shrinked searching space

b

m

e

s

e

s

b

s

b

m

e

s

b

m

e

s

b

m

e

s

b

m

e

s

e

s

b

s

b

m

e

s

Figure 2: Shrink of searching space for the charac-
ter classification-based word segmentation model.

3 Knowledge in Natural Annotations

Web text gives massive natural annotations in the
form of structural informations, including hyper-
links, fonts, colors and layouts (Sun, 2011a). Al-
though slight and sparse, these annotations imply
valuable knowledge for problems such as word
segmentation and parsing.

As shown in Figure 1, the subsequenceP =
i..j of sentenceS is composed of bolded charac-
ters determined by a hyperlink. Such natural anno-
tations do not clearly give each character a bound-
ary tag, or define the head-modifier relationship
between two words. However, they do help to
shrink the set of plausible predication candidates
for each character or word. For word segmenta-
tion, it implies that charactersi − 1 andj are the
rightmost characters of words, while charactersi
and j + 1 are the leftmost characters of words.
For i − 1 or j, the plausible predication setΨ be-
comes{e, s}; For i andj + 1, it becomes{b, s};
For other charactersc except the two at sentence
boundaries,Ψ(c) is still {b,m, e, s}. For depen-
dency parsing, the subsequenceP tends to form
a connected dependency graph if it contains more
than one word. Here we useΨ to denote the set of
plausible head of a word (modifier). There must
be a single wordw ∈ P as the root of subse-
quenceP , whose plausible heads fall out ofP ,
that is,Ψ(w) = {x|x ∈ S − P}. For the words
in P except the root, the plausible heads for each

763



Algorithm 2 Perceptron learning with natural an-
notations.

1: ~α← TRAIN(C)
2: for x ∈ F do
3: y ← DECODE(x, ~α)
4: ỹ ← CONSTRAINTDECODE(x, ~α,Ψ)
5: if y 6= ỹ then
6: C′ ← C′ ∪ {ỹ}
7: ~α← TRAIN(C ∪ C′)

wordw are the words inP exceptw itself, that is,
Ψ(w) = {x|x ∈ P − {w}}.

Creators of web text give valuable structural
annotations during editing, these annotations re-
duce the predication uncertainty for atomic char-
acters or words, although not exactly defining
which predication is. Figure 2 shows an exam-
ple for word segmentation, depicting the shrink
of searching space for the character classification-
based model. Since the decrement of uncertainty
indicates the increment of knowledge, the whole
Internet can be treated as a wide-coveraged and
real-time updated corpus. We choose the Chinese
wikipedia as the external knowledge source, and
structural information including hyperlinks, fonts
and colors are used in the current work due to their
explicitness of representation.

4 Learning with Natural Annotations

Different from the dense and accurate annotations
in human-annotated corpora, natural annotations
are sparse and slight, which makes direct training
of NLP models impracticable. Annotations im-
plied by structural information do not give an ex-
act predication to a character, however, they help
to get rid of the implausible predication candidates
for related characters, as described in the previous
section.

Previous work on constituency parsing or ma-
chine translation usually resort to some kinds of
heuristic tricks, such as punctuation restrictions,
to eliminate some implausible candidates during
decoding. Here the natural annotations also bring
knowledge in the manner of searching space prun-
ing. Conditioned on the completeness of the de-
coding algorithm, a model trained on an exist-
ing corpus probably gives better or at least not
worse predications, by constraint decoding in the
pruned searching space. The constraint decoding
procedure integrates the knowledge of the baseline

Algorithm 3 Online version of perceptron learn-
ing with natural annotations.

1: ~α← TRAIN(C)
2: for x with natural annotationsdo
3: y ← DECODE(x, ~α)
4: ỹ ← CONSTRAINTDECODE(x, ~α,Ψ)
5: if y 6= ỹ then
6: ~α← ~α + Φ(x, ỹ)−Φ(x, y)

7: output~α at regular time

model and natural annotations, the predication dif-
ferences between the outputs of constraint decod-
ing and normal decoding can be used to train the
enhanced classifier.

Restrictions of the searching space according to
natural annotations can be easily incorporated into
the decoder. If the completeness of the searching
algorithm can be guaranteed, the constraint decod-
ing in the pruned searching space will give predi-
cations not worse than those given by the normal
decoding. If a predication of constraint decoding
differs from that of normal decoding, it indicates
that the annotation precision is higher than the lat-
ter. Furthermore, the degree of difference between
the two predications represents the amount of new
knowledge introduced by the natural annotations
over the baseline.

The baseline model~α is trained on an exist-
ing human-annotated corpus. A set of sentences
F with natural annotations are extracted from the
Chinese wikipedia, and we reserve the ones for
which constraint decoding and normal decoding
give different predications. The predictions of re-
served sentences by constraint decoding are used
as additional training data for the enhanced classi-
fier. The overall training pipeline is analogous to
self-training (McClosky et al., 2006), Algorithm
2 shows the pseudo-codes. Considering theonline
characteristic of the perceptron algorithm, if we
are able to leverage much more (than the Chinese
wikipedia) data with natural annotations, an online
version of learning procedure shown in Algorithm
3 would be a better choice. The technology of “av-
eraged parameters” (Collins, 2002) is easily to be
adapted here for better performance.

When constraint decoding and normal decod-
ing give different predications, we only know that
the former is probably better than the latter. Al-
though there is no explicit evidence for us to mea-
sure how much difference in accuracy between the
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Partition Sections # of word
CTB
Training 1− 270 0.47M

400 − 931
1001 − 1151

Developing 301 − 325 6.66K
Testing 271 − 300 7.82K

Table 2: Data partitioning for CTB 5.0.

two predications, we can approximate how much
new knowledge that a naturally annotated sentence
brings. For a sentencex, given the predications of
constraint decoding and normal decoding,ỹ and
y, the difference of their scoresδ = S(y) − S(ỹ)
indicates the degree to which the current model
mistakes. This indicator helps us to select more
valuable training examples.

The strategy of learning with natural annota-
tions can be adapted to other situations. For ex-
ample, if we have a list of words or phrases (espe-
cially in a specific domain such as medicine and
chemical), we can generate annotated sentences
automatically by string matching in a large amount
of raw text. It probably provides a simple and
effective domain adaptation strategy for already
trained models.

5 Experiments

We use the Penn Chinese Treebank 5.0 (CTB)
(Xue et al., 2005) as the existing annotated cor-
pus for Chinese word segmentation. For conve-
nient of comparison with other work in word seg-
mentation, the whole corpus is split into three par-
titions as follows: chapters 271-300 for testing,
chapters 301-325 for developing, and others for
training. We choose the Chinese wikipedia1 (ver-
sion 20120812) as the external knowledge source,
because it has high quality in contents and it is
much better than usual web text. Structural infor-
mations, including hyperlinks, fonts and colors are
used to derive the annotation information.

To further evaluate the improvement brought
by the fuzzy knowledge in Chinese wikipedia, a
series of testing sets from different domains are
adopted. The four testing sets from SIGHAN
Bakeoff 2010 (Zhao and Liu, 2010) are used, they
are drawn from the domains of literature, finance,
computer science and medicine. Although the ref-
erence sets are annotated according to a different

1http://download.wikimedia.org/backup-index.html.
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Figure 3: Learning curve of the averaged percep-
tron classifier on the CTB developing set.

word segmentation standard (Yu et al., 2001), the
quantity of accuracy improvement is still illustra-
tive since there are no vast diversities between the
two segmentation standards. We also annotated
another three testing sets2, their texts are drawn
from the domains of chemistry, physics and ma-
chinery, and each contains500 sentences.

5.1 Baseline Classifier for Word
Segmentation

We train the baseline perceptron classifier for
word segmentation on the training set of CTB
5.0, using the developing set to determine the
best training iterations. The performance mea-
surement for word segmentation is balanced F-
measure,F = 2PR/(P +R), a function of preci-
sionP and recallR, whereP is the percentage of
words in segmentation results that are segmented
correctly, andR is the percentage of correctly seg-
mented words in the gold standard words.

Figure 3 shows the learning curve of the aver-
aged perceptron on the developing set. The sec-
ond column of Table 3 lists the performance of
the baseline classifier on eight testing sets, where
newswire denotes the testing set of the CTB it-
self. The classifier performs much worse on the
domains of chemistry, physics and machinery, it
indicates the importance of domain adaptation for
word segmentation (Gao et al., 2004; Ma and
Way, 2009; Gao et al., 2010). The accuracy on the
testing sets from SIGHAN Bakeoff 2010 is even
lower due to the difference in both domains and
word segmentation standards.

2They are available at http://nlp.ict.ac.cn/ jiangwenbin/.
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Dataset Baseline (F%) Enhanced (F%)
Newswire 97.35 98.28 +0.93

Out-of-Domain
Chemistry 93.61 95.68 +2.07
Physics 95.10 97.24 +2.14
Machinery 96.08 97.66 +1.58
Literature 92.42 93.53 +1.11
Finance 92.50 93.16 +0.66
Computer 89.46 91.19 +1.73
Medicine 91.88 93.34 +1.46

Average 93.01 94.54 +1.53

Table 3: Performance of the baseline classifier and
the classifier enhanced with natural annotations in
Chinese wikipedia.

5.2 Classifier Enhanced with Natural
Annotations

The Chinese wikipedia contains about0.5 million
items. From their description text, about3.9 mil-
lions of sentences with natural annotations are ex-
tracted. With the CTB training set as the exist-
ing corpusC, about0.8 million sentences are re-
served according to Algorithm 2, the segmenta-
tions given by constraint decoding are used as ad-
ditional training data for the enhanced classifier.

According to the previous description, the dif-
ference of the scores of constraint decoding and
normal decoding,δ = S(y) − S(ỹ), indicates
the importance of a constraint segmentation to the
improvement of the baseline classifier. The con-
straint segmentations of the reserved sentences are
sorted in descending order according to the dif-
ference of the scores of constraint decoding and
normal decoding, as described previously. From
the beginning of the sorted list, different amounts
of segmented sentences are used as the additional
training data for the enhanced character classifier.
Figure 4 shows the performance curve of the en-
hanced classifiers on the developing set of CTB.
We found that the highest accuracy was achieved
when 160, 000 sentences were used, while more
additional training data did not give continuous
improvement. A recent related work about self-
training for segmentation (Liu and Zhang, 2012)
also reported a very similar trend, that only a mod-
erate amount of raw data gave the most obvious
improvements.

The performance of the enhanced classifier is
listed in the third column of Table 3. On the
CTB testing set, training data from the Chinese
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Figure 4: Performance curve of the classifier en-
hanced with selected sentences of different scales.

Model Accuracy (F%)
(Jiang et al., 2008) 97.85
(Kruengkrai et al., 2009) 97.87
(Zhang and Clark, 2010) 97.79
(Wang et al., 2011) 98.11
(Sun, 2011b) 98.17

Our Work 98.28

Table 4: Comparison with state-of-the-art work in
Chinese word segmentation.

wikipedia brings an F-measure increment of0.93
points. On out-of-domain testing sets, the im-
provements are much larger, an average increment
of 1.53 points is achieved on seven domains. It
is probably because the distribution of the knowl-
edge in the CTB training data is concentrated in
the domain of newswire, while the contents of
the Chinese wikipedia cover a broad range of do-
mains, it provides knowledge complementary to
that of CTB.

Table 4 shows the comparison with other
work in Chinese word segmentation. Our model
achieves an accuracy higher than that of the
state-of-the-art models trained on CTB only, al-
though using a single classifier with only local
features. From the viewpoint of resource uti-
lization, the comparison between our system and
previous work without using additional training
data is unfair. However, we believe this work
shows another interesting way to improve Chi-
nese word segmentation, it focuses on the utiliza-
tion of fuzzy and sparse knowledge on the Internet
rather than making full use of a specific human-
annotated corpus. On the other hand, since only
a single classifier and local features are used in
our method, better performance could be achieved
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resorting to complicated features, system com-
bination and other semi-supervised technologies.
What is more, since the text on Internet is wide-
coveraged and real-time updated, our strategy also
helps a word segmenter be more domain adaptive
and up to date.

6 Related Work

Li and Sun (2009) extracted character classifi-
cation instances from raw text for Chinese word
segmentation, resorting to the indication of punc-
tuation marks between characters. Sun and Xu
(Sun and Xu, 2011) utilized the features derived
from large-scaled unlabeled text to improve Chi-
nese word segmentation. Although the two work
also made use of large-scaled raw text, our method
is essentially different from theirs in the aspects
of both the source of knowledge and the learning
strategy.

Lots of efforts have been devoted to semi-
supervised methods in sequence labeling and word
segmentation (Xu et al., 2008; Suzuki and Isozaki,
2008; Haffari and Sarkar, 2008; Tomanek and
Hahn, 2009; Wang et al., 2011). A semi-
supervised method tries to find an optimal hyper-
plane of both annotated data and raw data, thus to
result in a model with better coverage and higher
accuracy. Researchers have also investigated un-
supervised methods in word segmentation (Zhao
and Kit, 2008; Johnson and Goldwater, 2009;
Mochihashi et al., 2009; Hewlett and Cohen,
2011). An unsupervised method mines the latent
distribution regularity in the raw text, and auto-
matically induces word segmentation knowledge
from it. Our method also needs large amounts of
external data, but it aims to leverage the knowl-
edge in the fuzzy and sparse annotations. It is
fundamentally different from semi-supervised and
unsupervised methods in that we aimed to exca-
vate a totally different kind of knowledge, the nat-
ural annotations implied by the structural informa-
tion in web text.

In recent years, much work has been devoted to
the improvement of word segmentation in a vari-
ety of ways. Typical approaches include the in-
troduction of global training or complicated fea-
tures (Zhang and Clark, 2007; Zhang and Clark,
2010), the investigation of word internal structures
(Zhao, 2009; Li, 2011), the adjustment or adapta-
tion of word segmentation standards (Wu, 2003;
Gao et al., 2004; Jiang et al., 2009), the integrated

solution of segmentation and related tasks such as
part-of-speech tagging and parsing (Zhou and Su,
2003; Zhang et al., 2003; Fung et al., 2004; Gold-
berg and Tsarfaty, 2008), and the strategies of hy-
brid or stacked modeling (Nakagawa and Uchi-
moto, 2007; Kruengkrai et al., 2009; Wang et al.,
2010; Sun, 2011b).

In parsing, Pereira and Schabes (1992) pro-
posed an extended inside-outside algorithm that
infers the parameters of a stochastic CFG from a
partially parsed treebank. It uses partial bracket-
ing information to improve parsing performance,
but it is specific to constituency parsing, and its
computational complexity makes it impractical for
massive natural annotations in web text. There
are also work making use of word co-occurrence
statistics collected in raw text or Internet n-grams
to improve parsing performance (Nakov and
Hearst, 2005; Pitler et al., 2010; Zhou et al., 2011;
Bansal and Klein, 2011). When enriching the re-
lated work during writing, we found a work on de-
pendency parsing (Spitkovsky et al., 2010) who
utilized parsing constraints derived from hypertext
annotations to improve the unsupervised depen-
dency grammar induction. Compared with their
method, the strategy we proposed is formal and
universal, the discriminative learning strategy and
the quantitative measurement of fuzzy knowledge
enable more effective utilization of the natural an-
notation on the Internet when adapted to parsing.

7 Conclusion and Future Work

This work presents a novel discriminative learning
algorithm to utilize the knowledge in the massive
natural annotations on the Internet. Natural anno-
tations implied by structural information are used
to decrease the searching space of the classifier,
then the constraint decoding in the pruned search-
ing space gives predictions not worse than the nor-
mal decoding does. Annotation differences be-
tween the outputs of constraint decoding and nor-
mal decoding are used to train the enhanced classi-
fier, linguistic knowledge in the human-annotated
corpus and the natural annotations of web text
are thus integrated together. Experiments on Chi-
nese word segmentation show that, the enhanced
word segmenter achieves significant improvement
on testing sets of different domains, although us-
ing a single classifier with only local features.

Since the contents of web text cover a broad
range of domains, it provides knowledge comple-
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mentary to that of human-annotated corpora with
concentrated distribution of domains. The content
on the Internet is large-scaled and real-time up-
dated, it compensates for the drawback of expen-
sive building and updating of corpora. Our strat-
egy, therefore, enables us to build a classifier more
domain adaptive and up to date. In the future, we
will compare this method with self-training to bet-
ter illustrate the importance of boundary informa-
tion, and give error analysis on what types of er-
rors are reduced by the method to make this inves-
tigation more complete. We will also investigate
more efficient algorithms to leverage more mas-
sive web text with natural annotations, and further
extend the strategy to other NLP problems such as
named entity recognition and parsing.
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Abstract
This paper introduces a graph-based semi-
supervised joint model of Chinese word
segmentation and part-of-speech tagging.
The proposed approach is based on a
graph-based label propagation technique.
One constructs a nearest-neighbor simi-
larity graph over all trigrams of labeled
and unlabeled data for propagating syn-
tactic information, i.e., label distribution-
s. The derived label distributions are re-
garded as virtual evidences to regular-
ize the learning of linear conditional ran-
dom fields (CRFs) on unlabeled data. An
inductive character-based joint model is
obtained eventually. Empirical results on
Chinese tree bank (CTB-7) and Microsoft
Research corpora (MSR) reveal that the
proposed model can yield better result-
s than the supervised baselines and other
competitive semi-supervised CRFs in this
task.

1 Introduction

Word segmentation and part-of-speech (POS) tag-
ging are two critical and necessary initial proce-
dures with respect to the majority of high-level
Chinese language processing tasks such as syn-
tax parsing, information extraction and machine
translation. The traditional way of segmentation
and tagging is performed in a pipeline approach,
first segmenting a sentence into words, and then
assigning each word a POS tag. The pipeline ap-
proach is very simple to implement, but frequently
causes error propagation, given that wrong seg-
mentations in the earlier stage harm the subse-
quent POS tagging (Ng and Low, 2004). The join-
t approaches of word segmentation and POS tag-
ging (joint S&T) are proposed to resolve these t-
wo tasks simultaneously. They effectively allevi-
ate the error propagation, because segmentation

and tagging have strong interaction, given that
most segmentation ambiguities cannot be resolved
without considering the surrounding grammatical
constructions encoded in a POS sequence (Qian
and Liu, 2012).

In the past years, several proposed supervised
joint models (Ng and Low, 2004; Zhang and
Clark, 2008; Jiang et al., 2009; Zhang and Clark,
2010) achieved reasonably accurate results, but the
outstanding problem among these models is that
they rely heavily on a large amount of labeled data,
i.e., segmented texts with POS tags. However, the
production of such labeled data is extremely time-
consuming and expensive (Jiao et al., 2006; Jiang
et al., 2009). Therefore, semi-supervised join-
t S&T appears to be a natural solution for easily in-
corporating accessible unlabeled data to improve
the joint S&T model. This study focuses on using
a graph-based label propagation method to build
a semi-supervised joint S&T model. Graph-based
label propagation methods have recently shown
they can outperform the state-of-the-art in sever-
al natural language processing (NLP) tasks, e.g.,
POS tagging (Subramanya et al., 2010), knowl-
edge acquisition (Talukdar et al., 2008), shallow
semantic parsing for unknown predicate (Das and
Smith, 2011). As far as we know, however, these
methods have not yet been applied to resolve
the problem of joint Chinese word segmentation
(CWS) and POS tagging.

Motivated by the works in (Subramanya et al.,
2010; Das and Smith, 2011), for structured prob-
lems, graph-based label propagation can be em-
ployed to infer valuable syntactic information (n-
gram-level label distributions) from labeled data
to unlabeled data. This study extends this intui-
tion to construct a similarity graph for propagating
trigram-level label distributions. The derived label
distributions are regarded as prior knowledge to
regularize the learning of a sequential model, con-
ditional random fields (CRFs) in this case, on both
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labeled and unlabeled data to achieve the semi-
supervised learning. The approach performs the
incorporation of the derived labeled distributions
by manipulating a “virtual evidence” function as
described in (Li, 2009). Experiments on the da-
ta from the Chinese tree bank (CTB-7) and Mi-
crosoft Research (MSR) show that the proposed
model results in significant improvement over oth-
er comparative candidates in terms of F-score and
out-of-vocabulary (OOV) recall.

This paper is structured as follows: Section
2 points out the main differences with the re-
lated work of this study. Section 3 reviews the
background, including supervised character-based
joint S&T model based on CRFs and graph-based
label propagation. Section 4 presents the details of
the proposed approach. Section 5 reports the ex-
periment results. The conclusion is drawn in Sec-
tion 6.

2 Related Work

Prior supervised joint S&T models present ap-
proximate 0.2% - 1.3% improvement in F-score
over supervised pipeline ones. The state-of-the-
art joint models include reranking approaches (Shi
and Wang, 2007), hybrid approaches (Nakagawa
and Uchimoto, 2007; Jiang et al., 2008; Sun,
2011), and single-model approaches (Ng and Low,
2004; Zhang and Clark, 2008; Kruengkrai et al.,
2009; Zhang and Clark, 2010). The proposed ap-
proach in this paper belongs to the single-model
type.

There are few explorations of semi-supervised
approaches for CWS or POS tagging in previ-
ous works. Xu et al. (2008) described a Bayesian
semi-supervised CWS model by considering the
segmentation as the hidden variable in machine
translation. Unlike this model, the proposed ap-
proach is targeted at a general model, instead of
one oriented to machine translation task. Sun and
Xu (2011) enhanced a CWS model by interpolat-
ing statistical features of unlabeled data into the
CRFs model. Wang et al. (2011) proposed a semi-
supervised pipeline S&T model by incorporating
n-gram and lexicon features derived from unla-
beled data. Different from their concern, our em-
phasis is to learn the semi-supervised model by
injecting the label information from a similarity
graph constructed from labeled and unlabeled da-
ta.

The induction method of the proposed approach

also differs from other semi-supervised CRFs al-
gorithms. Jiao et al. (2006), extended by Mann
and McCallum (2007), reported a semi-supervised
CRFs model which aims to guide the learning
by minimizing the conditional entropy of unla-
beled data. The proposed approach regularizes the
CRFs by the graph information. Subramanya et
al. (2010) proposed a graph-based self-train style
semi-supervised CRFs algorithm. In the proposed
approach, an analogous way of graph construction
intuition is applied. But overall, our approach dif-
fers in three important aspects: first, novel feature
templates are defined for measuring the similari-
ty between vertices. Second, the critical property,
i.e., sparsity, is considered among label propaga-
tion. And third, the derived label information from
the graph is smoothed into the model by optimiz-
ing a modified objective function.

3 Background

3.1 Supervised Character-based Model
The character-based joint S&T approach is oper-
ated as a sequence labeling fashion that each Chi-
nese character, i.e., hanzi, in the sequence is as-
signed with a tag. To perform segmentation and
tagging simultaneously in a uniform framework,
according to Ng and Low (2004), the tag is com-
posed of a word boundary part, and a POS part,
e.g., “B NN” refers to the first character in a word
with POS tag “NN”. In this paper, 4 word bound-
ary tags are employed: B (beginning of a word),
M (middle part of a word), E (end of a word) and
S (single character). As for the POS tag, we shal-
l use the 33 tags in the Chinese tree bank. Thus,
the potential composite tags of joint S&T consist
of 132 (4×33) classes.

The first-order CRFs model (Lafferty et al.,
2001) has been the most common one in this
task. Given a set of labeled examples Dl =
{(xi, yi)}li=1, where xi = x1

ix
2
i ...x

N
i is the se-

quence of characters in the ith sentence, and yi =
y1
i y

2
i ...y

N
i is the corresponding label sequence.

The goal is to learn a CRFs model in the form,

p(yi|xi; Λ) =

1

Z(xi; Λ)
exp{

N∑

j=1

K∑

k=1

λkfk(y
j−1
i , yji , xi, j)}

(1)
where Z(xi; Λ) is the partition function that nor-
malizes the exponential form to be a probability
distribution, and fk(y

j−1
i , yji , xi, j). In this study,
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the baseline feature templates of joint S&T are
the ones used in (Ng and Low, 2004; Jiang et al.,
2008), as shown in Table 1. Λ = {λ1λ2...λK} ∈
RK are the weight parameters to be learned. In su-
pervised training, the aim is to estimate the Λ that
maximizes the conditional likelihood of the train-
ing data while regularizing model parameters:

L(Λ) =
l∑

i=1

log p(yi|xi; Λ)−R(Λ) (2)

R(Λ) can be any standard regularizer on parame-
ters, e.g., R(Λ) =‖ Λ ‖ /2δ2, to limit overfitting
on rare features and avoid degeneracy in the case
of correlated features. This objective function can
be optimized by the stochastic gradient method or
other numerical optimization methods.

Type Font Size
Unigram Cn(n = −2,−1, 0, 1, 2)
Bigram CnCn+1(n = −2,−1, 0, 1)

Date, Digit and
Alphabetic Letter

T (C−2)T (C−1)T (C0)
T (C1)T (C2)

Table 1: The feature templates of joint S&T.

3.2 Graph-based Label Propagation
Graph-based label propagation, a critical subclass
of semi-supervised learning (SSL), has been wide-
ly used and shown to outperform other SSL meth-
ods (Chapelle et al., 2006). Most of these algo-
rithms are transductive in nature, so they cannot
be used to predict an unseen test example in the fu-
ture (Belkin et al., 2006). Typically, graph-based
label propagation algorithms are run in two main
steps: graph construction and label propagation.
The graph construction provides a natural way to
represent data in a variety of target domains. One
constructs a graph whose vertices consist of la-
beled and unlabeled examples. Pairs of vertices
are connected by weighted edges which encode
the degree to which they are expected to have the
same label (Zhu et al., 2003). Popular graph con-
struction methods include k-nearest neighbors (k-
NN) (Bentley, 1980; Beygelzimer et al., 2006),
b-matching (Jebara et al., 2009) and local recon-
struction (Daitch et al., 2009). Label propaga-
tion operates on the constructed graph. The pri-
mary objective is to propagate labels from a few
labeled vertices to the entire graph by optimiz-
ing a loss function based on the constraints or

properties derived from the graph, e.g., smooth-
ness (Zhu et al., 2003; Subramanya et al., 2010;
Talukdar et al., 2008), or sparsity (Das and Smith,
2012). State-of-the-art label propagation algo-
rithms include LP-ZGL (Zhu et al., 2003), Ad-
sorption (Baluja et al., 2008), MAD (Talukdar
and Crammer, 2009) and Sparse Inducing Penal-
ties (Das and Smith, 2012).

4 Method

The emphasis of this work is on building a joint
S&T model based on two different kinds of data
sources, labeled and unlabeled data. In essence,
this learning problem can be treated as incorporat-
ing certain gainful information, e.g., prior knowl-
edge or label constraints, of unlabeled data into
the supervised model. The proposed approach em-
ploys a transductive graph-based label propagation
method to acquire such gainful information, i.e.,
label distributions from a similarity graph con-
structed over labeled and unlabeled data. Then,
the derived label distributions are injected as vir-
tual evidences for guiding the learning of CRFs.

Algorithm 1 semi-supervised joint S&T induction
Input:
Dl = {(xi, yi)}li=1 labeled sentences
Du = {(xi)}l+ui=l+1 unlabeled sentences

Output:
Λ: a set of feature weights

1: Begin
2: {G} = construct graph (Dl,Du)
3: {q0} = init labelDist ({G})
4: {q} = propagate label ({G}, {q0})
5: {Λ} = train crf (Dl ∪ Du, {q})
6: End

The model induction includes the following
steps (see Algorithm 1): firstly, given labeled
and unlabeled data, i.e., Dl = {(xi, yi)}li=1

with l labeled sentences and Du = {(xi)}l+ui=l+1

with u unlabeled sentences, a specific similarity
graph G representing Dl and Du is constructed
(construct graph). The vertices (Section 4.1) in
the constructed graph consist of all trigrams that
occur in labeled and unlabeled sentences, and edge
weights between vertices are computed using the
cosine distance between pointwise mutual infor-
mation (PMI) statistics. Afterwards, the estimated
label distributions q0 of vertices in the graph G are
randomly initialized (init labelDist). Subsequently,
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the label propagation procedure (propagate label)
is conducted for projecting label distributions q
from labeled vertices to the entire graph, using
the algorithm of Sparse-Inducing Penalties (Das
and Smith, 2012) (Section 4.2). The final step
(train crf) of the induction is incorporating the in-
ferred trigram-level label distributions q into CRFs
model (Section 4.3).

4.1 Graph Construction
In most graph-based label propagation tasks, the
final effect depends heavily on the quality of
the graph. Graph construction thus plays a cen-
tral role in graph-based label propagation (Zhu et
al., 2003). For character-based joint S&T, unlike
the unstructured learning problem whose vertices
are formed directly by labeled and unlabeled in-
stances, the graph construction is non-trivial. Das
and Petrov (2011) mentioned that taking individu-
al characters as the vertices would result in various
ambiguities, whereas the similarity measurement
is still challenging if vertices corresponding to en-
tire sentences.

This study follows the intuitions of graph con-
struction from Subramanya et al. (2010) in which
vertices are represented by character trigrams oc-
curring in labeled and unlabeled sentences. For-
mally, given a set of labeled sentences Dl, and un-
labeled onesDu, whereD , {Dl,Du}, the goal is
to form an undirected weighted graph G = (V,E),
where V is defined as the set of vertices which
covers all trigrams extracted from Dl and Du.
Here, V = Vl ∪ Vu, where Vl refers to trigrams
that occurs at least once in labeled sentences and
Vu refers to trigrams that occur only in unlabeled
sentences. The edges E ∈ Vl × Vu, connect all
the vertices. This study makes use of a symmet-
ric k-NN graph (k = 5) and the edge weights are
measured by a symmetric similarity function (E-
quation (3)):

wi,j =

{
sim(xi, xj) if j ∈ K(i) or i ∈ K(j)

0 otherwise
(3)

where K(i) is the set of the k nearest neighbors of
xi(|K(i) = k, ∀i|) and sim(xi, xj) is a similari-
ty measure between two vertices. The similarity
is computed based on the co-occurrence statistic-
s over the features in Table 2. Most features we
adopted are selected from those of (Subramanya
et al., 2010). Note that a novel feature in the last
row encodes the classes of surrounding character-

s, where four types are defined: number, punctu-
ation, alphabetic letter and other. It is especially
helpful for the graph to make connections with tri-
grams that may not have been seen in labeled data
but have similar label information. The pointwise
mutual information values between the trigram-
s and each feature instantiation that they have in
common are summed to sparse vectors, and their
cosine distances are computed as the similarities.

Description Feature
Trigram + Context x1x2x3x4x5

Trigram x2x3x4

Left Context x1x2

Right Context x4x5

Center Word x3

Trigram - Center Word x2x4

Left Word + Right Context x2x4x5

Right Word + Left Context x1x2x3

Type of Trigram: number,
punctuation, alphabetic letter

and other
t(x2)t(x3)t(x4)

Table 2: Features employed to measure the sim-
ilarity between two vertices, in a given tex-
t “x1x2x3x4x5”, where the trigram is “x2x3x4”.

The nature of the similarity graph enforces that
the connected trigrams with high weight appearing
in different texts should have similar syntax con-
figurations. Thus, the constructed graph is expect-
ed to provide additional information that cannot
be expressed directly in a sequence model (Subra-
manya et al., 2010). One primary benefit of this
property is on enriching vocabulary coverage. In
other words, the new features of various trigram-
s only occurring in unlabeled data can be discov-
ered. As the excerpt in Figure 1 shows, the trigram
“天津港” (Tianjin port) has no any label informa-
tion, as it only occurs in unlabeled data, but for-
tunately its neighborhoods with similar syntax in-
formation, e.g., “上海港” (Shanghai port), “广州
港” (Guangzhou port), can assist to infer the cor-
rect tag “M NN”.

4.2 Label Propagation

In order to induce trigram-level label distributions
from the graph constructed by the previous step,
a label propagation algorithm, Sparsity-Inducing
Penalties, proposed by Das and Smith (2012), is
employed. This algorithm is used because it cap-
tures the property of sparsity that only a few labels
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Figure 1: An excerpt from the similarity graph
over trigrams on labeled and unlabeled data.

are typically associated with a given instance. In
fact, the sparsity is also a common phenomenon
among character-based CWS and POS tagging.
The following convex objective is optimized on
the similarity graph in this case:

argmin
q

l∑

j=1

‖ qj − rj ‖2

+µ
l+u∑

i=1,k∈N (i)

wik ‖ qi − qk ‖2 +λ
l+u∑

i=1

‖ qi ‖2

s.t. qi ≥ 0, ∀i ∈ V
(4)

where rj denotes empirical label distributions of
labeled vertices, and qi denotes unnormalized es-
timate measures in every vertex. The wik refers to
the similarity between the ith trigram and the kth
trigram, and N (i) is a set of neighbors of the ith
trigram. µ and λ are two hyperparameters whose
values are discussed in Section 5. The squared-
loss criterion1 is used to formulate the objective
function. The first term in Equation (4) is the seed
match loss which penalizes the estimated label dis-
tributions qj , if they go too far away from the em-
pirical labeled distributions rj . The second term
is the edge smoothness loss that requires qi should
be smooth with respect to the graph, such that two
vertices connected by an edge with high weight
should be assigned similar labels. The final term
is a regularizer to incorporate the prior knowledge,
e.g., uniform distributions used in (Talukdar et al.,
2008; Das and Smith, 2011). This study applies
the squared norm of q to encourage sparsity per
vertex. Note that the estimated label distribution

1It can be seen as a multi-class extension of quadratic cost
criterion (Bengio et al., 2006) or as a variant of the objective
in (Zhu et al., 2003). An entropic distance measure could also
be used, e.g., KL-divergence (Subramanya et al., 2010; Das
and Smith, 2012).

qi in Equation (4) is relaxed to be unnormalized,
which simplifies the optimization. Thus, the objec-
tive function can be optimized by L-BFGS-B (Zhu
et al., 1997), a generic quasi-Newton gradient-
based optimizer. The partial derivatives of Equa-
tion (4) are computed for each parameter of q and
then passed on to the optimizer that updates them
such that Equation (4) is maximized.

4.3 Semi-Supervised CRFs Training
The trigram-level label distributions inferred in the
propagation step can be viewed as a kind of valu-
able “prior knowledge” to regularize the learning
on unlabeled data. The final step of the induc-
tion is thus to incorporate such prior knowledge
into CRFs. Li (2009) generalizes the use of vir-
tual evidence to undirected graphical models and,
in particular, to CRFs for incorporating external
knowledge. By extending the similar intuition, as
illustrated in Figure 2, we modify the structure of
a regular linear-chain CRFs on unlabeled data for
smoothing the derived label distributions, where
virtual evidences, i.e., q in our case, are donated
by {v1, v2, . . . , vT }, in parallel with the state vari-
ables {y1, y2, . . . , yT }. The modified CRFs model
allows us to flexibly define the interaction between
estimated state values and virtual evidences by po-
tential functions. Therefore, given labeled and un-
labeled data, the learning objective is defined as
follows:

L(Λ) +

l+u∑

i=l+1

Ep(yi|xi,vi;Λg)[log p(yi, vi|xi; Λ)]

(5)
where the conditional probability in the second
term is denoted as

p(yi, vi|xi; Λ) =

1

Z ′(xi; Λ)
exp{

N∑

j=1

K∑

k=1

λkfk(y
j−1
i , yji , xi, j)

+α

N∑

t=1

s(yti , v
t
i)}

(6)
The first term in Equation (5) is the same as E-
quation (2), which is the traditional CRFs learn-
ing objective function on the labeled data. The
second term is the expected conditional likelihood
of unlabeled data. It is directed to maximize the
conditional likelihood of hidden states with the
derived label distributions on unlabeled data, i.e.,
p(y, v|x), where y and v are jointly modeled but
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the probability is still conditional on x. Here,
Z ′(x; Λ) is the partition function of normalization
that is achieved by summing the numerator over
both y and v. A virtual evidence feature function
of s(yti , v

t
i) with pre-defined weight α is defined

to regularize the conditional distributions of states
over the derived label distributions. The learning
is impacted by the derived label distributions as E-
quation (7): firstly, if the trigram xt−1

i xtix
t+1
i at

current position does have no corresponding de-
rived label distributions (vti = null), the value of
zero is assigned to all state hypotheses so that the
posteriors would not affected by the derived infor-
mation. Secondly, if it does have a derived label
distribution, since the virtual evidence in this case
is a distribution instead of a specific label, the la-
bel probability in the distribution under the current
state hypothesis is assigned. This means that the
values of state variables are constrained to agree
with the derived distributions.

s(yti , v
t
i) =

{
qxt−1
i xtix

t+1
i

(yti) if vti 6= null

0 else
(7)

The second term in Equation (5) can be op-
timized by using the expectation maximization
(EM) algorithm in the same fashion as in the
generative approach, following (Li, 2009). One
can iteratively optimize the Q function Q(Λ) =∑

y p(yi|xi; Λg) log p(yi, vi|xi; Λ), in which Λg is
the model estimated from the previous iteration.
Here the gradient of the Q function can be mea-
sured by:

∂Q(Λ)

∂Λk
=
∑

t

∑

yt−1
i ,yti

fk(y
t−1
i , yti , xi, t).

(p(yt−1
i , yti |xi, vi; Λ)− p(yt−1

i , yti |xi; Λ))

(8)

The forward-backward algorithm is used to mea-
sure p(yt−1

i , yti |xi, vi; Λ) and p(yt−1
i , yti |xi; Λ).

Thus, the objective function Equation (5) is op-
timized as follows: for the instances i = 1, 2, ..., l,
the parameters Λ are learned as the supervised
manner; for the instances i = l+1, l+2, ..., u+ l,
in the E-step, the expected value of Q function is
computed, based on the current model Λg. In the
M-step, the posteriors are fixed and updated Λ that
maximizes Equation (5).

Figure 2: Modified linear-chain CRFs integrating
virtual evidences on unlabeled data.

5 Experiment

5.1 Setting
The experimental data are mainly taken from the
Chinese tree bank (CTB-7) and Microsoft Re-
search (MSR)2. CTB-7 consists of over one mil-
lion words of annotated and parsed text from Chi-
nese newswire, magazine news, various broadcast
news and broadcast conversation programs, web
newsgroups and weblogs. It is a segmented, POS
tagged3 and fully bracketed corpus. The train, de-
velopment and test sets4 from CTB-7 and their
corresponding statistics are reported in Table 3.
To satisfy the characteristic of the semi-supervised
learning problem, the train set, i.e., the labeled da-
ta, is formed by a relatively small amount of an-
notated texts sampled from CTB-7. For the un-
labeled data in this experiment, a greater amount
of texts is extracted from CTB-7 and MSR, which
contains 53,108 sentences with 2,418,690 charac-
ters.

The performance measurement indicators for
word segmentation and POS tagging (joint S&T)
are balance F-score, F = 2PR/(P+R), the harmon-
ic mean of precision (P) and recall (R), and out-
of-vocabulary recall (OOV-R). For segmentation,
a token is regarded to be correct if its boundaries
match the ones of a word in the gold standard.
For the POS tagging, it is correct only if both the
boundaries and the POS tags are perfect matches.

The experimental platform is implemented
based on two toolkits: Mallet (McCallum and
Kachites, 2002) and Junto (Talukdar and Pereira,
2010). Mallet is a java-based package for s-
tatistical natural language processing, which in-
cludes the CRFs implementation. Junto is a graph-

2It can be download at: www.sighan.org/bakeoff2005.
3There is a total of 33 POS tags in CTB-7.
4The extracted sentences in train, development and test set

were assigned with the composite tags as described in Section
3.1.
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based label propagation toolkit that provides sev-
eral state-of-the-art algorithms.

Data #Sent #Word #Char #OOV
Train 17,968 374,697 596,360

Develop 1,659 46,637 79,283 0.074
Test 2,037 65,219 104,502 0.089

Table 3: Training, development and testing data.

5.2 Baseline and Proposed Models

In the experiment, the baseline supervised pipeline
and joint S&T models are built only on the train
data. The proposed model will also be compared
with the semi-supervised pipeline S&T model de-
scribed in (Wang et al., 2011). In addition, two
state-of-the-art semi-supervised CRFs algorithms,
Jiao’s CRFs (Jiao et al., 2006) and Subramanya’s
CRFs (Subramanya et al., 2010), are also used to
build joint S&T models. The corresponding set-
tings of the above candidates are listed below:

• Baseline I: a supervised CRFs pipeline S&T
model. The feature templates are from Zhao
et al. (2006) and Wu et al. (2008).

• Wang’s model: a semi-supervised CRFs
pipeline S&T model. The same feature tem-
plates in (Wang et al., 2011) are used, i.e.,
“+n-gram+cluster+lexicon”.

• Baseline II: a supervised CRFs joint S&T
model. The feature templates introduced in
Section 3.1 are used.

• Jiao’s model: a semi-supervised CRFs joint
S&T model trained using the entropy regular-
ization (ER) criteria (Jiao et al., 2006). The
optimization method proposed by Mann and
McCallum (2007) is applied.

• Subramanya’s model: a self-train style
semi-supervised CRFs joint S&T model
based on the same parameters used in (Sub-
ramanya et al., 2010).

• Our model: several parameters in our model
are needed to tune based on the development
set, e.g., µ, λ and α.

In all the CRFs models above, the Gaussian reg-
ularizer and stochastic gradient descent method
are employed.

5.3 Main Results
This experiment yielded a similarity graph that
consists of 462,962 trigrams from labeled and un-
labeled data. The majority (317,677 trigrams) oc-
curred only in unlabeled data. Based on the de-
velopment data, the hyperparameters of our mod-
el were tuned among the following settings: for
the graph propagation, µ ∈ {0.2, 0.5, 0.8} and
λ ∈ {0.1, 0.3, 0.5, 0.8}; for the CRFs training,
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The best performed
joint settings are µ = 0.5, λ = 0.3 and α = 0.7.
With the chosen set of hyperparameters, the test
data was used to measure the final performance.

Model Segmentation POS Tagging
F1 OOV-R F1 OOV-R

Baseline I 94.27 60.12 91.08 51.72
Wang’s 95.17 63.10 91.64 53.29

Baseline II 95.14 61.52 91.61 52.29
Jiao’s 95.58 63.05 92.11 53.27

Subramanya’s 96.30 67.12 92.46 57.15
Our model 96.85 68.09 92.89 58.36

Table 4: The performance of segmentation and
POS tagging on testing data.

Table 4 summarizes the performance of seg-
mentation and POS tagging on the test data, in
comparison with the other five models. First-
ly, as expected, for the two supervised baselines,
the joint model outperforms the pipeline one, e-
specially on segmentation. It obtains 0.92% and
2.32% increase in terms of F-score and OOV-R
respectively. This outcome verifies the commonly
accepted fact that the joint model can substantially
improve the pipeline one, since POS tags provide
additional information to word segmentation (Ng
and Low, 2004). Secondly, it is also noticed that
all four semi-supervised models are able to benefit
from unlabeled data and greatly improve the re-
sults with respect to the baselines. On the whole,
for segmentation, they achieve average improve-
ments of 1.02% and 6.8% in F-score and OOV-R;
whereas for POS tagging, the average increments
of F-sore and OOV-R are 0.87% and 6.45%. An
interesting phenomenon is found among the com-
parisons with baselines that the supervised joint
model (Baseline II) is even competitive with semi-
supervised pipeline one (Wang et al., 2011). This
illustrates the effects of error propagation in the
pipeline approach. Thirdly, in what concerns the
semi-supervised approaches, the three joint S&T
models, i.e., Jiao’s, Subramanya’s and our mod-
el, are superior to the pipeline model, i.e., Wang’s
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model. Moreover, the two graph-based approach-
es, i.e., Subramanya’s and our model, outperform
the others. Most importantly, the boldface num-
bers in the last row illustrate that our model does
achieve the best performance. Overall, for word
segmentation, it obtains average improvements of
1.43% and 8.09% in F-score and OOV-R over oth-
ers; for POS tagging, it achieves average improve-
ments of 1.09% and 7.73%.
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Figure 3: The learning curves of semi-supervised
models on unlabeled data, where left graphs are
segmentation and the right ones are tagging.

5.4 Learning Curve

An additional experiment was conducted to inves-
tigate the impact of unlabeled data for the four
semi-supervised models. Figure 3 illustrates the
curves of F-score and OOV-R for segmentation
and tagging respectively, as the unlabeled data
size is progressively increased in steps of 6,000
sentences. It can be clearly observed that al-
l curves of our model are able to mount up steadi-
ly and achieve better gains over others consistent-
ly. The most competitive performance of the oth-
er three candidates is achieved by Subramanya’s
model. This strongly reveals that the knowledge
derived from the similarity graph does effectively
strengthen the model. But in Subramanya’s mod-
el, when the unlabeled size ascends to approxi-
mately 30,000 sentences the curves become nearly
asymptotic. The semi-supervised pipeline model,
Wang’s model, presents a much slower growth on
all curves over the others and also begins to over-
fit with large unlabeled data sizes (>25,000 sen-
tences). The figure also shows an erratic fluctu-
ation of Jiao’s model. Since this approach aims

at minimizing conditional entropy over unlabeled
data and encourages finding putative labelings for
unlabeled data, it results in a data-sensitive mod-
el (Li et al., 2009).

5.5 Analysis & Discussion

A statistical analysis of the segmentation and tag-
ging results of the supervised joint model (Base-
line II) and our model is carried out to comprehend
the influence of the graph-based semi-supervised
behavior. For word segmentation, the most signif-
icant improvement of our model is mainly concen-
trated on two kinds of words which are known for
their difficulties in terms of CWS: a) named enti-
ties (NE), e.g., “天津港” (Tianjin port) and “保税
区” (free tax zone); and b) Chinese numbers (CN),
e.g., “八点五亿” (eight hundred and fifty million)
and “百分之七十二” (seventy two percent). Very
often, these words do not exist in the labeled data,
so the supervised model is hard to learn their fea-
tures. Part of these words, however, may occur in
the unlabeled data. The proposed semi-supervised
approach is able to discover their label information
with the help of a similarity graph. Specifically, it
learns the label distributions from similar words
(neighborhoods), e.g., “上海港” (Shanghai port),
“保护区” (protection zone), “九点七亿” (nine
hundred and seventy million). The statistics in Ta-
ble 5 demonstrate significant error reductions of
50.44% and 48.74% on test data, corresponding to
NE and CN respectively.

Type #word #baErr #gbErr ErrDec%
NE 471 226 112 50.44
CN 181 119 61 48.74

Table 5: The statistics of segmentation error for
named entities (NE) and Chinese numbers (CN)
in test data. #baErr and #gbErr denote the count
of segmentations by Baseline II and our model;
ErrDec% denotes the error reduction.

On the other hand, to better understand the tag-
ging results, we summarize the increase and de-
crease of the top five common tagging error pat-
terns of our model over Baseline II for the cor-
rectly segmented words, as shown in Table 6. The
error pattern is defined by “A→B” that refers the
true tag of “A” is annotated by a tag of “B”. The
obvious improvement brought by our model oc-
curs with the tags “NN”, “CD”, “NR”, “JJ” and
“NR”, where errors are reduced 60.74% on aver-
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Pattern #baErr ↓ Pattern #baErr ↑
NN→VV 58 38 NN→NR 13 6
CD→NN 41 27 IJ→ON 9 5
NR→VV 29 17 VV→NN 4 3
JJ→NN 18 11 NR→NN 1 3
NR→VA 19 10 JJ→AD 1 2

Table 6: The statistics of POS tagging error pat-
terns in test data. #baErr denote the count of tag-
ging error by Baseline II, while ↓ and ↑ denotes
the number of error reduced or increased by our
model.

age. More impressively, there is a large portion of
fixed error pattern instances stemming from OOV
words. Meanwhile, it is also observed that the dis-
ambiguation of error patterns in the right portion
of the table slightly suffers from our approach. In
reality, it is impossible and unrealistic to request
a model to be “no harms but only benefits” under
whatever circumstances.

6 Conclusion

This study introduces a novel semi-supervised ap-
proach for joint Chinese word segmentation and
POS tagging. The approach performs the semi-
supervised learning in the way that the trigram-
level distributions inferred from a similarity graph
are used to regularize the learning of CRFs model
on labeled and unlabeled data. The empirical re-
sults indicate that the similarity graph information
and the incorporation manner of virtual evidences
present a positive effect to the model induction.
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Abstract

Modern phrase-based machine translation
systems make extensive use of word-
based translation models for inducing
alignments from parallel corpora. This
is problematic, as the systems are inca-
pable of accurately modelling many trans-
lation phenomena that do not decompose
into word-for-word translation. This pa-
per presents a novel method for induc-
ing phrase-based translation units directly
from parallel data, which we frame as
learning an inverse transduction grammar
(ITG) using a recursive Bayesian prior.
Overall this leads to a model which learns
translations of entire sentences, while also
learning their decomposition into smaller
units (phrase-pairs) recursively, terminat-
ing at word translations. Our experiments
on Arabic, Urdu and Farsi to English
demonstrate improvements over competi-
tive baseline systems.

1 Introduction

The phrase-based approach (Koehn et al., 2003)
to machine translation (MT) has transformed MT
from a narrow research topic into a truly useful
technology to end users. Leading translation sys-
tems (Chiang, 2007; Koehn et al., 2007; Marcu et
al., 2006) all use some kind of multi-word transla-
tion unit, which allows translations to be produced
from large canned units of text from the training
corpus. Larger phrases allow for the lexical con-
text to be considered in choosing the translation,
and also limit the number of reordering decisions
required to produce a full translation.

Word-based translation models (Brown et al.,
1993) remain central to phrase-based model train-
ing, where they are used to infer word-level align-
ments from sentence aligned parallel data, from

which phrasal translation units are extracted us-
ing a heuristic. Although this approach demon-
strably works, it suffers from a number of short-
comings. Firstly, many phrase-based phenomena
which do not decompose into word translations
(e.g., idioms) will be missed, as the underlying
word-based alignment model is unlikely to pro-
pose the correct alignments. Secondly, the rela-
tionship between different phrase-pairs is not con-
sidered, such as between single word translations
and larger multi-word phrase-pairs or where one
large phrase-pair subsumes another.

This paper develops a phrase-based translation
model which aims to address the above short-
comings of the phrase-based translation pipeline.
Specifically, we formulate translation using in-
verse transduction grammar (ITG), and seek to
learn an ITG from parallel corpora. The novelty
of our approach is that we develop a Bayesian
prior over the grammar, such that a nontermi-
nal becomes a ‘cache’ learning each production
and its complete yield, which in turn is recur-
sively composed of its child constituents. This is
closely related to adaptor grammars (Johnson et
al., 2007a), which also generate full tree rewrites
in a monolingual setting. Our model learns trans-
lations of entire sentences while also learning their
decomposition into smaller units (phrase-pairs) re-
cursively, terminating at word translations. The
model is richly parameterised, such that it can de-
scribe phrase-based phenomena while also explic-
itly modelling the relationships between phrase-
pairs and their component expansions, thus ame-
liorating the disconnect between the treatment of
words versus phrases in the current MT pipeline.
We develop a Bayesian approach using a Pitman-
Yor process prior, which is capable of modelling
a diverse range of geometrically decaying distri-
butions over infinite event spaces (here translation
phrase-pairs), an approach shown to be state of the
art for language modelling (Teh, 2006).
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We are not the first to consider this idea; Neu-
big et al. (2011) developed a similar approach for
learning an ITG using a form of Pitman-Yor adap-
tor grammar. However Neubig et al.’s work was
flawed in a number of respects, most notably in
terms of their heuristic beam sampling algorithm
which does not meet either of the Markov Chain
Monte Carlo criteria of ergodicity or detailed bal-
ance. Consequently their approach does not con-
stitute a valid Bayesian model. In contrast, this
paper provides a more rigorous and theoretically
sound method. Moreover our approach results in
consistent translation improvements across a num-
ber of translation tasks compared to Neubig et al.’s
method, and a competitive phrase-based baseline.

2 Related Work

Inversion transduction grammar (or ITG) (Wu,
1997) is a well studied synchronous grammar for-
malism. Terminal productions of the form X →
e/f generate a word in two languages, and non-
terminal productions allow phrasal movement in
the translation process. Straight productions, de-
noted by their non-terminals inside square brack-
ets [...], generate their symbols in the given or-
der in both languages, while inverted productions,
indicated by angled brackets 〈...〉, generate their
symbols in the reverse order in the target language.

In the context of machine translation, ITG
has been explored for statistical word alignment
in both unsupervised (Zhang and Gildea, 2005;
Cherry and Lin, 2007; Zhang et al., 2008; Pauls et
al., 2010) and supervised (Haghighi et al., 2009;
Cherry and Lin, 2006) settings, and for decoding
(Petrov et al., 2008). Our paper fits into the re-
cent line of work for jointly inducing the phrase ta-
ble and word alignment (DeNero and Klein, 2010;
Neubig et al., 2011). The work of DeNero and
Klein (2010) presents a supervised approach to
this problem, whereas our work is unsupervised
hence more closely related to Neubig et al. (2011)
which we describe in detail below.

A number of other approaches have been de-
veloped for learning phrase-based models from
bilingual data, starting with Marcu and Wong
(2002) who developed an extension to IBM model
1 to handle multi-word units. This pioneer-
ing approach suffered from intractable inference
and moreover, suffers from degenerate solutions
(DeNero and Klein, 2010). Our approach is simi-
lar to these previous works, except that we impose

additional constraints on how phrase-pairs can be
tiled to produce a sentence pair, and moreover,
we seek to model the embedding of phrase-pairs
in one another, something not considered by this
prior work. Another strand of related research is
in estimating a broader class of synchronous gram-
mars than ITGs, such as SCFGs (Blunsom et al.,
2009b; Levenberg et al., 2012). Conceptually, our
work could be readily adapted to general SCFGs
using similar techniques.

This work was inspired by adaptor grammars
(Johnson et al., 2007a), a monolingual grammar
formalism whereby a non-terminal rewrites in a
single step as a complete subtree. The model prior
allows for trees to be generated as a mixture of a
cache and a base adaptor grammar. In our case,
we have generalised to a bilingual setting using an
ITG. Additionally, we have extended the model to
allow recursive nesting of adapted non-terminals,
such that we end up with an infinitely recursive
formulation where the top-level and base distribu-
tions are explicitly linked together.

As mentioned above, ours is not the first work
attempting to generalise adaptor grammars for ma-
chine translation; (Neubig et al., 2011) also devel-
oped a similar approach based around ITG using a
Pitman-Yor Process prior. Our approach improves
upon theirs in terms of the model and inference,
and critically, this is borne out in our experiments
where we show uniform improvements in transla-
tion quality over a baseline system, as compared
to their almost entirely negative results. We be-
lieve that their approach had a number of flaws:
For inference they use a beam-search, which may
speed up processing but means that they are no
longer sampling from the true distribution, nor a
distribution with the same support as the posterior.
Moreover they include a Metropolis-Hastings cor-
rection step, which is required to correct the sam-
ples to account for repeated substructures which
will be otherwise underrepresented. Consequently
their approach does not constitute a Markov Chain
Monte Carlo sampler, but rather a complex heuris-
tic.

The other respect in which this work differs
from Neubig et al. (2011) is in terms of model for-
mulation. They develop an ITG which generates
phrase-pairs as terminals, while we employ a more
restrictive word-based model which forces the de-
composition of every phrase-pair. This is an im-
portant restriction as it means that we jointly learn
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a word and phrase based model, such that word
based phenomena can affect the phrasal struc-
tures. Finally our approach models separately the
three different types of ITG production (mono-
tone, swap and lexical emission), allowing for a
richer parameterisation which the model exploits
by learning different hyper-parameter values.

3 Model

The generative process of the model follows that
of ITG with the following simple grammar

X → [X X] | 〈X X〉
X → e/f | e/⊥ | ⊥/f ,

where [·] denotes monotone ordering and 〈·〉 de-
notes a swap in one language. The symbol ⊥ de-
notes the empty string. This corresponds to a sim-
ple generative story, with each stage being a non-
terminal rewrite starting with X and terminating
when there are no frontier non-terminals.

A popular variant is a phrasal ITG, where the
leaves of the ITG tree are phrase-pairs and the
training seeks to learn a segmentation of the source
and target which yields good phrases. We would
not expect this model to do very well as it cannot
consider overlapping phrases, but instead is forced
into selecting between many competing – and of-
ten equally viable – options. Our approach im-
proves over the phrasal model by recursively gen-
erating complete phrases. This way we don’t insist
on a single tiling of phrases for a sentence pair, but
explicitly model the set of hierarchically nested
phrases as defined by an ITG derivation. This ap-
proach is closer in spirit to the phrase-extraction
heuristic, which defines a set of ‘atomic’ terminal
phrase-pairs and then extracts every combination
of these atomic phase-pairs which is contiguous in
the source and target.1

The generative process is that we draw a com-
plete ITG tree, t ∼ P2(·), as follows:

1. choose the rule type, r ∼ R, where r ∈
{mono, swap, emit}

2. for r = mono
(a) draw the complete subtree expansion,

t = X → [. . .] ∼ TM
3. for r = swap

(a) draw the complete subtree expansion,
t = X → 〈. . .〉 ∼ TS

1Our technique considers the subset of phrase-pairs which
are consistent with the ITG tree.

4. for r = emit
(a) draw a pair of strings, (e, f) ∼ E
(b) set t = X → e/f

Note that we split the problem of drawing a tree
into two steps: first choosing the top-level rule
type and then drawing a rule of that type. This
gives us greater control than simply drawing a tree
of any type from one distribution, due to our pa-
rameterisation of the priors over the model param-
eters TM , TS and E.

To complete the generative story, we need to
specify the prior distributions for TM , TS and
E. First, we deal with the emission distribu-
tion, E which we drawn from a Dirichlet Pro-
cess prior E ∼ DP(bE , P0). We restrict the emis-
sion rules to generate word pairs rather than phrase
pairs.2 For the base distribution, P0, we use a sim-
ple uniform distribution over word pairs,

P0(e, f) =





η2 1
VEVF

e 6= ⊥, f 6= ⊥
η(1− η) 1

VF
e = ⊥, f 6= ⊥

η(1− η) 1
VE

e 6= ⊥, f = ⊥
,

where the constant η denotes the binomial proba-
bility of a word being aligned.3

We use Pitman-Yor Process priors for the TM
and TS parameters

TM ∼ PYP(aM , bM , P1(·|r = mono))

TS ∼ PYP(aS , bS , P1(·|r = swap))

where P1(t1, t2|r) is a distribution over a pair of
trees (the left and right children of a monotone or
swap production). P1 is defined as follows:

1. choose the complete left subtree t1 ∼ P2,
2. choose the complete right subtree t2 ∼ P2,
3. set t = X → [t1 t2] or t = X → 〈t1 t2〉

depending on r
This generative process is mutually recursive: P2

makes draws from P1 and P1 makes draws from
P2. The recursion is terminated when the rule type
r = emit is drawn.

Following standard practice in Bayesian mod-
els, we integrate out R, TM , TS and E. This
means draws from P2 (or P1) are no longer iid:
for any non-trivial tree, computing its probabil-
ity under this model is complicated by the fact

2Note that we could allow phrases here, but given the
model can already reason over phrases by way of its hier-
archical formulation, this is an unnecessary complication.

3We also experimented with using word translation prob-
abilities from IBM model 1, based on the prior used by Lev-
enberg et al. (2012), however we found little empirical differ-
ence compared with this simpler uniform model.
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that the probability of its two subtrees are inter-
dependent. This is best understood in terms of
the Chinese Restaurant Franchise (CRF; Teh et al.
(2006)), which describes the posterior distribution
after integrating out the model parameters. In our
case we can consider the process of drawing a tree
from P2 as a customer entering a restaurant and
choosing where to sit, from an infinite set of ta-
bles. The seating decision is based on the number
of other customers at each table, such that popular
tables are more likely to be joined than unpopular
or empty ones. If the customer chooses an occu-
pied table, the identity of the tree is then set to
be the same as for the other customers also seated
there. For empty tables the tree must be sampled
from the base distribution P1. In the standard CRF
analogy, this leads to another customer entering
the restaurant one step up in the hierarchy, and
this process can be chained many times. In our
case, however, every new table leads to new cus-
tomers reentering the original restaurant – these
correspond to the left and right child trees of a
monotone or swap rule. The recursion terminates
when a table is shared, or a new table is labelled
with a emit rule.

3.1 Inference

The probability of a tree (i.e., a draw from P2) un-
der the model is

P2(t) = P (r)P2(t|r) (1)

where r is the rule type, one of mono, swap or
emit. The distribution over types, P (r), is de-
fined as

P (r) =
nT,−r + bT

1
3

nT,− + bT

where nT,− are the counts over rules of types.4

The second component in (1), P2(t|r), is de-
fined separately for each rule type. For r = mono
or r = swap rules, it is defined as

P2(t|r) =
n−t,r −K−

t,rar

n−r + br
+
K−
r ar + br

n−r + br
P1(t1, t2|r) ,

(2)

where n−t,r is the count for tree t in the other train-
ing sentences, K−

t,r is the table count for t and n−r
4The conditioning on event and table counts, n−,K− is

omitted for clarity.

and K−
r are the total count of trees and tables, re-

spectively. Finally, the probability for r = emit
is given by

P2(t|r = emit) =
n−t,E + bEP0(e, f)

n−r + br
,

where t = X → e/f .
To complete the derivation we still need to de-

fine P1, which is formulated as

P1(t1, t2) = P2(t1)P2(t2|t1) ,

where the conditioning of the second recursive call
to P2 reflects that the counts n− and K− may
be affected by the first draw from P2. Although
these two draws are assumed iid in the prior, after
marginalising out T they are no longer indepen-
dent. For this reason, evaluating P2(t) is computa-
tionally expensive, requiring tracking of repeated
substructures in descendent sub-trees of t, which
may affect other descendants. This results in an
asymptotic complexity exponential in the number
of nodes in the tree. For this reason we consider
trees annotated with binary values denoting their
table assignment, namely whether they share a ta-
ble or are seated alone. Given this, the calculation
is greatly simplified, and has linear complexity.5

We construct an approximating ITG following
the technique used for sampling trees from mono-
lingual tree-substitution grammars (Cohn et al.,
2010). To do so we encode the first term from
(2) separately from the second term (correspond-
ing to draws from P1). Summing together these
two alternate paths – i.e., during inside inference –
we recover P2 as shown in (2). The full grammar
transform for inside inference is shown in Table 1.

The sampling algorithm closely follows the
process for sampling derivations from Bayesian
PCFGs (Johnson et al., 2007b). For each sentence-
pair, we first decrement the counts associated with
its current tree, and then sample a new deriva-
tion. This involves first constructing the inside
lattice using the productions in Table 1, and then
performing a top-down sampling pass. After
sampling each derivation from the approximating
grammar, we then convert this into its correspond-
ing ITG tree, which we then score with the full
model and accept or reject the sample using the

5To support this computation, we track explicit table as-
signments for every training tree and their component sub-
trees. We also sample trees labelled with seating indicator
variables.
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Ty
pe

X →M P (r = mono)

X → S P (r = swap)

X → E P (r = emit)

B
as

e M → [XX]
K−
MaM+bM

n−
M+bM

S → 〈XX〉 K−
S aS+bS

n−
S+bS

C
ou

nt

For every tree, t, of type r = mono, with nt,M > 0:

M → sig(t)
n−
t,M−K−

t,Mar

n−
M+bM

sig(t)→ yield(t) 1
For every tree, t, of type r = swap, with nt,S > 0:

S → sig(t)
n−
t,S−K

−
t,SaS

n−
S+bS

sig(t)→ yield(t) 1

E
m

it For every word pair, e/f in sentence pair,
where one of e, f can be ⊥:

E → e/f P2(t)

Table 1: Grammar transformation rules for MAP
inside inference. The function sig(t) returns a
unique identifier for the complete tree t, and
the function yield(t) returns the pair of terminal
strings from the yield of t.

Metropolis-Hastings algorithm.6 Accepted sam-
ples then replace the old tree (otherwise the old
tree is retained) and the model counts are incre-
mented. This process is then repeated for each
sentence pair in the corpus in a random order.

4 Experiments

Datasets We train our model across three
language pairs: Urdu→English (UR-EN),
Farsi→English (FA-EN), and Arabic→English
(AR-EN). The corpora statistics of these trans-
lation tasks are summarised in Table 2. The
UR-EN corpus comes from NIST 2009 translation
evaluation.7 The AR-EN training data consists
of the eTIRR corpus (LDC2004E72), the Ara-
bic news corpus (LDC2004T17), the Ummah
corpus (LDC2004T18), and the sentences with
confidence c > 0.995 in the ISI automatically
extracted web parallel corpus (LDC2006T02).
For FA-EN, we use TEP8 Tehran English-Persian
Parallel corpus (Pilevar and Faili, 2011), which
consists of conversational/informal text extracted

6The full model differs from the approximating grammar
in that it accounts for inter-dependencies between subtrees
by recursively tracking the changes in the customer and table
counts while scoring the tree. Around 98% of samples were
accepted in our experiments.

7http://www.itl.nist.gov/iad/mig/tests/mt/2009
8http://ece.ut.ac.ir/NLP/resources.htm

source target sentences
UR-EN 745K 575K 148K
FA-EN 4.7M 4.4M 498K
AR-EN 1.94M 2.08M 113K

Table 2: Corpora statistics showing numbers of
parallel sentences and source and target words for
the training sets.

from 1600 movie subtitles. We tokenized this
corpus, removed noisy single-word sentences,
randomly selected the development and test sets,
and used the rest of the corpus as the training set.
We discard sentences with length above 30 from
the datasets for all experiments.9

Sampler configuration Samplers are initialised
with trees created from GIZA++ alignments
constructed using a SCFG factorisation method
(Blunsom et al., 2009a). This algorithm repre-
sents the translation of a sentence as a large SCFG
rule, which it then factorises into lower rank SCFG
rules, a process akin to rule binarisation com-
monly used in SCFG decoding. Rules that can-
not be reduced to a rank-2 SCFG are simplified
by dropping alignment edges until they can be
factorised, the net result being an ITG derivation
largely respecting the alignments.10

The blocked sampler was run 1000 iterations
for UR-EN, 100 iterations for FA-EN and AR-
EN. After each full sampling iteration, we resam-
ple all the hyper-parameters using slice-sampling,
with the following priors: a ∼ Beta(1, 1),
b ∼ Gamma(10, 0.1). Figure 1 shows the poste-
rior probability improves with each full sampling
iterations. The alignment probability was set to
η = 0.99. The sampling was repeated for 5 in-
dependent runs, and we present results where we
combine the outputs of these runs. This is a form
of Monte Carlo integration which allows us to rep-
resent the uncertainty in the posterior, while also
representing multiple modes, if present.

The time complexity of our inference algorithm
is O(n6), which can be prohibitive for large scale
machine translation tasks. We reduce the com-
plexity by constraining the inside inference to
consider only derivations which are compatible

9Hence the BLEU scores we get for the baselines may
appear lower than what reported in the literature.

10Using the factorised alignments directly in a translation
system resulted in a slight loss in BLEU versus using the un-
factorised alignments. Our baseline system uses the latter.
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Figure 1: Training progress on the UR-EN corpus,
showing the posterior probability improving with
each full sampling iteration. Different colours de-
note independent sampling runs.
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Figure 2: The runtime cost of bottom-up inside in-
ference and top-down sampling as a function of
sentence length (UR-EN), with time shown on a
logarithmic scale. Full ITG inference is shown
with red circles, and restricted inference using the
intersection constraints with blue triangles. The
average time complexity for the latter is roughly
O(l4), as plotted in green t = 2× 10−7l4.

with high confidence alignments from GIZA++.11

Figure 2 shows the sampling time with respect
to the average sentence length, showing that our
alignment-constrained sampling algorithm is bet-
ter than the unconstrained algorithm with empir-
ical complexity of n4. However, the time com-
plexity is still high, so we set the maximum sen-
tence length to 30 to keep our experiments practi-
cable. Presumably other means of inference may
be more efficient, such as Gibbs sampling (Lev-
enberg et al., 2012) or auxiliary variable sampling
(Blunsom and Cohn, 2010); we leave these exten-
sions to future work.

Baselines. Following (Levenberg et al., 2012;
Neubig et al., 2011), we evaluate our model by
using its output word alignments to construct a
phrase table. As a baseline, we train a phrase-
based model using the moses toolkit12 based on
the word alignments obtained using GIZA++ in
both directions and symmetrized using the grow-
diag-final-and heuristic13 (Koehn et al., 2003).
This alignment is used as input to the rule fac-
torisation algorithm, producing the ITG trees with
which we initialise our sampler. To put our results
in the context of the previous work, we also com-
pare against pialign (Neubig et al., 2011), an ITG
algorithm using a Pitman-Yor process prior, as de-
scribed in Section 2.14

In the end-to-end MT pipeline we use a stan-
dard set of features: relative-frequency and lexical
translation model probabilities in both directions;
distance-based distortion model; language model
and word count. We set the distortion limit to
6 and max-phrase-length to 7 in all experiments.
We train 3-gram language models using modified
Kneser-Ney smoothing. For AR-EN experiments
the language model is trained on English data as
(Blunsom et al., 2009a), and for FA-EN and UR-
EN the English data are the target sides of the
bilingual training data. We use minimum error
rate training (Och, 2003) with nbest list size 100
to optimize the feature weights for maximum de-
velopment BLEU.

11These are taken from the final model 4 word alignments,
using the intersection of the source-target and target-source
models. These alignments are very high precision (but have
low recall), and therefore are unlikely to harm the model.

12http://www.statmt.org/moses
13We use the default parameter settings in both moses and

GIZA++.
14http://www.phontron.com/pialign
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Baselines This paper
GIZA++ pialign individual combination

UR-EN 16.95 15.65 16.68 ± .12 16.97
FA-EN 20.69 21.41 21.36 ± .17 21.50

AR-EN

MT03 44.05 43.30 44.8 ± .28 45.10
MT04 38.15 37.78 38.4 ± .08 38.4
MT05 42.81 42.18 43.13 ± .23 43.45
MT08 32.43 33.00 32.7 ± .15 32.80

Table 3: The BLEU scores for the translation tasks of three language pairs. The individual column show
the average and 95% confidence intervals for 5 independent runs, whereas the combination column show
the results for combining the phrase tables of all these runs. The baselines are GIZA++ alignments and
those generated by the pialign (Neubig et al., 2011) bold: the best result.
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Figure 3: Fraction of rules with a given frequency,
using a single sample grammar (UR-EN).

4.1 Results

Table 3 shows the BLEU scores for the three trans-
lation tasks UR/AR/FA→EN based on our method
against the baselines. For our models, we report
the average BLEU score of the 5 independent runs
as well as that of the aggregate phrase table gen-
erated by these 5 independent runs. There are
a number of interesting observations in Table 3.
Firstly, combining the phrase tables from indepen-
dent runs results in increased BLEU scores, possi-
bly due to the representation of uncertainty in the
outputs, and the representation of different modes
captured by the individual models. We believe this
type of Monte Carlo model averaging should be
considered in general when sampling techniques
are employed for grammatical inference, e.g. in
parsing and translation. Secondly, our approach
consistently improves over the Giza++ baseline
often by a large margin, whereas pialign under-

performs the GIZA++ baseline in many cases.
Thirdly, our model consistently outperforms pi-
align (except in AR-EN MT08 which is very
close). This highlights the modeling and inference
differences between our method and the pialign.

5 Analysis

In this section, we present some insights about the
learned grammar and the model hyper-parameters.
Firstly, we start by presenting various statistics
about different learned grammars. Figure 3 shows
the fraction of rules with a given frequency for
each of the three rule types. The three types of rule
exhibit differing amounts of high versus low fre-
quency rules, and all roughly follow power laws.
As expected, there is a higher tendency to reuse
high-frequency emissions (or single-word transla-
tion) compared to other rule types, which are the
basic building blocks to compose larger rules (or
phrases). Table 4 lists the high frequency mono-
tone and swap rules in the learned grammar. We
observe the high frequency swap rules capture re-
ordering in verb clusters, preposition-noun inver-
sions and adjective-noun reordering. Similar pat-
terns are seen in the monotone rules, along with
some common canned phrases. Note that “in Iraq”
appears twice, once as an inversion in UR-EN and
another time in monotone order for AR-EN.

Secondly, we analyse the values learned for
the model hyper-parameters; Figure 4.(a) shows
the posterior distribution over the hyper-parameter
values. There is very little spread in the inferred
values, suggesting the sampling chains may have
converged. Furthermore, there is a large differ-
ence between the learned hyper-parameters for the
monotone rules versus the swap rules. For the
Pitman-Yor Process prior, the values of the hyper-
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Table 5: Good phrase pairs in the top-100 high frequency phrase pairs specific to the phrase tables
coming from our method vs that of pialign for FA-EN and AR-EN translation tasks.

parameters affects the rate at which the number of
types grows compared to the number of tokens.
Specifically, as the discount a or the concentra-
tion b parameters increases we expect for a rela-
tive increase in the number of types. If the number
of observed monotone and swap rules were equal,
then there would be a higher chance in reusing the
monotone rules. However, the number of observed
monotone and swap rules are not equal, as plotted
in Figure 4.(b). Similar results were observed for
the other language pairs (figures omitted for space
reasons).

Thirdly, we performed a manual evaluation for
the quality of the phrase-pairs learned exclusively
by our method vs pialign. For each method,
we considered the top-100 high frequency phrase-
pairs which are specific to that method. Then we
asked a bilingual human expert to identify rea-
sonably well phrase-pairs among these top-100
phrase-pairs. The results are summarized in Ta-
ble 5, and show that we learn roughly twice as
many reasonably good phrase-pairs for AR-EN
and FA-EN compared to pialign.

Conclusions

We have presented a novel method for learn-
ing a phrase-based model of translation directly
from parallel data which we have framed as learn-
ing an inverse transduction grammar (ITG) us-
ing a recursive Bayesian prior. This has led
to a model which learns translations of en-
tire sentences, while also learning their decom-
position into smaller units (phrase-pairs) recur-
sively, terminating at word translations. We have
presented a Metropolis-Hastings sampling algo-
rithm for blocked inference in our non-parametric
ITG. Our experiments on Urdu-English, Arabic-
English, and Farsi-English translation tasks all
demonstrate improvements over competitive base-
line systems.
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Figure 4: (a) Posterior over the hyper-parameters,
aM , aS , bM , bS , bE , bT , measured for UR-EN us-
ing samples 400–500 for 3 independent sampling
chains, and the intersection constraints. (b) Poste-
rior over the number of monotone and swap rules
in the resultant grammars. The distribution for
emission rules was also peaked about 147k rules.
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Table 4: Top 5 monotone and swap productions
and their counts. Rules with mostly punctuation
or encoding 1:many or many:1 alignments were
omitted.
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Abstract

Most statistical machine translation
(SMT) systems are modeled using a log-
linear framework. Although the log-linear
model achieves success in SMT, it still
suffers from some limitations: (1) the
features are required to be linear with
respect to the model itself; (2) features
cannot be further interpreted to reach
their potential. A neural network is
a reasonable method to address these
pitfalls. However, modeling SMT with a
neural network is not trivial, especially
when taking the decoding efficiency
into consideration. In this paper, we
propose a variant of a neural network, i.e.
additive neural networks, for SMT to go
beyond the log-linear translation model.
In addition, word embedding is employed
as the input to the neural network, which
encodes each word as a feature vector.
Our model outperforms the log-linear
translation models with/without embed-
ding features on Chinese-to-English and
Japanese-to-English translation tasks.

1 Introduction

Recently, great progress has been achieved in
SMT, especially since Och and Ney (2002) pro-
posed the log-linear model: almost all the state-
of-the-art SMT systems are based on the log-linear
model. Its most important advantage is that arbi-
trary features can be added to the model. Thus,
it casts complex translation between a pair of lan-
guages as feature engineering, which facilitates re-
search and development for SMT.

Regardless of how successful the log-linear
model is in SMT, it still has some shortcomings.

This joint work was done while the first author visited
NICT.

On the one hand, features are required to be lin-
ear with respect to the objective of the translation
model (Nguyen et al., 2007), but it is not guaran-
teed that the potential features be linear with the
model. This induces modeling inadequacy (Duh
and Kirchhoff, 2008), in which the translation per-
formance may not improve, or may even decrease,
after one integrates additional features into the
model. On the other hand, it cannot deeply in-
terpret its surface features, and thus can not ef-
ficiently develop the potential of these features.
What may happen is that a feature p does initially
not improve the translation performance, but after
a nonlinear operation, e.g. log(p), it does. The
reason is not because this feature is useless but the
model does not efficiently interpret and represent
it. Situations such as this confuse explanations for
feature designing, since it is unclear whether such
a feature contributes to a translation or not.

A neural network (Bishop, 1995) is a reason-
able method to overcome the above shortcomings.
However, it should take constraints, e.g. the de-
coding efficiency, into account in SMT. Decod-
ing in SMT is considered as the expansion of
translation states and it is handled by a heuris-
tic search (Koehn, 2004a). In the search pro-
cedure, frequent computation of the model score
is needed for the search heuristic function, which
will be challenged by the decoding efficiency for
the neural network based translation model. Fur-
ther, decoding with non-local (or state-dependent)
features, such as a language model, is also a prob-
lem. Actually, even for the (log-) linear model,
efficient decoding with the language model is not
trivial (Chiang, 2007).

In this paper, we propose a variant of neural net-
works, i.e. additive neural networks (see Section
3 for details), for SMT. It consists of two com-
ponents: a linear component which captures non-
local (or state dependent) features and a non-linear
component (i.e., neural nework) which encodes lo-
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Figure 1: A bilingual tree with two synchronous rules, r1 : X → 〈Ë}�\; friendly cooperation〉
and r2 : X → 〈�te� X;X over the last years〉. The inside rectangle denotes the partial derivation
d1 = {r1} with the partial translation e1 =“friendly cooperation”, and the outside rectangle denotes the
derivation d2 = {r1, r2} with the translation e2=“friendly cooperation over the last years”.

cal (or state independent) features. Compared with
the log-linear model, it has more powerful expres-
sive abilities and can deeply interpret and repre-
sent features with hidden units in neural networks.
Moreover, our method is simple to implement and
its decoding efficiency is comparable to that of the
log-linear model. We also integrate word embed-
ding into the model by representing each word as
a feature vector (Collobert and Weston, 2008).
Because of the thousands of parameters and the
non-convex objective in our model, efficient train-
ing is not simple. We propose an efficient train-
ing methodology: we apply the mini-batch conju-
gate sub-gradient algorithm (Le et al., 2011) to ac-
celerate the training; we also propose pre-training
and post-training methods to avoid poor local min-
ima. The biggest contribution of this paper is that
it goes beyond the log-linear model and proposes a
non-linear translation model instead of re-ranking
model (Duh and Kirchhoff, 2008; Sokolov et al.,
2012).

On both Chinese-to-English and Japanese-to-
English translation tasks, experiment results show
that our model can leverage the shortcomings suf-
fered by the log-linear model, and thus achieves
significant improvements over the log-linear based
translation.

2 Log-linear Model, Revisited

2.1 Log-linear Translation Model
Och and Ney (2002) proposed the log-linear trans-
lation model, which can be formalized as follows:

P(e, d|f ;W ) =
exp

{
W> · h(f, e, d)

}
∑

e′,d′ exp
{
W> · h(f, e′, d′)

} , (1)

where f denotes the source sentence, and
e(e′) denotes its translation candidate; d(d′)
is a derivation over the pair 〈f, e〉, i.e.,

a collection of synchronous rules for Hiero
grammar (Chiang, 2005), or phrase pairs in
Moses (Koehn et al., 2007); h(f, e, d) =
(h1(f, e, d), h2(f, e, d), · · · , hK(f, e, d))> is a
K-dimensional feature vector defined on the tu-
ple 〈f, e, d〉; W = (w1, w2, · · · , wK)> is a K-
dimensional weight vector of h, i.e., the parame-
ters of the model, and it can be tuned by the toolkit
MERT (Och, 2003). Different from Brown’s
generative model (Brown et al., 1993), the log-
linear model does not assume strong indepen-
dency holds, and allows arbitrary features to be
integrated into the model easily. In other words,
it can transform complex language translation into
feature engineering: it can achieve high translation
performance if reasonable features are chosen and
appropriate parameters are assigned for the weight
vector.

2.2 Decoding By Search
Given a source sentence f and a weight W , de-
coding finds the best translation candidate ê via
the programming problem:

〈ê, d̂〉 = arg max
e,d

P(e, d|f ;W )

= arg max
e,d

{
W> · h(f, e, d)

}
. (2)

Since the range of 〈e, d〉 is exponential with re-
spect to the size of f , the exact decoding is in-
tractable and an inexact strategy such as beam
search is used instead in practice.

The idea of search for decoding can be shown
in Figure 1: it encodes each search state as a
partial translation together with its derivation, e.g.
〈e1, d1〉; it consequently expands the states from
the initial (empty) state to the end state 〈e2, d2〉
according to the translation rules r1 and r2. Dur-
ing the state expansion process, the score wi ·
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hi(f, e, d) for a partial translation is calculated re-
peatedly. In the log-linear model, if hi(f, e, d) is
a local feature, the calculation of its score wi ·
hi(f, e, d) has a substructure, and thus it can be
calculated with dynamic programming which ac-
celerates its decoding. For the non-local features
such as the language model, Chiang (2007) pro-
posed a cube-pruning method for efficient decod-
ing. The main reason why cube-pruning works is
that the translation model is linear and the model
score for the language model is approximately
monotonic (Chiang, 2007).

3 Additive Neural Networks

3.1 Motivation
Although the log-linear model has achieved great
progress for SMT, it still suffers from some pit-
falls: it requires features be linear with the model
and it can not interpret and represent features
deeply. The neural network model is a reason-
able method to overcome these pitfalls. However,
the neural network based machine translation is far
from easy.

As mentioned in Section 2, the decoding proce-
dure performs an expansion of translation states.
Firstly, let us consider a simple case in neural net-
work based translation where all the features in the
translation model are independent of the transla-
tion state, i.e. all the components of the vector
h(f, e, d) are local features. In this way, we can
easily define the following translation model with
a single-layer neural network:

S(f, e, d;W,M,B) =

W> · σ(M · h(f, e, d) +B), (3)

where M ∈ Ru×K is a matrix, and B ∈ Ru is a
vector, i.e. bias; σ is a single-layer neural network
with u hidden units, i.e. an element wise sigmoid
function sigmoid(x) = 1/

(
1 + exp(−x)

)
. For

consistent description in the rest, we also represent
Eq. (3) as a function of a feature vector h, i.e.
S(h;W,M,B) = W> · σ(M · h+B).

Now let us consider the search procedure with
the model in Eq. (3) using Figure 1 as our ex-
ample. Suppose the current translation state is en-
coded as 〈e1, d1〉, which is expanded into 〈e2, d2〉
using the rule r2 (d2 = d1 ∪ {r2}). Since h is
state-independent, h(f, e2, d2) = h(f, e1, d1) +
h(r2). However, since S(f, e, d;W,M,B) is non-
decomposable as a linear model, there is no sub-
structure for calculating S(f, e2, d2;W,M,B),

and one has to re-calculate it via Eq. (3) even
if the score of S(f, e1, d1;M,B) for its previous
state 〈e1, d1〉 is available. When the size of the pa-
rameter (W,M,B) is relatively large, it will be a
challenge for the decoding efficiency.

In order to keep the substructure property,
S(f, e2, d2;W,M,B) should be represented as
F
(
S(f, e1, d1;W,M,B);S(h(r2);M,B)

)
by a

function F . For simplicity, we suppose that the
additive property holds in F , and then we can ob-
tain a new translation model via the following re-
cursive equation:

S(f, e2, d2;W,M,B) = S(f, e1, d1;W,M,B)

+ S
(
h(r2);W,M,B

)
. (4)

Since the above model is defined only on lo-
cal features, it ignores the contributions from non-
local features. Actually, existing works empir-
ically show that some non-local features, espe-
cially language model, contribute greatly to ma-
chine translation.

Scoring for non-local features such as a n-
gram language model is not easily done. In log-
linear translation model, Chiang (2007) proposed
a cube-pruning method for scoring the language
model. The premise of cube-pruning is that the
language model score is approximately monotonic
(Chiang, 2007). However, if scoring the language
model with a neural network, this premise is diffi-
cult to hold. Therefore, one of the solutions is to
preserve a linear model for scoring the language
model directly.

3.2 Definition

According to the above analysis, we propose
a variant of a neural network model for ma-
chine translation, and we call it Additive Neural
Networks or AdNN for short.

The AdNN model is a combination of a lin-
ear model and a neural network: non-local fea-
tures, e.g. LM, are linearly modeled for the cube-
pruning strategy, and local features are modeled
by the neural network for deep interpretation and
representation. Formally, the AdNN based transla-
tion model is discriminative but non-probabilistic,
and it can be defined as follows:

S(f, e, d; θ) = W> · h(f, e, d)+
∑

r∈d
W ′> · σ

(
M · h′(r) +B

)
, (5)
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where h and h′ are feature vectors with dimension
K and K ′ respectively, and each component of h′

is a local feature which can be defined on a rule
r : X → 〈α, γ〉; θ = (W,W ′,M,B) is the model
parameters with M ∈ Ru×K′ . In this paper, we
focus on a single-layer neural network for its sim-
plicity, and one can similarly define σ as a multi-
layer neural network.

Again for the example shown in Figure 1, the
model score defined in Eq. (5) for the pair 〈e2, d2〉
can be represented as follows:

S(f, e2, d2; θ) = W> · h(f, e2, d2)+

W ′>·σ
(
M ·h′(r1)+B

)
+W ′>·σ

(
M ·h′(r2)+B

)
.

Eq. (5) is similar to both additive models (Buja
et al., 1989) and generalized additive neural net-
works (Potts, 1999): it consists of many additive
terms, and each term is either a linear or a non-
linear (a neural network) model. That is the rea-
son why our model is called “additive neural net-
works”. Of course, our model still has some dif-
ferences from both of them. Firstly, our model is
decomposable with respect to rules instead of the
component variables. Secondly, some of its addi-
tive terms share the same parameters (M,B).

There are also strong relationships between
AdNN and the log-linear model. If we consider
the parameters (M,B) as constant and σ

(
M ·

h′(r) +B
)

as a new feature vector, then AdNN is
reduced to a log-linear model. Since both (M,B)
and (W,W ′) are parameters in AdNN, our model
can jointly learn the feature σ

(
M ·h′(r) +B

)
and

tune the weight (W,W ′) of the log-linear model
together. That is different from most works un-
der the log-linear translation framework, which
firstly learn features or sub-models and then tune
the log-linear model including the learned features
in two separate steps. By joint training, AdNN can
learn the features towards the translation evalua-
tion metric, which is the main advantage of our
model over the log-linear model.

In this paper, we apply our AdNN model to hi-
erarchical phrase based translation, and it can be
similarly applied to phrase-based or syntax-based
translation. Similar to Hiero (Chiang, 2005), the
feature vector h in Eq. (5) includes 8 default fea-
tures, which consist of translation probabilities,
lexical translation probabilities, word penalty, glue
rule penalty, synchronous rule penalty and lan-
guage model. These default features are included

because they empirically perform well in the log-
linear model. For the local feature vector h′ in Eq
(5), we employ word embedding features as de-
scribed in the following subsection.

3.3 Word Embedding features for AdNN

Word embedding can relax the sparsity introduced
by the lexicalization in NLP, and it improves the
systems for many tasks such as language model,
named entity recognition, and parsing (Collobert
and Weston, 2008; Turian et al., 2010; Collobert,
2011). Here, we propose embedding features for
rules in SMT by combining word embeddings.

Firstly, we will define the embedding for the
source side α of a rule r : X → 〈α, γ〉. Let
VS be the vocabulary in the source language with
size |VS |; Rn×|VS | be the word embedding matrix,
each column of which is the word embedding (n-
dimensional vector) for the corresponding word in
VS ; and maxSource be the maximal length of α
for all rules. We further assume that the α for all
rules share the same length as maxSource; other-
wise, we add maxSource − |α| words “NULL”
to the end of α to obtain a new α. We define the
embedding of α as the concatenation of the word
embedding of each word in α. In particular, for
the non-terminal in α, we define its word embed-
ding as the vector whose components are 0.1; and
we define the word embedding of “NULL” as 0.
Then, we similarly define the embedding for the
target side of a rule, given an embedding matrix
for the target vocabulary. Finally, we define the
embedding of a rule as the concatenation of the
embedding of its source and target sides.

In this paper, we apply the word embedding ma-
trices from the RNNLM toolkit (Mikolov et al.,
2010) with the default settings: we train two RNN
language models on the source and target sides of
training corpus, respectively, and then we obtain
two matrices as their by-products1. It would be
potentially better to train the word embedding ma-
trix from a much larger corpus as (Collobert and
Weston, 2008), and we will leave this as a future
task.

3.4 Decoding

Substituting the P(e, d|f ;W ) in Eq. (2) with
S(f, e, d; θ) in Eq. (5), we can obtain its corre-

1In the RNNLM toolkit, the default dimension for word
embedding is n = 30. In our experiments, the maximal
length of α and γ are 5 and 12 respectively. Thus the di-
mension for h′ is K′ = 30× (5 + 12) = 510.
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sponding decoding formula:

〈ê, d̂〉 = arg max
e,d

S(f, e, d; θ).

Given the model parameter θ = (W,W ′,M,B), if
we consider (M,B) as constant and σ

(
M ·h′(r)+

B
)

as an additional feature vector besides h, then
Eq. (5) goes back to being a log-linear model with
parameter (W,W ′). In this way, the decoding for
AdNN can share the same search strategy and cube
pruning method as the log-linear model.

4 Training Method

4.1 Training Objective

For the log-linear model, there are various tun-
ing methods, e.g. MERT (Och, 2003), MIRA
(Watanabe et al., 2007; Chiang et al., 2008), PRO
(Hopkins and May, 2011) and so on, which itera-
tively optimize a weight such that, after re-ranking
a k-best list of a given development set with this
weight, the loss of the resulting 1-best list is mini-
mal. In the extreme, if the k-best list consists only
of a pair of translations 〈〈e∗, d∗〉, 〈e′, d′〉〉, the de-
sirable weight should satisfy the assertion: if the
BLEU score of e∗ is greater than that of e′, then
the model score of 〈e∗, d∗〉 with this weight will
be also greater than that of 〈e′, d′〉. In this paper,
a pair 〈e∗, e′〉 for a source sentence f is called as
a preference pair for f . Following PRO, we define
the following objective function under the max-
margin framework to optimize the AdNN model:

1

2
‖θ‖2 +

λ

N

∑

f

∑

e∗,d∗,e′,d′
δ(f, e∗, d∗, e′, d′; θ), (6)

with

δ(·) = max
{
S(f, e′, d′; θ)− S(f, e∗, d∗; θ) + 1, 0

}

where f is a source sentence in a given devel-
opment set, and 〈〈e∗, d∗〉, 〈e′, d′〉〉 is a preference
pair for f ; N is the number of all preference pairs;
λ > 0 is a regularizer.

4.2 Optimization Algorithm

Since there are thousands of parameters in Eq. (6)
and the tuning in SMT will minimize Eq. (6) re-
peatedly, efficient and scalable optimization meth-
ods are required. Following Le et al. (2011),
we apply the mini-batch Conjugate Sub-Gradient
(mini-batch CSG) method to minimize Eq. (6).

Compared with the sub-gradient descent, mini-
batch CSG has some advantages: (1) it can ac-
celerate the calculation of the sub-gradient since
it calculates the sub-gradient on a subset of pref-
erence pairs (i.e. mini-batch) instead of all of the
preference pairs; (2) it reduces the number of iter-
ations since it employs the conjugate information
besides the sub-gradient. Algorithm 1 shows the
procedure to minimize Eq. (6).

Algorithm 1 Mini-batch conjugate subgradient
Input: θ1, T , CGIter, batch-size, k-best-list

1: for all t such that 1 ≤ t ≤ T do
2: Sample mini-batch preference pairs with

size batch-size from k-best-list
3: Calculate some quantities for CG, e.g.

training objective Obj, subgradient ∆, ac-
cording to Eq. (6) defined over the sampled
preference pairs

4: θt+1 = CG(θt, Obj,∆, CGIter)
5: end for

Output: θT+1

In detail, line 2 in Algorithm 1 firstly fol-
lows PRO to sample a set of preference pairs
from k-best-list, and then uniformly samples
batch-size pairs from the preference pair set. Line
3 calculates some quantities for CG, and Line 4
calls a CG optimizer 2 and obtains θt+1. At the
end of the algorithm, it returns the result θT+1. In
this work, we set the maximum number of CG iter-
ations, CGIter, to a small number, which means
θt+1 will be returned withinCGIter iterations be-
fore the CG converges, for faster learning.

4.3 Pre-Training and Post-Training

Since Eq. (6) is non-linear, there are many local
minimal solutions. Actually, this problem is inher-
ent and is one many works based on the neural net-
work for other NLP tasks such as language model
and parsing, also suffer from. And these works
empirically show that some pre-training methods,
which provide a reasonable initial solution, can
improve the performance. Observing the structure
of Eq. (5) and the relationships between our model
and a log-linear model, we propose the following
simple pre-training method.

2In implementation, we call the CG toolkit (Hager and
Zhang, 2006), which requires overloading objective and sub-
gradient functions. For easier description, we substitute over-
loading functions and transform the value of functions in the
pseudo-code.
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If we set W ′ = 0, the model defined in Eq. (5)
can be regarded as a log-linear model with features
h. Therefore, we pre-trainW using MERT or PRO
by holding W ′ = 0, and use (W,W ′ = 0,M,B)
as an initializer3 for Algorithm 1.

Although the above pre-training would provide
a reasonable solution, Algorithm 1 may still fall
into local minima. We also propose a post-training
method: after obtaining a solution with Algorithm
1, we modify this solution slightly to get a new
solution. The idea of the post-training method is
similar to that of the pre-training method. Suppose
θ = (W,W ′,M,B) be the solution obtained from
Algorithm 1. If we consider both M and B to be
constant, the Eq. (5) goes back to the log-linear
model whose features are (h, σ

(
M · h′ +B)

)
and

parameters are (W,W ′). Again, we train the pa-
rameters (W,W ′) with MERT or PRO and get the
new parameters (W̄ , W̄ ′). Therefore, we can set
θ = (W̄ , W̄ ′,M,B) as the final solution for Eq.
(6). The advantage of post-training is that it op-
timizes a convex programming derived from the
original nonlinear (non-convex) programming in
Eq. (6), and thus it may decrease the risk of poor
local optima.

4.4 Training Algorithm

Algorithm 2 Training Algorithm
Input: MaxIter, a dev set, parameters (e.g. λ )

for Algorithm 1
1: Pre-train to obtain θ1 = (W,W ′ = 0,M,B)

as the initial parameter
2: for all i such that 1 ≤ i ≤MaxIter do
3: Decode with θi on the dev set and merge all

k-best-lists
4: Run Algorithm 1 based on the merged k-

best-list to obtain θi+1

5: end for
6: Post-train based on θMaxIter+1 to obtain θ

Output: θ

The whole training for the AdNN model is sum-
marized in Algorithm 2. Given a development set,
we first run pre-training to obtain an initial param-
eter θ1 for Algorithm 1 in line 1. Secondly, it it-
eratively performs decoding and optimization for
MaxIter times in the loop from line 2 to line 5: it
decodes with the parameter θi and merges all the

3To avoid the symmetry in the solution, we sample a very
small (M,B) from the gaussian distribution in practice in-
stead of setting (M,B) = 0.

k-best-lists in line 3; and it then runs Algorithm 1
to optimize θi+1. Thirdly, it runs the post-training
to get the result θ based on θMaxIter+1.

Of course, we can run post-training after run-
ning Algorithm 1 at each iteration i. However,
since each pass of post-training (e.g. PRO) takes
several hours because of multiple decoding times,
we run it only once, at the end of the iterations
instead.

5 Experiments and Results

5.1 Experimental Setting
We conduct our experiments on the Chinese-to-
English and Japanese-to-English translation tasks.
For the Chinese-to-English task, the training data
is the FBIS corpus (news domain) with about
240k sentence pairs; the development set is the
NIST02 evaluation data; the development test set
is NIST05; and the test datasets are NIST06, and
NIST08. For the Japanese-to-English task, the
training data with 300k sentence pairs is from the
NTCIR-patent task (Fujii et al., 2010); the devel-
opment set, development test set, and two test sets
are averagely extracted from a given development
set with 4000 sentences, and these four datasets
are called test1, test2, test3 and test4, respectively.

We run GIZA++ (Och and Ney, 2000) on the
training corpus in both directions (Koehn et al.,
2003) to obtain the word alignment for each sen-
tence pair. Using the SRILM Toolkits (Stolcke,
2002) with modified Kneser-Ney smoothing, we
train a 4-gram language model for the Chinese-to-
English task on the Xinhua portion of the English
Gigaword corpus and a 4-gram language model
for the Japanese-to-English task on the target side
of its training data. In our experiments, the transla-
tion performances are measured by case-sensitive
BLEU4 metric4 (Papineni et al., 2002). The sig-
nificance testing is performed by paired bootstrap
re-sampling (Koehn, 2004b).

We use an in-house developed hierarchical
phrase-based translation (Chiang, 2005) for our
baseline system, which shares the similar setting
as Hiero (Chiang, 2005), e.g. beam-size=100, k-
best-size=100, and is denoted as L-Hiero to em-
phasize its log-linear model. We tune L-Hiero
with two methods MERT and PRO implemented
in the Moses toolkit. On the same experiment set-
tings, the performance of L-Hiero is comparable

4We use mteval-v13a.pl as the evaluation tool(Ref.
http://www.itl.nist.gov/iad/mig/tests/mt/2008/scoring.html).
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Seconds/Sent
L-Hiero 1.77

AdNN-Hiero-E 1.88

Table 1: The decoding time comparison on
NIST05 between L-Hiero and AdNN-Hiero-E.

to that of Moses: on the NIST05 test set, L-Hiero
achieves 25.1 BLEU scores and Moses achieves
24.8. Further, we integrate the embedding fea-
tures (See Section 3.3) into the log-linear model
along with the default features as L-Hiero, which
is called L-Hiero-E. Since L-Hiero-E has hun-
dreds of features, we use PRO as its tuning toolkit.

AdNN-Hiero-E is our implementation of the
AddNN model with embedding features, as dis-
cussed in Section 3, and it shares the same
codebase and settings as L-Hiero. We adopt
the following setting for training AdNN-Hiero-
E: u=10; batch-size=1000 and CGiter=3, as re-
ferred in (Le et al., 2011), and T=200 in Algo-
rithm 1; the pre-training and post-training meth-
ods as PRO; the regularizer λ in Eq. (6) as 10
and 30, and MaxIter as 16 and 20 in Algorithm
2, for Chinese-to-English and Japanese-to-English
tasks, respectively. Although there are several pa-
rameters in AdNN which may limit its practica-
bility, according to many of our internal studies,
most parameters are insensitive to AdNN except
λ and MaxIter, which are common in other tun-
ing toolkits such as MIRA and can be tuned5 on a
development test dataset.

Since both MERT and PRO tuning toolkits in-
volve randomness in their implementations, all
BLEU scores reported in the experiments are the
average of five tuning runs, as suggested by Clark
et al. (2011) for fairer comparisons. For AdNN,
we report the averaged scores of five post-training
runs, but both pre-training and training are per-
formed only once.

5.2 Results and Analysis

As discussed in Section 3, our AdNN-Hiero-E
shares the same decoding strategy and pruning
method as L-Hiero. When compared with L-
Hiero, decoding for AdNN-Hiero-E only needs
additional computational times for the features in
the hidden units, i.e. σ

(
M · h′(r) + B

)
. Since

5For easier tuning, we tuned these two parameters on a
given development test set without post-training in Algorithm
2.

Chinese-to-English
NIST05 NIST06 NIST08

L-Hiero MERT 25.10+ 24.46+ 17.42+

PRO 25.57+ 25.27+ 18.33+

L-Hiero-E PRO 24.80+ 24.46+ 18.20+

AdNN-Hiero-E 26.37 25.93 19.42

Japanese-to-English
test2 test3 test4

L-Hiero MERT 24.35+ 25.62+ 23.68+

PRO 24.38+ 25.55+ 23.66+

L-Hiero-E PRO 24.47+ 25.86+ 24.03+

AdNN-Hiero-E 25.14 26.32 24.45

Table 2: The BLEU comparisons between AdNN-
Hiero-E and Log-linear translation models on
the Chinese-to-English and Japanese-to-English
tasks. + means the comparison is significant over
AdNN-Hiero-E with p < 0.05.

these features are not dependent on the transla-
tion states, they are computed and saved to mem-
ory when loading the translation model. During
decoding, we just look up these scores instead
of re-calculating them on the fly. Therefore, the
decoding efficiency of AdNN-Hiero-E is almost
the same as that of L-Hiero. As shown in Table
1 the average decoding time for L-Hiero is 1.77
seconds/sentence while that for AdNN-Hiero-E is
1.88 seconds/sentence on the NIST05 test set.

Word embedding features can improve the per-
formance on other NLP tasks (Turian et al., 2010),
but its effect on log-linear based SMT is not as ex-
pected. As shown in Table 2, L-Hiero-E gains lit-
tle over L-Hiero for the Japanese-to-English task,
and even decreases the performance over L-Hiero
for the Chinese-to-English task. These results fur-
ther prove our claim in Section 1, i.e. the log-
linear model requires the features to be linear with
the model and thus limits its expressive abilities.
However, after the single-layer non-linear opera-
tor (sigmoid functions) on the embedding features
for deep interpretation and representation, AdNN-
Hiero-E gains improvements over both L-Hiero
and L-Hiero-E, as depicted in Table 2. In detail,
for the Chinese-to-English task, AdNN-Hiero-E
improves more than 0.6 BLEU scores over L-
Hiero on both test sets: the gains over L-Hiero
tuned with PRO are 0.66 and 1.09 on NIST06 and
NIST08, respectively, and the gains over L-Hiero
tuned with MERT are even more. Similar re-
sults are achieved on the Japanese-to-English task.
AdNN-Hiero-E gains about 0.7 BLEU scores on
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Chinese-to-English
NIST05 NIST06 NIST08

L-Hiero 25.57+ 25.27+ 18.33+

AdNN-Hiero-E 26.37 25.93 19.42

AdNN-Hiero-D 26.21 26.07 19.54

Japanese-to-English
test2 test3 test4

L-Hiero 24.38 25.55 23.66
AdNN-Hiero-E 25.14+ 26.32+ 24.45+

AdNN-Hiero-D 24.42 25.46 23.73

Table 3: The effect of different feature setting on
AdNN model. + means the comparison is signifi-
cant over AdNN-Hiero-D with p < 0.05.

both test sets.
In addition, to investigate the effect of differ-

ent feature settings on AdNN, we alternatively de-
sign another setting for h′ in Eq. (5): we use
the default features for both h′ and h. In partic-
ular, the language model of a rule for h′ is lo-
cally calculated without the contexts out of the
rule as described in (Chiang, 2007). We call the
AdNN model with this setting AdNN-Hiero-D6.
Although there are serious overlaps between h and
h′ for AdNN-Hiero-D which may limit its gener-
alization abilities, as shown in Table 3, it is still
comparable to L-Hiero on the Japanese-to-English
task, and significantly outperforms L-Hiero on the
Chinese-to-English translation task. To investigate
the reason why the gains for AdNN-Hiero-D on
the two different translation tasks differ, we cal-
culate the perplexities between the target side of
training data and test datasets on both translation
tasks. We find that the perplexity of the 4-gram
language model for the Chinese-to-English task is
321.73, but that for the Japanese-to-English task
is only 81.48. Based on these similarity statistics,
we conjecture that the log-linear model does not
fit well for difficult translation tasks (e.g. transla-
tion task on the news domain). The problem seems
to be resolved by simply alternating feature repre-
sentations through non-linear models, i.e. AddN-
Hiero-D, even with single-layer networks.

6 Related Work

Neural networks have achieved widespread at-
tentions in many NLP tasks, e.g. the language

6All its parameters are shared with AdNN-Hiero-E except
λ and MaxIter, which are tuned on the development test
datasets.

model (Bengio et al., 2003); POS, Chunking,
NER, and SRL (Collobert and Weston, 2008);
Parsing (Collobert and Weston, 2008; Socher et
al., 2011); and Machine transliteration (Deselaers
et al., 2009). Our work is, of course, highly mo-
tivated by these works. Unlike these works, we
propose a variant neural network, i.e. additive neu-
ral networks, starting from SMT itself and taking
both of the model definition and its inference (de-
coding) together into account.

Our variant of neural network, AdNN, is highly
related to both additive models (Buja et al., 1989)
and generalized additive neural networks (Potts,
1999; Waal and Toit, 2007), in which an additive
term is either a linear model or a neural network.
Unlike additive models and generalized additive
neural networks, our model is decomposable with
respect to translation rules rather than its compo-
nent variables considering the decoding efficiency
of machine translation; and it allows its additive
terms of neural networks to share the same param-
eters for a compact structure to avoid sparsity.

The idea of the neural network in machine
translation has already been pioneered in previ-
ous works. Castaño et al. (1997) introduced a neu-
ral network for example-based machine transla-
tion. In particular, Son et al. (2012) and Schwenk
(2012) employed a neural network to model the
phrase translation probability on the rule level
〈α, γ〉 instead of the bilingual sentence level 〈f, e〉
as in Eq. (5), and thus they did not go beyond the
log-linear model for SMT.

There are also works which exploit non-linear
models in SMT. Duh and Kirchhoff (2008) pro-
posed a boosting re-ranking algorithm using
MERT as a week learner to improve the model’s
expressive abilities; Sokolov et al. (2012) simi-
larly proposed a boosting re-ranking method from
the ranking perspective rather than the classifica-
tion perspective. Instead of considering the re-
ranking task in SMT, Xiao et al. (2010) employed
a boosting method for the system combination in
SMT. Unlike their post-processing models (either
a re-ranking or a system combination model) in
SMT, we propose a non-linear translation model
which can be easily incorporated into the existing
SMT framework.

7 Conclusion and Future Work

In this paper, we go beyond the log-linear model
for SMT and propose a novel AdNN based trans-
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lation model. Our model overcomes some of the
shortcomings suffered by the log-linear model:
linearity and the lack of deep interpretation and
representation in features. One advantage of our
model is that it jointly learns features and tunes
the translation model and thus learns features to-
wards the translation evaluation metric. Addi-
tionally, the decoding of our model is as efficient
as that of the log-linear model. For Chinese-to-
English and Japanese-to-English translation tasks,
our model significantly outperforms the log-linear
model, with the help of word embedding.

We plan to explore more work on the additive
neural networks in the future. For example, we
will train word embedding matrices for source and
target languages from a larger corpus, and take
into consideration the bilingual information, for
instance, word alignment; the multi-layer neural
network within the additive neural networks will
be also investigated in addition to the single-layer
neural network; and we will test our method on
other translation tasks with larger training data as
well.
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Abstract

Typical statistical machine translation sys-
tems are batch trained with a given train-
ing data and their performances are large-
ly influenced by the amount of data. With
the growth of the available data across
different domains, it is computationally
demanding to perform batch training ev-
ery time when new data comes. In face
of the problem, we propose an efficient
phrase table combination method. In par-
ticular, we train a Bayesian phrasal inver-
sion transduction grammars for each do-
main separately. The learned phrase ta-
bles are hierarchically combined as if they
are drawn from a hierarchical Pitman-Yor
process. The performance measured by
BLEU is at least as comparable to the tra-
ditional batch training method. Further-
more, each phrase table is trained sepa-
rately in each domain, and while compu-
tational overhead is significantly reduced
by training them in parallel.

1 Introduction

Statistical machine translation (SMT) system-
s usually achieve ’crowd-sourced’ improvements
with batch training. Phrase pair extraction, the
key step to discover translation knowledge, heav-
ily relies on the scale of training data. Typi-
cally, the more parallel corpora used, the more
phrase pairs and more accurate parameters will
be learned, which can obviously be beneficial to
improving translation performances. Today, more
parallel sentences are drawn from divergent do-
mains, and the size keeps growing. Consequent-
ly, how to effectively use those data and improve
translation performance becomes a challenging is-
sue.

This joint work was done while the first author visited
NICT.

Batch retraining is not acceptable for this case,
since it demands serious computational overhead
when training on a large data set, and it requires
us to re-train every time new training data is avail-
able. Even if we can handle the large computation
cost, improvement is not guaranteed every time we
perform batch tuning on the newly updated train-
ing data obtained from divergent domains. Tradi-
tional domain adaption methods for SMT are also
not adequate in this scenario. Most of them have
been proposed in order to make translation sys-
tems perform better for resource-scarce domain-
s when most training data comes from resource-
rich domains, and ignore performance on a more
generic domain without domain bias (Wang et al.,
2012). As an alternative, incremental learning
may resolve the gap by incrementally adding da-
ta sentence-by-sentence into the training data. S-
ince SMT systems trend to employ very large scale
training data for translation knowledge extraction,
updating several sentence pairs each time will be
annihilated in the existing corpus.

This paper proposes a new phrase table combi-
nation method. First, phrase pairs are extracted
from each domain without interfering with oth-
er domains. In particular, we employ the non-
parametric Bayesian phrasal inversion transduc-
tion grammar (ITG) of Neubig et al. (2011) to per-
form phrase table extraction. Second, extracted
phrase tables are combined as if they are drawn
from a hierarchical Pitman-Yor process, in which
the phrase tables represented as tables in the Chi-
nese restaurant process (CRP) are hierarchically
chained by treating each of the previously learned
phrase tables as prior to the current one. Thus, we
can easily update the chain of phrase tables by ap-
pending the newly extracted phrase table and by
treating the chain of the previous ones as its prior.

Experiment results indicate that our method can
achieve better translation performance when there
exists a large divergence in domains, and can
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achieve at least comparable results to batch train-
ing methods, with a significantly less computa-
tional overhead.

The rest of the paper is organized as follows.
In Section 2, we introduce related work. In sec-
tion 3, we briefly describe the translation mod-
el with phrasal ITGs and Pitman-Yor process. In
section 4, we explain our hierarchical combination
approach and give experiment results in section 5.
We conclude the paper in the last section.

2 Related Work

Bilingual phrases are cornerstones for phrase-
based SMT systems (Och and Ney, 2004; Koehn
et al., 2003; Chiang, 2005) and existing translation
systems often get ‘crowd-sourced’ improvements
(Levenberg et al., 2010). A number of approaches
have been proposed to make use of the full poten-
tial of the available parallel sentences from vari-
ous domains, such as domain adaptation and in-
cremental learning for SMT.

The translation model and language model
are primary components in SMT. Previous work
proved successful in the use of large-scale data for
language models from diverse domains (Brants et
al., 2007; Schwenk and Koehn, 2008). Alterna-
tively, the language model is incrementally up-
dated by using a succinct data structure with a
interpolation technique (Levenberg and Osborne,
2009; Levenberg et al., 2011).

In the case of the previous work on translation
modeling, mixed methods have been investigat-
ed for domain adaptation in SMT by adding do-
main information as additional labels to the orig-
inal phrase table (Foster and Kuhn, 2007). Un-
der this framework, the training data is first di-
vided into several parts, and phase pairs are ex-
tracted with some sub-domain features. Then al-
l the phrase pairs and features are tuned together
with different weights during decoding. As a way
to choose the right domain for the domain adap-
tion, a classifier-based method and a feature-based
method have been proposed. Classification-based
methods must at least add an explicit label to indi-
cate which domain the current phrase pair comes
from. This is traditionally done with an automat-
ic domain classifier, and each input sentence is
classified into its corresponding domain (Xu et al.,
2007). As an alternative to the classification-based
approach, Wang et al. (2012) employed a feature-
based approach, in which phrase pairs are enriched

by a feature set to potentially reflect the domain in-
formation. The similarity calculated by a informa-
tion retrieval system between the training subset
and the test set is used as a feature for each paral-
lel sentence (Lu et al., 2007). Monolingual topic
information is taken as a new feature for a domain
adaptive translation model and tuned on the devel-
opment set (Su et al., 2012). Regardless of under-
lying methods, either classifier-based or feature-
based method, the performance of current domain
adaptive phrase extraction methods is more sensi-
tive to the development set selection. Usually the
domain similar to a given development data is usu-
ally assigned higher weights.

Incremental learning in which new parallel sen-
tences are incrementally updated to the training
data is employed for SMT. Compared to tradi-
tional frequent batch oriented methods, an online
EM algorithm and active learning are applied to
phrase pair extraction and achieves almost compa-
rable translation performance with less computa-
tional overhead (Levenberg et al., 2010; González-
Rubio et al., 2011). However, their methods usu-
ally require numbers of hyperparameters, such as
mini-batch size, step size, or human judgment to
determine the quality of phrases, and still rely on a
heuristic phrase extraction method in each phrase
table update.

3 Phrase Pair Extraction with
Unsupervised Phrasal ITGs

Recently, phrase alignment with ITGs (Cherry
and Lin, 2007; Zhang et al., 2008; Blunsom et
al., 2008) and parameter estimation with Gibb-
s sampling (DeNero and Klein, 2008; Blunsom
and Cohn, 2010) are popular. Here, we em-
ploy a method proposed by Neubig et al. (2011),
which uses parametric Bayesian inference with the
phrasal ITGs (Wu, 1997). It can achieve com-
parable translation accuracy with a much small-
er phrase table than the traditional GIZA++ and
heuristic phrase extraction methods. It has al-
so been proved successful in adjusting the phrase
length granularity by applying character-based
SMT with more sophisticated inference (Neubig
et al., 2012).

ITG is a synchronous grammar formalism
which analyzes bilingual text by introducing in-
verted rules, and each ITG derivation corresponds
to the alignment of a sentence pair (Wu, 1997).
Translation probabilities of ITG phrasal align-
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ments can be estimated in polynomial time by s-
lightly limiting word reordering (DeNero and K-
lein, 2008).

More formally, P
(
〈e, f〉; θx, θt

)
are the proba-

bility of phrase pairs 〈e, f〉, which is parameter-
ized by a phrase pair distribution θt and a symbol
distribution θx. θx is a Dirichlet prior, and θt is es-
timated with the Pitman-Yor process (Pitman and
Yor, 1997; Teh, 2006), which is expressed as

θt ∼ PY
(
d, s, Pdac

)
(1)

where d is the discount parameter, s is the strength
parameter, and , and Pdac is a prior probability
which acts as a fallback probability when a phrase
pair is not in the model.

Under this model, the probability for a phrase
pair found in a bilingual corpus 〈E,F 〉 can be rep-
resented by the following equation using the Chi-
nese restaurant process (Teh, 2006):

P
(
〈ei, fi〉; 〈E,F 〉

)
=

1

C + s
(ci − d× ti)+

1

C + s
(s+ d× T )× Pdac(〈ei, fi〉) (2)

where

1. ci and ti are the customer and table count of
the ith phrase pair 〈ei, fi〉 found in a bilingual
corpus 〈E,F 〉;

2. C and T are the total customer and table count
in corpus 〈E,F 〉;

3. d and s are the discount and strengthen hyper-
parameters.

The prior probability Pdac is recursively defined
by breaking a longer phrase pair into two through
the recursive ITG’s generative story as follows
(Neubig et al., 2011):

1. Generate symbol x from Px(x; θx) with three
possible values: Base, REG, or INV .

2. Depending on the value of x take the following
actions.

a. If x = Base, generate a new phrase pair
directly from Pbase.

b. If x = REG, generate 〈e1, f1〉 and
〈e2, f2〉 from P

(
〈e, f〉; θx, θt

)
, and con-

catenate them into a single phrase pair
〈e1e2, f1f2〉.

Figure 1: A word alignment (a), and its hierarchi-
cal derivation (b).

c. If x = INV , follow a similar process as b,
but concatenate f1 and f2 in reverse order
〈e1e2, f2f1〉.

Note that the Pdac is recursively defined through
the binary branched P , which in turns employs
Pdac as a prior probability. Pbase is a base measure
defined as a combination of the IBM Models in t-
wo directions and the unigram language models in
both sides. Inference is carried out by a heuristic
beam search based block sampling with an effi-
cient look ahead for a faster convergence (Neubig
et al., 2012).

Compared to GIZA++ with heuristic phrase ex-
traction, the Bayesian phrasal ITG can achieve
competitive accuracy under a smaller phrase ta-
ble size. Further, the fallback model can incor-
porate phrases of all granularity by following the
ITG’s recursive definition. Figure 1 (b) illustrates
an example of the phrasal ITG derivation for word
alignment in Figure 1 (a) in which a bilingual sen-
tence pair is recursively divided into two through
the recursively defined generative story.

4 Hierarchical Phrase Table
Combination

We propose a new phrase table combination
method, in which individually learned phrase ta-
ble are hierarchically chained through a hierarchi-
cal Pitman-Yor process.

Firstly, we assume that the whole train-
ing data 〈E,F 〉 can be split into J domains,
{〈E1, F 1〉, . . . , 〈EJ , F J〉}. Then phrase pairs are
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Figure 2: A hierarchical phrase table combination (a), and a basic unit of a Chinese restaurant process
with K tables and N customers.

extracted from each domain j (1 ≤ j ≤ J) sepa-
rately with the method introduced in Section 3. In
traditional domain adaptation approaches, phrase
pairs are extracted together with their probabili-
ties and/or frequencies so that the extracted phrase
pairs are merged uniformly or after scaling.

In this work, we extract the table counts for each
phrase pair under the Chinese restaurant process
given in Section 3. In Figure 2 (b), a CRP is illus-
trated which has K tables and N customers with
each chair representing a customer. Meanwhile
there are two parameters, discount and strength for
each domain similar to the ones in Equation (1).

Our proposed hierarchical phrase table combi-
nation can be formally expressed as following:

θ1 ∼ PY (d1, s1, P 2)

· · · · · ·
θj ∼ PY (dj , sj , P j+1)

· · · · · ·
θJ ∼ PY

(
dJ , sJ , P Jbase

)
(3)

Here the (j + 1)th layer hierarchical Pitman-Yor
process is employed as a base measure for the
jth layer hierarchical Pitman-Yor process. The
hierarchical chain is terminated by the base mea-
sure from the J th domain P Jbase. The hierarchi-
cal structure is illustrated in Figure 2 (a) in which
the solid lines implies a fall back using the ta-
ble counts from the subsequent domains, and the
dotted lines means the final fallback to the base
measure P Jbase. When we query a probability of
a phrase pair 〈e, f〉, we first query the probabil-
ity of the first layer P 1(〈e, f〉). If 〈e, f〉 is not
in the model, we will fallback to the next level of

P 2(〈e, f〉). This process continues until we reach
the Jth base measure of P J(〈e, f〉). Each fallback
can be viewed as a translation knowledge integra-
tion process between subsequent domains.

For example in Figure 2 (a), the ith phrase pair
〈ei, fi〉 appears only in the domain 1 and domain
2, so its translation probability can be calculated
by substituting Equation (3) with Equation (2):

P
(
〈ei, fi〉; 〈E,F 〉

)
=

1

C1 + s1
(c1i − d1 × t1i )

+
s1 + d1 × T 1

(C1 + s1)× (C2 + s2)
(c2i − d2 × t2i )

+
J∏

j=1

(sj + dj × T j
Cj + sj

)
× P Jbase(〈ei, fi〉) (4)

where the superscript indicates the domain for the
corresponding counts, i.e. cji for the customer
count in the jth domain. The first term in Equa-
tion (4) is the phrase probability from the first do-
main, and the second one comes from the second
domain, but weighted by the fallback weight of the
1st domain. Since 〈ei, fi〉 does not appear in the
rest of the layers, the last term is taken from al-
l the fallback weight from the second layer to the
J th layer with the final P Jbase. All the parameter-
s θj and hyperparameters dj and sj , are obtained
by learning on the jth domain. Returning the hy-
perparameters again when cascading another do-
main may improve the performance of the combi-
nation weight, but we will leave it for future work.
The hierarchical process can be viewed as an in-
stance of adapted integration of translation knowl-
edge from each sub-domain.
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Algorithm 1 Translation Probabilities Estima-
tion
Input: cji , t

j
i , P

j
base, C

j , T j , dj and sj

Output: The translation probabilities for each
pair

1: for all phrase pair 〈ei, fi〉 do
2: Initialize the P (〈ei, fi〉) = 0 and wi = 1
3: for all domain 〈Ej , Fj〉 such that 1 6 j 6

J − 1 do
4: if 〈ei, fi〉 ∈ 〈Ej , Fj〉 then
5: P (〈ei, fi〉) += wi × (Cji − dj ×

tji )/(C
j + sj)

6: end if
7: wi = wi × (sj + dj × T j)/(Cj + sj)
8: end for
9: P (〈ei, fi〉) += wi× (CJi −dJ × tJi + (sJ +

dJ × T J)× P Jbase(〈ei, fi〉))/(CJ + sJ)
10: end for

Our approach has several advantages. First,
each phrase pair extraction can concentrate on a s-
mall portion of domain-specific data without inter-
fering with other domains. Since no tuning stage
is involved in the hierarchical combination, we can
easily include a new phrase table from a new do-
main by simply chaining them together. Second,
phrase pair phrase extraction in each domain is
completely independent, so it is easy to parallelize
in a situation where the training data is too large
to fit into a small amount of memory. Finally, new
domains can be integrated incrementally. When
we encounter a new domain, and if a phrase pair is
completely new in terms of the model, the phrase
pair is simply appended to the current model, and
computed without the fallback probabilities, since
otherwise, the phrase pair would be boosted by the
fallback probabilities. Pitman-Yor process is also
employed in n-gram language models which are
hierarchically represented through the hierarchi-
cal Pitman-Yor process with switch priors to in-
tegrate different domains in all the levels (Wood
and Teh, 2009). Our work incrementally combines
the models from different domains by directly em-
ploying the hierarchical process through the base
measures.

5 Experiment

We evaluate the proposed approach on the
Chinese-to-English translation task with three data
sets with different scales.

Data set Corpus #sent. pairs
IWSLT HIT 52, 603

BTEC 19, 975

Domain 1 47, 993
Domain 2 30, 272

FBIS Domain 3 49, 509
Domain 4 38, 228
Domain 5 55, 913

News 221, 915
News 95, 593

LDC Magazine 98, 335
Magazine 254, 488
Finance 86, 112

Table 1: The sentence pairs used in each data set.

5.1 Experiment Setup

The first data set comes from the IWSLT2012
OLYMPICS task consisting of two training sets:
the HIT corpus, which is closely related to the Bei-
jing 2008 Olympic Games, and the BTEC corpus,
which is a multilingual speech corpus containing
tourism-related sentences. The second data set,
the FBIS corpus, is a collection of news articles
and does not have domain information itself, so a
Latent Dirichlet Allocation (LDA) tool, PLDA1,
is used to divide the whole corpus into 5 different
sub-domains according to the concatenation of the
source side and target side as a single sentence (Li-
u et al., 2011). The third data set is composed of 5
corpora2 from LDC with various domains, includ-
ing news, magazine, and finance. The details are
shown in Table 1.

In order to evaluate our approach, four phrase
pair extraction methods are performed:

1. GIZA-linear: Phase pairs are extracted in each
domain by GIZA++ (Och and Ney, 2003) and
the ”grow-diag-final-and” method with a max-
imum length 7. The phrase tables from vari-
ous domains are linearly combined by averag-
ing the feature values.

2. Pialign-linear: Similar to GIZA-linear, but we
employed the phrasal ITG method described in
Section 3 using the pialign toolkit 3 (Neubig et

1http://code.google.com/p/plda/
2In particular, they come from LDC catalog number:

LDC2002E18, LDC2002E58, LDC2003E14, LDC2005E47,
LDC2006E26, in this order.

3http://www.phontron.com/pialign/
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Methods
IWSLT FBIS LDC

BLEU Size BLEU Size BLEU Size
GIZA-linear 19.222 1,200,877 29.342 15,369,028 30.67 77,927,347
Pialign-linear 19.534 876,059 29.858 7,235,342 31.12 28,877,149
GIZA-batch 19.616 1,185,255 31.38 13,737,258 32.06 63,606,056
Pialign-batch 19.506 841,931 31.104 6,459,200

Pialign-adaptive 19.624 841,931 30.926 6,459,200
Hier-combin 20.32 876,059 31.29 7,235,342 32.03 28,877,149

Table 2: BLEU scores and phrase table size by alignment method and probabilities estimation method.
Pialign was run with five samples. Because of computational overhead, the baseline Pialign-batch and
Pialign-adaptive were not run on the largest data set.

al., 2011). Extracted phrase pairs are linearly
combined by averaging the feature values.

3. GIZA-batch: Instead of splitting into each do-
main, the data set is merged as a single corpus
and then a heuristic GZA-based phrase extrac-
tion is performed, similar as GIZA-linear.

4. Pialign-batch: Similar to the GIZA-batch, a s-
ingle model is estimated from a single, merged
corpus. Since pialign cannot handle large data,
we did not experiment on the largest LDC data
set.

5. Pialign-adaptive: Alignment and phrase pairs
extraction are same to Pialign-batch, while
translation probabilities are estimated by the
adaptive method with monolingual topic in-
formation (Su et al., 2012). The method es-
tablished the relationship between the out-of-
domain bilingual corpus and in-domain mono-
lingual corpora via topic distribution to esti-
mate the translation probability.

ø(ẽ|f̃) =
∑

tf

ø(ẽ, tf |f̃)

=
∑

tf

ø(ẽ|tf , f̃) · P (tf |f̃)
(5)

where ø(ẽ|tf , f̃) is the probability of translating f̃
into ẽ given the source-side topic f̃ , P (tf |f̃) is
the phrase-topic distribution of f.

The method we proposed is named Hier-
combin. It extracts phrase pairs in the same way as
the Pialign-linear. In the phrase table combination
process, the translation probability of each phrase
pair is estimated by the Hier-combin and the other
features are also linearly combined by averaging

the feature values. Pialign is used with default pa-
rameters. The parameter ’samps’ is set to 5, which
indicates 5 samples are generated for a sentence
pair.

The IWSLT data consists of roughly 2, 000 sen-
tences and 3, 000 sentences each from the HIT and
BTEC for development purposes, and the test da-
ta consists of 1, 000 sentences. For the FBIS and
LDC task, we used NIST MT 2002 and 2004 for
development and testing purposes, consisting of
878 and 1, 788 sentences respectively. We em-
ploy Moses, an open-source toolkit for our exper-
iment (Koehn et al., 2007). SRILM Toolkit (Stol-
cke, 2002) is employed to train 4-gram language
models on the Xinhua portion of Gigaword cor-
pus, while for the IWLST2012 data set, only its
training set is used. We use batch-MIRA (Cher-
ry and Foster, 2012) to tune the weight for each
feature and translation quality is evaluated by the
case-insensitive BLEU-4 metric (Papineni et al.,
2002). The BLEU scores reported in this paper
are the average of 5 independent runs of indepen-
dent batch-MIRA weight training, as suggested by
(Clark et al., 2011).

5.2 Result and Analysis

5.2.1 Performances of various extraction
methods

We carry out a series of experiments to evaluate
translation performance. The results are listed in
Table 2. Our method significantly outperforms the
baseline Pialign-linear. Except for the translation
probabilities, the phrase pairs of two methods are
exactly same, so the number of phrase pairs are
equal in the two methods. Further more, the per-
formance of the baseline Pialign-adaptive is also
higher than the baseline Pialign-linear’s and lower
than ours. This proves that the adaptive method
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Methods Task Time(minute)
Batch Retraining 536.9

Hierarchical Parallel Extraction 122.55
Combination Integrating 1.5

Total 124.05

Table 3: Minutes used for alignment and phase
pair extraction in the FBIS data set.

with monolingual topic information is useful in
the tasks, but our approach with the hierarchical
Pitman-Yor process can estimate more accurate
translation probabilities based on all the data from
various domains.

Compared with the GIZA-batch, our approach
achieves competitive performance with a much s-
maller phrase table. The number of phase pairs
generated by our method is only 73.9%, 52.7%,
and 45.4% of the GIZA-batch’s respectively. In
the IWLST2012 data set, there is a huge difference
gap between the HIT corpus and the BTEC corpus,
and our method gains 0.814 BLEU improvement.
While the FBIS data set is artificially divided and
no clear human assigned differences among sub-
domains, our method loses 0.09 BLEU.

In the framework we proposed, phrase pairs are
extracted from each domain completely indepen-
dent of each other, so those tasks can be executed
on different machines, at different times, and of
course in parallel when we assume that the do-
mains are not incrementally added in the train-
ing data. The runtime of our approach and the
batch-based ITGs sampling method in the FBIS
data set is listed in Table 3 measured on a 2.7 GHz
E5-2680 CPU and 128 Gigabyte memory. When
comparing the hier-combin with the pialign-batch,
the BLEU scores are a little higher while the time
spent for training is much lower, almost one quar-
ter of the pialign-batch.

Even the performance of the pialign-linear is
better than the Baseline GIZA-linear’s, which
means that phrase pair extraction with hierarchi-
cal phrasal ITGs and sampling is more suitable
for domain adaptation tasks than the combination
GIZA++ and a heuristic method.

Generally, the hierarchical combination method
exploits the nature of a hierarchical Pitman-Yor
process and gains the advantage of its smoothing
effect, and our approach can incrementally gener-
ate a succinct phrase table based on all the data
from various domains with more accurate prob-

abilities. Traditional SMT phrase pair extraction
is batch-based, while our method has no obvious
shortcomings in translation accuracy, not to men-
tion efficiency.

5.2.2 Effect of Integration Order
Here, we evaluate whether our hierarchical com-
bination is sensitive to the order of the domains
when forming a hierarchical structure. Through
Equation (3), in our experiments, we chained the
domains in the order listed in Table 1, which is
in almost chronological order. Table 4 shows the
BLEU scores for the three data sets, in which the
order of combining phrase tables from each do-
main is alternated in the ascending and descending
of the similarity to the test data. The similarity be-
tween the data from each domain and the test data
is calculated using the perplexity measure with 5-
gram language model. The model learned from
the domain more similar to the test data is placed
in the front so that it can largely influence the
parameter computation with less backoff effects.
There is a big difference between the two opposite
order in IWSLT 2012 data set, in which more than
one point of decline in BLEU score when taking
the BTEC corpus as the first layer. Note that the
perplexity of BTEC was 344.589 while that of HIT
was 107.788. The result may indicate that our hi-
erarchical phrase combination method is sensitive
to the integration order when the training data is
small and there exists large gap in the similarity.
However, if most domains are similar (FBIS data
set) or if there are enough parallel sentence pairs
(NIST data set) in each domain, then the transla-
tion performances are almost similar even with the
opposite integrating orders.

IWSLT FBIS LDC
Descending 20.154 30.491 31.268
Ascending 19.066 30.388 31.254
Difference 1.088 0.103 0.014

Table 4: BLEU scores for the hierarchical model
with different integrating orders. Here Pialign was
run without multi-samples.

6 Conclusion and Future Work

In this paper, we present a novel hierarchical
phrase table combination method for SMT, which
can exploit more of the potential from all of da-
ta coming from various fields and generate a suc-
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cinct phrase table with more accurate translation
probabilities. The method assumes that a com-
bined model is derived from a hierarchical Pitman-
Yor process with each prior learned separately in
each domain, and achieves BLEU scores competi-
tive with traditional batch-based ones. Meanwhile,
the framework has natural characteristics for par-
allel and incremental phrase pair extraction. The
experiment results on three different data sets in-
dicate the effectiveness of our approach.

In future work, we will also introduce incre-
mental learning for phase pair extraction inside a
domain, which means using the current translation
probabilities already obtained as the base measure
of sampling parameters for the upcoming domain.
Furthermore, we will investigate any tradeoffs be-
tween the accuracy of the probability estimation
and the coverage of phrase pairs.
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Abstract
We present a new translation model in-
tegrating the shallow local multi bottom-
up tree transducer. We perform a large-
scale empirical evaluation of our obtained
system, which demonstrates that we sig-
nificantly beat a realistic tree-to-tree base-
line on the WMT 2009 English→German
translation task. As an additional contribu-
tion we make the developed software and
complete tool-chain publicly available for
further experimentation.

1 Introduction

Besides phrase-based machine translation sys-
tems (Koehn et al., 2003), syntax-based systems
have become widely used because of their abil-
ity to handle non-local reordering. Those systems
use synchronous context-free grammars (Chi-
ang, 2007), synchronous tree substitution gram-
mars (Eisner, 2003) or even more powerful for-
malisms like synchronous tree-sequence substitu-
tion grammars (Sun et al., 2009). However, those
systems use linguistic syntactic annotation at dif-
ferent levels. For example, the systems proposed
by Wu (1997) and Chiang (2007) use no linguis-
tic information and are syntactic in a structural
sense only. Huang et al. (2006) and Liu et al.
(2006) use syntactic annotations on the source lan-
guage side and show significant improvements in
translation quality. Using syntax exclusively on
the target language side has also been success-
fully tried by Galley et al. (2004) and Galley et
al. (2006). Nowadays, open-source toolkits such
as Moses (Koehn et al., 2007) offer syntax-based
components (Hoang et al., 2009), which allow
experiments without expert knowledge. The im-
provements observed for systems using syntactic
annotation on either the source or the target lan-
guage side naturally led to experiments with mod-
els that use syntactic annotations on both sides.

However, as noted by Lavie et al. (2008), Liu et
al. (2009), and Chiang (2010), the integration of
syntactic information on both sides tends to de-
crease translation quality because the systems be-
come too restrictive. Several strategies such as
(i) using parse forests instead of single parses (Liu
et al., 2009) or (ii) soft syntactic constraints (Chi-
ang, 2010) have been developed to alleviate this
problem. Another successful approach has been
to switch to more powerful formalisms, which al-
low the extraction of more general rules. A par-
ticularly powerful model is the non-contiguous
version of synchronous tree-sequence substitu-
tion grammars (STSSG) of Zhang et al. (2008a),
Zhang et al. (2008b), and Sun et al. (2009),
which allows sequences of trees on both sides of
the rules [see also (Raoult, 1997)]. The multi
bottom-up tree transducer (MBOT) of Arnold and
Dauchet (1982) and Lilin (1978) offers a middle
ground between traditional syntax-based models
and STSSG. Roughly speaking, an MBOT is an
STSSG, in which all the discontinuities must oc-
cur on the target language side (Maletti, 2011).
This restriction yields many algorithmic advan-
tages over both the traditional models as well as
STSSG as demonstrated by Maletti (2010). For-
mally, they are expressive enough to express all
sensible translations (Maletti, 2012)1. Figure 2
displays sample rules of the MBOT variant, called
`MBOT, that we use (in a graphical representation
of the trees and the alignment).

In this contribution, we report on our novel sta-
tistical machine translation system that uses an
`MBOT-based translation model. The theoreti-
cal foundations of `MBOT and their integration
into our translation model are presented in Sec-
tions 2 and 3. In order to empirically evaluate the
`MBOT model, we implemented a machine trans-

1A translation is sensible if it is of linear size increase
and can be computed by some (potentially copying) top-down
tree transducer.
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Sε

NP1

JJ11

Official111

NNS12

forecasts121

VP2

VBD21

predicted211

NP22

QP221

RB2211

just22111

CD2212

322121

NN222

%2221

Figure 1: Example tree t with indicated positions.
We have t(21) = VBD and t|221 is the subtree
marked in red.

lation system that we are going to make available
to the public. We implemented `MBOT inside
the syntax-based component of the Moses open
source toolkit. Section 4 presents the most im-
portant algorithms of our `MBOT decoder. We
evaluate our new system on the WMT 2009 shared
translation task English → German. The trans-
lation quality is automatically measured using
BLEU scores, and we confirm the findings by pro-
viding linguistic evidence (see Section 5). Note
that in contrast to several previous approaches, we
perform large scale experiments by training sys-
tems with approx. 1.5 million parallel sentences.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model used in our approach to syntax-based
machine translation. Essentially, it is the local
multi bottom-up tree transducer of Maletti (2011)
with the restriction that all rules must be shallow,
which means that the left-hand side of each rule
has height at most 2 (see Figure 2 for shallow
rules and Figure 4 for rules including non-shallow
rules). The rules extracted from the training exam-
ple of Figure 3 are displayed in Figure 4. Those
extracted rules are forcibly made shallow by re-
moving internal nodes. The application of those
rules is illustrated in Figures 5 and 6.

For those that want to understand the inner
workings, we recall the principal model in full de-
tail in the rest of this section. Since we utilize syn-
tactic parse trees, let us introduce trees first. Given
an alphabet Σ of labels, the set TΣ of all Σ-trees is
the smallest set T such that σ(t1, . . . , tk) ∈ T for
all σ ∈ Σ, integer k ≥ 0, and t1, . . . , tk ∈ T . In-
tuitively, a tree t consists of a labeled root node σ
followed by a sequence t1, . . . , tk of its children.
A tree t ∈ TΣ is shallow if t = σ(t1, . . . , tk) with
σ ∈ Σ and t1, . . . , tk ∈ Σ.

NP

QP NN
→
( PP

von AP NN

)

S

NP VBD NP
→
( S

NP VAFIN PP VVPP

)

Figure 2: Sample `MBOT rules.

To address a node inside a tree, we use its po-
sition, which is a word consisting of positive in-
tegers. Roughly speaking, the root of a tree is
addressed with the position ε (the empty word).
The position iw with i ∈ N addresses the po-
sition w in the ith direct child of the root. In
this way, each node in the tree is assigned a
unique position. We illustrate this notion in Fig-
ure 1. Formally, the positions pos(t) ⊆ N∗ of
a tree t = σ(t1, . . . , tk) are inductively defined
by pos(t) = {ε} ∪ pos(k)(t1, . . . , tk), where

pos(k)(t1, . . . , tk) =
⋃

1≤i≤k
{iw | w ∈ pos(ti)} .

Let t ∈ TΣ and w ∈ pos(t). The label of t at
position w is t(w), and the subtree rooted at posi-
tion w is t|w. These notions are also illustrated in
Figure 1. A position w ∈ pos(t) is a leaf (in t) if
w1 /∈ pos(t). In other words, leaves do not have
any children. Given a subset N ⊆ Σ, we let

leafN (t) = {w ∈ pos(t) | t(w) ∈ N, w leaf in t}

be the set of all leaves labeled by elements of N .
When N is the set of nonterminals, we call them
leaf nonterminals. We extend this notion to se-
quences t1, . . . , tk ∈ TΣ by

leaf
(k)
N (t1, . . . , tk) =

⋃

1≤i≤k
{iw | w ∈ leafN (ti)}.

Let w1, . . . , wn ∈ pos(t) be (pairwise prefix-
incomparable) positions and t1, . . . , tn ∈ TΣ.
Then t[wi ← ti]1≤i≤n denotes the tree that is ob-
tained from t by replacing (in parallel) the subtrees
at wi by ti for every 1 ≤ i ≤ n.

Now we are ready to introduce our model,
which is a minor variation of the local multi
bottom-up tree transducer of Maletti (2011). Let
Σ and ∆ be the input and output symbols, respec-
tively, and let N ⊆ Σ ∪∆ be the set of nontermi-
nal symbols. Essentially, the model works on pairs
〈t, (u1, . . . , uk)〉 consisting of an input tree t ∈ TΣ
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and a sequence u1, . . . , uk ∈ T∆ of output trees.
Such pairs are pre-translations of rank k. The pre-
translation 〈t, (u1, . . . , uk)〉 is shallow if all trees
t, u1, . . . , uk in it are shallow.

Together with a pre-translation we typically
have to store an alignment. Given a pre-translation
〈t, (u1, . . . , uk)〉 of rank k and 1 ≤ i ≤ k,
we call ui the ith translation of t. An align-
ment for this pre-translation is an injective map-
ping ψ : leaf

(k)
N (u1, . . . , uk)→ leafN (t)×N such

that if (w, j) ∈ ran(ψ), then also (w, i) ∈ ran(ψ)
for all 1 ≤ j ≤ i.2 In other words, if an alignment
requests the ith translation, then it should also re-
quest all previous translations.

Definition 1 A shallow local multi bottom-up tree
transducer (`MBOT) is a finite set R of rules to-
gether with a mapping c : R → R such that every
rule, written t →ψ (u1, . . . , uk), contains a shal-
low pre-translation 〈t, (u1, . . . , uk)〉 and an align-
ment ψ for it.

The components t, (u1, . . . , uk), ψ, and c(ρ)
are called the left-hand side, the right-hand
side, the alignment, and the weight of the
rule ρ = t →ψ (u1, . . . , uk). Figure 2 shows two
example `MBOT rules (without weights). Overall,
the rules of an `MBOT are similar to the rules of
an SCFG (synchronous context-free grammar), but
our right-hand sides contain a sequence of trees
instead of just a single tree. In addition, the align-
ments in an SCFG rule are bijective between leaf
nonterminals, whereas our model permits multi-
ple alignments to a single leaf nonterminal in the
left-hand side (see Figure 2).

Our `MBOT rules are obtained automatically
from data like that in Figure 3. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner
we obtain sentence pairs like the one shown in
Figure 3. To these sentence pairs we apply the
rule extraction method of Maletti (2011). The
rules extracted from the sentence pair of Figure 3
are shown in Figure 4. Note that these rules
are not necessarily shallow (the last two rules are
not). Thus, we post-process the extracted rules
and make them shallow. The shallow rules corre-
sponding to the non-shallow rules of Figure 4 are
shown in Figure 2.

Next, we define how to combine rules to form
derivations. In contrast to most other models, we

2ran(f) for a mapping f : A→ B denotes the range of f ,
which is {f(a) | a ∈ A}.

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 3: Aligned parsed sentences.

only introduce a derivation semantics that does
not collapse multiple derivations for the same
input-output pair.3 We need one final notion.
Let ρ = t →ψ (u1, . . . , uk) be a rule and
w ∈ leafN (t) be a leaf nonterminal (occurrence)
in the left-hand side. The w-rank rk(ρ, w) of the
rule ρ is

rk(ρ, w) = max {i ∈ N | (w, i) ∈ ran(ψ)} .

For example, for the lower rule ρ in Figure 2 we
have rk(ρ, 1) = 1, rk(ρ, 2) = 2, and rk(ρ, 3) = 1.

Definition 2 The set τ(R, c) of weighted pre-
translations of an `MBOT (R, c) is the smallest
set T subject to the following restriction: If there
exist
• a rule ρ = t→ψ (u1, . . . , uk) ∈ R,
• a weighted pre-translation

〈tw, cw, (uw1 , . . . , uwkw)〉 ∈ T

for every w ∈ leafN (t) with
– rk(ρ, w) = kw,4

– t(w) = tw(ε),5 and
– for every iw′ ∈ leaf

(k)
N (u1, . . . , uk),6

ui(w
′) = uvj (ε) with ψ(iw′) = (v, j),

then 〈t′, c′, (u′1, . . . , u′k)〉 ∈ T is a weighted pre-
translation, where
• t′ = t[w ← tw | w ∈ leafN (t)],
3A standard semantics is presented, for example,

in (Maletti, 2011).
4If w has n alignments, then the pre-translation selected

for it has to have suitably many output trees.
5The labels have to coincide for the input tree.
6Also the labels for the output trees have to coincide.
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Figure 4: Extracted (even non-shallow) rules. We obtain our rules by making those rules shallow.

• c′ = c(ρ) ·∏w∈leafN (t) cw, and
• u′i = ui[iw

′ ← uvj | ψ(iw′) = (v, j)] for
every 1 ≤ i ≤ k.

Rules that do not contain any nonterminal
leaves are automatically weighted pre-translations
with their associated rule weight. Otherwise, each
nonterminal leaf w in the left-hand side of a rule ρ
must be replaced by the input tree tw of a pre-
translation 〈tw, cw, (uw1 , . . . , uwkw)〉, whose root is
labeled by the same nonterminal. In addition, the
rank rk(ρ, w) of the replaced nonterminal should
match the number kw of components in the se-
lected weighted pre-translation. Finally, the non-
terminals in the right-hand side that are aligned
to w should be replaced by the translation that the
alignment requests, provided that the nontermi-
nal matches with the root symbol of the requested
translation. The weight of the new pre-translation
is obtained simply by multiplying the rule weight
and the weights of the selected weighted pre-
translations. The overall process is illustrated in
Figures 5 and 6.

3 Translation Model

Given a source language sentence e, our transla-
tion model aims to find the best corresponding tar-
get language translation ĝ;7 i.e.,

ĝ = arg maxg p(g|e) .

We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters λm scored on the pre-translations 〈t, (u)〉
such that the leaves of t concatenated read e.8

p(g|e) ∝
7∏

m=1

hm
(
〈t, (u)〉

)λm

Our model uses the following features
hm(〈t, (u1, . . . , uk)〉) for a general pre-translation
τ = 〈t, (u1, . . . , uk)〉:

7Our main translation direction is English to German.
8Actually, t must embed in the parse tree of e; see Sec-

tion 4.

(1) The forward translation weight using the rule
weights as described in Section 2

(2) The indirect translation weight using the rule
weights as described in Section 2

(3) Lexical translation weight source→ target
(4) Lexical translation weight target→ source
(5) Target side language model
(6) Number of words in the target sentences
(7) Number of rules used in the pre-translation
(8) Number of target side sequences; here k times

the number of sequences used in the pre-
translations that constructed τ (gap penalty)

The rule weights required for (1) are relative
frequencies normalized over all rules with the
same left-hand side. In the same fashion the rule
weights required for (2) are relative frequencies
normalized over all rules with the same right-
hand side. Additionally, rules that were extracted
at most 10 times are discounted by multiplying
the rule weight by 10−2. The lexical weights
for (2) and (3) are obtained by multiplying the
word translationsw(gi|ej) [respectively,w(ej |gi)]
of lexically aligned words (gi, ej) accross (possi-
bly discontiguous) target side sequences.9 When-
ever a source word ej is aligned to multiple target
words, we average over the word translations.10

h3(〈t, (u1, . . . , uk)〉)
=

∏

lexical item
e occurs in t

average {w(g|e) | g aligned to e}

The computation of the language model esti-
mates for (6) is adapted to score partial transla-
tions consisting of discontiguous units. We ex-
plain the details in Section 4. Finally, the count c
of target sequences obtained in (7) is actually used
as a score 1001−c. This discourages rules with
many target sequences.

9The lexical alignments are different from the alignments
used with a pre-translation.

10If the word ej has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.
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Combining a rule with pre-translations:

NP

JJ NNS
→
( NP

ADJA NN

)

JJ

Official
→
( ADJA

Offizielle

) NNS

forecasts
→
( NN

Prognosen

)

Obtained new pre-translation:

NP

JJ

Official

NNS

forecasts

→
(

NP

ADJA

Offizielle

NN

Prognosen

)

Figure 5: Simple rule application.

Combining a rule with pre-translations:
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Figure 6: Complex rule application.

S

NP VAFIN PP VVPP

Offizielle Prognosen
(

sind , ausgegangen
)

von nur 3 %

Figure 7: Illustration of LM scoring.
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4 Decoding

We implemented our model in the syntax-based
component of the Moses open-source toolkit
by Koehn et al. (2007) and Hoang et al. (2009).
The standard Moses syntax-based decoder only
handles SCFG rules; i.e, rules with contiguous
components on the source and the target lan-
guage side. Roughly speaking, SCFG rules are
`MBOT rules with exactly one output tree. We
thus had to extend the system to support our
`MBOT rules, in which arbitrarily many output
trees are allowed.

The standard Moses syntax-based decoder uses
a CYK+ chart parsing algorithm, in which each
source sentence is parsed and contiguous spans are
processed in a bottom-up fashion. A rule is appli-
cable11 if the left-hand side of it matches the non-
terminal assigned to the full span by the parser and
the (non-)terminal assigned to each subspan.12 In
order to speed up the decoding, cube pruning (Chi-
ang, 2007) is applied to each chart cell in order
to select the most likely hypotheses for subspans.
The language model (LM) scoring is directly in-
tegrated into the cube pruning algorithm. Thus,
LM estimates are available for all considered hy-
potheses. To accommodate `MBOT rules, we had
to modify the Moses syntax-based decoder in sev-
eral ways. First, the rule representation itself is ad-
justed to allow sequences of shallow output trees
on the target side. Naturally, we also had to ad-
just hypothesis expansion and, most importantly,
language model scoring inside the cube pruning
algorithm. An overview of the modified pruning
procedure is given in Algorithm 1.

The most important modifications are hidden
in lines 5 and 8. The expansion in Line 5 in-
volves matching all nonterminal leaves in the rule
as defined in Definition 2, which includes match-
ing all leaf nonterminals in all (discontiguous) out-
put trees. Because the output trees can remain
discontiguous after hypothesis creation, LM scor-
ing has to be done individually over all output
trees. Algorithm 2 describes our LM scoring in
detail. In it we use k strings w1, . . . , wk to col-
lect the lexical information from the k output com-

11Note that our notion of applicable rules differs from the
default in Moses.

12Theoretically, this allows that the decoder ignores unary
parser nonterminals, which could also disappear when we
make our rules shallow; e.g., the parse tree left in the pre-
translation of Figure 5 can be matched by a rule with left-
hand side NP(Official, forecasts).

Algorithm 1 Cube pruning with `MBOT rules
Data structures:
- r[i, j]: list of rules matching span e[i . . . j]
- h[i, j]: hypotheses covering span e[i . . . j]
- c[i, j]: cube of hypotheses covering span e[i . . . j]
1: for all `MBOT rules ρ covering span e[i . . . j] do
2: Insert ρ into r[i, j]
3: Sort r[i, j]
4: for all (l→ψ r) ∈ r[i, j] do
5: Create h[i, j] by expanding all nonterminals in l with

best scoring hypotheses for subspans
6: Add h[i, j] to c[i, j]
7: for all hypotheses h ∈ c[i, j] do
8: Estimate LM score for h // see Algorithm 2
9: Estimate remaining feature scores

10: Sort c[i, j]
11: Retrieve first α elements from c[i, j] // we use α = 103

ponents (u1, . . . , uk) of a rule. These strings can
later be rearranged in any order, so we LM-score
all of them separately. Roughly speaking, we ob-
tain wi by traversing ui depth-first left-to-right.
If we meet a lexical element (terminal), then we
add it to the end of wi. On the other hand, if we
meet a nonterminal, then we have to consult the
best pre-translation τ ′ = 〈t′, (u′1, . . . , u′k′)〉, which
will contribute the subtree at this position. Sup-
pose that u′j will be substituted into the nontermi-
nal in question. Then we first LM-score the pre-
translation τ ′ to obtain the string w′j correspond-
ing to u′j . This string w′j is then appended to wi.
Once all the strings are built, we score them using
our 4-gram LM. The overall LM score for the pre-
translation is obtained by multiplying the scores
for w1, . . . , wk. Clearly, this treats w1, . . . , wk as
k separate strings, although they eventually will
be combined into a single string. Whenever such
a concatenation happens, our LM scoring will au-
tomatically compute n-gram LM scores based on
the concatenation, which in particular means that
the LM scores get more accurate for larger spans.
Finally, in the final rule only one component is al-
lowed, which yields that the LM indeed scores the
complete output sentence.

Figure 7 illustrates our LM scoring for a pre-
translation involving a rule with two (discontigu-
ous) target sequences (the construction of the pre-
translation is illustrated in Figure 6). When pro-
cessing the rule rooted at S, an LM estimate is
computed by expanding all nonterminal leaves. In
our case, these are NP, VAFIN, PP, and VVPP.
However, the nodes VAFIN and VVPP are assem-
bled from a (discontiguous) tree sequence. This
means that those units have been considered as in-
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Algorithm 2 LM scoring
Data structures:
- (u1, . . . , uk): right-hand side of a rule
- (w1, . . . , wk): k strings all initially empty
1: score = 1
2: for all 1 ≤ i ≤ k do
3: for all leaves ` in ui (in lexicographic order) do
4: if ` is a terminal then
5: Append ` to wi
6: else
7: LM score the best hypothesis for the subspan
8: Expand wi by the corresponding w′

j

9: score = score · LM(wi)

dependent until now. So far, the LM scorer could
only score their associated unigrams. However,
we also have their associated strings w′1 and w′2,
which can now be used. Since VAFIN and VVPP
now become parts of a single tree, we can perform
LM scoring normally. Assembling the string we
obtain

Offizielle Prognosen sind von nur 3 %
ausgegangen

which is scored by the LM. Thus, we first score
the 4-grams “Offizielle Prognosen sind von”, then
“Prognosen sind von nur”, etc.

5 Experiments

5.1 Setup

The baseline system for our experiments is the
syntax-based component of the Moses open-
source toolkit of Koehn et al. (2007) and Hoang
et al. (2009). We use linguistic syntactic anno-
tation on both the source and the target language
side (tree-to-tree). Our contrastive system is the
`MBOT-based translation system presented here.
We provide the system with a set of SCFG as well
as `MBOT rules. We do not impose any maximal
span restriction on either system.

The compared systems are evaluated on the
English-to-German13 news translation task of
WMT 2009 (Callison-Burch et al., 2009). For
both systems, the used training data is from the
4th version of the Europarl Corpus (Koehn, 2005)
and the News Commentary corpus. Both trans-
lation models were trained with approximately
1.5 million bilingual sentences after length-ratio
filtering. The word alignments were generated
by GIZA++ (Och and Ney, 2003) with the grow-
diag-final-and heuristic (Koehn et al., 2005). The

13Note that our `MBOT-based system can be applied to any
language pair as it involves no language-specific engineering.

System BLEU
Baseline 12.60
`MBOT ∗13.06

Moses t-to-s 12.72

Table 1: Evaluation results. The starred results
are statistically significant improvements over the
Baseline (at confidence p < 0.05).

English side of the bilingual data was parsed us-
ing the Charniak parser of Charniak and John-
son (2005), and the German side was parsed us-
ing BitPar (Schmid, 2004) without the function
and morphological annotations. Our German 4-
gram language model was trained on the Ger-
man sentences in the training data augmented
by the Stuttgart SdeWaC corpus (Web-as-Corpus
Consortium, 2008), whose generation is detailed
in (Baroni et al., 2009). The weights λm in the
log-linear model were trained using minimum er-
ror rate training (Och, 2003) with the News 2009
development set. Both systems use glue-rules,
which allow them to concatenate partial transla-
tions without performing any reordering.

5.2 Results

We measured the overall translation quality with
the help of 4-gram BLEU (Papineni et al., 2002),
which was computed on tokenized and lower-
cased data for both systems. The results of our
evaluation are reported in Table 1. For com-
parison, we also report the results obtained by
a system that utilizes parses only on the source
side (Moses tree-to-string) with its standard fea-
tures.

We can observe from Table 1 that our `MBOT-
based system outperforms the baseline. We ob-
tain a BLEU score of 13.06, which is a gain of
0.46 BLEU points over the baseline. This im-
provement is statistically significant at confidence
p < 0.05, which we computed using the pairwise
bootstrap resampling technique of Koehn (2004).
Our system is also better than the Moses tree-to-
string system. However this improvement (0.34)
is not statistically significant. In the next section,
we confirm the result of the automatic evaluation
through a manual examination of some transla-
tions generated by our system and the baseline.

In Table 2, we report the number of `MBOT
rules used by our system when decoding the test
set. By lex we denote rules containing only lexical
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lex non-term total
contiguous 23,175 18,355 41,530

discontiguous 315 2,516 2,831

Table 2: Number of rules used in decoding test
(lex: only lexical items; non-term: at least one
nonterminal).

2-dis 3-dis 4-dis
2,480 323 28

Table 3: Number of k-discontiguous rules.

items. The label non-term stands for rules contain-
ing at least one leaf nonterminal. The results show
that approx. 6% of all rules used by our `MBOT-
system have discontiguous target sides. Further-
more, the reported numbers show that the system
also uses rules in which lexical items are com-
bined with nonterminals. Finally, Table 3 presents
the number of rules with k target side components
used during decoding.

5.3 Linguistic Analysis

In this section we present linguistic evidence sup-
porting the fact that the `MBOT-based system sig-
nificantly outperforms the baseline. All exam-
ples are taken from the translation of the test set
used for automatic evaluation. We show that when
our system generates better translations, this is di-
rectly related to the use of `MBOT rules.

Figures 8 and 9 show the ability of our system to
correctly reorder multiple segments in the source
sentence where the baseline translates those seg-
ments sequentially. An analysis of the generated
derivations shows that our system produces the
correct translation by taking advantage of rules
with discontiguous units on target language side.
The rules used in the presented derivations are dis-
played in Figures 10 and 11. In the first example
(Figure 8), we begin by translating “((smuggle)VB
(eight projectiles)NP (into the kingdom)PP)VP” into
the discontiguous sequence composed of (i) “(acht
geschosse)NP” ; (ii) “(in das königreich)PP” and
(iii) “(schmuggeln)VP”. In a second step we as-
semble all sequences in a rule with contiguous tar-
get language side and, at the same time, insert the
word “(zu)PTKZU” between “(in das königreich)PP”
and “(schmuggeln)VP”.

The second example (Figure 9) illustrates a
more complex reordering. First, we trans-

VP

VB NP PP
→
( NP

NP

,
PP

PP

,
VVINF

VVINF

)

S

TO VP
→
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)

Figure 10: Used `MBOT rules for verbal reorder-
ing

VP

ADV commented on NP
→
( NP

NP

,
ADV

ADV

,
VPP

kommentiert

)

VP

VBZ VP
→
( NP

NP

,
VAFIN

VAFIN

,
ADV

ADV

,
VPP

VPP

)

TOP

NP VP
→
( TOP

NP VAFIN NP ADV VVPP

)

Figure 11: Used `MBOT rules for verbal reorder-
ing

late “((again)ADV commented on (the problem
of global warming)NP)VP” into the discontigu-
ous sequence composed of (i) “(das problem
der globalen erwärmung)NP”; (ii) “(wieder)ADV”
and (iii) “(kommentiert)VPP”. In a second step,
we translate the auxiliary “(has)VBZ” by in-
serting “(hat)VAFIN” into the sequence. We
thus obtain, for the input segment “((has)VBZ
(again)ADV commented on (the problem of global
warming)NP)VP”, the sequence (i) “(das problem
der globalen erwärmung)NP”; (ii) “(hat)VAFIN”;
(iii) “(wieder)ADV”; (iv) “(kommentiert)VVPP”. In
a last step, the constituent “(president václav
klaus)NP” is inserted between the discontiguous
units “(hat)VAFIN” and “(wieder)ADV” to form the
contiguous sequence “((das problem der glob-
alen erwärmung)NP (hat)VAFIN (präsident václav
klaus)NP (wieder)ADV (kommentiert)VVPP)TOP”.

Figures 12 and 13 show examples where our
system generates complex words in the target
language out of a simple source language word.
Again, an analysis of the generated derivation
shows that `MBOT takes advantage of rules hav-
ing several target side components. Examples of
such rules are given in Figure 14. Through its
ability to use these discontiguous rules, our sys-
tem correctly translates into reflexive or particle
verbs such as “konzentriert sich” (for the English
“focuses”) or “besteht darauf ” (for the English
“insist”). Another phenomenon well handled by
our system are relative pronouns. Pronouns such
as “that” or “whose” are systematically translated
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. . . geplant hatten 8 geschosse in das königreich zu schmuggeln

. . . had planned to smuggle 8 projectiles into the kingdom

. . . vorhatten zu schmuggeln 8 geschosse in das königreich

Figure 8: Verbal Reordering (top: our system, bottom: baseline)

das problem der globalen erwärmung hat präsident václav klaus wieder kommentiert

president václav klaus has again commented on the problem of global warming

präsident václav klaus hat wieder kommentiert das problem der globalen erwärmung

Figure 9: Verbal Reordering (top: our system, bottom: baseline)

. . . die serbische delegation bestand darauf , dass jede entscheidung . . .

. . . the serbian delegation insisted that every decision . . .

. . . die serbische delegation bestand , jede entscheidung . . .

Figure 12: Relative Clause (top: our system, bot-
tom: baseline)

. . . die roadmap von bali , konzentriert sich auf die bemühungen . . .

. . . the bali roadmap that focuses on efforts . . .

. . . die bali roadmap , konzentriert auf bemühungen . . .

Figure 13: Reflexive Pronoun (top: our system,
bottom: baseline)

into both both, “,” and “dass” or “,” and “deren”
(Figure 12).

6 Conclusion and Future Work

We demonstrated that our `MBOT-based machine
translation system beats a standard tree-to-tree
system (Moses tree-to-tree) on the WMT 2009
translation task English → German. To achieve
this we implemented the formal model as de-
scribed in Section 2 inside the Moses machine
translation toolkit. Several modifications were
necessary to obtain a working system. We publicly
release all our developed software and our com-
plete tool-chain to allow independent experiments
and evaluation. This includes our `MBOT decoder

IN

that
→
( $,

,
,

KOUS

dass

) VBZ

focuses
→
( VVFIN

konzentriert

,
PRF

sich

)

Figure 14: `MBOT rules generating a relative
clause/reflexive pronoun

presented in Section 4 and a separate C++ module
that we use for rule extraction (see Section 3).

Besides the automatic evaluation, we also per-
formed a small manual analysis of obtained trans-
lations and show-cased some examples (see Sec-
tion 5.3). We argue that our `MBOT approach can
adequately handle discontiguous phrases, which
occur frequently in German. Other languages that
exhibit such phenomena include Czech, Dutch,
Russian, and Polish. Thus, we hope that our sys-
tem can also successfully be applied for other lan-
guage pairs, which we plan to pursue as well.

In other future work, we want to investigate
full backwards application of `MBOT rules, which
would be more suitable for the converse transla-
tion direction German→ English. The current in-
dependent LM scoring of components has some
negative side-effects that we plan to circumvent
with the use of lazy LM scoring.
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Abstract

Empty categories (EC) are artificial ele-
ments in Penn Treebanks motivated by the
government-binding (GB) theory to ex-
plain certain language phenomena such as
pro-drop. ECs are ubiquitous in languages
like Chinese, but they are tacitly ignored
in most machine translation (MT) work
because of their elusive nature. In this
paper we present a comprehensive treat-
ment of ECs by first recovering them with
a structured MaxEnt model with a rich
set of syntactic and lexical features, and
then incorporating the predicted ECs into
a Chinese-to-English machine translation
task through multiple approaches, includ-
ing the extraction of EC-specific sparse
features. We show that the recovered
empty categories not only improve the
word alignment quality, but also lead to
significant improvements in a large-scale
state-of-the-art syntactic MT system.

1 Introduction

One of the key challenges in statistical machine
translation (SMT) is to effectively model inher-
ent differences between the source and the target
language. Take the Chinese-English SMT as an
example: it is non-trivial to produce correct pro-
nouns on the target side when the source-side pro-
noun is missing. In addition, the pro-drop prob-
lem can also degrade the word alignment qual-
ity in the training data. A sentence pair observed
in the real data is shown in Figure 1 along with
the word alignment obtained from an automatic
word aligner, where the English subject pronoun

* This work was done when the author was with IBM.

“that” is missing on the Chinese side. Conse-
quently, “that” is incorrectly aligned to the second
to the last Chinese word “De”, due to their high
co-occurrence frequency in the training data. If
the dropped pronoun were recovered, “that” would
have been aligned with the dropped-pro (cf. Fig-
ure 3), which is a much more sensible alignment.

Figure 1: Example of incorrect word alignment
due to missing pronouns on the Chinese side.

In order to account for certain language phe-
nomena such as pro-drop and wh-movement, a set
of special tokens, called empty categories (EC),
are used in Penn Treebanks (Marcus et al., 1993;
Bies and Maamouri, 2003; Xue et al., 2005). Since
empty categories do not exist in the surface form
of a language, they are often deemed elusive and
recovering ECs is even figuratively called “chas-
ing the ghost” (Yang and Xue, 2010).

In this work we demonstrate that, with the avail-
ability of large-scale EC annotations, it is feasi-
ble to predict and recover ECs with high accu-
racy. More importantly, with various approaches
of modeling the recovered ECs in SMT, we are
able to achieve significant improvements1.

The contributions of this paper include the fol-
lowing:

• Propose a novel structured approach to EC
prediction, including the exact word-level lo-

1Hence “Enlisting the ghost” in the title of this paper.
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cation and EC labels. Our results are sig-
nificantly higher in accuracy than that of the
state-of-the-art;

• Measure the effect of ECs on automatic word
alignment for machine translation after inte-
grating recovered ECs into the MT data;

• Design EC-specific features for phrases and
syntactic tree-to-string rules in translation
grammar;

• Show significant improvement on top of the
state-of-the-art large-scale hierarchical and
syntactic machine translation systems.

The rest of the paper is organized as follows. In
Section 2, we present a structured approach to EC
prediction. In Section 3, we describe the integra-
tion of Chinese ECs in MT. The experimental re-
sults for both EC prediction and SMT are reported
in Section 4. A survey on the related work is con-
ducted in Section 5, and Section 6 summarizes the
work and introduces some future work.

2 Chinese Empty Category Prediction

The empty categories in the Chinese Treebank
(CTB) include trace markers for A’- and A-
movement, dropped pronoun, big PRO etc. A
complete list of categories used in CTB is shown
in Table 1 along with their intended usages. Read-
ers are referred to the documentation (Xue et al.,
2005) of CTB for detailed discussions about the
characterization of empty categories.

EC Meaning
*T* trace of A’-movement
* trace of A-movement
*PRO* big PRO in control structures
*pro* pro-drop
*OP* operator in relative clauses
*RNR* for right node raising

Table 1: List of empty categories in the CTB.

In this section, we tackle the problem of recov-
ering Chinese ECs. The problem has been studied
before in the literature. For instance, Yang and
Xue (2010) attempted to predict the existence of
an EC before a word; Luo and Zhao (2011) pre-
dicted ECs on parse trees, but the position infor-
mation of some ECs is partially lost in their repre-
sentation. Furthermore, Luo and Zhao (2011) con-
ducted experiments on gold parse trees only. In

our opinion, recovering ECs from machine parse
trees is more meaningful since that is what one
would encounter when developing a downstream
application such as machine translation. In this
paper, we aim to have a more comprehensive treat-
ment of the problem: all EC types along with
their locations are predicted, and we will report the
results on both human parse trees and machine-
generated parse trees.

2.1 Representation of Empty Categories

Our effort of recovering ECs is a two-step process:
first, at training time, ECs in the Chinese Treebank
are moved and preserved in the portion of the tree
structures pertaining to surface words only. Origi-
nal ECs and their subtrees are then deleted without
loss of information; second, a model is trained on
transformed trees to predict and recover ECs.

Empty categories heavily depend on syntac-
tic tree structure. For this reason, we choose to
project them onto a parse tree node. To facili-
tate presentation, we first distinguish asolid vs.
anempty non-terminal node. A non-terminal node
is solid if and only if it contains at least one child
node that spans one or more surface words (as op-
posed to an EC); accordingly, anempty node is a
non-terminal node that spans only ECs. In the left
half of Figure 2, theNP node that is the immediate
child of IP has only one child node spanning an
EC –(-NONE- *pro*), and is thus anempty
node; while all other non-terminal nodes have at
least one surface word as their child and are thus
all solid nodes.

We decide to attach an EC to its lowestsolid
ancestor node. That is, the EC is moved up to the
first solid node in the syntactic tree. After ECs
are attached, all empty nodes and ECs are deleted
from the tree. In order to uniquely recover ECs,
we also need to encode the position information.
To this end, the relative child index of an EC is
affixed to the EC tag. Take theNP node spanning
the*pro* in Figure 2 as an example, the*pro*
is moved to the lowest solid ancestor,IP node,
and its position is encoded by@1 since the deleted
NP is the second child of theIP node (we use 0-
based indices). With this transformation, we are
able to recover not only the position of an EC, but
its type as well. A special tagNULL is attached
to non-terminal nodes without EC. Since an EC is
introduced to express the structure of a sentence,
it is a good practice to associate it with the syn-
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Figure 2: Example of tree transformation on training data toencode an empty category and its position
information.

tactic tree, as opposed to simply attaching it to a
neighboring word, as was done in (Yang and Xue,
2010). We believe this is one of the reasons why
our model has better accuracy than that of (Yang
and Xue, 2010) (cf. Table 7).

In summary, a projected tag consists of an EC
type (such as*pro*) and the EC’s position in-
formation. The problem of predicting ECs is then
cast into predicting an EC tag at each non-terminal
node. Notice that the input to such a predictor is
a syntactic tree without ECs, e.g., the parse tree
on the right hand of Figure 2 without the EC tag

*pro*@1 is such an example.

2.2 A Structured Empty Category Model

We propose a structured MaxEnt model for pre-
dicting ECs. Specially, given a syntactic tree,T ,
whose ECs have been projected onto solid nodes
with the procedure described in Section 2.1, we
traverse it in post-order (i.e., child nodes are vis-
ited recursively first before the current node is vis-
ited). Let T = t1t2 · · · tn be the sequence of
nodes produced by the post-order traversal, and
ei(i = 1, 2, · · · , n) be the EC tag associated with
ti. The probabilistic model is then:

P (en
1 |T ) =

n∏

i=1

P (ei|T, ei−1
1 )

=
n∏

i=1

exp
( ∑

k λkfk(e
i−1
1 , T, ei)

)

Z(ei−1
1 , T )

(1)

Eq. (1) is the familiar log linear (or MaxEnt)
model, wherefk(e

i−1
1 , T, ei) is the feature func-

tion and
Z(ei−1

1 , T ) =
∑

e∈E exp
( ∑

k λkfk(e
i−1
1 , T, e)

)

is the normalization factor.E is the set of ECs to be
predicted. In the CTB 7.0 processed by the proce-
dure in Section 2.1, the set consists of 32 EC tags

plus a specialNULL symbol, obtained by modulat-
ing the list of ECs in Table 1 with their positions
(e.g.,*pro*@1 in Figure 2).

Once the model is chosen, the next step is to de-
cide a set of features{fk(e

i−1
1 , T, ei)} to be used

in the model. One advantage of having the rep-
resentation in Section 2.1 is that it is very easy to
compute features from tree structures. Indeed, all
features used in our system are computed from the
syntactic trees, including lexical features.

There are 3 categories of features used in the
model: (1) tree label features; (2) lexical features;
(3) EC features, and we list them in Table 2. In
the feature description column, all node positions
(e.g., “left”, “right”) are relative to the current
node being predicted.

Feature 1 to 10 are computed directly from
parse trees, and are straightforward. We include
up to 2 siblings when computing feature 9 and 10.
Feature 11 to 17 are lexical features. Note that we
use words at the edge of the current node: fea-
ture 11 and 12 are words at the internal boundary
of the current node, while feature 13 and 14 are
the immediately neighboring word external to the
current node. Feature 15 and 17 are from head
word information of the current node and the par-
ent node. Feature 18 and 19 are computed from
predicted ECs in the past – that’s why the model
in Eq. (1) conditions onei−1

1 .

Besides the features presented in Table 2, we
also use conjunction features between the current
node label with the parent node label; the cur-
rent node label with features computed from child
nodes; the current node label with features from
left and sibling nodes; the current node label with
lexical features.
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No. Tree Label Features
1 current node label
2 parent node label
3 grand-parent node label
4 left-most child label or POS tag
5 right-most child label or POS tag
6 label or POS tag of the head child
7 the number of child nodes
8 one level CFG rule
9 left-sibling label or POS tag
10 right-sibling label or POS tag

Lexical Features
11 left-most word under the current node
12 right-most word under the current node
13 word immediately left to the span of the

current node
14 word immediately right to the span of the

current node
15 head word of the current node
16 head word of the parent node
17 is the current node head child of its parent?

EC Features
18 predicted EC of the left sibling
19 the set of predicted ECs of child nodes

Table 2: List of features.

3 Integrating Empty Categories in
Machine Translation

In this section, we explore multiple approaches of
utilizing recovered ECs in machine translation.

3.1 Explicit Recovery of ECs in MT

We conducted some initial error analysis on our
MT system output and found that most of the er-
rors that are related to ECs are due to the missing

*pro* and*PRO*. This is also consistent with
the findings in (Chung and Gildea, 2010). One of
the other frequent ECs,*OP*, appears in the Chi-
nese relative clauses, which usually have a Chi-
nese word “De” aligned to the target side “that”
or “which”. And the trace,*T*, exists in both
Chinese and English sides. For MT we want to fo-
cus on the places where there exist mismatches be-
tween the source and target languages. A straight-
forward way of utilizing the recovered*pro* and

*PRO* is to pre-process the MT training and test
data by inserting ECs into the original source text
(i.e. Chinese in this case). As mentioned in the
previous section, the output of our EC predictor
is a new parse tree with the labels and positions

encoded in the tags. Based on the positional in-
formation in the tags, we can move the predicted
ECs down to the surface level and insert them be-
tween original source words. The same prediction
and “pull-down” procedure can be conducted con-
sistently cross the MT training and test data.

3.2 Grammar Extraction on Augmented
Data

With the pre-processed MT training corpus, an un-
supervised word aligner, such as GIZA++, can be
used to generate automatic word alignment, as the
first step of a system training pipeline. The ef-
fect of inserting ECs is two-fold: first, it can im-
pact the automatic word alignment since now it al-
lows the target-side words, especially the function
words, to align to the inserted ECs and fix some
errors in the original word alignment; second, new
phrases and rules can be extracted from the pre-
processed training data. For example, for a hier-
archical MT system, some phrase pairs and Hiero
(Chiang, 2005) rules can be extracted with recov-
ered*pro* and*PRO* at the Chinese side.

In this work we also take advantages of the aug-
mented Chinese parse trees (with ECs projected
to the surface) and extract tree-to-string grammar
(Liu et al., 2006) for a tree-to-string MT system.
Due to the recovered ECs in the source parse
trees, the tree-to-string grammar extracted from
such trees can be more discriminative, with an in-
creased capability of distinguishing different con-
text. An example of an augmented Chinese parse
tree aligned to an English string is shown in Figure
3, in which the incorrect alignment in Figure 1 is
fixed. A few examples of the extracted Hiero rules
and tree-to-string rules are also listed, which we
would not have been able to extract from the orig-
inal incorrect word alignment when the*pro*
was missing.

3.3 Soft Recovery: EC-Specific Sparse
Features

Recovered ECs are often good indicators of what
hypothesis should be chosen during decoding. In
addition to the augmented syntax-based grammar,
we propose sparse features as a soft constraint to
boost the performance. For each phrase pair, Hi-
ero rule or tree-to-string rule in the MT system,
a binary featurefk fires if there exists a*pro*
on the source side and it aligns to one of its most
frequently aligned target words found in the train-
ing corpus. We also fire another feature if*pro*
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Figure 3: Fixed word alignment and examples of
extracted Hiero rules and tree-to-string rules.

aligns to any other target words so the model can
choose to penalize them based on a tuning set.
Similar features can fire for*PRO*. The feature
weights can be tuned on a tuning set in a log-linear
model along with other usual features/costs, in-
cluding language model scores, bi-direction trans-
lation probabilities, etc. The motivation for such
sparse features is to reward those phrase pairs
and rules that have highly confident lexical pairs
specifically related to ECs, and penalize those who
don’t have such lexical pairs.

Table 3 listed some of the most frequent English
words aligned to*pro* or *PRO* in a Chinese-
English parallel corpus with 2M sentence pairs.
Their co-occurrence counts and the lexical trans-
lation probabilities are also shown in the table. In
total we use 15 sparse features for frequent lexical
pairs, including 13 for*pro* and 2 for*PRO*,
and two more features for any other target words
that align to*pro* or *PRO*.

Source Target Counts P (t|s)
*pro* the 93100 0.11
*pro* to 86965 0.10
*pro* it 45423 0.05
*pro* in 36129 0.04
*pro* we 24509 0.03
*pro* which 17259 0.02
*PRO* to 195464 0.32
*PRO* for 31200 0.05

Table 3: Example of frequent word pairs used for
sparse features.

4 Experimental Results

4.1 Empty Category Prediction

We use Chinese Treebank (CTB) v7.0 to train and
test the EC prediction model. We partition the
data into training, development and test sets. The
training set includes 32925 sentences from CTB
files 0001-0325, 0400-0454, 0500-0542, 0600-
0840, 0590-0596, 1001-1120, 2000-3000, cctv,
cnn, msnbc, and phoenix 00-06. The development
set has 3033 sentences, from files 0549-0554,
0900-0931, 1136-1151, 3076-3145, and phoenix
10-11. The test set contains 3297 sentences, from
files 0543-0548, 0841-0885, 1121-1135, 3001-
3075, and phoenix 07-09.

To measure the accuracy of EC prediction, we
project the predicted tags from the upper level
nodes in the parse trees down to the surface level
based on the position information encoded in the
tags. The position index for each inserted EC,
counted at the surface level, is attached for scor-
ing purpose. The same operation is applied on
both the reference and the system output trees.
Such projection is necessary, especially when the
two trees differ in structure (e.g. gold trees vs.
machine-generated trees). We compute the pre-
cision, recall and F1 scores for each EC on the
test set, and collect their counts in the reference
and system output. The results are shown in Ta-
ble 4, where the LDC gold parse trees are used to
extract syntactic features for the model. The first
row in the table shows the accuracy for the places
where no EC should be inserted. The predictor
achieves 99.5% F1 score for this category, with
limited number of missing or false positives. The
F1 scores for majority of the ECs are above 70%,
except for “*”, which is relatively rare in the data.
For the two categories that are interesting to MT,

*pro* and*PRO*, the predictor achieves 74.3%
and 81.5% in F1 scores, respectively.

The results reported above are based on the
LDC gold parse trees. To apply the EC predic-
tion to NLP applications, such as MT, it is impos-
sible to always rely on the gold trees due to its
limited availability. We parse our test set with a
maximum entropy based statistical parser (Ratna-
parkhi, 1997) first. The parser accuracy is around
84% on the test set. Then we extract features based
on the system-generated parse trees, and decode
with the previously trained model. The results are
shown in Table 5. Compared to those in Table 4,
the F1 scores dropped by different degrees for dif-

826



Tag Ref Sys P R F1
NULL 75159 75508 99.3 99.7 99.5
*pro* 1692 1442 80.8 68.9 74.3

*PRO* 1410 1282 85.6 77.8 81.5
*T* 1851 1845 82.8 82.5 82.7

*OP* 1721 1853 90.9 97.9 94.2
*RNR* 51 39 87.2 66.7 75.6

* 156 96 63.5 39.1 48.4

Table 4: Prediction accuracy with gold parse trees,
whereNULL represents the cases where no ECs
should be produced.

ferent types. Such performance drop is expected
since the system relies heavily on syntactic struc-
ture, and parsing errors create an inherent mis-
matching condition between the training and test-
ing time. The smallest drop among all types is on
NULL, at about 1.6%. The largest drop occurs for

*OP*, at 27.1%, largely due to the parsing errors
on theCP nodes. The F1 scores for*pro* and

*PRO* when using system-generated parse trees
are between 50% to 60%.

Tag Precision Recall F1
NULL 97.6 98.2 97.9
*pro* 51.1 50.1 50.6

*PRO* 66.4 50.5 57.3
*T* 68.2 59.9 63.8

*OP* 66.8 67.3 67.1
*RNR* 70.0 54.9 61.5

* 60.9 35.9 45.2

Table 5: Prediction accuracy with system-
generated parse trees.

To show the effect of ECs other than*pro*
and*PRO*, we remove all ECs in the training data
except*pro* and *PRO*. So the model only
predictsNULL, *pro* or *PRO*. The results on
the test set are listed in Table 6. There is 0.8% and
0.5% increase onNULL and*pro*, respectively.
The F1 score for*PRO* drops by 0.2% slightly.

As mentioned earlier, for MT we focus on re-
covering*pro* and *PRO* only. The model
generating the results in Table 6 is the one we ap-
plied in our MT experiments reported later.

In order to compare to the state-of-the-art mod-
els to see where our model stands, we switch our
training, development and test data to those used
in the work of (Yang and Xue, 2010) and (Cai et

Tag Precision Recall F1
NULL 98.5 98.9 98.7
*pro* 51.0 51.1 51.1

*PRO* 66.0 50.4 57.1

Table 6: Prediction accuracy with system-
generated parse trees, modeling*pro* and

*PRO* only.

al., 2011), for the purpose of a direct comparison.
The training set includes CTB files 0081 through
0900. The development set includes files 0041 to
0080, and the test set contains files 0001-0040 and
0901-0931. We merge all empty categories into
a single type in the training data before training
our EC prediction model. To compare the perfor-
mance on system-generated parse trees, we also
train a Berkeley parser on the same training data
and parse the test set. The prediction accuracy
for such single type on the test set with gold or
system-generated parse trees is shown in Table 7,
compared to the numbers reported in (Yang and
Xue, 2010) and (Cai et al., 2011). The model we
proposed achieves 6% higher F1 score than that in
(Yang and Xue, 2010) and 2.6% higher than that in
(Cai et al., 2011), which is significant. This shows
the effectiveness of our structured approach.

Model T P R F1
(Yang and Xue, 2010) G 95.9 83.0 89.0
Structured (this work) G 96.5 93.6 95.0
(Yang and Xue, 2010) S 80.3 52.1 63.2

(Cai et al., 2011) S 74.0 61.3 67.0
Structured (this work) S 74.9 65.1 69.6

Table 7: Comparison with the previous results, us-
ing the same training and test data. T: parse trees.
G: gold parse trees. S: system-generated parse
trees. P: precision. R: recall.

4.2 MT Results

In the Chinese-to-English MT experiments, we
test two state-of-the-art MT systems. One is an re-
implementation of Hiero (Chiang, 2005), and the
other is a hybrid syntax-based tree-to-string sys-
tem (Zhao and Al-onaizan, 2008), where normal
phrase pairs and Hiero rules are used as a backoff
for tree-to-string rules.

The MT training data includes 2 million sen-
tence pairs from the parallel corpora released by
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LDC over the years, with the data from United
Nations and Hong Kong excluded2. The Chi-
nese text is segmented with a segmenter trained
on the CTB data using conditional random field
(CRF), followed by the longest-substring match
segmentation in a second pass. Our language
model (LM) training data consists of about 10 bil-
lion English words, which includes Gigaword and
other newswire and web data released by LDC,
as well as the English side of the parallel train-
ing corpus. We train a 6-gram LM with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998). Our tuning set for MT contains 1275 sen-
tences from LDC2010E30. We test our system
on the NIST MT08 Newswire (691 sentences)
and Weblog (666 sentences) sets. Both tuning
and test sets have 4 sets of references for each
sentence. The MT systems are optimized with
pairwise ranking optimization (Hopkins and May,
2011) to maximize BLEU (Papineni et al., 2002).

We first predict*pro* and*PRO* with our
annotation model for all Chinese sentences in the
parallel training data, with*pro* and*PRO* in-
serted between the original Chinese words. Then
we run GIZA++ (Och and Ney, 2000) to generate
the word alignment for each direction and apply
grow-diagonal-final (Koehn et al., 2003), same as
in the baseline. We want to measure the impact on
the word alignment, which is an important step for
the system building. We append a 300-sentence
set, which we have human hand alignment avail-
able as reference, to the 2M training sentence pairs
before running GIZA++. The alignment accuracy
measured on this alignment test set, with or with-
out *pro* and *PRO* inserted before running
GIZA++, is shown in Table 8. To make a fair
comparison with the baseline alignment, any tar-
get words aligned to ECs are deemed as unaligned
during scoring. We observe 1.2% improvement on
function word related links, and almost the same
accuracy on content words. This is understand-
able since*pro* and*PRO* are mostly aligned
to the function words at the target side. The pre-
cision and recall for function words are shown in
Table 9. We can see higher accuracy in both pre-
cision and recall when ECs (*pro* and*PRO*)
are recovered in the Chinese side. Especially, the
precision is improved by 2% absolute.

2The training corpora include LDC2003E07,
LDC2003E08, LDC2005T10, LDC2006E26, LDC2006G05,
LDC2007E103, LDC2008G05, LDC2009G01, and
LDC2009G02.

System Function Content All
Baseline 51.7 69.7 65.4
+EC 52.9 69.6 65.7

Table 8: Word alignment F1 scores with or without

*pro* and*PRO*.

System Precision Recall F1
Baseline 54.1 49.5 51.7
+EC 56.0 50.1 52.9

Table 9: Word alignment accuracy for function
words only.

Next we extract phrase pairs, Hiero rules and
tree-to-string rules from the original word align-
ment and the improved word alignment, and tune
all the feature weights on the tuning set. The
weights include those for usual costs and also the
sparse features proposed in this work specifically
for ECs. We test all the systems on the MT08
Newswire and Weblog sets.

The BLEU scores from different systems are
shown in Table 10 and Table 11, respectively. We
measure the incremental effect of prediction (in-
serting*pro* and*PRO*) and sparse features.
Pre-processing of the data with ECs inserted im-
proves the BLEU scores by about 0.6 for newswire
and 0.2 to 0.3 for the weblog data, compared to
each baseline separately. On top of that, adding
sparse features helps by another 0.3 on newswire
and 0.2 to 0.4 on weblog. Overall, the Hiero
and tree-to-string systems are improved by about 1
point for newswire and 0.4 to 0.7 for weblog. The
smaller gain on the weblog data could be due to
the more difficult data to parse, which affects the
accuracy of EC prediction. All the results in Table
10 and 11 marked with “*” are statistically signif-
icant withp < 0.05 using the sign test described
in (Collins et al., 2005), compared to the baseline
results in each table. Two MT examples are given
in Table 12, which show the effectiveness of the
recovered ECs in MT.

System MT08-nw MT08-wb
Hiero 33.99 25.40

+prediction 34.62* 25.63
+prediction+sparse 34.95* 25.80*

Table 10: BLEU scores in the Hiero system.
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System MT08-nw MT08-wb
T2S+Hiero 34.53 25.80
+prediction 35.17* 26.08

+prediction+sparse 35.51* 26.53*

Table 11: BLEU scores in the tree-to-string system
with Hiero rules as backoff.

5 Related Work

Empty categories have been studied in recent
years for several languages, mostly in the con-
text of reference resolution and syntactic process-
ing for English, such as in (Johnson, 2002; Di-
enes and Dubey, 2003; Gabbard et al., 2006).
More recently, EC recovery for Chinese started
emerging in literature. In (Guo et al., 2007),
non-local dependencies are migrated from En-
glish to Chinese for generating proper predicate-
argument-modifier structures from surface context
free phrase structure trees. In (Zhao and Ng,
2007), a decision tree learning algorithm is pre-
sented to identify and resolve Chinese anaphoric
zero pronouns. and achieves a performance com-
parable to a heuristic rule-based approach. Similar
to the work in (Dienes and Dubey, 2003), empty
detection is formulated as a tagging problem in
(Yang and Xue, 2010), where each word in the
sentence receives a tag indicating whether there is
an EC before it. A maximum entropy model is
utilized to predict the tags, but different types of
ECs are not distinguished. In (Cai et al., 2011),
a language-independent method was proposed to
integrate the recovery of empty elements into syn-
tactic parsing. As shown in the previous section,
our model outperforms the model in (Yang and
Xue, 2010) and (Cai et al., 2011) significantly us-
ing the same training and test data. (Luo and Zhao,
2011) also tries to predict the existence of an EC

in Chinese sentences, but the ECs in the middle of
a tree constituent are lumped into a single position
and are not uniquely recoverable.

There exists only a handful of previous work on
applying ECs explicitly to machine translation so
far. One of them is the work reported in (Chung
and Gildea, 2010), where three approaches are
compared, based on either pattern matching, CRF,
or parsing. However, there is no comparison be-
tween using gold trees and automatic trees. There
also exist a few major differences on the MT
part between our work and theirs. First, in ad-
dition to the pre-processing of training data and
inserting recovered empty categories, we imple-
ment sparse features to further boost the perfor-
mance, and tune the feature weights directly to-
wards maximizing the machine translation met-
ric. Second, there is no discussion on the quality
of word alignment in (Chung and Gildea, 2010),
while we show the alignment improvement on a
hand-aligned set. Last, they use a phase-based
system trained on only 60K sentences, while we
conduct experiments on more advanced Hiero and
tree-to-string systems, trained on 2M sentences in
a much larger corpus. We directly take advantage
of the augmented parse trees in the tree-to-string
grammar, which could have larger impact on the
MT system performance.

6 Conclusions and Future Work

In this paper, we presented a novel structured ap-
proach to EC prediction, which utilizes a max-
imum entropy model with various syntactic fea-
tures and shows significantly higher accuracy than
the state-of-the-art approaches. We also applied
the predicted ECs to a large-scale Chinese-to-
English machine translation task and achieved sig-
nificant improvement over two strong MT base-
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lines, i.e. a hierarchical phase-based system and
a tree-to-string syntax-based system. More work
remain to be done next to further take advantages
of ECs. For example, the recovered ECs can be
encoded in a forest as the input to the MT decoder
and allow the decoder to pick the best MT output
based on various features in addition to the sparse
features we proposed in this work. Many promis-
ing approaches can be explored in the future.
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Abstract

While domain adaptation techniques for
SMT have proven to be effective at im-
proving translation quality, their practical-
ity for a multi-domain environment is of-
ten limited because of the computational
and human costs of developing and main-
taining multiple systems adapted to differ-
ent domains. We present an architecture
that delays the computation of translation
model features until decoding, allowing
for the application of mixture-modeling
techniques at decoding time. We also de-
scribe a method for unsupervised adapta-
tion with development and test data from
multiple domains. Experimental results on
two language pairs demonstrate the effec-
tiveness of both our translation model ar-
chitecture and automatic clustering, with
gains of up to 1 BLEU over unadapted sys-
tems and single-domain adaptation.

1 Introduction

The effectiveness of domain adaptation ap-
proaches such as mixture-modeling (Foster and
Kuhn, 2007) has been established, and has led to
research on a wide array of adaptation techniques
in SMT, for instance (Matsoukas et al., 2009; Shah
et al., 2012). In all these approaches, adaptation is
performed during model training, with respect to a
representative development corpus, and the mod-
els are kept unchanged when then system is de-
ployed. Therefore, when working with multiple
and/or unlabelled domains, domain adaptation is
often impractical for a number of reasons. Firstly,
maintaining multiple systems for each language
pair, each adapted to a different domain, is costly

in terms of computational and human resources:
the full system development pipeline needs to be
performed for all identified domains, all the mod-
els are separately stored and need to be switched at
runtime. This is impractical in many real applica-
tions, in particular a web translation service which
is faced with texts coming from many different do-
mains. Secondly, domain adaptation bears a risk
of performance loss. If there is a mismatch be-
tween the domain of the development set and the
test set, domain adaptation can potentially harm
performance compared to an unadapted baseline.

We introduce a translation model architecture
that delays the computation of features to the de-
coding phase. The calculation is based on a vec-
tor of component models, with each component
providing the sufficient statistics necessary for the
computation of the features. With this framework,
adaptation to a new domain simply consists of up-
dating a weight vector, and multiple domains can
be supported by the same system.

We also present a clustering approach for un-
supervised adaptation in a multi-domain environ-
ment. In the development phase, a set of develop-
ment data is clustered, and the models are adapted
to each cluster. For each sentence that is being
decoded, we choose the weight vector that is op-
timized on the closest cluster, allowing for adap-
tation even with unlabelled and heterogeneous test
data.

2 Related Work

(Ortiz-Martı́nez et al., 2010) delay the compu-
tation of translation model features for the pur-
pose of interactive machine translation with online
training. The main difference to our approach is
that we store sufficient statistics not for a single
model, but a vector of models, which allows us to
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weight the contribution of each component model
to the feature calculation. The similarity suggests
that our framework could also be used for inter-
active learning, with the ability to learn a model
incrementally from user feedback, and weight it
differently than the static models, opening new re-
search opportunities.

(Sennrich, 2012b) perform instance weighting
of translation models, based on the sufficient
statistics. Our framework implements this idea,
with the main difference that the actual combina-
tion is delayed until decoding, to support adapta-
tion to multiple domains in a single system.

(Razmara et al., 2012) describe an ensemble de-
coding framework which combines several trans-
lation models in the decoding step. Our work is
similar to theirs in that the combination is done
at runtime, but we also delay the computation of
translation model probabilities, and thus have ac-
cess to richer sufficient statistics. In principle,
our architecture can support all mixture operations
that (Razmara et al., 2012) describe, plus addi-
tional ones such as forms of instance weighting,
which are not possible after the translation proba-
bilities have been computed.

(Banerjee et al., 2010) focus on the problem of
domain identification in a multi-domain setting.
They use separate translation systems for each do-
main, and a supervised setting, whereas we aim
for a system that integrates support for multiple
domains, with or without supervision.

(Yamamoto and Sumita, 2007) propose unsu-
pervised clustering at both training and decoding
time. The training text is divided into a number
of clusters, a model is trained on each, and during
decoding, each sentence is assigned to the clos-
est cluster-specific model. Our approach bears re-
semblance to this clustering, but is different in that
Yamamoto and Sumita assign each sentence to the
closest model, and use this model for decoding,
whereas in our approach, each cluster is associ-
ated with a mixture of models that is optimized to
the cluster, and the number of clusters need not be
equal to the number of component models.

3 Translation Model Architecture

This section covers the architecture of the multi-
domain translation model framework. Our transla-
tion model is embedded in a log-linear model as is
common for SMT, and treated as a single transla-
tion model in this log-linear combination. We im-

plemented this architecture for phrase-based mod-
els, and will use this terminology to describe it,
but in principle, it can be extended to hierarchical
or syntactic models.

The architecture has two goals: move the calcu-
lation of translation model features to the decoding
phase, and allow for multiple knowledge sources
(e.g. bitexts or user-provided data) to contribute to
their calculation. Our immediate purpose for this
paper is domain adaptation in a multi-domain en-
vironment, but the delay of the feature computa-
tion has other potential applications, e.g. in inter-
active MT.

We are concerned with calculating four features
during decoding, henceforth just referred to as the
translation model features: p(s|t), lex(s|t), p(t|s)
and lex(t|s). s and t denote the source and target
phrase. We follow the definitions in (Koehn et al.,
2003).

Traditionally, the phrase translation probabili-
ties p(s|t) and p(t|s) are estimated through un-
smoothed maximum likelihood estimation (MLE).

p(x|y) = c(x, y)

c(y)
=

c(x, y)∑
x′ c(x

′, y)
(1)

where c denotes the count of an observation, and
p the model probability.

The lexical weights lex(s|t) and lex(t|s) are
calculated as follows, using a set of word align-
ments a between s and t:1

lex(s|t, a) =
n∏

i=1

1

|{j|(i, j) ∈ a}|
∑

∀(i,j)∈a
w(si|tj)

(2)
A special NULL token is added to t and aligned to
each unaligned word in s. w(si|tj) is calculated
through MLE, as in equation 1, but based on the
word (pair) frequencies.

To combine statistics from a vector of n com-
ponent corpora, we can use a weighted version of
equation 1, which adds a weight vector λ of length
n (Sennrich, 2012b):

p(x|y;λ) =
∑n

i=1 λici(x, y)∑n
i=1

∑
x′ λici(x

′, y)
(3)

The word translation probabilities w(ti|sj) are de-
fined analogously, and used in equation 2 for a
weighted version.

1The equation shows lex(s|t); lex(t|s) is computed anal-
ogously.
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In order to compute the translation model fea-
tures online, a number of sufficient statistics need
to be accessible at decoding time. For p(s|t)
and p(t|s), we require the statistics c(s), c(t) and
c(s, t). For accessing them during decoding, we
simply store them in the decoder’s data struc-
ture, rather than storing pre-computed translation
model features. This means that we can use exist-
ing, compact data formats for storing and access-
ing them.2

The statistics are accessed when the decoder
collects all translation options for a phrase s in the
source sentence. We then access all translation op-
tions for each component table, obtaining a vector
of statistics c(s) for the source phrase, and c(t) and
c(s, t) for each potential target phrase. For phrase
pairs which are not found, c(s, t) and c(t) are ini-
tially set to 0.

Note that c(t) is potentially incorrect at this
point, since a phrase pair not being found does
not entail that c(t) is 0. After all tables have been
accessed, and we thus know the full set of possi-
ble translation options (s, t), we perform a second
round of lookups for all c(t) in the vector which
are still set to 0. We introduce a second table for
accessing c(t) efficiently, again storing it in the de-
coder’s data structure. We can easily create such a
table by inverting the source and target phrases,
deduplicating it for compactness (we only need
one entry per target phrase), and storing c(t) as
only feature.

For lex(s|t), we require an alignment a, plus
c(tj) and c(si, tj) for all pairs (i, j) in a. lex(t|s)
can be based on the same alignment a (with the ex-
ception of NULL alignments, which can be added
online), but uses statistics c(sj) and c(ti, sj). For
estimating the lexical probabilities, we load the
frequencies into a vector of four hash tables.3

Both space and time complexity of the lookup
is linear to the number of component tables. We
deem it is still practical because the collection of
translation options is typically only a small frac-
tion of total decoding time, with search making
up the largest part. For storing and accessing the
sufficient statistics (except for the word (pair) fre-
quencies), we use an on-disk data structure pro-

2We have released an implementation of the architecture
as part of the Moses decoder.

3c(s, t) and c(t, s) are not identical since the lexical
probabilities are based on the unsymmetrized word align-
ment frequencies (in the Moses implementation which we re-
implement).

phrase (pair) c1(x) c2(x)

row 300 80
(row, Zeile) 240 20
(row, Reihe) 60 60
λ p(Zeile|row) p(Reihe|row)

(1, 1) 0.68 0.32
(1, 10) 0.40 0.60
(10, 1) 0.79 0.21

Table 1: Illustration of instance weighting with
weight vectors for two corpora.

vided by Moses, which reduces the memory re-
quirements. Still, the number of components may
need to be reduced, for instance through clustering
of training data (Sennrich, 2012a).

With a small modification, our framework could
be changed to use a single table that stores a vec-
tor of n statistics instead of a vector of n tables.
While this would be more compact in terms of
memory, and keep the number of table lookups in-
dependent of the number of components, we chose
a vector of n tables for its flexibility. With a vec-
tor of tables, tables can be quickly added to or re-
moved from the system (conceivable even at run-
time), and can be polymorph. One applications
where this could be desirable is interactive ma-
chine translation, where one could work with a
mix of compact, static tables, and tables designed
to be incrementally trainable.

In the unweighted variant, the resulting fea-
tures are equivalent to training on the concatena-
tion of all training data, excepting differences in
word alignment, pruning4 and rounding. The ar-
chitecture can thus be used as a drop-in replace-
ment for a baseline system that is trained on con-
catenated training data, with non-uniform weights
only being used for texts for which better weights
have been established. This can be done either us-
ing domain labels or unsupervised methods as de-
scribed in the next section.

As a weighted combination method, we imple-
mented instance weighting as described in equa-
tion 3. Table 1 shows the effect of weighting two
corpora on the probability estimates for the trans-
lation of row. German Zeile (row in a table) is pre-
dominant in a bitext from the domain IT, whereas

4We prune the tables to the most frequent 50 phrase pairs
per source phrase before combining them, since calculat-
ing the features for all phrase pairs of very common source
phrases causes a significant slow-down. We found that this
had no significant effects on BLEU.
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Figure 1: Clustering of data set which contains sentences from two domains: LEGAL and IT. Compari-
son between gold segmentation, and clustering with two alternative distance/similarity measures. Black:
IT; grey: LEGAL.

Reihe (line of objects) occurs more often in a legal
corpus. Note that the larger corpus (or more pre-
cisely, the one in which row occurs more often)
has a stronger impact on the probability distribu-
tion with uniform weights (or in a concatenation of
data sets). Instance weighting allows us to modify
the contribution of each corpus. In our implemen-
tation, the weight vector is set globally, but can be
overridden on a per-sentence basis. In principle,
using different weight vectors for different phrase
pairs in a sentence is conceivable. The framework
can also be extended to support other combination
methods, such as a linear interpolation of models.

4 Unsupervised Clustering for Online
Translation Model Adaptation

The framework supports decoding each sentence
with a separate weight vector of size 4n, 4 being
the number of translation model features whose
computation can be weighted, and n the number
of model components. We now address the ques-
tion of how to automatically select good weights in
a multi-domain task. As a way of optimizing in-
stance weights, (Sennrich, 2012b) minimize trans-
lation model perplexity on a set of phrase pairs,
automatically extracted from a parallel develop-
ment set. We follow this technique, but want to
have multiple weight vectors, adapted to different
texts, between which the system switches at de-
coding time. The goal is to perform domain adap-
tation without requiring domain labels or user in-
put, neither for development nor decoding.

The basic idea consists of three steps:

1. Cluster a development set into k clusters.

2. Optimize translation model weights for each

cluster.

3. For each sentence in the test set, assign it
to the nearest cluster and use the translation
model weights associated with the cluster.

For step 2, we use the algorithm by (Sennrich,
2012b), implemented in the decoder to allow for a
quick optimization of a running system. We will
here discuss steps 1 and 3 in more detail.

4.1 Clustering the Development Set
We use k-means clustering to cluster the sentences
of the development set. We train a language model
on the source language side of each of the n
component bitexts, and compute an n-dimensional
vector for each sentence by computing its entropy
with each language model. Our aim is not to dis-
criminate between sentences that are more likely
and unlikely in general, but to cluster on the ba-
sis of relative differences between the language
model entropies. For this purpose, we choose
the cosine as our similarity measure. Figure 1
illustrates clustering in a two-dimensional vector
space, and demonstrates that Euclidean distance is
unsuitable because it may perform a clustering that
is irrelevant to our purposes.

As a result of development set clustering, we
obtain a bitext for each cluster, which we use to
optimize the model weights, and a centroid per
cluster. At decoding time, we need only perform
an assignment step. Each test set sentence is as-
signed to the centroid that is closest to it in the
vector space.

4.2 Scalability Considerations
Our theoretical expectation is that domain adapta-
tion will fail to perform well if the test data is from
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a different domain than the development data, or
if the development data is a heterogeneous mix
of domains. A multi-domain setup can mitigate
this risk, but only if the relevant domain is repre-
sented in the development data, and if the devel-
opment data is adequately segmented for the op-
timization. We thus suggest that the development
data should contain enough data from all domains
that one wants to adapt to, and a high number of
clusters.

While the resource requirements increase with
the number of component models, increasing the
number of clusters is computationally cheap at
runtime. Only the clustering of the develop-
ment set and optimization of the translation model
weights for each clusters is affected by k. This
means that the approach can in principle be scaled
to a high number of clusters, and support a high
number of domains.5

The biggest risk of increasing the number of
clusters is that if the clusters become too small,
perplexity minimization may overfit these small
clusters. We will experiment with different num-
bers of clusters, but since we expect the optimal
number of clusters to depend on the amount of
development data, and the number of domains,
we cannot make generalized statements about the
ideal number of k.

While it is not the focus of this paper, we also
evaluate language model adaptation. We perform
a linear interpolation of models for each clus-
ter, with interpolation coefficients optimized us-
ing perplexity minimization on the development
set. The cost of moving language model interpo-
lation into the decoding phase is far greater than
for translation models, since the number of hy-
potheses that need to be evaluated by the language
model is several orders of magnitudes higher than
the number of phrase pairs used during the trans-
lation. For the experiments with language model
adaptation, we have chosen to perform linear in-
terpolation offline, and perform language model
switching during decoding. While model switch-
ing is a fast operation, it also makes the space com-
plexity of storing the language models linear to the
number of clusters. For scaling the approach to a
high number of clusters, we envision that multi-

5If the development set is labelled, one can also use a gold
segmentation of development sets instead of k-means cluster-
ing. At decoding time, cluster assignment can be performed
by automatically assigning each sentence to the closest cen-
troid, or again through gold labels, if available.

data set sentences words (de)
kde 216 000 1 990 000
kdedoc 2880 41 000
kdegb 51 300 450 000
oo 41 000 434 000
oo3 56 800 432 000
php 38 500 301 000
tm 146 000 2 740 000
acquis 2 660 000 58 900 000
dgt 372 000 8 770 000
ecb 110 000 2 850 000
ep7 1 920 000 50 500 000
nc7 159 000 3 950 000
total (train) 5 780 000 131 000 000
dev (IT) 3500 47 000
dev (LEGAL) 2000 46 800
test (IT) 5520 51 800
test (LEGAL) 9780 250 000

Table 2: Parallel data sets English–German.

data set sentences words (en)
eu 1 270 000 25 600 000
fiction 830 000 13 700 000
navajo 30 000 490 000
news 110 000 2 550 000
paraweb 370 000 3 930 000
subtitles 2 840 000 21 200 000
techdoc 970 000 7 270 000
total (train) 6 420 000 74 700 000
dev 3500 50 700
test 3500 49 600

Table 3: Parallel data sets Czech–English.

pass decoding, with an unadapted language model
in the first phase, and rescoring with a language
model adapted online, could perform adequately,
and keep the complexity independent of the num-
ber of clusters.

5 Evaluation

5.1 Data and Methods

We conduct all experiments with Moses (Koehn et
al., 2007), SRILM (Stolcke, 2002), and GIZA++
(Och and Ney, 2003). Log-linear weights are op-
timized using MERT (Och and Ney, 2003). We
keep the word alignment and lexical reordering
models constant through the experiments to min-
imize the number of confounding factors. We re-
port translation quality using BLEU (Papineni et
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system
TM adaptation LM adaptation TM+LM adaptation
IT LEGAL IT LEGAL IT LEGAL

baseline 21.1 49.9 21.1 49.9 21.1 49.9
1 cluster (no split) 21.3* 49.9 21.8* 49.7 21.8* 49.8
2 clusters 21.6* 49.9 22.2* 50.4* 22.8* 50.2*
4 clusters 21.7* 49.9 23.1* 50.2* 22.6* 50.2*
8 clusters 22.1* 49.9 23.1* 50.1* 22.7* 50.3*
16 clusters 21.1 49.9 22.6* 50.3* 21.9* 50.1*
gold clusters 21.8* 50.1* 22.4* 50.1* 23.2* 49.9

Table 4: Translation experiments EN–DE. BLEU scores reported.

al., 2002). We account for optimizer instability
by running 3 independent MERT runs per system,
and performing significance testing with MultEval
(Clark et al., 2011). Systems significantly better
than the baseline with p < 0.01 are marked with
(*).

We conduct experiments on two data sets. The
first is an English–German translation task with
two domains, texts related to information technol-
ogy (IT) and legal documents (LEGAL). We use
data sets from both domains, plus out-of-domain
corpora, as shown in table 2. 7 data sets come from
the domain IT: 6 from OPUS (Tiedemann, 2009)
and a translation memory (tm) provided by our in-
dustry partner. 3 data sets are from the legal do-
main: the ECB corpus from OPUS, plus the JRC-
Acquis (Steinberger et al., 2006) and DGT-TM
(Steinberger et al., 2012). 2 data sets are out-of-
domain, made available by the 2012 Workshop on
Statistical Machine Translation (Callison-Burch et
al., 2012). The development sets are random sam-
ples from the respective in-domain bitexts (held-
out from training). The test sets have been pro-
vided by Translated, our industry partner in the
MATECAT project.

Our second data set is CzEng 0.9, a Czech–
English parallel corpus (Bojar and Zabokrtský,
2009). It contains text from 7 different sources, on
which we train separate component models. The
size of the corpora is shown in table 3. As de-
velopment and test sets, we use 500 sentences of
held-out data per source.

For both data sets, language models are trained
on the target side of the bitexts. In all experiments,
we keep the number of component models con-
stant: 12 for EN–DE, 7 for CZ–EN. We vary the
number of clusters k from 1, which corresponds to
adapting the models to the full development set, to
16. The baseline is the concatenation of all train-

Data set λIT λLEGAL λcluster 1 λcluster 2

kde 1.0 1.0 1.0 1.0
kdedoc 0.64 12.0 86.0 6.4
kdegb 1.6 2.3 1.7 2.7
oo 0.76 1.6 0.73 1.7
oo3 1.8 4.7 2.4 2.7
php 0.79 6.3 0.69 3.5
tm 1.3 1.3 1.5 1.1
acquis 0.024 3.5 0.018 1.9
dgt 0.053 4.5 0.033 2.4
ecb 0.071 2.3 0.039 1.2
ep7 0.037 0.53 0.024 0.29
nc7 0.1 1.1 0.063 0.62

Table 5: Weight vectors for feature p(t|s) opti-
mized on four development sets (from gold split
and clustering with k = 2).

ing data, with no adaptation performed. We also
evaluate the labelled setting, where instead of un-
supervised clustering, we use gold labels to split
the development and test sets, and adapt the mod-
els to each labelled domain.

5.2 Results

Table 4 shows results for the EN–DE data set. For
our clustering experiments, the development set is
the concatenation of the LEGAL and IT develop-
ment sets. However, we always use the gold seg-
mentation between LEGAL and IT for MERT and
testing. This allows for a detailed analysis of the
effect of development data clustering for the pur-
pose of model adaptation. In an unlabelled setting,
one would have to run MERT either on the full de-
velopment set (as we will do for the CZ–EN task)
or separately on each cluster, or use an alternative
approach to optimize log-linear weights in a multi-
domain setting, such as feature augmentation as
described by (Clark et al., 2012).
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system TM adaptation LM adaptation TM+LM adaptation
baseline 34.4 34.4 34.4
1 cluster (no split) 34.5 33.7 34.1
2 clusters 34.6 34.0 34.4
4 clusters 34.7* 34.3 34.6
8 clusters 34.7* 34.5 34.9*
16 clusters 34.7* 34.7* 35.0*
gold clusters 35.0* 35.0* 35.4*

Table 6: Translation experiments CZ–EN. BLEU scores reported.

We find that an adaptation of the TM and LM
to the full development set (system “1 cluster”)
yields the smallest improvements over the un-
adapted baseline. The reason for this is that the
mixed-domain development set is not representa-
tive for the respective test sets. Using multiple
adapted systems yields better performance. For
the IT test set, the system with gold labels and TM
adaptation yields an improvement of 0.7 BLEU

(21.1 → 21.8), LM adaptation yields 1.3 BLEU

(21.1 → 22.4), and adapting both models outper-
forms the baseline by 2.1 BLEU (21.1 → 23.2).
The systems that use unsupervised clusters reach
a similar level of performance than those with
gold clusters, with best results being achieved
by the systems with 2–8 clusters. Some sys-
tems outperform both the baseline and the gold
clusters, e.g. TM adaptation with 8 clusters
(21.1 → 21.8 → 22.1), or LM adaptation with 4
or 8 clusters (21.1→ 22.4→ 23.1).

Results with 16 clusters are slightly worse than
those with 2–8 clusters due to two effects. Firstly,
for the system with adapted TM, one of the three
MERT runs is an outlier, and the reported BLEU

score of 21.1 is averaged from the three MERT
runs achieving 22.1, 21.6, and 19.6 BLEU, respec-
tively. Secondly, about one third of the IT test
set is assigned to a cluster that is not IT-specific,
which weakens the effect of domain adaptation for
the systems with 16 clusters.

For the LEGAL subset, gains are smaller. This
can be explained by the fact that the majority of
training data is already from the legal domain,
which makes it unnecessary to boost its impact on
the probability distribution even further.

Table 5 shows the automatically obtained trans-
lation model weight vectors for two systems,
“gold clusters” and “2 clusters”, for the feature
p(t|s). It illustrates that all the corpora that we
consider out-of-domain for IT are penalized by

a factor of 10–50 (relative to the in-domain kde
corpus) for the computation of this feature. For
the LEGAL domain, the weights are more uni-
form, which is congruent with our observation that
BLEU changes little.

Table 6 shows results for the CZ–EN data set.
For each system, MERT is performed on the full
development set. As in the first task, adaptation to
the full development set is least effective. The sys-
tems with unsupervised clusters significantly out-
perform the baseline. For the system with 16 clus-
ters, we observe an improvement of 0.3 BLEU for
TM adaptation, and 0.6 BLEU for adapting both
models (34.4 → 34.7 → 35.0). The labelled sys-
tem, i.e. the system with 7 clusters corresponding
to the 7 data sources, both for the development and
test set, performs best. We observe gains of 0.6
BLEU (34.4 → 35.0) for TM or LM adaptation,
and 1 BLEU (34.4→ 35.4) when both models are
adapted.

We conclude that the translation model archi-
tecture is effective in a multi-domain setting, both
with unsupervised clusters and labelled domains.
The fact that language model adaptation yields an
additional improvement in our experiments sug-
gests that it it would be worthwhile to also inves-
tigate a language model data structure that effi-
ciently supports multiple domains.

6 Conclusion

We have presented a novel translation model ar-
chitecture that delays the computation of trans-
lation model features to the decoding phase, and
uses a vector of component models for this com-
putation. We have also described a usage scenario
for this architecture, namely its ability to quickly
switch between weight vectors in order to serve as
an adapted model for multiple domains. A sim-
ple, unsupervised clustering of development data
is sufficient to make use of this ability and imple-

838



ment a multi-domain translation system. If avail-
able, one can also use the architecture in a labelled
setting.

Future work could involve merging our trans-
lation model framework with the online adapta-
tion of other models, or the log-linear weights.
Our approach is orthogonal to that of (Clark et
al., 2012), who perform feature augmentation to
obtain multiple sets of adapted log-linear weights.
While (Clark et al., 2012) use labelled data, their
approach could in principle also be applied after
unsupervised clustering.

The translation model framework could also
serve as the basis of real-time adaptation of trans-
lation systems, e.g. by using incremental means to
update the weight vector, or having an incremen-
tally trainable component model that learns from
the post-edits by the user, and is assigned a suit-
able weight.
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TM: A freely available translation memory in 22 lan-
guages. In Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC’12), Istanbul, Turkey. European Language
Resources Association (ELRA).

Andreas Stolcke. 2002. SRILM – An Extensible Lan-
guage Modeling Toolkit. In Seventh International
Conference on Spoken Language Processing, pages
901–904, Denver, CO, USA.

Jörg Tiedemann. 2009. News from OPUS - a col-
lection of multilingual parallel corpora with tools
and interfaces. In N. Nicolov, K. Bontcheva,
G. Angelova, and R. Mitkov, editors, Recent
Advances in Natural Language Processing, vol-
ume V, pages 237–248. John Benjamins, Amster-
dam/Philadelphia, Borovets, Bulgaria.

Hirofumi Yamamoto and Eiichiro Sumita. 2007. Bilin-
gual cluster based models for statistical machine
translation. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 514–523, Prague, Czech Republic.

840



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 841–851,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Part-of-Speech Induction in Dependency Trees for Statistical Machine
Translation

Akihiro Tamura †,‡, Taro Watanabe†, Eiichiro Sumita†,
Hiroya Takamura ‡, Manabu Okumura‡

† National Institute of Information and Communications Technology
{akihiro.tamura, taro.watanabe, eiichiro.sumita }@nict.go.jp

† Precision and Intelligence Laboratory, Tokyo Institute of Technology
{takamura, oku }@pi.titech.ac.jp

Abstract

This paper proposes a nonparametric
Bayesian method for inducing Part-of-
Speech (POS) tags in dependency trees
to improve the performance of statistical
machine translation (SMT). In particular,
we extend the monolingual infinite tree
model (Finkel et al., 2007) to a bilin-
gual scenario: each hidden state (POS tag)
of a source-side dependency tree emits a
source word together with its aligned tar-
get word, either jointly (joint model), or
independently (independent model). Eval-
uations of Japanese-to-English translation
on the NTCIR-9 data show that our in-
duced Japanese POS tags for dependency
trees improve the performance of a forest-
to-string SMT system. Our independent
model gains over 1 point in BLEU by re-
solving the sparseness problem introduced
in the joint model.

1 Introduction

In recent years, syntax-based SMT has made
promising progress by employing either depen-
dency parsing (Lin, 2004; Ding and Palmer, 2005;
Quirk et al., 2005; Shen et al., 2008; Mi and Liu,
2010) or constituency parsing (Huang et al., 2006;
Liu et al., 2006; Galley et al., 2006; Mi and Huang,
2008; Zhang et al., 2008; Cohn and Blunsom,
2009; Liu et al., 2009; Mi and Liu, 2010; Zhang
et al., 2011) on the source side, the target side,
or both. However, dependency parsing, which
is a popular choice for Japanese, can incorporate
only shallow syntactic information, i.e., POS tags,
compared with the richer syntactic phrasal cate-
gories in constituency parsing. Moreover, exist-
ing POS tagsets might not be optimal for SMT
because they are constructed without considering
the language in the other side. Consider the ex-
amples in Figure 1. The Japanese noun “利用” in

私 が 利用利用利用利用 料金 を 払う

あなた は インターネット が 利用利用利用利用 でき ない

You can not use the Internet  .

I  pay  usage fees  .

noun particle particlenoun noun verb auxiliary verb

noun particle noun noun verbparticle

[Example 1]

[Example 2]

Japanese POS:

Japanese POS:

Figure 1: Examples of Existing Japanese POS
Tags and Dependency Structures

Example 1 corresponds to the English verb “use”,
while that in Example 2 corresponds to the English
noun “usage”. Thus, Japanese nouns act like verbs
in English in one situation, and nouns in English
in another. If we could discriminate POS tags for
two cases, we might improve the performance of a
Japanese-to-English SMT system.

In the face of the above situations, this pa-
per proposes an unsupervised method for inducing
POS tags for SMT, and aims to improve the perfor-
mance of syntax-based SMT by utilizing the in-
duced POS tagset. The proposed method is based
on the infinite tree model proposed by Finkel et
al. (2007), which is a nonparametric Bayesian
method for inducing POS tags from syntactic de-
pendency structures. In this model, hidden states
represent POS tags, the observations they generate
represent the words themselves, and tree structures
represent syntactic dependencies between pairs of
POS tags.

The proposed method builds on this model by
incorporating the aligned words in the other lan-
guage into the observations. We investigate two
types of models: (i) a joint model and (ii) an in-
dependent model. In the joint model, each hid-
den state jointly emits both a source word and its
aligned target word as an observation. The in-
dependent model separately emits words in two
languages from hidden states. By inferring POS
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tags based on bilingual observations, both mod-
els can induce POS tags by incorporating infor-
mation from the other language. Consider, for ex-
ample, inducing a POS tag for the Japanese word “
利用” in Figure 1. Under a monolingual induction
method (e.g., the infinite tree model), the “利用”
in Example 1 and 2 would both be assigned the
same POS tag since they share the same observa-
tion. However, our models would assign separate
tags for the two different instances since the “利
用” in Example 1 and Example 2 could be disam-
biguated by encoding the target-side information,
either “use” or “usage”, in the observations.

Inference is efficiently carried out by beam sam-
pling (Gael et al., 2008), which combines slice
sampling and dynamic programming. Experi-
ments are carried out on the NTCIR-9 Japanese-
to-English task using a binarized forest-to-string
SMT system with dependency trees as its source
side. Our bilingually-induced tagset signifi-
cantly outperforms the original tagset and the
monolingually-induced tagset. Further, our inde-
pendent model achieves a more than 1 point gain
in BLEU, which resolves the sparseness problem
introduced by the bi-word observations.

2 Related Work

A number of unsupervised methods have been
proposed for inducing POS tags. Early methods
have the problem that the number of possible POS
tags must be provided preliminarily. This limita-
tion has been overcome by automatically adjust-
ing the number of possible POS tags using non-
parametric Bayesian methods (Finkel et al., 2007;
Gael et al., 2009; Blunsom and Cohn, 2011; Sirts
and Alum̈ae, 2012). Gael et al. (2009) applied
infinite HMM (iHMM) (Beal et al., 2001; Teh
et al., 2006), a nonparametric version of HMM,
to POS induction. Blunsom and Cohn (2011)
used a hierarchical Pitman-Yor process prior to the
transition and emission distribution for sophisti-
cated smoothing. Sirts and Alumäe (2012) built a
model that combines POS induction and morpho-
logical segmentation into a single learning prob-
lem. Finkel et al. (2007) proposed the infinite
tree model, which represents recursive branching
structures over infinite hidden states and induces
POS tags from syntactic dependency structures. In
the following, we overview the infinite tree model,
which is the basis of our proposed model. In par-
ticular, we will describe the independent children

H φk

ππππkρ
z1

z2 z3

x1 x2 x3
k=1,…,C

H
k

k

~

),...,(Dirichlet~|

φ
ρρρπ

Figure 2: A Graphical Representation of the Finite
Tree Model

model (Finkel et al., 2007), where children are
dependent only on their parents, used in our pro-
posed model1.

2.1 Finite Tree Model

We first review the finite tree model, which can
be graphically represented in Figure 2. Let
Tt denote the tree whose root node ist. A
node t has a hidden statezt (the POS tag)
and an observationxt (the word). The prob-
ability of a tree Tt, pT (Tt), is recursively de-
fined: pT (Tt) = p(xt|zt)

∏

t′∈c(t)

p(zt′ |zt)pT (Tt′),

wherec(t) is the set of the children oft.
Let each hidden state variable haveC possible

values indexed byk. For each statek, there is
a parameterϕk which parameterizes the observa-
tion distribution for that state:xt|zt ∼ F (ϕzt). ϕk

is distributed according to a prior distributionH:
ϕk ∼ H.

Transitions between states are governed by
Markov dynamics parameterized byπ, where
πij = p(zc(t) = j|zt = i) andπk are the transition
probabilities from the parent’s statek. πk is dis-
tributed according to a Dirichlet distribution with
parameterρ: πk|ρ ∼ Dirichlet(ρ, . . . , ρ). The
hidden state of each childzt′ is distributed accord-
ing to a multinomial distributionπzt specific to the
parent’s statezt: zt′ |zt ∼ Multinomial(πzt).

2.2 Infinite Tree Model

In the infinite tree model, the number of possible
hidden states is potentially infinite. The infinite
model is formed by extending the finite tree model
using a hierarchical Dirichlet process (HDP) (Teh
et al., 2006). The reason for using an HDP rather

1Finkel et al. (2007) originally proposed three types of
models: besides the independent children model, the simul-
taneous children model and the markov children model. Al-
though we could apply the other two models, we leave this
for future work.
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Figure 3: A Graphical Representation of the Infi-
nite Tree Model

than a simple Dirichlet process (DP)2 (Ferguson,
1973) is that we have to introduce coupling across
transitions from different parent’s states. A similar
measure was adopted in iHMM (Beal et al., 2001).

HDP is a set of DPs coupled through a shared
random base measure which is itself drawn from
a DP: eachGk ∼ DP(α0, G0) with a shared base
measureG0, andG0 ∼ DP(γ, H) with a global
base measureH. From the viewpoint of the stick-
breaking construction3 (Sethuraman, 1994), the

HDP is interpreted as follows:G0 =
∞∑

k′=1

βk′δϕk′

and Gk =

∞∑

k′=1

πkk′δϕk′ , where β ∼ GEM(γ),

πk ∼ DP(α0, β), andϕk′ ∼ H.
We regard eachGk as two coindexed distribu-

tions: πk, a distribution over the transition prob-
abilities from the parent’s statek, andϕk′ , an ob-
servation distribution for the statek′. Then, the
infinite tree model is formally defined as follows:

β|γ ∼ GEM(γ),

πk|α0, β ∼ DP(α0, β),

ϕk ∼ H,

zt′ |zt ∼ Multinomial(πzt),

xt|zt ∼ F (ϕzt).

Figure 3 shows the graphical representation of the
infinite tree model. The primary difference be-

2DP is a measure on measures. It has two parameters, a
scaling parameterα and a base measureH: DP (α, H).

3Sethuraman (1994) showed a definition of a measure
G ∼ DP(α0, G0). First, infinite sequences of i.i.d variables
(π′

k)∞
k=1 and(ϕk)∞

k=1 are generated:π′
k|α0 ∼ Beta(1, α0),

ϕk ∼ G0. Then,G is defined as:πk = π′
k

∑k−1
l=1 (1 − π′

l),
G =

∑∞
k=1 πkδϕk . If π is defined by this process, then we

write π ∼ GEM(α0).

H φk

ππππkα0

∞

γ ββββ z1

z2 z3

z4 z5 z6

“払う
+pay” “を”

“料金
+fees”

“利用
+usage”

“私+I” “が”

Figure 4: An Example of the Joint Model

tween Figure 2 and Figure 3 is whether the number
of copies of the state is finite or not.

3 Bilingual Infinite Tree Model

We propose a bilingual variant of the infinite tree
model, the bilingual infinite tree model, which uti-
lizes information from the other language. Specifi-
cally, the proposed model introduces bilingual ob-
servations by embedding the aligned target words
in the source-side dependency trees. This paper
proposes two types of models that differ in their
processes for generating observations: the joint
model and the independent model.

3.1 Joint Model

The joint model is a simple application of the in-
finite tree model under a bilingual scenario. The
model is formally defined in the same way as in
Section 2.2 and is graphically represented simi-
larly to Figure 3. The only difference from the
infinite tree model is the instances of observations
(xt). Observations in the joint model are the com-
bination of source words and their aligned target
words4, while observations in the monolingual in-
finite tree model represent only source words. For
each source word, all the aligned target words are
copied and sorted in alphabetical order, and then
concatenated into a single observation. Therefore,
a single target word may be emitted multiple times
if the target word is aligned with multiple source
words. Likewise, there may be target words which
may not be emitted by our model, if the target
words are not aligned.

Figure 4 shows the process of generating Exam-
ple 2 in Figure 1 through the joint model, where
aligned words are jointly emitted as observations.
In Figure 4, the POS tag of “利用” (z5) generates

4When no target words are aligned, we simply add a
NULL target word.
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Figure 5: A Graphical Representation of the Inde-
pendent Model

the string “利用+usage” as the observation (x5).
Similarly, the POS tag of “利用” in Example 1
would generate the string “利用+use”. Hence, this
model can assign different POS tags to the two dif-
ferent instances of the word “利用”, based on the
different observation distributions in inference.

3.2 Independent Model

The joint model is prone to a data sparseness prob-
lem, since each observation is a combination of a
source word and its aligned target word. Thus, we
propose an independent model, where each hidden
state generates a source word and its aligned target
word separately. For the aligned target side, we in-
troduce an observation variablex′

t for eachzt and
a parameterϕ′

k for each statek, which parame-
terizes a distinct distribution over the observations
x′

t for that state.ϕ′
k is distributed according to a

prior distributionH ′. Specifically, the indepen-
dent model is formally defined as follows:

β|γ ∼ GEM(γ),

πk|α0, β ∼ DP(α0, β),

ϕk ∼ H, ϕ′
k ∼ H ′,

zt′ |zt ∼ Multinomial(πzt),

xt|zt ∼ F (ϕzt), x′
t|zt ∼ F ′(ϕ′

zt
).

When multiple target words are aligned to a single
source word, each aligned word is generated sepa-
rately from observation distribution parameterized
by ϕ′

k.
Figure 5 graphs the process of generating Ex-

ample 2 in Figure 1 using the independent model.
x′

t andϕ′
k are introduced for aligned target words.

The state of “利用” (z5) generates the Japanese
word “利用” as x5 and the English word “usage”
asx′

5. Due to this factorization, the independent
model is less subject to the sparseness problem.

3.3 Introduction of Other Factors

We assumed the surface form of aligned target
words as additional observations in previous sec-
tions. Here, we introduce additional factors, i.e.,
the POS of aligned target words, in the observa-
tions. Note that POSs of target words are assigned
by a POS tagger in the target language and are not
inferred in the proposed model.

First, we can simply replace surface forms of
target words with their POSs to overcome the
sparseness problem. Second, we can incorporate
both information from the target language as ob-
servations. In the joint model, two pieces of in-
formation are concatenated into a single observa-
tion. In the independent model, we introduce ob-
servation variables (e.g.,x′

t andx′′
t ) and parame-

ters (e.g.,ϕ′
k andϕ′′

k) for each information. Specif-
ically, x′

t and ϕ′
k are introduced for the surface

form of aligned words, andx′′
t andϕ′′

k for the POS
of aligned words. Consider, for example, Example
1 in Figure 1. The POS tag of “利用” generates the
string “利用+use+verb” as the observation in the
joint model, while it generates “利用”, “use”, and
“verb” independently in the independent model.

3.4 POS Refinement

We have assumed a completely unsupervised way
of inducing POS tags in dependency trees. An-
other realistic scenario is to refine the existing POS
tags (Finkel et al., 2007; Liang et al., 2007) so
that each refined sub-POS tag may reflect the in-
formation from the aligned words while preserv-
ing the handcrafted distinction from original POS
tagset. Major difference is that we introduce sep-
arate transition probabilitiesπs

k and observation
distributions (ϕs

k, ϕ
′s
k ) for each existing POS tags.

Then, each nodet is constrained to follow the dis-
tributions indicated by the initially assigned POS
tagst, and we use the pair (st, zt) as a state repre-
sentation.

3.5 Inference

In inference, we find the state set that maximizes
the posterior probability of state transitions given
observations (i.e.,P (z1:n|x1:n)). However, we
cannot evaluate the probability for all possible
states because the number of states is infinite.
Finkel et al. (2007) presented a sampling algo-
rithm for the infinite tree model, which is based on
the Gibbs sampling in the direct assignment rep-
resentation for iHMM (Teh et al., 2006). In the
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Gibbs sampling, individual hidden state variables
are resampled conditioned on all other variables.
Unfortunately, its convergence is slow in HMM
settings because sequential data is likely to have
a strong correlation between hidden states (Gael
et al., 2008).

We present an inference procedure based on
beam sampling (Gael et al., 2008) for the joint
model and the independent model. Beam sam-
pling limits the number of possible state transi-
tions for each node to a finite number using slice
sampling (Neal, 2003), and then efficiently sam-
ples whole hidden state transitions using dynamic
programming. Beam sampling does not suffer
from slow convergence as in Gibbs sampling by
sampling the whole state variables at once. In ad-
dition, Gael et al. (2008) showed that beam sam-
pling is more robust to initialization and hyperpa-
rameter choice than Gibbs sampling.

Specifically, we introduce an auxiliary variable
ut for each node in a dependency tree to limit
the number of possible transitions. Our procedure
alternates between sampling each of the follow-
ing variables: the auxiliary variablesu, the state
assignmentsz, the transition probabilitiesπ, the
shared DP parametersβ, and the hyperparameters
α0 andγ. We can parallelize procedures in sam-
plingu andz because the slice sampling foru and
the dynamic programing forz are independent for
each sentence. See Gael el al. (2009) for details.

The only difference between inferences in the
joint model and the independent model is in com-
puting the posterior probability of state transi-
tions given observations (e.g.,p(z1:n|x1:n) and
p(z1:n|x1:n, x′

1:n)) in samplingz. In the follow-
ing, we describe each sampling stage. See Teh et
al., (2006) for details of samplingπ, β, α0 andγ.

Samplingu:

Each ut is sampled from the uniform distribu-
tion on [0, πzd(t)zt ], whered(t) is the parent of
t: ut ∼ Uniform(0, πzd(t)zt). Note thatut is a
positive number, since each transition probability
πzd(t)zt is larger than zero.

Samplingz:

Possible valuesk of zt are divided into the two
sets usingut: a finite set withπzd(t)k > ut and
an infinite set withπzd(t)k ≤ ut. The beam
sampling considers only the former set. Owing
to the truncation of the latter set, we can compute
the posterior probability of a statezt given ob-

servations for allt (t = 1, . . . , T ) using dynamic
programming as follows:
In the joint model,p(zt|xσ(t), uσ(t)) ∝
p(xt|zt) ·

∑

zd(t):πzd(t)zt>ut

p(zd(t)|xσ(d(t)), uσ(d(t))),

and in the independent model,
p(zt|xσ(t), x

′
σ(t), uσ(t)) ∝ p(xt|zt) · p(x′

t|zt)

·
∑

zd(t):πzd(t)zt>ut

p(zd(t)|xσ(d(t)), x
′
σ(d(t)), uσ(d(t))),

wherexσ(t) (or uσ(t)) denotes the set ofxt (or ut)
on the path from the root node to the nodet in a
tree.

In our experiments, we assume thatF (ϕk)
is Multinomial(ϕk) andH is Dirichlet(ρ, . . . , ρ),
which is the same in Finkel et al. (2007). Un-
der this assumption, the posterior probability of an

observation is as follows:p(xt|zt) =
ṅxtk + ρ

ṅ·k + Nρ
,

whereṅxk is the number of observationsx with
statek, ṅ·k is the number of hidden states whose
values arek, andN is the total number of observa-

tionsx. Similarly, p(x′
t|zt) =

ṅx′
tk

+ ρ′

ṅ·k + N ′ρ′ , where

N ′ is the total number of observationsx′.
When the posterior probability of a statezt

given observations for allt can be computed,
we first sample the state of each leaf node and
then perform backtrack sampling for every other
zt where thezt is sampled given the sample
for zc(t) as follows: p(zt|zc(t), x1:T , u1:T ) ∝
p(zt|xσ(t), uσ(t))

∏
t′∈c(t) p(zt′ |zt, ut′).

Samplingπ:

We introduce a count variablenij ∈ n,
which is the number of observations with
state j whose parent’s state isi. Then,
we sample π using the Dirichlet distri-
bution: (πk1, . . . , πkK ,

∑∞
k′=K+1 πkk′) ∼

Dirichlet(nk1 + α0β1, . . . , nkK +
α0βK , α0

∑∞
k′=K+1 βk′), where K is the

number of distinct states inz.

Samplingβ:

We introduce a set of auxiliary variablesm, where
mij ∈ m is the number of elements ofπj

corresponding toβi. The conditional distribu-
tion of each variable isp(mij = m|z, β, α0) ∝
S(nij ,m)(α0βj)

m, whereS(n,m) are unsigned
Stirling numbers of the first kind5.

5S(0, 0) = S(1, 1) = 1, S(n, 0) = 0 for n > 0,
S(n, m) = 0 for m > n, andS(n + 1, m) = S(n, m −
1) + nS(n, m) for others.
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The parametersβ are sampled using the Dirich-
let distribution: (β1, . . . , βK ,

∑∞
k′=K+1 βk′) ∼

Dirichlet(m·1, . . . , m·K , γ), where m·k =∑K
k′=1 mk′k.

Samplingα0:

α0 is parameterized by a gamma hyperprior
with hyperparametersαa and αb. We introduce
two types of auxiliary variables for each state
(k = 1, . . . , K), wk ∈ [0, 1] and vk ∈ {0, 1}.
The conditional distribution of eachwk is
p(wk|α0) ∝ wα0

k (1−wk)
n·k−1 and that of eachvk

is p(vk|α0) ∝ (
n·k
α0

)
vk

, wheren·k =
∑K

k′=1 nk′k.

The conditional distribution ofα0 given wk

and vk (k = 1, . . . ,K) is p(α0|w,v) ∝
α

αa−1+m..−∑K
k=1 vk

0 e−α0(αb−
∑K

k=1 logwk), where
m·· =

∑K
k′=1

∑K
k′′=1 mk′k′′ .

Samplingγ:

γ is parameterized by a gamma hyperprior with
hyperparametersγa and γb. We introduce an
auxiliary variableη, whose conditional distribu-
tion is p(η|γ) ∝ ηγ(1 − η)m··−1. The con-
ditional distribution ofγ given η is p(γ|η) ∝
γγa−1+Ke−γ(γb−logη).

4 Experiment

We tested our proposed models under the
NTCIR-9 Japanese-to-English patent translation
task (Goto et al., 2011), consisting of approxi-
mately 3.2 million bilingual sentences. Both the
development data and the test data consist of 2,000
sentences. We also used the NTCIR-7 develop-
ment data consisting of 2,741 sentences for devel-
opment testing purposes.

4.1 Experimental Setup

We evaluated our bilingual infinite tree model
for POS induction using an in-house developed
syntax-based forest-to-string SMT system. In
the training process, the following steps are per-
formed sequentially: preprocessing, inducing a
POS tagset for a source language, training a POS
tagger and a dependency parser, and training a
forest-to-string MT model.

Step 1. Preprocessing

We used the first 10,000 Japanese-English sen-
tence pairs in the NTCIR-9 training data for in-

ducing a POS tagset for Japanese6. The Japanese
sentences were segmented using MeCab7, and the
English sentences were tokenized and POS tagged
using TreeTagger (Schmid, 1994), where 43 and
58 types of POS tags are included in the Japanese
sentences and the English sentences, respectively.
The Japanese POS tags come from the second-
level POS tags in the IPA POS tagset (Asahara and
Matsumoto, 2003) and the English POS tags are
derived from the Penn Treebank. Note that the
Japanese POS tags are used for initialization of
hidden states and the English POS tags are used
as observations emitted by hidden states.

Word-by-word alignments for the sentence
pairs are produced by first running GIZA++ (Och
and Ney, 2003) in both directions and then com-
bining the alignments using the “grow-diag-final-
and” heuristic (Koehn et al., 2003). Note that we
ran GIZA++ on all of the NTCIR-9 training data
in order to obtain better alignements.

The Japanese sentences are parsed using
CaboCha (Kudo and Matsumoto, 2002), which
generates dependency structures using a phrasal
unit called abunsetsu8, rather than a word unit as
in English or Chinese dependency parsing. Since
we focus on the word-level POS induction, each
bunsetsu-based dependency tree is converted into
its corresponding word-based dependency tree us-
ing the following heuristic9: first, the last func-
tion word inside eachbunsetsu is identified as
the head word10; then, the remaining words are
treated as dependents of the head word in the same
bunsetsu; finally, a bunsetsu-based dependency
structure is transformed to a word-based depen-
dency structure by preserving the head/modifier
relationships of the determined head words.

Step 2. POS Induction

A POS tag for each word in the Japanese sentences
is inferred by our bilingual infinite tree model, ei-

6Due to the high computational cost, we did not use all
the NTCIR-9 training data. We leave scaling up to a larger
dataset for future work.

7http://mecab.googlecode.com/svn/
trunk/mecab/doc/index.html

8A bunsetsu is the smallest meaningful sequence con-
sisting of a content word and accompanying function words
(e.g., a noun and a particle).

9We could use other word-based dependency trees such
as trees by the infinite PCFG model (Liang et al., 2007)
and syntactic-head or semantic-head dependency trees in
Nakazawa and Kurohashi (2012), although it is not our major
focus. We leave this for future work.

10If no function words exist in abunsetsu, the last content
word is treated as the head word.
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ther jointly (Joint) or independently (Ind). We
also performed monolingual induction of Finkel et
al. (2007) for comparison (Mono). In each model,
a sequence of samplingu, z, π, β, α0, andγ is
repeated 10,000 times. In samplingα0 andγ, hy-
perparametersαa, αb, γa, andγb are set to 2, 1,
1, and 1, respectively, which is the same setting in
Gael et al. (2008). In samplingz, parametersρ, ρ′,
. . ., are set to 0.01. In the experiments, three types
of factors for the aligned English words are com-
pared: surface forms (‘s’), POS tags (‘P’), and the
combination of both (‘s+P’). Further, two types of
inference frameworks are compared:induction
(IND) andrefinement (REF ). In both frame-
works, each hidden statezt is first initialized to
the POS tags assigned by MeCab (the IPA POS
tagset), and then each state is updated through
the inference procedure described in Section 3.5.
Note that inREF , the sampling distribution over
zt is constrained to include only states that are a
refinement of the initially assigned POS tag.

Step 3. Training a POS Tagger and a
Dependency Parser

In this step, we train a Japanese dependency parser
from the 10,000 Japanese dependency trees with
the induced POS tags which are derived from Step
2. We employed a transition-based dependency
parser which can jointly learn POS tagging and
dependency parsing (Hatori et al., 2011) under an
incremental framework11. Note that the learned
parser can identify dependencies between words
and attach an induced POS tag for each word.

Step 4. Training a Forest-to-String MT

In this step, we train a forest-to-string MT model
based on the learned dependency parser in Step 3.
We use an in-house developed hypergraph-based
toolkit, cicada, for training and decoding with a
tree-to-string model, which has been successfully
employed in our previous work for system com-
bination (Watanabe and Sumita, 2011) and online
learning (Watanabe, 2012). All the Japanese and
English sentences in the NTCIR-9 training data
are segmented in the same way as in Step 1, and
then each Japanese sentence is parsed by the de-
pendency parser learned in Step 3, which simul-
taneously assigns induced POS tags and word de-
pendencies. Finally, a forest-to-string MT model
is learned with Zhang et al., (2011), which ex-
tracts translation rules by a forest-based variant of

11http://triplet.cc/software/corbit/

IND REF

BS 27.54
Mono 27.66 26.83

Joint[s] 28.00 28.00
Joint[P] 26.36 26.72

Joint[s+P] 27.99 27.82
Ind[s] 28.00 27.93
Ind[P] 28.11 28.63

Ind[s+P] 28.13 28.62

Table 1: Performance on Japanese-to-English
Translation Measured by BLEU (%)

the GHKM algorithm (Mi and Huang, 2008) af-
ter each parse tree is restructured into a binarized
packed forest. Parameters are tuned on the devel-
opment data using xBLEU (Rosti et al., 2011) as
an objective and L-BFGS (Liu and Nocedal, 1989)
as an optimization toolkit, since it is stable and less
prone to randomness, unlike MERT (Och, 2003)
or PRO (Hopkins and May, 2011). The develop-
ment test data is used to set up hyperparameters,
i.e., to terminate tuning iterations.

When translating Japanese sentences, a parse
tree for each sentence is constructed in the same
way as described earlier in this step, and then the
parse trees are translated into English sentences
using the learned forest-to-string MT model.

4.2 Experimental Results

Table 1 shows the performance for the test data
measured by case sensitive BLEU (Papineni et
al., 2002). We also present the performance of
our baseline forest-to-string MT system (BS) us-
ing the original IPA POS tags. In Table 1, num-
bers in bold indicate that the systems outperform
the baselines,BS andMono. Under the Moses
phrase-based SMT system (Koehn et al., 2007)
with the default settings, we achieved a 26.80%
BLEU score.

Table 1 shows that the proposed systems outper-
form the baselineMono. The differences between
the performance ofInd[s+P] andMono are statis-
tically significant in the bootstrap method (Koehn,
2004), with a 1% significance level both inIND
andREF . The results indicate that integrating the
aligned target-side information in POS induction
makes inferred tagsets more suitable for SMT.

Table 1 also shows that the independent model
is more effective for SMT than the joint model.
This means that sparseness is a severe problem in
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Model IND REF

Joint[s+P] 164 620
Ind[s+P] 102 517

IPA POS tags 42

Table 2: The Number of POS Tags

POS induction when jointly encoding bilingual in-
formation into observations. Additionally, all the
systems using the independent model outperform
BS. The improvements are statistically significant
in the bootstrap method (Koehn, 2004), with a 1%
significance level. The results show that the pro-
posed models can generate more favorable POS
tagsets for SMT than an existing POS tagset.

In Table 1,REFs are at least comparable to, or
better than,INDs except forMono. This shows
thatREF achieves better performance by preserv-
ing the clues from the original POS tagset. How-
ever,REF may suffer sever overfitting problem
for Mono since no bilingual information was in-
corporated. Further, when the full-level IPA POS
tags12 were used inBS, the system achieved a
27.49% BLEU score, which is worse than the re-
sult using the second-level IPA POS tags. This
means that manual refinement without bilingual
information may also cause an overfitting problem
in MT.

5 Discussion

5.1 Comparison to the IPA POS Tagset

Table 2 shows the number of the IPA POS tags
used in the experiments and the POS tags induced
by the proposed models. This table shows that
each induced tagset contains more POS tags than
the IPA POS tagset. In the experimental data,
some of Japanese verbs correspond to genuine En-
glish verbs, some are nominalized, and others cor-
respond to English past participle verbs or present
participle verbs which modify other words. Re-
spective examples are “Iuse a card.”, “Using the
index is faster.”, and “I explainusing an exam-
ple.”, where all the underlined words correspond
to the same Japanese word, “用い”, whose IPA
POS tag is a verb.Ind[s+P] in REF generated
the POS tagset where the three types are assigned
to separate POS groups.

The Japanese particle “に” is sometimes at-
tached to nouns to give them adverb roles. For

12377 types of full-level IPA POS tags were included in our
experimental data.

Tagging Dependency
IND REF IND REF

Original 90.37 93.62
Mono 90.75 88.04 91.77 91.51

Joint[s] 89.08 86.73 91.55 91.14
Joint[P] 80.54 79.98 91.06 91.29

Joint[s+P] 87.56 84.92 91.31 91.10
Ind[s] 87.62 84.33 92.06 92.58
Ind[P] 90.21 88.50 92.85 93.03

Ind[s+P] 89.57 86.12 92.96 92.78

Table 3: Tagging and Dependency Accuracy (%)

example, “相互 (mutual)　に” is translated as
the adverb “mutually” in English. Other times,
it is attached to words to make them the objects
of verbs. For example, “彼 (he)　に　与える
(give)” is translated as “give him”. The POS tags
by Ind[s+P] inREF discriminated the two types.

These examples show that the proposed mod-
els can disambiguate POS tags that have different
functions in English, whereas the IPA POS tagset
treats them jointly. Thus, such discrimination im-
proves the performance of a forest-to-string SMT.

5.2 Impact of Tagging and Dependency
Accuracy

The performance of our methods depends not only
on the quality of the induced tag sets but also on
the performance of the dependency parser learned
in Step 3 of Section 4.1. We cannot directly eval-
uate the tagging accuracy of the parser trained
through Step 3 because we do not have any data
with induced POS tags other than the 10,000-
sentence data gained through Step 2. Thus we split
the 10,000 data into the first 9,000 data for train-
ing and the remaining 1,000 for testing, and then
a dependency parser was learned in the same way
as in Step 3.

Table 3 shows the results.Original is the per-
formance of the parser learned from the training
data with the original POS tagset. Note that the de-
pendency accuracies are measured on the automat-
ically parsed dependency trees, not on the syntac-
tically correct gold standard trees. ThusOriginal
achieved the best dependency accuracy.

In Table 3, the performance for our bilingually-
induced POSs,Joint and Ind, are lower than
Original andMono. It seems performing pars-
ing and tagging with the bilingually-induced POS
tagset is too difficult when only monolingual in-
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formation is available to the parser. However, our
bilingually-induced POSs, except forJoint[P ],
with the lower accuracies are more effective for
SMT than the monolingually-induced POSs and
the original POSs, as indicated in Table 1. The
tagging accuracies forJoint[P ] both inIND and
REF are significantly lower than the others, while
the dependency accuracies do not differ signifi-
cantly. The lower tagging accuracies may directly
reflect the lower translation qualities forJoint[P ]
in Table 1.

6 Conclusion

We proposed a novel method for inducing POS
tags for SMT. The proposed method is a non-
parametric Bayesian method, which infers hidden
states (i.e., POS tags) based on observations repre-
senting not only source words themselves but also
aligned target words. Our experiments showed
that a more favorable POS tagset can be induced
by integrating aligned information, and further-
more, the POS tagset generated by the proposed
method is more effective for SMT than an existing
POS tagset (the IPA POS tagset).

Even though we employed word alignment
from GIZA++ with potential errors, large gains
were achieved using our proposed method. We
would like to investigate the influence of align-
ment errors in the future. In addition, we are plan-
ning to prove the effectiveness of our proposed
method for language pairs other than Japanese-to-
English. We are also planning to introduce our
proposed method to other syntax-based SMT, such
as a string-to-tree SMT and a tree-to-tree SMT.
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Abstract

Community question answering (CQA)
has become an increasingly popular re-
search topic. In this paper, we focus on the
problem of question retrieval. Question
retrieval in CQA can automatically find
the most relevant and recent questions that
have been solved by other users. However,
the word ambiguity and word mismatch
problems bring about new challenges for
question retrieval in CQA. State-of-the-art
approaches address these issues by implic-
itly expanding the queried questions with
additional words or phrases using mono-
lingual translation models. While use-
ful, the effectiveness of these models is
highly dependent on the availability of
quality parallel monolingual corpora (e.g.,
question-answer pairs) in the absence of
which they are troubled by noise issue.
In this work, we propose an alternative
way to address the word ambiguity and
word mismatch problems by taking advan-
tage of potentially rich semantic informa-
tion drawn from other languages. Our pro-
posed method employs statistical machine
translation to improve question retrieval
and enriches the question representation
with the translated words from other lan-
guages via matrix factorization. Experi-
ments conducted on a real CQA data show
that our proposed approach is promising.

1 Introduction

With the development of Web 2.0, community
question answering (CQA) services like Yahoo!

Answers,1 Baidu Zhidao2 and WkiAnswers3 have
attracted great attention from both academia and
industry (Jeon et al., 2005; Xue et al., 2008;
Adamic et al., 2008; Wang et al., 2009; Cao et al.,
2010). In CQA, anyone can ask and answer ques-
tions on any topic, and people seeking information
are connected to those who know the answers. As
answers are usually explicitly provided by human,
they can be helpful in answering real world ques-
tions.

In this paper, we focus on the task of question
retrieval. Question retrieval in CQA can automati-
cally find the most relevant and recent questions
(historical questions) that have been solved by
other users, and then the best answers of these his-
torical questions will be used to answer the users’
queried questions. However, question retrieval is
challenging partly due to the word ambiguity and
word mismatch between the queried questions
and the historical questions in the archives. Word
ambiguity often causes the retrieval models to re-
trieve many historical questions that do not match
the users’ intent. This problem is also amplified
by the high diversity of questions and users. For
example, depending on different users, the word
“interest” may refer to “curiosity”, or “a charge
for borrowing money”.

Another challenge is word mismatch between
the queried questions and the historical questions.
The queried questions may contain words that are
different from, but related to, the words in the rele-
vant historical questions. For example, if a queried
question contains the word “company” but a rele-
vant historical question instead contains the word
“firm”, then there is a mismatch and the historical

1http://answers.yahoo.com/
2http://zhidao.baidu.com/
3http://wiki.answers.com/
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English Chinese

word ambiguity

How do I get a loan 我(wǒ) 如何(rúhé) 从(cóng)
from a bank? 银银银行行行(yííínháááng) 贷款(dàikuǎn) ？
How to reach the 如何(rúhé) 前往(qiánwǎng)
bank of the river? 河河河岸岸岸(héééàààn) ？

word mismatch

company 公司(gōngsī)
firm 公司(gōngsī)
rheum 感冒(gǎnmào)
catarrh 感冒(gǎnmào)

Table 1: Google translate: some illustrative examples.

question may not be easily distinguished from an
irrelevant one.

Researchers have proposed the use of word-
based translation models (Berger et al., 2000;
Jeon et al., 2005; Xue et al., 2008; Lee et al.,
2008; Bernhard and Gurevych, 2009) to solve
the word mismatch problem. As a principle ap-
proach to capture semantic word relations, word-
based translation models are built by using the
IBM model 1 (Brown et al., 1993) and have
been shown to outperform traditional models (e.g.,
VSM, BM25, LM) for question retrieval. Be-
sides, Riezler et al. (2007) and Zhou et al. (2011)
proposed the phrase-based translation models for
question and answer retrieval. The basic idea is
to capture the contextual information in model-
ing the translation of phrases as a whole, thus
the word ambiguity problem is somewhat allevi-
ated. However, all these existing studies in the
literature are basically monolingual approaches
which are restricted to the use of original language
of questions. While useful, the effectiveness of
these models is highly dependent on the availabil-
ity of quality parallel monolingual corpora (e.g.,
question-answer pairs) in the absence of which
they are troubled by noise issue. In this work,
we propose an alternative way to address the word
ambiguity and word mismatch problems by taking
advantage of potentially rich semantic information
drawn from other languages. Through other lan-
guages, various ways of adding semantic informa-
tion to a question could be available, thereby lead-
ing to potentially more improvements than using
the original language only.

Taking a step toward using other languages, we
propose the use of translated representation by al-
ternatively enriching the original questions with
the words from other languages. The idea of im-
proving question retrieval with statistical machine
translation is based on the following two observa-

tions: (1) Contextual information is exploited dur-
ing the translation from one language to another.
For example in Table 1, English words “interest”
and “bank” that have multiple meanings under
different contexts are correctly addressed by us-
ing the state-of-the-art translation tool −−Google
Translate.4 Thus, word ambiguity based on con-
textual information is naturally involved when
questions are translated. (2) Multiple words that
have similar meanings in one language may be
translated into an unique word or a few words in a
foreign language. For example in Table 1, English
words such as “company” and “firm” are trans-
lated into “公司 (gōngsī)”, “rheum” and “catarrh”
are translated into “感冒(gǎnmào)” in Chinese.
Thus, word mismatch problem can be somewhat
alleviated by using other languages.

Although Zhou et al. (2012) exploited bilin-
gual translation for question retrieval and obtained
the better performance than traditional monolin-
gual translation models. However, there are two
problems with this enrichment: (1) enriching
the original questions with the translated words
from other languages increases the dimensionality
and makes the question representation even more
sparse; (2) statistical machine translation may in-
troduce noise, which can harm the performance of
question retrieval. To solve these two problems,
we propose to leverage statistical machine transla-
tion to improve question retrieval via matrix fac-
torization.

The remainder of this paper is organized as fol-
lows. Section 2 describes the proposed method
by leveraging statistical machine translation to im-
prove question retrieval via matrix factorization.
Section 3 presents the experimental results. In sec-
tion 4, we conclude with ideas for future research.

4http://translate.google.com/translate t
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2 Our Approach

2.1 Problem Statement
This paper aims to leverage statistical machine
translation to enrich the question representation.
In order to address the word ambiguity and word
mismatch problems, we expand a question by
adding its translation counterparts. Statistical ma-
chine translation (e.g., Google Translate) can uti-
lize contextual information during the question
translation, so it can solve the word ambiguity and
word mismatch problems to some extent.

Let L = {l1, l2, . . . , lP } denote the language
set, where P is the number of languages con-
sidered in the paper, l1 denotes the original lan-
guage (e.g., English) while l2 to lP are the for-
eign languages. Let D1 = {d(1)

1 , d
(1)
2 , . . . , d

(1)
N }

be the set of historical question collection in origi-
nal language, where N is the number of historical
questions in D1 with vocabulary size M1. Now
we first translate each original historical question
from language l1 into other languages lp (p ∈
[2, P ]) by Google Translate. Thus, we can ob-
tain D2, . . . , DP in different languages, and Mp is
the vocabulary size of Dp. A question d

(p)
i in Dp

is simply represented as a Mp dimensional vector
d

(p)
i , in which each entry is calculated by tf-idf.

The N historical questions in Dp are then repre-
sented in a Mp × N term-question matrix Dp =

{d(p)
1 ,d

(p)
2 , . . . ,d

(p)
N }, in which each row corre-

sponds to a term and each column corresponds to
a question.

Intuitively, we can enrich the original ques-
tion representation by adding the translated words
from language l2 to lP , the original vocabu-
lary size is increased from M1 to

∑P
p=1 Mp.

Thus, the term-question matrix becomes D =

{D1,D2, . . . ,DP } and D ∈ R(
∑P

p=1 Mp)×N .
However, there are two problems with this enrich-
ment: (1) enriching the original questions with the
translated words from other languages makes the
question representation even more sparse; (2) sta-
tistical machine translation may introduce noise.5

To solve these two problems, we propose to
leverage statistical machine translation to improve
question retrieval via matrix factorization. Figure
1 presents the framework of our proposed method,
where qi represents a queried question, and qi is a
vector representation of qi.

5Statistical machine translation quality is far from satis-
factory in real applications.

……
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……
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Collection
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Query
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Figure 1: Framework of our proposed approach
for question retrieval.

2.2 Model Formulation
To tackle the data sparseness of question represen-
tation with the translated words, we hope to find
two or more lower dimensional matrices whose
product provides a good approximate to the orig-
inal one via matrix factorization. Previous stud-
ies have shown that there is psychological and
physiological evidence for parts-based representa-
tion in the human brain (Wachsmuth et al., 1994).
The non-negative matrix factorization (NMF) is
proposed to learn the parts of objects like text
documents (Lee and Seung, 2001). NMF aims
to find two non-negative matrices whose product
provides a good approximation to the original ma-
trix and has been shown to be superior to SVD in
document clustering (Xu et al., 2003; Tang et al.,
2012).

In this paper, NMF is used to induce the reduced
representation Vp of Dp, Dp is independent on
{D1,D2, . . . ,Dp−1,Dp+1, . . . ,DP }. When ig-
noring the coupling between Vp, it can be solved
by minimizing the objective function as follows:

O1(Up,Vp) = min
Up≥0,Vp≥0

∥Dp −UpVp∥2F (1)

where ∥ · ∥F denotes Frobenius norm of a matrix.
Matrices Up ∈ RMp×K and Vp ∈ RK×N are the
reduced representation for terms and questions in
the K dimensional space, respectively.

To reduce the noise introduced by statistical ma-
chine translation, we assume that Vp from lan-
guage Dp (p ∈ [2, P ]) should be close to V1
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from the original language D1. Based on this as-
sumption, we minimize the distance between Vp

(p ∈ [2, P ]) and V1 as follows:

O2(Vp) = min
Vp≥0

P∑

p=2

∥Vp −V1∥2F (2)

Combining equations (1) and (2), we get the fol-
lowing objective function:

O(U1, . . . ,UP ;V1, . . . ,VP ) (3)

=

P∑

p=1

∥Dp −UpVp∥2F +

P∑

p=2

λp∥Vp −V1∥2F

where parameter λp (p ∈ [2, P ]) is used to adjust
the relative importance of these two components.
If we set a small value for λp, the objective func-
tion behaves like the traditional NMF and the im-
portance of data sparseness is emphasized; while a
big value of λp indicates Vp should be very closed
to V1, and equation (3) aims to remove the noise
introduced by statistical machine translation.

By solving the optimization problem in equa-
tion (4), we can get the reduced representation of
terms and questions.

minO(U1, . . . ,UP ;V1, . . . ,VP ) (4)

subject to : Up ≥ 0,Vp ≥ 0, p ∈ [1, P ]

2.3 Optimization

The objective function O defined in equation (4)
performs data sparseness and noise removing si-
multaneously. There are 2P coupling components
in O, and O is not convex in both U and V to-
gether. Therefore it is unrealistic to expect an al-
gorithm to find the global minima. In the follow-
ing, we introduce an iterative algorithm which can
achieve local minima. In our optimization frame-
work, we optimize the objective function in equa-
tion (4) by alternatively minimizing each compo-
nent when the remaining 2P − 1 components are
fixed. This procedure is summarized in Algorithm
1.

2.3.1 Update of Matrix Up

Holding V1, . . . ,VP and U1, . . . ,Up−1,Up+1,
. . . ,UP fixed, the update of Up amounts to the
following optimization problem:

min
Up≥0

∥Dp −UpVp∥2F (5)

Algorithm 1 Optimization framework
Input: Dp ∈ Rmp×N , p ∈ [1, P ]
1: for p = 1 : P do
2: V

(0)
p ∈ RK×N ← random matrix

3: for t = 1 : T do � T is iteration times
4: U

(t)
p ← UpdateU(Dp,V

(t−1)
p )

5: V
(t)
p ← UpdateV(Dp,U

(t)
p )

6: end for
7: return U

(T )
p , V(T )

p

8: end for

Algorithm 2 Update Up

Input: Dp ∈ RMp×N , Vp ∈ RK×N

1: for i = 1 : Mp do
2: ū

(p)∗
i = (VpV

T
p )−1Vpd̄

(p)
i

3: end for
4: return Up

Let d̄
(p)
i = (d

(p)
i1 , . . . , d

(p)
iK )T and ū

(p)
i =

(u
(p)
i1 , . . . , u

(p)
iK )T be the column vectors whose en-

tries are those of the ith row of Dp and Up re-
spectively. Thus, the optimization of equation (5)
can be decomposed into Mp optimization prob-
lems that can be solved independently, with each
corresponding to one row of Up:

min
ū

(p)
i ≥0

∥d̄(p)
i −VT

p ū
(p)
i ∥22 (6)

for i = 1, . . . , Mp.
Equation (6) is a standard least squares prob-

lems in statistics and the solution is:

ū
(p)∗
i = (VpV

T
p )−1Vpd̄

(p)
i (7)

Algorithm 2 shows the procedure.

2.3.2 Update of Matrix Vp

Holding U1, . . . ,UP and V1, . . . ,Vp−1,Vp+1,
. . . ,VP fixed, the update of Vp amounts to the
optimization problem divided into two categories.

if p ∈ [2, P ], the objective function can be writ-
ten as:

min
Vp≥0

∥Dp −UpVp∥2F + λp∥Vp −V1∥2F (8)

if p = 1, the objective function can be written
as:

min
Vp≥0

∥Dp −UpVp∥2F + λp∥Vp∥2F (9)
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Let d
(p)
j be the jth column vector of Dp, and

v
(p)
j be the jth column vector of Vp, respectively.

Thus, equation (8) can be rewritten as:

min
{v(p)

j ≥0}

N∑

j=1

∥d(p)
j −Upv

(p)
j ∥22+

N∑

j=1

λp∥v(p)
j −v

(1)
j ∥22

(10)
which can be decomposed into N optimization
problems that can be solved independently, with
each corresponding to one column of Vp:

min
v

(p)
j ≥0

∥d(p)
j −Upv

(p)
j ∥22+λp∥v(p)

j −v
(1)
j ∥22 (11)

for j = 1, . . . , N .
Equation (12) is a least square problem with L2

norm regularization. Now we rewrite the objective
function in equation (12) as

L(v
(p)
j ) = ∥d(p)

j −Upv
(p)
j ∥22 + λp∥vp

j − v
(1)
j ∥22

(12)
where L(v

(1)
j ) is convex, and hence has a unique

solution. Taking derivatives, we obtain:

∂L(v
(p)
j )

∂v
(p)
j

= −2UT
p (d

(p)
j −Upv

(p)
j )+2λp(v

(p)
j −v

(1)
j )

(13)
Forcing the partial derivative to be zero leads to

v
(p)∗
j = (UT

p Up + λpI)
−1(UT

p d
(p)
j + λpv

(1)
j )

(14)
where p ∈ [2, P ] denotes the foreign language rep-
resentation.

Similarly, the solution of equation (9) is:

v
(p)∗
j = (UT

p Up + λpI)
−1UT

p d
(p)
j (15)

where p = 1 denotes the original language repre-
sentation.

Algorithm 3 shows the procedure.

2.4 Time Complexity Analysis
In this subsection, we discuss the time complex-
ity of our proposed method. The optimization
ū

(p)
i using Algorithm 2 should calculate VpV

T
p

and Vpd̄
(p)
i , which takes O(NK2 + NK) op-

erations. Therefore, the optimization Up takes
O(NK2 + MpNK) operations. Similarly, the
time complexity of optimization Vi using Algo-
rithm 3 is O(MpK

2 + MpNK).
Another time complexity is the iteration times

T used in Algorithm 1 and the total number of

Algorithm 3 Update Vp

Input: Dp ∈ RMp×N , Up ∈ RMp×K

1: Σ← (UT
p Up + λpI)

−1

2: Φ← UT
p Dp

3: if p = 1 then
4: for j = 1 : N do
5: v

(p)
j ← Σϕj , ϕj is the jth column of Φ

6: end for
7: end if
8: return V1

9: if p ∈ [2, P ] then
10: for j = 1 : N do
11: v

(p)
j ← Σ(ϕj + λpv

(1)
j )

12: end for
13: end if
14: return Vp

languages P , the overall time complexity of our
proposed method is:

P∑

p=1

T ×O(NK2 + MpK
2 + 2MpNK) (16)

For each language Dp, the size of vocabulary
Mp is almost constant as the number of questions
increases. Besides, K ≪ min(Mp, N), theoreti-
cally, the computational time is almost linear with
the number of questions N and the number of lan-
guages P considered in the paper. Thus, the pro-
posed method can be easily adapted to the large-
scale information retrieval task.

2.5 Relevance Ranking
The advantage of incorporating statistical machine
translation in relevance ranking is to reduce “word
ambiguity” and “word mismatch” problems. To
do so, given a queried question q and a historical
question d from Yahoo! Answers, we first trans-
late q and d into other foreign languages (e.g., Chi-
nese, French etc.) and get the corresponding trans-
lated representation qi and di (i ∈ [2, P ]), where
P is the number of languages considered in the pa-
per. For queried question q = q1, we represent it
in the reduced space:

vq1 = arg min
v≥0
∥q1 −U1v∥22 + λ1∥v∥22 (17)

where vector q1 is the tf-idf representation of
queried question q1 in the term space. Similarly,
for historical question d = d1 (and its tf-idf repre-
sentation d1 in the term space) we represent it in
the reduced space as vd1 .
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The relevance score between the queried ques-
tion q1 and the historical question d1 in the re-
duced space is, then, calculated as the cosine sim-
ilarity between vq1 and vd1 :

s(q1, d1) =
< vq1 ,vd1 >

∥vq1∥2 · ∥vd1∥2
(18)

For translated representation qi (i ∈ [2, P ]), we
also represent it in the reduced space:

vqi = arg min
v≥0
∥qi−Uiv∥22+λi∥v−vq1∥22 (19)

where vector qi is the tf-idf representation of qi

in the term space. Similarly, for translated rep-
resentation di (and its tf-idf representation di in
the term space) we also represent it in the reduced
space as vdi

. The relevance score s(qi, di) be-
tween qi and di in the reduced space can be cal-
culated as the cosine similarity between vqi and
vdi

.
Finally, we consider learning a relevance func-

tion of the following general, linear form:

Score(q, d) = θT ·Φ(q, d) (20)

where feature vector Φ(q, d) =
(sV SM (q, d), s(q1, d1), s(q2, d2), . . . , s(qP , dP )),
and θ is the corresponding weight vector, we
optimize this parameter for our evaluation metrics
directly using the Powell Search algorithm (Paul
et al., 1992) via cross-validation. sV SM (q, d) is
the relevance score in the term space and can be
calculated using Vector Space Model (VSM).

3 Experiments

3.1 Data Set and Evaluation Metrics
We collect the data set from Yahoo! Answers and
use the getByCategory function provided in Ya-
hoo! Answers API6 to obtain CQA threads from
the Yahoo! site. More specifically, we utilize
the resolved questions and the resulting question
repository that we use for question retrieval con-
tains 2,288,607 questions. Each resolved ques-
tion consists of four parts: “question title”, “ques-
tion description”, “question answers” and “ques-
tion category”. For question retrieval, we only use
the “question title” part. It is assumed that ques-
tion title already provides enough semantic infor-
mation for understanding the users’ information
needs (Duan et al., 2008). There are 26 categories

6http://developer.yahoo.com/answers

Category #Size Category # Size
Arts & Humanities 86,744 Home & Garden 35,029
Business & Finance 105,453 Beauty & Style 37,350

Cars & Transportation 145,515 Pet 54,158
Education & Reference 80,782 Travel 305,283
Entertainment & Music 152,769 Health 132,716
Family & Relationships 34,743 Sports 214,317
Politics & Government 59,787 Social Science 46,415
Pregnancy & Parenting 43,103 Ding out 46,933
Science & Mathematics 89,856 Food & Drink 45,055
Computers & Internet 90,546 News & Events 20,300
Games & Recreation 53,458 Environment 21,276
Consumer Electronics 90,553 Local Businesses 51,551

Society & Culture 94,470 Yahoo! Products 150,445

Table 2: Number of questions in each first-level
category.

at the first level and 1,262 categories at the leaf
level. Each question belongs to a unique leaf cat-
egory. Table 2 shows the distribution across first-
level categories of the questions in the archives.

We use the same test set in previous work (Cao
et al., 2009; Cao et al., 2010). This set contains
252 queried questions and can be freely down-
loaded for research communities.7

The original language of the above data set is
English (l1) and then they are translated into four
other languages (Chinese (l2), French (l3), Ger-
man (l4), Italian (l5)), thus the number of language
considered is P = 5) by using the state-of-the-art
translation tool −−Google Translate.

Evaluation Metrics: We evaluate the perfor-
mance of question retrieval using the following
metrics: Mean Average Precision (MAP) and
Precision@N (P@N). MAP rewards methods that
return relevant questions early and also rewards
correct ranking of the results. P@N reports the
fraction of the top-N questions retrieved that are
relevant. We perform a significant test, i.e., a t-
test with a default significant level of 0.05.

We tune the parameters on a small development
set of 50 questions. This development set is also
extracted from Yahoo! Answers, and it is not in-
cluded in the test set. For parameter K, we do an
experiment on the development set to determine
the optimal values among 50, 100, 150, · · · , 300 in
terms of MAP. Finally, we set K = 100 in the ex-
periments empirically as this setting yields the best
performance. For parameter λ1, we set λ1 = 1
empirically, while for parameter λi (i ∈ [2, P ]),
we set λi = 0.25 empirically and ensure that∑

i λi = 1.

7http://homepages.inf.ed.ac.uk/gcong/qa/
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# Methods MAP P@10
1 VSM 0.242 0.226
2 LM 0.385 0.242
3 Jeon et al. (2005) 0.405 0.247
4 Xue et al. (2008) 0.436 0.261
5 Zhou et al. (2011) 0.452 0.268
6 Singh (2012) 0.450 0.267
7 Zhou et al. (2012) 0.483 0.275
8 SMT + MF (P = 2, l1, l2) 0.527 0.284
9 SMT + MF (P = 5) 0.564 0.291

Table 3: Comparison with different methods for
question retrieval.

3.2 Question Retrieval Results

Table 3 presents the main retrieval performance.
Row 1 and row 2 are two baseline systems, which
model the relevance score using VSM (Cao et al.,
2010) and language model (LM) (Zhai and Laf-
ferty, 2001; Cao et al., 2010) in the term space.
Row 3 and row 6 are monolingual translation mod-
els to address the word mismatch problem and
obtain the state-of-the-art performance in previ-
ous work. Row 3 is the word-based translation
model (Jeon et al., 2005), and row 4 is the word-
based translation language model, which linearly
combines the word-based translation model and
language model into a unified framework (Xue et
al., 2008). Row 5 is the phrase-based translation
model, which translates a sequence of words as
whole (Zhou et al., 2011). Row 6 is the entity-
based translation model, which extends the word-
based translation model and explores strategies to
learn the translation probabilities between words
and the concepts using the CQA archives and a
popular entity catalog (Singh, 2012). Row 7 is
the bilingual translation model, which translates
the English questions from Yahoo! Answers into
Chinese questions using Google Translate and ex-
pands the English words with the translated Chi-
nese words (Zhou et al., 2012). For these previ-
ous work, we use the same parameter settings in
the original papers. Row 8 and row 9 are our pro-
posed method, which leverages statistical machine
translation to improve question retrieval via ma-
trix factorization. In row 8, we only consider two
languages (English and Chinese) and translate En-
glish questions into Chinese using Google Trans-
late in order to compare with Zhou et al. (2012).
In row 9, we translate English questions into other
four languages. There are some clear trends in the
result of Table 3:

(1) Monolingual translation models signifi-
cantly outperform the VSM and LM (row 1 and

row 2 vs. row 3, row 4, row 5 and row 6).
(2) Taking advantage of potentially rich seman-

tic information drawn from other languages via
statistical machine translation, question retrieval
performance can be significantly improved (row 3,
row 4, row 5 and row 6 vs. row 7, row 8 and row 9,
all these comparisons are statistically significant at
p < 0.05).

(3) Our proposed method (leveraging statisti-
cal machine translation via matrix factorization,
SMT + MF) significantly outperforms the bilin-
gual translation model of Zhou et al. (2012) (row
7 vs. row 8, the comparison is statistically signifi-
cant at p < 0.05). The reason is that matrix factor-
ization used in the paper can effectively solve the
data sparseness and noise introduced by the ma-
chine translator simultaneously.

(4) When considering more languages, ques-
tion retrieval performance can be further improved
(row 8 vs. row 9).

Note that Wang et al. (2009) also addressed the
word mismatch problem for question retrieval by
using syntactic tree matching. We do not compare
with Wang et al. (2009) in Table 3 because pre-
vious work (Ming et al., 2010) demonstrated that
word-based translation language model (Xue et
al., 2008) obtained the superior performance than
the syntactic tree matching (Wang et al., 2009).
Besides, some other studies attempt to improve
question retrieval with category information (Cao
et al., 2009; Cao et al., 2010), label ranking (Li et
al., 2011) or world knowledge (Zhou et al., 2012).
However, their methods are orthogonal to ours,
and we suspect that combining the category infor-
mation or label ranking into our proposed method
might get even better performance. We leave it for
future research.

3.3 Impact of the Matrix Factorization

Our proposed method (SMT + MF) can effectively
solve the data sparseness and noise via matrix fac-
torization. To further investigate the impact of
the matrix factorization, one intuitive way is to
expand the original questions with the translated
words from other four languages, without consid-
ering the data sparseness and noise introduced by
machine translator. We compare our SMT + MF
with this intuitive enriching method (SMT + IEM).
Besides, we also employ our proposed matrix fac-
torization to the original question representation
(VSM + MF). Table 4 shows the comparison.
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# Methods MAP P@10
1 VSM 0.242 0.226
2 VSM + MF 0.411 0.253
3 SMT + IEM (P = 5) 0.495 0.280
4 SMT + MF (P = 5) 0.564 0.291
Table 4: The impact of matrix factorization.

(1) Our proposed matrix factorization can sig-
nificantly improve the performance of question re-
trieval (row 1 vs. row2; row3 vs. row4, the
improvements are statistically significant at p <
0.05). The results indicate that our proposed ma-
trix factorization can effectively address the issues
of data spareness and noise introduced by statisti-
cal machine translation.

(2) Compared to the relative improvements of
row 3 and row 4, the relative improvements of row
1 and row 2 is much larger. The reason may be
that although matrix factorization can be used to
reduce dimension, it may impair the meaningful
terms.

(3) Compared to VSM, the performance of
SMT + IEM is significantly improved (row 1
vs. row 3), which supports the motivation that
the word ambiguity and word mismatch problems
could be partially addressed by Google Translate.

3.4 Impact of the Translation Language

One of the success of this paper is to take ad-
vantage of potentially rich semantic information
drawn from other languages to solve the word am-
biguity and word mismatch problems. So we con-
struct a dummy translator (DT) that translates an
English word to itself. Thus, through this trans-
lation, we do not add any semantic information
into the original questions. The comparison is pre-
sented in Table 5. Row 1 (DT + MF) represents
integrating two copies of English questions with
our proposed matrix factorization. From Table 5,
we have several different findings:

(1) Taking advantage of potentially rich seman-
tic information drawn from other languages can
significantly improve the performance of question
retrieval (row 1 vs. row 2, row 3, row 4 and row 5,
the improvements relative to DT + MF are statisti-
cally significant at p < 0.05).

(2) Different languages contribute unevenly for
question retrieval (e.g., row 2 vs. row 3). The
reason may be that the improvements of leverag-
ing different other languages depend on the qual-
ity of machine translation. For example, row 3

# Methods MAP
1 DT + MF (l1, l1) 0.352
2 SMT + MF (P = 2, l1, l2) 0.527
3 SMT + MF (P = 2, l1, l3) 0.553
4 SMT + MF (P = 2, l1, l4) 0.536
5 SMT + MF (P = 2, l1, l5) 0.545
6 SMT + MF (P = 3, l1, l2, l3) 0.559
7 SMT + MF (P = 4, l1, l2, l3, l4) 0.563
8 SMT + MF (P = 5, l1, l2, l3, l4, l5) 0.564

Table 5: The impact of translation language.

Method Translation MAP

SMT + MF (P = 2, l1, l2) Dict 0.468
GTrans 0.527

Table 6: Impact of the contextual information.

is better than row 2 because the translation qual-
ity of English-French is much better than English-
Chinese.

(3) Using much more languages does not seem
to produce significantly better performance (row 6
and row 7 vs. row 8). The reason may be that in-
consistency between different languages may exist
due to statistical machine translation.

3.5 Impact of the Contextual Information

In this paper, we translate the English questions
into other four languages using Google Translate
(GTrans), which takes into account contextual in-
formation during translation. If we translate a
question word by word, it discards the contextual
information. We would expect that such a transla-
tion would not be able to solve the word ambiguity
problem.

To investigate the impact of contextual infor-
mation for question retrieval, we only consider
two languages and translate English questions
into Chinese using an English to Chinese lexicon
(Dict) in StarDict8. Table 6 shows the experi-
mental results, we can see that the performance is
degraded when the contextual information is not
considered for the translation of questions. The
reason is that GTrans is context-dependent and
thus produces different translated Chinese words
depending on the context of an English word.
Therefore, the word ambiguity problem can be
solved during the English-Chinese translation.

4 Conclusions and Future Work

In this paper, we propose to employ statistical ma-
chine translation to improve question retrieval and

8StarDict is an open source dictionary software, available
at http://stardict.sourceforge.net/.
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enrich the question representation with the trans-
lated words from other languages via matrix fac-
torization. Experiments conducted on a real CQA
data show some promising findings: (1) the pro-
posed method significantly outperforms the pre-
vious work for question retrieval; (2) the pro-
posed matrix factorization can significantly im-
prove the performance of question retrieval, no
matter whether considering the translation lan-
guages or not; (3) considering more languages can
further improve the performance but it does not
seem to produce significantly better performance;
(4) different languages contribute unevenly for
question retrieval; (5) our proposed method can
be easily adapted to the large-scale information re-
trieval task.

As future work, we plan to incorporate the ques-
tion structure (e.g., question topic and question fo-
cus (Duan et al., 2008)) into the question represen-
tation for question retrieval. We also want to fur-
ther investigate the use of the proposed method for
other kinds of data set, such as categorized ques-
tions from forum sites and FAQ sites.
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Abstract

Subcategorization frames (SCFs), selec-
tional preferences (SPs) and verb classes
capture related aspects of the predicate-
argument structure. We present the first
unified framework for unsupervised learn-
ing of these three types of information.
We show how to utilize Determinantal
Point Processes (DPPs), elegant proba-
bilistic models that are defined over the
possible subsets of a given dataset and
give higher probability mass to high qual-
ity and diverse subsets, for clustering. Our
novel clustering algorithm constructs a
joint SCF-DPP DPP kernel matrix and uti-
lizes the efficient sampling algorithms of
DPPs to cluster together verbs with sim-
ilar SCFs and SPs. We evaluate the in-
duced clusters in the context of the three
tasks and show results that are superior to
strong baselines for each 1.

1 Introduction

Verb classes (VCs), subcategorization frames
(SCFs) and selectional preferences (SPs) capture
different aspects of predicate-argument structure.
SCFs describe the syntactic realization of verbal
predicate-argument structure, SPs capture the se-
mantic preferences verbs have for their arguments
and VCs in the Levin (1993) tradition provide a
shared level of abstraction for verbs that share
many aspects of their syntactic and semantic be-
havior.

These three of types of information have proved
useful for Natural Language Processing (NLP)

1The source code of the clustering algorithms and evalu-
ation is submitted with this paper and will be made publicly
available upon acceptance of the paper.

tasks which require information about predicate-
argument structure, including parsing (Shi and Mi-
halcea, 2005; Cholakov and van Noord, 2010;
Zhou et al., 2011), semantic role labeling (Swier
and Stevenson, 2004; Dang, 2004; Bharati et al.,
2005; Moschitti and Basili, 2005; zap, 2008; Zapi-
rain et al., 2009), and word sense disambiguation
(Dang, 2004; Thater et al., 2010; Ó Séaghdha and
Korhonen, 2011), among many others.

Because lexical information is highly sensitive
to domain variation, approaches that can identify
VCs, SCFs and SPs in corpora have become in-
creasingly popular, e.g. (O’Donovan et al., 2005;
Schulte im Walde, 2006; Erk, 2007; Preiss et al.,
2007; Van de Cruys, 2009; Reisinger and Mooney,
2011; Sun and Korhonen, 2011; Lippincott et al.,
2012).

The task of SCF induction involves identifying
the arguments of a verb lemma and generalizing
about the frames (i.e. SCFs) taken by the verb,
where each frame includes a number of arguments
and their syntactic types. For example, in (1),
the verb ”show” takes the frame SUBJ-DOBJ-
CCOMP (subject, direct object, and clausal
complement).

(1) [A number of SCF acquisition papers]SUBJ
[show]VERB [their readers]DOBJ [which fea-
tures are most valuable for the acquisition
process]CCOMP.

SP induction involves identifying and classify-
ing the lexical items in a given argument slot. In
sentence (2), for example, the verb ”show” takes
the frame SUBJ-DOBJ. The direct object in this
frame is likely to be inanimate.

(2) [Most SCF and SP acquisition papers]SUBJ,
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[show]VERB [no evidence to the usefulness of
joint learning leaning for these tasks]DOBJ.

Finally, VC induction involves clustering to-
gether verbs with similar meaning, reflected in
similar SCFs and SPs. For example, ”show” in the
above examples could get clustered together with
”demonstrate” and ”indicate”.

Because these challenging tasks capture com-
plementary information about predicate argument
structure, they should be able to inform and sup-
port each other. Recently, researchers have be-
gun to investigate the benefits of their joint learn-
ing. Schulte im Walde et al. (2008) integrated SCF
and VC acquisition and used it for WordNet-based
SP classification. Ó Séaghdha (2010) presented a
“dual-topic” model for SPs that induces also verb
clusters. Both works reported SP evaluation with
promising results. Lippincott et al. (2012) pre-
sented a joint model for inducing simple syntac-
tic frames and VCs. They reported high accuracy
results on VCs. de Cruys et al. (2012) introduced
a joint model for SCF and SP acquisition. They
evaluated both the SCFs and SPs, obtaining rea-
sonable result on both tasks.

In this paper, we present the first unified frame-
work for unsupervised learning of the three types
of information - SCFs, SPs and VCs. Our frame-
work is based on Determinantal Point Processes
(DPPs, (Kulesza, 2012; Kulesza and Taskar,
2012c)), elegant probabilistic models that are de-
fined over the possible subsets of a given dataset
and give higher probability mass to high quality
and diverse subsets.

We first show how individual-task DPP kernel
matrices can be naturally combined to construct a
joint kernel. We use this to construct a joint SCF-
SP kernel. We then introduce a novel clustering
algorithm based on iterative DPP sampling which
can (contrary to other probabilistic frameworks
such as Markov random fields) be performed both
accurately and efficiently. When defined over the
joint SCF and SP kernel, this new algorithm can
be used to induce VCs that are valuable for both
tasks.

We also contribute by evaluating the value of
the clusters induced by our model for the acquisi-
tion of the three information types. Our evaluation
against a well-known VC gold standard shows that
our clustering model outperforms the state-of-the-
art verb clustering algorithm of Sun and Korhonen

(2009), in our setup where no manually created
SCF or SP data is available. Our evaluation against
a well-known SCF gold standard and in the con-
text of SP disambiguation tasks shows results that
are superior to strong baselines, demonstrating the
benefit our approach.

2 Previous Work

SCF acquisition Most current works induce SCFs
from the output of an unlexicalized parser (i.e.
a parser trained without SCF annotations) using
hand-written rules (Briscoe and Carroll, 1997; Ko-
rhonen, 2002; Preiss et al., 2007) or grammatical
relation (GR) co-occurrence statistics (O’Donovan
et al., 2005; Chesley and Salmon-Alt, 2006; Ienco
et al., 2008; Messiant et al., 2008; Lenci et al.,
2008; Altamirano and Alonso i Alemany, 2010;
Kawahara and Kurohashi, 2010).

Only a handful of SCF induction works are
unsupervised. Carroll and Rooth (1996) applied
an EM-based approach to a context-free grammar
based model, Dkebowski (2009) used point-wise
co-occurrence of arguments in parsed Polish data
and Lippincott et al. (2012) presented a Bayesian
network model for syntactic frame induction that
identifies SPs on argument types. However, the
frames induced by Lippincott et al. (2012) do not
capture sets of arguments for verbs so are far sim-
pler than traditional SCFs.

Current approaches to SCF acquisition suffer
from lack of semantic information which is needed
to guide the purely syntax-driven acquisition pro-
cess. Previous works have showed the benefit of
hand-coded semantic information in SCF acquisi-
tion (Korhonen, 2002). We will address this prob-
lem in an unsupervised way: our approach is to
consider SCFs together with semantic SPs through
VCs which generalize over syntactically and se-
mantically similar verbs.

SP acquisition Considerable research has been
conducted on SP acquisition, with a variety of
unsupervised models proposed for this task that
use no hand-crafted information during training.
The latter approaches include latent variable mod-
els (Ó Séaghdha, 2010; Ritter and Etzioni, 2010;
Reisinger and Mooney, 2011), distributional sim-
ilarity methods (Bhagat et al., 2007; Basili et
al., 2007; Erk, 2007) and methods based on
non-negative tensor factorization (Van de Cruys,
2009). These works use a variety of linguistic fea-
tures in the acquisition process but none of them
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integrates the three information types covered in
our work.

Verb clustering A variety of VC approaches
have been proposed in the literature. These in-
clude syntactic, semantic and mixed syntactic-
semantic classifications (Grishman et al., 1994;
Miller, 1995; Baker et al., 1998; Palmer et al.,
2005; Schuler, 2006; Hovy et al., 2006). We fo-
cus on Levin style classes (Levin, 1993) which
are defined in terms of diathesis alternations and
capture generalizations over a range of syntactic
and semantic properties. Previous unsupervised
VC acquisition approaches clustered a variety of
linguistic features using different (e.g. K-means
and spectral) algorithms (Schulte im Walde, 2006;
Joanis et al., 2008; Sun et al., 2008; Li and Brew,
2008; Korhonen et al., 2008; Sun and Korhonen,
2009; Vlachos et al., 2009; Sun and Korhonen,
2011). The linguistic features included SCFs and
SPs, but these were induced separately and then
feeded as features to the clustering algorithm. Our
framework combines together SCF-motivated and
SP-motivated kernel matrices , and uses the joint
kernel to induce verb clusters which are likely to
be highly relevant for both tasks. Importantly, no
manual or automatic system for SCF or SP acqui-
sition has been utilized when constructing the ker-
nel matrices, we only consider features extracted
from the output of an unlexicalized parser. Our ap-
proach hence provides a framework for acquiring
valuable information for the three tasks together.

Joint Modeling A small number of works have
recently investigated joint approaches to SCFs,
SPs and VCs. Each of them has addressed only
a subset of the tasks and all but one have eval-
uated the performance in the context of one task
only. Ó Séaghdha (2010) presented a “dual-topic”
model for SPs that induces VCs, reporting evalua-
tion of SPs only. Lippincott et al. (2012) presented
a Bayesian network model for syntactic frame
(rather than full SCF) induction that induces VCs.
Only VCs are evaluated. de Cruys et al. (2012)
presented a joint unsupervised model of SCF and
SP acquisition based on non-negative tensor fac-
torization. Both SCFs and SPs were evaluated. Fi-
nally, the model of Schulte im Walde et al. (2008)
addresses the three types of information but SP
parameters are estimated with a WordNet based
method and only the SPs are evaluated. Although
evaluation of these recent joint models has been
partial, the results have been encouraging and fur-

ther motivate the development of a framework that
acquires the three types of information together.

3 The Unified Framework

In this section we present our unified framework.
Our idea is to utilize DPPs for verb clustering that
informs both SCF and SP acquisition. DPPs define
a probability distribution over the possible subsets
of a given set. These models assign higher prob-
ability mass to subsets that are both high quality
and diverse.

Our novel clustering algorithm makes use of
three DPP properties that are appealing for our
purpose: (1) The existence of efficient sam-
pling algorithms for these models, which enable
tractable sampling of high quality and diverse verb
subsets; (2) Such verb subsets form natural high
quality seeds for hierarchical clustering; and (3)
Given individual-task DPP kernel matrices there
are various simple and natural ways to combine
them into a new DPP kernel matrix.

Individual task DPP kernels represent (i) the
quality of a data point (verb) as its average feature-
based similarity with the other points in the data
set and (ii) the divergence between a pair of points
as the inverse similarity between them. For dif-
ferent tasks, different feature sets are used for the
kernel construction. The high quality and diverse
subsets sampled from the DPP model are consid-
ered good cluster seeds as they are likely to be rel-
atively uniformly spread and to provide good cov-
erage of the data set. The algorithm induces an
hierarchical clustering, which is particularly suit-
able for semantic tasks, where a set of clusters that
share a parent consists of pure members (i.e. most
of the points in each cluster member belong to the
same gold cluster) and together provide good cov-
erage of the verb space.

After a brief description of the Determinantal
Point Processes (DPP) framework (Section 3.1),
we discuss the construction of the joint DPP ker-
nel, given a kernel for each individual task, In sec-
tion 3.3 we present the DPP-Cluster clustering al-
gorithm.

3.1 Determinantal Point Processes

Determinantal point processes (DPPs) are elegant
probabilistic models of repulsion that offer effi-
cient and exact algorithms for sampling, marginal-
ization, conditioning, and other inference tasks.
Recently (Kulesza, 2012; Kulesza and Taskar,
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2012c) introduced them to the machine learning
community and demonstrated their usefulness for
a variety of tasks including document summariza-
tion, image search, modeling non-overlapping hu-
man poses in images and video and automati-
cally building timelines of important news stories
(Kulesza and Taskar, 2010; Kulesza and Taskar,
2012a; Gillenwater et al., 2012; Kulesza and
Taskar, 2012b). Below we provide a brief descrip-
tion of the framework, a comprehensive survey
can be found in (Kulesza and Taskar, 2012c).

Given a set of items Y = {y1, . . . , yN}, a DPP
P defines a probability measure on the set of all
subsets of Y , 2Y . Kulesza and Taskar (2012c) re-
stricted their discussion of DDPs to L-ensembles,
where the probability of a subset Y ∈ Y is defined
through a positive semi-definite matrix L indexed
by the elements of Y:

PL(Y = Y ) =
det(LY )∑
Y⊆Y det(LY )

=
det(LY )

det(L+ I)
(1)

Where I is the N × N identity matrix and
det(Lφ) = 1. Since L is positive semi-definite, it
can be decomposed to L = BTB. This allows the
construction of an intuitively interpretable model
where each column Bi is the product of a quality
term qi ∈ R+ and a vector of (normalized) diver-
sity features φi ∈ RD, ||φi|| = 1. In this model,
qi measures an inherent quality of the i − th item
in Y while φTi φj ∈ [−1, 1] is a similarity measure
between items i and j. With this representation we
can write:

Lij = qiφ
T
i φjqj (2)

Sij = φTi φj =
Lij√
LiiLjj

(3)

PL(Y = Y ) ∝ (
∏

i∈Y
q2i )det(SY ) (4)

It can be shown that the first term in equation 4 in-
creases with the quality of the selected items, and
the second term increases with their diversity. As
a consequence, this distribution places most of its
weight on sets that are both high quality and di-
verse.

Although the number of possible realizations of
Y is exponential in N , many inference procedures
can be performed accurately and efficiently (i.e.
in polynomial time which is very short in prac-
tice). In particular, sampling, which NP-hard for

alternative models such as Markov Random Fields
(MRFs), is efficient, theoretically and practically,
for DPPs.

3.2 Constructing a Joint Kernel Matrix
DPPs are particularly suitable for joint modeling
as they come with various simple and intuitive
ways to combine individual model kernel matrices
into a joint kernel. This stems from the fact that
every positive-semidefinite matrix forms a legal
DPP kernel (equation 1). Given individual model
DPP kernels, we would therefore like to combine
them into a positive-semidefinite matrix.

While there are various ways to construct a
positive-semidefinite matrix from two positive-
semidefinite matrices – for example, by taking
their sum – in this work we are motivated by the
product of experts approach (Hinton, 2002), rea-
soning that high quality assignments according to
a product of models have to be of high quality ac-
cording to each individual model, and sick for a
product combination. 2

In practice we construct the joint kernel in the
following way. We build on the aforementioned
property that a matrix L is positive semi-definite
iff L = BTB. Given two DPPs, PL1 defined by
L1 = AT1A1 and PL2 defined by L2 = AT2A2, we
construct the joint kernel L12:

L12 = L1L2L2L1 = CTC (5)

Where C = AT2A2A
T
1A1 and CT =

AT1A1A
T
2A2.

3.3 Clustering Algorithm
Algorithm (1) and Figure (1) provide a pseudo-
code of the algorithm and an example output. Be-
low is a detailed description.

Features Our algorithm builds two DPP ker-
nel matrices (the GenKernelMatrix function),
in which the rows and columns correspond to the
verbs in the data set, such that the (i, j)-th entry
corresponds to verbs number i and j. Following
equations 2 and 3 one matrix is built for SCF and
one for SP, and they are then combined into the

2Note that we do not take a product of the individual mod-
els but only of their kernel matrices. Yet, if we construct the
joint matrix by a multiplication then it follows from a simple
generalization of the Cauchy-Binet formula that its principle
minors, which define the subset probabilities (equation 1), are
a sum of multiplications of the principle minors of the indi-
vidual model kernels. Still, we do not have guarantees that
our choice of kernel combination is the right one. We leave
this for future research.
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joint kernel matrix (the GenJointMat function)
following equation 5. Each kernel matrix requires
a proper feature representation φ and quality score
q.

In both kernels we represent a verb by the
counts of the grammatical relations (GRs) it par-
ticipates in. In the SCF kernel a GR is represented
by the GR type and the POS tags of the verb and
its arguments. In the SP kernels the GRs are rep-
resented by the POS tags of the verb and its ar-
guments as well as by the argument head word.
Based on this feature representation, the similarity
(opposite divergence) is encoded to the model by
equation 3 as the dot product between the normal-
ized feature vectors. The quality score qi of the
i-th verb is the average similarity of this verb with
the other verbs in the dataset.

Cluster set construction In its while loop, the
algorithm iteratively generates fixed-size cluster
sets such that each data point belongs to exactly
one cluster in one set. These cluster sets form
the leaf level of the tree in Figure (1). It does
so by extracting the T highest probability K-point
samples from a set of M subsets, each of which
sampled from the joint DPP model, and cluster-
ing them by the cluster procedure. The sampling
is done by the K-DPP sampling process ((Kulesza
and Taskar, 2012c), page 62) 3.

The cluster procedure first seeds a K-cluster
set with the highest probability sample. Then, it
gradually extends the clusters by iteratively map-
ping the samples, in decreasing order of probabil-
ity, to the existing clusters (them1Mapping func-
tion). Mapping is done by attaching every point
in the mapped subset to its closet cluster, where
the distance between a point and the cluster is the
maximum over the distances between the point
and each of the points in the cluster. The map-
ping is many-to-one, that is, multiple points in the
subset can be assigned to the same cluster.

Based on the DPP properties, the higher the
probability of a sampled subset, the more likely it
is to consist of distinct points that provide a good
coverage of the verb set. By iteratively extending
the clusters with high probability subsets, we thus
expect each cluster set to consist of clusters that
demonstrate these properties.

3K-DPP is a DPP conditioned on the sample size. As
shown in ((Kulesza and Taskar, 2012c), Section 2.4.3) this
conditional distribution is also a DPP. We could have obtained
samples of size K by sampling the DPP and rejecting sam-
ples of other sizes but this would have been slower.

SET 1-2-3-4 (45,K)

SET 1-2 (23,K)

SET1 (12,K) SET2 (11,K)

SET3-4(22,K)

SET 3 (12,K) SET4 (10,K)

Figure 1: An example output hierarchy of DPP-
Cluster for a set of 45 data points. Each set is
augmented with the number of points (left num-
ber) and clusters (right number) it includes. The
iterative DPP-samples clustering (the While loop)
generates the lowest level of the tree, by dividing
the data set into cluster sets, each of which con-
sists of K clusters. Each point in the data set be-
longs to exactly one cluster in exactly one set. The
agglomerative clustering then iteratively combines
cluster sets such that in each iteration two sets are
combined to one set with K clusters.

Agglomerative Clustering Finally, the
AgglomerativeClustering function builds a
hierarchy of cluster sets, by iteratively combining
cluster set pairs. In each iteration it computes the
similarity between any such pair, defined to be the
lowest similarity between their cluster members,
which is in turn defined to be the lowest cosine
similarity between their point members. The most
similar cluster sets are combined such that each
of the clusters in one set is mapped to its most
similar cluster in the other set. In this step the
algorithm generates data partitions at different
granularity levels from finest (from the iterative
sampling step) to the coarsest set (generated by
the last agglomerative clustering iteration and
consisting of exactly K clusters). This property is
useful as the optimal level of generalization may
be task dependent.

4 Evaluation

Data sets and gold standards We evaluated the
SCFs and verb clusters on gold standard datasets.
We based our set of the largest available joint set
for SCFs and VCs - that of (de Cruys et al., 2012).
It provides SCF annotations for 183 verbs (an av-
erage of 12.3 SCF types per verb) obtained by
annotating 250 corpus occurrences per verb with
the SCF types of (de Cruys et al., 2012). The
verbs represent a range of Levin classes at the top
level of the hierarchy in VerbNet (Kipper-Schuler,
2005). Where a verb has more than one Verb-
Net class, we assign it to the one supported by the
highest number of member verbs. To ensure suf-
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|C| = 20, 21.6 |C| = 40, 41 |C| = 60, 58.6 |C| = 69, 77.6 |C| = 89, 97.4
Model R P F R P F R P F R P F R P F
DPP-cluster 93.1 17.3 29.3 77.9 25.4 38.3 63 31.9 42.3 43.8 33.6 38.1 34.4 40.6 37.2
AC 67 17.8 28.2 46.6 24 31.7 40.5 29.4 34 33 34.9 33.9 24.7 41.1 30.9
SC 32.1 27.5 29.6 26.6 35.9 30.6 23.7 41.5 30.2 22.8 43.6 29.9 21.6 48.7 29.9

Table 1: Verb clustering evaluation for the last five iterations of our DPP-cluster model and the baseline
agglomerative clustering algorithm (AC, see text for its description), and for the spectral clustering (SC)
algorithm of (Sun and Korhonen, 2009) with the same number of clusters induced by DPP-cluster. |C| is
the number of clusters for DPP-cluster and SC (first number) and for AC (second number). The F-score
performance of DPP-cluster is superior in 4 out of 5 cases.

Arg. per verb P (DPP) P(AC) P (B) P (NF) R (DPP) R (AC) R (B) R(NF) ERR DPP ERR AC ERR B
≤ 200 (133 verbs) 27.3 23.7 27.3 23.1 9.9 7.6 8 11.3 3.4 0.16 1.55
≤ 600 (205 verbs) 26.5 25 27.3 22.6 14.8 11.5 11.9 16.6 2.3 0.50 1.1
≤ 1000 (238 verbs) 24.6 23.6 25.6 21.1 17.5 13.8 14.7 19.8 1.6 0.42 0.95

Table 2: Performance of the Corpus Statistics SP baseline (non-filtered, NF) as well as for three filtering
methods: frequency based (filter-baseline, B), DPP-cluster based (DPP) and AC cluster based (AC). P
(method) and R (method) present the precision and recall of the method respectively. The error reduc-
tion ratio (ERR) is the ratio between the reduction in precision error achieved by each method and the
increase in recall error (each method is compared to the NF baseline). Ratio greater than 1 means that
the reduction in precision error is larger than the increase in recall error (see text for exact definition).
DPP based filtering provides substantially better ratio.

ficient representation of each class, we collected
from VerbNet the verbs for which at least one of
the possible classes is represented in the 183 verbs
set by at least one and at most seven verbs. This
yielded 101 additional verbs which we added to
the gold standard with the initial 183 verbs.

We parsed the BNC corpus with the RASP
parser (Briscoe et al., 2006) and used it for feature
extraction. Since 176 out of the 183 initial verbs
are represented in this corpus, our final gold stan-
dard consists of 34 classes containing 277 verbs,
of which 176 have SCF gold standard and has been
evaluated for this task. We set the parameters of
our algorithm on an held-out data, consisting of
different verbs than those used in our experiments,
to be M = 10000, K = 20 and T = 10.

Clustering Evaluation We first evaluate the
quality of the clusters induced by our algorithm
(DPP-cluster) compared to the gold standard VCs
(table 1). To evaluate the importance of the DPP
component, we compare to the performance of a
version of our algorithm where everything is kept
fixed except from the sampling which is done from
a uniform distribution rather than from the DPP
joint kernel (this model is denoted in the table
with AC for agglomerative clustering) 4. We also
compare to the state-of-the-art spectral clustering
method of Sun and Korhonen (2009) where our

4Importantly, the kernel matrix L used in the agglomera-
tive clustering process is also used by AC.

kernel matrix is used for the distance between data
points (SC) 5.

We evaluated the unified cluster set induced in
each iteration of our algorithm and of the AC base-
line and induced the same number of clusters as in
each iteration of our algorithm using the SC base-
line. Since the number of clusters in each iteration
is not an argument for our algorithm or for the AC
baseline, the number of clusters slightly differ be-
tween the two. The AC and SC baseline results
were averaged over 5 and 100 runs respectively.
DPP-cluster has produced identical output across
runs.

The table demonstrates the superiority of the
DPP-cluster model. For four out of five conditions
its F-score performance outperforms the baselines
by 4.2-8.3%. Moreover, in all conditions its recall
performances are substantially higher than those
of the baselines (by 9.7-26.1%). Note that DPP-
cluster runs for 17 iterations while the AC baseline
performs only 6. We therefore evaluated only the
last 5 iterations of each model 6.

SCF evaluation For this evaluation, we first
built a baseline SCF lexicon based on the parsed

5Sun and Korhonen (2009) report better results than those
we report for their algorithm (on a different data set). Note,
however, that they used the output of a rule-based SCF sys-
tem as a source of features, as opposed to our unsupervised
approach.

6For the additional comparable iteration the result pattern
is very similar to the (C = 89, 97.4) case in the table, and is
not presented due to space limitations.
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Algorithm 1 The DPP-cluster clustering algo-
rithm. K is the size of the sampled subsets, M is
the number of subsets sampled at each iteration, Y
is the verb set, T is the number of most probable
samples to be used in each iteration

Algorithm DPP-cluster :
Arguments: K,M,Y ,T
Return: cluster sets S = {S1, . . . Sn}
i← 1
S ← ∅
while Y 6= ∅ do

(L1, S1)← GenKernelMatrix(Y, SCF )
(L2, S2)← GenKernelMatrix(Y, SP )
(L12, S12)← GenJointMat(L1, L2)
samples← sampleDpp(L,K,M)
topSamples← exTop(samples, T )
Si ← cluster(topSamples, L)
Y ← Y − elements(Si)
S ← S ∪ Si
i← i+ 1

end while
AgglomerativeClustering(S)
———————————————————
——–
Function cluster :
Arguments: topSamples,L
Return: S
S ← ∅, topSample← ∅
i← 1
while (topSample ∩ elements(S) = ∅) do
topSample← topSamples(i)
S ← m1Mapping(topSample, S)
i← i+ 1
if (i > size(topSamples)) then

return S
end if

end while

BNC corpus. We do this by gathering the GR com-
binations for each of the verbs in our gold stan-
dard, assuming they are frames and gathering their
frequencies. Note that this corpus statistics base-
line is a very strong baseline that performs very
similarly to (de Cruys et al., 2012), the best unsu-
pervised SCF model we are aware of, when run on
their dataset 7.

As shown in table 3 the corpus statistics base-
line achieves high recall (84%) at the cost of
low precision (52.5%) (similar pattern has been

7personal communication with the authors.

demonstrated for the system of de Cruys et al.
(2012)). On the other extreme, two other com-
monly used baselines strongly prefer precision.
These are the Most Frequent SCF (O’Donovan et
al., 2005) which uniformly assigns to all verbs the
two most frequent SCFs in general language, tran-
sitive (SUBJ-DOBJ) and intransitive (SUBJ) (and
results in poor F-score), and a filtering that re-
moves frames with low corpus frequencies (which
results in low recall even when trying to provide
the maximum recall for a given precision level).
The task we address is therefore to improve the
precision of the corpus statistics baseline in a way
that does not substantially harm the F-score.

To remedy this imbalance, we apply a cluster
based filtering method on top of the maximum-
recall frequency filter. This filter excludes a candi-
date frame from a verb’s lexicon only if it meets
the frequency filter criterion and appears in no
more than N other members of the cluster of the
verb in question. The filter utilizes the clustering
produced by the seventh to last iteration of DPP-
cluster that contains seven clusters with approxi-
mately 30 members each. Such clustering should
provide a good generalization level for the task.

We report results for moderate as well as ag-
gressive filtering (N = 3 andN = 7 respectively).
Table 3 clearly demonstrates that cluster based fil-
tering (DPP-cluster and AC) is the only method
that provides a good balance between the recall
and the precision of the SCF lexicon. Moreover,
the lexicon induced by this method includes a sub-
stantially higher number of frames per verb com-
pared to the other filtering methods. While both
AC and DPP-cluster still prefer recall to precision,
DPP-cluster does so to a smaller extent 8. This
clearly demonstrates that the clustering serves to
provide SCF acquisition with semantic informa-
tion needed for improved performance.

SP evaluation We explore a variant of the
pseudo-disambiguation task of Rooth et al. (1999)
which has been applied to SP acquisition by a
number of recent papers (e.g. (de Cruys et al.,
2012)). Rooth et al. (1999) proposed to judge
which of two verbs v and ṽ is more likely to take a
given noun n as its argument. In their experiments
the model has to choose between a pair (v, n) that

8We show results for the maximum recall frequency fil-
tering with precision equals to 80 or 90. When the frequency
threshold is further reduced from 0.03, the same result pat-
tern hold. We do not give a detailed description due to space
limitations.
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Corpus Statistics: [P = 52.5, R = 84, F = 64.6, AF = 12.3]
Most Frequent SCF: [P = 86.7, R = 22.5, F = 35.8, AF = 2]

Clustering Moderate Clustering Aggressive
Maximum Recall Frequency Threshold Model P R F AF P R F AF

threshold = 0.03, Prec. > 80 DPP-cluster 60.8 68.3 64.3 8.7 64.1 64.2 64.2 7.7

[P=88.7,R=52.4,F=65.9,AF=4.5] AC 58 73.2 64.6 9.7 61.3 68.9 64.7 8.6

threshold = 0.05, Prec. > 90 DPP-cluster 60.1 64.6 62.3 8.7 63.3 59.3 61.3 7.2

[P=92.3,R=44.4,F=59.9,AF=3.7] AC 57.5 70.6 63.2 9.4 60.7 65.4 62.7 8.3

Table 3: SCF Results for the DPP-cluster model compared to the Corpus Statistics baseline, Most Fre-
quent SCF baseline, maximum-recall frequency thresholding with the maximum threshold values that
keep precision above 80 (threshold = 0.03) and above 90 (threshold = 0.05), and the AC clustering base-
line. AF is the average number of frames per verb. All methods except from cluster based filtering
(DPP-cluster and AC) induce lexicons with strong recall/precision imbalance. Cluster based fil-
tering keeps a larger number of frames in the lexicon compared to the frequency thresholding
baseline, while keeping similar F-score levels. DPP-cluster provides better recall/precision balance
than AC.

appears only in the test corpus and a pair (ṽ, n)
that appears neither in the test nor in the training
corpus. Note, however, that this test only evaluates
the capability of a model to distinguish a correct
unseen verb-argument pair from an incorrect one,
but not its capability to identify erroneous pairs
when no alternative pair is presented. This last
property can strongly affect the precision of the
model.

We therefore propose to measure both aspects
of the SP task by computing both the recall and the
precision between the list of possible arguments a
verb can take according to the model and the cor-
responding test corpus list 9.

We evaluate the value of our clustering for SP
acquisition in the particularly challenging scenario
of domain adaptation. For each of the verbs in
our set we induce a list of possible noun direct ob-
jects from the BNC corpus and an equivalent list
from the North American News Text (NANT) cor-
pus. Following previous work (e.g. (de Cruys et
al., 2012)) arguments are identified using a parser
(RASP in our case). Using the verb clusters we
create a filtered version of the BNC argument lex-
icon which includes in the noun argument list of
a verb only those nouns that appear in the BNC
as arguments of that verb and of one of its cluster
members. For each verb we then compare the fil-
tered as well as the non-filtered BNC induced lex-
icon to the NANT lexicon by computing the aver-
age recall and precision between the argument lists

9In principle these measures can take into account the
probability assigned by the model to each argument and the
corresponding test corpus frequency. In this work we com-
pute probability-ignorant scores and keep more sophisticated
evaluations for future research.

and then report the average scores across all verbs.
We compare to a baseline which maintains only
noun arguments that appear at least twice in BNC
10. As a final measure of performance we compute
the ratio between the reduction in precision error
(i.e. pmodel−pbaseline

100−pbaseline ) and the increase in recall er-
ror ( rbaseline−rmodel100−rmodel ).

Table 2 presents the results for verbs with up to
200, 600 and 1000 noun arguments in the training
data. In all cases, the relative error reduction of the
DPP cluster filter is substantially higher than that
of the frequency baseline. Note that for this task
the baseline AC clusters are of low quality which
is reflects by an error reduction ratio of up to 0.5.

5 Conclusions and Future Work

In this paper we have presented the first unified
framework for the induction of verb clusters, sub-
categorization frames and selectional preferences
from corpus data. Our key idea is to cluster to-
gether verbs with similar SCFs and SPs and to use
the resulting clusters for SCF and SP induction. To
implement our idea we presented a novel method
which involves constructing a product DPP model
for SCFs and SPs and introduced a new algorithm
that utilizes the efficient DPP sampling algorithms
to cluster together verbs with similar SCFs and
SPs. The induced clusters performed well in eval-
uation against a VerbNet -based gold standard and
proved useful in improving the quality of SCFs
and SPs over strong baselines.

Our results demonstrate the benefits of a uni-
fied framework for acquiring lexical informa-

10we experimented with other threshold values for this
baseline but the recall in those case becomes very low.
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tion about different aspects of verbal predicate-
argument structure. Not only the acquisition of
different types information (syntactic and seman-
tic) can support and inform each other, but also a
unified framework can be useful for NLP tasks and
applications which require rich information about
predicate-argument structure. In future work we
plan to apply our approach on larger scale data
sets and gold standards and to evaluate it in differ-
ent domains, languages and in the context of NLP
tasks such as syntactic parsing and SRL.

In addition, in our current framework SCF and
SP information is used for clustering which is in
turn used to improve SCF and SP quality. At this
stage no further information flows from the SCF
and SP models to the clustering model. A natural
extension of our unified framework is to construct
a joint model in which the predictions for all three
tasks inform each other at all stages of the predic-
tion process.
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Abstract

Semantic frames are a rich linguistic re-
source. There has been much work
on semantic frame parsers, but less that
applies them to general NLP problems.
We address a task to predict change in
stock price from financial news. Seman-
tic frames help to generalize from spe-
cific sentences to scenarios, and to de-
tect the (positive or negative) roles of spe-
cific companies. We introduce a novel tree
representation, and use it to train predic-
tive models with tree kernels using sup-
port vector machines. Our experiments
test multiple text representations on two
binary classification tasks, change of price
and polarity. Experiments show that fea-
tures derived from semantic frame pars-
ing have significantly better performance
across years on the polarity task.

1 Introduction

A growing literature evaluates the financial effects
of media on the market (Tetlock, 2007; Engel-
berg and Parsons, 2011). Recent work has applied
NLP techniques to various financial media (con-
ventional news, tweets) to detect sentiment in con-
ventional news (Devitt and Ahmad, 2007; Haider
and Mehrotra, 2011) or message boards (Chua
et al., 2009), or discriminate expert from non-
expert investors in financial tweets (Bar-Haim et
al., 2011). With the exception of Bar-Haim et al.
(2011), these NLP studies have relied on small
corpora of hand-labeled data for training or evalu-
ation, and the connection to market events is done
indirectly through sentiment detection. We hy-
pothesize that conventional news can be used to
predict changes in the stock price of specific com-
panies, and that the semantic features that best
represent relevant aspects of the news vary across

On Wednesday, April 11th, 2012, Google Inc announced

its first
�� ��quarterly earnings report, a week before the April

20 options contracts expiration in contrast to its history
of reporting a day before monthly options expirations.
The stock price of Google surged 3.85% from April
10th’s $626.86 to 12th’s $651.01. On Friday, April 13th,
news reported Oracle Corp would sue

�� ��Google Inc ,

claiming Google’s Android operating system tramples�� ��its intellectual property rights . Jury selection was set for

the next Monday. Google’s stock price tumbled 4.06% on
Friday, and continued to drop in the following week.

Figure 1: Summary of financial news items per-
taining to Google in April, 2012.

market sectors. To test this hypothesis, we use
price information to label data from six years of
financial news. Our experiments test several doc-
ument representations for two binary classification
tasks, change of price and polarity. Our main con-
tribution is a novel tree representation based on
semantic frame parses that performs significantly
better than enriched bag-of-words vectors.

Figure 1 shows a constructed example based
on extracts from financial news about Google in
April, 2012. It illustrates how a series of events
reported in the news precedes and potentially
predicts a large change in Google’s stock price.
Google’s early announcement of quarterly earn-
ings possibly presages trouble, and its stock price
falls soon after reports of a legal action against
Google by Oracle. To produce a coherent story,
the original sentences were edited for Figure 1,
but they are in the style of actual sentences from
our dataset. Accurate detection of events and re-
lations that might have an impact on stock price
should benefit from document representation that
captures sentiment in lexical items (e.g., aggres-
sive) combined with the conceptual relations cap-
tured by FrameNet (Ruppenhofer and Rehbein,
2012). A frame is a lexical semantic representa-
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tion of the conceptual roles played by parts of a
clause, and relates different lexical items (e.g., re-
port, announce) to the same situation type. In the
figure, some of the words that evoke frames have
been underlined, and role fillers are outlined by
boxes or ovals. Sentiment words are in italics.

To the best of our knowledge, this paper is
the first to apply semantic frames in this do-
main. On the polarity task, the semantic frame fea-
tures encoded as trees perform significantly better
across years and sectors than bag-of-words vectors
(BOW), and outperform BOW vectors enhanced
with semantic frame features, and a supervised
topic modeling approach. The results on the price
change task show the same trend, but are not sta-
tistically significant, possibly due to the volatility
of the market in 2007 and the following several
years. Yet even modest predictive performance
on both tasks could have an impact, as discussed
below, if incorporated into financial models such
as Rydberg and Shephard (2003). We first dis-
cuss the motivation and related work. Section 4
presents vector-based and tree-based features from
semantic frame parses, and section 5 describes our
dataset. The experimental design and results ap-
pear in the following section, followed by discus-
sion and conclusions.

2 Motivation

Financial news is a rich vein for NLP applica-
tions to mine. Many news organizations that fea-
ture financial news, such as Reuters, the Wall
Street Journal and Bloomberg, devote significant
resources to the analysis of corporate news.

Much of the data that would support studies of
a link between the news media and the market are
publicly available. As pointed out by Tetlock et
al. (2008), linguistic communication is a poten-
tially important source of information about firms’
fundamental values. Because very few stock mar-
ket investors directly observe firms’ production ac-
tivities, they get most of their information sec-
ondhand. Their three main sources are analysts’
forecasts, quantifiable publicly disclosed account-
ing variables, and descriptions of firms’ current
and future profit-generating activities. If analyst
and accounting variables are incomplete or biased
measures of firms’ fundamental values, linguis-
tic variables may have incremental explanatory
power for firms’ future earnings and returns.

Consider the following sentences:

Oracle sued Google in August 2010, saying
Google’s Android mobile operating system in-
fringes its copyrights and patents for the Java pro-
gramming language. (a)

Oracle has accused Google of violating its in-
tellectual property rights to the Java programming
language. (b)

Oracle has blamed Google and alleged that the
latter has committed copyright infringement re-
lated to Java programming language held by Ora-
cle. (c)

Oracle’s Ellison says couldn’t sway Google on
Java. (d)

Sentences a, b and c are semantically similar,
but lexically rather distinct: the shared words are
the company names and Java (programming lan-
guage). Bag-of-Words (BOW) document repre-
sentation is difficult to surpass for many document
classification tasks, but cannot capture the de-
gree of semantic similarity among these sentences.
Methods that have proven successful for para-
phrase detection (Deerwester et al., 1990; Dolan
et al., 2004), as in the main clauses of b and
c, include latent variable models that simultane-
ously capture the semantics of words and sen-
tences, such as latent semantic analysis (LSA) or
latent Dirichlet allocation (LDA). However, our
task goes beyond paraphrase detection. The first
three sentences all indicate an adversarial relation
of Oracle to Google involving a negative judge-
ment. It would be useful to capture the similarities
among all three of these sentences, and to distin-
guish the role of each company (who is suing and
who is being sued). Further, these three sentences
potentially have a greater impact on market per-
ception of Google in contrast to a sentence like d,
that refers to the same conflict more indirectly, and
whose main clause verb is say. We hypothesize
that semantic frames can address these issues.

Most of the NLP literature on semantic frames
addresses how to build robust semantic frame
parsers, with intrinsic evaluation against gold stan-
dard parses. There have been few applications of
semantic frame parsing for extrinsic tasks. To test
for measurable benefits of semantic frame parsing,
this paper poses the following questions:

1. Are semantic frames useful for document
representation of financial news?

2. What aspects of frames are most useful?
3. What is the relative performance of document

representation that relies on frames?
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4. What improvements could be made to best
exploit semantic frames?

Our work is not aimed at investment profit.
Rather, we investigate whether computational lin-
guistic methodologies can improve our under-
standing of a company’s fundamental market
value, and whether linguistic information derived
from news produces a consistent enough result to
benefit more comprehensive financial models.

3 Related Work

NLP has recently been applied to financial text
for market analysis, primarily using bag-of-
words (BOW) document representation. Luss
and d’Aspremont (2008) use text classification to
model price movements of financial assets on a
per-day basis. They try to predict the direction
of return, and abnormal returns, defined as an ab-
solute return greater than a predefined threshold.
Kogan et al. (2009) address a text regression prob-
lem to predict the financial risk of investment in
companies. They analyze 10-K reports to predict
stock return volatility. They also predict whether
a company will be delisted following its 10-K re-
port. Ruiz et al. (2012) correlate text with finan-
cial time series volume and price data. They find
that graph centrality measures like page rank and
degree are more strongly correlated to both price
and traded volume for an aggregation of similar
companies, while individual stocks are less corre-
lated. Lavrenko et al. (2000) present an approach
to identify news stories that influence the behavior
of financial markets, and predict trends in stock
prices based on the content of news stories that
precede the trends. Luss and d’Aspremont (2008)
and Lavrenko et al. (2000) both point out the de-
sire for document feature engineering as future re-
search directions. We explore a rich feature space
that relies on frame semantic parsing.

Sentiment analysis figures strongly in NLP
work on news. General Inquirer (GI), a content
analysis program, is used to quantify pessimism of
news in Tetlock (2007) and Tetlock et al. (2008).
Other resources for sentiment detection include
the Dictionary of Affect in Language (DAL) to
score the prior polarity of words, as in Agarwal
et al. (2011) on social media data. Our study in-
corporates DAL scores along with other features.

FrameNet is a rich lexical resource (Fillmore et
al., 2003), based on the theory of frame seman-
tics (Fillmore, 1976). There is active research

Category Features Value type
Frame F, FT, FE N
attributes wF, wFT, wFE R≥0

BOW UniG, BiG, TriG N
wUniG, wBiG, wTriG R≥0

pDAL all-Pls, all-Act, all-Img R∼µ=0,std=1

VB-Pls, VB-Act, VB-Img R∼µ=0,std=1

JJ-Pls, JJ-Act, JJ-Img R∼µ=0,std=1

RB-Pls, RB-Act, RB-Img R∼µ=0,std=1

Table 1: FWD features (Frame, bag-of-Words,
part-of-speech DAL score) and their value types.

to build more accurate parsers (Das and Smith,
2011; Das and Smith, 2012). Semantic role label-
ing using FrameNet has been used to identify an
opinion with its holder and topic (Kim and Hovy,
2006). For deep representation of sentiment anal-
ysis, Ruppenhofer and Rehbein (2012) propose
SentiFrameNet.

Our work addresses classification tasks that
have potential relevance to an influential financial
model (Rydberg and Shephard, 2003). This model
decomposes stock price analysis of financial data
into a three-part ADS model - activity (a binary
process modeling the price move or not), direction
(another binary process modeling the direction of
the moves) and size (a number quantifying the size
of the moves). Our two binary classification tasks
for news, price change and polarity, are analogous
to their activity and direction. In contrast to the
ADS model, our approach does not calculate the
conditional probability of each factor. At present,
our goal is limited to the determination of whether
NLP features can uncover information from news
that could help predict stock price movement or
support analysts’ investigations.

4 Methods

We propose two approaches for the use of seman-
tic frames. The first is a rich vector space based
on semantic frames, word forms and DAL affect
scores. The second is a tree representation that
encodes semantic frame features, and depends on
tree kernel measures for support vector machine
classification. The semantic parses of both meth-
ods are derived from SEMAFOR1 (Das and Smith,
2012; Das and Smith, 2011), which solves the se-
mantic parsing problem by rule-based target iden-
tification, log-linear model based frame identifica-
tion and frame element filling.

1http://www.ark.cs.cmu.edu/SEMAFOR.
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Frame (F) Judgment comm. Commerce buy
accuse buy

Target (FT) sue purchase
charge bid

Frame COMMUNICATOR BUYER
Element EVALUEE SELLER
(FE) REASON GOODS

Table 2: Sample frames.

4.1 Semantic Frame based FWD Features
Table 1 lists 24 types of features, including seman-
tic Frame attributes, bag-of-Words, and scores for
words in the Dictionary of Affect in Language by
part of speech (pDAL). We refer to these features
as FWD features throughout the paper. FWD fea-
tures are used alone and in combinations.

FrameNet defines hundreds of frames, each of
which represents a scenario associated with se-
mantic roles, or frame elements, that serve as
participants in the scenario the frame signifies.
Table 2 shows two frames. The frame Judg-
ment communication (JC or Judgment comm. in
the rest of the paper) represents a scenario in
which a COMMUNICATOR communicates a judg-
ment of an EVALUEE for some REASON. It is
evoked by (target) words such as accuse or sue.

Here we use F for the frame name, FT for the
target words, and FE for frame elements. We use
both frequency and weighted scores. For exam-
ple, we define idf -adjusted weighted frame fea-
tures, such as wF for attribute F in document d as
wFF,d = f(F, d) × log |D|

|d∈D:F∈d| , where f(F, d)
is the frequency of frame F in d, D is the whole
document set and |·| is the cardinality operator.

Bag-of-Words features include term frequency
and tfidf of unigrams, bigrams, and trigrams.

DAL (Dictionary of Affect in Language) is a
psycholinguistic resource to measure the emo-
tional meaning of words and texts (Whissel,
1989). It includes 8,742 words that were anno-
tated for three dimensions: Pleasantness (Pls), Ac-
tivation (Act), and Imagery (Img). Agarwal et
al. (2009) introduced part-of-speech specific DAL

features for sentiment analysis. We follow their
approach by averaging the scores for all words,
verb only, adjective only, and adverb only words.
Feature values are normalized to mean of zero and
standard deviation of one.

4.2 SemTree Feature Space and Kernels
We propose SemTree as another feature space to
encode semantic information in trees. SemTree

can distinguish the roles of each company of in-
terest, or designated object (e.g. who is suing and
who is being sued).

4.2.1 Construction of Tree Representation
The semantic frame parse of a sentence is a forest
of trees, each of which corresponds to a semantic
frame. SemTree encodes the original frame struc-
ture and its leaf words and phrases, and highlights
a designated object at a particular node as follows.
For each lexical item (target) that evokes a frame, a
backbone is found by extracting the path from the
root to the role filler mentioning a designated ob-
ject; the backbone is then reversed to promote the
designated object. If multiple frames have been
assigned to the same designated object, their back-
bones are merged. Lastly, the frame elements and
frame targets are inserted at the frame root.

The top of Figure 2 shows the semantic parse
for sentence a from section 2; we use it to illus-
trate tree construction for designated object Ora-
cle. The parse has two frames (Figure 2-(1)&(2)),
one corresponding to the main clause (verb sue),
and the other for the tenseless adjunct (verb say).
The reversed paths extracted from each frame root
to the designated object Oracle become the back-
bones (Figures 2-(3)&(4)). After merging the two
backbones we get the resulting SemTree, as shown
in Figure 2-(5). By the same steps, this sentence
would also yield a SemTree with Google at the
root, in the role of EVALUEE.

4.2.2 Kernels and Tree Substructures
The tree kernel (Moschitti, 2006; Collins and
Duffy, 2002) is a function of tree similarity, based
on common substructures (tree fragments). There
are two types of substructures. A subtree (ST) is
defined as any node of a tree along with all its de-
scendants. A subset tree (SST) is defined as any
node along with its immediate children and, op-
tionally, part or all of the children’s descendants.
Each tree is represented by a d dimensional vec-
tor where the i’th component counts the number
of occurrences of the i’th tree fragment.

Define the function hi(T ) as the number of
occurrences of the i’th tree fragment in tree
T , so that T is now represented as h(T ) =
(h1(T ), h2(T ), ..., hd(T )). We define the set of
nodes in tree T1 and T2 as NT1 and NT2 respec-
tively. We define the indicator function Ii(n) to be
1 if subtree i is seen rooted at node n, and 0 oth-
erwise. It follows that hi(T1) =

∑
n1∈NT1

Ii(n1)

876



Designated object: Oracle (ORCL)
Sentence: Oracle sued Google in August 2010, saying Google’s Android mobile operating system infringes its copyrights and patents for the Java pro-
gramming language.
SRL: [OracleJC.FE.Communicator,Stmt.FE.Speaker] [suedJC.Target] [GoogleJC.FE.Evaluee] in August 2010, [sayingStmt.Target]
[Googleś Android mobile operating system infringes its copyrights and patents for the Java programming languageStmt.FE.Message].

(1) Judgment comm.

FE.Evaluee

GOOG

FE.Communicator

ORCL

Judgment comm.Target

sue

(2) Statement

FE.Message

GOOG’s Android ... language

FE.Speaker

ORCL

Statement.Target

say

(3) ORCL

FE.Communicator

Judgment comm.

(4) ORCL

FE.Speaker

Statement

(5) ORCL

Speaker

Statement

FE.MessageFE.SpeakerStatement.Target

say

Communicator

Judgment comm.

FE.EvalueeFE.CommunicatorJudgment comm.Target

sue

Figure 2: Constructing a tree representation for the designated object Oracle in sentence shown.

and hi(T2) =
∑

n2∈NT2
Ii(n2). Their similarity

can be efficiently computed by the inner product,
K(T1, T2) = h(T1) · h(T2)

=
∑
i hi(T1)hi(T2)

=
∑
i(
∑
n1∈NT1

Ii(n1))(
∑
n2∈NT2

Ii(n2))

=
∑
n1∈NT1

∑
n2∈NT2

∑
i Ii(ni)Ii(n2)

=
∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where ∆(n1, n2) is the number of common frag-
ments rooted in the nodes n1 and n2. If the pro-
ductions of these two nodes (themselves and their
immediate children) differ, ∆(n1, n2) = 0; other-
wise iterate their children recursively to evaluate
∆(n1, n2) =

∏|children|
j (σ+∆(cjn1 , c

j
n2)) , where

σ = 0 for ST kernel and σ = 1 for SST kernel.
The kernel computational complexity is

O(|NT1 | × |NT2 |), where all pairwise compar-
isons are carried out between T1 and T2. However,
there are fast algorithms for kernel computation
that run in linear time on average, either by
dynamic programming (Collins and Duffy, 2002),
or pre-sorting production rules before training
(Moschitti, 2006). We use the latter.

5 Dataset

We use publicly available financial news from
Reuters from January 2007 through August 2012.
This time frame includes a severe economic down-
turn in 2007-2010 followed by a modest recovery
in 2011-2012.

An information extraction pipeline is used to
pre-process the data. News full text is extracted
from HTML. The timestamp of the news is ex-
tracted for a later alignment with stock price infor-
mation, which will be discussed in section 6. The
company mentioned is identified by a rule-based
matching of a finite list of companies.

There are a total of 10 sectors in the Global In-
dustry Classification Standard (GICS), an industry
taxonomy used by the S&P 500.2 To explore our
approach for this domain, we select three sectors
for our experiment: Telecommunication Services
(TS, the sector with the smallest number of com-
panies), Information Technology (IT), and Con-
sumer Staples (CS), due to our familiarity with the
companies in these sectors and an expectation of
different characteristics they may exhibit. In the
expectation there would be semantic differences
associated with these sectors, experiments are per-
formed independently for each sector. There are
also differences in the number of companies in the
sector, and the amount of news.

We bin news articles by sector. We remove ar-
ticles that only list stock prices or only show ta-
bles of accounting reports. The first preprocess-
ing step is to extract sentences that mention the

2Standard & Poor’s 500 is an equity market index that
includes 500 U.S. leading companies in leading industries.
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CS (N=40) IT (N=69) TS (N=8)
avg # news 5,702±749 13446±1,272 2,177±188
avg # sentences 16,090±2,316 48,929±5,927 6,970±1,383
avg # com./sent. 1.07±0.01 1.06±0.20 1.14±0.03
avg # total 17,131±2,339 51,306±8,637 7,947±1,576

Table 3: Data statistics of mean and standard devi-
ation by year from January 2007 to August 2012,
for three sectors, with the number of companies.

relevant companies. Each data instance is a sen-
tence and one of the target companies it mentions.
Table 3 summarizes the data statistics. For exam-
ple, the consumer staples sector has 40 companies.
It has an average of 5,702 news articles (16,090
sentences) per year. Each sentence that mentions
a consumer staple company mentions 1.07 com-
panies on average. On average, this sector has
17,131 instances per year.

6 Experiments

Our current experiments are carried out for each
year, training on one year and testing on the next.
The choice to use a coarse time interval with no
overlap was an expedience to permit more numer-
ous exploratory experiments, given the computa-
tional resources these experiments require. We test
the influence of news to predict (1) a change in
stock price (change task), and (2) the polarity of
change (increase vs. decrease; polarity task). Ex-
periments evaluate the FWD and SemTree feature
spaces compared to two baselines: bag-of-words
(BOW) and supervised latent Dirichlet allocation
(sLDA) (Blei and McAuliffe, 2007). BOW in-
cludes features of unigram, bigram and trigram.
sLDA is a statistical model to classify documents
based on LDA topic models, using labeled data. It
has been applied to and shown good performance
in topical text classification, collaborative filter-
ing, and web page popularity prediction problems.

6.1 Labels, Evaluation Metrics, and Settings
We align publicly available daily stock price data
from Yahoo Finance with the Reuters news us-
ing a method to avoid back-casting. In particular,
we use the daily adjusted closing price - the price
quoted at the end of a trading day (4PM US East-
ern Time), then adjusted by dividends, stock split,
and other corporate actions. We create two types
of labels for news documents using the price data,
to label the existence of a change and the direc-
tion of change. Both tasks are treated as binary
classification problems. Based on the finding of

a one-day delay of the price response to the in-
formation embedded in the news by Tetlock et al.
(2008), we use ∆t = 1 in our experiment. To
constrain the number of parameters, we also use a
threshold value (r) of a 2% change, based on the
distribution of price changes across our data. In
future work, this could be tuned to sector or time.

change=

{
+1 if

|pt(0)+∆t−pt(−1)|
pt(−1)

> r

−1 otherwise

polarity=
{

+1 if pt(0)+∆t > pt(−1) and change = +1
−1 if pt(0)+∆t < pt(−1) and change = +1

pt(−1) is the adjusted closing price at the end of
the last trading day, and pt(0)+∆t is the price of
the end of the trading day after the ∆t day delay.
Only the instances with changes are included in
the polarity task.

There is high variance across years in the pro-
portion of positive labels, and often highly skewed
classes in one direction or the other. The average
ratios of +/- classes for change and polarity over
the six years’ data are 0.73 (std=0.35) and 1.12
(std=0.25), respectively. Because the time frame
for our experiments includes an economic crisis
followed by a recovery period, we note that the
ratio between increase and decrease of price flips
between 2007, where it is 1.40, and 2008, where it
is 0.71. Accuracy is very sensitive to skew: when a
class has low frequency, accuracy can be high us-
ing a baseline that makes prediction on the major-
ity class. Given the high data skew, and the large
changes from year to year in positive versus nega-
tive skew, we use a more robust evaluation metric.

Our evaluation relies on the Matthews corre-
lation coefficient (MCC, also known as the φ-
coefficient) (Matthews, 1975) to avoid the bias of
accuracy due to data skew, and to produce a ro-
bust summary score independent of whether the
positive class is skewed to the majority or minor-
ity. In contrast to f-measure, which is a class-
specific weighted average of precision and recall,
and whose weighted version depends on a choice
of whether the class-specific weights should come
from the training or testing data, MCC is a sin-
gle summary value that incorporates all 4 cells of
a 2 × 2 confusion matrix (TP, FP, TN and FN for
True or False Positive or Negative). We have also
observed that MCC has a lower relative standard
deviation than f-measure.

For a 2 × 2 contingency table, MCC corre-
sponds to the square root of the average χ2 statis-
tic
√
χ2/n, with values in [-1,1]. It has been sug-
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Change
test years BOW sLDA FWD SemTreeFWD

Consumer Staples
2008-2010 0.1015 0.0774 0.1079 0.1426
2011-2012 0.1663 0.1203 0.1664 0.1736
5 years 0.1274 0.0945 0.1313 0.1550

Information Technology
2008-2010 0.0580 0.0585 0.0701 0.0846
2011-2012 0.0894 0.0681 0.1076 0.1273
5 years 0.0705 0.0623 0.0851 0.1017

Telecommunication Services
2008-2010 0.1501 0.1615 0.1497 0.2409
2011-2012 0.2256 0.2084 0.2191 0.4009
5 years 0.1803 0.1803 0.1774 0.3049

Polarity
Consumer Staples

2008-2010 0.0359 0.0383 0.0956 0.1054
2011-2012 0.0938 0.0270 0.1131 0.1285
5 years 0.0590 0.0338 0.1026 0.1147
p-value >>0.1000 0.0918 0.0489

Information Technology
2008-2010 0.0551 0.0332 0.0697 0.0763
2011-2012 0.0591 0.0516 0.0764 0.0857
5 years 0.0567 0.0405 0.0723 0.0801
p-value 0.0626 0.0948 0.0103

Telecommunication Services
2008-2010 0.0402 0.0464 0.0821 0.0745
2011-2012 0.0366 0.0781 0.0611 0.0809
5 years 0.0388 0.0591 0.0737 0.0770
p-value >>0.1000 0.0950 0.0222

Table 4: Average MCC for the change and polarity
tasks by feature representation, for 2008-2010; for
2011-2012; for all 5 years and associated p-values
of ANOVAs for comparison to BOW.

gested as one of the best methods to summarize
into a single value the confusion matrix of a binary
classification task (Jurman and Furlanello, 2010;
Baldi et al., 2000). Given the confusion matrix(
TP FN
FP TN

)
:

MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.

All sentences with at least one company men-
tion are used for the experiment. We remove
stop words and use Stanford CoreNLP for part-
of-speech tagging and named entity recognition.
Models are constructed using linear kernel sup-
port vector machines for both classification tasks.
SVM-light with tree kernels3 (Joachims, 2006;
Moschitti, 2006) is used for both the FWD and
SemTree feature spaces.

6.2 Results

Table 4 shows the mean MCC values for each task,
for each sector. Separate means are shown for
the test years of financial crisis (2008-2010) and
economic recovery (2011-2012) to highlight the
differences in performance that might result from
market volatility.

3SVM-light: http://svmlight.joachims.org and Tree
Kernels in SVM-light: http://disi.unitn.it/moschitti/Tree-
Kernel.htm.

pos. 1 dow, investors, index, retail, data
pos. 2 costs, food, price, prices, named entity 4
neu. 1 q3, q1, nov, q2, apr
neu. 2 cents, million, share, year, quarter
neg. 1 cut, sales, prices, hurt, disappointing
neg. 2 percent, call, company, fell, named entity 7

Table 5: Sample sLDA topics for consumer staples
for test year 2010 (train on 2009), polarity task.

SemTree combined with FWD (SemTreeFWD)
generally gives the best performance in both
change and polarity tasks. SemTree results here
are based on the subset tree (SST) kernel, be-
cause of its greater precision in computing com-
mon frame structures and consistently better per-
formance over the subtree (ST) kernel. SemTree
also provides interpretable features for manual
analysis as discussed in the next section.

Analysis of Variance (ANOVA) tests were per-
formed on the full 5 years for each sector, to com-
pare each feature representation as a predictor of
MCC score with the baseline BOW. The ANOVAs
yield the p-values shown in Table 4. There were no
significant differences from BOW on the change
task. For polarity detection, SemTreeFWD was
significantly better than BOW for each sector (see
boldface p-values). No other method was sig-
nificantly better than BOW, although FWD ap-
proaches significance on all sectors, and sLDA ap-
proaches significance on IT.

sLDA has promising MCC scores for the
telecommunication sector, which has only 8 com-
panies, thus many fewer data instances. Table 5
displays a sample of sLDA topics with good per-
formance on polarity for the consumer staples sec-
tor for training year 2009. The positive topics are
related to stock index details and retail data. The
negative topics contain many words with negative
sentiment (e.g., hurt, disappointing).

7 Discussion

7.1 Semantic Parse Quality

In general, SEMAFOR parses capture most of
the important frames for our purposes. There is,
however, significant room for improvement. On
a small, randomly selected sample of sentences
from all three sectors, two of the authors working
independently evaluated the semantic parses, with
approximately 80% agreement. Some of the in-
accuracies in frame parses result from errors prior
to the SEMAFOR parse, such as tokenization or
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+ (Target(jump))
+ (RECIPIENT(Receiving))
+ (VICTIM(Defend))
+ (PERCEIVER AGENTIVE(Perception active(Target)
(PERCEIVER AGENTIVE)(PHENOMENON)))
+ (DONOR(Giving(Target)(THEME)(DONOR)))
+ (Target(beats))
...
- (PHENOMENON(Perception active(Target)(PERCEIVER
AGENTIVE)(PHENOMENON)))

- (TRIGGER(Response))
- (Target(cuts))
- (VICTIM(Cause harm(Target(hurt))(VICTIM)))

Figure 3: Best performing SemTree fragments for
increase (+) and decrease (-) of price for consumer
staples sector across training years.

dependency parsing errors. The average sentence
length for the sample was 33.3 words, with an av-
erage of 14 frames per sentence, 3 of them with a
GICS company as a role filler. Because SemTree
encodes only the frames containing a designated
object (company), these are the frames we eval-
uated. On average, about half the frames with
a designated object were correct, and two thirds
of those frames we judged to be important. Be-
sides errors due to incorrect tokenization or depen-
dency parsing, we observed that about 8% to 10%
of frames were incorrectly assigned to due word
sense ambiguity.

7.2 Feature Analysis

The experimental results show the SemTree space
to be the one representation tested here that is sig-
nificantly better than BOW, but only for the po-
larity task. Post hoc analysis indicates this may
be due to the aptness of semantic frame parsing
for polarity. Limitations in our treatment of time
point to directions for improvement regarding the
change task.

Some strengths of our approach are the separate
treatment of different sectors, and the benefits of
SemTree features. To analyze which were the best
performing features within sectors, we extracted
the best performing frame fragments for the po-
larity task using a tree kernel feature engineering
method presented in Pighin and Moschitti (2009).
The algorithm selects the most relevant features in
accordance with the weights estimated by SVM,
and uses these features to build an explicit repre-
sentation of the kernel space. Figure 3 shows the
best performing SemTree fragments of the polar-
ity task for the consumer staples sector.

Recall that we hypothesized differences in

semantic frame features across sectors. This
shows up as large differences in the strength
of features across sectors. More strikingly, the
same feature can differ in polarity across sec-
tors. For example, in consumer staples, (EVAL-
UEE(Judgment communication)) has positive po-
larity, compared with negative polarity in informa-
tion technology sector. The examples we see indi-
cate that the positive cases pertain to aggressive re-
tail practices that lead to lawsuits with only small
fines, but whose larger impact benefits the bottom
line. A typical case is the sentence, The plaintiffs
accused Wal-Mart of discriminating against dis-
abled customers by mounting “point-of-sale” ter-
minals in many stores at elevated heights that can-
not be reached. Lawsuits in the IT sector, on the
other hand, are often about technology patent dis-
putes, and are more negative, as illustrated by our
example sentence in Figure 2.

SemTree features capture the differences be-
tween semantic roles for the same frame, and be-
tween the same semantic role in different frames.
For example, the PERCEIVER AGENTIVE role of
the Perception active frame contributes to predic-
tion of an increase in price, as in R.J. Reynolds
is watching this situation closely and will respond
as appropriate. Conversely, a company that fills
the PHENOMENON role of the same frame con-
tributes to prediction of a price decrease, as in In-
vestors will get a clearer look at how the market
values the Philip Morris tobacco businesses when
Altria Group Inc. “when-issued” shares begin

trading on Tuesday. When a company fills the
VICTIM role in the Cause harm frame, this can
predict a decrease in price, as in Hershey has
been hurt by soaring prices for cocoa, energy and
other commodities, whereas filling the VICTIM

role in the Defend frame is associated with an in-
crease in price, as in At Berkshire’s annual share-
holder meeting earlier this month, Warren Buffett
defended Wal-Mart , saying the scandal did not
change his opinion of the company.

One weakness of our approach that we dis-
cussed above is that there is a strong effect of
time that we do not address. The same SemTree
feature can be predictive for one time period and
not for another. (GOODS(Commerce sell)) is re-
lated to a decrease in price for 2008 and 2009 but
to an increase in price for 2010-2012. There is
clearly an influence of the overall economic con-
text that we do not take into account. For example,
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the practices of acquiring or selling a business are
different in downturning versus recovering mar-
kets. An important observation of the MCC val-
ues, especially in the case of SemTreeFWD is that
MCC increases during the years 2011-2012. We
attribute this change to the difficulty of predicting
stock price trends when there is the high volatil-
ity typical of a financial crisis. The effect of news
on volatility, however, can be explored indepen-
dently. For example, Creamer et al. (2012) detect
a strong association.

Another weakness of our approach is that we
take sentences out of context, which can lead
to prediction errors. For example, the sentence
Longs’ real estate assets alone are worth some
$2.9 billion, or $71.50 per share, Ackman wrote,
meaning that CVS would essentially be paying
for real estate, but gaining Longs’ pharmacy ben-
efit management business and retail operations for
free is treated as predicting a positive polarity for
CVS. This would be accurate if CVS was actually
going to acquire Longs’ business. Later in the
same news item, however, there is a sentence indi-
cating that the sale will not go through, which pre-
dicts negative polarity for CVS: Pershing Square
Capital Management said on Thursday it won’t
support a tender offer from CVS Caremark Corp
for rival Longs Drug Stores Corp because the of-
fer price “materially understates the fair value of
the company,” according to a filing.

8 Conclusion

We have presented a model for predicting stock
price movement from news. We proposed FWD
(Frames, BOW, and part-of-speech specific DAL)
features and SemTree data representations. Our
semantic frame-based model benefits from tree
kernel learning using support vector machines.
The experimental results for our feature represen-
tation perform significantly better than BOW on
the polarity task, and show promise on the change
task. It also facilitates human interpretable analy-
sis to understand the relation between a company’s
market value and its business activities. The sig-
nals generated by this algorithm could improve the
prediction of a financial time series model, such as
ADS (Rydberg and Shephard, 2003).

Our future work will consider the contextual in-
formation for sentence selection, and an aggrega-
tion of weighted news content based on the decay
effect over time for individual companies. We plan

to use a moving window for training and testing.
We will also explore different labeling methods,
such as a threshold for price change tuned by sec-
tors and background economics.
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Abstract

This paper proposes a novel smoothing
model with a combinatorial optimization
scheme for all-words word sense disam-
biguation from untagged corpora. By gen-
eralizing discrete senses to a continuum,
we introduce a smoothing in context-sense
space to cope with data-sparsity result-
ing from a large variety of linguistic con-
text and sense, as well as to exploit sense-
interdependency among the words in the
same text string. Through the smoothing,
all the optimal senses are obtained at one
time under maximum marginal likelihood
criterion, by competitive probabilistic ker-
nels made to reinforce one another among
nearby words, and to suppress conflicting
sense hypotheses within the same word.
Experimental results confirmed the superi-
ority of the proposed method over conven-
tional ones by showing the better perfor-
mances beyond most-frequent-sense base-
line performance where none of SemEval-
2 unsupervised systems reached.

1 Introduction

Word Sense Disambiguation (WSD) is a task to
identify the intended sense of a word based on its
context. All-words WSD is its variant, where all
the unrestricted running words in text are expected
to be disambiguated. In the all-words task, all
the senses in a dictionary are potentially the target
destination of classification, and purely supervised
approaches inherently suffer from data-sparsity
problem. The all-words task is also character-
ized by sense-interdependency of target words. As
the target words are typically taken from the same

text string, they are naturally expected to be inter-
related. Disambiguation of a word should affect
other words as an important clue.

From such characteristics of the task,
knowledge-based unsupervised approaches
have been extensively studied. They compute
dictionary-based sense similarity to find the most
related senses among the words within a certain
range of text. (For reviews, see (Agirre and
Edmonds, 2006; Navigli, 2009).) In recent years,
graph-based methods have attracted considerable
attentions (Mihalcea, 2005; Navigli and Lapata,
2007; Agirre and Soroa, 2009). On the graph
structure of lexical knowledge base (LKB),
random-walk or other well-known graph-based
techniques have been applied to find mutually
related senses among target words. Unlike
earlier studies disambiguating word-by-word, the
graph-based methods obtain sense-interdependent
solution for target words. However, those
methods mainly focus on modeling sense dis-
tribution and have less attention to contextual
smoothing/generalization beyond immediate
context.

There exist several studies that enrich immedi-
ate context with large corpus statistics. McCarthy
et al. (2004) proposed a method to combine sense
similarity with distributional similarity and config-
ured predominant sense score. Distributional sim-
ilarity was used to weight the influence of context
words, based on large-scale statistics. The method
achieved successful WSD accuracy. Agirre et al.
(2009) used a k-nearest words on distributional
similarity as context words. They apply a LKB
graph-based WSD to a target word together with
the distributional context words, and showed that
it yields better results on a domain dataset than
just using immediate context words. Though these
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studies are word-by-word WSD for target words,
they demonstrated the effectiveness to enrich im-
mediate context by corpus statistics.

This paper proposes a smoothing model that in-
tegrates dictionary-based semantic similarity and
corpus-based context statistics, where a combina-
torial optimization scheme is employed to deal
with sense interdependency of the all-words WSD
task. The rest of this paper is structured as fol-
lows. We first describe our smoothing model in the
following section. The combinatorial optimization
method with the model is described in Section 3.
Section 4 describes a specific implementation for
evaluation. The evaluation is performed with the
SemEval-2 English all-words dataset. We present
the performance in Section 5. In Section 6 we dis-
cuss whether the intended context-to-sense map-
ping and the sense-interdependency are properly
modeled. Finally we review related studies in Sec-
tion 7 and conclude in Section 8.

2 Smoothing Model

Let us introduce in this section the basic idea for
modeling context-to-sense mapping. The distance
(or similarity) metrics are assumed to be given for
context and for sense. A specific implementation
of these metrics is described later in this paper, for
now the context metric is generalized with a dis-
tance function dx(·, ·) and the sense metric with
ds(·, ·). Actually these functions may be arbitrary
ones that accept two elements and return a positive
real number.

Now suppose we are given a dataset concern-
ing N number of target words. This dataset is
denoted by X = {xi}Ni=1, where xi corresponds
to the context of the i-th word but not the word
by itself. For each xi, the intended sense of the
word is to be found in a set of sense candidates
Si = {sij}Mi

j=1 ⊆ S, where Mi is the number of
sense candidates for the i-th word, S is the whole
set of sense inventories in a dictionary. Let the
two-tuple hij = (xi, sij) be the hypothesis that
the intended sense in xi is sij . The hypothesis is
an element of the direct product H = X × S. As
(X, dx) and (S, ds) each composes a metric space,
H is also a metric space, provided a proper dis-
tance definition with dx and ds.

Here, we treat the space H as a continuous one,
which means that we assume the relationship be-
tween context and sense can be generalized in con-
tinuous fashion. In natural language processing,

continuity has been sometimes assumed for lin-
guistic phenomena including word context for cor-
pus based WSD. As for classes or senses, it may
not be a common assumption. However, when
the classes for all-words WSD are enormous, fine-
grained, and can be associated with distance, we
can rather naturally assume the continuity also for
senses. According to the nature of continuity, once
given a hypothesis hij for a certain word, we can
extrapolate the hypothesis for another word of an-
other sense hi′j′ = (xi′ , si′j′) sufficiently close to
hij . Using a Gaussian kernel (Parzen, 1962) as a
smoothing model, the probability density extrapo-
lated at hi′j′ given hij is defined by their distance
as follows:

K(hij , hi′j′) (1)

≡ 1

2πσxσs
exp

[
− dx

2(xi, xi′)

2σx
2

− ds
2(sij , si′j′)

2σs
2

]
,

where σx and σs are parameters of positive real
number σx, σs ∈ R+ called kernel bandwidths.
They control the smoothing intensity in context
and in sense, respectively.

Our objective is to determine the optimal sense
for all the target words simultaneously. It is es-
sentially a 0-1 integer programing problem, and
is not computationally tractable. We relax the
integer constraints by introducing a sense prob-
ability parameter πij corresponding to each hij .
πij denotes the probability by which hij is true.
As πij is a probability, it satisfies the constraints
∀i ∑j πij = 1 and ∀i, j 0 ≤ πij ≤ 1. The proba-
bility density extrapolated at hi′j′ by a probabilis-
tic hypothesis hij is given as follows:

Qij(hi′j′) ∝ πij K(hij , hi′j′). (2)

The proposed model is illustrated in Figure 1.
Due to the limitation of drawing, both the context
metric space and the sense metric space are drawn
schematically as 1-dimensional spaces (axes), ac-
tually arbitrary metric spaces similarity-based or
feature-based are applicable. The product metric
space of the context metric space and the sense
metric space composes a hypothesis space. In the
hypothesis space, n sense hypotheses for a cer-
tain word is represented as n points on the hyper-
plane that spreads across the sense metric space.
The two small circles in the middle of the fig-
ure represent the two sense hypotheses for a sin-
gle word. The position of a hypothesis represents
which sense is assigned to the current word in
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"Invasive, exotic plants cause particular problems for wildlife."
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Figure 1: Proposed probability distribution model
for context-to-sense mapping space.

what context. The upward arrow on a hypothesis
represents the magnitude of its probability.

Centered on each hypotheses, a Gaussian ker-
nel is placed as a smoothing model. It extrapo-
lates the hypotheses of other words around it. In
accordance with geometric intuition, intensity of
extrapolation is affected by the distance from a hy-
pothesis, and by the probability of the hypothesis
by itself. Extrapolated probability density is rep-
resented by shadow thickness and surface height.
If there is another word in nearby context, the ker-
nels can validate the sense of that word. In the
figure, there are two kernels in the context “Inva-
sive, exotic ...”. They are two competing hypothe-
sis for the senses decoy and flora of the word
plants. These kernels affect the senses of another
ambiguous word tree in nearby context “Exotic
...”, and extrapolate the most at the sense tree
nearby flora. The extrapolation has non-linear
effect. It affects little to the word far away in con-
text or in sense as is the case for the background
word in the figure. Strength of smoothing is deter-
mined by kernel bandwidths. Wider bandwidths
bring stronger effect of generalization to further
hypotheses, but too wide bandwidths smooth out
detailed structure. The bandwidths are the key for
disambiguation, therefore they are to be optimized
on a dataset together with sense probabilities.

3 Simultaneous Optimization of
All-words WSD

Given the smoothing model to extrapolate the
senses of other words, we now make its in-
stances interact to obtain the optimal combination
of senses for all the words.

3.1 Likelihood Definition
Let us first define the likelihood of model param-
eters for a given dataset. The parameters con-
sist of a context bandwidth σx, a sense bandwidth
σs, and sense probabilities πij for all i and j.
For convenience of description, the sense proba-
bilities are all together denoted as a vector π =
(. . . , πij , . . . )

⊤, in which actual order is not the
matter.

Now remind that our dataset X = {xi}Ni=1 is
composed of N instances of unlabeled word con-
text. We consider all the mappings from context
to sense are latent, and find the optimal parameters
by maximizing marginal pseudo likelihood based
on probability density. The likelihood is defined
as follows:

L(π, σx, σs;X) ≡ ln
∏

i

∑

j

πijQ(hij), (3)

where
∏

i denotes the product over xi ∈ X ,
∑

j

denotes the summation over all possible senses
sij ∈ Si for the current i-th context. Q(hij)
denotes the probability density at hij . We com-
pute Q(hij) using leave-one-out cross-validation
(LOOCV), so as to prevent kernels from over-
fitting to themselves, as follows:

Q(hij) (4)

≡ 1

N −Ni

∑

i′: wi′ ̸=wi

∑

j′
πi′j′K(hij , hi′j′),

where Ni denotes the number of occurrences of a
word type wi in X , and

∑
i′: wi′ ̸=wi

denotes the
summation over xi′ ∈ X except the case that the
word type wi′ equals to wi.

∑
j′ denotes the sum-

mation over si′j′ ∈ Si′ . We take as the unit of
LOOCV not a word instance but a word type, be-
cause the instances of the same word type invari-
ably have the same sense candidates, which still
cause over-fitting when optimizing the sense band-
width.

3.2 Parameter Optimization
We are now ready to calculate the optimal senses.
The optimal parameters π∗, σ∗

x, σ
∗
s are obtained by

maximizing the likelihood L subject to the con-
straints on π, that is ∀i ∑j πij = 1 1. Using the
Lagrange multipliers {λi}Ni=1 for every i-th con-
straint, the solution for the constrained maximiza-

1It is guaranteed that the other constraints ∀i, j 0 ≤ πij ≤
1 are satisfied according to Equation (7).
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tion of L is obtained as the solution for the equiv-
alent unconstrained maximization of Ľ as follows:

π∗, σ∗
x, σ

∗
s = arg max

π, σx, σs

Ľ, (5)

where

Ľ ≡ L+
∑

i

λi

(∑

j

πij − 1

)
. (6)

When we optimize the parameters, the first term
of Equation (6) in the right-hand side acts to re-
inforce nearby hypotheses among different words,
whereas the second term acts to suppress conflict-
ing hypotheses of the same word.

Taking ∇Ľ = 0, erasing λi, and rearranging,
we obtain the optimal parameters as follows:

πij =

∑
i′, j′

wi′ ̸=wi

R ij
i′j′ +

∑
i′, j′

wi′ ̸=wi

R i′j′
ij

1 +
∑

j

∑
i′, j′

wi′ ̸=wi

R i′j′
ij

(7)

σx
2 =

1

N

∑

i, i′, j, j′
wi′ ̸=wi

R ij
i′j′ dx

2(xi, xi′) (8)

σs
2 =

1

N

∑

i, i′, j, j′
wi′ ̸=wi

R ij
i′j′ ds

2(sij , si′j′), (9)

where R ij
i′j′ denotes the responsibility of hi′j′ to

hij : the ratio of total expected density at hij , taken
up by the expected density extrapolated by hi′j′ ,
normalized to the total for xi be 1. It is defined as

R ij
i′j′ ≡

πijQi′j′(hij)∑
j πijQ(hij)

. (10)

Qi′j′(hij) denotes the probability density at hij

extrapolated by hi′j′ alone, defined as follows:

Qi′j′(hij) ≡
1

N −Ni
πi′j′K(hij , hi′j′). (11)

Intuitively, Equations (7)-(9) are interpreted as
follows. As for Equation (7), the right-hand side
of the equation can be divided as the left term and
the right term both in the numerator and in the
denominator. The left term requires πij to agree
with the ratio of responsibility of the whole to hij .
The right term requires πij to agree with the ra-
tio of responsibility of hij to the whole. As for
Equation (8), (9), the optimal solution is the mean
squared distance in context, and in sense, weighted
by responsibility.

To obtain the actual values of the optimal pa-
rameters, EM algorithm (Dempster et al., 1977)
is applied. This is because Equations (7)-(9) are
circular definitions, which include the objective
parameters implicitly in the right hand side, thus
the solution is not obtained analytically. EM al-
gorithm is an iterative method for finding maxi-
mum likelihood estimates of parameters in statis-
tical models, where the model depends on unob-
served latent variables. Applying the EM algo-
rithm to our model, we obtain the following steps:

Step 1. Initialization: Set initial values to π,
σx, and σs. As for sense probabilities,
we set the uniform probability in accor-
dance with the number of sense candidates,
thereby πij ← |Si|−1, where |Si| denotes
the size of Si. As for bandwidths, we set
the mean squared distance in each metric;
thereby σx

2 ← N−1
∑

i, i′ dx
2(xi, xi′)

for context bandwidth, and σs
2 ←

(
∑

i|Si|)−1
∑

i, i′
∑

j, j′ ds
2(sij , si′j′) for

sense bandwidth.

Step 2. Expectation: Using the current parame-
ters π, σx, and σs, calculate the responsibili-
tiesR ij

i′j′ according to Equation (10).

Step 3. Maximization: Using the current respon-
sibility R ij

i′j′ , update the parameters π, σx,
and σs, according to Equation (7)-(9).

Step 4. Convergence test: Compute the likeli-
hood. If its ratio to the previous iteration is
sufficiently small, or predetermined number
of iterations has been reached, then terminate
the iteration. Otherwise go back to Step 2.

To visualize how it works, we applied the above
EM algorithm to pseudo 2-dimensional data. The
results are shown in Figure 2. It simulates WSD
for an N = 5 words dataset, whose contexts are
depicted by five lines. The sense hypotheses are
depicted by twelve upward arrows. At the base of
each arrow, there is a Gaussian kernel. Shadow
thickness and surface height represents the com-
posite probability distribution of all the twelve
kernels. Through the iterative parameter update,
sense probabilities and kernel bandwidths were
optimized to the dataset. Figure 2(a) illustrates the
initial status, where all the sense hypothesis are
equivalently probable, thus they are in the most
ambiguous status. Initial bandwidths are set to the
mean squared distance of all the hypotheses pairs,
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Context
(Input)

Sense
(Class)

(a) Initial status.

Context
(Input)

Sense
(Class)

(b) Status after the 7th iteration.

Context
(Input)

Sense
(Class)

(c) Converged status after 25 iterations.

Figure 2: Pseudo 2D data simulation to visualize the dynamics of the proposed simultaneous all-words
WSD with ambiguous five words and twelve sense hypotheses. (There are twelve Gaussian kernels at
the base of each arrow, though the figure shows just their composite distribution. Those kernels reinforce
and compete one another while being fitted their affecting range, and finally settle down to the most
consistent interpretation for the words with appropriate generalization. For the dynamics with an actual
dataset, see Figure 5.)

which is rather broad and makes kernels strongly
smoothed, thus the model captures general struc-
ture of space. Figure 2(b) shows the status after the
7th iteration. Bandwidths are shrinking especially
in context, and two context clusters, so to speak,
two usages, are found. Figure 2(c) shows the sta-
tus of convergence after 25 iterations. All the ar-
row lengths incline to either 1 or 0 along with their
neighbors, thus all the five words are now disam-
biguated.

Note that this is not the conventional cluster-
ing of observed data. If, for instance, the Gaus-
sian mixture clustering of 2-mixtures is applied
to the positions of these hypotheses, it will find
the clusters just like Figure 2(b) and will stop.
The cluster centers are located at the means of hy-
potheses including miscellaneous alternatives not
intended, thus the estimated probability distribu-
tion is, roughly speaking, offset toward the center
of WordNet, which is not what we want. In con-
trast, the proposed method proceeds to Figure 2(c)
and finds clusters in the data after conflicting data
is erased. This is because our method is aim-
ing at modeling not the disambiguation of cluster-
memberships but the disambiguation of senses for
each word.

4 Metric Space Implementation

So far, we have dealt with general metrics for con-
text and for sense. This section describes a spe-
cific implementation of those metrics employed in
the evaluation. We followed the previous study
by McCarthy et al. (2004), (2007), and imple-
mented a type-based WSD. The context of word

instances are tied to the distributional context of
the word type in a large corpus. To calculate sense
similarities, we used the WordNet similarity pack-
age by Pedersen et al. (2004), version 2.05. Two
measures proposed by Jiang and Conrath (1997)
and Lesk (1986) were examined, which performed
best in the previous study (McCarthy et al., 2004).

Distributional similarity (Lin, 1998) was
computed among target words, based on the
statistics of the test set and the background text
provided as the official dataset of the SemEval-2
English all-words task (Agirre et al., 2010). Those
texts were parsed using RASP parser (Briscoe
et al., 2006) version 3.1, to obtain grammatical
relations for the distributional similarity, as well
as to obtain lemmata and part-of-speech (POS)
tags which are required to look up the sense
inventory of WordNet. Based on the distributional
similarity, we just used k-nearest neighbor words
as the context of each target word. Although it is
an approximation, we can expect reliability im-
provement often seen by ignoring the lower part.
In addition, this limitation of interactions highly
reduces computational cost in particular when
applying to larger-scale problems. To do this, the
exhaustive sum

∑
i, i′: wi ̸=wi′

in Equation (7)-(9)
is altered by the local sum

∑
i, i′: (wi,wi′ )∈P

kNN
,

where PkNN denotes the set of word pairs of
which either is a k-nearest neighbors of the
other. The normalizing factors 1, N , and N −Ni

in Equation (7), (8)-(9), and (11) are altered
by the actual sum of responsibilities within
those neighbors as

∑
i′, j, j′: (wi,wi′ )∈P

kNN
R ij

i′j′ ,
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∑
i, i′, j, j′: (wi,wi′ )∈P

kNN
R ij

i′j′ , and
∑

ι, i′, j, j′: (wι,wi′ )∈P
kNN

∧ ι ̸=iR
ιj
i′j′ , respectively.

To treat the above similarity functions of con-
text and of sense as distance functions, we use the
conversion: d(·, ·) ≡ −α ln(f(·, ·)/fmax), where
d denotes the objective distance function, i.e., dx

for context and ds for sense, while f and fmax de-
note the original similarity function and its max-
imum, respectively. α is a standardization co-
efficient, which is determined so that the mean
squared distance be 1 in a dataset. According to
this standardization, initial values of σx

2, σs
2 are

always 1.

5 Evaluation

To confirm the effect of the proposed smoothing
model and its combinatorial optimization scheme,
we conducted WSD evaluations. The primary
evaluations compare our method with conven-
tional ones, in Section 5.2. Supplementary eval-
uations are described in the subsequent sections
that include the comparison with SemEval-2 par-
ticipating systems, and the analysis of model dy-
namics with the experimental data.

5.1 Evaluation Scheme
To make the evaluation comparable to state-of-
the-art systems, we used the official dataset of the
SemEval-2 English all-words WSD task (Agirre
et al., 2010), which is currently the latest pub-
lic dataset available with published results. The
dataset consists of test data and background doc-
uments of the same environment domain. The
test data consists of 1,398 target words (1,032
nouns and 366 verbs) in 5.3K running words. The
background documents consists of 2.7M running
words, which was used to compute distributional
similarity.

Precisions and recalls were all computed us-
ing the official evaluation tool scorer2 in fine-
grained measure. The tool accepts answers either
in probabilistic format (senses with probabilities
for each target word) or in deterministic format
(most likely senses, with no score information).
As the proposed method is a probability model, we
evaluated in the probabilistic way unless explicitly
noted otherwise. For this reason, we evaluated all
the sense probabilities as they were. Disambigua-
tions were executed in separate runs for nouns and
verbs, because no interaction takes place across
POS in this metric implementation. The two runs’

results were combined later to a single answer to
be input to scorer2.

The context metric space was composed by k-
nearest neighbor words of distributional similarity
(Lin, 1998), as is described in Section 4. The value
of k was evaluated for {2, 3, 5, 10, 20, 30, 50, 100,
200, 300}. As for sense metric space, we evalu-
ated two measures i.e., (Jiang and Conrath, 1997)
denoted as JCN, and (Lesk, 1986) denoted as Lesk.
In every condition, stopping criterion of iteration
is always the number of iteration (500 times), irre-
spective of the convergence in likelihood.

Primary evaluations compared our method with
two conventional methods. Those methods differ
to ours only in scoring schemes. The first one
is the method by McCarthy et al. (2004), which
determines the word sense based on sense simi-
larity and distributional similarity to the k-nearest
neighbor words of a target word by distributional
similarity. Our major advantage is the combina-
torial optimization framework, while the conven-
tional one employs word-by-word scheme. The
second one is based on the method by Patwardhan
et al. (2007), which determines the word sense by
maximizing the sum of sense similarity to the k
immediate neighbor words of a target word. The k
words were forced to be selected from other target
words of the same POS to the word of interest, so
as to make information resource equivalent to the
other comparable two methods. It is also a word-
by-word method. It exploits no distributional simi-
larity. Our major advantages are the combinatorial
optimization scheme and the smoothing model to
integrate distributional similarity. In the following
section, these comparative methods are referred to
as Mc2004 and Pat2007, respectively.

5.2 Comparison with Conventional Methods

Let us first confirm our advantages compared to
the conventional methods of Mc2004 and Pat2007.
The comparative results are shown in Figure 3 in
recall measure. Precisions are simply omitted be-
cause the difference to the recalls are always the
number of failures on referring to WordNet by
mislabeling of lemmata or POSs, which is always
the same for the three methods. Vertical range de-
picts 95% confidence intervals. The graphs also
indicate the most-frequent-sense (MFS) baseline
estimated from out-of-domain corpora, whose re-
call is 0.505 (Agirre et al., 2010).

As we can see in Figure 3(a) and 3(b), higher
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Figure 3: Comparison to the conventional methods
that differ to our method only in scoring schemes.

Table 1: Comparison with the top-5 knowledge-
based systems in SemEval-2 (JCN/k=5).

Rank Participants R P Rn Rv
- Proposed (best) 50.8 51.0 52.5 46.2
- MFS Baseline 50.5 50.5 52.7 44.3
1 Kulkarni et al. (2010) 49.5 51.2 51.6 43.4
2 Tran et al. (2010) 49.3 50.6 51.6 42.6
3 Tran et al. (2010) 49.1 50.4 51.5 42.5
4 Soroa et al. (2010) 48.1 48.1 48.7 46.2
5 Tran et al. (2010) 47.9 49.2 49.4 43.4
... ... ... ... ... ...
- Random Baseline 23.2 23.2 25.3 17.2

recalls are obtained in the order of the proposed
method, Mc2004, and Pat2007 on the whole.
Comparing JCN and Lesk, difference among the
three is smaller in Lesk. It is possibly because
Lesk is a score not normalized for different word
pairs, which makes the effect of distributional sim-
ilarity unsteady especially when combining many
k-nearest words. Therefore the recalls are ex-
pected to improve if proper normalization is ap-
plied to the proposed method and Mc2004. In
JCN, the recalls of the proposed method signif-
icantly improve compared to Pat2007. Our best
recall is 0.508 with JCN and k = 5. Thus we
can conclude that, though significance depends on
metrics, our smoothing model and the optimiza-
tion scheme are effective to improve accuracies.

5.3 Comparison with SemEval-2 Systems
We compared our best results with the participat-
ing systems of the task. Table 1 compares the
details to the top-5 systems, which only includes
unsupervised/knowledge-based ones and excludes
supervised/weakly-supervised ones. Those values

 0.3  0.4  0.5
Recall

MFS

Proposed (best)Rank

Figure 4: Comparison with the all 20 knowledge-
based systems in SemEval-2 (JCN/k=5).
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Figure 5: Model dynamics through iteration with
SemEval-2 nouns (JCN/k=5).

are transcribed from the official report (Agirre et
al., 2010). “R” and “P” denote the recall and the
precision for the whole dataset, while “Rn” and
“Rv” denote the recall for nouns and verbs, re-
spectively. The results are ranked by “R”, in ac-
cordance with the original report. As shown in the
table, our best results outperform all of the systems
and the MFS baseline.

Overall rankings are depicted in Figure 4. It
maps our best results in the distribution of all
the 20 unsupervised/knowledge-based participat-
ing systems. The ranges spreading left and right
are 95% confidence intervals. As is seen from
the figure, our best results are located above the
top group, which are outside the confidence inter-
vals of the other participants ranked intermediate
or lower.

5.4 Analysis on Model Dynamics
This section examines the model dynamics with
the SemEval-2 data, which has been illustrated

890



 0.4

 0.5

 0  100  200  300  400  500

R
e
c
a
ll

Iteration

JCN

Lesk

Probabilistic
Deterministic

Probabilistic
Deterministic

Figure 6: Recall improvement via iteration with
SemEval-2 all POSs (JCN/k=30, Lesk/k=10).

with pseudo data in Section 3.2. Let us start by
looking at the upper half of Figure 5, which shows
the change of sense probabilities through itera-
tion. At the initial status (iteration 0), the prob-
abilities were all 1/2 for bi-semous words, all 1/3
for tri-semous words, and so forth. As iteration
proceeded, the probabilities gradually spread out
to either side of 1 or 0, and finally at iteration
500, we can observe that almost all the words were
clearly disambiguated. The lower half of Figure 5
shows the dynamics in bandwidths. Vertical axis
on the left is for the sense bandwidth, and on the
right is for the context bandwidth. We can ob-
serve those bandwidths became narrower as iter-
ation proceeded. Intensity of smoothing was dy-
namically adjusted by the whole disambiguation
status. These behaviors confirm that even with an
actual dataset, it works as is expected, just as illus-
trated in Figure 2.

6 Discussion

This section discusses the validity of the proposed
method as to i) sense-interdependent disambigua-
tion and ii) reliability of data smoothing. We here
analyze the second peak conditions at k = 30
(JCN) and k = 10 (Lesk) instead of the first peak
at k = 5, because we can observe tendency the
better with the larger number of word interactions.

6.1 Effects of Sense-interdependent
Disambiguation

Let us first examine the effect of our sense-
interdependent disambiguation. We would like
to confirm that how the progressive disambigua-
tion is carried out. Figure 6 shows the change
of recall through iteration for JCN (k = 30) and
Lesk (k = 10). Those recalls were obtained by

evaluating the status after each iteration. The re-
calls were here evaluated both in probabilistic for-
mat and in deterministic format. From the fig-
ure we can observe that the deterministic recalls
also increased as well as the probabilistic recalls.
This means that the ranks of sense candidates for
each word were frequently altered through itera-
tion, which further means that some new infor-
mation not obtained earlier was delivered one af-
ter another to sense disambiguation for each word.
From these results, we could confirm the expected
sense-interdependency effect that a sense disam-
biguation of certain word affected to other words.

6.2 Reliability of Smoothing as Supervision
Let us now discuss the reliability of our smoothing
model. In our method, sense disambiguation of a
word is guided by its nearby words’ extrapolation
(smoothing). Sense accuracy fully depends on the
reliability of the extrapolation. Generally speak-
ing, statistical reliability increases as the number
of random sampling increases. If we take suffi-
cient number of random words as nearby words,
the sense distribution comes close to the true dis-
tribution, and then we expect the statistically true
sense distribution should find out the true sense of
the target word, according to the distributional hy-
potheses (Harris, 1954). On the contrary, if we
take nearby words that are biased to particular
words, the sense distribution also becomes biased,
and the extrapolation becomes less reliable.

We can compute the randomness of words that
affect for sense disambiguation, by word per-
plexity. Let the word of interest be w ∈ V .
The word perplexity is calculated as 2H|w , where
H|w denotes the entropy defined as H|w ≡
−∑w′∈V \{w} p(w′|w) log2 p(w′|w). The con-
ditional probability p(w′|w) denotes the proba-
bility with which a certain word w′ ∈ V \
{w} determines the sense of w, which can
be defined as the density ratio: p(w′|w) ∝∑

i: wi=w

∑
i′: wi′=w′

∑
j,j′ Qi′j′(hij).

The relation between word perplexity and prob-
ability change for ground-truth senses of nouns
(JCN/k = 30) is shown in Figure 7. The upper his-
togram shows the change in iteration 1-100, and
the lower shows that of iteration 101-500. We di-
vide the analysis at iteration 100, because roughly
until the 100th iteration, the change in bandwidths
converged, and the number of words to interact
settled, as can be seen in Figure 5. The bars that
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Figure 7: Correlation between reliability and per-
plexity with SemEval-2 nouns (JCN/k=30).

extend upward represent the sum of the amount
raised (correct change), and the bars that extend
downward represent the sum of the amount re-
duced (wrong change). From these figures, we
observe that when perplexity is sufficiently large
(≥ 30), change occurred largely (79%) to the cor-
rect direction. In contrast, at the lower left of the
figure, where perplexity is small (< 30) and band-
widths has been narrowed at iteration 101-500,
correct change occupied only 32% of the whole.
Therefore, we can conclude that if sufficiently ran-
dom samples of nearby words are provided, our
smoothing model is reliable, though it is trained in
an unsupervised fashion.

7 Related Work

As described in Section 1, graph-based WSD has
been extensively studied, since graphs are favor-
able structure to deal with interactions of data on
vertices. Conventional studies typically consider
as vertices the instances of input or target class,
e.g. knowledge-based approaches typically regard
senses as vertices (see Section 1), and corpus-
based approaches such as (Véronis, 2004) regard
words as vertices or (Niu et al., 2005) regards con-
text as vertices. Our method can be viewed as one
of graph-based methods, but it regards input-to-
class mapping as vertices, and the edges represent
the relations both together in context and in sense.
Mihalcea (2005) proposed graph-based methods,
whose vertices are sense label hypotheses on word
sequence. Our method generalize context repre-
sentation.

In the evaluation, our method was compared
to SemEval-2 systems. The main subject of the
SemEval-2 task was domain adaptation, therefore

those systems each exploited their own adaptation
techniques. Kulkarni et al. (2010) used a Word-
Net pre-pruning. Disambiguation is performed by
considering only those candidate synsets that be-
long to the top-k largest connected components
of the WordNet on domain corpus. Tran et al.
(2010) used over 3TB domain documents acquired
by Web search. They parsed those documents
and extracted the statistics on dependency relation
for disambiguation. Soroa et al. (2010) used the
method by Agirre et al. (2009) described in Sec-
tion 1. They disambiguated each target word us-
ing its distributionally similar words instead of its
immediate context words.

The proposed method is an extension of density
estimation (Parzen, 1962), which is a construc-
tion of an estimate based on observed data. Our
method naturally extends the density estimation in
two points, which make it applicable to unsuper-
vised knowledge-based WSD. First, we introduce
stochastic treatment of data, which is no longer ob-
servations but hypotheses having ambiguity. This
extension makes the hypotheses possible to cross-
validate the plausibility each other. Second, we
extend the definition of density from Euclidean
distance to general metric, which makes the pro-
posed method applicable to a wide variety of
corpus-based context similarities and dictionary-
based sense similarities.

8 Conclusions

We proposed a novel smoothing model with a
combinatorial optimization scheme for all-words
WSD from untagged corpora. Experimental re-
sults showed that our method significantly im-
proves the accuracy of conventional methods by
exceeding most-frequent-sense baseline perfor-
mance where none of SemEval-2 unsupervised
systems reached. Detailed inspection of dynam-
ics clearly show that the proposed optimization
method effectively exploit the sense-dependency
of all-words. Moreover, our smoothing model,
though unsupervised, provides reliable supervi-
sion when sufficiently random samples of words
are available as nearby words. Thus it was con-
firmed that this method is valid for finding the op-
timal combination of word senses with large un-
tagged corpora. We hope this study would elicit
further investigation in this important area.

892



References
Eneko Agirre and Philip Edmonds. 2006. Word sense

disambiguation: Algorithms and applications, vol-
ume 33. Springer Science+ Business Media.

Eneko Agirre and Aitor Soroa. 2009. Personalizing
pagerank for word sense disambiguation. In Pro-
ceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 33–41.

Eneko Agirre, Oier Lopez De Lacalle, Aitor Soroa,
and Informatika Fakultatea. 2009. Knowledge-
based wsd on specific domains: performing better
than generic supervised wsd. In Proceedings of the
21st international jont conference on Artifical intel-
ligence, pages 1501–1506.

Eneko Agirre, Oier Lopez de Lacalle, Christiane Fell-
baum, Shu-Kai Hsieh, Maurizio Tesconi, Mon-
ica Monachini, Piek Vossen, and Roxanne Segers.
2010. Semeval-2010 task 17: All-words word sense
disambiguation on a specific domain. In Proceed-
ings of the 5th International Workshop on Semantic
Evaluation, pages 75–80.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006.
The second release of the rasp system. In Proceed-
ings of the COLING/ACL on Interactive presenta-
tion sessions, pages 77–80.

Arthur Pentland Dempster, Nan McKenzie Laird, and
Donald Bruce Rubin. 1977. Maximum likelihood
from incomplete data via the em algorithm. Journal
of the Royal Statistical Society. Series B (Method-
ological), pages 1–38.

Zellig Sabbetai Harris. 1954. Distributional structure.
Word.

Jay J. Jiang and David W. Conrath. 1997. Semantic
similarity based on corpus statistics and lexical tax-
onomy. arXiv preprint cmp-lg/9709008.

Anup Kulkarni, Mitesh M. Khapra, Saurabh Sohoney,
and Pushpak Bhattacharyya. 2010. CFILT: Re-
source conscious approaches for all-words domain
specific. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 421–426.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24–26.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th inter-
national conference on Computational linguistics-
Volume 2, pages 768–774.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2004. Finding predominant word senses in
untagged text. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguis-
tics, pages 279–286.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2007. Unsupervised acquisition of pre-
dominant word senses. Computational Linguistics,
33(4):553–590.

Rada Mihalcea. 2005. Unsupervised large-vocabulary
word sense disambiguation with graph-based algo-
rithms for sequence data labeling. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing, pages 411–418.

Roberto Navigli and Mirella Lapata. 2007. Graph
connectivity measures for unsupervised word sense
disambiguation. In Proceedings of the 20th inter-
national joint conference on Artifical intelligence,
pages 1683–1688.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Zheng-Yu Niu, Dong-Hong Ji, and Chew Lim Tan.
2005. Word sense disambiguation using label prop-
agation based semi-supervised learning. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 395–402.

Emanuel Parzen. 1962. On estimation of a probability
density function and mode. The annals of mathe-
matical statistics, 33(3):1065–1076.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2007. UMND1: Unsupervised word
sense disambiguation using contextual semantic re-
latedness. In proceedings of the 4th International
Workshop on Semantic Evaluations, pages 390–393.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. WordNet::Similarity: measuring the re-
latedness of concepts. In Demonstration Papers at
HLT-NAACL 2004, pages 38–41.

Aitor Soroa, Eneko Agirre, Oier Lopez de Lacalle,
Monica Monachini, Jessie Lo, Shu-Kai Hsieh,
Wauter Bosma, and Piek Vossen. 2010. Kyoto: An
integrated system for specific domain WSD. In Pro-
ceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 417–420.

Andrew Tran, Chris Bowes, David Brown, Ping Chen,
Max Choly, and Wei Ding. 2010. TreeMatch: A
fully unsupervised WSD system using dependency
knowledge on a specific domain. In Proceedings of
the 5th International Workshop on Semantic Evalu-
ation, pages 396–401.
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Abstract

Modelling the compositional process by
which the meaning of an utterance arises
from the meaning of its parts is a funda-
mental task of Natural Language Process-
ing. In this paper we draw upon recent
advances in the learning of vector space
representations of sentential semantics and
the transparent interface between syntax
and semantics provided by Combinatory
Categorial Grammar to introduce Com-
binatory Categorial Autoencoders. This
model leverages the CCG combinatory op-
erators to guide a non-linear transforma-
tion of meaning within a sentence. We use
this model to learn high dimensional em-
beddings for sentences and evaluate them
in a range of tasks, demonstrating that
the incorporation of syntax allows a con-
cise model to learn representations that are
both effective and general.

1 Introduction

Since Frege stated his ‘Principle of Semantic
Compositionality’ in 1892 researchers have pon-
dered both how the meaning of a complex expres-
sion is determined by the meanings of its parts,
and how those parts are combined. (Frege, 1892;
Pelletier, 1994). Over a hundred years on the
choice of representational unit for this process
of compositional semantics, and how these units
combine, remain open questions.

Frege’s principle may be debatable from a lin-
guistic and philosophical standpoint, but it has
provided a basis for a range of formal approaches
to semantics which attempt to capture meaning in
logical models. The Montague grammar (Mon-
tague, 1970) is a prime example for this, build-
ing a model of composition based on lambda-
calculus and formal logic. More recent work

in this field includes the Combinatory Categorial
Grammar (CCG), which also places increased em-
phasis on syntactic coverage (Szabolcsi, 1989).

Recently those searching for the right represen-
tation for compositional semantics have drawn in-
spiration from the success of distributional mod-
els of lexical semantics. This approach represents
single words as distributional vectors, implying
that a word’s meaning is a function of the envi-
ronment it appears in, be that its syntactic role or
co-occurrences with other words (Pereira et al.,
1993; Schütze, 1998). While distributional se-
mantics is easily applied to single words, spar-
sity implies that attempts to directly extract distri-
butional representations for larger expressions are
doomed to fail. Only in the past few years has
it been attempted to extend these representations
to semantic composition. Most approaches here
use the idea of vector-matrix composition to learn
larger representations from single-word encodings
(Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011; Socher et al., 2012b). While
these models have proved very promising for com-
positional semantics, they make minimal use of
linguistic information beyond the word level.

In this paper we bridge the gap between recent
advances in machine learning and more traditional
approaches within computational linguistics. We
achieve this goal by employing the CCG formal-
ism to consider compositional structures at any
point in a parse tree. CCG is attractive both for its
transparent interface between syntax and seman-
tics, and a small but powerful set of combinatory
operators with which we can parametrise our non-
linear transformations of compositional meaning.

We present a novel class of recursive mod-
els, the Combinatory Categorial Autoencoders
(CCAE), which marry a semantic process pro-
vided by a recursive autoencoder with the syn-
tactic representations of the CCG formalism.
Through this model we seek to answer two ques-
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tions: Can recursive vector space models be recon-
ciled with a more formal notion of compositional-
ity; and is there a role for syntax in guiding seman-
tics in these types of models? CCAEs make use of
CCG combinators and types by conditioning each
composition function on its equivalent step in a
CCG proof. In terms of learning complexity and
space requirements, our models strike a balance
between simpler greedy approaches (Socher et
al., 2011b) and the larger recursive vector-matrix
models (Socher et al., 2012b).

We show that this combination of state of the art
machine learning and an advanced linguistic for-
malism translates into concise models with com-
petitive performance on a variety of tasks. In both
sentiment and compound similarity experiments
we show that our CCAE models match or better
comparable recursive autoencoder models.1

2 Background

There exist a number of formal approaches to lan-
guage that provide mechanisms for composition-
ality. Generative Grammars (Jackendoff, 1972)
treat semantics, and thus compositionality, essen-
tially as an extension of syntax, with the generative
(syntactic) process yielding a structure that can be
interpreted semantically. By contrast Montague
grammar achieves greater separation between the
semantic and the syntactic by using lambda calcu-
lus to express meaning. However, this greater sep-
aration between surface form and meaning comes
at a price in the form of reduced computability.
While this is beyond the scope of this paper, see
e.g. Kracht (2008) for a detailed analysis of com-
positionality in these formalisms.

2.1 Combinatory Categorial Grammar

In this paper we focus on CCG, a linguistically
expressive yet computationally efficient grammar
formalism. It uses a constituency-based structure
with complex syntactic types (categories) from
which sentences can be deduced using a small
number of combinators. CCG relies on combi-
natory logic (as opposed to lambda calculus) to
build its expressions. For a detailed introduction
and analysis vis-à-vis other grammar formalisms
see e.g. Steedman and Baldridge (2011).

CCG has been described as having a transpar-
ent surface between the syntactic and the seman-

1A C++ implementation of our models is available at
http://www.karlmoritz.com/

Tina likes tigers

N (S[dcl]\NP)/NP N

NP NP
>

S[dcl]\NP
<

S[dcl]

Figure 1: CCG derivation for Tina likes tigers with
forward (>) and backward application (<).

tic. It is this property which makes it attractive
for our purposes of providing a conditioning struc-
ture for semantic operators. A second benefit of
the formalism is that it is designed with computa-
tional efficiency in mind. While one could debate
the relative merits of various linguistic formalisms
the existence of mature tools and resources, such
as the CCGBank (Hockenmaier and Steedman,
2007), the Groningen Meaning Bank (Basile et al.,
2012) and the C&C Tools (Curran et al., 2007) is
another big advantage for CCG.

CCG’s transparent surface stems from its cate-
gorial property: Each point in a derivation corre-
sponds directly to an interpretable category. These
categories (or types) associated with each term in a
CCG govern how this term can be combined with
other terms in a larger structure, implicitly making
them semantically expressive.

For instance in Figure 1, the word likes has type
(S[dcl]\NP)/NP, which means that it first looks
for a type NP to its right hand side. Subsequently
the expression likes tigers (as type S[dcl]\NP) re-
quires a second NP on its left. The final type of
the phrase S[dcl] indicates a sentence and hence a
complete CCG proof. Thus at each point in a CCG
parse we can deduce the possible next steps in the
derivation by considering the available types and
combinatory rules.

2.2 Vector Space Models of Semantics

Vector-based approaches for semantic tasks have
become increasingly popular in recent years.

Distributional representations encode an ex-
pression by its environment, assuming the context-
dependent nature of meaning according to which
one “shall know a word by the company it keeps”
(Firth, 1957). Effectively this is usually achieved
by considering the co-occurrence with other words
in large corpora or the syntactic roles a word per-
forms.

Distributional representations are frequently
used to encode single words as vectors. Such rep-

895



resentations have then successfully been applied
to a number of tasks including word sense disam-
biguation (Schütze, 1998) and selectional prefer-
ence (Pereira et al., 1993; Lin, 1999).

While it is theoretically possible to apply the
same mechanism to larger expressions, sparsity
prevents learning meaningful distributional repre-
sentations for expressions much larger than single
words.2

Vector space models of compositional seman-
tics aim to fill this gap by providing a methodol-
ogy for deriving the representation of an expres-
sion from those of its parts. While distributional
representations frequently serve to encode single
words in such approaches this is not a strict re-
quirement.

There are a number of ideas on how to de-
fine composition in such vector spaces. A gen-
eral framework for semantic vector composition
was proposed in Mitchell and Lapata (2008), with
Mitchell and Lapata (2010) and more recently Bla-
coe and Lapata (2012) providing good overviews
of this topic. Notable approaches to this issue in-
clude Baroni and Zamparelli (2010), who com-
pose nouns and adjectives by representing them as
vectors and matrices, respectively, with the com-
positional representation achieved by multiplica-
tion. Grefenstette and Sadrzadeh (2011) use a sim-
ilar approach with matrices for relational words
and vectors for arguments. These two approaches
are combined in Grefenstette et al. (2013), produc-
ing a tensor-based semantic framework with ten-
sor contraction as composition operation.

Another set of models that have very success-
fully been applied in this area are recursive autoen-
coders (Socher et al., 2011a; Socher et al., 2011b),
which are discussed in the next section.

2.3 Recursive Autoencoders
Autoencoders are a useful tool to compress in-
formation. One can think of an autoencoder
as a funnel through which information has to
pass (see Figure 2). By forcing the autoencoder
to reconstruct an input given only the reduced
amount of information available inside the funnel
it serves as a compression tool, representing high-
dimensional objects in a lower-dimensional space.

Typically a given autoencoder, that is the func-
tions for encoding and reconstructing data, are

2The experimental setup in (Baroni and Zamparelli, 2010)
is one of the few examples where distributional representa-
tions are used for word pairs.

Figure 2: A simple three-layer autoencoder. The
input represented by the vector at the bottom is
being encoded in a smaller vector (middle), from
which it is then reconstructed (top) into the same
dimensionality as the original input vector.

used on multiple inputs. By optimizing the two
functions to minimize the difference between all
inputs and their respective reconstructions, this au-
toencoder will effectively discover some hidden
structures within the data that can be exploited to
represent it more efficiently.

As a simple example, assume input vectors
xi ∈ Rn, i ∈ (0..N), weight matrices W enc ∈
R(m×n),W rec ∈ R(n×m) and biases benc ∈ Rm,
brec ∈ Rn. The encoding matrix and bias are used
to create an encoding ei from xi:

ei = fenc(xi) =W encxi + benc (1)

Subsequently e ∈ Rm is used to reconstruct x as
x′ using the reconstruction matrix and bias:

x′i = f rec(ei) =W recei + brec (2)

θ = (W enc,W rec, benc, brec) can then be learned
by minimizing the error function describing the
difference between x′ and x:

E =
1

2

N∑

i

∥∥x′i − xi
∥∥2 (3)

Now, if m < n, this will intuitively lead to ei
encoding a latent structure contained in xi and
shared across all xj , j ∈ (0..N), with θ encoding
and decoding to and from that hidden structure.

It is possible to apply multiple autoencoders on
top of each other, creating a deep autoencoder
(Bengio et al., 2007; Hinton and Salakhutdinov,
2006). For such a multi-layered model to learn
anything beyond what a single layer could learn, a
non-linear transformation g needs to be applied at
each layer. Usually, a variant of the sigmoid (σ)
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Figure 3: RAE with three inputs. Vectors with
filled (blue) circles represent input and hidden
units; blanks (white) denote reconstruction layers.

or hyperbolic tangent (tanh) function is used for
g (LeCun et al., 1998).

fenc(xi) = g (W encxi + benc) (4)

f rec(ei) = g (W recei + brec)

Furthermore, autoencoders can easily be used as
a composition function by concatenating two input
vectors, such that:

e = f(x1, x2) = g (W (x1‖x2) + b) (5)

(x′1‖x′2) = g
(
W ′e+ b′

)

Extending this idea, recursive autoencoders (RAE)
allow the modelling of data of variable size. By
setting the n = 2m, it is possible to recursively
combine a structure into an autoencoder tree. See
Figure 3 for an example, where x1, x2, x3 are re-
cursively encoded into y2.

The recursive application of autoencoders was
first introduced in Pollack (1990), whose recursive
auto-associative memories learn vector represen-
tations over pre-specified recursive data structures.
More recently this idea was extended and applied
to dynamic structures (Socher et al., 2011b).

These types of models have become increas-
ingly prominent since developments within the
field of Deep Learning have made the training
of such hierarchical structures more effective and
tractable (LeCun et al., 1998; Hinton et al., 2006).

Intuitively the top layer of an RAE will encode
aspects of the information stored in all of the input
vectors. Previously, RAE have successfully been
applied to a number of tasks including sentiment
analysis, paraphrase detection, relation extraction

Model CCG Elements
CCAE-A parse
CCAE-B parse + rules
CCAE-C parse + rules + types
CCAE-D parse + rules + child types

Table 1: Aspects of the CCG formalism used by
the different models explored in this paper.

and 3D object identification (Blacoe and Lapata,
2012; Socher et al., 2011b; Socher et al., 2012a).

3 Model

The models in this paper combine the power of
recursive, vector-based models with the linguistic
intuition of the CCG formalism. Their purpose is
to learn semantically meaningful vector represen-
tations for sentences and phrases of variable size,
while the purpose of this paper is to investigate
the use of syntax and linguistic formalisms in such
vector-based compositional models.

We assume a CCG parse to be given. Let C de-
note the set of combinatory rules, and T the set
of categories used, respectively. We use the parse
tree to structure an RAE, so that each combina-
tory step is represented by an autoencoder func-
tion. We refer to these models Categorial Com-
binatory Autoencoders (CCAE). In total this pa-
per describes four models making increasing use
of the CCG formalism (see table 1).

As an internal baseline we use model CCAE-
A, which is an RAE structured along a CCG parse
tree. CCAE-A uses a single weight matrix each for
the encoding and reconstruction step (see Table 2.
This model is similar to Socher et al. (2011b), ex-
cept that we use a fixed structure in place of the
greedy tree building approach. As CCAE-A uses
only minimal syntactic guidance, this should al-
low us to better ascertain to what degree the use of
syntax helps our semantic models.

Our second model (CCAE-B) uses the compo-
sition function in equation (6), with c ∈ C.

fenc(x, y, c) = g (W c
enc(x‖y) + bcenc) (6)

f rec(e, c) = g (W c
rece+ bcrec)

This means that for every combinatory rule we de-
fine an equivalent autoencoder composition func-
tion by parametrizing both the weight matrix and
bias on the combinatory rule (e.g. Figure 4).

In this model, as in the following ones, we as-
sume a reconstruction step symmetric with the
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Model Encoding Function
CCAE-A f(x, y)= g (W (x‖y) + b)

CCAE-B f(x, y, c)= g (W c(x‖y) + bc)

CCAE-C f(x, y, c, t)= g
(∑

p∈{c,t} (W
p(x‖y) + bp)

)

CCAE-D f(x, y, c, tx, ty)= g
(
W c

(
W txx+W tyy

)
+ bc

)

Table 2: Encoding functions of the four CCAE models discussed in this paper.

α : X/Y β : Y
>

αβ : X
g (W>

enc(α‖β) + b>enc)

Figure 4: Forward application as CCG combinator
and autoencoder rule respectively.

Figure 5: CCAE-B applied to Tina likes tigers.
Next to each vector are the CCG category (top)
and the word or function representing it (bottom).
lex describes the unary type-changing operation.
> and < are forward and backward application.

composition step. For the remainder of this paper
we will focus on the composition step and drop the
use of enc and rec in variable names where it isn’t
explicitly required. Figure 5 shows model CCAE-
B applied to our previous example sentence.

While CCAE-B uses only the combinatory
rules, we want to make fuller use of the linguis-
tic information available in CCG. For this pur-
pose, we build another model CCAE-C, which
parametrizes on both the combinatory rule c ∈ C
and the CCG category t ∈ T at every step (see
Figure 2). This model provides an additional de-
gree of insight, as the categories T are semanti-
cally and syntactically more expressive than the
CCG combinatory rules by themselves. Summing
over weights parametrised on c and t respectively,
adds an additional degree of freedom and also al-

lows for some model smoothing.
An alternative approach is encoded in model

CCAE-D. Here we consider the categories not of
the element represented, but of the elements it is
generated from together with the combinatory rule
applied to them. The intuition is that in the first
step we transform two expressions based on their
syntax. Subsequently we combine these two con-
ditioned on their joint combinatory rule.

4 Learning

In this section we briefly discuss unsupervised
learning for our models. Subsequently we de-
scribe how these models can be extended to allow
for semi-supervised training and evaluation.

Let θ = (W,B, L) be our model parameters
and λ a vector with regularization parameters for
all model parameters. W represents the set of all
weight matrices, B the set of all biases and L the
set of all word vectors. LetN be the set of training
data consisting of tree-nodes n with inputs xn, yn
and reconstruction rn. The error given n is:

E(n|θ) = 1

2

∥∥∥rn − (xn‖yn)
∥∥∥
2

(7)

The gradient of the regularised objective func-
tion then becomes:

∂J

∂θ
=

1

N

N∑

n

∂E(n|θ)
∂θ

+ λθ (8)

We learn the gradient using backpropagation
through structure (Goller and Küchler, 1996), and
minimize the objective function using L-BFGS.

For more details about the partial derivatives
used for backpropagation, see the documentation
accompanying our model implementation.3

3http://www.karlmoritz.com/
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4.1 Supervised Learning
The unsupervised method described so far learns
a vector representation for each sentence. Such a
representation can be useful for some tasks such as
paraphrase detection, but is not sufficient for other
tasks such as sentiment classification, which we
are considering in this paper.

In order to extract sentiment from our models,
we extend them by adding a supervised classifier
on top, using the learned representations v as input
for a binary classification model:

pred(l=1|v, θ) = sigmoid(Wlabel v + blabel) (9)

Given our corpus of CCG parses with label pairs
(N, l), the new objective function becomes:

J =
1

N

∑

(N,l)

E(N, l, θ) +
λ

2
||θ||2 (10)

Assuming each node n ∈ N contains children
xn, yn, encoding en and reconstruction rn, so that
n = {x, y, e, r} this breaks down into:

E(N, l, θ) = (11)
∑

n∈N
αErec (n, θ) + (1−α)Elbl(en, l, θ)

Erec(n, θ) =
1

2

∥∥∥[xn‖yn]− rn
∥∥∥
2

(12)

Elbl(e, l, θ) =
1

2
‖l − e‖2 (13)

This method of introducing a supervised aspect
to the autoencoder largely follows the model de-
scribed in Socher et al. (2011b).

5 Experiments

We describe a number of standard evaluations
to determine the comparative performance of our
model. The first task of sentiment analysis allows
us to compare our CCG-conditioned RAE with
similar, existing models. In a second experiment,
we apply our model to a compound similarity eval-
uation, which allows us to evaluate our models
against a larger class of vector-based models (Bla-
coe and Lapata, 2012). We conclude with some
qualitative analysis to get a better idea of whether
the combination of CCG and RAE can learn se-
mantically expressive embeddings.

In our experiments we use the hyperbolic tan-
gent as nonlinearity g. Unless stated otherwise we

use word-vectors of size 50, initialized using the
embeddings provided by Turian et al. (2010) based
on the model of Collobert and Weston (2008).4

We use the C&C parser (Clark and Curran,
2007) to generate CCG parse trees for the data
used in our experiments. For models CCAE-C and
CCAE-D we use the 25 most frequent CCG cate-
gories (as extracted from the British National Cor-
pus) with an additional general weight matrix in
order to catch all remaining types.

5.1 Sentiment Analysis
We evaluate our model on the MPQA opinion
corpus (Wiebe et al., 2005), which annotates ex-
pressions for sentiment.5 The corpus consists of
10,624 instances with approximately 70 percent
describing a negative sentiment. We apply the
same pre-processing as (Nakagawa et al., 2010)
and (Socher et al., 2011b) by using an additional
sentiment lexicon (Wilson et al., 2005) during the
model training for this experiment.

As a second corpus we make use of the sentence
polarity (SP) dataset v1.0 (Pang and Lee, 2005).6

This dataset consists of 10662 sentences extracted
from movie reviews which are manually labelled
with positive or negative sentiment and equally
distributed across sentiment.

Experiment 1: Semi-Supervised Training In
the first experiment, we use the semi-supervised
training strategy described previously and initial-
ize our models with the embeddings provided by
Turian et al. (2010). The results of this evalua-
tion are in Table 3. While we achieve the best per-
formance on the MPQA corpus, the results on the
SP corpus are less convincing. Perhaps surpris-
ingly, the simplest model CCAE-A outperforms
the other models on this dataset.

When considering the two datasets, sparsity
seems a likely explanation for this difference in
results: In the MPQA experiment most instances
are very short with an average length of 3 words,
while the average sentence length in the SP corpus
is 21 words. The MPQA task is further simplified
through the use or an additional sentiment lexicon.
Considering dictionary size, the SP corpus has a
dictionary of 22k words, more than three times the
size of the MPQA dictionary.

4http://www.metaoptimize.com/projects/
wordreprs/

5http://mpqa.cs.pitt.edu/
6http://www.cs.cornell.edu/people/

pabo/movie-review-data/
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Method MPQA SP
Voting with two lexica 81.7 63.1
MV-RNN (Socher et al., 2012b) - 79.0
RAE (rand) (Socher et al., 2011b) 85.7 76.8
TCRF (Nakagawa et al., 2010) 86.1 77.3
RAE (init) (Socher et al., 2011b) 86.4 77.7
NB (Wang and Manning, 2012) 86.7 79.4
CCAE-A 86.3 77.8
CCAE-B 87.1 77.1
CCAE-C 87.1 77.3
CCAE-D 87.2 76.7

Table 3: Accuracy of sentiment classification on
the sentiment polarity (SP) and MPQA datasets.
For NB we only display the best result among a
larger group of models analysed in that paper.

This issue of sparsity is exacerbated in the more
complex CCAE models, where the training points
are spread across different CCG types and rules.
While the initialization of the word vectors with
previously learned embeddings (as was previously
shown by Socher et al. (2011b)) helps the mod-
els, all other model variables such as composition
weights and biases are still initialised randomly
and thus highly dependent on the amount of train-
ing data available.

Experiment 2: Pretraining Due to our analy-
sis of the results of the initial experiment, we ran a
second series of experiments on the SP corpus. We
follow (Scheible and Schütze, 2013) for this sec-
ond series of experiments, which are carried out on
a random 90/10 training-testing split, with some
data reserved for development.

Instead of initialising the model with external
word embeddings, we first train it on a large
amount of data with the aim of overcoming the
sparsity issues encountered in the previous exper-
iment. Learning is thus divided into two steps:

The first, unsupervised training phase, uses the
British National Corpus together with the SP cor-
pus. In this phase only the reconstruction signal
is used to learn word embeddings and transforma-
tion matrices. Subsequently, in the second phase,
only the SP corpus is used, this time with both the
reconstruction and the label error.

By learning word embeddings and composition
matrices on more data, the model is likely to gen-
eralise better. Particularly for the more complex
models, where the composition functions are con-
ditioned on various CCG parameters, this should

Training
Model Regular Pretraining
CCAE-A 77.8 79.5
CCAE-B 76.9 79.8
CCAE-C 77.1 81.0
CCAE-D 76.9 79.7

Table 4: Effect of pretraining on model perfor-
mance on the SP dataset. Results are reported on a
random subsection of the SP corpus; thus numbers
for the regular training method differ slightly from
those in Table 3.

help to overcome issues of sparsity.
If we consider the results of the pre-trained ex-

periments in Table 4, this seems to be the case.
In fact, the trend of the previous results has been
reversed, with the more complex models now per-
forming best, whereas in the previous experiments
the simpler models performed better. Using the
Turian embeddings instead of random initialisa-
tion did not improve results in this setup.

5.2 Compound Similarity

In a second experiment we use the dataset from
Mitchell and Lapata (2010) which contains sim-
ilarity judgements for adjective-noun, noun-noun
and verb-object pairs.7 All compound pairs have
been ranked for semantic similarity by a number of
human annotators. The task is thus to rank these
pairs of word pairs by their semantic similarity.

For instance, the two compounds vast amount
and large quantity are given a high similarity score
by the human judges, while northern region and
early age are assigned no similarity at all.

We train our models as fully unsupervised au-
toencoders on the British National Corpus for this
task. We assume fixed parse trees for all of the
compounds (Figure 6), and use these to compute
compound level vectors for all word pairs. We
subsequently use the cosine distance between each
compound pair as our similarity measure. We
use Spearman’s rank correlation coefficient (ρ) for
evaluation; hence there is no need to rescale our
scores (-1.0 – 1.0) to the original scale (1.0 – 7.0).

Blacoe and Lapata (2012) have an extensive
comparison of the performance of various vector-
based models on this data set to which we compare
our model in Table 5. The CCAE models outper-

7http://homepages.inf.ed.ac.uk/mlap/
resources/index.html
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Verb Object

VB NN

(S\NP)/NP N

NP
>

S\NP

Noun Noun

NN NN

N/N N
>

N

Adjective Noun

JJ NN

N/N N
>

N

Figure 6: Assumed CCG parse structure for the compound similarity evaluation.

Method Adj-N N-N V-Obj
Human 0.52 0.49 0.55
(Blacoe and Lapata, 2012)
�/+ 0.21 - 0.48 0.22 - 0.50 0.18 - 0.35
RAE 0.19 - 0.31 0.24 - 0.30 0.09 - 0.28

CCAE-B 0.38 0.44 0.34
CCAE-C 0.38 0.41 0.23
CCAE-D 0.41 0.44 0.29

Table 5: Correlation coefficients of model predic-
tions for the compound similarity task. Numbers
show Spearman’s rank correlation coefficient (ρ).
Higher numbers indicate better correlation.

form the RAE models provided by Blacoe and La-
pata (2012), and score towards the upper end of the
range of other models considered in that paper.

5.3 Qualitative Analysis

To get better insight into our models we also per-
form a small qualitative analysis. Using one of the
models trained on the MPQA corpus, we gener-
ate word-level representations of all phrases in this
corpus and subsequently identify the most related
expressions by using the cosine distance measure.
We perform this experiment on all expressions of
length 5, considering all expressions with a word
length between 3 and 7 as potential matches.

As can be seen in Table 6, this works with vary-
ing success. Linking expressions such as convey-
ing the message of peace and safeguard(ing) peace
and security suggests that the model does learn
some form of semantics.

On the other hand, the connection between ex-
pressed their satisfaction and support and ex-
pressed their admiration and surprise suggests
that the pure word level content still has an impact
on the model analysis. Likewise, the expressions
is a story of success and is a staunch supporter
have some lexical but little semantic overlap. Fur-
ther reducing this link between the lexical and the
semantic representation is an issue that should be
addressed in future work in this area.

6 Discussion

Overall, our models compare favourably with the
state of the art. On the MPQA corpus model
CCAE-D achieves the best published results we
are aware of, whereas on the SP corpus we achieve
competitive results. With an additional, unsuper-
vised training step we achieved results beyond the
current state of the art on this task, too.

Semantics The qualitative analysis and the ex-
periment on compounds demonstrate that the
CCAE models are capable of learning semantics.
An advantage of our approach—and of autoen-
coders generally—is their ability to learn in an
unsupervised setting. The pre-training step for
the sentiment task was essentially the same train-
ing step as used in the compound similarity task.
While other models such as the MV-RNN (Socher
et al., 2012b) achieve good results on a particu-
lar task, they do not allow unsupervised training.
This prevents the possiblity of pretraining, which
we showed to have a big impact on results, and fur-
ther prevents the training of general models: The
CCAE models can be used for multiple tasks with-
out the need to re-train the main model.

Complexity Previously in this paper we argued
that our models combined the strengths of other
approaches. By using a grammar formalism we
increase the expressive power of the model while
the complexity remains low. For the complex-
ity analysis see Table 7. We strike a balance be-
tween the greedy approaches (e.g. Socher et al.
(2011b)), where learning is quadratic in the length
of each sentence and existing syntax-driven ap-
proaches such as the MV-RNN of Socher et al.
(2012b), where the size of the model, that is the
number of variables that needs to be learned, is
quadratic in the size of the word-embeddings.

Sparsity Parametrizing on CCG types and rules
increases the size of the model compared to a
greedy RAE (Socher et al., 2011b). The effect
of this was highlighted by the sentiment analysis
task, with the more complex models performing
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Expression Most Similar
convey the message of peace safeguard peace and security
keep alight the flame of keep up the hope
has a reason to repent has no right
a significant and successful strike a much better position
it is reassuring to believe it is a positive development
expressed their satisfaction and support expressed their admiration and surprise
is a story of success is a staunch supporter
are lining up to condemn are going to voice their concerns
more sanctions should be imposed charges being leveled
could fray the bilateral goodwill could cause serious damage

Table 6: Phrases from the MPQA corpus and their semantically closest match according to CCAE-D.

Complexity
Model Size Learning
MV-RNN O(nw2) O(l)
RAE O(nw) O(l2)
CCAE-* O(nw) O(l)

Table 7: Comparison of models. n is dictionary
size, w embedding width, l is sentence length. We
can assume l � n � w. Additional factors such
as CCG rules and types are treated as small con-
stants for the purposes of this analysis.

worse in comparison with the simpler ones. We
were able to overcome this issue by using addi-
tional training data. Beyond this, it would also be
interesting to investigate the relationships between
different types and to derive functions to incorpo-
rate this into the learning procedure. For instance
model learning could be adjusted to enforce some
mirroring effects between the weight matrices of
forward and backward application, or to support
similarities between those of forward application
and composition.

CCG-Vector Interface Exactly how the infor-
mation contained in a CCG derivation is best ap-
plied to a vector space model of compositionality
is another issue for future research. Our investi-
gation of this matter by exploring different model
setups has proved somewhat inconclusive. While
CCAE-D incorporated the deepest conditioning on
the CCG structure, it did not decisively outperform
the simpler CCAE-B which just conditioned on
the combinatory operators. Issues of sparsity, as
shown in our experiments on pretraining, have a
significant influence, which requires further study.

7 Conclusion

In this paper we have brought a more formal no-
tion of semantic compositionality to vector space
models based on recursive autoencoders. This was
achieved through the use of the CCG formalism
to provide a conditioning structure for the matrix
vector products that define the RAE.

We have explored a number of models, each of
which conditions the compositional operations on
different aspects of the CCG derivation. Our ex-
perimental findings indicate a clear advantage for
a deeper integration of syntax over models that use
only the bracketing structure of the parse tree.

The most effective way to condition the compo-
sitional operators on the syntax remains unclear.
Once the issue of sparsity had been addressed, the
complex models outperformed the simpler ones.
Among the complex models, however, we could
not establish significant or consistent differences
to convincingly argue for a particular approach.

While the connections between formal linguis-
tics and vector space approaches to NLP may not
be immediately obvious, we believe that there is a
case for the continued investigation of ways to best
combine these two schools of thought. This paper
represents one step towards the reconciliation of
traditional formal approaches to compositional se-
mantics with modern machine learning.
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Abstract

Given that structured output prediction is
typically performed over entire datasets,
one natural question is whether it is pos-
sible to re-use computation from earlier
inference instances to speed up inference
for future instances. Amortized inference
has been proposed as a way to accomplish
this. In this paper, first, we introduce a new
amortized inference algorithm called the
Margin-based Amortized Inference, which
uses the notion of structured margin to
identify inference problems for which pre-
vious solutions are provably optimal. Sec-
ond, we introduce decomposed amortized
inference, which is designed to address
very large inference problems, where ear-
lier amortization methods become less ef-
fective. This approach works by decom-
posing the output structure and applying
amortization piece-wise, thus increasing
the chance that we can re-use previous so-
lutions for parts of the output structure.
These parts are then combined to a global
coherent solution using Lagrangian relax-
ation. In our experiments, using the NLP
tasks of semantic role labeling and entity-
relation extraction, we demonstrate that
with the margin-based algorithm, we need
to call the inference engine only for a third
of the test examples. Further, we show that
the decomposed variant of margin-based
amortized inference achieves a greater re-
duction in the number of inference calls.

1 Introduction

A wide variety of NLP problems can be natu-
rally cast as structured prediction problems. For

* These authors contributed equally to this work.

some structures like sequences or parse trees, spe-
cialized and tractable dynamic programming algo-
rithms have proven to be very effective. However,
as the structures under consideration become in-
creasingly complex, the computational problem of
predicting structures can become very expensive,
and in the worst case, intractable.

In this paper, we focus on an inference tech-
nique called amortized inference (Srikumar et al.,
2012), where previous solutions to inference prob-
lems are used to speed up new instances. The
main observation that leads to amortized inference
is that, very often, for different examples of the
same size, the structures that maximize the score
are identical. If we can efficiently identify that two
inference problems have the same solution, then
we can re-use previously computed structures for
newer examples, thus giving us a speedup.

This paper has two contributions. First, we de-
scribe a novel algorithm for amortized inference
called margin-based amortization. This algorithm
is on an examination of the structured margin of
a prediction. For a new inference problem, if this
margin is larger than the sum of the decrease in the
score of the previous prediction and any increase
in the score of the second best one, then the previ-
ous solution will be the highest scoring one for the
new problem. We formalize this intuition to derive
an algorithm that finds provably optimal solutions
and show that this approach is a generalization of
previously identified schemes (based on Theorem
1 of (Srikumar et al., 2012)).

Second, we argue that the idea of amortization
is best exploited at the level of parts of the struc-
tures rather than the entire structure because we
expect a much higher redundancy in the parts.
We introduce the notion of decomposed amor-
tized inference, whereby we can attain a significant
improvement in speedup by considering repeated
sub-structures across the dataset and applying any
amortized inference algorithm for the parts.
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We evaluate the two schemes and their combi-
nation on two NLP tasks where the output is en-
coded as a structure: PropBank semantic role la-
beling (Punyakanok et al., 2008) and the problem
of recognizing entities and relations in text (Roth
and Yih, 2007; Kate and Mooney, 2010). In these
problems, the inference problem has been framed
as an integer linear program (ILP). We compare
our methods with previous amortized inference
methods and show that margin-based amortization
combined with decomposition significantly out-
performs existing methods.

2 Problem Definition and Notation

Structured output prediction encompasses a wide
variety of NLP problems like part-of-speech tag-
ging, parsing and machine translation. The lan-
guage of 0-1 integer linear programs (ILP) pro-
vides a convenient analytical tool for representing
structured prediction problems. The general set-
ting consists of binary inference variables each of
which is associated with a score. The goal of in-
ference is to find the highest scoring global assign-
ment of the variables from a feasible set of assign-
ments, which is defined by linear inequalities.

While efficient inference algorithms exist for
special families of structures (like linear chains
and trees), in the general case, inference can be
computationally intractable. One approach to deal
with the computational complexity of inference
is to use an off-the-shelf ILP solver for solv-
ing the inference problem. This approach has
seen increasing use in the NLP community over
the last several years (for example, (Roth and
Yih, 2004; Clarke and Lapata, 2006; Riedel and
Clarke, 2006) and many others). Other approaches
for solving inference include the use of cutting
plane inference (Riedel, 2009), dual decomposi-
tion (Koo et al., 2010; Rush et al., 2010) and
the related method of Lagrangian relaxation (Rush
and Collins, 2011; Chang and Collins, 2011).

(Srikumar et al., 2012) introduced the notion of
an amortized inference algorithm, defined as an
inference algorithm that can use previous predic-
tions to speed up inference time, thereby giving an
amortized gain in inference time over the lifetime
of the program.

The motivation for amortized inference comes
from the observation that though the number of
possible structures could be large, in practice, only
a small number of these are ever seen in real

data. Furthermore, among the observed structures,
a small subset typically occurs much more fre-
quently than the others. Figure 1 illustrates this
observation in the context of part-of-speech tag-
ging. If we can efficiently characterize and iden-
tify inference instances that have the same solu-
tion, we can take advantage of previously per-
formed computation without paying the high com-
putational cost of inference.

Figure 1: Comparison of number of instances and the num-

ber of unique observed part-of-speech structures in the Gi-

gaword corpus. Note that the number of observed structures

(blue solid line) is much lower than the number of sentences

(red dotted line) for all sentence lengths, with the difference

being very pronounced for shorter sentences. Embedded in

the graph are three histograms that show the distribution of

observed structures for sentences of length 15, 20 and 30. In

all cases, we see that a small number of tag sequences are

much more frequent than the others.

We denote inference problems by the bold-
faced letters p and q. For a problem p, the goal
of inference is to jointly assign values to the parts
of the structure, which are represented by a col-
lection of inference variables y ∈ {0, 1}n. For all
vectors, subscripts represent their ith component.

Each yi is associated with a real valued cp,i ∈ <
which is the score for the variable yi being as-
signed the value 1. We denote the vector com-
prising of all the cp,i as cp. The search space
for assignments is restricted via constraints, which
can be written as a collection of linear inequalities,
MTy ≤ b. For a problem p, we denote this fea-
sible set of structures by Kp.

The inference problem is that of finding the fea-
sible assignment to the structure which maximizes
the dot product cTy. Thus, the prediction problem
can be written as

arg max
y∈Kp

cTy. (1)
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We denote the solution of this maximization prob-
lem as yp.

Let the set P = {p1,p2, · · · } denote previously
solved inference problems, along with their re-
spective solutions {y1

p,y
2
p, · · · }. An equivalence

class of integer linear programs, denoted by [P ],
consists of ILPs which have the same number of
inference variables and the same feasible set. Let
K[P ] denote the feasible set of an equivalence class
[P ]. For a program p, the notation p ∼ [P ] indi-
cates that it belongs to the equivalence class [P ].

(Srikumar et al., 2012) introduced a set of amor-
tized inference schemes, each of which provides a
condition for a new ILP to have the same solu-
tion as a previously seen problem. We will briefly
review one exact inference scheme introduced in
that work. Suppose q belongs to the same equiv-
alence class of ILPs as p. Then the solution to q
will be the same as that of p if the following con-
dition holds for all inference variables:

(2yp,i − 1)(cq,i − cp,i) ≥ 0. (2)

This condition, referred to as Theorem 1 in that
work, is the baseline for our experiments.

In general, for any amortization scheme
A, we can define two primitive operators
TESTCONDITIONA and SOLUTIONA. Given
a collection of previously solved prob-
lems P and a new inference problem q,
TESTCONDITIONA(P,q) checks if the solu-
tion of the new problem is the same as that
of some previously solved one and if so,
SOLUTIONA(P,q) returns the solution.

3 Margin-based Amortization

In this section, we will introduce a new method
for amortizing inference costs over time. The key
observation that leads to this theorem stems from
the structured margin δ for an inference problem
p ∼ [P ], which is defined as follows:

δ = min
y∈K[P ],y 6=yp

cTp(yp − y). (3)

That is, for all feasible y, we have cTpyp ≥ cTpy+
δ. The margin δ is the upper limit on the change in
objective that is allowed for the constraint setK[P ]

for which the solution will not change.
For a new inference problem q ∼ [P ], we define

∆ as the maximum change in objective value that
can be effected by an assignment that is not the

A B = yp

cp

cqδ

∆

decrease in

value of yp

in
cr

ea
si

ng
ob

je
ct

iv
e

cp
Typ

Two assignments

Figure 2: An illustration of the margin-based amortization

scheme showing the very simple case with only two compet-

ing assignments A and B. Suppose B is the solution yp for

the inference problem p with coefficients cp, denoted by the

red hyperplane, and A is the second-best assignment. For a

new coefficient vector cq, if the margin δ is greater than the

sum of the decrease in the objective value of yp and the max-

imum increase in the objective of another solution (∆), then

the solution to the new inference problem will still be yp. The

margin-based amortization theorem captures this intuition.

solution. That is,

∆ = max
y∈K[P ],y 6=yp

(cq − cp)T y (4)

Before stating the theorem, we will provide an in-
tuitive explanation for it. Moving from cp to cq,
consider the sum of the decrease in the value of
the objective for the solution yp and ∆, the maxi-
mum change in objective value for an assignment
that is not the solution. If this sum is less than the
margin δ, then no other solution will have an ob-
jective value higher than yp. Figure 2 illustrates
this using a simple example where there are only
two competing solutions.

This intuition is captured by our main theorem
which provides a condition for problems p and q
to have the same solution yp.
Theorem 1 (Margin-based Amortization). Let p
denote an inference problem posed as an inte-
ger linear program belonging to an equivalence
class [P ] with optimal solution yp. Let p have
a structured margin δ, i.e., for any y, we have
cTpyp ≥ cTpy + δ. Let q ∼ [P ] be another infer-
ence instance in the same equivalence class and
let ∆ be defined as in Equation 4. Then, yp is the
solution of the problem q if the following holds:

−(cq − cp)Typ + ∆ ≤ δ (5)
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Proof. For some feasible y, we have

cTqyp − cTqy ≥ cTqyp − cTpy −∆

≥ cTqyp − cTpyp + δ −∆

≥ 0

The first inequality comes from the definition of ∆
in (4) and the second one follows from the defini-
tion of δ. The condition of the theorem in (5) gives
us the final step. For any feasible y, the objective
score assigned to yp is greater than the score as-
signed to y according to problem q. That is, yp is
the solution to the new problem.

The margin-based amortization theorem pro-
vides a general, new amortized inference algo-
rithm. Given a new inference problem, we check
whether the inequality (5) holds for any previously
seen problems in the same equivalence class. If so,
we return the cached solution. If no such problem
exists, then we make a call to an ILP solver.

Even though the theorem provides a condition
for two integer linear programs to have the same
solution, checking the validity of the condition re-
quires the computation of ∆, which in itself is an-
other integer linear program. To get around this,
we observe that if any constraints in Equation 4
are relaxed, the value of the resulting maximum
can only increase. Even with the increased ∆, if
the condition of the theorem holds, then the rest
of the proof follows and hence the new problem
will have the same solution. In other words, we
can solve relaxed, tractable variants of the maxi-
mization in Equation 4 and still retain the guaran-
tees provided by the theorem. The tradeoff is that,
by doing so, the condition of the theorem will ap-
ply to fewer examples than theoretically possible.
In our experiments, we will define the relaxation
for each problem individually and even with the
relaxations, the inference algorithm based on the
margin-based amortization theorem outperforms
all previous amortized inference algorithms.

The condition in inequality (5) is, in fact, a strict
generalization of the condition for Theorem 1 in
(Srikumar et al., 2012), stated in (2). If the latter
condition holds, then we can show that ∆ ≤ 0 and
(cq − cp)Typ ≥ 0. Since δ is, by definition, non-
negative, the margin-based condition is satisfied.

4 Decomposed Amortized Inference

One limitation in previously considered ap-
proaches for amortized inference stems from the

expectation that the same full assignment maxi-
mizes the objective score for different inference
problems, or equivalently, that the entire structure
is repeated multiple times. Even with this assump-
tion, we observe a speedup in prediction.

However, intuitively, even if entire structures
are not repeated, we expect parts of the assign-
ment to be the same across different instances. In
this section, we address the following question:
Can we take advantage of the redundancy in com-
ponents of structures to extend amortization tech-
niques to cases where the full structured output is
not repeated? By doing so, we can store partial
computation for future inference problems.

For example, consider the task of part of speech
tagging. While the likelihood of two long sen-
tences having the same part of speech tag sequence
is not high, it is much more likely that shorter sec-
tions of the sentences will share the same tag se-
quence. We see from Figure 1 that the number of
possible structures for shorter sentences is much
smaller than the number of sentences. This im-
plies that many shorter sentences share the same
structure, thus improving the performance of an
amortized inference scheme for such inputs. The
goal of decomposed amortized inference is to ex-
tend this improvement to larger problems by in-
creasing the size of equivalence classes.

To decompose an inference problem, we use the
approach of Lagrangian Relaxation (Lemaréchal,
2001) that has been used successfully for various
NLP tasks (Chang and Collins, 2011; Rush and
Collins, 2011). We will briefly review the under-
lying idea1. The goal is to solve an integer linear
program q, which is defined as

q : max
MTy≤b

cTqy

We partition the constraints into two sets, say C1

denoting M1
Ty ≤ b1 and C2, denoting con-

straints M2
Ty ≤ b2. The assumption is that in

the absence the constraints C2, the inference prob-
lem becomes computationally easier to solve. In
other words, we can assume the existence of a sub-
routine that can efficiently compute the solution of
the relaxed problem q′:

q′ : max
M1

Ty≤b1

cTqy

1For simplicity, we only write inequality constraints in
the paper. However, all the results here are easily extensible
to equality constraints by removing the non-negativity con-
straints from the corresponding dual variables.
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We define Lagrange multipliers Λ ≥ 0, with one
λi for each constraint in C2. For problem q, we
can define the Lagrangian as

L(y,Λ) = cTqy − ΛT
(
M2

Ty − b2

)

Here, the domain of y is specified by the constraint
set C1. The dual objective is

L(Λ) = max
M1

Ty≤b1

cTqy − ΛT
(
M2

Ty − b2

)

= max
M1

Ty≤b1

(
cq − ΛTM2

)T
y + ΛTb2.

Note that the maximization in the definition of the
dual objective has the same functional form as q′

and any approach to solve q′ can be used here to
find the dual objective L(Λ). The dual of the prob-
lem q, given by minΛ≥0 L(Λ), can be solved us-
ing subgradient descent over the dual variables.

Relaxing the constraints C2 to define the prob-
lem q′ has several effects. First, it can make the re-
sulting inference problem q′ easier to solve. More
importantly, removing constraints can also lead to
the merging of multiple equivalence classes, lead-
ing to fewer, more populous equivalence classes.
Finally, removing constraints can decompose the
inference problem q′ into smaller independent
sub-problems {q1,q2, · · · } such that no constraint
that is inC1 has active variables from two different
sets in the partition.

For the sub-problem qi comprising of variables
yi, let the corresponding objective coefficients be
cqi and the corresponding sub-matrix of M2 be
Mi

2. Now, we can define the dual-augmented sub-
problem as

max
Mi

1
T
y≤bi

1

(
cqi − ΛTMi

2

)T
yi (6)

Solving all such sub-problems will give us a com-
plete assignment for all the output variables.

We can now define the decomposed amortized
inference algorithm (Algorithm 1) that performs
sub-gradient descent over the dual variables. The
input to the algorithm is a collection of previ-
ously solved problems with their solutions, a new
inference problem q and an amortized inference
scheme A (such as the margin-based amortization
scheme). In addition, for the task at hand, we first
need to identify the set of constraints C2 that can
be introduced via the Lagrangian.

First, we check if the solution can be obtained
without decomposition (lines 1–2). Otherwise,

Algorithm 1 Decomposed Amortized Inference
Input: A collection of previously solved infer-

ence problems P , a new problem q, an amor-
tized inference algorithm A.

Output: The solution to problem q
1: if TESTCONDITION(A, q, P ) then
2: return SOLUTION(A, q, P )
3: else
4: Initialize λi ← 0 for each constraint in C2.
5: for t = 1 · · ·T do
6: Partition the problem q into sub-

problems q1,q2, · · · such that no con-
straint in C1 has active variables from
two partitions.

7: for partition qi do
8: yi ← Solve the maximization prob-

lem for qi (Eq. 6) using the amortized
scheme A.

9: end for
10: Let y←

[
y1;y2; · · ·

]

11: if M2y ≤ b2 and (b2 −M2y)iλi = 0
then

12: return y
13: else
14: Λ←

[
Λ− µt

(
b2 −M2

Ty
)]

+
15: end if
16: end for
17: return solution of q using a standard infer-

ence algorithm
18: end if

we initialize the dual variables Λ and try to ob-
tain the solution iteratively. At the tth itera-
tion, we partition the problem q into sub-problems
{q1,q2, · · · } as described earlier (line 6). Each
partition defines a smaller inference problem with
its own objective coefficients and constraints. We
can apply the amortization scheme A to each sub-
problem to obtain a complete solution for the re-
laxed problem (lines 7–10). If this solution satis-
fies the constraints C2 and complementary slack-
ness conditions, then the solution is provably the
maximum of the problem q. Otherwise, we take a
subgradient step to update the value of Λ using a
step-size µt, subject to the constraint that all dual
variables must be non-negative (line 14). If we do
not converge to a solution in T iterations, we call
the underlying solver on the full problem.

In line 8 of the algorithm, we make multiple
calls to the underlying amortized inference pro-
cedure to solve each sub-problem. If the sub-
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problem cannot be solved using the procedure,
then we can either solve the sub-problem using a
different approach (effectively giving us the stan-
dard Lagrangian relaxation algorithm for infer-
ence), or we can treat the full instance as a cache
miss and make a call to an ILP solver. In our ex-
periments, we choose the latter strategy.

5 Experiments and Results

Our experiments show two results: 1. The margin-
based scheme outperforms the amortized infer-
ence approaches from (Srikumar et al., 2012).
2. Decomposed amortized inference gives further
gains in terms of re-using previous solutions.

5.1 Tasks
We report the performance of inference on two
NLP tasks: semantic role labeling and the task of
extracting entities and relations from text. In both
cases, we used an existing formulation for struc-
tured inference and only modified the inference
calls. We will briefly describe the problems and
the implementation and point the reader to the lit-
erature for further details.

Semantic Role Labeling (SRL) Our first task is
that of identifying arguments of verbs in a sen-
tence and annotating them with semantic roles
(Gildea and Jurafsky, 2002; Palmer et al., 2010)
. For example, in the sentence Mrs. Haag plays
Eltiani., the verb plays takes two arguments: Mrs.
Haag, the actor, labeled as A0 and Eltiani, the
role, labeled as A1. It has been shown in prior
work (Punyakanok et al., 2008; Toutanova et al.,
2008) that making a globally coherent prediction
boosts performance of SRL.

In this work, we used the SRL system of (Pun-
yakanok et al., 2008), where one inference prob-
lem is generated for each verb and each infer-
ence variables encodes the decision that a given
constituent in the sentence takes a specific role.
The scores for the inference variables are obtained
from a classifier trained on the PropBank cor-
pus. Constraints encode structural and linguistic
knowledge about the problem. For details about
the formulations of the inference problem, please
see (Punyakanok et al., 2008).

Recall from Section 3 that we need to define a
relaxed version of the inference problem to effi-
ciently compute ∆ for the margin-based approach.
For a problem instance with coefficients cq and
cached coefficients cp, we take the sum of the

highest n values of cq − cp as our ∆, where n is
the number of argument candidates to be labeled.

To identify constraints that can be relaxed for
the decomposed algorithm, we observe that most
constraints are not predicate specific and apply for
all predicates. The only constraint that is predi-
cate specific requires that each predicate can only
accept roles from a list of roles that is defined for
that predicate. By relaxing this constraint in the
decomposed algorithm, we effectively merge all
the equivalence classes for all predicates with a
specific number of argument candidates.

Entity-Relation extraction Our second task is
that of identifying the types of entities in a sen-
tence and the relations among them, which has
been studied by (Roth and Yih, 2007; Kate and
Mooney, 2010) and others. For the sentence
Oswald killed Kennedy, the words Oswald and
Kennedy will be labeled by the type PERSON, and
the KILL relation exists between them.

We followed the experimental setup as de-
scribed in (Roth and Yih, 2007). We defined one
inference problem for each sentence. For every
entity (which is identified by a constituent in the
sentence), an inference variable is introduced for
each entity type. For each pair of constituents, an
inference variable is introduced for each relation
type. Clearly, the assignment of types to entities
and relations are not independent. For example, an
entity of type ORGANIZATION cannot participate
in a relation of type BORN-IN because this rela-
tion label can connect entities of type PERSON and
LOCATION only. Incorporating these natural con-
straints during inference were shown to improve
performance significantly in (Roth and Yih, 2007).
We trained independent classifiers for entities and
relations and framed the inference problem as in
(Roth and Yih, 2007). For further details, we refer
the reader to that paper.

To compute the value of ∆ for the margin-based
algorithm, for a new instance with coefficients cq
and cached coefficients cp, we define ∆ to be the
sum of all non-negative values of cq − cp.

For the decomposed inference algorithm, if the
number of entities is less than 5, no decomposi-
tion is performed. Otherwise, the entities are par-
titioned into two sets: set A includes the first four
entities and set B includes the rest of the entities.
We relaxed the relation constraints that go across
these two sets of entities to obtain two independent
inference problems.
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5.2 Experimental Setup

We follow the experimental setup of (Srikumar et
al., 2012) and simulate a long-running NLP pro-
cess by caching problems and solutions from the
Gigaword corpus. We used a database engine to
cache ILP and their solutions along with identi-
fiers for the equivalence class and the value of δ.

For the margin-based algorithm and the Theo-
rem 1 from (Srikumar et al., 2012), for a new in-
ference problem p ∼ [P ], we retrieve all infer-
ence problems from the database that belong to
the same equivalence class [P ] as the test prob-
lem p and find the cached assignment y that has
the highest score according to the coefficients of
p. We only consider cached ILPs whose solution
is y for checking the conditions of the theorem.
This optimization ensures that we only process a
small number of cached coefficient vectors.

In a second efficiency optimization, we pruned
the database to remove redundant inference prob-
lems. A problem is redundant if solution to that
problem can be inferred from the other problems
stored in the database that have the same solution
and belong to the same equivalence class. How-
ever, this pruning can be computationally expen-
sive if the number of problems with the same so-
lution and the same equivalence class is very large.
In that case, we first sampled a 5000 problems ran-
domly and selected the non-redundant problems
from this set to keep in the database.

5.3 Results

We compare our approach to a state-of-the-art ILP
solver2 and also to Theorem 1 from (Srikumar
et al., 2012). We choose this baseline because
it is shown to give the highest improvement in
wall-clock time and also in terms of the num-
ber of cache hits. However, we note that the re-
sults presented in our work outperform all the pre-
vious amortization algorithms, including the ap-
proximate inference methods.

We report two performance metrics – the per-
centage decrease in the number of ILP calls, and
the percentage decrease in the wall-clock infer-
ence time. These are comparable to the speedup
and clock speedup defined in (Srikumar et al.,
2012). For measuring time, since other aspects
of prediction (like feature extraction) are the same
across all settings, we only measure the time taken
for inference and ignore other aspects. For both

2We used the Gurobi optimizer for our experiments.

tasks, we report the runtime performance on sec-
tion 23 of the Penn Treebank. Note that our amor-
tization schemes guarantee optimal solution. Con-
sequently, using amortization, task accuracy re-
mains the same as using the original solver.

Table 1 shows the percentage reduction in the
number of calls to the ILP solver. Note that for
both the SRL and entity-relation problems, the
margin-based approach, even without using de-
composition (the columns labeled Original), out-
performs the previous work. Applying the de-
composed inference algorithm improves both the
baseline and the margin-based approach. Overall,
however, the fewest number of calls to the solver is
made when combining the decomposed inference
algorithm with the margin-based scheme. For the
semantic role labeling task, we need to call the
solver only for one in six examples while for the
entity-relations task, only one in four examples re-
quire a solver call.

Table 2 shows the corresponding reduction in
the wall-clock time for the various settings. We
see that once again, the margin based approach
outperforms the baseline. While the decomposed
inference algorithm improves running time for
SRL, it leads to a slight increase for the entity-
relation problem. Since this increase occurs in
spite of a reduction in the number of solver calls,
we believe that this aspect can be further improved
with an efficient implementation of the decom-
posed inference algorithm.

6 Discussion

Lagrangian Relaxation in the literature In the
literature, in applications of the Lagrangian relax-
ation technique (such as (Rush and Collins, 2011;
Chang and Collins, 2011; Reichart and Barzilay,
2012) and others), the relaxed problems are solved
using specialized algorithms. However, in both the
relaxations considered in this paper, even the re-
laxed problems cannot be solved without an ILP
solver, and yet we can see improvements from de-
composition in Table 1.

To study the impact of amortization on running
time, we modified our decomposition based infer-
ence algorithm to solve each sub-problem using
the ILP solver instead of amortization. In these ex-
periments, we ran Lagrangian relaxation for until
convergence or at most T iterations. After T itera-
tions, we call the ILP solver and solve the original
problem. We set T to 100 in one set of exper-
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% ILP Solver calls required
Method Semantic Role Labeling Entity-Relation Extraction

Original + Decomp. Original + Decomp.
ILP Solver 100 – 100 –

(Srikumar et al., 2012) 41 24.4 59.5 57.0
Margin-based 32.7 16.6 28.2 25.4

Table 1: Reduction in number of inference calls

% time required compared to ILP Solver
Method Semantic Role Labeling Entity-Relation Extraction

Original + Decomp. Original + Decomp.
ILP Solver 100 – 100 –

(Srikumar et al., 2012) 54.8 40.0 81 86
Margin-based 45.9 38.1 58.1 61.3

Table 2: Reduction in inference time

iments (call it Lag1) and T to 1 (call it Lag2).
In SRL, compared to solving the original problem
with ILP Solver, both Lag1 and Lag2 are roughly
2 times slower. For entity relation task, compared
to ILP Solver, Lag1 is 186 times slower and Lag2
is 1.91 times slower. Since we used the same im-
plementation of the decomposition in all experi-
ments, this shows that the decomposed inference
algorithm crucially benefits from the underlying
amortization scheme.

Decomposed amortized inference The decom-
posed amortized inference algorithm helps im-
prove amortized inference in two ways. First,
since the number of structures is a function of its
size, considering smaller sub-structures will allow
us to cache inference problems that cover a larger
subset of the space of possible sub-structures. We
observed this effect in the problem of extracting
entities and relations in text. Second, removing a
constraint need not always partition the structure
into a set of smaller structures. Instead, by re-
moving the constraint, examples that might have
otherwise been in different equivalence classes be-
come part of a combined, larger equivalence class.
Increasing the size of the equivalence classes in-
creases the probability of a cache-hit. In our ex-
periments, we observed this effect in the SRL task.

7 Conclusion

Amortized inference takes advantage of the reg-
ularities in structured output to re-use previous
computation and improve running time over the
lifetime of a structured output predictor. In this pa-
per, we have described two approaches for amor-
tizing inference costs over datasets. The first,
called the margin-based amortized inference, is a

new, provably exact inference algorithm that uses
the notion of a structured margin to identify previ-
ously solved problems whose solutions can be re-
used. The second, called decomposed amortized
inference, is a meta-algorithm over any amortized
inference that takes advantage of previously com-
puted sub-structures to provide further reductions
in the number of inference calls. We show via ex-
periments that these methods individually give a
reduction in the number of calls made to an infer-
ence engine for semantic role labeling and entity-
relation extraction. Furthermore, these approaches
complement each other and, together give an addi-
tional significant improvement.
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Abstract

Finding concepts in natural language ut-
terances is a challenging task, especially
given the scarcity of labeled data for learn-
ing semantic ambiguity. Furthermore,
data mismatch issues, which arise when
the expected test (target) data does not
exactly match the training data, aggra-
vate this scarcity problem. To deal with
these issues, we describe an efficient semi-
supervised learning (SSL) approach which
has two components: (i) Markov Topic
Regression is a new probabilistic model
to cluster words into semantic tags (con-
cepts). It can efficiently handle seman-
tic ambiguity by extending standard topic
models with two new features. First, it en-
codes word n-gram features from labeled
source and unlabeled target data. Sec-
ond, by going beyond a bag-of-words ap-
proach, it takes into account the inherent
sequential nature of utterances to learn se-
mantic classes based on context. (ii) Ret-
rospective Learner is a new learning tech-
nique that adapts to the unlabeled target
data. Our new SSL approach improves
semantic tagging performance by 3% ab-
solute over the baseline models, and also
compares favorably on semi-supervised
syntactic tagging.

1 Introduction

Semantic tagging is used in natural language un-
derstanding (NLU) to recognize words of seman-
tic importance in an utterance, such as entities.
Typically, a semantic tagging model require large
amount of domain specific data to achieve good

performance (Tur and DeMori, 2011). This re-
quires a tedious and time intensive data collection
and labeling process. In the absence of large la-
beled training data, the tagging model can behave
poorly on test data (target domain). This is usually
caused by data mismatch issues and lack of cover-
age that arise when the target data does not match
the training data.

To deal with these issues, we present a new
semi-supervised learning (SSL) approach, which
mainly has two components. It initially starts with
training supervised Conditional Random Fields
(CRF) (Lafferty et al., 2001) on the source train-
ing data which has been semantically tagged. Us-
ing the trained model, it decodes unlabeled dataset
from the target domain. With the data mismatch
issues in mind, to correct errors that the supervised
model make on the target data, the SSL model
leverages the additional information by way of a
new clustering method. Our first contribution is a
new probabilistic topic model, Markov Topic Re-
gression (MTR), which uses rich features to cap-
ture the degree of association between words and
semantic tags. First, it encodes the n-gram context
features from the labeled source data and the unla-
beled target data as prior information to learn se-
mantic classes based on context. Thus, each latent
semantic class corresponds to one of the seman-
tic tags found in labeled data. MTR is not invari-
ant to reshuffling of words due to its Markovian
property; hence, word-topic assignments are also
affected by the topics of the surrounding words.
Because of these properties, MTR is less sensitive
to the errors caused by the semantic ambiguities.
Our SSL uses MTR to smooth the semantic tag pos-
teriors on the unlabeled target data (decoded using
the CRF model) and later obtains the best tag se-
quences. Using the labeled source and automati-
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cally labeled target data, it re-trains a new CRF-
model.

Although our iterative SSL learning model can
deal with the training and test data mismatch, it
neglects the performance effects caused by adapt-
ing the source domain to the target domain. In
fact, most SSL methods used for adaptation, e.g.,
(Zhu, 2005), (Daumé-III, 2010), (Subramanya et
al., 2010), etc., do not emphasize this issue. With
this in mind, we introduce a new iterative training
algorithm, Retrospective Learning, as our second
contribution. While retrospective learning itera-
tively trains CRF models with the automatically
annotated target data (explained above), it keeps
track of the errors of the previous iterations so as
to carry the properties of both the source and target
domains.

In short, through a series of experiments we
show how MTR clustering provides additional in-
formation to SSL on the target domain utter-
ances, and greatly impacts semantic tagging per-
formance. Specifically, we analyze MTR’s perfor-
mance on two different types of semantic tags:
named-entities and descriptive tags as shown in
Table 1. Our experiments show that it is much
harder to detect descriptive tags compared to
named-entities.

Our SSL approach uses probabilistic clustering
method tailored for tagging natural language utter-
ances. To the best of our knowledge, our work is
the first to explore the unlabeled data to iteratively
adapt the semantic tagging models for target do-
mains, preserving information from the previous
iterations. With the hope of spurring related work
in domains such as entity detection, syntactic tag-
ging, etc., we extend the earlier work on SSL part-
of-speech (POS) tagging and show in the experi-
ments that our approach is not only useful for se-
mantic tagging but also syntactic tagging.

The remainder of this paper is divided as fol-
lows: §2 gives background on SSL and semantic
clustering methods, §3 describes our new cluster-
ing approach, §4 presents the new iterative learn-
ing, §5 presents our experimental results and §6
concludes our paper.

2 Related Work and Motivation

(I) Semi-Supervised Tagging. Supervised meth-
ods for semantic tagging in NLU require a large
number of in-domain human-labeled utterances
and gazetteers (movie, actor names, etc.), increas-

• Are there any [comedies] with [Ryan Gosling]?
• How about [oscar winning] movies by
[James Cameron]?
• Find [Woody Allen] movies similar to [Manhattan].

[Named Entities]
director: James Cameron, Woody Allen,...
actor: Ryan Gosling, Woody Allen,...
title: Manhattan, Midnight in Paris,...
[Descriptive Tags]
restriction: similar, suitable, free,rate,...
description: oscar winning, new release, gardening,...
genre: spooky, comedies, feel good, romance,...

Table 1: Samples of semantically tagged utter-
ances from movie domain, named-entities and de-
scriptive tags.

ing the need for significant manual labor (Tur and
DeMori, 2011). Recent work on similar tasks
overcome these challenges using SSL methods as
follows:
• (Wang et al., 2009; Li et al., 2009; Li,

2010; Liu et al., 2011) investigate web query
tagging using semi-supervised sequence models.
They extract semantic lexicons from unlabeled
web queries, to use as features. Our work dif-
fers from these, in that, rather than just detecting
named-entities, our utterances include descriptive
tags (see Table 1).
• Typically the source domain has different dis-

tribution than the target domain, due to topic shifts
in time, newly introduced features (e.g., until re-
cently online articles did not include facebook
”like” feature.), etc. Adapting the source domain
using unlabeled data is the key to achieving good
performance across domains. Recent adaptation
methods for SSL use: expectation minimization
(Daumé-III, 2010) graph-based learning (Chapelle
et al., 2006; Zhu, 2005), etc. In (Subramanya et
al., 2010) an efficient iterative SSL method is de-
scribed for syntactic tagging, using graph-based
learning to smooth POS tag posteriors. However,
(Reisinger and Mooney, 2011) argues that vector
space models, such as graph-learning, may fail to
capture the richness of word meaning, as simi-
larity is not a globally consistent metric. Rather
than graph-learning, we present a new SSL using
a probabilistic model, MTR, to cluster words based
on co-occurrence statistics.
•Most iterative SSL methods, do not keep track

of the errors made, nor consider the divergence
from the original model. (Lavoie et al., 2011) ar-
gues that iterative learning models should mitigate
new errors made by the model at each iteration by
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keeping the history of the prior predictions. This
ensures that a penalty is paid for diverging from
the previous model’s predictions, which will be
traded off against the benefit of reducing classi-
fication loss. We present a retrospective SSL for
CRF, in that, the iterative learner keeps track of the
errors of the previous iterations so as to carry the
properties of both the source and target domains.

(II) Semantic Clustering. A common prop-
erty of several context-based word clustering tech-
niques, e.g., Brown clustering (Brown et al.,
1992), Clustering by Committee (Pantel, 2003),
etc., is that they mainly cluster based on local con-
text such as nearby words. Standard topic models,
such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), use a bag-of-words approach, which
disregards word order and clusters words together
that appear in a similar global context. Such mod-
els have been effective in discovering lexicons in
many NLP tasks, e.g., named-entity recognition
(Guo et al., 2009), word-sense disambiguation
(Boyd-Graber et al., 2007; Li et al., 2010), syntac-
tic/semantic parsing (Griffiths et al., 2005; Singh
et al., 2010), speaker identification (Nyugen et al.,
2012), etc. Recent topic models consider word
sequence information in documents (Griffiths et
al., 2005; Moon et al., 2010). The Hidden Topic
Markov Model (HTMM) by (Gruber et al., 2005),
for instance, models sentences in documents as
Markov chains, assuming all words in a sentence
have the same topic. While MTR has a similar
Markovian property, we encode features on words
to allow each word in an utterance to sample from
any of the given semantic tags, as in ”what are
[scary]genre movies by [Hitchcock]director?”.

In LDA, common words tend to dominate all
topics causing related words to end up in differ-
ent topics. In (Petterson et al., 2010), the vector-
based features of words are used as prior informa-
tion in LDA so that the words that are synonyms
end up in same topic. Thus, we build a seman-
tically rich topic model, MTR, using word context
features as side information. Using a smoothing
prior for each word-topic pair (instead of a con-
stant β smoother), MTR assures that the words are
distributed over topics based on how similar they
are. (e.g., ”scary” and ”spooky”, which have sim-
ilar context features, go into the same semantic
tag, ”genre”). Thus, to best of our knowledge,
MTR is the first topic model to incorporate word
features while considering the sequence of words.

3 Markov Topic Regression - MTR

3.1 Model and Abstractions

LDA assumes that the latent topics of documents
are sampled independently from one of K topics.
MTR breaks down this independence assumption
by allowing Markov relations between the hidden
tags to capture the relations between consecutive
words (as sketched in Figure 1 and Algorithm 1).

(I) Semantic Tags (si): Each word wi of a
given utterance with Nj words, uj={wi}Nji=1∈U ,
j=1,..|U |, from a set of utterances U , is associated
with a latent semantic tag (state) variable si∈S,
where S is the set of semantic tags. We assume a
fixed K topics corresponding to semantic tags of
labeled data. In a similar way to HTMM (Gruber
et al., 2005) described for documents, MTR sam-
ples each si from a Markov chain that is specific
to its utterance uj . Each state si generates a word,
wi, based on the word-state co-occurrences. MTR
allows for sampling of consecutive words from
different tag clusters. The initial probabilities of
the latent states are sampled from a Dirichlet dis-
tribution over state variables, θj , with α hyper-
parameter for each uj .

(II) Tag Transition Indicator (ψv): Given ut-
terance uj , the decision to sample a wi from a
new topic is determined by an indicator variable,
cj,i, that is sampled from a Binomial(ψv=wi) dis-
tribution with a Beta conjugate prior. (There are v
binomials for each vocabulary term.) cj,i=1 sug-
gests that a new state be sampled from K possible
tags for the word wi in uj , and cj,i=0 suggests that
the state si of wi should be the same as the previ-
ous word’s latent state si−1. The first position of
the sequence is sampled from a new state, hence
cj,i=1=1.

(III) Tag Transition Base Measure (η): Prior
probability of a word given a tag should increase
the chances of sampling words from the correct se-
mantic tag. MTR constrains the generation of a tag
si given the previous tag si−1 and the current wi
based on cj,i by using a vocabulary specific Beta
prior, ψv∼Beta(ηv) 1, on each word in vocabulary
wv=1,..V . We inject the prior information on se-
mantic tags to define values of the base measure
ηv using external knowledge from two sources:
(a) Entity Priors (ηS): Prior probability on
named-entities and descriptive tags denoted as

1For each beta distribution we use symmetric
Beta(ηv)=Beta(α=ηv ,β=ηv).
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Figure 1: The graph representation of the Markov
Topic Regression (MTR). To demonstrate hidden
state Markov Chain, the generation of each word
is explicitly shown (inside of the plate).

ηS=p(si|si−1,wi=v,wi−1). We use web sources
(wiki pages on movies and urls such as imdb.com)
and labeled training data to extract entity lists that
correspond to the semantic tags of our domains.
We keep the frequency of each n-gram to convert
into (empirical) prior probability distribution.
(b) Language Model Prior (ηW ): Probabilities
on word transitions denoted as ηW=p(wi=v|wi−1).
We built a language model using SRILM (Stol-
cke, 2002) on the domain specific sources such as
top wiki pages and blogs on online movie reviews,
etc., to obtain the probabilities of domain-specific
n-grams, up to 3-grams. The observed priors, ηS
and ηW , are used for calculating the base measure
η for each vocabulary wv as:

η
si|si−1
v =

{
η
si|si−1,wi=v
S , if ηsi|si−1,wi=v

S exists,
η
wi=v,wi−1

W , otherwise
(1)

In Eq.(1), we assume that the prior on the se-
mantic tags, ηS , is more indicative of the deci-
sion for sampling a wi from a new tag compared
to language model posteriors on word sequences,
ηW . Here we represent the base-measure (hyper-
parameter) of the semantic tag indicator variable,
which is not to be confused with a probability
measure 2

We update the indicator parameter via mean cri-
teria, ψv=wi=

∑K
i,j=1η

si|sj
v=wi /(K

2). If no prior on

2The base-measure used in Eq.(1) does not relate to a
back-off model in LM sense. Here, instead of using a
constant value for the hyper-parameters, we use probability
scores that we obtain from LM.

Algorithm 1 Markov Topic Regression

1: for each semantic tag topic sk, k ← 1, ...,K do
2: − draw a topic mixture φk ∼ Dir(βk|λk,x),
3: − let βk=exp(f(x;λk)); x={xv}Vl

v=1, βk∈ RVl

4: for each word wv in vocabulary v ← 1, ..., V do
5: − draw a tag indicator mixture ψv ∼ Beta(η),
6: for each utterance j ← 1, ..., |U | do
7: −draw transition distribution θsj ∼ Dir(α)
8: over states si and set cj1=1.
9: −for words wi in uj , i← 1, ..., Nj do

10: � if i >1, toss a coin cj,i ∼ Binomial(ψwi).
11: � If cj,i=1, draw si∼Multi(θ

si,si−1

j )†

12: otherwise si=si−1.
13: � Sample wi∼Multi(φsi ).
† Markov assumption over utterance words is used (See Eq.(4)).

a specific word exists, a default value is used for
base measure, ηv=0.01.

(IV) Topic-Word Distribution Priors (βk):
Different from (Mimno et al., 2008), which uses
asymmetric hyper-parameters on document-topic
distributions, in MTR, we learn the asymmetric
hyper-parameters of the semantic tag-word distri-
butions. We use blocked Gibbs sampling, in which
the topic assignments sk and hyper-parameters
{βk}Kk=1 are alternately sampled at each Gibbs
sampling lag period g given all other variables. We
impose the prior knowledge on naturally related
words, such that if two words ”funny” and ”hilar-
ious” indicate the same given ”genre” class, then
their latent tag distributions should also be simi-
lar. We enforce this on smoothing parameter βk,v,
e.g., βk,′funny′∼βk,′hilarious′ for a given tag k as
follows:

At each g lag period of the Gibbs sampling, K
log-linear models with parameters, λ(g)

k ∈RM , is
trained to predict β(g)

kv ∈βk, for each wv of a tag
sk:

β
(g)
k = exp(f(xl;λ

(g)
k )) (2)

where the log-linear function f is:

n
(g)
kv = f(xlv;λ

(g)
k ) =

∑

m

λ
(g)
k,mx

l
v,m (3)

Here x∈RV×M is the input matrix x, wherein
rows xv∈RM represents M -dimensional scalar
vector of explanatory features on vocabulary
words. We use the word-tag posterior probabili-
ties obtained from a CRF sequence model trained
on labeled utterances as features. The x={xl,xu}
has labeled (l) and unlabeled (u) parts. The labeled
part contains Vl size vocabulary of which we know
the semantic tags, xl={(xl1,s1),...,(xlVl ,sVl)}. At
the start of the Gibbs sampling, we designate the
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K latent topics to the K semantic tags of our la-
beled data. Therefore, we assign labeled words to
their designated topics. This way we use observed
scalar counts of each labeled word v associated
with its semantic tag k, n(g)

kv , as the output label
of its input vector, xlv; an indication of likelihood
of words getting sampled from the correspond-
ing semantic label sk. Since the impact of the
asymmetric prior is equivalent to adding pseudo-
counts to the sufficient statistics of the semantic
tag to which the word belongs, we predict the
pseudo-counts β(g)

kv using the scalar counts of the
labeled data, n(g)

kv , based on the log-linear model
in Eq. (2). At g=0, we use β(0)

kv =28, if xv∈X l; oth-
erwise β(0)

kv =2−2, commonly used values for large
and small β. Note that larger β-values indicate
correlation between the word and the topic.

3.2 Collapsed Sampler

The goal of MTR is to infer the degree of relation-
ship between a word v and each semantic tag k,
φkv. To perform inference we need two compo-
nents:

• a sampler which can draw from condi-
tional PMTR(sji=k|sji−1, s\ji, α, ψi, βji), when
cj,i=1, where sji and sji−1 are the semantic
tags of the current wi=v of vocabulary v and
previous word wi−1 in utterance uj , and s\ji
are the semantic tag topics of all words except
for wi; and,
• an estimation procedure for (βkv, λk) (see
§3.1).

We integrate out the multinomial and binomial pa-
rameters of the model: utterance-tag distributions
θj , binomial state transition indicator distribution
per each word ψv, and φk for tag-word distribu-
tions. We use collapsed Gibbs sampling to re-
duce random components and model the posterior
distribution by obtaining samples (sji, cj,i) drawn
from this distribution. Under the Markov assump-
tion, for each word wi=v in a given utterance uj ,
if cj,i=1, we sample a new tag si=k given the
remaining tags and hyper-parameters βk, α, and
η
si|si−1
wi=v . Using the following parameters; n(si)

ji ,
which is the number of words assigned to a seman-
tic class si=k excluding case i, and n(si−1)

si is the
number of transitions from class si−1 to si, where
indicator I(si−1, si)=1 if slot si=si−1, the update

equation is formulated as follows:

p(sji = k|w, s−ji, α, ηsi|si−1
wi ,βk) ∝

n
(si)
ji + βkwi

n
(k)
(.) +

∑
v βkv

∗ (n
(si−1)
si + α)∗

(n
(si)
si+1 + I(si−1, si) + I(si+1, si) + α)

n
(si)
(.) + I(si−1, k) +Kα

(4)

4 Semi-Supervised Semantic Labeling

4.1 Semi Supervised Learning (SSL) with
CRF

In (Subramanya et al., 2010), a new SSL method
is described for adapting syntactic POS tagging of
sentences in newswire articles along with search
queries to a target domain of natural language
(NL) questions. They decode unlabeled queries
from target domain (t) using a CRF model trained
on the POS-labeled newswire data (source do-
main (o)). The unlabeled POS tag posteriors are
then smoothed using a graph-based learning algo-
rithm. On graph, the similarities are defined over
sequences by constructing the graph over types,
word 3-grams, where types capture the local con-
text of words. Since CRF tagger only uses lo-
cal features of the input to score tag pairs, they
try to capture all the context with the graph with
additional context features on types. Later, using
viterbi decoding, they select the 1-best POS tag
sequence, s∗j for each utterance uj . Graph-based
SSL defines a new CRF objective function:

Λ
(t)
n+1 =argmin

Λ∈RK{
−∑
j=1:l

log p(sj |uj ; Λ
(t)
n ) + µ‖Λ(t)

n ‖2
}
−

{
τ
∑l+u

j=l log pn(s∗j |uj ; Λ
(t)
n )
}

(5)

The first bracket in Eq.(5) is the loss on the la-
beled data and L2 regularization on parameters,
Λ

(t)
n , from nth iteration, same as standard CRF.

The last term is the loss on unlabeled data from
target domain with a hyper-parameter τ . They use
a small value for τ to enable the new model to be
as close as possible to the initial model trained on
source data.

4.2 Retrospective Semi-Supervised CRF
We describe a Retrospective SSL (R-SSL) train-
ing with CRF (Algorithm 2), using MTR as a
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smoothing model, instead of a graph-based model,
as follows:

I. DECODING and SMOOTHING. The poste-
rior probability of a tag sji=k given a word wji
in unlabeled utterance uj from target domain (t)
p̂n(j, i)=p̂n(sji=k|wji; Λ

(t)
n ), is decoded using the

n-th iteration CRF model. MTR uses the decoded
probabilities as semantic tag prior features on vo-
cabulary items. We generate a word-tag matrix of
posteriors, x∈(0, 1)V×K , where K is the number
of semantic tags and V is the vocabulary size from
n-th iteration. Each row is aK dimensional vector
of tag posterior probabilities xv={xv1,. . . xvK} on
the vocabulary term, wv. The labeled rows xl of
the vocabulary matrix, x={xl,xu}, contain only
{0,1} values, indicating the word’s observed se-
mantic tags in the labeled data. Since a labeled
term wv can have different tags (e.g., ”clint east-
wood” may be tagged as actor-name and director-
name in the training data),

∑K
k xvk≥1 holds. The

x is used as the input matrix of the kth log-linear
model (corresponding to kth semantic tag (topic))
to infer the β hyper-parameter of MTR in Eq. (2).
MTR generates smoothed conditional probabilities
φkv for each vocabulary term v given semantic tag
k.

II. INTERPOLATION. For each word wji=v
in unlabeled utterance uj , we interpolate tag
marginals from CRF and MTR for each semantic
tag sji = k:

q̂n(sji|wij ; Λ
(t)
n ) = π

CRF posterior︷ ︸︸ ︷
p̂n(sji|wij ; Λ(t)

n )

+(1− π)

MTR︷︸︸︷
φkv (6)

III. VITERBI. Using viterbi decoding over
the tag marginals, q̂n(sji|wij ; Λ

(t)
n ), and transition

probabilities obtained from the CRF model of n-th
iteration, we get p̂n(s∗j |uj ; Λ

(t)
n ), the 1-best decode

s∗j of each unlabeled utterance uj∈Uun .

IV. RETROSPECTIVE SSL (R-SSL). After
we decode the unlabeled data, we re-train a new
CRF model at each iteration. Each iteration makes
predictions on the semantic tags of unlabeled data
with varying posterior probabilities. Motivated by
(Lavoie et al., 2011), we want the loss function to
have a dependency on the prior model predictions.
Thus, R-SSL encodes the history of the prior pre-

Algorithm 2 Retrospective Semi-Supervised CRF
Input: Labeled U l, and unlabeled Uu data.
Process: Λ

(o)
n =crf-train(Ul) at n=0, n=n+1 †.

While not converged
p̂=posterior-decode(Uun ,Λ(o)

n )
φ=smooth-posteriors(p̂) using MTR,
q̂=interpolate-posteriors(p̂,φ),
Uun=viterbi-decode(q̂)
Λ

(t)
n+1=crf-retrospective(U l, Uun ,. . . ,Uu1 ,Λ(t)

n )
† (n):iteration, (t):target, (o):source domains.

dictions, as follows:

Λ
(t)
n+1 =argmin

Λ∈RK{
−∑
j=1:l

log p(sj |uj ; Λ
(t)
n ) + µ‖Λ(t)

n ‖2
}

{
−∑

j=1:(l+u)

max{0, p̂∗∗n }
}

(7)

where, p̂∗∗n =1 − log hn(uj)p̂n(s∗j |uj ; Λ
(t)
n ). The

first two terms are same as standard CRF. The
last term ensures that the predictions of the cur-
rent model have the same sign as the predic-
tions of the previous models (using labeled and
unlabeled data), denoted by a maximum margin
hinge weight, hn(uj)= 1

n−1

∑n−1
1 p̂n(s∗j |uj ; Λ

(t)
n ).

It should also be noted that with MTR, the R-SSL
learns the word-tag relations by using features that
describe the words in context, eliminating the need
for additional type representation of graph-based
model. MTR provides a separate probability dis-
tribution θj over tags for each utterance j, implic-
itly allowing for the same word v in separate utter-
ances to differ in tag posteriors φkv.

5 Experiments

5.1 Datasets and Tagsets

5.1.1 Semantic Tagging Datasets
We focus here on audiovisual media in the movie
domain. The user is expected to interact by voice
with a system than can perform a variety of tasks
such as browsing, searching, querying informa-
tion, etc. To build initial NLU models for such
a dialog system, we used crowd-sourcing to col-
lect and annotate utterances, which we consider
our source domain. Given movie domain-specific
tasks, we asked the crowd about how they would
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interact with the media system as if they were talk-
ing to a person.

Our data from target domain is internally col-
lected from real-use scenarios of our spoken dia-
log system. The transcribed text forms of these ut-
terances are obtained from speech recognition en-
gine. Although the crowd-sourced data is similar
to target domain, in terms of pre-defined user in-
tentions, the target domain contains more descrip-
tive vocabulary, which is almost twice as large as
the source domain. This causes data-mismatch is-
sues and hence provides a perfect test-bed for a
domain adaptation task. In total, our corpus has
a 40K semantically tagged utterances from each
source and target domains. There are around 15
named-entity and 10 descriptive tags. We sep-
arated 5K utterances to test the performance of
the semantic tagging models. The most frequent
entities are: movie-director (’James Cameron’),
movie-title (’Die Hard’), etc.; whereas top de-
scriptive tags are: genre (’feel good’), description
(’black and white’, ’pg 13’), review-rate (’epic’,
’not for me’), theater-location (’near me’,’city
center’), etc.

Unlabeled utterances similar to the movie do-
main are pulled from a month old web query logs
and extracted over 2 million search queries from
well-known sites, e.g., IMDB, Netflix, etc. We
filtered queries that are similar to our target set
that start with wh-phrases (’what’, ’who’, etc.) as
well as imperatives ’show’, ’list’, etc. In addition,
we extracted web n-grams and entity lists (see §3)
from movie related web sites, and online blogs and
reviews. We collected around 300K movie review
and blog entries on the entities observed in our
data. We extract prior distributions for entities and
n-grams to calculate entity list η and word-tag β
priors (see §3.1).

5.1.2 Syntactic Tagging Datasets
We use the Wall Street Journal (WSJ) section of
the Penn Treebank as our labeled source data. Fol-
lowing previous research, we train on sections 00-
18, comprised of 38,219 POS-tagged sentences.
To evaluate the domain adaptation (DA) approach
and to compare with results reported by (Subra-
manya et al., 2010), we use the first and second
half of QuestionBank (Judge et al., 2006) as our
development and test sets (target). The Question-
Bank contains 4000 POS-tagged questions, how-
ever it is difficult to tag with WSJ-trained tag-
gers because the word order is different than WSJ

and contains a test-set vocabulary that is twice
as large as the one in the development set. As
for unlabeled data we crawled the web and col-
lected around 100,000 questions that are similar
in style and length to the ones in QuestionBank,
e.g. ”wh” questions. There are 36 different tag
sets in the Penn dataset which includes tag la-
bels for verbs, nouns, adjectives, adverbs, modal,
determiners, prepositions, etc. More information
about the Penn Tree-bank tag set can be found here
(Marcus et al., 1993).

5.2 Models

We evaluated several baseline models on two
tasks:

5.2.1 Semantic Clustering
Since MTR provides a mixture of properties
adapted from earlier models, we present perfor-
mance benchmarks on tag clustering using: (i)
LDA; (ii) Hidden Markov Topic Model HMTM
(Gruber et al., 2005); and, (iii) w-LDA (Petterson
et al., 2010) that uses word features as priors in
LDA. When a uniform β hyper-parameter is used
with no external information on the state transi-
tions in MTR, it reduces to a HMTM model. Sim-
ilarly, if no Markov properties are used (bag-of-
words), MTR reduces to w-LDA. Each topic model
uses Gibbs sampling for inference and parameter
learning. We sample models for 1000 iterations,
with a 500-iteration burn-in and a sampling lag of
10. For testing we iterated the Gibbs sampler us-
ing the trained model for 10 iterations on the test-
ing data.

5.2.2 SSL for Semantic/Syntactic Tagging
We evaluated three different baselines against our
SSL models:
? CRF: a standard supervised sequence tagging.
? Self-CRF: a wrapper method for SSL using
self-training. First a supervised learning algorithm
is used to build a CRF model based on the labeled
data. A CRF model is used to decode the unla-
beled data to generate more labeled examples for
re-training.
? SSL-Graph: A SSL model presented in (Sub-
ramanya et al., 2010) that uses graph-based learn-
ing as posterior tag smoother for CRF model using
Eq.(5).

In addition to the three baseline, we evaluated
three variations of our SSL method:
? SSL-MTR: Our first version of SSL uses MTR to
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Figure 2: F-measure for semantic clustering per-
formance. Performance differences for three dif-
ferent baseline models and our MTR approach by
different semantic tags.

smooth the semantic tag posteriors of a unlabeled
data decoded by the CRF model using Eq.(5).
? R-SSL-Graph: Our second version uses
graph-learning to smooth the tag posteriors and re-
train a new CRF model using retrospective SSL in
Eq.(7).
? R-SSL-MTR: Our full model uses MTR as a
Bayesian smoothing model, and retrospective SSL
in Eq.(7) for iterative CRF training.

For all the CRF models, we use lexical fea-
tures consisting of unigrams in a five-word win-
dow around the current word. To include contex-
tual information, we add binary features for all
possible tags. We inject dictionary constraints to
all CRF models, such as features indicating label
prior information. For each model we use sev-
eral named entity features, e.g., movie-title, actor-
name, etc., non-named entity (descriptive) fea-
tures, e.g., movie-description, movie-genre, and
domain independent dictionaries, e.g, time, loca-
tion, etc. For graph-based learning, we imple-
mented the algorithm presented in (Subramanya
et al., 2010) and used the same hyper-parameters
and features. For the rest of the hyper-parameters,
we used: α=0.01 for MTR, π=0.5 for interpolation
mixing. These parameters were chosen based on
the performance of the development set. All CRF
objective functions were optimized using Stochas-
tic Gradient Descent.

5.3 Results and Discussions

5.3.1 Experiment 1: Clustering Semantic
Tags.

Here, we want to demonstrate the performance
of MTR model for capturing relationships between
words and semantic tags against baseline topic

models: LDA, HMTM, w-LDA. We take the se-
mantically labeled utterances from the movie tar-
get domain and use the first half for training and
the rest for performance testing. We use all the
collected unlabeled web queries from the movie
domain. For fair comparison, each benchmark
topic model is provided with prior information on
word-semantic tag distributions based on the la-
beled training data, hence, each K latent topic is
assigned to one of K semantic tags at the begin-
ning of Gibbs sampling.

We evaluate the performance separately on de-
scriptive tags, named-entities, and all tags to-
gether. The performance of the four topic models
are reported in Figure 2. LDA shows the worst per-
formance, even though some supervision is pro-
vided by way of labeled semantic tags. Although
w-LDA improves semantic clustering performance
over LDA, the fact that it does not have Markov
properties makes it fall short behind MTR. As for
the effect of word features in MTR, we see a 3%
absolute performance gain over the second best
performing HMTM baseline on named-entity tags,
a 1% absolute gain on descriptive tags and a 2%
absolute overall gain. As expected, we see a drop
in F-measure on all models on descriptive tags.

5.3.2 Experiment 2: Domain Adaptation
Task.

We compare the performance of our SSL model
to that of state-of-the-art models on semantic and
syntactic tagging. Each SSL model is built us-
ing labeled training data from the source do-
main and unlabeled training data from target do-
main. In Table 2 we show the results on Movie
and QuestionBank target test datasets. The re-
sults of SSL-Graph on QuestionBank is taken
from (Subramanya et al., 2010). The self-
training model, Self-CRF adds 3% improve-
ment over supervised CRF models on movie do-
main, but does not improve syntactic tagging. Be-
cause it is always inherently biased towards the
source domain, self-training tends to reinforce
the knowledge that the supervised model already
has. SSL-Graph works much better for both
syntactic and semantic tagging compared to CRF
and Self-CRF models. Our Bayesian MTR ef-
ficiently extracts information from the unlabeled
data for the target domain. Combined with retro-
spective training, R-SSL-MTR demonstrates no-
ticeable improvements, ∼2% on descriptive tags,
and 1% absolute gains in overall semantic tag-
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ging performance over SSL-Graph. On syntac-
tic tagging, the two retrospective learning models
is comparable, close to 1% improvement over the
SSL-Graph and SSL-MTR.

Movie Domain QBank
Model Desc. NE All POS

CRF 75.05 75.84 75.84 83.80

Self-CRF 78.96 79.53 79.19 84.00

SSL-Graph 80.27 81.35 81.23 86.80

SSL-MTR 79.87 79.31 79.19 86.30

R-SSL-Graph 80.58 81.95 81.52 87.12

R-SSL-MTR 82.76 82.27 82.24 87.34

Table 2: Domain Adaptation performance
in F-measure on Semantic Tagging on
Movie Target domain and POS tagging on
QBank:QuestionBank. Best performing models
are bolded.

5.3.3 Experiment 3: Analysis of Semantic
Disambiguation.

Here we focus on the accuracy of our models in
tagging semantically ambiguous words. We inves-
tigate words that have more than one observed se-
mantic tag in training data, such as ”are there any
[war]genre movies available.”, ”remove all movies
about [war]description.”). Our corpus contained
30,000 unique vocabulary, 55% of which are con-
tained in one or more semantic categories. Only
6.5% of those are tagged as multiple categories
(polysemous), which are the sources of semantic
ambiguity. Table-3 shows the precision of two best
models for most confused words.

We compare our two best SSL models with dif-
ferent smoothing regularizes: R-SSL-MTR (MTR)
and R-SSL-Graph (GRAPH). We use preci-
sion and recall criterion on semantically confused
words.

In Table 3 we show two most frequent descrip-
tive tags; genre and description, and commonly
misclassified words by the two models. Results
indicate that the R-SSL-MTR, performs better
than the R-SSL-Graph, in activating the correct
meaning of a word. The results indicate that incor-
porating context information with MTR is an effec-
tive option for identifying semantic ambiguity.

6 Conclusions

We have presented a novel semi supervised learn-
ing approach using a probabilistic clustering

genre description
Vocab. GRAPH MTR GRAPH MTR

war 50% 100% 75% 88%
popular 90% 89% 80% 100%

kids 78% 86% − 100%
crime 49% 80% 86% 67%

zombie 67% 89% 67% 86%

Table 3: Classification performance in F-measure
for semantically ambiguous words on the most fre-
quently confused descriptive tags in the movie do-
main.

method to semantically tag spoken language ut-
terances. Our results show that encoding priors
on words and context information contributes sig-
nificantly to the performance of semantic cluster-
ing. We have also described an efficient iterative
learning model that can handle data inconsisten-
cies that leads to performance increases in seman-
tic and syntactic tagging.

As a future work, we will investigate using ses-
sion data, namely the entire dialog between the
human and the computer. Rather than using sin-
gle turn utterances, we hope to utilize the con-
text information, e.g., information from previous
turns for improving the performance of the seman-
tic tagging of the current turns.
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Abstract

Hyperedge replacement grammar (HRG)
is a formalism for generating and trans-
forming graphs that has potential appli-
cations in natural language understand-
ing and generation. A recognition al-
gorithm due to Lautemann is known to
be polynomial-time for graphs that are
connected and of bounded degree. We
present a more precise characterization of
the algorithm’s complexity, an optimiza-
tion analogous to binarization of context-
free grammars, and some important im-
plementation details, resulting in an algo-
rithm that is practical for natural-language
applications. The algorithm is part of Boli-
nas, a new software toolkit for HRG pro-
cessing.

1 Introduction

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for generating
graphs (Drewes et al., 1997), and its synchronous
counterpart can be used for transforming graphs
to/from other graphs or trees. As such, it has great
potential for applications in natural language un-
derstanding and generation, and semantics-based
machine translation (Jones et al., 2012). Fig-
ure 1 shows some examples of graphs for natural-
language semantics.

A polynomial-time recognition algorithm for
HRGs was described by Lautemann (1990), build-
ing on the work of Rozenberg and Welzl (1986)
on boundary node label controlled grammars, and
others have presented polynomial-time algorithms
as well (Mazanek and Minas, 2008; Moot, 2008).
Although Lautemann’s algorithm is correct and

tractable, its presentation is prefaced with the re-
mark: “As we are only interested in distinguish-
ing polynomial time from non-polynomial time,
the analysis will be rather crude, and implemen-
tation details will be explicated as little as possi-
ble.” Indeed, the key step of the algorithm, which
matches a rule against the input graph, is described
at a very high level, so that it is not obvious (for a
non-expert in graph algorithms) how to implement
it. More importantly, this step as described leads
to a time complexity that is polynomial, but poten-
tially of very high degree.

In this paper, we describe in detail a more effi-
cient version of this algorithm and its implementa-
tion. We give a more precise complexity analysis
in terms of the grammar and the size and maxi-
mum degree of the input graph, and we show how
to optimize it by a process analogous to binariza-
tion of CFGs, following Gildea (2011). The re-
sulting algorithm is practical and is implemented
as part of the open-source Bolinas toolkit for hy-
peredge replacement grammars.

2 Hyperedge replacement grammars

We give a short example of how HRG works, fol-
lowed by formal definitions.

2.1 Example
Consider a weighted graph language involving just
two types of semantic frames (want and believe),
two types of entities (boy and girl), and two roles
(arg0 and arg1). Figure 1 shows a few graphs from
this language.

Figure 2 shows how to derive one of these
graphs using an HRG. The derivation starts with
a single edge labeled with the nonterminal sym-
bol S . The first rewriting step replaces this edge
with a subgraph, which we might read as “The
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Figure 1: Sample members of a graph language,
representing the meanings of (clockwise from up-
per left): “The girl wants the boy,” “The boy is
believed,” and “The boy wants the girl to believe
that he wants her.”

boy wants something (X) involving himself.” The
second rewriting step replaces the X edge with an-
other subgraph, which we might read as “The boy
wants the girl to believe something (Y) involving
both of them.” The derivation continues with a
third rewriting step, after which there are no more
nonterminal-labeled edges.

2.2 Definitions

The graphs we use in this paper have edge labels,
but no node labels; while node labels are intu-
itive for many graphs in NLP, using both node and
edge labels complicates the definition of hyper-
edge grammar and algorithms. All of our graphs
are directed (ordered), as the purpose of most
graph structures in NLP is to model dependencies
between entities.

Definition 1. An edge-labeled, ordered hyper-
graph is a tuple H = 〈V, E, ℓ〉, where

• V is a finite set of nodes

• E ⊆ V+ is a finite set of hyperedges, each of
which connects one or more distinct nodes

• ℓ : E → C assigns a label (drawn from the
finite set C) to each edge.

For brevity we use the terms graph and hyper-
graph interchangeably, and similarly for edge and
hyperedge. In the definition of HRGs, we will use
the notion of hypergraph fragments, which are the
elementary structures that the grammar assembles
into hypergraphs.

Definition 2. A hypergraph fragment is a tuple
〈V, E, ℓ, X〉, where 〈V, E, ℓ〉 is a hypergraph and
X ∈ V+ is a list of distinct nodes called the ex-
ternal nodes.

The function of graph fragments in HRG is
analogous to the right-hand sides of CFG rules
and to elementary trees in tree adjoining gram-
mars (Joshi and Schabes, 1997). The external
nodes indicate how to integrate a graph into an-
other graph during a derivation, and are analogous
to foot nodes. In diagrams, we draw them with a
black circle ( ).

Definition 3. A hyperedge replacement grammar
(HRG) is a tuple G = 〈N,T, P, S 〉 where

• N and T are finite disjoint sets of nonterminal
and terminal symbols

• S ∈ N is the start symbol

• P is a finite set of productions of the form
A → R, where A ∈ N and R is a graph frag-
ment over N ∪ T .

We now describe the HRG rewriting mecha-
nism.

Definition 4. Given a HRG G, we define the re-
lation H ⇒G H′ (or, H′ is derived from H in one
step) as follows. Let e = (v1 · · · vk) be an edge in
H with label A. Let (A→ R) be a production of G,
where R has external nodes XR = (u1 · · · uk). Then
we write H ⇒G H′ if H′ is the graph formed by
removing e from H, making an isomorphic copy
of R, and identifying vi with (the copy of) ui for
i = 1, . . . , k.

Let H ⇒∗G H′ (or, H′ is derived from H) be the
reflexive, transitive closure of⇒G. The graph lan-
guage of a grammar G is the (possibly infinite) set
of graphs H that have no edges with nonterminal
labels such that

S ⇒∗G H.

When a HRG rule (A → R) is applied to an
edge e, the mapping of external nodes in R to the
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Figure 2: Derivation of a hyperedge replacement grammar for a graph representing the meaning of “The
boy wants the girl to believe that he wants her.”

nodes of e is implied by the ordering of nodes
in e and XR. When writing grammar rules, we
make this ordering explicit by writing the left hand
side of a rule as an edge and indexing the external
nodes of R on both sides, as shown in Figure 2.

HRG derivations are context-free in the sense
that the applicability of each production depends
on the nonterminal label of the replaced edge only.
This allows us to represent a derivation as a deriva-
tion tree, and sets of derivations of a graph as a
derivation forest (which can in turn represented as
hypergraphs). Thus we can apply many of the
methods developed for other context free gram-
mars. For example, it is easy to define weighted
and synchronous versions of HRGs.

Definition 5. If K is a semiring, a K-weighted
HRG is a tuple G = 〈N,T, P, S , λ〉, where
〈N, T, P, S 〉 is a HRG and λ : P → K assigns a
weight in K to each production. The weight of a
derivation of G is the product of the weights of the
productions used in the derivation.

We defer a definition of synchronous HRGs un-
til Section 4, where they are discussed in detail.

3 Parsing

Lautemann’s recognition algorithm for HRGs is a
generalization of the CKY algorithm for CFGs.

Its key step is the matching of a rule against the
input graph, analogous to the concatenation of
two spans in CKY. The original description leaves
open how this matching is done, and because it
tries to match the whole rule at once, it has asymp-
totic complexity exponential in the number of non-
terminal edges. In this section, we present a re-
finement that makes the rule-matching procedure
explicit, and because it matches rules little by lit-
tle, similarly to binarization of CFG rules, it does
so more efficiently than the original.

Let H be the input graph. Let n be the number of
nodes in H, and d be the maximum degree of any
node. Let G be a HRG. For simplicity, we assume
that the right-hand sides of rules are connected.
This restriction entails that each graph generated
by G is connected; therefore, we assume that H is
connected as well. Finally, let m be an arbitrary
node of H called the marker node, whose usage
will become clear below.1

3.1 Representing subgraphs
Just as CKY deals with substrings (i, j] of the in-
put, the HRG parsing algorithm deals with edge-
induced subgraphs I of the input. An edge-
induced subgraph of H = 〈V, E, ℓ〉 is, for some

1To handle the more general case where H is not con-
nected, we would need a marker for each component.
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subset E′ ⊆ E, the smallest subgraph containing
all edges in E′. From now on, we will assume that
all subgraphs are edge-induced subgraphs.

In CKY, the two endpoints i and j com-
pletely specify the recognized part of the input,
wi+1 · · ·w j. Likewise, we do not need to store all
of I explicitly.

Definition 6. Let I be a subgraph of H. A bound-
ary node of I is a node in I which is either a node
with an edge in H\I or an external node. A bound-
ary edge of I is an edge in I which has a boundary
node as an endpoint. The boundary representation
of I is the tuple 〈bn(I), be(I, v),m ∈ I〉, where

• bn(I) is the set of boundary nodes of I

• be(I, v) be the set of boundary edges of v in I

• (m ∈ I) is a flag indicating whether the
marker node is in I.

The boundary representation of I suffices to
specify I compactly.

Proposition 1. If I and I′ are two subgraphs of H
with the same boundary representation, then I =
I′.

Proof. Case 1: bn(I) is empty. If m ∈ I and m ∈ I′,
then all edges of H must belong to both I and I′,
that is, I = I′ = H. Otherwise, if m < I and m < I′,
then no edges can belong to either I or I′, that is,
I = I′ = ∅.

Case 2: bn(I) is nonempty. Suppose I , I′;
without loss of generality, suppose that there is an
edge e that is in I \ I′. Let π be the shortest path
(ignoring edge direction) that begins with e and
ends with a boundary node. All the edges along π
must be in I \ I′, or else there would be a boundary
node in the middle of π, and π would not be the
shortest path from e to a boundary node. Then, in
particular, the last edge of πmust be in I \ I′. Since
it has a boundary node as an endpoint, it must be a
boundary edge of I, but cannot be a boundary edge
of I′, which is a contradiction. �

If two subgraphs are disjoint, we can use their
boundary representations to compute the boundary
representation of their union.

Proposition 2. Let I and J be two subgraphs
whose edges are disjoint. A node v is a boundary
node of I ∪ J iff one of the following holds:

(i) v is a boundary node of one subgraph but not
the other

(ii) v is a boundary node of both subgraphs, and
has an edge which is not a boundary edge of
either.

An edge is a boundary edge of I ∪ J iff it has a
boundary node of I ∪ J as an endpoint and is a
boundary edge of I or J.

Proof. (⇒) v has an edge in either I or J and an
edge e outside both I and J. Therefore it must be a
boundary node of either I or J. Moreover, e is not
a boundary edge of either, satisfying condition (ii).

(⇐) Case (i): without loss of generality, assume
v is a boundary node of I. It has an edge e in I, and
therefore in I ∪ J, and an edge e′ outside I, which
must also be outside J. For e < J (because I and
J are disjoint), and if e′ ∈ J, then v would be a
boundary node of J. Therefore, e′ < I ∪ J, so v is
a boundary node of I ∪ J. Case (ii): v has an edge
in I and therefore I ∪ J, and an edge not in either
I or J. �

This result leads to Algorithm 1, which runs in
time linear in the number of boundary nodes.

Algorithm 1 Compute the union of two disjoint
subgraphs I and J.

for all v ∈ bn(I) do
E ← be(I, v) ∪ be(J, v)
if v < bn(J) or v has an edge not in E then

add v to bn(I ∪ J)
be(I ∪ J, v)← E

for all v ∈ bn(J) do
if v < bn(I) then

add v to bn(I ∪ J)
be(I ∪ J, v)← be(I, v) ∪ be(J, v)

(m ∈ I ∪ J)← (m ∈ I) ∨ (m ∈ J)

In practice, for small subgraphs, it may be more
efficient simply to use an explicit set of edges in-
stead of the boundary representation. For the Geo-
Query corpus (Tang and Mooney, 2001), whose
graphs are only 7.4 nodes on average, we gener-
ally find this to be the case.

3.2 Treewidth

Lautemann’s algorithm tries to match a rule
against the input graph all at once. But we can op-
timize the algorithm by matching a rule incremen-
tally. This is analogous to the rank-minimization
problem for linear context-free rewriting systems.
Gildea has shown that this problem is related to
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the notion of treewidth (Gildea, 2011), which we
review briefly here.
Definition 7. A tree decomposition of a graph
H = 〈V, E〉 is a tree T , each of whose nodes η
is associated with sets Vη ⊆ V and Eη ⊆ E, with
the following properties:

1. Vertex cover: For each v ∈ V , there is a node
η ∈ T such that v ∈ Vη.

2. Edge cover: For each e = (v1 · · · vk) ∈ E,
there is exactly one node η ∈ T such that e ∈
Eη. We say that η introduces e. Moreover,
v1, . . . , vk ∈ Vη.

3. Running intersection: For each v ∈ V , the set
{η ∈ T | v ∈ Vη} is connected.

The width of T is max |Vη| − 1. The treewidth of H
is the minimal width of any tree decomposition
of H.

A tree decomposition of a graph fragment
〈V, E, X〉 is a tree decomposition of 〈V, E〉 that has
the additional property that all the external nodes
belong to Vη for some η. (Without loss of general-
ity, we assume that η is the root.)

For example, Figure 3b shows a graph, and Fig-
ure 3c shows a tree decomposition. This decom-
position has width three, because its largest node
has 4 elements. In general, a tree has width one,
and it can be shown that a graph has treewidth at
most two iff it does not have the following graph
as a minor (Bodlaender, 1997):

K4 =

Finding a tree decomposition with minimal
width is in general NP-hard (Arnborg et al., 1987).
However, we find that for the graphs we are inter-
ested in in NLP applications, even a naı̈ve algo-
rithm gives tree decompositions of low width in
practice: simply perform a depth-first traversal of
the edges of the graph, forming a tree T . Then,
augment the Vη as necessary to satisfy the running
intersection property.

As a test, we extracted rules from the Geo-
Query corpus (Tang and Mooney, 2001) using the
SynSem algorithm (Jones et al., 2012), and com-
puted tree decompositions exactly using a branch-
and-bound method (Gogate and Dechter, 2004)
and this approximate method. Table 1 shows that,
in practice, treewidths are not very high even when
computed only approximately.

method mean max
exact 1.491 2
approximate 1.494 3

Table 1: Mean and maximum treewidths of rules
extracted from the GeoQuery corpus, using exact
and approximate methods.
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Figure 3: (a) A rule right-hand side, and (b) a nice
tree decomposition.

Any tree decomposition can be converted into
one which is nice in the following sense (simpli-
fied from Cygan et al. (2011)). Each tree node η
must be one of:

• A leaf node, such that Vη = ∅.
• A unary node, which introduces exactly one

edge e.

• A binary node, which introduces no edges.

The example decomposition in Figure 3c is nice.
This canonical form simplifies the operation of the
parser described in the following section.

Let G be a HRG. For each production (A →
R) ∈ G, find a nice tree decomposition of R and
call it TR. The treewidth of G is the maximum
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treewidth of any right-hand side in G.
The basic idea of the recognition algorithm is

to recognize the right-hand side of each rule incre-
mentally by working bottom-up on its tree decom-
position. The properties of tree decomposition al-
low us to limit the number of boundary nodes of
the partially-recognized rule.

More formally, let RDη be the subgraph of R in-
duced by the union of Eη′ for all η′ equal to or
dominated by η. Then we can show the following.

Proposition 3. Let R be a graph fragment, and as-
sume a tree decomposition of R. All the boundary
nodes of RDη belong to Vη ∩ Vparent(η).

Proof. Let v be a boundary node of RDη. Node v
must have an edge in RDη and therefore in Rη′ for
some η′ dominated by or equal to η.

Case 1: v is an external node. Since the root
node contains all the external nodes, by the run-
ning intersection property, both Vη and Vparent(η)
must contain v as well.

Case 2: v has an edge not in RDη. Therefore
there must be a tree node not dominated by or
equal to η that contains this edge, and therefore
v. So by the running intersection property, η and
its parent must contain v as well. �

This result, in turn, will allow us to bound the
complexity of the parsing algorithm in terms of the
treewidth of G.

3.3 Inference rules
We present the parsing algorithm as a deductive
system (Shieber et al., 1995). The items have
one of two forms. A passive item has the form
[A, I, X], where X ∈ V+ is an explicit ordering
of the boundary nodes of I. This means that we
have recognized that A ⇒∗G I. Thus, the goal
item is [S ,H, ǫ]. An active item has the form
[A→ R, η, I, φ], where

• (A→ R) is a production of G

• η is a node of TR

• I is a subgraph of H

• φ is a bijection between the boundary nodes
of RDη and those of I.

The parser must ensure that φ is a bijection when
it creates a new item. Below, we use the notation
{e 7→ e′} or {e 7→ X} for the mapping that sends
each node of e to the corresponding node of e′

or X.

Passive items are generated by the following
rule:

• Root
[B→ Q, θ, J, ψ]

[B, J, X]

where θ is the root of TQ, and X j = ψ(XQ, j).

If we assume that the TR are nice, then the in-
ference rules that generate active items follow the
different types of nodes in a nice tree decomposi-
tion:

• Leaf
[A→ R, η, ∅, ∅]

where η is a leaf node of TR.

• (Unary) Nonterminal

[A→ R, η1, I, φ] [B, J, X]
[A→ R, η, I ∪ J, φ ∪ {e 7→ X}]

where η1 is the only child of η, and e is intro-
duced by η and is labeled with nonterminal B.

• (Unary) Terminal

[A→ R, η1, I, φ]
[A→ R, η, I ∪ {e′}, φ ∪ {e 7→ e′}]

where η1 is the only child of η, e is introduced
by η, and e and e′ are both labeled with ter-
minal a.

• Binary

[A→ R, η1, I, φ1] [A→ R, η2, J, φ2]
[A→ R, η, I ∪ J, φ1 ∪ φ2]

where η1 and η2 are the two children of η.

In the Nonterminal, Terminal, and Binary rules,
we form unions of subgraphs and unions of map-
pings. When forming the union of two subgraphs,
we require that the subgraphs be disjoint (however,
see Section 3.4 below for a relaxation of this con-
dition). When forming the union of two mappings,
we require that the result be a bijection. If either
of these conditions is not met, the inference rule
cannot apply.

For efficiency, it is important to index the items
for fast access. For the Nonterminal inference
rule, passive items [B, J, X] should be indexed by
key 〈B, |bn(J)|〉, so that when the next item on the
agenda is an active item [A → R, η1, I, φ], we
know that all possible matching passive items are
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Figure 4: Illustration of unsoundness in the recog-
nition algorithm without the disjointness check.
Using grammar (a), the recognition algorithm
would incorrectly accept the graph (b) by assem-
bling together the three overlapping fragments (c).

under key 〈ℓ(e), |e|〉. Similarly, active items should
be indexed by key 〈ℓ(e), |e|〉 so that they can be
found when the next item on the agenda is a pas-
sive item. For the Binary inference rule, active
items should be indexed by their tree node (η1
or η2).

This procedure can easily be extended to pro-
duce a packed forest of all possible derivations
of the input graph, representable as a hypergraph
just as for other context-free rewriting formalisms.
The Viterbi algorithm can then be applied to
this representation to find the highest-probability
derivation, or the Inside/Outside algorithm to set
weights by Expectation-Maximization.

3.4 The disjointness check

A successful proof using the inference rules above
builds an HRG derivation (comprising all the
rewrites used by the Nonterminal rule) which de-
rives a graph H′, as well as a graph isomorphism
φ : H′ → H (the union of the mappings from all
the items).

During inference, whenever we form the union
of two subgraphs, we require that the subgraphs
be disjoint. This is a rather expensive operation:
it can be done using only their boundary represen-
tations, but the best algorithm we are aware of is
still quadratic in the number of boundary nodes.

Is it possible to drop the disjointness check? If
we did so, it would become possible for the algo-
rithm to recognize the same part of H twice. For
example, Figure 4 shows an example of a grammar
and an input that would be incorrectly recognized.

However, we can replace the disjointness check

with a weaker and faster check such that any
derivation that merges two non-disjoint subgraphs
will ultimately fail, and therefore the derived
graph H′ is isomorphic to the input graph H′ as
desired. This weaker check is to require, when
merging two subgraphs I and J, that:

1. I and J have no boundary edges in common,
and

2. If m belongs to both I and J, it must be a
boundary node of both.

Condition (1) is enough to guarantee that φ is lo-
cally one-to-one in the sense that for all v ∈ H′, φ
restricted to v and its neighbors is one-to-one. This
is easy to show by induction: if φI : I′ → H and
φJ : J′ → H are locally one-to-one, then φI ∪ φJ

must also be, provided condition (1) is met. Intu-
itively, the consequence of this is that we can de-
tect any place where φ changes (say) from being
one-to-one to two-to-one. So if φ is two-to-one,
then it must be two-to-one everywhere (as in the
example of Figure 4).

But condition (2) guarantees that φ maps only
one node to the marker m. We can show this again
by induction: if φI and φJ each map only one node
to m, then φI∪φJ must map only one node to m, by
a combination of condition (2) and the fact that the
inference rules guarantee that φI , φJ , and φI ∪ φJ

are one-to-one on boundary nodes.
Then we can show that, since m is recognized

exactly once, the whole graph is also recognized
exactly once.

Proposition 4. If H and H′ are connected graphs,
φ : H′ → H is locally one-to-one, and φ−1 is de-
fined for some node of H, then φ is a bijection.

Proof. Suppose that φ is not a bijection. Then
there must be two nodes v′1, v

′
2 ∈ H′ such that

φ(v′1) = φ(v′2) = v ∈ H. We also know that there
is a node, namely, m, such that m′ = φ−1(m) is de-
fined.2 Choose a path π (ignoring edge direction)
from v to m. Because φ is a local isomorphism,
we can construct a path from v′1 to m′ that maps
to π. Similarly, we can construct a path from v′2
to m′ that maps to π. Let u′ be the first node that
these two paths have in common. But u′ must have
two edges that map to the same edge, which is a
contradiction. �

2If H were not connected, we would choose the marker in
the same connected component as v.
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3.5 Complexity

The key to the efficiency of the algorithm is that
the treewidth of G leads to a bound on the number
of boundary nodes we must keep track of at any
time.

Let k be the treewidth of G. The time complex-
ity of the algorithm is the number of ways of in-
stantiating the inference rules. Each inference rule
mentions only boundary nodes of RDη or RDηi , all
of which belong to Vη (by Proposition 3), so there
are at most |Vη| ≤ k + 1 of them. In the Nonter-
minal and Binary inference rules, each boundary
edge could belong to I or J or neither. Therefore,
the number of possible instantiations of any infer-
ence rule is in O((3dn)k+1).

The space complexity of the algorithm is the
number of possible items. For each active item
[A→ R, η, I, φ], every boundary node of RDη must
belong to Vη∩Vparent(η) (by Proposition 3). There-
fore the number of boundary nodes is at most k+1
(but typically less), and the number of possible
items is in O((2dn)k+1).

4 Synchronous Parsing

As mentioned in Section 2.2, because HRGs have
context-free derivation trees, it is easy to define
synchronous HRGs, which define mappings be-
tween languages of graphs.

Definition 8. A synchronous hyperedge re-
placement grammar (SHRG) is a tuple G =

〈N, T, T ′, P, S 〉, where

• N is a finite set of nonterminal symbols

• T and T ′ are finite sets of terminal symbols

• S ∈ N is the start symbol

• P is a finite set of productions of the form
(A→ 〈R,R′,∼〉), where R is a graph fragment
over N ∪ T and R′ is a graph fragment over
N ∪ T ′. The relation ∼ is a bijection linking
nonterminal mentions in R and R′, such that
if e ∼ e′, then they have the same label. We
call R the source side and R′ the target side.

Some NLP applications (for example, word
alignment) require synchronous parsing: given a
pair of graphs, finding the derivation or forest of
derivations that simultaneously generate both the
source and target. The algorithm to do this is a
straightforward generalization of the HRG parsing

algorithm. For each rule (A→ 〈R,R′,∼〉), we con-
struct a nice tree decomposition of R∪R′ such that:

• All the external nodes of both R and R′ be-
long to Vη for some η. (Without loss of gen-
erality, assume that η is the root.)

• If e ∼ e′, then e and e′ are introduced by the
same tree node.

In the synchronous parsing algorithm, passive
items have the form [A, I, X, I′, X′] and active
items have the form [A→ R : R′, η, I, φ, I′, φ′].
For brevity we omit a re-presentation of all the in-
ference rules, as they are very similar to their non-
synchronous counterparts. The main difference is
that in the Nonterminal rule, two linked edges are
rewritten simultaneously:

[A→ R : R′, η1, I, φ, I′, φ′] [B, J, X, J′, X′]
[A→ R : R′, η, I ∪ J, φ ∪ {e j 7→ X j},

I′ ∪ J′, φ′ ∪ {e′j 7→ X′j}]

where η1 is the only child of η, e and e′ are both
introduced by η and e ∼ e′, and both are labeled
with nonterminal B.

The complexity of the parsing algorithm is
again in O((3dn)k+1), where k is now the max-
imum treewidth of the dependency graph as de-
fined in this section. In general, this treewidth will
be greater than the treewidth of either the source or
target side on its own, so that synchronous parsing
is generally slower than standard parsing.

5 Conclusion

Although Lautemann’s polynomial-time extension
of CKY to HRGs has been known for some time,
the desire to use graph grammars for large-scale
NLP applications introduces some practical con-
siderations not accounted for in Lautemann’s orig-
inal presentation. We have provided a detailed de-
scription of our refinement of his algorithm and its
implementation. It runs in O((3dn)k+1) time and
requires O((2dn)k+1) space, where n is the num-
ber of nodes in the input graph, d is its maximum
degree, and k is the maximum treewidth of the
rule right-hand sides in the grammar. We have
also described how to extend this algorithm to
synchronous parsing. The parsing algorithms de-
scribed in this paper are implemented in the Boli-
nas toolkit.3

3The Bolinas toolkit can be downloaded from
〈http://www.isi.edu/licensed-sw/bolinas/〉.
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Abstract

We present the first unsupervised ap-
proach for semantic parsing that rivals
the accuracy of supervised approaches
in translating natural-language questions
to database queries. Our GUSP system
produces a semantic parse by annotat-
ing the dependency-tree nodes and edges
with latent states, and learns a proba-
bilistic grammar using EM. To compen-
sate for the lack of example annotations
or question-answer pairs, GUSP adopts
a novel grounded-learning approach to
leverage database for indirect supervision.
On the challenging ATIS dataset, GUSP
attained an accuracy of 84%, effectively
tying with the best published results by su-
pervised approaches.

1 Introduction

Semantic parsing maps text to a formal mean-
ing representation such as logical forms or struc-
tured queries. Recently, there has been a bur-
geoning interest in developing machine-learning
approaches for semantic parsing (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Mooney, 2007; Kwiatkowski et al., 2011), but
the predominant paradigm uses supervised learn-
ing, which requires example annotations that are
costly to obtain. More recently, several grounded-
learning approaches have been proposed to alle-
viate the annotation burden (Chen and Mooney,
2008; Kim and Mooney, 2010; Börschinger et al.,
2011; Clarke et al., 2010; Liang et al., 2011). In
particular, Clarke et al. (2010) and Liang et al.
(2011) proposed methods to learn from question-
answer pairs alone, which represents a significant
advance. However, although these methods exon-
erate annotators from mastering specialized logi-
cal forms, finding the answers for complex ques-

tions still requires non-trivial effort. 1

Poon & Domingos (2009, 2010) proposed the
USP system for unsupervised semantic parsing,
which learns a parser by recursively clustering
and composing synonymous expressions. While
their approach completely obviates the need for di-
rect supervision, their target logic forms are self-
induced clusters, which do not align with existing
database or ontology. As a result, USP can not be
used directly to answer complex questions against
an existing database. More importantly, it misses
the opportunity to leverage database for indirect
supervision.

In this paper, we present the GUSP system,
which combines unsupervised semantic parsing
with grounded learning from a database. GUSP
starts with the dependency tree of a sentence and
produces a semantic parse by annotating the nodes
and edges with latent semantic states derived from
the database. Given a set of natural-language
questions and a database, GUSP learns a prob-
abilistic semantic grammar using EM. To com-
pensate for the lack of direct supervision, GUSP
constrains the search space using the database
schema, and bootstraps learning using lexical
scores computed from the names and values of
database elements.

Unlike previous grounded-learning approaches,
GUSP does not require ambiguous annotations
or oracle answers, but rather focuses on lever-
aging database contents that are readily avail-
able. Unlike USP, GUSP predetermines the tar-
get logical forms based on the database schema,
which alleviates the difficulty in learning and en-
sures that the output semantic parses can be di-
rectly used in querying the database. To handle
syntax-semantics mismatch, GUSP introduces a
novel dependency-based meaning representation

1Clarke et al. (2010) and Liang et al. (2011) used the
annotated logical forms to compute answers for their experi-
ments.
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by augmenting the state space to represent seman-
tic relations beyond immediate dependency neigh-
borhood. This representation also factorizes over
nodes and edges, enabling linear-time exact infer-
ence in GUSP.

We evaluated GUSP on end-to-end question
answering using the ATIS dataset for semantic
parsing (Zettlemoyer and Collins, 2007). Com-
pared to other standard datasets such as GEO and
JOBS, ATIS features a database that is an order
of magnitude larger in the numbers of relations
and instances, as well as a more irregular lan-
guage (ATIS questions were derived from spo-
ken dialogs). Despite these challenges, GUSP
attains an accuracy of 84% in end-to-end ques-
tion answering, effectively tying with the state-
of-the-art supervised approaches (85% by Zettle-
moyer & Collins (2007), 83% by Kwiatkowski et
al. (2011)).

2 Background

2.1 Semantic Parsing

The goal of semantic parsing is to map text to
a complete and detailed meaning representation
(Mooney, 2007). This is in contrast with semantic
role labeling (Carreras and Marquez, 2004) and in-
formation extraction (Banko et al., 2007; Poon and
Domingos, 2007), which have a more restricted
goal of identifying local semantic roles or extract-
ing selected information slots.

The standard language for meaning representa-
tion is first-order logic or a sublanguage, such as
FunQL (Kate et al., 2005; Clarke et al., 2010) and
lambda calculus (Zettlemoyer and Collins, 2005;
Zettlemoyer and Collins, 2007). Poon & Domin-
gos (2009, 2010) induce a meaning representa-
tion by clustering synonymous lambda-calculus
forms stemming from partitions of dependency
trees. More recently, Liang et al. (2011) proposed
DCS for dependency-based compositional seman-
tics, which represents a semantic parse as a tree
with nodes representing database elements and op-
erations, and edges representing relational joins.

In this paper, we focus on semantic parsing
for natural-language interface to database (Grosz
et al., 1987). In this problem setting, a natural-
language question is first translated into a mean-
ing representation by semantic parsing, and then
converted into a structured query such as SQL to
obtain answer from the database.

2.2 Unsupervised Semantic Parsing

Unsupervised semantic parsing was first proposed
by Poon & Domingos (2009, 2010) with their
USP system. USP defines a probabilistic model
over the dependency tree and semantic parse us-
ing Markov logic (Domingos and Lowd, 2009),
and recursively clusters and composes synony-
mous dependency treelets using a hard EM-like
procedure. Since USP uses nonlocal features (e.g.,
the argument-number feature) and operates over
partitions, exact inference is intractable, and USP
resorts to a greedy approach to find the MAP parse
by searching over partitions. Titov & Klementiev
(2011) proposed a Bayesian version of USP and
Titov & Klementiev (2012) adapted it for seman-
tic role induction. In USP, the meaning is repre-
sented by self-induced clusters. Therefore, to an-
swer complex questions against a database, it re-
quires an additional ontology matching step to re-
solve USP clusters with database elements.

Popescu et al. (2003, 2004) proposed the PRE-
CISE system, which does not require labeled ex-
amples and can be directly applied to question
answering with a database. The PRECISE sys-
tem, however, requires substantial amount of engi-
neering, including a domain-specific lexicon that
specifies the synonyms for names and values of
database elements, a restricted set of potential in-
terpretations for domain verbs and prepositions, as
well as a set of domain questions with manually la-
beled POS tags for retraining the tagger and parser.
It also focuses on the subset of easy questions (“se-
mantically tractable” questions), and sidesteps the
problem of dealing with complex and nested struc-
tures, as well as ambiguous interpretations. Re-
markably, while PRECISE can be very accurate
on easy questions, it does not try to learn from
these interpretations. In contrast, Goldwasser et
al. (2011) proposed a self-supervised approach,
which iteratively chose high-confidence parses to
retrain the parser. Their system, however, still
required a lexicon manually constructed for the
given domain. Moreover, it was only applied to
a small domain (a subset of GEO), and the result
still trailed supervised systems by a wide margin.

2.3 Grounded Learning for Semantic Parsing

Grounded learning is motivated by alleviating the
burden of direct supervision via interaction with
the world, where the indirect supervision may
take the form as ambiguous annotations (Chen
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Figure 1: End-to-end question answering by
GUSP for sentence get flight from toronto to san
diego stopping in dtw. Top: the dependency tree
of the sentence is annotated with latent semantic
states by GUSP. For brevity, we omit the edge
states. Raising occurs from flight to get and sink-
ing occurs from get to diego. Bottom: the seman-
tic tree is deterministically converted into SQL to
obtain answer from the database.

and Mooney, 2008; Kim and Mooney, 2010;
Börschinger et al., 2011) or example question-
answer pairs (Clarke et al., 2010; Liang et al.,
2011). In general, however, such supervision is
not always available or easy to obtain. In con-
trast, databases are often abundantly available, es-
pecially for important domains.

The database community has considerable
amount of work on leveraging databases in various
tasks such as entity resolution, schema matching,
and others. To the best of our knowledge, this ap-
proach is still underexplored in the NLP commu-
nity. One notable exception is distant supervision
(Mintz et al., 2009; Riedel et al., 2010; Hoffmann
et al., 2011; Krishnamurthy and Mitchell, 2012;
Heck et al., 2013), which used database instances
to derive training examples for relation extraction.
This approach, however, still has considerable lim-
itations. For example, it only handles binary rela-
tions, and the quality of the training examples is
inherently noisy and hard to control. Moreover,
this approach is not applicable to the question-
answering setting considered in this paper, since
entity pairs in questions need not correspond to
valid relational instances in the database.

3 Grounded Unsupervised Semantic
Parsing

In this section, we present the GUSP system for
grounded unsupervised semantic parsing. GUSP
is unsupervised and does not require example log-
ical forms or question-answer pairs. Figure 1
shows an example of end-to-end question answer-
ing using GUSP. GUSP produces a semantic parse
of the question by annotating its dependency tree
with latent semantic states. The semantic tree
can then be deterministically converted into SQL
to obtain answer from the database. Given a
set of natural-language questions and a database,
GUSP learns a probabilistic semantic grammar us-
ing EM.

To compensate for the lack of annotated ex-
amples, GUSP derives indirect supervision from
a novel combination of three key sources. First,
GUSP leverages the target database to constrain
the search space. Specifically, it defines the se-
mantic states based on the database schema, and
derives lexical-trigger scores from database ele-
ments to bootstrap learning.

Second, in contrast to most existing approaches
for semantic parsing, GUSP starts directly from
dependency trees and focuses on translating them
into semantic parses. While syntax may not al-
ways align perfectly with semantics, it is still
highly informative about the latter. In particular,
dependency edges are often indicative of semantic
relations. On the other hand, syntax and semantic
often diverge, and synactic parsing errors abound.
To combat this problem, GUSP introduces a novel
dependency-based meaning representation with an
augmented state space to account for semantic re-
lations that are nonlocal in the dependency tree.

GUSP’s approach of starting directly from de-
pendency tree is inspired by USP. However, GUSP
uses a different meaning representation defined
over individual nodes and edges, rather than par-
titions, which enables linear-time exact inference.
GUSP also handles complex linguistic phenomena
and syntax-semantics mismatch by explicitly aug-
menting the state space, whereas USP’s capability
in handling such phenomena is indirect and more
limited.

GUSP represents meaning by a semantic tree,
which is similar to DCS (Liang et al., 2011). Their
approach to semantic parsing, however, differs
from GUSP in that it induced the semantic tree di-
rectly from a sentence, rather than starting from
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a dependency tree and annotating it. Their ap-
proach alleviates some complexity in the mean-
ing representation for handling syntax-semantics
mismatch, but it has to search over a much larger
search space involving exponentially many candi-
date trees. This might partially explain why it has
not yet been scaled up to the ATIS dataset.

Finally, GUSP recognizes that certain aspects
in semantic parsing may not be worth learn-
ing using precious annotated examples. These
are domain-independent and closed-class expres-
sions, such as times and dates (e.g., before 5pm
and July seventeenth), logical connectives (e.g.,
and, or, not), and numerics (e.g., 200 dol-
lars). GUSP preprocesses the text to detect such
expressions and restricts their interpretation to
database elements of compatible types (e.g., be-
fore 5pm vs. flight.departure time or
flight.arrival time). Short of training ex-
amples, GUSP also resolves quantifier scoping
ambiguities deterministically by a fixed ordering.
For example, in the phrase cheapest flight to Seat-
tle, the scope of cheapest can be either flight or
flight to seattle. GUSP always chooses to apply
the superlative at last, amounting to choosing the
most restricted scope (flight to seattle), which is
usually the correct interpretation.

In the remainder of this section, we first formal-
ize the problem setting and introduce the GUSP
meaning representation. We then present the
GUSP model and learning and inference algo-
rithms. Finally, we describe how to convert a
GUSP semantic parse into SQL.

3.1 Problem Formulation
Let d be a dependency tree, N(d) and E(d) be
its nodes and edges. In GUSP, a semantic parse
of d is an assignment z : N(d) ∪ E(d) → S
that maps its nodes and edges to semantic states
in S. For example, in the example in Figure 1,
z(flight) = E : flight. At the core of GUSP
is a joint probability distribution Pθ(d, z) over the
dependency tree and the semantic parse. Seman-
tic parsing in GUSP amounts to finding the most
probable parse z∗ = argmaxz Pθ(d, z). Given
a set of sentences and their dependency trees D,
learning in GUSP maximizes the log-likelihood of
D while summing out the latent parses z:

θ∗ = argmax logPθ(D)

= argmax
∑

d∈D
log
∑

z

Pθ(d, z)

3.2 Simple Semantic States
Node states GUSP creates a state E:X (E short
for entity) for each database entity X (i.e., a
database table), a state P:Y (P short for prop-
erty) and V:Y (V short for value) for each database
attribute Y (i.e., a database column). Node
states are assigned to dependency nodes. Intu-
itively, they represent database entities, proper-
ties, and values. For example, the ATIS do-
main contains entities such as flight and fare,
which may contain properties such as the depar-
ture time flight.departure time or ticket
price fare.one direction cost. The men-
tions of entities and properties are represented
by entity and property states, whereas constants
such as 9:25am or 120 dollars are repre-
sented by value states. In the semantic parse in
Figure 1, for example, flight is assigned to en-
tity state E:flight, where toronto is assigned
to value state V:city.name. There is a special
node state NULL, which signifies that the subtree
headed by the word contributes no meaning to the
semantic parse (e.g., an auxilliary verb).

Edge states GUSP creates an edge state for
each valid relational join paths connecting two
node states. Edge states are assigned to de-
pendency edges. GUSP enforces the constraints
that the node states of the dependency par-
ent and child must agree with the node states
in the edge state. For example, E:flight-
-V:flight.departure time represents a
natural join between the flight entity and the prop-
erty value departure time. For a dependency edge
e : a → b, the assignment to E:flight-
-V:flight.departure time signifies that
a represents a flight entity, and b represents the
value of its departure time. An edge state may
also represent a relational path consisting of a
serial of joins. For example, Zettlemoyer and
Collins (2007) used a predicate from(f,c) to
signify that flight f starts from city c. In the ATIS
database, however, this amounts to a path of three
joins:

flight.from airport-airport

airport-airport service

airport service-city

In GUSP, this is represented by the edge
state flight-flight.from airport-
-airport-airport service-city.
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GUSP only creates edge states for relational join
paths up to length four, as longer paths rarely
correspond to meaningful semantic relations.

Composition To handle compositions such as
American Airlines and New York City, it helps
to distinguish the head words (Airlines and City)
from the rest. In GUSP, this is handled by intro-
ducing, for each node state such as E:airline,
a new node state such as E:airline:C, where
C signifies composition. For example, in Figure
1, diego is assigned to V:city.name, whereas
san is assigned to V:city.name:C, since san
diego forms a single meaning unit, and should be
translated into SQL as a whole.

3.3 Domain-Independent States

These are for handling special linguistic phenom-
ena that are not domain-specific, such as negation,
superlatives, and quantifiers.

Operator states GUSP create node states for
the logical and comparison operators (OR, AND,
NOT, MORE, LESS, EQ). Additionally, to han-
dle the cases when prepositions and logical
connectives are collapsed into the label of a
dependency edge, as in Stanford dependency,
GUSP introduces an edge state for each triple
of an operator and two node states, such as
E:flight-AND-E:fare.

Quantifier states GUSP creates a node state for
each of the standard SQL functions: argmin,
argmax, count, sum. Additionally, it cre-
ates a node state for each pair of compatible func-
tion and property. For example, argmin can
be applied to any numeric property, in particular
flight.departure time, and so the node
state P:flight.departure time:argmin
is created and can be assigned to superlatives such
as earliest.

3.4 Complex Semantic States

For sentences with a correct dependency tree and
well-aligned syntax and semantics, the simple se-
mantic states suffice for annotating the correct se-
mantic parse. However, in complex sentences,
syntax and semantic often diverge, either due to
their differing goals or simply stemming from syn-
tactic parsing errors. In Figure 1, the dependency
tree contains multiple errors: from toronto and to
san diego are mistakenly attached to get, which
has no literal meaning here; stopping in dtw is also

wrongly attached to diego rather than flight. An-
notating such a tree with only simple states will
lead to incorrect semantic parses, e.g., by joining
V:city:san diego with V:airport:dtw
via E:airport service, rather than join-
ing E:flight with V:airport:dtw via
E:flight stop.

To overcome these challenges, GUSP intro-
duces three types of complex states to handle
syntax-semantics divergence. Figure 1 shows the
correct semantic parse for the above sentence us-
ing the complex states.

Raising For each simple node state N, GUSP
creates a “raised” state N:R (R short for raised). A
raised state signifies a word that has little or none
of its own meaning, but effectively takes one of its
child states to be its own (“raises”). Correspond-
ingly, GUSP creates a “raising” edge state N-R-N,
which signifies that the parent is a raised state and
its meaning is derived from the dependency child
of state N. For all other children, the parent be-
haves just as state N. For example, in Figure 1, get
is assigned to the raised state E:flight:R, and
the edge between get and flight is assigned to the
raising edge state E:flight-R-E:flight.

Sinking For simple node states A, B and an
edge state E connecting the two, GUSP creates
a “sinking” node state A+E+B:S (S for sinking).
When a node n is assigned to such a sinking state,
n can behave as either A or B for its children
(i.e., the edge states can connect to either one),
and n’s parent must be of state B. In Figure 1,
for example, diego is assigned to a sinking state
V:city.name + E:flight (the edge state is
omitted for brevity). E:flight comes from its
parent get. For child san, diego behaves as in state
V:city.name, and their edge state is a simple
compositional join. For the other child stopping,
diego behaves as in state E:flight, and their
edge state is a relational join connecting flight
with flight stop. Effectively, this connects
stopping with get and eventually with flight (due to
raising), virtually correcting the syntax-semantics
mismatch stemming from attachment errors.

Implicit For simple node states A, B and an
edge state E connecting the two, GUSP also cre-
ates a node state A+E+B:I (I for implicit) with
the “implicit” state B. In natural languages, an en-
tity is often introduced implicitly, which the reader
infers from shared world knowledge. For example,
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to obtain the correct semantic parse for Give me
the fare from Seattle to Boston, one needs to infer
the existence of a flight entity, as in Give me the
fare (of a flight) from Seattle to Boston. Implicit
states offer candidates for addressing such needs.
As in sinking, child nodes have access to either of
the two simple states, but the implicit state is not
visible to the parent node.

3.5 Lexical-Trigger Scores
GUSP uses the database elements to automatically
derive a simple scoring scheme for lexical triggers.
If a database element has a name of k words, each
word is assigned score 1/k for the corresponding
node state. Similarly for property values and value
node states. In a sentence, if a word w triggers a
node state with score s, its dependency children
and left and right neighbors all get a trigger score
of 0.1·s for the same state. To score relevant words
not appearing in the database (due to incomplete-
ness of the database or lexical variations), GUSP
uses DASH (Pantel et al., 2009) to provide addi-
tional word-pair scoring based on lexical distribu-
tional similarity computed over general text cor-
pora (Wikipedia in this case). In the case of multi-
ple score assignments for the same word, the max-
imum score is used.

For multi-word values of property Y , and for
a dependency edge connecting two collocated
words, GUSP assigns a score 1.0 to the edge state
joining the value node state V:Y to its composi-
tion state V:Y:C, as well as the edge state joining
two composition states V:Y:C.

GUSP also uses a domain-independent list of
superlatives with the corresponding data types and
polarity (e.g., first, last, earliest, latest, cheapest)
and assigns a trigger score of 1.0 for each prop-
erty of a compatible data type (e.g., cheapest for
properties of type MONEY).

3.6 The GUSP Model
In a nutshell, the GUSP model resembles a tree-
HMM, which models the emission of words and
dependencies by node and edge states, as well as
transition between an edge state and the parent
and child node states. In preliminary experiments
on the development set, we found that the naı̈ve
model (with multinomials as conditional probabil-
ities) did not perform well in EM. We thus chose
to apply feature-rich EM (Berg-Kirkpatrick et al.,
2010) in GUSP, which enabled the use of more
generalizable features. Specifically, GUSP defines

a probability distribution over dependency tree d
and semantic parse z by

Pθ(d, z) =
1

Z
exp

∑

i

fi(d, z) · wi(d, z)

where fi andwi are features and their weights, and
Z is the normalization constant that sums over all
possible d, z (over the same unlabeled tree). The
features of GUSP are as follows:

Lexical-trigger scores These are implemented
as emission features with fixed weights. For ex-
ample, given a token t that triggers node state
N with score s, there is a corresponding features
1(lemma = t, state = N) with weight α·s, where
α is a parameter.

Emission features for node states GUSP uses
two templates for emission of node states: for
raised states, 1(token = ·), i.e., the emission
weights for all raised states are tied; for non-raised
states, 1(lemma = ·, state = N).

Emission features for edge states GUSP uses
the following templates for emission of edge
states:

Child node state is NULL, dependency= ·;
Edge state is RAISING, dependency= ·;
Parent node state is same as the child node state,

dependency= ·;
Otherwise, parent node state= ·, child node

state= ·, edge state type= ·, dependency= ·.

Transition features GUSP uses the following
templates for transition features, which are similar
to the edge emission features except for the depen-
dency label:

Child node state is NULL;
Edge state is RAISING;
Parent node state is same as the child node state;
Otherwise, parent node state= ·, child node

state= ·, edge state type= ·.

Complexity Prior To favor simple semantic
parses, GUSP imposes an exponential prior with
weight β on nodes states that are not null or raised,
and on each relational join in an edge state.

3.7 Learning and Inference

Since the GUSP model factors over nodes and
edges, learning and inference can be done ef-
ficiently using EM and dynamic programming.
Specifically, the MAP parse and expectations can
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be computed by tree-Viterbi and inside-outside
(Petrov and Klein, 2008). The parameters can be
estimated by feature-rich EM (Berg-Kirkpatrick et
al., 2010).

Because the Viterbi and inside-outside are ap-
plied to a fixed tree (i.e., the input dependency
tree), their running times are only linear in the sen-
tence length in GUSP.

3.8 Query Generation

Given a semantic parse, GUSP generates the SQL
by a depth-first traversal that recursively computes
the denotation of a node from the denotations of its
children and its node state and edge states. Each
denotation is a structured query that contains: a
list of entities for projection (corresponding to
the FROM statement in SQL); a computation tree
where the leaves are simple joins or value compar-
isons, and the internal nodes are logical or quan-
tifier operators (the WHERE statement); the salient
database elements (the SELECT statement). Be-
low, we illustrate this procedure using the seman-
tic parse in Figure 1 as a running example.

Value node state GUSP creates a semantic ob-
ject of the given type with a unique index and
the word constant. For example, the denotation
for node toronto is a city.name object with a
unique index and constant “toronto”. The unique
index is necessary in case the SQL involves mul-
tiple instances of the same entity. For example,
the SQL in Figure 1 involves two instances of the
entity city, corresponding to the departure and
arrival cities, respectively. By default, such a se-
mantic object will be translated into an equality
constraint, such as city.name = toronto.

Entity or property node state GUSP creates a
semantic object of the given type with a unique re-
lation index. For example, the denotation for node
flight is simply a flight object with a unique in-
dex. By default, such an object will contribute to
the list of entities in SQL projection (the FROM
statement), but not any constraints.

NULL state GUSP returns an empty denotation.

Simple edge state GUSP appends the child de-
notation to that of the parent, and appends equal-
ity constraints corresponding to the relational join
path. In the case of composition, such as the join
between diego and san, GUSP simply keeps the
parent object, while adding to it the words from

the child. In the case of a more complex join,
such as that between stopping and dtw, GUSP adds
the relational constraints that join flight stop
with airport:
flight stop.stop airport = airport.airport id.

Raising edge state GUSP simply takes the child
denotation and sets that to the parent.

Implicit and sinking states GUSP maintains
two separate denotations for the two simple states
in the complex state, and processes their respec-
tive edge states accordingly. For example, the
node diego contains two denotations, one for
V:city.name, and one for E:flight, with
the corresponding child being san and stopping,
respectively.

Domain-independent states For comparator
states such as MORE or LESS, GUSP changes the
default equality constraints to an inequality one,
such as flight.depart time < 600 for before
6am. For logical connectives, GUSP combines the
projection and constraints accordingly. For quan-
tifier states, GUSP applies the given function to
the query.

Resolve scoping ambiguities GUSP delays ap-
plying quantifiers until the child semantic object
differs from the parent one or when reaching the
root. GUSP employs the following fixed ordering
in evaluating quantifiers and operators: superla-
tives and other quantifiers are evaluated at last
(i.e., after evaluating all other joins or operators
for the given object), whereas negation is evalu-
ated first, conjunctions and disjunctions are evalu-
ated in their order of appearance.

4 Experiments

4.1 Task

We evaluated GUSP on the ATIS travel planning
domain, which has been studied in He & Young
(2005, 2006) and adapted for evaluating semantic
parsing by Zettlemoyer & Collins (2007) (hence-
forth ZC07). The ZC07 dataset contains annotated
logical forms for each sentence, which we do not
use. Since our goal is not to produce a specific log-
ical form, we directly evaluate on the end-to-end
task of translating questions into database queries
and measure question-answering accuracy. The
ATIS distrbution contains the original SQL anno-
tations, which we used to compute gold answers
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for evaluation only. The dataset is split into train-
ing, development, and test, containing 4500, 478,
and 449 sentences, respectively. We used the de-
velopment set for initial development and tuning
hyperparameters. At test time, we ran GUSP over
the test set to learn a semantic parser and output
the MAP parses.2

4.2 Preprocessing

The ATIS sentences were originally derived from
spoken dialog and were therefore in lower cases.
Since case information is important for parsers
and taggers, we first truecased the sentences us-
ing DASH (Pantel et al., 2009), which stores the
case for each phrase in Wikipedia.

We then ran the sentences through SPLAT, a
state-of-the-art NLP toolkit (Quirk et al., 2012), to
conduct tokenization, part-of-speech tagging, and
constituency parsing. Since SPLAT does not out-
put dependency trees, we ran the Stanford parser
over SPLAT parses to generate the dependency
trees in Stanford dependency (de Marneffe et al.,
2006).

4.3 Systems

For the GUSP system, we set the hyperparame-
ters from initial experiments on the development
set, and used them in all subsequent experiments.
Specifically, we set α = 50 and β = −0.1, and
ran three iterations of feature-rich EM with an L2

prior of 10 over the feature weights.
To evaluate the importance of complex states,

we considered two versions of GUSP : GUSP-
SIMPLE and GUSP-FULL, where GUSP-
SIMPLE only admits simple states, whereas
GUSP-FULL admits all states.

During development, we found that some
questions are inherently ambiguous that can-
not be solved except with some domain
knowledge or labeled examples. In Sec-
tion 3.2, we discuss an edge state that joins
a flight with its starting city: flight-
-flight.from airport-airport-
-airport service-city. The ATIS
database also contains another path of the same
length: flight-flight.from airport-
-airport-ground service-city. The
only difference is that air service is replaced
by ground service. In some occasions, the

2This doesn’t lead to overfitting since we did not use any
labeled information in the test set.

Table 1: Comparison of semantic parsing accu-
racy on the ATIS test dataset. Both ZC07 and
FUBL used annotated logical forms in training,
whereas GUSP-FULL and GUSP++ did not. The
numbers for GUSP-FULL and GUSP++ are end-
to-end question answering accuracy, whereas the
numbers for ZC07 and FUBL are recall on exact
match in logical forms.

Accuracy
ZC07 84.6
FUBL 82.8
GUSP-FULL 74.8
GUSP++ 83.5

answers are identical whereas in others they are
different. Without other information, neither the
complexity prior nor EM can properly discrimi-
nate one against another. (Note that this ambiguity
is not present in the ZC07 logical forms, which
use a single predicate from(f,c) for the entire
relation paths. In other words, to translate ZC07
logical forms into SQL, one also needs to decide
on which path to use.)

Another type of domain-specific ambigui-
ties involves sentences such as give me in-
formation on flights after 4pm on wednesday.
There is no obvious information to disam-
biguate between flight.departure time
and flight.arrival time for 4pm.

Such ambiguities suggest opportunities for in-
teractive learning,3 but this is clearly out of
the scope of this paper. Instead, we incor-
porated a simple disambiguation feature with a
small weight of 0.01 that fires over the sim-
ple states of flight.departure time and
airport service. We named the resulting
system GUSP++.

To gauge the difficulty of the task and the qual-
ity of lexical-trigger scores, we also considered
a deterministic baseline LEXICAL, which com-
puted semantic parses using lexical-trigger scores
alone.

3For example, after eliminating other much less likely
alternatives, the system can present to the user with both
choices and let the user to choose the correct one. The im-
plicit feedback signal can then be used to train the system for
future disambiguation.
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Table 2: Comparison of question answering accu-
racy in ablation experiments.

Accuracy
LEXICAL 33.9
GUSP-SIMPLE 66.5
GUSP-FULL 74.8
GUSP++ 83.5
− RAISING 75.7
− SINKING 77.5
− IMPLICIT 76.2

4.4 Results

We first compared the results of GUSP-FULL and
GUSP++ with ZC07 and FUBL (Kwiatkowski et
al., 2011).4 Note that ZC07 and FUBL were eval-
uated on exact match in logical forms. We used
their recall numbers which are the percentages of
sentences with fully correct logical forms. Given
that the questions are quite specific and generally
admit nonzero number of answers, the question-
answer accuracy should be quite comparable with
these numbers.

Table 1 shows the comparison. Surprisingly,
even without the additional disambiguation fea-
ture, GUSP-FULL already attained an accuracy
broadly in range with supervised results. With the
feature, GUSP++ effectively tied with the best
supervised approach.

To evaluate the importance of various compo-
nents in GUSP, we conducted ablation test to com-
pare the variants of GUSP. Table 2 shows the re-
sults. LEXICAL can parse more than one third
of the sentences correctly, which is quite remark-
able in itself, considering that it only used the lex-
ical scores. On the other hand, roughly two-third
of the sentences cannot be correctly parsed in this
way, suggesting that the lexical scores are noisy
and ambiguous. In comparison, all GUSP variants
achieved significant gains over LEXICAL. Addi-
tionally, GUSP-FULL substantially outperformed
GUSP-SIMPLE, highlighting the challenges of
syntax-semantics mismatch in ATIS, and demon-
strating the importance and effectiveness of com-
plex states for handling such mismatch. All three
types of complex states produced significant con-
tributions. For example, compared to GUSP++,

4We should note that while the more recent system of
FUBL slightly trails ZC07, it is language-independent and
can parse questions in multiple languages.

removing RAISING dropped accuracy by almost
8 points.

4.5 Discussion

Upon manual inspection, many of the remaining
errors are due to syntactic parsing errors that are
too severe to fix. This is partly due to the fact that
ATIS sentences are out of domain compared to
the newswired text on which the syntactic parsers
were trained. For example, show, list were regu-
larly parsed as nouns, whereas round (as in round
trip) were often parsed as a verb and northwest
were parsed as an auxilliary verb. Another reason
is that ATIS sentences are typically less formal or
grammatical, which exacerbates the difficulty in
parsing. In this paper, we used the 1-best depen-
dency tree to produce semantic parse. An interest-
ing future direction is to consider joint syntactic-
semantic parsing, using k-best trees or even the
parse forest as input and reranking the top parse
using semantic information.5

5 Conclusion

This paper introduces grounded unsupervised
semantic parsing, which leverages available
database for indirect supervision and uses a
grounded meaning representation to account for
syntax-semantics mismatch in dependency-based
semantic parsing. The resulting GUSP system is
the first unsupervised approach to attain an accu-
racy comparable to the best supervised systems in
translating complex natural-language questions to
database queries.

Directions for future work include: joint
syntactic-semantic parsing, developing better fea-
tures for learning; interactive learning in a dialog
setting; generalizing distant supervision; applica-
tion to knowledge extraction from database-rich
domains such as biomedical sciences.
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Abstract

It is important that the testimony of chil-
dren be admissible in court, especially
given allegations of abuse. Unfortunately,
children can be misled by interrogators or
might offer false information, with dire
consequences. In this work, we evalu-
ate various parameterizations of five clas-
sifiers (including support vector machines,
neural networks, and random forests) in
deciphering truth from lies given tran-
scripts of interviews with 198 victims of
abuse between the ages of 4 and 7. These
evaluations are performed using a novel
set of syntactic features, including mea-
sures of complexity. Our results show
that sentence length, the mean number
of clauses per utterance, and the Stajner-
Mitkov measure of complexity are highly
informative syntactic features, that classi-
fication accuracy varies greatly by the age
of the speaker, and that accuracy up to
91.7% can be achieved by support vec-
tor machines given a sufficient amount of
data.

1 Introduction
The challenge of disambiguating between truth
and deception is critical in determining the ad-
missibility of court testimony. Unfortunately, the
testimony of maltreated children is often not ad-
mitted in court due to concerns about truthfulness
since children can be instructed to deny transgres-
sions or misled to elicit false accusations (Lyon
and Dorado, 2008). However, the child is often
the only witness of the transgression (Undeutsch,
2008); automatically determining truthfulness in

such situations is therefore a paramount goal so
that justice may be served effectively.

2 Related Work

Research in the detection of deception in adult
speech has included analyses of verbal and non-
verbal cues such as behavioral changes, facial ex-
pression, speech dysfluencies, and cognitive com-
plexity (DePaulo et al., 2003). Despite statistically
significant predictors of deception such as shorter
talking time, fewer semantic details, and less co-
herent statements, DePaulo et al. (2003) found that
the median effect size is very small. Deception
without special motivation (e.g., everyday ‘white
lies’) exhibited almost no discernible cues of de-
ception. However, analysis of moderating factors
showed that cues were significantly more numer-
ous and salient when lies were about transgres-
sions.

Literature on deception in children is relatively
limited. In one study, Lewis et al. (1989) studied
3-year-olds and measured behavioral cues, such as
facial expression and nervous body movement, be-
fore and after the elicitation of a lie. Verbal re-
sponses consisted of yes/no answers. Results sug-
gested that 3-year-old children are capable of de-
ception, and that non-verbal behaviors during de-
ception include increases in ‘positive’ behaviors
(e.g., smiling). However, verbal cues of deception
were not analyzed. Crucially, Lewis et al. (1989)
showed that humans are no more accurate in deci-
phering truth from deception in child speech than
in adult speech, being only about 50% accurate.

More recently, researchers have used linguis-
tic features to identify deception. Newman et al.
(2003) inferred deception in transcribed, typed,
and handwritten text by identifying features of lin-
guistic style such as the use of personal pronouns
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and exclusive words (e.g., but, except, without).
These features were obtained with the Linguistic
Inquiry and Word Count (LIWC) tool and used
in a logistic regression classifier which achieved,
on average, 61% accuracy on test data. Feature
analysis showed that deceptive stories were char-
acterized by fewer self-references, more negative
emotion words, and lower cognitive complexity,
compared to non-deceptive language.

Another recent stylometric experiment in auto-
matic identification of deception was performed
by Mihalcea and Strapparava (2009). The authors
used a dataset of truthful and deceptive typed re-
sponses produced by adult subjects on three dif-
ferent topics, collected through the Amazon Me-
chanical Turk service. Two classifiers, Naı̈ve
Bayes (NB) and a support vector machine (SVM),
were applied on the tokenized and stemmed state-
ments to obtain best classification accuracies of
70% (abortion topic, NB), 67.4% (death penalty
topic, NB), and 77% (friend description, SVM),
where the baseline was taken to be 50%. The
large variability of classifier performance based on
the topic of deception suggests that performance
is context-dependent. The authors note this as
well by demonstrating significantly lower results
of 59.8% for NB and 57.8% for SVM when cross-
topic classification is performed by training each
classifier on two topics and testing on the third.

The Mihalcea-Strapparava mturk dataset was
further used in a study by Feng et al. (2012) which
employs lexicalized and unlexicalized production
rules to obtain deep syntactic features. The cross-
validation accuracy obtained on the three topics
was improved to 77% (abortion topic), 71.5%
(death penalty topic), and 85% (friend descrip-
tion). The results nevertheless varied with topic.

Another experiment using syntactic features for
identifying sentences containing uncertain or un-
reliable information was conducted by Zheng et al.
(2010) on an adult-produced dataset of abstracts
and full articles from BioScope, and on paragraphs
from Wikipedia. The results demonstrated that us-
ing syntactic dependency features extracted with
the Stanford parser improved performance on the
biological dataset, while an ensemble classifier
combining a conditional random field (CRF) and
a MaxEnt classifier performed better than individ-
ual classifiers on the Wikipedia dataset.

A meta-analysis of features used in deception
detection was performed by Hauch et al. (2012)

and revealed that verbal cues based on lexical cat-
egories extracted using the LIWC tool show sta-
tistically significant, though small, differences be-
tween truth- and lie-tellers. Vartapetiance and
Gillam (2012) surveyed existing cues to verbal de-
ception and demonstrated that features in LIWC
are not indicative of deception in online content,
recommending that the features used to identify
deception and the thresholds between deception
and truth be based on the specific data set.

In the speech community, analysis of deceptive
speech has combined various acoustic, prosodic,
and lexical features (Hirschberg et al., 2005). Gra-
ciarena et al. (2006) combined two independent
systems — an acoustic Gaussian mixture model
based on Mel cepstral features, and a prosodic
support vector machine based on features such as
pitch, energy, and duration — and achieved an ac-
curacy of 64.4% on a test subset of the Columbia-
SRI-Colorado (CSC) corpus of deceptive and non-
deceptive speech (Hirschberg et al., 2005).

While previous studies have achieved some
promising results in detecting deception with lex-
ical, acoustic, and prosodic features, syntax re-
mains relatively unexplored compared to LIWC-
based features. Syntactic complexity as a cue
to deception is consistent with literature in social
psychology which suggests that emotion suppres-
sion (e.g., inhibition of guilt and fear) consumes
cognitive resources, which can influence the un-
derlying complexity of utterances (Richards and
Gross, 1999; Richards and Gross, 2000). Ad-
ditionally, the use of syntactic features is moti-
vated by their successful use on adult-produced
datasets for detecting deceptive or uncertain utter-
ances (Feng et al., 2012; Zheng et al., 2010), as
well as in other applications, such as the evaluation
of changes in text complexity (Stajner and Mitkov,
2012), the identification of personality in conver-
sation and text (Mairesse et al., 2007), and the de-
tection of dementia through syntactic changes in
writing (Le et al., 2011).

Past work has focused on identifying deceptive
speech produced by adults. The problem of deter-
mining validity of child testimony in high-stakes
child abuse court cases motivates the analysis of
child-produced deceptive language. Further, the
use of binary classification schemes in previous
work does not account for partial truths often en-
countered in real-life scenarios. Due to the rarity
of real deceptive data, studies typically use arti-
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ficially produced deceptive language which falls
unambiguously in one of two classes: complete
truth or complete deception (Newman et al., 2003;
Mihalcea and Strapparava, 2009). Studies which
make use of real high-stakes courtroom data con-
taining partial truths, such as the Italian DECOUR
corpus analyzed by Fornaciari and Poesio (2012),
preprocess the dataset to eliminate any partially
truthful utterances. Since utterances of this kind
are common in real language, their elimination
from the dataset is not ideal.

The present study evaluates the viability of a
novel set of 17 syntactic features as markers of de-
ception in five classifiers. Moreover, to our knowl-
edge, it is the first application of automatic de-
ception detection to a real-life dataset of deceptive
speech produced by maltreated children. The data
is scored using a gradient of truthfulness, which
is used to represent completely true, partially true,
and completely false statements. Descriptions of
the data (section 3) and feature sets (section 4) pre-
cede experimental results (section 5) and the con-
cluding discussion (section 6).

3 Data
The data used in this study were obtained from
Lyon et al. (2008), who conducted and transcribed
a truth-induction experiment involving maltreated
children awaiting court appearances in the Los
Angeles County Dependency Court. Subjects
were children between the ages of 4 and 7 (99 boys
and 99 girls) who were interviewed regarding an
unambiguous minor transgression involving play-
ing with a toy. To ensure an understanding of lying
and its negative consequences, all children passed
a preliminary oath-taking competency task, requir-
ing each child to correctly identify a truth-teller
and a lie-teller in an object labeling task, as well
as to identify which of the two would be the target
of negative consequences.

During data collection, a confederate first en-
gaged each child individually in one of four condi-
tions: a) play, b) play and coach, c) no play, and d)
no play and coach. In the two play conditions, the
confederate engaged the child in play with a toy
house (in the no play conditions, they did not); in
the two coach conditions, the confederate coached
the child to lie (i.e., to deny playing if they played
with the toy house, or to admit playing if they
did not). The confederate then left and the child
was interviewed by a second researcher who per-
formed a truth-induction manipulation consisting

of one of: a) control — no manipulation, b) oath
— the interviewer reminded the child of the im-
portance of telling the truth and elicited a promise
of truth-telling, and c) reassurance — the inter-
viewer reassured the child that telling the truth will
not lead to any negative consequences.

Each pre- and post-induction transcription may
contain explicit statements of up to seven features:
looking at toy-house, touching toy-house, playing
with toy-house, opening toy-house doors or win-
dows to uncover hidden toys, playing with these
hidden toys, spinning the toy-house, and putting
back or hiding a toy. All children in the play condi-
tion engaged in all seven actions, while children in
the no play condition engaged in none. An eighth
feature is the lack of explicit denial of touching or
playing with the toy house, which is considered
to be truthful in the play condition, and deceptive
in the no play condition (see the examples in the
appendix). A transcription is labeled as truth if
at least half of these features are truthful (53.2%
of all transcriptions) and lie otherwise (46.8% of
transcriptions). Other thresholds for this binary
discrimination are explored in section 5.4.

Each child’s verbal response was recorded
twice: at time T1 (prior to truth-induction), and
at time T2 (after truth-induction). Each child was
subject to one of the four confederate conditions
and one of the three induction conditions. The raw
data were pre-processed to remove subjects with
blank transcriptions, resulting in a total of 173 sub-
jects (87 boys and 86 girls) and 346 transcriptions.

4 Methods
Since the data consist of speech produced by 4- to
7-year-old children, the predictive features must
depend on the level of syntactic competence of
this age group. The “continuity assumption” states
that children have a complete system of abstract
syntactic representation and have the same set of
abstract functional categories accessible to adults
(Pinker, 1984). An experimental study with 3-
to 8-year-old children showed that their syntac-
tic competence is comparable to that of adults;
specifically, children have a productive rule for
passive forms which allows them to generalize
to previously unheard predicates while following
adult-like constraints to avoid over-generalization
(Pinker et al., 1987). Recent experiments with
syntactic priming showed that children’s represen-
tations of abstract passive constructions are well-
developed as early as age 3 or 4, and young
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children are generally able to form passive con-
structions with both action and non-action verbs
(Thatcher et al., 2007). These results suggest that
measures of syntactic complexity that are typically
used to evaluate adult language could be adapted
to child speech, provided that the children are at
least 3 or 4 years old.

Here, the complexity of speech is character-
ized by the length of utterances and by the fre-
quency of dependent and coordinate clauses, with
more complex speech consisting of longer utter-
ances and a higher number of subordinate clauses.
We segmented the transcriptions into sentences,
clauses and T-units, which are “minimally ter-
minable units” consisting of a main clause and
its dependent clauses (Hunt, 1965; O’Donnell et
al., 1967)1. Deceptive communication generally
has shorter duration and is less detailed than non-
deceptive speech (DePaulo et al., 2003), so the
length of each type of segment was counted along
with frequency features over segments. Here, the
frequency of dependent and coordinate clauses per
constituent approximate clause-based measures of
complexity.

Our approach combines a set of features ob-
tained from a functional dependency grammar
(FDG) parser with another (non-overlapping) set
of features obtained from a phrase-based grammar
parser. We obtained FDG parses of the transcrip-
tions using Connexor’s Machinese Syntax parser
(Tapanainen and Järvinen, 1997) and extracted the
following 5 features:

ARI Automated readability index. Measures
word and sentence difficulty, 4.71 cw+0.5ws −
21.43, where c is the number of characters, w
is the number of words, and s is the number
of sentences (Smith and Senter, 1967).

ASL Average sentence length. The number of
words over the number of sentences.

COM Sentence complexity. The ratio of sen-
tences with ≥ 2 finite predicators to those
with ≤ 1 finite predicator (Stajner and
Mitkov, 2012).

PAS Passivity. The ratio of non-finite main
predicators in a passive construction (@–

1T-units include single clauses, two or more phrases in ap-
position, or clause fragments. Generally, coordinate clauses
are split into separate T-units, as are clauses interrupted by
discourse boundary markers.

FMAINV %VP) to the total number of fi-
nite (@+FMAINV %VA) and non-finite (@–
FMAINV %VA and @–FMAINV %VP)
main predicators, including active construc-
tions.

MCU Mean number of clauses per utterance.

Additionally, we searched for specific syntactic
patterns in phrase-based parses of the data. We
used the Stanford probabilistic natural language
parser (Klein and Manning, 2003) for construct-
ing these parse trees, the Stanford Tregex utility
(Levy and Andrew, 2006) for searching the con-
structed parse trees, and a tool provided by Lu
(2011) which extracts a set of 14 clause-based fea-
tures in relation to sentence, clause and T-unit con-
stituents.

4.1 Feature analysis
Analysis of variance (ANOVA) was performed on
the set of 17 features, shown in Table 1. A one-
factor ANOVA across the truth and lie groups
showed three significant feature variations: aver-
age sentence length (ASL), sentence complexity
(COM), and mean clauses per utterance (MCU).
Dependencies between some feature pairs that are
positively correlated are shown in Figure 1.

As expected, the number of clauses (MCU) is
dependent on sentence length (ASL) (r(344) =
.92, p < .001). Also, the number of T-units is de-
pendent on the number of clauses: CN/C is corre-
lated with CN/T (r(344) = .89, p < .001), CP/C
is correlated with CP/T (r(344) = .85, p < .001),
and DC/C is correlated with DC/T (r(344) = .92,
p < .001). Other features are completely un-
correlated. For example, the number of passive
constructions is independent of sentence length
(r(344) = −.0020, p > .05), the number of com-
plex nominals per clause is independent of clause
length (r(344) = .076, p > .05), and the density
of dependent clauses is independent of the density
of coordinate phrases (r(344) = −.027, p > .05).

5 Results
We evaluate five classifiers: logistic regres-
sion (LR), a multilayer perceptron (MLP), naı̈ve
Bayes (NB), a random forest (RF), and a support
vector machine (SVM). Here, naı̈ve Bayes, which
assumes conditional independence of the features,
and logistic regression, which has a linear deci-
sion boundary, are baselines. The MLP includes a
variable number of layers of hidden units, which
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Figure 1: Independent and dependent feature pairs; data points are labeled as truth (blue) and lie (green).

Feature F1,344 d
Automated Readability Index (ARI) 0.187 0.047
Average Sentence Length (ASL) 3.870 0.213
Sentence Complexity (COM) 10.93 0.357
Passive Sentences (PAS) 1.468 0.131
Mean Clauses per Utterance (MCU) 6.703 0.280
Mean Length of T-Unit (MLT) 2.286 0.163
Mean Length of Clause (MLC) 0.044 -0.023
Verb Phrases per T-Unit (VP/T) 3.391 0.199
Clauses per T-Unit (C/T) 2.345 0.166
Dependent Clauses per Clause (DC/C) 1.207 0.119
Dependent Clauses per T-Unit (DC/T) 1.221 0.119
T-Units per Sentence (T/S) 3.692 0.208
Complex T-Unit Ratio (CT/T) 2.103 0.157
Coordinate Phrases per T-Unit (CP/T) 0.463 -0.074
Coordinate Phrases per Clause (CP/C) 0.618 -0.085
Complex Nominals per T-Unit (CN/T) 0.722 0.092
Complex Nominals per Clause (CN/C) 0.087 0.032

Table 1: One-factor ANOVA (F statistics and Co-
hen’s d-values, α = 0.05) on all features across
truth and lie groups. Statistically significant re-
sults are in bold.

apply non-linear activation functions on a linear
combination of inputs. The SVM is a paramet-
ric binary classifier that provides highly non-linear
decision boundaries given particular kernels. The
random forest is an ensemble classifier that returns
the mode of the class predictions of several deci-
sion trees.

5.1 Binary classification across all data

The five classifiers were evaluated on the entire
pooled data set with 10-fold cross validation. Ta-
ble 2 lists the parameters varied for each classi-
fier, and Table 3 shows the cross-validation accu-
racy for the classifiers with the best parameter set-
tings. The naı̈ve Bayes classifier performs poorly,
as could be expected given the assumption of con-
ditional feature independence. The SVM classifier

performs best, with 59.5% cross-validation accu-
racy, which is a statistically significant improve-
ment over the baselines of LR (t(4) = 22.25, p <
.0001), and NB (t(4) = 16.19, p < .0001).

Parameter Values

L
R R Ridge value 10−10 to 10−2

M
L

P

L Learning rate 0.0003 to 0.3

M Momentum 0 to 0.5

H Number of hidden
layers

1 to 5

N
B K Use kernel

estimator
true, false

R
F I Number of trees 1 to 20

K Maximum depth unlimited, 1 to 10

SV
M

K Kernel Linear, RBF,

Polynomial

E Polynomial
Exponent

2 to 5

G RBF Gamma 0.001 to 0.1

C Complexity
constant

0.1 to 10

Table 2: Empirical parameter settings for each
classifier

5.2 Binary classification by age group

Significant variation in syntactic complexity is ex-
pected across ages. To account for such variation,
we segmented the dataset in four groups: 44 tran-
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Accuracy Parameters

LR 0.5347 R = 10−10

MLP 0.5838 L = 0.003, M = 0.4

NB 0.5173 K = false
RF 0.5809 I = 10, K = 6

SVM 0.5954 Polynomial, E = 3, C = 1

Table 3: Cross-validation accuracy of binary clas-
sification performed on entire dataset of 346 tran-
scriptions.

scriptions of 4-year-olds, 120 of 5-year-olds, 94 of
6-year-olds, and 88 of 7-year-olds. By compari-
son, Vrij et al. (2004) used data from only 35 chil-
dren in their study of 5- and 6-year-olds. Classi-
fication of truthfulness was performed separately
for each age, as shown in Table 4. In compar-
ison with classification accuracy on pooled data,
a paired t-test shows statistically significant im-
provement across all age groups using RF, t(3) =
10.37, p < .005.

Age (years)
4 5 6 7

LR 0.6136 0.5333 0.5957* 0.4886
MLP 0.6136† 0.5583 0.6170† 0.5909*
NB 0.6136* 0.5250 0.5426 0.5682
RF 0.6364† 0.6333* 0.6383† 0.6591†
SVM 0.6591 0.5583 0.6064 0.6250*

Table 4: Cross-validation accuracy of binary clas-
sification partitioned by age. The best classifier at
each age is shown in bold. The classifiers showing
statistically significant incremental improvement
are marked: *p < .05, †p < .001 (paired t-test,
d.f. 4)

5.3 Binary classification by age group, on
verbose transcriptions

The length of speech, in number of words, varies
widely (min = 1, max = 167, µ = 36.83,
σ = 28.34) as a result of the unregulated nature
of the interview interaction. To test the effect of
verbosity, we segment the data by child age and
select only the transcriptions with above-average
word counts (i.e., ≥ 37 words), resulting in four
groups: 12 transcriptions of 4-year-olds, 48 of 5-
year-olds, 39 of 6-year-olds, and 37 of 7-year-olds.
This mimics the scenario in which some mini-

mum threshold is placed on the length of a child’s
speech. In this verbose case, 63.3% of transcripts
are labeled truth across age groups (using the same
definition of truth as in section 3), with no sub-
stantial variation between ages; in the non-verbose
case, 53.2% are marked truth. Fisher’s exact test
on this contingency table reveals no significant dif-
ference between these distributions (p = 0.50).
Classification results are shown in Table 5. The
size of the training set for the youngest age cat-
egory is low compared to the other age groups,
which may reduce the reliability of the higher ac-
curacy achieved in that group. The other three age
groups show a growing trend, which is consistent
with expectations — older children exhibit greater
syntactic complexity in speech, allowing greater
variability of feature values across truth and de-
ception. Here, both SVM and RF achieve 83.8%
cross-validation accuracy in identifying deception
in the speech of 7-year-old subjects.

4 5 6 7

LR 0.7500† 0.5417 0.6667† 0.7297†

MLP 0.8333† 0.6250† 0.6154 0.7838†

NB 0.6667† 0.4583 0.4103 0.7297*
RF 0.8333† 0.5625 0.7179† 0.8378†
SVM 0.9167* 0.6250† 0.6154* 0.8378†

Table 5: Cross-validation accuracy of binary clas-
sification performed on transcriptions with above
average word count (136 transcriptions), by age
group. Rows represent classifiers, columns repre-
sent ages. The best classifier for each age is in
bold. The classifiers showing statistically signifi-
cant incremental improvement are marked: *p <
.05, †p < .001 (paired t-test, d.f. 4)

5.4 Threshold variation

To study the effect of the threshold between the
truth and lie classes, we vary the value of the
threshold, τ , from 1 to 8, requiring the admission
of at least τ truthful details (out of 8 possible de-
tails) in order to label a transcription as truth. The
effect of τ on classification accuracy over the en-
tire pooled dataset for each of the 5 classifiers is
shown in Figure 2. A one-factor ANOVA with
τ as the independent variable with 8 levels, and
cross-validation accuracy as the dependent vari-
able, confirms that the effect of the threshold is sta-
tistically significant (F7,40 = 220.69, p < .0001)
with τ = 4 being the most conservative setting.
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Figure 2: Effect of threshold and classifier choice
on cross-validation accuracy. Threshold τ = 0 is
not present, since all data would be labeled truth.

5.5 Linguistic Inquiry and Word Count

The Linguistic Inquiry and Word Count (LIWC)
tool for generating features based on word cate-
gory frequencies has been used in deception de-
tection with adults, specifically: first-person sin-
gular pronouns (FP), exclusive words (EW), nega-
tive emotion words (NW), and motion verbs (MV)
(Newman et al., 2003). We compare the perfor-
mance of classifiers trained with our 17 syntactic
features to those of classifiers trained with those
LIWC-based features on the same data. To evalu-
ate the four LIWC categories, we use the 86 words
of the Pennebaker model (Little and Skillicorn,
2008; Vartapetiance and Gillam, 2012). The per-
formance of the classifiers trained with LIWC fea-
tures is shown in Table 6.

The set of 17 syntactic features proposed here
result in significantly higher accuracies across
classifiers and experiments (µ = 0.63, σ = 0.10)
than with the LIWC features used in previous
work (µ = 0.58, σ = 0.09), as shown in Figure 3
(t(53) = −0.0691, p < .0001).

6 Discussion and future work

This paper evaluates automatic estimation of truth-
fulness in the utterances of children using a novel
set of lexical-syntactic features across five types
of classifiers. While previous studies have favored
word category frequencies extracted with LIWC
(Newman et al., 2003; Little and Skillicorn, 2008;
Hauch et al., 2012; Vartapetiance and Gillam,

Figure 3: Effect of feature set choice on cross-
validation accuracy.

2012; Almela et al., 2012; Fornaciari and Poesio,
2012), our results suggest that the set of syntac-
tic features presented here perform significantly
better than the LIWC feature set on our data, and
across seven out of the eight experiments based on
age groups and verbosity of transcriptions.

Statistical analyses showed that the average sen-
tence length (ASL), the Stajner-Mitkov measure
of sentence complexity (COM), and the mean
number of clauses per utterance (MCU) are the
features most predictive of truth and deception
(see section 4.1). Further preliminary experi-
ments are exploring two methods of feature se-
lection, namely forward selection and minimum-
Redundancy-Maximum-Relevance (mRMR). In
forward selection, features are greedily added one-
at-a-time (given an initially empty feature set) un-
til the cross-validation error stops decreasing with
the addition of new features (Deng, 1998). This
results in a set of only two features: sentence
complexity (COM) and T-units per sentence (T/S).
Features are selected in mRMR by minimizing
redundancy (i.e., the average mutual information
between features) and maximizing the relevance
(i.e., the mutual information between the given
features and the class) (Peng et al., 2005). This
approach selects five features: verb phrases per T-
unit (VP/T), passive sentences (PAS), coordinate
phrases per clause (CP/C), sentence complexity
(COM), and complex nominals per clause (CN/C).
These results confirm the predictive strength of
sentence complexity. Further, preliminary classi-
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Group Accuracy Best Classifier Parameters

Entire dataset 0.5578 RF I = 20, K = unlimited
4-yr-olds 0.5682 MLP L = 0.005, M = 0.3, H = 1
5-yr-olds 0.5583 RF I = 5, K = unlimited
6-yr-olds 0.5319 MLP L = 0.005, M = 0.3, H = 1
7-yr-olds 0.6591 RF I = 5, K = unlimited
4-yr-olds, verbose 0.8333 SVM PolyKernel, E = 4, C = 10
5-yr-olds, verbose 0.7083 SVM NormalizedPolyKernel, E = 1, C = 10
6-yr-olds, verbose 0.6154 MLP L = 0.09, M = 0.2, H = 1
7-yr-olds, verbose 0.7027 MLP L = 0.01, M = 0.5, H = 3

Table 6: Best 10-fold cross-validation accuracies achieved on various subsets of the data, using the
LIWC-based feature set.

fication results across all classifiers suggest that
accuracies are significantly higher given forward
selection (µ = 0.58, σ = 0.02) relative to the
original feature set (µ = 0.56, σ = 0.03); t(5) =
−2.28, p < .05 while the results given the mRMR
features are not significantly different.

Generalized cross-validation accuracy increases
significantly given partitioned age groups, which
suggests that the importance of features may be
moderated by age. A further incremental in-
crease is achieved by considering only transcrip-
tions above a minimum length. O’Donnell et
al. (1967) examined syntactic complexity in the
speech and writing of children aged 8 to 12, and
found that speech complexity increases with age.
This phenomenon appears to be manifested in the
current study by the extent to which classification
increases generally across the 5-, 6-, and 7-year-
old groups, as shown in Table 5. Future examina-
tion of the effect of age on feature saliency may
yield more appropriate age-dependent features.

While past research has used logistic regression
as a binary classifier (Newman et al., 2003), our
experiments show that the best-performing classi-
fiers allow for highly non-linear class boundaries;
SVM and RF models achieve between 62.5% and
91.7% accuracy across age groups — a significant
improvement over the baselines of LR and NB,
as well as over previous results. Moreover, since
the performance of human judges in identifying
deception is not significantly better than chance
(Lewis et al., 1989; Newman et al., 2003), these
results show promise in the use of automatic de-
tection methods.

Partially truthful transcriptions were scored us-
ing a gradient of 0 to 8 truthful details, and a
threshold τ was used to perform binary classifica-

tion. Extreme values of τ lead to poor F-scores de-
spite high accuracy, since the class distribution of
transcriptions is very skewed towards either class.
Future work can explore the effect of threshold
variation given sufficient data with even class dis-
tributions for each threshold setting. When such
data is unavailable, experiments can make use of
the most conservative setting (τ = 4, or an equiv-
alent mid-way setting) for analysis of real-life ut-
terances containing partial truths.

Future work should consider measures of con-
fidence for each classification, where possible, so
that more ambiguous classifications are not treated
on-par with more certain ones. For instance, con-
fidence can be approximated in MLPs by the en-
tropy across continuous-valued output nodes, and
in RFs by the number of component decision trees
that agree on a classification. Although acoustic
data were not provided with this data set (Lyon
and Dorado, 2008) (and, in practice, cannot be as-
sured), future work should also examine the dif-
ferences in the acoustics of children across truth
conditions.
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Appendix
The following is an example of evasive deceptive
speech from a 6-year-old after no truth induction
(i.e., the control condition in which the interviewer
merely states that he needs to ask more questions):

... Yeah yeah ok, I’m a tell you. We
played that same game and I won and
he won. I’m going to be in trouble if I
tell you. It a secret. It’s a secret ’cuz
we’re friends. ...

Transcription excerpt labeled as truth by a
threshold of τ = 1: 7-year-old child’s response
(play, no coach condition), in which the child does
not explicitly deny playing with the toy house, and
admits to looking at it but does not confess to any
of the other six actions:

...I was playing, I was hiding the coin
and I was trying to find the house... try-
ing to see who was in there...

Transcription excerpt labeled as truth by a
threshold of τ = 4: 7-year-old child’s response
(play, no coach condition), in which the child does
not explicitly deny playing, and admits to three ac-
tions:

...me and him was playing with it... we
were just spinning it around and got the
toys out...
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Abstract
A number of different notions, including
subjectivity, have been proposed for dis-
tinguishing parts of documents that con-
vey sentiment from those that do not. We
propose a new concept, sentiment rele-
vance, to make this distinction and argue
that it better reflects the requirements of
sentiment analysis systems. We demon-
strate experimentally that sentiment rele-
vance and subjectivity are related, but dif-
ferent. Since no large amount of labeled
training data for our new notion of sen-
timent relevance is available, we investi-
gate two semi-supervised methods for cre-
ating sentiment relevance classifiers: a dis-
tant supervision approach that leverages
structured information about the domain
of the reviews; and transfer learning on
feature representations based on lexical
taxonomies that enables knowledge trans-
fer. We show that both methods learn sen-
timent relevance classifiers that perform
well.

1 Introduction

It is generally recognized in sentiment analy-
sis that only a subset of the content of a doc-
ument contributes to the sentiment it conveys.
For this reason, some authors distinguish the
categories subjective and objective (Wilson and
Wiebe, 2003). Subjective statements refer to the
internal state of mind of a person, which cannot be
observed. In contrast, objective statements can be
verified by observing and checking reality. Some
sentiment analysis systems filter out objective lan-
guage and predict sentiment based on subjective
language only because objective statements do not
directly reveal sentiment.

Even though the categories subjective/objective
are well-established in philosophy, we argue that

they are not optimal for sentiment analysis. We in-
stead introduce the notion of sentiment relevance
(S-relevance or SR for short). A sentence or lin-
guistic expression is S-relevant if it contains infor-
mation about the sentiment the document conveys;
it is S-nonrelevant (SNR) otherwise.

Ideally, we would like to have at our disposal
a large annotated training set for our new con-
cept of sentiment relevance. However, such a
resource does not yet exist. For this reason,
we investigate two semi-supervised approaches to
S-relevance classification that do not require S-
relevance-labeled data. The first approach is dis-
tant supervision (DS). We create an initial label-
ing based on domain-specific metadata that we ex-
tract from a public database and show that this
improves performance by 5.8% F1 compared to a
baseline. The second approach is transfer learning
(TL) (Thrun, 1996). We show that TL improves
F1 by 12.6% for sentiment relevance classification
when we use a feature representation based on lex-
ical taxonomies that supports knowledge transfer.

In our approach, we classify sentences as S-
(non)relevant because this is the most fine-grained
level at which S-relevance manifests itself; at the
word or phrase level, S-relevance classification
is not possible because of scope and context ef-
fects. However, S-relevance is also a discourse
phenomenon: authors tend to structure documents
into S-relevant passages and S-nonrelevant pas-
sages. To impose this discourse constraint, we em-
ploy a sequence model. We represent each docu-
ment as a graph of sentences and apply a minimum
cut method.

The rest of the paper is structured as follows.
Section 2 introduces the concept of sentiment rel-
evance and relates it to subjectivity. In Section 3,
we review previous work related to sentiment rel-
evance. Next, we describe the methods applied in
this paper (Section 4) and the features we extract
(Section 5). Finally, we turn to the description and
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results of our experiments on distant supervision
(Section 6) and transfer learning (Section 7). We
end with a conclusion in Section 8.

2 Sentiment Relevance

Sentiment Relevance is a concept to distinguish
content informative for determining the sentiment
of a document from uninformative content. This
is in contrast to the usual distinction between sub-
jective and objective content. Although there is
overlap between the two notions, they are differ-
ent. Consider the following examples for subjec-
tive and objective sentences:

(1) Subjective example: Bruce Banner, a genet-
ics researcher with a tragic past, suffers a horrible
accident.

(2) Objective example: The movie won a
Golden Globe for best foreign film and an Oscar.

Sentence (1) is subjective because assessments
like tragic past and horrible accident are subjec-
tive to the reader and writer. Sentence (2) is objec-
tive since we can check the truth of the statement.
However, even though sentence (1) has negative
subjective content, it is not S-relevant because it
is about the plot of the movie and can appear in
a glowingly positive review. Conversely, sentence
(2) contributes to the positive opinion expressed
by the author. Subjectivity and S-relevance are
two distinct concepts that do not imply each other:
Generally neutral and objective sentences can be
S-relevant while certain subjective content is S-
nonrelevant. Below, we first describe the annota-
tion procedure for the sentiment relevance corpus
and then demonstrate empirically that subjectivity
and S-relevance differ.

2.1 Sentiment Relevance Corpus

For our initial experiments, we focus on senti-
ment relevance classification in the movie domain.
To create a sentiment-relevance-annotated corpus,
the SR corpus, we randomly selected 125 docu-
ments from the movie review data set (Pang et al.,
2002).1 Two annotators annotated the sentences
for S-relevance, using the labels SR and SNR. If no
decision can be made because a sentence contains
both S-relevant and S-nonrelevant linguistic ma-
terial, it is marked as uncertain. We excluded
360 sentences that were labeled uncertain from the

1We used the texts from the raw HTML files since the
processed version does not have capitalization.

evaluation. In total, the SR corpus contains 2759
S-relevant and 728 S-nonrelevant sentences. Fig-
ure 1 shows an excerpt from the corpus. The full
corpus is available online.2

First, we study agreement between human an-
notators. We had 762 sentences annotated for S-
relevance by both annotators with an agreement
(Fleiss’ κ) of .69. In addition, we obtained sub-
jectivity annotations for the same data on Amazon
Mechanical Turk, obtaining each label through a
vote of three, with an agreement of κ = .61. How-
ever, the agreement of the subjectivity and rele-
vance labelings after voting, assuming that sub-
jectivity equals relevance, is only at κ = .48.
This suggests that there is indeed a measurable
difference between subjectivity and relevance. An
annotator who we asked to examine the 225 ex-
amples where the annotations disagree found that
83.5% of these cases are true differences.

2.2 Contrastive Classification Experiment
We will now examine the similarities of S-
relevance and an existing subjectivity dataset.
Pang and Lee (2004) introduced subjectivity data
(henceforth P&L corpus) that consists of 5000
highly subjective (quote) review snippets from rot-
tentomatoes.com and 5000 objective (plot) sen-
tences from IMDb plot descriptions.

We now show that although the P&L selection
criteria (quotes, plot) bear resemblance to the def-
inition of S-relevance, the two concepts are differ-
ent.

We use quote as S-relevant and plot as S-
nonrelevant data in TL. We divide both the SR
and P&L corpora into training (50%) and test sets
(50%) and train a Maximum Entropy (MaxEnt)
classifier (Manning and Klein, 2003) with bag-of-
word features. Macro-averaged F1 for the four
possible training-test combinations is shown in Ta-
ble 1. The results clearly show that the classes
defined by the two labeled sets are different. A
classifier trained on P&L performs worse by about
8% on SR than a classifier trained on SR (68.5 vs.
76.4). A classifier trained on SR performs worse
by more than 20% on P&L than a classifier trained
on P&L (67.4 vs. 89.7).

Note that the classes are not balanced in the
S-relevance data while they are balanced in the
subjectivity data. This can cause a misestimation

2http://www.ims.uni-stuttgart.
de/forschung/ressourcen/korpora/
sentimentrelevance/
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O SNR Braxton is a gambling addict in deep to Mook (Ellen Burstyn), a local bookie.
S SNR Kennesaw is bitter about his marriage to a socialite (Rosanna Arquette), believing his wife

to be unfaithful.
S SR The plot is twisty and complex, with lots of lengthy flashbacks, and plenty of surprises.
S SR However, there are times when it is needlessly complex, and at least one instance the

storytelling turns so muddled that the answers to important plot points actually get lost.
S SR Take a look at L. A. Confidential, or the film’s more likely inspiration, The Usual Suspects

for how a complex plot can properly be handled.

Figure 1: Example data from the SR corpus with subjectivity (S/O) and S-relevance (SR/SNR) annota-
tions

test
P&L SR

tr
ai

n P&L 89.7 68.5
SR 67.4 76.4

Table 1: TL/in-task F1 for P&L and SR corpora

vocabulary fpSR fpSNR
{actor, director, story} 0 7.5
{good, bad, great} 11.5 4.8

Table 2: % incorrect sentences containing specific
words

of class probabilities and lead to the experienced
performance drops. Indeed, if we either balance
the S-relevance data or unbalance the subjectivity
data, we can significantly increase F1 to 74.8%
and 77.9%, respectively, in the noisy label trans-
fer setting. Note however that this step is difficult
in practical applications if the actual label distri-
bution is unknown. Also, in a real practical ap-
plication the distribution of the data is what it is –
it cannot be adjusted to the training set. We will
show in Section 7 that using an unsupervised se-
quence model is superior to artificial manipulation
of class-imbalances.

An error analysis for the classifier trained on
P&L shows that many sentences misclassified as
S-relevant (fpSR) contain polar words; for exam-
ple, Then, the situation turns bad. In contrast, sen-
tences misclassified as S-nonrelevant (fpSNR) con-
tain named entities or plot and movie business vo-
cabulary; for example, Tim Roth delivers the most
impressive acting job by getting the body language
right.

The word count statistics in Table 2 show this
for three polar words and for three plot/movie
business words. The P&L-trained classifier seems
to have a strong bias to classify sentences with po-

lar words as S-relevant even if they are not, per-
haps because most training instances for the cat-
egory quote are highly subjective, so that there
is insufficient representation of less emphatic S-
relevant sentences. These snippets rarely con-
tain plot/movie-business words, so that the P&L-
trained classifier assigns almost all sentences with
such words to the category S-nonrelevant.

3 Related Work

Many publications have addressed subjectivity in
sentiment analysis. Two important papers that are
based on the original philosophical definition of
the term (internal state of mind vs. external real-
ity) are (Wilson and Wiebe, 2003) and (Riloff and
Wiebe, 2003). As we argue above, if the goal is to
identify parts of a document that are useful/non-
useful for sentiment analysis, then S-relevance is
a better notion to use.

Researchers have implicitly deviated from the
philosophical definition because they were primar-
ily interested in satisfying the needs of a particular
task. For example, Pang and Lee (2004) use a min-
imum cut graph model for review summarization.
Because they do not directly evaluate the results
of subjectivity classification, it is not clear to what
extent their method is able to identify subjectivity
correctly.

In general, it is not possible to know what the
underlying concepts of a statistical classification
are if no detailed annotation guidelines exist and
no direct evaluation of manually labeled data is
performed.

Our work is most closely related to (Taboada
et al., 2009) who define a fine-grained classifica-
tion that is similar to sentiment relevance on the
highest level. However, unlike our study, they
fail to experimentally compare their classification
scheme to prior work in their experiments and
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to show that this scheme is different. In addi-
tion, they work on the paragraph level. How-
ever, paragraphs often contain a mix of S-relevant
and S-nonrelevant sentences. We use the mini-
mum cut method and are therefore able to incorpo-
rate discourse-level constraints in a more flexible
fashion, giving preference to “relevance-uniform”
paragraphs without mandating them.

Täckström and McDonald (2011) develop a
fine-grained annotation scheme that includes S-
nonrelevance as one of five categories. However,
they do not use the category S-nonrelevance di-
rectly in their experiments and do not evaluate
classification accuracy for it. We do not use their
data set as it would cause domain mismatch be-
tween the product reviews they use and the avail-
able movie review subjectivity data (Pang and Lee,
2004) in the TL approach. Changing both the do-
main (movies to products) and the task (subjectiv-
ity to S-relevance) would give rise to interactions
that we would like to avoid in our study.

The notion of annotator rationales (Zaidan et
al., 2007) has some overlap with our notion of
sentiment relevance. Yessenalina et al. (2010)
use rationales in a multi-level model to integrate
sentence-level information into a document classi-
fier. Neither paper presents a direct gold standard
evaluation of the accuracy of rationale detection.

In summary, no direct evaluation of sentiment
relevance has been performed previously. One
contribution in this paper is that we provide a
single-domain gold standard for sentiment rele-
vance, created based on clear annotation guide-
lines, and use it for direct evaluation.

Sentiment relevance is also related to review
mining (e.g., (Ding et al., 2008)) and sentiment
retrieval techniques (e.g., (Eguchi and Lavrenko,
2006)) in that they aim to find phrases, sentences
or snippets that are relevant for sentiment, either
with respect to certain features or with a focus on
high-precision retrieval (cf. (Liu, 2010)). How-
ever, finding a few S-relevant items with high pre-
cision is much easier than the task we address: ex-
haustive classification of all sentences.

Another contribution is that we show that gen-
eralization based on semantic classes improves S-
relevance classification. While previous work has
shown the utility of other types of feature gen-
eralization for sentiment and subjectivity analysis
(e.g., syntax and part-of-speech (Riloff and Wiebe,
2003)), semantic classes have so far not been ex-

ploited.
Named-entity features in movie reviews were

first used by Zhuang et al. (2006), in the form
of feature-opinion pairs (e.g., a positive opinion
about the acting). They show that recognizing plot
elements (e.g., script) and classes of people (e.g.,
actor) benefits review summarization. We follow
their approach by using IMDb to define named
entity features. We extend their work by intro-
ducing methods for labeling partial uses of names
and pronominal references. We address a different
problem (S-relevance vs. opinions) and use differ-
ent methods (graph-based and statistical vs. rule-
based).

Täckström and McDonald (2011) also solve a
similar sequence problem by applying a distantly
supervised classifier with an unsupervised hidden
sequence component. Their setup differs from
ours as our focus lies on pattern-based distant su-
pervision instead of distant supervision using doc-
uments for sentence classification.

Transfer learning has been applied previously in
sentiment analysis (Tan and Cheng, 2009), target-
ing polarity detection.

4 Methods

Due to the sequential properties of S-relevance (cf.
Taboada et al. (2009)), we impose the discourse
constraint that an S-relevant (resp. S-nonrelevant)
sentence tends to follow an S-relevant (resp. S-
nonrelevant) sentence. Following Pang and Lee
(2004), we use minimum cut (MinCut) to formal-
ize this discourse constraint.

For a document with n sentences, we create a
graph with n + 2 nodes: n sentence nodes and
source and sink nodes. We define source and
sink to represent the classes S-relevance and S-
nonrelevance, respectively, and refer to them as
SR and SNR.

The individual weight ind(s, x) between a sen-
tence s and the source/sink node x ∈ {SR,SNR}
is weighted according to some confidence mea-
sure for assigning it to the corresponding class.
The weight on the edge from the document’s
ith sentence si to its j th sentence sj is set to
assoc(si, sj) = c/(j − i)2 where c is a parame-
ter (cf. (Pang and Lee, 2004)). The minimum cut
is a tradeoff between the confidence of the clas-
sification decisions and “discourse coherence”.
The discourse constraint often has the effect that
high-confidence labels are propagated over the se-

957



quence. As a result, outliers with low confidence
are eliminated and we get a “smoother” label se-
quence.

To compute minimum cuts, we use the push-
relabel maximum flow method (Cherkassky and
Goldberg, 1995).3

We need to find values for multiple free param-
eters related to the sequence model. Supervised
optimization is impossible as we do not have any
labeled data. We therefore resort to a proxy mea-
sure, the run count. A run is a sequence of sen-
tences with the same label. We set each param-
eter p to the value that produces a median run
count that is closest to the true median run count
(or, in case of a tie, closest to the true mean run
count). We assume that the optimal median/mean
run count is known. In practice, it can be estimated
from a small number of documents. We find the
optimal value of p by grid search.

5 Features

Choosing features is crucial in situations where
no high-quality training data is available. We are
interested in features that are robust and support
generalization. We propose two linguistic feature
types for S-relevance classification that meet these
requirements.

5.1 Generalization through Semantic
Features

Distant supervision and transfer learning are set-
tings where exact training data is unavailable. We
therefore introduce generalization features which
are more likely to support knowledge transfer. To
generalize over concepts, we use knowledge from
taxonomies. A set of generalizations can be in-
duced by making a cut in the taxonomy and defin-
ing the concepts there as base classes. For nouns,
the taxonomy is WordNet (Miller, 1995) for which
CoreLex (Buitelaar, 1998) gives a set of basic
types. For verbs, VerbNet (Kipper et al., 2008)
already contains base classes.

We add for each verb in VerbNet and for each
noun in CoreLex its base class or basic type as
an additional feature where words tagged by the
mate tagger (Bohnet, 2010) as NN.* are treated as
nouns and words tagged as VB.* as verbs. For ex-
ample, the verb suggest occurs in the VerbNet base
class say, so we add a feature VN:say to the fea-

3using the HIPR tool (www.avglab.com/andrew/
soft.html)

ture representation. We refer to these feature sets
as CoreLex (CX) and VerbNet (VN) features and to
their combination as semantic features (SEM).

5.2 Named Entities

As standard named entity recognition (NER) sys-
tems do not capture categories that are relevant to
the movie domain, we opt for a lexicon-based ap-
proach similar to (Zhuang et al., 2006). We use
the IMDb movie metadata database4 from which
we extract names for the categories <ACTOR>,
<PERSONNEL> (directors, screenwriters, and
composers), and <CHARACTER> (movie charac-
ters). Many entries are unsuitable for NER, e.g.,
dog is frequently listed as a character. We filter
out all words that also appear in lower case in a list
of English words extracted from the dict.cc dictio-
nary.5

A name n can be ambiguous between the cat-
egories (e.g., John Williams). We disambiguate
by calculating the maximum likelihood estimate
of p(c|n) = f(n,c)P

c′ f(n,c
′) where c is one of the

three categories and f(n, c) is the number of times
n occurs in the database as a member of cat-
egory c. We also calculate these probabilities
for all tokens that make up a name. While this
can cause false positives, it can help in many
cases where the name obviously belongs to a cat-
egory (e.g., Skywalker in Luke Skywalker is very
likely a character reference). We always inter-
pret a name preceding an actor in parentheses
as a character mention, e.g., Reese Witherspoon
in Tracy Flick (Reese Witherspoon) is an over-
achiever [. . . ] This way, we can recognize charac-
ter mentions for which IMDb provides insufficient
information.

In addition, we use a set of simple rules to prop-
agate annotations to related terms. If a capitalized
word occurs, we check whether it is part of an al-
ready recognized named entity. For example, if
we encounter Robin and we previously encoun-
tered Robin Hood, we assume that the two enti-
ties match. Personal pronouns will match the most
recently encountered named entity. This rule has
precedence over NER, so if a name matches a la-
beled entity, we do not attempt to label it through
NER.

The aforementioned features are encoded as bi-
nary presence indicators for each sentence. This

4www.imdb.com/interfaces/
5dict.cc
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feature set is referred to as named entities (NE).

5.3 Sequential Features

Following previous sequence classification work
with Maximum Entropy models (e.g., (Ratna-
parkhi, 1996)), we use selected features of adja-
cent sentences. If a sentence contains a feature F,
we add the feature F+1 to the following sentence.
For example, if a <CHARACTER> feature occurs
in a sentence, <CHARACTER+1> is added to the
following sentence. For S-relevance classification,
we perform this operation only for NE features as
they are restricted to a few classes and thus will
not enlarge the feature space notably. We refer to
this feature set as sequential features (SQ).

6 Distant Supervision

Since a large labeled resource for sentiment rele-
vance classification is not yet available, we inves-
tigate semi-supervised methods for creating sen-
timent relevance classifiers. In this section, we
show how to bootstrap a sentiment relevance clas-
sifier by distant supervision (DS) .

Even though we do not have sentiment rele-
vance annotations, there are sources of metadata
about the movie domain that we can leverage for
distant supervision. Specifically, movie databases
like IMDb contain both metadata about the plot,
in particular the characters of a movie, and meta-
data about the “creators” who were involved in the
production of the movie: actors, writers, direc-
tors, and composers. On the one hand, statements
about characters usually describe the plot and are
not sentiment relevant and on the other hand, state-
ments about the creators tend to be evaluations of
their contributions – positive or negative – to the
movie. We formulate a classification rule based
on this observation: Count occurrences of NE fea-
tures and label sentences that contain a majority
of creators (and tied cases) as SR and sentences
that contain a majority of characters as SNR. This
simple labeling rule covers 1583 sentences with
an F1 score of 67.2% on the SR corpus. We call
these labels inferred from NE metadata distant su-
pervision (DS) labels. This is a form of distant
supervision in that we use the IMDb database as
described in Section 5 to automatically label sen-
tences based on which metadata from the database
they contain.

To increase coverage, we train a Maximum En-
tropy (MaxEnt) classifier (Manning and Klein,

2003) on the labels. The MaxEnt model achieves
an F1 of 61.2% on the SR corpus (Table 3, line 2).
As this classifier uses training data that is biased
towards a specialized case (sentences containing
the named entity types creators and characters),
it does not generalize well to other S-relevance
problems and thus yields lower performance on
the full dataset. This distant supervision setup suf-
fers from two issues. First, the classifier only sees
a subset of examples that contain named entities,
making generalization to other types of expres-
sions difficult. Second, there is no way to control
the quality of the input to the classifier, as we have
no confidence measure for our distant supervision
labeling rule. We will address these two issues by
introducing an intermediate step, the unsupervised
sequence model introduced in Section 4.

As described in Section 4, each document is
represented as a graph of sentences and weights
between sentences and source/sink nodes repre-
senting SR/SNR are set to the confidence values
obtained from the distantly trained MaxEnt clas-
sifier. We then apply MinCut as described in the
following paragraphs and select the most confident
examples as training material for a new classifier.

6.1 MinCut Setup
We follow the general MinCut setup described in
Section 4. As explained above, we assume that
creators and directors indicate relevance and char-
acters indicate nonrelevance. Accordingly, we
define nSR to be the number of <ACTOR> and
<PERSONNEL> features occurring in a sentence,
and nSNR the number of <CHARACTER> features.
We then set the individual weight between a sen-
tence and the source/sink nodes to ind(s, x) = nx
where x ∈ {SR,SNR}. The MinCut parameter c
is set to 1; we wish to give the association scores
high weights as there might be long spans that
have individual weights with zero values.

6.2 Confidence-based Data Selection
We use the output of the base classifier to train su-
pervised models. Since the MinCut model is based
on a weak assumption, it will make many false de-
cisions. To eliminate incorrect decisions, we only
use documents as training data that were labeled
with high confidence. As the confidence measure
for a document, we use the maximum flow value f
– the “amount of fluid” flowing through the docu-
ment. The max-flow min-cut theorem (Ford and
Fulkerson, 1956) implies that if the flow value
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Model Features FSR FSNR Fm
1 Majority BL – 88.3 0.0 44.2
2 MaxEnt (DSlabels) NE 79.8 42.6 61.21

3 DSlabels+MinCut NE 79.6 48.2 63.912

4 DS MaxEnt NE 84.8 46.4 65.612

5 DS MaxEnt NE+SEM 85.2 48.0 66.6124

6 DS CRF NE 83.4 49.5 66.412

7 DS MaxEnt NE+SQ 84.8 49.2 67.01234

8 DS MaxEnt NE+SQ+SEM 84.5 49.1 66.81234

Table 3: Classification results: FSR (S-relevant F1), FSNR (S-nonrelevant F1), and Fm (macro-averaged
F1). Superscript numbers indicate a significant improvement over the corresponding line.

is low, then the cut was found more quickly and
thus can be easier to calculate; this means that the
sentence is more likely to have been assigned to
the correct segment. Following this assumption,
we train MaxEnt and Conditional Random Field
(CRF, (McCallum, 2002)) classifiers on the k%
of documents that have the lowest maximum flow
values f , where k is a parameter which we op-
timize using the run count method introduced in
Section 4.

6.3 Experiments and Results

Table 3 shows S-relevant (FSR), S-nonrelevant
(FSNR) and macro average (Fm) F1 values for dif-
ferent setups with this parameter. We compare the
following setups: (1) The majority baseline (BL)
i.e., choosing the most frequent label (SR). (2) a
MaxEnt baseline trained on DS labels without ap-
plication of MinCut; (3) the base classifier using
MinCut (DSlabels+MinCut) as described above.

Conditions 4-8 train supervised classifiers based
on the labels from DSlabels+MinCut: (4) MaxEnt
with named entities (NE); (5) MaxEnt with NE
and semantic (SEM) features; (6) CRF with NE;
(7) MaxEnt with NE and sequential (SQ) features;
(8) MaxEnt with NE, SQ, and SEM.

We test statistical significance using the approx-
imate randomization test (Noreen, 1989) on doc-
uments with 10,000 iterations at p < .05. We
achieve classification results above baseline using
the MinCut base classifier (line 3) and a consider-
able improvement through distant supervision. We
found that all classifiers using DS labels and Min-
cut are significantly better than MaxEnt trained on
purely rule-based DS labels (line 2). Also, the
MaxEnt models using SQ features (lines 7,8) are
significantly better than the MinCut base classi-
fier (line 3). For comparison to a chain-based se-

quence model, we train a CRF (line 6); however,
the improvement over MaxEnt (line 4) is not sig-
nificant.

We found that both semantic (lines 5,8) and se-
quential (lines 7,8) features help to improve the
classifier. The best model (line 7) performs bet-
ter than MinCut (3) by 3.1% and better than train-
ing on purely rule-generated DS labels (line 2) by
5.8%. However, we did not find a cumulative ef-
fect (line 8) of the two feature sets.

Generally, the quality of NER is crucial in this
task. While IMDb is in general a thoroughly com-
piled database, it is not perfect. For example, all
main characters in Groundhog Day are listed with
their first name only even though the full names
are given in the movie. Also, some entries are in-
tentionally incomplete to avoid spoiling the plot.
The data also contains ambiguities between char-
acters and titles (e.g., Forrest Gump) that are im-
possible to resolve with our maximum likelihood
method. In some types of movies, e.g., documen-
taries, the distinction between characters and ac-
tors makes little sense. Furthermore, ambiguities
like occurrences of common names such as John
are impossible to resolve if there is no earlier full
referring expression (e.g., John Williams).

Feature analysis for the best model using DS
labels (7) shows that NE features are dominant.
This correlation is not surprising as the seed la-
bels were induced based on NE features. Interest-
ingly, some subjective features, e.g., horrible have
high weights for S-nonrelevance, as they are asso-
ciated with non-relevant content such as plot de-
scriptions.

To summarize, the results of our experiments
using distant supervision show that a sentiment
relevance classifier can be trained successfully by
labeling data with a few simple feature rules, with
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MinCut-based input significantly outperforming
the baseline. Named entity recognition, accom-
plished with data extracted from a domain-specific
database, plays a significant rule in creating an ini-
tial labeling.

7 Transfer Learning

To address the problem that we do not have
enough labeled SR data we now investigate a sec-
ond semi-supervised method for SR classification,
transfer learning (TL). We will use the P&L data
(introduced in Section 2.2) for training. This data
set has labels that are intended to be subjectivity
labels. However, they were automatically created
using heuristics and the resulting labels can be ei-
ther viewed as noisy SR labels or noisy subjectiv-
ity labels. Compared to distant supervision, the
key advantage of training on P&L is that the train-
ing set is much larger, containing around 7 times
as much data.

In TL, the key to success is to find a general-
ized feature representation that supports knowl-
edge transfer. We use a semantic feature gener-
alization method that relies on taxonomies to in-
troduce such features.

We again use MinCut to impose discourse con-
straints. This time, we first classify the data us-
ing a supervised classifier and then use MinCut to
smooth the sequences. The baseline (BL) uses a
simple bag-of-words representation of sentences
for classification which we then extend with se-
mantic features.

7.1 MinCut Setup

We again implement the basic MinCut setup from
Section 4. We set the individual weight ind(s, x)
on the edge between sentence s and class x to the
estimate p(x|s) returned by the supervised classi-
fier. The parameter c of the MinCut model is tuned
using the run count method described in Section 4.

7.2 Experiments and Results

As we would expect, the baseline performance of
the supervised classifier on SR is low: 69.9% (Ta-
ble 4, line 1). MinCut significantly boosts the per-
formance by 7.9% to 77.5% (line 1), a result sim-
ilar to (Pang and Lee, 2004). Adding semantic
features improves supervised classification signif-
icantly by 5.7% (75.6% on line 4). When MinCut
and both types of semantic features are used to-
gether, these improvements are partially cumula-
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Figure 2: F1 measure for different values of c.
Horizontal line: optimal median run count. Cir-
cle: selected point.

tive: an improvement over the baseline by 12.6%
to 82.5% (line 4).

We also experiment with a training set where an
artificial class imbalance is introduced, matching
the 80:20 imbalance of SR:SNR in the S-relevance
corpus. After applying MinCut, we find that while
the results for BL with and without imbalances
does not differ significantly. However, models us-
ing CX and VN features and imbalances are ac-
tually significantly inferior to the respective bal-
anced versions. This result suggests that MinCut
is more effective at coping with class imbalances
than artificial balancing.

MinCut and semantic features are successful for
TL because both impose constraints that are more
useful in a setup where noise is a major problem.
MinCut can exploit test set information without
supervision as the MinCut graph is built directly
on each test set review. If high-confidence infor-
mation is “seeded” within a document and then
spread to neighbors, mistakes with low confidence
are corrected. This way, MinCut also leads to a
compensation of different class imbalances.

The results are evidence that semantic features
are robust to the differences between subjectivity
and S-relevance (cf. Section 2). In the CX+VN
model, meaningful feature classes receive high
weights, e.g., the human class from CoreLex
which contains professions that are frequently as-
sociated with non-relevant plot descriptions.

To illustrate the run-based parameter optimiza-
tion criterion, we show F1 and median/mean run
lengths for different values of c for the best TL
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Model
base classifier MinCut
FSR FSNR Fm FSR FSNR Fm

1 BL 81.1 58.6 69.9 87.2 67.8 77.5B

2 CX 82.9 60.1 71.5B 89.0 70.3 79.7BM

3 VN 85.6 62.1 73.9B 91.4 73.6 82.5BM

4 CX+VN 88.3 62.9 75.6B 92.7 72.2 82.5BM

Table 4: Classification results: FSR (S-relevant F1), FSNR (S-nonrelevant F1), and Fm (macro-averaged
F1). B indicates a significant improvement over the BL base classifier (69.9), M over BL MinCut (77.5).

setting (line 4) in Figure 2. Due to differences in
the base classifier, the optimum of c may vary be-
tween the experiments. A weaker base classifier
may yield a higher weight on the sequence model,
resulting in a larger c. The circled point shows the
data point selected through optimization. The op-
timization criterion does not always correlate per-
fectly with F1. However, we find no statistically
significant difference between the selected result
and the highest F1 value.

These experiments demonstrate that S-
relevance classification improves considerably
through TL if semantic feature generalization
and unsupervised sequence classification through
MinCut are applied.

8 Conclusion

A number of different notions, including subjec-
tivity, have been proposed for distinguishing parts
of documents that convey sentiment from those
that do not. We introduced sentiment relevance to
make this distinction and argued that it better re-
flects the requirements of sentiment analysis sys-
tems. Our experiments demonstrated that senti-
ment relevance and subjectivity are related, but
different. To enable other researchers to use this
new notion of S-relevance, we have published the
annotated S-relevance corpus used in this paper.

Since a large labeled sentiment relevance re-
source does not yet exist, we investigated semi-
supervised approaches to S-relevance classifica-
tion that do not require S-relevance-labeled data.
We showed that a combination of different tech-
niques gives us the best results: semantic gener-
alization features, imposing discourse constraints
implemented as the minimum cut graph-theoretic
method, automatic “distant” labeling based on a
domain-specific metadata database and transfer
learning to exploit existing labels for a related
classification problem.

In future work, we plan to use sentiment rele-

vance in a downstream task such as review sum-
marization.
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Abstract

While there have been many attempts to
estimate the emotion of an addresser from
her/his utterance, few studies have ex-
plored how her/his utterance affects the
emotion of the addressee. This has mo-
tivated us to investigate two novel tasks:
predicting the emotion of the addressee
and generating a response that elicits a
specific emotion in the addressee’s mind.
We target Japanese Twitter posts as a
source of dialogue data and automatically
build training data for learning the pre-
dictors and generators. The feasibility of
our approaches is assessed by using 1099
utterance-response pairs that are built by
five human workers.

1 Introduction

When we have a conversation, we usually care
about the emotion of the person to whom we
speak. For example, we try to cheer her/him up
if we find out s/he feels down, or we avoid saying
things that would trouble her/him.

To date, the modeling of emotion in a dialogue
has extensively been studied in NLP as well as re-
lated areas (Forbes-Riley and Litman, 2004; Ayadi
et al., 2011). However, the past attempts are vir-
tually restricted to estimating the emotion of an
addresser1 from her/his utterance. In contrast, few
studies have explored how the emotion of the ad-
dressee is affected by the utterance. We consider
the insufficiency of such research to be fatal for

∗This work was conducted while the first author was a
graduate student at the University of Tokyo.

1We use the terms addresser/addressee rather than a
speaker/listener, because we target not spoken but online di-
alogue.

I have had a high fever for 3 days.

JOY

I hope you feel better soon.

I have had a high fever for 3 days.

SADNESS

Sorry, but you can’t join us today.

Figure 1: Two example pairs of utterances and re-
sponses. Those responses elicit certain emotions,
JOY or SADNESS, in the addressee’s mind. The ad-
dressee in this example refers to the left-hand user,
who receives the response.

computers to support human-human communica-
tions or to provide a communicative man-machine
interface.

With this motivation in mind, the paper inves-
tigates two novel tasks: (1) prediction of the ad-
dressee’s emotion and (2) generation of the re-
sponse that elicits a prespecified emotion in the ad-
dressee’s mind.2 In the prediction task, the system
is provided with a dialogue history. For simplic-
ity, we consider, as a history, an utterance and a
response to it (Figure 1). Given the history, the
system predicts the addressee’s emotion that will
be caused by the response. For example, the sys-
tem outputs JOY when the response is I hope you
feel better soon, while it outputs SADNESS when
the response is Sorry, but you can’t join us today

2We adopt Plutchik (1980)’s eight emotional categories in
both tasks.
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(Figure 1).
In the generation task, on the other hand, the

system is provided with an utterance and an emo-
tional category such as JOY or SADNESS, which is
referred to as goal emotion. Then the system gen-
erates the response that elicits the goal emotion in
the addressee’s mind. For example, I hope you feel
better soon is generated as a response to I have had
a high fever for 3 days when the goal emotion is
specified as JOY, while Sorry, but you can’t join us
today is generated for SADNESS (Figure 1).

Systems that can perform the two tasks not only
serve as crucial components of dialogue systems
but also have interesting applications of their own.
Predicting the emotion of an addressee is use-
ful for filtering flames or infelicitous expressions
from online messages (Spertus, 1997). The re-
sponse generator that is aware of the emotion of
an addressee is also useful for text completion in
online conversation (Hasselgren et al., 2003; Pang
and Ravi, 2012).

This paper explores a data-driven approach to
performing the two tasks. With the recent emer-
gence of social media, especially microblogs, the
amount of dialogue data available is rapidly in-
creasing. Therefore, we are taking this opportu-
nity to building large-scale training data from mi-
croblog posts automatically. This approach allows
us to perform the two tasks in a large-scale with
little human effort.

We employ standard classifiers for predicting
the emotion of an addressee. Our contribution here
is to investigate the effectiveness of new features
that cannot be used in ordinary emotion recog-
nition, the task of estimating the emotion of a
speaker (or writer) from her/his utterance (or writ-
ing) (Ayadi et al., 2011; Bandyopadhyay and Oku-
mura, 2011; Balahur et al., 2011; Balahur et al.,
2012). We specifically extract features from the
addressee’s last utterance (e.g., I have had a high
fever for 3 days in Figure 1) and explore the effec-
tiveness of using such features. Such information
is characteristic of a dialogue situation.

To perform the generation task, we build a sta-
tistical response generator by following (Ritter et
al., 2011). To improve on the previous study, we
investigate a method for controlling the contents
of the response for, in our case, eliciting the goal
emotion. We achieve this by using a technique in-
spired by domain adaptation. We learn multiple
models, each of which is adapted for eliciting one

specific emotion. Also, we perform model inter-
polation for addressing data sparseness.

In our experiment, we automatically build train-
ing data consisting of over 640 million dialogues
from Japanese Twitter posts. Using this data set,
we train the classifiers that predict the emotion
of an addressee, and the response generators that
elicit the goal emotion. We evaluate our methods
on the test data that are built by five human work-
ers, and confirm the feasibility of the proposed ap-
proaches.

2 Emotion-tagged Dialogue Corpus

The key in making a supervised approach to pre-
dicting and eliciting addressee’s emotion success-
ful is to obtain large-scale, reliable training data
effectually. We thus automatically build a large-
scale emotion-tagged dialogue corpus from mi-
croblog posts, and use it as the training data in the
prediction and generation tasks.

This section describes a method for construct-
ing the emotion-tagged dialogue corpus. We first
describe how to extract dialogues from posts in
Twitter, a popular microblogging service. We then
explain how to automatically annotate utterances
in the extracted dialogues with the addressers’
emotions by using emotional expressions as clues.

2.1 Mining dialogues from Twitter

We have first crawled utterances (posts) from
Twitter by using the Twitter REST API.3 The
crawled data consist of 5.5 billion utterances in
Japanese tweeted by 770 thousand users from
March 2011 to December 2012. We next cleaned
up the crawled utterances by handling Twitter-
specific expressions; we replaced all URL strings
to ‘URL’, excluded utterances with the symbols
that indicate the re-posting (RT) or quoting (QT)
of others’ tweets, and erased @user name ap-
pearing at the head and tail of the utterances, since
they are usually added to make a reply. We ex-
cluded utterances given by any user whose name
included ‘bot.’

We then extracted dialogues from the resulting
utterances, assuming that a series of utterances
interchangeably made by two users form a dia-
logue. We here exploited ‘in reply to status id’
field of each utterance provided by Twitter REST
API to link to the other, if any, utterance to which
it replied.

3https://dev.twitter.com/docs/api/
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# users 672,937
# dialogues 311,541,839
# unique utterances 1,007,403,858
ave. # dialogues / user 463.0
ave. # utterances / user 1497.0
ave. # utterances / dialogue 3.2

Table 1: Statistics of dialogues extracted from
Twitter.
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Figure 2: The number of dialogues plotted against
the dialogue length.

Utterance Emotion
A: Would you like to go for dinner with me?
B: Sorry, I can’t. I have a fever of 38 degrees.
A: Oh dear. I hope you feel better soon. SURPRISE
B: Thanks. I’m happy to hear you say that. JOY

Table 2: An illustration of an emotion-tagged dia-
logue: The first column shows a dialogue (a series
of utterances interchangeably made by two users),
while the second column shows the addresser’s
emotion estimated from the utterance.

Table 1 lists the statistics of the extracted di-
alogues, while Figure 2 plots the number of di-
alogues plotted against the dialogue length (the
number of utterances in dialogue). Most dialogues
(98.2%) consist of at most 10 utterances, although
the longest dialogue includes 1745 utterances and
spans more than six weeks.

2.2 Tagging utterances with addressers’
emotions

We then automatically labeled utterances in the
obtained dialogues with the addressers’ emotions
by using emotional expressions as clues (Table 2).
In this study, we have adopted Plutchik (1980)’s
eight emotional categories (ANGER, ANTICIPA-
TION, DISGUST, FEAR, JOY, SADNESS, SUR-
PRISE, and TRUST) as the targets to label, and
manually tailored around ten emotional expres-
sions for each emotional category. Table 3 lists
examples of the emotional expressions, while the

Emotion Emotional expressions
ANGER frustrating, irritating, nonsense
ANTICIPATION exciting, expecting, looking forward
DISGUST disgusting, unpleasant, hate
FEAR afraid, anxious, scary
JOY glad, happy, delighted
SADNESS sad, lonely, unhappy
SURPRISE surprised, oh dear, wow
TRUST relieved, reliable, solid

Table 3: Example of clue emotional expressions.

Emotion # utterances Precision
Worker A Worker B

ANGER 190,555 0.95 0.95
ANTICIPATION 2,548,706 0.99 0.99
DISGUST 475,711 0.93 0.93
FEAR 2,671,222 0.96 0.96
JOY 2,725,235 0.94 0.96
SADNESS 712,273 0.97 0.97
SURPRISE 975,433 0.97 0.97
TRUST 359,482 0.97 0.98

Table 4: Size and precision of utterances labeled
with the addressers’ emotions.

rest are mostly their spelling variations.4

Because precise annotation is critical in the su-
pervised learning scenario, we annotate utterances
with the addressers’ emotions only when the emo-
tional expressions do not:

1. modify content words.

2. accompany an expression of negation, condi-
tional, imperative, interrogative, concession,
or indirect speech in the same sentence.

For example, I saw a frustrated teacher is re-
jected by the first condition, while I’ll be happy
if it rains is rejected by the second condition. The
second condition was judged by checking whether
the sentence includes trigger expressions such as
‘ない (not/never)’, ‘たら (if-clause)’, ‘?’, ‘けど
((al)though)’, and ‘と (that-clause)’.

Table 4 lists the size and precision of the utter-
ances labeled with the addressers’ emotions. Two
human workers measured the precision of the an-
notation by examining 100 labeled utterances ran-
domly sampled for each emotional category. The
inter-rater agreement was κ = 0.85, indicating al-
most perfect agreement. The precision of the an-
notation exceeded 0.95 for most of the emotional
categories.

4Note that the clue emotional expressions are language-
specific but can be easily tailored for other languages. Here,
Japanese emotional expressions are translated into English to
widen the potential readership of the paper.
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3 Predicting Addressee’s Emotion

This section describes a method for predicting
emotion elicited in an addressee when s/he re-
ceives a response to her/his utterance. The input
to this task is a pair of an utterance and a response
to it, e.g., the two utterances in Figure 1, while
the output is the addressee’s emotion among the
emotional categories of Plutchik (1980) (JOY and
SADNESS for the top and bottom dialogues in Fig-
ure 1, respectively).

Although a response could elicit multiple emo-
tions in the addressee, in this paper we focus on
predicting the most salient emotion elicited in the
addressee and cast the prediction as a single-label
multi-class classification problem.5 We then con-
struct a one-versus-the-rest classifier6 by combin-
ing eight binary classifiers, each of which predicts
whether the response elicits each emotional cate-
gory. We use online passive-aggressive algorithm
to train the eight binary classifiers.

We exploit the emotion-tagged dialogue corpus
constructed in Section 2 to collect training exam-
ples for the prediction task. For each emotion-
tagged utterance in the corpus, we assume that the
tagged emotion is elicited by the (last) response.
We thereby extract the pair of utterances preced-
ing the emotion-tagged utterance and the tagged
emotion as one training example. Taking the di-
alogue in Table 2 as an example, we obtain one
training example from the first two utterances and
SURPRISE as the emotion elicited in user A.

We extract all the n-grams (n ≤ 3) in the re-
sponse to induce (binary) n-gram features. The
extracted n-grams could indicate a certain action
that elicits a specific emotion (e.g., ‘have a fever’
in Table 2), or a style or tone of speaking (e.g.,
‘Sorry’). Likewise, we extract word n-grams from
the addressee’s utterance. The extracted n-grams
activate another set of binary n-gram features.

Because word n-grams themselves are likely to
be sparse, we estimate the addressers’ emotions
from their utterances and exploit them to induce
emotion features. The addresser’s emotion has
been reported to influence the addressee’s emotion

5Because microblog posts are short, we expect emotions
elicited by a response post not to be very diverse and a multi-
class classification to be able to capture the essential crux of
the prediction task.

6We should note that a one-versus-the-rest classifier can
be used in the multi-label classification scenario, just by al-
lowing the classifier to output more than one emotional cate-
gory (Ghamrawi and McCallum, 2005).

strongly (Kim et al., 2012), while the addressee’s
emotion just before receiving a response can be a
reference to predict her/his emotion in question af-
ter receiving the response.

To induce emotion features, we exploit the rule-
based approach used in Section 2.2 to estimate
the addresser’s emotion. Since the rule-based ap-
proach annotates utterances with emotions only
when they contain emotional expressions, we in-
dependently train for each emotional category
a binary classifier that estimates the addresser’s
emotion from her/his utterance and apply it to the
unlabeled utterances. The training data for these
classifiers are the emotion-tagged utterances ob-
tained in Section 2, while the features are n-grams
(n ≤ 3)7 in the utterance.

We should emphasize that the features induced
from the addressee’s utterance are unique to this
task and are hardly available in the related tasks
that predicted the emotion of a reader of news ar-
ticles (Lin and Hsin-Yihn, 2008) or personal sto-
ries (Socher et al., 2011). We will later confirm the
impact of these features on the prediction accuracy
in the experiments.

4 Eliciting Addressee’s Emotion

This section presents a method for generating a re-
sponse that elicits the goal emotion, which is one
of the emotional categories of Plutchik (1980), in
the addressee. In section 4.1, we describe a statis-
tical framework for response generation proposed
by (Ritter et al., 2011). In section 4.2, we present
how to adapt the model in order to generate a
response that elicits the goal emotion in the ad-
dressee.

4.1 Statistical response generation

Following (Ritter et al., 2011), we apply the sta-
tistical machine translation model for generating a
response to a given utterance. In this framework,
a response is viewed as a translation of the input
utterance. Similar to ordinary machine translation
systems, the model is learned from pairs of an ut-
terance and a response by using off-the-shelf tools
for machine translation.

We use GIZA++8 and SRILM9 for learning
translation model and 5-gram language model, re-

7We have excluded n-grams that matched the emotional
expressions used in Section 2 to avoid overfitting.

8http://code.google.com/p/giza-pp/
9http://www.speech.sri.com/projects/

srilm/

967



spectively. As post-processing, some phrase pairs
are filtered out from the translation table as fol-
lows. When GIZA++ is directly applied to di-
alogue data, it frequently finds paraphrase pairs,
learning to parrot back the input (Ritter et al.,
2011). To avoid using such pairs for response gen-
eration, a phrase pair is removed if one phrase is
the substring of the other.

We use Moses decoder10 to search for the best
response to a given utterance. Unlike machine
translation, we do not use reordering models, be-
cause the positions of phrases are not considered
to correlate strongly with the appropriateness of
responses (Ritter et al., 2011). In addition, we do
not use any discriminative training methods such
as MERT for optimizing the feature weights (Och,
2003). They are set as default values provided by
Moses (Ritter et al., 2011).

4.2 Model adaptation

The above framework allows us to generate appro-
priate responses to arbitrary input utterances. On
top of this framework, we have developed a re-
sponse generator that elicits a specific emotion.

We use the emotion-tagged dialogue corpus to
learn eight translation models and language mod-
els, each of which is specialized in generating
the response that elicits one of the eight emo-
tions (Plutchik, 1980). Specifically, the models
are learned from utterances preceding ones that are
tagged with emotional category. As an example,
let us examine to learn models for eliciting SUR-
PRISE from the dialogue in Table 2. In this case,
the first two utterances are used to learn the trans-
lation model, while only the second utterance is
used to learn the language model.

However, this simple approach is prone to suf-
fer from the data sparseness problem. Because
not all the utterances are tagged with the emotion
in emotion-tagged dialogue corpus, only a small
fraction of utterances can be used for learning the
adapted models.

We perform model interpolation for addressing
this problem. In addition to the adapted mod-
els described above, we also use a general model,
which is learned from the entire corpus. The two
models are then merged as the weighted linear in-
terpolation.

Specifically, we use tmcombine.py script
provided by Moses for the interpolation of trans-

10http://www.statmt.org/moses/

lation models (Sennrich, 2012). For all the four
features (i.e., two phrase translation probabilities
and two lexical weights) derived from transla-
tion model, the weights of the adapted model are
equally set as α (0 ≤ α ≤ 1.0). On the other
hand, we use SRILM for the interpolation of lan-
guage models. The weight of the adapted model is
set as β (0 ≤ β ≤ 1.0).

The parameters α and β control the strength of
the adapted models. Only adapted models are used
when α (or β) = 1.0, while the adapted models are
not at all used when α (or β) = 0. When both α
and β are specified as 0, the model becomes equiv-
alent to the original one described in section 4.1.

5 Experiments

5.1 Test data

To evaluate the proposed method, we built, as test
data, sets of an utterance paired with responses
that elicit a certain goal emotion (Table 5). Note
that they were used for evaluation in both of the
two tasks. Each utterance in the test data has
more than one responses that elicit the same goal
emotion, because they are used to compute BLEU
score (see section 5.3).

The data set was built in the following manner.
We first asked five human worker to produce re-
sponses to 80 utterances (10 utterances for each
goal emotion). Note that the 80 utterances do not
have overlap between workers and that the worker
produced only one response to each utterance.

To alleviate the burden on the workers, we ac-
tually provided each worker with the utterances
in the emotion-tagged corpus. Then we asked
each worker to select 80 utterances to which s/he
thought s/he could easily respond. The selected
utterances were removed from the corpus during
training.

As a result, we obtained 400 utterance-response
pairs (= 80 utterance-response pairs × 5 work-
ers). For each of those 400 utterances, two ad-
ditional responses are produced. We did not al-
low the same worker to produce more than one
response to the same utterance. In this way, we
obtained 1200 responses for the 400 utterances in
total.

Finally, we assessed the data quality to remove
responses that were unlikely to elicit the goal emo-
tion. For each utterance-response pair, we asked
two workers to judge whether the response elicited
the goal emotion. If both workers regarded the
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Goal emotion: JOY
U: 16歳になりました，これからもよろしくお願
いします！
(I’m turning 16. Hope to get along with you as
well as ever!)

R1:誕生日おめでとうございます！
(Happy birthday!)

R2:おめでとう！今度誕生日プレゼントあげるね．
(Congratulations! I’ll give you a birthday present.)

R3:おめでとうー！！幸せな一年を！
(Congratulations! I hope you have a happy year!)

Table 5: Example of the test data. English transla-
tions are attached in the parenthesis.

Emotion # utterance pairs
ANGER 119,881
ANTICIPATION 1,416,847
DISGUST 333,972
FEAR 1,662,998
JOY 1,724,198
SADNESS 436,668
SURPRISE 589,790
TRUST 228,974
GENERAL 646,429,405

Table 6: The number of utterance pairs used
for training classifiers in emotion prediction and
learning the translation models and language mod-
els in response generation.

response as inappropriate, it was removed from
the data. The resulting test data consist of 1099
utterance-response pairs for 396 utterances.

This data set is submitted as supplementary ma-
terial to support the reproducibility of our experi-
mental results.

5.2 Prediction task

We first report experimental results on predicting
the addressee’s emotion within a dialogue. Table 6
lists the number of utterance-response pairs used
to train eight binary classifiers for individual emo-
tional categories, which form a one-versus-the rest
classifier for the prediction task. We used opal11

as an implementation of online passive-aggressive
algorithm to train the individual classifiers.

To investigate the impact of the features that are
uniquely available in a dialogue data, we com-
pared classifiers trained with the following two
sets of features in terms of precision, recall, and
F1 for each emotional category.

RESPONSE The n-gram and emotion features in-
duced from the response.

11http://www.tkl.iis.u-tokyo.ac.jp/
∼ynaga/opal/.

Emotion RESPONSE RESPONSE/UTTER.
PREC REC F1 PREC REC F1

ANGER 0.455 0.476 0.465 0.600 0.548 0.573
ANTICIPA. 0.518 0.526 0.522 0.614 0.637 0.625
DISGUST 0.275 0.519 0.359 0.378 0.511 0.435
FEAR 0.484 0.727 0.581 0.459 0.706 0.556
JOY 0.690 0.417 0.519 0.720 0.590 0.649
SADNESS 0.711 0.467 0.564 0.670 0.562 0.611
SURPRISE 0.511 0.348 0.414 0.584 0.437 0.500
TRUST 0.695 0.452 0.548 0.682 0.514 0.586
average 0.542 0.492 0.497 0.588 0.563 0.567

Table 7: Predicting addressee’s emotion: Results.
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DISGUST 25 1 68 18 2 8 7 4 133
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JOY 1 28 9 4 85 1 7 9 144
SADNESS 6 3 25 14 5 77 5 2 137
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total 115 140 180 220 118 115 101 110 1099

Table 8: Confusion matrix of predicting ad-
dressee’s emotion, with mostly predicted emo-
tions bold-faced and mostly confused emotions
underlined for each emotional category.

RESPONSE/UTTER. The n-gram and emotion
features induced from the response and the
addressee’s utterance.

Table 7 lists prediction results. We can see that
the features induced from the addressee’s utter-
ance significantly improved the prediction perfor-
mance, F1, for emotions other than FEAR. FEAR is
elicited instantly by the response, and the features
induced from the addressee’s utterance thereby
confused the classifier.

Table 8 shows a confusion matrix of the classi-
fier using all the features, with mostly predicted
emotions bold-faced and mostly confused emo-
tions underlined for each emotional category. We
can find some typical confusing pairs of emotions
from this matrix. The classifier confuses DISGUST

with ANGER and vice versa, while it confuses JOY

with ANTICIPATION. These confusions conform
to our expectation, since they are actually similar
emotions. The classifier was less likely to confuse
positive emotions (JOY and ANTICIPATION) with
negative emotion (ANGER, DISGUST, FEAR, and
SADNESS) vice versa.
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Goal emotion: ANGER (predicted as SADNESS)
U:毎日通話してるなんなの羨ましいわ

(You have phone calls every day, I envy you.)
R:君の方こそ誰からも電話こないから暇で羨ましいよ。

(I envy you have a lot of time ’cause no one calls you.)
Goal emotion: SURPRISE (predicted as FEAR)
U:黒髪がモテるってマジか。

(Is it true that dark-haired girls are popular with boys?)
R:８０％くらいの男子は黒髪が好きらしい。

(About 80% of boys seem to prefer dark-haired girls.)

Table 9: Examples of utterance-response pairs to
which the system predicted wrong emotions.

We have briefly examined the confusions and
found the two major types of errors, each of which
is exemplified in Table 9. The first (top) one is sar-
casm or irony, which has been reported to be diffi-
cult to capture by lexical features alone (González-
Ibáñez et al., 2011). The other (bottom) one is due
to lack of information. In this example, only if the
addressee does not know the fact provided by the
response, s/he will surprise at it.

5.3 Generation task

We next demonstrate the experimental results for
eliciting the emotion of the addressee.

We use the utterance pairs summarized in Ta-
ble 6 to learn the translation models and language
models for eliciting each emotional category. We
also use the 640 million utterances pairs in the
entire emotion-tagged corpus for learning general
models. However, for learning the general transla-
tion models, we currently use 4 millions of utter-
ance pairs sampled from the 640 millions of pairs
due to the computational limitation.

Automatic evaluation
We first use BLEU score (Papineni et al., 2002)
to perform automatic evaluation (Ritter et al.,
2011). In this evaluation, the system is pro-
vided with the utterance and the goal emotion
in the test data and the generated responses are
evaluated through BLEU score. Specifically, we
conducted two-fold cross-validation to optimize
the weights of our method. We tried α and
β in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and selected the
weights that achieved the best BLEU score. Note
that we adopted different values of the weights for
different emotional categories.

Table 10 compares BLEU scores of three meth-
ods including the proposed one. The first row
represents a method that does not perform model
adaptation at all. It corresponds to the special case

System BLEU
NO ADAPTATION 0.64
PROPOSED 1.05
OPTIMAL 1.57

Table 10: Comparison of BLEU scores.

(i.e., α = β = 0.0) of the proposed method. The
second row represents our method, while the last
row represents the result of our method when the
weights are set as optimal, i.e., those achieving the
best BLEU on the test data. This result can be con-
sidered as an upper bound on BLEU score.

The results demonstrate that model adaptation
is useful for generating the responses that elicit
the goal emotion. We can clearly observe the im-
provement in the BLEU from 0.64 to 1.05.

On the other hand, there still remains a gap be-
tween the last two rows (i.e., proposed and opti-
mal). We think this is partly because the current
test data is too small to reliably tune parameters.

Human evaluation
We next asked two human workers to manually
evaluate the generation results.

In this evaluation, the baseline (no adaptation
in Table 10) and proposed method generated a re-
sponse for each of the 396 utterances in the test
data. For the resulting 792 utterance-response
pairs, the two workers manually assessed the ap-
propriateness of the response. Each response was
judged whether it is grammatical and meaningful.
If the response was regarded as so by either of the
workers, it was further judged whether it elicits the
goal emotion or not. To make the comparison fair,
we did not expose to the workers which system
generated the response. In addition, the responses
generated by the two systems were presented in a
random order.

As the result, 147 and 157 responses of the
baseline and proposed method were regarded as
appropriate, i.e., ecliting the goal emotion, by ei-
ther of the workers; 74 and 92 responses were
regarded as appropirate by both of the workers.
These results suggest the effectiveness of the pro-
posed method. Especially, we can confirm that
the proposed method can generate responses that
elicit addresee’s emotion more clearly. We inves-
tigated the agreement between the two workers in
this evaluation. We found that the κ coefficient is
0.59, which indicates moderate agreement. This
supports the reliability of our evaluation.
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Goal emotion: JOY
Input: 写真コンクールで優秀賞とったーーーー！2月 7日表彰式！

(I wooooon the outstanding award at the photo competition! The ceremony is on Feb. 7!)
NO ADAPTATION: 残念ながら１日目だけですのー (Sorry to say, only the first day.)
PROPOSED: 金賞受賞おめでとう！！！おめでとうなのー

(Congratulations on winning the gold prize!!! Congrats.)
Goal emotion: TRUST
Input: 自暴自棄になっているの？ (Do you get desperate? )
NO ADAPTATION: 楽しみ！ (I’m looking forward to it!)
PROPOSED: きっとまだ大丈夫 (Maybe still OK.)
Goal emotion: ANTICIPATION
Input: だよね！なんとかなるよね！ww

(Huh! It’s gonna be all right! lol)
あ，わたしグッズ買わなきゃなのでその時間だけは取ってくれるとうれしい (´∀｀)
(I gotta buy the goods, so I’ll be glad if you can take the time :-))

NO ADAPTATION: 私はグッズ買ってないから不安ですね (Since I’ve not bought it, I feel worried.)
PROPOSED: いいですね！私も買いますね！！！ (Good! I’ll buy it too!!!)

Table 11: Examples of the responses generated by the two systems, NO ADAPTATION and PROPOSED.

Examples
Table 11 illustrates examples of the responses gen-
erated by the no adaptation baseline and proposed
method. In the first two examples, the proposed
method successfully generates responses that elicit
the goal emotions: JOY and TRUST. From these
examples, we can consider that the adapted model
assigns large probability to phrases such as con-
gratulations or OK. In the last example, the sys-
tem also succeeded in eliciting the goal emotion:
ANTICIPATION. For this example, we can interpret
that the speaker of the response (i.e., the system)
feels anticipation, and consequently the emotion
of the addressee is affected by the emotion of the
speaker (i.e., the system). Interestingly, a similar
phenomenon is also observed in real conversation
(Kim et al., 2012).

6 Related Work

There have been a tremendous amount of stud-
ies on predicting the emotion from text or speech
data (Ayadi et al., 2011; Bandyopadhyay and Oku-
mura, 2011; Balahur et al., 2011; Balahur et al.,
2012). Unlike our prediction task, most of them
have exclusively focused on estimating the emo-
tion of a speaker (or writer) from her/his utterance
(or writing).

Analogous to our prediction task, Lin and Hsin-
Yihn (2008) and Socher et al. (2011) investigated
predicting the emotion of a reader from the text
that s/he reads. Our work differs from them in that
we focus on dialogue data, and we exploit fea-
tures that are not available within their task set-
tings, e.g., the addressee’s previous utterance.

Tokuhisa et al. (2008) proposed a method for

extracting pairs of an event (e.g., It rained sud-
denly when I went to see the cherry blossoms) and
an emotion elicited by it (e.g., SADNESS) from the
Web text. The extracted data are used for emotion
classification. A similar technique would be use-
ful for prediction the emotion of an addressee as
well.

Response generation has a long research history
(Weizenbaum, 1966), although it is only very re-
cently that a fully statistical approach was intro-
duced in this field (Ritter et al., 2011). At this mo-
ment, we are unaware of any statistical response
generators that model the emotion of the user.

Some researchers have explored generating
jokes or humorous text (Dybala et al., 2010;
Labtov and Lipson, 2012). Those attempts are
similar to our work in that they also aim at elic-
iting a certain emotion in the addressee. They are,
however, restricted to elicit a specific emotion.

The linear interpolation of translation and/or
language models is a widely-used technique for
adapting machine translation systems to new do-
mains (Sennrich, 2012). However, it has not been
touched in the context of response generation.

7 Conclusion and Future Work

In this paper, we have explored predicting and
eliciting the emotion of an addressee by using a
large amount of dialogue data obtained from mi-
croblog posts. In the first attempt to model the
emotion of an addressee in the field of NLP, we
demonstrated that the response of the dialogue
partner and the previous utterance of the addressee
are useful for predicting the emotion. In the gen-
eration task, on the other hand, we showed that the
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model adaptation approach successfully generates
the responses that elicit the goal emotion.

For future work, we want to use longer dialogue
history in both tasks. While we considered only
two utterances as a history, a longer history would
be helpful. We also plan to personalize the pro-
posed methods, exploiting microblog posts made
by users of a certain age, gender, occupation, or
even character to perform model adaptation.
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Abstract

During real-life interactions, people are
naturally gesturing and modulating their
voice to emphasize specific points or to
express their emotions. With the recent
growth of social websites such as YouTube,
Facebook, and Amazon, video reviews are
emerging as a new source of multimodal
and natural opinions that has been left al-
most untapped by automatic opinion anal-
ysis techniques. This paper presents a
method for multimodal sentiment classi-
fication, which can identify the sentiment
expressed in utterance-level visual datas-
treams. Using a new multimodal dataset
consisting of sentiment annotated utter-
ances extracted from video reviews, we
show that multimodal sentiment analysis
can be effectively performed, and that the
joint use of visual, acoustic, and linguistic
modalities can lead to error rate reductions
of up to 10.5% as compared to the best
performing individual modality.

1 Introduction

Video reviews represent a growing source of con-
sumer information that gained increasing interest
from companies, researchers, and consumers. Pop-
ular web platforms such as YouTube, Amazon,
Facebook, and ExpoTV have reported a signifi-
cant increase in the number of consumer reviews
in video format over the past five years. Compared
to traditional text reviews, video reviews provide a
more natural experience as they allow the viewer to
better sense the reviewer’s emotions, beliefs, and
intentions through richer channels such as intona-
tions, facial expressions, and body language.

Much of the work to date on opinion analysis has
focused on textual data, and a number of resources
have been created including lexicons (Wiebe and

Riloff, 2005; Esuli and Sebastiani, 2006) or large
annotated datasets (Maas et al., 2011). Given the
accelerated growth of other media on the Web and
elsewhere, which includes massive collections of
videos (e.g., YouTube, Vimeo, VideoLectures), im-
ages (e.g., Flickr, Picasa), audio clips (e.g., pod-
casts), the ability to address the identification of
opinions in the presence of diverse modalities is be-
coming increasingly important. This has motivated
researchers to start exploring multimodal clues for
the detection of sentiment and emotions in video
content (Morency et al., 2011; Wagner et al., 2011).

In this paper, we explore the addition of speech
and visual modalities to text analysis in order to
identify the sentiment expressed in video reviews.
Given the non homogeneous nature of full-video
reviews, which typically include a mixture of posi-
tive, negative, and neutral statements, we decided
to perform our experiments and analyses at the ut-
terance level. This is in line with earlier work on
text-based sentiment analysis, where it has been
observed that full-document reviews often contain
both positive and negative comments, which led to
a number of methods addressing opinion analysis
at sentence level. Our results show that relying
on the joint use of linguistic, acoustic, and visual
modalities allows us to better sense the sentiment
being expressed as compared to the use of only one
modality at a time.

Another important aspect of this paper is the in-
troduction of a new multimodal opinion database
annotated at the utterance level which is, to our
knowledge, the first of its kind. In our work, this
dataset enabled a wide range of multimodal senti-
ment analysis experiments, addressing the relative
importance of modalities and individual features.

The following section presents related work
in text-based sentiment analysis and audio-visual
emotion recognition. Section 3 describes our new
multimodal datasets with utterance-level sentiment
annotations. Section 4 presents our multimodal sen-
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timent analysis approach, including details about
our linguistic, acoustic, and visual features. Our
experiments and results on multimodal sentiment
classification are presented in Section 5, with a
detailed discussion and analysis in Section 6.

2 Related Work

In this section we provide a brief overview of re-
lated work in text-based sentiment analysis, as well
as audio-visual emotion analysis.

2.1 Text-based Subjectivity and Sentiment
Analysis

The techniques developed so far for subjectivity
and sentiment analysis have focused primarily on
the processing of text, and consist of either rule-
based classifiers that make use of opinion lexicons,
or data-driven methods that assume the availability
of a large dataset annotated for polarity. These tools
and resources have been already used in a large
number of applications, including expressive text-
to-speech synthesis (Alm et al., 2005), tracking
sentiment timelines in on-line forums and news
(Balog et al., 2006), analysis of political debates
(Carvalho et al., 2011), question answering (Oh et
al., 2012), conversation summarization (Carenini et
al., 2008), and citation sentiment detection (Athar
and Teufel, 2012).

One of the first lexicons used in sentiment anal-
ysis is the General Inquirer (Stone, 1968). Since
then, many methods have been developed to auto-
matically identify opinion words and their polarity
(Hatzivassiloglou and McKeown, 1997; Turney,
2002; Hu and Liu, 2004; Taboada et al., 2011), as
well as n-gram and more linguistically complex
phrases (Yang and Cardie, 2012).

For data-driven methods, one of the most widely
used datasets is the MPQA corpus (Wiebe et al.,
2005), which is a collection of news articles manu-
ally annotated for opinions. Other datasets are also
available, including two polarity datasets consist-
ing of movie reviews (Pang and Lee, 2004; Maas et
al., 2011), and a collection of newspaper headlines
annotated for polarity (Strapparava and Mihalcea,
2007).

While difficult problems such as cross-domain
(Blitzer et al., 2007; Li et al., 2012) or cross-
language (Mihalcea et al., 2007; Wan, 2009; Meng
et al., 2012) portability have been addressed, not
much has been done in terms of extending the ap-
plicability of sentiment analysis to other modalities,

such as speech or facial expressions.
The only exceptions that we are aware of are the

findings reported in (Somasundaran et al., 2006;
Raaijmakers et al., 2008; Mairesse et al., 2012;
Metze et al., 2009), where speech and text have
been analyzed jointly for the purpose of subjectiv-
ity or sentiment identification, without, however,
addressing other modalities such as visual cues;
and the work reported in (Morency et al., 2011;
Perez-Rosas et al., 2013), where multimodal cues
have been used for the analysis of sentiment in
product reviews, but where the analysis was done
at the much coarser level of full videos rather than
individual utterances as we do in our work.

2.2 Audio-Visual Emotion Analysis.

Also related to our work is the research done on
emotion analysis. Emotion analysis of speech sig-
nals aims to identify the emotional or physical
states of a person by analyzing his or her voice
(Ververidis and Kotropoulos, 2006). Proposed
methods for emotion recognition from speech fo-
cus both on what is being said and how is be-
ing said, and rely mainly on the analysis of the
speech signal by sampling the content at utterance
or frame level (Bitouk et al., 2010). Several re-
searchers used prosody (e.g., pitch, speaking rate,
Mel frequency coefficients) for speech-based emo-
tion recognition (Polzin and Waibel, 1996; Tato et
al., 2002; Ayadi et al., 2011).

There are also studies that analyzed the visual
cues, such as facial expressions and body move-
ments (Calder et al., 2001; Rosenblum et al., 1996;
Essa and Pentland, 1997). Facial expressions are
among the most powerful and natural means for
human beings to communicate their emotions and
intentions (Tian et al., 2001). Emotions can be
also expressed unconsciously, through subtle move-
ments of facial muscles such as smiling or eyebrow
raising, often measured and described using the
Facial Action Coding System (FACS) (Ekman et
al., 2002).

De Silva et. al. (De Silva et al., 1997) and Chen
et. al. (Chen et al., 1998) presented one of the
early works that integrate both acoustic and visual
information for emotion recognition. In addition to
work that considered individual modalities, there
is also a growing body of work concerned with
multimodal emotion analysis (Silva et al., 1997;
Sebe et al., 2006; Zhihong et al., 2009; Wollmer et
al., 2010).
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Utterance transcription Label
En este color, creo que era el color frambuesa. neu
In this color, I think it was raspberry
Pinta hermosisimo. pos
It looks beautiful.
Sinceramente, con respecto a lo que pinta y a que son hidratante, si son muy hidratantes. pos
Honestly, talking about how they looks and hydrates, yes they are very hydrant.
Pero el problema de estos labiales es que cuando uno se los aplica, te dejan un gusto asqueroso en la boca. neg
But the problem with those lipsticks is that when you apply them, they leave a very nasty taste
Sinceramente, es no es que sea el olor sino que es mas bien el gusto. neg
Honestly, is not the smell, it is the taste.

Table 1: Sample utterance-level annotations. The labels used are: pos(itive), neg(ative), neu(tral).

More recently, two challenges have been or-
ganized focusing on the recognition of emotions
using audio and visual cues (Schuller et al.,
2011a; Schuller et al., 2011b), which included sub-
challenges on audio-only, video-only, and audio-
video, and drew the participation of many teams
from around the world. Note however that most of
the previous work on audio-visual emotion analy-
sis has focused exclusively on the audio and video
modalities, and did not consider textual features, as
we do in our work.

3 MOUD: Multimodal Opinion
Utterances Dataset

For our experiments, we created a dataset of ut-
terances (named MOUD) containing product opin-
ions expressed in Spanish.1 We chose to work with
Spanish because it is a widely used language, and
it is the native language of the main author of this
paper.

We started by collecting a set of videos from
the social media web site YouTube, using several
keywords likely to lead to a product review or rec-
ommendation. Starting with the YouTube search
page, videos were found using the following key-
words: mis products favoritos (my favorite prod-
ucts), products que no recomiendo (non recom-
mended products), mis perfumes favoritos (my fa-
vorite perfumes), peliculas recomendadas (recom-
mended movies), peliculas que no recomiendo (non
recommended movies) and libros recomendados
(recommended books), libros que no recomiendo
(non recommended books). Notice that the key-
words are not targeted at a specific product type;
rather, we used a variety of product names, so that
the dataset has some degree of generality within
the broad domain of product reviews.

1Publicly available from the authors webpage.

Among all the videos returned by the YouTube
search, we selected only videos that respected the
following guidelines: the speaker should be in front
of the camera; her face should be clearly visible,
with a minimum amount of face occlusion during
the recording; there should not be any background
music or animation. The final video set includes 80
videos randomly selected from the videos retrieved
from YouTube that also met the guidelines above.
The dataset includes 15 male and 65 female speak-
ers, with their age approximately ranging from 20
to 60 years.

All the videos were first pre-processed to elimi-
nate introductory titles and advertisements. Since
the reviewers often switched topics when express-
ing their opinions, we manually selected a 30 sec-
onds opinion segment from each video to avoid
having multiple topics in a single review.

3.1 Segmentation and Transcription

All the video clips were manually processed to
transcribe the verbal statements and also to extract
the start and end time of each utterance. Since the
reviewers utter expressive sentences that are nat-
urally segmented by speech pauses, we decided
to use these pauses (>0.5seconds) to identify the
beginning and the end of each utterance. The tran-
scription and segmentation were performed using
the Transcriber software.

Each video was segmented into an average of
six utterances, resulting in a final dataset of 498
utterances. Each utterance is linked to the corre-
sponding audio and video stream, as well as its
manual transcription. The utterances have an aver-
age duration of 5 seconds, with a standard deviation
of 1.2 seconds.

975



Figure 1: Multimodal feature extraction

3.2 Sentiment Annotation

To enable the use of this dataset for sentiment de-
tection, we performed sentiment annotations at ut-
terance level. Annotations were done using Elan,2

which is a widely used tool for the annotation of
video and audio resources. Two annotators indepen-
dently labeled each utterance as positive, negative,
or neutral. The annotation was done after seeing
the video corresponding to an utterance (along with
the corresponding audio source). The transcription
of the utterance was also made available. Thus, the
annotation process included all three modalities: vi-
sual, acoustic, and linguistic. The annotators were
allowed to watch the video segment and their cor-
responding transcription as many times as needed.

The inter-annotator agreement was measured at
88%, with a Kappa of 0.81, which represents good
agreement. All the disagreements were reconciled
through discussions.

Table 1 shows the five utterances obtained from a
video in our dataset, along with their corresponding

2http://tla.mpi.nl/tools/tla-tools/elan/

sentiment annotations. As this example illustrates,
a video can contain a mix of positive, negative, and
neutral utterances. Note also that sentiment is not
always explicit in the text: for example, the last
utterance “Honestly, it is not the smell, it is the
taste” has an implicit reference to the “nasty taste”
expressed in the previous utterance, and thus it was
also labeled as negative by both annotators.

4 Multimodal Sentiment Analysis

The main advantage that comes with the analysis of
video opinions, as compared to their textual coun-
terparts, is the availability of visual and speech cues.
In textual opinions, the only source of information
consists of words and their dependencies, which
may sometime prove insufficient to convey the ex-
act sentiment of the user. Instead, video opinions
naturally contain multiple modalities, consisting of
visual, acoustic, and linguistic datastreams. We hy-
pothesize that the simultaneous use of these three
modalities will help create a better opinion analysis
model.
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4.1 Feature Extraction
This section describes the process of automatically
extracting linguistic, acoustic and visual features
from the video reviews. First, we obtain the stream
corresponding to each modality, followed by the
extraction of a representative set of features for
each modality, as described in the following sub-
sections. These features are then used as cues to
build a classifier of positive or negative sentiment.
Figure 1 illustrates this process.

4.1.1 Linguistic Features
We use a bag-of-words representation of the video
transcriptions of each utterance to derive unigram
counts, which are then used as linguistic features.
First, we build a vocabulary consisting of all the
words, including stopwords, occurring in the tran-
scriptions of the training set. We then remove
those words that have a frequency below 10 (value
determined empirically on a small development
set). The remaining words represent the unigram
features, which are then associated with a value
corresponding to the frequency of the unigram in-
side each utterance transcription. These simple
weighted unigram features have been successfully
used in the past to build sentiment classifiers on
text, and in conjunction with Support Vector Ma-
chines (SVM) have been shown to lead to state-of-
the-art performance (Maas et al., 2011).

4.1.2 Acoustic Features
Acoustic features are automatically extracted from
the speech signal of each utterance. We used the
open source software OpenEAR (Schuller, 2009)
to automatically compute a set of acoustic features.
We include prosody, energy, voicing probabilities,
spectrum, and cepstral features.

• Prosody features. These include intensity,
loudness, and pitch that describe the speech
signal in terms of amplitude and frequency.

• Energy features. These features describe the
human loudness perception.

• Voice probabilities. These are probabilities
that represent an estimate of the percentage of
voiced and unvoiced energy in the speech.

• Spectral features. The spectral features are
based on the characteristics of the human ear,
which uses a nonlinear frequency unit to simu-
late the human auditory system. These fea-
tures describe the speech formants, which

model spoken content and represent speaker
characteristics.

• Cepstral features. These features emphasize
changes or periodicity in the spectrum fea-
tures measured by frequencies; we model
them using 12 Mel-frequency cepstral coeffi-
cients that are calculated based on the Fourier
transform of a speech frame.

Overall, we have a set of 28 acoustic features.
During the feature extraction, we use a frame sam-
pling of 25ms. Speaker normalization is performed
using z-standardization. The voice intensity is
thresholded to identify samples with and without
speech, with the same threshold being used for all
the experiments and all the speakers. The features
are averaged over all the frames in an utterance, to
obtain one feature vector for each utterance.

4.1.3 Facial Features
Facial expressions can provide important clues for
affect recognition, which we use to complement
the linguistic and acoustic features extracted from
the speech stream.

The most widely used system for measuring and
describing facial behaviors is the Facial Action
Coding System (FACS), which allows for the de-
scription of face muscle activities through the use
of a set of Action Units (AUs). According with
(Ekman, 1993), there are 64 AUs that involve the
upper and lower face, including several face posi-
tions and movements.3 AUs can occur either by
themselves or in combination, and can be used to
identify a variety of emotions. While AUs are fre-
quently annotated by certified human annotators,
automatic tools are also available. In our work, we
use the Computer Expression Recognition Toolbox
(CERT) (Littlewort et al., 2011), which allows us to
automatically extract the following visual features:

• Smile and head pose estimates. The smile
feature is an estimate for smiles. Head pose
detection consists of three-dimensional esti-
mates of the head orientation, i.e., yaw, pitch,
and roll. These features provide information
about changes in smiles and face positions
while uttering positive and negative opinions.

• Facial AUs. These features are the raw es-
timates for 30 facial AUs related to muscle
movements for the eyes, eyebrows, nose, lips,

3http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm
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and chin. They provide detailed information
about facial behaviors from which we expect
to find differences between positive and nega-
tive states.

• Eight basic emotions. These are estimates
for the following emotions: anger, contempt,
disgust, fear, joy, sad, surprise, and neutral.
These features describe the presence of two or
more AUs that define a specific emotion. For
example, the unit A12 describes the pulling
of lip corners movement, which usually sug-
gests a smile but when associated with a
check raiser movement (unit A6), represents
a marker for the emotion of happiness.

We extract a total of 40 visual features, each
of them obtained at frame level. Since only one
person is present in each video clip, most of the
time facing the camera, the facial tracking was
successfully applied for most of our data. For the
analysis, we use a sampling rate of 30 frames per
second. The features extracted for each utterance
are averaged over all the valid frames, which are
automatically identified using the output of CERT.4

Segments with more than 60% of invalid frames
are simply discarded.

5 Experiments and Results

We run our sentiment classification experiments
on the MOUD dataset introduced earlier. From
the dataset, we remove utterances labeled as neu-
tral, thus keeping only the positive and negative
utterances with valid visual features. The removal
of neutral utterances is done for two main reasons.
First, the number of neutral utterances in the dataset
is rather small. Second, previous work in subjec-
tivity and sentiment analysis has demonstrated that
a layered approach (where neutral statements are
first separated from opinion statements followed
by a separation between positive and negative state-
ments) works better than a single three-way classifi-
cation. After this process, we are left with an exper-
imental dataset of 412 utterances, 182 of which are
labeled as positive, and 231 are labeled as negative.

From each utterance, we extract the linguis-
tic, acoustic, and visual features described above,
which are then combined using the early fusion
(or feature-level fusion) approach (Hall and Llinas,

4There is a small number of frames that CERT could not
process, mostly due to the brief occlusions that occur when
the speaker is showing the product she is reviewing.

Modality Accuracy
Baseline 55.93%

One modality at a time
Linguistic 70.94%
Acoustic 64.85%
Visual 67.31%

Two modalities at a time
Linguistic + Acoustic 72.88%
Linguistic + Visual 72.39%
Acoustic + Visual 68.86%

Three modalities at a time
Linguistic+Acoustic+Visual 74.09%

Table 2: Utterance-level sentiment classification
with linguistic, acoustic, and visual features.

1997; Atrey et al., 2010). In this approach, the fea-
tures collected from all the multimodal streams are
combined into a single feature vector, thus result-
ing in one vector for each utterance in the dataset
which is used to make a decision about the senti-
ment orientation of the utterance.

We run several comparative experiments, using
one, two, and three modalities at a time. We use
the entire set of 412 utterances and run ten fold
cross validations using an SVM classifier, as imple-
mented in the Weka toolkit.5 In line with previous
work on emotion recognition in speech (Haq and
Jackson, 2009; Anagnostopoulos and Vovoli, 2010)
where utterances are selected in a speaker depen-
dent manner (i.e., utterances from the same speaker
are included in both training and test), as well as
work on sentence-level opinion classification where
document boundaries are not considered in the split
performed between the training and test sets (Wil-
son et al., 2004; Wiegand and Klakow, 2009), the
training/test split for each fold is performed at ut-
terance level regardless of the video they belong
to.

Table 2 shows the results of the utterance-level
sentiment classification experiments. The baseline
is obtained using the ZeroR classifier, which as-
signs the most frequent label by default, averaged
over the ten folds.

6 Discussion

The experimental results show that sentiment clas-
sification can be effectively performed on multi-
modal datastreams. Moreover, the integration of

5http://www.cs.waikato.ac.nz/ml/weka/
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Figure 2: Visual and acoustic feature weights. This
graph shows the relative importance of the infor-
mation gain weights associated with the top most
informative acoustic-visual features.

visual, acoustic, and linguistic features can improve
significantly over the use of one modality at a time,
with incremental improvements observed for each
added modality.

Among the individual classifiers, the linguistic
classifier appears to be the most accurate, followed
by the classifier that relies on visual clues, and by
the audio classifier. Compared to the best indi-
vidual classifier, the relative error rate reduction
obtained with the tri-modal classifier is 10.5%.
The results obtained with this multimodal utter-
ance classifier are found to be significantly better
than the best individual results (obtained with the
text modality), with significance being tested with
a t-test (p=0.05).

Feature analysis.
To determine the role played by each of the vi-
sual and acoustic features, we compare the fea-
ture weights assigned by the learning algorithm,
as shown in Figure 2. Interestingly, a distressed
brow is the strongest indicator of sentiment, fol-
lowed, this time not surprisingly, by the smile fea-
ture. Other informative features for sentiment clas-
sification are the voice probability, representing the
energy in speech, the combined visual features that
represent an angry face, and two of the cepstral
coefficients.

To reach a better understanding of the relation
between features, we also calculate the Pearson
correlation between the visual and acoustic fea-
tures. Table 3 shows a subset of these correlation
figures. As we expected, correlations between fea-
tures of the same type are higher. For example,

the correlation between features AU6 and AU12
or the correlation between intensity and loudness
is higher than the correlation between AU6 and in-
tensity. Nonetheless, we still find some significant
correlations between features of different types, for
instance AU12 and AU45 which are both signifi-
cantly correlated with the intensity and loudness
features. This give us confidence about using them
for further analysis.

Video-level sentiment analysis.
To understand the role played by the size of the
video-segments considered in the sentiment classi-
fication experiments, as well as the potential effect
of a speaker-independence assumption, we also run
a set of experiments where we use full videos for
the classification.

In these experiments, once again the sentiment
annotation is done by two independent annotators,
using the same protocol as in the utterance-based
annotations. Videos that were ambivalent about
the general sentiment were either labeled as neu-
tral (and thus removed from the experiments), or
labeled with the dominant sentiment. The inter-
annotator agreement for this annotation was mea-
sured at 96.1%. As before, the linguistic, acoustic,
and visual features are averaged over the entire
video, and we use an SVM classifier in ten-fold
cross validation experiments.

Table 4 shows the results obtained in these
video-level experiments. While the combination of
modalities still helps, the improvement is smaller
than the one obtained during the utterance-level
classification. Specifically, the combined effect of
acoustic and visual features improves significantly
over the individual modalities. However, the com-
bination of linguistic features with other modalities
does not lead to clear improvements. This may be
due to the smaller number of feature vectors used
in the experiments (only 80, as compared to the
412 used in the previous setup). Another possi-
ble reason is the fact that the acoustic and visual
modalities are significantly weaker than the lin-
guistic modality, most likely due to the fact that
the feature vectors are now speaker-independent,
which makes it harder to improve over the linguis-
tic modality alone.

7 Conclusions

In this paper, we presented a multimodal approach
for utterance-level sentiment classification. We
introduced a new multimodal dataset consisting
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AU6 AU12 AU45 AUs 1,1+4 Pitch Voice probability Intensity Loudness
AU6 1.00 0.46* -0.03 -0.05 0.06 -0.14* -0.04 -0.02
AU12 1.00 -0.23* -0.33* 0.04 0.05 0.15* 0.16*
AU45 1.00 0.05 -0.05 -0.11* -.163* 0.16*
AUs 1,1+4 1.00 -0.11* -0.16* 0.06 0.07
Pitch 1.00 -0.04 -0.01 -0.08
Voice probability 1.00 0.19* 0.38*
Intensity 1.00 0.85*
Loudness 1.00

Table 3: Correlations between several visual and acoustic features. Visual features: AU6 Cheek raise,
AU12 Lip corner pull, AU45 Blink eye and closure, AU1,1+4 Distress brow. Acoustic features: Pitch,
Voice probability, Intensity, Energy. *Correlation is significant at the 0.05 level (1-tailed)

.

Modality Accuracy
Baseline 55.93%

One modality at a time
Linguistic 73.33%
Acoustic 53.33%
Visual 50.66%

Two modalities at a time
Linguistic + Acoustic 72.00%
Linguistic + Visual 74.66%
Acoustic + Visual 61.33%

Three modalities at a time
Linguistic+Acoustic+Visual 74.66%

Table 4: Video-level sentiment classification with
linguistic, acoustic, and visual features.

of sentiment annotated utterances extracted from
video reviews, where each utterance is associated
with a video, acoustic, and linguistic datastream.
Our experiments show that sentiment annotation
of utterance-level visual datastreams can be ef-
fectively performed, and that the use of multiple
modalities can lead to error rate reductions of up to
10.5% as compared to the use of one modality at a
time. In future work, we plan to explore alternative
multimodal fusion methods, such as decision-level
and meta-level fusion, to improve the integration
of the visual, acoustic, and linguistic modalities.
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Abstract 

Sentiment Similarity of word pairs reflects the 

distance between the words regarding their 

underlying sentiments. This paper aims to in-

fer the sentiment similarity between word 

pairs with respect to their senses. To achieve 

this aim, we propose a probabilistic emotion-
based approach that is built on a hidden emo-

tional model. The model aims to predict a vec-

tor of basic human emotions for each sense of 

the words. The resultant emotional vectors are 

then employed to infer the sentiment similarity 

of word pairs. We apply the proposed ap-

proach to address two main NLP tasks, name-

ly, Indirect yes/no Question Answer Pairs in-

ference and Sentiment Orientation prediction. 

Extensive experiments demonstrate the effec-

tiveness of the proposed approach. 

1 Introduction 

Sentiment similarity reflects the distance be-

tween words based on their underlying senti-

ments. Semantic similarity measures such as La-
tent Semantic Analysis (LSA) (Landauer et al., 

1998) can effectively capture the similarity be-

tween semantically related words like "car" and 

"automobile", but they are less effective in relat-

ing words with similar sentiment orientation like 

"excellent" and "superior". For example, the fol-

lowing relations show the semantic similarity 

between some sentiment words computed by 

LSA: 

 

��:	���	�	
�	��	
�, ���	����� = 0.40		 
< ���	�	
�	��	
�, ����� = 0.46	 

< 	���	�����, � �� = 0.65 

Clearly, the sentiment similarity between the 

above words should be in the reversed order. In 

fact, the sentiment intensity in "excellent" is 

closer to "superior" than "good". Furthermore, 

sentiment similarity between "good" and "bad" 

should be 0. 

In this paper, we propose a probabilistic ap-

proach to detect the sentiment similarity of 

words regarding their senses and underlying sen-

timents. For this purpose, we propose to model 

the hidden emotions of word senses. We show 

that our approach effectively outperforms the 

semantic similarity measures in two NLP tasks: 

Indirect yes/no Question Answer Pairs (IQAPs) 

Inference and Sentiment Orientation (SO) pre-

diction that are described as follows: 

In IQAPs, answers do not explicitly contain 

the yes or no keywords, but rather provide con-
text information to infer the yes or no answer 

(e.g. Q: Was she the best one on that old show? 

A: She was simply funny). Clearly, the sentiment 

words in IQAPs are the pivots to infer the yes or 

no answers. We show that sentiment similarity 

between such words (e.g., here the adjectives 

best and Funny) can be used effectively to infer 

the answers. 

The second application (SO prediction) aims to 

determine the sentiment orientation of individual 

words. Previous research utilized the semantic 

relations between words obtained from WordNet 

(Hassan and Radev, 2010) and semantic similari-

ty measures (e.g. Turney and Littman, 2003) for 

this purpose. In this paper, we show that senti-

ment similarity between word pairs can be effec-

tively utilized to compute SO of words.  

The contributions of this paper are follows: 

• We propose an effective approach to predict 

the sentiment similarity between word pairs 

through hidden emotions at the sense level,  

• We show the utility of sentiment similarity 

prediction in IQAP inference and SO predic-

tion tasks, and 

• Our hidden emotional model can infer the type 

and number of hidden emotions in a corpus. 
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2 Sentiment Similarity through Hidden 

Emotions 

As we discussed above, semantic similarity 
measures are less effective to infer sentiment 

similarity between word pairs. In addition, dif-

ferent senses of sentiment words carry different 

human emotions. In fact, a sentiment word can 

be represented as a vector of emotions with in-

tensity values from "very weak" to "very strong". 

For example, Table 1 shows several sentiment 

words and their corresponding emotion vectors 

based the following set of emotions: e = [anger, 

disgust, sadness, fear, guilt, interest, joy, shame, 

surprise]. For example, "deceive" has 0.4 and 0.5 

intensity values with respect to the emotions 

"disgust" and "sadness" with an overall -0.9 (i.e. 

-0.4-0.5) value for sentiment orientation 

(Neviarouskaya et al., 2007; Neviarouskaya et 

al., 2009).  

Word Emotional Vector SO 
e = [anger, disgust, sadness, fear, guilt, interest, joy, shame, surprise] 

Rude ['0.2', '0.4',0,0,0,0,0,0,0] -0.6 

doleful [0, 0, '0.4',0,0,0,0,0,0] -0.4 

smashed [0,0, '0.8', '0.6',0,0,0,0,0] -1.4 

shamefully [0,0,0,0,0,0,0, '0.7',0] -0.7 

deceive [0, '0.4', '0.5',0,0,0,0,0,0] -0.9 
Table  1. Sample of emotional vectors  

 

The difficulty of the sentiment similarity predic-
tion task is evident when terms carry different 

types of emotions. For instance, all the words in 

Table 1 have negative sentiment orientation, but, 

they carry different emotions with different emo-

tion vectors. For example, "rude" reflects the 

emotions "anger" and "disgust", while the word 

"doleful" only reflects the emotion "sadness". As 

such, the word "doleful" is closer to the words 

"smashed" and "deceive" involving the emotion 

"sadness" than others. We show that emotion 

vectors of the words can be effectively utilized to 

predict the sentiment similarity between them. 

Previous research shows little agreement about 

the number and types of the basic emotions 

(Ortony and Turner 1990; Izard 1971). Thus, we 

assume that the number and types of basic emo-

tions are hidden and not pre-defined and propose 
a Probabilistic Sense Sentiment Similarity 

(PSSS) approach to extract the hidden emotions 

of word senses to infer their sentiment similarity.  

3 Hidden Emotional Model  

Online review portals provide rating mechanisms 

(in terms of stars, e.g. 5- or 10-star rating) to al- 

 

Figure 1.The structure of PSSS model 

 

low users to attach ratings to their reviews. A 

rating indicates the summarized opinion of a user 

who ranks a product or service based on his feel-

ings. There are various feelings and emotions 

behind such ratings with respect to the content of 

the reviews.  

Figure 1 shows the intermediate layer of hid-
den emotions behind the ratings (sentiments) 

assigned to the documents (reviews) containing 

the words. This Figure indicates the general 

structure of our PSSS model. It shows that hid-

den emotions (ei) link the rating (rj) and the doc-

uments (dk). In this Section, we aim to employ 

ratings and the relations among ratings, docu-

ments, and words to extract the hidden emotions.  

Figure 2 illustrates a simple graphical model 

using plate representation of Figure 1. As Figures 

2 shows, the rating r from a set of ratings R= 

{r1,…,rp} is assigned to a hidden emotion set 

E={e1,…,ek}. A document d from a set of docu-

ments D= {d1,…,dN} with vocabulary set W= 

{w1,…,wM} is associated with the hidden emotion 

set.  

 

 

 

 

 

 

 

 
 

 
 

 

The model presented in Figure 2(a) has been 

explored in (Mohtarami et al., 2013) and is called 

Series Hidden Emotional Model (SHEM). This 

representation assumes that the word w is de-

pendent to d and independent to e (we refer to 

this Assumption as A1). However, in reality, a 

word w can inherit properties (e.g., emotions) 

(b): Bridged model 

Figure 1. The structure of PSSS model 

(a): Series model 

Figure 2. Hidden emotional model 

984



from the document d that contains w. Thus, we 

can assume that w is implicitly dependant on e. 

To account for this, we present Bridged Hidden 

Emotional Model (BHEM) shown in Figure 2(b). 

Our assumption, A2, in the BHEM model is as 

follows: w is dependent to both d and e.  

Considering Figure 1, we represent the entire 

text collection as a set of (w,d,r) in which each 

observation (w,d,r) is associated with a set of 

unobserved emotions. If we assume that the ob-

served tuples are independently generated, the 

whole data set is generated based on the joint 

probability of the observation tuples (w,d,r) as 

the follows (Mohtarami et al., 2013): 

" =	###$�%, �, ��&�',(,)�																																						
'()

 

=	###$�%, �, ��&�',(�&�(,)� 									�1�
'()

 

where, P(w,d,r) is the joint probability of the tu-

ple (w,d,r), and n(w,d,r) is the frequency of w in 

document d of rating r (note that n(w,d) is the 

term frequency of w in d and n(d,r) is one if r is 

assigned to d, and 0 otherwise). The joint proba-

bility for the BHEM is defined as follows con-

sidering hidden emotion e: 

- regarding class probability of the hidden emotion e 

to be assigned to the observation (w,d,r): 

	$�%, �, �� = 	+$�%, �, �|	�$�	�
-

= 

	=	+$�%, �|	�$��|	�$�	�
-

 

- regarding assumption A2 and Bayes' Rule: 

=	+$�%|�, 	�$��, 	�$��|	�
-

 

- using Bayes' Rule: 

=	+$��, 	|%�$�%�$��|	�
-

 

- regarding A2 and conditional independency: 

		=	+$��|%�$�	|%�$�%�$��|	�
-

 

		= $��|%�+$�%|	�$�	�$��|	�																																						�2�
-

 

In the bridged model, the joint probability does 
not depend on the probability P(d|e) and the 

probabilities P(w|e), P(e) and P(r|e) are un-

known, while in the SHEM model explained in 

(Mohtarami et al., 2013), the joint probability 

does not depend on P(w|e), and probabilities 

P(d|e), P(e), and P(r|e) are unknown.  

We employ Maximum Likelihood approach to 

learn the probabilities and infer the possible hid-

den emotions. The log-likelihood of the whole 

data set D in Equation (1) can be defined as fol-

lows: 
 

� = 	+++
�%, ��
��, ��log$�%, �, ��														�3�
'()

 

Replacing P(w,d,r) by the values computed us-

ing the bridged model in Equation (2) results in: 
�
= 	+++
�%, ��
��, ��log[$��|%�+$�%|	�$�	�$��|	�

-
]

'()
 

										�4� 
The above optimization problems are hard to 

compute due to the log of sum. Thus, Expecta-

tion-maximization (EM) is usually employed. 

EM consists of two following steps: 

1. E-step: Calculates posterior probabilities for 

hidden emotions given the words, documents 
and ratings, and 

2. M-step: Updates unknown probabilities (such 

as P(w|e) etc) using the posterior probabilities 

in the E-step. 

The steps of EM can be computed for BHEM 

model. EM of the model employs assumptions 

A2 and Bayes Rule and is defined as follows: 
E-step: 

$�	|%, �, �� = $��|	�$�	�$�%|	�
∑ $��|	�$�	�$�%|	�-

																												�5� 
M-step: 

$��|	� = ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��'(
∑ ∑ ∑ 
�%, ��
��, �� $�e|%, �, ��'()

 

														=	 ∑ 
�%, ��$�e|%, �, ��'
∑ ∑ 
�%, ��$�e|%, �, ��')

																														�6� 

$�%|	� = ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��()
∑ ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��()'

	 

															=	 ∑ 
�%, ��$�e|%, �, ��)
∑ ∑ 
�%, ��$�e|%, �, ��)'
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�%, ��
��, ��$�e|%, �, ��'()
∑ ∑ ∑ ∑ 
�%,��
��, ��$�e|%, �, ��')(8
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�%, �� $�e|%, �, ��')
∑ ∑ ∑ 
�%, �� $�e|%, �, ��')8

																								�8� 

Note that in Equation (5), the probability 

P(e|w,d,r) does not depend on the document d. 

Also, in Equations (6)-(8) we remove the de-

pendency on document d using the following 

Equation: 

+
�%, ��
��, �� =
�%, ��
(

																					�9� 

where n(w,r) is the occurrence of w in all the 

documents in the rating r. 

The EM steps computed by the bridged model 

do not depend on the variable document d, and 

discard d from the model. The reason is that w 

bypasses d to directly associate with the hidden 

emotion e in Figure 2(b). 
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  Similar to BHEM, the EM steps for SHEM can 

be computed by considering assumptions A1 and 

Bayes Rule as follows (Mohtarami et al., 2013): 

E-step: 

$�	|%, �, �� = $��|	�$�	�$��|	�
∑ $��|	�$�	�$��|	�-

																											�10� 
M-step: 

$��|	� = ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��'(
∑ ∑ ∑ 
�%, ��
��, �� $�e|%, �, ��'()

										�11� 

$��|	� = ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��')
∑ ∑ ∑ 
�%, ��
��, �� $�e|%, �, ��')(

										�12� 

$�	� = ∑ ∑ ∑ 
�%, ��
��, �� $�e|%, �, ��'()
∑ ∑ ∑ ∑ 
�%, ��
��, ��$�e|%, �, ��')(8

							�13� 
 

Finally, we construct the emotional vectors us-

ing the algorithm presented in Table 2. The algo-

rithm employs document-rating, term-document 

and term-rating matrices to infer the unknown 

probabilities. This algorithm can be used with 

both bridged or series models. Our goal is to in-

fer the emotional vector for each word w that can 

be obtained by the probability P(w|e). Note that, 

this probability can be simply computed for the 

SHEM model using P(d|e) as follows: 

$�%|	� =+$�%|��$��|	�
(

																						�14� 

3.1 Enriching Hidden Emotional Models 

We enrich our emotional model by employing 

the requirement that the emotional vectors of two 

synonym words w1 and w2 should be similar. For 

this purpose, we utilize the semantic similarity 

between each two words and create an enriched 

matrix. Equation (15) shows how we compute 

this matrix. To compute the semantic similarity 

between word senses, we utilize their synsets as 

follows: 

 

%;%< = $=�>
�%;�|�>
�%<�? 

	= 1
|�>
�%;�|	 + 1

|�>
�%<�| + $=%;|%<?
|@A&�'B�|

C

|@A&�'D�|

E
				�15� 

where, syn(w) is the synset of w. Let count(wi, 

wj) be the co-occurrence of the wi and wj, and let 

count(wj) be the total word count. The probabil-

ity of wi given wj will then be P(wi|wj) = 

count(wi, wj)/ count(wj). In addition, note that 

employing the synset of the words help to obtain 

different emotional vectors for each sense of a 

word.  

The resultant enriched matrix W×W is multi-

plied to the inputs of our hidden model (matrices 

W×D	or	W×R�. Note that this takes into account  

Input: 
Series Model: Document-Rate D×R, Term-Document 

W×D 
Bridged Model: Term-Rate W×R 

Output: Emotional vectors {e1, e2, …,ek} for w 

Algorithm: 

1. Enriching hidden emotional model: 

Series Model: Update Term-Document W×D 

Bridged Model: Update Term-Rate W×R 

2. Initialize unknown probabilities:  

Series Model: Initialize P(d|e), P(r|e), and P(e), ran-
domly 

Bridged Model: Initialize P(w|e), P(r|e), and P(e) 

3. while L  has not converged to a pre-specified value do 

4. E-step;  

Series Model: estimate the value of P(e|w,d,r) in 

Equation 10  
Bridged Model: estimate the value of P(e|w,d,r) in 

Equation 5 

5. M-step;  

Series Model: estimate the values of P(r|e), P(d|e), 

and P(e) in Equations 11-13, respectively 
Bridged Model: estimate the values of P(r|e), P(w|e), 

and P(e) in Equations 6-8, respectively 

6. end while 

7. If series hidden emotional model is used then 

8.  Infer word emotional vector: estimate P(w|e) in 

Equation 14.  

9. End if 

Table  2. Constructing emotional vectors via P(w|e)  

the senses of the words as well. The learning step 

of EM is done using the updated inputs. In this 

case, the correlated words can inherit the proper-

ties of each other. For example, if wi does not 

occur in a document or rating involving another 

word (i.e., wj), the word wi can still be indirectly 

associated with the document or rating through 

the word wj. However, the distribution of the 

opinion words in documents and ratings is not 

uniform. This may decrease the effectiveness of 

the enriched matrix.  

The nonuniform distribution of opinion words 

has been also reported by Amiri et al. (2012) 

who showed that the positive words are frequent-

ly used in negative reviews. We also observed 

the same pattern in the development dataset. Fig-

ure 3 shows the overall occurrence of some posi-

tive and negative seeds in various ratings. As 

shown, in spite of the negative words, the posi-

tive words may frequently occur in both positive 

and negative documents. Such distribution of  
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Figure 3. Nonuniform distribution of opinion words 

positive words can mislead the enriched model. 

To address this issue, we measure the confi-

dence of an opinion word in the enriched matrix 

as follows.  

K�
L��	
�	' = �M�[�NO'P ×"O'P� − �NO'R × "O'R�]
�NO'P ×"O'P� + �NO'R ×"O'R�  

�16� 
where, NO'P (NO'R) is the frequency of w in the 

ratings 1 to 4 (7 to 10), and "O'P ("O'R) is the 

total number of documents with rating 1 to 4 (7 

to 10) that contain w. The confidence value of w 
varies from 0 to 1, and it increases if: 

• There is a large difference between the occur-

rences of w in positive and negative ratings. 

• There is a large number of reviews involving 

w in the relative ratings. 

   To improve the efficiency of enriched matrix, 

the columns corresponding to each word in the 

matrix are multiplied by its confidence value.        

4 Predicting Sentiment Similarity 

We utilize the approach proposed in (Mohtarami 

et al., 2013) to compute the sentiment similarity 

between two words. This approach compares the 

emotional vector of the given words. Let X and Y 

be the emotional vectors of two words. Equation 

(17) computes their correlation: 

�����V, W� = ∑ �V; − VX��W; − WX�&;YZ
�
− 1��[�\ 																																�17� 

where, 
 is number of emotional categories, V,] WX 
and �[ , �\  are the mean and standard deviation 
values of ^  and _  respectively. �����V, W� = −1 
indicates that the two vectors are completely dis-
similar, and �����V, W� = 1 indicates that the vec-
tors have perfect similarity.  

The approach makes use of a thresholding 
mechanism to estimate the proper correlation 
value to find sentimentally similar words. For 
this, as in Mohtarami et al. (2013) we utilized the 
antonyms of the words. We consider two words,  

Input: 

��`: The adjective in the question of given IQAP. 

���: The adjective in the answer of given IQAP. 

Output: answer ∈ {>	�, 
�, �
�	�� �
} 
Algorithm: 

1. if ��` or ��� are missing from our corpus then 

2.       answer=Uncertain; 

3. else if  �����`, ���� < 0 then 

4.             answer=No;  

5.        else if �����`, ���� > 0 then 

6.                   answer=yes; 

Figure 4. Sentiment similarity for IQAP inference 

%; and %< as similar in sentiment iff they satisfy 

both of the following conditions: 

1. ����=%; ,%<? > ����=%;,~%<?, 
� 

2. ����=%; ,%<? > ����=~%;,%<? 
where, ~%;  is antonym of %; , and ����=%; , %<? 
is obtained from Equation (17). Finally, we com-
pute the sentiment similarity (SS) as follows: 

��=%; ,%<? = 

����=%; ,%<? −f 
g����=%; ,~%<?, ����=~%;,%<?h			�18� 
Equation (18) enforces two sentimentally simi-

lar words to have weak correlation to the anto-
nym of each others. A positive value of SS(.,.) 
indicates the words are sentimentally similar and 
a negative value shows that they are dissimilar.  

5 Applications 

We explain our approach in utilizing sentiment 

similarity between words to perform IQAP infer-

ence and SO prediction tasks respectively.  

In IQAPs, we employ the sentiment similarity 

between the adjectives in questions and answers 

to interpret the indirect answers. Figure 4 shows 

the algorithm for this purpose. SS(.,.) indicates 

sentiment similarity computed by Equation (18). 

A positive SS means the words are sentimentally 

similar and thus the answer is yes. However, 

negative SS leads to a no response. 

In SO-prediction task, we aim to compute 
more accurate SO using our sentiment similarity 

method. Turney and Littman (2003) proposed a 

method in which the SO of a word is calculated 

based on its semantic similarity with seven posi-

tive words minus its similarity with seven nega-

tive words as shown in Figure 5. As the similari-
ty function, A(.,.), they employed point-wise mu-

tual information (PMI) to compute the similarity 

between the words. Here, we utilize the same 

approach, but instead of PMI we use our SS(.,.) 

measure as the similarity function. 
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Input: 

$%����: seven words with positive SO 

i%����: seven words with negative SO 

��. , . �: similarity function, and %: a given word with 

unknown SO 

Output: sentiment orientation of w  

Algorithm: 

1. $ = �j_��%� = 

+ ��%, �%����−	 + ��%, 
%����
&'l)(m	n'l)(@o'l)(m	p'l)(@

 

Figure 5. SO based on the similarity function A(.,.) 

6 Evaluation and Results 

6.1 Data and Settings 

We used the review dataset employed by Maas et 
al. (2011) as the development dataset that con-
tains movie reviews with star rating from one 
star (most negative) to 10 stars (most positive). 
We exclude the ratings 5 and 6 that are more 
neutral. We used this dataset to compute all the 
input matrices in Table 2 as well as the enriched 
matrix. The development dataset contains 50k 
movie reviews and 90k vocabulary.  

We also used two datasets for the evaluation 
purpose: the MPQA (Wilson et al., 2005) and 
IQAPs (Marneffe et al., 2010) datasets. The 
MPQA dataset is used for SO prediction experi-
ments, while the IQAP dataset is used for the 
IQAP experiments. We ignored the neutral 
words in MPQA dataset and used the remaining 
4k opinion words. Also, the IQAPs dataset 
(Marneffe et al., 2010) contains 125 IQAPs and 
their corresponding yes or no labels as the 
ground truth. 

6.2 Experimental Results 

To evaluate our PSSS model, we perform exper-

iments on the SO prediction and IQAPs infer-
ence tasks. Here, we consider six emotions for 

both bridged and series models. We study the 

effect of emotion numbers in Section 7.1. Also, 

we set a threshold of 0.3 for the confidence value 

in Equation (16), i.e. we set the confidence val-

ues smaller than the threshold to 0. We explain 
the effect of this parameter in Section 7.3. 

Evaluation of SO Prediction 

We evaluate the performance of our PSSS mod-

els in the SO prediction task using the algorithm 

explained in Figure 5 by setting our PSSS as 

similarity function (A). The results on SO predic-

tion are presented in Table 3. The first and se- 

Method Precision Recall F1 

PMI 56.20 56.36 55.01 

ER 65.68 65.68 63.27 

PSSS-SHEM 68.51 69.19 67.96 

PSSS-BHEM 69.39 70.07 68.68 

Table 3. Performance on SO prediction task 

cond rows present the results of our baselines, 

PMI (Turney and Littman, 2003) and Expected 

Rating (ER) (Potts, 2011) of words respectively.  

PMI extracts the semantic similarity between 

words using their co-occurrences. As Table 3 

shows, it leads to poor performance. This is 

mainly due to the relatively small size of the de-

velopment dataset which affects the quality of 

the co-occurrence information used by the PMI.  

ER computes the expected rating of a word 

based on the distribution of the word across rat-

ing categories. The value of ER indicates the SO 

of the word. As shown in the two last rows of the 

table, the results of PSSS approach are higher 

than PMI and ER. The reason is that PSSS is 

based on the combination between sentiment 

space (through using ratings, and matrices W×R 

in BHEM, D×R in SHEM) and semantic space 

(through the input W×D in SHEM and enriched 

matrix W×W in both hidden models). However, 

the PMI employs only the semantic space (i.e., 

the co-occurrence of the words) and ER uses oc-

currence of the words in rating categories. 

Furthermore, the PSSS model achieves higher 

performance with BHEM rather than SHEM. 

This is because the emotional vectors of the 

words are directly computed from the EM steps 
of BHEM. However, the emotional vectors of 

SHEM are computed after finishing the EM steps 

using Equation (14). This causes the SHEM 

model to estimate the number and type of the 

hidden emotions with a lower performance as 

compared to BHEM, although the performances 

of SHEM and BHEM are comparable as ex-

plained in Section 7.1.  

Evaluation of IQAPs Inference  

To apply our PSSS on IQAPs inference task, we 

use it as the sentiment similarity measure in the 

algorithm explained in Figure 4. The results are 

presented in Table 4. The first and second rows 

are baselines. The first row is the result obtained 

by Marneffe et al. (2010) approach. This ap-

proach is based on the similarity between the SO 

of the adjectives in question and answer. The 

second row of Table 4 show the results of using a 

popular semantic similarity measure, PMI, as the 

sentiment similarity (SS) measure in Figure 4.  

988



Method Prec. Rec. F1 

Marneffe et al. (2010) 60.00 60.00 60.00 

PMI 60.61 58.70 59.64 

PSSS-SHEM  62.55 61.75 61.71 

PSSS-BHEM (w/o WSD) 65.90 66.11 63.74 

SS-BHEM (with WSD) 66.95 67.15 65.66 

Table 4. Performance on IQAP inference task 

The result shows that PMI is less effective to 

capture the sentiment similarity. 

Our PSSS approach directly infers yes or no 

responses using SS between the adjectives and 

does not require computing SO of the adjectives. 

In Table 4, PSSS-SHEM and PSSS-BHEM indi-

cate the results when we use our PSSS with 

SHEM and BHEM respectively. Table 4 shows 

the effectiveness of our sentiment similarity 

measure. Both models improve the performance 

over the baselines, while the bridged model leads 

to higher performance than the series model. 

Furthermore, we employ Word Sense Disam-

biguation (WSD) to disambiguate the adjectives 

in the question and its corresponding answer. For 
example, Q: … Is that true? A: This is extraor-

dinary and preposterous. In the answer, the cor-

rect sense of the extraordinary is unusual and as 

such answer no can be correctly inferred. In the 

table, (w/o WSD) is based on the first sense (most 

common sense) of the words, whereas (with 

WSD) utilizes the real sense of the words. As 

Table 4 shows, WSD increases the performance. 

WSD could have higher effect, if more IQAPs 

contain adjectives with senses different from the 

first sense. 

7 Analysis and Discussions 

7.1 Number and Types of Emotions   

In our PSSS approach, there is no limitation on 

the number and types of emotions as we assumed 

emotions are hidden. In this Section, we perform 

experiments to predict the number and type of 

hidden emotions.  

Figure 6 and 7 show the results of the hidden 

models (SHEM and BHEM) on SO prediction 

and IQAPs inference tasks respectively with dif-

ferent number of emotions. As the Figures show, 

in both tasks, SHEM achieved high performanc-
es with 11 emotions. However, BHEM achieved 

high performances with six emotions. Now, the 

question is which emotion number should be 

considered? To answer this question, we further 

study the results as follows.  

First, for SHEM, there is no significant differ-
ence between the performances with six and 11 

emotions in the SO prediction task. This is the  

 
Figure 6. Performance of BHEM and SHEM on SO 

prediction through different #of emotions 

 

 
Figure 7. Performance of BHEM and SHEM on 

IQAPs inference through different #of emotions 

same for BHEM. Also, the performances of 

SHEM on the IQAP inference task with six and 

11 emotions are comparable. However, there is a 

significant difference between the performances 

of BHEM in six and 11 emotions. So, we consid-

er the dimension in which both hidden emotional 

models present a reasonable performance over 
both tasks. This dimension is six here. 

Second, as shown in the Figures 6 and 7, in 

contrast to BHEM, the performance of SHEM 

does not considerably change with different 

number of emotions over both tasks. This is be-

cause, in SHEM, the emotional vectors of the 

words are derived from the emotional vectors of 

the documents after the EM steps, see Equation 

(14). However, in BHEM, the emotional vectors 

are directly obtained from the EM steps. Thus, 

the bridged model is more sensitive than series 

model to the number of emotions. This could 

indicate that the bridged model is more accurate 

than the series model to estimate the number of 

emotions. 

Therefore, based on the above discussion, the 

estimated number of emotions is six in our de-

velopment dataset. This number may vary using 

different development datasets. 

In addition to the number of emotions, their 

types can also be interpreted using our approach. 

To achieve this aim, we sort the words based on 

their probability values, P(w|e), with respect to  
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Figure 8. Effect of synonyms & antonyms in SO pre-

diction task with different emotion numbers in BHEM 

Emotion#1 Emotion#2 Emotion#3 

excellent (1) 
magnificently(1) 

blessed (1) 
sublime (1) 

affirmation (1) 
tremendous (2) 

unimpressive (1) 
humorlessly (1) 

paltry (1) 
humiliating (1) 

uncreative (1) 
lackluster (1) 

disreputable (1) 
villian (1) 

onslaught (1) 
ugly (1) 

old (1) 
disrupt (1) 

Table 5. Sample words in three emotions 

each emotion. Then, the type of the emotions can 

be interpreted by observing the top k words in 

each emotion. For example, Table 5 shows the 

top 6 words for three out of six emotions ob-

tained for BHEM. The numbers in parentheses 

show the sense of the words. The corresponding 

emotions for these categories can be interpreted 

as "wonderful", "boring" and "disreputable", re-

spectively.  

We also observed that, in SHEM with eleven 

emotion numbers, some of the emotion catego-

ries have similar top k words such that they can 

be merged to represent the same emotion. Thus, 

it indicates that the BHEM is better than SHEM 

to estimates the number of emotions than SHEM. 

7.2 Effect of Synsets and Antonyms  

We show the important effect of synsets and an-

tonyms in computing the sentiment similarity of 

words. For this purpose, we repeat the experi-

ment for SO prediction by computing sentiment 

similarity of word pairs with and without using 

synonyms and antonyms. Figure 8 shows the 

results of obtained from BHEM. As the Figure 

shown, the highest performance can be achieved 

when synonyms and antonyms are used, while 

the lowest performance is obtained without using 

them. Note that, when the synonyms are not 

used, the entries of enriched matrix are computed 

using P(wi|wj) instead of P(syn(wi)|syn(wj)) in the 

Equation (15). Also, when the antonyms are not 

used, the Max(,) in Equation (18) is 0 and SS is 

computed using only correlation between words.  

The results show that synonyms can improve 

the performance. As Figure 8 shows, the two  

 
Figure 9. Effect of confidence values in SO prediction 

with different emotion numbers in BHEM 

highest performances are obtained when we use 

synonyms and the two lowest performances are 

achieved when we don't use synonyms. This is 

indicates that the synsets of the words can im-

prove the quality of the enriched matrix. The re-

sults also show that the antonyms can improve 

the result (compare WOSynWAnt with 

WOSynWOAnt). However, synonyms lead to 

greater improvement than antonyms (compare 

WSynWOAnt with WOSynWAnt). 

7.3 Effect of Confidence Value 

In Section 3.1, we defined a confidence value for 

each word to improve the quality of the enriched 

matrix. To illustrate the utility of the confidence 

value, we repeat the experiment for SO predic-

tion by BHEM using all the words appears in 
enriched matrix with different confidence 

thresholds. The results are shown in Figure 9, 

"w/o confidence" shows the results when we 

don’t use the confidence values, while "with con-

fidence" shows the results when use the confi-

dence values. Also, "confidence>x" indicates the 
results when we set all the confidence value 

smaller than x to 0. The thresholding helps to 

eliminate the effect of low confident words.  

As Figure 9 shows, "w/o confidence" leads to 

the lowest performance, while "with confidence" 

improves the performance with different number 

of emotions. The thresholding is also effective. 

For example, a threshold like 0.3 or 0.4 improves 

the performance. However, if a large value (e.g., 

0.6) is selected as threshold, the performance 

decreases. This is because a large threshold fil-

ters a large number of words from enriched mod-

el that decreases the effect of the enriched ma-

trix.        

7.4 Convergence Analysis 

The PSSS approach is based on the EM algo-

rithm for the BHEM (or SHEM) presented in 

Table 2. This algorithm performs a predefined 
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number of iterations or until convergence. To 

study the convergence of the algorithm, we re-

peat our experiments for SO prediction and 

IQAPs inference tasks using BHEM with differ-

ent number of iterations. Figure 10 shows that 

after the first 15 iterations the performance does 

not change dramatically and is nearly constant 

when more than 30 iterations are performed. This 

shows that our algorithm will converge in less 

than 30 iterations for BHEM. We observed the 

same pattern in SHEM. 

7.5 Bridged Vs. Series Model  

The bridged and series models are both based on 

the hidden emotions that were developed to pre-

dict the sense sentiment similarity. Although 

their best results on the SO prediction and IQAPs 

inference tasks are comparable, they have some 

significant differences as follows: 

• BHEM is considerably faster than SHEM. The 

reason is that, the input matrix of BHEM (i.e., 

W×R) is significantly smaller than the input 

matrix of SHEM (i.e., W×D). 

•  In BHEM, the emotional vectors are directly 

computed from the EM steps. However, the 

emotional vector of a word in SHEM is com-
puted using the emotional vectors of the doc-

uments containing the word. This adds noises 

to the emotional vectors of the words.  

• BHEM gives more accurate estimation over 

type and number of emotions versus SHEM. 

The reason is explained in Section 7.1. 

8 Related Works 

Sentiment similarity has not received enough 

attention to date. Most previous works employed 

semantic similarity of word pairs to address SO 

prediction and IQAP inference tasks. Turney and 

Littman (2003) proposed to compute pair-wised 

mutual information (PMI) between a target word 

and a set of seed positive and negative words to 

infer the SO of the target word. They also uti-
lized Latent Semantic Analysis (LSA) (Landauer 

et al., 1998) as another semantic similarity meas-

ure. However, both PMI and LSA are semantic 

similarity measure. Similarly, Hassan and Radev 

(2010) presented a graph-based method for pre-

dicting SO of words. They constructed a lexical 

graph where nodes are words and edges connect 

two words with semantic similarity obtained 

from Wordnet (Fellbaum 1998). They propagat-

ed the SO of a set of seeds through this graph. 

However, such approaches did not take into ac-

count the sentiment similarity between words.  

 
Figure 10. Convergence of BHEM 

In IQAPs, Marneffe et al. (2010) inferred the 

yes/no answers using SO of the adjectives. If SO 

of the adjectives have different signs, then the 

answer conveys no, and Otherwise, if the abso-

lute value of SO for the adjective in question is 

smaller than the absolute value of the adjective in 

answer, then the answer conveys yes, and other-

wise no. In Mohtarami et al. (2012), we used two 

semantic similarity measures (PMI and LSA) for 

the IQAP inference task. We showed that meas-

uring the sentiment similarities between the ad-

jectives in question and answer leads to higher 

performance as compared to semantic similarity 

measures. 

In Mohtarami et al. (2012), we proposed an 

approach to predict the sentiment similarity of 

words using their emotional vectors. We as-

sumed that the type and number of emotions are 

pre-defined and our approach was based on this 

assumption. However, in previous research, there 

is little agreement about the number and types of 

basic emotions. Furthermore, the emotions in 

different dataset can be varied. We relaxed this 

assumption in Mohtarami et al., (2013) by con-

sidering the emotions as hidden and presented a 

hidden emotional model called SHEM. This pa-

per also consider the emotions as hidden and pre-

sents another hidden emotional model called 

BHEM that gives more accurate estimation of 

the numbers and types of the hidden emotions.   

9 Conclusion 

We propose a probabilistic approach to infer the 

sentiment similarity between word senses with 

respect to automatically learned hidden emo-

tions. We propose to utilize the correlations be-

tween reviews, ratings, and words to learn the 

hidden emotions. We show the effectiveness of 

our method in two NLP tasks. Experiments show 

that our sentiment similarity models lead to ef-

fective emotional vector construction and signif-

icantly outperform semantic similarity measures 

for the two NLP task. 
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Abstract

Social Media contain a multitude of user
opinions which can be used to predict real-
world phenomena in many domains in-
cluding politics, finance and health. Most
existing methods treat these problems as
linear regression, learning to relate word
frequencies and other simple features to
a known response variable (e.g., voting
intention polls or financial indicators).
These techniques require very careful fil-
tering of the input texts, as most Social
Media posts are irrelevant to the task. In
this paper, we present a novel approach
which performs high quality filtering au-
tomatically, through modelling not just
words but also users, framed as a bilin-
ear model with a sparse regulariser. We
also consider the problem of modelling
groups of related output variables, us-
ing a structured multi-task regularisation
method. Our experiments on voting inten-
tion prediction demonstrate strong perfor-
mance over large-scale input from Twitter
on two distinct case studies, outperform-
ing competitive baselines.

1 Introduction

Web Social Media platforms have ushered a new
era in human interaction and communication. The
main by-product of this activity is vast amounts of
user-generated content, a type of information that
has already attracted the interest of both marke-
teers and scientists because it offers – for the first
time at a large-scale – unmediated access to peo-
ples’ observations and opinions.

One exciting avenue of research concentrates
on mining interesting signals automatically from
this stream of text input. For example, by exploit-
ing Twitter posts, it is possible to infer time series

that correlate with financial indicators (Bollen et
al., 2011), track infectious diseases (Lampos and
Cristianini, 2010; Lampos et al., 2010; Paul and
Dredze, 2011) and, in general, nowcast the magni-
tude of events emerging in real-life (Sakaki et al.,
2010; Lampos and Cristianini, 2012). Other stud-
ies suggest ways for modelling opinions encap-
sulated in this content in order to forge branding
strategies (Jansen et al., 2009) or understand vari-
ous socio-political trends (Tumasjan et al., 2010;
O’Connor et al., 2010; Lansdall-Welfare et al.,
2012). The main theme of the aforementioned
works is linear regression between word frequen-
cies and a real-world quantity. They also tend to
incorporate hand-crafted lists of search terms to
filter irrelevant content and use sentiment analy-
sis lexicons for extracting opinion bias. Conse-
quently, they are quite often restricted to a specific
application and therefore, generalise poorly to new
data sets (Gayo-Avello et al., 2011).

In this paper, we propose a generic method that
aims to be independent of the characteristics de-
scribed above (use of search terms or sentiment
analysis tools). Our approach is able to explore
not only word frequencies, but also the space of
users by introducing a bilinear formulation for
this learning task. Regularised regression on both
spaces allows for an automatic selection of the
most important terms and users, performing at the
same time an improved noise filtering. In addi-
tion, more advanced regularisation functions en-
able multi-task learning schemes that can exploit
shared structure in the feature space. The latter
property becomes very useful in multi-output re-
gression scenarios, where selected features are ex-
pected to have correlated as well as anti-correlated
impact on each output (e.g., when inferring voting
intentions for competing political parties).

We evaluate our methods on the domain of
politics using data from the microblogging ser-
vice of Twitter to infer voting trends. Our pro-
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posed framework is able to successfully predict
voting intentions for the top-3 and top-4 parties
in the United Kingdom (UK) and Austria respec-
tively. In both case studies – bound by differ-
ent characteristics (including language, time-span
and number of users) – the average prediction er-
ror is smaller than 1.5% for our best model using
multi-task learning. Finally, our qualitative analy-
sis shows that the models uncover interesting and
semantically interpretable insights from the data.

2 Data

For the evaluation of the proposed methodologies
we have created two data sets of Social Media con-
tent with different characteristics based in the UK
and Austria respectively. They are used for per-
forming regression aiming to infer voting intention
polls in those countries. Data processing is per-
formed using the TrendMiner architecture for So-
cial Media analysis (Preoţiuc-Pietro et al., 2012).

2.1 Tweets from users in the UK

The first data set (we refer to it as Cuk) used in
our experimental process consists of approx. 60
million tweets produced by approx. 42K UK Twit-
ter users from 30/04/2010 to 13/02/2012. We as-
sumed each user to be from the UK, if the location
field in their profile matched with a list of com-
mon UK locations and their time zone was set to
G.M.T. In this way, we were able to extract hun-
dreds of thousands of UK users, from which we
sub-sampled 42K users to be distributed across the
UK geographical regions proportionally to their
population figures.1

2.2 Tweets for Austria

The second data set (Cau) is shorter in terms of
the number of users involved (1.1K), its time span
(25/01 to 01/12/2012) and, consequently, of the
total number of tweets considered (800K). How-
ever, this time the selection of users has been made
by Austrian political experts who decided which
accounts to monitor by subjectively assessing the
value of information they may provide towards
political-oriented topics. Still, we assume that the
different users will produce information of varying
quality, and some should be eliminated entirely.
However, we emphasise that there may be smaller

1Data collection was performed using Twitter API,
http://dev.twitter.com/, to extract all posts for our
target users.
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(b) 98 voting intention polls for the 4 major parties in
Austria (January to December 2012)

Figure 1: Voting intention polls for the UK and
Austria.

potential gains from user modelling compared to
the UK case study. Another important distinction
is language, which for this data set is primarily
German with some English.

2.3 Ground Truth
The ground truth for training and evaluating our
regression models is formed by voting intention
polls from YouGov (UK) and a collection of Aus-
trian pollsters2 – as none performed high fre-
quency polling – for the Austrian case study.
We focused on the three major parties in the
UK, namely Conservatives (CON), Labour (LAB)
and Liberal Democrats (LBD) and the four ma-
jor parties in Austria, namely the Social Demo-
cratic Party (SPÖ), People’s Party (ÖVP), Free-
dom Party (FPÖ) and the Green Alternative Party
(GRÜ). Matching with the time spans of the data
sets described in the previous sections, we have
acquired 240 unique polls for the UK and 65 polls
for Austria. The latter have been expanded to
98 polls by replicating the poll of day i for day

2Wikipedia, http://de.wikipedia.org/wiki/
Nationalratswahl_in_\%D6sterreich_2013.
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i − 1 where possible.3 There exists some inter-
esting variability towards the end for the UK polls
(Fig. 1a), whereas for the Austrian case, the main
changing point is between the second and the third
party (Fig. 1b).

3 Methods

The textual content posted on Social Media plat-
forms unarguably contains valuable information,
but quite often it is hidden under vast amounts of
unstructured user generated input. In this section,
we propose a set of methods that build on one an-
other, which aim to filter the non desirable noise
and extract the most informative features not only
based on word frequencies, but also by incorporat-
ing users in this process.

3.1 The bilinear model
There exist a number of different possibilities for
incorporating user information into a regression
model. A simple approach is to expand the fea-
ture set, such that each user’s effect on the re-
sponse variable can be modelled separately. Al-
though flexible, this approach would be doomed
to failure due to the sheer size of the resulting fea-
ture set, and the propensity to overfit all but the
largest of training sets. One solution is to group
users into different types, such as journalist, politi-
cian, activist, etc., but this presupposes a method
for classification or clustering of users which is a
non-trivial undertaking. Besides, these naı̈ve ap-
proaches fail to account for the fact that most users
use similar words to express their opinions, by
separately parameterising the model for different
users or user groups.

We propose to account for individual users
while restricting all users to share the same vocab-
ulary. This is formulated as a bilinear predictive
model,

f(X) = uuuTXwww + β , (1)

where X is an m × p matrix of user-word fre-
quencies and uuu and www are the model parameters.
Let Q ∈ Rn×m×p be a tensor which captures our
training inputs, where n, m and p denote the con-
sidered number of samples (each sample usually
refers to a day), terms and users respectively; Q
can simply be interpreted as n versions of X (de-
noted by Qi in the remainder of the script), a dif-
ferent one for each day, put together. Each element

3This has been carried out to ensure an adequate number
of training points in the experimental process.

Qijk holds the frequency of term j for user k dur-
ing the day i in our sample. If a user k has posted
ci·k tweets during day i, and cijk ≤ ci·k of them
contain a term j, then the frequency of j for this
day and user is defined as Qijk =

cijk
ci·k

.
Aiming to learn sparse sets of users and terms

that are representative of the voting intention sig-
nal, we formulate our optimisation task as follows:

{www∗,uuu∗, β∗} = argmin
www,uuu,β

n∑

i=1

(
uuuTQiwww + β − yi

)2

+ ψ(www, ρ1) + ψ(uuu, ρ2) ,

(2)

where yyy ∈ Rn is the response variable (voting in-
tention), www ∈ Rm and uuu ∈ Rp denote the term
and user weights respectively, uuuTQiwww expresses
the bilinear term, β ∈ R is a bias term and ψ(·)
is a regularisation function with parameters ρ1 or
ρ2. The first term in Eq. 2 is the standard regulari-
sation loss function, namely the sum squared error
over the training instances.4

In the main formulation of our bilinear model,
as the regularisation function ψ(·) we use the elas-
tic net (Zou and Hastie, 2005), an extension of
the well-studied `1-norm regulariser, known as the
LASSO (Tibshirani, 1996). The `1-norm regu-
larisation has found many applications in several
scientific fields as it encourages sparse solutions
which reduce the possibility of overfitting and en-
hance the interpretability of the inferred model
(Hastie et al., 2009). The elastic net applies an
extra penalty on the `2-norm of the weight vector,
and can resolve instability issues of LASSO which
arise when correlated predictors exist in the input
data (Zhao and Yu, 2006). Its regularisation func-
tion ψel(·) is defined by:

ψel (www, λ, α) = λ

(
1− α

2
‖www‖22 + α‖www‖1

)
, (3)

where λ > 0 and α ∈ [0, 1); setting parameter
α to its extremes transforms elastic net to ridge
regression (α = 0) or vanilla LASSO (α = 1).

Eq. 2 can be treated as a biconvex learning task
(Al-Khayyal and Falk, 1983), by observing that
for a fixed www, learning uuu is a convex problem and
vice versa. Biconvex functions and possible ap-
plications have been well studied in the optimi-
sation literature (Quesada and Grossmann, 1995;

4Note that other loss functions could be used here, such
as logistic loss for classification, or more generally bilinear
variations of Generalised Linear Models (Nelder and Wed-
derburn, 1972).
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Pirsiavash et al., 2009). Their main advantage is
the ability to solve efficiently non-convex prob-
lems by a repeated application of two convex pro-
cesses, i.e., a form of coordinate ascent. In our
case, the bilinear technique makes it possible to
explore both word and user spaces, while main-
taining a modest training complexity.

Therefore, in our bilinear approach we divide
learning in two phases, where we learn word and
user weights respectively. For the first phase we
produce the term-scores matrix V ∈ Rn×m with
elements given by:

Vij =

p∑

z=1

uzQijz. (4)

V contains weighted sums of term frequencies
over all users for the considered set of days. The
weights are held in uuu and are representative of
each user. The initial optimisation task is formu-
lated as:

{www∗, β∗} = argmin
www,β

‖Vwww + β − yyy‖22

+ ψel (www, λ1, α1) ,
(5)

where we aim to learn a sparse but consistent set
of weights w∗ for the terms of our vocabulary.

In the second phase, we are using www∗ to form
the user-scores matrix D ∈ Rn×p:

Dik =

m∑

z=1

w∗zQizk , (6)

which now contains weighted sums over all terms
for the same set of days. The optimisation task
becomes:

{uuu∗, β∗} = argmin
uuu,β

‖Duuu+ β − yyy‖22

+ ψel (uuu, λ2, α2) .
(7)

This process continues iteratively by inserting
the weights of the second phase back to phase one,
and so on until convergence. We cannot claim that
a global optimum will be reached, but biconvexity
guarantees that our global objective (Eq. 2) will
decrease in each step of this iterative process. In
the remainder of this paper, we refer to the method
described above as Bilinear Elastic Net (BEN).

3.2 Exploiting term-target or user-target
relationships

The previous model assumes that the response
variable yyy holds information about a single infer-

ence target. However, the task that we are ad-
dressing in this paper usually implies the exis-
tence of several targets, i.e., different political par-
ties or politicians. An important property, there-
fore, is the ability to perform multiple output re-
gression. A simple way of adapting the model to
the multiple output scenario is by framing a sep-
arate learning problem for each output, but tying
together some of the parameters. Here we con-
sider tying together the user weights uuu, to enforce
that the same set of users are relevant to all tasks,
while learning different term weights. Note that
the converse situation, where www’s are tied and uuu’s
are independent, can be formulated in an equiva-
lent manner.

Suppose that our target variable yyy ∈ Rτn refers
now to τ political entities, yyy =

[
yyyT
1yyy

T
2 ...yyy

T
τ

]T; in
this formation the top n elements of yyy match to
the first political entity, the next n elements to the
second and so on. In the first phase of the bilin-
ear model, we would have to solve the following
optimisation task:

{www∗, β∗} = argmin
w,β

τ∑

i=1

‖Vwiwiwi + βi − yi‖22

+
τ∑

i=1

ψel (wwwi, λ1, α1) ,

(8)

where V is given by Eq. 4 and www∗ ∈ Rτm de-
notes the vector of weights which can be sliced
into τ sub-vectors {www∗1, ...,www∗τ} each one repre-
senting a political entity. In the second phase,
sub-vectorswww∗i are used to form the input matrices
Di, i ∈ {1, ..., τ} with elements given by Eq. 6.
The input matrix D′ is formed by the vertical
concatenation of all Di user score matrices, i.e.,
D′ =

[
DT

1 ... DT
τ

]T, and the optimisation target is
equivalent to the one expressed in Eq. 7. Since
D′ ∈ Rτn×p, the user weight vector uuu∗ ∈ Rp and
thus, we are learning a single weight per user and
not one per political party as in the previous step.

The method described above allows learning
different term weights per response variable and
then binds them under a shared set of user weights.
As mentioned before, one could also try the oppo-
site (i.e., start by expanding the user space); both
those models can also be optimised in an itera-
tive process. However, our experiments revealed
that those approaches did not improve on the
performance of BEN. Still, this behaviour could
be problem-specific, i.e., learning different words
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from a shared set of users (and the opposite) may
not be a good modelling practice for the domain of
politics. Nevertheless, this observation served as
a motivation for the method described in the next
section, where we extract a consistent set of words
and users that are weighted differently among the
considered political entities.

3.3 Multi-task learning with the `1/`2
regulariser

All previous models – even when combining all
inference targets – were not able to explore rela-
tionships across the different task domains; in our
case, a task domain is defined by a specific politi-
cal label or party. Ideally, we would like to make a
sparse selection of words and users but with a reg-
ulariser that promotes inter-task sharing of struc-
ture, so that many features may have a positive
influence towards one or more parties, but nega-
tive towards the remaining one(s). It is possible to
achieve this multi-task learning property by intro-
ducing a different set of regularisation constraints
in the optimisation function.

We perform multi-task learning using an exten-
sion of group LASSO (Yuan and Lin, 2006), a
method known as `1`1`1 /̀ 2`2`2 regularisation (Argyriou et
al., 2008; Liu et al., 2009). Group LASSO exploits
a predefined group structure on the feature space
and tries to achieve sparsity in the group-level, i.e.,
it does not perform feature selection (unlike the
elastic net), but group selection. The `1/`2 regu-
lariser extends this notion for a τ -dimensional re-
sponse variable. The global optimisation target is
now formulated as:

{W ∗, U∗,βββ∗} =

argmin
W,U,βββ

τ∑

t=1

n∑

i=1

(
uuuT
tQiwwwt + βt − yti

)2

+ λ1

m∑

j=1

‖Wj‖2 + λ2

p∑

k=1

‖Uk‖2,

(9)

where the input matrix Qi is defined in the same
way as earlier, W = [www1 ... wwwτ ] is the term weight
matrix (each wwwt refers to the t-th political entity
or task), equivalently U = [uuu1 ... uuuτ ], Wj and Uj
denote the j-th rows of weight matrices W and
U respectively, and vector βββ ∈ Rτ holds the bias
terms per task. In this optimisation process, we
aim to enforce sparsity in the feature space but in
a structured manner. Notice that we are now regu-
larising the `2,1 mixed norm ofW and U , which is

defined as the sum of the row `2-norms for those
matrices. As a result, we expect to encourage the
activation of a sparse set of features (correspond-
ing to the rows of W and U ), but with nonzero
weights across the τ tasks (Argyriou et al., 2008).
Consequently, we are performing filtering (many
users and words will have zero weights) and, at the
same time, assign weights of different magnitude
and sign on the selected features, something that
suits a political opinion mining application, where
pro-A often means anti-B.

Eq. 9 can be broken into two convex tasks (fol-
lowing the same notion as in Eqs. 5 and 7), where
we individually learn {W,βββ} and then {U,βββ};
each step of the process is a standard linear regres-
sion problem with an `1/`2 regulariser. Again, we
are able iterate this bilinear process and in each
step convexity is guaranteed. We refer to this
method as Bilinear Group `1/`2 (BGL).

4 Experiments

The proposed models are evaluated on Cuk and
Cau which have been introduced in Section 2. We
measure predictive performance, compare it to the
performance of several competitive baselines, and
provide a qualitative analysis of the parameters
learned by the models.

4.1 Data preprocessing
Basic preprocessing has been applied on the vo-
cabulary index of Cuk and Cau aiming to filter out
some of the word features and partially reduce
the dimensionality of the problem. Stop words
and web links were removed in both sets, together
with character sequences of length <4 and <3
for Cuk and Cau respectively.5 As the vocabulary
size of Cuk was significantly larger, for this data
set we have additionally merged Twitter hashtags
(i.e., words starting with ‘#’) with their exact non
topic word match, where possible (by dropping the
‘#’ when the word existed in the index). After
performing the preprocessing routines described
above, the vocabulary sizes for Cuk and Cau were
set to 80,976 and 22,917 respectively.

4.2 Predictive accuracy
To evaluate the predictive accuracy of our meth-
ods, we have chosen to emulate a real-life scenario

5Most of the times those character sequences were not
valid words. This pattern was different in each language and
thus, a different filtering threshold was applied in each data
set.
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Figure 2: Global objective function and RMSE on
a validation set for BEN in 15 iterations (30 steps)
of the model.

of voting intention prediction. The evaluation pro-
cess starts by using a fixed set of polls matching
to consecutive time points in the past for training
and validating the parameters of each model. Test-
ing is performed on the following δ (unseen) polls
of the data set. In the next step of the evaluation
process, the training/validation set is increased by
merging it with the previously used test set (δ
polls), and testing is now performed on the next
δ unseen polls. In our experiments, the number of
steps in this evaluation process is set to 10 and in
each step the size of the test set is set to δ = 5
polls. Hence, each model is tested on 50 unseen
and consecutive in time samples. The loss func-
tion in our evaluation is the standard Mean Square
Error (MSE), but to allow a better interpretation
of the results, we display its root (RMSE) in ta-
bles and figures.6

The parameters of each model (αi for BEN and
λi for BEN and BGL, i ∈ {1, 2}) are optimised
using a held-out validation set by performing grid
search. Note that it may be tempting to adapt the
regularisation parameters in each phase of the it-
erative training loop, however this would change
the global objective (see Eqs. 2 and 9) and thus
convergence will not be guaranteed. A key ques-
tion is how many iterations of training are required
to reach convergence. Figure 2 illustrates how the
BEN global objective function (Eq. 2) converges
during this iterative process and the model’s per-
formance on an unseen validation set. Notice that
there is a large performance improvement after the
first step (which alone is a linear solver), but over-
fitting occurs after step 11. Based on this result,
for subsequent experiments we run the training
process for two iterations (4 steps), and take the

6RMSE has the same metric units as the response variable.

CON LAB LBD µµµ

Bµµµ 2.272 1.663 1.136 1.69
Blast 2 2.074 1.095 1.723
LEN 3.845 2.912 2.445 3.067

BEN 1.939 1.644 1.136 1.573
BGL 1.7851.7851.785 1.5951.5951.595 1.0541.0541.054 1.4781.4781.478

Table 1: UK case study — Average RMSEs rep-
resenting the error of the inferred voting intention
percentage for the 10-step validation process; µµµ
denotes the mean RMSE across the three political
parties for each baseline or inference method.

SPÖ ÖVP FPÖ GRÜ µµµ

Bµµµ 1.535 1.373 3.3 1.197 1.851
Blast 1.1481.1481.148 1.556 1.6391.6391.639 1.536 1.47
LEN 1.291 1.286 2.039 1.1521.1521.152 1.442

BEN 1.392 1.31 2.89 1.205 1.699
BGL 1.619 1.0051.0051.005 1.757 1.374 1.4391.4391.439

Table 2: Austrian case study — Average RMSEs
for the 10-step validation process.

best performing model on the held-out validation
set.

We compare the performance of our methods
with three baselines. The first makes a constant
prediction of the mean value of the response vari-
able yyy in the training set (Bµµµ); the second predicts
the last value of yyy (Blast); and the third baseline
(LEN) is a linear regression over the terms using
elastic net regularisation. Recalling that each test
set is made of 5 polls, Blast should be considered
as a hard baseline to beat7 given that voting inten-
tions tend to have a smooth behaviour. Moreover,
improving on LEN partly justifies the usefulness
of a bilinear approach compared to a linear one.

Performance results comparing inferred voting
intention percentages and polls for Cuk and Cau are
presented in Tables 1 and 2 respectively. For the
UK case study, both BEN and BGL are able to beat
all baselines in average performance across all par-
ties. However in the Austrian case study, LEN
performs better that BEN, something that could be
justified by the fact that the users in Cau were se-
lected by domain experts, and consequently there
was not much gain to be had by filtering them fur-
ther. Nevertheless, the difference in performance
was rather small (approx. 0.26% error) and the in-

7The last response value could be easily included as a fea-
ture in the model, and would likely improve predictive perfor-
mance.
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Figure 3: UK case study — Voting intention infer-
ence results (50 polls, 3 parties). Sub-figure 3a is
a plot of ground truth as presented in voting inten-
tion polls (Fig. 1a).

ferences of LEN and BEN followed a very similar
pattern (ρ̄ = .94 with p < 10−10).8 Multi-task
learning (BGL) delivered the best inference per-
formance in both case studies, which was on aver-
age smaller than 1.48% (RMSE).

Inferences for both BEN and BGL have been
plotted on Figures 3 and 4. They are presented as
continuous lines of 50 inferred points (per party)
which are created by concatenating the inferences

8Pearson’s linear correlation averaged across the four
Austrian parties.
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(c) BGL

Figure 4: Austrian case study — Voting intention
inference results (50 polls, 4 parties). Sub-figure
4a is a plot of ground truth as presented in voting
intention polls (Fig. 1b).

on all test sets.9 For the UK case study, one may
observe that BEN (Fig. 3b) cannot register any
change – with the exception of one test point – in
the leading party fight (CON versus LAB); BGL
(Fig. 3c) performs much better in that aspect. In
the Austrian case study this characteristic becomes
more obvious. BEN (Fig. 4b) consistently predicts
the wrong ranking of ÖVP and FPÖ, whereas BGL
(Fig. 4c) does much better. Most importantly, a

9Voting intention polls were plotted separately to allow a
better presentation.
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Party Tweet Score Author
CON PM in friendly chat with top EU mate, Sweden’s Fredrik Reinfeldt, before family photo 1.334 Journalist

Have Liberal Democrats broken electoral rules? Blog on Labour complaint to cabinet
secretary

−0.991 Journalist

LAB Blog Post Liverpool: City of Radicals Website now Live <link>#liverpool #art 1.954 Art Fanzine
I am so pleased to hear Paul Savage who worked for the Labour group has been Ap-
pointed the Marketing manager for the baths hall GREAT NEWS

−0.552 Politician
(Labour)

LBD RT @user: Must be awful for TV bosses to keep getting knocked back by all the
women they ask to host election night (via @user)

0.874 LibDem MP

Blog Post Liverpool: City of Radicals 2011 – More Details Announced #liverpool
#art

−0.521 Art Fanzine

SPÖ Inflationsrate in Ö. im Juli leicht gesunken: von 2,2 auf 2,1%. Teurer wurde Wohnen,
Wasser, Energie.
Translation: Inflation rate in Austria slightly down in July from 2,2 to 2,1%. Accom-
modation, Water, Energy more expensive.

0.745 Journalist

Hans Rauscher zu Felix #Baumgartner “A klaner Hitler” <link>
Translation: Hans Rauscher on Felix #Baumgartner “A little Hitler” <link>

−1.711 Journalist

ÖVP #IchPirat setze mich dafür ein, dass eine große Koalition mathematisch verhindert
wird! 1.Geige: #Gruene + #FPOe + #OeVP
Translation: #IPirate am committed to prevent a grand coalition mathematically!
Calling the tune: #Greens + #FPO + #OVP

4.953 User

kann das buch “res publica” von johannes #voggenhuber wirklich empfehlen! so zum
nachdenken und so... #europa #demokratie
Translation: can really recommend the book “res publica” by johannes
#voggenhuber! Food for thought and so on #europe #democracy

−2.323 User

FPÖ Neue Kampagne der #Krone zur #Wehrpflicht: “GIB BELLO EINE STIMME!”
Translation: New campaign by the #Krone on #Conscription: “GIVE WOOFY A
VOICE!”

7.44 Political satire

Kampagne der Wiener SPÖ “zum Zusammenleben” spielt Rechtspopulisten in die
Hände <link>
Translation: Campaign of the Viennese SPÖ on “Living together” plays right into the
hands of right-wing populists <link>

−3.44 Human Rights

GRÜ Protestsong gegen die Abschaffung des Bachelor-Studiums Internationale Entwick-
lung: <link>#IEbleibt #unibrennt #uniwut
Translation: Protest songs against the closing-down of the bachelor course of Inter-
national Development: <link>#IDremains #uniburns #unirage

1.45 Student Union

Pilz “ich will in dieser Republik weder kriminelle Asylwerber, noch kriminelle orange
Politiker” - BZÖ-Abschiebung ok, aber wohin? #amPunkt
Translation: Pilz “i want neither criminal asylum-seekers, nor criminal orange politi-
cians in this republic” - BZÖ-Deportation OK, but where? #amPunkt

−2.172 User

Table 3: Examples of tweets amongst the ones with top positive and negative scores per party for both
Cuk and Cau data sets (tweets in Austrian have been translated in English as well). Notice that weight
magnitude may differ per case study and party as they are based on the range of the response variable
and the total number of selected features.

general observation is that BEN’s predictions are
smooth and do not vary significantly with time.
This might be a result of overfitting the model
to a single response variable which usually has
a smooth behaviour. On the contrary, the multi-
task learning property of BGL reduces this type of
overfitting providing more statistical evidence for
the terms and users and thus, yielding not only a
better inference performance, but also a more ac-
curate model.

4.3 Qualitative Analysis

In this section, we refer to features that have been
selected and weighted as significant by our bi-

linear learning functions. Based on the weights
for the word and the user spaces that we re-
trieve after the application of BGL in the last step
of the evaluation process (see the previous sec-
tion), we compute a score (weighted sum) for each
tweet in our training data sets for both Cuk and
Cau. Table 3 shows examples of interesting tweets
amongst the top weighted ones (positively as well
as negatively) per party. Together with their text
(anonymised for privacy reasons) and scores, we
also provide an attribute for the author (if present).
In the displayed tweets for the UK study, the only
possible outlier is the ‘Art Fanzine’; still, it seems
to register a consistent behaviour (positive towards
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LAB, negative towards LBD) and, of course, hid-
den, indirect relationships may exist between po-
litical opinion and art. The Austrian case study
revealed even more interesting tweets since train-
ing was conducted on data from a very active pre-
election period (we made an effort to translate
those tweets in English language as well). For
a better interpretation of the presented tweets, it
may be useful to know that ‘Johannes Voggen-
huber’ (who receives a positive comment for his
book) and ‘Peter Pilz’ (whose comment is ques-
tioned) are members of GRÜ, ‘Krone’ (or Kro-
nen Zeitung) is the major newspaper in Austria10

and that FPÖ is labelled as a far right party, some-
thing that may cause various reactions from ‘Hu-
man Rights’ organisations.

5 Related Work

The topic of political opinion mining from So-
cial Media has been the focus of various recent
research works. Several papers have presented
methods that aim to predict the result of an elec-
tion (Tumasjan et al., 2010; Bermingham and
Smeaton, 2011) or to model voting intention and
other kinds of socio-political polls (O’Connor et
al., 2010; Lampos, 2012). Their common fea-
ture is a methodology based on a meta-analysis
of word frequencies using off-the-shelf sentiment
tools such as LIWC (Pennebaker et al., 2007)
or Senti-WordNet (Esuli and Sebastiani, 2006).
Moreover, the proposed techniques tend to incor-
porate posting volume figures as well as hand-
crafted lists of words relevant to the task (e.g.,
names of politicians or parties) in order to filter
the content successfully.

Such papers have been criticised as their meth-
ods do not generalise when applied on different
data sets. According to the work in (Gayo-Avello
et al., 2011), the methods presented in (Tumasjan
et al., 2010) and (O’Connor et al., 2010) failed to
predict the result of US congressional elections in
2009. We disagree with the arguments support-
ing the statement “you cannot predict elections
with Twitter” (Gayo-Avello, 2012), as many times
in the past actual voting intention polls have also
failed to predict election outcomes, but we agree
that most methods that have been proposed so far
were not entirely generic. It is a fact that the

10“Accused of abusing its near monopoly to manipulate
public opinion in Austria”, Wikipedia, 19/02/2013, http:
//en.wikipedia.org/wiki/Kronen_Zeitung.

majority of sentiment analysis tools are English-
specific (or even American English) and, most
importantly, political word lists (or ontologies)
change in time, per country and per party; hence,
generalisable methods should make an effort to
limit reliance from such tools.

Furthermore, our work – indirectly – meets the
guidelines proposed in (Metaxas et al., 2011) as
we have developed a framework of “well-defined”
algorithms that are “Social Web aware” (since the
bilinear approach aims to improve noise filtering)
and that have been tested on two evaluation sce-
narios with distinct characteristics.

6 Conclusions and Future Work

We have presented a novel method for text regres-
sion that exploits both word and user spaces by
solving a bilinear optimisation task, and an ex-
tension that applies multi-task learning for multi-
output inference. Our approach performs feature
selection – hence, noise filtering – on large-scale
user-generated inputs automatically, generalises
across two languages without manual adaptations
and delivers some significant improvements over
strong performance baselines (< 1.5% error when
predicting polls). The application domain in this
paper was politics, though the presented methods
are generic and could be easily applied on various
other domains, such as health or finance.

Future work may investigate further modelling
improvements achieved by applying different reg-
ularisation functions as well as the adaptation of
the presented models to classification problems.
Finally, in the application level, we aim at an in-
depth analysis of patterns and characteristics in the
extracted sets of features by collaborating with do-
main experts (e.g., political analysts).
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Abstract

In this paper, we propose a bigram based
supervised method for extractive docu-
ment summarization in the integer linear
programming (ILP) framework. For each
bigram, a regression model is used to es-
timate its frequency in the reference sum-
mary. The regression model uses a vari-
ety of indicative features and is trained dis-
criminatively to minimize the distance be-
tween the estimated and the ground truth
bigram frequency in the reference sum-
mary. During testing, the sentence selec-
tion problem is formulated as an ILP prob-
lem to maximize the bigram gains. We
demonstrate that our system consistently
outperforms the previous ILP method on
different TAC data sets, and performs
competitively compared to the best results
in the TAC evaluations. We also con-
ducted various analysis to show the im-
pact of bigram selection, weight estima-
tion, and ILP setup.

1 Introduction

Extractive summarization is a sentence selection
problem: identifying important summary sen-
tences from one or multiple documents. Many
methods have been developed for this problem, in-
cluding supervised approaches that use classifiers
to predict summary sentences, graph based ap-
proaches to rank the sentences, and recent global
optimization methods such as integer linear pro-
gramming (ILP) and submodular methods. These
global optimization methods have been shown to
be quite powerful for extractive summarization,
because they try to select important sentences and
remove redundancy at the same time under the
length constraint.

Gillick and Favre (Gillick and Favre, 2009) in-
troduced the concept-based ILP for summariza-

tion. Their system achieved the best result in the
TAC 09 summarization task based on the ROUGE
evaluation metric. In this approach the goal is
to maximize the sum of the weights of the lan-
guage concepts that appear in the summary. They
used bigrams as such language concepts. The as-
sociation between the language concepts and sen-
tences serves as the constraints. This ILP method
is formally represented as below (see (Gillick and
Favre, 2009) for more details):

max
∑

i wici (1)

s.t. sjOccij ≤ ci (2)∑
j sjOccij ≥ ci (3)∑

j ljsj ≤ L (4)

ci ∈ {0, 1} ∀i (5)

sj ∈ {0, 1} ∀j (6)

ci and sj are binary variables (shown in (5) and
(6)) that indicate the presence of a concept and
a sentence respectively.wi is a concept’s weight
and Occij means the occurrence of concepti in
sentencej. Inequalities (2)(3) associate the sen-
tences and concepts. They ensure that selecting a
sentence leads to the selection of all the concepts
it contains, and selecting a concept only happens
when it is present in at least one of the selected
sentences.

There are two important components in this
concept-based ILP: one is how to select the con-
cepts (ci); the second is how to set up their weights
(wi). Gillick and Favre (Gillick and Favre, 2009)
used bigrams as concepts, which are selected from
a subset of the sentences, and their document fre-
quency as the weight in the objective function.

In this paper, we propose to find a candidate
summary such that the language concepts (e.g., bi-
grams) in this candidate summary and the refer-
ence summary can have the same frequency. We
expect this restriction is more consistent with the
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ROUGE evaluation metric used for summarization
(Lin, 2004). In addition, in the previous concept-
based ILP method, the constraints are with respect
to the appearance of language concepts, hence it
cannot distinguish the importance of different lan-
guage concepts in the reference summary. Our
method can decide not only which language con-
cepts to use in ILP, but also the frequency of these
language concepts in the candidate summary. To
estimate the bigram frequency in the summary,
we propose to use a supervised regression model
that is discriminatively trained using a variety of
features. Our experiments on several TAC sum-
marization data sets demonstrate this proposed
method outperforms the previous ILP system and
often the best performing TAC system.

2 Proposed Method

2.1 Bigram Gain Maximization by ILP

We choose bigrams as the language concepts in
our proposed method since they have been suc-
cessfully used in previous work. In addition, we
expect that the bigram oriented ILP is consistent
with the ROUGE-2 measure widely used for sum-
marization evaluation.

We start the description of our approach for the
scenario where a human abstractive summary is
provided, and the task is to select sentences to
form an extractive summary. Then Our goal is
to make the bigram frequency in this system sum-
mary as close as possible to that in the reference.
For each bigramb, we define its gain:

Gain(b, sum) = min{nb,ref , nb,sum} (7)

wherenb,ref is the frequency ofb in the reference
summary, andnb,sum is the frequency ofb in the
automatic summary. The gain of a bigram is no
more than its frequency in the reference summary,
hence adding redundant bigrams will not increase
the gain.

The total gain of an extractive summary is de-
fined as the sum of every bigram gain in the sum-
mary:

Gain(sum) =
∑

b

Gain(b, sum)

=
∑

b

min{nb,ref ,
∑

s

z(s) ∗ nb,s} (8)

where s is a sentence in the document,nb,s is
the frequency ofb in sentences, z(s) is a binary
variable, indicating whethers is selected in the

summary. The goal is to findz that maximizes
Gain(sum) (formula (8)) under the length con-
straintL.

This problem can be casted as an ILP problem.
First, using the fact that

min{a, x} = 0.5(−|x − a| + x + a), x, a ≥ 0

we have
∑

b

min{nb,ref ,
∑

s

z(s) ∗ nb,s} =

∑

b

0.5 ∗ (−|nb,ref −
∑

s

z(s) ∗ nb,s| +

nb,ref +
∑

s

z(s) ∗ nb,s)

Now the problem is equivalent to:

max
z

∑

b

(−|nb,ref −
∑

s

z(s) ∗ nb,s| +

nb,ref +
∑

s

z(s) ∗ nb,s)

s.t.
∑

s

z(s) ∗ |S| ≤ L; z(s) ∈ {0, 1}

This is equivalent to the ILP:

max
∑

b

(
∑

s

z(s) ∗ nb,s − Cb) (9)

s.t.
∑

s

z(s) ∗ |S| ≤ L (10)

z(s) ∈ {0, 1} (11)

−Cb ≤ nb,ref −
∑

s

z(s) ∗ nb,s ≤ Cb

(12)

whereCb is an auxiliary variable we introduce that
is equal to|nb,ref − ∑

s z(s) ∗ nb,s|, andnb,ref is
a constant that can be dropped from the objective
function.

2.2 Regression Model for Bigram Frequency
Estimation

In the previous section, we assume thatnb,ref is
at hand (reference abstractive summary is given)
and propose a bigram-based optimization frame-
work for extractive summarization. However, for
the summarization task, the bigram frequency is
unknown, and thus our first goal is to estimate such
frequency. We propose to use a regression model
for this.

Since a bigram’s frequency depends on the sum-
mary length (L), we use a normalized frequency
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in our method. Letnb,ref = Nb,ref ∗ L, where

Nb,ref = n(b,ref)∑
b n(b,ref) is the normalized frequency

in the summary. Now the problem is to automati-
cally estimateNb,ref .

Since the normalized frequencyNb,ref is a real
number, we choose to use a logistic regression
model to predict it:

Nb,ref =
exp{w′f(b)}∑
j exp{w′f(bj)}

(13)

wheref(bj) is the feature vector of bigrambj and
w′ is the corresponding feature weight. Since even
for identical bigramsbi = bj , their feature vectors
may be different (f(bi) 6= f(bj)) due to their dif-
ferent contexts, we sum up frequencies for identi-
cal bigrams{bi|bi = b}:

Nb,ref =
∑

i,bi=b

Nbi,ref

=

∑
i,bi=b exp{w′f(bi)}∑

j exp{w′f(bj)}
(14)

To train this regression model using the given
reference abstractive summaries, rather than trying
to minimize the squared error as typically done,
we propose a new objective function. Since the
normalized frequency satisfies the probability con-
straint

∑
b Nb,ref = 1, we propose to use KL di-

vergence to measure the distance between the es-
timated frequencies and the ground truth values.
The objective function for training is thus to mini-
mize the KL distance:

min
∑

b

Ñb,ref log
Ñb,ref

Nb,ref
(15)

whereÑb,ref is the true normalized frequency of
bigramb in reference summaries.

Finally, we replaceNb,ref in Formula (15) with
Eq (14) and get the objective function below:

max
∑

b

Ñb,ref log

∑
i,bi=b exp{w′f(bi)}∑

j exp{w′f(bj)}
(16)

This shares the same form as the contrastive es-
timation proposed by (Smith and Eisner, 2005).
We use gradient decent method for parameter esti-
mation, initialw is set with zero.

2.3 Features

Each bigram is represented using a set of features
in the above regression model. We use two types
of features: word level and sentence level features.
Some of these features have been used in previous
work (Aker and Gaizauskas, 2009; Brandow et al.,
1995; Edmundson, 1969; Radev, 2001):

• Word Level:
– 1. Term frequency1: The frequency of

this bigram in the given topic.

– 2. Term frequency2: The frequency of
this bigram in the selected sentences1.

– 3. Stop word ratio: Ratio of stop words
in this bigram. The value can be{0, 0.5,
1}.

– 4. Similarity with topic title: The
number of common tokens in these two
strings, divided by the length of the
longer string.

– 5. Similarity with description of the
topic: Similarity of the bigram with
topic description (see next data section
about the given topics in the summariza-
tion task).

• Sentence Level: (information of sentence
containing the bigram)

– 6. Sentence ratio:Number of sentences
that include this bigram, divided by the
total number of the selected sentences.

– 7. Sentence similarity: Sentence sim-
ilarity with topic’s query, which is the
concatenation of topic title and descrip-
tion.

– 8. Sentence position:Sentence posi-
tion in the document.

– 9. Sentence length:The number of
words in the sentence.

– 10. Paragraph starter: Binary feature
indicating whether this sentence is the
beginning of a paragraph.

3 Experiments

3.1 Data

We evaluate our method using several recent TAC
data sets, from 2008 to 2011. The TAC summa-
rization task is to generate at most 100 words sum-
maries from 10 documents for a given topic query
(with a title and more detailed description). For
model training, we also included two years’ DUC
data (2006 and 2007). When evaluating on one
TAC data set, we use the other years of the TAC
data plus the two DUC data sets as the training
data.

1See next section about the sentence selection step
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3.2 Summarization System

We use the same system pipeline described in
(Gillick et al., 2008; McDonald, 2007). The key
modules in the ICSI ILP system (Gillick et al.,
2008) are briefly described below.

• Step 1: Clean documents, split text into sen-
tences.

• Step 2: Extract bigrams from all the sen-
tences, then select those bigrams with doc-
ument frequency equal to more than 3. We
call this subset as initial bigram set in the fol-
lowing.

• Step 3: Select relevant sentences that contain
at least one bigram from the initial bigram
set.

• Step 4: Feed the ILP with sentences and the
bigram set to get the result.

• Step 5: Order sentences identified by ILP as
the final result of summary.

The difference between the ICSI and our system
is in the 4th step. In our method, we first extract all
the bigrams from the selected sentences and then
estimate each bigram’sNb,ref using the regression
model. Then we use the top-n bigrams with their
Nb,ref and all the selected sentences in our pro-
posed ILP module for summary sentence selec-
tion. When training our bigram regression model,
we use each of the 4 reference summaries sepa-
rately, i.e., the bigram frequency is obtained from
one reference summary. The same pre-selection of
sentences described above is also applied in train-
ing, that is, the bigram instances used in training
are from these selected sentences and the reference
summary.

4 Experiment and Analysis

4.1 Experimental Results

Table 1 shows the ROUGE-2 results of our pro-
posed system, the ICSI system, and also the best
performing system in the NIST TAC evaluation.
We can see that our proposed system consistently
outperforms ICSI ILP system (the gain is statis-
tically significant based on ROUGE’s 95% confi-
dence internal results). Compared to the best re-
ported TAC result, our method has better perfor-
mance on three data sets, except 2011 data. Note
that the best performing system for the 2009 data
is the ICSI ILP system, with an additional com-
pression step. Our ILP method is purely extrac-

tive. Even without using compression, our ap-
proach performs better than the full ICSI system.
The best performing system for the 2011 data also
has some compression module. We expect that af-
ter applying sentence compression and merging,
we will have even better performance, however,
our focus in this paper is on the bigram-based ex-
tractive summarization.

ICSI Proposed TAC Rank1
ILP System System

2008 0.1023 0.1076 0.1038
2009 0.1160 0.1246 0.1216
2010 0.1003 0.1067 0.0957
2011 0.1271 0.1327 0.1344

Table 1: ROUGE-2 summarization results.

There are several differences between the ICSI
system and our proposed method. First is the
bigrams (concepts) used. We use the top 100
bigrams from our bigram estimation module;
whereas the ICSI system just used the initial bi-
gram set described in Section 3.2. Second, the
weights for those bigrams differ. We used the es-
timated value from the regression model; the ICSI
system just uses the bigram’s document frequency
in the original text as weight. Finally, two systems
use different ILP setups. To analyze which fac-
tors (or all of them) explain the performance dif-
ference, we conducted various controlled experi-
ments for these three factors (bigrams, weights,
ILP). All of the following experiments use the
TAC 2009 data as the test set.

4.2 Effect of Bigram Weights

In this experiment, we vary the weighting methods
for the two systems: our proposed method and the
ICSI system. We use three weighting setups: the
estimated bigram frequency value in our method,
document frequency, or term frequency from the
original text. Table 2 and 3 show the results using
the top 100 bigrams from our system and the ini-
tial bigram set from the ICSI system respectively.
We also evaluate using the two different ILP con-
figurations in these experiments.

First of all, we can see that for both ILP sys-
tems, our estimated bigram weights outperform
the other frequency-based weights. For the ICSI
ILP system, using bigram document frequency
achieves better performance than term frequency
(which verified why document frequency is used
in their system). In contrast, for our ILP method,
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# Weight ILP ROUGE-2
1

Estimated value
Proposed 0.1246

2 ICSI 0.1178
3

Document freq
Proposed 0.1109

4 ICSI 0.1132
5

Term freq
Proposed 0.1116

6 ICSI 0.1080

Table 2: Results using different weighting meth-
ods on the top 100 bigrams generated from our
proposed system.

# Weight ILP ROUGE-2
1

Estimated value
Proposed 0.1157

2 ICSI 0.1161
3

Document freq
Proposed 0.1101

4 ICSI 0.1160
5

Term freq
Proposed 0.1109

6 ICSI 0.1072

Table 3: Results using different weighting meth-
ods based on the initial bigram sets. The average
number of bigrams is around 80 for each topic.

the bigram’s term frequency is slightly more use-
ful than its document frequency. This indicates
that our estimated value is more related to bi-
gram’s term frequency in the original text. When
the weight is document frequency, the ICSI’s re-
sult is better than our proposed ILP; whereas when
using term frequency as the weights, our ILP has
better results, again suggesting term frequency fits
our ILP system better. When the weight is esti-
mated value, the results depend on the bigram set
used. The ICSI’s ILP performs slightly better than
ours when it is equipped with the initial bigram,
but our proposed ILP has much better results us-
ing our selected top100 bigrams. This shows that
the size and quality of the bigrams has an impact
on the ILP modules.

4.3 The Effect of Bigram Set’s size

In our proposed system, we use 100 top bigrams.
There are about 80 bigrams used in the ICSI ILP
system. A natural question to ask is the impact
of the number of bigrams and their quality on the
summarization system. Table 4 shows some statis-
tics of the bigrams. We can see that about one
third of bigrams in the reference summary are in
the original text (127.3 out of 321.93), verifying
that people do use different words/bigram when

writing abstractive summaries. We mentioned that
we only use the top-N (n is 100 in previous ex-
periments) bigrams in our summarization system.
On one hand, this is to save computational cost for
the ILP module. On the other hand, we see from
the table that only 127 of these more than 2K bi-
grams are in the reference summary and are thus
expected to help the summary responsiveness. In-
cluding all the bigrams would lead to huge noise.

# bigrams in ref summary 321.93
# bigrams in text and ref summary 127.3

# bigrams used in our regression model 2140.7
(i.e., in selected sentences)

Table 4: Bigram statistics. The numbers are the
average ones for each topic.

Fig 1 shows the bigram coverage (number of bi-
grams used in the system that are also in reference
summaries) when we varyN selected bigrams. As
expected, we can see that asn increases, there
are more reference summary bigrams included in
the system. There are 25 summary bigrams in the
top-50 bigrams and about 38 in top-100 bigrams.
Compared with the ICSI system that has around 80
bigrams in the initial bigram set and 29 in the ref-
erence summary, our estimation module has better
coverage.
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Figure 1: Coverage of bigrams (number of bi-
grams in reference summary) when varying the
number of bigrams used in the ILP systems.

Increasing the number of bigrams used in the
system will lead to better coverage, however, the
incorrect bigrams also increase and have a nega-
tive impact on the system performance. To exam-
ine the best tradeoff, we conduct the experiments
by choosing the different top-N bigram set for the
two ILP systems, as shown in Fig 2. For both the
ILP systems, we used the estimated weight value
for the bigrams.
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We can see that the ICSI ILP system performs
better when the input bigrams have less noise
(those bigrams that are not in summary). However,
our proposed method is slightly more robust to this
kind of noise, possibly because of the weights we
use in our system – the noisy bigrams have lower
weights and thus less impact on the final system
performance. Overall the two systems have sim-
ilar trends: performance increases at the begin-
ning when using more bigrams, and after certain
points starts degrading with too many bigrams.
The optimal number of bigrams differs for the two
systems, with a larger number of bigrams in our
method. We also notice that the ICSI ILP system
achieved a ROUGE-2 of 0.1218 when using top
60 bigrams, which is better than using the initial
bigram set in their method (0.1160).
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Figure 2: Summarization performance when vary-
ing the number of bigrams for two systems.

4.4 Oracle Experiments

Based on the above analysis, we can see the impact
of the bigram set and their weights. The following
experiments are designed to demonstrate the best
system performance we can achieve if we have ac-
cess to good quality bigrams and weights. Here we
use the information from the reference summary.

The first is an oracle experiment, where we use
all the bigrams from the reference summaries that
are also in the original text. In the ICSI ILP
system, the weights are the document frequency
from the multiple reference summaries. In our ILP
module, we use the term frequency of the bigram.
The oracle results are shown in Table 5. We can
see these are significantly better than the automatic
systems.

From Table 5, we notice that ICSI’s ILP per-
forms marginally better than our proposed ILP. We
hypothesize that one reason may be that many bi-
grams in the summary reference only appear once.
Table 6 shows the frequency of the bigrams in the
summary. Indeed 85% of bigram only appear once

ILP System ROUGE-2
Our ILP 0.2124
ICSI ILP 0.2128

Table 5: Oracle experiment: using bigrams and
their frequencies in the reference summary as
weights.

and no bigrams appear more than 9 times. For the
majority of the bigrams, our method and the ICSI
ILP are the same. For the others, our system has
slight disadvantage when using the reference term
frequency. We expect the high term frequency
may need to be properly smoothed/normalized.

Freq 1 2 3 4 5 6 7 8 9

Ave# 277 32 7.5 3.2 1.1 0.3 0.1 0.1 0.04

Table 6: Average number of bigrams for each term
frequency in one topic’s reference summary.

We also treat the oracle results as the gold stan-
dard for extractive summarization and compared
how the two automatic summarization systems
differ at the sentence level. This is different from
the results in Table 1, which are the ROUGE re-
sults comparing to human written abstractive sum-
maries at the n-gram level. We found that among
the 188 sentences in this gold standard, our system
hits 31 and ICSI only has 23. This again shows
that our system has better performance, not just
at the word level based on ROUGE measures, but
also at the sentence level. There are on average
3 different sentences per topic between these two
results.

In the second experiment, after we obtain the
estimatedNb,ref for every bigram in the selected
sentences from our regression model, we only
keep those bigrams that are in the reference sum-
mary, and use the estimated weights for both ILP
modules. Table 7 shows the results. We can
consider these as the upper bound the system
can achieve if we use the automatically estimated
weights for the correct bigrams. In this experi-
ment ICSI ILP’s performance still performs better
than ours. This might be attributed to the fact there
is less noise (all the bigrams are the correct ones)
and thus the ICSI ILP system performs well. We
can see that these results are worse than the pre-
vious oracle experiments, but are better than using
the automatically generated bigrams, again show-
ing the bigram and weight estimation is critical for
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summarization.

# Weight ILP ROUGE-2
1

Estimated value
Proposed 0.1888

2 ICSI 0.1942

Table 7: Summarization results when using the es-
timated weights and only keeping the bigrams that
are in the reference summary.

4.5 Effect of Training Set

Since our method uses supervised learning, we
conduct the experiment to show the impact of
training size. In TAC’s data, each topic has two
sets of documents. For set A, the task is a standard
summarization, and there are 4 reference sum-
maries, each 100 words long; for set B, it is an up-
date summarization task – the summary includes
information not mentioned in the summary from
set A. There are also 4 reference summaries, with
400 words in total. Table 8 shows the results on
2009 data when using the data from different years
and different sets for training. We notice that when
the training data only contains set A, the perfor-
mance is always better than using set B or the com-
bined set A and B. This is not surprising because
of the different task definition. Therefore, for the
rest of the study on data size impact, we only use
data set A from the TAC data and the DUC data as
the training set. In total there are about 233 topics
from the two years’ DUC data (06, 07) and three
years’ TAC data (08, 10, 11). We incrementally
add 20 topics every time (from DUC06 to TAC11)
and plot the learning curve, as shown in Fig 3. As
expected, more training data results in better per-
formance.

Training Set # Topics ROUGE-2
08 Corpus (A) 48 0.1192
08 Corpus( B) 48 0.1178

08 Corpus (A+B) 96 0.1188
10 Corpus (A) 46 0.1174
10 Corpus (B) 46 0.1167

10 Corpus (A+B) 92 0.1170
11 Corpus (A) 44 0.1157
11 Corpus (B) 44 0.1130

11 Corpus (A+B) 88 0.1140

Table 8: Summarization performance when using
different training corpora.
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Figure 3: Learning curve

4.6 Summary of Analysis

The previous experiments have shown the impact
of the three factors: the quality of the bigrams
themselves, the weights used for these bigrams,
and the ILP module. We found that the bigrams
and their weights are critical for both the ILP se-
tups. However, there is negligible difference be-
tween the two ILP methods.

An important part of our system is the super-
vised method for bigram and weight estimation.
We have already seen for the previous ILP method,
when using our bigrams together with the weights,
better performance can be achieved. Therefore we
ask the question whether this is simply because
we use supervised learning, or whether our pro-
posed regression model is the key. To answer this,
we trained a simple supervised binary classifier
for bigram prediction (positive means that a bi-
gram appears in the summary) using the same set
of features as used in our bigram weight estima-
tion module, and then used their document fre-
quency in the ICSI ILP system. The result for
this method is 0.1128 on the TAC 2009 data. This
is much lower than our result. We originally ex-
pected that using the supervised method may out-
perform the unsupervised bigram selection which
only uses term frequency information. Further ex-
periments are needed to investigate this. From this
we can see that it is not just the supervised meth-
ods or using annotated data that yields the over-
all improved system performance, but rather our
proposed regression setup for bigrams is the main
reason.

5 Related Work

We briefly describe some prior work on summa-
rization in this section. Unsupervised methods
have been widely used. In particular, recently sev-
eral optimization approaches have demonstrated
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competitive performance for extractive summa-
rization task. Maximum marginal relevance
(MMR) (Carbonell and Goldstein, 1998) uses a
greedy algorithm to find summary sentences. (Mc-
Donald, 2007) improved the MMR algorithm to
dynamic programming. They used a modified ob-
jective function in order to consider whether the
selected sentence is globally optimal. Sentence-
level ILP was also first introduced in (McDon-
ald, 2007), but (Gillick and Favre, 2009) revised
it to concept-based ILP. (Woodsend and Lapata,
2012) utilized ILP to jointly optimize different as-
pects including content selection, surface realiza-
tion, and rewrite rules in summarization. (Gala-
nis et al., 2012) uses ILP to jointly maximize the
importance of the sentences and their diversity
in the summary. (Berg-Kirkpatrick et al., 2011)
applied a similar idea to conduct the sentence
compression and extraction for multiple document
summarization. (Jin et al., 2010) made a com-
parative study on sentence/concept selection and
pairwise and list ranking algorithms, and con-
cluded ILP performed better than MMR and the
diversity penalty strategy in sentence/concept se-
lection. Other global optimization methods in-
clude submodularity (Lin and Bilmes, 2010) and
graph-based approaches (Erkan and Radev, 2004;
Leskovec et al., 2005; Mihalcea and Tarau, 2004).
Various unsupervised probabilistic topic models
have also been investigated for summarization and
shown promising. For example, (Celikyilmaz and
Hakkani-Tür, 2011) used it to model the hidden
abstract concepts across documents as well as the
correlation between these concepts to generate
topically coherent and non-redundant summaries.
(Darling and Song, 2011) applied it to separate
the semantically important words from the low-
content function words.

In contrast to these unsupervised approaches,
there are also various efforts on supervised learn-
ing for summarization where a model is trained to
predict whether a sentence is in the summary or
not. Different features and classifiers have been
explored for this task, such as Bayesian method
(Kupiec et al., 1995), maximum entropy (Osborne,
2002), CRF (Galley, 2006), and recently reinforce-
ment learning (Ryang and Abekawa, 2012). (Aker
et al., 2010) used discriminative reranking on mul-
tiple candidates generated by A* search. Recently,
research has also been performed to address some
issues in the supervised setup, such as the class

data imbalance problem (Xie and Liu, 2010).
In this paper, we propose to incorporate the

supervised method into the concept-based ILP
framework. Unlike previous work using sentence-
based supervised learning, we use a regression
model to estimate the bigrams and their weights,
and use these to guide sentence selection. Com-
pared to the direct sentence-based classification or
regression methods mentioned above, our method
has an advantage. When abstractive summaries
are given, one needs to use that information to au-
tomatically generate reference labels (a sentence
is in the summary or not) for extractive summa-
rization. Most researchers have used the similarity
between a sentence in the document and the ab-
stractive summary for labeling. This is not a per-
fect process. In our method, we do not need to
generate this extra label for model training since
ours is based on bigrams – it is straightforward to
obtain the reference frequency for bigrams by sim-
ply looking at the reference summary. We expect
our approach also paves an easy way for future au-
tomatic abstractive summarization. One previous
study that is most related to ours is (Conroy et al.,
2011), which utilized a Naive Bayes classifier to
predict the probability of a bigram, and applied
ILP for the final sentence selection. They used
more features than ours, whereas we use a discrim-
inatively trained regression model and a modified
ILP framework. Our proposed method performs
better than their reported results in TAC 2011 data.
Another study closely related to ours is (Davis et
al., 2012), which leveraged Latent Semantic Anal-
ysis (LSA) to produce term weights and selected
summary sentences by computing an approximate
solution to the Budgeted Maximal Coverage prob-
lem.

6 Conclusion and Future Work

In this paper, we leverage the ILP method as a core
component in our summarization system. Dif-
ferent from the previous ILP summarization ap-
proach, we propose a supervised learning method
(a discriminatively trained regression model) to
determine the importance of the bigrams fed to
the ILP module. In addition, we revise the ILP to
maximize the bigram gain (which is expected to
be highly correlated with ROUGE-2 scores) rather
than the concept/bigram coverage. Our proposed
method yielded better results than the previous
state-of-the-art ILP system on different TAC data
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sets. From a series of experiments, we found that
there is little difference between the two ILP mod-
ules, and that the improved system performance is
attributed to the fact that our proposed supervised
bigram estimation module can successfully gather
the important bigram and assign them appropriate
weights. There are several directions that warrant
further research. We plan to consider the context
of bigrams to better predict whether a bigram is in
the reference summary. We will also investigate
the relationship between concepts and sentences,
which may help move towards abstractive summa-
rization.
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Abstract
We propose a new optimization frame-
work for summarization by generalizing
the submodular framework of (Lin and
Bilmes, 2011). In our framework the sum-
marization desideratum is expressed as a
sum of a submodular function and a non-
submodular function, which we call dis-
persion; the latter uses inter-sentence dis-
similarities in different ways in order to
ensure non-redundancy of the summary.
We consider three natural dispersion func-
tions and show that a greedy algorithm
can obtain an approximately optimal sum-
mary in all three cases. We conduct ex-
periments on two corpora—DUC 2004
and user comments on news articles—and
show that the performance of our algo-
rithm outperforms those that rely only on
submodularity.

1 Introduction

Summarization is a classic text processing prob-
lem. Broadly speaking, given one or more doc-
uments, the goal is to obtain a concise piece
of text that contains the most salient points in
the given document(s). Thanks to the om-
nipresent information overload facing all of us,
the importance of summarization is gaining; semi-
automatically summarized content is increasingly
becoming user-facing: many newspapers equip
editors with automated tools to aid them in choos-
ing a subset of user comments to show. Summa-
rization has been studied for the past in various
settings—a large single document, multiple docu-
ments on the same topic, and user-generated con-
tent.

Each domain throws up its own set of idiosyn-
crasies and challenges for the summarization task.
On one hand, in the multi-document case (say, dif-
ferent news reports on the same event), the text is

often very long and detailed. The precision/recall
requirements are higher in this domain and a se-
mantic representation of the text might be needed
to avoid redundancy. On the other hand, in the
case of user-generated content (say, comments on
a news article), even though the text is short, one
is faced with a different set of problems: volume
(popular articles generate more than 10,000 com-
ments), noise (most comments are vacuous, lin-
guistically deficient, and tangential to the article),
and redundancy (similar views are expressed by
multiple commenters). In both cases, there is a
delicate balance between choosing the salient, rel-
evant, popular, and diverse points (e.g., sentences)
versus minimizing syntactic and semantic redun-
dancy.

While there have been many approaches to au-
tomatic summarization (see Section 2), our work
is directly inspired by the recent elegant frame-
work of (Lin and Bilmes, 2011). They employed
the powerful theory of submodular functions for
summarization: submodularity embodies the “di-
minishing returns” property and hence is a natural
vocabulary to express the summarization desider-
ata. In this framework, each of the constraints (rel-
evance, redundancy, etc.) is captured as a submod-
ular function and the objective is to maximize their
sum. A simple greedy algorithm is guaranteed to
produce an approximately optimal summary. They
used this framework to obtain the best results on
the DUC 2004 corpus.

Even though the submodularity framework is
quite general, it has limitations in its expressiv-
ity. In particular, it cannot capture redundancy
constraints that depend on pairwise dissimilarities
between sentences. For example, a natural con-
straint on the summary is that the sum or the mini-
mum of pairwise dissimilarities between sentences
chosen in the summary should be maximized; this,
unfortunately, is not a submodular function. We
call functions that depend on inter-sentence pair-
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wise dissimilarities in the summary as dispersion
functions. Our focus in this work is on signif-
icantly furthering the submodularity-based sum-
marization framework to incorporate such disper-
sion functions.

We propose a very general graph-based sum-
marization framework that combines a submod-
ular function with a non-submodular dispersion
function. We consider three natural dispersion
functions on the sentences in a summary: sum
of all-pair sentence dissimilarities, the weight of
the minimum spanning tree on the sentences, and
the minimum of all-pair sentence dissimilarities.
These three functions represent three different
ways of using the sentence dissimilarities. We
then show that a greedy algorithm can obtain ap-
proximately optimal summary in each of the three
cases; the proof exploits some nice combinatorial
properties satisfied by the three dispersion func-
tions. We then conduct experiments on two cor-
pora: the DUC 2004 corpus and a corpus of user
comments on news articles. On DUC 2004, we
obtain performance that matches (Lin and Bilmes,
2011), without any serious parameter tuning; note
that their framework does not have the dispersion
function. On the comment corpus, we outperform
their method, demonstrating that value of disper-
sion functions. As part of our methodology, we
also use a new structured representation for sum-
maries.

2 Related Work

Automatic summarization is a well-studied prob-
lem in the literature. Several methods have been
proposed for single- and multi-document summa-
rization (Carbonell and Goldstein, 1998; Con-
roy and O’Leary, 2001; Takamura and Okumura,
2009; Shen and Li, 2010).

Related concepts have also been used in several
other scenarios such as query-focused summariza-
tion in information retrieval (Daumé and Marcu,
2006), microblog summarization (Sharifi et al.,
2010), event summarization (Filatova, 2004), and
others (Riedhammer et al., 2010; Qazvinian et al.,
2010; Yatani et al., 2011).

Graph-based methods have been used for sum-
marization (Ganesan et al., 2010), but in a dif-
ferent context—using paths in graphs to produce
very short abstractive summaries. For a detailed
survey on existing automatic summarization tech-
niques and other related topics, see (Kim et al.,

2011; Nenkova and McKeown, 2012).

3 Framework

In this section we present the summarization
framework. We start by describing a generic ob-
jective function that can be widely applied to sev-
eral summarization scenarios. This objective func-
tion is the sum of a monotone submodular cov-
erage function and a non-submodular dispersion
function. We then describe a simple greedy algo-
rithm for optimizing this objective function with
provable approximation guarantees for three natu-
ral dispersion functions.

3.1 Preliminaries
Let C be a collection of texts. Depending on the
summarization application, C can refer to the set
of documents (e.g., newswire) related to a partic-
ular topic as in standard summarization; in other
scenarios (e.g., user-generated content), it is a col-
lection of comments associated with a news article
or a blog post, etc. For each document c ∈ C,
let S(c) denote the set of sentences in c. Let
U = ∪c∈CS(c) be the universe of all sentences;
without loss of generality, we assume each sen-
tence is unique to a document. For a sentence
u ∈ U , let C(u) be the document corresponding
to u.

Each u ∈ U is associated with a weight w(u),
which might indicate, for instance, how similar u
is to the main article (and/or the query, in query-
dependent settings). Each pair u, v ∈ U is as-
sociated with a similarity s(u, v) ∈ [0, 1]. This
similarity can then be used to define an inter-
sentence distance d(·, ·) as follows: let d′(u, v) =
1 − s(u, v) and define d(u, v) to be the shortest
path distance from u to v in the graph where the
weight of each edge (u, v) is d′(u, v). Note that
d(·, ·) is a metric unlike d′(·, ·), which may not be
a metric. (In addition to being intuitive, d(·, ·) be-
ing a metric helps us obtain guarantees on the al-
gorithm’s output.) For a set S, and a point u 6∈ S,
define d(u, S) = minv∈S d(u, v).

Let k > 0 be fixed. A summary of U is a subset
S ⊆ U, |S| = k. Our aim is to find a summary that
maximizes

f(S) = g(S) + δh(S), (1)

where g(S) is the coverage function that is non-
negative, monotone, and submodular1, h(S) is a

1A function f : U → < is submodular if for every
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dispersion function, and δ ≥ 0 is a parameter that
can be used to scale the range of h(·) to be com-
parable to that of g(·).

For two sets S and T , let P be the set of un-
ordered pairs {u, v} where u ∈ S and v ∈ T . Our
focus is on the following dispersion functions: the
sum measure hs(S, T ) =

∑
{u,v}∈P d(u, v), the

spanning tree measure ht(S, T ) given by the cost
of the minimum spanning tree of the set S∪T , and
the min measure hm(S, T ) = min{u,v}∈P d(u, v).
Note that these functions span from consider-
ing the entire set of distances in S to consider-
ing only the minimum distance in S; also it is
easy to construct examples to show that none of
these functions is submodular. Define h?(u, S) =
h?({u}, S) and h?(S) = h?(S, S).

Let O be the optimal solution of the function
f . A summary S̃ is a γ-approximation if f(S̃) ≥
γf(O).

3.2 Algorithm
Maximizing (1) is NP-hard even if δ = 0 or if
g(·) = 0 (Chandra and Halldórsson, 2001). For
the special case δ = 0, since g(·) is submodular,
a classical greedy algorithm obtains a (1 − 1/e)-
approximation (Nemhauser et al., 1978). But if
δ > 0, since the dispersion function h(·) is not
submodular, the combined objective f(·) is not
submodular as well. Despite this, we show that
a simple greedy algorithm achieves a provable ap-
proximation factor for (1). This is possible due to
some nice structural properties of the dispersion
functions we consider.

Algorithm 2 Greedy algorithm, parametrized by
the dispersion function h; here, U, k, g, δ are fixed.
S0 ← ∅; i← 0
for i = 0, . . . , k − 1 do

v ← argmaxu∈U\Si g(Si+u)+δh(Si+u)
Si+1 ← Si ∪ {v}

end for

3.3 Analysis
In this section we obtain a provable approximation
for the greedy algorithm. First, we show that a
greedy choice is well-behaved with respect to the
dispersion function h·(·).
Lemma 1. Let O be any set with |O| = k. If S is
such that |S| = ` < k, then
(i)
∑

u∈O\S hs(u, S) ≥ |O \ S|
`hs(O)
k(k−1) ;

A,B ⊆ U , we have f(A)+f(B) ≥ f(A∪B)+f(A∩B).

(ii)
∑

u∈O\S d(u, S) ≥ 1
2ht(O)− ht(S); and

(iii) there exists u ∈ O \ S such that hm(u, S) ≥
hm(O)/2.

Proof. The proof for (i) follows directly from
Lemma 1 in (Borodin et al., 2012).

To prove (ii) let T be the tree obtained by adding
all points of O \S directly to their respective clos-
est points on the minimum spanning tree of S. T
is a spanning tree, and hence a Steiner tree, for the
points in set S ∪ O. Hence, cost(T ) = ht(S) +∑

u∈O\S d(u, S). Let smt(S) denote the cost of
a minimum Steiner tree of S. Thus, cost(T ) ≥
smt(O ∪ S). Since a Steiner tree of O ∪ S is also
a Steiner tree of O, smt(O ∪ S) ≥ smt(O). Since
this is a metric space, smt(O) ≥ 1

2ht(O) (see, for
example, (Cieslik, 2001)). Thus,

ht(S) +
∑

u∈O\S
d(u, S) ≥ 1

2
ht(O)

⇒
∑

u∈O\S
d(u, S) ≥ 1

2
ht(O)− ht(S).

To prove (iii), let O = {u1, . . . , uk}. By def-
inition, for every i 6= j, d(ui, uj) ≥ hm(O).
Consider the (open) ball Bi of radius hm(O)/2
around each element ui. By construction for each
i, Bi ∩ O = {ui} and for each pair i 6= j,
Bi ∩Bj = ∅. Since |S| < k, and there are k balls
Bi, there exists k−` ballsBi such that S∩Bi = ∅,
proving (iii).

We next show that the tree created by the greedy
algorithm for h = ht is not far from the optimum.

Lemma 2. Let u1, . . . , uk be a sequence of points
and let Si = {uj , j ≤ i}. Then, ht(Sk) ≥
1/log k

∑
2≤j≤k d(uj , Sj−1).

Proof. The proof follows by noting that we get a
spanning tree by connecting each ui to its closest
point in Si−1. The cost of this spanning tree is∑

2≤j≤k d(uj , Sj−1) and this tree is also the re-
sult of the greedy algorithm run in an online fash-
ion on the input sequence {u1, . . . , uk}. Using the
result of (Imase and Waxman, 1991), the compet-
itive ratio of this algorithm is log k, and hence the
proof.

We now state and prove the main result about
the quality of approximation of the greedy algo-
rithm.
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Theorem 3. For k > 1, there is a polynomial-time
algorithm that obtains a γ-approximation to f(S),
where γ = 1/2 for h = hs, γ = 1/4 for h = hm,
and γ = 1/3 log k for h = ht.

Proof. For hs and ht, we run Algorithm 1 using
a new dispersion function h′, which is a slightly
modified version of h. In particular, for h = hs,
we use h′(S) = 2hs(S). For h = ht, we
abuse notation and define h′ to be a function over
an ordered set S = {u1, . . . , uk} as follows:
h′(S) =

∑
j≤|S| d(uj , Sj−1), where Sj−1 =

{u1, . . . , uj−1}. Let f ′(S) = g(S) + δh′(S).
Consider the ith iteration of the algorithm. By

the submodularity of g(·),
∑

u∈O\Si
g(Si ∪ {u})− g(Si) (2)

≥ g(O ∪ Si)− g(Si) ≥ g(O)− g(Sk),

where we use monotonicity of g(·) to infer g(O ∪
Si) ≥ g(O) and g(Si) ≤ g(Sk).

For h = hs, the proof follows by Lemma 1(i)
and by Theorem 1 in (Borodin et al., 2012).

For ht, using the above argument of submodu-
larity and monotonicity of g, and the result from
Lemma 1(ii), we have
∑

u∈O\Si
g(Si ∪ u)− g(Si) + δd(u, Si)

≥ g(O)− g(Si) + δ(ht(O)/2− ht(Si))
≥ (g(O) + δht(O)/2)− (g(Si) + δht(Si))

≥ f(O)/2− (g(Si) + δht(Si)).

Also, ht(Si) ≤ 2 smt(Si) since this is a met-
ric space. Using the monotonicity of the Steiner
tree cost, smt(Si) ≤ smt(Sk) ≤ ht(Sk). Hence,
ht(Si) ≤ 2ht(Sk). Thus,

∑

u∈O\Si
g(Si ∪ u)− g(Si) + δd(u, Si)

≥ f(O)/2− (g(Si) + δht(Si))

≥ f(O)/2− (g(Sk) + 2δht(Sk))

≥ f(O)/2− 2f(Sk). (3)

By the greedy choice of ui+1,

f ′(Si ∪ ui+1)− f ′(Si)
= g(Si ∪ ui+1)− g(Si) + δd(ui+1, Si)

≥ (f(O)/2− 2f(Sk))/|O \ Si|
≥ 1

k
(f(O)/2− 2f(Sk)).

Summing over all i ∈ [1, k − 1],

f ′(Sk) ≥ (k−1)/k(f(O)/2− 2f(Sk)). (4)

Using Lemma 2 we obtain

f(Sk) = g(Sk) + δht(Sk) ≥
f ′(Sk)
log k

≥ 1− 1/k

log k
(f(O)/2− 2f(Sk)).

By simplifying, we obtain f(Sk) ≥ f(O)/3 log k.
Finally for hm, we run Algorithm 1 twice: once

with g as given and h ≡ 0, and the second
time with g ≡ 0 and h ≡ hm. Let Sg and
Sh be the solutions in the two cases. Let Og
and Oh be the corresponding optimal solutions.
By the submodularity and monotonicity of g(·),
g(Sg) ≥ (1 − 1/e)g(Og) ≥ g(Og)/2. Similarly,
using Lemma 1(iii), hm(Sh) ≥ hm(Oh)/2 since
in any iteration i < k we can choose an ele-
ment ui+1 such that hm(ui+1, Si) ≥ hm(Oh)/2.
Let S = argmaxX∈{Sg ,Sh} f(X). Using an av-
eraging argument, since g and hm are both non-
negative,

f(X) ≥ (f(Sg)+f(Sh))/2 ≥ (g(Og)+δhm(Oh))/4.

Since by definition g(Og) ≥ g(O) and hm(Oh) ≥
hm(O), we have a 1/4-approximation.

3.4 A universal constant-factor
approximation

Using the above algorithm that we used for hm,
it is possible to give a universal algorithm that
gives a constant-factor approximation to each of
the above objectives. By running the Algorithm 1
once for g ≡ 0 and next for h ≡ 0 and taking
the best of the two solutions, we can argue that the
resulting set gives a constant factor approximation
to f . We do not use this algorithm in our exper-
iments, as it is oblivious of the actual dispersion
functions used.

4 Using the Framework

Next, we describe how the framework described
in Section 3 can be applied to our tasks of interest,
i.e., summarizing documents or user-generated
content (in our case, comments). First, we repre-
sent the elements of interest (i.e., sentences within
comments) in a structured manner by using depen-
dency trees. We then use this representation to
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generate a graph and instantiate our summariza-
tion objective function with specific components
that capture the desiderata of a given summariza-
tion task.

4.1 Structured representation for sentences

In order to instantiate the summarization graph
(nodes and edges), we first need to model each
sentence (in multi-document summarization) or
comment (i.e., set of sentences) as nodes in the
graph. Sentences have been typically modeled
using standard ngrams (unigrams or bigrams) in
previous summarization work. Instead, we model
sentences using a structured representation, i.e., its
syntax structure using dependency parse trees. We
first use a dependency parser (de Marneffe et al.,
2006) to parse each sentence and extract the set
of dependency relations associated with the sen-
tence. For example, the sentence “I adore tennis”
is represented by the dependency relations (nsubj:
adore, I) and (dobj: adore, tennis).

Each sentence represents a single node u in
the graph (unless otherwise specified) and is com-
prised of a set of dependency relations (or ngrams)
present in the sentence. Furthermore, the edge
weights s(u, v) represent pairwise similarity be-
tween sentences or comments (e.g., similarity be-
tween views expressed in different comments).
The edge weights are then used to define the
inter-sentence distance metric d(u, v) for the dif-
ferent dispersion functions. We identify simi-
lar views/opinions by computing semantic simi-
larity rather than using standard similarity mea-
sures (such as cosine similarity based on ex-
act lexical matches between different nodes in
the graph). For each pair of nodes (u, v) in
the graph, we compute the semantic similarity
score (using WordNet) between every pair of
dependency relation (rel: a, b) in u and v as:
s(u, v) =

∑

reli∈u,relj∈v
reli=relj

WN(ai, aj)×WN(bi, bj),

where rel is a relation type (e.g., nsubj) and a, b
are the two arguments present in the dependency
relation (b does not exist for some relations).
WN(wi, wj) is defined as the WordNet similar-
ity score between words wi and wj .2 The edge
weights are then normalized across all edges in the

2There exists various semantic relatedness measures
based on WordNet (Patwardhan and Pedersen, 2006). In our
experiments, for WN we pick one that is based on the path
length between the two words in the WordNet graph.

graph.
This allows us to perform approximate match-

ing of syntactic treelets obtained from the depen-
dency parses using semantic (WordNet) similar-
ity. For example, the sentences “I adore tennis”
and “Everyone likes tennis” convey the same view
and should be assigned a higher similarity score
as opposed to “I hate tennis”. Using the syntac-
tic structure along with semantic similarity helps
us identify useful (valid) nuggets of information
within comments (or documents), avoid redun-
dancies, and identify similar views in a semantic
space.

4.2 Components of the coverage function
Our coverage function is a linear combination of
the following.

(i) Popularity. One of the requirements for a good
summary (especially, for user-generated content)
is that it should include (or rather not miss) the
popular views or opinions expressed by several
users across multiple documents or comments. We
model this property in our objective function as
follows.

For each node u, we define w(u) as the num-
ber of documents |Curel ⊆ C| from the collection
such that at least one of the dependency relations
rel ∈ u appeared in a sentence within some doc-
ument c ∈ Curel . The popularity scores are then
normalized across all nodes in the graph. We then
add this component to our objective function as
w(S) =

∑
u∈S w(u).

(ii) Cluster contribution. This term captures the
fact that we do not intend to include multiple sen-
tences from the same comment (or document).
Define B to be the clustering induced by the sen-
tence to comment relation, i.e., two sentences in
the same comment belong to the same cluster. The
corresponding contribution to the objective func-
tion is

∑
B∈B |S ∩B|1/2.

(iii) Content contribution. This term promotes the
diversification of content. We look at the graph of
sentences where the weight of each edge is s(u, v).
This graph is then partitioned based on a local
random walk based method to give us clusters
D = {D1, . . . , Dn}. The corresponding contribu-
tion to the objective function is

∑
D∈D |S∩D|1/2.

(iv) Cover contribution. We also measure the
cover of the set S as follows: for each element
s in U first define cover of an element u by a
set S′ as cov(u, S′) =

∑
v∈S′ s(u, v). Then, the
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cover value of the set S is defined as cov(S) =∑
u∈S min(cov(u, S), 0.25cov(u, U)).3

Thus, the final coverage function is: g(S) =
w(S) + α

∑
B∈B |S ∩ B|1/2 + β

∑
D∈D |S ∩

D|1/2 + λcov(S), where α, β, λ are non-negative
constants. By using the monotone submodularity
of each of the component functions, and the fact
that addition preserves submodularity, the follow-
ing is immediate.

Fact 4. g(S) is a monotone, non-negative, sub-
modular function.

We then apply Algorithm 1 to optimize (1).

5 Experiments

5.1 Data

Multi-document summarization. We use the
DUC 2004 corpus4 that comprises 50 clusters (i.e.,
50 different summarization tasks) with 10 docu-
ments per cluster on average. Each document con-
tains multiple sentences and the goal is to produce
a summary of all the documents for a given cluster.

Comments summarization. We extracted a set
of news articles and corresponding user comments
from Yahoo! News website. Our corpus contains a
set of 34 articles and each article is associated with
anywhere from 100–500 comments. Each com-
ment contains more than three sentences and 36
words per sentence on average.

5.2 Evaluation

For each summarization task, we compare the
system output (i.e., summaries automatically pro-
duced by the algorithm) against the human-
generated summaries and evaluate the perfor-
mance in terms of ROUGE score (Lin, 2004), a
standard recall-based evaluation measure used in
summarization. A system that produces higher
ROUGE scores generates better quality summary
and vice versa.

We use the following evaluation settings in our
experiments for each summarization task:

(1) For multi-document summarization, we
compute the ROUGE-15 scores that was the main
evaluation criterion for DUC 2004 evaluations.

3The choice of the value 0.25 in the cover component is
inspired by the observations made by (Lin and Bilmes, 2011)
for the α value used in their cover function.

4http://duc.nist.gov/duc2004/tasks.html
5ROUGE v1.5.5 with options: -a -c 95 -b 665 -m -n 4 -w

1.2

(2) For comment summarization, the collection
of user comments associated with a given arti-
cle is typically much larger. Additionally, indi-
vidual comments are noisy, wordy, diverse, and
informally written. Hence for this task, we use
a slightly different evaluation criterion that is in-
spired from the DUC 2005-2007 summarization
evaluation tasks.

We represent the content within each comment
c (i.e., all sentences S(c) comprising the com-
ment) as a single node in the graph. We then run
our summarization algorithm on the instantiated
graph to produce a summary for each news article.
In addition, each news article and corresponding
set of comments were presented to three human
annotators. They were asked to select a subset of
comments (at most 20 comments) that best rep-
resented a summary capturing the most popular
as well as diverse set of views and opinions ex-
pressed by different users that are relevant to the
given news article. We then compare the auto-
matically generated comment summaries against
the human-generated summaries and compute the
ROUGE-1 and ROUGE-2 scores.6

This summarization task is particularly hard for
even human annotators since user-generated com-
ments are typically noisy and there are several
hundreds of comments per article. Similar to ex-
isting work in the literature (Sekine and Nobata,
2003), we computed inter-annotator agreement for
the humans by comparing their summaries against
each other on a small held-out set of articles. The
average ROUGE-1 F-scores observed for humans
was much higher (59.7) than that of automatic sys-
tems measured against the human-generated sum-
maries (our best system achieved a score of 28.9
ROUGE-1 on the same dataset). This shows that
even though this is a new type of summariza-
tion task, humans tend to generate more consistent
summaries and hence their annotations are reliable
for evaluation purposes as in multi-document sum-
marization.

5.3 Results

Multi-document summarization. (1) Table 1
compares the performance of our system with
the previous best reported system that partici-
pated in the DUC 2004 competition. We also in-
clude for comparison another baseline—a version

6ROUGE v1.5.5 with options: -a -n 2 -x -m -2 4 -u -c 95
-r 1000 -f A -p 0.5 -t 0 -d -l 150
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of our system that approximates the submodular
objective function proposed by (Lin and Bilmes,
2011).7 As shown in the results, our best system8

which uses the hs dispersion function achieves a
better ROUGE-1 F-score than all other systems.
(2) We observe that the hm and ht dispersion func-
tions produce slightly lower scores than hs, which
may be a characteristic of this particular summa-
rization task. We believe that the empirical results
achieved by different dispersion functions depend
on the nature of the summarization tasks and there
are task settings under which hm or ht perform
better than hs. For example, we show later how us-
ing the ht dispersion function yields the best per-
formance on the comments summarization task.
Regardless, the theoretical guarantees presented in
this paper cover all these cases.
(3) We also analyze the contributions of individ-
ual components of the new objective function to-
wards summarization performance by selectively
setting certain parameters to 0. Table 2 illustrates
these results. We clearly see that each component
(popularity, cluster contribution, dispersion) indi-
vidually yields a reasonable summarization per-
formance but the best result is achieved by the
combined system (row 5 in the table). We also
contrast the performance of the full system with
and without the dispersion component (row 4 ver-
sus row 5). The results show that optimizing for
dispersion yields an improvement in summariza-
tion performance.
(4) To understand the effect of utilizing syntactic
structure and semantic similarity for constructing
the summarization graph, we ran the experiments
using just the unigrams and bigrams; we obtained
a ROUGE-1 F-score of 37.1. Thus, modeling
the syntactic structure (using relations extracted

7Note that Lin & Bilmes (2011) report a slightly higher
ROUGE-1 score (F-score 38.90) on DUC 2004. This is be-
cause their system was tuned for the particular summarization
task using the DUC 2003 corpus. On the other hand, even
without any parameter tuning our method yields good perfor-
mance, as evidenced by results on the two different summa-
rization tasks. However, since individual components within
our objective function are parametrized it is easy to tune them
for a specific task or genre.

8For the full system, we weight certain parameters per-
taining to cluster contributions and dispersion higher (α =
β = δ = 5) compared to the rest of the objective function
(λ = 1). Lin & Bilmes (2011) also observed a similar find-
ing (albeit via parameter tuning) where weighting the cluster
contribution component higher yielded better performance.
If the maximum number of sentences/comments chosen were
k, we brought both hs and ht to the same approximate scale
as hm by dividing hs by k(k − 1)/2 and ht by k − 1.

from dependency parse tree) along with comput-
ing similarity in semantic spaces (using WordNet)
clearly produces an improvement in the summa-
rization quality (+1.4 improvement in ROUGE-1
F-score). However, while the structured represen-
tation is beneficial, we observed that dispersion
(and other individual components) contribute sim-
ilar performance gains even when using ngrams
alone. So the improvements obtained from the
structured representation and dispersion are com-
plementary.

System ROUGE-1 F
Best system in DUC 2004 37.9

(Lin and Bilmes, 2011), no tuning 37.47

Our algorithm with h = hm 37.5
h = hs 38.5
h = ht 36.8

Table 1: Performance on DUC 2004.

Comments summarization. (1) Table 3 com-
pares the performance of our system against a
baseline system that is constructed by picking
comments in order of decreasing length, i.e., we
first pick the longest comment (comprising the
most number of characters), then the next longest
comment and so on, to create an ordered set of
comments. The intuition behind this baseline is
that longer comments contain more content and
possibly cover more topics than short ones.

From the table, we observe that the new sys-
tem (using either dispersion function) outperforms
the baseline by a huge margin (+44% relative
improvement in ROUGE-1 and much bigger im-
provements in ROUGE-2 scores). One reason be-
hind the lower ROUGE-2 scores for the baseline
might be that while long comments provide more
content (in terms of size), they also add noise and
irrelevant information to the generated summaries.
Our system models sentences using the syntactic
structure and semantics and jointly optimizes for
multiple summarization criteria (including disper-
sion) which helps weed out the noise and identify
relevant, useful information within the comments
thereby producing better quality summaries. The
95% confidence interval scores for the best system
on this task is [36.5–46.9].
(2) Unlike the multi-document summarization,
here we observe that the ht dispersion function
yields the best empirical performance for this
task. This observation supports our claim that the
choice of the specific dispersion function depends
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Objective function components ROUGE-1 F
α = β = λ = δ = 0 35.7

w(S) = β = λ = δ = 0 35.1
h = hs, w(S) = α = β = λ = 0 37.1

δ = 0 37.4
w(S), α, β, λ, δ > 0 38.5

Table 2: Performance with different parameters
(DUC).

on the summarization task and that the dispersion
functions proposed in this paper have a wider va-
riety of use cases.
(3) Results showing contributions from individual
components of the new summarization objective
function are listed in Table 4. We observe a sim-
ilar pattern as with multi-document summariza-
tion. The full system using all components out-
perform all other parameter settings, achieving the
best ROUGE-1 and ROUGE-2 scores. The table
also shows that incorporating dispersion into the
objective function yields an improvement in sum-
marization quality (row 4 versus row 5).

System ROUGE-1 ROUGE-2
Baseline (decreasing length) 28.9 2.9
Our algorithm with h = hm 39.2 13.2

h = hs 40.9 15.0
h = ht 41.6 16.2

Table 3: Performance on comments summariza-
tion.

Objective function ROUGE-1 ROUGE-2
components

α = β = λ = δ = 0 36.1 9.4
w(S) = β = λ = δ = 0 32.1 4.9

h = ht, w(S) = α = β = λ = 0 37.8 11.2
δ = 0 38.0 11.6

w(S), α, β, λ, δ > 0 41.6 16.2

Table 4: Performance with different parameters
(comments).

6 Conclusions

We introduced a new general-purpose graph-based
summarization framework that combines a sub-
modular coverage function with a non-submodular
dispersion function. We presented three natural
dispersion functions that represent three different
ways of ensuring non-redundancy (using sentence
dissimilarities) for summarization and proved that
a simple greedy algorithm can obtain an approxi-
mately optimal summary in all these cases. Exper-
iments on two different summarization tasks show

that our algorithm outperforms algorithms that
rely only on submodularity. Finally, we demon-
strated that using a structured representation to
model sentences in the graph improves summa-
rization quality.

For future work, it would be interesting to in-
vestigate other related developments in this area
and perhaps combine them with our approach to
see if further improvements are possible. Firstly,
it would interesting to see if dispersion offers sim-
ilar improvements over a tuned version of the sub-
modular framework of Lin and Bilmes (2011). In a
very recent work, Lin and Bilmes (2012) demon-
strate a further improvement in performance for
document summarization by using mixtures of
submodular shells. This is an interesting exten-
sion of their previous submodular framework and
while the new formulation permits more complex
functions, the resulting function is still submodu-
lar and hence can be combined with the dispersion
measures proposed in this paper. A different body
of work uses determinantal point processes (DPP)
to model subset selection problems and adapt it
for document summarization (Kulesza and Taskar,
2011). Note that DPPs use similarity kernels for
performing inference whereas our measures are
combinatorial and not kernel-representable. While
approximation guarantees for DPPs are open, it
would be interesting to investigate the empiri-
cal gains by combining DPPs with dispersion-like
functions.
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Abstract

This study proposes a text summarization
model that simultaneously performs sen-
tence extraction and compression. We
translate the text summarization task into
a problem of extracting a set of depen-
dency subtrees in the document cluster.
We also encode obligatory case constraints
as must-link dependency constraints in or-
der to guarantee the readability of the gen-
erated summary. In order to handle the
subtree extraction problem, we investigate
a new class of submodular maximization
problem, and a new algorithm that has
the approximation ratio 1

2(1 − e−1). Our
experiments with the NTCIR ACLIA test
collections show that our approach outper-
forms a state-of-the-art algorithm.

1 Introduction
Text summarization is often addressed as a task
of simultaneously performing sentence extraction
and sentence compression (Berg-Kirkpatrick et
al., 2011; Martins and Smith, 2009). Joint mod-
els of sentence extraction and compression have
a great benefit in that they have a large degree of
freedom as far as controlling redundancy goes. In
contrast, conventional two-stage approaches (Za-
jic et al., 2006), which first generate candidate
compressed sentences and then use them to gen-
erate a summary, have less computational com-
plexity than joint models. However, two-stage ap-
proaches are suboptimal for text summarization.
For example, when we compress sentences first,
the compressed sentences may fail to contain im-
portant pieces of information due to the length
limit imposed on each sentence. On the other

hand, when we extract sentences first, an impor-
tant sentence may fail to be selected, simply be-
cause it is long. Enumerating a huge number
of compressed sentences is also infeasible. Joint
models can prune unimportant or redundant de-
scriptions without resorting to enumeration.

Meanwhile, submodular maximization has re-
cently been applied to the text summarization task,
and the methods thereof have performed very well
(Lin and Bilmes, 2010; Lin and Bilmes, 2011;
Morita et al., 2011). Formalizing summarization
as a submodular maximization problem has an im-
portant benefit inthat the problem can be solved by
using a greedy algorithm with a performance guar-
antee.

We therefore decided to formalize the task of si-
multaneously performing sentence extraction and
compression as a submodular maximization prob-
lem. That is, we extract subsentences for mak-
ing the summary directly from all available sub-
sentences in the documents and not in a stepwise
fashion. However, there is a difficulty with such
a formalization. In the past, the resulting maxi-
mization problem has been often accompanied by
thousands of linear constraints representing logi-
cal relations between words. The existing greedy
algorithm for solving submodular maximization
problems cannot work in the presence of such nu-
merous constraints although monotone and non-
monotone submodular maximization with con-
straints other than budget constraints have been
studied (Lee et al., 2009; Kulik et al., 2009; Gupta
et al., 2010). In this study, we avoid this difficulty
by reducing the task to one of extracting depen-
dency subtrees from sentences in the source doc-
uments. The reduction replaces the difficulty of
numerous linear constraints with another difficulty
wherein two subtrees can share the same word to-
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ken when they are selected from the same sen-
tence, and as a result, the cost of the union of the
two subtrees is not always the mere sum of their
costs. We can overcome this difficulty by tackling
a new class of submodular maximization prob-
lem: a budgeted monotone nondecreasing sub-
modular function maximization with a cost func-
tion, where the cost of an extraction unit varies
depending on what other extraction units are se-
lected. By formalizing the subtree extraction prob-
lem as this new maximization problem, we can
treat the constraints regarding the grammaticality
of the compressed sentences in a straightforward
way and use an arbitrary monotone submodular
word score function for words including our word
score function (shown later). We also propose a
new greedy algorithm that solves this new class of
maximization problem with a performance guar-
antee 1

2(1− e−1).
We evaluated our method on by using it to per-

form query-oriented summarization (Tang et al.,
2009). Experimental results show that it is supe-
rior to state-of-the-art methods.

2 Related Work
Submodularity is formally defined as a property of
a set function for a finite universe V . The function
f : 2V → R maps a subset S ⊆ V to a real value.
If for any S, T ⊆ V , f(S ∪ T ) + f(S ∩ T ) ≤
f(S)+f(T ), f is called submodular. This defini-
tion is equivalent to that of diminishing returns,
which is well known in the field of economics:
f(S ∪{u})− f(S) ≤ f(T ∪{u})− f(T ), where
T ⊆ S ⊆ V and u is an element of V . Di-
minishing returns means that the value of an el-
ement u remains the same or decreases as S be-
comes larger. This property is suitable for sum-
marization purposes, because the gain of adding a
new sentence to a summary that already contains
sufficient information should be small. Therefore,
many studies have formalized text summarization
as a submodular maximization problem (Lin and
Bilmes, 2010; Lin and Bilmes, 2011; Morita et
al., 2011). Their approaches, however, have been
based on sentence extraction. To our knowledge,
there is no study that addresses the joint task of
simultaneously performing compression and ex-
traction through an approximate submodular max-
imization with a performance guarantee.

In the field of constrained maximization prob-
lems, Kulik et al. (2009) proposed an algorithm
that solves the submodular maximization problem

under multiple linear constraints with a perfor-
mance guarantee 1− e−1 in polynomial time. Al-
though their approach can represent more flexible
constraints, we cannot use their algorithm to solve
our problem, because their algorithm needs to enu-
merate many combinations of elements. Integer
linear programming (ILP) formulations can repre-
sent such flexible constraints, and they are com-
monly used to model text summarization (McDon-
ald, 2007). Berg-Kirkpatrick et al. (2011) formu-
lated a unified task of sentence extraction and sen-
tence compression as an ILP. However, it is hard to
solve large-scale ILP problems exactly in a practi-
cal amount of time.

3 Budgeted Submodular Maximization
with Cost Function

3.1 Problem Definition
Let V be the finite set of all valid subtrees in
the source documents, where valid subtrees are
defined to be the ones that can be regarded as
grammatical sentences. In this paper, we regard
subtrees containing the root node of the sentence
as valid. Accordingly, V denotes a set of all
rooted subtrees in all sentences. A subtree con-
tains a set of elements that are units in a de-
pendency structure (e.g., morphemes, words or
clauses). Let us consider the following problem
of budgeted monotone nondecreasing submodu-
lar function maximization with a cost function:
maxS⊆V {f(S) : c (S) ≤ L} , where S is a sum-
mary represented as a set of subtrees, c(·) is the
cost function for the set of subtrees, L is our bud-
get, and the submodular function f(·) scores the
summary quality. The cost function is not always
the sum of the costs of the covered subtrees, but
depends on the set of the covered elements by the
subtrees. Here, we will assume that the generated
summary has to be as long as or shorter than the
given summary length limit, as measured by the
number of characters. This means the cost of a
subtree is the integer number of characters it con-
tains.

V is partitioned into exclusive subsets B of valid
subtrees, and each subset corresponds to the orig-
inal sentence from which the valid subtrees de-
rived. However, the cost of a union of subtrees
from different sentences is simply the sum of the
costs of subtrees, while the cost of a union of sub-
trees from the same sentence is smaller than the
sum of the costs. Therefore, the problem can be
represented as follows:
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max
S⊆V

{
f(S) :

∑

B∈B
c (B ∩ S) ≤ L

}
. (1)

For example, if we add a subtree t containing
words {wa,wb,wc} to a summary that already
covers words {wa, wb, wd} from the same sen-
tence, the additional cost of t is only c({wc}) be-
cause wa and wb are already covered1.

The problem has two requirements. The first
requirement is that the union of valid subtrees is
also a valid subtree. The second requirement is
that the union of subtrees and a single valid sub-
tree have the same score and the same cost if they
cover the same elements. We will refer to the sin-
gle valid subtree as the equivalent subtree of the
union of subtrees. These requirements enable us
to represent sentence compression as the extrac-
tion of subtrees from a sentence. This is because
the requirements guarantee that the extracted sub-
trees represent a sentence.

3.2 Greedy Algorithm
We propose Algorithm 1 that solves the maximiza-
tion problem (Eq.1). The algorithm is based on
ones proposed by Khuller et al. (1999) and Krause
et al. (2005). Instead of enumerating all candidate
subtrees, we use a local search to extract the ele-
ment that has the highest gain per cost. In the al-
gorithm, Gi indicates a summary set obtained by
adding element si to Gi−1. U means the set of
subtrees that are not extracted. The algorithm it-
eratively adds to the current summary the element
si that has the largest ratio of the objective func-
tion gain to the additional cost, unless adding it
violates the budget constraint. We set a parame-
ter r that is the scaling factor proposed by Lin and
Bilmes (2010). After the loop, the algorithm com-
pares Gi with the {s∗} that has the largest value of
the objective function among all subtrees that are
under the budget, and it outputs the summary can-
didate with the largest value.

Let us analyze the performance guarantee of Al-
gorithm 12.

1Each subset B corresponds to a kind of greedoid con-
straint. V implicitly constrains the model such that it can
only select valid subtrees from a set of nodes and edges.

2Our performance guarantee is lower than that reported
by Lin and Bilmes (2010). However, their proof is er-
roneous. In their proof of Lemma 2, they derive ∀u ∈
S∗\Gi−1,

ρu(Gi−1)

Cr
u

≤ ρvi
(Gi−1)

Cr
vi

, for any i(1 ≤ i ≤ |G|),

from line 4 of their Algorithm 1, which selects the densest
element out of all available elements. However, the inequal-
ity does not hold for i, for which element u selected on line
4 is discarded on line 5 of their algorithm. The performance
guarantee of their algorithm is actually the same as ours, since

Algorithm 1 Modified greedy algorithm for budgeted
submodular function maximization with a cost function .

1: G0 ← φ
2: U ← V
3: i← 1
4: while U 6= φ do
5: si ← arg maxs∈U

f(Gi−1∪{s})−f(Gi−1)
(c(Gi−1∪{s})−c(Gi−1))r

6: if c({si} ∪Gi−1) ≤ L then
7: Gi ← Gi−1 ∪ {si}
8: i← i + 1
9: end if

10: U ← U\{si}
11: end while
12: s̄← arg maxs∈V,c(s)≤L f({s})
13: return Gf = arg maxS∈{{s̄},Gi} f(S)

Theorem 1 For a normalized monotone submod-
ular function f(·), Algorithm 1 has a constant
approximation factor when r = 1 as follows:

f(Gf ) ≥
(

1

2
(1− e−1)

)
f(S∗), (2)

where S∗ is the optimal solution and, Gf is the
solution obtained by Greedy Algorithm 1.

Proof. See appendix.

3.3 Relation with Discrete Optimization

We argue that our optimization problem can be
regarded as an extraction of subtrees rooted at a
given node from a directed graph, instead of from
a tree. Let D be the set of edges of the directed
graph, F be a subset of D that is a subtree. In the
field of combinatorial optimization, a pair (D, F)
is a kind of greedoid: directed branching greedoid
(Schmidt, 1991). A greedoid is a generalization of
the matroid concept. However, while matroids are
often used to represent constraints on submodular
maximization problems (Conforti and Cornuéjols,
1984; Calinescu et al., 2011), greedoids have not
been used for that purpose, in spite of their high
representation ability. To our knowledge, this is
the first study that gives a constant performance
guarantee for the submodular maximization under
greedoid (non-matroid) constraints.

the guarantee 1
2
(1 − e−1) was already proved by Krause and

Guestrin (2005). We show a counterexample. Suppose that
V is { e1(density 4:cost 6), e2(density 2:cost 4), e3(density
3:cost 1), e4(density 1:cost 1) }, and cost limit K is 10. The
optimal solution is S∗ = {e1, e2}. Their algorithm selects
e1, e3, e4 in this order. However the algorithm selects e2 on
line 4 after selecting e3, and it drops e2 on line 5. As a result,
e4 selected by the algorithm does not satisfy the inequality
∀u ∈ S∗\Gi−1,

ρu(Gi−1)

Cr
u

≤ ρvi
(Gi−1)

Cr
vi

.
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4 Joint Model of Extraction and
Compression

We will formalize the unified task of sentence
compression and extraction as a budgeted mono-
tone nondecreasing submodular function maxi-
mization with a cost function. In this formaliza-
tion, a valid subtree of a sentence represents a
candidate of a compressed sentence. We will re-
fer to all valid subtrees of a given sentence as a
valid set. A valid set corresponds to all candi-
dates of the compression of a sentence. Note that
although we use the valid set in the formaliza-
tion, we do not have to enumerate all the candi-
dates for each sentence. Since, from the require-
ments, the union of valid subtrees is also a valid
subtree in the valid set, the model can extract one
or more subtrees from one sentence, and generate
a compressed sentence by merging those subtrees
to generate an equivalent subtree. Therefore, the
joint model can extract an arbitrarily compressed
sentence as a subtree without enumerating all can-
didates. The joint model can remove the redundant
part as well as the irrelevant part of a sentence, be-
cause the model simultaneously extracts and com-
presses sentences. We can approximately solve the
subtree extraction problem by using Algorithm 1.
On line 5 of the algorithm, the subtree extraction
is performed as a local search that finds maximal
density subtrees from the whole documents. The
maximal density subtree is a subtree that has the
highest score per cost of subtree. We use a cost
function to represent the cost, which indicates the
length of word tokens in the subtree.

In this paper, we address the task of summariza-
tion of Japanese text by means of sentence com-
pression and extraction. In Japanese, syntactic
subtrees that contain the root of the dependency
tree of the original sentence often make gram-
matical sentences. This means that the require-
ments mentioned in Section 3.1 that a union of
valid subtrees is a valid and equivalent tree is of-
ten true for Japanese. The root indicates the pred-
icate of a sentence, and it is syntactically modi-
fied by other prior words. Some modifying words
can be pruned. Therefore, sentence compression
can be represented as edge pruning. The linguis-
tic units we extract are bunsetsu phrases, which
are syntactic chunks often containing a functional
word after one or more content words. We will re-
fer to bunsetsu phrases as phrases for simplicity.
Since Japanese syntactic dependency is generally

defined between two phrases, we use the phrases
as the nodes of subtrees.

In this joint model, we generate a compressed
sentence by extracting an arbitrary subtree from a
dependency tree of a sentence. However, not all
subtrees are always valid. The sentence generated
by a subtree can be unnatural even though the sub-
tree contains the root node of the sentence. To
avoid generating such ungrammatical sentences,
we need to detect and retain the obligatory de-
pendency relations in the dependency tree. We
address this problem by imposing must-link con-
straints if a phrase corresponds to an obligatory
case of the main predicate. We merge obligatory
phrases with the predicate beforehand so that the
merged nodes make a single large node.

Although we focus on Japanese in this pa-
per, our approach can be applied to English and
other languages if certain conditions are satisfied.
First, we need a dependency parser of the lan-
guage in order to represent sentence compression
as dependency tree pruning. Moreover, although,
in Japanese, obligatory cases distinguish which
edges of the dependency tree can be pruned or not,
we need another technique to distinguish them in
other languages. For example we can distinguish
obligatory phrases from optional ones by using se-
mantic role labeling to detect arguments of predi-
cates. The adaptation to other languages is left for
future work.

4.1 Objective Function
We extract subtrees from sentences in order to
solve the query-oriented summarization problem
as a unified one consisting of sentence compres-
sion and extraction. We thus need to allocate a
query relevance score to each node. Off-the-shelf
similarity measures such as the cosine similarity of
bag-of-words vectors with query terms would al-
locate scores to the terms that appear in the query,
but would give no scores to terms that do not ap-
pear in it. With such a similarity, sentence com-
pression extracts nearly only the query terms and
fails to contain important information. Instead,
we used Query SnowBall (QSB) (Morita et al.,
2011) to calculate the query relevance score of
each phrase. QSB is a method for query-oriented
summarization, which calculates the similarity be-
tween query terms and each word by using co-
occurrences within the source documents. Al-
though the authors of QSB also provided scores
of word pairs to avoid putting excessive penalties
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on word overlaps, we do not score word pairs. The
score function is supermodular as a score function
of subtree extraction3, because the union of two
subtrees can have extra word pairs that are not in-
cluded in either subtree. If the extra pair has a pos-
itive score, the score of the union is greater than
the sum of the score of the subtrees. This violates
the definition of submodularity, and invalidates the
performance guarantee of our algorithms.

We designed our objective function by combin-
ing this relevance score with a penalty for redun-
dancy and too-compressed sentences. Important
words that describe the main topic should occur
multiple times in a good summary. However, ex-
cessive overlap undermines the quality of a sum-
mary, as do irrelevant words. Therefore, the scores
of overlapping words should be lower than thoseof
new words. The behavior can be represented by a
submodular objective function that reduces word
scores depending on those already included in the
summary. Furthermore, a summary consisting of
many too-compressed sentences would lack read-
ability. We thus gives a positive reward to long
sentences. The positive reward leads to a natu-
ral summary being generated with fewer sentences
and indirectly penalizes too short sentences. Our
positive reward for long sentences is represented
as

reward(S) = c(S)− |S|, (3)

where c(S) is the cost of summary S, and |S| is the
number of sentences in S. Since a sentence must
contain more than one character, the reward con-
sistently gives a positive score, and gives a higher
score to a summary that consists of fewer sen-
tences.

Let d be the damping rate, countS(w) be the
number of sentences containing word w in sum-
mary S, words(S) be the set of words included in
summary S, qsb(w) be the query relevance score
of word w, and γ be a parameter that adjusts the
rate of sentence compression. Our score function
for a summary S is as follows:

f(S) =
∑

w∈words(S)





countS(w)−1∑

i=0

qsb(w)di



+ γ reward(S).

(4)

An optimization problem with this objective
function cannot be regarded as an ILP problem be-
cause it contains non-linear terms. It is also ad-

3The score is still submodular for the purpose of sentence
extraction.

vantageous that the submodular maximization can
deal with such objective functions. Note that the
objective function is such that it can be calculated
according to the type of word. Due to the na-
ture of the objective function, we can use dynamic
programming to effectively search for the subtree
with the maximal density.
4.2 Local Search for Maximal Density

Subtree
Let us now discuss the local search used on line
5 of Algorithm 1. We will use a fast algorithm to
find the maximal density subtree (MDS) of a given
sentence for each cost in Algorithm 1.

Consider the objective function Eq. 4, We can
ignore the second term of the reward function
while looking for the MDS in a sentence because
the number of sentences is the same for every
MDS in a sentence. That is, the gain function of
adding a subtree to a summary can be represented
as the sum of gains for words:

g(t) =
∑

w∈t

{gainS(w) + freqt(w)c(w)γ},

gainS(w) = qsb(w)dcountS(w),

where freqt(w) is the number of ws in subtree
t, and gainS(w) is the gain of adding the word
w to the summary S. Our algorithm is based on
dynamic programming, and it selects a subtree that
maximizes the gain function per cost.

When the word gain is a constant, the algorithm
proposed by Hsieh et al. (2010) can be used to
find the MDS. We extended this algorithm to work
for submodular word gain functions that are not
constant. Note that the gain of a word that oc-
curs only once in the sentence, can be treated as
a constant. In what follows, we will describe an
extended algorithm to find the MDS even if there
is word overlap.

For example, let us describe how to obtain the
MDS in the case of a binary tree. First let us tackle
the case in which the gain is always constant. Let
n be a node in the tree, a and b be child nodes of n,
c(n) be the cost of n, mdsc

a be the MDS rooted at
a and have cost c. mdsn = {mds

c(n)
n , . . . , mdsL

n}
denotes the set of MDSs for each cost and its root
node n. The valid subtrees rooted at n can be ob-
tained by taking unions of n with one or both of
t1 ∈ mdsa and t2 ∈ mdsb. mdsc

n is the union that
has the largest gain over the union with the cost of
c (by enumerating all the unions). The MDS for
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the sentence root can be found by calculating each
mdsc

n from the bottom of the tree to the top.

Next, let us consider the objective function that
returns the sum of values of submodular word gain
functions. When there is no word overlap within
the union, we can obtain mdsc

n in the same man-
ner as for the constant gain. In contrast, if the
union includes word overlap, the gain is less than
the sum of gains: g(mdsc

n) ≤ g(n) + g(mdsk
a) +

g(mds
c−k−c(n)
b ), where k and c are variables. The

score reduction can change the order of the gains
of the union. That is, it is possible that another
union without word overlaps will have a larger
gain. Therefore, the algorithm needs to know
whether each t ∈ mdsn has the potential to have
word overlaps with other MDSs. Let O be the set
of words that occur twice or more in the sentence
on which the local seach focuses. The algorithm
stores MDS for each o ⊆ O, as well as each cost.
By storing MDS for each o and cost as shown
in Fig. 1, the algorithm can find MDS with the
largest gain over the combinations of subtrees.

Algorithm 2 shows the procedure. In it, t and m
denote subtrees, words(t) returns a set of words
in the subtree, g(t) returns the gain of t, tree(n)
means a tree consisting of node n, and t ∪m de-
notes the union of subtrees: t and m. subt in-
dicates a set of current maximal density subtrees
among the combinations calculated before. newt
indicates a set of temporary maximal density sub-
trees for the combinations calculated from line 4
to 8. subt[cost,ws] indicates a element of subt that
has a cost cost and contains a set of words ws.
newt[cost,ws] is defined similarly. Line 1 sets subt
to a set consisting of a subtree that indicates node
n itself. The algorithm calculates maximal den-
sity subtrees within combinations of the root node
n and MDSs rooted at child nodes of n. Line 3
iteratively adds MDSs rooted at a next child node
to the combinations; the algorithm then calculates
MDSs newt between subt and the MDSs of the
child node. The procedure from line 6 to 8 selects
a subtree that has a larger gain from the tempo-
rary maximal subtree and the union of t and m.
The computational complexity of this algorithm is
O(NC2) when there is no word overlap within the
sentence, where C denotes the cost of the whole
sentence, and N denotes the number of nodes in
the sentence. The complexity order is the same
as that of the algorithm of Hsieh et al. (2010).
When we treat word overlaps, we need to count

Algorithm 2 Algorithm for finding maximal density
subtree for each cost: MDSs.
Function: MDSs
Require: root node n

1: subt[c(n),words(n)∩O] = tree(n)
2: newt = φ
3: for i ∈ child node of n do
4: for t ∈MDSs(i) do
5: for m ∈ subt do
6: index = [c(t ∪m), words(t ∪m) ∩ O]
7: newtindex = arg maxj∈{newtindex,t∪m} g(j)
8: end for
9: end for

10: subt = newt
11: end for
12: return subt

Figure 1: Maximal density subtree extraction. The
right table enumerates the subtrees rooted at w2 in
the left tree for all indices. The number in each
tree node is the score of the word.

all unions of combinations of the stored MDSs.
There are at most (C2|O|) MDSs that the algo-
rithm needs to store at each node. Therefore the
total computational complexity is O(NC222|O|).
Since it is unlikely that a sentence contains many
word tokens of one type, the computational cost
may not be so large in practical situations.

5 Experimental Settings
We evaluate our method on Japanese QA test
collections from NTCIR-7 ACLIA1 and NTCIR-
8 ACLIA2 (Mitamura et al., 2008; Mitamura et
al., 2010). The collections contain questions and
weighted answer nuggets. Our experimental set-
tings followed the settings of (Morita et al., 2011),
except for the maximum summary length. We
generated summaries consisting of 140 Japanese
characters or less, with the question as the query
terms. We did this because our aim is to use our
method in mobile situations. We used “ACLIA1
test data” to tune the parameters, and evaluated our
method on “ACLIA2 test” data.

We used JUMAN (Kurohashi and Kawahara,
2009a) for word segmentation and part-of-speech
tagging, and we calculated idf over Mainichi
newspaper articles from 1991 to 2005. For the de-
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POURPRE Precision Recall F1 F3
Lin and Bilmes (2011) 0.215 0.126 0.201 0.135 0.174
Subtree extraction (SbE) 0.268 0.238 0.213 0.159 0.190
Sentence extraction (NC) 0.278 0.206 0.215 0.139 0.183

Table 1: Results on ACLIA2 test data.

pendency parsing, we used KNP (Kurohashi and
Kawahara, 2009b). Since KNP internally has a
flag that indicates either an “obligatory case” or an
“adjacent case”, we regarded dependency relations
flagged by KNP as obligatory in the sentence com-
pression. KNP utilizes Kyoto University’s case
frames (Kawahara and Kurohashi, 2006) as the re-
source for detecting obligatory or adjacent cases.

To evaluate the summaries, we followed the
practices of the TAC summarization tasks (Dang,
2008) and NTCIR ACLIA tasks, and computed
pyramid-based precision with the allowance pa-
rameter, recall, and Fβ (where β is 1 or 3)
scores. The allowance parameter was determined
from the average nugget length for each question
type of the ACLIA2 collection (Mitamura et al.,
2010). Precision and recall are computed from the
nuggets that the summary covered along with their
weights. One of the authors of this paper man-
ually evaluated whether each nugget matched the
summary. We also used the automatic evaluation
measure, POURPRE (Lin and Demner-Fushman,
2006). POURPRE is based on word matching
of reference nuggets and system outputs. We re-
garded as stopwords the most frequent 100 words
in Mainichi articles from 1991 to 2005 (the doc-
ument frequency was used to measure the fre-
quency). We also set the threshold of nugget
matching as 0.5 and binarized the nugget match-
ing, following the previous study (Mitamura et al.,
2010). We tuned the parameters by using POUR-
PRE on the development dataset.

Lin and Bilmes (2011) designed a monotone
submodular function for query-oriented summa-
rization. Their succinct method performed well
in DUC from 2004 to 2007. They proposed a
positive diversity reward function in order to de-
fine a monotone submodular objective function for
generating a non-redundant summary. The diver-
sity reward gives a smaller gain for a biased sum-
mary, because it consists of gains based on three
clusters and calculates a square root score with
respect to each sentence. The reward also con-
tains a score for the similarity of a sentence to
the query, for purposes of query-oriented summa-

Recall Length # of nuggets
Subtree extraction 0.213 11,143 100
Reconstructed (RC) 0.228 13,797 108

Table 2: Effect of sentence compression.

rization. Their objective function also includes a
coverage function based on the similarity wi,j be-
tween sentences. In the coverage function min
function limits the maximum gain α

∑
i∈V wi,j ,

which is a small fraction α of the similarity be-
tween a sentence j and the all source documents.
The objective function is the sum of the positive
reward R and the coverage function L over the
source documents V , as follows:

F(S) = L(S) +

3∑

k=1

λkRQ,k(S),

L(S) =
∑

i∈V

min




∑

j∈S

wi,j , α
∑

k∈V

wi,k



 ,

RQ,k =
∑

c∈Ck

√√√√
∑

j∈S∪c

(
β

N

∑

i∈V

wi,j + (1− β)rj,Q),

where α, β and λk are parameters, and rj,Q repre-
sents the similarity between sentence j and query
Q. We tuned the parameters on the development
dataset. Lin and Bilmes (2011) used three clusters
Ck with different granularities, which were calcu-
lated in advance. We set the granularity to (0.2N ,
0.15N , 0.05N ) according to the settings of them,
where N is the number of sentences in a docu-
ment.

We also regarded as stopwords “教える (tell),”
“知る (know),” “何 (what)” and their conjugated
forms, which are excessively common in ques-
tions. For the query expansion in the baseline, we
used Japanese WordNet to obtain synonyms and
hypernyms of query terms.

6 Results
Table 1 summarizes our results. “Subtree ex-
traction (SbE)” is our method, and “Sentence ex-
traction (NC)” is a version of our method with-
out compression. The NC has the same objec-
tive function but only extracts sentences. The F1-
measure and F3-measure of our method are 0.159
and 0.190 respectively, while those of the state-of-
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the-art baseline are 0.135 and 0.174 respectively.
Unfortunately, since the document set is small, the
difference is not statistically significant. Compar-
ing our method with the one without compression,
we can see that there are improvements in the F1
and F3 scores of the human evaluation, whereas
the POURPRE score of the version of our method
without compression is higher than that of our
method with compression. The compression im-
proved the precision of our method, but slightly
decreased the recall.

For the error analyses, we reconstructed the
original sentences from which our method ex-
tracted the subtrees. Table 2 shows the statistics
of the summaries of SbE and reconstructed sum-
maries (RC). The original sentences covered 108
answer nuggets in total, and 8 of these answer
nuggets were dropped by the sentence compres-
sion. Comparing the results of SbE and RC, we
can see that the sentence compression caused the
recall of SbE to be 7% lower than that of RC.
However, the drop is relatively small in light of
the fact that the sentence compression can discard
19% of the original character length with SbE.
This suggests that the compression can efficiently
prune words while avoiding pruning informative
content.

Since the summary length is short, we can select
only two or three sentences for a summary. As
Morita et al. (2011) mentioned, answer nuggets
overlap each other. The baseline objective func-
tion R tends to extract sentences from various
clusters. If the answer nuggets are present in the
same cluster, the objective function does not fit the
situation. However, our methods (SbE and NC)
have a parameter d that can directly adjust overlap
penalty with respect to word importance as well
as query relevance. This may help our methods to
cover similar answer nuggets. In fact, the develop-
ment data resulted in a relatively high parameter d
(0.8) for NC compared with 0.2 for SbE.

7 Conclusions and Future Work
We formalized a query-oriented summarization,
which is a task in which one simultaneously per-
forms sentence compression and extraction, as a
new optimization problem: budgeted monotone
nondecreasing submodular function maximization
with a cost function. We devised an approximate
algorithm to solve the problem in a reasonable
computational time and proved that its approxima-
tion rate is 1

2(1 − e−1). Our approach achieved

an F3-measure of 0.19 on the ACLIA2 Japanese
test collection, which is 9.2 % improvement over
a state-of-the-art method using a submodular ob-
jective function.

Since our algorithm requires that the objective
function is the sum of word score functions, our
proposed method has a restriction that we cannot
use an arbitrary monotone submodular function as
the objective function for the summary. Our fu-
ture work will improve the local search algorithm
to remove this restriction. As mentioned before,
we also plan to adapt of our system to other lan-
guages.
Appendix
Here, we analyze the performance guarantee of
Algorithm 1. We use the following notation. S∗ is
the optimal solution, cu(S) is the residual cost of
subtree u when S is already covered, and i∗ is the
last step before the algorithm discards a subtree
s ∈ S∗ or a part of the subtree s. This is because
the subtree does not belong to either the approxi-
mate solution or the optimal solution. We can re-
move the subtree s′ from V without changing the
approximate rate. si is the i-th subtree obtained by
line 5 of Algorithm 1. Gi is the set obtained after
adding subtree si to Gi−1 from the valid set Bi.
Gf is the final solution obtained by Algorithm 1.
f(·) : 2V → R is a monotone submodular func-
tion.

We assume that there is an equivalent sub-
tree with any union of subtrees in a valid set B:
∀t1, t2,∃te, te ≡ {t1, t2}. Note that for any or-
der of the set, the cost or profit of the set is fixed:∑

ui∈S={u1,...,u|S|} cui(Si−1) = c(S).

Lemma 1 ∀X, Y ⊆ V, f(X) ≤ f(Y ) +∑
u∈X\Y ρu(Y ), where ρu(S) = f(S ∪ {u}) −

f(S).

The inequality can be derived from the definition
of submodularity. 2

Lemma 2 For i = 1, . . . , i∗+1, when 0 ≤ r ≤ 1,

f(S∗)−f(Gi−1)≤ Lr |S∗|1−r

csi (Gi−1)
(f(Gi−1∪{si})−f(Gi−1)),

where cu(S)=c(S∪{u})−c(S).

Proof. From line 5 of Algorithm 1, we have

∀u ∈ S∗\Gi−1,
ρu(Gi−1)

cu(Gi−1)r
≤ ρsi(Gi−1)

csi(Gi−1)r
.

Let B be a valid set, and union be a func-
tion that returns the union of subtrees. We have
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∀T ⊆ B, ∃b ∈ B, b = union(T ), because we
have an equivalent tree b ∈ B for each union
of trees T in a valid set B. That is, for any
set of subtrees, we have an equivalent set of sub-
trees, where bi ∈ Bi. Without loss of generality,
we can replace the difference set S∗\Gi−1 with
a set T ′

i−1 = {b0, . . . , b|T ′
i−1|} that does not con-

tain any two elements extracted from the same
valid set. Thus when 0 ≤ r ≤ 1 and 0 ≤
i ≤ i∗ + 1,

ρs∗\Gi−1
(Gi−1)

cS∗\Gi−1
(Gi−1)r =

ρT ′
i−1

(Gi−1)

cT ′
i−1

(Gi−1)r , and

∀bj ∈ T ′
i−1,

ρbj
(Gi−1)

cbj
(Gi−1)r ≤ ρsi (Gi−1)

csi (Gi−1)r . Thus,

ρT ′
i−1

(Gi−1) =
∑

u∈T ′
i−1

ρu(Gi−1)

≤ ρsi (Gi−1)

csi (Gi−1)r
∑

u∈T ′
i−1

cu(Gi−1)r

≤ ρsi (Gi−1)

csi (Gi−1)r
|T ′

i−1|
(∑

u∈T ′
i−1

cu(Gi−1)

|T ′
i−1

|

)r

≤ ρsi (Gi−1)

csi (Gi−1)r
|T ′

i−1|1−r

(∑
u∈T ′

i−1
cu(φ)

)r

≤ ρsi (Gi−1)

csi (Gi−1)r
|S∗|1−rLr,

where the second inequality is from Hölder’s in-
equality. The third inequality uses the submodu-
larity of the cost function,

cu(Gi−1) = c({u} ∪Gi−1)− c(Gi−1) ≤ cu(φ)

and the fact that |S∗| ≥ |S∗\Gi−1| ≥ |T ′
i−1|, and∑

u∈T ′
i−1

cu(φ) = c(T ′
i−1) ≤ L .

As a result, we have

ρs∗\Gi−1
(Gi−1) = ρT ′

i−1
(Gi−1)

≤ ρsi(Gi−1)

csi(Gi−1)r
|S∗|1−rLr.

Let X = S∗ and Y = Gi−1. Applying Lemma
1 yields

f(S∗) ≤ f(Gi−1) + ρu∈S∗\Gi−1
(Gi−1).

≤ f(Gi−1) +
ρsi(Gi−1)

csi(Gi−1)
|S∗|1−rLr.

The lemma follows as a result.

Lemma 3 For a normalized monotone submodu-
lar f(·), for i = 1, . . . , i∗ + 1 and 0 ≤ r ≤ 1 and
letting si be the i-th unit added into G and Gi be
the set after adding si, we have

f(Gi) ≥
(

1−
i∏

k=1

(
1− csk

(Gk−1)
r

Lr|S∗|1−r

))
f(S∗).

Proof. This is proved similarly to Lemma 3 of
(Krause and Guestrin, 2005) using Lemma 2.

Proof of Theorem 1. This is proved similarly to
Theorem 1 of (Krause and Guestrin, 2005) using
Lemma 3.
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Abstract

Probabilistic context-free grammars have
the unusual property of not always defin-
ing tight distributions (i.e., the sum of the
“probabilities” of the trees the grammar
generates can be less than one). This paper
reviews how this non-tightness can arise
and discusses its impact on Bayesian es-
timation of PCFGs. We begin by present-
ing the notion of “almost everywhere tight
grammars” and show that linear CFGs fol-
low it. We then propose three different
ways of reinterpreting non-tight PCFGs to
make them tight, show that the Bayesian
estimators in Johnson et al. (2007) are
correct under one of them, and provide
MCMC samplers for the other two. We
conclude with a discussion of the impact
of tightness empirically.

1 Introduction

Probabilistic Context-Free Grammars (PCFGs)
play a special role in computational linguistics be-
cause they are perhaps the simplest probabilistic
models of hierarchical structures. Their simplicity
enables us to mathematically analyze their prop-
erties to a detail that would be difficult with lin-
guistically more accurate models. Such analysis
is useful because it is reasonable to expect more
complex models to exhibit similar properties as
well.

The problem of inferring PCFG rule probabil-
ities from training data consisting of yields or
strings alone is interesting from both cognitive and
engineering perspectives. Cognitively it is implau-
sible that children can perceive the parse trees of
the language they are learning, but it is more rea-
sonable to assume that they can obtain the terminal
strings or yield of these trees. Unsupervised meth-
ods for learning a grammar from terminal strings
alone is also interesting from an engineering per-
spective because such training data is cheap and

plentiful, while the manually parsed data required
by supervised methods are expensive to produce
and relatively rare.

Cohen and Smith (2012) show that inferring
PCFG rule probabilities from strings alone is com-
putationally intractable, so we should not expect
to find an efficient, general-purpose algorithm for
the unsupervised problem. Instead, approxima-
tion algorithms are standardly used. For exam-
ple, the Inside-Outside (IO) algorithm efficiently
implements the Expectation-Maximization (EM)
procedure for approximating a Maximum Likeli-
hood estimator (Lari and Young, 1990). Bayesian
estimators for PCFG rule probabilities have also
been attracting attention because they provide a
theoretically-principled way of incorporating prior
information. Kurihara and Sato (2006) proposed
a Variational Bayes estimator based on a mean-
field approximation, and Johnson et al. (2007) pro-
posed MCMC samplers for the posterior distribu-
tion over rule probabilities and the parse trees of
the training data strings.

PCFGs have the interesting property (which we
expect most linguistically more realistic models to
also possess) that the distributions they define are
not always properly normalized or “tight”. In a
non-tight PCFG the partition function (i.e., sum
of the “probabilities” of all the trees generated by
the PCFG) is less than one. (Booth and Thomp-
son, 1973, called such non-tight PCFGs “incon-
sistent”, but we follow Chi and Geman (1998)
in calling them “non-tight” to avoid confusion
with the consistency of statistical estimators). Chi
(1999) showed that renormalized non-tight PCFGs
(which he called “Gibbs CFGs”) define the same
class of distributions over trees as do tight PCFGs
with the same rules, and provided an algorithm for
mapping any PCFG to a tight PCFG with the same
rules that defines the same distribution over trees.

An obvious question is then: how does tightness
affect the inference of PCFGs? Chi and Geman
(1998) studied the question for Maximum Likeli-
hood (ML) estimation, and showed that ML es-

1033



timates are always tight for both the supervised
case (where the input consists of parse trees) and
the unsupervised case (where the input consists of
yields or terminal strings). This means that ML
estimators can simply ignore issues of tightness,
and rest assured that the PCFGs they estimate are
in fact tight.

The situation is more subtle with Bayesian es-
timators. We show that for the special case of
linear PCFGs (which include HMMs) with non-
degenerate priors the posterior puts zero mass on
non-tight PCFGs, so tightness is not an issue with
Bayesian estimation of such grammars. However,
because all of the commonly used priors (such as
the Dirichlet or the logistic normal) assign non-
zero probability across the whole probability sim-
plex, in general the posterior may assign non-zero
probability to non-tight PCFGs. We discuss three
different possible approaches to this in this paper:

1. the only-tight approach, where we modify the
prior so it only assigns non-zero probability
to tight PCFGs,

2. the renormalization approach, where we
renormalize non-tight PCFGs so they define
a probability distribution over trees, and

3. the sink-element approach, where we reinter-
pret non-tight PCFGs as assigning non-zero
probability to a “sink element”, so both tight
and non-tight PCFGs are properly normal-
ized.

We show how to modify the Gibbs sampler de-
scribed by Johnson et al. (2007) so it produces
samples from the posterior distributions defined
by the only-tight and renormalization approaches.
Perhaps surprisingly, we show that Gibbs sampler
as defined by Johnson et al. actually produces
samples from the posterior distributions defined by
the sink-element approach.

We conclude by studying the effect of requir-
ing tightness on the estimation of some simple
PCFGs. Because the Bayesian posterior converges
around the (tight) ML estimate as the size of
the data grows, requiring tightness only seems to
make a difference with highly biased priors or with
very small training corpora.

2 PCFGs and tightness

LetG = (T,N, S,R) be a Context-Free Grammar
in Chomsky normal form with no useless produc-
tions, where T is a finite set of terminal symbols,

N is a finite set of nonterminal symbols (disjoint
from T ), S ∈ N is a distinguished nonterminal
called the start symbol, andR is a finite set of pro-
ductions of the form A → BC or A → w, where
A,B,C ∈ N and w ∈ T . In what follows we use
β as a variable ranging over (N ×N) ∪ T .

A Probabilistic Context-Free Grammar (G,Θ)
is a pair consisting of a context-free grammar G
and a real-valued vector Θ of length |R| indexed
by productions, where θA→β is the production
probability associated with the production A →
β ∈ R. We require that θA→β ≥ 0 and that for
all nonterminals A ∈ N ,

∑
A→β∈RA θA→β = 1,

where RA is the subset of rules R expanding the
nonterminal A.

A PCFG (G,Θ) defines a measure µΘ over
trees t as follows:

µΘ(t) =
∏

r∈R
θfr(t)r

where fr(t) is the number of times the production
r = A→ β ∈ R is used in the derivation of t.

The partition function Z or measure of all pos-
sible trees is:

Z(Θ) =
∑

t′∈T

∏

r∈R
θfr(t

′)
r

where T is the set of all (finite) trees generated
by G. A PCFG is tight iff the partition function
Z(Θ) = 1. In this paper we use Θ⊥ to denote the
set of rule probability vectors Θ for which G is
non-tight. Nederhof and Satta (2008) survey sev-
eral algorithms for computing Z(Θ), and hence
for determining whether a PCFG is tight.1

Non-tightness can arise in very simple PCFGs,
such as the “Catalan” PCFG S → S S | a. This
grammar produces binary trees where all internal
nodes are labeled as S and the yield of these trees
is a sequence of as. If the probability of the rule
S → S S is greater than 0.5 then this PCFG is
non-tight.

Perhaps the most straight-forward way to under-
stand this non-tightness is to view this grammar as
defining a branching process where an S can either
“reproduce” with probability θS→S S or “die out”

1We found out that finding whether a PCFG is tight by
directly inspecting the partition function value is less stable
than using the method in Wetherell (1980). For this reason,
we used Wetherell’s approach, which is based on finding the
principal eigenvalue of the matrix M .
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with probability θS→a. When θS→S S > θS→a the
S nodes reproduce at a faster rate than they die
out, so the derivation has a non-zero probability of
endlessly rewriting (Atherya and Ney, 1972).

3 Bayesian inference for PCFGs

The goal of Bayesian inference for PCFGs is to in-
fer a posterior distribution over the rule probabil-
ity vectors Θ given observed data D. This poste-
rior distribution is obtained by combining the like-
lihood P(D | Θ) with a prior distribution P(Θ)
over Θ using Bayes Rule.

P(Θ | D) ∝ P(D | Θ) P(Θ)

We now formally define the three approaches to
handling non-tightness mentioned earlier:

the only-tight approach: we only permit priors
where P(Θ⊥) = 0, i.e., we insist that the
prior assign zero mass to non-tight rule prob-
ability vectors, so Z = 1. This means we can
define:

P(t | Θ) = µΘ(t)

the renormalization approach: we renormalize
non-tight PCFGs by dividing by the partition
function:

P(t | Θ) =
1

Z(Θ)
µΘ(t) (1)

the sink-element approach: we redefine our
probability distribution so its domain is a set
T ′ = T ∪ {⊥}, where T is the set of (finite)
trees generated by G and ⊥ 6∈ T is a new
element that serves as a “sink state” to which
the “missing mass” 1 − Z(Θ) is assigned.
Then we define:2

P(t | Θ) =

{
µΘ(t) if t ∈ T
1− Z(Θ) if t = ⊥

2This definition of a distribution over trees can be induced
by a tight PCFG with a special ⊥ symbol in its vocabulary.
Given G, the first step is to create a tight grammar G0 using
the renormalization approach. Then, a new start symbol is
added to G0, S0, and also rules S0 → S (where S is the
old start symbol in G0) and S0 → ⊥. The first rule is given
probability Z(Θ) and the second rule is given probability 1−
Z(Θ). It can be then readily shown that the new tight PCFG
G0 induces a distribution over trees just like in Eq. 3, only
with additional S0 on top of all trees.

With this in hand, we can now define the likeli-
hood term. We consider two types of data D here.
In the supervised setting the data D consists of a
corpus of parse trees D = (t1, . . . , tn) where each
tree ti is generated by the PCFG G, so

P(D | Θ) =

n∏

i=1

P(ti | Θ)

In the unsupervised setting the data D consists
of a corpus of strings D = (w1, . . . , wn) where
each string wi is the yield of one or more trees
generated by G. In this setting

P(D | Θ) =

n∏

i=1

P(wi | Θ),where:

P(w | Θ) =
∑

t∈T :yield(t)=w

P(t | Θ)

4 The special case of linear PCFGs

One way to handle the issue of tightness is to iden-
tify a family of CFGs for which practically any pa-
rameter setting will yield a tight PCFG. This is the
focus of this section, in which we identify a sub-
set of CFGs, which are “almost everywhere” tight.
This family of CFGs includes many of the CFGs
used in NLP applications.

We cannot expect that a CFG will yield a tight
PCFG for any assignment to the rule probabilities
(i.e. that Θ⊥ = ∅). Even in simple cases, such as
the grammar S → S|a, the assignment of proba-
bility 1 to S → S and 0 to the other rule renders
the S nonterminal useless, and places all of the
probability mass on infinite structures of the form
S → S → S → . . ..

However, we can weaken our requirement so
that the cases in which parameter assignment
yields a non-tight PCFG are rare, or have measure
zero. To put it more formally, we say that a prior
P(Θ) is “tight almost everywhere for G” if

P(Θ⊥) =

∫

Θ∈Θ⊥
P(Θ) dΘ = 0.

We now provide a sufficient condition (linear-
ity) for CFGs under which they are tight almost
everywhere with any continuous prior.

For a nonterminal A ∈ N and β ∈ (N ∪ T )∗,
we use A⇒k β to denote that A can be re-written
using a sequence of rules from R to the sentential
form β in k derivation steps. We use A ⇒+ β to
denote that there exists a k > 0 such thatA⇒k β.
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Definition 1 A context-free grammarG is linear if
there are no A ∈ N such that

A⇒+ . . . A . . . A . . . .

Definition 2 A nonterminal A ∈ N in a proba-
bilistic context-free grammar G with parameters
Θ is nonterminating if

PG(A⇒+ . . . A . . . |Θ) = 1.

Here P(A⇒+ . . . A . . . |Θ) is defined as:
∑

β:β=...A...

PG(A⇒+ β|Θ).

Lemma 1 A linear PCFG G with parameters Θ
which does not have any nonterminating nonter-
minals is tight.

Proof: Our proof relies on the properties of a cer-
tain |N | × |N | matrix M where:

MAB =
∑

A→β∈RA
n(β,B) θA→β

where n(β,B) is the number of appearances of the
nonterminal B in the sequence β. MAB is the ex-
pected number of B nonterminals generated from
an A nonterminal in one single derivational step,
so [Mk]AB is the expected number ofB nontermi-
nals generated from an A nonterminal in a k-step
derivation (Wetherell, 1980).

Since M is a non-negative matrix, under some
regularity conditions, the Frobenius-Perron theo-
rem states that the largest eigenvalue of this ma-
trix (in absolute value) is a real number. Let this
eigenvalue be denoted by λ.

A PCFG is called “subcritical” if λ < 1 and
supercritical if λ > 1. Then, in turn, a PCFG is
tight if it is subcritical. It is not tight if it is su-
percritical. The case of λ = 1 is a borderline case
that does not give sufficient information to know
whether the PCFG is tight or not. In the Bayesian
case, for a continuous prior such as the Dirichlet
prior, this borderline case will have measure zero
under the prior.

Now let A ∈ N . Since the grammar is lin-
ear, there is no derivation A ⇒+ . . . A . . . A . . ..
Therefore, any derivation of the form A ⇒+

. . . A . . . includes A on the right hand-side exactly
once. Because the grammar has no useless non-
terminals, the probability of such a derivation is
strictly smaller than 1.

For each A ∈ N , define:

pA =
∑

β=...A...

P(A⇒|N | β|Θ).

Since A is not useless, then pA < 1. Therefore
q = maxA pA < 1. Since any derivation of length
k of the formA⇒ . . . A . . . can be decomposed to

at least
k

2|N | cycles that start at a terminal B ∈ N
and end in the same nonterminal B ∈ N , it holds
that:

[Mk]AA ≤ q
k

2|N| k→∞→ 0.

This means that trace(Mk)
k→∞→ 0. This means

that the eigenvalue of M is strictly smaller than 1
(linear algebra), and therefore the PCFG is tight.�
Proposition 1 Any continuous prior P(Θ) on a
linear grammar G is tight almost everywhere for
G.

Proof: Let G be a linear grammar. With a contin-
uous prior, the probability ofG getting parameters
from the prior which yield a useless non-terminal
is 0 – it would require setting at least one rule in
the grammar with rule probability which is exactly
1. Therefore, with probability 1, the parameters
taken from the prior yield a PCFG which is linear
and does not have nonterminating nonterminals.
According to Lemma 1, this means the PCFG is
tight. �

Deciding whether a grammar G is linear can
be done in polynomial time using the construction
from Bar-Hillel et al. (1964). We can first elimi-
nate the differences between nonterminals and ter-
minal symbols by adding a rule A → cA for each
nonterminal A ∈ N , after extending the set of
terminal symbols A with {cA|A ∈ N}. Let GA
be the grammar G with the start symbol being re-
placed with A. We can then intersect the grammar
GA with the regular language T ∗cAT ∗cAT ∗ (for
each nonterminal A ∈ N ). If for any nontermi-
nal A the intersection is not the empty set (with
respect to the language that the intersection gen-
erates), then the grammar is not linear. Checking
whether the intersection is the empty set or not can
be done in polynomial time.

We conclude this section by remarking that
many of the models used in computational lin-
guistics are in fact equivalent to linear PCFGs, so
continuous Bayesian priors are almost everywhere
tight. For example, HMMs and many kinds of
“stacked” finite-state machines are equivalent to
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linear PCFGs, as are the example PCFGs given in
Johnson et al. (2007) to motivate the MCMC esti-
mation procedures.

5 Dirichlet priors

The first step in Bayesian inference is to specify a
prior on Θ. In the rest of this paper we take P(Θ)
to be a product of Dirichlet distributions, with one
distribution for each non-terminal A ∈ N , as this
turns out to simplify the computations consider-
ably. The prior is parameterized by a positive real
valued vector α indexed by productionsR, so each
production probability θA→β has a corresponding
Dirichlet parameter αA→β . As before, let RA be
the set of productions in R with left-hand side A,
and let θA and αA refer to the component subvec-
tors of θ and α respectively indexed by produc-
tions in RA. The Dirichlet prior P(Θ | α) is:

P(Θ | α) =
∏

A∈N
PD(ΘA | αA),

where

PD(ΘA | αA) =
1

C(αA)

∏

r∈RA
θαr−1
r and

C(αA) =

∏
r∈RA Γ(αr)

Γ(
∑

r∈RA αr)

where Γ is the generalized factorial function and
C(α) is a normalization constant that does not de-
pend on ΘA.

Dirichlet priors are useful because they are con-
jugate to the multinomial distribution, which is
the building block of PCFGs. Ignoring issues of
tightness for the moment and setting P(t | Θ) =
µΘ(t), this means that in the supervised setting the
posterior distribution P(Θ | t, α) given a set of
parse trees t = (t1, . . . , tn) is also a product of
Dirichlets distribution.

P(Θ | t, α) ∝ P(t | Θ) P(Θ | α)

∝
(∏

r∈R
θfr(t)
r

)(∏

r∈R
θαr−1
r

)

=
∏

r∈R
θfr(t)+αr−1
r

which is a product of Dirichlet distributions with
parameters f(t) + α, where f(t) is the vector of
rule counts in t indexed by r ∈ R. We can thus
write:

P(Θ | t, α) = P(Θ | f(t) + α)

Input: Grammar G, vector of trees t, vector of
hyperparameters α, previous parameters Θ0.

Result: A vector of parameters Θ
repeat

draw θ from products of Dirichlet with
hyperparameters α+ f(t)

until Θ is tight for G;
return Θ

Algorithm 1: An algorithm for generating sam-
ples from P(Θ | t, α) for the only-tight ap-
proach.

Input: Grammar G, vector of trees t, vector of
hyperparameters α, previous rule parameters
Θ0.

Result: A vector of parameters Θ
draw a proposal Θ∗ from a product of Dirichlets with
parameters α+ f(t).
draw a uniform number u from [0, 1].

if u < min{1,
(
Z(Θ(i−1))/Z(Θ∗)

)n
} return Θ∗.

return Θ0.

Algorithm 2: One step of Metropolis-Hastings
algorithm for generating samples from P(Θ |
t, α) for the renormalization approach.

which makes it clear that the rule counts are di-
rectly added to the parameters of the prior to pro-
duce the parameters of the posterior.

6 Inference in the supervised setting

We first discuss Bayesian inference in the super-
vised setting, as inference in the unsupervised set-
ting is based on inference for the supervised set-
ting. For each of the three approaches to non-
tightness we provide an algorithm that character-
izes the posterior P(Θ | t), where t = (t1, . . . , tn)
is a sequence of trees, by generating samples from
that posterior. Our MCMC algorithms for the un-
supervised setting build on these samplers for the
supervised setting.

6.1 The only-tight approach
The “only-tight” approach requires that the prior
assign zero mass to non-tight rule probability vec-
tors Θ⊥. One way to define such a distribution is
to restrict the domain of an existing prior distribu-
tion with the set of tight Θ and renormalize. In
more detail, if P(Θ) is a prior over rule probabili-
ties, then its renormalization is the prior P′ defined
as:

P′(Θ) =
P(Θ)I(Θ /∈ Θ⊥)

Z(Θ⊥)
. (2)

where Z(Θ⊥) =
∫

Θ P(Θ)I(Θ /∈ Θ⊥)dΘ.
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Input: Grammar G, vector of trees t, vector of
hyperparameters α, previous parameters Θ0.

Result: A vector of parameters Θ
draw Θ from products of Dirichlet with
hyperparameters α+ f(t)
return Θ

Algorithm 3: An algorithm for generating sam-
ples from P(Θ | t, α) for the sink-state approach.

Perhaps surprisingly, it turns out that if P(Θ)
belongs to a family of conjugate priors, then P′(Θ)
also belongs to a (different) family of conjugate
priors as well.

Proposition 2 Let P(Θ|α) be a prior with hyper-
parameters α over the parameters of G such that
P is conjugate to the grammar likelihood. Then
P′, defined in Eq. 2, is conjugate to the grammar
likelihood as well.

Proof: Assume that trees t are observed, and the
prior over the grammar parameters is the prior de-
fined in Eq. 2. Therefore, the posterior is:

P(Θ|t, α) ∝ P′(Θ|α)p(t|Θ)

=
P(Θ|α)p(t|Θ)I(Θ /∈ Θ⊥)

Z(Θ⊥)

∝ P(Θ|t, α)I(Θ /∈ Θ⊥)

Z(Θ⊥)
.

Since P(Θ|α) is a conjugate prior to the PCFG
likelihood, then there exists α′ = α′(t) such that
P(Θ|t, α) = P′(Θ|α′). Therefore:

P(Θ|t, α) ∝ P(Θ|α′)I(Θ /∈ Θ⊥)

Z(Θ⊥)
.

which exactly equals P′(Θ|α′). �
Sampling from the posterior over the parame-

ters given a set of trees t is therefore quite sim-
ple when assuming the base prior being renormal-
ized is a product of Dirichlets. Algorithm 1 sam-
ples from a product of Dirichlets distribution with
hyperparameters α + f(t) repeatedly, each time
checking and rejecting the sample until we obtain
a tight PCFG.

The more mass the Dirichlet distribution with
hyperparameters α + f(t) puts on non-tight
PCFGs, the more rejections will happen. In gen-
eral, if the probability mass on non-tight PCFGs is
q⊥, then it would require, on average 1/(1 − q⊥)
samples from this distribution in order to obtain a
tight PCFG.

6.2 The renormalization approach
The renormalization approach modifies the likeli-
hood function instead of the prior. Here we use a
product of Dirichlets prior P(Θ | α) on rule prob-
ability vectors Θ, but the presence of the partition
functionZ(Θ) in Eq. 1 means that the likelihood is
no longer conjugate to the prior. Instead we have:

P(Θ | t) =
n∏

i=1

µΘ(ti)

Z(Θ)
P(Θ | α)

∝ 1

Z(Θ)n
P(Θ | α+ f(t)). (3)

Note that the factor Z(Θ) depends on Θ, and
therefore cannot be absorbed into the constant. Al-
gorithm 2 describes a Metropolis-Hastings sam-
pler for sampling from the posterior in Eq. 3
that uses a product of Dirichlets with parameters
α+ f(t) as a proposal distribution.

In our experiments, we use the algorithm from
Nederhof and Satta (2008) to compute the parti-
tion function which is needed in Algorithm 2.

6.3 The “sink element” approach
The “sink element” approach does not affect the
likelihood (since the probability of a tree t is just
the product of the probabilities of the rules used
to generate it), nor does it require a change to the
prior. (The sink element ⊥ is not a member of the
set of trees T , so it cannot appear in the data t).

This means that the conjugacy argument given
at the bottom of section 5 holds in this approach,
so the posterior P(Θ | t, α) is a product of Dirich-
lets with parameters f(t) + α. Algorithm 3 gives
a sampler for P(Θ | t, α) for the sink element ap-
proach.

7 Inference in the unsupervised setting

Johnson et al. (2007) provide two Markov chain
Monte Carlo algorithms for Bayesian inference for
PCFG rule probabilities in the unsupervised set-
ting (i.e., where the data consists of a corpus of
strings w = (w1, . . . , wn) alone). The algorithms
we give here are based on their Gibbs sampler,
which in each iteration first samples parse trees
t = (t1, . . . , tn), where each ti is a parse for
wi, from P(t | w,Θ), and then samples Θ from
P(Θ | t, α).

Notice that the conditional distribution P(t |
w,Θ) is unaffected in each of our three ap-
proaches (the partition functions cancel in the
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Input: Grammar G, vector of hyperparameters α,
vector of strings w = (w1, . . . , wn), previous
rule parameters Θ0.

Result: A vector of parameters Θ
for i← 1 to n do

draw ti from P(ti|wi,Θ0)
end
use Algorithm 2 to sample Θ given G, t, α and Θ0

return Θ

Algorithm 4: One step of the Metropolis-within-
Gibbs sampler for the renormalization approach.

renormalization approach), so the algorithm for
sampling from P(t | w,Θ) given by Johnson et
al. applies in each of our three approaches as well.

Johnson et al. ignored tightness and assumed
that P(Θ | t, α) is a product of Dirichlets with
parameters f(t) + α. As we noted in section 6.3,
this assumption holds for the sink-state approach
to non-tightness, so their sampler is in fact correct
for the sink-state approach.

In fact, we obtain samplers for the unsupervised
setting for each of our approaches by “plugging
in” the corresponding sampling algorithm (Eq. 1–
3) for P(Θ | t, α) into the generic Gibbs sampler
framework of Johnson et al.

The one complication is that because we use a
Metropolis-Hastings procedure to generate sam-
ples from P(Θ | t, α) in the renormalization ap-
proach, we use the Metropolis-within-Gibbs pro-
cedure given in Algorithm 4 (Robert and Casella,
2004).

8 The expressive power of the three
approaches

Probably the most important question to ask with
respect to the three different approaches to non-
tightness is whether they differ in terms of expres-
sive power. Clearly the three approaches differ in
terms of the grammars they admit (the only-tight
approach requires the prior to only assign non-zero
probability to tight PCFGs, while the other two ap-
proaches permit the prior to assign non-zero prob-
ability to non-tight PCFGs as well). However, if
we regard a grammar as merely a device for defin-
ing a distribution over trees and a prior as defining
a distribution over distributions over trees, it is rea-
sonable to ask whether the class of distributions
over distributions of trees that each of these ap-
proaches define are the same or differ. We believe,
but have not proved, that all three approaches de-
fine the same class of distributions over distribu-

tions of trees in the following sense: any prior used
with one of the approaches can be transformed
into a different prior that can be used with one of
the other approaches, and yield the same posterior
over trees conditioned on a string, marginalizing
out the parameters.

This does not mean that the three approaches
are equivalent, however. In this section we pro-
vide a grammar such that with a uniform prior over
rule probabilities, the conditional distribution over
trees given a fixed string varies under each of the
three different approaches.

The grammar we consider has three rules S →
S S S|S S|a with probabilities θ1, θ2 and 1− θ1−
θ2, respectively. The Θ parameters are required to
satisfy θ1 + θ2 ≤ 1 and θi ≥ 0 for i = 1, 2.

We compute the posterior distribution over
parse trees for the string w = a a a. The gram-
mar generates three parse trees for w1, namely:

t1 = S

S

a

S

a

S

a

t2 = S

S

a

S

S

a

S

a

t3 = S

S

S

a

S

a

S

a

The partition function Z for this grammar is the
smallest positive root of the cubic equation:

Z = θ1Z
3 + θ2Z

2 + (1− θ1 − θ2)

We used Mathematica to find an analytic solution
for Z in this equation, obtaining not only an ex-
pression for the partition function Z(Θ) but also
identifying the non-tight region Θ⊥.

In order to compute P(t1|w), we used Mathe-
matica to first compute the following quantities:

qsinkElement(ti) =

∫

Θ
µΘ(ti) dΘ

qtightOnly(ti) =

∫

Θ
µΘ(ti) I(Θ /∈ Θ⊥) dΘ

qrenormalization(ti) =

∫

Θ
µΘ(ti)/Z(Θ) dΘ

where i ∈ {1, 2, 3}. We used Mathematica to ana-
lytically compute q(ti) for each approach and each
i ∈ {1, 2, 3}. Then it’s easy to show that:

P(ti | w) =
q(ti)∑3
i′=1 q(ti′)

where the q used is based on the approach to
tightness desired. For the sink-element approach,
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Figure 1: The density of the F1-scores with the
three approaches. The prior used is a symmetric
Dirichlet with α = 0.1.

P(t1|w) = 7
11 ≈ 0.636364. For the only-tight

approach P(t1|w) = 11179
17221 ≈ 0.649149. For

the renormalization approach the analytic ex-
pression is too complex to include in this paper,
but it approximately equals 0.619893. A log
of our Mathematica calculations is available
at http://www.cs.columbia.edu/˜scohen/

acl13tightness-mathematica.pdf, and we
confirmed these results to three decimal places us-
ing the samplers described above (which required
107 samples per approach).

While the differences between these conditional
probabilities are not great, the conditional prob-
abilities are clearly different, so the three ap-
proaches do in fact define different distributions
over trees under a uniform prior on rule probabili-
ties.

9 Empirical effects of the three
approaches in unsupervised grammar
induction

In this section we present experiments using the
three samplers just described in an unsupervised
grammar induction problem. Our goal here is
not to improve the state-of-the-art in unsupervised
grammar induction, but to try to measure empir-
ical differences in the estimates produced by the
three different approaches to tightness just de-
scribed. The bottom line of our experiments is that
we could not detect any significant difference in
the estimates produced by samplers for these three
different approaches.

In our experiments we used the English Penn
treebank (Marcus et al., 1993). We use the part-

of-speech tag sequences of sentences shorter than
11 words in sections 2–21. The grammar we use is
the PCFG version of the dependency model with
valence (Klein and Manning, 2004), as it appears
in Smith (2006).

We used a symmetric Dirichlet prior with hy-
perparameter α = 0.1. For each of the three ap-
proaches for handling tightness, we ran 100 times
the samplers in §7, each for 1,000 iterations. We
discarded the first 900 sweeps of each run, and cal-
culated the F1-scores of the sampled trees every
10th sweep from the last 100 sweeps. For each
run we calculated the average F1-score over the
10 sweeps we evaluated. We thus have 100 aver-
age F1-scores for each of the samplers.

Figure 1 plots the density of F1 scores (com-
pared to the gold standard) resulting from the
Gibbs sampler, using all three approaches. The
mean value for each of the approaches is 0.41
with standard deviation 0.06 (only-tight), 0.41
with standard deviation 0.05 (renormalization)
and 0.42 with standard deviation 0.06 (sink ele-
ment). In addition, the only-tight approach results
in an average of 437 (s.d., 142) rejected propos-
als in 1,000 samples, while the renormalization
approach results in an average of 232 (s.d., 114)
rejected proposals in 1,000 samples. (It’s not sur-
prising that the only-tight approach results in more
rejections as it keeps proposing new Θ until a tight
proposal is found, while the renormalization ap-
proach simply uses the old Θ).

We performed two-sample Kolmogorov-
Smirnov tests (which are non-parametric tests
designed to determine if two distributions are
different; see DeGroot, 1991) on each of the three
pairs of 100 F1-scores. None of the tests were
close to significant; the p-values were all above
0.5. Thus our experiments provided no evidence
that the samplers produced different distributions
over trees, although it’s reasonable to expect that
these distributions do indeed differ.

In terms of running time, our implementation
of the renormalization approach was several times
slower than our implementations of the other two
approaches because we used the naive fixed-point
algorithm to compute the partition function: per-
haps this could be improved using one of the
more sophisticated partition function algorithms
described in Nederhof and Satta (2008).
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10 Conclusion

In this paper we characterized the notion of an al-
most everywhere tight grammar in the Bayesian
setting and showed it holds for linear CFGs. For
non-linear CFGs, we described three different ap-
proaches to handle non-tightness. The “only-
tight” approach restricts attention to tight PCFGs,
and perhaps surprisingly, we showed that conju-
gacy still obtains when the domain of a product
of Dirichlets prior is restricted to the subset of
tight grammars. The renormalization approach in-
volves renormalizing the PCFG measure µ over
trees when the grammar is non-tight, which de-
stroys conjugacy with a product of Dirichlets prior.
Perhaps most surprisingly of all, the sink-element
approach, which assigns the missing mass in non-
tight PCFG to a sink element ⊥, turns out to be
equivalent to existing practice where tightness is
ignored.

We studied the posterior distributions over trees
induced by the three approaches under a uniform
prior for a simple grammar and showed that they
differ. We leave for future work the important
question of whether the classes of distributions
over distributions over trees that the three ap-
proaches define are the same or different.

We described samplers for the supervised
and unsupervised settings for each of these ap-
proaches, and applied them to an unsupervised
grammar induction problem. (The code for the
unsupervised samplers is available from http://

web.science.mq.edu.au/˜mjohnson).
We could not detect any difference in the pos-

terior distributions over trees produced by these
samplers, despite devoting considerable computa-
tional resources to the problem. This suggests that
for these kinds of problems at least, tightness is
not of practical concern for Bayesian inference of
PCFGs.
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Abstract

This paper describes a method of in-
ducing wide-coverage CCG resources for
Japanese. While deep parsers with corpus-
induced grammars have been emerging
for some languages, those for Japanese
have not been widely studied, mainly be-
cause most Japanese syntactic resources
are dependency-based. Our method first
integrates multiple dependency-based cor-
pora into phrase structure trees and then
converts the trees into CCG derivations.
The method is empirically evaluated in
terms of the coverage of the obtained lexi-
con and the accuracy of parsing.

1 Introduction

Syntactic parsing for Japanese has been domi-
nated by a dependency-based pipeline in which
chunk-based dependency parsing is applied and
then semantic role labeling is performed on the de-
pendencies (Sasano and Kurohashi, 2011; Kawa-
hara and Kurohashi, 2011; Kudo and Matsumoto,
2002; Iida and Poesio, 2011; Hayashibe et al.,
2011). This dominance is mainly because chunk-
based dependency analysis looks most appropriate
for Japanese syntax due to its morphosyntactic ty-
pology, which includes agglutination and scram-
bling (Bekki, 2010). However, it is also true that
this type of analysis has prevented us from deeper
syntactic analysis such as deep parsing (Clark and
Curran, 2007) and logical inference (Bos et al.,
2004; Bos, 2007), both of which have been sur-
passing shallow parsing-based approaches in lan-
guages like English.

In this paper, we present our work on induc-
ing wide-coverage Japanese resources based on

combinatory categorial grammar (CCG) (Steed-
man, 2001). Our work is basically an extension of
a seminal work on CCGbank (Hockenmaier and
Steedman, 2007), in which the phrase structure
trees of the Penn Treebank (PTB) (Marcus et al.,
1993) are converted into CCG derivations and a
wide-coverage CCG lexicon is then extracted from
these derivations. As CCGbank has enabled a va-
riety of outstanding works on wide-coverage deep
parsing for English, our resources are expected to
significantly contribute to Japanese deep parsing.

The application of the CCGbank method to
Japanese is not trivial, as resources like PTB are
not available in Japanese. The widely used re-
sources for parsing research are the Kyoto corpus
(Kawahara et al., 2002) and the NAIST text corpus
(Iida et al., 2007), both of which are based on the
dependency structures of chunks. Moreover, the
relation between chunk-based dependency struc-
tures and CCG derivations is not obvious.

In this work, we propose a method to integrate
multiple dependency-based corpora into phrase
structure trees augmented with predicate argument
relations. We can then convert the phrase structure
trees into CCG derivations. In the following, we
describe the details of the integration method as
well as Japanese-specific issues in the conversion
into CCG derivations. The method is empirically
evaluated in terms of the quality of the corpus con-
version, the coverage of the obtained lexicon, and
the accuracy of parsing with the obtained gram-
mar. Additionally, we discuss problems that re-
main in Japanese resources from the viewpoint of
developing CCG derivations.

There are three primary contributions of this pa-
per: 1) we show the first comprehensive results for
Japanese CCG parsing, 2) we present a methodol-
ogy for integrating multiple dependency-based re-

1042



I

NP: I′

NPy: I′

NP: I′

NP: I′

give

S\NP/NP/NP :

λxλyλz.give′yxz

them
NP :them′

NP :ythem′
>

S\NP/NP :λyλz.give′y them′z

money

NP :money′

NP :money′

NP :money′
>

S\NP :λz.give′money′them′z
<

S :give′money′them′I ′

大使
ambassador

NPnc

が
NOM

NPga\NPnc
<

NPga

NPga

NPga

交渉
negotiation

NPnc

に
DAT

NPni\NPnc
<

NPni

NPni

参加
participation

Sstem\NPga\NPni

し
do-CONT
Scont\Sstem

<B
Scont\NPga\NPni

た
PAST-BASE
Sbase\Scont
Sbase\Scont

<B
Sbase\NPga\NPni

<
Sbase\NPga

<
Sbase

政府
government

NPnc

が
NOM

NPga\NPnc
<

NPga

NPga

NPga

大使
ambassador

NPnc

を
ACC

NPwo\NPnc
<

NPwo

NPwo

交渉
negotiation

NPnc

に
DAT

NPni\NPnc
<

NPni

参加さ
participation

Svo s\NPga\NPni

せ
CAUSE

Scont\NPga\NPwo\(Svo s\NPga)
<

Scont\NPga\NPwo\NPni
<

Scont\NPga\NPwo
<

Scont\NPga
<

Scont

政府
government

NP

は
NOM

NPga\NP
<

NPga

NPga

NPga

大使を
ambassador-ACC

NPwo

NPga

NPga

交渉に
negotiation-DAT

NPni

NPga

参加さ
join

Svo s\NPga\NPni

せ
cause

Scont\NPga\NPwo\(Svo s\NPga)
<

Scont\NPga\NPwo\NPni
<

Scont\NPga\NPwo
<

Scont\NPga
<

Scont

交渉
negotiation

NPnc

に
DAT

NPni\NPnc
<

NPni

NPga

NPga

参加
participation

Sstem\NPni

さ
do

Svo s\Sstem
<B

Svo s\NPni

せ
CAUSE

Scont\Svo s

Scont\Svo s
<B

Scont\NPni

た
PAST

Sbase\Scont
Scont\Svo s

Scont
<B

Sbase\NPni
<

Sbase

1

Figure 1: A CCG derivation.

X/Y : f Y : a → X : fa (>)
Y : a X\Y : a → X : fa (<)
X/Y : f Y/Z : g → X/Z : λx.f(gx) (> B)
Y\Z : g X\Y : f → X\Z : λx.f(gx) (< B)

Figure 2: Combinatory rules (used in the current
implementation).

sources to induce CCG derivations, and 3) we in-
vestigate the possibility of further improving CCG
analysis by additional resources.

2 Background

2.1 Combinatory Categorial Grammar

CCG is a syntactic theory widely accepted in the
NLP field. A grammar based on CCG theory con-
sists of categories, which represent syntactic cat-
egories of words and phrases, and combinatory
rules, which are rules to combine the categories.
Categories are either ground categories like S and
NP or complex categories in the form of X/Y or
X\Y , where X and Y are the categories. Cate-
gory X/Y intuitively means that it becomes cat-
egory X when it is combined with another cat-
egory Y to its right, and X\Y means it takes a
category Y to its left. Categories are combined
by applying combinatory rules (Fig. 2) to form
categories for larger phrases. Figure 1 shows a
CCG analysis of a simple English sentence, which
is called a derivation. The verb give is assigned
category S\NP/NP/NP , which indicates that it
takes two NPs to its right, one NP to its left, and fi-
nally becomes S. Starting from lexical categories
assigned to words, we can obtain categories for
phrases by applying the rules recursively.

An important property of CCG is a clear inter-
face between syntax and semantics. As shown in
Fig. 1, each category is associated with a lambda
term of semantic representations, and each com-
binatory rule is associated with rules for semantic
composition. Since these rules are universal, we
can obtain different semantic representations by
switching the semantic representations of lexical
categories. This means that we can plug in a vari-

Sentence S Verb S\$ (e.g. S\NPga)
Noun phrase NP Post particle NPga|o|ni|to\NP
Auxiliary verb S\S

Table 1: Typical categories for Japanese syntax.

Cat. Feature Value Interpretation
NP case ga nominal

o accusative
ni dative
to comitative, complementizer, etc.
nc none

S form stem stem
base base
neg imperfect or negative
cont continuative
vo s causative

Table 2: Features for Japanese syntax (those used
in the examples in this paper).

ety of semantic theories with CCG-based syntactic
parsing (Bos et al., 2004).

2.2 CCG-based syntactic theory for Japanese

Bekki (2010) proposed a comprehensive theory
for Japanese syntax based on CCG. While the the-
ory is based on Steedman (2001), it provides con-
crete explanations for a variety of constructions of
Japanese, such as agglutination, scrambling, long-
distance dependencies, etc. (Fig. 3).

The ground categories in his theory are S, NP,
and CONJ (for conjunctions). Table 1 presents
typical lexical categories. While most of them
are obvious from the theory of CCG, categories
for auxiliary verbs require an explanation. In
Japanese, auxiliary verbs are extensively used to
express various semantic information, such as
tense and modality. They agglutinate to the main
verb in a sequential order. This is explained in
Bekki’s theory by the category S\S combined with
a main verb via the function composition rule
(<B). Syntactic features are assigned to categories
NP and S (Table 2). The feature case represents a
syntactic case of a noun phrase. The feature form
denotes an inflection form, and is necessary for
constraining the grammaticality of agglutination.

Our implementation of the grammar basically
follows Bekki (2010)’s theory. However, as a first
step in implementing a wide-coverage Japanese
parser, we focused on the frequent syntactic con-
structions that are necessary for computing pred-
icate argument relations, including agglutination,
inflection, scrambling, case alternation, etc. Other
details of the theory are largely simplified (Fig. 3),
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Figure 3: A simplified CCG analysis of the sentence “The ambassador participated in the negotiation.”.

S → NP/NP (RelExt)
S\NP1 → NP1/NP1 (RelIn)
S → S1/S1 (Con)
S\$1\NP1 → (S1\$1\NP1)/(S1\$1\NP1) (ConCoord)

Figure 4: Type changing rules. The upper two are
for relative clauses and the others for continuous
clauses.

coordination and semantic representation in par-
ticular. The current implementation recognizes
coordinated verbs in continuous clauses (e.g., “彼
はピアノを弾いて歌った/he played the piano and
sang”), but the treatment of other types of coor-
dination is largely simplified. For semantic repre-
sentation, we define predicate argument structures
(PASs) rather than the theory’s formal representa-
tion based on dynamic logic. Sophisticating our
semantic representation is left for future work.

For parsing efficiency, we modified the treat-
ment of some constructions so that empty el-
ements are excluded from the implementation.
First, we define type changing rules to produce
relative and continuous clauses (shown in Fig. 4).
The rules produce almost the same results as the
theory’s treatment, but without using empty ele-
ments (pro, etc.). We also used lexical rules to
treat pro-drop and scrambling. For the sentence in
Fig. 3, the deletion of the nominal phrase (大使
が), the dative phrase (交渉に), or both results in
valid sentences, and shuffling the two phrases does
so as well. Lexical entries with the scrambled or
dropped arguments are produced by lexical rules
in our implementation.

2.3 Linguistic resources for Japanese parsing
As described in Sec. 1, dependency-based analysis
has been accepted for Japanese syntax. Research
on Japanese parsing also relies on dependency-
based corpora. Among them, we used the follow-
ing resources in this work.

Kyoto corpus A news text corpus annotated
with morphological information, chunk bound-

Kyoto Corpus 

Chunk 

政府 が 
government NOM 

大使 を 
ambassador ACC 

交渉 に 
negotiation DAT 

参加 さ せ た 
participation do cause PAST 

NAIST Corpus 

Dep. 

Causer 
ARG-ga 

ARG-ni 

Figure 5: The Kyoto and NAIST annotations for
“The government had the ambassador participate
in the negotiation.”. Accusatives are labeled as
ARG-ga in causative (see Sec. 3.2).

aries, and dependency relations among chunks
(Fig. 5). The dependencies are classified into four
types: Para (coordination), A (apposition), I (ar-
gument cluster), and Dep (default). Most of the
dependencies are annotated as Dep.

NAIST text corpus A corpus annotated with
anaphora and coreference relations. The same set
as the Kyoto corpus is annotated.1 The corpus
only focuses on three cases: “ga” (subject), “o”
(direct object), and “ni” (indirect object) (Fig. 5).

Japanese particle corpus (JP) (Hanaoka et al.,
2010) A corpus annotated with distinct gram-
matical functions of the Japanese particle (postpo-
sition) “to”. In Japanese, “to” has many functions,
including a complementizer (similar to “that”), a
subordinate conjunction (similar to “then”), a co-
ordination conjunction (similar to “and”), and a
case marker (similar to “with”).

2.4 Related work

Research on Japanese deep parsing is fairly lim-
ited. Formal theories of Japanese syntax were
presented by Gunji (1987) based on Head-driven
Phrase Structure Grammar (HPSG) (Sag et al.,
2003) and by Komagata (1999) based on CCG, al-
though their implementations in real-world pars-
ing have not been very successful. JACY (Siegel

1In fact, the NAIST text corpus includes additional texts,
but in this work we only use the news text section.
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and Bender, 2002) is a large-scale Japanese gram-
mar based on HPSG, but its semantics is tightly
embedded in the grammar and it is not as easy
to systematically switch them as it is in CCG.
Yoshida (2005) proposed methods for extracting
a wide-coverage lexicon based on HPSG from a
phrase structure treebank of Japanese. We largely
extended their work by exploiting the standard
chunk-based Japanese corpora and demonstrated
the first results for Japanese deep parsing with
grammar induced from large corpora.

Corpus-based acquisition of wide-coverage
CCG resources has enjoyed great success for En-
glish (Hockenmaier and Steedman, 2007). In
that method, PTB was converted into CCG-based
derivations from which a wide-coverage CCG lex-
icon was extracted. CCGbank has been used for
the development of wide-coverage CCG parsers
(Clark and Curran, 2007). The same methodology
has been applied to German (Hockenmaier, 2006),
Italian (Bos et al., 2009), and Turkish (Çakıcı,
2005). Their treebanks are annotated with depen-
dencies of words, the conversion of which into
phrase structures is not a big concern. A notable
contribution of the present work is a method for in-
ducing CCG grammars from chunk-based depen-
dency structures, which is not obvious, as we dis-
cuss later in this paper.

CCG parsing provides not only predicate argu-
ment relations but also CCG derivations, which
can be used for various semantic processing tasks
(Bos et al., 2004; Bos, 2007). Our work consti-
tutes a starting point for such deep linguistic pro-
cessing for languages like Japanese.

3 Corpus integration and conversion

For wide-coverage CCG parsing, we need a)
a wide-coverage CCG lexicon, b) combinatory
rules, c) training data for parse disambiguation,
and d) a parser (e.g., a CKY parser). Since d) is
grammar- and language-independent, all we have
to develop for a new language is a)–c).

As we have adopted the method of CCGbank,
which relies on a source treebank to be converted
into CCG derivations, a critical issue to address is
the absence of a Japanese counterpart to PTB. We
only have chunk-based dependency corpora, and
their relationship to CCG analysis is not clear.

Our solution is to first integrate multiple
dependency-based resources and convert them
into a phrase structure treebank that is independent

ProperNoun 
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NP 
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“to Russian president Yeltsin” “(one) was not forgiven” 

Figure 6: Internal structures of a nominal chunk
(left) and a verbal chunk (right).

of CCG analysis (Step 1). Next, we translate the
treebank into CCG derivations (Step 2). The idea
of Step 2 is similar to what has been done with
the English CCGbank, but obviously we have to
address language-specific issues.

3.1 Dependencies to phrase structure trees

We first integrate and convert available Japanese
corpora―namely, the Kyoto corpus, the NAIST
text corpus, and the JP corpus ―into a phrase
structure treebank, which is similar in spirit to
PTB. Our approach is to convert the depen-
dency structures of the Kyoto corpus into phrase
structures and then augment them with syntac-
tic/semantic roles from the other two corpora.

The conversion involves two steps: 1) recogniz-
ing the chunk-internal structures, and (2) convert-
ing inter-chunk dependencies into phrase struc-
tures. For 1), we don’t have any explicit infor-
mation in the Kyoto corpus although, in princi-
ple, each chunk has internal structures (Vadas and
Curran, 2007; Yamada et al., 2010). The lack of
a chunk-internal structure makes the dependency-
to-constituency conversion more complex than a
similar procedure by Bos et al. (2009) that con-
verts an Italian dependency treebank into con-
stituency trees since their dependency trees are an-
notated down to the level of each word. For the
current implementation, we abandon the idea of
identifying exact structures and instead basically
rely on the following generic rules (Fig. 6):

Nominal chunks Compound nouns are first
formed as a right-branching phrase and
post-positions are then attached to it.

Verbal chunks Verbal chunks are analyzed as
left-branching structures.

The rules amount to assume that all but the last
word in a compound noun modify the head noun
(i.e., the last word) and that a verbal chunk is typ-
ically in a form V A1 . . . An, where V is a verb
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Figure 7: From inter-chunk dependencies to a tree.

(or other predicative word) and Ais are auxiliaries
(see Fig. 6). We chose the left-branching structure
as default for verbal chunks because the semantic
scopes of the auxiliaries are generally in that or-
der (i.e., A1 has the narrowest scope). For both
cases, phrase symbols are percolated upward from
the right-most daughters of the branches (except
for a few cases like punctuation) because in almost
all cases the syntactic head of a Japanese phrase is
the right-most element.

In practice, we have found several patterns of
exceptions for the above rules. We implemented
exceptional patterns as a small CFG and deter-
mined the chunk-internal structures by determin-
istic parsing with the generic rules and the CFG.
For example, two of the rules we came up with are

rule A: Number → PrefixOfNumber Number
rule B: ClassifierPhrase → Number Classifier

in the precedence: rule A > B > generic rules.
Using the above, we bracket a compound noun

約 千 人 死亡
approximately thousand people death

PrefixOfNumber Number Classifier CommonNoun
“death of approximately one thousand people”

as in
(((約 千) 人) 死亡)

(((approximately thousand) people) death)

We can improve chunk-internal structures to some
extent by refining the CFG rules. A complete solu-
tion like the manual annotation by Vadas and Cur-
ran (2007) is left for future work.

The conversion of inter-chunk dependencies
into phrase structures may sound trivial, but it is
not necessarily easy when combined with chunk-
internal structures. The problem is to which node
in the internal structure of the head the dependent

dep modifier-type precedence
Para から/PostPcm まで/PostPcm, */(Verb|Aux), ...
Dep */PostPcm */(Verb|Aux), */Noun, ...
Dep */PostPadnom */Noun, */(Verb|Aux), ...

Table 3: Rules to determine adjoin position.

PP 

Noun 

犬 
dog 

PostP 

に 
DAT 

VP 

NP 

Adj 

白い 
white 

NP 

VP 

Noun 

猫 
cat 

Verb 

言っ 
say 

Aux 

た 
PAST 

VP PP 

Verb 

行け 
go! 

PostP 

と 
CMP 

ARG-to 

ARG-ni 

ARG-ga 

ARG-ga 

ARG-ga 

ARG-ga ARG-ni 

ARG-CLS 

NAIST 

JP 

Figure 8: Overlay of pred-arg structure annotation
(“The white cat who said “Go!” to the dog.”).

tree is adjoined (Fig. 7). In the case shown in the
figure, three chunks are in the dependency relation
indicated by arrows on the top. The dotted arrows
show the nodes to which the subtrees are adjoined.

Without any human-created resources, we can-
not always determine the adjoin positions cor-
rectly. Therefore, as a compromise, we wound up
implementing approximate heuristic rules to deter-
mine the adjoin positions. Table 3 shows examples
of such rules. A rule specifies a precedence of the
possible adjoin nodes as an ordered list of patterns
on the lexical head of the subtree under an ad-
join position. The precedence is defined for each
combination of the type of the dependent phrase,
which is determined by its lexical head, and the
dependency type in the Kyoto corpus.

To select the adjoin position for the left-most
subtree in Fig. 7, for instance, we look up the
rule table using the dependency type, “Para”, and
the lexical head of the modifier subtree, “ から
/PostPcm”, as the key, and find the precedence “ま
で/PostPcm, */(Verb|Aux), ...”. We thus select the
PP-node on the middle subtree indicated by the
dotted arrow because its lexical head (the right-
most word), “ まで/PostPcm”, matches the first
pattern in the precedence list. In general, we seek
for an adjoin node for each pattern p in the prece-
dence list, until we find a first match.

The semantic annotation given in the NAIST
corpus and the JP corpus is overlaid on the phrase
structure trees with slight modifications (Fig. 8).
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PP 

Noun 

交渉 
negotiation 

PostPcm 

に 
DAT 

VP 

Noun 

参加 
participation 

Verb 

さ 
do 

VerbSuffix 

せ 
CAUSE 

Aux 

た 
PAST 

VP 

VP 

S 

NPni 

NP 

交渉 
negotiation 

T1 

に 
DAT T4 

T5 

参加 
participation 

S＼S 

さ 
do 

S＼S 

せ 
CAUSE 

S＼S 

た 
PAST 

T3 

T2 

S 
＜ 

＜ 

＜  or   ＜B   

＜  or   ＜B   

＜  or   ＜B   

NPni 

NPnc 

交渉 
negotiation 

NPni＼NPnc 

に 
DAT 

Svo_s＼NPni 

Svo_s＼NPni 

参加 
participation 

Svo_s＼Svo_s 

さ 
do 

Scont＼Svo_s 

せ 
CAUSE 

Sbase＼Scont 

た 
PAST 

Scont＼NPni 

Sbase＼NPni 

Sbase 

Step 2-1 

Step 2-2, 2-3 

Figure 9: A phrase structure into a CCG deriva-
tion.

In the figure, the annotation given in the two cor-
pora is shown inside the dotted box at the bottom.
We converted the predicate-argument annotations
given as labeled word-to-word dependencies into
the relations between the predicate words and their
argument phrases. The results are thus similar to
the annotation style of PropBank (Palmer et al.,
2005). In the NAIST corpus, each pred-arg re-
lation is labeled with the argument-type (ga/o/ni)
and a flag indicating that the relation is medi-
ated by either a syntactic dependency or a zero
anaphora. For a relation of a predicate wp and its
argument wa in the NAIST corpus, the boundary
of the argument phrase is determined as follows:

1. If wa precedes wp and the relation is medi-
ated by a syntactic dep., select the maximum
PP that is formed by attaching one or more
postpositions to the NP headed by wa.

2. If wp precedes wa or the relation is mediated
by a zero anaphora, select the maximum NP
headed by wa that does not include wp.

In the figure, “犬/dogに/DAT” is marked as the ni-
argument of the predicate “言っ/say” (Case 1), and
“白い/white 猫/cat” is marked as its ga-argument
(Case 2). Case 1 is for the most basic construction,
where an argument PP precedes its predicate. Case

VP 

友達    に 
friend-DAT 

PP VP 

会う 
meet-BASE 

NPni ＜ 

VP 

10時    に 
10 o’clock-TIME 

PP VP 

会う 
meet-BASE 

T/T ＞ 

X 

S 

友達    に 
friend-DAT 

NPni S＼NPni 

会う 
meet-BASE 

S 

10時    に 
10 o’clock-TIME 

S＼S S 

会う 
meet-BASE 

“(to) meet at ten” 

“(to) meet a friend” 

Figure 10: An argument post particle phrase (PP)
(upper) and an adjunct PP (lower).

2 covers the relative clause construction, where a
relative clause precedes the head NP, the modifi-
cation of a noun by an adjective, and the relations
mediated by zero anaphora.

The JP corpus provides only the function label
to each particle “to” in the text. We determined
the argument phrases marked by the “to” particles
labeled as (nominal or clausal) argument-markers
in a similar way to Case 1 above and identified the
predicate words as the lexical heads of the phrases
to which the PPto phrases attach.

3.2 Phrase structures to CCG derivations

This step consists of three procedures (Fig. 9):

1. Add constraints on categories and features
to tree nodes as far as possible and assign a
combinatory rule to each branching.

2. Apply combinatory rules to all branching and
obtain CCG derivations.

3. Add feature constraints to terminal nodes.

3.2.1 Local constraint on derivations
According to the phrase structures, the first proce-
dure in Step 2 imposes restrictions on the resulting
CCG derivations. To describe the restrictions, we
focus on some of the notable constructions and il-
lustrate the restrictions for each of them.

Phrases headed by case marker particles A
phrase of this type must be either an argument
(Fig. 10, upper) or a modifier (Fig. 10, lower) of a
predicative. Distinction between the two is made
based on the pred-arg annotation of the predica-
tive. If a phrase is found to be an argument, 1) cat-
egory NP is assigned to the corresponding node,
2) the case feature of the category is given accord-
ing to the particle (in the case of Fig. 10 (upper),
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VP 

Verb 

話さ 
Speak-NEG 

Aux 

なかっ 
not-CONT 

Aux 

た 
PAST-BASE 

VP 

Scont＼S 

Sbase＼S 

“did not speak” 

＜ or ＜B 

＜ or ＜B Scont＼NPga 

Sneg＼NPga 

話さ 
Speak-NEG 

Scont＼Sneg 

なかっ 
not-CONT 

Sbase＼Scont 

た 
PAST-BASE 

Sbase＼NPga 

Figure 11: An auxiliary verb and its conversion.

VP 

Verb 

調べ 
inquire-NEG 

VerbSuffix 

させる 
cause-BASE 

彼女    に 
her-DAT 

PP 

VP 

ARG-ga 

“(to) have her inquire” 

＜ 

S＼NPni[1] 

S＼S 

させる 
cause-BASE 

彼女    に 
her-DAT 

NPni[1] 

S 

S＼NPni[1] 

調べ 
inquire-NEG 

ga         [1] 

NPni[1] 

ga: [1] 

Figure 12: A causative construction.

ni for dative), and 3) the combinatory rule that
combines the particle phrase and the predicative
phrase is assigned backward function application
rule (<). Otherwise, a category T/T is assigned to
the corresponding modifier node and the rule will
be forward function application (>).

Auxiliary verbs As described in Sec. 2.2, an
auxiliary verb is always given the category S\S
and is combined with a verbal phrase via < or <B
(Fig. 11). Furthermore, we assign the form feature
value of the returning category S according to the
inflection form of the auxiliary. In the case shown
in the figure, Sbase\S is assigned for “た/PAST-
BASE” and Scont\S for “なかっ/not-CONT”. As
a result of this restriction, we can obtain condi-
tions for every auxiliary agglutination because the
two form values in S\S are both restricted after
applying combinatory rules (Sec. 3.2.2).

Case alternations In addition to the argu-
ment/adjunct distinction illustrated above, a pro-
cess is needed for argument phrases of predicates
involving case alternation. Such predicates are
either causative (see Fig. 12) or passive verbs
and can be detected by voice annotation from the
NAIST corpus. For an argument of that type of
verb, its deep case (ga for Fig. 12) must be used
to construct the semantic representation, namely
the PAS. As well as assigning the shallow case
value (ni in Fig. 12) to the argument’s category
NP, as usual, we assign a restriction to the PAS

S＼NPo[1] 

S＼NPo 

買っ 
buy-CONT 

S＼S 

た 
PAST-ATTR 

NP 

本 
book 

NP 

NP[1]／NP[1] 

VP 

Verb 

買っ 
buy-CONT 

Aux 

た 
PAST-ATTR 

Noun 

本 
book 

NP 

S＼NP[1] 

NP[1]／NP[1] 

Noun 

店 
store 

NP 

本   を 
book-ACC 

PP VP 

Verb 

買っ 
buy-CONT 

Aux 

た 
PAST-ATTR 

VP 
X 

S 

NP／NP 

NP 

店 
store 

NP 

NP／NP 

本    を 
book-ACC 

NPo 

S 

S＼NPo 

S＼NPo 

買っ 
buy-CONT 

S＼S 

た 
PAST-ATTR 

“a store where (I) bought the book” 

“a book which (I) bought” 

Figure 13: A relative clause with/without argu-
ment extraction (upper/lower, respectively).

of the verb so that the semantic argument corre-
sponding to the deep case is co-indexed with the
argument NP. These restrictions are then utilized
for PAS construction in Sec. 3.2.3.

Relative clauses A relative clause can be de-
tected as a subtree that has a VP as its left child
and an NP as its right child, as shown in Fig. 13.
The conversion of the subtree consists of 1) in-
serting a node on the top of the left VP (see the
right-hand side of Fig. 13), and 2) assigning the
appropriate unary rule to make the new node. The
difference between candidate rules RelExt and Re-
lIn (see Fig. 4) is whether the right-hand NP is
an obligatory argument of the VP or not, which
can be determined by the pred-arg annotation on
the predicate in the VP. In the upper example in
Fig. 13, RelIn is assigned because the right NP
“book” is annotated as an accusative argument of
the predicate “buy”. In contrast, RelExt is as-
signed in the lower side in the figure because the
right NP “store” is not annotated as an argument.

Continuous clauses A continuous clause can be
detected as a subtree with a VP of continuous form
as its left child and a VP as its right child. Its
conversion is similar to that of a relative clause,
and only differs in that the candidate rules are Con
and ConCoord. ConCoord generates a continu-
ous clause that shares arguments with the main
clause while Con produces one without shared ar-
guments. Rule assignment is done by comparing
the pred-arg annotations of the two phrases.
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Training Develop. Test
#Sentences 24,283 4,833 9,284
#Chunks 234,685 47,571 89,874
#Words 664,898 136,585 255,624

Table 4: Statistics of input linguistic resources.

3.2.2 Inverse application of rules
The second procedure in Step 2 begins with as-
signing a category S to the root node. A combi-
natory rule assigned to each branching is then “in-
versely” applied so that the constraint assigned to
the parent transfers to the children.

3.2.3 Constraints on terminal nodes
The final process consists of a) imposing restric-
tions on the terminal category in order to instan-
tiate all the feature values, and b) constructing a
PAS for each verbal terminal. An example of pro-
cess a) includes setting the form features in the
verb category, such as S\NPni, according to the
inflection form of the verb. As for b), arguments
in a PAS are given according to the category and
the partial restriction. For instance, if a category
S\NPni is obtained for “調べ/inquire” (Fig. 12),
the PAS for “inquire” is unary because the cate-
gory has one argument category (NPni), and the
category is co-indexed with the semantic argument
ga in the PAS due to the partial restriction depicted
in Sec. 3.2.1. As a result, a lexical entry is ob-
tained as調べ ` S\NPni[1]: inquire([1]).

3.3 Lexical entries

Finally, lexical rules are applied to each of the ob-
tained lexical entries in order to reduce them to
the canonical form. Since words in the corpus (es-
pecially verbs) often involve pro-drop and scram-
bling, there are a lot of obtained entries that have
slightly varied categories yet share a PAS. We as-
sume that an obtained entry is a variation of the
canonical one and register the canonical entries in
the lexicon. We treat only subject deletion for pro-
drop because there is not sufficient information to
judge the deletion of other arguments. Scrambling
is simply treated as permutation of arguments.

4 Evaluation

We used the following for the implementation of
our resources: Kyoto corpus ver. 4.02, NAIST text

2
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?

Kyoto\%20University\%20Text\%20Corpus

Training Develop. Test
St.1 St.2 St.1 St.2 St.1 St.2

Sent. 24,283 24,116 4,833 4,803 9,284 9,245
Converted 24,116 22,820 4,803 4,559 9,245 8,769
Con. rate 99.3 94.6 99.4 94.9 99.6 94.9

Table 5: Statistics of corpus conversion.

Sentential Coverage
Covered Uncovered Cov. (%)

Devel. 3,920 639 85.99
Test 7,610 1,159 86.78
Lexical Coverage

Word Known Unknown
combi. cat. word

Devel. 127,144 126,383 682 79 0
Test 238,083 236,651 1,242 145 0

Table 6: Sentential and lexical coverage.

corpus ver. 1.53, and JP corpus ver. 1.04. The
integrated corpus is divided into training, devel-
opment, and final test sets following the standard
data split in previous works on Japanese depen-
dency parsing (Kudo and Matsumoto, 2002). The
details of these resources are shown in Table 4.

4.1 Corpus conversion and lexicon extraction

Table 5 shows the number of successful conver-
sions performed by our method. In total, we ob-
tained 22,820 CCG derivations from 24,283 sen-
tences (in the training set), resulting in the to-
tal conversion rate of 93.98%. The table shows
we lost more sentences in Step 2 than in Step 1.
This is natural because Step 2 imposed more re-
strictions on resulting structures and therefore de-
tected more discrepancies including compounding
errors. Our conversion rate is about 5.5 points
lower than the English counterpart (Hockenmaier
and Steedman, 2007). Manual investigation of the
sampled derivations would be beneficial for the
conversion improvement.

For the lexicon extraction from the CCGbank,
we obtained 699 types of lexical categories from
616,305 word tokens. After lexical reduction, the
number of categories decreased to 454, which in
turn may produce 5,342 categories by lexical ex-
pansion. The average number of categories for a
word type was 11.68 as a result.

4.2 Evaluation of coverage

Following the evaluation criteria in (Hockenmaier
and Steedman, 2007), we measured the coverage

3
http://cl.naist.jp/nldata/corpus/

4
https://alaginrc.nict.go.jp/resources/tocorpus/

tocorpusabstract.html
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of the grammar on unseen texts. First, we obtained
CCG derivations for evaluation sets by applying
our conversion method and then used these deriva-
tions as gold standard. Lexical coverage indicates
the number of words to which the grammar assigns
a gold standard category. Sentential coverage indi-
cates the number of sentences in which all words
are assigned gold standard categories 5.

Table 6 shows the evaluation results. Lexical
coverage was 99.40% with rare word treatment,
which is in the same level as the case of the En-
glish CCG parser C&C (Clark and Curran, 2007).
We also measured coverage in a “weak” sense,
which means the number of sentences that are
given at least one analysis (not necessarily cor-
rect) by the obtained grammar. This number was
99.12 % and 99.06 % for the development and the
test set, respectively, which is sufficiently high for
wide-coverage parsing of real-world texts.

4.3 Evaluation of parsing accuracy

Finally, we evaluated the parsing accuracy. We
employed the parser and the supertagger of
(Miyao and Tsujii, 2008), specifically, its gen-
eralized modules for lexicalized grammars. We
trained log-linear models in the same way as
(Clark and Curran, 2007) using the training set as
training data. Feature sets were simply borrowed
from an English parser; no tuning was performed.
Following conventions in research on Japanese de-
pendency parsing, gold morphological analysis re-
sults were input to a parser. Following C&C, the
evaluation measure was precision and recall over
dependencies, where a dependency is defined as a
4-tuple: a head of a functor, a functor category, an
argument slot, and a head of an argument.

Table 7 shows the parsing accuracy on the de-
velopment and the test sets. The supertagging ac-
curacy is presented in the upper table. While our
coverage was almost the same as C&C, the perfor-
mance of our supertagger and parser was lower.
To improve the performance, tuning disambigua-
tion models for Japanese is a possible approach.
Comparing the parser’s performance with previ-
ous works on Japanese dependency parsing is dif-
ficult as our figures are not directly comparable
to theirs. Sassano and Kurohashi (2009) reported
the accuracy of their parser as 88.48 and 95.09

5Since a gold derivation can logically be obtained if gold
categories are assigned to all words in a sentence, sentential
coverage means that the obtained lexicon has the ability to
produce exactly correct derivations for those sentences.

Supertagging accuracy
Lex. Cov. Cat. Acc.

Devel. 99.40 90.86
Test 99.40 90.69
C&C 99.63 94.32
Overall performance

LP LR LF UP UR UF
Devel. 82.55 82.73 82.64 90.02 90.22 90.12
Test 82.40 82.59 82.50 89.95 90.15 90.05
C&C 88.34 86.96 87.64 93.74 92.28 93.00

Table 7: Parsing accuracy. LP, LR and LF refer to
labeled precision, recall, and F-score respectively.
UP, UR, and UF are for unlabeled.

in unlabeled chunk-based and word-based F1 re-
spectively. While our score of 90.05 in unlabeled
category dependency seems to be lower than their
word-based score, this is reasonable because our
category dependency includes more difficult prob-
lems, such as whether a subject PP is shared by
coordinated verbs. Thus, our parser is expected to
be capable of real-world Japanese text analysis as
well as dependency parsers.

5 Conclusion

In this paper, we proposed a method to induce
wide-coverage Japanese resources based on CCG
that will lead to deeper syntactic analysis for
Japanese and presented empirical evaluation in
terms of the quality of the obtained lexicon and
the parsing accuracy. Although our work is basi-
cally in line with CCGbank, the application of the
method to Japanese is not trivial due to the fact that
the relationship between chunk-based dependency
structures and CCG derivations is not obvious.

Our method integrates multiple dependency-
based resources to convert them into an integrated
phrase structure treebank. The obtained treebank
is then transformed into CCG derivations. The
empirical evaluation in Sec. 4 shows that our cor-
pus conversion successfully converts 94 % of the
corpus sentences and the coverage of the lexicon
is 99.4 %, which is sufficiently high for analyz-
ing real-world texts. A comparison of the parsing
accuracy with previous works on Japanese depen-
dency parsing and English CCG parsing indicates
that our parser can analyze real-world Japanese
texts fairly well and that there is room for improve-
ment in disambiguation models.
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Abstract

We present a novel approach, called selec-
tional branching, which uses confidence es-
timates to decide when to employ a beam,
providing the accuracy of beam search at
speeds close to a greedy transition-based
dependency parsing approach. Selectional
branching is guaranteed to perform a fewer
number of transitions than beam search yet
performs as accurately. We also present a
new transition-based dependency parsing
algorithm that gives a complexity of O(n)
for projective parsing and an expected lin-
ear time speed for non-projective parsing.
With the standard setup, our parser shows
an unlabeled attachment score of 92.96%
and a parsing speed of 9 milliseconds per
sentence, which is faster and more accurate
than the current state-of-the-art transition-
based parser that uses beam search.

1 Introduction

Transition-based dependency parsing has gained
considerable interest because it runs fast and per-
forms accurately. Transition-based parsing gives
complexities as low as O(n) and O(n2) for projec-
tive and non-projective parsing, respectively (Nivre,
2008).1 The complexity is lower for projective pars-
ing because a parser can deterministically skip to-
kens violating projectivity, while this property is
not assumed for non-projective parsing. Nonethe-
less, it is possible to perform non-projective parsing
in expected linear time because the amount of non-
projective dependencies is notably smaller (Nivre
and Nilsson, 2005) so a parser can assume projec-
tivity for most cases while recognizing ones for
which projectivity should not be assumed (Nivre,
2009; Choi and Palmer, 2011).

1We refer parsing approaches that produce only projective
dependency trees as projective parsing and both projective and
non-projective dependency trees as non-projective parsing.

Greedy transition-based dependency parsing has
been widely deployed because of its speed (Cer et
al., 2010); however, state-of-the-art accuracies have
been achieved by globally optimized parsers using
beam search (Zhang and Clark, 2008; Huang and
Sagae, 2010; Zhang and Nivre, 2011; Bohnet and
Nivre, 2012). These approaches generate multiple
transition sequences given a sentence, and pick one
with the highest confidence. Coupled with dynamic
programming, transition-based dependency parsing
with beam search can be done very efficiently and
gives significant improvement to parsing accuracy.

One downside of beam search is that it always
uses a fixed size of beam even when a smaller size
of beam is sufficient for good results. In our exper-
iments, a greedy parser performs as accurately as a
parser that uses beam search for about 64% of time.
Thus, it is preferred if the beam size is not fixed but
proportional to the number of low confidence pre-
dictions that a greedy parser makes, in which case,
fewer transition sequences need to be explored to
produce the same or similar parse output.

We first present a new transition-based parsing
algorithm that gives a complexity of O(n) for pro-
jective parsing and an expected linear time speed
for non-projective parsing. We then introduce se-
lectional branching that uses confidence estimates
to decide when to employ a beam. With our new ap-
proach, we achieve a higher parsing accuracy than
the current state-of-the-art transition-based parser
that uses beam search and a much faster speed.

2 Transition-based dependency parsing

We introduce a transition-based dependency pars-
ing algorithm that is a hybrid between Nivre’s arc-
eager and list-based algorithms (Nivre, 2003; Nivre,
2008). Nivre’s arc-eager is a projective parsing al-
gorithm showing a complexity of O(n). Nivre’s
list-based algorithm is a non-projective parsing al-
gorithm showing a complexity of O(n2). Table 1
shows transitions in our algorithm. The top 4 and
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Transition Current state ⇒ Resulting state

LEFTl-REDUCE ( [σ|i], δ, [j|β], A ) ⇒ ( σ, δ, [j|β], A ∪ {i l← j} )
RIGHTl-SHIFT ( [σ|i], δ, [j|β], A ) ⇒ ( [σ|i|δ|j], [ ], β, A ∪ {i l→ j} )

NO-SHIFT ( [σ|i], δ, [j|β], A ) ⇒ ( [σ|i|δ|j], [ ], β, A )

NO-REDUCE ( [σ|i], δ, [j|β], A ) ⇒ ( σ, δ, [j|β], A )

LEFTl-PASS ( [σ|i], δ, [j|β], A ) ⇒ ( σ, [i|δ], [j|β], A ∪ {i l← j} )
RIGHTl-PASS ( [σ|i], δ, [j|β], A ) ⇒ ( σ, [i|δ], [j|β], A ∪ {i l→ j} )

NO-PASS ( [σ|i], δ, [j|β], A ) ⇒ ( σ, [i|δ], [j|β], A )

Table 1: Transitions in our dependency parsing algorithm.

Transition Preconditions
LEFTl-∗ [i 6= 0] ∧ ¬[∃k. (i← k) ∈ A] ∧ ¬[(i→∗ j) ∈ A]
RIGHTl-∗ ¬[∃k. (k → j) ∈ A] ∧ ¬[(i ←∗ j) ∈ A]
∗-SHIFT ¬[∃k ∈ σ. (k 6= i) ∧ ((k ← j) ∨ (k → j))]
∗-REDUCE [∃h. (h→ i) ∈ A] ∧ ¬[∃k ∈ β. (i→ k)]

Table 2: Preconditions of the transitions in Table 1 (∗ is a wildcard representing any transition).

the bottom 3 transitions are inherited from Nivre’s
arc-eager and list-based algorithms, respectively.2

Each parsing state is represented as a tuple (σ,
δ, β, A), where σ is a stack containing processed
tokens, δ is a deque containing tokens popped out
of σ but will be pushed back into σ in later parsing
states to handle non-projectivity, and β is a buffer
containing unprocessed tokens. A is a set of labeled
arcs. (i, j) represent indices of their corresponding
tokens (wi, wj), l is a dependency label, and the 0
identifier corresponds to w0, introduced as the root
of a tree. The initial state is ([0], [ ], [1, . . . , n], ∅),
and the final state is (σ, δ, [ ], A). At any parsing
state, a decision is made by comparing the top of
σ, wi, and the first element of β, wj . This decision
is consulted by gold-standard trees during training
and a classifier during decoding.

LEFTl-∗ and RIGHTl-∗ are performed when wj
is the head ofwi with a dependency label l, and vice
versa. After LEFTl-∗ or RIGHTl-∗, an arc is added
to A. NO-∗ is performed when no dependency is
found for wi and wj . ∗-SHIFT is performed when
no dependency is found for wj and any token in
σ other than wi. After ∗-SHIFT, all tokens in δ
as well as wj are pushed into σ. ∗-REDUCE is
performed when wi already has the head, and wi is
not the head of any token in β. After ∗-REDUCE,
wi is popped out of σ. ∗-PASS is performed when
neither ∗-SHIFT nor ∗-REDUCE can be performed.
After ∗-PASS, wi is moved to the front of δ so it

2The parsing complexity of a transition-based dependency
parsing algorithm is determined by the number of transitions
performed with respect to the number of tokens in a sentence,
say n (Kübler et al., 2009).

can be compared to other tokens in β later. Each
transition needs to satisfy certain preconditions to
ensure the properties of a well-formed dependency
graph (Nivre, 2008); they are described in Table 2.
(i← j) and (i ←∗ j) indicate that wj is the head
and an ancestor of wi with any label, respectively.

When a parser is trained on only projective trees,
our algorithm learns only the top 4 transitions and
produces only projective trees during decoding. In
this case, it performs at most 2n − 1 transitions
per sentence so the complexity is O(n). When a
parser is trained on a mixture of projective and non-
projective trees, our algorithm learns all transitions
and produces both kinds of trees during decoding.
In this case, it performs at most n(n+1)

2 transitions
so the complexity is O(n2). However, because of
the presence of ∗-SHIFT and ∗-REDUCE, our al-
gorithm is capable of skipping or removing tokens
during non-projective parsing, which allows it to
show a linear time parsing speed in practice.
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Figure 1: The # of transitions performed during
training with respect to sentence lengths for Dutch.
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Transition σ δ β A
0 Initialization [0] [ ] [1|β] ∅
1 NO-SHIFT [σ|1] [ ] [2|β]
2 NO-SHIFT [σ|2] [ ] [3|β]
3 NO-SHIFT [σ|3] [ ] [4|β]
4 LEFT-REDUCE [σ|2] [ ] [4|β] A ∪ {3←NSUBJ− 4}
5 NO-PASS [σ|1] [2] [4|β]
6 RIGHT-SHIFT [σ|4] [ ] [5|β] A ∪ {1 −RCMOD→ 4}
7 NO-SHIFT [σ|5] [ ] [6|β]
8 LEFT-REDUCE [σ|4] [ ] [6|β] A ∪ {5←AUX− 6}
9 RIGHT-PASS [σ|2] [4] [6|β] A ∪ {4 −XCOMP→ 6}

10 LEFT-REDUCE [σ|1] [4] [6|β] A ∪ {2←DOBJ− 6}
11 NO-SHIFT [σ|6] [ ] [7|β]
12 NO-REDUCE [σ|4] [ ] [7|β]
13 NO-REDUCE [σ|1] [ ] [7|β]
14 LEFT-REDUCE [0] [ ] [7|β] A ∪ {1←NSUBJ− 7}
15 RIGHT-SHIFT [σ|7] [ ] [8] A ∪ {0 −ROOT→ 7}
16 RIGHT-SHIFT [σ|8] [ ] [ ] A ∪ {7 −ADV→ 8}

Table 3: A transition sequence generated by our parsing algorithm using gold-standard decisions.

Figure 1 shows the total number of transitions per-
formed during training with respect to sentence
lengths for Dutch. Among all languages distributed
by the CoNLL-X shared task (Buchholz and Marsi,
2006), Dutch consists of the highest number of
non-projective dependencies (5.4% in arcs, 36.4%
in trees). Even with such a high number of non-
projective dependencies, our parsing algorithm still
shows a linear growth in transitions.

Table 3 shows a transition sequence generated
by our parsing algorithm using gold-standard deci-
sions. Afterw3 andw4 are compared, w3 is popped
out of σ (state 4) so it is not compared to any other
token in β (states 9 and 13). After w2 and w4 are
compared, w2 is moved to δ (state 5) so it can be
compared to other tokens in β (state 10). After w4

and w6 are compared, RIGHT-PASS is performed
(state 9) because there is a dependency between
w6 and w2 in σ (state 10). After w6 and w7 are
compared, w6 is popped out of σ (state 12) because
it is not needed for later parsing states.

3 Selectional branching

3.1 Motivation
For transition-based parsing, state-of-the-art accu-
racies have been achieved by parsers optimized on
multiple transition sequences using beam search,

which can be done very efficiently when it is cou-
pled with dynamic programming (Zhang and Clark,
2008; Huang and Sagae, 2010; Zhang and Nivre,
2011; Huang et al., 2012; Bohnet and Nivre, 2012).
Despite all the benefits, there is one downside of
this approach; it generates a fixed number of tran-
sition sequences no matter how confident the one-
best sequence is.3 If every prediction leading to
the one-best sequence is confident, it may not be
necessary to explore more sequences to get the best
output. Thus, it is preferred if the beam size is not
fixed but proportional to the number of low confi-
dence predictions made for the one-best sequence.

The selectional branching method presented here
performs at most d · t− e transitions, where t is the
maximum number of transitions performed to gen-
erate a transition sequence, d = min(b, |λ|+1), b is
the beam size, |λ| is the number of low confidence
predictions made for the one-best sequence, and
e = d(d−1)

2 . Compared to beam search that always
performs b · t transitions, selectional branching is
guaranteed to perform fewer transitions given the
same beam size because d ≤ b and e > 0 except for
d = 1, in which case, no branching happens. With
selectional branching, our parser shows slightly

3The ‘one-best sequence’ is a transition sequence gener-
ated by taking only the best prediction at each parsing state.
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higher parsing accuracy than the current state-of-
the-art transition-based parser using beam search,
and performs about 3 times faster.

3.2 Branching strategy

Figure 2 shows an overview of our branching strat-
egy. sij represents a parsing state, where i is the
index of the current transition sequence and j is
the index of the current parsing state (e.g., s12 rep-
resents the 2nd parsing state in the 1st transition
sequence). pkj represents the k’th best prediction
(in our case, it is a predicted transition) given s1j
(e.g., p21 is the 2nd-best prediction given s11).

s11 s12
p11

s22

… … s1t
p12

… … s2t

p21

s33

p22

… s3t

sdt…
… …

p2j

T1 =

T2 =

T3 =

Td =

p1j

Figure 2: An overview of our branching strategy.
Each sequence Ti>1 branches from T1.

Initially, the one-best sequence T1 = [s11, ... , s1t]
is generated by a greedy parser. While generating
T1, the parser adds tuples (s1j , p2j), ... , (s1j , pkj)
to a list λ for each low confidence prediction p1j
given s1j .4 Then, new transition sequences are gen-
erated by using the b highest scoring predictions in
λ, where b is the beam size. If |λ| < b, all predic-
tions in λ are used. The same greedy parser is used
to generate these new sequences although it now
starts with s1j instead of an initial parsing state,
applies pkj to s1j , and performs further transitions.
Once all transition sequences are generated, a parse
tree is built from a sequence with the highest score.

For our experiments, we set k = 2, which gave
noticeably more accurate results than k = 1. We
also experimented with k > 2, which did not show
significant improvement over k = 2. Note that as-
signing a greater k may increase |λ| but not the total
number of transition sequences generated, which
is restricted by the beam size, b. Since each se-
quence Ti>1 branches from T1, selectional branch-
ing performs fewer transitions than beam search:
at least d(d−1)

2 transitions are inherited from T1,

4λ is initially empty, which is hidden in Figure 2.

where d = min(b, |λ| + 1); thus, it performs that
many transitions less than beam search (see the
left lower triangle in Figure 2). Furthermore, se-
lectional branching generates a d number of se-
quences, where d is proportional to the number of
low confidence predictions made by T1. To sum up,
selectional branching generates the same or fewer
transition sequences than beam search and each
sequence Ti>1 performs fewer transitions than T1;
thus, it performs faster than beam search in general
given the same beam size.

3.3 Finding low confidence predictions

For each parsing state sij , a prediction is made by
generating a feature vector xij ∈ X , feeding it into
a classifier C1 that uses a feature map Φ(x, y) and
a weight vector w to measure a score for each label
y ∈ Y , and choosing a label with the highest score.
When there is a tie between labels with the highest
score, the first one is chosen. This can be expressed
as a logistic regression:

C1(x) = arg max
y∈Y
{f(x, y)}

f(x, y) =
exp(w · Φ(x, y))∑

y′∈Y exp(w · Φ(x, y′))

To find low confidence predictions, we use the mar-
gins (score differences) between the best prediction
and the other predictions. If all margins are greater
than a threshold, the best prediction is considered
highly confident; otherwise, it is not. Given this
analogy, the k-best predictions can be found as
follows (m ≥ 0 is a margin threshold):

Ck(x,m) = K arg max
y∈Y
{f(x, y)}

s.t. f(x,C1(x))− f(x, y) ≤ m

‘K arg max’ returns a set of k′ labels whose mar-
gins to C1(x) are smaller than any other label’s
margin to C1(x) and also ≤ m, where k′ ≤ k.
When m = 0, it returns a set of the highest scoring
labels only, including C1(x). When m = 1, it re-
turns a set of all labels. Given this, a prediction is
considered not confident if |Ck(x,m)| > 1.

3.4 Finding the best transition sequence

Let Pi be a list of all predictions that lead to gen-
erate a transition sequence Ti. The predictions in
Pi are either inherited from T1 or made specifi-
cally for Ti. In Figure 2, P3 consists of p11 as its
first prediction, p22 as its second prediction, and

1055



further predictions made specifically for T3. The
score of each prediction is measured by f(x, y) in
Section 3.3. Then, the score of Ti is measured by
averaging scores of all predictions in Pi.

score(Ti) =

∑
p∈Pi score(p)

|Pi|
Unlike Zhang and Clark (2008), we take the av-
erage instead of the sum of all prediction scores.
This is because our algorithm does not guarantee
the same number of transitions for every sequence,
so the sum of all scores would weigh more on se-
quences with more transitions. We experimented
with both the sum and the average, and taking the
average led to slightly higher parsing accuracy.

3.5 Bootstrapping transition sequences
During training, a training instance is generated
for each parsing state sij by taking a feature vec-
tor xij and its true label yij . To generate multiple
transition sequences during training, the bootstrap-
ping technique of Choi and Palmer (2011) is used,
which is described in Algorithm 1.5

Algorithm 1 Bootstrapping

Input: Dt: training set, Dd: development set.
Output: A model M .

1: r ← 0
2: I ← getTrainingInstances(Dt)
3: M0 ← buildModel(I)
4: S0 ← getScore(Dd,M0)
5: while (r = 0) or (Sr−1 < Sr) do
6: r ← r + 1
7: I ← getTrainingInstances(Dt,Mr−1)
8: Mr ← buildModel(I)
9: Sr ← getScore(Dd,Mr)

10: return Mr−1

First, an initial model M0 is trained on all data by
taking the one-best sequences, and its score is mea-
sured by testing on a development set (lines 2-4).
Then, the next model Mr is trained on all data but
this time, Mr−1 is used to generate multiple tran-
sition sequences (line 7-8). Among all transition
sequences generated by Mr−1, training instances
from only T1 and Tg are used to trainMr, where T1
is the one-best sequence and Tg is a sequence giv-
ing the most accurate parse output compared to the
gold-standard tree. The score of Mr is measured
(line 9), and repeat the procedure if Sr−1 < Sr;
otherwise, return the previous model Mr−1.

5Alternatively, the dynamic oracle approach of Goldberg
and Nivre (2012) can be used to generate multiple transition
sequences, which is expected to show similar results.

3.6 Adaptive subgradient algorithm

To build each model during bootstrapping, we use
a stochastic adaptive subgradient algorithm called
ADAGRAD that uses per-coordinate learning rates
to exploit rarely seen features while remaining scal-
able (Duchi et al., 2011).This is suitable for NLP

tasks where rarely seen features often play an im-
portant role and training data consists of a large
number of instances with high dimensional features.
Algorithm 2 shows our adaptation of ADAGRAD

with logistic regression for multi-class classifica-
tion. Note that when used with logistic regression,
ADAGRAD takes a regular gradient instead of a sub-
gradient method for updating weights. For our ex-
periments, ADAGRAD slightly outperformed learn-
ing algorithms such as average perceptron (Collins,
2002) or Liblinear SVM (Hsieh et al., 2008).

Algorithm 2 ADAGRAD + logistic regression

Input: D = {(xi, yi)}ni=1 s.t. xi ∈ X , yi ∈ Y
Φ(x, y) ∈ Rd s.t. d = dimension(X )× |Y|
T : iterations, α: learning rate, ρ: ridge

Output: A weight vector w ∈ Rd.

1: w← 0, where w ∈ Rd
2: G← 0, where G ∈ Rd
3: for t← 1 . . . T do
4: for i← 1 . . . n do
5: Q∀y∈Y ← I(yi, y)− f(xi, y), s.t. Q ∈ R|Y|

6: ∂ ←∑
y∈Y(Φ(xi, y) ·Qy)

7: G← G + ∂ ◦ ∂
8: for j ← 1 . . . d do
9: wj ← wj + α · 1

ρ+
√

Gj
· ∂j

I(y, y′) =

{
1 y = y′

0 otherwise

The algorithm takes three hyper-parameters; T is
the number of iterations, α is the learning rate, and
ρ is the ridge (T > 0, α > 0, ρ ≥ 0). G is our run-
ning estimate of a diagonal covariance matrix for
the gradients (per-coordinate learning rates). For
each instance, scores for all labels are measured
by the logistic regression function f(x, y) in Sec-
tion 3.3. These scores are subtracted from an output
of the indicator function I(y, y′), which forces our
model to keep learning this instance until the pre-
diction is 100% confident (in other words, until
the score of yi becomes 1). Then, a subgradient
is measured by taking all feature vectors together
weighted by Q (line 6). This subgradient is used to
update G and w, where ◦ is the Hadamard product
(lines 7-9). ρ is a ridge term to keep the inverse
covariance well-conditioned.
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4 Experiments

4.1 Corpora

For projective parsing experiments, the Penn En-
glish Treebank (Marcus et al., 1993) is used with
the standard split: sections 2-21 for training, 22 for
development, and 23 for evaluation. All constituent
trees are converted with the head-finding rules of
Yamada and Matsumoto (2003) and the labeling
rules of Nivre (2006). For non-projective pars-
ing experiments, four languages from the CoNLL-
X shared task are used: Danish, Dutch, Slovene,
and Swedish (Buchholz and Marsi, 2006). These
languages are selected because they contain non-
projective trees and are publicly available from the
CoNLL-X webpage.6 Since the CoNLL-X data we
have does not come with development sets, the last
10% of each training set is used for development.

4.2 Feature engineering

For English, we mostly adapt features from Zhang
and Nivre (2011) who have shown state-of-the-art
parsing accuracy for transition-based dependency
parsing. Their distance features are not included
in our approach because they do not seem to show
meaningful improvement. Feature selection is done
on the English development set.

For the other languages, the same features are
used with the addition of morphological features
provided by CoNLL-X; specifically, morphological
features from the top of σ and the front of β are
added as unigram features. Moreover, all POS tag
features from English are duplicated with coarse-
grained POS tags provided by CoNLL-X. No more
feature engineering is done for these languages; it
is possible to achieve higher performance by using
different features, especially when these languages
contain non-projective dependencies whereas En-
glish does not, which we will explore in the future.

4.3 Development

Several parameters need to be optimized during de-
velopment. For ADAGRAD, T , α, and ρ need to be
tuned (Section 3.6). For bootstrapping, the number
of iterations, say r, needs to be tuned (Section 3.5).
For selectional branching, the margin threshold m
and the beam size b need to be tuned (Section 3.3).
First, all parameters are tuned on the English devel-
opment set by using grid search on T = [1, . . . , 10],
α = [0, 01, 0, 02], ρ = [0.1, 0.2], r = [1, 2, 3],

6http://ilk.uvt.nl/conll/

m = [0.83, . . . , 0.92], and b = [16, 32, 64, 80].
As a result, the following parameters are found:
α = 0.02, ρ = 0.1, m = 0.88, and b = 64|80. For
this development set, the beam size of 64 and 80
gave the exact same result, so we kept the one with
a larger beam size (b = 80).
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Figure 3: Parsing accuracies with respect to mar-
gins and beam sizes on the English development set.
b = 64|80: the black solid line with solid circles,
b = 32: the blue dotted line with hollow circles,
b = 16: the red dotted line with solid circles.

Figure 3 shows parsing accuracies with respect to
different margins and beam sizes on the English de-
velopment set. These parameters need to be tuned
jointly because different margins prefer different
beam sizes. For instance, m = 0.85 gives the high-
est accuracy with b = 32, but m = 0.88 gives the
highest accuracy with b = 64|80.
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Figure 4: Parsing accuracies with respect to ADA-
GRAD and bootstrap iterations on the English de-
velopment set when α = 0.02, ρ = 0.1, m = 0.88,
and b = 64|80. UAS: unlabeled attachment score,
LAS: labeled attachment score.

Figure 4 shows parsing accuracies with respect to
ADAGRAD and bootstrap iterations on the English
development set. The range 1-5 shows results of
5 ADAGRAD iterations before bootstrapping, the
range 6-9 shows results of 4 iterations during the
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first bootstrapping, and the range 10-14 shows re-
sults of 5 iterations during the second bootstrap-
ping. Thus, the number of bootstrap iteration is
2 where each bootstrapping takes a different num-
ber of ADAGRAD iterations. Using an Intel Xeon
2.57GHz machine, it takes less than 40 minutes
to train the entire Penn Treebank, which includes
times for IO, feature extraction and bootstrapping.
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Figure 5: The total number of transitions performed
during decoding with respect to beam sizes on the
English development set.

Figure 5 shows the total number of transitions per-
formed during decoding with respect to beam sizes
on the English development set (1,700 sentences,
40,117 tokens). With selectional branching, the
number of transitions grows logarithmically as the
beam size increases whereas it would have grown
linearly if beam search were used. We also checked
how often the one best sequence is chosen as the
final sequence during decoding. Out of 1,700 sen-
tences, the one best sequences are chosen for 1,095
sentences. This implies that about 64% of time,
our greedy parser performs as accurately as our
non-greedy parser using selectional branching.

For the other languages, we use the same values
as English for α, ρ, m, and b; only the ADAGRAD

and bootstrap iterations are tuned on the develop-
ment sets of the other languages.

4.4 Projective parsing experiments

Before parsing, POS tags were assigned to the train-
ing set by using 20-way jackknifing. For the auto-
matic generation of POS tags, we used the domain-
specific model of Choi and Palmer (2012a)’s tagger,
which gave 97.5% accuracy on the English evalua-
tion set (0.2% higher than Collins (2002)’s tagger).

Table 4 shows comparison between past and cur-
rent state-of-the-art parsers and our approach. The
first block shows results from transition-based de-

pendency parsers using beam search. The second
block shows results from other kinds of parsing
approaches (e.g., graph-based parsing, ensemble
parsing, linear programming, dual decomposition).
The third block shows results from parsers using
external data. The last block shows results from
our approach. The Time column show how many
seconds per sentence each parser takes.7

Approach UAS LAS Time
Zhang and Clark (2008) 92.1
Huang and Sagae (2010) 92.1 0.04
Zhang and Nivre (2011) 92.9 91.8 0.03
Bohnet and Nivre (2012) 93.38 92.44 0.4
McDonald et al. (2005) 90.9
Mcdonald and Pereira (2006) 91.5
Sagae and Lavie (2006) 92.7
Koo and Collins (2010) 93.04
Zhang and McDonald (2012) 93.06 91.86
Martins et al. (2010) 93.26
Rush et al. (2010) 93.8
Koo et al. (2008) 93.16
Carreras et al. (2008) 93.54
Bohnet and Nivre (2012) 93.67 92.68
Suzuki et al. (2009) 93.79
bt = 80, bd = 80, m = 0.88 92.96 91.93 0.009
bt = 80, bd = 64, m = 0.88 92.96 91.93 0.009
bt = 80, bd = 32, m = 0.88 92.96 91.94 0.009
bt = 80, bd = 16, m = 0.88 92.96 91.94 0.008
bt = 80, bd = 8, m = 0.88 92.89 91.87 0.006
bt = 80, bd = 4, m = 0.88 92.76 91.76 0.004
bt = 80, bd = 2, m = 0.88 92.56 91.54 0.003
bt = 80, bd = 1, m = 0.88 92.26 91.25 0.002
bt = 1, bd = 1, m = 0.88 92.06 91.05 0.002

Table 4: Parsing accuracies and speeds on the En-
glish evaluation set, excluding tokens containing
only punctuation. bt and bd indicate the beam sizes
used during training and decoding, respectively.
UAS: unlabeled attachment score, LAS: labeled
attachment score, Time: seconds per sentence.

For evaluation, we use the model trained with b =
80 and m = 0.88, which is the best setting found
during development. Our parser shows higher ac-
curacy than Zhang and Nivre (2011), which is
the current state-of-the-art transition-based parser
that uses beam search. Bohnet and Nivre (2012)’s
transition-based system jointly performs POS tag-
ging and dependency parsing, which shows higher
accuracy than ours. Our parser gives a comparative
accuracy to Koo and Collins (2010) that is a 3rd-
order graph-based parsing approach. In terms of
speed, our parser outperforms all other transition-
based parsers; it takes about 9 milliseconds per

7Dhillon et al. (2012) and Rush and Petrov (2012) also
have shown good results on this data but they are excluded
from our comparison because they use different kinds of
constituent-to-dependency conversion methods.
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Approach Danish Dutch Slovene Swedish
LAS UAS LAS UAS LAS UAS LAS UAS

Nivre et al. (2006) 84.77 89.80 78.59 81.35 70.30 78.72 84.58 89.50
McDonald et al. (2006) 84.79 90.58 79.19 83.57 73.44 83.17 82.55 88.93
Nivre (2009) 84.2 - - - 75.2 - - -
F.-González and G.-Rodríguez (2012) 85.17 90.10 - - - - 83.55 89.30
Nivre and McDonald (2008) 86.67 - 81.63 - 75.94 84.66
Martins et al. (2010) - 91.50 - 84.91 - 85.53 - 89.80
bt = 80, bd = 1, m = 0.88 86.75 91.04 80.75 83.59 75.66 83.29 86.32 91.12
bt = 80, bd = 80, m = 0.88 87.27 91.36 82.45 85.33 77.46 84.65 86.80 91.36

Table 5: Parsing accuracies on four languages with non-projective dependencies, excluding punctuation.

sentence using the beam size of 80. Our parser is
implemented in Java and tested on an Intel Xeon
2.57GHz. Note that we do not include input/output
time for our speed comparison.

For a proof of concept, we run the same model,
trained with bt = 80, but decode with different
beam sizes using the same margin. Surprisingly,
our parser gives the same accuracy (0.01% higher
for labeled attachment score) on this data even with
bd = 16. More importantly, bd = 16 shows about
the same parsing speed as bd = 80, which indicates
that selectional branching automatically reduced
down the beam size by estimating low confidence
predictions, so even if we assigned a larger beam
size for decoding, it would have performed as effi-
ciently. This implies that we no longer need to be
so conscious about the beam size during decoding.

Another interesting part is that (bt = 80, bd = 1)
shows higher accuracy than (bt = 1, bd = 1); this
implies that our training method of bootstrapping
transition sequences can improve even a greedy
parser. Notice that our greedy parser shows higher
accuracy than many other greedy parsers (Hall et
al., 2006; Goldberg and Elhadad, 2010) because
it uses the non-local features of Zhang and Nivre
(2011) and the bootstrapping technique of Choi
and Palmer (2011) that had not been used for most
other greedy parsing approaches.

4.5 Non-projective parsing experiments

Table 5 shows comparison between state-of-the-art
parsers and our approach for four languages with
non-projective dependencies. Nivre et al. (2006)
uses a pseudo-projective transition-based parsing
approach. McDonald et al. (2006) uses a 2nd-order
maximum spanning tree approach. Nivre (2009)
and Fernández-González and Gómez-Rodríguez
(2012) use different non-projective transition-based
parsing approaches. Nivre and McDonald (2008)
uses an ensemble model between transition-based
and graph-based parsing approaches. Martins et

al. (2010) uses integer linear programming for the
optimization of their parsing model.

Some of these approaches use greedy parsers, so
we include our results from models using (bt = 80,
bd = 1, m = 0.88), which finds only the one-best
sequences during decoding although it is trained on
multiple transition sequences (see Section 4.4). Our
parser shows higher accuracies for most languages
except for unlabeled attachment scores in Danish
and Slovene. Our greedy approach outperforms
both Nivre (2009) and Fernández-González and
Gómez-Rodríguez (2012) who use different non-
projective parsing algorithms.
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Figure 6: The # of transitions performed during de-
coding with respect to sentence lengths for Dutch.

Figure 6 shows the number of transitions performed
during decoding with respect to sentence lengths
for Dutch using bd = 1. Our parser still shows a
linear growth in transition during decoding.

5 Related work

Our parsing algorithm is most similar to Choi and
Palmer (2011) who integrated our LEFT-REDUCE

transition into Nivre’s list-based algorithm. Our
algorithm is distinguished from theirs because ours
gives different parsing complexities of O(n) and
O(n2) for projective and non-projective parsing,
respectively, whereas their algorithm gives O(n2)
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for both cases; this is possible because of the new
integration of the RIGHT-SHIFT and NO-REDUCE

transitions. There are other transition-based de-
pendency parsing algorithms that take a similar ap-
proach; Nivre (2009) integrated a SWAP transition
into Nivre’s arc-standard algorithm (Nivre, 2004)
and Fernández-González and Gómez-Rodríguez
(2012) integrated a buffer transition into Nivre’s
arc-eager algorithm to handle non-projectivity.

Our selectional branching method is most rele-
vant to Zhang and Clark (2008) who introduced
a transition-based dependency parsing model that
uses beam search. Huang and Sagae (2010) later
applied dynamic programming to this approach
and showed improved efficiency. Zhang and Nivre
(2011) added non-local features to this approach
and showed improved parsing accuracy. Bohnet
and Nivre (2012) introduced a transition-based sys-
tem that jointly performed POS tagging and de-
pendency parsing. Our work is distinguished from
theirs because we use selectional branching instead.

6 Conclusion

We present selectional branching that uses confi-
dence estimates to decide when to employ a beam.
Coupled with our new hybrid parsing algorithm,
ADAGRAD, rich non-local features, and bootstrap-
ping, our parser gives higher parsing accuracy than
most other transition-based dependency parsers in
multiple languages and shows faster parsing speed.
It is interesting to see that our greedy parser out-
performed most other greedy dependency parsers.
This is because our parser used both bootstrapping
and Zhang and Nivre (2011)’s non-local features,
which had not been used by other greedy parsers.

In the future, we will experiment with more ad-
vanced dependency representations (de Marneffe
and Manning, 2008; Choi and Palmer, 2012b) to
show robustness of our approach. Furthermore, we
will evaluate individual methods of our approach
separately to show impact of each method on pars-
ing performance. We also plan to implement the
typical beam search approach to make a direct com-
parison to our selectional branching.8
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Abstract

This paper describes a novel strategy for
automatic induction of a monolingual de-
pendency grammar under the guidance
of bilingually-projected dependency. By
moderately leveraging the dependency in-
formation projected from the parsed coun-
terpart language, and simultaneously min-
ing the underlying syntactic structure of
the language considered, it effectively in-
tegrates the advantages of bilingual pro-
jection and unsupervised induction, so as
to induce a monolingual grammar much
better than previous models only using
bilingual projection or unsupervised in-
duction. We induced dependency gram-
mar for five different languages under the
guidance of dependency information pro-
jected from the parsed English translation,
experiments show that the bilingually-
guided method achieves a significant
improvement of28.5% over the unsuper-
vised baseline and3.0% over the best pro-
jection baseline on average.

1 Introduction

In past decades supervised methods achieved the
state-of-the-art in constituency parsing (Collins,
2003; Charniak and Johnson, 2005; Petrov et al.,
2006) and dependency parsing (McDonald et al.,
2005a; McDonald et al., 2006; Nivre et al., 2006;
Nivre et al., 2007; Koo and Collins, 2010). For
supervised models, the human-annotated corpora
on which models are trained, however, are expen-
sive and difficult to build. As alternative strate-
gies, methods which utilize raw texts have been in-
vestigated recently, including unsupervised meth-

ods which use only raw texts (Klein and Man-
ning, 2004; Smith and Eisner, 2005; William et
al., 2009), and semi-supervised methods (Koo et
al., 2008) which use both raw texts and annotat-
ed corpus. And there are a lot of efforts have also
been devoted to bilingual projection (Chen et al.,
2010), which resorts to bilingual text with one lan-
guage parsed, and projects the syntactic informa-
tion from the parsed language to the unparsed one
(Hwa et al., 2005; Ganchev et al., 2009).

In dependency grammar induction, unsuper-
vised methods achieve continuous improvements
in recent years (Klein and Manning, 2004; Smith
and Eisner, 2005; Bod, 2006; William et al., 2009;
Spitkovsky et al., 2010). Relying on a predefined
distributional assumption and iteratively maximiz-
ing an approximate indicator (entropy, likelihood,
etc.), an unsupervised model usually suffers from
two drawbacks, i.e., lower performance and high-
er computational cost. On the contrary, bilin-
gual projection (Hwa et al., 2005; Smith and Eis-
ner, 2009; Jiang and Liu, 2010) seems a promis-
ing substitute for languages with a
large amount of bilingual sentences and an exist-
ing parser of the counterpart language. By project-
ing syntactic structures directly (Hwa et al., 2005;
Smith and Eisner, 2009; Jiang and Liu, 2010)
across bilingual texts or indirectly across multi-
lingual texts (Snyder et al., 2009; McDonald et
al., 2011; Naseem et al., 2012), a better depen-
dency grammar can be easily induced, if syntactic
isomorphism is largely maintained between target
and source languages.

Unsupervised induction and bilingual projec-
tion run according to totally different principles,
the former mines the underlying structure of the
monolingual language, while the latter leverages
the syntactic knowledge of the parsed counter-
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Figure 1: Training the bilingually-guided parsing model byiteration.

part language. Considering this, we propose a
novel strategy for automatically inducing a mono-
lingual dependency grammar under the guidance
of bilingually-projected dependency information,
which integrates the advantage of bilingual pro-
jection into the unsupervised framework. A
randomly-initialized monolingual treebank
evolves in a self-training iterative procedure, and
the grammar parameters are tuned to simultane-
ously maximize both the monolingual likelihood
and bilingually-projected likelihood of the evolv-
ing treebank. The monolingual likelihood is sim-
ilar to the optimization objectives of convention-
al unsupervised models, while the bilingually-
projected likelihood is the product of the projected
probabilities of dependency trees. By moderately
leveraging the dependency information projected
from the parsed counterpart language, and simul-
taneously mining the underlying syntactic struc-
ture of the language considered, we can automat-
ically induce a monolingual dependency grammar
which is much better than previous models only
using bilingual projection or unsupervised induc-
tion. In addition, since both likelihoods are fun-
damentally factorized into dependency edges (of
the hypothesis tree), the computational complexi-
ty approaches to unsupervised models, while with
much faster convergence. We evaluate the final
automatically-induced dependency parsing mod-
el on 5 languages. Experimental results show
that our method significantly outperforms previ-
ous work based on unsupervised method or indi-
rect/direct dependency projection, where we see
an average improvement of 28.5% over unsuper-
vised baseline on all languages, and the improve-
ments are 3.9%/3.0% over indirect/direct base-
lines. And our model achieves the most signif-
icant gains on Chinese, where the improvements
are 12.0%, 4.5% over indirect and direct projec-
tion baselines respectively.

In the rest of the paper, we first describe the un-
supervised dependency grammar induction frame-
work in section 2 (where the unsupervised op-
timization objective is given), and introduce the
bilingual projection method for dependency pars-
ing in section 3 (where the projected optimiza-
tion objective is given); Then in section 4 we
present the bilingually-guided induction strategy
for dependency grammar (where the two objec-
tives above are jointly optimized, as shown in Fig-
ure 1). After giving a brief introduction of previ-
ous work in section 5, we finally give the experi-
mental results in section 6 and conclude our work
in section 7.

2 Unsupervised Dependency Grammar
Induction

In this section, we introduce the unsupervised ob-
jective and the unsupervised training algorithm
which is used as the framework of our bilingually-
guided method. Unlike previous unsupervised
work (Klein and Manning, 2004; Smith and Eis-
ner, 2005; Bod, 2006), we select a self-training
approach (similar to hard EM method) to train
the unsupervised model. And the framework of
our unsupervised model builds a random treebank
on the monolingual corpus firstly for initialization
and trains a discriminative parsing model on it.
Then we use the parser to build an evolved tree-
bank with the 1-best result for the next iteration
run. In this way, the parser and treebank evolve in
an iterative way until convergence. Let’s introduce
the parsing objective firstly:

Defineei as theith word in monolingual sen-
tenceE; deij denotes the word pair dependency re-
lationship (ei → ej). Based on the features around
deij , we can calculate the probabilityPr(y|deij )
that the word pairdeij can form a dependency arc
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as:

Pr(y|deij ) =
1

Z(deij )
exp(

∑

n

λn · fn(deij , y)) (1)

wherey is the category of the relationship ofdeij :
y = + means it is the probability that the word
pair deij can form a dependency arc andy = −
means the contrary.λn denotes the weight for fea-
ture functionfn(deij , y), and the features we used
are presented in Table 1 (Section 6).Z(deij) is a
normalizing constant:

Z(deij ) =
∑

y

exp(
∑

n

λn · fn(deij , y)) (2)

Given a sentenceE, parsing a dependency tree
is to find a dependency treeDE with maximum
probabilityPE :

PE = arg max
DE

∏

deij ∈DE

Pr(+|deij ) (3)

2.1 Unsupervised Objective

We select a simple classifier objective function as
the unsupervised objective function which is in-
stinctively in accordance with the parsing objec-
tive:

θ(λ) =
∏

de∈DE

Pr(+|de)
∏

de∈D̃E

Pr(−|de) (4)

whereE is the monolingual corpus andE ∈ E,
DE is the treebank that contains allDE in the cor-
pus, andD̃E denotes all other possible dependen-
cy arcs which do not exist in the treebank.

Maximizing the Formula (4) is equivalent to
maximizing the following formula:

θ1(λ) =
∑

de∈DE

log Pr(+|de)

+
∑

de∈D̃E

log Pr(−|de)
(5)

Since the size of edges betweenDE and D̃E is
disproportionate, we use an empirical value to re-
duce the impact of the huge number of negative
instances:

θ2(λ) =
∑

de∈DE

log Pr(+|de)

+
|DE |
|D̃E |

∑

de∈D̃E

log Pr(−|de)
(6)

where|x| is the size ofx.

Algorithm 1 Training unsupervised model
1: build random DE

2: λ← train(DE , D̃E)
3: repeat
4: for eachE ∈ E do ⊲ E step
5: DE ← parse(E,λ)

6: λ← train(DE , D̃E) ⊲ M step
7: until convergence

Bush held talk with Sharona

bushi yu juxingshalong huitanle

Figure 2: Projecting a Chinese dependency tree
to English side according to DPA. Solid arrows
are projected dependency arcs; dashed arrows are
missing dependency arcs.

2.2 Unsupervised Training Algorithm

Algorithm 1 outlines the unsupervised training in
its entirety, where the treebankDE and unsuper-
vised parsing model withλ are updated iteratively.

In line 1 we build a random treebankDE on
the monolingual corpus, and then train the parsing
model with it (line 2) through a training procedure
train(·, ·) which needsDE andD̃E as classifica-
tion instances. From line 3-7, we train the unsu-
pervised model in self training iterative procedure,
where line 4-5 are similar to the E-step in EM al-
gorithm where calculates objective instead of ex-
pectation of 1-best tree (line 5) which is parsed
according to the parsing objective (Formula 3) by
parsing processparse(·, ·), and update the tree
bank with the tree. Similar to M-step in EM, the
algorithm maximizes the whole treebank’s unsu-
pervised objective (Formula 6) through the train-
ing procedure (line 6).

3 Bilingual Projection of Dependency
Grammar

In this section, we introduce our projection objec-
tive and training algorithm which trains the model
with arc instances.

Because of the heterogeneity between dif-
ferent languages and word alignment errors, pro-
jection methods may contain a lot of noises. Take
Figure 2 as an example, following the Direct
Projection Algorithm (DPA) (Hwa et al., 2005)
(Section 5), the dependency relationships between
words can be directly projected from the source

1065



Algorithm 2 Training projection model
1: DP , DN ← proj(F , DF , A, E)
2: repeat ⊲ train(DP , DN )
3: ∇φ← grad(DP , DN , φ(λ))
4: λ← climb(φ,∇φ, λ)
5: until maximization

language to the target language. Therefore, we
can hardly obtain a treebank with complete trees
through direct projection. So we extract projected
discrete dependency arc instances instead of tree-
bank as training set for the projected grammar in-
duction model.

3.1 Projection Objective

Correspondingly, we select an objective which has
the same form with the unsupervised one:

φ(λ) =
∑

de∈DP

log Pr(+|de)

+
∑

de∈DN

log Pr(−|de)
(7)

whereDP is the positive dependency arc instance
set, which is obtained by direct projection methods
(Hwa et al., 2005; Jiang and Liu, 2010) andDN is
the negative one.

3.2 Projection Algorithm

Basically, the training procedure in line 2,7 of Al-
gorithm 1 can be divided into smaller iterative
steps, and Algorithm 2 outlines the training step
of projection model with instances.F in Algo-
rithm 2 is source sentences in bilingual corpus,
and A is the alignments. Functiongrad(·, ·, ·)
gives the gradient (∇φ) and the objective is op-
timized with a generic optimization step (such as
an LBFGS iteration (Zhu et al., 1997)) in the sub-
routineclimb(·, ·, ·).

4 Bilingually-Guided Dependency
Grammar Induction

This section presents our bilingually-guided gram-
mar induction model, which incorporates unsuper-
vised framework and bilingual projection model
through a joint approach.

According to following observation: unsuper-
vised induction model mines underlying syntactic
structure of the monolingual language, however, it
is hard to find good grammar induction in the ex-
ponential parsing space; bilingual projection ob-
tains relatively reliable syntactic knowledge of the

parsed counterpart, but it possibly contains a lot
of noises (e.g. Figure 2). We believe that unsu-
pervised model and projection model can comple-
ment each other and a joint model which takes bet-
ter use of both unsupervised parse trees and pro-
jected dependency arcs can give us a better parser.

Based on the idea, we propose a nov-
el strategy for training monolingual grammar in-
duction model with the guidance of unsuper-
vised and bilingually-projected dependency infor-
mation. Figure 1 outlines our bilingual-guided
grammar induction process in its entirety. In our
method, we select compatible objectives for unsu-
pervised and projection models, in order to they
can share the same grammar parameters. Then
we incorporate projection model into our iterative
unsupervised framework, and jointly optimize un-
supervised and projection objectives with evolv-
ing treebank and constant projection information
respectively. In this way, our bilingually-guided
model’s parameters are tuned to simultaneous-
ly maximizing both monolingual likelihood and
bilingually-projected likelihood by 4 steps:

1. Randomly build treebank on target sentences
for initialization, and get the projected arc in-
stances through projection from bitext.

2. Train the bilingually-guided grammar induc-
tion model by multi-objective optimization
method with unsupervised objective and pro-
jection objective on treebank and projected
arc instances respectively.

3. Use the parsing model to build new treebank
on target language for next iteration.

4. Repeat steps 1, 2 and 3 until convergence.

The unsupervised objective is optimized by the
loop—”tree bank→optimized model→new tree
bank”. The treebank is evolved for runs. The
unsupervised model gets projection constraint im-
plicitly from those parse trees which contain in-
formation from projection part. The projection ob-
jective is optimized by the circulation—”projected
instances→optimized model”, these projected in-
stances will not change once we get them.

The iterative procedure proposed here is not a
co-training algorithm (Sarkar, 2001; Hwa et al.,
2003), because the input of the projection objec-
tive is static.
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4.1 Joint Objective

For multi-objective optimization method, we em-
ploy the classical weighted-sum approach which
just calculates the weighted linear sum of the ob-
jectives:

OBJ =
∑

m

weightmobjm (8)

We combine the unsupervised objective (For-
mula (6)) and projection objective (Formula (7))
together through the weighted-sum approach in
Formula (8):

ℓ(λ) = αθ2(λ) + (1 − α)φ(λ) (9)

whereℓ(λ) is our weight-sum objective. Andα
is a mixing coefficient which reflects the relative
confidence between the unsupervised and projec-
tion objectives. Equally,α and(1−α) can be seen
as the weights in Formula (8). In that case, we can
use a single parameterα to control both weights
for different objective functions. Whenα = 1 it
is the unsupervised objective function in Formula
(6). Contrary, ifα = 0, it is the projection objec-
tive function (Formula (7)) for projected instances.

With this approach, we can optimize the mixed
parsing model by maximizing the objective in For-
mula (9). Though the function (Formula (9)) is
an interpolation function, we use it for training
instead of parsing. In the parsing procedure, our
method calculates the probability of a dependency
arc according to the Formula (2), while the inter-
polating method calculates it by:

Pr(y|deij) =αPr1(y|deij )

+ (1 − α)Pr2(y|deij )
(10)

wherePr1(y|deij ) andPr2(y|deij ) are the proba-
bilities provided by different models.

4.2 Training Algorithm

We optimize the objective (Formula (9)) via a
gradient-based search algorithm. And the gradi-
ent with respect toλk takes the form:

∇ℓ(λk) = α
∂θ2(λ)

∂λk
+ (1 − α)

∂φ(λ)

∂λk
(11)

Algorithm 3 outlines our joint training proce-
dure, which tunes the grammar parameterλ simul-
taneously maximize both unsupervised objective

Algorithm 3 Training joint model
1: DP , DN ← proj(F, DF , A, E)
2: build random DE
3: λ← train(DP , DN )
4: repeat
5: for eachE ∈ E do ⊲ E step
6: DE ← parse(E,λ)

7: ∇ℓ(λ)← grad(DE, D̃E , DP , DN , ℓ(λ))
8: λ←climb(ℓ(λ),∇ℓ(λ), λ) ⊲ M step
9: until convergence

and projection objective. And it incorporates un-
supervised framework and projection model algo-
rithm together. It is grounded on the work which
uses features in the unsupervised model (Berg-
Kirkpatrick et al., 2010).

In line 1, 2 we get projected dependency in-
stances from source side according to projec-
tion methods and build a random treebank (step
1). Then we train an initial model with projection
instances in line 3. From line 4-9, the objective is
optimized with a generic optimization step in the
subroutineclimb(·, ·, ·, ·, ·). For each sentence we
parse its dependency tree, and update the tree into
the treebank (step 3). Then we calculate the gra-
dient and optimize the joint objective according to
the evolved treebank and projected instances (step
2). Lines 5-6 are equivalent to the E-step of the
EM algorithm, and lines 7-8 are equivalent to the
M-step.

5 Related work

The DMV (Klein and Manning, 2004) is a single-
state head automata model (Alshawi, 1996) which
is based on POS tags. And DMV learns the gram-
mar via inside-outside re-estimation (Baker, 1979)
without any smoothing, while Spitkovsky et al.
(2010) utilizes smoothing and learning strategy
during grammar learning and William et al. (2009)
improves DMV with richer context.

The dependency projection method DPA (H-
wa et al., 2005) based on Direct Correspondence
Assumption (Hwa et al., 2002) can be described
as: if there is a pair of source words with a de-
pendency relationship, the corresponding aligned
words in target sentence can be considered as hav-
ing the same dependency relationship equivalent-
ly (e.g. Figure 2). The Word Pair Classification
(WPC) method (Jiang and Liu, 2010) modifies the
DPA method and makes it more robust. Smith
and Eisner (2009) propose an adaptation method
founded on quasi-synchronous grammar features
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Type Feature Template

Unigram wordi posi wordi ◦ posi
wordj posj wordj ◦ posj

Bigram wordi ◦ posj wordj ◦ posi posi ◦ posj
wordi ◦ wordj wordi ◦ posi ◦ wordj wordi ◦ wordj ◦ posj
wordi ◦ posi ◦ posj posi ◦ wordj ◦ posj
wordi ◦ posi ◦ wordj ◦ posj

Surrounding posi−1 ◦ posi ◦ posj posi ◦ posi+1 ◦ posj posi ◦ posj−1 ◦ posj
posi ◦ posj ◦ posj+1 posi−1 ◦ posi ◦ posj−1 posi ◦ posi+1 ◦ posj+1
posi−1 ◦ posj−1 ◦ posj posi+1 ◦ posj ◦ posj+1 posi−1 ◦ posi ◦ posj+1
posi ◦ posi+1 ◦ posj−1 posi−1 ◦ posj ◦ posj+1 posi+1 ◦ posj−1 ◦ posj
posi−1 ◦ posi ◦ posj−1 ◦ posj posi ◦ posi+1 ◦ posj ◦ posj+1
posi ◦ posi+1 ◦ posj−1 ◦ posj posi−1 ◦ posi ◦ posj ◦ posj+1

Table 1: Feature templates for dependency parsing. For edgedeij : wordi is the parent word andwordj

is the child word, similar to ”pos”. ”+1” denotes the preceding token of the sentence, similarto ”-1”.

for dependency projection and annotation, which
requires a small set of dependency annotated cor-
pus of target language.

Similarly, using indirect information from mul-
tilingual (Cohen et al., 2011; Täckström et al.,
2012) is an effective way to improve unsupervised
parsing. (Zeman and Resnik, 2008; McDonald et
al., 2011; Søgaard, 2011) employ non-lexicalized
parser trained on other languages to process a
target language. McDonald et al. (2011) adapts
their multi-source parser according to DCA, while
Naseem et al. (2012) selects a selective sharing
model to make better use of grammar information
in multi-sources.

Due to similar reasons, many works are devoted
to POS projection (Yarowsky et al., 2001; Shen et
al., 2007; Naseem et al., 2009), and they also suf-
fer from similar problems. Some seek for unsu-
pervised methods, e.g. Naseem et al. (2009), and
some further improve the projection by a graph-
based projection (Das and Petrov, 2011).

Our model differs from the approaches above
in its emphasis on utilizing information from both
sides of bilingual corpus in an unsupervised train-
ing framework, while most of the work above only
utilize the information from a single side.

6 Experiments

In this section, we evaluate the performance of the
MST dependency parser (McDonald et al., 2005b)
which is trained by our bilingually-guided model
on 5 languages. And the features used in our ex-
periments are summarized in Table 1.

6.1 Experiment Setup

Datasets and EvaluationOur experiments are
run on five different languages: Chinese(ch),
Danish(da), Dutch(nl), Portuguese(pt) and

Swedish(sv) (da, nl, pt and sv are free data sets
distributed for the 2006 CoNLL Shared Tasks
(Buchholz and Marsi, 2006)). For all languages,
we only use English-target parallel data: we take
the FBIS English-Chinese bitext as bilingual cor-
pus for English-Chinese dependency projection
which contains 239K sentence pairs with about
8.9M/6.9M words in English/Chinese, and for
other languages we use the readily available data
in the Europarl corpus. Then we run tests on the
Penn Chinese Treebank (CTB) and CoNLL-X test
sets.

English sentences are tagged by the implemen-
tations of the POS tagger of Collins (2002), which
is trained on WSJ. The source sentences are then
parsed by an implementation of 2nd-ordered MST
model of McDonald and Pereira (2006), which is
trained on dependency trees extracted from Penn
Treebank.

As the evaluation metric, we use parsing accu-
racy which is the percentage of the words which
have found their correct parents. We evaluate on
sentences with all length for our method.

Training Regime In experiments, we use the
projection method proposed by Jiang and Liu
(2010) to provide the projection instances. And
we train the projection partα = 0 first for initial-
ization, on which the whole model will be trained.
Availing of the initialization method, the model
can converge very fast (about 3 iterations is suffi-
cient) and the results are more stable than the ones
trained on random initialization.

Baselines We compare our method against
three kinds of different approaches: unsupervised
method (Klein and Manning, 2004); single-
source direct projection methods (Hwa et al.,
2005; Jiang and Liu, 2010); multi-source in-
direct projection methods with multi-sources (M-
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Figure 3: The performance of our model with re-
spect to a series of ratioα

cDonald et al., 2011; Naseem et al., 2012).

6.2 Results

We test our method on CTB and CoNLL-X free
test data sets respectively, and the performance is
summarized in Table 2. Figure 3 presents the per-
formance with differentα on different languages.

Compare against Unsupervised BaselineEx-
perimental results show that our unsupervised
framework’s performance approaches to the DMV
method. And the bilingually-guided model can
promote the unsupervised method consisten-
cy over all languages. On the best results’ aver-
age of four comparable languages (da, nl, pt, sv),
the promotion gained by our model is 28.5% over
the baseline method (DMV) (Klein and Manning,
2004).

Compare against Projection Baselines For
all languages, the model consistent-
ly outperforms on direct projection baseline.
On the average of each language’s best result, our
model outperforms all kinds of baselines, yielding
3.0% gain over the single-source direct-projection
method (Jiang and Liu, 2010) and 3.9% gain over
the multi-source indirect-projection method (Mc-
Donald et al., 2011). On the average of all results
with different parameters, our method also gain-
s more than 2.0% improvements on all baselines.
Particularly, our model achieves the most signif-
icant gains on Chinese, where the improvements
are 4.5%/12.0% on direct/indirect projection base-

Accuracy%
Model ch da nl pt sv avg

DMV 42.5∗ 33.4 38.5 20.1 44.0 —.–
DPA 53.9 —.– —.– —.– —.– —.–
WPC 56.8 50.1 58.4 70.5 60.8 59.3
Transfer 49.3 49.5 53.9 75.8 63.6 58.4
Selective 51.2 —.– 55.9 73.5 61.5 —.–
unsuper 22.6 41.6 15.2 45.7 42.4 33.5
avg 61.0 50.7 59.9 72.0 63.1 61.3
max 61.3 51.1 60.1 74.2 64.6 62.3

Table 2: The directed dependency accuracy with
different parameter of our model and the base-
lines. The first section of the table (row 3-7)
shows the results of the baselines: a unsupervised
method baseline (Klein and Manning, 2004)(D-
MV); a single-source projection method baseline
(Hwa et al., 2005) (DPA) and its improve-
ment (Jiang and Liu, 2010)(WPC); two multi-
source baselines (McDonald et al., 2011)(Trans-
fer) and (Naseem et al., 2012)(Selective). The
second section of the table (row 8) presents the
result of our unsupervised framework (unsuper).
The third section gives the mean value (avg) and
maximum value (max) of our model with different
α in Figure 3.
*: The result is based on sentences with 10
words or less after the removal of punctuation, it
is an incomparable result.

lines.
The results in Figure 3 prove that our unsuper-

vised frameworkα = 1 can promote the grammar
induction if it has a good start (well initialization),
and it will be better once we incorporate the infor-
mation from the projection side (α = 0.9). And
the maximum points are not inα = 1, which im-
plies that projection information is still available
for the unsupervised framework even if we employ
the projection model as the initialization. So we
suggest that a greater parameter is a better choice
for our model. And there are some random factors
in our model which make performance curves with
more fluctuation. And there is just a little improve-
ment shown inda, in which the same situation is
observed by (McDonald et al., 2011).

6.3 Effects of the Size of Training Corpus

To investigate how the size of the training corpus
influences the result, we train the model on ex-
tracted bilingual corpus with varying sizes: 10K,
50K, 100K, 150K and 200K sentences pairs.

As shown in Figure 4, our approach continu-
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Figure 5: Performance on different projection
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stances being messed up.

ously outperforms the baseline with the increasing
size of training corpus. It is especially noteworthy
that the more training data is utilized the more su-
periority our model enjoys. That is, because our
method not only utilizes the projection informa-
tion but also avails itself of the monolingual cor-
pus.

6.4 Effect of Projection Quality

The projection quality can be influenced by the
quality of the source parsing, alignments, projec-
tion methods, corpus quality and many other fac-
tors. In order to detect the effects of varying pro-
jection qualities on our approach, we simulate the
complex projection procedure by messing up the
projected instances randomly with different noise
rates. The curves in Figure 5 show the perfor-
mance of WPC baseline and our bilingual-guided
method. For different noise rates, our model’s re-
sults consistently outperform the baselines. When
the noise rate is greater than 0.2, our improvement
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Figure 6: The performance curve of our model
(random initialization) on Chinese, with respect to
a series of ratioα. The baseline is the result of
WPC model.

increases with the growth of the noise rate. The re-
sult suggests that our method can solve some prob-
lems which are caused by projection noise.

6.5 Performance on Random Initialization

We test our model with random initialization on
differentα. The curve in Figure 6 shows the per-
formance of our model on Chinese.

The results seem supporting our unsupervised
optimization method whenα is in the range of
(0, 0.1). It implies that the unsupervised structure
information is useful, but it seems creating a nega-
tive effect on the model whenα is greater than 0.1.
Because the unsupervised part can gain constraints
from the projection part. But with the increase of
α, the strength of constraint dwindles, and the
unsupervised part will gradually lose control. And
bad unsupervised part pulls the full model down.

7 Conclusion and Future Work

This paper presents a bilingually-guided strate-
gy for automatic dependency grammar induction,
which adopts an unsupervised skeleton and lever-
ages the bilingually-projected dependency infor-
mation during optimization. By simultaneous-
ly maximizing the monolingual likelihood and
bilingually-projected likelihood in the EM proce-
dure, it effectively integrates the advantages of
bilingual projection and unsupervised induction.
Experiments on 5 languages show that the novel
strategy significantly outperforms previous unsu-
pervised or bilingually-projected models.
Since its computational complexity approaches to
the skeleton unsupervised model (with much few-
er iterations), and the bilingual text aligned to
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resource-rich languages is easy to obtain, such a
hybrid method seems to be a better choice for au-
tomatic grammar induction. It also indicates that
the combination of bilingual constraint and unsu-
pervised methodology has a promising prospect
for grammar induction. In the future work we will
investigate such kind of strategies, such as bilin-
gually unsupervised induction.
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Abstract

Translated bi-texts contain complemen-
tary language cues, and previous work
on Named Entity Recognition (NER)
has demonstrated improvements in perfor-
mance over monolingual taggers by pro-
moting agreement of tagging decisions be-
tween the two languages. However, most
previous approaches to bilingual tagging
assume word alignments are given as fixed
input, which can cause cascading errors.
We observe that NER label information
can be used to correct alignment mis-
takes, and present a graphical model that
performs bilingual NER tagging jointly
with word alignment, by combining two
monolingual tagging models with two uni-
directional alignment models. We intro-
duce additional cross-lingual edge factors
that encourage agreements between tag-
ging and alignment decisions. We design
a dual decomposition inference algorithm
to perform joint decoding over the com-
bined alignment and NER output space.
Experiments on the OntoNotes dataset
demonstrate that our method yields signif-
icant improvements in both NER and word
alignment over state-of-the-art monolin-
gual baselines.

1 Introduction

We study the problem of Named Entity Recogni-
tion (NER) in a bilingual context, where the goal
is to annotate parallel bi-texts with named entity
tags. This is a particularly important problem for
machine translation (MT) since entities such as
person names, locations, organizations, etc. carry
much of the information expressed in the source

sentence. Recognizing them provides useful in-
formation for phrase detection and word sense dis-
ambiguation (e.g., “melody” as in a female name
has a different translation from the word “melody”
in a musical sense), and can be directly leveraged
to improve translation quality (Babych and Hart-
ley, 2003). We can also automatically construct a
named entity translation lexicon by annotating and
extracting entities from bi-texts, and use it to im-
prove MT performance (Huang and Vogel, 2002;
Al-Onaizan and Knight, 2002). Previous work
such as Burkett et al. (2010b), Li et al. (2012) and
Kim et al. (2012) have also demonstrated that bi-
texts annotated with NER tags can provide useful
additional training sources for improving the per-
formance of standalone monolingual taggers.

Because human translation in general preserves
semantic equivalence, bi-texts represent two per-
spectives on the same semantic content (Burkett et
al., 2010b). As a result, we can find complemen-
tary cues in the two languages that help to dis-
ambiguate named entity mentions (Brown et al.,
1991). For example, the English word “Jordan”
can be either a last name or a country. Without
sufficient context it can be difficult to distinguish
the two; however, in Chinese, these two senses are
disambiguated: “乔丹” as a last name, and “约旦”
as a country name.

In this work, we first develop a bilingual NER
model (denoted as BI-NER) by embedding two
monolingual CRF-based NER models into a larger
undirected graphical model, and introduce addi-
tional edge factors based on word alignment (WA).
Because the new bilingual model contains many
cyclic cliques, exact inference is intractable. We
employ a dual decomposition (DD) inference al-
gorithm (Bertsekas, 1999; Rush et al., 2010) for
performing approximate inference. Unlike most
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Xinhua News Agency Beijing Feb 16

B-ORG I-ORG I-ORG [O] B-LOC O O

新华社 ， 北京 ， 二月 十六

B-ORG O B-GPE O O O

Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences. The [O] tag is
an example of a wrong tag assignment. The dashed alignment link between e3 and f2 is an example of
alignment error.

previous applications of the DD method in NLP,
where the model typically factors over two com-
ponents and agreement is to be sought between the
two (Rush et al., 2010; Koo et al., 2010; DeNero
and Macherey, 2011; Chieu and Teow, 2012), our
method decomposes the larger graphical model
into many overlapping components where each
alignment edge forms a separate factor. We design
clique potentials over the alignment-based edges
to encourage entity tag agreements. Our method
does not require any manual annotation of word
alignments or named entities over the bilingual
training data.

The aforementioned BI-NER model assumes
fixed alignment input given by an underlying word
aligner. But the entity span and type predictions
given by the NER models contain complementary
information for correcting alignment errors. To
capture this source of information, we present a
novel extension that combines the BI-NER model
with two uni-directional HMM-based alignment
models, and perform joint decoding of NER and
word alignments. The new model (denoted as
BI-NER-WA) factors over five components: one
NER model and one word alignment model for
each language, plus a joint NER-alignment model
which not only enforces NER label agreements but
also facilitates message passing among the other
four components. An extended DD decoding algo-
rithm is again employed to perform approximate
inference.

We give a formal definition of the Bi-NER
model in Section 2, and then move to present the
Bi-NER-WA model in Section 3.

2 Bilingual NER by Agreement

The inputs to our models are parallel sentence
pairs (see Figure 1 for an example in English and

Chinese). We denote the sentences as e (for En-
glish) and f (for Chinese). We assume access
to two monolingual linear-chain CRF-based NER
models that are already trained. The English-side
CRF model assigns the following probability for a
tag sequence ye:

PCRFe (y
e|e) =

∏
vi∈Ve

ψ(vi)
∏

(vi,vj)∈De
ω(vi, vj)

Ze(e)

where Ve is the set of vertices in the CRF and
De is the set of edges. ψ(vi) and ω(vi, vj) are
the node and edge clique potentials, and Ze(e)
is the partition function for input sequence e un-
der the English CRF model. We let k(ye) be the
un-normalized log-probability of tag sequence ye,
defined as:

k(ye) = log


 ∏

vi∈Ve

ψ(vi)
∏

(vi,vj)∈De

ω(vi, vj)




Similarly, we define model PCRFf and un-
normalized log-probability l(yf) for Chinese.

We also assume that a set of word alignments
(A = {(i, j) : ei ↔ fj}) is given by a word
aligner and remain fixed in our model.

For clarity, we assume ye and yf are binary vari-
ables in the description of our algorithms. The ex-
tension to the multi-class case is straight-forward
and does not affect the core algorithms.

2.1 Hard Agreement

We define a BI-NER model which imposes hard
agreement of entity labels over aligned word pairs.
At inference time, we solve the following opti-
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mization problem:

max
ye,yf

log (PCRFe (y
e)) + log

(
PCRFf

(
yf))

=max
ye,yf

k(ye) + l(yf)− logZe(e)− logZf (f)

'max
ye,yf

k(ye) + l(yf)

3 ye
i = yf

j ∀(i, j) ∈ A

We dropped the Ze(e) and Zf(f) terms because
they remain constant at inference time.

The Lagrangian relaxation of this term is:

L
(
ye,yf,U

)
=

k (ye) + l
(
yf)+

∑

(i,j)∈A
u(i, j)

(
ye
i − yf

j

)

where u(i, j) are the Lagrangian multipliers.
Instead of solving the Lagrangian directly, we

can form the dual of this problem and solve it us-
ing dual decomposition (Rush et al., 2010):

min
U

(
max
ye


k (ye) +

∑

(i,j)∈A
u(i, j)ye

i




+max
yf


l
(
yf)−

∑

(i,j)∈A
u(i, j)yf

j



)

Similar to previous work, we solve this DD
problem by iteratively updating the sub-gradient
as depicted in Algorithm 1. T is the maximum
number of iterations before early stopping, and αt
is the learning rate at time t. We adopt a learning
rate update rule from Koo et al. (2010) where αt is
defined as 1

N , where N is the number of times we
observed a consecutive dual value increase from
iteration 1 to t.

A thorough introduction to the theoretical foun-
dations of dual decomposition algorithms is be-
yond the scope of this paper; we encourage un-
familiar readers to read Rush and Collins (2012)
for a full tutorial.

2.2 Soft Agreement
The previously discussed hard agreement model
rests on the core assumption that aligned words
must have identical entity tags. In reality, however,
this assumption does not always hold. Firstly, as-
suming words are correctly aligned, their entity
tags may not agree due to inconsistency in anno-
tation standards. In Figure 1, for example, the

Algorithm 1 DD inference algorithm for hard
agreement model.
∀(i, j) ∈ A : u(i, j) = 0
for t← 1 to T do

ye∗ ← argmax k (ye) +
∑

(i,j)∈A
u(i, j)ye

i

yf∗ ← argmax l
(
yf)− ∑

(i,j)∈A
u(i, j)yf

j

if ∀(i, j) ∈ A : ye∗i = yf∗j then
return

(
ye∗,yf∗)

end if
for all (i, j) ∈ A do
u(i, j)← u(i, j) + αt

(
yf∗j − ye∗i

)

end for
end for
return

(
ye∗
(T),y

f∗
(T)

)

word “Beijing” can be either a Geo-Political En-
tity (GPE) or a location. The Chinese annotation
standard may enforce that “Beijing” should always
be tagged as GPE when it is mentioned in isola-
tion, while the English standard may require the
annotator to judge based on word usage context.
The assumption in the hard agreement model can
also be violated if there are word alignment errors.

In order to model this uncertainty, we extend
the two previously independent CRF models into a
larger undirected graphical model, by introducing
a cross-lingual edge factor φ(i, j) for every pair of
word positions (i, j) ∈ A. We associate a clique
potential function h(i,j)(ye

i , y
f
j) for φ(i, j):

h(i,j)

(
ye
i , y

f
j

)
= pmi

(
ye
i , y

f
j

)P̂ (ei,fj)

where pmi(ye
i , y

f
j) is the point-wise mutual in-

formation (PMI) of the tag pair, and we raise it
to the power of a posterior alignment probability
P̂ (ei, fj). For a pair of NEs that are aligned with
low probability, we cannot be too sure about the
association of the two NEs, therefore the model
should not impose too much influence from the
bilingual agreement model; instead, we will let the
monolingual NE models make their decisions, and
trust that those are the best estimates we can come
up with when we do not have much confidence in
their bilingual association. The use of the poste-
rior alignment probability facilitates this purpose.

Initially, each of the cross-lingual edge factors
will attempt to assign a pair of tags that has the
highest PMI score, but if the monolingual taggers
do not agree, a penalty will start accumulating
over this pair, until some other pair that agrees bet-
ter with the monolingual models takes the top spot.

1075



Simultaneously, the monolingual models will also
be encouraged to agree with the cross-lingual edge
factors. This way, the various components effec-
tively trade penalties indirectly through the cross-
lingual edges, until a tag sequence that maximizes
the joint probability is achieved.

Since we assume no bilingually annotated NER
corpus is available, in order to get an estimate of
the PMI scores, we first tag a collection of unan-
notated bilingual sentence pairs using the mono-
lingual CRF taggers, and collect counts of aligned
entity pairs from this auto-generated tagged data.

Each of the φ(i, j) edge factors (e.g., the edge
between node f3 and e4 in Figure 1) overlaps with
each of the two CRF models over one vertex (e.g.,
f3 on Chinese side and e4 on English side), and
we seek agreement with the Chinese CRF model
over tag assignment of fj , and similarly for ei on
English side. In other words, no direct agreement
between the two CRF models is enforced, but they
both need to agree with the bilingual edge factors.

The updated optimization problem becomes:

max
ye(k)yf(l)ye(h)

yf(h)
k
(
ye(k)

)
+ l
(
yf (l)

)
+

∑

(i,j)∈A
h(i,j)

(
ye

(h)

i , yf
(h)

j

)

3 ∀(i, j) ∈ A :
(
ye

(k)

i = ye
(h)

i

)
∧
(
yf

(l)

j = yf
(h)

j

)

where the notation ye
(k)

i denotes tag assignment to
word ei by the English CRF and ye

(h)

i denotes as-

signment to word ei by the bilingual factor; yf
(l)

j

denotes the tag assignment to word fj by the Chi-

nese CRF and yf
(h)

j denotes assignment to word
fj by the bilingual factor.

The updated DD algorithm is illustrated in Al-
gorithm 2 (case 2). We introduce two separate
sets of dual constraints we and wf, which range
over the set of vertices on their respective half
of the graph. Decoding the edge factor model
h(i,j)(y

e
i , y

f
j) simply involves finding the pair of

tag assignments that gives the highest PMI score,
subject to the dual constraints.

The way DD algorithms work in decomposing
undirected graphical models is analogous to other
message passing algorithms such as loopy belief
propagation, but DD gives a stronger optimality
guarantee upon convergence (Rush et al., 2010).

3 Joint Alignment and NER Decoding

In this section we develop an extended model in
which NER information can in turn be used to
improve alignment accuracy. Although we have
seen more than a handful of recent papers that ap-
ply the dual decomposition method for joint in-
ference problems, all of the past work deals with
cases where the various model components have
the same inference output space (e.g., dependency
parsing (Koo et al., 2010), POS tagging (Rush et
al., 2012), etc.). In our case the output space is
the much more complex joint alignment and NER
tagging space. We propose a novel dual decom-
position variant for performing inference over this
joint space.

Most commonly used alignment models, such
as the IBM models and HMM-based aligner are
unsupervised learners, and can only capture sim-
ple distortion features and lexical translational fea-
tures due to the high complexity of the structure
prediction space. On the other hand, the CRF-
based NER models are trained on manually anno-
tated data, and admit richer sequence and lexical
features. The entity label predictions made by the
NER model can potentially be leveraged to correct
alignment mistakes. For example, in Figure 1, if
the tagger knows that the word “Agency” is tagged
I-ORG, and if it also knows that the first comma
in the Chinese sentence is not part of any entity,
then we can infer it is very unlikely that there ex-
ists an alignment link between “Agency” and the
comma.

To capture this intuition, we extend the BI-NER
model to jointly perform word alignment and NER
decoding, and call the resulting model BI-NER-
WA. As a first step, instead of taking the output
from an aligner as fixed input, we incorporate two
uni-directional aligners into our model. We name
the Chinese-to-English aligner model as m(Be)
and the reverse directional model n(Bf ). Be is
a matrix that holds the output of the Chinese-to-
English aligner. Each be(i, j) binary variable in
Be indicates whether fj is aligned to ei; similarly
we define output matrix Bf and bf (i, j) for Chi-
nese. In our experiments, we used two HMM-
based alignment models. But in principle we can
adopt any alignment model as long as we can per-
form efficient inference over it.

We introduce a cross-lingual edge factor ζ(i, j)
in the undirected graphical model for every pair of
word indices (i, j), which predicts a binary vari-
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Algorithm 2 DD inference algorithm for joint
alignment and NER model. A line marked with (2)

means it applies to the BI-NER model; a line marked with

(3) means it applies to the BI-NER-WA model.

S ← A (2)
S ← {(i, j) : ∀i ∈ |e|, ∀j ∈ |f |} (3)
∀i ∈ |e| : wei = 0; ∀j ∈ |f | : wfj = 0 (2,3)
∀(i, j) ∈ S : de(i, j) = 0, df (i, j) = 0 (3)
for t← 1 to T do
ye(k)∗ ← argmax k

(
ye(k)

)
+
∑
i∈|e|

wei y
e(k)

i (2,3)

yf(l)∗ ← argmax l
(
yf(l)

)
+
∑
i∈|f |

wfj y
f(l)

j (2,3)

Be∗←argmax m (Be) +
∑
(i,j)

de(i, j)be(i, j) (3)

Bf∗←argmax n
(
Bf
)
+
∑
(i,j)

df(i, j)bf(i, j) (3)

for all (i, j) ∈ S do
(ye

(h)∗
i yf

(h)∗
j )← −wei ye

(h)

i − wfj yf
(h)

j

+ argmax h(i,j)(y
e(q)

i yf
(q)

j ) (2)

(ye
(q)∗
i yf

(q)∗
j a(i, j)∗)← −wei ye

(q)

i − wfj yf
(q)

j

+ argmax q(i,j)(y
e(q)

i yf
(q)

j a(i, j))

− de(i, j)a(i, j)− df(i, j)a(i, j) (3)
end for
Conv = (ye

(k)

=ye
(q) ∧ yf

(l)

=yf
(q)

) (2)
Conv = (Be=A=Bf ∧ ye

(k)

=ye
(q)∧ yf

(l)

=yf
(q)

) (3)
if Conv = true , then

return
(
ye(k)∗

,yf(l)∗
)

(2)

return
(
ye(k)∗

,yf(l)∗ ,A
)

(3)
else

for all i ∈ |e| do
we
i ← we

i + αt
(
ye

(q|h)∗
i − ye(k)∗

i

)
(2,3)

end for
for all j ∈ |f | do
wf
j ← wf

j + αt
(
yf

(q|h)∗
j − yf(l)∗j

)
(2,3)

end for
for all (i, j) ∈ S do
de(i, j)← de(i, j) + αt (a

e∗(i, j)− be∗(i, j)) (3)
df(i, j)← df(i, j) + αt

(
af∗(i, j)− bf∗(i, j)

)
(3)

end for
end if

end for
return

(
ye(k)∗
(T) ,yf(l)∗

(T)

)
(2)

return
(
ye(k)∗
(T) ,yf(l)∗

(T) ,A(T )

)
(3)

able a(i, j) for an alignment link between ei and
fj . The edge factor also predicts the entity tags for
ei and fj .

The new edge potential q is defined as:

q(i,j)

(
ye
i , y

f
j , a(i, j)

)
=

log(P (a(i, j) = 1)) + S(ye
i , y

f
j |a(i, j))P (a(i,j)=1)

S(ye
i , y

f
j |a(i, j))=

{
pmi(ye

i , y
f
j), if a(i, j) = 1

0, else

P (a(i, j) = 1) is the alignment probability as-
signed by the bilingual edge factor between node
ei and fj . We initialize this value to P̂ (ei, fj) =
1
2(Pm(ei, fj) + Pn(ei, fj)), where Pm(ei, fj) and
Pn(ei, fj) are the posterior probabilities assigned
by the HMM-aligners.

The joint optimization problem is defined as:

max
ye(k)yf(l)ye(h)

yf(h)
BeBfA

k(ye(k)) + l(yf (l))+

m(Be) + n(Bf) +
∑

(i∈|e|,j∈|f |)
q(i,j)(y

eh

i , y
f (h)

j , a(i, j))

3 ∀(i, j) :
(
be(i, j)=a(i, j)

)
∧
(
bf (i, j)=a(i, j)

)

∧ if a(i, j) = 1 then
(
ye

(k)

i =ye
(h)

i

)
∧
(
yf

(l)

j =yf
(h)

j

)

We include two dual constraints de(i, j) and
df (i, j) over alignments for every bilingual edge
factor ζ(i, j), which are applied to the English and
Chinese sides of the alignment space, respectively.

The DD algorithm used for this model is given
in Algorithm 2 (case 3). One special note is that
after each iteration when we consider updates to
the dual constraint for entity tags, we only check
tag agreements for cross-lingual edge factors that
have an alignment assignment value of 1. In other
words, cross-lingual edges that are not aligned do
not affect bilingual NER tagging.

Similar to φ(i, j), ζ(i, j) factors do not provide
that much additional information other than some
selectional preferences via PMI score. But the
real power of these cross-language edge cliques
is that they act as a liaison between the NER
and alignment models on each language side, and
encourage these models to indirectly agree with
each other by having them all agree with the edge
cliques.

It is also worth noting that since we decode
the alignment models with Viterbi inference, ad-
ditional constraints such as the neighborhood con-
straint proposed by DeNero and Macherey (2011)
can be easily integrated into our model. The
neighborhood constraint enforces that if fj is
aligned to ei, then fj can only be aligned to ei+1

or ei−1 (with a small penalty), but not any other
word position. We report results of adding neigh-
borhood constraints to our model in Section 6.

4 Experimental Setup

We evaluate on the large OntoNotes (v4.0) cor-
pus (Hovy et al., 2006) which contains manually
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annotated NER tags for both Chinese and En-
glish. Document pairs are sentence aligned us-
ing the Champollion Tool Kit (Ma, 2006). Af-
ter discarding sentences with no aligned counter-
part, a total of 402 documents and 8,249 paral-
lel sentence pairs were used for evaluation. We
will refer to this evaluation set as full-set. We use
odd-numbered documents as the dev set and even-
numbered documents as the blind test set. We
did not perform parameter tuning on the dev set
to optimize performance, instead we fix the ini-
tial learning rate to 0.5 and maximum iterations to
1,000 in all DD experiments. We only use the dev
set for model development.

The Stanford CRF-based NER tagger was used
as the monolingual component in our models
(Finkel et al., 2005). It also serves as a state-
of-the-art monolingual baseline for both English
and Chinese. For English, we use the default tag-
ger setting from Finkel et al. (2005). For Chi-
nese, we use an improved set of features over the
default tagger, which includes distributional sim-
ilarity features trained on large amounts of non-
overlapping data.1

We train the two CRF models on all portions
of the OntoNotes corpus that are annotated with
named entity tags, except the parallel-aligned por-
tion which we reserve for development and test
purposes. In total, there are about 660 train-
ing documents (∼16k sentences) for Chinese and
1,400 documents (∼39k sentences) for English.

Out of the 18 named entity types that are an-
notated in OntoNotes, which include person, lo-
cation, date, money, and so on, we select the four
most commonly seen named entity types for evalu-
ation. They are person, location, organization and
GPE. All entities of these four types are converted
to the standard BIO format, and background to-
kens and all other entity types are marked with
tag O. When we consider label agreements over
aligned word pairs in all bilingual agreement mod-
els, we ignore the distinction between B- and I-
tags.

We report standard NER measures (entity pre-
cision (P), recall (R) and F1 score) on the test
set. Statistical significance tests are done using the
paired bootstrap resampling method (Efron and
Tibshirani, 1993).

For alignment experiments, we train two uni-
1The exact feature set and the CRF implementation

can be found here: http://nlp.stanford.edu/
software/CRF-NER.shtml

directional HMM models as our baseline and
monolingual alignment models. The parameters
of the HMM were initialized by IBM Model 1 us-
ing the agreement-based EM training algorithms
from Liang et al. (2006). Each model is trained
for 2 iterations over a parallel corpus of 12 mil-
lion English words and Chinese words, almost
twice as much data as used in previous work that
yields state-of-the-art unsupervised alignment re-
sults (DeNero and Klein, 2008; Haghighi et al.,
2009; DeNero and Macherey, 2011).

Word alignment evaluation is done over the
sections of OntoNotes that have matching gold-
standard word alignment annotations from GALE
Y1Q4 dataset.2 This subset contains 288 docu-
ments and 3,391 sentence pairs. We will refer
to this subset as wa-subset. This evaluation set
is over 20 times larger than the 150 sentences
set used in most past evaluations (DeNero and
Klein, 2008; Haghighi et al., 2009; DeNero and
Macherey, 2011).

Alignments input to the BI-NER model are
produced by thresholding the averaged posterior
probability at 0.5. In joint NER and alignment ex-
periments, instead of posterior thresholding, we
take the direct intersection of the Viterbi-best
alignment of the two directional models. We re-
port the standard P, R, F1 and Alignment Error
Rate (AER) measures for alignment experiments.

An important past work to make comparisons
with is Burkett et al. (2010b). Their method
is similar to ours in that they also model bilin-
gual agreement in conjunction with two CRF-
based monolingual models. But instead of using
just the PMI scores of bilingual NE pairs, as in
our work, they employed a feature-rich log-linear
model to capture bilingual correlations. Parame-
ters in their log-linear model require training with
bilingually annotated data, which is not readily
available. To counter this problem, they proposed
an “up-training” method which simulates a super-
vised learning environment by pairing a weak clas-
sifier with strong classifiers, and train the bilin-
gual model to rank the output of the strong classi-
fier highly among the N-best outputs of the weak
classifier. In order to compare directly with their
method, we obtained the code behind Burkett et
al. (2010b) and reproduced their experimental set-
ting for the OntoNotes data. An extra set of 5,000
unannotated parallel sentence pairs are used for

2LDC Catalog No. LDC2006E86.
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Chinese English
P R F1 P R F1

Mono 76.89 61.64 68.42 81.98 74.59 78.11
Burkett 77.52 65.84 71.20 82.28 76.64 79.36
Bi-soft 79.14 71.55 75.15 82.58 77.96 80.20

Table 1: NER results on bilingual parallel test set.
Best numbers on each measure that are statistically
significantly better than the monolingual baseline
and Burkett et al. (2010b) are highlighted in bold.

training the reranker, and the reranker model se-
lection was performed on the development dataset.

5 Bilingual NER Results

The main results on bilingual NER over the test
portion of full-set are shown in Table 1. We
initially experimented with the hard agreement
model, but it performs quite poorly for reasons we
discussed in Section 2.2. The BI-NER model with
soft agreement constraints, however, significantly
outperforms all baselines. In particular, it achieves
an absolute F1 improvement of 6.7% in Chinese
and 2.1% in English over the CRF monolingual
baselines.

A well-known issue with the DD method is
that when the model does not necessarily con-
verge, then the procedure could be very sensi-
tive to hyper-parameters such as initial step size
and early termination criteria. If a model only
gives good performance with well-tuned hyper-
parameters, then we must have manually anno-
tated data for tuning, which would significantly
reduce the applicability and portability of this
method to other language pairs and tasks. To eval-
uate the parameter sensitivity of our model, we
run the model from 50 to 3000 iterations before
early stopping, and with 6 different initial step
sizes from 0.01 to 1. The results are shown in Fig-
ure 2. The soft agreement model does not seem to
be sensitive to initial step size and almost always
converges to a superior solution than the baseline.

6 Joint NER and Alignment Results

We present results for the BI-NER-WA model
in Table 2. By jointly decoding NER with word
alignment, our model not only maintains signifi-
cant improvements in NER performance, but also
yields significant improvements to alignment per-
formance. Overall, joint decoding with NER alone
yields a 10.8% error reduction in AER over the
baseline HMM-aligners, and also gives improve-
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Figure 2: Performance variance of the soft agree-
ment models on the Chinese dev dataset, as a func-
tion of step size (x-axis) and maximum number of
iterations before early stopping (y-axis).

ment over BI-NER in NER. Adding additional
neighborhood constraints gives a further 6% er-
ror reduction in AER, at the cost of a small loss
in Chinese NER. In terms of word alignment re-
sults, we see great increases in F1 and recall, but
precision goes down significantly. This is be-
cause the joint decoding algorithm promotes an ef-
fect of “soft-union”, by encouraging the two uni-
directional aligners to agree more often. Adding
the neighborhood constraints further enhances this
union effect.

7 Error Analysis and Discussion

We can examine the example in Figure 3 to gain
an understanding of the model’s performance. In
this example, a snippet of a longer sentence pair is
shown with NER and word alignment results. The
monolingual Chinese tagger provides a strong cue
that word f6 is a person name because the unique
4-character word pattern is commonly associated
with foreign names in Chinese, and also the word
is immediately preceded by the word “president”.
The English monolingual tagger, however, con-
fuses the aligned word e0 with a GPE.

Our bilingual NER model is able to correct this
error as expected. Similarly, the bilingual model
corrects the error over e11. However, the model
also propagates labeling errors from the English
side over the entity “Tibet Autonomous Region” to
the Chinese side. Nevertheless, the resulting Chi-
nese tags are arguably more useful than the origi-
nal tags assigned by the baseline model.

In terms of word alignment, the HMM models
failed badly on this example because of the long
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NER-Chinese NER-English word alignment
P R F1 P R F1 P R F1 AER

HMM-WA - - - - - - 90.43 40.95 56.38 43.62
Mono-CRF 82.50 66.58 73.69 84.24 78.70 81.38 - - - -
Bi-NER 84.87 75.30 79.80 84.47 81.45 82.93 - - - -
Bi-NER-WA 84.42 76.34 80.18 84.25 82.20 83.21 77.45 50.43 61.09 38.91
Bi-NER-WA+NC 84.25 75.09 79.41 84.28 82.17 83.21 76.67 54.44 63.67 36.33

Table 2: Joint alignment and NER test results. +NC means incorporating additional neighbor constraints
from DeNero and Macherey (2011) to the model. Best number in each column is highlighted in bold.

f0 f1 f2 f3 f4 f5 f6

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

Suolangdaji , president of Tibet Auto. Region branch of Bank of China
B-PER O O O B-GPE I-GPE I-GPE O O B-ORG I-ORG I-ORG
B-PER O O O [B-LOC] [I-LOC] [I-LOC] O O B-ORG I-ORG I-ORG
[B-GPE] O O O [B-LOC] [I-LOC] [I-LOC] O O [O] [O] [B-GPE]

中国 银行 西藏 自治区 分行 行长 索朗达吉
B-ORG I-ORG B-GPE O O O B-PER
B-ORG I-ORG [B-LOC] [I-LOC] O O B-PER
B-ORG I-ORG [O] O O O B-PER

Figure 3: An example output of our BI-NER-WA model. Dotted alignment links are the oracle, dashed
links are alignments from HMM baseline, and solid links are outputs of our model. Entity tags in the
gold line (closest to nodes ei and fj) are the gold-standard tags; in the green line (second closest to
nodes) are output from our model; and in the crimson line (furthest from nodes) are baseline output.

distance swapping phenomena. The two unidirec-
tional HMMs also have strong disagreements over
the alignments, and the resulting baseline aligner
output only recovers two links. If we were to take
this alignment as fixed input, most likely we would
not be able to recover the error over e11, but the
joint decoding method successfully recovered 4
more links, and indirectly resulted in the NER tag-
ging improvement discussed above.

8 Related Work

The idea of employing bilingual resources to im-
prove over monolingual systems has been ex-
plored by much previous work. For example,
Huang et al. (2009) improved parsing performance
using a bilingual parallel corpus. In the NER
domain, Li et al. (2012) presented a cyclic CRF
model very similar to our BI-NER model, and
performed approximate inference using loopy be-
lief propagation. The feature-rich CRF formula-
tion of bilingual edge potentials in their model is
much more powerful than our simple PMI-based
bilingual edge model. Adding a richer bilingual
edge model might well further improve our results,
and this is a possible direction for further experi-
mentation. However, a big drawback of this ap-

proach is that training such a feature-rich model
requires manually annotated bilingual NER data,
which can be prohibitively expensive to generate.
How and where to obtain training signals with-
out manual supervision is an interesting and open
question. One of the most interesting papers in this
regard is Burkett et al. (2010b), which explored
an “up-training” mechanism by using the outputs
from a strong monolingual model as ground-truth,
and simulated a learning environment where a
bilingual model is trained to help a “weakened”
monolingual model to recover the results of the
strong model. It is worth mentioning that since
our method does not require additional training
and can take pretty much any existing model as
“black-box” during decoding, the richer and more
accurate bilingual model learned from Burkett et
al. (2010b) can be directly plugged into our model.

A similar dual decomposition algorithm to ours
was proposed by Riedel and McCallum (2011)
for biomedical event detection. In their Model
3, the trigger and argument extraction models
are reminiscent of the two monolingual CRFs in
our model; additional binding agreements are en-
forced over every protein pair, similar to how we
enforce agreement between every aligned word
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pair. Martins et al. (2011b) presented a new DD
method that combines the power of DD with the
augmented Lagrangian method. They showed
that their method can achieve faster convergence
than traditional sub-gradient methods in models
with many overlapping components (Martins et
al., 2011a). This method is directly applicable to
our work.

Another promising direction for improving
NER performance is in enforcing global label
consistency across documents, which is an idea
that has been greatly explored in the past (Sut-
ton and McCallum, 2004; Bunescu and Mooney,
2004; Finkel et al., 2005). More recently, Rush
et al. (2012) and Chieu and Teow (2012) have
shown that combining local prediction models
with global consistency models, and enforcing
agreement via DD is very effective. It is straight-
forward to incorporate an additional global consis-
tency model into our model for further improve-
ments.

Our joint alignment and NER decoding ap-
proach is inspired by prior work on improving
alignment quality through encouraging agreement
between bi-directional models (Liang et al., 2006;
DeNero and Macherey, 2011). Instead of enforc-
ing agreement in the alignment space based on
best sequences found by Viterbi, we could opt
to encourage agreement between posterior prob-
ability distributions, which is related to the pos-
terior regularization work by Graça et al. (2008).
Cromières and Kurohashi (2009) proposed an ap-
proach that takes phrasal bracketing constraints
from parsing outputs, and uses them to enforce
phrasal alignments. This idea is similar to our joint
alignment and NER approach, but in our case the
phrasal constraints are indirectly imposed by en-
tity spans. We also differ in the implementation
details, where in their case belief propagation is
used in both training and Viterbi inference.

Burkett et al. (2010a) presented a supervised
learning method for performing joint parsing and
word alignment using log-linear models over parse
trees and an ITG model over alignment. The
model demonstrates performance improvements
in both parsing and alignment, but shares the com-
mon limitations of other supervised work in that it
requires manually annotated bilingual joint pars-
ing and word alignment data.

Chen et al. (2010) also tackled the problem of
joint alignment and NER. Their method employs a

set of heuristic rules to expand a candidate named
entity set generated by monolingual taggers, and
then rank those candidates using a bilingual named
entity dictionary. Our approach differs in that we
provide a probabilistic formulation of the problem
and do not require pre-existing NE dictionaries.

9 Conclusion

We introduced a graphical model that combines
two HMM word aligners and two CRF NER tag-
gers into a joint model, and presented a dual de-
composition inference method for performing ef-
ficient decoding over this model. Results from
NER and word alignment experiments suggest that
our method gives significant improvements in both
NER and word alignment. Our techniques make
minimal assumptions about the underlying mono-
lingual components, and can be adapted for many
other tasks such as parsing.
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Abstract

In some societies, internet users have to
create information morphs (e.g. “Peace
West King” to refer to “Bo Xilai”) to avoid
active censorship or achieve other com-
munication goals. In this paper we aim
to solve a new problem of resolving en-
tity morphs to their real targets. We ex-
ploit temporal constraints to collect cross-
source comparable corpora relevant to any
given morph query and identify target can-
didates. Then we propose various novel
similarity measurements including surface
features, meta-path based semantic fea-
tures and social correlation features and
combine them in a learning-to-rank frame-
work. Experimental results on Chinese
Sina Weibo data demonstrate that our ap-
proach is promising and significantly out-
performs baseline methods1.

1 Introduction

Language constantly evolves to maximize com-
municative success and expressive power in daily
social interactions. The proliferation of online so-
cial media significantly expedites this evolution,
as new phrases triggered by social events may be
disseminated rapidly in social media. To automati-
cally analyze such fast evolving language in social
media, new computational models are demanded.

In this paper, we focus on one particular lan-
guage evolution that creates new ways to commu-
nicate sensitive subjects because of the existence
of internet information censorship. We call this

1Some of the resources and open source programs devel-
oped in this work are made freely available for research pur-
pose at http://nlp.cs.qc.cuny.edu/Morphing.tar.gz

phenomenon information morph. For example,
when Chinese online users talk about the former
politician “Bo Xilai”, they use a morph “Peace
West King” instead, a historical figure four hun-
dreds years ago who governed the same region
as Bo. Morph can be considered as a special
case of alias used for hiding true entities in ma-
licious environment (Hsiung et al., 2005; Pantel,
2006). However, social network plays an impor-
tant role in generating morphs. Usually morphs
are generated by harvesting the collective wisdom
of the crowd to achieve certain communication
goals. Aside from the purpose of avoiding cen-
sorship, other motivations for using morph include
expressing sarcasm/irony, positive/negative senti-
ment or making descriptions more vivid toward
some entities or events. Table 1 presents the wide
range of cases that are used to create the morphs.
We can see that a morph can be either a regular
term with new meaning or a newly created term.

Morph Target Motivation
Peace West King Bo Xilai Sensitive
Blind Man Chen Guangcheng Sensitive
Miracle Brother Wang Yongping Irony
Kim Fat Kim Joing-il Negative
Kimchi Country South Korea Vivid

Table 1: Morph Examples and Motivations.

We believe that successful resolution of morphs
is a crucial step for automated understanding of
the fast evolving social media language, which
is important for social media marketing (Bar-
wise and Meehan, 2010). Another application
is to help common users without enough back-
ground/cultural knowledge to understand internet
language for their daily use. Furthermore, our ap-
proaches can also be applied for satire or other im-
plicit meaning recognition, as well as information
extraction (Bollegala et al., 2011).
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However, morph resolution in social media is
challenging due to the following reasons. First,
the sensitive real targets that exist in the same
data source under active censorship are often au-
tomatically filtered. Table 2 presents the distribu-
tions of some examples of morphs and their tar-
gets in English Twitter and Chinese Sina Weibo.
For example, the target “Chen Guangcheng” only
appears once in Weibo. Thus, the co-occurrence
of a morph and its target is quite low in the vast
amount of information in social media. Second,
most morphs were not created based on pronunci-
ations, spellings or other encryptions of their origi-
nal targets. Instead, they were created according to
semantically related entities in historical and cul-
tural narratives (e.g. “Peace West King” as morph
of “Bo Xilai”) and thus very difficult to capture
based on typical lexical features. Third, tweets
from Twitter/Chinese Weibo are short (only up to
140 characters) and noisy, resulting in difficult ex-
traction of rich and accurate evidences due to the
lack of enough contexts.

 
Frequency in  

Twitter 
Frequency in  

Weibo 
Morph Target 

Morph Target Morph Target 
Hu Ji Hu Jintao 1 3,864 2,611 71 
Blind  
Man 

Chen  
Guangcheng

18 2,743 20,941 1 

Baby Wen Jiabao 2238 2021 26,279 8 
 

Table 2: Distributions of Morph Examples

To the best of our knowledge, this is the first
work to use NLP and social network analysis tech-
niques to automatically resolve morphed informa-
tion. To address the above challenges, our paper
offers the following novel contributions.

• We detect target candidates by exploiting the
dynamics of the social media to extract tem-
poral distribution of entities, based on the as-
sumption that the popularity of an individ-
ual is correlated between censored and un-
censored text within a certain time window.

• Our approach builds and analyzes heteroge-
neous information networks from multiple
sources, such as Twitter, Sina Weibo and web
documents in formal genre (e.g. news) be-
cause a morph and its target tend to appear in
similar contexts.

• We propose two new similarity measures, as
well as integrating temporal information into

the similarity measures to generate global se-
mantic features.

• We model social user behaviors and use so-
cial correlation to assist in measuring seman-
tic similarities because the users who posted
a morph and its corresponding target tend to
share similar interests and opinions.

Our experiments demonstrate that the pro-
posed approach significantly outperforms tradi-
tional alias detection methods (Hsiung et al.,
2005).

2 Approach Overview 
 
 

Morph Query 
 
 Comparable Data Acquisition
 
 
 

Target Candidate Ranking 

Target

Learning to Rank 

Semantic Features

Semantic Annotation and  
Target Candidate Identification

Surface Features Social Features

Censored 
Data

Uncensored 
Data

Figure 1: Overview of Morph Resolution

Given a morph query m, the goal of morph res-
olution is to find its real target. Figure 1 depicts
the general procedure of our approach. It consists
of two main sub-tasks:

• Target Candidate Identification: For each
m, discover a list of target candidates E =
{e1, e2, ..., eN}. First, relevant comparable
data sets that include m are retrieved. In
this paper we collect comparable censored
data from Weibo and uncensored data from
Twitter and Web documents such as news ar-
ticles. We then apply various annotations
such as word segmentation, part-of-speech
tagging, noun phrase chunking, name tagging
and event extraction to these data sets.

• Target Candidate Ranking: Rank the target
candidates in E. We explore various features
including surface, semantic and social fea-
tures, and incorporate them into a learning to
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rank framework. Finally, the top ranked can-
didate is produced as the resolved target.

3 Target Candidate Identification

The general goal of the first step is to identify a list
of target candidates for each morph query from the
comparable corpora including Sina Weibo, Chi-
nese News websites and English Twitter. How-
ever, obviously we cannot consider all of the
named entities in these sources as target candi-
dates due to the sheer volume of information. In
addition, morphs are not limited to named entity
forms. In order to narrow down the scope of tar-
get candidates, we propose a Temporal Distribu-
tion Assumption as follows. The intuition is that
a morph m and its real target e should have sim-
ilar temporal distributions in terms of their occur-
rences. Suppose the data sets are separated into Z
temporal slots (e.g. by day), the assumption can
be stated as:

Let Tm = {tm1, tm2, ..., tmZm} be the set of
temporal slots each morph m occurs, and Te =
{te1, te2, ..., teZe} be the set of slots a target can-
didate e occurs. Then e is considered as a target
candidate of m if and only if, for each tmi ∈ Tm
(i = 1, 2, ..., Zm), there exist a j ∈ {1, 2, ..., Ze}
such that tmi − tej ≤ δ, where δ is a threshold
value (in this paper we set the threshold to 7 days,
which is optimized from a development set). For
comparison we also attempted topic modeling ap-
proach to detect target candidates, as shown in sec-
tion 5.3.

4 Target Candidate Ranking

Next, we propose a learning-to-rank framework to
rank target candidates based on various levels of
novel features based on surface, semantic and so-
cial analysis.

4.1 Surface Features

We first extract surface features between the
morph and the candidate based on measuring or-
thographic similarity measures which were com-
monly used in entity coreference resolution (e.g.
(Ng, 2010; Hsiung et al., 2005)). The measures
we use include “string edit distance”, “normalized
string edit distance” (Wagner and Fischer, 1974)
and “longest common subsequence” (Hirschberg,
1977).

4.2 Semantic Features

4.2.1 Motivations
Fortunately, although a morph and its target may
have very different orthographic forms, they tend
to be embedded in similar semantic contexts
which involve similar topics and events. Figure 2
presents some example messages under censor-
ship (Weibo) and not under censorship (Twitter
and Chinese Daily). We can see that they include
similar topics, events (e.g., “fell from power”,
“gang crackdown”, “sing red songs”), and se-
mantic relations (e.g., family relations with “Bo
Guagua”). Therefore if we can automatically ex-
tract and exploit these indicative semantic con-
texts, we can narrow down the real targets effec-
tively.

 Peace West King from Chongqing
fell from power, still need to sing 
red songs?

 There is no difference between that 
guy’s plagiarism and Buhou’s gang 
crackdown.

 Remember that Buhou said that his 
family was not rich at the press 
conference a few days before he 
fell from power. His son Bo 
Guagua is supported by his 
scholarship.

 Bo Xilai: ten thousand letters of 
accusation have been received during 
Chongqing gang crackdown.

 The webpage of “Tianze Economic 
Study Institute” owned by the liberal 
party has been closed. This is the first 
affected website of the liberal party 
after Bo Xilai fell from power.

 Bo Xilai gave an explanation about the 
source of his son, Bo Guagua’s 
tuition.

 Bo Xilai led Chongqing city leaders 
and 40 district and county party and 
government leaders to sing red songs.

Weibo (censored) Twitter and Chinese News (uncensored)

Figure 2: Cross-source Comparable Data Example
(each morph and target pair is shown in the same
color)

4.2.2 Information Network Construction
We define an information network as a directed
graph G = (V, E) with an object type mapping
function τ : V → A and a link type mapping func-
tion φ : E → R, where each object v ∈ V belongs
to one particular object type τ(v) ∈ A, each link
e ∈ E belongs to a particular relation φ(e) ∈ R.
If two links belong to the same relation type, then
they share the same starting object type as well as
the same ending object type. An information net-
work is homogeneous if and only if there is only
one type for both objects and links, and an infor-
mation network is heterogeneous when the objects
are from multiple distinct types or there exist more
than one type of links.

In order to construct the information networks
for morphs, we apply the Standford Chinese word
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segmenter with Chinese Penn Treebank segmen-
tation standard (Chang et al., 2008) and Stan-
ford part-of-speech tagger (Toutanova et al., 2003)
to process each sentence in the comparable data
sets. Then we apply a hierarchical Hidden Markov
Model (HMM) based Chinese lexical analyzer
ICTCLAS (Zhang et al., 2003) to extract named
entities, noun phrases and events.

We have also attempted using the results from
Dependency Parsing, Relation Extraction and
Event Extraction tools (Ji and Grishman, 2008)
to enrich the link types. Unfortunately the state-
of-the-art techniques for these tasks still perform
poorly on social media in terms of both accuracy
and coverage of important information, these so-
phisticated semantic links all produced negative
impact on the target ranking performance. There-
fore we limited the types of vertices into: Morph
(M), Entity(E), which includes target candidates,
Event (EV), and Non-Entity Noun Phrases (NP);
and used co-occurrence as the edge type. We ex-
tract entities, events, and non-entity noun phrases
that occur in more than one tweet as neighbors.
And for two vertices xi and xj , the weight wij
of their edge is the frequency they co-occur to-
gether within the tweets. A network schema of
such networks is shown in Figure 3. Figure 4

M E

NPEV

Figure 3: Network Schema of Morph-Related Het-
erogeneous Information Network

presents an example of a heterogeneous informa-
tion network from the motivation examples fol-
lowing the above network schema, which connects
the morphs “Peace West King”, “Buhou” and their
corresponding target “Bo Xilai”.

4.2.3 Meta-Path-Based Semantic Similarity
Measurements

Given the constructed network, a straightforward
solution for finding the target for a morph is to use
link-based similarity search. However, now ob-
jects are linked to different types of neighbors, if
all neighbors are treated as the same, it may cause
information loss problems. For example, the en-
tity “重庆 (Chongqing)” is a very important aspect
characterizing the politician “薄熙来(Bo Xilai)”

Gang 
Crackdown 

Fell From 
Power

Chongqing

Sing Red 
Songs

Buhou

Peace West 
King

Bo Xilai

Bo Guagua

Entity

Entity

Entity

Event

Event

Event

Morph

Morph

Figure 4: Example of Morph-Related Heteroge-
neous Information Network

since he governed it, and if a morph m which is
also highly correlated with “重庆 (Chongqing)”, it
is very likely that “Bo Xilai” is the real target ofm.
Therefore, the semantic features generated from
neighbors such as the entity “重庆 (Chongqing)”
should be treated differently from other types of
neighbors such as “人才(talented people)” .

In this work, we propose to measure the simi-
larity of two nodes over heterogeneous networks
as shown in Figure 3, by distinguishing neighbors
into three types according to the network schema
(i.e. entities, events, non-entity noun phrases). We
then adopt meta-path-based similarity measures
(Sun et al., 2011a; Sun et al., 2011b), which are
defined over heterogeneous networks to extract se-
mantic features. A meta-path is a path defined over
a network, and composed of a sequence of rela-
tions between different object types. For example,
as shown in Figure 3, a morph and its target can-
didate can be connected by three meta-paths, in-
cluding “M - E - E”, “M - EV - E”, and “M - NP
- E”. Intuitively, each meta-path provides a unique
angle to measure how similar two objects are.

For the determined meta-paths, we extract se-
mantic features using the similarity measures pro-
posed in (Sun et al., 2011a; Hsiung et al., 2005).
We denote the neighbor sets of certain type for a
morph m and a target candidate e as Γ(m) and
Γ(e), and a meta-path as P . We now list several
meta-path-based similarity measures below.

Common neighbors (CN). It measures the num-
ber of common neighbors that m and e share as
|Γ(m) ∩ Γ(e)|.

Path count (PC). It measures the number of path
instances betweenm and e following meta-pathP .

Pairwise random walk (PRW). For a meta-
path P that can be decomposed into two shorter
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meta-paths with the same length P = (P1P2),
pairwise random walk measures the probabil-
ity of the pairwise random walk starting from
both m and e and reaching the same mid-
dle object. More formally, it is computed as∑

(p1p2)∈(P1P2) prob(p1)prob(p−1
2 ), where p−1

2 is
the inverse of p2.

Kullback-Leibler distance (KLD). For m and
e, the pairwise random walk probability of their
neighbors can be represented as two probability
vectors, then Kullback-Leibler distance (Hsiung
et al., 2005) can be used to compute sim(m, e).

Beyond the above similarity measures, we also
propose to use cosine-similarity-style normaliza-
tion method to modify common neighbor and pair-
wise random walk measures so that we can ensure
the morph node and the target candidate node are
strongly connected and also have similar popular-
ity. The modified algorithms penalize features in-
volved with the highly popular objects, since they
are more likely to have accidental interactions with
each other.

Normalized common neighbors (NCN). Nor-
malized common neighbors can be measured as
sim(m, e) = |Γ(m)∩Γ(e)|√

|Γ(m)|
√
|Γ(e)|

. It refines the simple

counting of common neighbors by avoiding bias
to highly visible or concentrated objects.

Pairwise random walk/cosine (PRW/cosine).
Pairwise random walk measures linkage weights
disproportionately with their visibility to their
neighbors, which may be too strong. Instead, we
propose to use a tamer normalization method as∑

(p1p2)∈(P1P2) f(p1)f(p−1
2 ), where.

f(p1) =
count(m,x)√∑
x∈Ω count(m,x)

,

f(p2) =
count(e, x)√∑
x∈Ω count(e, x)

,

and Ω is the set of middle objects connecting the
decomposed meta-paths p1 and p−1

2 , count(y, x)
is the total number of paths between y and the mid-
dle object x, y could be m or e.

The above similarity measures can also be ap-
plied to homogeneous networks that do not differ-
entiate the neighbor types.

4.2.4 Global Semantic Feafure Generation
A morph tends to have higher temporal correlation
with its real target, and share more similar topics
compared to other irrelevant targets. Therefore,
we propose to incorporate temporal information

into similarity measures to generate global seman-
tic features.

Let T = t1 ∪ t2 ∪ ... ∪ tN be a set of temporal
slots (i.e. by day),E be the set of target candidates
for each morphm. Then for each ti ∈ T , and each
e ∈ E, the local semantic features simti(m, e)
is extracted based only on the information posted
within ti using one of the similarity measures in-
troduced in Section 4.2.3. Then we propose two
approaches to generate global semantic features.
The first approach is adding the similarity score
between m and e in each temporal slot to attain
the first set of global features:

simglobal sum(m, e) =
∑

ti∈T
simti(m, e).

The second method first normalizes the similarity
score in each temporal slot ti, them sum the nor-
malized scores to generate the second set of global
features, which can be calculated as

simglobal norm(m, e) =
∑

ti∈T
normti(m, e).

where normti(m, e) =
simti (m,e)∑
e∈E simti (m,e)

.

4.2.5 Integrate Cross Source/Cross Genre
Information

Due to internet information censorship or surveil-
lance, users may need to use morphs to post sensi-
tive information. For example, the Chinese Weibo
message “都进去了,还要贡着不厚吗 (Already
put in prison, still need to serve Buhou?” include
a morph不厚 (Buhou). In contrast, users are less
restricted in some other uncensored social media
such as Twitter. For example, the tweet from Twit-
ter “...把薄熙来称作“平西王”或者“不厚”...
(...call Bo Xilai“peace west king” or “buhou”...)”
contains both the morph and the real target 薄熙
来 (Bo Xilai). Therefore, we propose to integrate
information from another source (e.g. Twitter) to
help resolution of sensitive morphs in Weibo.

Another difficulty from morph resolution in
micro-blogging is that tweets are only allowed to
contain maximum 140 characters with a lot of
noise and diverse topics. The shortness and di-
versity of tweets may limit the power of content
analysis for semantic feature extraction. However,
formal genres such as web documents are cleaner
and contain richer contexts, thus can provide more
topically related information. In this work, we also
exploit the background web documents from the
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embedded URLs in tweets to enrich information
network construction. After applying the same an-
notation techniques as tweets for uncensored data
sets, sentence-level co-occurrence relations are ex-
tracted and integrated into the network as shown in
Figure 3.

4.3 Social Features
It has been shown that there exist correlation be-
tween neighbors in social networks (Anagnos-
topoulos et al., 2008; Wen and Lin, 2010). Be-
cause of such social correlation, close social
neighbors in social media such as Twitter and
Weibo may post similar information, or share sim-
ilar opinion. Therefore, we can utilize social cor-
relation to assist in resolving morphs.

As social correlation can be defined as a func-
tion of social distance between a pair of users, we
use social distance as a proxy to social correla-
tion in our approach. The social distance between
user i and j is defined by considering the degree
of separation in their interaction (e.g. retweet-
ing and mentioning) and the amount of the in-
teraction. Similar definition has been shown ef-
fective in characterizing social distance in social
networks extracted from communication data (Lin
et al., 2012; Wen and Lin, 2010). Specifically,
it is dist(i, j) =

∑K−1
k=1

1
strength(vk,vk+1) , where

v1, ..., vk are the nodes on the shortest path from
user i to user j, and strength(vk, vk+1) measures
the strength of interactions between vk and vk+1

as: strength(i, j) =
log(Xij)

maxj log(Xij)
, where Xij is

the total interactions between user i and j, includ-
ing both retweeting and mentioning (If Xij < 10,
we set strength(i, j) = 0).

We integrate social correlation and temporal in-
formation to define our social features. The in-
tuition is that when a morph is used by an user,
the real target may also in the posts by the user or
his/her close friends within a certain time period.
Let T be the set of temporal slots a morph m oc-
curs, Ut be the set of users whose posts include m
in slot t where t ∈ T , and Uc be the set of close
friends (i.e., social distance < 0.5) for Ut. The
social features are defined as

s(m, e) =

∑
t∈T f(e, t, Ut, Uc)

|T | .

where f(e, t, Ut, Uc) is a indicator function which
return 1 if one of the users in Ut or Uc posts tweets
include the target candidate e within 7 days before
t.

4.4 Learning-to-Rank

Similar to (Hsiung et al., 2005; Sun et al., 2011a),
we then model the probability of linkage predic-
tion between a morph m and its target candidate
e as a function incorporating the surface, semantic
and social features. Given a training pair 〈m, e〉,
we choose the standard logistic regression model
to learn weights for the features defined above.
The learnt model is used to predict the probabil-
ity of linking an unseen morph and its target can-
didate. Based on the descending ranking order of
the probability, we select top k candidates as the
final answers based on the answer size k.

5 Experiments

Next, we present the experiment under various set-
tings shown in Table 3, and the impacts of cross
source and cross genre information.

5.1 Data and Evaluation Metric

We collected 1, 553, 347 tweets from Chinese Sina
Weibo from May 1 to June 30 to construct the
censored data set, and retrieved 66, 559 web doc-
uments from the embedded URLs in tweets as the
initial uncensored data set. Retweets and redun-
dant web documents are filtered to ensure more
reliable frequency counting of co-occurrence rela-
tions. We asked two native Chinese annotators to
analyze the data, and construct a test set consisted
of 107 morph entities (81 persons and 26 loca-
tions) and their real targets as our references. We
verified the references by Web resources includ-
ing the summary of popular morphs in Wikipedia
2. In addition, we used 23 sensitive morphs and
the entities that appear in the tweets as queries and
retrieved 25, 128 Chinese tweets from 10% Twit-
ter feeds within the same time period, as well as
7, 473 web documents from the embedded URLs
and added them into the uncensored data set.

To evaluate the system performance, we use
leave-one-out cross validation by computing ac-
curacy as Acc@k = Ck

Q , where Ck is the to-
tal number of correctly resolved morphs at top
k ranked answers, and Q is the total number of
morph queries. We consider a morph as correctly
resolved at the top k answers if the top k answer
set contains the real target of the morph.

2http://zh.wikipedia.org/wiki/中国大陆网络语言列表
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Feature sets Descriptions
Surf Surface features
HomB Semantic features extracted from homogeneous CN, PC, PRW, and KLD
HomE HomB + semantic features extracted from homogeneous NCN and PRW/cosine
HetB Semantic features extracted from heterogeneous CN, PC, PRW and KLD
HetE HetB + Semantic features extracted from heterogeneous NCN and PRW/cosine
Glob∗ Global semantic features
Social Social network features

Table 3: Description of feature sets. ∗ Glob only uses the same set of similarity measures when combined
with other semantic features.

5.2 Resolution Performance

5.2.1 Single Genre Information

We first study the contributions of each set of sur-
face and semantic features, as shown in the first
five rows in Table 4. The poor performance based
on surface features shows that morph resolution
task is very challenging since 70% of morphs are
not orthographically similar to their real targets.
Thus, capturing a morph’s semantic meaning is
crucial. Overall, the results demonstrate the ef-
fectiveness of our proposed methods. Specifi-
cally, comparing “HomB” and “HetB”, “HomE”
and “HetE”, we can see that the semantic fea-
tures based on heterogeneous networks have ad-
vantages over those based on homogeneous net-
works. This corroborates that different neighbor
sets contribute differently, and such discrepancies
should be captured. And comparisions of “HomB”
and “HomE”, “HetB” and “HetE”demonstrate the
effectiveness of our two new proposed measures.
To evaluate the importance of each similarity mea-
sures, we delete the semantic features obtained
from each measure in “HetE” and re-evaluate the
system. We find that NCN is the most effective
measure, while KLD is the least important one.
Further adding the global semantic features signif-
icantly improves the performance. This indicates
that capturing both temporal correlations and se-
mantics of morphing simultaneously are important
for morph resolution.

Table 5 shows that combination of surface and
semantic features further improves the perfor-
mance, showing that they are complementary. For
example, using only surface features, the real tar-
get “乔布斯（Steve Jobs）” of the morph “乔帮
主 (Qiao Boss)” is not top ranked since some other
candidates such as “乔治 (George)” are more or-
thographically similar. However, “Steve Jobs” is
ranked top when combined with semantic features.

Features Surf HomB HomE HetB HetE
Acc@1 0.028 0.201 0.192 0.224 0.252
Acc@5 0.159 0.313 0.369 0.393 0.421
Acc@10 0.243 0.346 0.407 0.439 0.467
Acc@20 0.313 0.411 0.467 0.50 0.523
Features + Glob + Glob + Glob + Glob
Acc@1 0.230 0.285 0.257 0.285
Acc@5 0.402 0.407 0.449 0.458
Acc@10 0.435 0.458 0.50 0.495
Acc@20 0.486 0.523 0.565 0.542

Table 4: The System Performance Based on Each
Single Feature Set.

Features Surf +
HomB

Surf +
HomE

Surf +
HetB

Surf +
HetE

Acc@1 0.234 0.238 0.262 0.276
Acc@5 0.416 0.444 0.481 0.519
Acc@10 0.477 0.505 0.533 0.570
Acc@20 0.519 0.561 0.565 0.598
Features + Glob + Glob + Glob + Glob
Acc@1 0.290 0.341 0.322 0.346
Acc@5 0.505 0.495 0.528 0.533
Acc@10 0.551 0.551 0.579 0.584
Acc@20 0.594 0.603 0.636 0.631

Table 5: The System Performance Based on Com-
binations of Surface and Semantic Features.

5.2.2 Cross Source and Cross Genre
Information

We integrate the cross source information from
Twitter, and the cross genre information from web
documents into Weibo tweets for information net-
work construction, and extract a new set of se-
mantic features. Table 6 shows that further gains
can be achieved. Notice that integrating tweets
from Twitter mainly improves the ranking for top
k where k > 1. This is because Weibo dominates
our dataset, and in Weibo many of these sensi-
tive morphs are mostly used with their traditional
meanings instead of the morph senses. Further
performance improvement is achieved by integrat-
ing information from background formal web doc-
uments which can provide richer context and rela-
tions.
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Features Surf +
HomB +
Glob

Surf +
HomE +
Glob

Surf +
HetB +
Glob

Surf +
HetE +
Glob

Acc@1 0.290 0.341 0.322 0.346
Acc@5 0.505 0.495 0.528 0.533
Acc@10 0.551 0.551 0.579 0.584
Acc@20 0.594 0.603 0.636 0.631
Features + Twit-

ter
+ Twit-
ter

+ Twit-
ter

+ Twit-
ter

Acc@1 0.308 0.336 0.336 0.346
Acc@5 0.514 0.519 0.547 0.565
Acc@10 0.579 0.594 0.594 0.636
Acc@20 0.631 0.640 0.668 0.668
Features + Web + Web + Web + Web
Acc@1 0.327 0.360 0.341 0.379
Acc@5 0.528 0.519 0.565 0.575
Acc@10 0.594 0.589 0.622 0.645
Acc@20 0.631 0.650 0.678 0.678

Table 6: The System Performance of Integrating
Cross Source and Cross Genre Information.

5.2.3 Effects of Social Features
Table 7 shows that adding social features can im-
prove the best performance achieved so far. This is
because a group of people with close relationships
may share similar opinion. As an example, two
tweets “...of course the reputation of Buhou is a
little too high! //@User1: //@User2: Chongqing
event tells us...)” and “...do not follow Bo Xi-
lai...@User1...) are from two users in the same
social group.One includes a morph “Buhou” and
the other includes its target “Bo Xilai”.

Features Surf +
HomB +
Glob +
Twitter
+ Web

Surf +
HomE +
Glob +
Twitter
+ Web

Surf +
HetB +
Glob +
Twitter
+ Web

Surf +
HetE +
Glob +
Twitter
+ Web

Acc@1 0.327 0.360 0.341 0.379
Acc@5 0.528 0.519 0.565 0.575
Acc@10 0.594 0.589 0.622 0.645
Acc@20 0.631 0.650 0.678 0.678
Features + Social + Social + Social + Social
Acc@1 0.336 0.369 0.365 0.379
Acc@5 0.537 0.547 0.589 0.594
Acc@10 0.594 0.601 0.645 0.659
Acc@20 0.645 0.664 0.701 0.701

Table 7: The Effects of Social Features.

5.3 Effects of Candidate Detection

The performance with and without candidate de-
tection step (using all features) is shown in Ta-
ble 8. The gain is small since the combination
of all features in the learning to rank framework
can already well capture the relationship between
a morph and a target candidate. Nevertheless, the
temporal distribution assumption is effective. It
helps to filter out 80% of unrelated targets and

speed up the system 5 times, while retain 98.5%
of the morph candidates that can be detected.

System Acc@1 Acc@5 Acc@10 Acc@20
Without 0.365 0.579 0.645 0.696
With 0.379 0.594 0.659 0.701

Table 8: The Effects of Temporal Constraint

We also attempted using topic modeling ap-
proach to detect target candidates. Due to the large
amount of data, we first split the data set on a daily
basis, then applied Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann, 1999). Named enti-
ties which co-occur at least δ times with a morph
query in the same topic are selected as its target
candidates. As shown in Table9 (K is the num-
ber of predefined topics), PLSA is not quite effec-
tive mainly because traditional topic modeling ap-
proaches do not perform well on short texts from
social media. Therefore, in this paper we choose
a simple method based on temporal distribution to
detect target candidates.

Method All Temporal PLSA( PLSA(
K = 5 K = 5
δ = 1) δ = 2)

Acc 0.935 0.921 0.935 0.925
No. 8, 111 1, 964 6, 380 4, 776
Method PLSA( PLSA( PLSA( PLSA(

K = 10 K = 10 K = 20 K = 20
δ = 1) δ = 2) δ = 1) δ = 2)

Acc 0.935 0.907 0.888 0.757
No. 5, 117 3, 138 3, 702 1, 664

Table 9: Accuracy of Target Candidate Detection

5.4 Discussions

Compared with the standard alias detection
(“Surf+HomB”) approach (Hsiung et al., 2005),
our proposed approach achieves significantly bet-
ter performance (99.9% confidence level by the
Wilcoxon Matched-Pairs Signed-Ranks Test for
Acc@1). We further explore two types of factors
which may affect the system performance as fol-
lows.

One important aspect affecting the resolution
performance is the morph & non-morph ambigu-
ity. We categorize a morph query as “Unique” if
the string is mainly used as a morph when it oc-
curs, such as “薄督 (Bodu)” which is used to re-
fer to “Bo Xilai”; otherwise as “Common” (e.g.
“宝宝 (Baby)” ,“校长 (President)” ). Table 10
presents the separate scores for these two cate-
gories. We can see that the morphs in “Unique”
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category have much better resolution performance
than those in “Common” category.

Category Number Acc@1 Acc@5 Acc@10 Acc@20
Unique 72 0.479 0.715 0.771 0.819
Common 35 0.171 0.343 0.40 0.429

Table 10: Performance of Two Categories

We also investigate the effects of popularity of
morphs on the resolution performance. We split
the queries into 5 bins with equal size based on the
non-descending frequency, and evaluate Acc@1
separately. As shown in Table11, we can see that
the popularity is not highly correlated with the per-
formance.

Rank 0 ∼
20%

20% ∼
40%

40% ∼
60%

60% ∼
80%

80% ∼
100%

All 0.333 0.476 0.341 0.429 0.318
Unique 0.321 0.679 0.379 0.571 0.483
Common 0.214 0.214 0.071 0.071 0.286

Table 11: Effects of Popularity of Morphs

6 Related Work

To analyze social media behavior under active
censorship, (Bamman et al., 2012) automatically
discovered politically sensitive terms from Chi-
nese tweets based on message deletion analysis.
In contrast, our work goes beyond target idendi-
fication by resolving implicit morphs to their real
targets.

Our work is closely related to alias detec-
tion (Hsiung et al., 2005; Pantel, 2006; Bollegala
et al., 2011; Holzer et al., 2005). We demon-
strated that state-of-the-art alias detection meth-
ods did not perform well on morph resolution. In
this paper we exploit cross-genre information and
social correlation to measure semantic similarity.
(Yang et al., 2011; Huang et al., 2012) also showed
the effectiveness of exploiting information from
formal web documents to enhance tweet summa-
rization and tweet ranking.

Other similar research lines are the TAC-KBP
Entity Linking (EL) (Ji et al., 2010; Ji et al., 2011),
which links a named entity in news and web docu-
ments to an appropriate knowledge base (KB) en-
try, the task of mining name translation pairs from
comparable corpora (Udupa et al., 2009; Ji, 2009;
Fung and Yee, 1998; Rapp, 1999; Shao and Ng,
2004; Hassan et al., 2007) and the link predic-
tion problem (Adamic and Adar, 2001; Liben-
Nowell and Kleinberg, 2003; Sun et al., 2011b;

Hasan et al., 2006; Wang et al., 2007; Sun et al.,
2011a). Most of the work focused on unstruc-
tured or structured data with clean and rich re-
lations (e.g. DBLP). In contrast, our work con-
structs heterogeneous information networks from
unstructured, noisy multi-genre text without ex-
plicit entity attributes.

7 Conclusion and Future Work

To the best of our knowledge, this is the first work
of resolving implicit information morphs from the
data under active censorship. Our promising re-
sults can well serve as a benchmark for this new
problem. Both of the Meta-path based and so-
cial correlation based semantic similarity mea-
surements are proven powerful and complemen-
tary.

In this paper we have focused on entity morphs.
In the future we will extend our method to dis-
cover other types of information morphs, such as
events and nominal mentions. In addition, auto-
matic identification of candidate morphs is another
challenging task, especially when the mentions are
ambiguous and can also refer to other real enti-
ties. Our ongoing work includes identifying can-
didate morphs from scratch, as well as discovering
morphs for a given target based on anomaly anal-
ysis and textual coherence modeling.
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Abstract

We describe a new probabilistic model
for extracting events between major polit-
ical actors from news corpora. Our un-
supervised model brings together famil-
iar components in natural language pro-
cessing (like parsers and topic models)
with contextual political information—
temporal and dyad dependence—to in-
fer latent event classes. We quantita-
tively evaluate the model’s performance
on political science benchmarks: recover-
ing expert-assigned event class valences,
and detecting real-world conflict. We also
conduct a small case study based on our
model’s inferences.

A supplementary appendix, and replica-
tion software/data are available online, at:
http://brenocon.com/irevents

1 Introduction

The digitization of large news corpora has pro-
vided an unparalleled opportunity for the system-
atic study of international relations. Since the mid-
1960s political scientists have used political events
data, records of public micro-level interactions be-
tween major political actors of the form “someone
does something to someone else” as reported in
the open press (Schrodt, 2012), to study the pat-
terns of interactions between political actors and
how they evolve over time. Scaling this data effort
to modern corpora presents an information extrac-
tion challenge: can a structured collection of ac-
curate, politically relevant events between major
political actors be extracted automatically and ef-
ficiently? And can they be grouped into meaning-
ful event types with a low-dimensional structure
useful for further analysis?

We present an unsupervised approach to event
extraction, in which political structure and linguis-
tic evidence are combined. A political context

model of the relationship between a pair of polit-
ical actors imposes a prior distribution over types
of linguistic events. Our probabilistic model in-
fers latent frames, each a distribution over textual
expressions of a kind of event, as well as a repre-
sentation of the relationship between each political
actor pair at each point in time. We use syntactic
preprocessing and a logistic normal topic model,
including latent temporal smoothing on the politi-
cal context prior.

We apply the model in a series of compar-
isons to benchmark datasets in political science.
First, we compare the automatically learned verb
classes to a pre-existing ontology and hand-crafted
verb patterns from TABARI,1 an open-source and
widely used rule-based event extraction system for
this domain. Second, we demonstrate correlation
to a database of real-world international conflict
events, the Militarized Interstate Dispute (MID)
dataset (Jones et al., 1996). Third, we qualitatively
examine a prominent case not included in the MID
dataset, Israeli-Palestinian relations, and compare
the recovered trends to the historical record.

We outline the data used for event discovery
(§2), describe our model (§3), inference (§4), eval-
uation (§5), and comment on related work (§6).

2 Data

The model we describe in §3 is learned from a
corpus of 6.5 million newswire articles from the
English Gigaword 4th edition (1994–2008, Parker
et al., 2009). We also supplement it with a sam-
ple of data from the New York Times Annotated
Corpus (1987–2007, Sandhaus, 2008).2 The Stan-

1Available from the Penn State Event Data Project:
http://eventdata.psu.edu/

2For arbitrary reasons this portion of the data is much
smaller (we only parse the first five sentences of each arti-
cle, while Gigaword has all sentences parsed), resulting in
less than 2% as many tuples as from the Gigaword data.
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ford CoreNLP system,3 under default settings, was
used to POS-tag and parse the articles, to eventu-
ally produce event tuples of the form

〈s, r, t, wpredpath〉
where s and r denote “source” and “receiver” ar-
guments, which are political actor entities in a pre-
defined set E , t is a timestep (i.e., a 7-day pe-
riod) derived from the article’s published date, and
wpredpath is a textual predicate expressed as a de-
pendency path that typically includes a verb (we
use the terms “predicate-path” and “verb-path” in-
terchangeably). For example, on January 1, 2000,
the AP reported “Pakistan promptly accused In-
dia,” from which our preprocessing extracts the tu-
ple 〈PAK, IND, 678, accuse dobj←−− 〉. (The path ex-
cludes the first source-side arc.) Entities and verb
paths are identified through the following sets of
rules.

Named entity recognition and resolution is done
deterministically by finding instances of country
names from the CountryInfo.txt dictionary from
TABARI,4 which contains proper noun and adjec-
tival forms for countries and administrative units.
We supplement these with a few entries for in-
ternational organizations from another dictionary
provided by the same project, and clean up a few
ambiguous names, resulting in a final actor dictio-
nary of 235 entities and 2,500 names.

Whenever a name is found, we identify its en-
tity’s mention as the minimal noun phrase that
contains it; if the name is an adjectival or noun-
noun compound modifier, we traverse any such
amod and nn dependencies to the noun phrase
head. Thus NATO bombing, British view, and
Palestinian militant resolve to the entity codes IG-
ONAT, GBR, and PSE respectively.

We are interested in identifying actions initi-
ated by agents of one country targeted towards an-
other, and hence concentrate on verbs, analyzing
the “CCprocessed” version of the Stanford Depen-
dencies (de Marneffe and Manning, 2008). Verb
paths are identified by looking at the shortest de-
pendency path between two mentions in a sen-
tence. If one of the mentions is immediately dom-
inated by a nsubj or agent relation, we consider
that the Source actor, and the other mention is the
Receiver. The most common cases are simple di-
rect objects and prepositional arguments like talk

3http://nlp.stanford.edu/software/
corenlp.shtml

4http://eventdata.psu.edu/software.
dir/dictionaries.html.

prep with←−−−− and fight prep alongside←−−−−−− (“talk with R,” “fight
alongside R”) but many interesting multiword con-
structions also result, such as reject dobj←−− allegation

poss←−− (“rejected R’s allegation”) or verb chains as
in offer xcomp←−− help dobj←−− (“offer to help R”).

We wish to focus on instances of directly re-
ported events, so attempt to remove factively com-
plicated cases such as indirect reporting and hy-
potheticals by discarding all predicate paths for
which any verb on the path has an off-path gov-
erning verb with a non-conj relation. (For exam-
ple, the verb at the root of a sentence always sur-
vives this filter.) Without this filter, the 〈s, r, w〉
tuple 〈USA, CUB, want xcomp←−− seize dobj←−− 〉 is ex-
tracted from the sentence “Parliament Speaker Ri-
cardo Alarcon said the United States wants to seize
Cuba and take over its lands”; the filter removes
it since wants is dominated by an off-path verb
through say ccomp←−− wants. The filter was iteratively
developed by inspecting dozens of output exam-
ples and their labelings under successive changes
to the rules.

Finally, only paths length 4 or less are allowed,
the final dependency relation for the receiver may
not be nsubj or agent, and the path may not contain
any of the dependency relations conj, parataxis,
det, or dep. We use lemmatized word forms in
defining the paths.

Several document filters are applied before tu-
ple extraction. Deduplication removes 8.5% of ar-
ticles.5 For topic filtering, we apply a series of
keyword filters to remove sports and finance news,
and also apply a text classifier for diplomatic and
military news, trained on several hundred man-
ually labeled news articles (using `1-regularized
logistic regression with unigram and bigram fea-
tures). Other filters remove non-textual junk and
non-standard punctuation likely to cause parse er-
rors.

For experiments we remove tuples where the
source and receiver entities are the same, and re-
strict to tuples with dyads that occur at least 500
times, and predicate paths that occur at least 10
times. This yields 365,623 event tuples from
235,830 documents, for 421 dyads and 10,457
unique predicate paths. We define timesteps
to be 7-day periods, resulting in 1,149 discrete

5We use a simple form of shingling (ch. 3, Rajaraman and
Ullman, 2011): represent a document signature as its J = 5
lowercased bigrams with the lowest hash values, and reject a
document with a signature that has been seen before within
the same month. J was manually tuned, as it affects the pre-
cision/recall tradeoff.
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Figure 1: Directed probabilistic diagram of the model for one
(s, r, t) dyad-time context, for the smoothed model.

timesteps (1987 through 2008, though the vast ma-
jority of data starts in 1994).

3 Model

We design two models to learn linguistic event
classes over predicate paths by conditioning on
real-world contextual information about interna-
tional politics, p(wpredpath | s, r, t), leveraging the
fact there tends to be dyadic and temporal coher-
ence in international relations: the types of actions
that are likely to occur between nations tend to be
similar within the same dyad, and usually their dis-
tribution changes smoothly over time.

Our model decomposes into two submodels:
a Context submodel, which encodes how politi-
cal context affects the probability distribution over
event types, and a Language submodel, for how
those events are manifested as textual predicate
paths (Figure 1). The overall generative process is
as follows. We color global parameters for a frame
blue, and local context parameters red, and use
the term “frame” as a synonym for “event type.”
The fixed hyperparameter K denotes the number
of frames.

• The context model generates a frame prior θs,r,t
for every context (s, r, t).

• Language model:

• Draw lexical sparsity parameter b from a dif-
fuse prior (see §4).

• For each frame k, draw a multinomial distri-
bution of dependency paths, φk ∼ Dir(b/V )
(where V is the number of dependency path
types).
• For each (s, r, t), for every event tuple i in

that context,
• Sample its frame z(i) ∼ Mult(θs,r,t).
• Sample its predicate realization
w

(i)
predpath ∼ Mult(φz(i)).

Thus the language model is very similar to a topic
model’s generation of token topics and wordtypes.

We use structured logistic normal distributions
to represent contextual effects. The simplest is the
vanilla (V) context model,

• For each frame k, draw global parameters from
diffuse priors: prevalence αk and variability σ2k.

• For each (s, r, t),

• Draw ηk,s,r,t ∼ N(αk, σ
2
k) for each frame k.

• Apply a softmax transform,

θk,s,r,t =
exp ηk,s,r,t∑K

k′=1 exp ηk′,s,r,t

Thus the vector η∗,s,r,t encodes the relative log-
odds of the different frames for events appearing
in the context (s, r, t). This simple logistic nor-
mal prior is, in terms of topic models, analogous
to the asymmetric Dirichlet prior version of LDA
in Wallach et al. (2009), since the αk parameter
can learn that some frames tend to be more likely
than others. The variance parameters σ2k control
admixture sparsity, and are analogous to a Dirich-
let’s concentration parameter.

Smoothing Frames Across Time
The vanilla model is capable of inducing frames
through dependency path co-occurences, when
multiple events occur in a given context. How-
ever, many dyad-time slices are very sparse; for
example, most dyads (all but 18) have events in
fewer than half the time slices in the dataset. One
solution is to increase the bucket size (e.g., to
months); however, previous work in political sci-
ence has demonstrated that answering questions
of interest about reciprocity dynamics requires re-
covering the events at weekly or even daily gran-
ularity (Shellman, 2004), and in any case wide
buckets help only so much for dyads with fewer
events or less media attention. Therefore we pro-
pose a smoothed frames (SF) model, in which the
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frame distribution for a given dyad comes from a
latent parameter β∗,s,r,t that smoothly varies over
time. For each (s, r), draw the first timestep’s val-
ues as βk,s,r,1 ∼ N(0, 100), and for each context
(s, r, t > 1),

• Draw βk,s,r,t ∼ N(βk,s,r,t−1, τ2)

• Draw ηk,s,r,t ∼ N(αk + βk,s,r,t, σ
2
k)

Other parameters (αk, σ2k) are same as the vanilla
model. This model assumes a random walk pro-
cess on β, a variable which exists even for contexts
that contain no events. Thus inferences about η
will be smoothed according to event data at nearby
timesteps. This is an instance of a linear Gaussian
state-space model (also known as a linear dynami-
cal system or dynamic linear model), and is a con-
venient formulation because it has well-known ex-
act inference algorithms. Dynamic linear models
have been used elsewhere in machine learning and
political science to allow latent topic frequencies
(Blei and Lafferty, 2006; Quinn et al., 2010) and
ideological positions (Martin and Quinn, 2002) to
smoothly change over time, and thus share statis-
tical strength between timesteps.

4 Inference

After randomly initializing all ηk,s,r,t, inference is
performed by a blocked Gibbs sampler, alternat-
ing resamplings for three major groups of vari-
ables: the language model (z,φ), context model
(α, γ, β, p), and the η, θ variables, which bottle-
neck between the submodels.

The language model sampler sequentially up-
dates every z(i) (and implicitly φ via collapsing)
in the manner of Griffiths and Steyvers (2004):
p(z(i)|θ, w(i), b) ∝ θs,r,t,z(nw,z + b/V )/(nz + b),
where counts n are for all event tuples besides i.

For the context model, α is conjugate resam-
pled as a normal mean. The random walk vari-
ables β are sampled with the forward-filtering-
backward-sampling algorithm (FFBS; Harrison
and West, 1997; Carter and Kohn, 1994); there is
one slight modification of the standard dynamic
linear model that the zero-count weeks have no η
observation; the Kalman filter implementation is
appropriately modified to handle this.

The η update step is challenging since it is a
nonconjugate prior to the z counts. Logistic nor-
mal distributions were introduced to text mod-
eling by Blei and Lafferty (2007), who devel-
oped a variational approximation; however, we

find that experimenting with different models is
easier in the Gibbs sampling framework. While
Gibbs sampling for logistic normal priors is pos-
sible using auxiliary variable methods (Mimno
et al., 2008; Holmes and Held, 2006; Polson et al.,
2012), it can be slow to converge. We opt for
the more computationally efficient approach of
Zeger and Karim (1991) and Hoff (2003), using
a Laplace approximation to p(η | η̄,Σ, z), which
is a mode-centered Gaussian having inverse co-
variance equal to the unnormalized log-posterior’s
negative Hessian (§8.4 in Murphy, 2012). We find
the mode with the linear-time Newton algorithm
from Eisenstein et al. (2011), and sample in linear
time by only using the Hessian’s diagonal as the
inverse covariance (i.e., an axis-aligned normal),
since a full multivariate normal sample requires
a cubic-time-to-compute Cholesky root of the co-
variance matrix. This η∗ sample is a proposal for a
Metropolis-within-Gibbs step, which is moved to
according to the standard Metropolis-Hastings ac-
ceptance rule. Acceptance rates differ by K, rang-
ing approximately from 30% (K = 100) to nearly
100% (small K).

Finally, we use diffuse priors on all global pa-
rameters, conjugate resampling variances τ2, σk
once per iteration, and slice sampling (Neal, 2003)
the Dirichlet concentration b every 100 iterations.
Automatically learning these was extremely con-
venient for model-fitting; the only hyperparameter
we set manually wasK. It also allowed us to mon-
itor the convergence of dispersion parameters to
help debug and assess MCMC mixing. For other
modeling and implementation details, see the on-
line appendix and software.

5 Experiments

We fit the two models on the dataset described in
§2, varying the number of frames K, with 8 or
more separate runs for each setting. Posteriors are
saved and averaged from 11 Gibbs samples (every
100 iterations from 9,000 to 10,000) for analysis.

We present intrinsic (§5.1) and extrinsic (§5.2)
quantitative evaluations, and a qualitative case
study (§5.4).

5.1 Lexical Scale Impurity

In the international relations literature, much of
the analysis of text-based events data makes use of
a unidimensional conflict to cooperation scale. A
popular event ontology in this domain, CAMEO,
consists of around 300 different event types, each
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given an expert-assigned scale in the range from
−10 to +10 (Gerner et al., 2002), derived from
a judgement collection experiment in Goldstein
(1992). The TABARI pattern-based event extrac-
tion program comes with a list of almost 16,000
manually engineered verb patterns, each assigned
to one CAMEO event type.

It is interesting to consider the extent to which
our unsupervised model is able to recover the
expert-designed ontology. Given that many of
the categories are very fine-grained (e.g. “Express
intent to de-escalate military engagement”), we
elect to measure model quality as lexical scale pu-
rity: whether all the predicate paths within one
automatically learned frame tend to have similar
gold-standard scale scores. (This measures clus-
ter cohesiveness against a one-dimensional con-
tinuous scale, instead of measuring cluster cohe-
siveness against a gold-standard clustering as in
VI, Rand index, or purity.) To calculate this, we
construct a mapping between our corpus-derived
verb path vocabulary and the TABARI verb pat-
terns, many of which contain one to several word
stems that are intended to be matched in surface
order. Many of our dependency paths, when tra-
versed from the source to receiver direction, also
follow surface order, due to English’s SVO word
order.6 Therefore we convert each path to a
word sequence and match against the TABARI
lexicon—plus a few modifications for differences
in infinitives and stemming—and find 528 depen-
dency path matches. We assign each path w a
gold-standard scale g(w) by resolving through its
matching pattern’s CAMEO code.

We formalize lexical scale impurity as the av-
erage absolute difference of scale values between
two predicate paths under the same frame. Specif-
ically, we want a token-level posterior expectation

E(|g(wi)− g(wj)| | zi = zj , wi 6= wj) (1)

which is taken over pairs of path instances (i, j)
where both paths wi, wj are in M , the set of verb
paths that were matched between the lexicons.
This can be reformulated at the type level as:7

1

N

∑

k

∑

w,v∈M
w 6=v

nw,k nv,k |g(w)− g(v)| (2)

6There are plenty of exceptions where a Source-to-
Receiver path traversal can have a right-to-left move, such
as dependency edges for posessives. This approach can not
match them.

7Derivation in supplementary appendix.

where n refers to the averaged Gibbs samples’
counts of event tuples having frame k and a par-
ticular verb path,8 and N is the number of to-
ken comparisons (i.e. the same sum, but with a
1 replacing the distance). The worst possible im-
purity is upper bounded at 20 (= max(g(w)) −
min(g(w))) and the best possible is 0. We also
compute a randomized null hypothesis to see how
low impurity can be by chance: each of ∼1000
simulations randomly assigns each path in M to
one of K frames (all its instances are exclusively
assigned to that frame), and computes the impu-
rity. On average the impurity is same at all K,
but variance increases with K (since small clus-
ters might by chance get a highly similar paths in
them), necessitating this null hypothesis analysis.
We report the 5th percentile over simulations.

5.2 Conflict Detection
Political events data has shown considerable
promise as a tool for crisis early warning systems
(O’Brien, 2010; Brandt et al., 2011). While con-
flict forecasting is a potential application of our
model, we conduct a simpler prediction task to
validate whether the model is learning something
useful: based on news text, tell whether or not an
armed conflict is currently happening. For a gold
standard, we use the Militarized Interstate Dispute
(MID) dataset (Jones et al., 1996; Ghosn et al.,
2004), which documents historical international
disputes. While not without critics, the MID data
is the most prominent dataset in the field of in-
ternational relations. We use the Dyadic MIDs,
each of which ranks hostility levels between pairs
of actors on a five point scale over a date inter-
val; we define conflict to be the top two categories
“Use of Force” (4) and “War” (5). We convert
the data into a variable ys,r,t, the highest hostility
level reached by actor s directed towards receiver
r in the dispute that overlaps with our 7-day in-
terval t, and want to predict the binary indicator
1{ys,r,t ≥ 4}. For the illustrative examples (USA
to Iraq, and the Israel-Palestine example below)
we use results from a smaller but more internally
comparable dataset consisting of the 2 million As-
sociated Press articles within the Gigaword cor-
pus.

For an example of the MID data, see Figure 2,
which depicts three disputes between the US and

8Results are nearly identical whether we use counts av-
eraged across samples (thus giving posterior marginals),
or simply use counts from a single sample (i.e., iteration
10,000).
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Figure 2: The USA→Iraq directed dyad, analyzed by
smoothed (above) and vanilla (below) models, showing (1)
gold-standard MID values (red intervals along top), (2) weeks
with non-zero event counts (vertical lines along x-axis), (3)
posterior E[θk,USA,IRQ,t] inferences for two frames chosen
from two different K = 5 models, and (4) most common
verb paths for each frame (right). Frames corresponding to
material and verbal conflict were chosen for display. Vertical
line indicates Operation Desert Fox (see §5.2).

Iraq in this time period. The MID labels are
marked in red.

The first dispute is a “display of force” (level
3), cataloguing the U.S. response to a series of
troop movements along the border with Kuwait.
The third dispute (10/7/1997 to 10/10/2001) be-
gins with increasing Iraqi violations of the no-
fly zone, resulting in U.S. and U.K. retaliation,
reaching a high intensity with Operation Desert
Fox, a four-day bombing campaign from Decem-
ber 16 to 19, 1998—which is not shown in MID.
These cases highlight MID’s limitations—while it
is well regarded in the political science literature,
its coarse level of aggregation can fail to capture
variation in conflict intensity.

Figure 2 also shows model inferences. Our
smoothed model captures some of these phenom-
ena here, showing clear trends for two relevant
frames, including a dramatic change in Decem-
ber 1998. The vanilla model has a harder time,
since it cannot combine evidence between differ-
ent timesteps.

The MID dataset overlaps with our data for 470
weeks, from 1993 through 2001. After excluding
dyads with actors that the MID data does not in-
tend to include—Kosovo, Tibet, Palestine, and in-
ternational organizations—we have 267 directed
dyads for evaluation, 117 of which have at least

one dispute in the MID data. (Dyads with no dis-
pute in the MID data, such as Germany-France,
are assumed to have y = 0 throughout the time
period.) About 7% of the dyad-time contexts have
a dispute under these definitions.

We split the dataset by time, training on the first
half of the data and testing on the second half, and
measure area under the receiver operating charac-
teristic curve (AUC).9 For each model, we train an
`1-regularized logistic regression10 with the K el-
ements of θ∗,s,r,t as input features, tuning the reg-
ularization parameter within the training set (by
splitting it in half again) to optimize held-out like-
lihood. We weight instances to balance positive
and negative examples. Training is on all individ-
ual θ samples at once (thus accounting for pos-
terior uncertainty in learning), and final predicted
probabilities are averaged from individual proba-
bilities from each θ test set sample, thus propa-
gating posterior uncertainty into the predictions.
We also create a baseline `1-regularized logistic
regression that uses normalized dependency path
counts as the features (10,457 features). For both
the baseline and vanilla model, contexts with no
events are given a feature vector of all zeros.11

(We also explored an alternative evaluation setup,
to hold out by dyad; however, the performance
variance is quite high between different random
dyad splits.)

5.3 Results

Results are shown in Figure 3.12

The verb-path logistic regression performs
strongly at AUC 0.62; it outperforms all of
the vanilla frame models. This is an exam-
ple of individual lexical features outperforming a
topic model for predictive task, because the topic
model’s dimension reduction obscures important
indicators from individual words. Similarly, Ger-
rish and Blei (2011) found that word-based regres-
sion outperformed a customized topic model when
predicting Congressional bill passage, and Eisen-

9AUC can be interpreted as follows: given a positive and
negative example, what is the probability that the classifier’s
confidences order them correctly? Random noise or predict-
ing all the same class both give AUC 0.5.

10Using the R glmnet package (Friedman et al., 2010).
11For the vanilla model, this performed better than linear

interpolation (about 0.03 AUC), and with less variance be-
tween runs.

12Due to an implementation bug, the model put the vast
majority of the probability mass only on K − 1 frames,
so these settings might be better thought of as K =
1, 2, 3, 4, 9, . . .; see the appendix for details.

1099



● ●

0.4

0.5

0.6

0.7

2 3 4 5 10 20 50 100
Number of frames (K)

C
on

fli
ct

 p
re

di
ct

io
n 

A
U

C
(h

ig
he

r 
is

 b
et

te
r)

model

● Log. Reg

Vanilla

Smoothed

●
●

● ●

●

●

●

●

1.5

2.5

3.5

4.5

5.5

2 3 4 5 10 20 50 100
Number of frames (K)

S
ca

le
 im

pu
rit

y
(lo

w
er

 is
 b

et
te

r)

model

● Null

Vanilla

Smoothed

Figure 3: Evaluation results. Each point indicates one model
run. Lines show the average per K, with vertical lines indi-
cating the 95% bootstrapped interval. Top: Conflict detection
AUC for different models (§5.2). Green line is the verb-path
logistic regression baseline. Bottom: Lexical scale impurity
(§5.1). Top green line indicates the simple random baseline
E(|g(wi) − g(wj)|) = 5.33; the second green line is from
the random assignment baseline.

stein et al. (2010) found word-based regression
outperformed Supervised LDA for geolocation,13

and we have noticed this phenomenon for other
text-based prediction problems.

However, adding smoothing to the model sub-
stantially increases performance, and in fact out-
performs the verb-path regression at K = 100.
It is unclear why the vanilla model fails to in-
crease performance in K. Note also, the vanilla
model exhibits very little variability in prediction
performance between model runs, in comparison
to the smoothed model which is much more vari-
able (presumably due to the higher number of pa-
rameters in the model); at small values of K, the
smoothed model can perform poorly. It would also
be interesting to analyze the smoothed model with
higher values of K and find where it peaks.

We view the conflict detection task only as one
of several validations, and thus turn to lexical eval-
uation of the induced frames. For lexical scale
purity (bottom of Figure 3), the models perform
about the same, with the smoothed model a lit-
tle bit worse at some values of K (though some-
times with better stability of the fits—opposite of
the conflict detection task). This suggests that se-
mantic coherence does not benefit from the longer-

13In the latter, a problem-specific topic model did best.

range temporal dependencies.
In general, performance improves with higher

K, but not beyond K = 50. This suggests the
model reaches a limit for how fine-grained of se-
mantics it can learn.

5.4 Case study

Here we qualitatively examine the narrative story
between the dyad with the highest frequency of
events in our dataset, the Israeli-Palestinian rela-
tionship, finding qualitative agreement with other
case studies of this conflict (Brandt et al., 2012;
Goldstein et al., 2001; Schrodt and Gerner, 2004).
(The MID dataset does not include this conflict be-
cause the Palestinians are not considered a state
actor.) Using the Associated Press subset, we plot
the highest incidence frames from one run of the
K = 20 smoothed frame models, for the two di-
rected dyads, and highlight some of the interesting
relationships.

Figure 4(a) shows that tradeoffs in the use of
military vs. police action by Israel towards the
Palestinians tracks with major historical events.
The first period in the data where police actions
(‘impose, seal, capture, seize, arrest’) exceed mil-
itary actions (‘kill, fire, enter, attack, raid’) is
with the signing of the “Interim Agreement on the
West Bank and the Gaza Strip,” also known as the
Oslo II agreement. This balance persists until the
abrupt breakdown in relations that followed the
unsuccessful Camp David Summit in July of 2000,
which generally marks the starting point of the
wave of violence known as the Second Intifada.

In Figure 4(b) we show that our model produces
a frame which captures the legal aftermath of par-
ticular events (‘accuse, criticize,’ but also ‘detain,
release, extradite, charge’). Each of the major
spikes in the data coincides with a particular event
which either involves the investigation of a par-
ticular attack or series of attacks (as in A,B,E) or
a discussion about prisoner swaps or mass arrests
(as in events D, F, J).

Our model also picks up positive diplomatic
events, as seen in Figure 4(c), a frame describ-
ing Israeli diplomatic actions towards Palestine
(‘meet with, sign with, praise, say with, arrive
in’). Not only do the spikes coincide with major
peace treaties and negotiations, but the model cor-
rectly characterizes the relative lack of positively
valenced action from the beginning of the Second
Intifada until its end around 2005–2006.

In Figure 4(d) we show the relevant frames de-
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Figure 4: For Israel-Palestinian directed dyads, plots ofE[θ] (proportion of weekly events in a frame) over time, annotated with
historical events. (a): Words are ‘kill, fire at, enter, kill, attack, raid, strike, move, pound, bomb’ and ‘impose, seal, capture,
seize, arrest, ease, close, deport, close, release’ (b): ‘accuse, criticize, reject, tell, hand to, warn, ask, detain, release, order’ (c):
‘meet with, sign with, praise, say with, arrive in, host, tell, welcome, join, thank’ (d): again the same ‘kill, fire at’ frame in (a),
plus the erroneous frame (see text) ‘include, join, fly to, have relation with, protest to, call, include bomber

appos←−−− informer
for’. Figures (b) and (c) use linear interpolation for zero-count weeks (thus relying exclusively on the model for smoothing);
(a) and (d) apply a lowess smoother. (a-c) are for the ISR→PSE direction; (d) is PSE→ISR.

picting use of force from the Palestinians towards
the Israelis (brown trend line). At first, the drop
in the use of force frame immediately following
the start of the Second Intifada seems inconsis-
tent with the historical record. However, there is a
concucrrent rise in a different frame driven by the
word ‘include’, which actually appears here due
to an NLP error compounded with an artifact of
the data source. A casualties report article, con-
taining variants of the text “The Palestinian fig-
ure includes... 13 Israeli Arabs...”, is repeated 27
times over two years. “Palestinian figure” is er-
roneously identified as the PSE entity, and several
noun phrases in a list are identified as separate re-
ceivers. This issue causes 39 of all 86 PSE→ISR
events during this period to use the word ‘in-
clude’, accounting for the rise in that frame. (This
highlights how better natural language processing
could help the model, and the dangers of false
positives for this type of data analysis, especially
in small-sample drilldowns.) Discounting this er-
roneous inference, the results are consistent with
heightened violence during this period.

We conclude the frame extractions for the
Israeli-Palestinian case are consistent with the his-
torical record over the period of study.

6 Related Work

6.1 Events Data in Political Science
Projects using hand-collected events data repre-
sent some of the earliest efforts in the statisti-
cal study of international relations, dating back to
the 1960s (Rummel, 1968; Azar and Sloan, 1975;
McClelland, 1970). Beginning in the mid-1980s,
political scientists began experimenting with au-
tomated rule-based extraction systems (Schrodt
and Gerner, 1994). These efforts culminated in
the open-source program, TABARI, which uses
pattern matching from extensive hand-developed
phrase dictionaries, combined with basic part of
speech tagging (Schrodt, 2001); a rough analogue
in the information extraction literature might be
the rule-based, finite-state FASTUS system for
MUC IE (Hobbs et al., 1997), though TABARI is
restricted to single sentence analysis. Later pro-
prietary work has apparently incorporated more
extensive NLP (e.g., sentence parsing) though
few details are available (King and Lowe, 2003).
The most recent published work we know of, by
Boschee et al. (2013), uses a proprietary parsing
and coreference system (BBN SERIF, Ramshaw
et al., 2011), and directly compares to TABARI,
finding significantly higher accuracy. The origi-
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nal TABARI system is still actively being devel-
oped, including just-released work on a new 200
million event dataset, GDELT (Schrodt and Lee-
taru, 2013).14 All these systems crucially rely on
hand-built pattern dictionaries.

It is extremely labor intensive to develop these
dictionaries. Schrodt (2006) estimates 4,000
trained person-hours were required to create dic-
tionaries of political actors in the Middle East, and
the phrase dictionary took dramatically longer; the
comments in TABARI’s phrase dictionary indicate
some of its 15,789 entries were created as early as
1991. Ideally, any new events data solution would
incorporate the extensive work already completed
by political scientists in this area while minimiz-
ing the need for further dictionary development. In
this work we use the actor dictionaries, and hope
to incorporate the verb patterns in future work.

6.2 Events in Natural Language Processing

Political event extraction from news has also re-
ceived considerable attention within natural lan-
guage processing in part due to government-
funded challenges such as MUC-3 and MUC-4
(Lehnert, 1994), which focused on the extraction
of terrorist events, as well as the more recent
ACE program. The work in this paper is inspired
by unsupervised approaches that seek to discover
types of relations and events, instead of assuming
them to be pre-specified; this includes research un-
der various headings such as template/frame/event
learning (Cheung et al., 2013; Modi et al., 2012;
Chambers and Jurafsky, 2011; Li et al., 2010; Be-
jan, 2008), script learning (Regneri et al., 2010;
Chambers and Jurafsky, 2009), relation learning
(Yao et al., 2011), open information extraction
(Banko et al., 2007; Carlson et al., 2010), verb
caseframe learning (Rooth et al., 1999; Gildea,
2002; Grenager and Manning, 2006; Lang and La-
pata, 2010; Ó Séaghdha, 2010; Titov and Klemen-
tiev, 2012), and a version of frame learning called
“unsupervised semantic parsing” (Titov and Kle-
mentiev, 2011; Poon and Domingos, 2009). Un-
like much of the previous literature, we do not
learn latent roles/slots. Event extraction is also
a large literature, including supervised systems
targeting problems similar to MUC and political
events (Piskorski and Atkinson, 2011; Piskorski
et al., 2011; Sanfilippo et al., 2008).

One can also see this work as a relational ex-
14http://eventdata.psu.edu/data.dir/

GDELT.html

tension of co-occurence-based methods such as
Gerrish (2013; ch. 4), Diesner and Carley (2005),
Chang et al. (2009), or Newman et al. (2006),
which perform bag-of-words-style analysis of text
fragments containing co-occurring entities. (Ger-
rish also analyzed the international relations do-
main, using supervised bag-of-words regression
to assess the expressed valence between a pair
of actors in a news paragraph, using the predic-
tions as observations in a latent temporal model,
and compared to MID.) We instead use parsing to
get a much more focused and interpretable repre-
sentation of the relationship between textually co-
occurring entities; namely, that they are the source
and target of an action event. This is more in line
with work in relation extraction on biomedical sci-
entific articles (Friedman et al., 2001; Rzhetsky
et al., 2004) which uses parsing to extracting a net-
work of how different entities, like drugs or pro-
teins, interact.

7 Conclusion

Large-scale information extraction can dramati-
cally enhance the study of political behavior. Here
we present a novel unsupervised approach to an
important data collection effort in the social sci-
ences. We see international relations as a rich
and practically useful domain for the development
of text analysis methods that jointly infer events,
relations, and sociopolitical context. There are
numerous areas for future work, such as: using
verb dictionaries as semi-supervised seeds or pri-
ors; interactive learning between political science
researchers and unsupervised algorithms; build-
ing low-dimensional scaling, or hierarchical struc-
ture, into the model; and learning the actor lists
to handle changing real-world situations and new
domains. In particular, adding more supervision
to the model will be crucial to improve semantic
quality and make it useful for researchers.
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Abstract

Out-of-vocabulary (oov) words or phrases
still remain a challenge in statistical machine
translation especially when a limited amount of
parallel text is available for training or when
there is a domain shift from training data to
test data. In this paper, we propose a novel
approach to finding translations for oov words.
We induce a lexicon by constructing a graph on
source language monolingual text and employ
a graph propagation technique in order to find
translations for all the source language phrases.
Our method differs from previous approaches
by adopting a graph propagation approach that
takes into account not only one-step (from oov
directly to a source language phrase that has a
translation) but multi-step paraphrases from oov
source language words to other source language
phrases and eventually to target language transla-
tions. Experimental results show that our graph
propagation method significantly improves per-
formance over two strong baselines under intrin-
sic and extrinsic evaluation metrics.

1 Introduction

Out-of-vocabulary (oov) words or phrases still re-
main a challenge in statistical machine translation.
SMT systems usually copy unknown words verba-
tim to the target language output. Although this is
helpful in translating a small fraction of oovs such
as named entities for languages with same writ-
ing systems, it harms the translation in other types
of oovs and distant language pairs. In general,
copied-over oovs are a hindrance to fluent, high
quality translation, and we can see evidence of this
in automatic measures such as BLEU (Papineni
et al., 2002) and also in human evaluation scores
such as HTER. The problem becomes more se-
vere when only a limited amount of parallel text is
available for training or when the training and test
data are from different domains. Even noisy trans-
lation of oovs can aid the language model to better

∗This research was partially supported by an NSERC,
Canada (RGPIN: 264905) grant. The third author was sup-
ported by an early career research award from Monash Uni-
versity to visit Simon Fraser University.

re-order the words in the target language (Zhang
et al., 2012).

Increasing the size of the parallel data can re-
duce the number of oovs. However, there will al-
ways be some words or phrases that are new to the
system and finding ways to translate such words
or phrases will be beneficial to the system. Re-
searchers have applied a number of approaches to
tackle this problem. Some approaches use pivot
languages (Callison-Burch et al., 2006) while oth-
ers use lexicon-induction-based approaches from
source language monolingual corpora (Koehn and
Knight, 2002; Garera et al., 2009; Marton et al.,
2009).

Pivot language techniques tackle this problem
by taking advantage of available parallel data be-
tween the source language and a third language.
Using a pivot language, oovs are translated into a
third language and back into the source language
and thereby paraphrases to those oov words are
extracted (Callison-Burch et al., 2006). For each
oov, the system can be augmented by aggregating
the translations of all its paraphrases and assign
them to the oov. However, these methods require
parallel corpora between the source language and
one or multiple pivot languages.

Another line of work exploits spelling and mor-
phological variants of oov words. Habash (2008)
presents techniques for online handling of oov
words for Arabic to English such as spelling ex-
pansion and morphological expansion. Huang et
al. (2011) proposes a method to combine sub-
lexical/constituent translations of an oov word or
phrase to generate its translations.

Several researchers have applied lexicon-
induction methods to create a bilingual lexicon
for those oovs. Marton et al. (2009) use a mono-
lingual text on the source side to find paraphrases
to oov words for which the translations are avail-
able. The translations for these paraphrases are
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then used as the translations of the oov word.
These methods are based on the distributional hy-
pothesis which states that words appearing in the
same contexts tend to have similar meaning (Har-
ris, 1954). Marton et al. (2009) showed that this
method improves over the baseline system where
oovs are untranslated.

We propose a graph propagation-based exten-
sion to the approach of Marton et al. (2009) in
which a graph is constructed from source language
monolingual text1 and the source-side of the avail-
able parallel data. Nodes that have related mean-
ings are connected together and nodes for which
we have translations in the phrase-table are an-
notated with target-side translations and their fea-
ture values. A graph propagation algorithm is then
used to propagate translations from labeled nodes
to unlabeled nodes (phrases appearing only in the
monolingual text and oovs). This provides a gen-
eral purpose approach to handle several types of
oovs, including morphological variants, spelling
variants and synonyms2.

Constructing such a huge graph and propagat-
ing messages through it pose severe computational
challenges. Throughout the paper, we will see how
these challenges are dealt with using scalable algo-
rithms.

2 Collocational Lexicon Induction

Rapp (1995) introduced the notion of a distribu-
tional profile in bilingual lexicon induction from
monolingual data. A distributional profile (DP) of
a word or phrase type is a co-occurrence vector
created by combining all co-occurrence vectors of
the tokens of that phrase type. Each distributional
profile can be seen as a point in a |V |-dimensional
space where V is the vocabulary where each word
type represents a unique axis. Points (i.e. phrase
types) that are close to one another in this high-
dimensional space can represent paraphrases. This
approach has also been used in machine trans-
lation to find in-vocabulary paraphrases for oov
words on the source side and find a way to trans-
late them.

2.1 Baseline System
Marton et al. (2009) was the first to successfully
integrate a collocational approach to finding trans-

1Here on by monolingual data we always mean monolin-
gual data on the source language

2Named entity oovs may be handled properly by copying
or transliteration.

lations for oov words into an end-to-end SMT sys-
tem. We explain their method in detail as we will
compare against this approach. The method re-
lies on monolingual distributional profiles (DPs)
which are numerical vectors representing the con-
text around each word. The goal is to find words or
phrases that appear in similar contexts as the oovs.
For each oov a distributional profile is created by
collecting all words appearing in a fixed distance
from all occurrences of the oov word in the mono-
lingual text. These co-occurrence counts are con-
verted to an association measure (Section 2.2) that
encodes the relatedness of each pair of words or
phrases.

Then, the most similar phrases to each oov are
found by measuring the similarity of their DPs to
that of the oov word. Marton et al. (2009) uses
a heuristic to prune the search space for finding
candidate paraphrases by keeping the surrounding
context (e.g. L R) of each occurrences of the
oov word. All phrases that appear in any of such
contexts are collected as candidate paraphrases.
For each of these paraphrases, a DP is constructed
and compared to that of the oov word using a sim-
ilarity measure (Section 2.2).

The top-k paraphrases that have translations in
the phrase-table are used to assign translations and
scores to each oov word by marginalizing transla-
tions over paraphrases:

p(t|o) =
∑

s

p(t|s)p(s|o)

where t is a phrase on the target side, o is the oov
word or phrase, and s is a paraphrase of o. p(s|o)
is estimated using a similarity measure over DPs
and p(t|s) is coming from the phrase-table.

We reimplemented this collocational approach
for finding translations for oovs and used it as a
baseline system.

Alternative ways of modeling and comparing
distributional profiles have been proposed (Rapp,
1999; Fung and Yee, 1998; Terra and Clarke,
2003; Garera et al., 2009; Marton et al., 2009).
We review some of them here and compare their
performance in Section 4.3.

2.2 Association Measures
Given a word u, its distributional profile DP (u)
is constructed by counting surrounding words (in
a fixed window size) in a monolingual corpus.

DP (u) = {〈A(u,wi)〉 | wi ∈ V }
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The counts can be collected in positional3 (Rapp,
1999) or non-positional way (count all the word
occurrences within the sliding window). A(·, ·)
is an association measure and can simply be de-
fined as co-occurrence counts within sliding win-
dows. Stronger association measures can also be
used such as:
Conditional probability: the probability for the
occurrence of each word in DP given the occur-
rence of u: CP(u,wi) = P (wi|u) (Schütze and
Pedersen, 1997)
Pointwise Mutual Information: this measure is
a transformation of the independence assumption
into a ratio. Positive values indicate that words
co-occur more than what we expect under the in-
dependence assumption (Lin, 1998):

PMI(u,wi) = log2
P (u,wi)

P (u)P (wi)

Likelihood ratio: (Dunning, 1993) uses the like-
lihood ratio for word similarity:

λ(u,wi) =
L(P (wi|u); p) ∗ L(P (wi|¬u); p)

L(P (wi|u); p1) ∗ L(P (wi|¬u); p2)

where L is likelihood function under the assump-
tion that word counts in text have binomial distri-
butions. The numerator represents the likelihood
of the hypothesis that u and wi are independent
(P (wi|u) = P (wi|¬u) = p) and the denomina-
tor represents the likelihood of the hypothesis that
u and wi are dependent (P (wi|u) 6= P (wi|¬u) ,
P (wi|u) = p1, P (wi|¬u) = p2 )4.
Chi-square test: is a statistical hypothesis testing
method to evaluate independence of two categori-
cal random variables, e.g. whether the occurrence
of u and wi (denoted by x and y respectively) are
independent. The test statistics χ2(u,wi) is the
deviation of the observed counts fx,y from their
expected values Ex,y:

χ2(u,wi) :=
∑

x∈{wi,¬wi}

∑

y∈{u,¬u}

(fx,y − Ex,y)2
Ex,y

2.3 Similarity Measures
Various functions have been used to estimate
the similarity between distributional profiles.

3e.g., position 1 is the word immediately after, position -1
is the word immediately before etc.

4Binomial distribution B(k;n, θ) gives the probability of
observing k heads in n tosses of a coin where the coin pa-
rameter is θ. In our context, p, p1 and p2 are parameters of
Binomial distributions estimated using maximum likelihood.

Given two distributional profiles DP (u) and
DP (v), some similarity functions can be defined
as follows. Note that A(·, ·) stands for the various
association measures defined in Sec. 2.2.

Cosine coefficient is the cosine the angle between
two vectors DP (u) and DP (v):

cos(DP (u), DP (v)) =∑
wi∈V A(u,wi)A(v, wi)√∑

wi∈V A(u,wi)2
√∑

wi∈V A(v, wi)2

L1-Norm computes the accumulated distance
between entries of two distributional profiles
(L1(·, ·)). It has been used as word similarity mea-
sure in language modeling (Dagan et al., 1999).

L1(DP (u), DP (v)) =
∑

wi∈V
|A(u,wi)−A(v, wi)|

Jensen-Shannon Divergence is a symmetric ver-
sion of contextual average mutual information
(KL) which is used by (Dagan et al., 1999) as
word similarity measure.

JSD(DP (u), DP (v)) =KL(DP (u), AV GDP (u, v))+

KL(DP (v), AV GDP (u, v))

AV GDP (u, v) =

{
A(u,wi) +A(v, wi)

2
| wi ∈ V

}

KL(DP (u), DP (v)) =
∑

wi∈V
A(u,wi)log

A(u,wi)

A(v, wi)

3 Graph-based Lexicon Induction

We propose a novel approach to alleviate the oov
problem. Given a (possibly small amount of) par-
allel data between the source and target languages,
and a large monolingual data in the source lan-
guage, we construct a graph over all phrase types
in the monolingual text and the source side of the
parallel corpus and connect phrases that have sim-
ilar meanings (i.e. appear in similar context) to one
another. To do so, the distributional profiles of
all source phrase types are created. Each phrase
type represents a vertex in the graph and is con-
nected to other vertices with a weight defined by a
similarity measure between the two profiles (Sec-
tion 2.3). There are three types of vertices in the
graph: i) labeled nodes which appear in the par-
allel corpus and for which we have the target-side
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translations5; ii) oov nodes from the dev/test set
for which we seek labels (translations); and iii) un-
labeled nodes (words or phrases) from the mono-
lingual data which appear usually between oov
nodes and labeled nodes. When a relatively small
parallel data is used, unlabeled nodes outnumber
labeled ones and many of them lie on the paths
between an oov node to labeled ones.

Marton et al. (2009)’s approach ignores these
bridging nodes and connects each oov node to the
k-nearest labeled nodes. One may argue that these
unlabeled nodes do not play a major role in the
graph and the labels will eventually get to the oov
nodes from the labeled nodes by directly connect-
ing them. However based on the definition of the
similarity measures using context, it is quite possi-
ble that an oov node and a labeled node which are
connected to the same unlabeled node do not share
any context words and hence are not directly con-
nected. For instance, consider three nodes, u (un-
labeled), o (oov) and l (labeled) where u has the
same left context words with o but share the right
context with l. o and l are not connected since they
do not share any context word.

Once a graph is constructed based on simi-
larities of phrases, graph propagation is used to
propagate the labels from labeled nodes to unla-
beled and oov nodes. The approach is based on
the smoothness assumption (Chapelle et al., 2006)
which states if two nodes are similar according to
the graph, then their output labels should also be
similar.

The baseline approach (Marton et al., 2009) can
be formulated as a bipartite graph with two types
of nodes: labeled nodes (L) and oov nodes (O).
Each oov node is connected to a number of labeled
nodes, and vice versa and there is no edge between
nodes of the same type. In such a graph, the sim-
ilarity of each pair of nodes is computed using
one of the similarity measures discussed above.
The labels are translations and their probabilities
(more specifically p(e|f)) from the phrase-table
extracted from the parallel corpus. Translations
get propagated to oov nodes using a label prop-
agation technique. However beside the difference
in the oov label assignment, there is a major differ-
ence between our bipartite graph and the baseline
(Marton et al., 2009): we do not use a heuristic to

5It is possible that a phrase appears in the parallel corpus,
but not in the phrase-table. This happens when the word-
alignment module is not able to align the phrase to a target
side word or words.

reduce the number of neighbor candidates and we
consider all possible candidates that share at least
one context word. This makes a significant differ-
ence in practice as shown in Section 4.3.1.

We also take advantage of unlabeled nodes to
help connect oov nodes to labeled ones. The dis-
cussed bipartite graph can easily be expanded to a
tripartite graph by adding unlabeled nodes. Fig-
ure 1 illustrate a tripartite graph in which unla-
beled nodes are connected to both labeled and oov
nodes. Again, there is no edge between nodes
of the same type. We also created the full graph
where all nodes can be freely connected to nodes
of any type including the same type. However,
constructing such graph and doing graph propa-
gation on it is computationally very expensive for
large n-grams.

3.1 Label Propagation
Let G = (V,E,W ) be a graph where V is the set
of vertices,E is the set of edges, andW is the edge
weight matrix. The vertex set V consists of la-
beled VL and unlabeled VU nodes, and the goal of
the labeling propagation algorithm is to compute
soft labels for unlabeled vertices from the labeled
vertices. Intuitively, the edge weight W (u, v) en-
codes the degree of our belief about the similarity
of the soft labeling for nodes u and v. A soft label
Ŷv ∈ ∆m+1 is a probability vector in (m + 1)-
dimensional simplex, where m is the number of
possible labels and the additional dimension ac-
counts for the undefined ⊥ label6.

In this paper, we make use of the modified Ad-
sorption (MAD) algorithm (Talukdar and Cram-
mer, 2009) which finds soft label vectors Ŷv to
solve the following unconstrained optimization
problem:

min
Ŷ

µ1
∑

v∈VL
p1,v||Yv − Ŷv||22 + (1)

µ2
∑

v,u

p2,vWv,u||Ŷv − Ŷu||22 + (2)

µ3
∑

v

p3,v||Ŷv −Rv||22 (3)

where µi and pi,v are hyper-parameters (∀v :∑
i pi,v = 1)7, and Rv ∈ ∆m+1 encodes our prior

belief about the labeling of a node v. The first
6Capturing those cases where the given data is not enough

to reliably compute a soft labeling using the initial m real
labels.

7The values of these hyper-parameters are set to their de-
faults in the Junto toolkit (Talukdar and Crammer, 2009).
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t23 : p23
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t32 : p32
t33 : p33

O : oov nodes L : labeled nodes

U : unlabeled nodes

sim(o1, l1)

Figure 1: A tripartite graph between oov, labeled and unlabeled nodes. Translations propagate either directly from labeled
nodes to oov nodes or indirectly via unlabeled nodes.

term (1) enforces the labeling of the algorithm to
match the seed labeling Yv with different extent
for different labeled nodes. The second term (2)
enforces the smoothness of the labeling according
to the graph structure and edge weights. The last
term (3) regularizes the soft labeling for a vertex
v to match a priori label Rv, e.g. for high-degree
unlabeled nodes (hubs in the graph) we may be-
lieve that the neighbors are not going to produce
reliable label and hence the probability of unde-
fined label ⊥ should be higher. The optimiza-
tion problem can be solved with an efficient iter-
ative algorithm which is parallelized in a MapRe-
duce framework (Talukdar et al., 2008; Rao and
Yarowsky, 2009). We used the Junto label prop-
agation toolkit (Talukdar and Crammer, 2009) for
label propagation.

3.2 Efficient Graph Construction

Graph-based approaches can easily become com-
putationally very expensive as the number of
nodes grow. In our case, we use phrases in the
monolingual text as graph vertices. These phrases
are n-grams up to a certain value, which can re-
sult in millions of nodes. For each node a distribu-
tional profile (DP) needs to be created. The num-
ber of possible edges can easily explode in size
as there can be as many as O(n2) edges where n
is the number of nodes. A common practice to
control the number of edges is to connect each
node to at most k other nodes (k-nearest neigh-

bor). However, finding the top-k nearest nodes to
each node requires considering its similarity to all
the other nodes which requires O(n2) computa-
tions and since n is usually very large, doing such
is practically intractable. Therefore, researchers
usually resort to an approximate k-NN algorithms
such as locality-sensitive hashing (?; Goyal et al.,
2012).

Fortunately, since we use context words as cues
for relating their meaning and since the similar-
ity measures are defined based on these cues, the
number of neighbors we need to consider for each
node is reduced by several orders of magnitude.
We incorporate an inverted-index-style data struc-
ture which indicates what nodes are neighbors
based on each context word. Therefore, the set
of neighbors of a node consists of union of all the
neighbors bridged by each context word in the DP
of the node. However, the number of neighbors to
be considered for each node even after this dras-
tic reduction is still large (in order of a few thou-
sands).

In order to deal with the computational chal-
lenges of such a large graph, we take advantage of
the Hadoop’s MapReduce functionality to do both
graph construction and label propagation steps.

4 Experiments & Results

4.1 Experimental Setup
We experimented with two different domains for
the bilingual data: Europarl corpus (v7) (Koehn,
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Dataset Domain Sents
Tokens
Fr En

Bitext
Europarl 10K 298K 268K
EMEA 1M 16M 14M

Monotext Europarl 2M 60M –
Dev-set WMT05 2K 67K 58K
Test-set WMT05 2K 66K 58K
Table 1: Statistics of training sets in different domains.

2005), and European Medicines Agency docu-
ments (EMEA) (Tiedemann, 2009) from French
to English. For the monolingual data, we used
French side of the Europarl corpus and we used
ACL/WMT 20058 data for dev/test sets. Table 1
summarizes statistics of the datasets used.

From the dev and test sets, we extract all source
words that do not appear in the phrase-table con-
structed from the parallel data. From the oovs, we
exclude numbers as well as named entities. We
apply a simple heuristic to detect named entities:
basically words that are capitalized in the original
dev/test set that do not appear at the beginning of
a sentence are named entities. Table 2 shows the
number of oov types and tokens for Europarl and
EMEA systems in both dev and test sets.

Dataset
Dev Test

types tokens types tokens
Europarl 1893 2229 1830 2163
EMEA 2325 4317 2294 4190

Table 2: number of oovs in dev and test sets for Europarl and
EMEA systems.

For the end-to-end MT pipeline, we used
Moses (Koehn et al., 2007) with these stan-
dard features: relative-frequency and lexical trans-
lation model (TM) probabilities in both direc-
tions; distortion model; language model (LM)
and word count. Word alignment is done using
GIZA++ (Och and Ney, 2003). We used distortion
limit of 6 and max-phrase-length of 10 in all the
experiments. For the language model, we used the
KenLM toolkit (Heafield, 2011) to create a 5-gram
language model on the target side of the Europarl
corpus (v7) with approximately 54M tokens with
Kneser-Ney smoothing.

4.1.1 Phrase-table Integration
Once the translations and their probabilities for
each oov are extracted, they are added to the

8http://www.statmt.org/wpt05/mt-shared-task/

phrase-table that is induced from the parallel text.
The probability for new entries are added as a
new feature in the log-linear framework to be
tuned along with other features. The value of
this newly introduced feature for original entries
in the phrase-table is set to 1. Similarly, the value
of original four probability features in the phrase-
table for the new entries are set to 1. The entire
training pipeline is as follows: (i) a phrase table is
constructed using parallel data as usual, (ii) oovs
for dev and test sets are extracted, (iii) oovs are
translated using graph propagation, (iv) oovs and
translations are added to the phrase table, intro-
ducing a new feature type, (v) the new phrase table
is tuned (with a LM) using MERT (Och, 2003) on
the dev set.

4.2 Evaluation

If we have a list of possible translations for oovs
with their probabilities, we become able to eval-
uate different methods we discussed. We word-
aligned the dev/test sets by concatenating them to
a large parallel corpus and running GIZA++ on
the whole set. The resulting word alignments are
used to extract the translations for each oov. The
correctness of this gold standard is limited to the
size of the parallel data used as well as the quality
of the word alignment software toolkit, and is not
100% precise. However, it gives a good estimate
of how each oov should be translated without the
need for human judgments.

For evaluating our baseline as well as graph-
based approaches, we use both intrinsic and
extrinsic evaluations. Two intrinsic evaluation
metrics that we use to evaluate the possible
translations for oovs are Mean Reciprocal Rank
(MRR) (Voorhees, 1999) and Recall. Intrinsic
evaluation metrics are faster to apply and are used
to optimize different hyper-parameters of the ap-
proach (e.g. window size, phrase length, etc.).
Once we come up with the optimized values for
the hyper-parameters, we extrinsically evaluate
different approaches by adding the new transla-
tions to the phrase-table and run it through the MT
pipeline.

4.2.1 MRR
MRR is an Information Retrieval metric used to
evaluate any process that produces a ranked list of
possible candidates. The reciprocal rank of a list
is the inverse of the rank of the correct answer in
the list. Such score is averaged over a set, oov set
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in our case, to get the mean-reciprocal-rank score.

MRR =
1

|O|

|O|∑

i=1

1

ranki
O = {oov}

In a few cases, there are multiple translations for
an oov word (i.e. appearing more than once in the
parallel corpus and being assigned to multiple dif-
ferent phrases), we take the average of reciprocal
ranks for each of them.

4.2.2 Recall
MRR takes the probabilities of oov translations
into account in sorting the list of candidate trans-
lations. However, in an MT pipeline, the language
model is supposed to rerank the hypotheses and
move more appropriate translations (in terms of
fluency) to the top of the list. Hence, we also
evaluate our candidate translation regardless of the
ranks. Since Moses uses a certain number of trans-
lations per source phrase (called the translation ta-
ble limit or ttl which we set to 20 in our experi-
ments) , we use the recall measure to evaluate the
top ttl translations in the list. Recall is another In-
formation Retrieval measure that is the fraction of
correct answers that are retrieved. For example, it
assigns score of 1 if the correct translation of the
oov word is in the top-k list and 0 otherwise. The
scores are averaged over all oovs to compute re-
call.

Recall =
|{gold standard} ∩ {candidate list}|

|{gold standard}|
4.3 Intrinsic Results
In Section 2.2 and 2.3, different types of associa-
tion measures and similarity measures have been
explained to build and compare distributional pro-
files. Table 3 shows the results on Europarl when
using different similarity combinations. The mea-
sures are evaluated by fixing the window size to
4 and maximum candidate paraphrase length to 2
(e.g. bigram). First column shows the association
measures used to build DPs. As the results show,
the combination of PMI as association measure
and cosine as DP similarity measure outperforms
the other possible combinations. We use these two
measures throughout the rest of the experiments.

Figure 2 illustrates the effects of different win-
dow sizes and paraphrase lengths on MRR. As the
figure shows, the best MRR is reached when using
window size of 4 and trigram nodes. Going from
trigram to 4-gram results in a drop in MRR. One

Assoc cosine(%) L1norm(%) JSD(%)
MRR RCL MRR RCL MRR RCL

CP 1.66 4.16 2.18 5.55 2.33 6.32
LLR 1.79 4.26 0.13 0.37 0.5 1.00
PMI 3.91 7.75 0.50 1.17 0.59 1.21
Chi 1.66 4.16 0.26 0.55 0.03 0.05

Table 3: Results of intrinsic evaluations (MRR and Recall)
on Europarl, window size 4 and paraphrase length 2
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Figure 2: Effects of different window sizes and paraphrase
length on the MRR of the dev set.

reason would be that distributional profiles for 4-
grams are very sparse and that negatively affects
the stability of similarity measures.

Figure 3 illustrates the effect of increasing the
size of monolingual text on both MRR and recall.
1× refers to the case of using 125k sentences for
the monolingual text and the 16× indicates using
the whole Europarl text on the source side (≈ 2M
sentences). As shown, there is a linear correla-
tion between the logarithm of the data size and
the MRR and recall ratios. Interestingly, MRR is
growing faster than recall by increasing the mono-
lingual text size, which means that the scoring
function gets better when more data is available.
The figure also indicates that a much bigger mono-
lingual text data can be used to further improve the
quality of the translations, however, at the expense
of more computational resources.
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Figure 3: Effect of increasing the monolingual text size on
MRR and Recall.
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Graph Neighbor MRR % RCL %

Bipartite 20 5.2 12.5
Tripartite 15+5 5.9 12.6
Full 20 5.1 10.9
Baseline 20 3.7 7.2

Table 4: Intrinsic results of different types of graphs when
using unigram nodes on Europarl.

Type Node MRR % RCL %

Bipartite
unigram 5.2 12.5
bigram 6.8 15.7

Tripartite
unigram 5.9 12.6
bigram 6.9 15.9

Baseline bigram 3.9 7.7
Table 5: Results on using unigram or bigram nodes.

4.3.1 Graph-based Results
Table 4 shows the intrinsic results on the Eu-
roparl corpus when using unigram nodes in each
of the graphs. The results are evaluated on the
dev-set based on the gold alignment created us-
ing GIZA++. Each node is connected to at most
20 other nodes (same as the max-paraphrase-limit
in the baseline). For the tripartite graph, each
node is connected to 15 labeled nodes and 5 un-
labeled ones. The tripartite graph gets a slight im-
provement over the bipartite one, however, the full
graph failed to have the same increase. One rea-
son is that allowing paths longer than 2 between
oov and labeled nodes causes more noise to prop-
agate into the graph. In other words, a paraphrase
of a paraphrase of a paraphrase is not necessarily
a useful paraphrase for an oov as the translation
may no longer be a valid one.

Table 5 also shows the effect of using bigrams
instead of unigrams as graph nodes. There is an
improvement by going from unigrams to bigrams
in both bipartite and tripartite graphs. We did not
use trigrams or larger n-grams in our experiments.

4.4 Extrinsic Results

The generated candidate translations for the oovs
can be added to the phrase-table created using
the parallel corpus to increase the coverage of the
phrase-table. This aggregated phrase-table is to be
tuned along with the language model on the dev
set, and run on the test set. BLEU (Papineni et
al., 2002) is still the de facto evaluation metric for
machine translation and we use that to measure
the quality of our proposed approaches for MT.

In these experiments, we do not use alignment in-
formation on dev or test sets unlike the previous
section.

Table 6 reports the Bleu scores for different do-
mains when the oov translations from the graph
propagation is added to the phrase-table and com-
pares them with the baseline system (i.e. Moses).
Results for our approach is based on unigram tri-
partite graphs and show that we improve over the
baseline in both the same-domain (Europarl) and
domain adaptation (EMEA) settings.

Table 7 shows some translations found by our
system for oov words.

oov gold standard candiate list

spécialement

undone
particularly
especially
special
particular

particularly
specific
only
particular
should
and
especially

assentiment approval

support
agreement
approval
accession
will approve
endorses

Table 7: Two examples of oov translations found by our
method.

5 Related work

There has been a long line of research on learning
translation pairs from non-parallel corpora (Rapp,
1995; Koehn and Knight, 2002; Haghighi et al.,
2008; Garera et al., 2009; Marton et al., 2009;
Laws et al., 2010). Most have focused on ex-
tracting a translation lexicon by mining monolin-
gual resources of data to find clues, using prob-
abilistic methods to map words, or by exploit-
ing the cross-language evidence of closely related
languages. Most of them evaluated only high-
frequency words of specific types (nouns or con-
tent words) (Rapp, 1995; Koehn and Knight, 2002;
Haghighi et al., 2008; Garera et al., 2009; Laws et
al., 2010) In contrast, we do not consider any con-
straint on our test data and our data includes many
low frequency words. It has been shown that trans-
lation of high-frequency words is easier than low
frequency words (Tamura et al., 2012).

Some methods have used a third language(s)
as pivot or bridge to find translation pairs (Mann
and Yarowsky, 2001; Schafer and Yarowsky, 2002;
Callison-Burch et al., 2006).
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Corpus System MRR Recall Dev Bleu Test Bleu

Europarl
Baseline – – 28.53 28.97
Our approach 5.9 12.6 28.76 29.40*

EMEA
Baseline – – 20.05 20.34
Our approach 3.6 7.4 20.54 20.80*

* Statistically significant with p < 0.02 using the bootstrap resampling significance test (in Moses).

Table 6: Bleu scores for different domains with or without using oov translations.

Context similarity has been used effectively in
bilingual lexicon induction (Rapp, 1995; Koehn
and Knight, 2002; Haghighi et al., 2008; Gar-
era et al., 2009; Marton et al., 2009; Laws et al.,
2010). It has been modeled in different ways: in
terms of adjacent words (Rapp, 1999; Fung and
Yee, 1998), or dependency relations (Garera et al.,
2009). Laws et al. (2010) used linguistic analy-
sis in the form of graph-based models instead of a
vector space. But all of these researches used an
available seed lexicon as the basic source of simi-
larity between source and target languages unlike
our method which just needs a monolingual cor-
pus of source language which is freely available
for many languages and a small bilingual corpora.

Some methods tried to alleviate the lack of seed
lexicon by using orthographic similarity to extract
a seed lexicon (Koehn and Knight, 2002; Fiser and
Ljubesic, 2011). But it is not a practical solution
in case of unrelated languages.

Haghighi et al. (2008) and Daumé and Jagarla-
mudi (2011) proposed generative models based on
canonical correlation analysis to extract transla-
tion lexicons for non-parallel corpora by learning a
matching between source and target lexicons. Us-
ing monolingual features to represent words, fea-
ture vectors are projected from source and target
words into a canonical space to find the appropri-
ate matching between them. Their method relies
on context features which need a seed lexicon and
orthographic features which only works for phylo-
genetically related languages.

Graph-based semi-supervised methods have
been shown to be useful for domain adaptation in
MT as well. Alexandrescu and Kirchhoff (2009)
applied a graph-based method to determine simi-
larities between sentences and use these similari-
ties to promote similar translations for similar sen-
tences. They used a graph-based semi-supervised
model to re-rank the n-best translation hypothe-
sis. Liu et al. (2012) extended Alexandrescu’s
model to use translation consensus among simi-

lar sentences in bilingual training data by devel-
oping a new structured label propagation method.
They derived some features to use during decoding
process that has been shown useful in improving
translation quality. Our graph propagation method
connects monolingual source phrases with oovs to
obtain translation and so is a very different use of
graph propagation from these previous works.

Recently label propagation has been used for
lexicon induction (Tamura et al., 2012). They used
a graph based on context similarity as well as co-
occurrence graph in propagation process. Similar
to our approach they used unlabeled nodes in la-
bel propagation process. However, they use a seed
lexicon to define labels and comparable corpora to
construct graphs unlike our approach.

6 Conclusion

We presented a novel approach for inducing oov
translations from a monolingual corpus on the
source side and a parallel data using graph prop-
agation. Our results showed improvement over
the baselines both in intrinsic evaluations and on
BLEU. Future work includes studying the effect
of size of parallel corpus on the induced oov trans-
lations. Increasing the size of parallel corpus on
one hand reduces the number of oovs. But, on
the other hand, there will be more labeled para-
phrases that increases the chance of finding the
correct translation for oovs in the test set.

Currently, we find paraphrases for oov words.
However, oovs can be considered as n-grams
(phrases) instead of unigrams. In this scenario,
we also can look for paraphrases and translations
for phrases containing oovs and add them to the
phrase-table as new translations along with the
translations for unigram oovs.

We also plan to explore different graph propa-
gation objective functions. Regularizing these ob-
jective functions appropriately might let us scale
to much larger data sets with an order of magni-
tude more nodes in the graph.
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Paşca, Deepak Ravichandran, Rahul Bhagat, and
Fernando Pereira. 2008. Weakly-supervised acqui-
sition of labeled class instances using graph random
walks. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’08.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita.
2012. Bilingual lexicon extraction from compara-
ble corpora using label propagation. In EMNLP-
CoNLL, pages 24–36.

Egidio L. Terra and Charles L. A. Clarke. 2003. Fre-
quency estimates for statistical word similarity mea-
sures. In HLT-NAACL.

Jorg Tiedemann. 2009. News from opus - a collection
of multilingual parallel corpora with tools and inter-
faces. In N. Nicolov, K. Bontcheva, G. Angelova,
and R. Mitkov, editors, Recent Advances in Natu-
ral Language Processing, volume V, pages 237–248.
John Benjamins, Amsterdam/Philadelphia.

Ellen M. Voorhees. 1999. TREC-8 Question Answer-
ing Track Report. In Proceedings of the 8th Text
Retrieval Conference, pages 77–82.

Jiajun Zhang, Feifei Zhai, and Chengqing Zong. 2012.
Handling unknown words in statistical machine
translation from a new perspective. In Natural Lan-
guage Processing and Chinese Computing, pages
176–187. Springer.

1115



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1116–1126,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Online Relative Margin Maximization for Statistical Machine Translation

Vladimir Eidelman
Computer Science

and UMIACS
University of Maryland

College Park, MD
vlad@umiacs.umd.edu

Yuval Marton
Microsoft

City Center Plaza
Bellevue, WA

yuvalmarton@gmail.com

Philip Resnik
Linguistics

and UMIACS
University of Maryland

College Park, MD
resnik@umd.edu

Abstract
Recent advances in large-margin learning
have shown that better generalization can
be achieved by incorporating higher order
information into the optimization, such as
the spread of the data. However, these so-
lutions are impractical in complex struc-
tured prediction problems such as statis-
tical machine translation. We present an
online gradient-based algorithm for rela-
tive margin maximization, which bounds
the spread of the projected data while max-
imizing the margin. We evaluate our op-
timizer on Chinese-English and Arabic-
English translation tasks, each with small
and large feature sets, and show that our
learner is able to achieve significant im-
provements of 1.2-2 BLEU and 1.7-4.3
TER on average over state-of-the-art opti-
mizers with the large feature set.

1 Introduction

The desire to incorporate high-dimensional sparse
feature representations into statistical machine
translation (SMT) models has driven recent re-
search away from Minimum Error Rate Training
(MERT) (Och, 2003), and toward other discrim-
inative methods that can optimize more features.
Examples include minimum risk (Smith and Eis-
ner, 2006), pairwise ranking (PRO) (Hopkins and
May, 2011), RAMPION (Gimpel and Smith, 2012),
and variations of the margin-infused relaxation al-
gorithm (MIRA) (Watanabe et al., 2007; Chiang et
al., 2008; Cherry and Foster, 2012). While the ob-
jective function and optimization method vary for
each optimizer, they can all be broadly described
as learning a linear model, or parameter vector w,
which is used to score alternative translation hy-
potheses.

In every SMT system, and in machine learn-
ing in general, the goal of learning is to find a

model that generalizes well, i.e. one that will yield
good translations for previously unseen sentences.
However, as the dimension of the feature space in-
creases, generalization becomes increasingly diffi-
cult. Since only a small portion of all (sparse) fea-
tures may be observed in a relatively small fixed
set of instances during tuning, we are prone to
overfit the training data. An alternative approach
for solving this problem is estimating discrimina-
tive feature weights directly on the training bi-
text (Tillmann and Zhang, 2006; Blunsom et al.,
2008; Simianer et al., 2012), which is usually sub-
stantially larger than the tuning set, but this is com-
plementary to our goal here of better generaliza-
tion given a fixed size tuning set.

In order to achieve that goal, we need to care-
fully choose what objective to optimize, and how
to perform parameter estimation of w for this ob-
jective. We focus on large-margin methods such
as SVM (Joachims, 1998) and passive-aggressive
algorithms such as MIRA. Intuitively these seek
a w such that the separating distance in geomet-
ric space of two hypotheses is at least as large as
the cost incurred by selecting the incorrect one.
This criterion performs well in practice at find-
ing a linear separator in high-dimensional feature
spaces (Tsochantaridis et al., 2004; Crammer et
al., 2006).

Now, recent advances in machine learning have
shown that the generalization ability of these
learners can be improved by utilizing second or-
der information, as in the Second Order Percep-
tron (Cesa-Bianchi et al., 2005), Gaussian Margin
Machines (Crammer et al., 2009b), confidence-
weighted learning (Dredze and Crammer, 2008),
AROW (Crammer et al., 2009a; Chiang, 2012)
and Relative Margin Machines (RMM) (Shiv-
aswamy and Jebara, 2009b). The latter, RMM,
was introduced as an effective and less computa-
tionally expensive way to incorporate the spread
of the data – second order information about the
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distance between hypotheses when projected onto
the line defined by the weight vector w.

Unfortunately, not all advances in machine
learning are easy to apply to structured prediction
problems such as SMT; the latter often involve la-
tent variables and surrogate references, resulting
in loss functions that have not been well explored
in machine learning (Mcallester and Keshet, 2011;
Gimpel and Smith, 2012). Although Shivaswamy
and Jebara extended RMM to handle sequen-
tial structured prediction (Shivaswamy and Jebara,
2009a), their batch approach to quadratic opti-
mization, using existing off-the-shelf QP solvers,
does not provide a practical solution: as Taskar et
al. (2006) observe, “off-the-shelf QP solvers tend
to scale poorly with problem and training sam-
ple size” for structured prediction problems.. This
motivates an online gradient-based optimization
approach—an approach that is particularly attrac-
tive because its simple update is well suited for ef-
ficiently processing structured objects with sparse
features (Crammer et al., 2012).

The contributions of this paper include (1) in-
troduction of a loss function for structured RMM
in the SMT setting, with surrogate reference trans-
lations and latent variables; (2) an online gradient-
based solver, RM, with a closed-form parameter
update to optimize the relative margin loss; and
(3) an efficient implementation that integrates well
with the open source cdec SMT system (Dyer et
al., 2010).1 In addition, (4) as our solution is not
dependent on any specific QP solver, it can be
easily incorporated into practically any gradient-
based learning algorithm.

After background discussion on learning in
SMT (§2), we introduce a novel online learning al-
gorithm for relative margin maximization suitable
for SMT (§3). First, we introduce RMM (§3.1) and
propose a latent structured relative margin objec-
tive which incorporates cost-augmented hypothe-
sis selection and latent variables. Then, we de-
rive a simple closed-form online update necessary
to create a large margin solution while simulta-
neously bounding the spread of the projection of
the data (§3.2). Chinese-English translation exper-
iments show that our algorithm, RM, significantly
outperforms strong state-of-the-art optimizers, in
both a basic feature setting and high-dimensional
(sparse) feature space (§4). Additional Arabic-
English experiments further validate these results,

1https://github.com/veidel/cdec

even where previously MERT was shown to be ad-
vantageous (§5). Finally, we discuss the spread
and other key issues of RM (§6), and conclude
with discussion of future work (§7).

2 Learning in SMT

Given an input sentence in the source language
x ∈ X , we want to produce a translation y ∈ Y(x)
using a linear model parameterized by a weight
vector w:

(y∗, d∗) = arg max
(y,d)∈Y(x),D(x)

w>f(x, y, d)

where w>f(x, y, d) is the weighted feature scor-
ing function, hereafter s(x, y, d), and Y(x) is the
space of possible translations of x. While many
derivations d ∈ D(x) can produce a given transla-
tion, we are only able to observe y; thus we model
d as a latent variable. Although our models are
actually defined over derivations, they are always
paired with translations, so our feature function
f(x, y, d) is defined over derivation–translation
pairs.2 The learning goal is then to estimate w.

The instability of MERT in larger feature
sets (Foster and Kuhn, 2009; Hopkins and May,
2011), has motivated many alternative tuning
methods for SMT. These include strategies based
on batch log-linear models (Tillmann and Zhang,
2006; Blunsom et al., 2008), as well as the in-
troduction of online linear models (Liang et al.,
2006a; Arun and Koehn, 2007).

Recent batch optimizers, PRO and RAMPION,
and Batch-MIRA (Cherry and Foster, 2012), have
been partly motivated by existing MT infrastruc-
tures, as they iterate between decoding the entire
tuning set and optimizing the parameters. PRO
considers tuning a classification problem and em-
ploys a binary classifier to rank pairs of outputs.
RAMPION aims to address the disconnect between
MT and machine learning by optimizing a struc-
tured ramp loss with a concave-convex procedure.

2.1 Large-Margin Learning
Online large-margin algorithms, such as MIRA,
have also gained prominence in SMT, thanks to
their ability to learn models in high-dimensional
feature spaces (Watanabe et al., 2007; Chiang et
al., 2009). The usual presentation of MIRA’s opti-
mization problem is given as a quadratic program:

2We may omit d in some equations for clarity.
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wt+1 = arg min
w

1

2
||w −wt||2 + Cξi

s.t. s(xi, yi, d)− s(xi, y′, d) ≥ ∆i(y
′)− ξi

(1)

where y′ is the single most violated constraint, the
cost ∆i(y) is computed using an external measure
of quality, such as 1-BLEU(yi, y), and a slack vari-
able ξi is introduced to allow for non-separable
instances. C acts as a regularization parameter,
trading off between margin maximization and con-
straint violations.

While solving the optimization problem relies
on computing the margin between the correct out-
put yi, and y′, in SMT our decoder is often inca-
pable of producing the reference translation, i.e.
yi /∈ Y(xi). We must instead resort to selecting a
surrogate reference, y+ ∈ Y(xi). This issue has
recently received considerable attention (Liang
et al., 2006a; Eidelman, 2012; Chiang, 2012),
with preference given to surrogate references ob-
tained through cost-diminished hypothesis selec-
tion. Thus, y+ is selected based on a combination
of model score and error metric from the k-best
list produced by our current model. A similar se-
lection is made for the cost-augmented hypothesis
y− ∈ Y(xi):
(y+, d+)← arg max

(y,d)∈Y(xi),D(xi)
s(xi, y, d)−∆i(y)

(y−, d−)← arg max
(y,d)∈Y(xi),D(xi)

s(xi, y, d) + ∆i(y)

In this setting, the optimization problem be-
comes:

wt+1 = arg min
w

1

2
||w −wt||2 + Cξi

s.t. δs(xi, y+, y−) ≥ ∆i(y
−)−∆i(y

+)− ξi
(2)

where δs(xi, y+, y−)=s(xi, y+, d+)-s(xi, y−, d−)
This leads to a variant of the structured ramp

loss to be optimized:

` =

− max
(y+,d+)∈Y(xi),D(xi)

(
s(xi, y+, d+)−∆i(y

+)
)

+ max
(y−,d−)∈Y(xi),D(xi)

(
s(xi, y−, d−) + ∆i(y

−)
)

(3)

The passive-aggressive update (Crammer et al.,
2006), which is used to solve this problem, up-
dates w on each round such that the score of the
correct hypothesis y+ is greater than the score of
the incorrect y− by a margin at least as large as the
cost incurred by predicting the incorrect hypothe-
sis, while keeping the change to w small.

 

(a)

 

(b)

Figure 1: (a) RM and large margin solution comparison and
(b) the spread of the projections given by each. RM and large
margin solutions are shown with a darker dotted line and a
darker solid line, respectively.

3 The Relative Margin Machine in SMT

3.1 Relative Margin Machine

The margin, the distance between the correct
hypothesis and incorrect one, is defined by
s(xi, y+, d+) and s(xi, y−, d−). It is maxi-
mized by minimizing the norm in SVM, or
analogously, the proximity constraint in MIRA:
arg minw

1
2 ||w −wt||2. However, theoretical re-

sults supporting large-margin learning, such as the
VC-dimension (Vapnik, 1995) or the Rademacher
bound (Bartlett and Mendelson, 2003) consider
measures of complexity, in addition to the empir-
ical performance, when describing future predic-
tive ability. The measures of complexity usually
take the form of some value on the radius of the
data, such as the ratio of the radius of the data to
the margin (Shivaswamy and Jebara, 2009a). As
radius is a way of measuring spread in any pro-
jection direction, here we will specifically be in-
terested in the the spread of the data as measured
after the projection defined by the learned model
w.

More formally, the spread is the dis-
tance between y+, and the worst candidate
(yw, dw)← arg min(y,d)∈Y(xi),D(xi) s(xi, y, d),
after projecting both onto the line defined by the
weight vector w. For each y′, this projection is
conveniently given by s(xi, y′, d), thus the spread
is calculated as δs(xi, y+, yw).

RMM was introduced as a generalization over
SVM that incorporates both the margin constraint
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and information regarding the spread of the data.
The relative margin is the ratio of the absolute,
or maximum margin, to the spread of the pro-
jected data. Thus, the RMM learns a large mar-
gin solution relative to the spread of the data, or
in other words, creates a max margin while si-
multaneously bounding the spread of the projected
data. As a concrete example, consider the plot
shown in Figure 1(a), with hypotheses represented
by two-dimensional feature vectors. The point
marked with a circle in the upper right represents
f(xi, y

+), while all other squares represent alter-
native incorrect hypotheses f(xi, y′). The large
margin decision boundary is shown with a darker
solid line, while the relative margin solution is
shown with a darker dotted line. The lighter lines
parallel to each define the margins, with the square
at the intersection being f(xi, y−). The bottom
portion of Figure 1(b) presents an alternative view
of each solution, showing the projections of the
hypotheses given the learned model of each. No-
tice that with a large margin solution, although the
distance between y+ and y− is greater, the points
are highly spread, extending far to the left of the
decision boundary.

In contrast, with a relative margin, although
we have a smaller absolute margin, the spread is
smaller, all points being within a smaller distance ε
of the decision boundary. The higher the spread of
the projection, the higher the variance of the pro-
jected points, and the greater the likelihood that
we will mislabel a new instance, since the high
variance projections may cross the learned deci-
sion boundary. In higher dimensions, accounting
for the spread becomes even more crucial, as will
be discussed in Section 6.3

Although RMM is theoretically well-founded
and improves practical performance over large-
margin learning in the settings where it was intro-
duced, it is unsuitable for most complex structured
prediction in NLP. Nonetheless, since structured
RMM is a generalization of Structured SVM,
which shares its underlying objective with MIRA,
our intuition is that SMT should be able to benefit
as well. But to take advantage of the second-order
information RMM utilizes for increased general-
izability in SMT, we need a computationally effi-

3The motivation of confidence-weighted estima-
tion (Dredze and Crammer, 2008) and AROW (Crammer
et al., 2009a) is related in spirit. They use second-order
information in the form of a distribution over weights to
change the maximum margin solution.

cient optimization procedure that does not require
batch training or an off-the-shelf QP solver.

3.2 RM Algorithm
We address the above-mentioned limitations by in-
troducing a novel online learning algorithm for
relative margin maximization, RM. The relative
margin solution is obtained by maximizing the
same margin as Equation (2), but now with re-
spect to the distance between y+, and the worst
candidate yw. Thus, the relative margin dictates
trading-off between a large margin as before, and
a small spread of the projection, in other words,
bounding the distance between y+ and yw. The
additional computation required, namely, obtain-
ing yw, is efficient to perform, and has likely al-
ready happened while obtaining the k-best deriva-
tions necessary for the margin update. The online
latent structured soft relative margin optimization
problem is then:

wt+1 = arg min
w

1

2
||w −wt||2 + Cξi +Dτi

s.t.: δs(xi, y+, y−) ≥ ∆i(y
−)−∆i(y

+)− ξi
−B − τi ≤ δs(xi, y+, yw) ≤ B + τi

(4)

where additional bounding constraints are added
to the usual margin constraints in order to contain
the spread by bounding the difference in projec-
tions. B is an additional parameter; it controls
the spread, trading off between margin maximiza-
tion and spread minimization. Notice that when
B → ∞, the bounding constraints disappear, and
we are left with the original problem in Equa-
tion (2). D, which plays an analogous role to C,
allows penalized violations of the bounding con-
straints.

The dual of Equation (4) can be derived as:

max
α,β,β∗ L =

∑

y∈Y(xi)

αy −B
∑

y∈Y(xi)

βy −B
∑

y∈Y(xi)

β∗
y

−1

2

〈 ∑

y∈Y(xi)

αyωi(y
+, y)−

∑

y∈Y(xi)

βyωi(y
+, y)

+
∑

y∈Y(xi)

β∗
yωi(y

+, y),

∑

y′∈Y(xj)

αy′ωj(y
+, y′)−

∑

y′∈Y(xj)

βy′ωj(y
+, y′)

+
∑

y′∈Y(xj)

β∗
y′ωj(y

+, y′)

〉

(5)

where the α Lagrange multiplier corresponds
to the standard margin constraint, while β and
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β∗ each correspond to a bounding constraint,
and ωi(y

+, y′) corresponds to the difference of
f(xi, y

+, d+) and f(xi, y′, d′). The weight up-
date can then be obtained from the dual variables:

∑
αyωi(y

+, y)−
∑

βyωi(y
+, y) +

∑
β∗
yωi(y

+, y)

(6)

The dual in Equation (5) can be optimized us-
ing a cutting plane algorithm, an effective method
for solving a relaxed optimization problem in
the dual, used in Structured SVM, MIRA, and
RMM (Tsochantaridis et al., 2004; Chiang, 2012;
Shivaswamy and Jebara, 2009a). The cutting
plane presented in Alg. 1 decomposes the overall
problem into subproblems which are solved inde-
pendently by creating working sets Sji , which cor-
respond to the largest violations of either the mar-
gin constraint, or bounding constraints, and itera-
tively satisfying the constraints in each set.

The cutting plane in Alg. 1 makes use of the
the closed-form gradient-based updates we de-
rived for RM presented in Alg. 2. The updates
amount to performing a subgradient descent step
to update w in accordance with the constraints.
Since the constraint matrix of the dual program is
not strictly decomposable across constraint types,
we are in effect solving an approximation of the
original problem.

Algorithm 1 RM Cutting Plane Algorithm
(adapted from (Shivaswamy and Jebara, 2009a))
Require: ith training example (xi, yi), weight w, margin

reg. C, bound B, bound reg. D, ε, εB
1: S1

i ←
{
y+
}

, S2
i ←

{
y+
}

, S3
i ←

{
y+
}

2: repeat
3: H(y) := ∆i(y)−∆i(y

+)− δs(xi, y+, y)
4: y1 ← arg maxy∈Y(xi)

H(y)

5: y2 ← arg maxy∈Y(xi)
G(y) := δs(xi, y+, y)

6: y3 ← arg miny∈Y(xi)
−G(y)

7: ξ ← max {0,maxy∈Si H(y)}
8: V1 ← H(y1)− ξ − ε
9: V2 ← G(y2)−B − εB

10: V3 ← −G(y3)−B − εB
11: j ← argmaxj′∈{1,2,3} Vj′
12: if Vj > 0 then
13: Sji ← Sji ∪ {yj}
14: OPTIMIZE(w, S1

i , S
2
i , S

3
i , C,B) . see Alg. 2

15: end if
16: until S1

i , S
2
i , S

3
i do not change

Alternatively, we could utilize a passive-
aggressive updating strategy (Crammer et al.,
2006), which would simply bypass the cutting
plane and select the most violated constraint for

Algorithm 2 RM update with α, β, β∗

1: procedure OPTIMIZE(w, S1
i , S

2
i , S

3
i , C,B)

2: while w changes do
3: if

∣∣S1
i

∣∣ > 1 then
4: UPDATEMARGIN(w, S1

i , C)
5: end if
6: if

∣∣S2
i

∣∣ > 1 then
7: UPDATEUPPERBOUND(w, S2

i , B)
8: end if
9: if

∣∣S3
i

∣∣ > 1 then
10: UPDATELOWERBOUND(w, S3

i , B)
11: end if
12: end while
13: end procedure
14: procedure UPDATEMARGIN(w, S1

i , C)
15: αy ← 0 for all y ∈ S1

i

16: α
y+i
← C

17: for n← 1...MaxIter do
18: Select two constraints y, y′ from S1

i

19: γα ← ∆i(y
′)−∆i(y)−δs(xi, y, y

′)
||ω(y,y′)||2

20: γα ← max(−αy,min(αy′ , γα))
21: αy ← αy + γα ; α′

y ← α′
y − γα

22: w← w + γα(ω(y, y
′))

23: end for
24: end procedure
25: procedure UPDATEUPPERBOUND(w, S2

i , B)
26: βy ← 0 for all y ∈ S2

i

27: for n← 1...MaxIter do
28: Select one constraint y from S2

i

29: γβ ← max(0, B−δs(xi ,y+ ,y)
||ω(y+,y)||2 )

30: βy ← βy + γβ
31: w← w − γβ(ω(y+, y))
32: end for
33: end procedure
34: procedure UPDATELOWERBOUND(w, S3

i , B)
35: β∗

y ← 0 for all y ∈ S3
i

36: for n← 1...MaxIter do
37: Select one constraint y from S3

i

38: γβ∗ ← max(0, −B−δs(xi ,y+ ,y)
||ω(y+,y)||2 )

39: β∗
y ← β∗

y + γβ∗

40: w← w + γβ∗(ω(y+, y))
41: end for
42: end procedure

each set, if there is one, and perform the corre-
sponding parameter updates in Alg. 2. We re-
fer to the resulting passive-aggressive algorithm as
RM-PA, and the cutting plane version as RM-CP.
Preliminary experiments showed that RM-PA per-
forms on par with RM-CP, thus RM-PA is the one
used in the empirical evaluation below.

A graphical depiction of the passive-aggressive
RM update is presented in Figure 2. The upper
right circle represents y+, while all other squares
represent alternative hypotheses y′. As in the stan-
dard MIRA solution, we select the maximum mar-
gin constraint violator, y−, shown as the triangle,
and update such that the margin is greater than the
cost. Additionally, we select the maximum bound-
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Figure 2: RM update with margin and bounding con-
straints. The diagonal dotted line depicts cost–margin equi-
librium. The vertical gray dotted line depicts the bound B.
White arrows indicate updates triggered by constraint viola-
tions. Squares are data points in the k-best list not selected
for update in this round.

task Corpus Sentences Tokens
En Zh/Ar

Zh-En

training 1.6M 44.4M 40.4M
tune (MT06) 1664 48k 39k
MT03 919 28k 24k
MT05 1082 35k 33k

Ar-En

training 1M 23.7M 22.8M
tune (MT06) 1797 55k 49k
MT05 1056 36k 33k
MT08 1360 51k 45k
4-gram LM 24M 600M –

Table 1: Corpus statistics

ing constraint violator, yw, shown as the upside-
down triangle, and update so the distance from y+

is no greater than B.

4 Experiments

4.1 Setup

To evaluate the advantage of explicitly accounting
for the spread of the data, we conducted several
experiments on two Chinese-English translation
test sets, using two different feature sets in each.
For training we used the non-UN and non-HK
Hansards portions of the NIST training corpora,
which was segmented using the Stanford seg-
menter (Tseng et al., 2005). The data statistics are
summarized in the top half of Table 1. The English
data was lowercased, tokenized and aligned using
GIZA++ (Och and Ney, 2003) to obtain bidirec-
tional alignments, which were symmetrized using
the grow-diag-final-and method (Koehn
et al., 2003). We trained a 4-gram LM on the

English side of the corpus with additional words
from non-NYT and non-LAT, randomly selected
portions of the Gigaword v4 corpus, using modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1996). We used cdec (Dyer et al., 2010) as our
hierarchical phrase-based decoder, and tuned the
parameters of the system to optimize BLEU (Pap-
ineni et al., 2002) on the NIST MT06 corpus.

We applied several competitive optimizers as
baselines: hypergraph-based MERT (Kumar et al.,
2009), k-best variants of MIRA (Crammer et al.,
2006; Chiang et al., 2009), PRO (Hopkins and
May, 2011), and RAMPION (Gimpel and Smith,
2012). The size of the k-best list was set to 500
for RAMPION, MIRA and RM, and 1500 for PRO,
with both PRO and RAMPION utilizing k-best ag-
gregation across iterations. RAMPION settings
were as described in (Gimpel and Smith, 2012),
and PRO settings as described in (Hopkins and
May, 2011), with PRO requiring regularization
tuning in order to be competitive with the other op-
timizers. MIRA and RM were run with 15 paral-
lel learners using iterative parameter mixing (Mc-
Donald et al., 2010). All optimizers were imple-
mented in cdec and use the same system config-
uration, thus the only independent variable is the
optimizer itself. We set C to 0.01, and MaxIter
to 100. We selected the bound step size D, based
on performance on a held-out dev set, to be 0.01
for the basic feature set and 0.1 for the sparse fea-
ture set. The bound constraintB was set to 1.4 The
approximate sentence-level BLEU cost ∆i is com-
puted in a manner similar to (Chiang et al., 2009),
namely, in the context of previous 1-best transla-
tions of the tuning set. All results are averaged
over 3 runs.

4.2 Feature Sets

We experimented with a small (basic) feature set,
and a large (sparse) feature set. For the small
feature set, we use 14 features, including a lan-
guage model, 5 translation model features, penal-
ties for unknown words, the glue rule, and rule
arity. For experiments with a larger feature set,
we introduced additional lexical and non-lexical
sparse Boolean features of the form commonly
found in the literature (Chiang et al., 2009; Watan-

4We also conducted an investigation into the setting of the
B parameter. We explored alternative values for B, as well
as scaling it by the current candidate’s cost, and found that
the optimizer is fairly insensitive to these changes, resulting
in only minor differences in BLEU.
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Optimizer Zh Ar
MIRA 35k 37k
PRO 95k 115k
RAMPION 22k 24k
RM 30k 32k
Active+Inactive 3.4M 4.9M

Table 2: Active sparse feature templates

abe et al., 2007; Simianer et al., 2012).
Non-lexical features include structural distor-

tion, which captures the dependence between re-
ordering and the size of a filler, and rule shape,
which bins grammar rules by their sequence of
terminals and nonterminals (Chiang et al., 2008).
Lexical features on rules include rule ID, which
fires on a specific grammar rule. We also in-
troduce context-dependent lexical features for the
300 most frequent aligned word pairs (f ,e) in the
training corpus, which fire on triples (f ,e,f+1) and
(f ,e,f−1), capturing when we see f aligned to e,
with f+1 and f−1 occurring to the right or left of f ,
respectively. All other words fall into the default
〈unk〉 feature bin. In addition, we have insertion
and deletion features for the 150 most frequently
unaligned target and source words. These feature
templates resulted in a total of 3.4 million possible
features, of which only a fraction were active for
the respective tuning set and optimizer, as shown
in Table 2.

4.3 Results

As can be seen from the results in Table 3, our
RM method was the best performer in all Chinese-
English tests according to all measures – up to 1.9
BLEU and 6.6 TER over MIRA – even though we
only optimized for BLEU.5 Surprisingly, it seems
that MIRA did not benefit as much from the sparse
features as RM. The results are especially notable
for the basic feature setting – up to 1.2 BLEU and
4.6 TER improvement over MERT – since MERT
has been shown to be competitive with small num-
bers of features compared to high-dimensional op-
timizers such as MIRA (Chiang et al., 2008).

For the tuning set, the decoder performance was
consistently the lowest with RM, compared to the

5In the small feature set RAMPION yielded similar best
BLEU scores, but worse TER. In preliminary experiments
with a smaller trigram LM, our RM method consistently
yielded the highest scores in all Chinese-English tests – up
to 1.6 BLEU and 6.4 TER from MIRA, the second best per-
former.

other optimizers. We believe this is due to the
RM bounding constraint being more resistant to
overfitting the training data, and thus allowing for
improved generalization. Conversely, while PRO
had the second lowest tuning scores, it seemed to
display signs of underfitting in the basic and large
feature settings.

5 Additional Experiments

In order to explore the applicability of our ap-
proach to a wider range of languages, we also eval-
uated its performance on Arabic-English transla-
tion. All experimental details were the same as
above, except those noted below.

For training, we used the non-UN portion of the
NIST training corpora, which was segmented us-
ing an HMM segmenter (Lee et al., 2003). Dataset
statistics are given in the bottom part of Table 1.
The sparse feature templates resulted here in a to-
tal of 4.9 million possible features, of which again
only a fraction were active, as shown in Table 2.

As can be seen in Table 4, in the smaller feature
set, RM and MERT were the best performers, with
the exception that on MT08, MIRA yielded some-
what better (+0.7) BLEU but a somewhat worse
(-0.9) TER score than RM.

On the large feature set, RM is again the best
performer, except, perhaps, a tied BLEU score
with MIRA on MT08, but with a clear 1.8 TER

gain. In both Arabic-English feature sets, MIRA
seems to take the second place, while RAMPION

lags behind, unlike in Chinese-English (§4).6

Interestingly, RM achieved substantially higher
BLEU precision scores in all tests for both lan-
guage pairs. However, this was also usually cou-
pled had a higher brevity penalty (BP) than MIRA,
with the BP increasing slightly when moving to
the sparse setting.

6 Discussion

The trend of the results, summarized as RM gain
over other optimizers averaged over all test sets, is
presented in Table 5. RM shows clear advantage
in both basic and sparse feature sets, over all other
state-of-the-art optimizers. The RM gains are no-
tably higher in the large feature set, which we take

6In our preliminary experiments with the smaller trigram
LM, MERT did better on MT05 in the smaller feature set, and
MIRA had a small advantage in two cases. RAMPION per-
formed similarly to RM on the smaller feature set. RM’s loss
was only up to 0.8 BLEU (0.7 TER) from MERT or MIRA,
while its gains were up to 1.7 BLEU and 2.1 TER over MIRA.
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Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT03 MT05 Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 35.4 35.8 60.8 32.4 63.9 - - - - -
MIRA 35.5 35.8 61.1 32.1 64.6 36.6 35.9 60.6 32.1 64.1
PRO 34.1 36.0 60.2 31.7 63.4 35.7 34.8 56.1 31.4 59.1

RAMPION 35.1 36.5 58.6 33.0 61.3 36.7 36.9 57.7 33.3 60.6
RM 31.3 36.5 56.4 33.6 59.3 33.2 37.5 54.6 34.0 57.5

Table 3: Performance on Zh-En with basic (left) and sparse (right) feature sets on MT03 and MT05.

Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT05 MT08 Tune MT05 MT08

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 43.8 53.3 40.2 41.0 50.7 - - - - -
MIRA 43.0 52.8 40.8 41.3 50.6 44.4 53.4 40.1 41.8 50.2
PRO 41.5 51.3 41.5 39.4 51.5 46.8 53.2 40.0 41.4 49.7

RAMPION 42.4 52.0 40.8 40.0 50.8 44.6 52.9 40.4 41.0 50.4
RM 38.5 53.3 39.8 40.6 49.7 43.0 55.3 37.5 41.8 48.4

Table 4: Performance on Ar-En with basic (left) and sparse (right) feature sets on MT05 and MT08.

Small set Large set
Optimizer BLEU TER BLEU TER

MERT 0.4 2.6 - -
MIRA 0.5 3.0 1.4 4.3
PRO 1.4 2.9 2.0 1.7

RAMPION 0.6 1.6 1.2 2.8

Table 5: RM gain over other optimizers averaged
over all test sets.

as an indication for the importance of bounding
the spread.

Spread analysis: For RM, the average spread
of the projected data in the Chinese-English small
feature set was 0.9±3.6 for all tuning iterations,
and 0.7±2.9 for the iteration with the highest de-
coder performance. In comparison, the spread of
the data for MIRA was 5.9±20.5 for the best it-
eration. In the sparse setting, RM had an aver-
age spread of 0.9±2.4 for the best iteration, while
MIRA had a spread of 14.0±31.1. Similarly,
on Arabic-English, RM had a spread of 0.7±2.4
in the small setting, and 0.82±1.4 in the sparse
setting, while MIRA’s spread was 9.4±26.8 and
11.4±22.1, for the small and sparse settings, re-
spectively. Notice that the average spread for RM
stays about the same when moving to higher di-
mensions, with the variance decreasing in both
cases. For MIRA, however, the average spread

increases in both cases, with the variance being
much higher than RM. For instance, observe that
the spread of MIRA on Chinese grows from 5.9 to
14.0 in the sparse feature setting. While bounding
the spread is useful in the low-dimensional setting
(0.7-1.5 BLEU gain with RM over MIRA as shown
in Table 3), accounting for the spread is even more
crucial with sparse features, where MIRA gains
only up to 0.1 BLEU, while RM gains 1 BLEU.
These results support the claim that our imposed
bound B indeed helps decrease the spread, and
that, in turn, lower spread yields better general-
ization performance.

Error Analysis: The inconclusive advantage
of RM over MIRA (in BLEU vs. TER scores)
on Arabic-English MT08 calls for a closer look.
Therefore we conducted a coarse error analysis
on 15 randomly selected sentences from MERT,
RMM and MIRA, with basic and sparse feature
settings for the latter two. This sample yielded
450 data points for analysis: output of the 5 con-
ditions on 15 sentences scored in 6 violation cate-
gories. The categories were: function word drop,
content word drop, syntactic error (with a reason-
able meaning), semantic error (regardless of syn-
tax), word order issues, and function word mis-
translation and “hallucination”. The purpose of
this analysis was to get a qualitative feel for the
output of each model, and a better idea as to why
we obtained performance improvements. RM no-
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ticeably had more word order and excess/wrong
function word issues in the basic feature setting
than any optimizer. However, RM seemed to ben-
efit the most from the sparse features, as its bad
word order rate dropped close to MIRA, and its ex-
cess/wrong function word rate dropped below that
of MIRA with sparse features (MIRA’s rate actu-
ally doubled from its basic feature set). We con-
jecture both these issues will be ameliorated with
syntactic features such as those in Chiang et al.
(2008). This correlates with our observation that
RM’s overall BLEU score is negatively impacted
by the BP, as the BLEU precision scores are no-
ticeably higher.

K-best: RM is potentially more sensitive to the
size and order of the k-best list. While MIRA is
only concerned with the margin between y+ and
y−, RM also accounts for the distance between y+

and yw. It might be the case that a larger k-best, or
revisiting previous strategies for y+ and y− selec-
tion, such as bold updating, local updating (Liang
et al., 2006b), or max-BLEU updating (Tillmann
and Zhang, 2006) might have a greater impact.
Also, we only explored several settings of B, and
there remains a continuum of RM solutions that
trade off between margin and spread in different
ways.

Active features: Perhaps contrary to expecta-
tion, we did not see evidence of a correlation be-
tween the number of active features and optimizer
performance. RAMPION, with the fewest features,
is the closest performer to RM in Chinese, while
MIRA, with a greater number, is the closest on
Arabic. We also notice that while PRO had the
lowest BLEU scores in Chinese, it was competi-
tive in Arabic with the highest number of features.

7 Conclusions and Future Work

We have introduced RM, a novel online margin-
based algorithm designed for optimizing high-
dimensional feature spaces, which introduces con-
straints into a large-margin optimizer that bound
the spread of the projection of the data while max-
imizing the margin. The closed-form online up-
date for our relative margin solution accounts for
surrogate references and latent variables.

Experimentation in statistical MT yielded sig-
nificant improvements over several other state-
of-the-art optimizers, especially in a high-
dimensional feature space (up to 2 BLEU and 4.3
TER on average). Overall, RM achieves the best or

comparable performance according to two scoring
methods in two language pairs, with two test sets
each, in small and large feature settings. More-
over, across conditions, RM always yielded the
best combined TER-BLEU score.7

These improvements are achieved using stan-
dard, relatively small tuning sets, contrasted with
improvements involving sparse features obtained
using much larger tuning sets, on the order of
hundreds of thousands of sentences (Liang et al.,
2006a; Tillmann and Zhang, 2006; Blunsom et al.,
2008; Simianer et al., 2012). Since our approach
is complementary to scaling up the tuning data, in
future work we intend to combine these two meth-
ods. In future work we also intend to explore using
additional sparse features that are known to be use-
ful in translation, e.g. syntactic features explored
by Chiang et al. (2008).

Finally, although motivated by statistical ma-
chine translation, RM is a gradient-based method
that can easily be applied to other problems. We
plan to investigate its utility elsewhere in NLP
(e.g. for parsing) as well as in other domains in-
volving high-dimensional structured prediction.
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Abstract 

Predicate-argument structure (PAS) has been 
demonstrated to be very effective in improving 
SMT performance. However, since a source-
side PAS might correspond to multiple differ-
ent target-side PASs, there usually exist many 
PAS ambiguities during translation. In this pa-
per, we group PAS ambiguities into two types: 
role ambiguity and gap ambiguity. Then we 
propose two novel methods to handle the two 
PAS ambiguities for SMT accordingly: 1) in-
side context integration; 2) a novel maximum 
entropy PAS disambiguation (MEPD) model. 
In this way, we incorporate rich context in-
formation of PAS for disambiguation. Then 
we integrate the two methods into a PAS-
based translation framework. Experiments 
show that our approach helps to achieve sig-
nificant improvements on translation quality. 

1 Introduction 

Predicate-argument structure (PAS) depicts the 
relationship between a predicate and its associat-
ed arguments, which indicates the skeleton struc-
ture of a sentence on semantic level. Basically, 
PAS agrees much better between two languages 
than syntax structure (Fung et al., 2006; Wu and 
Fung, 2009b). Considering that current syntax-
based translation models are always impaired by 
cross-lingual structure divergence (Eisner, 2003; 
Zhang et al., 2010), PAS is really a better repre-
sentation of a sentence pair to model the bilin-
gual structure mapping. 

However, since a source-side PAS might 
correspond to multiple different target-side PASs, 
there usually exist many PAS ambiguities during 
translation. For example, in Figure 1, (a) and (b) 
carry the same source-side PAS <[A0]1 
[Pred(是)]2 [A1]3> for Chinese predicate “是”. 
However, in Figure 1(a), the corresponding 
target-side-like PAS is <[X1] [X2] [X3]>, while in 

Figure 1(b), the counterpart target-side-like PAS1 
is <[X2] [X3] [X1]>. This is because the two 
PASs play different roles in their corresponding 
sentences. Actually, Figure 1(a) is an independ-
ent PAS, while Figure 1(b) is a modifier of the 
noun phrase “中国 和 俄罗斯”. We call this kind 
of PAS ambiguity role ambiguity. 

中国  和  俄罗斯 两个 大国是
[           A0         ]1 [     A1    ]3[Pred]2

，

being , should  …two major countries
[           X3            ][X2]

China and Russia
[          X1           ]

应 …

防洪 首要 的 任务是
[ A0 ]1 [          A1         ]3[Pred]2

flood  prevention is the  primary  mission
[           X1          ] [ X2 ] [              X3              ]

奥运村 的 位置 对 运动员 是 最 好 的
[      A0      ]1 [    A1   ]3[Pred]2

the location of the olympic village for athletesis the best
[     X3    ][X2][                    X1                     ]

(a)

(c)

(b)

 
Figure 1. An example of ambiguous PASs. 

Meanwhile, Figure 1 also depicts another kind 
of PAS ambiguity. From Figure 1, we can see 
that (a) and (c) get the same source-side PAS and 
target-side-like PAS. However, they are different 
because in Figure 1(c), there is a gap string “对 
运动员” between [A0] and [Pred]. Generally, the 
gap strings are due to the low recall of automatic 
semantic role labeling (SRL) or complex sen-
tence structures. For example, in Figure 1(c), the 
gap string “对 运动员” is actually an argument 
“AM-PRP” of the PAS, but the SRL system has 

                                                 
1We use target-side-like PAS to refer to a list of general 
non-terminals in target language order, where a non-
terminal aligns to a source argument. 
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ignored it. We call this kind of PAS ambiguity 
gap ambiguity. 

During translation, these PAS ambiguities will 
greatly affect the PAS-based translation models. 
Therefore, in order to incorporate the bilingual 
PAS into machine translation effectively, we 
need to decide which target-side-like PAS should 
be chosen for a specific source-side PAS. We 
call this task PAS disambiguation. 

In this paper, we propose two novel methods 
to incorporate rich context information to handle 
PAS ambiguities. Towards the gap ambiguity, 
we adopt a method called inside context 
integration to extend PAS to IC-PAS. In terms of 
IC-PAS, the gap strings are combined effectively 
to deal with the gap ambiguities. As to the role 
ambiguity, we design a novel maximum entropy 
PAS disambiguation (MEPD) model to combine 
various context features, such as context words 
of PAS. For each ambiguous source-side PAS, 
we build a specific MEPD model to select 
appropriate target-side-like PAS for translation. 
We will detail the two methods in Section 3 and 
4 respectively. 

Finally, we integrate the above two methods 
into a PAS-based translation framework (Zhai et 
al. 2012). Experiments show that the two PAS 
disambiguation methods significantly improve 
the baseline translation system. The main 
contribution of this work can be concluded as 
follows: 

1) We define two kinds of PAS ambiguities: 
role ambiguity and gap ambiguity. To our 
best knowledge, we are the first to handle 
these PAS ambiguities for SMT. 

2) Towards the two different ambiguities, we 
design two specific methods for PAS 
disambiguation: inside context integration 
and the novel MEPD model.  

2 PAS-based Translation Framework 

PAS-based translation framework is to perform 
translation based on PAS transformation (Zhai et 
al., 2012). In the framework, a source-side PAS 
is first converted into target-side-like PASs by 
PAS transformation rules, and then perform 
translation based on the obtained target-side-like 
PASs. 

2.1 PAS Transformation Rules 

PAS transformation rules (PASTR) are used to 
convert a source-side PAS into a target one. 
Formally, a PASTR is a triple <Pred, SP, TP>: 

 Pred means the predicate where the rule is 
extracted. 

 SP denotes the list of source elements in 
source language order. 

 TP refers to the target-side-like PAS, i.e., a 
list of general non-terminals in target 
language order. 

For example, Figure 2 shows the PASTR 
extracted from Figure 1(a). In this PASTR, Pred 
is Chinese verb “是”, SP is the source element 
list <[A0]1 [Pred]2 [A1]3>, and TP is the list of 
non-terminals <X1 X2 X3>. The same subscript in 
SP and TP means a one-to-one mapping between 
a source element and a target non-terminal. Here, 
we utilize the source element to refer to the 
predicate or argument of the source-side PAS. 

[X3] [X2] [A0]1 [Pred]2 [A1]3 [X1] 

source-side PAS(是) target-side-like PAS

 
Figure 2. An example PASTR. 

2.2 PAS Decoding 

The PAS decoding process is divided into 3 steps: 
(1) PAS acquisition: perform semantic role 

labeling (SRL) on the input sentences to achieve 
their PASs, i.e., source-side PASs; 

(2) Transformation: use the PASTR to match 
the source-side PAS i.e., the predicate Pred and 
the source element list SP. Then by the matching 
PASTRs, transform source-side PASs to target-
side-like PASs. 

(3) Translation: in this step, the decoder first 
translates each source element respectively, and 
then a CKY-style decoding algorithm is adopted 
to combine the translation of each element and 
get the final translation of the PAS.  

2.3 Sentence Decoding with the PAS-based 
translation framework 

Sometimes, the source sentence cannot be fully 
covered by the PAS, especially when there are 
several predicates. Thus to translate the whole 
sentence, Zhai et al. (2012) further designed an 
algorithm to decode the entire sentence.  

In the algorithm, they organized the space of 
translation candidates into a hypergraph. For the 
span covered by PAS (PAS span), a multiple-
branch hyperedge is employed to connect it to 
the PAS’s elements. For the span not covered by 
PAS (non-PAS span), the decoder considers all 
the possible binary segmentations of it and uti-
lizes binary hyperedges to link them. 
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During translation, the decoder fills the spans 
with translation candidates in a bottom-up man-
ner. For the PAS span, the PAS-based translation 
framework is adopted. Otherwise, the BTG sys-
tem (Xiong et al., 2006) is used. When the span 
covers the whole sentence, we get the final trans-
lation result. 

 
Obviously, PAS ambiguities are not 

considered in this framework at all. The target-
side-like PAS is selected only according to the 
language model and translation probabilities, 
without considering any context information of 
PAS. Consequently, it would be difficult for the 
decoder to distinguish the source-side PAS from 
different context. This harms the translation 
quality. Thus to overcome this problem, we de-
sign two novel methods to cope with the PAS 
ambiguities: inside-context integration and a 
maximum entropy PAS disambiguation (MEPD) 
model. They will be detailed in the next two sec-
tions. 

3 Inside Context Integration 

In this section, we integrate the inside context of 
the PAS into PASTRs to do PAS disambiguation. 
Basically, a PAS consists of several elements (a 
predicate and several arguments), which are ac-
tually a series of continuous spans. For a specific 
PAS <E1,…, En>, such as the source-side PAS 
<[A0][Pred][A1]> in Figure 2, its controlled range 
is defined as: 

( ) { ( ), [1, ]}irange PAS s E i n= ∀ ∈  

where s(Ei) denotes the span of element Ei. Fur-
ther, we define the closure range of a PAS. It 
refers to the shortest continuous span covered by 
the entire PAS: 

0( ) ( )
_ min , max

nj s E j s E
closure range j j

∈ ∈

 =   
 

Here, E0 and En are the leftmost and rightmost 
element of the PAS respectively. The closure 
range is introduced here because adjacent source 
elements in a PAS are usually separated by gap 
strings in the sentence. We call these gap strings 
the inside context (IC) of the PAS, which satisfy: 

_ ( ) ( ( ) ( ) )closure range PAS IC PAS range PAS= ⊕   

The operator ⊕  takes a list of neighboring spans 
as input2, and returns their combined continuous 
span. As an example, towards the PAS “<[A0] 
[Pred][A1]>” (the one for Chinese predicate “是
(shi)”) in Figure 3, its controlled range is 
{[3,5],[8,8],[9,11]} and its closure range is [3,11]. 
The IC of the PAS is thus {[6,7]}. 

To consider the PAS’s IC during PAS trans-
formation process, we incorporate its IC into the 
extracted PASTR. For each gap string in IC, we 
abstract it by the sequence of highest node cate-
gories (named as s-tag sequence). The s-tag se-
quence dominates the corresponding syntactic 
tree fragments in the parse tree. For example, in 
Figure 3, the s-tag sequence for span [6,8] is “PP 
VC”. Thus, the sequence for the IC (span [6,7]) 
in Figure 3 is “PP”. We combine the s-tag se-
quences with elements of the PAS in order. The 
resulting PAS is called IC-PAS, just like the left 
side of Figure 4(b) shows. 

[           A0           ] [        PP        ]

奥运村3 运动员7 是8 好10
de wei-zhiao-yun-cun

位置5的4 对6
dui yun-dong-yuan shi

最9 的11
zui hao de

NN DEC NN

NP

P NN

PP

VC AD VA DEC

CP

VP

IP

表示1

VV

biao-shi

VP

,2

PU

他0

PN

ta
。

PU

IP

DNP

[Pred] [      A1     ]  
Figure 3. The illustration of inside context (IC). The 
subscript in each word refers to its position in sen-
tence. 

Differently, Zhai et al. (2012) attached the IC 
to its neighboring elements based on parse trees. 
For example, in Figure 3, they would attach the 
gap string “对(dui) 运动员(yun-dong-yuan)” to the 
PAS’s element “Pred”, and then the span of 
“Pred” would become [6,8]. Consequently, the 
span [6,8] will be translated as a whole source 
element in the decoder. This results in a bad 
translation because the gap string “对(dui) 运动员

(yun-dong-yuan)” and predicate “是(shi)” should 
be translated separately, just as Figure 4(a) 
shows. Therefore, we can see that the attachment 
decision in (Zhai et al., 2012) is sometimes un-
reasonable and the IC also cannot be used for 
PAS disambiguation at all. In contrast, our meth-

                                                 
2 Here, two spans are neighboring means that the beginning 
of the latter span is the former span’s subsequent word in 
the sentence. For example, span [3,6] and [7,10] are neigh-
boring spans. 
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od of inside context integration is much flexible 
and beneficial for PAS disambiguation. 

(a)

(b)

[X1] [X2] [X4] [A0]1 [PP]2 [Pred]3 [A1]4 [X3] 

source-side PAS(是) target-side-like PAS

奥运村 运动员 是 好

[            A0            ]1 [      A1     ]4[Pred]3

[the location of the olympic village]1 [for athletes]2[is]3 [the best]4

[         PP         ]2

de wei-zhiao-yun-cun
位置的 对

dui yun-dong-yuan shi
最 的
zui hao de

 
Figure 4. Example of IC-PASTR. (a) The aligned 
span of each element of the PAS in Figure 3; (b) The 
extracted IC-PASTR from (a). 

Using the IC-PASs, we look for the aligned 
target span for each element of the IC-PAS. We 
demand that every element and its corresponding 
target span must be consistent with word align-
ment. Otherwise, we discard the IC-PAS. After-
wards, we can easily extract a rule for PAS trans-
formation, which we call IC-PASTR. As an ex-
ample, Figure 4(b) is the extracted IC-PASTR 
from Figure 4(a). 

Note that we only apply the source-side PAS 
and word alignment for IC-PASTR extraction. 
By contrast, Zhai et al. (2012) utilized the result 
of bilingual SRL (Zhuang and Zong, 2010b). 
Generally, bilingual SRL could give a better 
alignment between bilingual elements. However, 
bilingual SRL usually achieves a really low re-
call on PASs, about 226,968 entries in our train-
ing set while it is 882,702 by using monolingual 
SRL system. Thus to get a high recall for PASs, 
we only utilize word alignment instead of captur-
ing the relation between bilingual elements. In 
addition, to guarantee the accuracy of IC-
PASTRs, we only retain rules with more than 5 
occurrences. 

4 Maximum Entropy PAS Disambigua-
tion (MEPD) Model 

In order to handle the role ambiguities, in this 
section, we concentrate on utilizing a maximum 
entropy model to incorporate the context infor-
mation for PAS disambiguation. Actually, the 
disambiguation problem can be considered as a 
multi-class classification task. That is to say, for 
a source-side PAS, every corresponding target-
side-like PAS can be considered as a label. For 
example, in Figure 1, for the source-side PAS 
“[A0]1[Pred]2[A1]3”, the target-side-like PAS 
“[X1] [X2] [X3]” in Figure 1(a) is thus a label and 

“[X2] [X3] [X1]” in Figure 1(b) is another label of 
this classification problem. 

The maximum entropy model is the classical 
way to handle this problem: 

exp( ( , , ( ), ( )))
( | , ( ), ( ))

exp( ( , , ( ), ( )))
i i i

tp i i i

h sp tp c sp c tp
P tp sp c sp c tp

h sp tp c sp c tpθ

θ
θ′

= ∑
∑ ∑

 

where sp and tp refer to the source-side PAS (not 
including the predicate) and the target-side-like 
PAS respectively. c(sp) and c(tp) denote the sur-
rounding context of sp and tp. hi is a binary fea-
ture function and θi is the weight of hi. 

We train a maximum entropy classifier for 
each sp via the off-the-shelf MaxEnt toolkit 3 . 
Note that to avoid sparseness, sp does not in-
clude predicate of the PAS. Practically, the pred-
icate serves as a feature of the MEPD model. As 
an example, for the rule illustrated in Figure 4(b), 
we build a MEPD model for its source element 
list sp <[A0] [PP] [Pred] [A1]>, and integrate the 
predicate “是(shi)” into the MEPD model as a 
feature. 

In detail, we design a list of features for each 
pair <sp, tp> as follows: 

   Lexical Features. These features include 
the words immediately to the left and right of sp, 
represented as w-1 and w+1. Moreover, the head 
word of each argument also serves as a lexical 
feature, named as hw(Ei). For example, Figure 3 
shows the context of the IC-PASTR in Figure 
4(b), and the extracted lexical features of the in-
stance are: w-1=， , w+1=。 , hw([A0]1)=位置

(wei-zhi), hw([A1]4)=好(hao). 

   POS Features. These features are defined 
as the POS tags of the lexical features, p-1, p+1 
and phw(Ei) respectively. Thus, the correspond-
ing POS features of Figure 4 (b) are: p-1=PU, 
p+1=PU, phw([A0]1)=NN, phw([A1]4)=VA. 

   Predicate Feature. It is the pair of source 
predicate and its corresponding target predicate. 
For example, in Figure 4(b), the source and tar-
get predicate are “是(shi)” and “is” respectively. 
The predicate feature is thus “PredF=是(shi)+is”. 
The target predicate is determined by: 

_ ( )
- arg max ( | - )j

j t range PAS
t pred p t s pred

∈
=  

where s-pred is the source predicate and t-pred 
is the corresponding target predicate. 

                                                 
3http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.htm
l 
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t_range(PAS) refers to the target range covering 
all the words that are reachable from the PAS via 
word alignment.  tj refers to the jth word in 
t_range(PAS). The utilized lexical translation 
probabilities are from the toolkit in Moses 
(Koehn et al., 2007). 

   Syntax Features. These features include 
st(Ei), i.e., the highest syntax tag for each argu-
ment, and fst(PAS) which is the lowest father 
node of sp in the parse tree. For example, for the 
rule shown in Figure 4(b), syntax features are 
st([A0]1)=NP, st([A1]4)=CP, and fst(PAS)=IP 
respectively.  

Using these features, we can train the MEPD 
model. We set the Gaussian prior to 1.0 and per-
form 100 iterations of the L-BFGS algorithm for 
each MEPD model. At last, we build 160 and 
215 different MEPD classifiers, respectively, for 
the PASTRs and IC-PASTRs. Note that since the 
training procedure of maximum entropy classifi-
er is really fast, it does not take much time to 
train these classifiers. 

5 Integrating into the PAS-based Trans-
lation Framework 

In this section, we integrate our method of PAS 
disambiguation into the PAS-based translation 
framework when translating each test sentence. 

For inside context integration, since the format 
of IC-PASTR is the same to PASTR4, we can 
use the IC-PASTR to substitute PASTR for 
building a PAS-based translation system directly. 
We use “IC-PASTR” to denote this system. In 
addition, since our method of rule extraction is 
different from (Zhai et al., 2012), we also use 
PASTR to construct a translation system as the 
baseline system, which we call “PASTR”. 

On the basis of PASTR and IC-PASTR, we 
further integrate our MEPD model into transla-
tion. Specifically, we take the score of the MEPD 
model as another informative feature for the de-
coder to distinguish good target-side-like PASs 
from bad ones. The weights of the MEPD feature 
can be tuned by MERT (Och, 2003) together 
with other translation features, such as language 
model. 

6 Related Work 

The method of PAS disambiguation for SMT is 
relevant to the previous work on context depend-

                                                 
4 The only difference between IC-PASTR and PASTR is 
that there are many syntactic labels in IC-PASTRs.  

ent translation. 
Carpuat and Wu (2007a, 2007b) and Chan et 

al. (2007) have integrated word sense disambig-
uation (WSD) and phrase sense disambiguation 
(PSD) into SMT systems. They combine rich 
context information to do disambiguation for 
words or phrases, and achieve improved transla-
tion performance. 

Differently, He et al. (2008), Liu et al. (2008) 
and Cui et al. (2010) designed maximum entropy 
(ME) classifiers to do better rule section for hier-
archical phrase-based model and tree-to-string 
model respectively. By incorporating the rich 
context information as features, they chose better 
rules for translation and yielded stable improve-
ments on translation quality. 

Our work differs from the above work in the 
following two aspects: 1) in our work, we focus 
on the problem of disambiguates on PAS; 2) we 
define two kinds of PAS ambiguities: role 
ambiguity and gap ambiguity. 3) towards the two 
different ambiguities, we design two specific 
methods for PAS disambiguation: inside context 
integration and the novel MEPD model. 

In addition, Xiong et al. (2012) proposed an 
argument reordering model to predict the relative 
position between predicates and arguments. They 
also combine the context information in the 
model. But they only focus on the relation be-
tween the predicate and a specific argument, ra-
ther than the entire PAS. Different from their 
work, we incorporate the context information to 
do PAS disambiguation based on the entire PAS. 
This is very beneficial for global reordering dur-
ing translation (Zhai et al., 2012). 

7 Experiment 

7.1 Experimental Setup  

We perform Chinese-to-English translation to 
demonstrate the effectiveness of our PAS disam-
biguation method. The training data contains 
about 260K sentence pairs5. To get accurate SRL 
results, we ensure that the length of each sen-
tence in the training data is among 10 and 30 
words. We run GIZA++ and then employ the 
grow-diag-final-and (gdfa) strategy to produce 
symmetric word alignments. The development 
set and test set come from the NIST evaluation 
test data (from 2003 to 2005). Similar to the 
training set, we also only retain the sentences 
                                                 
5 It is extracted from the LDC corpus. The LDC category 
number : LDC2000T50, LDC2002E18, LDC2003E07, 
LDC2004T07, LDC2005T06, LDC2002L27, LDC2005T10 
and LDC2005T34. 
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whose lengths are among 10 and 30 words. Fi-
nally, the development set includes 595 sentenc-
es from NIST MT03 and the test set contains 
1,786 sentences from NIST MT04 and MT05. 

We train a 5-gram language model with the 
Xinhua portion of English Gigaword corpus and 
target part of the training data. The translation 
quality is evaluated by case-insensitive BLEU-4 
with shortest length penalty. The statistical sig-
nificance test is performed by the re-sampling 
approach (Koehn, 2004). 

We perform SRL on the source part of the 
training set, development set and test set by the 
Chinese SRL system used in (Zhuang and Zong, 
2010b). To relieve the negative effect of SRL 
errors, we get the multiple SRL results by 
providing the SRL system with 3-best parse trees 
of Berkeley parser (Petrov and Klein, 2007), 1-
best parse tree of Bikel parser (Bikel, 2004) and 
Stanford parser (Klein and Manning, 2003). 
Therefore, at last, we can get 5 SRL result for 
each sentence. For the training set, we use these 
SRL results to do rule extraction respectively. 
We combine the obtained rules together to get a 
combined rule set. We discard the rules with 
fewer than 5 appearances. Using this set, we can 
train our MEPD model directly. 

As to translation, we match the 5 SRL results 
with transformation rules respectively, and then 
apply the resulting target-side-like PASs for de-
coding. As we mentioned in section 2.3, we use 
the state-of-the-art BTG system to translate the 
non-PAS spans. 

source-side PAS counts number of classes 

[A0] [Pred(是)] [A1] 245 6 
[A0] [Pred(说)] [A1] 148 6 

[A0] [AM-ADV] [Pred(是)] [A1] 68 20 
[A0] [Pred(表示)] [A1] 66 6 
[A0] [Pred(有)] [A1] 42 6 

[A0] [Pred(认为)] [A1] 32 4 
[A0] [AM-ADV] [Pred(有)] [A1] 32 19 

[A0] [Pred(指出)] [A1] 29 4 
[AM-ADV] [Pred(有)] [A1] 26 6 

[A2] [Pred(为)] [A1] 16 5 

Table 1. The top 10 frequent source-side PASs in the 
dev and test set. 

7.2 Ambiguities in Source-side PASs 

We first give Table 1 to show some examples of 
role ambiguity. In the table, for instance, the se-
cond line denotes that the source-side PAS “[A0] 
[Pred(说)] [A1]” appears 148 times in the devel-

opment and test set all together, and it corre-
sponds to 6 different target-side-like PASs in the 
training set. 

As we can see from Table 1, all the top 10 
PASs correspond to several different target-side-
like PASs. Moreover, according to our statistics, 
among all PASs appearing in the development 
set and test set, 56.7% of them carry gap strings. 
These statistics demonstrate the importance of 
handling the role ambiguity and gap ambiguity in 
the PAS-based translation framework. Therefore, 
we believe that our PAS disambiguation method 
would be helpful for translation. 

7.3 Translation Result  

We compare the translation result using PASTR, 
IC-PASTR and our MEPD model in this section. 
The final translation results are shown in Table 2. 
As we can see, after employing PAS for transla-
tion, all systems outperform the baseline BTG 
system significantly. This comparison verifies 
the conclusion of (Zhai et al., 2012) and thus also 
demonstrates the effectiveness of PAS. 

MT system Test set n-gram precision 
1 2 3 4 

BTG 32.75 74.39 41.91 24.75 14.91 
PASTR 33.24* 75.28 42.62 25.18 15.10 

PASTR+MEPD 33.78* 75.32 43.08 25.75 15.58 
IC-PASTR 33.95*# 75.62 43.36 25.92 15.58 

IC-PASTR+MEPD 34.19*# 75.66 43.40 26.15 15.92 

Table 2. Result of baseline system and the MT sys-
tems using our PAS-based disambiguation method. 
The “*” and “#” denote that the result is significantly 
better than BTG and PASTR respectively (p<0.01).  

Specifically, after integrating the inside con-
text information of PAS into transformation, we 
can see that system IC-PASTR significantly out-
performs system PASTR by 0.71 BLEU points. 
Moreover, after we import the MEPD model into 
system PASTR, we get a significant improve-
ment over PASTR (by 0.54 BLEU points). These 
comparisons indicate that both the inside context 
integration and our MEPD model are beneficial 
for the decoder to choose better target-side-like 
PAS for translation. 

On the basis of IC-PASTR, we further add our 
MEPD model into translation and get system IC-
PASTR+MEPD. We can see that this system 
further achieves a remarkable improvement over 
system PASTR (0.95 BLEU points).  

However, from Table 2, we find that system 
IC-PASTR+MEPD only outperforms system IC-
PASTR slightly (0.24 BLEU points). The result 
seems to show that our MEPD model is not such 
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useful after using IC-PASTR. We will explore 
the reason in section 7.5. 

7.4 Effectiveness of Inside Context Integra-
tion 

The method of inside context integration is used 
to combine the inside context (gap strings) into 
PAS for translation, i.e., extend the PASTR to 
IC-PASTR. In order to demonstrate the effec-
tiveness of inside context integration, we first 
give Table 3, which illustrates statistics on the 
matching PASs. The statistics are conducted on 
the combination of development set and test set. 

Transformation 
Rules 

Matching PAS 
None Gap PAS Gap PAS Total 

PASTR 1702 1539 3241 
IC-PASTR 1546 832 2378 

Table 3. Statistics on the matching PAS. 

In Table 3, for example, the line for PASTR 
means that if we use PASTR for the combined 
set, 3241 PASs (column “Total”) can match 
PASTRs in total. Among these matching PASs, 
1539 ones (column “Gap PAS”) carry gap strings, 
while 1702 ones do not (column “None Gap 
PAS”). Consequently, since PASTR does not 
consider the inside context during translation, the 
Gap PASs, which account for 47% (1539/3241) 
of all matching PASs, might be handled inappro-
priately in the PAS-based translation framework. 
Therefore, integrating the inside context into 
PASTRs, i.e., using the proposed IC-PASTRs, 
would be helpful for translation. The translation 
result shown in Table 2 also demonstrates this 
conclusion. 

(a) reference

(c) translation result using IC-PASTR

[for economic recovery , especially of investment confidence is]

[  A0  ] [                              PP                               ] [Pred] [      A1      ]
这 一 个 好 兆头是对 经济 复苏 、 尤其是 恢复 投资 信心

[ a good sign ] [ for economic recovery , especially of investment confidence ]this is

这 一 个 好 兆头对 经济 复苏 、 尤其是 恢复 投资 信心  是 

[a good sign]this
(b) translation result using PASTR

[  A0  ] [                              PP                               ] [Pred] [      A1      ]
这 一 个 好 兆头是对 经济 复苏 、 尤其是 恢复 投资 信心

[a good sign]this is [for economic recovery and the restoration of investors ' confidence]

[  A0  ] [                            Pred                             ] [      A1      ]

 
Figure 5. Translation examples to verify the effec-
tiveness of inside context.  

From Table 3, we can also find that the num-
ber of matching PASs decreases after using IC-
PASTR. This is because IC-PASTR is more spe-

cific than PASTR. Therefore, for a PAS with 
specific inside context (gap strings), even if the 
matched PASTR is available, the matched IC-
PASTR might not. This indicates that comparing 
with PASTR, IC-PASTR is more capable of dis-
tinguishing different PASs. Therefore, based on 
this advantage, although the number of matching 
PASs decreases, IC-PASTR still improves the 
translation system using PASTR significantly. Of 
course, we believe that it is also possible to inte-
grate the inside context without decreasing the 
number of matching PASs and we plan this as 
our future work. 

We further give a translation example in Fig-
ure 5 to illustrate the effectiveness of our inside 
context integration method. In the example, the  
automatic SRL system ignores the long preposi-
tion phrase “对 经济复苏 、尤其是 恢复 投资信

心” for the PAS. Thus, the system using PASTRs 
can only attach the long phrase to the predicate 
“是” according to the parse tree, and meanwhile, 
make use of a transformation rule as follows: 

[X3] [X2] [A0]1 [Pred]2 [A1]3 [X1] 

source-side PAS(是) target-side-like PAS

 

In this way, the translation result is very bad, just 
as Figure 5(b) shows. The long preposition 
phrases are wrongly positioned in the translation. 

In contrast, after inside context integration, we 
match the inside context during PAS transfor-
mation. As Figure 5(c) shows, the inside context 
helps to selects a right transformation rule as fol-
lows and gets a good translation result finally. 

[X1] [X2] [X4] [A0]1 [PP]2 [Pred]3 [A1]4 [X3] 

source-side PAS(是) target-side-like PAS

 

7.5 Effectiveness of the MEPD Model 

The MEPD model incorporates various context 
features to select better target-side-like PAS for 
translation. On the basis of PASTR and IC-
PASTR, we build 160 and 215 different MEPD 
classifies, respectively, for the frequent source-
side PASs. 

In Table 2, we have found that our MEPD 
model improves system IC-PASTR slightly. We 
conjecture that this phenomenon is due to two 
possible reasons. On one hand, sometimes, many 
PAS ambiguities might be resolved by both in-
side context and the MEPD model. Therefore, 
the improvement would not be such significant 
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when we combine these two methods together. 
On the other hand, as Table 3 shows, the number 
of matching PASs decreases after using IC-
PASTR. Since the MEPD model works on PASs, 
its effectiveness would also weaken to some ex-
tent. Future work will explore this phenomenon 
more thoroughly. 

PASTR

Ref

PASTR 
+ MEPD

...  ,  [海牙]A0    [是]Pred    [其 最后 一站]A1  。

...  [the hague]     [is]      [the last leg]  .

...  ,  [海牙]    [是]    [其 最后 一站]  。

...  [the hague]   [is]   [his last stop]  .

...  ,  [海牙]A0    [是]Pred    [其 最后 一站]A1  。

...   [is]    [his last leg of]    [the hague] .

 
Figure 6. Translation examples to demonstrate the 
effectiveness of our MEPD model. 

Now, we give Figure 6 to demonstrate the ef-
fectiveness of our MEPD model. From the Fig-
ure, we can see that the system using PASTRs 
selects an inappropriate transformation rule for 
translation: 

[X1] [X3] [A0]1 [Pred]2 [A1]3 [X2] 

source-side PAS(是) target-side-like PAS

 
This rule wrongly moves the subject “ 海 牙

(Hague)” to the end of the translation. We do not 
give the translation result of the BTG system 
here because it makes the same mistake. 

Conversely, by considering the context infor-
mation, the PASTR+MEPD system chooses a 
correct rule for translation: 

[X3] [X2] [A0]1 [Pred]2 [A1]3 [X1] 

source-side PAS(是) target-side-like PAS

 
As we can see, the used rule helps to keep the 
SVO structure unchanged, and gets the correct 
translation. 

8 Conclusion and Future Work 

In this paper, we focus on the problem of ambi-
guities for PASs. We first propose two ambigui-
ties: gap ambiguity and role ambiguity. Accord-
ingly, we design two novel methods to do effi-
cient PAS disambiguation: inside-context inte-
gration and a novel MEPD model. For inside 
context integration, we abstract the inside con-

text and combine them into the PASTRs for PAS 
transformation. Towards the MEPD model, we 
design a maximum entropy model for each ambi-
tious source-side PASs. The two methods suc-
cessfully incorporate the rich context information 
into the translation process. Experiments show 
that our PAS disambiguation methods help to 
improve the translation performance significantly.  

In the next step, we will conduct experiments 
on other language pairs to demonstrate the effec-
tiveness of our PAS disambiguation method. In 
addition, we also will try to explore more useful 
and representative features for our MEPD model. 
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Abstract

Mother tongue interference is the phe-
nomenon where linguistic systems of a
mother tongue are transferred to another
language. Although there has been plenty
of work on mother tongue interference,
very little is known about how strongly
it is transferred to another language and
about what relation there is across mother
tongues. To address these questions,
this paper explores and visualizes mother
tongue interference preserved in English
texts written by Indo-European language
speakers. This paper further explores lin-
guistic features that explain why certain
relations are preserved in English writing,
and which contribute to related tasks such
as native language identification.

1 Introduction

Transfer of linguistic systems of a mother tongue
to another language, namely mother tongue inter-
ference, is often observable in the writing of non-
native speakers. The reader may be able to deter-
mine the mother tongue of the writer of the fol-
lowing sentence from the underlined article error:

The alien wouldn’t use my spaceship but
the hers.

The answer would probably be French or Span-
ish; the definite article is allowed to modify pos-
sessive pronouns in these languages, and the us-
age is sometimes negatively transferred to English
writing. Researchers such as Swan and Smith
(2001), Aarts and Granger (1998), Davidsen-
Nielsen and Harder (2001), and Altenberg and
Tapper (1998) work on mother tongue interfer-
ence to reveal overused/underused words, part of
speech (POS), or grammatical items.

In contrast, very little is known about how
strongly mother tongue interference is transferred
to another language and about what relation there
is across mother tongues. At one extreme, one
could argue that it is so strongly transferred to
texts in another language that the linguistic rela-
tions between mother tongues are perfectly pre-
served in the texts. At the other extreme, one
can counter it, arguing that other features such as
non-nativeness are more influential than mother
tongue interference. One possible reason for this
is that a large part of the distinctive language sys-
tems of a mother tongue may be eliminated when
transferred to another language from a speaker’s
mother tongue. For example, Slavic languages
have a rich inflectional case system (e.g., Czech
has seven inflectional cases) whereas French does
not. However, the difference in the richness cannot
be transferred into English because English has al-
most no inflectional case system. Thus, one can-
not determine the mother tongue of a given non-
native text from the inflectional case. A similar
argument can be made about some parts of gen-
der, tense, and aspect systems. Besides, Wong and
Dras (2009) show that there are no significant dif-
ferences, between mother tongues, in the misuse
of certain syntactic features such as subject-verb
agreement that have different tendencies depend-
ing on their mother tongues. Considering these,
one could not be so sure which argument is cor-
rect. In any case, to the best of our knowledge, no
one has yet answered this question.

In view of this background, we take the first step
in addressing this question. We hypothesize that:

Hypothesis: Mother tongue interference is so
strong that the relations in a language fam-
ily are preserved in texts written in another
language.

In other words, mother tongue interference is so
strong that one can reconstruct a language fam-
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ily tree from non-native texts. One of the major
contributions of this work is to reveal and visual-
ize a language family tree preserved in non-native
texts, by examining the hypothesis. This becomes
important in native language identification1 which
is useful for improving grammatical error correc-
tion systems (Chodorow et al., 2010) or for pro-
viding more targeted feedback to language learn-
ers. As we will see in Sect. 6, this paper reveals
several crucial findings that contribute to improv-
ing native language identification. In addition, this
paper shows that the findings could contribute to
reconstruction of language family trees (Enright
and Kondrak, 2011; Gray and Atkinson, 2003;
Barbançon et al., 2007; Batagelj et al., 1992;
Nakhleh et al., 2005), which is one of the central
tasks in historical linguistics.

The rest of this paper is structured as follows.
Sect. 2 introduces the basic approach of this work.
Sect. 3 discusses the methods in detail. Sect. 4 de-
scribes experiments conducted to investigate the
hypothesis. Sect. 5 discusses the experimental re-
sults. Sect. 6 discusses implications for work in
related domains.

2 Approach

To examine the hypothesis, we reconstruct a
language family tree from English texts writ-
ten by non-native speakers of English whose
mother tongue is one of the Indo-European lan-
guages (Beekes, 2011; Ramat and Ramat, 2006).
If the reconstructed tree is sufficiently similar to
the original Indo-European family tree, it will sup-
port the hypothesis. If not, it suggests that some
features other than mother tongue interference are
more influential.

The approach we use for reconstructing a lan-
guage family tree is to apply agglomerative hi-
erarchical clustering (Han and Kamber, 2006) to
English texts written by non-native speakers. Re-
searchers have already performed related work
on reconstructing language family trees. For in-
stance, Kroeber and Chriétien (1937) and Ellegård
(1959) proposed statistical methods for measuring
the similarity metric between languages. More re-
cently, Batagelj et al. (1992) and Kita (1999) pro-
posed methods for reconstructing language fam-
ily trees using clustering. Among them, the

1Recently, native language identification has drawn the at-
tention of NLP researchers. For instance, a shared task on
native language identification took place at an NAACL-HLT
2013 workshop.

most related method is that of Kita (1999). In
his method, a variety of languages are modeled
by their spelling systems (i.e., character-based
n-gram language models). Then, agglomera-
tive hierarchical clustering is applied to the lan-
guage models to reconstruct a language family
tree. The similarity used for clustering is based on
a divergence-like distance between two language
models that was originally proposed by Juang and
Rabiner (1985). This method is purely data-driven
and does not require human expert knowledge for
the selection of linguistic features.

Our work closely follows Kita’s work. How-
ever, it should be emphasized that there is a signif-
icant difference between the two. Kita’s work (and
other previous work) targets clustering of a variety
of languages whereas our work tries to reconstruct
a language family tree preserved in non-native En-
glish. This significant difference prevents us from
directly applying techniques in the literature to our
task. For instance, Batagelj et al. (1992) use basic
vocabularies such as belly in English and ventre in
French to measure similarity between languages.
Obviously, this does not work on our task; belly is
belly in English writing whoever writes it. Kita’s
method is also likely not to work well because all
texts in our task share the same spelling system
(i.e., English spelling). Although spelling is some-
times influenced by mother tongues, it involves a
lot more including overuse, underuse, and misuse
of lexical, grammatical, and syntactic systems.

To solve the problem, this work adopts a word-
based language model in the expectation that word
sequences reflect mother tongue interference. At
the same time, its simple application would cause
a serious side effect. It would reflect the topics
of given texts rather than mother tongue interfer-
ence. Unfortunately, there exists no such English
corpus that covers a variety of language speakers
with uniform topics; moreover the availability of
non-native corpora is still somewhat limited. This
also means that available non-native corpora may
be too small to train reliable word-based language
models. The next section describes two methods
(language model-based and vector-based), which
address these problems.

3 Methods

3.1 Language Model-based Method

To begin with, let us define the following symbols
used in the methods. Let Di be a set of English
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texts where i denotes a mother tongue i. Similarly,
let Mi be a language model trained using Di.

To solve the problems pointed out in Sect. 2, we
use an n-gram language model based on a mixture
of word and POS tokens instead of a simple word-
based language model. In this language model,
content words in n-grams are replaced with their
corresponding POS tags. This greatly decreases
the influence of the topics of texts, as desired. It
also decreases the number of parameters in the
language model.

To build the language model, the following
three preprocessing steps are applied to Di. First,
texts in Di are split into sentences. Second, each
sentence is tokenized, POS-tagged, and mapped
entirely to lowercase. For instance, the first ex-
ample sentence in Sect. 1 would give:

the/DT alien/NN would/MD not/RB
use/VB my/PRP$ spaceship/NN but/CC
the/DT hers/PRP ./.

Finally, words are replaced with their correspond-
ing POS tags; for the following words, word to-
kens are used as their corresponding POS tags:
coordinating conjunctions, determiners, preposi-
tions, modals, predeterminers, possessives, pro-
nouns, question adverbs. Also, proper nouns are
treated as common nouns. At this point, the spe-
cial POS tags BOS and EOS are added at the begin-
ning and end of each sentence, respectively. For
instance, the above example would result in the
following word/POS sequence:

BOS the NN would RB VB my NN but
the hers . EOS

Note that the content of the original sentence is far
from clear while reflecting mother tongue interfer-
ence, especially in the hers.

Now, the language model Mi can be built from
Di. We set n = 3 (i.e., trigram language model)
following Kita’s work and use Kneser-Ney (KN)
smoothing (Kneser and Ney, 1995) to estimate its
conditional probabilities.

With Mi and Di, we can naturally apply Kita’s
method to our task. The clustering algorithm used
is agglomerative hierarchical clustering with the
average linkage method. The distance2 between
two language models is measured as follows. The

2It is not a distance in a mathematical sense. However,
we will use the term distance following the convention in the
literature.

probability that Mi generates Di is calculated by
Pr(Di|Mi). Note that

Pr(Di|Mi) ≈
Pr(w1,i) Pr(w2,i|w1,i)

×
|Di|∏

t=3

Pr(wt,i|wt−2,i, wt−1,i) (1)

where wt,i and |Di| denote the tth token in Di and
the number of tokens in Di, respectively, since we
use the trigram language model. Then, the dis-
tance from Mi to Mj is defined by

d(Mi → Mj) =
1

|Dj |
log

Pr(Dj |Mj)

Pr(Dj |Mi)
. (2)

In other words, the distance is determined based
on the ratio of the probabilities that each lan-
guage model generates the language data. Because
d(Mi → Mj) and d(Mj → Mi) are not symmet-
rical, we define the distance between Mi and Mj

to be their average:

d(Mi,Mj)=
d(Mi → Mj)+d(Mj → Mi)

2
. (3)

Equation (3) is used to calculate the distance be-
tween two language models for clustering.

To sum up, the procedure of the language fam-
ily tree construction method is as follows: (i) Pre-
process each Di; (ii) Build Mi from Di; (iii) Cal-
culate the distances between the language models;
(iv) Cluster the language data using the distances;
(v) Output the result as a language family tree.

3.2 Vector-based Method

We also examine a vector-based method for lan-
guage family tree reconstruction. As we will see
in Sect. 5, this method allows us to interpret clus-
tering results more easily than with the language
model-based method while both result in similar
language family trees.

In this method, Di is modeled by a vector. The
vector is constructed based on the relative frequen-
cies of trigrams. As a consequence, the distance
is naturally defined by the Euclidean distance be-
tween two vectors. The clustering procedure is the
same as for the language model-based method ex-
cept that Mi is vector-based and that the distance
metric is Euclidean.
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4 Experiments

We selected the ICLE corpus v.2 (Granger et al.,
2009) as the target language data. It consists of
English essays written by a wide variety of non-
native speakers of English. Among them, the 11
shown in Table 1 are of Indo-European languages.
Accordingly, we selected the subcorpora of the 11
languages in the experiments. Before the exper-
iments, we preprocessed the corpus data to con-
trol the experimental conditions. Because some of
the writers had more than one native language, we
excluded essays that did not meet the following
three conditions: (i) the writer has only one na-
tive language; (ii) the writer has only one language
at home; (iii) the two languages in (i) and (ii) are
the same as the native language of the subcorpus
to which the essay belongs3. After the selection,
markup tags such as essay IDs were removed from
the corpus data. Also, the symbols ‘ and ’ were
unified into ’4. For reference, we also used na-
tive English (British and American university stu-
dents’ essays in the LOCNESS corpus5) and two
sets of Japanese English (ICLE and the NICE cor-
pus (Sugiura et al., 2007)). Table 1 shows the
statistics on the corpus data.

Performance of POS tagging is an important
factor in our methods because they are based on
word/POS sequences. Existing POS taggers might
not perform well on non-native English texts be-
cause they are normally developed to analyze na-
tive English texts. Considering this, we tested
CRFTagger6 on non-native English texts contain-
ing various grammatical errors before the exper-
iments (Nagata et al., 2011). It turned out that
CRFTagger achieved an accuracy of 0.932 (com-
pared to 0.970 on native texts). Although it did not
perform as well as on native texts, it still achieved
a fair accuracy. Accordingly, we decided to use it
in our experiments.

Then, we generated cluster trees from the cor-
pus data using the methods described in Sect. 3.

3For example, because of (iii), essays written by native
speakers of Swedish in the Finnish subcorpus were excluded
from the experiments. This is because they were collected in
Finland and might be influenced by Finnish.

4The symbol ‘ is sometimes used for ’ (e.g., I‘m).
5The LOCNESS corpus is a corpus of native En-

glish essays made up of British pupils’ essays, British
university students’ essays, and American university
students’ essays: https://www.uclouvain.be/
en-cecl-locness.html

6Xuan-Hieu Phan, “CRFTagger: CRF English POS
Tagger,” http://crftagger.sourceforge.net/,
2006.

Native language # of essays # of tokens
Bulgarian 294 219,551
Czech 220 205,264
Dutch 244 240,861
French 273 202,439
German 395 236,841
Italian 346 219,581
Norwegian 290 218,056
Polish 354 251,074
Russian 255 236,748
Spanish 237 211,343
Swedish 301 268,361
English 298 294,357
Japanese1 (ICLE) 171 224,534
Japanese2 (NICE) 340 130,156
Total 4,018 3,159,166

Table 1: Statistics on target corpora.

We used the Kyoto Language Modeling toolkit7

to build language models from the corpus data.
We removed n-grams that appeared less than five
times8 in each subcorpus in the language mod-
els. Similarly, we implemented the vector-based
method with trigrams using the same frequency
cutoff (but without smoothing).

Fig. 1 shows the experimental results. The
tree at the top is the Indo-European family tree
drawn based on the figure shown in Crystal
(1997). It shows that the 11 languages are divided
into three groups: Italic, Germanic, and Slavic
branches. The second and third trees are the clus-
ter trees generated by the language model-based
and vector-based methods, respectively. The num-
ber at each branching node denotes in which step
the two clusters were merged.

The experimental results strongly support the
hypothesis we made in Sect. 1. Fig. 1 reveals
that the language model-based method correctly
groups the 11 Englishes into the Italic, Ger-
manic, and Slavic branches. It first merges
Norwegian-English and Swedish-English into a
cluster. The two languages belong to the North
Germanic branch of the Germanic branch and
thus are closely related. Subsequently, the lan-
guage model-based method correctly merges the
other languages into the three branches. A dif-

7The Kyoto Language Modeling toolkit: http://www.
phontron.com/kylm/

8We found that the results were not sensitive to the value
of frequency cutoff so long as we set it to a small number.
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Figure 1: Experimental results.

ference between its cluster tree and the Indo-
European family tree is that there are some mis-
matches within the Germanic and Slavic branches.
While the difference exists, the method strongly
distinguishes the three branches from one an-
other. The third tree shows that the vector-based
method behaves similarly while it mistakenly at-
taches Polish-English into an independent branch.
From these results, we can say that mother tongue
interference is transferred into the 11 Englishes,
strongly enough for reconstructing its language
family tree, which we propose calling the inter-
language Indo-European family tree in English.

Fig. 2 shows the experimental results with na-
tive and Japanese Englishes. It shows that the
same interlanguage Indo-European family tree
was reconstructed as before. More interestingly,
native English was detached from the interlan-
guage Indo-European family tree contrary to the
expectation that it would be attached to the Ger-
manic branch because English is of course a mem-
ber of the Germanic branch. This implies that
non-nativeness common to the 11 Englishes is
more influential than the intrafamily distance is9;

9Admittedly, we need further investigation to confirm this
argument especially because we applied CRFTagger, which is
developed to analyze native English, to both non-native and
native Englishes, which might affect the results.

Interlanguage Indo-European family tree Other family

Japanese
English1

Japanese
English2

3

Native 
English

12
13

ACL 2013

Figure 2: Experimental results with native and
Japanese Englishes.

otherwise, native English would be included in
the German branch. Fig. 2 also shows that the
two sets of Japanese English were merged into
a cluster and that it was the most distant in the
whole tree. This shows that the interfamily dis-
tance is the most influential factor. Based on
these results, we can further hypothesize as fol-
lows: interfamily distance > non-nativeness >
intrafamily distance.

5 Discussion

To get a better understanding of the interlanguage
Indo-European family tree, we further explore lin-
guistic features that explain well the above phe-
nomena. When we analyze the experimental re-
sults, however, some problems arise. It is al-
most impossible to find someone who has a good
knowledge of the 11 languages and their mother
language interference in English writing. Besides,
there are a large number of language pairs to com-
pare. Thus, we need an efficient and effective way
to analyze the experimental results.

To address these problems, we did the follow-
ing. First, we focused on only a few Englishes
out of the 11. Because one of the authors had
some knowledge of French, we selected French-
English as the main target. This naturally made
us select the other Italic Englishes as its counter-
parts. Also, because we had access to a native
speaker of Russian who had a good knowledge of
English, we included Russian-English in our fo-
cus. We analyzed these Englishes and then ex-
amined whether the findings obtained apply to the
other Englishes or not. Second, we used a method
for extracting interesting trigrams from the cor-
pus data. The method compares three out of the
11 corpora (for example, French-, Spanish-, and
Russian-Englishes). If we remove instances of a
trigram from each set, the clustering tree involving
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the three may change. For example, the removal
of but the hers may result in a cluster tree merg-
ing French- and Russian-Englishes before French-
and Spanish-Englishes. Even if it does not change,
the distances may change in that direction. We an-
alyzed what trigrams had contributed to the clus-
tering results with this approach.

To formalize this approach, we will denote a tri-
gram by t. We will also denote its relative fre-
quency in the language data Di by rti. Then, the
change in the distances caused by the removal of t
from Di, Dj , and Dk is quantified by

s = (rtk − rti)
2 − (rtj − rti)

2 (4)

in the vector-based method. The quantity (rtk −
rti)

2 is directly related to the decrease in the dis-
tance between Di and Dk and similarly, (rtj −
rti)

2 to that between Di and Dj in the vector-
based method. Thus, the greater s is, the higher the
chance that the cluster tree changes. Therefore, we
can obtain a list of interesting trigrams by sorting
them according to s. We could do a similar calcu-
lation in the language model-based method using
the conditional probabilities. However, it requires
a more complicated calculation. Accordingly, we
limit ourselves to the vector-based method in this
analysis, noting that both methods generated sim-
ilar cluster trees.

Table 2 shows the top 15 interesting trigrams
where Di, Dj , and Dk are French-, Spanish-, and
Russian-Englishes, respectively. Note that s is
multiplied by 106 and r is in % for readability. The
list reveals that many of the trigrams contain the
article a or the. Interestingly, their frequencies are
similar in French-English and Spanish-English,
and both are higher than in Russian-English. This
corresponds to the fact that French and Spanish
have articles whereas Russian does not. Actu-
ally, the same argument can be made about the
other Italic and Slavic Englishes (e.g., the JJ NN:
Italian-English 0.82; Polish-English 0.72)10. An
exception is that of trigrams containing the definite
article in Bulgarian-English; it tends to be higher
in Bulgarian-English than in the other Slavic En-
glishes. Surprisingly and interestingly, however, it
reflects the fact that Bulgarian does have the def-
inite article but not the indefinite article (e.g., the
JJ NN: 0.82; a JJ NN: 0.60 in Bulgarian-English).

10Due to the space limitation, other lists were not included
in this paper but are available at http://web.hyogo-u.
ac.jp/nagata/acl/.

Table 3 shows that the differences in article
use exist even between the Italic and Germanic
branches despite the fact that both have the in-
definite and definite articles. The list still con-
tains a number of trigrams containing articles. For
a better understanding of this, we looked further
into the distribution of articles in the corpus data.
It turns out that the distribution almost perfectly
groups the 11 Englishes into the corresponding
branches as shown in Fig. 3. The overall use of
articles is less frequent in the Slavic-Englishes.
The definite article is used more frequently in the
Italic-Englishes than in the Germanic Englishes
(except for Dutch-English). We speculate that
this is perhaps because the Italic languages have a
wider usage of the definite article such as its modi-
fication of possessive pronouns and proper nouns.
The Japanese Englishes form another group (this
is also true for the following findings). This corre-
sponds to the fact that the Japanese language does
not have an article system similar to that of En-
glish.

s Trigram t rti rtj rtk

5.14 the NN of 1.01 0.98 0.78
4.38 a JJ NN 0.85 0.77 0.62
2.74 the JJ NN 0.87 0.86 0.71
2.30 NN of the 0.49 0.52 0.33
1.64 . . . 0.22 0.12 0.05
1.56 NNS . EOS 0.77 0.70 0.92
1.31 NNS and NNS 0.09 0.13 0.21
1.25 BOS RB , 0.25 0.22 0.14
1.22 of the NN 0.42 0.44 0.30
1.17 VBZ to VB 0.26 0.22 0.14
1.09 BOS i VBP 0.07 0.05 0.17
1.03 NN of NN 0.74 0.70 0.63
0.88 NN of JJ 0.15 0.15 0.25
0.67 the JJ NNS 0.28 0.28 0.20
0.65 NN to VB 0.40 0.38 0.31

Table 2: Interesting trigrams (French- (Di),
Spanish- (Dj), and Russian- (Dk) Englishes).

Another interesting trigram, though not as ob-
vious as article use, is NN of NN, which ranks
12th and 2nd in Table 2 and 3, respectively. In the
Italic Englishes, the trigram is more frequent than
the other non-native Englishes as shown in Fig. 4.
This corresponds to the fact that noun-noun com-
pounds are less common in the Italic languages
than in English and that instead, the of -phrase (NN
of NN) is preferred (Swan and Smith, 2001). For
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s Trigram t rti rtj rtk

21.49 the NN of 1.01 0.98 0.54
5.70 NN of NN 0.74 0.70 0.50
3.26 NN of the 0.49 0.52 0.30
3.10 the JJ NN 0.87 0.86 0.70
2.62 . . . 0.22 0.12 0.03
1.53 of the NN 0.42 0.44 0.29
1.50 NN , NN 0.30 0.30 0.18
1.50 BOS i VBP 0.07 0.05 0.19
0.85 NNS and NNS 0.09 0.13 0.19
0.81 JJ NN of 0.40 0.39 0.31
0.68 . . EOS 0.13 0.06 0.02
0.63 a JJ NN 0.85 0.77 0.73
0.63 RB . EOS 0.21 0.16 0.31
0.56 NN , the 0.16 0.16 0.08
0.50 NN of a 0.17 0.09 0.06

Table 3: Interesting trigrams (French- (Di),
Spanish- (Dj), and Swedish- (Dk) Englishes).

instance, orange juice is expressed as juice of or-
ange in the Italic languages (e.g., jus d’orange in
French). In contrast, noun-noun compounds or
similar constructions are more common in Russian
and Swedish. As a result, NN of NN becomes rel-
atively frequent in the Italic Englishes. Fig. 4 also
shows that its distribution roughly groups the 11
Englishes into the three branches. Therefore, the
way noun phrases (NPs) are constructed is a clue
to how the three branches were clustered.

This finding in turn reveals that the consecu-
tive repetitions of nouns occur less in the Italic
Englishes. In other words, the length tends to
be shorter than in the others where we define
the length as the number of consecutive repeti-
tions of common nouns (for example, the length
of orange juice is one because a noun is con-
secutively repeated once). To see if this is true,
we calculated the average length for each English.
Fig. 5 shows that the average length roughly dis-
tinguishes the Italic Englishes from the other non-
native Englishes; French-English is the shortest,
which is explained by the discussion above, while
Dutch- and German-Englishes are longest, which
may correspond to the fact that they have a prefer-
ence for noun-noun compounds as Snyder (1996)
argues. For instance, German allows the concate-
nated form as in Orangensaft (equivalently or-
angejuice). This tendency in the length of noun-
noun compounds provides us with a crucial insight
for native language identification, which we will
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come back to in Sect. 6.
The trigrams BOS RB , in Table 2 and RB . EOS

in Table 3 imply that there might also be a certain
pattern in adverb position in the 11 Englishes (they
roughly correspond to adverbs at the beginning
and end of sentences). Fig. 6 shows an insight into
this. The horizontal and vertical axes correspond
to the ratio of adverbs at the beginning and the end
of sentences, respectively. It turns out that the Ger-
man Englishes form a group. So do the Italic En-
glishes although it is less dense. In contrast, the
Slavic Englishes are scattered. However, the ra-
tios give a clue to how to distinguish Slavic En-
glishes from the others when combined with other
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trigrams. For instance, although Polish-English
is located in the middle of Swedish-English and
Bulgarian-English in the distribution of articles
(in Fig. 3), the ratios tell us that Polish-English is
much nearer to Bulgarian-English.

6 Implications for Work in Related
Domains

Researchers including Wong and Dras (2009),
Wong et al. (2011; 2012), and Koppel et al. (2005)
work on native language identification and show
that machine learning-based methods are effec-
tive. Wong and Dras (2009) propose using infor-
mation about grammatical errors such as errors in
determiners to achieve better performance while

they show that its use does not improve the perfor-
mance, contrary to the expectation. Related to this,
other researchers (Koppel and Ordan, 2011; van
Halteren, 2008) show that machine learning-based
methods can also predict the source language of
a given translated text although it should be em-
phasized that it is a different task from native lan-
guage identification because translation is not typ-
ically performed by non-native speakers but rather
native speakers of the target language11.

The experimental results show that n-grams
containing articles are predictive for identify-
ing native languages. This indicates that they
should be used in the native language identifi-
cation task. Importantly, all n-grams contain-
ing articles should be used in the classifier unlike
the previous methods that are based only on n-
grams containing article errors. Besides, no ar-
ticles should be explicitly coded in n-grams for
taking the overuse/underuse of articles into con-
sideration. We can achieve this by adding a spe-
cial symbol such as φ to the beginning of each NP
whose head noun is a common noun and that has
no determiner in it as in “I like φ orange juice.”

In addition, the length of noun-noun com-
pounds and the position of adverbs should also
be considered in native language identification. In
particular, the former can be modeled by the Pois-
son distribution as follows. The Poisson distribu-
tion gives the probability of the number of events
occurring in a fixed time. In our case, the number
of events in a fixed time corresponds to the num-
ber of consecutive repetitions of common nouns in
NPs, which in turn corresponds to the length. To
be precise, the probability of a noun-noun com-
pound with length l is given by

Pr(l) =
λl

l!
e−λ, (5)

where λ corresponds to the average length. Fig. 7
shows that the observed values in the French-
English data very closely fit the theoretical proba-

11For comparison, we conducted a pilot study where we
reconstructed a language family tree from English texts
in European Parliament Proceedings Parallel Corpus (Eu-
roparl) (Koehn, 2011). It turned out that the reconstructed
tree was different from the canonical tree (available at http:
//web.hyogo-u.ac.jp/nagata/acl/). However,
we need further investigation to confirm it because each sub-
corpus in Europarl is variable in many dimensions includ-
ing its size and style (e.g., overuse of certain phrases such as
ladies and gentlemen).
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bilities given by Equation (5)12. This holds for the
other Englishes although we cannot show them be-
cause of the space limitation. Consequently, Equa-
tion (5) should be useful in native language identi-
fication. Fortunately, it can be naturally integrated
into existing classifiers.

In the domain of historical linguistics, re-
searchers have used computational and corpus-
based methods for reconstructing language fam-
ily trees. Some (Enright and Kondrak, 2011;
Gray and Atkinson, 2003; Barbançon et al., 2007;
Batagelj et al., 1992; Nakhleh et al., 2005) ap-
ply clustering techniques to the task of language
family tree reconstruction. Others (Kita, 1999;
Rama and Singh, 2009) use corpus statistics for
the same purpose. These methods reconstruct lan-
guage family trees based on linguistic features that
exist within words including lexical, phonological,
and morphological features.

The experimental results in this paper suggest
the possibility of the use of non-native texts for re-
constructing language family trees. It allows us to
use linguistic features that exist between words, as
seen in our methods, which has been difficult with
previous methods. Language involves the features
between words such as phrase construction and
syntax as well as the features within words and
thus they should both be considered in reconstruc-

12The theoretical and observed values are so close that it
is difficult to distinguish between the two lines in Fig. 7. For
example, Pr(l = 1) = 0.0303 while the corresponding ob-
served value is 0.0299.

tion of language family trees.

7 Conclusions

In this paper, we have shown that mother tongue
interference is so strong that the relations be-
tween members of the Indo-European language
family are preserved in English texts written by
Indo-European language speakers. To show this,
we have used clustering to reconstruct a lan-
guage family tree from 11 sets of non-native
English texts. It turned out that the recon-
structed tree correctly groups them into the Italic,
Germanic, and Slavic branches of the Indo-
European family tree. Based on the resulting
trees, we have then hypothesized that the fol-
lowing relation holds in mother tongue interfer-
ence: interfamily distance > non-nativeness >
intrafamily distance. We have further explored
several intriguing linguistic features that play an
important role in mother tongue interference: (i)
article use, (ii) NP construction, and (iii) adverb
position, which provide several insights for im-
proving the tasks of native language identification
and language family tree reconstruction.
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Abstract
We describe a new representation of the
content vocabulary of a text we call word
association profile that captures the pro-
portions of highly associated, mildly asso-
ciated, unassociated, and dis-associated
pairs of words that co-exist in the given
text. We illustrate the shape of the dis-
tirbution and observe variation with genre
and target audience. We present a study
of the relationship between quality of writ-
ing and word association profiles. For a
set of essays written by college graduates
on a number of general topics, we show
that the higher scoring essays tend to have
higher percentages of both highly asso-
ciated and dis-associated pairs, and lower
percentages of mildly associated pairs of
words. Finally, we use word association
profiles to improve a system for automated
scoring of essays.

1 Introduction

The vast majority of contemporary research that
investigates statistical properties of language deals
with characterizing words by extracting infor-
mation about their behavior from large corpora.
Thus, co-occurrence of words in n-word windows,
syntactic structures, sentences, paragraphs, and
even whole documents is captured in vector-space
models built from text corpora (Turney and Pan-
tel, 2010; Basili and Pennacchiotti, 2010; Erk and
Padó, 2008; Mitchell and Lapata, 2008; Bullinaria
and Levy, 2007; Jones and Mewhort, 2007; Pado
and Lapata, 2007; Lin, 1998; Landauer and Du-
mais, 1997; Lund and Burgess, 1996; Salton et al.,
1975). However, little is known about typical pro-
files of texts in terms of co-occurrence behavior
of their words. Some information can be inferred
from the success of statistical techniques in pre-
dicting certain structures in text. For example, the

fact that a text segmentation algorithm that uses
information about patterns of word co-occurrences
can detect sub-topic shifts in a text (Riedl and Bie-
mann, 2012; Misra et al., 2009; Eisenstein and
Barzilay, 2008) tells us that texts contain some
proportion of more highly associated word pairs
(those in subsequent sentences within the same
topical unit) and of less highly associated pairs
(those in sentences from different topical units).1

Yet, does each text have a different distribution
of highly associated, mildly associated, unassoci-
ated, and dis-associated pairs of words, or do texts
tend to strike a similar balance of these? What
are the proportions of the different levels of asso-
ciation, how much variation there exists, and are
there systematic differences between various kinds
of texts? We present research that makes a first
step in addressing these questions.

From the applied perspective, our interest is in
quantifying differences between well-written and
poorly written essays, for the purposes of auto-
mated scoring of essays. We therefore concentrate
on essay data for the main experiments reported in
this paper, although some additional corpora will
be used for illustration purposes.

The paper is organized as follows. Section 2
presents our methodology for building word as-
sociation profiles for texts. Section 3 illustrates
the profiles for three corpora from different gen-
res. Section 4.2 presents our study of the relation-
ship between writing quality and patterns of word
associations, with section 4.5 showing the results
of adding a feature based on word association pro-
file to a state-of-art essay scoring system. Related
work is reviewed is section 5.

1Note that the classical approach to topical segmentation
of texts, TextTiling (Hearst, 1997), uses only word repeti-
tions. The cited approaches use topic models that are in turn
estimated using word co-occurrence.
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2 Methodology

In order to describe the word association profile
of a text, three decisions need to be made. The
first decision is how to quantify the extent of co-
occurrence between two words; we will use point-
wise mutual information (PMI) estimated from a
large and diverse corpus of texts. The second is
which pairs of words in a text to consider when
building a profile for the text; we opted for all pairs
of content word types occurring in a text, irrespec-
tive of the distance between them. We consider
word types, not tokens; no lemmatization is per-
formed. The third decision is how to represent the
co-occurrence profiles; we use a histogram where
each bin represents the proportion of word pairs in
the given interval of PMI values. The rest of the
section gives more detail about these decisions.

To obtain comprehensive information about
typical co-occurrence behavior of words of
English, we build a first-order co-occurrence
word-space model (Turney and Pantel, 2010; Ba-
roni and Lenci, 2010). The model was generated
from a corpus of texts of about 2.5 billion words,
counting co-occurrence in a paragraph,2 using no
distance coefficients (Bullinaria and Levy, 2007).
About 2 billion words come from the Gigaword
2003 corpus (Graff and Cieri, 2003). Additional
500 million words come from an in-house corpus
containing popular science and fiction texts. Oc-
currence counts of 2.1 million word types and of
1,279 million word type pairs are efficiently com-
pressed using the TrendStream technology (Flor,
2013), resulting in a database file of 4.7GB. Trend-
Stream is a trie-based architecture for storage, re-
trieval, and updating of very large word n-gram
datasets. We store pairwise word associations as
bigrams; since associations are unordered, only
one of the orders in actually stored in the database.

There is an extensive literature on the use of
word-association measures for NLP, especially for
detection of collocations (Pecina, 2010; Evert,
2008; Futagi et al., 2008). The use of point-
wise mutual information with word-space models
is noted in (Zhang et al., 2012; Baroni and Lenci,
2010; Mitchell and Lapata, 2008; Turney, 2001).
Point-wise mutual information is defined as fol-
lows (Church and Hanks, 1990):

2In all texts, we use human-marked paragraphs, indicated
either by a new line or by an xml markup.

PMI(x, y) = log2
P (x, y)

P (x)P (y)
(1)

Differently from Church and Hanks (1990), we
disregard word order when computing P (x, y).
All probabilities are estimated using frequencies.

We define WAPT – a word association pro-
file of a text T – as the distribution of PMI(x, y)
for all pairs of content3 word types (x, y) ∈T.
All pairs of word types for which the associations
database returned a null value (the pair has never
been observed in the same paragraph) are ex-
cluded from the calculation. For our main dataset
(described later as setA, section 4.1), the average
percentage of non-null values per text is 92%.

To represent the WAP of a text, we use a 60-bin
histogram spanning all PMI values. The lowest
bin (shown in Figures 1 and 2 as PMI = –5) con-
tains pairs with PMI≤–5; the topmost bin (shown
in Figures 1 and 2 as PMI = 4.83) contains pairs
with PMI> 4.67, while the rest of the bins contain
word pairs (x, y) with −5 <PMI(x, y) ≤ 4.67.
Each bin in the histogram (apart from the top and
the bottom ones) corresponds to a PMI interval
of 0.167. We chose a relatively fine-grained bin-
ning and performed no optimization for grid selec-
tion; for more sophisticated gridding approaches
to study non-linear relationships in the data, see
Reshef et al. (2011).

We will say that a text A is tighter than text
B if the WAP of A is shifted towards the higher
end of PMI values relative to text B. The intuition
behind the terminology is that texts with higher
proportions of highly associated pairs are likelier
to be more focused, dealing with a small num-
ber of topics at greater length, as opposed to texts
that bring various different themes into the text to
various extents. Thus, the text “The dog barked
and wagged its tail” is much tighter than the text
“Green ideas sleep furiously”, with all the six con-
tent word pairs scoring above PMI=5.5 in the first
and below PMI=2.2 in the second.4

3 Illustration: The shape of the
distribution

For a first illustration, we use a corpus of 5,904
essays written as part of a standardized graduate

3We part-of-speech tag a text using OpenNLP tagger
(http://opennlp.apache.org) and only take into account com-
mon and proper nouns, verbs, adjectives, and adverbs.

4We omitted colorless from the second example, as color-
less is actually highly associated with green (PMI=4.36).
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school admission test (a full descrption of these
data is given in section 4.1, under setA p1-p6). For
each essay, we compute the WAP and represent it
using the 60-bin histogram. For each bin in the
histogram, we compute its average value over the
5,904 essays; additionally, we compute the 15th

and 85th percentiles for each bin, so that the band
between them contains values observed for 70%
of the texts. The series with the solid thick (blue)
line in Figure 1 shows the distribution of the ave-
rage percentage of word type pairs per bin (essays-
av); the dotted lines above and below show the
band capturing the middle 70% of the distribution
(essays-15 and essays-85).

We observe that the shape of the WAP is very
stable across essays, and the variation around the
average is quite limited.

Next, consider the thin solid (green) line with
asterisk-shaped markers in Figure 1 that plots a
similarly-binned histogram for the normal distri-
bution with µ=0.90 and σ=0.66. We note that
for values below PMI=2.17, the normal curve is
within or almost within the 70% band for the essay
data. The divergence occurs at the right tail with
PMI>2.17, that covers, on average, about 8% of
the pairs (5.6% and 10.4% for the 15th and 85th

percentiles, respectively).
To get an idea about possible variation in the

distribution, we consider two additional corpora
from different genres. We use a corpus of Wall
Street Journal 1987 articles from the TIPSTER
collection.5 We picked articles of 250 to 700
words in length, in order to keep the length of texts
comparable to the essay data, while varying the
genre; 770 such articles were found. The dashed
(orange) line in Figure 1 shows the distribution of
average values for the WSJ collection (wsj-av).
We observe that the shape of the distribution is
similar to that of essay data, although WSJ articles
tend to be less tight, on average, since the distribu-
tion in PMI<2.17 area in the WSJ data is shifted
to the left relative to essays. Yet, the picture at the
right tail is remarkably similar to that of the es-
says, with 9% of word pairs, on average, having
PMI>2.17.

The second additional corpus contains 140 lite-
rary texts written or adapted for readers in grades
3 and 4 in US schools (Sheehan et al., 2008).
In terms of length, these texts fall into the same
range as the other corpora, averaging 507 words.

5LDC93T3A in LDC catalogue

The average WAP for these texts is shown with
a thin solid (purple) line with circular markers
in Figure 1 (Grades 3-4). These texts are much
tighter than texts in the other two collections, as
the distribution is shifted to the right. The right
tail, with PMI>2.17, holds 19% of all word pairs
in these texts – more than twice the proportion
in essays written by college graduates or in texts
from the WSJ.

It is instructive to check whether the over-use
of highly associated pairs is felt during reading.
These texts strike an adult reader as overly ex-
plicit, taking the space to state things that an adult
reader would readily infer or assume. For exam-
ple, consider the following opening paragraph:

“Grandma Rose gave Daniel a recorder.
A recorder is a musical instrument.
Daniel learned to play by blowing on the
recorder. It didn’t take lots of air. It
didn’t take big hands to hold since it was
pocket-sized. His fingers covered the
toneholes just fine. Soon Daniel played
entire songs. His mother loved to lis-
ten. Sometimes she hummed along with
Daniel’s recorder.”

The second and the third sentences state things
that for an adult reader would be too obvious
to need mention. In fact, these sentences al-
most seem like training sentences – the kind of
sentences from which the associations between
recorder and musical instrument, play, blowing
can be learned. According to Hoey’s theory of
lexical priming (Hoey, 2005), one of the main
functions of schooling is to imbue children with
the societally sanctioned word associations.

To conclude the illustration, we observe that
there are some broad similarities between the dif-
ferent copora in terms of the distribution of pairs
of word types. Thus, texts seem to be mainly made
of pairs of weakly associated words – about half
the pairs of word types lie between PMI of 0.5
and 1.5, in all the examined collections (52% for
essays, 44% for each of WSJ and young reader
corpora). The percentages of pairs at the low and
the high ends of PMI differ with genre – writing
for children favors the higher end, while typical
Wall Street Journal writing favors the low end,
relatively to a corpus of essays on general topics
written by college graduates.

These observations are necessarily very tenta-
tive, as only a few corpora were examined. Still,

1150



6

8

10

12
e 
of
 p
ai
rs
 o
f w

or
d 
ty
pe

s

essays‐av

essays‐15

essays‐85

wsj‐av

N(0.90,0.66)

Grades 3‐4

0

2

4

‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Pe
rc
en

ta
ge

PMI

Figure 1: WAP histograms for three corpora, shown with smooth lines instead of bars for readability.
Average for essays (a thick solid blue line), average for WSJ articles (a dashed orange line); average for
Grades 3-4 corpus (a thin solid purple line with round markers). Normal distribution is shown with a thin
solid green line with asterisk markers. Middle 70% of essays fall between the dotted lines.

we believe the illustration is suggestive, in that
there is both constancy in writing for a similar pur-
pose (observe the limited variation around the ave-
rage that captures 70% of the essays) and variation
with genre and target audience. In what follows,
we will explore more thoroughly the information
provided by word association profiles regarding
the quality of writing.

4 Application to Essay Scoring

Texts written for a test and scored by relevant pro-
fessionals is a setting where variation in text qua-
lity is expected. In this section, we report our ex-
periments with using WAPs to explore the varia-
tion in quality as quantified by essay scores. We
first describe the data (section 4.1), then show the
patterns of relationships between essay scores and
word association profiles (section 4.2). Finally,
we report on an experiment where we significantly
improve the performance of a very competitive,
state-of-art system for automated scoring of es-
says, using a feature derived from WAP.

4.1 Data

We consider two collections of essays written as
responses in an analytical writing section of a
high-stakes standardized test for graduate school
admission; the time limit for essay composition
was 45 minutes. Essays were written in response

to a prompt (essay question). A prompt is usually a
general statement, and the test-taker is asked to de-
velop an argument supporting or refuting the state-
ment. Example prompts are: “High-speed elec-
tronic communications media, such as electronic
mail and television, tend to prevent meaningful
and thoughtful communication” and “In the age of
television, reading books is not as important as it
once was. People can learn as much by watching
television as they can by reading books.”

The first collection (henceforth, setA) contains
8,899 essays written in response to nine different
prompts, about 1,000 per prompt;6 the per-prompt
subsets will be termed setA-p1 through setA-p9.
Each essay in setA was scored by 1 to 4 human
raters on a scale of 1 to 6; the majority of essays re-
ceived 2 human scores. We use the average of the
available human scores as the gold-standard score
for the essay. Most essays thereby receive an inte-
ger score,7 so the ranking of the essays is coarse.
From this set, p1-p6 were used for feature selec-
tion, data visualization, and estimation of the re-
gression models (training), while sets p7-p9 were
reserved for a blind test.

The second collection (henceforth, setB) con-

6While we sampled exactly 1,000 essays per prompt, we
removed empty responses, resulting in 975 to 1,000 essays
per sample.

7as the two raters agree most of the time
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tains 400 essays, with 200 essays written on each
of two prompts given as examples above (setB-p1
and setB-p2). In an experimental study by Attali
et al. (2013), each essay was scored by 16 profes-
sional raters on a scale of 1 to 6, allowing plus and
minus scores as well, quantified as 0.33 – thus, a
score of 4- is rendered as 3.67. This fine-grained
scale resulted in higher mean pairwise inter-rater
correlations than the traditional integer-only scale
(r=0.79 vs around r=0.70 for the operational sco-
ring). We use the average of 16 raters as the final
grade for each essay. This dataset provides a very
fine-grained ranking of the essays, with almost no
two essays getting exactly the same score.

Rounded setA p1-p9 setB
Score av min max p1 p2

1 .01 .00 .01 – –
2 .05 .04 .06 .03 .03
3 .25 .20 .29 .30 .28
4 .44 .42 .47 .54 .55
5 .21 .16 .24 .13 .14
6 .04 .02 .07 .01 .02

Table 1: Score distribution in the essay data. For
the sake of presentation in this table, all scores
were rounded to integer scores, so a score of 3.33
was counted as 3, and a score of 3.5 was counted
as 4. A cell with the value of .13 (row titled 5
and column titled SetB p1) means that 13% of
the essays in setB-p1 received scores that round
to 5. For setA, average, minimum, and maximum
values across the nine prompts are shown.

Table 1 shows the distribution of rounded scores
in both collections. Average essay scores are be-
tween 3.74 to 3.98 across the different prompts
from both collections. The use of 16 raters seems
to have moved the rounded scores towards the
middle; however, the relative ranking of the essays
is much more delicate in setB than in setA.

4.2 Essay Score vs WAP

We calculated correlations between essay score
and the proportion of word pairs in each of the 60
bins of the WAP histogram, separately for each of
the prompts p1-p6 in setA. For a sample of 1,000
instances, a correlation of r=0.065 is significant at
p = 0.05. Figure 2 plots the correlations.

First, we observe that, perhaps contrary to ex-
pectation, the proportion of the highest values of
PMI (the area to the right of PMI=4 in Figure 2)

does not yield a consistent correlation with essay
scores. Thus, inasmuch as highest PMI values
tend to capture multi-word expressions (South and
Africa; Merill and Lynch), morphological vari-
ants (bids and bidding), or synonyms (mergers
and takeovers), their proportion in word type pairs
does not seem to give a clear signal regarding the
quality of writing.8

In contrast, the area of moderately high PMI
values (from PMI=2.5 to PMI=3.67 in Figure 2)
produces a very consistent picture, with only two
points out of 48 in that interval9 lacking signif-
icant positive correlation with essay score (p2 at
PMI=3.17 and p5 at PMI=3).

Next, observe the consistent negative correla-
tions between essay score and the proportion of
word pairs in bins PMI=0.833 through PMI=1.5.
Here again, out of the 30 data points correspond-
ing to these values, only 3 failed to reach statistical
significance, although the trend there is still nega-
tive.

Finally, there is a trend towards a positive cor-
relation between essay scores and the proportion
of mildly negative PMI values (-2<PMI<0), that
is, better essays tend to use more pairs of dis-
associated words, although this trend is not as
clear-cut as the one on the right-hand side of the
distribution.

Assuming that a higher proportion of high PMI
pairs corresponds to more topic development and
that a higher proportion of negative PMIs corre-
ponds to more creative use of language (in that
pairs are chosen that do not generally tend to ap-
pear together), it seems that the better essays are
both more topical and more creative than the lower
scoring ones. In what follows, we check whether
the information about essay quality provided by
WAP can be used to improve essay scoring.

8It is also possible that some of the instances with very
high PMI are pairs that contain low frequency words for
which the database predicts a spuriously high PMI based on a
single (and a-typical) co-occurrence that happens to repeat in
an essay – similar to the Schwartz eschews example in (Man-
ning and Schütze, 1999, Table 5.16, p. 181). On the one
hand, we do not expect such pairs to occur in any systematic
pattern, so they could obscure an otherwise more systematic
pattern in the high PMI bins. On the other hand, we do not
expect to see many such pairs, simply because a repetition
of an a-typical event is likely to be very rare. We thank an
anonymous reviewer for suggesting this direction, and leave
a more detailed examination of the pairs in the highest-PMI
bins to future work.

9There are 8 bins of width of 0.167 in the given interval,
with 6 datapoints per bin.
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Figure 2: Correlations with essay score for various bins of the WAP histogram. P1 to P6 correspond to
the first 6 prompts in SetA.

4.3 Baseline

As a baseline, we use e-rater (Attali and Burstein,
2006), a state-of-art essay scoring system deve-
loped at Educational Testing Service.10 E-rater
computes more than 100 micro-features, which are
aggregated into macro-features aligned with spe-
cific aspects of the writing construct. The system
incorporates macro-features measuring grammar,
usage, mechanics, style, organization and develop-
ment, lexical complexity, and vocabulary usage.
Table 2 gives examples of micro-features covered
by the different macro-features.

E-rater models are built using linear regression
on large samples of test-taker essays. We use a
generic e-rater model built at Educational Testing
Service using essays across a variety of writing
prompts, with no connection to the current project
and its authors. This model obtains Pearson corre-
lations of r=0.8324-0.8721 with the human scores
on setA, and the staggering r=0.9191 and r=0.9146
with the human scores on setB-p1 and setB-p2,
respectively. This is a very competitive baseline,
as e-rater features explain more than 70% of the
variation in essay scores on a relatively coarse
scale (setA) and more than 80% of the variation
in scores on a fine-grained scale (setB).

10http://www.ets.org/erater/about/

Macro- Example Micro-Features
Feature
Grammar, agreement errors
Usage, and verb formation errors
Mechanics missing punctuation
Style passive

very long or short sentences
excessive repetition

Organization use of discourse elements:
and thesis, support, conclusion
Development
Lexical average word frequency
Complexity average word length
Vocabulary similarity to vocabulary in

high- vs low-scoring essays

Table 2: Features used in e-rater (Attali and
Burstein, 2006).

4.4 Adding WAP

We define HAT – high associative tight-
ness – as the percentage of word type pairs
with 2.33<PMI≤3.67 (bins PMI=2.5 through
PMI=3.67). This range correponds to the longest
sequence of adjacent bins in the PMI>0 area that
had a positive correlation with essay score in the
setA-p1 set. The HAT feature attains significant
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(at p = 0.05) correlations with essay scores,
r=0.11 to r=0.27 for the prompts in setA, and
r=0.22 and r=0.21 for the two prompts in setB. We
note that the HAT feature is not correlated with es-
say length. Essay length is not used as a feature in
e-rater models, but it typically correlates strongly
with the human essay score (at about r=0.70 in our
data), as well as with the score provided by e-rater
(at about r=0.80).

We also explored a feature that captured the
area with the negative correlations identified in
section 4.2. This feature did not succeed in im-
proving the performance over the baseline on setA
p1-p6; we tentatively conclude that information
contained in that feature, i.e. the proprotion of
mildly associated vocabulary in an essay, is indi-
rectly captured by another feature or group of fea-
tures already present in e-rater. Likewise, a feature
that calculates the average PMI for all pairs of con-
tent word types in the text failed to produce an im-
provement over the baseline for setA p1-p6. The
reason for this can be observed in Figure 2: The
higher-scoring essays having more of both the low
and the high PMI pairs leads to about the same
average PMI as for the lower-scoring essays that
have a higher concentration of values closer to the
average PMI.

4.5 Evaluation

To evaluate the usefulness of WAP in improving
automated scoring of essays, we estimate a lin-
ear regression model using the human score as a
dependent variable (label) and e-rater score and
the HAT as the two independent variables (fea-
tures). The correlations between the two inde-
pendent variables (e-rater and HAT) are between
r=0.11 and r=0.24 on the prompts in setA and
setB.

We estimate a regression model on each of
setA-pi, i ∈ {1, .., 6}, and evaluate them on each
of setA-pj, j ∈ {7, .., 9}, and compare the perfor-
mance with that of e-rater alone on setA-pj. Note
that e-rater itself is not trained on any of the data
in setA and setB; we use the same e-rater model
for all evaluations, a generic model that was pre-
trained on a large number of essays across diffe-
rent prompts. For setB, we estimate the regression
model on setB-p1 and test on setB-p2, and vice
versa.

Table 3 shows the evaluation results. The HAT
feature leads to a statistically significant improve-

Train Test E-rater E-rater+HAT t
on Test on Test

setA
p1 p7 0.84043 0.84021 -0.371
p2 p7 0.84043 0.84045 0.408
p3 p7 0.84043 0.83999 -0.597
p4 p7 0.84043 0.84044 0.411
p5 p7 0.84043 0.84028 -0.280
p6 p7 0.84043 0.83926 -1.080
p1 p8 0.83244 0.83316 1.688
p2 p8 0.83244 0.83250 2.234
p3 p8 0.83244 0.83327 1.530
p4 p8 0.83244 0.83250 2.237
p5 p8 0.83244 0.83311 1.752
p6 p8 0.83244 0.83339 1.191
p1 p9 0.86370 0.86612 4.282
p2 p9 0.86370 0.86389 5.205
p3 p9 0.86370 0.86659 4.016
p4 p9 0.86370 0.86388 5.209
p5 p9 0.86370 0.86591 4.390
p6 p9 0.86370 0.86730 3.448

setB
p1 p2 0.9146 0.9178 0.983
p2 p1 0.9191 0.9242 2.690

Table 3: Performance of baseline model (e-rater)
and models where e-rater was augmented with
HAT, a feature based on the word association
profile. Performance is measured using Pearson
correlation with essay score. We use Wilcoxon
Signed-Ranked test for matched pairs, and report
the sum of signed ranks (W), the number of ranks
(n), and the p value. E-rater+HAT is significantly
better than e-rater alone, W=138, n=20, p<0.05.
We also measure significance of the improvement
for each row individually, using McNemar’s test
for significance of difference in same-sample cor-
relations (McNemar, 1955, p.148); we report the
t value for each test. For values of t > 1.645,
we can reject the hypothesis that e-rater+HAT is
not better than e-rater alone with 95% confidence.
Significant improvements are underlined.
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ment in the performance of automated scoring.
An improvement is observed for 14 out of the 18
evaluations for setA, as well as for both evalua-
tions for setB.11 Moreover, the largest relative im-
provement of 0.55%, from 0.9191 to 0.9242, was
observed for the setting with the highest baseline
performance, suggesting that the HAT feature is
still effective even after the delicate ranking of
the essays revealed an exceptionally strong perfor-
mance of e-rater.

5 Related Work

Most of the attention in the computational linguis-
tics research that deals with analysis of the lexis
of texts has so far been paid to what in our terms
would be the very high end of the word associa-
tion profile. Thus, following Halliday and Hasan
(1976), Hoey (1991), and Morris and Hirst (1991),
the notion of lexical cohesion has been used to
capture repetitions of words and occurrence of
words with related meanings in a text. Lexically
cohesive words are traced through the text, for-
ming lexical chains or graphs, and these repre-
sentations are used in a variety of applications,
such as segmentation, keyword extraction, sum-
marization, sentiment analysis, temporal indexing,
hypelink generation, error correction (Guinaudeau
et al., 2012; Marathe and Hirst, 2010; Ercan and
Cicekli, 2007; Devitt and Ahmad, 2007; Hirst
and Budanitsky, 2005; Inkpen and Désilets, 2005;
Gurevych and Strube, 2004; Stokes et al., 2004;
Silber and McCoy, 2002; Green, 1998; Al-Halimi
and Kazman, 1998; Barzilay and Elhadad, 1997).
To our knowledge, lexical cohesion has not so far
been used for automated scoring of essays. Our
results suggest that this direction is promising, as
merely the proportion of highly associated word
pairs is already contributing a clear signal regar-
ding essay quality; it is possible that additional
information can be derived from richer represen-
tations common in the lexical cohesion literature.

Aspects related to the distribution of words in
essays have been studied in relation to essay sco-
ring. One line of work focuses on assessing co-
herence of essays. Foltz et al. (1998) use Latent

11We also performed a cross-validation test on setA p1-
p6, where we estimated a regression model on setA-pi and
evaluate it on setA-pj, for all i, j ∈ {1, .., 6}, i 6= j, and
compared the performance with that of e-rater alone on setA-
pj, yielding 30 different train-test combinations. The results
were similar to those of the blind test presented here, with e-
rater+HAT significantly improving upon e-rater alone, using
Wilcoxon test, W=374, n=29, p<0.05.

Semantic Analysis to model the smoothness of
transitions between adjacent segments of an essay.
Higgins et al. (2004) compare sentences from cer-
tain discourse segments in an essay to determine
their semantic similarity, such as comparing the-
sis statements to conclusions or thesis statements
to essay prompts. Additional approaches include
evaluation of coherence based on repeated refe-
rence to entities (Burstein et al., 2010; Barzilay
and Lapata, 2008; Miltsakaki and Kukich, 2004).
Our approach is different in that it does not mea-
sure the flow of the text, that is, the sequencing
and repetition of the words, but rather assesses the
choice of vocabulary as a whole.

Topic models have been proposed as a tech-
nique for capturing clusters of related words that
tend to occur in the same documents in a given
collection. A text is modeled as being composed
of a small number of topics, and words in the text
are generated conditioned on the selected topics
(Gruber et al., 2007; Blei et al., 2003). Since
(a) topics encapsulate clusters of highly associated
words, and (b) topics for a given text are modeled
as being chosen independently from each other,
we expect a negative correlation between the num-
ber of topics in a document and the tightness of the
word association profile of the text.

An alternative representation of word associ-
ation profile would be a weighted graph, where
the weights correspond to pairwise associations
between words. Thus, for longer texts, graph
analysis techniques would be applicable. Steyvers
and Tenenbaum (2005) analyze the graphs in-
duced from large repositories like WordNet or
databases of free associations, and find them to be
scale-free and small-world; it is an open question
whether word association graphs induced from
book-length texts would exhibit similar properties.

In the theoretical tradition, our work is closest in
spirit to Michael Hoey’s theory of lexical priming
(Hoey, 2005), positing that users of language inter-
nalize patterns of occurrence and non-occurrence
of words not only with other words, but also in cer-
tain positions in a text, in certain syntactic environ-
ments, and in certain evaluative contexts, and use
these when creating their own texts. We believe
that word association profiles reflect the artwork
that goes into using those internalized associations
between words when creating a text, achieving the
right mix of strong and weak, positive and nega-
tive associations.
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6 Conclusion

In this paper, we described a new representation
of the content vocabulary of a text we call word
association profile that captures the proportions
of highly associated, mildly associated, unassoci-
ated, and dis-associated pairs of words selected to
co-exist in the given text by its author. We ob-
served that the shape of the distribution is quite
stable across various texts, with about half the
pairs having a mild association; the allocation of
pairs to the higher and the lower levels of associa-
tion does vary across genres and target audiences.

We further presented a study of the relationship
between quality of writing and word association
profiles. For a dataset of essays written by college
graduates on a number of general topics in a stan-
dardized test for graduate school admission and
scored by professional raters, we showed that the
higher scoring essays tend to have higher percen-
tages of both highly associated and dis-associated
pairs, and lower percentagese of mildly associated
pairs of words. We hypothesize that this pattern
is consistent with the better essays demonstrating
both a better topic development (hence the higher
percentage of highly related pairs) and a more cre-
ative use of language resources, as manifested in a
higher percentage of word pairs that generally do
not tend to appear together.

Finally, we demonstrated that the information
provided by word association profiles leads to a
significant improvement in a highly competitive,
state-of-art essay scoring system that already mea-
sures various aspects of writing quality.

In future work, we intend to investigate in more
detail the contribution of various kinds of words to
word association profiles, as well as pursue appli-
cation to evaluation of text complexity.
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Abstract

Text normalization is an important first
step towards enabling many Natural Lan-
guage Processing (NLP) tasks over infor-
mal text. While many of these tasks, such
as parsing, perform the best over fully
grammatically correct text, most existing
text normalization approaches narrowly
define the task in the word-to-word sense;
that is, the task is seen as that of mapping
all out-of-vocabulary non-standard words
to their in-vocabulary standard forms. In
this paper, we take a parser-centric view
of normalization that aims to convert raw
informal text into grammatically correct
text. To understand the real effect of nor-
malization on the parser, we tie normal-
ization performance directly to parser per-
formance. Additionally, we design a cus-
tomizable framework to address the often
overlooked concept of domain adaptabil-
ity, and illustrate that the system allows for
transfer to new domains with a minimal
amount of data and effort. Our experimen-
tal study over datasets from three domains
demonstrates that our approach outper-
forms not only the state-of-the-art word-
to-word normalization techniques, but also
manual word-to-word annotations.

1 Introduction

Text normalization is the task of transforming in-
formal writing into its standard form in the lan-
guage. It is an important processing step for a
wide range of Natural Language Processing (NLP)
tasks such as text-to-speech synthesis, speech
recognition, information extraction, parsing, and
machine translation (Sproat et al., 2001).

∗This work was conducted at IBM.

The use of normalization in these applications
poses multiple challenges. First, as it is most often
conceptualized, normalization is seen as the task
of mapping all out-of-vocabulary non-standard
word tokens to their in-vocabulary standard forms.
However, the scope of the task can also be seen as
much wider, encompassing whatever actions are
required to convert the raw text into a fully gram-
matical sentence. This broader definition of the
normalization task may include modifying punc-
tuation and capitalization, and adding, removing,
or reordering words. Second, as with other NLP
techniques, normalization approaches are often fo-
cused on one primary domain of interest (e.g.,
Twitter data). Because the style of informal writ-
ing may be different in different data sources,
tailoring an approach towards a particular data
source can improve performance in the desired do-
main. However, this is often done at the cost of
adaptability.

This work introduces a customizable normal-
ization approach designed with domain transfer in
mind. In short, customization is done by provid-
ing the normalizer with replacement generators,
which we define in Section 3. We show that the
introduction of a small set of domain-specific gen-
erators and training data allows our model to out-
perform a set of competitive baselines, including
state-of-the-art word-to-word normalization. Ad-
ditionally, the flexibility of the model also allows it
to attempt to produce fully grammatical sentences,
something not typically handled by word-to-word
normalization approaches.

Another potential problem with state-of-the-art
normalization is the lack of appropriate evaluation
metrics. The normalization task is most frequently
motivated by pointing to the need for clean text
for downstream processing applications, such as
syntactic parsing. However, most studies of nor-
malization give little insight into whether and to
what degree the normalization process improves
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the performance of the downstream application.
For instance, it is unclear how performance mea-
sured by the typical normalization evaluation met-
rics of word error rate and BLEU score (Pap-
ineni et al., 2002) translates into performance on
a parsing task, where a well placed punctuation
mark may provide more substantial improvements
than changing a non-standard word form. To ad-
dress this problem, this work introduces an eval-
uation metric that ties normalization performance
directly to the performance of a downstream de-
pendency parser.

The rest of this paper is organized as follows.
In Section 2 we discuss previous approaches to
the normalization problem. Section 3 presents
our normalization framework, including the actual
normalization and learning procedures. Our in-
stantiation of this model is presented in Section 4.
In Section 5 we introduce the parser driven eval-
uation metric, and present experimental results of
our model with respect to several baselines in three
different domains. Finally, we discuss our exper-
imental study in Section 6 and conclude in Sec-
tion 7.

2 Related Work

Sproat et al. (2001) took the first major look at
the normalization problem, citing the need for nor-
malized text for downstream applications. Unlike
later works that would primarily focus on specific
noisy data sets, their work is notable for attempt-
ing to develop normalization as a general process
that could be applied to different domains. The re-
cent rise of heavily informal writing styles such as
Twitter and SMS messages set off a new round of
interest in the normalization problem.

Research on SMS and Twitter normalization has
been roughly categorized as drawing inspiration
from three other areas of NLP (Kobus et al., 2008):
machine translation, spell checking, and automatic
speech recognition. The statistical machine trans-
lation (SMT) metaphor was the first proposed to
handle the text normalization problem (Aw et al.,
2006). In this mindset, normalizing SMS can be
seen as a translation task from a source language
(informal) to a target language (formal), which can
be undertaken with typical noisy channel based
models. Work by Choudhury et al. (2007) adopted
the spell checking metaphor, casting the problem
in terms of character-level, rather than word-level,
edits. They proposed an HMM based model that

takes into account both grapheme and phoneme
information. Kobus et al. (2008) undertook a
hybrid approach that pulls inspiration from both
the machine translation and speech recognition
metaphors.

Many other approaches have been examined,
most of which are at least partially reliant on
the above three metaphors. Cook and Steven-
son (2009) perform an unsupervised method,
again based on the noisy channel model. Pen-
nell and Liu (2011) developed a CRF tagger for
deletion-based abbreviation on tweets. Xue et
al. (2011) incorporated orthographic, phonetic,
contextual, and acronym expansion factors to nor-
malize words in both Twitter and SMS. Liu et
al. (2011) modeled the generation process from
dictionary words to non-standard tokens under an
unsupervised sequence labeling framework. Han
and Baldwin (2011) use a classifier to detect ill-
formed words, and then generate correction can-
didates based on morphophonemic similarity. Re-
cent work has looked at the construction of nor-
malization dictionaries (Han et al., 2012) and on
improving coverage by integrating different hu-
man perspectives (Liu et al., 2012).

Although it is almost universally used as a mo-
tivating factor, most normalization work does not
directly focus on improving downstream appli-
cations. While a few notable exceptions high-
light the need for normalization as part of text-
to-speech systems (Beaufort et al., 2010; Pennell
and Liu, 2010), these works do not give any di-
rect insight into how much the normalization pro-
cess actually improves the performance of these
systems. To our knowledge, the work presented
here is the first to clearly link the output of a nor-
malization system to the output of the downstream
application. Similarly, our work is the first to pri-
oritize domain adaptation during the new wave of
text message normalization.

3 Model

In this section we introduce our normalization
framework, which draws inspiration from our pre-
vious work on spelling correction for search (Bao
et al., 2011).

3.1 Replacement Generators

Our input the original, unnormalized text, repre-
sented as a sequence x = x1, x2, . . . , xn of tokens
xi. In this section we will use the following se-
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quence as our running example:

x = Ay1 woudent2 of3 see4
′em5

where space replaces comma for readability, and
each token is subscripted by its position. Given the
input x, we apply a series of replacement genera-
tors, where a replacement generator is a function
that takes x as input and produces a collection of
replacements. Here, a replacement is a statement
of the form “replace tokens xi, . . . , xj−1 with s.”
More precisely, a replacement is a triple 〈i, j, s〉,
where 1 ≤ i ≤ j ≤ n + 1 and s is a sequence of
tokens. Note that in the case where i = j, the se-
quence s should be inserted right before xi; and in
the special case where s is empty, we simply delete
xi, . . . , xj−1. For instance, in our running exam-
ple the replacement 〈2, 3,would not〉 replaces
x2 = woudent with would not; 〈1, 2,Ay〉 re-
places x1 with itself (hence, does not change x);
〈1, 2, ε〉 (where ε is the empty sequence) deletes
x1; 〈6, 6,.〉 inserts a period at the end of the se-
quence.

The provided replacement generators can be ei-
ther generic (cross domain) or domain-specific, al-
lowing for domain customization. In Section 4,
we discuss the replacement generators used in our
empirical study.

3.2 Normalization Graph

Given the input x and the set of replacements pro-
duced by our generators, we associate a unique
Boolean variable Xr with each replacement r. As
expected, Xr being true means that the replace-
ment r takes place in producing the output se-
quence.

Next, we introduce dependencies among vari-
ables. We first discuss the syntactic consistency
of truth assignments. Let r1 = 〈i1, j1, s1〉 and
r2 = 〈i2, j2, s2〉 be two replacements. We say
that r1 and r2 are locally consistent if the inter-
vals [i1, j1) and [i2, j2) are disjoint. Moreover,
we do not allow two insertions to take place at
the same position; therefore, we exclude [i1, j1)
and [i2, j2) from the definition of local consistency
when i1 = j1 = i2 = j2. If r1 and r2 are locally
consistent and j1 = i2, then we say that r2 is a
consistent follower of r1.

A truth assignment α to our variables Xr is
sound if every two replacements r and r′ with
α(Xr) = α(Xr′) = true are locally consis-
tent. We say that α is complete if every token

of x is captured by at least one replacement r
with α(Xr) = true. Finally, we say that α
is legal if it is sound and complete. The out-
put (normalized sequence) defined by a legal as-
signment α is, naturally, the concatenation (from
left to right) of the strings s in the replacements
r = 〈i, j, s〉 with α(Xr) = true. In Fig-
ure 1, for example, if the nodes with a grey
shade are the ones associated with true vari-
ables under α, then the output defined by α is
I would not have seen them.

Our variables carry two types of interdependen-
cies. The first is that of syntactic consistency: the
entire assignment is required to be legal. The sec-
ond captures correlation among replacements. For
instance, if we replace of with have in our run-
ning example, then the next see token is more
likely to be replaced with seen. In this work,
dependencies of the second type are restricted to
pairs of variables, where each pair corresponds to
a replacement and a consistent follower thereof.

The above dependencies can be modeled over a
standard undirected graph using Conditional Ran-
dom Fields (Lafferty et al., 2001). However, the
graph would be complex: in order to model lo-
cal consistency, there should be edges between ev-
ery two nodes that violate local consistency. Such
a model renders inference and learning infeasi-
ble. Therefore, we propose a clearer model by a
directed graph, as illustrated in Figure 1 (where
nodes are represented by replacements r instead
of the variables Xr, for readability). To incorpo-
rate correlation among replacements, we introduce
an edge from Xr to Xr′ whenever r′ is a consis-
tent follower of r. Moreover, we introduce two
dummy nodes, start and end, with an edge from
start to each variable that corresponds to a prefix
of the input sequence x, and an edge from each
variable that corresponds to a suffix of x to end.

The principal advantage of modeling the depen-
dencies in such a directed graph is that now, the le-
gal assignments are in one-to-one correspondence
with the paths from start to end; this is a straight-
forward observation that we do not prove here.

We appeal to the log-linear model formulation
to define the probability of an assignment. The
conditional probability of an assignment α, given
an input sequence x and the weight vector Θ =
〈θ1, . . . , θk〉 for our features, is defined as p(α |
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〈1, 2,I〉

end

〈2, 4,would not have〉

〈1, 2,Ay〉

〈5, 6,them〉

〈4, 5,seen〉

〈2, 3,would〉

〈4, 6,see him〉

〈3, 4,of〉

start

〈6, 6, .〉

Figure 1: Example of a normalization graph; the
nodes are replacements generated by the replace-
ment generators, and every path from start to end
implies a legal assignment

x,Θ) = 0 if α is not legal, and otherwise,

p(α | x,Θ) =
1

Z(x)

∏

X→Y ∈α
exp(

∑

j

θjφj(X,Y,x)) .

Here, Z(x) is the partition function, X → Y ∈ α
refers to an edge X → Y with α(X) = true and
α(Y ) = true, and φ1(X,Y,x), . . . , φk(X,Y,x)
are real valued feature functions that are weighted
by θ1, . . . , θk (the model’s parameters), respec-
tively.

3.3 Inference

When performing inference, we wish to select
the output sequence with the highest probability,
given the input sequence x and the weight vector
Θ (i.e., MAP inference). Specifically, we want an
assignment α? = arg maxα p(α | x,Θ).

While exact inference is computationally hard
on general graph models, in our model it boils
down to finding the longest path in a weighted
and acyclic directed graph. Indeed, our directed
graph (illustrated in Figure 1) is acyclic. We as-
sign the real value

∑
j θjφj(X,Y,x) to the edge

X → Y , as the weight. As stated in Section 3.2,
a legal assignment α corresponds to a path from
start to end; moreover, the sum of the weights on
that path is equal to log p(α | x,Θ) + logZ(x).
In particular, a longer path corresponds to an as-
signment with greater probability. Therefore, we
can solve the MAP inference within our model by
finding the weighted longest path in the directed
acyclic graph. The algorithm in Figure 2 summa-
rizes the inference procedure to normalize the in-
put sequence x.

Input:
1. A sequence x to normalize;
2. A weight vector Θ = 〈θ1, . . . , θk〉.

Generate replacements: Apply all replace-
ment generators to get a set of replacements r,
each r is a triple 〈i, j, s〉.

Build a normalization graph:
1. For each replacement r, create a node Xr.
2. For each r′ and r, create an edge Xr to
Xr′ if r′ is a consistent follower of r.

3. Create two dummy nodes start and end,
and create edges from start to all prefix
nodes and end to all suffix nodes.

4. For each edge X → Y , compute the fea-
tures φj(X,Y,x), and weight the edge by∑

j θjφj(X,Y,x).

MAP Inference: Find a weighted longest path
P from start to end, and return α∗, where
α∗(Xr) = true iff Xr ∈ P .

Figure 2: Normalization algorithm

3.4 Learning
Our labeled data consists of pairs (xi,y

gold
i ),

where xi is an input sequence (to normalize) and
ygold
i is a (manually) normalized sequence. We

obtain a truth assignment αgold
i from each ygold

i

by selecting an assignment α that minimizes the
edit distance between ygold

i and the normalized
text implied by α:

αgold
i = arg min

α
DIST(y(α),ygold

i ) (1)

Here, y(α) denotes the normalized text implied by
α, and DIST is a token-level edit distance. We
apply a simple dynamic-programming algorithm
to compute αgold

i . Finally, the items in our training
data are the pairs (xi, α

gold
i ).

Learning over similar models is commonly
done via maximum likelihood estimation:

L(Θ) = log
∏

i

p(αi = αgold
i | xi,Θ)

Taking the partial derivative gives the following:
∑

i

(
Φj(α

gold
i ,xi)− Ep(αi|xi,Θ)Φj(αi,xi)

)

where Φj(α,x) =
∑

X→Y φj(X,Y,x), that is,
the sum of values for the jth feature along the
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Input:
1. A set {(xi,ygold

i )}ni=1 of sequences and
their gold normalization;

2. Number T of iterations.

Initialization: Initialize each θj as zero, and
obtain each αgold

i according to (1).

Repeat T times:
1. Infer each α∗i from xi using the current Θ;
2. θj ← θj+

∑
i(Φj(α

gold
i ,xi)−Φj(α

∗
i ,xi))

for all j = 1, . . . , k.

Output: Θ = 〈θ1, . . . , θk〉

Figure 3: Learning algorithm

path defined by α, andEp(αi|xi,Θ)Φj(αi,xi) is the
expected value of that sum (over all legal assign-
ments αi), assuming the current weight vector.

How to efficiently compute
Ep(αi|xi,Θ)Φj(αi,xi) in our model is un-
clear; naively, it requires enumerating all legal
assignments. We instead opt to use a more
tractable perceptron-style algorithm (Collins,
2002). Instead of computing the expectation,
we simply compute Φj(α

∗
i ,xi), where α∗i is the

assignment with the highest probability, generated
using the current weight vector. The result is then:

∑

i

(
Φj(α

gold
i ,xi)− Φj(α

∗
i ,xi)

)

Our learning applies the following two steps it-
eratively. (1) Generate the most probable sequence
within the current weights. (2) Update the weights
by comparing the path generated in the previous
step to the gold standard path. The algorithm in
Figure 3 summarizes the procedure.

4 Instantiation

In this section, we discuss our instantiation of the
model presented in the previous section. In partic-
ular, we describe our replacement generators and
features.

4.1 Replacement Generators
One advantage of our proposed model is that
the reliance on replacement generators allows for
strong flexibility. Each generator can be seen as a
black box, allowing replacements that are created
heuristically, statistically, or by external tools to be
incorporated within the same framework.

Generator From To
leave intact good good
edit distance bac back

lowercase NEED need
capitalize it It

Google spell disspaear disappear
contraction wouldn’t would not

slang language ima I am going to
insert punctuation ε .

duplicated punctuation !? !
delete filler lmao ε

Table 1: Example replacement generators

To build a set of generic replacement generators
suitable for normalizing a variety of data types, we
collected a set of about 400 Twitter posts as devel-
opment data. Using that data, a series of gener-
ators were created; a sample of them are shown
in Table 1. As shown in the table, these gener-
ators cover a variety of normalization behavior,
from changing non-standard word forms to insert-
ing and deleting tokens.

4.2 Features

Although the proposed framework supports real
valued features, all features in our system are bi-
nary. In total, we used 70 features. Our feature set
pulls information from several different sources:

N-gram: Our n-gram features indicate the fre-
quency of the phrases induced by an edge. These
features are turned into binary ones by bucketing
their log values. For example, on the edge from
〈1, 2,I〉 to 〈2, 3,would〉 such a feature will indi-
cate whether the frequency of I would is over
a threshold. We use the Corpus of Contemporary
English (Davies, 2008 ) to produce our n-gram in-
formation.

Part-of-speech: Part-of-speech information
can be used to produce features that encourage
certain behavior, such as avoiding the deletion of
noun phrases. We generate part-of-speech infor-
mation over the original raw text using a Twit-
ter part-of-speech tagger (Ritter et al., 2011). Of
course, the part-of-speech information obtained
this way is likely to be noisy, and we expect our
learning algorithm to take that into account.

Positional: Information from positions is used
primarily to handle capitalization and punctuation
insertion, for example, by incorporating features
for capitalized words after stop punctuation or the
insertion of stop punctuation at the end of the sen-
tence.

Lineage: Finally, we include binary features
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that indicate which generator spawned the replace-
ment.

5 Evaluation

In this section, we present an empirical study of
our framework. The study is done over datasets
from three different domains. The goal is to eval-
uate the framework in two aspects: (1) usefulness
for downstream applications (specifically depen-
dency parsing), and (2) domain adaptability.

5.1 Evaluation Metrics

A few different metrics have been used to evaluate
normalizer performance, including word error rate
and BLEU score. While each metric has its pros
and cons, they all rely on word-to-word matching
and treat each word equally. In this work, we aim
to evaluate the performance of a normalizer based
on how it affects the performance of downstream
applications. We find that the conventional metrics
are not directly applicable, for several reasons. To
begin with, the assumption that words have equal
weights is unlikely to hold. Additionally, these
metrics tend to ignore other important non-word
information such as punctuation or capitalization.
They also cannot take into account other aspects
that may have an impact on downstream perfor-
mance, such as the word reordering as seen in the
example in Figure 4. Therefore, we propose a new
evaluation metric that directly equates normaliza-
tion performance with the performance of a com-
mon downstream application—dependency pars-
ing.

To realize our desired metric, we apply the fol-
lowing procedure. First, we produce gold standard
normalized data by manually normalizing sen-
tences to their full grammatically correct form. In
addition to the word-to-word mapping performed
in typical normalization gold standard generation,
this annotation procedure includes all actions nec-
essary to make the sentence grammatical, such as
word reordering, modifying capitalization, and re-
moving emoticons. We then run an off-the-shelf
dependency parser on the gold standard normal-
ized data to produce our gold standard parses. Al-
though the parser could still produce mistakes on
the grammatical sentences, we feel that this pro-
vides a realistic benchmark for comparison, as it
represents an upper bound on the possible perfor-
mance of the parser, and avoids an expensive sec-
ond round of manual annotation.

Test Gold SVO
I kinda wanna get

ipad NEW
I kind of want to
get a new iPad.

verb(get) verb(want)
verb(get)

precisionv = 1
1

recallv = 1
2

subj(get,I)
subj(get,wanna)
obj(get,NEW)

subj(want,I)
subj(get,I)

obj(get,iPad)

precisionso = 1
3

recallso = 1
3

Figure 4: The subjects, verbs, and objects identi-
fied on example test/gold text, and corresponding
metric scores

To compare the parses produced over automati-
cally normalized data to the gold standard, we look
at the subjects, verbs, and objects (SVO) identi-
fied in each parse. The metric shown in Equa-
tions (2) and (3) below is based on the identified
subjects and objects in those parses. Note that SO
denotes the set of identified subjects and objects
whereas SOgold denotes the set of subjects and
objects identified when parsing the gold-standard
normalization.

precisionso =
|SO ∩ SOgold|
|SO | (2)

recallso =
|SO ∩ SOgold|
|SOgold|

(3)

We similarly define precisionv and recallv, where
we compare the set V of identified verbs to V gold

of those found in the gold-standard normalization.
An example is shown in Figure 4.

5.2 Results

To establish the extensibility of our normaliza-
tion system, we present results in three different
domains: Twitter posts, Short Message Service
(SMS) messages, and call-center logs. For Twitter
and SMS messages, we used established datasets
to compare with previous work. As no estab-
lished call-center log dataset exists, we collected
our own. In each case, we ran the proposed system
with two different configurations: one using only
the generic replacement generators presented in
Section 4 (denoted as generic), and one that adds
additional domain-specific generators for the cor-
responding domain (denoted as domain-specific).
All runs use ten-fold cross validation for training
and evaluation. The Stanford parser1 (Marneffe
et al., 2006) was used to produce all dependency

1Version 2.0.4, http://nlp.stanford.edu/
software/lex-parser.shtml
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parses. We compare our system to the following
baseline solutions:

w/oN: No normalization is performed.
Google: Output of the Google spell checker.
w2wN: The output of the word-to-word normal-

ization of Han and Baldwin (2011). Not available
for call-center data.

Gw2wN: The manual gold standard word-to-
word normalizations of previous work (Choud-
hury et al., 2007; Han and Baldwin, 2011). Not
available for call-center data.

Our results use the metrics of Section 5.1.

5.2.1 Twitter

To evaluate the performance on Twitter data, we
use the dataset of randomly sampled tweets pro-
duced by (Han and Baldwin, 2011). Because the
gold standard used in this work only provided
word mappings for out-of-vocabulary words and
did not enforce grammaticality, we reannotated the
gold standard data2. Their original gold standard
annotations were kept as a baseline.

To produce Twitter-specific generators, we ex-
amined the Twitter development data collected for
generic generator production (Section 4). These
generators focused on the Twitter-specific notions
of hashtags (#), ats (@), and retweets (RT). For
each case, we implemented generators that al-
lowed for either the initial symbol or the entire to-
ken to be deleted (e.g., @Hertz to Hertz, @Hertz
to ε).

The results are given in Table 2. As shown,
the domain-specific generators yielded perfor-
mance significantly above the generic ones and all
baselines. Even without domain-specific genera-
tors, our system outperformed the word-to-word
normalization approaches. Most notably, both
the generic and domain-specific systems outper-
formed the gold standard word-to-word normal-
izations. These results validate the hypothesis that
simple word-to-word normalization is insufficient
if the goal of normalization is to improve depen-
dency parsing; even if a system could produce
perfect word-to-word normalization, it would pro-
duce lower quality parses than those produced by
our approach.

2Our results and the reannotations of the Twitter and SMS
data are available at https://www.cs.washington.
edu/node/9091/

System Verb Subject-Object
Pre Rec F1 Pre Rec F1

w/oN 83.7 68.1 75.1 31.7 38.6 34.8
Google 88.9 78.8 83.5 36.1 46.3 40.6
w2wN 87.5 81.5 84.4 44.5 58.9 50.7
Gw2w 89.8 83.8 86.7 46.9 61.0 53.0
generic 91.7 88.9 90.3 53.6 70.2 60.8

domain specific 95.3 88.7 91.9 72.5 76.3 74.4

Table 2: Performance on Twitter dataset

5.2.2 SMS
To evaluate the performance on SMS data, we use
the Treasure My Text data collected by Choud-
hury et al. (2007). As with the Twitter data, the
word-to-word normalizations were reannotated to
enforce grammaticality. As a replacement genera-
tor for SMS-specific substitutions, we used a map-
ping dictionary of SMS abbreviations.3 No further
SMS-specific development data was needed.

Table 3 gives the results on the SMS data. The
SMS dataset proved to be more difficult than the
Twitter dataset, with the overall performance of
every system being lower. While this drop of per-
formance may be a reflection of the difference in
data styles between SMS and Twitter, it is also
likely a product of the collection methodology.
The collection methodology of the Treasure My
Text dataset dictated that every message must have
at least one mistake, which may have resulted in a
dataset that was noisier than average.

Nonetheless, the trends on SMS data mirror
those on Twitter data, with the domain-specific
generators achieving the greatest overall perfor-
mance. However, while the generic setting still
manages to outperform most baselines, it did not
outperform the gold word-to-word normalization.
In fact, the gold word-to-word normalization was
much more competitive on this data, outperform-
ing even the domain-specific system on verbs
alone. This should not be seen as surprising, as
word-to-word normalization is most likely to be
beneficial for cases like this where the proportion
of non-standard tokens is high.

It should be noted that the SMS dataset as avail-
able has had all punctuation removed. While this
may be appropriate for word-to-word normaliza-
tion, this preprocessing may have an effect on the
parse of the sentence. As our system has the abil-
ity to add punctuation but our baseline systems do
not, this has the potential to artificially inflate our
results. To ensure a fair comparison, we manually

3http://www.netlingo.com/acronyms.php

1165



System Verb Subject-Object
Rec Pre F1 Rec Pre F1

w/oN 76.4 48.1 59.0 19.5 21.5 20.4
Google 85.1 61.6 71.5 22.4 26.2 24.1
w2wN 78.5 61.5 68.9 29.9 36.0 32.6

Gw2wN 87.6 76.6 81.8 38.0 50.6 43.4
generic 86.5 77.4 81.7 35.5 47.7 40.7

domain specific 88.1 75.0 81.0 41.0 49.5 44.8

Table 3: Performance on SMS dataset

System Verb Subject-Object
Pre Rec F1 Pre Rec F1

w/oN 98.5 97.1 97.8 69.2 66.1 67.6
Google 99.2 97.9 98.5 70.5 67.3 68.8
generic 98.9 97.4 98.1 71.3 67.9 69.6

domain specific 99.2 97.4 98.3 87.9 83.1 85.4

Table 4: Performance on call-center dataset

added punctuation to a randomly selected small
subset of the SMS data and reran each system.
This experiment suggested that, in contrast to the
hypothesis, adding punctuation actually improved
the results of the proposed system more substan-
tially than that of the baseline systems.

5.2.3 Call-Center
Although Twitter and SMS data are unmistakably
different, there are many similarities between the
two, such as the frequent use of shorthand word
forms that omit letters. The examination of call-
center logs allows us to examine the ability of our
system to perform normalization in more disparate
domains. Our call-center data consists of text-
based responses to questions about a user’s expe-
rience with a call-center (e.g., their overall satis-
faction with the service). We use call-center logs
from a major company, and collect about 150 re-
sponses for use in our evaluation. We collected
an additional small set of data to develop our call-
center-specific generators.

Results on the call-center dataset are in Table 4.
As shown, the raw call-center data was compar-
atively clean, resulting in higher baseline perfor-
mance than in other domains. Unlike on previ-
ous datasets, the use of generic mappings only
provided a small improvement over the baseline.
However, the use of domain-specific generators
once again led to significantly increased perfor-
mance on subjects and objects.

6 Discussion

The results presented in the previous section sug-
gest that domain transfer using the proposed nor-

malization framework is possible with only a
small amount of effort. The relatively modest
set of additional replacement generators included
in each data set allowed the domain-specific ap-
proaches to significantly outperform the generic
approach. In the call-center case, performance im-
provements could be seen by referencing a very
small amount of development data. In the SMS
case, the presence of a domain-specific dictionary
allowed for performance improvements without
the need for any development data at all. It is
likely, though not established, that employing fur-
ther development data would result in further per-
formance improvements. We leave further investi-
gation to future work.

The results in Section 5.2 establish a point that
has often been assumed but, to the best of our
knowledge, has never been explicitly shown: per-
forming normalization is indeed beneficial to de-
pendency parsing on informal text. The parse of
the normalized text was substantially better than
the parse of the original raw text in all domains,
with absolute performance increases ranging from
about 18-25% on subjects and objects. Further-
more, the results suggest that, as hypothesized,
preparing an informal text for a parsing task re-
quires more than simple word-to-word normaliza-
tion. The proposed approach significantly outper-
forms the state-of-the-art word-to-word normal-
ization approach. Perhaps most interestingly, the
proposed approach performs on par with, and in
several cases superior to, gold standard word-to-
word annotations. This result gives strong evi-
dence for the conclusion that parser-targeted nor-
malization requires a broader understanding of the
scope of the normalization task.

While the work presented here gives promis-
ing results, there are still many behaviors found
in informal text that prove challenging. One
such example is the word reordering seen in Fig-
ure 4. Although word reordering could be incor-
porated into the model as a combination of a dele-
tion and an insertion, the model as currently de-
vised cannot easily link these two replacements
to one another. Additionally, instances of re-
ordering proved hard to detect in practice. As
such, no reordering-based replacement generators
were implemented in the presented system. An-
other case that proved difficult was the insertion
of missing tokens. For instance, the informal
sentence “Day 3 still don’t freaking
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feel good!:(” could be formally rendered
as “It is day 3 and I still do not
feel good!”. Attempts to address missing to-
kens in the model resulted in frequent false pos-
itives. Similarly, punctuation insertion proved to
be challenging, often requiring a deep analysis
of the sentence. For example, contrast the sen-
tence “I’m watching a movie I don’t
know its name.” which would benefit from
inserted punctuation, with “I’m watching a
movie I don’t know.”, which would not.
We feel that the work presented here provides a
foundation for future work to more closely exam-
ine these challenges.

7 Conclusions

This work presents a framework for normalization
with an eye towards domain adaptation. The pro-
posed framework builds a statistical model over a
series of replacement generators. By doing so, it
allows a designer to quickly adapt a generic model
to a new domain with the inclusion of a small set of
domain-specific generators. Tests over three dif-
ferent domains suggest that, using this model, only
a small amount of domain-specific data is neces-
sary to tailor an approach towards a new domain.

Additionally, this work introduces a parser-
centric view of normalization, in which the per-
formance of the normalizer is directly tied to the
performance of a downstream dependency parser.
This evaluation metric allows for a deeper under-
standing of how certain normalization actions im-
pact the output of the parser. Using this met-
ric, this work established that, when dependency
parsing is the goal, typical word-to-word normal-
ization approaches are insufficient. By taking a
broader look at the normalization task, the ap-
proach presented here is able to outperform not
only state-of-the-art word-to-word normalization
approaches but also manual word-to-word annota-
tions.

Although the work presented here established
that more than word-to-word normalization was
necessary to produce parser-ready normalizations,
it remains unclear which specific normalization
tasks are most critical to parser performance. We
leave this interesting area of examination to future
work.
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Abstract

This paper presents an unsupervised ran-
dom walk approach to alleviate data spar-
sity for selectional preferences. Based on
the measure of preferences between predi-
cates and arguments, the model aggregates
all the transitions from a given predicate to
its nearby predicates, and propagates their
argument preferences as the given predi-
cate’s smoothed preferences. Experimen-
tal results show that this approach out-
performs several state-of-the-art method-
s on the pseudo-disambiguation task, and
it better correlates with human plausibility
judgements.

1 Introduction

Selectional preferences (SP) or selectional restric-
tions capture the plausibility of predicates and
their arguments for a given relation. Kaze and
Fodor (1963) describe that predicates and their
arguments have strict boolean restrictions, either
satisfied or violated. Sentences are semantically
anomalous and not consistent in reading if they
violated the restrictions. Wilks (1973) argues that
“rejecting utterances is just what humans do not.
They try to understand them.” He further states s-
electional restrictions as preferences between the
predicates and arguments, where the violation can
be less preferred, but not fatal. For instance, given
the predicate word eat, word food is likely to be
its object, iPhone is likely to be implausible for it,
and tiger is less preferred but not curious.

SP have been proven to help many natural lan-
guage processing tasks that involve attachment de-

∗Partial of this work was done when the first author vis-
iting at Language Technologies Institute of Carnegie Mellon
University sponsored by the China Scholarship Council.

cisions, such as semantic role labeling (Resnik,
1993; Gildea and Jurafsky, 2002), word sense dis-
ambiguation (Resnik, 1997), human plausibility
judgements (Spasić and Ananiadou, 2004), syn-
tactic disambiguation (Toutanova et al., 2005),
word compositionality (McCarthy et al., 2007),
textual entailment (Pantel et al., 2007) and pro-
noun resolution (Bergsma et al., 2008) etc.

A direct approach to acquire SP is to extract
triples (q, r, a) of predicates, relations, and argu-
ments from a syntactically analyzed corpus, and
then conduct maximum likelihood estimation (M-
LE) on the data. However, this strategy is infea-
sible for many plausible triples due to data spar-
sity. For example, given the relation <verb-dobj-
noun> in a corpus, we may see plausible triples:

eat - {food, cake, apple, banana, candy...}
But we may not see plausible and implausible

triples such as:

eat - {watermelon, ziti, escarole, iPhone...}
Then how to use a smooth model to alleviate

data sparsity for SP?
Random walk models have been successful-

ly applied to alleviate the data sparsity issue on
collaborative filtering in recommender systems.
Many online businesses, such as Netflix, Ama-
zon.com, and Facebook, have used recommender
systems to provide personalized suggestions on
the movies, books, or friends that the users may
prefer and interested in (Liben-Nowell and Klein-
berg, 2007; Yildirim and Krishnamoorthy, 2008).

In this paper, we present an extension of using
the random walk model to alleviate data sparsi-
ty for SP. The main intuition is to aggregate all
the transitions from a given predicate to its near-
by predicates, and propagate their preferences on
arguments as the given predicate’s smoothed argu-
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ment preferences. Our work and contributions are
summarized as follows:

• We present a framework of random walk ap-
proach to SP. It contains four components with
flexible configurations. Each component is cor-
responding to a specific functional operation on
the bipartite and monopartite graphs which rep-
resenting the SP data;

• We propose an adjusted preference ranking
method to measure SP based on the popularity
and association of predicate-argument pairs. It
better correlates with human plausibility judge-
ments. It also helps to discover similar predi-
cates more precisely;

• We introduce a probability function for random
walk based on the predicate distances. It con-
trols the influence of nearby and distant predi-
cates to achieve more accurate results;

• We find out that propagate the measured prefer-
ences of predicate-argument pairs is more prop-
er and natural for SP smooth. It helps to im-
prove the final performance significantly.

We conduct experiments using two sections of
the LDC English gigaword corpora as the general-
ization data. For the pseudo-disambiguation task,
we evaluate it on the Penn TreeBank-3 data. Re-
sults show that our model outperforms several pre-
vious methods. We further investigate the correla-
tions of smoothed scores with human plausibili-
ty judgements. Again our method achieves better
correlations on two third party data.

The remainder of the paper is organized as fol-
lows: Section 2 introduces related work. Section 3
briefly formulates the overall framework of our
method. Section 4 describes the detailed model
configurations, with discussions on their roles and
implications. Section 5 provides experiments on
both the pseudo-disambiguation task and human
plausibility judgements. Finally, Section 6 sum-
marizes the conclusions and future work.

2 Related Work

2.1 WordNet-based Approach
Resnik (1996) conducts the pioneer work on
corpus-driven SP induction. For a given predi-
cate q, the system firstly computes its distribution
of argument semantic classes based on WordNet.
Then for a given argument a, the system collects

the set of candidate semantic classes which con-
tain the argument a, and ensures they are seen in
q. Finally the system picks a semantic class from
the candidates with the maximal selectional asso-
ciation score, and defines the score as smoothed
score of (q, a).

Many researchers have followed the so-called
WordNet-based approach to SP. One of the key
issues is to induce the set of argument semantic
classes that are acceptable by the given predicate.
Li and Abe (1998) propose a tree cut model based
on minimal description length (MDL) principle
for the induction of semantic classes. Clark and
Weir (2002) suggest a hypothesis testing method
by ascending the noun hierarchy of WordNet. Cia-
ramita and Johnson (2000) model WordNet as a
Bayesian network to solve the “explain away” am-
biguity. Beyond induction on argument classes on-
ly, Agirre and Martinez (2001) propose a class-to-
class model that simultaneously learns SP on both
the predicate and argument classes.

WordNet-based approach produces human in-
terpretable output, but suffers the poor lexical cov-
erage problem. Gildea and Jurafsky (2002) show
that clustering-based approach has better cover-
age than WordNet-based approach. Brockman-
n and Lapata (2003) find out that sophisticated
WordNet-based methods do not always outperfor-
m simple frequency-based methods.

2.2 Distributional Models without WordNet

Alternatively, Rooth et al. (1999) propose an EM-
based clustering smooth for SP. The key idea is to
use the latent clusterings to take the place of Word-
Net semantic classes. Where the latent clusterings
are automatically derived from distributional da-
ta based on EM algorithm. Recently, more so-
phisticated methods are innovated for SP based on
topic models, where the latent variables (topics)
take the place of semantic classes and distribution-
al clusterings (Séaghdha, 2010; Ritter et al., 2010).

Without introducing semantic classes and laten-
t variables, Keller and Lapata (2003) use the web
to obtain frequencies for unseen bigrams smooth.
Pantel et al. (2007) apply a collection of rules to
filter out incorrect inferences for SP. Specifically,
Dagan et al. (1999) introduce a general similarity-
based model for word co-occurrence probabilities,
which can be interpreted for SP. Similarly, Erk et
al. propose an argument-oriented similarity model
based on semantic or syntactic vector spaces (Erk,
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2007; Erk et al., 2010). They compare several sim-
ilarity functions and weighting functions in their
model. Furthermore, instead of employing various
similarity functions, Bergsma et al. (2008) pro-
pose a discriminative approach to learn the weight-
s between the predicates, based on the verb-noun
co-occurrences and other kinds of features.

Random walk model falls into the non-class
based distributional approach. Previous literatures
have fully studied the selection of distance or sim-
ilarity functions to find out similar predicates and
arguments (Dagan et al., 1999; Erk et al., 2010), or
learn the weights between the predicates (Bergsma
et al., 2008). Instead, we put effort in following
issues: 1) how to measure SP; 2) how to trans-
fer between predicates using random walk; 3) how
to propagate the preferences for smooth. Experi-
ments show these issues are important for SP and
they should be addressed properly to achieve bet-
ter results.

3 RSP: A Random Walk Model for SP

In this section, we briefly introduce how to address
SP using random walk. We propose a framework
of RSP with four components (functions). Each of
them are flexible to be configured. In summary,
Algorithm 1 describes the overall process.

Algorithm 1 RSP: Random walk model for SP
Require: Init bipartite graph G with raw counts

1: // Ranking on the bipartite graph G;
2: R = Ψ(G); // ranking function
3: // Project R to monopartite graph D
4: D = Φ(R); // distance function
5: // Transform D to stochastic matrix P
6: P = ∆(D); // probability function
7: // Get the convergence P̃

8: P̃ =
∑∞

t=1
(dP )t

|(dP )t| = dP (I − dP )−1;

9: return Smoothed bipartite graph R̃
10: R̃ = P̃ ∗ R; // propagation function

Bipartite Graph Construction: For a giv-
en relation r, the observed predicate-argument
pairs can be represented by a bipartite graph
G=(X,Y, E). Where X={q1 , q2 , ..., qm} are the
m predicates, and Y ={a1 , a2 , ..., an} are the n ar-
guments. We initiate the links E with the raw
co-occurrence counts of seen predicate-argument
pairs in a given generalization data. We represent
the graph by an adjacency matrix with rows repre-
senting predicates and columns as arguments. For

convenience, we use indices i, j to represent pred-
icates qi , qj , and k, l for arguments a

k
, a

l
.

We employ a preference ranking function Ψ to
measure the SP between the predicates and argu-
ments. It transforms G to a corresponding bipar-
tite graph R, with links representing the strength
of SP. Each row of the adjacency matrix R denotes
the predicate vector q⃗i or q⃗j . We discuss the selec-
tion of Ψ in section 4.1.

Ψ := G 7→ R (1)

Argument 

Nodes

Predicate

Nodes

can

fish

food

crop

flower

soil

fruit
eat

cook

harvest

cultivate

irrigateconsume

harvestconsumecook eat cultivate irrigate

chicken

cropfood fruit flowercanchickenfish

Predicate Projection Argument  Projection

soil

Figure 1: Illustration of (R) the bipartite
graph of the verb-dobj-noun relation, (Q) the
predicate-projection monopartite graph, and (A)
the argument-projection monopartite graph.

Monopartite Graph Projection: In order to
conduct random walk on the graph, we project
the bipartite graph R onto a monopartite graph
Q=(X, E) between the predicates, or A=(Y, E)
between the arguments (Zhou et al., 2007). Fig-
ure 1 illustrates the intuition of the projection. The
links in Q represent the indirect connects between
the predicates in R. Two predicates are connected
in Q if they share at least one common neighbor
argument in R. The weight of the links in Q could
be set by arbitrary distance measures. We refer D
as an instance of the projection Q by a given dis-
tance function Φ.

Φ := R 7→ D (2)

Stochastic Walking Strategy: We introduce a
probability function ∆ to transform the predicate
distances D into transition probabilities P . Where
P is a stochastic matrix, with each element pij

represents the transition probability from predicate
qi to qj . Generally speaking, nearby predicates
gain higher probabilities to be visited, while dis-
tant predicates will be penalized.

∆ := D 7→ P (3)
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Follow Equation 4, we aggregate over all orders
of the transition probabilities P as the final sta-
tionary probabilities P̃ . According to the Perron-
Frobenius theory, one can verify that it converges
to dP (I − dP )−1 when P is non-negative and
regular matrix (Li et al., 2009). Where t repre-
sents the orders: the length of the path between
two nodes in terms of edges. The damp factor
d ∈ (0, 1), and its value mainly depends on the da-
ta sparsity level. Typically d prefers small values
such as 0.005. It means higher order transitions
are much less reliable than lower orders (Liben-
Nowell and Kleinberg, 2007).

P̃ =

∞∑

t=1

(dP )t

|(dP )t| = dP (I − dP )−1 (4)

Preference Propagation: in Equation 5, we
combine the converged transition probabilities P̃
with the measured preferences R as the propa-
gation function: 1) for a given predicate, firstly
it transfers to all nearby predicates with designed
probabilities; 2) then it sums over the arguments
preferred by these predicates with quantified s-
cores to get smoothed R̃. We further describe it-
s configuration details in Section 4.4 and Equa-
tion 12 with two propagation modes.

R̃ = P̃ ∗ R (5)

4 Model Configurations

4.1 Preference Ranking: Measure the
Selectional Preferences

In collaborative filtering, usually there are explic-
it and scaled user ratings on their item prefer-
ences. For instance, a user ratings a movie with
a score∈[0,10] on IMDB site. But in SP, the pref-
erences between the predicates and arguments are
implicit: their co-occurrence counts follow the
power law distribution and vary greatly.

Therefore, we employ a ranking function Ψ to
measure the SP of the seen predicate-argument
pairs. We suppose this could bring at least two
benefits: 1) a proper measure on the preferences
can make the discovering of nearby predicates
with similar preferences to be more accurate; 2)
while propagation, we propagate the scored pref-
erences, rather than the raw counts or condition-
al probabilities, which could be more proper and
agree with the nature of SP smooth. We denote
SelPref(q, a) as Pr(q, a) for short.

SelPref(q, a) = Ψ(q, a) (6)

Previous literatures have well studied on various
smooth models for SP. However, they vary great-
ly on the measure of preferences. It is still not
clear how to do this best. Lapata et al. investigate
the correlations between the co-occurrence counts
(CT) c(q, a), or smoothed counts with the human
plausibility judgements (Lapata et al., 1999; Lap-
ata et al., 2001). Some introduce conditional prob-
ability (CP) p(a|q) for the decision of preference
judgements (Chambers and Jurafsky, 2010; Erk et
al., 2010; Séaghdha, 2010). Meanwhile, the point-
wise mutual information (MI) is also employed
by many researchers to filter out incorrect infer-
ences (Pantel et al., 2007; Bergsma et al., 2008).

ΨCT = c(q, a) ΨMI = log
p(q, a)

p(q)p(a)

ΨCP =
c(q, a)

c(q, ∗)
ΨTD = c(q, a)log(

m

|a|)
(7)

In this paper, we present an adjusted ranking
function (AR) in Equation 8 to measure the SP of
seen predicate-argument pairs. Intuitively, it mea-
sures the preferences by combining both the pop-
ularity and association, with parameters control
the uncertainty of the trade-off between the two.
We define the popularity as the joint probability
p(q, a) based on MLE, and the association as MI.
This is potentially similar to the process of human
plausibility judgements. One may judge the plau-
sibility of a predicate-argument collocation from
two sides: 1) if it has enough evidences and com-
monly to be seen; 2) if it has strong association
according to the cognition based on kinds of back-
ground knowledge. This metric is also similar to
the TF-IDF (TD) used in information retrieval.

ΨAR(q, a) = p(q, a)α1

(
p(q, a)

p(q)p(a)

)α2

s.t. α1 , α2 ∈ [0, 1]

(8)

We verify if a metric is better by two tasks:
1) how well it correlates with human plausibility
judgements; 2) how well it helps with the smooth
inference to disambiguate plausible and implausi-
ble instances. We conduct empirical experiments
on these issues in Section 5.3 and Section 5.4.

4.2 Distance Function: Projection of the
Monopartite Graph

In Equation 9, the distance function Φ is used to
discover nearby predicates with distance dij . It
weights the links on the monopartite graph Q. It
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guides the walker to transfer between predicates.
We calculate Φ based on the vectors q⃗i, q⃗j repre-
sented by the measured preferences in R.

dij = Φ(q⃗i, q⃗j) (9)

Where Φ can be distance functions such as Eu-
clidean (norm) distance or Kullback-Leibler diver-
gence (KL) etc., or one minus the similarity func-
tions such as Jaccard and Cosine etc. The selection
of distributional functions has been fully studied
by previous work (Lee, 1999; Erk et al., 2010). In
this paper, we do not focus on this issue due to
page limits. We simply use the Cosine function:

Φcosine(q⃗i, q⃗j) = 1 − q⃗i · q⃗j

∥q⃗i∥∥q⃗j∥
(10)

4.3 Probability Function: the Walk Strategy
We define the probability function ∆ as Equa-
tion 11. Where the transition probability p(qj |qi)
in P is defined as a function of the distance dij

with a parameter δ. Intuitively, it means in a given
walk step, a predicate qj which is far away from
qi will get much less probability to be visited, and
qi has high probabilities to start walk from itself
and its nearby predicates to pursue good precision.
Once we get the transition matrix P , we can com-
pute P̃ according to Equation 4.

p(qj |qi) = ∆(dij) =
(1 − dij)

δ

Z(qi)

s.t. δ ≥ 0, dij ∈ [0, 1]

(11)

Where the parameter δ is used to control the bal-
ance of nearby and distant predicates. Z(qi) is the
normalize factor. Typically, δ around 2 can pro-
duce good enough results in most cases. We verify
the settings of δ in section 5.3.2.

4.4 Propagation Function
The propagation function in Equation 5 is repre-
sented by the matrix form. It can be expanded and
rewritten as Equation 12. Where p̃(qj |qi) is the
converged transition probability from predicate qi

to qj . Pr(ak, qj) is the measured preference of
predicate qj with argument ak.

P̃r(ak, qi) =
m∑

j=1

p̃(qj |qi) · Pr(ak, qj) (12)

We employ two propagation modes (PropMode)
for the preference propagation function. One is

’CP’ mode. In this mode, we always set Pr(q, a)
as the conditional probability p(a|q) for the prop-
agation function, despite what Ψ is used for the
distance function. This mode is similar to previ-
ous methods (Dagan et al., 1999; Keller and Lap-
ata, 2003; Bergsma et al., 2008). The other is ’PP’
mode. We set ranking function Ψ=Pr(q, a) always
to be the same in both the distance function and the
propagation function. That means what we propa-
gated is the designed and scored preferences. This
could be more proper and agree with the nature
of SP smooth. We show the improvement of this
extension in section 5.3.1.

5 Experiments

5.1 Data Set

Generalization Data: We parsed the Agence
France-Presse (AFP) and New York Times (NYT)
sections of the LDC English Gigaword corpo-
ra (Parker et al., 2011), each from year 2001-2010.
The parser is provided by the Stanford CoreNLP
package1. We filter out all tokens containing
non-alphabetic characters, collect the <verb-dobj-
noun > triples from the syntactically analyzed da-
ta. Predicates (verbs) whose frequency lower than
30 and arguments (noun headwords) whose fre-
quency less than 5 are excluded out. No other fil-
ters have been done. The resulting data consist of:

• AFP: 26, 118, 892 verb-dobj-noun observa-
tions with 1, 918, 275 distinct triples, totally
4, 771 predicates and 44, 777 arguments.

• NYT: 29, 149, 574 verb-dobj-noun observa-
tions with 3, 281, 391 distinct triples, totally
5, 782 predicates and 57, 480 arguments.

Test Data: For pseudo-disambiguation, we em-
ploy Penn TreeBank-3 (PTB) as the test data (Mar-
cus et al., 1999)2. We collect the 36, 400 manu-
ally annotated verb-dobj-noun dependencies (with
23, 553 distinct ones) from PTB. We keep depen-
dencies whose predicates and arguments are seen
in the generalization data. We randomly selec-
t 20% of these dependencies as the test set. We
split the test set equally into two parts: one as the
development set and the other as the final test set.

Human Plausibility Judgements Data: We
employ two human plausibility judgements data

1http://nlp.stanford.edu/software/corenlp.shtml
2PTB includes 2, 499 stories from the Wall Street Journal

(WSJ). It is different with our two generalization data.
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for the correlation evaluation. In each they col-
lect a set of predicate-argument pairs, and anno-
tate with two kinds of human ratings: one for an
argument takes the role as the patient of a predi-
cate, and the other for the argument as the agent.
The rating values are between 1 and 7: e.g. they
assign hunter-subj-shoot with a rating 6.9 but 2.8
for shoot-dobj-hunter.

• PBP: Padó et al. (2007) develop a set of hu-
man plausibility ratings on the basis of the
Penn TreeBank and FrameNet respectively.
We refer PBP as their 212 patient ratings
from the Penn TreeBank.

• MRP: This data are originally contributed by
McRae et al. (1998). We use all their 723
patient-nn ratings.

Without explicit explanation, we remove all the
selected PTB tests and human plausibility pairs
from AFP and NYT to treat them unseen.

5.2 Comparison Methods
Since RSP falls into the unsupervised distribu-
tional approach, we compare it with previous
similarity-based methods and unsupervised gener-
ative topic model 3.

Erk et al. (Erk, 2007; Erk et al., 2010) are
the pioneers to address SP using similarity-based
method. For a given (q, a) in relation r, the mod-
el sums over the similarities between a and the
seen headwords a′ ∈ Seen(q, r). They investi-
gated several similarity functions sim(a, a′) such
as Jaccard, Cosine, Lin, and nGCM etc., and dif-
ferent weighting functions wtq,r(a

′).

S(q, r, a) =
∑

a′

wtq,r(a
′)

Zq,r
· sim(a, a′) (13)

For comparison, we suppose the primary cor-
pus and generalization corpus in their model to be
the same. We set the similarity function of their
model as nGCM, use both the FREQ and DISCR
weighting functions. The vector space is in SYN-
PRIMARY setting with 2, 000 basis elements.

Dagan et al. (1999) propose state-of-the-art
similarity based model for word co-occurrence
probabilities. Though it is not intended for SP, but
it can be interpreted and rewritten for SP as:

Pr(a|q) =
∑

q′∈Simset(q)

sim(q, q′)
Z(q)

p(a|q′) (14)

3The implementation of RSP and listed previous methods
are available at https://github.com/ZhenhuaTian/RSP

They use the k-closest nearbys as Simset(q),
with a parameter β to revise the similarity func-
tion. For comparison, we use the Jensen-Shannon
divergence (Lin, 1991) which shows the best per-
formance in their work as sim(q, q′), and optimize
the settings of k and β in our experiments.

LDA-SP: Another kind of sophisticated unsu-
pervised approaches for SP are latent variable
models based on Latent Dirichlet Allocation (L-
DA). Ó Séaghdha (2010) applies topic models
for the SP induction with three variations: LDA,
Rooth-LDA, and Dual-LDA; Ritter et al. (2010)
focus on inferring latent topics and their distribu-
tions over multiple arguments and relations (e.g.,
the subject and direct object of a verb).

In this work, we compare with Ó Séaghdha’s
original LDA approach to SP. We use the Mat-
lab Topic Modeling Toolbox4 for the inference
of latent topics. The hyper parameters are set as
suggested α=50/T and β=200/n, where T is the
number of topics and n is the number of argu-
ments. We test T=100, 200, 300, each with 1, 000
iterations of Gibbs sampling.

5.3 Pseudo-Disambiguation

Pseudo-disambiguation has been used for SP e-
valuation by many researchers (Rooth et al., 1999;
Erk, 2007; Bergsma et al., 2008; Chambers and
Jurafsky, 2010; Ritter et al., 2010). First the sys-
tem removes a portion of seen predicate-argument
pairs from the generalization data to treat them as
unseen positive tests (q, a+). Then it introduces
confounder selection to create a pseudo negative
test (q, a−) for each positive (q, a+). Finally it
evaluates a SP model by how well the model dis-
ambiguates these positive and negative tests.

Confounder Selection: for a given (q, a+), the
system selects an argument a′ from the argumen-
t vocabulary. Then by ensure (q, a′) is unseen in
the generalization data, it treats a′ as pseudo a−.
This process guarantees that (q, a−) to be negative
in real case with very high probability. Previous
work have made advances on confounder selec-
tion with random, bucket and nearest confounder-
s. Random confounder (RND) most closes to the
realistic case; While nearest confounder (NER) is
reproducible and it avoids frequency bias (Cham-
bers and Jurafsky, 2010).

In this work, we employ both RND and NER
confounders: 1) for RND, we randomly select

4psiexp.ss.uci.edu/research/programs data/toolbox.htm
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confounders according to the occurrence probabil-
ity of arguments. We sample confounders on both
the development and final test data with 100 itera-
tions. 2) for NER, firstly we sort the arguments by
their frequency. Then we select the nearest con-
founders with two iterations. One iteration selects
the confounder whose frequency is more than or
equal to a+, and the other iteration with frequency
lower than or equal to a+.

Evaluation Metric: we evaluate performance
on both the pairwise and pointwise settings:

1) On pairwise setting, we combine correspond-
ing (q, a+, a−) together as test instances. The per-
formance is evaluated based on the accuracy (AC-
C) metric. It computes the portion of test instances
(q, a+, a−) which correctly predicted by the s-
mooth model with score(q, a+) > score(q, a−).
We weight each instance equally for macroACC,
and weight each by the frequency of the positive
pair (q, a+) for microACC.

2) On pointwise setting, we use each positive
test (q, a+) or negative test (q, a−) as test in-
stances independently. We treat it as a binary
classification task, and evaluate using the standard
area-under-the-curve (AUC) metric. This metric
is firstly employed for the SP evaluation by Ritter
et al (2010). For macroAUC, we weight each in-
stance equally; for microAUC, we weight each by
its argument frequency (Bergsma et al., 2008).

Parameters Tuning: The parameters are tuned
on the PTB development set, using AFP as the
generalization data. We report the overall perfor-
mance on the final test set. While using NYT as
the generalization data, we hold the same parame-
ter settings as AFP to ensure the results are robust.
Note that indeed the parameter settings would vary
among different generalization and test data.

5.3.1 Verify Ranking Function and
Propagation Method

This experiment is conducted on the PTB devel-
opment set with RND confounders. We use AFP
and NYT as the generalization data. For compari-
son, we set the distance function Φ as Cosine, with
default d=0.005, and δ=1.

In Table 1, the evaluation metric is Accuracy.
The first 4 rows are the results of ’CP’ PropMode,
and the latter 3 rows are the ’PP’ PropMode. With
respect to the ranking function Ψ, CP performs
the worst as it considers only the popularity rather
than association. The heavy bias on frequent pred-
icates and arguments has two major drawbacks: a)

The computation of predicate distances would re-
ly much more on frequent arguments, rather than
those arguments they preferred; b) While propaga-
tion, it may bias more on frequent arguments, too.
Even these frequent arguments are less preferred
and not proper to be propagated.

Crit.
AFP NYT

macro micro macro micro
ΨCP 71.7 76.7 78.2 81.2
ΨMI 70.9 75.8 79.1 81.8
ΨTD 73.4 78.2 80.9 83.4
ΨAR 72.9 77.8 81.0 83.5
ΨMI 76.8 80.6 81.9 83.8
ΨTD 74.4 79.1 81.8 84.2
ΨAR 82.5 85.2 87.7 88.6

Table 1: Comparing different ranking functions.

For MI, it biases infrequent arguments with
strong association, without regarding to the popu-
lar arguments with more evidences. Furthermore,
the generalization data is automatically parsed and
kind of noisy, especially on infrequent predicates
and arguments. The noises could yield unreliable
estimations and decrease the performance. For T-
D, it outperforms MI method on ’CP’ PropMode,
but it not always outperforms MI on ’PP’ Prop-
Mode. It is no surprise to find out the adjusted
ranking AR achieves better results on both AFP
and NYT data, with α1=0.2 and α2=0.6. Finally,
it shows the ’PP’ mode, which propagating the de-
signed preference scores, gains significantly better
performance as discussed in Section 4.4.

5.3.2 Verify δ of the Probability Function
This experiment is conducted on the PTB develop-
ment tests with both RND and NER confounders.
The generalization data is AFP.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
76

78

80

82

84

86

88

90

ac
cu

ra
cy

 (%
)

delta

 

 

RND macro accuracy
RND micro accuracy
NER macro accuracy
NER micro accuracy

Figure 2: Performance variation on different δ.
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Criterion
AFP NYT

RND NER RND NER
macro micro macro micro macro micro macro micro

Erk et al. FREQ 73.7 73.6 73.9 73.6 68.3 68.4 63.8 63.0
Erk et al.DISCR 76.0 78.3 79.1 78.1 83.3 84.2 82.4 82.6
Dagan et al. 80.6 82.8 84.7 85.0 87.0 87.6 86.9 87.3
LDA-SP 82.0 83.5 83.7 82.9 89.1 89.0 87.9 87.8
RSPnaive 72.6 76.4 79.4 81.1 78.5 80.4 74.8 78.0
+Rank 74.0 77.7 83.5 85.2 81.4 83.1 84.5 86.9
+Rank+PP 83.5 85.2 87.2 87.0 88.2 88.2 88.0 88.3
+Rank+PP+Delta 86.2 87.3 88.4 88.1 90.6 90.1 91.1 89.3

Table 2: Pseudo-disambiguation results of different smooth models. Macro and micro Accuracy.
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Erk et al.      microAUC=0.62
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RSP−ALL     microAUC=0.89

Figure 3: Marco and micro ROC curves of different smooth models.

We set the ranking function Ψ as AR (with
tuned α1=0.2 and α2=0.6), the distance function
Φ as Cosine, default d=0.005, and we restrict δ ∈
[0.5, 4]. Figure 2 shows δ has significant impact
on the performance. Starting from δ=0.5, the sys-
tem gains better performance while δ increasing.
It achieves good results around δ=2. This mean-
s for a given predicate, the penalty on its distant
predicates helps to get more accurate smooth. The
performance will drop if δ becomes too big. This
means closest predicates are useful for smooth. It
it not better to penalize them heavily.

5.3.3 Overall Performance

Finally we compare the overall performance of d-
ifferent models. We report the results on the PTB
final test set, with RND and NER confounders.

Table 2 shows the overall performance on Accu-
racy metric. Among previous methods in the first
4 rows, LDA-SP performs the best in most cas-
es. In the last 4 rows, RSPnaive means both the
ranking function and PropMode are set as ’CP’
and δ=1. This configuration yields poor perfor-
mance. Iteratively, by employing the adjusted

ranking function, smoothing with preference prop-
agation method, and revising the probability func-
tion with the parameter δ, RSP outperforms all
previous methods. The parameter settings of RSP-
All are α1=0.2, α2=0.6, δ=1.75 and d=0.005.

Figure 3 show the macro (left) and micro (right)
receiver-operating-characteristic (ROC) curves of
different models, using AFP as the generalization
data and RND confounders. For each kind of
previous methods, we show the best AUC they
achieved. RASP-All still performs the best on
the terms of AUC metric, achieving macroAUC
at 84% and microAUC at 89%. We also verified
the AUC metric using NYT as the generalization
data. The results are similar to the AFP data. It
is also interesting to find out that the ACC met-
ric is not always bring into correspondence with
the AUC metric. The difference mainly raise on
the pointwise and pairwise test settings of pseudo-
disambiguation.

5.4 Human Plausibility Judgements

We conduct empirical studies on the correla-
tions between different preference ranking func-
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Criterion
AFP NYT

Spearman’s ρ Kendall’s τ Spearman’s ρ Kendall’s τ
PBP MRP PBP MRP PBP MRP PBP MRP

CT 0.49 0.36 0.37 0.28 0.54 0.44 0.41 0.34
CP 0.47 0.39 0.35 0.30 0.51 0.48 0.39 0.37
MI 0.56 0.39 0.43 0.31 0.54 0.49 0.41 0.38
TD 0.53 0.36 0.39 0.28 0.56 0.45 0.42 0.34
AR 0.58 0.40 0.44 0.31 0.58 0.50 0.44 0.39
Erk et al. FREQ 0.30 0.08 0.22 0.06 0.25 0.09 0.18 0.06
Erk et al.DISCR 0.06 0.21 0.04 0.15 0.16 0.23 0.11 0.16
Dagan et al. 0.32 0.24 0.24 0.18 0.46 0.29 0.34 0.21
LDA-SP 0.31 0.32 0.23 0.23 0.38 0.38 0.28 0.28
LDA-SP+Bayes 0.39 0.25 0.30 0.18 0.40 0.32 0.30 0.23
RSP-All 0.46 0.31 0.34 0.23 0.53 0.38 0.40 0.28

Table 3: Correlation results on the human plausibility judgements data.

tions and human ratings. Follow Lapata et
al. (2001), we first collect the co-occurrence
counts of predicate-argument pairs in the human
plausibility data from AFP and NYT (before re-
moving them as unseen pairs). Then we score
them with different ranking functions (described
in Section 4.1) based on MLE. Inspired by Erk et
al. (2010), we do not suppose linear correlations
between the estimated scores and human ratings.
We use the Spearman’s ρ and Kendal’s τ rank
correlation coefficient.

We also compare the correlations between the
smoothed scores of different models with human
ratings. With respect to upper bounds, Padó et
al. (2007) suggest that the typical agreement of
human participants is around a correlation of 0.7
on their plausibility data. We hold that automatic
models of plausibility can not be expected to sur-
pass this upper bound.

In Table 3, all coefficients are verified at signif-
icant level p<0.01. The first 5 rows are the corre-
lations between the preference ranking function-
s and human ratings based on MLE. On both the
PBP and MRP data, the proposed AR metric better
correlates with human ratings than others, with α2

>0.5 and α1 around [0.2, 0.35]. The latter 6 rows
are the results of smooth models. It shows LDA-
SP performs good correlation with human ratings,
where LDA-SP+Bayes refers to the Bayes predic-
tion method of Ritter et al. (2010). RSP model
gains the best correlation on the two plausibility
data in most cases, where the parameter settings
are the same as pseudo-disambiguation.

6 Conclusions and Future Work

In this work we present an random walk approach
to SP. Experiments show it is efficient and effec-
tive to address data sparsity for SP. It is also flex-
ible to be applied to new data. We find out that a
proper measure on SP between the predicates and
arguments is important for SP. It helps with the
discovering of nearby predicates and it makes the
preference propagation to be more accurate. An-
other issue is that it is not good enough to direct-
ly applies the similarity or distance functions for
smooth. Potential future work including but not
limited to follows: investigate argument-oriented
and personalized random walk, extend the model
in heterogenous network with multiple link types,
discover soft clusters using random walk for se-
mantic induction, and combine it with discrimina-
tive learning approach etc.
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Abstract

This paper presents a novel deterministic
algorithm for implicit Semantic Role La-
beling. The system exploits a very sim-
ple but relevant discursive property, the ar-
gument coherence over different instances
of a predicate. The algorithm solves the
implicit arguments sequentially, exploit-
ing not only explicit but also the implicit
arguments previously solved. In addition,
we empirically demonstrate that the algo-
rithm obtains very competitive and robust
performances with respect to supervised
approaches that require large amounts of
costly training data.

1 Introduction

Traditionally, Semantic Role Labeling (SRL) sys-
tems have focused in searching the fillers of those
explicit roles appearing within sentence bound-
aries (Gildea and Jurafsky, 2000, 2002; Carreras
and Màrquez, 2005; Surdeanu et al., 2008; Hajič
et al., 2009). These systems limited their search-
space to the elements that share a syntactical re-
lation with the predicate. However, when the par-
ticipants of a predicate are implicit this approach
obtains incomplete predicative structures with null
arguments. The following example includes the
gold-standard annotations for a traditional SRL
process:

(1) [arg0 The network] had been expected to have [np
losses] [arg1 of as much as $20 million] [arg3 on base-
ball this year]. It isn’t clear how much those [np losses]
may widen because of the short Series.

The previous analysis includes annotations for
the nominal predicate loss based on the NomBank
structure (Meyers et al., 2004). In this case the
annotator identifies, in the first sentence, the argu-
ments arg0, the entity losing something, arg1, the

thing lost, and arg3, the source of that loss. How-
ever, in the second sentence there is another in-
stance of the same predicate, loss, but in this case
no argument has been associated with it. Tradi-
tional SRL systems facing this type of examples
are not able to fill the arguments of a predicate
because their fillers are not in the same sentence
of the predicate. Moreover, these systems also let
unfilled arguments occurring in the same sentence,
like in the following example:

(2) Quest Medical Inc said it adopted [arg1 a sharehold-
ers’ rights] [np plan] in which rights to purchase shares
of common stock will be distributed as a dividend to
shareholders of record as of Oct 23.

For the predicate plan in the previous sentence,
a traditional SRL process only returns the filler for
the argument arg1, the theme of the plan.

However, in both examples, a reader could eas-
ily infer the missing arguments from the surround-
ing context of the predicate, and determine that
in (1) both instances of the predicate share the
same arguments and in (2) the missing argument
corresponds to the subject of the verb that domi-
nates the predicate, Quest Medical Inc. Obviously,
this additional annotations could contribute posi-
tively to its semantic analysis. In fact, Gerber and
Chai (2010) pointed out that implicit arguments
can increase the coverage of argument structures
in NomBank by 71%. However, current automatic
systems require large amounts of manually anno-
tated training data for each predicate. The effort
required for this manual annotation explains the
absence of generally applicable tools. This prob-
lem has become a main concern for many NLP
tasks. This fact explains a new trend to develop
accurate unsupervised systems that exploit sim-
ple but robust linguistic principles (Raghunathan
et al., 2010).

In this work, we study the coherence of the
predicate and argument realization in discourse. In
particular, we have followed a similar approach to
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the one proposed by Dahl et al. (1987) who filled
the arguments of anaphoric mentions of nominal
predicates using previous mentions of the same
predicate. We present an extension of this idea
assuming that in a coherent document the differ-
ent ocurrences of a predicate, including both ver-
bal and nominal forms, tend to be mentions of
the same event, and thus, they share the same
argument fillers. Following this approach, we
have developed a deterministic algorithm that ob-
tains competitive results with respect to supervised
methods. That is, our system can be applied to any
predicate without training data.

The main contributions of this work are the fol-
lowing:

• We empirically prove that there exists a
strong discourse relationship between the im-
plicit and explicit argument fillers of the same
predicates.

• We propose a deterministic approach that ex-
ploits this discoursive property in order to ob-
tain the fillers of implicit arguments.

• We adapt to the implicit SRL problem a clas-
sic algorithm for pronoun resolution.

• We develop a robust algorithm, ImpAr, that
obtains very competitive results with respect
to existing supervised systems. We release
an open source prototype implementing this
algorithm1.

The paper is structured as follows. Section 2
discusses the related work. Section 3 presents in
detail the data used in our experiments. Section
4 describes our algorithm for implicit argument
resolution. Section 5 presents some experiments
we have carried out to test the algorithm. Section
6 discusses the results obtained. Finally, section
7 offers some concluding remarks and presents
some future research lines.

2 Related Work

The first attempt for the automatic annotation of
implicit semantic roles was proposed by Palmer
et al. (1986). This work applied selectional restric-
tions together with coreference chains, in a very
specific domain. In a similar approach, Whitte-
more et al. (1991) also attempted to solve implicit

1http://adimen.si.ehu.es/web/ImpAr

arguments using some manually described seman-
tic constraints for each thematic role they tried to
cover. Another early approach was presented by
Tetreault (2002). Studying another specific do-
main, they obtained some probabilistic relations
between some roles. These early works agree that
the problem is, in fact, a special case of anaphora
or coreference resolution.

Recently, the task has been taken up again
around two different proposals. On the one
hand, Ruppenhofer et al. (2010) presented a task
in SemEval-2010 that included an implicit argu-
ment identification challenge based on FrameNet
(Baker et al., 1998). The corpus for this task
consisted in some novel chapters. They covered
a wide variety of nominal and verbal predicates,
each one having only a small number of instances.
Only two systems were presented for this sub-
task obtaining quite poor results (F1 below 0,02).
VENSES++ (Tonelli and Delmonte, 2010) applied
a rule based anaphora resolution procedure and se-
mantic similarity between candidates and thematic
roles using WordNet (Fellbaum, 1998). The sys-
tem was tuned in (Tonelli and Delmonte, 2011)
improving slightly its performance. SEMAFOR
(Chen et al., 2010) is a supervised system that
extended an existing semantic role labeler to en-
large the search window to other sentences, replac-
ing the features defined for regular arguments with
two new semantic features. Although this system
obtained the best performance in the task, data
sparseness strongly affected the results. Besides
the two systems presented to the task, some other
systems have used the same dataset and evaluation
metrics. Ruppenhofer et al. (2011), Laparra and
Rigau (2012), Gorinski et al. (2013) and Laparra
and Rigau (2013) explore alternative linguistic and
semantic strategies. These works obtained signifi-
cant gains over previous approaches. Silberer and
Frank (2012) adapted an entity-based coreference
resolution model to extend automatically the train-
ing corpus. Exploiting this additional data, their
system was able to improve previous results. Fol-
lowing this approach Moor et al. (2013) present a
corpus of predicate-specific annotations for verbs
in the FrameNet paradigm that are aligned with
PropBank and VerbNet.

On the other hand, Gerber and Chai (2010,
2012) studied the implicit argument resolution on
NomBank. They uses a set of syntactic, semantic
and coreferential features to train a logistic regres-
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sion classifier. Unlike the dataset from SemEval-
2010 (Ruppenhofer et al., 2010), in this work the
authors focused on a small set of ten predicates.
But for those predicates, they annotated a large
amount of instances in the documents from the
Wall Street Journal that were already annotated
for PropBank (Palmer et al., 2005) and NomBank.
This allowed them to avoid the sparseness prob-
lems and generalize properly from the training
set. The results of this system were far better
than those obtained by the systems that faced the
SemEval-2010 dataset. This works represent the
deepest study so far of the features that charac-
terizes the implicit arguments 2. However, many
of the most important features are lexically depen-
dent on the predicate and cannot been generalized.
Thus, specific annotations are required for each
new predicate to be analyzed.

All the works presented in this section agree that
implicit arguments must be modeled as a particu-
lar case of coreference together with features that
include lexical-semantic information, to build se-
lectional preferences. Another common point is
the fact that these works try to solve each instance
of the implicit arguments independently, without
taking into account the previous realizations of
the same implicit argument in the document. We
propose that these realizations, together with the
explicit ones, must maintain a certain coherence
along the document and, in consequence, the filler
of an argument remains the same along the fol-
lowing instances of that argument until a stronger
evidence indicates a change. We also propose that
this feature can be exploited independently from
the predicate.

3 Datasets

In our experiments, we have focused on the dataset
developed in Gerber and Chai (2010, 2012). This
dataset (hereinafter BNB which stands for ”Be-
yond NomBank”) extends existing predicate an-
notations for NomBank and ProbBank.

BNB presented the first annotation work of im-
plicit arguments based on PropBank and Nom-
Bank frames. This annotation was an extension
of the standard training, development and testing
sections of Penn TreeBank that have been typi-
cally used for SRL evaluation and were already
annotated with PropBank and NomBank predicate

2Gerber and Chai (2012) includes a set of 81 different fea-
tures.

structures. The authors selected a limited set of
predicates. These predicates are all nominaliza-
tions of other verbal predicates, without sense am-
biguity, that appear frequently in the corpus and
tend to have implicit arguments associated with
their instances. These constraints allowed them to
model enough occurrences of each implicit argu-
ment in order to cover adequately all the possible
cases appearing in a test document. For each miss-
ing argument position they went over all the pre-
ceding sentences and annotated all mentions of the
filler of that argument. In tables 3 and 4 we show
the list of predicates and the resulting figures of
this annotation.

In this work we also use the corpus provided
for the CoNLL-2008 task. These corpora cover
the same BNB documents and include annotated
predictions for syntactic dependencies and Super-
Sense labels as semantic tags. Unlike Gerber and
Chai (2010, 2012) we do not use the constituent
analysis from the Penn TreeBank.

4 ImpAr algorithm

4.1 Discoursive coherence of predicates

Exploring the training dataset of BNB, we ob-
served a very strong discourse effect on the im-
plicit and explicit argument fillers of the predi-
cates. That is, if several instances of the same
predicate appear in a well-written discourse, it is
very likely that they maintain the same argument
fillers. This property holds when joining the dif-
ferent parts-of-speech of the predicates (nominal
or verbal) and the explicit or implicit realizations
of the argument fillers. For instance, we observed
that 46% of all implicit arguments share the same
filler with the previous instance of the same predi-
cate while only 14% of them have a different filler.
The remaining 40% of all implicit arguments cor-
respond to first occurrences of their predicates.
That is, these fillers can not be recovered from pre-
vious instances of their predicates.

The rationale behind this phenomena seems to
be simple. When referring to different aspects of
the same event, the writer of a coherent document
does not repeat redundant information. They re-
fer to previous predicate instances assuming that
the reader already recalls the involved participants.
That is, the filler of the different instances of a
predicate argument maintain a certain discourse
coherence. For instance, in example (1), all the ar-
gument positions of the second occurrence of the
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predicate loss are missing, but they can be easily
inferred from the previous instance of the same
predicate.

(1) [arg0 The network] had been expected to have [np
losses] [arg1 of as much as $20 million] [arg3 on base-
ball this year]. It isn’t clear how much those [np losses]
may widen because of the short Series.

Therefore, we propose to exploit this property
in order to capture correctly how the fillers of all
predicate arguments evolve through a document.

Our algorithm, ImpAr, processes the docu-
ments sentence by sentence, assuming that se-
quences of the same predicate (in its nominal or
verbal form) share the same argument fillers (ex-
plicit or implicit)3. Thus, for every core argument
argn of a predicate, ImpAr stores its previous
known filler as a default value. If the arguments
of a predicate are explicit, they always replace de-
fault fillers previously captured. When there is no
antecedent for a particular implicit argument argn,
the algorithm tries to find in the surrounding con-
text which participant is the most likely to be the
filler according to some salience factors (see Sec-
tion 4.2). For the following instances, without an
explicit filler for a particular argument position,
the algorithm repeats the same selection process
and compares the new implicit candidate with the
default one. That is, the default implicit argument
of a predicate with no antecedent can change ev-
ery time the algorithm finds a filler with a greater
salience. A damping factor is applied to reduce the
salience of distant predicates.

4.2 Filling arguments without explicit
antecedents

Filling the implicit arguments of a predicate has
been identified as a particular case of corefer-
ence, very close to pronoun resolution (Silberer
and Frank, 2012). Consequently, for those implicit
arguments that have not explicit antecedents, we
propose an adaptation of a classic algorithm for
deterministic pronoun resolution. This component
of our algorithm follows the RAP approach (Lap-
pin and Leass, 1994). When our algorithm needs
to fill an implicit predicate argument without an
explicit antecedent it considers a set of candidates
within a window formed by the sentence of the
predicate and the two previous sentences. Then,
the algorithm performs the following steps:

3Note that the algorithm could also consider sequences of
closely related predicates.

1. Apply two constraints to the candidate list:

(a) All candidates that are already explicit arguments
of the predicate are ruled out.

(b) All candidates commanded by the predicate in
the dependency tree are ruled out.

2. Select those candidates that are semantically consistent
with the semantic category of the implicit argument.

3. Assign a salience score to each candidate.

4. Sort the candidates by their proximity to the predicate
of the implicit argument.

5. Select the candidate with the highest salience value.

As a result, the candidate with the highest
salience value is selected as the filler of the im-
plicit argument. Thus, this filler with its corre-
sponding salience weight will be also considered
in subsequent instances of the same predicate.

Now, we explain each step in more detail using
example (2). In this example, arg0 is missing for
the predicate plan:

(2) Quest Medical Inc said it adopted [arg1 a sharehold-
ers’ rights] [np plan] in which rights to purchase shares
of common stock will be distributed as a dividend to
shareholders of record as of Oct 23.

Filtering. In the first step, the algorithm fil-
ters out the candidates that are actual explicit argu-
ments of the predicate or have a syntactic depen-
dency with the predicate, and therefore, they are in
the search space of a traditional SRL system.

In our example, the filtering process would re-
move [a shareholders’ rights] because it is already
the explicit argument arg1, and [in which rights
to purchase shares of common stock will be dis-
tributed as a dividend to shareholders of record as
of Oct 23] because it is syntactically commanded
by the predicate plan.

Semantic consistency. To determine the se-
mantic coherence between the potential candidates
and a predicate argument argn, we have exploited
the selectional preferences in the same way as
in previous SRL and implicit argument resolution
works. First, we have designed a list of very
general semantic categories. Second, we have
semi-automatically assigned one of them to every
predicate argument argn in PropBank and Nom-
Bank. For this, we have used the semantic an-
notation provided by the training documents of
the CoNLL-2008 dataset. This annotation was
performed automatically using the SuperSense-
Tagger (Ciaramita and Altun, 2006) and includes
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named-entities and WordNet Super-Senses4. We
have also defined a mapping between the semantic
classes provided by the SuperSenseTagger and our
seven semantic categories (see Table 1 for more
details). Then, we have acquired the most com-
mon categories of each predicate argument argn.
ImpAr algorithm also uses the SuperSenseTagger
over the documents to be processed from BNB
to check if the candidate belongs to the expected
semantic category of the implicit argument to be
filled.

Following the example above, [Quest Medi-
cal Inc] is tagged as an ORGANIZATION by the
SuperSenseTagger. Therefore, it belongs to our
semantic category COGNITIVE. As the seman-
tic category for the implicit argument arg0 for
the predicate plan has been recognized to be also
COGNITIVE, [Quest Medical Inc] remains in the
list of candidates as a possible filler.

Semantic category Name-entities Super-Senses

COGNITIVE

PERSON noun.person
ORGANIZATION noun.group
ANIMAL noun.animal
... ...

TANGIBLE
PRODUCT noun.artifact
SUBSTANCE noun.object
... ...

EVENTIVE
GAME noun.act
DISEASE noun.communication
... ...

RELATIVE
noun.shape
noun.attribute
...

LOCATIVE LOCATION noun.location
TIME DATE noun.time

MESURABLE
QUANTITY noun.quantity
PERCENT
...

Table 1: Links between the semantic categories and some
name-entities and super-senses.

Salience weighting. In this process, the algo-
rithm assigns to each candidate a set of salience
factors that scores its prominence. The sentence
recency factor prioritizes the candidates that oc-
cur close to the same sentence of the predicate.
The subject, direct object, indirect object and non-
adverbial factors weight the salience of the candi-
date depending on the syntactic role they belong
to. Additionally, the head of these syntactic roles
are prioritized by the head factor. We have used
the same weights, listed in table 2, proposed by
Lappin and Leass (1994).

In the example, candidate [Quest Medical Inc]
is in the same sentence as the predicate plan, it

4Lexicographic files according to WordNet terminology.

Factor type weight
Sentence recency 100
Subject 80
Direct object 50
Indirect object 40
Head 80
Non-adverbial 50

Table 2: Weights assigned to each salience factor.

belongs to a subject, and, indeed, it is the head
of that subject. Hence, the salience score for this
candidate is: 100 + 80 + 80 = 260.

4.3 Damping the salience of the default
candidate

As the algorithm maintains the default candidate
until an explicit filler appears, potential errors pro-
duced in the automatic selection process explained
above can spread to distant implicit instances, spe-
cially when the salience score of the default can-
didate is high. In order to reduce the impact of
these errors we have included a damping factor
that is applied sentence by sentence to the salience
value of the default candidate. ImpAr applies that
damping factor, r, as follows. It assumes that, in-
dependently of the initial salience assigned, 100
points of the salience score came from the sen-
tence recency factor. Then, the algorithm changes
this value multiplying it by r. So, given a salience
score s, the value of the score in a following sen-
tence, s′, is:

s′ = s− 100 + 100 · r
Obviously, the value of r must be defined with-

out harming excessively those cases where the de-
fault candidate has been correctly identified. For
this, we studied in the training dataset the cases
of implicit arguments filled with the default can-
didate. Figure 1 shows that the influence of the
default filler is much higher in near sentences that
in more distance ones.

We tried to mimic a damping factor following
this distribution. That is, to maintain high score
salience for the near sentences while strongly de-
creasing them in the subsequent ones. In this way,
if the filler of the implicit argument is wrongly
identified, the error only spreads to the nearest in-
stances. If the identification is correct, a lower
score for more distance sentences is not too harm-
ful. The distribution shown in figure 1 follows
an exponential decay, therefore we have described
the damping factor as a curve like the following,
where α must be a value within 0 and 1:
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Figure 1: Distances between the implicit argument and the
default candidate. The y axis indicate the percentage of cases
occurring in each sentence distance, expressed in x

r = αd

In this function, d stands for the sentence dis-
tance and r for the damping factor to apply in that
sentence. In this paper, we have decided to set the
value of α to 0.5.

r = 0.5d

This value maintains the influence of the default
fillers with high salience in near sentences. But it
decreases that influence strongly in the following.

In order to illustrate the whole process we will
use the previous example. In that case, [Quest
Medical Inc] is selected as the arg0 of plan with
a salience score of 260. Therefore [Quest Medi-
cal Inc] becomes the default arg0 of plan. In the
following sentence the damping factor is:

0.5 = 0.51

Therefore, its salience score changes to 260 −
100+100·0.5 = 210. Then, the algorithm changes
the default filler for arg0 only if it finds a candi-
date that scores higher in their current context. At
two sentence distance, the resulting score for the
default filler is 260 − 100 + 100 · 0.25 = 185. In
this way, at more distance sentences, the influence
of the default filler of arg0 becomes smaller.

5 Evaluation

In order to evaluate the performance of the Im-
pAr algorithm, we have followed the evaluation
method presented by Gerber and Chai (2010,
2012). For every argument position in the gold-
standard the scorer expects a single predicted con-
stituent to fill in. In order to evaluate the correct
span of a constituent, a prediction is scored using
the Dice coefficient:

2|Predicted ∩ True|
|Predicted| + |True|

The function above relates the set of tokens that
form a predicted constituent, Predicted, and the
set of tokens that are part of an annotated con-
stituent in the gold-standard, True. For each
missing argument, the gold-standard includes the
whole coreference chain of the filler. Therefore,
the scorer selects from all coreferent mentions the
highest Dice value. If the predicted span does not
cover the head of the annotated filler, the scorer re-
turns zero. Then, Precision is calculated by the
sum of all prediction scores divided by the number
of attempts carried out by the system. Recall is
equal to the sum of the prediction scores divided
by the number of actual annotations in the gold-
standard. F-measure is calculated as the harmonic
mean of recall and precision.

Traditionally, there have been two approaches
to develop SRL systems, one based on constituent
trees and the other one based on syntactic depen-
dencies. Additionally, the evaluation of both types
of systems has been performed differently. For
constituent based SRL systems the scorers eval-
uate the correct span of the filler, while for depen-
dency based systems the scorer just check if the
systems are able to capture the head token of the
filler. As shown above, previous works in implicit
argument resolution proposed a metric that in-
volves the correct identification of the whole span
of the filler. ImpAr algorithm works with syntac-
tic dependencies and therefore it only returns the
head token of the filler. In order to compare our
results with previous works, we had to apply some
simple heuristics to guess the correct span of the
filler. Obviously, this process inserts some noise
in the final evaluation.

We have performed a first evaluation over the
test set used in (Gerber and Chai, 2010). This
dataset contains 437 predicate instances but just
246 argument positions are implicitly filled. Table
3 includes the results obtained by ImpAr, the re-
sults of the system presented by Gerber and Chai
(2010) and the baseline proposed for the task. Best
results are marked in bold5. For all predicates,
ImpAr improves over the baseline (19.3 points
higher in the overall F1). Our system also out-
performs the one presented by Gerber and Chai
(2010). Interestingly, both systems present very
different performances predicate by predicate. For

5No proper significance test can be carried out without the
the full predictions of all systems involved.
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Baseline Gerber & Chai ImpAr
#Inst. #Imp. F1 P R F1 P R F1

sale 64 65 36.2 47.2 41.7 44.2 41.2 39.4 40.3
price 121 53 15.4 36.0 32.6 34.2 53.3 53.3 53.3
investor 78 35 9.8 36.8 40.0 38.4 43.0 39.5 41.2
bid 19 26 32.3 23.8 19.2 21.3 52.9 51.0 52.0
plan 25 20 38.5 78.6 55.0 64.7 40.7 40.7 40.7
cost 25 17 34.8 61.1 64.7 62.9 56.1 50.2 53.0
loss 30 12 52.6 83.3 83.3 83.3 68.4 63.5 65.8
loan 11 9 18.2 42.9 33.3 37.5 25.0 20.0 22.2
investment 21 8 0.0 40.0 25.0 30.8 47.6 35.7 40.8
fund 43 6 0.0 14.3 16.7 15.4 66.7 33.3 44.4
Overall 437 246 26.5 44.5 40.4 42.3 47.9 43.8 45.8

Table 3: Evaluation with the test. The results from (Gerber and Chai, 2010) are included.

Baseline Gerber & Chai ImpAr
#Inst. #Imp. F1 P R F1 P R F1

sale 184 181 37.3 59.2 44.8 51.0 44.3 43.3 43.8
price 216 138 34.6 56.0 48.7 52.1 55.0 54.5 54.7
investor 160 108 5.1 46.7 39.8 43.0 28.2 27.0 27.6
bid 88 124 23.8 60.0 36.3 45.2 48.4 41.8 45.0
plan 100 77 32.3 59.6 44.1 50.7 47.0 47.0 47.0
cost 101 86 17.8 62.5 50.9 56.1 49.2 43.7 46.2
loss 104 62 54.7 72.5 59.7 65.5 63.0 58.2 60.5
loan 84 82 31.2 67.2 50.0 57.3 56.4 45.6 50.6
investment 102 52 15.5 32.9 34.2 33.6 41.2 30.9 35.4
fund 108 56 15.5 80.0 35.7 49.4 55.6 44.6 49.5
Overall 1,247 966 28.9 57.9 44.5 50.3 47.7 43.0 45.3

Table 4: Evaluation with the full dataset. The results from (Gerber and Chai, 2012) are included.

instance, our system obtains much higher results
for the predicates bid and fund, while much lower
for loss and loan. In general, ImpAr seems to be
more robust since it obtains similar performances
for all predicates. In fact, the standard deviation,
σ , of F1 measure is 10.98 for ImpAr while this
value for the (Gerber and Chai, 2010) system is
20.00.

In a more recent work, Gerber and Chai (2012)
presented some improvements of their previous
results. In this work, they extended the evalua-
tion of their model using the whole dataset and
not just the testing documents. Applying a cross-
validated approach they tried to solve some prob-
lems that they found in the previous evaluation,
like the small size of the testing set. For this work,
they also studied a wider set of features, specially,
they experimented with some statistics learnt from
parts of GigaWord automatically annotated. Table
4 shows that the improvement over their previous
system was remarkable. The system also seems
to be more stable across predicates. For compar-
ison purposes, we also included the performance
of ImpAr applied over the whole dataset.

The results in table 4 show that, although ImpAr
still achieves the best results in some cases, this
time, it cannot beat the overall results obtained by

the supervised model. In fact, both systems obtain
a very similar recall, but the system from (Gerber
and Chai, 2012) obtains much higher precision.
In both cases, the σ value of F1 is reduced, 8.81
for ImpAr and 8.21 for (Gerber and Chai, 2012).
However, ImpAr obtains very similar performance
independently of the testing dataset what proves
the robustness of the algorithm. This suggests
that our algorithm can obtain strong results also
for other corpus and predicates. Instead, the su-
pervised approach would need a large amount of
manual annotations for every predicate to be pro-
cessed.

6 Discussion

6.1 Component Analysis
In order to assess the contribution of each sys-
tem component, we also tested the performance
of ImpAr algorithm when disabling only one of
its components. With this evaluations we pretend
to sight the particular contribution of each compo-
nent. In table 5 we present the results obtained in
the following experiments for the two testing sets
explained in section 5:

• Exp1: The damping factor is disabled. All se-
lected fillers maintain the same salience over
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all sentences.

• Exp2: Only explicit fillers are considered as
candidates6.

• Exp3: No default fillers are considered as
candidates.

As expected, we observe a very similar perfor-
mances in both datasets. Additionally, the high-
est loss appears when the default fillers are ruled
out (Exp3). In particular, it also seems that the
explicit information from previous predicates pro-
vides the most correct evidence (Exp2). Also note
that for Exp2, the system obtains the highest preci-
sion. This means that the most accurate cases are
obtained by previous explicit antecedents.

test full
P R F1 P R F1

full 47.9 43.8 45.8 47.7 43.0 45.3
Exp1 45.7 41.8 43.6 47.1 42.5 44.8
Exp2 51.2 24.6 33.2 55.3 25.5 34.9
Exp3 34.6 29.7 31.9 34.8 28.9 31.5
Exp4 42.6 37.9 40.1 37.5 31.2 34.1
Exp5 38.8 34.5 36.5 35.7 29.7 32.4
Exp6 53.3 48.7 50.9 52.4 47.2 49.6

Table 5: Exp1, Exp2 and Exp3 correspond to ablations of the
components. Exp3 and Exp4 are experiments over the cases
that are not solved by explicit antecedents. Exp6 evaluates
the system capturing just the head tokens of the constituents.

As Exp1 also includes instances with explicit
antecedents, and for these cases the damping fac-
tor component has no effect, we have designed two
additional experiments:

• Exp4: Full system for the cases not solved by
explicit antecedents.

• Exp5: As in Exp4 but with the damping fac-
tor disabled.

As expected, now the contribution of the dump-
ing factor seems to be more relevant, in particular,
for the test dataset.

6.2 Correct span of the fillers
As explained in Section 5, our algorithm works
with syntactic dependencies and its predictions
only return the head token of the filler. Obtaining
the correct constituents from syntactic dependen-
cies is not trivial. In this work we have applied
a simple heuristic that returns all the descendant

6That is, implicit arguments without explicit antecedents
are not filled.

tokens of the predicted head token. This naive
process inserts some noise to the evaluation of the
system. For example, from the following sentence
our system gives the following prediction for an
implicit arg1 of an instance of the predicate sale:

Ports of Call Inc. reached agreements to sell its re-
maining seven aircraft [arg1 to buyers] that weren’t
disclosed.

But the actual gold-standard annotation is:
[arg1 buyers that weren’t disclosed]. Although the
head of the constituent, buyers, is correctly cap-
tured by ImpAr, the final prediction is heavily pe-
nalized by the scoring method. Table 5 presents
the results of ImpAr when evaluating the head to-
kens of the constituents only (Exp6). These results
show that the current performance of our system
can be easily improved applying a more accurate
process for capturing the correct span.

7 Conclusions and Future Work

In this work we have presented a robust determin-
istic approach for implicit Semantic Role Label-
ing. The method exploits a very simple but rel-
evant discoursive coherence property that holds
over explicit and implicit arguments of closely re-
lated nominal and verbal predicates. This prop-
erty states that if several instances of the same
predicate appear in a well-written discourse, it is
very likely that they maintain the same argument
fillers. We have shown the importance of this phe-
nomenon for recovering the implicit information
about semantic roles. To our knowledge, this is the
first empirical study that proves this phenomenon.

Based on these observations, we have devel-
oped a new deterministic algorithm, ImpAr, that
obtains very competitive and robust performances
with respect to supervised approaches. That is, it
can be applied where there is no available manual
annotations to train. The code of this algorithm is
publicly available and can be applied to any docu-
ment. As input it only needs the document with
explicit semantic role labeling and Super-Sense
annotations. These annotations can be easily ob-
tained from plain text using available tools7, what
makes this algorithm the first effective tool avail-
able for implicit SRL.

As it can be easily seen, ImpAr has a large
margin for improvement. For instance, providing
more accurate spans for the fillers. We also plan

7We recommend mate-tools (Björkelund et al., 2009) and
SuperSenseTagger (Ciaramita and Altun, 2006).
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to test alternative approaches to solve the argu-
ments without explicit antecedents. For instance,
our system can also profit from additional annota-
tions like coreference, that has proved its utility in
previous works. Finally, we also plan to study our
approach on different languages and datasets (for
instance, the SemEval-2010 dataset).
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Carreras, X. and L. Màrquez (2005). Introduction
to the conll-2005 shared task: Semantic role la-
beling. In Proceedings of the 9th Conference
on Computational Natural Language Learning,
CoNLL ’05, Ann Arbor, Michigan, USA, pp.
152–164.

Chen, D., N. Schneider, D. Das, and N. A. Smith
(2010). Semafor: Frame argument resolution
with log-linear models. In Proceedings of the
5th International Workshop on Semantic Eval-
uation, SemEval ’10, Los Angeles, California,
USA, pp. 264–267.

Ciaramita, M. and Y. Altun (2006). Broad-
coverage sense disambiguation and information
extraction with a supersense sequence tagger. In

Proceedings of the 2006 Conference on Empir-
ical Methods in Natural Language Processing,
EMNLP ’06, Sydney, Australia, pp. 594–602.

Dahl, D. A., M. S. Palmer, and R. J. Passonneau
(1987). Nominalizations in pundit. In In Pro-
ceedings of the 25th Annual Meeting of the As-
sociation for Computational Linguistics, ACL
’87, Stanford, California, USA, pp. 131–139.

Fellbaum, C. (1998). WordNet: an electronic lexi-
cal database. MIT Press.

Gerber, M. and J. Chai (2012, December). Se-
mantic role labeling of implicit arguments for
nominal predicates. Computational Linguis-
tics 38(4), 755–798.

Gerber, M. and J. Y. Chai (2010). Beyond nom-
bank: a study of implicit arguments for nomi-
nal predicates. In Proceedings of the 48th An-
nual Meeting of the Association for Computa-
tional Linguistics, ACL ’10, Uppsala, Sweden,
pp. 1583–1592.

Gildea, D. and D. Jurafsky (2000). Automatic la-
beling of semantic roles. In Proceedings of the
38th Annual Meeting on Association for Com-
putational Linguistics, ACL ’00, Hong Kong,
pp. 512–520.

Gildea, D. and D. Jurafsky (2002, September).
Automatic labeling of semantic roles. Compu-
tational Linguistics 28(3), 245–288.

Gorinski, P., J. Ruppenhofer, and C. Sporleder
(2013). Towards weakly supervised resolution
of null instantiations. In Proceedings of the 10th
International Conference on Computational Se-
mantics, IWCS ’13, Potsdam, Germany, pp.
119–130.
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Abstract
Semantic Role Labeling (SRL) has be-
come one of the standard tasks of natural
language processing and proven useful as
a source of information for a number of
other applications. We address the prob-
lem of transferring an SRL model from
one language to another using a shared
feature representation. This approach is
then evaluated on three language pairs,
demonstrating competitive performance as
compared to a state-of-the-art unsuper-
vised SRL system and a cross-lingual an-
notation projection baseline. We also con-
sider the contribution of different aspects
of the feature representation to the perfor-
mance of the model and discuss practical
applicability of this method.

1 Background and Motivation

Semantic role labeling has proven useful in many
natural language processing tasks, such as ques-
tion answering (Shen and Lapata, 2007; Kaisser
and Webber, 2007), textual entailment (Sammons
et al., 2009), machine translation (Wu and Fung,
2009; Liu and Gildea, 2010; Gao and Vogel, 2011)
and dialogue systems (Basili et al., 2009; van der
Plas et al., 2009).

Multiple models have been designed to auto-
matically predict semantic roles, and a consider-
able amount of data has been annotated to train
these models, if only for a few more popular lan-
guages. As the annotation is costly, one would like
to leverage existing resources to minimize the hu-
man effort required to construct a model for a new
language.

A number of approaches to the construction of
semantic role labeling models for new languages

have been proposed. On one end of the scale is
unsupervised SRL, such as Grenager and Manning
(2006), which requires some expert knowledge,
but no labeled data. It clusters together arguments
that should bear the same semantic role, but does
not assign a particular role to each cluster. On the
other end is annotating a new dataset from scratch.
There are also intermediate options, which often
make use of similarities between languages. This
way, if an accurate model exists for one language,
it should help simplify the construction of a model
for another, related language.

The approaches in this third group often use par-
allel data to bridge the gap between languages.
Cross-lingual annotation projection systems (Padó
and Lapata, 2009), for example, propagate infor-
mation directly via word alignment links. How-
ever, they are very sensitive to the quality of par-
allel data, as well as the accuracy of a source-
language model on it.

An alternative approach, known as cross-lingual
model transfer, or cross-lingual model adaptation,
consists of modifying a source-language model to
make it directly applicable to a new language. This
usually involves constructing a shared feature rep-
resentation across the two languages. McDon-
ald et al. (2011) successfully apply this idea to
the transfer of dependency parsers, using part-of-
speech tags as the shared representation of words.
A later extension of Täckström et al. (2012) en-
riches this representation with cross-lingual word
clusters, considerably improving the performance.

In the case of SRL, a shared representation that
is purely syntactic is likely to be insufficient, since
structures with different semantics may be realized
by the same syntactic construct, for example “in
August” vs “in Britain”. However with the help of
recently introduced cross-lingual word represen-
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tations, such as the cross-lingual clustering men-
tioned above or cross-lingual distributed word rep-
resentations of Klementiev et al. (2012), we may
be able to transfer models of shallow semantics in
a similar fashion.

In this work we construct a shared feature repre-
sentation for a pair of languages, employing cross-
lingual representations of syntactic and lexical in-
formation, train a semantic role labeling model on
one language and apply it to the other one. This
approach yields an SRL model for a new language
at a very low cost, effectively requiring only a
source language model and parallel data.

We evaluate on five (directed) language pairs –
EN-ZH, ZH-EN, EN-CZ, CZ-EN and EN-FR, where
EN, FR, CZ and ZH denote English, French, Czech
and Chinese, respectively. The transferred model
is compared against two baselines: an unsuper-
vised SRL system and a model trained on the out-
put of a cross-lingual annotation projection sys-
tem.

In the next section we will describe our setup,
then in section 3 present the shared feature repre-
sentation we use, discuss the evaluation data and
other technical aspects in section 4, present the
results and conclude with an overview of related
work.

2 Setup

The purpose of the study is not to develop a yet
another semantic role labeling system – any exist-
ing SRL system can (after some modification) be
used in this setup – but to assess the practical ap-
plicability of cross-lingual model transfer to this
problem, compare it against the alternatives and
identify its strong/weak points depending on a par-
ticular setup.

2.1 Semantic Role Labeling Model

We consider the dependency-based version of se-
mantic role labeling as described in Hajič et al.
(2009) and transfer an SRL model from one lan-
guage to another. We only consider verbal pred-
icates and ignore the predicate disambiguation
stage. We also assume that the predicate identifi-
cation information is available – in most languages
it can be obtained using a relatively simple heuris-
tic based on part-of-speech tags.

The model performs argument identification
and classification (Johansson and Nugues, 2008)
separately in a pipeline – first each candidate is

classified as being or not being a head of an argu-
ment phrase with respect to the predicate in ques-
tion and then each of the arguments is assigned a
role from a given inventory. The model is factor-
ized over arguments – the decisions regarding the
classification of different arguments are made in-
dependently of each other.

With respect to the use of syntactic annotation
we consider two options: using an existing depen-
dency parser for the target language and obtaining
one by means of cross-lingual transfer (see sec-
tion 4.2).

Following McDonald et al. (2011), we assume
that a part-of-speech tagger is available for the tar-
get language.

2.2 SRL in the Low-resource Setting

Several approaches have been proposed to obtain
an SRL model for a new language with little or
no manual annotation. Unsupervised SRL mod-
els (Lang and Lapata, 2010) cluster the arguments
of predicates in a given corpus according to their
semantic roles. The performance of such models
can be impressive, especially for those languages
where semantic roles correlate strongly with syn-
tactic relation of the argument to its predicate.
However, assigning meaningful role labels to the
resulting clusters requires additional effort and the
model’s parameters generally need some adjust-
ment for every language.

If the necessary resources are already available
for a closely related language, they can be uti-
lized to facilitate the construction of a model for
the target language. This can be achieved ei-
ther by means of cross-lingual annotation projec-
tion (Yarowsky et al., 2001) or by cross-lingual
model transfer (Zeman and Resnik, 2008).

This last approach is the one we are considering
in this work, and the other two options are treated
as baselines. The unsupervised model will be fur-
ther referred to as UNSUP and the projection base-
line as PROJ.

2.3 Evaluation Measures

We use the F1 measure as a metric for the argu-
ment identification stage and accuracy as an ag-
gregate measure of argument classification perfor-
mance. When comparing to the unsupervised SRL
system the clustering evaluation measures are used
instead. These are purity and collocation
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whereCi is the set of arguments in the i-th induced
cluster, Gj is the set of arguments in the jth gold
cluster and N is the total number of arguments.
We report the harmonic mean of the two (Lang and
Lapata, 2011) and denote it F c1 to avoid confusing
it with the supervised metric.

3 Model Transfer

The idea of this work is to abstract the model away
from the particular source language and apply it
to a new one. This setup requires that we use the
same feature representation for both languages, for
example part-of-speech tags and dependency rela-
tion labels should be from the same inventory.

Some features are not applicable to certain lan-
guages because the corresponding phenomena are
absent in them. For example, consider a strongly
inflected language and an analytic one. While the
latter can usually convey the information encoded
in the word form in the former one (number, gen-
der, etc.), finding a shared feature representation
for such information is non-trivial. In this study
we will confine ourselves to those features that are
applicable to all languages in question, namely:
part-of-speech tags, syntactic dependency struc-
tures and representations of the word’s identity.

3.1 Lexical Information

We train a model on one language and apply it to a
different one. In order for this to work, the words
of the two languages have to be mapped into a
common feature space. It is also desirable that
closely related words from both languages have
similar representations in this space.

Word mapping. The first option is simply to use
the source language words as the shared represen-
tation. Here every source language word would
have itself as its representation and every target
word would map into a source word that corre-
sponds to it. In other words, we supply the model
with a gloss of the target sentence.

The mapping (bilingual dictionary) we use is
derived from a word-aligned parallel corpus, by
identifying, for each word in the target language,

the word in the source language it is most often
aligned to.

Cross-lingual clusters. There is no guarantee
that each of the words in the evaluation data is
present in our dictionary, nor that the correspond-
ing source-language word is present in the training
data, so the model would benefit from the ability
to generalize over closely related words. This can,
for example, be achieved by using cross-lingual
word clusters induced in Täckström et al. (2012).
We incorporate these clusters as features into our
model.

3.2 Syntactic Information

Part-of-speech Tags. We map part-of-speech tags
into the universal tagset following Petrov et al.
(2012). This may have a negative effect on the
performance of a monolingual model, since most
part-of-speech tagsets are more fine-grained than
the universal POS tags considered here. For exam-
ple Penn Treebank inventory contains 36 tags and
the universal POS tagset – only 12. Since the finer-
grained POS tags often reflect more language-
specific phenomena, however, they would only be
useful for very closely related languages in the
cross-lingual setting.

The universal part-of-speech tags used in eval-
uation are derived from gold-standard annotation
for all languages except French, where predicted
ones had to be used instead.

Dependency Structure. Another important aspect
of syntactic information is the dependency struc-
ture. Most dependency relation inventories are
language-specific, and finding a shared representa-
tion for them is a challenging problem. One could
map dependency relations into a simplified form
that would be shared between languages, as it is
done for part-of-speech tags in Petrov et al. (2012).
The extent to which this would be useful, however,
depends on the similarity of syntactic-semantic in-
terfaces of the languages in question.

In this work we discard the dependency rela-
tion labels where the inventories do not match and
only consider the unlabeled syntactic dependency
graph. Some discrepancies, such as variations in
attachment order, may be present even there, but
this does not appear to be the case with the datasets
we use for evaluation. If a target language is poor
in resources, one can obtain a dependency parser
for the target language by means of cross-lingual
model transfer (Zeman and Resnik, 2008). We
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take this into account and evaluate both using the
original dependency structures and the ones ob-
tained by means of cross-lingual model transfer.

3.3 The Model

The model we use is based on that of Björkelund
et al. (2009). It is comprised of a set of linear clas-
sifiers trained using Liblinear (Fan et al., 2008).
The feature model was modified to accommodate
the cross-lingual cluster features and the reranker
component was not used.

We do not model the interaction between differ-
ent argument roles in the same predicate. While
this has been found useful, in the cross-lingual
setup one has to be careful with the assumptions
made. For example, modeling the sequence of
roles using a Markov chain (Thompson et al.,
2003) may not work well in the present setting,
especially between distant languages, as the order
or arguments is not necessarily preserved. Most
constraints that prove useful for SRL (Chang et
al., 2007) also require customization when applied
to a new language, and some rely on language-
specific resources, such as a valency lexicon. Tak-
ing into account the interaction between different
arguments of a predicate is likely to improve the
performance of the transferred model, but this is
outside the scope of this work.

3.4 Feature Selection

Compatibility of feature representations is neces-
sary but not sufficient for successful model trans-
fer. We have to make sure that the features we use
are predictive of similar outcomes in the two lan-
guages as well.

Depending on the pair of languages in ques-
tion, different aspects of the feature representation
will retain or lose their predictive power. We can
be reasonably certain that the identity of an ar-
gument word is predictive of its semantic role in
any language, but it might or might not be true
of, for example, the word directly preceding the
argument word. It is therefore important to pre-

POS part-of-speech tags
Synt unlabeled dependency graph
Cls cross-lingual word clusters
Gloss glossed word forms
Deprel dependency relations

Table 1: Feature groups.

vent the model from capturing overly specific as-
pects of the source language, which we do by con-
fining the model to first-order features. We also
avoid feature selection, which, performed on the
source language, is unlikely to help the model to
better generalize to the target one. The experi-
ments confirm that feature selection and the use
of second-order features degrade the performance
of the transferred model.

3.5 Feature Groups

For each word, we use its part-of-speech tag,
cross-lingual cluster id, word identity (glossed,
when evaluating on the target language) and its
dependency relation to its parent. Features associ-
ated with an argument word include the attributes
of the predicate word, the argument word, its par-
ent, siblings and children, and the words directly
preceding and following it. Also included are the
sequences of part-of-speech tags and dependency
relations on the path between the predicate and the
argument.

Since we are also interested in the impact of dif-
ferent aspects of the feature representation, we di-
vide the features into groups as summarized in ta-
ble 1 and evaluate their respective contributions to
the performance of the model. If a feature group
is enabled – the model has access to the corre-
sponding source of information. For example, if
only POS group is enabled, the model relies on
the part-of-speech tags of the argument, the pred-
icate and the words to the right and left of the ar-
gument word. If Synt is enabled too, it also uses
the POS tags of the argument’s parent, children
and siblings.

Word order information constitutes an implicit
group that is always available. It includes the
Position feature, which indicates whether the
argument is located to the left or to the right of
the predicate, and allows the model to look up the
attributes of the words directly preceding and fol-
lowing the argument word. The model we com-
pare against the baselines uses all applicable fea-
ture groups (Deprel is only used in EN-CZ and
CZ-EN experiments with original syntax).

4 Evaluation

4.1 Datasets and Preprocessing

Evaluation of the cross-lingual model transfer re-
quires a rather specific kind of dataset. Namely,
the data in both languages has to be annotated
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with the same set of semantic roles following the
same (or compatible) guidelines, which is seldom
the case. We have identified three language pairs
for which such resources are available: English-
Chinese, English-Czech and English-French.

The evaluation datasets for English and Chi-
nese are those from the CoNLL Shared Task
2009 (Hajič et al., 2009) (henceforth CoNLL-ST).
Their annotation in the CoNLL-ST is not identi-
cal, but the guidelines for “core” semantic roles
are similar (Kingsbury et al., 2004), so we eval-
uate only on core roles here. The data for the
second language pair is drawn from the Prague
Czech-English Dependency Treebank 2.0 (Hajič
et al., 2012), which we converted to a format simi-
lar to that of CoNLL-ST1. The original annotation
uses the tectogrammatical representation (Hajič,
2002) and an inventory of semantic roles (or func-
tors), most of which are interpretable across vari-
ous predicates. Also note that the syntactic anno-
tation of English and Czech in PCEDT 2.0 is quite
similar (to the extent permitted by the difference
in the structure of the two languages) and we can
use the dependency relations in our experiments.

For English-French, the English CoNLL-ST
dataset was used as a source and the model was
evaluated on the manually annotated dataset from
van der Plas et al. (2011). The latter contains one
thousand sentences from the French part of the Eu-
roparl (Koehn, 2005) corpus, annotated with se-
mantic roles following an adapted version of Prop-
Bank (Palmer et al., 2005) guidelines. The au-
thors perform annotation projection from English
to French, using a joint model of syntax and se-
mantics and employing heuristics for filtering. We
use a model trained on the output of this projec-
tion system as one of the baselines. The evalua-
tion dataset is relatively small in this case, so we
perform the transfer only one-way, from English
to French.

The part-of-speech tags in all datasets were re-
placed with the universal POS tags of Petrov et al.
(2012). For Czech, we have augmented the map-
pings to account for the tags that were not present
in the datasets from which the original mappings
were derived. Namely, tag “t” is mapped to
“VERB” and “Y” – to “PRON”.

We use parallel data to construct a bilingual
dictionary used in word mapping, as well as
in the projection baseline. For English-Czech

1see http://www.ml4nlp.de/code-and-data/treex2conll

and English-French, the data is drawn from Eu-
roparl (Koehn, 2005), for English-Chinese – from
MultiUN (Eisele and Chen, 2010). The word
alignments were obtained using GIZA++ (Och
and Ney, 2003) and the intersection heuristic.

4.2 Syntactic Transfer

In the low-resource setting, we cannot always
rely on the availability of an accurate dependency
parser for the target language. If one is not avail-
able, the natural solution would be to use cross-
lingual model transfer to obtain it.

Unfortunately, the models presented in the pre-
vious work, such as Zeman and Resnik (2008),
McDonald et al. (2011) and Täckström et al.
(2012), were not made available, so we repro-
duced the direct transfer algorithm of McDonald
et al. (2011), using Malt parser (Nivre, 2008) and
the same set of features. We did not reimple-
ment the projected transfer algorithm, however,
and used the default training procedure instead of
perceptron-based learning. The dependency struc-
ture thus obtained is, of course, only a rough ap-
proximation – even a much more sophisticated al-
gorithm may not perform well when transferring
syntax between such languages as Czech and En-
glish, given the inherent difference in their struc-
ture. The scores are shown in table 2.

We will henceforth refer to the syntactic annota-
tions that were provided with the datasets as orig-
inal, as opposed to the annotations obtained by
means of syntactic transfer.

4.3 Baselines

Unsupervised Baseline: We are using a version
of the unsupervised semantic role induction sys-
tem of Titov and Klementiev (2012a) adapted to

Setup UAS, %
EN-ZH 35
ZH-EN 42
EN-CZ 36
CZ-EN 39
EN-FR 67

Table 2: Syntactic transfer accuracy, unlabeled at-
tachment score (percent). Note that in case of
French we evaluate against the output of a super-
vised system, since manual annotation is not avail-
able for this dataset. This score does not reflect the
true performance of syntactic transfer.

1194



the shared feature representation considered in or-
der to make the scores comparable with those
of the transfer model and, more importantly, to
enable evaluation on transferred syntax. Note
that the original system, tailored to a more ex-
pressive language-specific syntactic representa-
tion and equipped with heuristics to identify ac-
tive/passive voice and other phenomena, achieves
higher scores than those we report here.

Projection Baseline: The projection baseline we
use for English-Czech and English-Chinese is a
straightforward one: we label the source side of a
parallel corpus using the source-language model,
then identify those verbs on the target side that are
aligned to a predicate, mark them as predicates and
propagate the argument roles in the same fashion.
A model is then trained on the resulting training
data and applied to the test set.

For English-French we instead use the output of
a fully featured projection model of van der Plas et
al. (2011), published in the CLASSiC project.

5 Results

In order to ensure that the results are consistent,
the test sets, except for the French one, were par-
titioned into five equal parts (of 5 to 10 thousand
sentences each, depending on the dataset) and the
evaluation performed separately on each one. All
evaluation figures for English, Czech or Chinese
below are the average values over the five sub-
sets. In case of French, the evaluation dataset is
too small to split it further, so instead we ran the
evaluation five times on a randomly selected 80%
sample of the evaluation data and averaged over
those. In both cases the results are consistent over
the subsets, the standard deviation does not exceed
0.5% for the transfer system and projection base-
line and 1% for the unsupervised system.

5.1 Argument Identification

We summarize the results in table 3. Argument
identification is known to rely heavily on syntac-
tic information, so it is unsurprising that it proves
inaccurate when transferred syntax is used. Our
simple projection baseline suffers from the same
problem. Even with original syntactic information
available, the performance of argument identifica-
tion is moderate. Note that the model of (van der
Plas et al., 2011), though relying on more expres-
sive syntax, only outperforms the transferred sys-
tem by 3% (F1) on this task.

Setup Syntax TRANS PROJ

EN-ZH trans 34.5 13.9
ZH-EN trans 32.6 15.6
EN-CZ trans 46.3 12.4
CZ-EN trans 42.3 22.2
EN-FR trans 61.6 43.5
EN-ZH orig 51.7 19.6
ZH-EN orig 53.2 29.7
EN-CZ orig 63.9 59.3
CZ-EN orig 67.3 60.9
EN-FR orig 71.0 51.3

Table 3: Argument identification, transferred
model vs. projection baseline, F1.

Most unsupervised SRL approaches assume
that the argument identification is performed
by some external means, for example heuristi-
cally (Lang and Lapata, 2011). Such heuristics
or unsupervised approaches to argument identifi-
cation (Abend et al., 2009) can also be used in the
present setup.

5.2 Argument Classification

In the following tables, TRANS column contains
the results for the transferred system, UNSUP –
for the unsupervised baseline and PROJ – for pro-
jection baseline. We highlight in bold the higher
score where the difference exceeds twice the max-
imum of the standard deviation estimates of the
two results.

Table 4 presents the unsupervised evaluation re-
sults. Note that the unsupervised model performs
as well as the transferred one or better where the

Setup Syntax TRANS UNSUP

EN-ZH trans 83.3 73.9
ZH-EN trans 79.2 67.6
EN-CZ trans 66.4 66.1
CZ-EN trans 68.2 68.7
EN-FR trans 74.6 65.1
EN-ZH orig 84.5 89.7
ZH-EN orig 79.2 83.0
EN-CZ orig 74.1 74.0
CZ-EN orig 74.6 76.7
EN-FR orig 73.3 72.3

Table 4: Argument classification, transferred
model vs. unsupervised baseline in terms of the
clustering metric F c1 (see section 2.3).
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Setup Syntax TRANS PROJ

EN-ZH trans 70.1 69.2
ZH-EN trans 65.6 61.3
EN-CZ trans 50.1 46.3
CZ-EN trans 53.3 54.7
EN-FR trans 65.1 66.1
EN-ZH orig 71.7 69.7
ZH-EN orig 66.1 64.4
EN-CZ orig 59.0 53.2
CZ-EN orig 61.0 60.8
EN-FR orig 63.0 68.0

Table 5: Argument classification, transferred
model vs. projection baseline, accuracy.

original syntactic dependencies are available. In
the more realistic scenario with transferred syn-
tax, however, the transferred model proves more
accurate.

In table 5 we compare the transferred system
with the projection baseline. It is easy to see
that the scores vary strongly depending on the lan-
guage pair, due to both the difference in the anno-
tation scheme used and the degree of relatedness
between the languages. The drop in performance
when transferring the model to another language
is large in every case, though, see table 6.

Setup Target Source
EN-ZH 71.7 87.1
ZH-EN 66.1 86.2
EN-CZ 59.0 80.1
CZ-EN 61.0 75.4
EN-FR 63.0 82.5

Table 6: Model accuracy on the source and target
language using original syntax. The source lan-
guage scores for English vary between language
pairs because of the difference in syntactic anno-
tation and role subset used.

We also include the individual F1 scores for
the top-10 most frequent labels for EN-CZ trans-
fer with original syntax in table 7. The model
provides meaningful predictions here, despite low
overall accuracy.

Most of the labels2 are self-explanatory: Pa-
tient (PAT), Actor (ACT), Time (TWHEN), Effect
(EFF), Location (LOC), Manner (MANN), Ad-
dressee (ADDR), Extent (EXT). CPHR marks the

2http://ufal.mff.cuni.cz/∼toman/pcedt/en/functors.html

Label Freq. F1 Re. Pr.
PAT 14707 69.4 70.0 68.7

ACT 14303 81.1 81.7 80.4
TWHEN 3631 70.6 65.1 77.0

EFF 2601 45.4 67.2 34.3
LOC 1990 41.8 35.3 51.3

MANN 1208 54.0 63.8 46.9
ADDR 1045 30.2 34.4 26.8
CPHR 791 20.4 13.1 45.0

EXT 708 42.2 40.5 44.1
DIR3 695 20.1 17.3 23.9

Table 7: EN-CZ transfer (with original syntax), F1,
recall and precision for the top-10 most frequent
roles.

nominal part of a complex predicate, as in “to have
[a plan]CPHR”, and DIR3 indicates destination.

5.3 Additional Experiments
We now evaluate the contribution of different as-
pects of the feature representation to the perfor-
mance of the model. Table 8 contains the results
for English-French.

Features Orig Trans
POS 47.5 47.5
POS, Synt 53.0 53.1
POS, Cls 53.7 53.7
POS, Gloss 63.7 63.7
POS, Synt, Cls 55.9 56.4
POS, Synt, Gloss 65.2 66.3
POS, Cls, Gloss 61.5 61.5
POS, Synt, Cls, Gloss 63.0 65.1

Table 8: EN-FR model transfer accuracy with dif-
ferent feature subsets, using original and trans-
ferred syntactic information.

The fact that the model performs slightly bet-
ter with transferred syntax may be explained by
two factors. Firstly, as we already mentioned, the
original syntactic annotation is also produced au-
tomatically. Secondly, in the model transfer setup
it is more important how closely the syntactic-
semantic interface on the target side resembles that
on the source side than how well it matches the
“true” structure of the target language, and in this
respect a transferred dependency parser may have
an advantage over one trained on target-language
data.

The high impact of the Gloss features here
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may be partly attributed to the fact that the map-
ping is derived from the same corpus as the eval-
uation data – Europarl (Koehn, 2005) – and partly
by the similarity between English and French in
terms of word order, usage of articles and prepo-
sitions. The moderate contribution of the cross-
lingual cluster features are likely due to the insuf-
ficient granularity of the clustering for this task.

For more distant language pairs, the contribu-
tions of individual feature groups are less inter-
pretable, so we only highlight a few observations.
First of all, both EN-CZ and CZ-EN benefit notice-
ably from the use of the original syntactic annota-
tion, including dependency relations, but not from
the transferred syntax, most likely due to the low
syntactic transfer performance. Both perform bet-
ter when lexical information is available, although
the improvement is not as significant as in the case
of French – only up to 5%.

The situation with Chinese is somewhat compli-
cated in that adding lexical information here fails
to yield an improvement in terms of the metric
considered. This is likely due to the fact that we
consider only the core roles, which can usually be
predicted with high accuracy based on syntactic
information alone.

6 Related Work

Development of robust statistical models for core
NLP tasks is a challenging problem, and adapta-
tion of existing models to new languages presents
a viable alternative to exhaustive annotation for
each language. Although the models thus obtained
are generally imperfect, they can be further refined
for a particular language and domain using tech-
niques such as active learning (Settles, 2010; Chen
et al., 2011).

Cross-lingual annotation projection (Yarowsky
et al., 2001) approaches have been applied ex-
tensively to a variety of tasks, including POS
tagging (Xi and Hwa, 2005; Das and Petrov,
2011), morphology segmentation (Snyder and
Barzilay, 2008), verb classification (Merlo et al.,
2002), mention detection (Zitouni and Florian,
2008), LFG parsing (Wróblewska and Frank,
2009), information extraction (Kim et al., 2010),
SRL (Padó and Lapata, 2009; van der Plas et al.,
2011; Annesi and Basili, 2010; Tonelli and Pi-
anta, 2008), dependency parsing (Naseem et al.,
2012; Ganchev et al., 2009; Smith and Eisner,
2009; Hwa et al., 2005) or temporal relation pre-

diction (Spreyer and Frank, 2008). Interestingly,
it has also been used to propagate morphosyntac-
tic information between old and modern versions
of the same language (Meyer, 2011).

Cross-lingual model transfer methods (McDon-
ald et al., 2011; Zeman and Resnik, 2008; Durrett
et al., 2012; Søgaard, 2011; Lopez et al., 2008)
have also been receiving much attention recently.
The basic idea behind model transfer is similar to
that of cross-lingual annotation projection, as we
can see from the way parallel data is used in, for
example, McDonald et al. (2011).

A crucial component of direct transfer ap-
proaches is the unified feature representation.
There are at least two such representations of
lexical information (Klementiev et al., 2012;
Täckström et al., 2012), but both work on word
level. This makes it hard to account for phenom-
ena that are expressed differently in the languages
considered, for example the syntactic function of
a certain word may be indicated by a preposi-
tion, inflection or word order, depending on the
language. Accurate representation of such infor-
mation would require an extra level of abstrac-
tion (Hajič, 2002).

A side-effect of using adaptation methods is that
we are forced to use the same annotation scheme
for the task in question (SRL, in our case), which
in turn simplifies the development of cross-lingual
tools for downstream tasks. Such representations
are also likely to be useful in machine translation.

Unsupervised semantic role labeling meth-
ods (Lang and Lapata, 2010; Lang and Lapata,
2011; Titov and Klementiev, 2012a; Lorenzo and
Cerisara, 2012) also constitute an alternative to
cross-lingual model transfer.

For an overview of of semi-supervised ap-
proaches we refer the reader to Titov and Klemen-
tiev (2012b).

7 Conclusion

We have considered the cross-lingual model trans-
fer approach as applied to the task of semantic role
labeling and observed that for closely related lan-
guages it performs comparably to annotation pro-
jection approaches. It allows one to quickly con-
struct an SRL model for a new language without
manual annotation or language-specific heuristics,
provided an accurate model is available for one of
the related languages along with a certain amount
of parallel data for the two languages. While an-
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notation projection approaches require sentence-
and word-aligned parallel data and crucially de-
pend on the accuracy of the syntactic parsing and
SRL on the source side of the parallel corpus,
cross-lingual model transfer can be performed us-
ing only a bilingual dictionary.

Unsupervised SRL approaches have their ad-
vantages, in particular when no annotated data is
available for any of the related languages and there
is a syntactic parser available for the target one,
but the annotation they produce is not always suf-
ficient. In applications such as Information Re-
trieval it is preferable to have precise labels, rather
than just clusters of arguments, for example.

Also note that when applying cross-lingual
model transfer in practice, one can improve upon
the performance of the simplistic model we use
for evaluation, for example by picking the features
manually, taking into account the properties of the
target language. Domain adaptation techniques
can also be employed to adjust the model to the
target language.

Acknowledgments

The authors would like to thank Alexandre Kle-
mentiev and Ryan McDonald for useful sugges-
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Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection for semantic roles.
Journal of Artificial Intelligence Research, 36:307–
340.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31:71–105.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
LREC, May.

Mark Sammons, Vinod Vydiswaran, Tim Vieira,
Nikhil Johri, Ming wei Chang, Dan Goldwasser,
Vivek Srikumar, Gourab Kundu, Yuancheng Tu,
Kevin Small, Joshua Rule, Quang Do, and Dan
Roth. 2009. Relation alignment for textual en-
tailment recognition. In Text Analysis Conference
(TAC).

Burr Settles. 2010. Active learning literature survey.
Computer Sciences Technical Report, 1648.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP.

David A Smith and Jason Eisner. 2009. Parser adap-
tation and projection with quasi-synchronous gram-
mar features. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 822–831. Association for Com-
putational Linguistics.

Benjamin Snyder and Regina Barzilay. 2008. Cross-
lingual propagation for morphological analysis. In
Proceedings of the 23rd national conference on Ar-
tificial intelligence.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, volume 2 of HLT ’11, pages
682–686, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Kathrin Spreyer and Anette Frank. 2008. Projection-
based acquisition of a temporal labeller. Proceed-
ings of IJCNLP 2008.
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Abstract

Derivational models are still an under-
researched area in computational morphol-
ogy. Even for German, a rather resource-
rich language, there is a lack of large-
coverage derivational knowledge. This pa-
per describes a rule-based framework for
inducing derivational families (i.e., clus-
ters of lemmas in derivational relation-
ships) and its application to create a high-
coverage German resource, DERIVBASE,
mapping over 280k lemmas into more than
17k non-singleton clusters. We focus on the
rule component and a qualitative and quan-
titative evaluation. Our approach achieves
up to 93% precision and 71% recall. We
attribute the high precision to the fact that
our rules are based on information from
grammar books.

1 Introduction

Morphological processing is generally recognized
as an important step for many NLP tasks. Morpho-
logical analyzers such as lemmatizers and part of
speech (POS) taggers are commonly the first NLP
tools developed for any language (Koskenniemi,
1983; Brill, 1992). They are also applied in NLP
applications where little other linguistic analysis is
performed, such as linguistic annotation of corpora
or terminology acquisition; see Daille et al. (2002)
for an informative summary.

Most work on computational morphology has
focused on inflectional morphology, that is, the
handling of grammatically determined variation of
form (Bickel and Nichols, 2001), which can be
understood, overimplifying somewhat, as a normal-
ization step. Derivational morphology, which is
concerned with the formation of new words from
existing ones, has received less attention. Exam-

ples are nominalization (to understand→ the un-
derstanding), verbalization (the shelf → to shelve),
and adjectivization (the size → sizable). Part of
the reason for the relative lack of attention lies in
the morphological properties of English, such as
the presence of many zero derivations (the fish→
to fish), the dominance of suffixation, and the rel-
ative absence of stem changes in derivation. For
these reasons, simple stemming algorithms (Porter,
1980) provide a cheap and accurate approximation
to English derivation.

Two major NLP resources deal with derivation.
WordNet lists so-called “morphosemantic” rela-
tions (Fellbaum et al., 2009) for English, and a
number of proposals exist for extending WordNets
in other languages with derivational relations (Bil-
gin et al., 2004; Pala and Hlaváčková, 2007). Cat-
Var, the “Categorial Variation Database of English”
(Habash and Dorr, 2003), is a lexicon aimed specif-
ically at derivation. It groups English nouns, verbs,
adjectives, and adverbs into derivational equiva-
lence classes or derivational families such as

askV askerN askingN askingA

Derivational families are commonly understood as
groups of derivationally related lemmas (Daille et
al., 2002; Milin et al., 2009). The lemmas in CatVar
come from various open word classes, and multiple
words may be listed for the same POS. The above
family lists two nouns: an event noun (asking) and
an agentive noun (asker). However, CatVar does
not consider prefixation, which is why, e.g., the
adjective unasked is missing.

CatVar has found application in different areas
of English NLP. Examples are the acquisition of
paraphrases that cut across POS lines, applied, for
example, in textual entailment (Szpektor and Da-
gan, 2008; Berant et al., 2012). Then there is the
induction and extension of semantic roles resources
for predicates of various parts of speech (Meyers et
al., 2004; Green et al., 2004). Finally, CatVar has
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been used as a lexical resource to generate sentence
intersections (Thadani and McKeown, 2011).

In this paper, we describe the project of obtain-
ing derivational knowledge for German to enable
similar applications. Even though there are two
derivational resources for this language, IMSLEX

(Fitschen, 2004) and CELEX (Baayen et al., 1996),
both have shortcomings. The former does not ap-
pear to be publicly available, and the latter has a
limited coverage (50k lemmas) and does not ex-
plicitly represent derivational relationships within
families, which are necessary for fine-grained op-
timization of families. For this reason, we look
into building a novel derivational resource for Ger-
man. Unfortuantely, the approach used to build
CatVar cannot be adopted: it builds on a collection
of high-quality lexical-semantic resources such as
NOMLEX (Macleod et al., 1998), which are not
available for German.

Instead, we employ a rule-based framework to
define derivation rules that cover both suffixation
and prefixation and describes stem changes. Fol-
lowing the work of Šnajder and Dalbelo Bašić
(2010), we define the derivational processes using
derivational rules and higher-order string transfor-
mation functions. The derivational rules induce
a partition of the language’s lemmas into deriva-
tional families. Our method is applicable to many
languages if the following are available: (1) a com-
prehensive set of lemmas (optionally including gen-
der information); (2) knowledge about admissible
derivational patterns, which can be gathered, for
example, from linguistics textbooks.

The result is a freely available high-precision
high-coverage resource for German derivational
morphology that has a structure parallel to Cat-
Var, but was obtained without using manually con-
structed lexical-semantic resources. We conduct
a thorough evaluation of the induced derivational
families both regarding precision and recall.

Plan of the paper. Section 2 discusses prior
work. Section 3 defines our derivation model that
is applied to German in Section 4. Sections 5 and
6 present our evaluation setup and results. Section
7 concludes the paper and outlines future work.

2 Related Work

Computational models of morphology have a long
tradition. Koskenniemi (1983) was the first who
analyzed and generated morphological phenomena
computationally. His two-level theory has been

applied in finite state transducers (FST) for several
languages (Karttunen and Beesley, 2005).

Many recent approaches automatically induce
morphological information from corpora. They
are either based solely on corpus statistics (Déjean,
1998), measure semantic similarity between input
and output lemma (Schone and Jurafsky, 2000),
or bootstrap derivation rules starting from seed ex-
amples (Piasecki et al., 2012). Hammarström and
Borin (2011) give an extensive overview of state-
of-the-art unsupervised learning of morphology.
Unsupervised approaches operate at the level of
word-forms and have complementary strengths and
weaknesses to rule-based approaches. On the up-
side, they do not require linguistic knowledge; on
the downside, they have a harder time distinguish-
ing between derivation and inflection, which may
result in lower precision, and are not guaranteed
to yield analyses that correspond to linguistic intu-
ition. An exception is the work by Gaussier (1999),
who applies an unsupervised model to construct
derivational families for French.

For German, several morphological tools exist.
Morphix is a classification-based analyzer and gen-
erator of German words on the inflectional level
(Finkler and Neumann, 1988). SMOR (Schmid
et al., 2004) employs a finite-state transducer to
analyze German words at the inflectional, deriva-
tional, and compositional level, and has been used
in other morphological analyzers, e.g., Morphisto
(Zielinski and Simon, 2008). The site canoonet1 of-
fers broad-coverage information about the German
language including derivational word formation.

3 Framework

In this section, we describe our rule-based model of
derivation, its operation to define derivational fam-
ilies, and the application of the model to German.
We note that the model is purely surface-based,
i.e., it does not model any semantic regularities be-
yond those implicit in string transformations. We
begin by outlining the characteristics of German
derivational morphology.

3.1 German Derivational Morphology

As German is a morphologically complex language,
we analyzed its derivation processes before imple-
menting our rule-based model. We relied on tradi-
tional grammar books and lexicons, e.g., Hoeppner
(1980) and Augst (1975), in order to linguistically

1http://canoo.net
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justify our assumptions as well as to achieve the
best possible precision and coverage.

We concentrate on German derivational pro-
cesses that involve nouns, verbs, and adjectives.2

Nouns are simple to recognize due to capitaliza-
tion: stauenV – StauN (to jam – jam), essenV –
EssenN (to eat – food). Verbs bear three typical
suffixes (-en, -eln, -ern). An example of a derived
verb is festA – festigenV (tight – to tighten), where
-ig is the derivational suffix. Adjectivization works
similarlty: TagN – täglichA (day – daily).

This example shows that derivation can also in-
volve stem changes in the form of umlaut (e.g.,
a → ä) and ablaut shift, e.g., siedenV – SudN
(to boil – infusion). Other frequent processes
in German derivation are circumfixation (HaftN
– inhaftierenV (arrest – to arrest)) and prefixation
(hebenV – behebenV (to raise – to remedy)). Pre-
fixation often indicates a semantic shift, either in
terms of the general meaning (as above) or in terms
of the polarity ( klarA – unklarA (clear – unclear)).
Also note that affixes can be either Germanic, e.g.,
ölen – Ölung (to oil – oiling), or Latin/Greek, e.g.,
generieren – Generator (to generate – generator).

As this analysis shows, derivation in German
involves transformation as well as affixation pro-
cesses, which has to be taken into account when
modeling a derivational resource.

3.2 A Rule-based Derivation Model

The purpose of a derivational model is to define
a set of transformations that correspond to valid
derivational word formation rules. Rule-based
frameworks offer convenient representations for
derivational morphology because they can take ad-
vantage of linguistic knowledge about derivation,
have interpretable representations, and can be fine-
tuned for high precision. The choice of the frame-
work is in principle arbitrary, as long as it can con-
veniently express the derivational phenomena of
a language. Typically used for this purpose are
two-level formalism rules (Karttunen and Beesley,
1992) or XFST replace rules (Beesley and Kart-
tunen, 2003).

In this paper, we adopt the modeling framework
proposed by Šnajder and Dalbelo Bašić (2010).
The framework corresponds closely to simple,
human-readable descriptions in traditional gram-

2We ignore adverb derivation; the German language dis-
tinguishes between adverbial adjectives and adverbs, the latter
being a rather unproductive class and thus of no interest for
derivation (Schiller et al., 1999).

mar books. The expressiveness of the formalism
is equivalent to the replacement rules commonly
used in finite state frameworks, thus the rules can
be compiled into FSTs for efficient processing.

The framework makes a clear distinction be-
tween inflectional and derivational morphology and
provides separate modeling components for these
two; we only make use of the derivation modeling
component. We use an implementation of the mod-
eling framework in Haskell. For details, see the
studies by Šnajder and Dalbelo Bašić (2008) and
Šnajder and Dalbelo Bašić (2010).

The building blocks of the derivational compo-
nent are derivational rules (patterns) and transfor-
mation functions. A derivational rule describes the
derivation of a derived word from a basis word. A
derivational rule d is defined as a triple:

d = (t,P1,P2) (1)

where t is the transformation function that maps
the word’s stem (or lemma) into the derived word’s
stem (or lemma), while P1 and P2 are the sets of
inflectional paradigms of the basis word and the
derived word, respectively, which specify the mor-
phological properties of the rule’s input and output.
For German, our study assumes that inflectional
paradigms are combinations of part-of-speech and
gender information (for nouns).

A transformation function t : S → ℘(S) maps
strings to a set of strings, representing possible
transformations. At the lowest level, t is defined
in terms of atomic string replacement operations
(replacement of prefixes, suffixes, and infixes). The
framework then uses the notion of higher-order
functions – functions that take other transforma-
tions as arguments and return new transformations
as results – to succinctly define common deriva-
tional processes such as prefixation, suffixation,
and stem change. More complex word-formation
rules, such as those combining prefixation and suf-
fixation, can be obtained straightforwardly by func-
tional composition.

Table 1 summarizes the syntax we use for trans-
formation functions and shows two example deriva-
tional rules. Rule 1 defines an English adjectiviza-
tion rule. It uses the conditional try operator to
apply to nouns with and without the -ion suffix
(action – active, instinct – instinctive). Infix re-
placement is used to model stem alternation, as
shown in rule 2 for German nominalization, e.g.,
vermachtA – VermächtnisN (bequethed – bequest).
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Function Description

sfx (s) concatenate the suffix s
dsfx (s) delete the suffix s
aifx (s1, s2) alternate the infix s1 to s2
try(t) perform transformation t, if possible
opt(t) optionally perform transformation t
uml alternate infixes for an umlaut shift:

uml = aifx ({(a, ä), (o, ö), (u, ü)})
Examples

1 (EN)
(
sfx (ive) ◦ try(dsfx (ion)),N ,A

)

“derive -ive adjectives from nouns poten-
tially ending in -ion”

2 (DE)
(
sfx (nis) ◦ try(uml),A,N

)

“derive -nis nouns from adjectives with
optional umlaut creation”

Table 1: Transformation functions and exemplary
derivational rules in the framework by Šnajder and
Dalbelo Bašić (2010)

N and A denote the paradigms for nouns (without
gender restriction) and adjectives, respectively.

3.3 Induction of Derivational Families

Recall that our goal is to induce derivational fami-
lies, that is, classes of derivationally related words.
We define derivational families on the basis of
derivational rules as follows.

Given a lemma-paradigm pair (l, p) as input,
a single derivational rule d = (t,P1,P2) gen-
erates a set of possible derivations Ld(l, p) =
{(l1, p1), . . . , (ln, pn)}, where p ∈ P1 and pi ∈ P2
for all i. Given a set of derivational rules D, we de-
fine a binary derivation relation→D between two
lemma-paradigm pairs that holds if the second pair
can be derived from the first one as:

(l1, p1)→D (l2, p2) (2)

iff ∃d ∈ D. (l2, p2) ∈ Ld(l1, p1)

Let L denote the set of lemma-paradigm pairs. The
set of derivational families defined by D on L is
given by the equivalence classes of the transitive,
symmetric, and reflexive closure of→D over L.

Note that in addition to the quality of the rules,
the properties ofL plays a central role in the quality
of the induced families. High coverage of L is im-
portant because the transitivity of→D ranges only
over lemmas in L, so low coverage of L may result
in fragmented derivational families. However, L
should also not contain erroneous lemma-paradigm
pairs. The reason is that the derivational rules only
define admissible derivations, which need not be
morphologically valid, and therefore routinely over-

generate; L plays an important role in filtering out
derivations that are not attested in the data.

4 Building the Resource

4.1 Derivational Rules

We implemented the derivational rules from Hoepp-
ner (1980) for verbs, nouns, and adjectives, cov-
ering all processes described in Section 3.1 (zero
derivation, prefixation, suffixation, circumfixation,
and stem changes). We found many derivational
patterns in German to be conceptually simple (e.g.,
verb-noun zero derivation) so that substantial cov-
erage can already be achieved with very simple
transformation functions. However, there are many
more complex patterns (e.g., suffixation combined
with optional stem changes) that in sum also af-
fect a considerable number of lemmas, which re-
quired us to either implement low-coverage rules
or generalize existing rules. In order to preserve
precision as much as possible, we restricted rule
application by using try instead of opt, and by using
gender information from the noun paradigms (for
example, some rules only apply to masculine nouns
and produce female nouns). As a result, we end
up with high-coverage rules, such as derivations
of person-denoting nouns (SchuleN – SchülerN
(school – pupil)) as well as high-accuracy rules
such as negation prefixes (PolN – GegenpolN (pole
– antipole)).

Even though we did not focus on the explana-
tory relevance of rules, we found that the under-
lying modeling formalism, and the methodology
used to develop the model, offer substantial lin-
guistic plausibility in practice. We had to resort to
heuristics mostly for words with derivational trans-
formations that are motivated by Latin or Greek
morphology and do not occur regularly in German,
e.g., selegierenV – SelektionN (select – selection).

In the initial development phase, we imple-
mented 154 rules, which took about 22 person-
hours. We then revised the rules with the aim of
increasing both precision and recall. To this end,
we constructed a development set comprised of a
sample of 1,000 derivational families induced us-
ing our rules. On this set, we inspected the deriva-
tional families for false positives, identified the
problematic rules, and identified unused and redun-
dant rules. In order to identify the false negatives,
we additionally sampled a list of 1,000 lemmas and
used string distance measures (cf. Section 5.1) to re-
trieve the 10 most similar words for each lemma not
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Process N-N N-A N-V A-A A-V V-V

Zero derivation – 1 5 – – –
Prefixation 10 – 5 5 2 9
+ Stem change – – 3 – 1 –
Suffixation 15 35 20 1 14 –
+ Stem change 2 8 7 – 3 1
Circumfixation – – 1 – – –
+ Stem change – – 1 – – –
Stem change – – 7 – – 2
Total 27 44 49 6 20 12

Table 2: Breakdown of derivation rules by category
of the basis and the derived word

already covered by the derivational families. The
refinement process took another 8 person-hours. It
revealed three redundant rules and seven missing
rules, leading us to a total of 158 rules.

Table 2 shows the distribution of rules with re-
spect to the derivational processes they implement
and the part of speech combinations for the ba-
sis and the derived words. All affixations occur
both with and without stem changes, mostly um-
laut shifts. Suffixation is by far the most frequently
used derivation process, and noun-verb derivation
is most diverse in terms of derivational processes.

We also estimated the reliability of derivational
rules by analyzing the accuracy of each rule on
the development set. We assigned each rule a con-
fidence rating on a three-level scale: L3 – very
reliable (high-accuracy rules), L2 – generally reli-
able, and L1 – less reliable (low-accuracy rules).
We manually analyzed the correctness of rule ap-
plications for 100 derivational families of different
size (counting 2 up to 114 lemmas), and assigned
55, 79, and 24 rules to L3, L2 and L1, respectively.

4.2 Data and Preprocessing
For an accurate application of nominal derivation
rules, we need a lemma list with POS and gender
information. We POS-tag and lemmatize SDEWAC,
a large German-language web corpus from which
boilerplate paragraphs, ungrammatical sentences,
and duplicate pages were removed (Faaß et al.,
2010). For POS tagging and lemmatization, we use
TreeTagger (Schmid, 1994) and determine gram-
matical gender with the morphological layer of
the MATE Tools (Bohnet, 2010). We treat proper
nouns like common nouns.

We apply three language-specific filtering steps
based on observations in Section 3.1. First, we dis-
card non-capitalized nominal lemmas. Second, we
deleted verbal lemmas not ending in verb suffixes.

Third, we removed frequently occurring erroneous
comparative forms of adjectives (usually formed
by adding -er, like neuer / newer) by checking for
the presence of lemmas without -er (neu / new).

An additional complication in German concerns
prefix verbs, because prefix is separated in tensed
instances. For example, the 3rd person male singu-
lar of aufhören (to stop) is er hört auf (he stops).
Since most prefixes double as prepositions, the cor-
rect lemmas can only be reconstructed by parsing.
We parse the corpus using the MST parser (Mc-
Donald et al., 2006) and recover prefix verbs by
searching for instances of the dependency relation
labeled PTKVZ.

Since SDEWAC, as a web corpus, still contains
errors, we only take into account lemmas that occur
three times or more in the corpus. Considering the
size of SDEWAC, we consider this as a conservative
filtering step that preserves high recall and provides
a comprehensive basis for evaluation. After prepro-
cessing and filtering, we run the induction of the
derivational families as explained in Section 3 to
obtain the DERIVBASE resource.

4.3 Statistics on DERIVBASE

The preparation of the SDEWAC corpus as ex-
plained in Section 4.2 yields 280,336 lemmas,
which we cover with our resource. We induced
a total of 239,680 derivational families from this
data, with 17,799 non-singletons and 221,881 sin-
gletons (most of them due to compound nouns).
11,039 of the families consist of two lemmas, while
the biggest contains 116 lemmas (an overgenerated
family). The biggest family with perfect precision
(i.e., it contains only morphologically related lem-
mas) contains 40 lemmas, e.g., haltenV , erhaltenV ,
VerhältnisN (to hold, to uphold, relation), etc. For
comparison, CatVar v2.1 contains only 82,676 lem-
mas in 13,368 non-singleton clusters and 38,604
singletons.

The following sample family has seven members
across all three POSes and includes prefixation,
suffixation, and infix umlaut shifts:

taubA (numbA), TaubheitNf (numbnessN ),
betäubenV (to anesthetizeV ), BetäubungNf

(anesthesiaN ), betäubtA (anesthetizedA),
betäubendA (anestheticA), BetäubenNn

(act of anesthetizingN )
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5 Evaluation

5.1 Baselines
We use two baselines against which we compare
the induced derivational families: (1) clusters ob-
tained with the German version of Porter’s stem-
mer (Porter, 1980)3 and (2) clusters obtained us-
ing string distance-based clustering. We have con-
sidered a number of string distance measures and
tested them on the development set (cf. Section
4.1). The measure proposed by Majumder et al.
(2007) turned out to be the most effective in cap-
turing suffixal variation. For words X and Y , it is
defined as

D4(X,Y ) =
n−m+ 1

n+ 1

n∑

i=m

1

2i−m
(3)

where m is the position of left-most character mis-
match, and n + 1 is the length of the longer of
the two strings. To capture prefixal variation and
stem changes, we use the n-gram based measure
proposed by Adamson and Boreham (1974):

Dicen(X,Y ) = 1− 2c

x+ y
(4)

where x and y are the total number of distinct n-
grams inX and Y , respectively, and c is the number
of distinct n-grams shared by both words. In our
experiments, the best performance was achieved
with n = 3.

We used hierarchical agglomerative clustering
with average linkage. To reduce the computational
complexity, we performed a preclustering step by
recursively partitioning the set of lemmas sharing
the same prefix into partitions of manageable size
(1000 lemmas). Initially, we set the number of clus-
ters to be roughly equal to the number of induced
derivational families. For the final evaluation, we
optimized the number of clusters based on F1 score
on calibration and validation sets (cf. Section 5.3).

5.2 Evaluation Methodology
The induction of derivational families could be eval-
uated globally as a clustering problem. Unfortu-
nately, cluster evaluation is a non-trivial task for
which there is no consensus on the best approach
(Amigó et al., 2009). We decided to perform our
evaluation at the level of pairs: we manually judge
for a set of pairs whether they are derivationally
related or not.

3http://snowball.tartarus.org

We obtain the gold standard for this evaluation
by sampling lemmas from the lemma list. With ran-
dom sampling, the evaluation would be unrealistic
because a vast majority of pairs would be deriva-
tionally unrelated and count as true negatives in our
analysis. Moreover, in order to reliably estimate the
overall precision of the obtained derivational fam-
ilies, we need to evaluate on pairs sampled from
these families. On the other hand, in order to assess
recall, we need to sample from pairs that are not
included in our derivational families.

To obtain reliable estimates of both precision
and recall, we decided to draw two different sam-
ples: (1) a sample of lemma pairs sampled from
the induced derivational families, on which we
estimate precision (P-sample) and (2) a sample
of lemma pairs sampled from the set of possibly
derivationally related lemma pairs, on which we
estimate recall (R-sample). In both cases, pairs
(l1, l2) are sampled in two steps: first a lemma l1
is drawn from a non-singleton family, then the sec-
ond lemma l2 is drawn from the derivational family
of l1 (P-sample) or the set of lemmas possibly re-
lated to l1 (R-sample). The set of possibly related
lemmas is a union of the derivational family of l1,
the clusters of l1 obtained with the baseline meth-
ods, and k lemmas most similar to l1 according to
the two string distance measures. We use k = 7
in our experiments. This is based on preliminary
experiments on the development set (cf. Section
4.1), which showed that k = 7 retrieves about 92%
of the related lemmas retrieved for k = 20 with
a much smaller number of true negatives. Thus,
the evaluation on the R-sample might overestimate
the recall, but only slightly so, while the P-sample
yields a reliable estimate of precision by reducing
the number of true negatives in the sample.

Both samples contain 2400 lemma pairs each.
Lemmas included in the development set (Sec-
tion 4.1) were excluded from sampling.

5.3 Gold Standard Annotation

Two German native speakers annotated the pairs
from the P-sample and R-samples. We defined five
categories into which all lemma pairs are classified
as shown in Table 3. We count R and M as positives
and N, C, L as negatives (cf. Section 3).4 Note
that this binary distinction would be sufficient to
compute recall and precision. However, the more

4Ambiguous lemmas are categorized as positive (R or M)
if there is a matching sense.
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Label Description Example

R l1 and l2 are morphologi-
cally and semantically re-
lated

kratzigA – verkratztA
(scratchy – scuffed)

M l1 and l2 are morphologi-
cally but not semantically
related

bombenV – bombigA

(to bomb – smashing)

N no morphological relation belebtA – lobenV

(lively – to praise)
C no derivational relation,

but the pair is composi-
tionally related

FilmendeN – filmenV

(end of film – to film)

L not a valid lemma (mis-
lemmatization, wrong
gender, foreign words)

HaufeN – HäufungN

(N/A – accumulation)

Table 3: Categories for lemma pair classification

Agreement Cohen’s κ

R-sample 0.85 0.79
P-sample 0.86 0.70

Table 4: Inter-annotator agreement on validation
sample

fine-grained five-class annotation scheme provides
a more detailed picture. The separation between R
and M gives a deeper insight into the semantics of
the derivational families. Distinguishing between
C and N, in turn, allows us to identify the pairs that
are derivationally unrelated, but compositionally
related, e.g., EhemannN – EhefrauN (husband –
wife).

We first carried out a calibration phase in which
the annotators double-annotated 200 pairs from
each of the two samples and refined the annotation
guidelines. In a subsequent validation phase, we
computed inter-annotator agreements on the anno-
tations of another 200 pairs each from the P- and
the R-samples. Table 4 shows the proportion of
identical annotations by both annotators as well as
Cohen’s κ score (Cohen, 1968). We achieve sub-
stantial agreement for κ (Carletta, 1996). On the
P-sample, κ is a little lower because the distribu-
tion of the categories is skewed towards R, which
makes an agreement by chance more probable.

In our opinion, the IAA results were sufficiently
high to switch to single annotation for the produc-
tion phase. Here, each annotator annotated another
1000 pairs from the P-sample and R-sample so
that the final test set consists of 2000 pairs from
each sample. The P-sample contains 1663 positive
(R+M) and 337 negative (N+C+L) pairs, respec-
tively, the R-sample contains 575 positive and 1425
negative pairs. As expected, there are more positive

Precision Recall

Method P-sample R-sample

DERIVBASE (initial) 0.83 0.58

DERIVBASE-L123 0.83 0.71
DERIVBASE-L23 0.88 0.61
DERIVBASE-L3 0.93 0.35

R-sample

Stemming 0.66 0.07
String distance D4 0.36 0.20
String distance Dice3 0.23 0.23

Table 5: Precision and recall on test samples

pairs in the P-sample and more negative pairs in
the R-sample.

6 Results

6.1 Quantitative Evaluation

Table 5 presents the overall results. We eval-
uate four variants of the induced derivational
families: those obtained before rule refinement
(DERIVBASE initial), and three variants after rule
refinement: using all rules (DERIVBASE-L123),
excluding the least reliable rules (DERIVBASE-
L23), and using only highly reliable rules
(DERIVBASE-L3).

We measure the precision of our method on the
P-sample and recall on the R-sample. For the base-
lines, precision was also computed on the R-sample
(computing it on P-sample, which is obtained from
the induced derivational families, would severely
underestimate the number of false positives). We
omit the F1 score because its use for precision and
recall estimates from different samples is unclear.

DERIVBASE reaches 83% precision when us-
ing all rules and 93% precision when using only
highly reliable rules. DERIVBASE-L123 achieves
the highest recall, outperforming other methods
and variants by a large margin. Refinement of the
initial model has produced a significant improve-
ment in recall without losses in precision. The base-
lines perform worse than our method: the stemmer
we use is rather conservative, which fragments the
families and leads to a very low recall. The string
distance-based approaches achieve more balanced
precision and recall scores. Note that for these
methods, precision and recall can be traded off
against each other by varying the number of clus-
ters; we chose the number of clusters by optimizing
the F1 score on the calibration and validaton sets.

All subsequent analyses refer to DERIVBASE-
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Accuracy

Coverage High Low Total

High 18 – 18
Low 53 21 74
Total 71 21 92

Table 6: Proportions of accuracy and coverage for
direct derivations (measured on P-sample)

P R P R

N-N 0.78 0.68 N-A 0.89 0.83
A-A 0.87 0.70 N-V 0.79 0.68
V-V 0.55 0.24 A-V 0.88 0.73

Table 7: Precision and recall across different part
of speech (first POS: basis; second POS: derived
word)

L123, which is the model with the highest recall.
If optimal precision is required, DERIVBASE-L3
should however be preferred.

Analysis by frequency. We cross-classified our
rules according to high/low accuracy and high/low
coverage based on the pairs in the P-sample.
We only considered directly derivationally related
(→D) pairs and defined “high accuracy” and “high
coverage” as all rules above the 25th percentile in
terms of accuracy and coverage, respectively. The
results are shown in Table 6: all high-coverage
rules are also highly accurate. Most rules are ac-
curate but infrequent. Only 21 rules have a low
accuracy, but all of them apply infrequently.

Analysis by parts of speech. Table 7 shows pre-
cision and recall values for different part of speech
combinations for the basis and derived words. High
precision and recall are achieved for N-A deriva-
tions. The recall is lowest for V-V derivations,
suggesting that the derivational phenomena for this
POS combination are not yet covered satisfactorily.

6.2 Error analysis
Table 8 shows the frequencies of true positives and
false positives on the P-sample and false negatives
on the R-sample for each annotated category. True
negatives are not reported, since their analysis gives
no deeper insight.

True positives. In our analysis we treated both R
and M pairs as related, but it is interesting to see
how many of the true positives are in fact semanti-
cally unrelated. Out of 1,663 pairs, 90% are seman-
tically as well as morphologically related (R), e.g.,

TPs FPs FNs

Label P-sample P-sample R-sample

R 1,492 – 107
M 171 – 60
N – 216 –
C – 7 –
L – 114 –

Total 1,663 337 167

Table 8: Predictions over annotated categories

alkoholisierenV – antialkoholischA (to alcoholize
– nonalcoholic), BeschuldigungN – unschuldigA
(accusation – innocent). Most R pairs result from
high-accuracy rules, i.e., zero derivation, negation
prefixation and simple suffixation. The remaining
10% are only morphologically related (M), e.g.,
beschwingtA – schwingenV (cheerful – to swing),
StolzierenN – stolzA (strut – proud). In both pairs,
the two lemmas share a common semantic concept
– i.e., being in motion or being proud – but nowa-
day’s meanings have grown apart from each other.
Among the M true positives, we observe prefixa-
tion derivations in 66% of the cases, often involv-
ing prefixation at both lemmas, e.g., ErdenklicheN
– bedenklichA (imaginable – questionable).

False positives. We observe many errors in pairs
involving short lemmas, e.g., GenN – genierenV
(gene – to be embarrassed), where orthographic
context is unsufficient to reject the derivation.
About 64% of the 337 incorrect pairs are of class
N (unrelated lemmas). For example, the rule for
deriving nouns denoting a male person incorrectly
links MorseN – MörserN (Morse – mortar). Tran-
sitively applied rules often produce incorrect pairs;
e.g., SpeicheN – speicherbarA (spoke – storable)
results from the rule chain SpeicheN → SpeicherN
→ speichernV → speicherbarA (spoke→ storage
→ to store→ storable). Chains that involve ablaut
shifts (cf. Section 3.1) can lead to surprising re-
sults, e.g., ErringungN – rangiertA (achievement –
shunted). Meanwhile, some pairs judged as un-
related by the annotators might conceivably be
weakly related, such as schlürfenV and schlurfenV
(to sip – to shuffle), both of which refer to specific
long drawn out sounds. About 20% out of these un-
related lemma pairs is due to derivations between
proper nouns (PNs) and common nouns. This hap-
pens especially for short PNs (cf. the above exam-
ple of Morse). However, since PNs also participate
in valid derivations (e.g., Chaplin – chaplinesque),
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one could investigate their impact on derivations
rather than omitting them.

Errors of the category L – 34% of the false posi-
tives – are caused during preprocessing by the lem-
matizer. They cannot be blamed on our derivational
model, but of course form part of the output.

False negatives. Errors of this type are due to
missing derivation rules, erroneous rules that leave
some lemmas undiscovered, or the absence of lem-
mas in the corpus required for transitive closure.
About 64% of the 167 missed pairs are of category
R. About half of these pairs result from a lack of
prefixation rules – mainly affecting verbs – with a
wide variety of prefixes (zu-, um-, etc.), including
prepositional prefixes like herum- (around) or über-
(over). We intentionally ignored these derivations,
since they frequently lead to semantically unrelated
pairs. In fact, merely five of the remaining 36%
false negative pairs (M) do not involve prefixation.
However, this analysis as well as the rather low cov-
erage for verb-involved rules (cf. Table 7) shows
that DERIVBASE might benefit from more prefix
rules. Apart from the lack of prefixation coverage
and a few other, rather infrequent rules, we did not
find any substantial deficits. Most of the remaining
errors are due to German idiosyncrasies and excep-
tional derivations, e.g., fahrenV – FahrtN (drive –
trip), where the regular zero derivation would result
in Fahr.

7 Conclusion and Future Work

In this paper, we present DERIVBASE, a deriva-
tional resource for German based on a rule-based
framework. A few work days were enough to build
the underlying rules with the aid of grammar text-
books. We collected derivational families for over
280,000 lemmas with high accuracy as well as solid
coverage. The resource is freely available.5

Our approach for compiling a derivational re-
source is not restricted to German. In addition
to the typologically most similar Germanic and
Romance languages, it is also applicable to agglu-
tinative languages like Finnish, or other fusional
languages like Russian. Its main requirements are
a large list of lemmas for the language (optionally
with further morphological features) and linguistic
literature on morphological patterns.

We have employed an evaluation method that
uses two separate samples to assess precision and

5http://goo.gl/7KG2U; license cc-by-sa 3.0

recall to deal with the high number of false neg-
atives. Our analyses indicate two interesting di-
rections for future work: (a) specific handling of
proper nouns, which partake in specific derivations;
and (b) the use of graph clustering instead of the
transitive closure to avoid errors resulting from
long transitive chains.

Finally, we plan to employ distributional seman-
tics methods (Turney and Pantel, 2010) to help re-
move semantically unrelated pairs as well as distin-
guish automatically between only morphologically
(M) or both morphologically and semantically (R)
related pairs. Last, but not least, this allows us to
group derivation rules according to their semantic
properties. For example, nouns with -er suffixes
often denote persons and are agentivizations of a
basis word (Bilgin et al., 2004).
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Abstract

We report on the construction of the Webis
text reuse corpus 2012 for advanced re-
search on text reuse. The corpus compiles
manually written documents obtained from
a completely controlled, yet representative
environment that emulates the web. Each
of the 297 documents in the corpus is about
one of the 150 topics used at the TREC
Web Tracks 2009–2011, thus forming a
strong connection with existing evaluation
efforts. Writers, hired at the crowdsourc-
ing platform oDesk, had to retrieve sources
for a given topic and to reuse text from
what they found. Part of the corpus are
detailed interaction logs that consistently
cover the search for sources as well as the
creation of documents. This will allow for
in-depth analyses of how text is composed
if a writer is at liberty to reuse texts from a
third party—a setting which has not been
studied so far. In addition, the corpus pro-
vides an original resource for the evalua-
tion of text reuse and plagiarism detectors,
where currently only less realistic resources
are employed.

1 Introduction

The web has become one of the most common
sources for text reuse. When reusing text from
the web, humans may follow a three step ap-
proach shown in Figure 1: searching for appro-
priate sources on a given topic, copying of text
from selected sources, modification and paraphras-
ing of the copied text. A considerable body of
research deals with the detection of text reuse, and,
in particular, with the detection of cases of plagia-
rism (i.e., the reuse of text with the intent of disguis-
ing the fact that text has been reused). Similarly,
a large number of commercial software systems is

being developed whose purpose is the detection of
plagiarism. Both the developers of these systems as
well as researchers working on the subject matter
frequently claim their approaches to be searching
the entire web or, at least, to be scalable to web
size. However, there is hardly any evidence to
substantiate this claim—rather the opposite can be
observed: commercial plagiarism detectors have
not been found to reliably identify plagiarism from
the web (Köhler and Weber-Wulff, 2010), and the
evaluation of research prototypes even under lab-
oratory conditions shows that there is still a long
way to go (Potthast et al., 2010b). We explain the
disappointing state of the art by the lack of realistic,
large-scale evaluation resources.

With our work, we want to contribute to closing
the gap. In this regard the paper in hand introduces
the Webis text reuse corpus 2012 (Webis-TRC-12),
which, for the first time, emulates the entire process
of reusing text from the web, both at scale and in
a controlled environment. The corpus comprises a
number of features that set it apart from previous
ones: (1) the topic of each document in the corpus
is derived from a topic of the TREC Web Track,
and the sources to copy from have been retrieved
manually from the ClueWeb corpus. (2) The search
for sources is logged, including click-through and
browsing data. (3) A fine-grained edit history has
been recorded for each document. (4) A total of
297 documents were written with an average length
of about 5700 words, whereas diversity is ensured
via crowdsourcing. Altogether, this corpus forms
the current most realistic sample of writers reusing
text. The corpus is publicly available.1

1.1 Related Work
As organizers of the annual PAN plagiarism de-
tection competitions,2 we have introduced the first
standardized evaluation framework for that pur-

1http://www.webis.de/research/corpora
2http://pan.webis.de
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Search I‘m Feeling Lucky

Search Copy & Paste Modification

Figure 1: The basic steps of reusing text from the web (Potthast, 2011).

pose (Potthast et al., 2010b). Among others, it com-
prises a series of corpora that consist of automat-
ically generated cases of plagiarism, provided in
the form of the PAN plagiarism corpora 2009-2011.
The corpora have been used to evaluate dozens of
plagiarism detection approaches within the respec-
tive competitions in these years;3 but even though
they have been adopted by the community, a num-
ber of shortcomings render them less realistic:

1. All plagiarism cases were generated by ran-
domly selecting text passages from documents
and inserting them at random positions in a
host document. This way, the reused passages
do not match the topic of the host document.

2. The majority of the reused passages were mod-
ified in order to obfuscate the reuse. However,
the applied modification strategies, again, are
basically random: shuffling, replacing, insert-
ing, or deleting words randomly. An effort
was made to avoid non-readable text, yet none
of it bears any semantics.

3. The corpus documents are parts of books from
the Project Gutenberg. Many of these books
are pretty old, whereas today the web is the
predominant source for text reuse.

To overcome the second issue, about 4 000 pas-
sages were rewritten manually via crowdsourcing
on Amazon’s Mechanical Turk for the 2011 cor-
pus. But, because of the first issue (random passage
insertion), a topic drift analysis can spot a reused
passage more easily than a search within the doc-
ument set containing the original source (Potthast
et al., 2011). From these observations it becomes
clear that there are limits for the automatic con-
struction of such kinds of corpora. The Webis text
reuse corpus 2012 addresses all of the mentioned
issues since it has been constructed manually.

3See (Potthast et al., 2009; Potthast et al., 2010a; Potthast
et al., 2011) for overviews of approaches and evaluation results
of each competition.

Besides the PAN corpora, there are two other
corpora that comprise “genuinely reused” text: the
Clough09 corpus, and the Meter corpus. The for-
mer corpus consists of 57 answers to one of five
computer science questions that were reused from
a respective Wikipedia article (Clough and Steven-
son, 2011). While the text was genuinely written by
a number of volunteer students, the choice of topics
is narrow, and text lengths range from 200 to 300
words, which is hardly more than 2-3 paragraphs.
Also, the sources from which text was reused were
given up front, so that there is no data about their
retrieval. The Meter corpus annotates 445 cases
of text reuse among 1 716 news articles (Clough et
al., 2002). The cases of text reuse in this corpus
are realistic for the news domain; however, they
have not been created by the reuse process outlined
in Figure 1. Note that in the news domain, text is
often reused directly from a news wire without the
need for retrieval. Our new corpus complements
these two resources.

2 Corpus Construction

Two data sets form the basis for constructing our
corpus, namely (1) a set of topics to write about
and (2) a set of web pages to research about a given
topic. With regard to the former, we resort to topics
used at TREC, specifically to those used at the Web
Tracks 2009–2011. With regard to the latter, we em-
ploy the ClueWeb corpus from 20094 (and not the
“web in the wild”). The ClueWeb comprises more
than one billion documents from ten languages and
can be considered as a representative cross-section
of the real web. It is a widely accepted resource
among researchers and became one of the primary
resources to evaluate the retrieval performance of
search engines within several TREC tracks. Our
corpus’s strong connection to TREC will allow for
unforeseen synergies. Based on these decisions our

4http://lemurproject.org/clueweb09
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corpus construction steps can be summarized as
follows:

1. Rephrasing of the 150 topics used at the
TREC Web Tracks 2009–2011 so that they
explicitly invite people to write an essay.

2. Indexing of the ClueWeb corpus category A
(the entire English portion with about 0.5 bil-
lion documents) using the BM25F retrieval
model plus additional features.

3. Development of a search interface that allows
for answering queries within milliseconds and
that is designed along the lines of commercial
search interfaces.

4. Development of a browsing API for the
ClueWeb, which serves ClueWeb pages on
demand and which rewrites links of delivered
pages, now pointing to their corresponding
ClueWeb pages on our servers (instead of to
the originally crawled URL).

5. Recruiting 27 writers, 17 of whom with a
professional writing background, hired at the
crowdsourcing platform oDesk from a wide
range of hourly rates for diversity.

6. Instructing the writers to write one essay at
a time of at least 5000 words length (cor-
responding to an average student’s home-
work assignment) about an open topic of
their choice, using our search engine—hence
browsing only ClueWeb pages.

7. Logging all writers’ interactions with the
search engine and the ClueWeb on a per-essay
basis at our site.

8. Logging all writers’ edits to their essays in a
fine-grained edit log: a snapshot was taken
whenever a writer stopped writing for more
than 300ms.

9. Double-checking all of the essays for quality.

After having deployed the search engine and
completed various usability tests, the actual corpus
construction took nine months, from April 2012
through December 2012.

Obviously, the outlined experimental setup can
serve different lines of research and is publicly
available as well. The remainder of the section
presents elements of our setup in greater detail.

2.1 Topic Preparation
Since the topics used at the TREC Web Tracks were
not amenable for our purpose as is, we rephrased
them so that they ask for writing an essay instead of
searching for facts. Consider for example topic 001
of the TREC Web Track 2009:

Query. obama family tree

Description. Find information on Pres-
ident Barack Obama’s family history,
including genealogy, national origins,
places and dates of birth, etc.

Sub-topic 1. Find the TIME magazine
photo essay “Barack Obama’s Family
Tree.”

Sub-topic 2. Where did Barack Obama’s
parents and grandparents come from?

Sub-topic 3. Find biographical informa-
tion on Barack Obama’s mother.

This topic is rephrased as follows:

Obama’s family. Write about President
Barack Obama’s family history, includ-
ing genealogy, national origins, places
and dates of birth, etc. Where did Barack
Obama’s parents and grandparents come
from? Also include a brief biography of
Obama’s mother.

In the example, Sub-topic 1 is considered too
specific for our purposes while the other sub-topics
are retained. TREC Web Track topics divide into
faceted and ambiguous topics. While topics of
the first kind can be directly rephrased into essay
topics, from topics of the second kind one of the
available interpretations was chosen.

2.2 A Controlled Web Search Environment
To give the oDesk writers a familiar search experi-
ence while maintaining reproducibility at the same
time, we developed a tailored search engine called
ChatNoir (Potthast et al., 2012b).5 Besides ours,
the only other public search engine for the ClueWeb
is Carnegie Mellon’s Indri,6 which, unfortunately,
is far from our efficiency requirements. Moreover,
its search interface does not follow the standard in
terms of result page design, and it does not give
access to interaction logs. Our search engine is
on the order of milliseconds in terms of retrieval

5http://chatnoir.webis.de
6http://lemurproject.org/clueweb09.php/index.php#Services
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time, its interface follows industry standards, and
it features an API that allows for user tracking.

ChatNoir is based on the BM25F retrieval
model (Robertson et al., 2004), uses the anchor
text list provided by (Hiemstra and Hauff, 2010),
the PageRanks provided by the Carnegie Mellon
University alongside the ClueWeb corpus, and the
Spam rank list provided by (Cormack et al., 2011).
ChatNoir comes with a proximity feature with
variable-width buckets as described by (Elsayed
et al., 2011). Our choice of retrieval model and
ranking features is intended to provide a reasonable
baseline performance. However, it is neither near
as mature as those of commercial search engines
nor does it compete with the best-performing mod-
els from TREC. Yet, it is among the most widely
accepted models in information retrieval, which
underlines our goal of reproducibility.

In addition to its retrieval model, ChatNoir im-
plements two search facets: text readability scoring
and long text search. The first facet, similar to that
provided by Google, scores the readability of a text
found on a web page via the well-known Flesch-
Kincaid grade level formula (Kincaid et al., 1975):
it estimates the number of years of education re-
quired in order to understand a given text. This
number is mapped onto the three categories “Sim-
ple” (up to 5 years), “Intermediate” (between 5 and
9 years) and “Expert” (at least 9 years). The “Long
Text” search facet omits search results which do
not contain at least one continuous paragraph of
text that exceeds 300 words. The two facets can be
combined with each other.

When clicking on a search result, ChatNoir does
not link into the real web but redirects into the
ClueWeb. Though the ClueWeb provides the orig-
inal URLs from which the web pages have been
obtained, many of these pages have gone or been
updated since. We hence set up an API that serves
web pages from the ClueWeb on demand: when
accessing a web page, it is pre-processed before
being shipped, removing automatic referrers and
replacing all links to the real web with links to
their counterpart inside the ClueWeb. This way,
the ClueWeb can be browsed as if surfing the real
web, whereas it becomes possible to track a user.
The ClueWeb is stored in the HDFS of our 40 node
Hadoop cluster, and web pages are fetched directly
from there with latencies of about 200ms. Chat-
Noir’s inverted index has been optimized to guaran-
tee fast response times, and it is deployed alongside
Hadoop on the same cluster.

Table 1: Demographics of the 12 Batch 2 writers.
Writer Demographics

Age Gender Native language(s)
Minimum 24 Female 67% English 67%
Median 37 Male 33% Filipino 25%
Maximum 65 Hindi 17%

Academic degree Country of origin Second language(s)
Postgraduate 41% UK 25% English 33%
Undergraduate 25% Philippines 25% French 17%
None 17% USA 17% Afrikaans, Dutch,
n/a 17% India 17% German, Spanish,

Australia 8% Swedish each 8%
South Africa 8% None 8%

Years of writing Search engines used Search frequency
Minimum 2 Google 92% Daily 83%
Median 8 Bing 33% Weekly 8%
Standard dev. 6 Yahoo 25% n/a 8%
Maximum 20 Others 8%

2.3 Two Batches of Writing
In order to not rely only on the retrieval model
implemented in our controlled web search envi-
ronment, we divided the task into two batches, so
that two essays had to be written for each of the
150 topics, namely one in each batch. In Batch 1,
our writers did not search for sources themselves,
but they were provided up front with an average
of 20 search results to choose from for each topic.
These results were obtained from the TREC Web
Track relevance judgments (so-called “qrels”): only
documents that were found to be relevant or key
documents for a given topic by manual inspection
of the NIST assessors were provided to our writ-
ers. These documents result from the combined
wisdom of all retrieval models of the TREC Web
Tracks 2009–2011, and hence can be considered
as optimum retrieval results produced by the state
of the art in search engine technology. In Batch 2,
in order to obtain realistic search interaction logs,
our writers were instructed to search for source
documents using ChatNoir.

2.4 Crowdsourcing Writers
Our ideal writer has experience in writing, is ca-
pable of writing about a diversity of topics, can
complete a text in a timely manner, possesses de-
cent English writing skills, and is well-versed in
using the aforementioned technologies. After boot-
strapping our setup with 10 volunteers recruited at
our university, it became clear that, because of the
workload involved, accomplishing our goals would
not be possible with volunteers only. Therefore, we
resorted to hiring (semi-)professional writers and
made use of the crowdsourcing platform oDesk.7

Crowdsourcing has quickly become one of the
7http://www.odesk.com
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Table 2: Key figures of the Webis text reuse corpus 2012.
Corpus Distribution Total
characteristic min avg max stdev
Writers (Batch 1+2) 27
Essays (Topics) (Two essays per topic) 297 (150)
Essays / Writer 1 2 66 15.9
Queries (Batch 2) 13 655
Queries / Essay 4 91.0 616 83.1
Clicks (Batch 2) 16 739
Clicks / Essay 12 111.6 443 80.3
Clicks / Query 1 2.3 76 3.3
Irrelevant (Batch 2) 5 962
Irrelevant / Essay 1 39.8 182 28.7
Irrelevant / Query 0 0.5 60 1.4
Relevant (Batch 2) 251
Relevant / Essay 0 1.7 7 1.5
Relevant / Query 0 0.0 4 0.2
Key (Batch 2) 1 937
Key / Essay 1 12.9 46 7.5
Key / Query 0 0.2 22 0.7

Corpus Distribution Total
characteristic min avg max stdev

Search Sessions (Batch 2) 931
Sessions / Essay 1 12.3 149 18.9
Days (Batch 2) 201
Days / Essay 1 4.9 17 2.7
Hours (Batch 2) 2 068
Hours / Writer 3 129.3 679 167.3
Hours / Essay 3 7.5 10 2.5

Edits (Batch 1+2) 633 334
Edits / Essay 45 2 132.4 6 975 1 444.9
Edits / Day 5 2 959.5 8 653 1 762.5

Words (Batch 1+2) 1 704 354
Words / Essay 260 5 738.8 15 851 1 604.3
Words / Writer 2 078 63 124.2 373 975 89 246.7

Sources (Batch 1+2) 4 582
Sources / Essay 0 15.4 69 10.0
Sources / Writer 5 169.7 1 065 269.6

cornerstones for constructing evaluation corpora,
which is especially true for paid crowdsourcing.
Compared to Amazon’s Mechanical Turk (Barr
and Cabrera, 2006), which is used more frequently
than oDesk, there are virtually no workers at oDesk
submitting fake results because of its advanced rat-
ing features for workers and employers. Moreover,
oDesk tracks their workers by randomly taking
screenshots, which are provided to employers in or-
der to check whether the hours logged correspond
to work-related activity. This allowed us to check
whether our writers used our environment instead
of other search engines and editors.

During Batch 2, we have conducted a survey
among the twelve writers who worked for us at
that time. Table 1 gives an overview of the demo-
graphics of these writers, based on a questionnaire
and their resumes at oDesk. Most of them come
from an English-speaking country, and almost all
of them speak more than one language, which sug-
gests a reasonably good education. Two thirds of
the writers are female, and all of them have years
of writing experience. Hourly wages were negoti-
ated individually and range from 3 to 34 US dollars
(dependent on skill and country of residence), with
an average of about 12 US dollars. For ethical rea-
sons, we payed at least the minimum wage of the
respective countries involved. In total, we spent
20 468 US dollars to pay the writers—an amount
that may be considered large compared to other
scientific crowdsourcing efforts from the literature,
but small in terms of the potential of crowdsourcing
to make a difference in empirical science.

3 Corpus Analysis

This section presents selected results of a prelim-
inary corpus analysis. We overview the data and
shed some light onto the search and writing behav-
ior of writers.

3.1 Corpus Statistics
Table 2 shows key figures of the collected inter-
action logs, including the absolute numbers of
queries, relevance judgments, working times, num-
ber of edits, words, and retrieved sources, as well
as their relation to essays, writers, and work time,
where applicable. On average, each writer wrote
2 essays while the standard deviation is 15.9, since
one very prolific writer managed to write 66 essays.

From a total of 13 655 queries submitted by the
writers within Batch 2, each essay got an aver-
age of 91 queries. The average number of results
clicked per query is 2.3. For comparison, we com-
puted the average number of clicks per query in
the AOL query log (Pass et al., 2006), which is 2.0.
In this regard, the behavior of our writers on indi-
vidual queries does not differ much from that of
the average AOL user in 2006. Most of the clicks
that we recorded are search result clicks, whereas
2 457 of them are browsing clicks on web page
links. Among the browsing clicks, 11.3% are clicks
on links that point to the same web page (i.e., an-
chor links using the hash part of a URL). The
longest click trail contains 51 unique web pages,
but most trails are very short. This is a surprising
result, since we expected a larger proportion of
browsing clicks, but it also shows that our writers
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relied heavily on the ChatNoir’s ranking. Regard-
ing search facets, we observed that our writers used
them only for about 7% of their queries. In these
cases, the writers used either the “Long Text” facet,
which retrieves web pages containing at least one
continuous passage of at least 300 words, or set the
desired reading level to “Expert.”

The query log of each writer in Batch 2 divides
into 931 search sessions with an average of 12.3 ses-
sions per topic. Here, a session is defined as a se-
quence of queries recorded for a given topic which
is not divided by a break longer than 30 minutes.
Despite other claims in the literature (Jones and
Klinkner, 2008; Hagen et al., 2013) we argue that,
in our case, sessions can be reliably identified by
timeouts because we have a priori knowledge about
which query belongs to which essay. Typically,
completing an essay took 4.9 days, which includes
to a long-lasting exploration of the topic at hand.

The 297 essays submitted within the two batches
were written with a total of 633 334 edits. Each
topic was edited 2 132 times on average, whereas
the standard deviation gives an idea about how
diverse the modifications of the reused text were.
Writers were not specifically instructed to modify a
text as much as possible—rather they were encour-
aged to paraphrase in order to foreclose the detec-
tion by an automatic text reuse detector. This way,
our corpus captures each writer’s idea of the nec-
essary modification effort to accomplish this goal.
The average lengths of the essays is 5 739 words,
but there are also some short essays if hardly any
useful information could be found on the respective
topics. About 15 sources have been reused in each
essay, whereas some writers reused text from as
many as 69 unique documents.

3.2 Relevance Judgments
In the essays from Batch 2, writers reused texts
from web pages they found during their search.
This forms an interesting relevance signal which
allows us to separate web pages relevant to a given
topic from those which are irrelevant. Following
the terminology of TREC, we consider web pages
from which text is reused as key documents for
the respective essay’s topic, while web pages that
are on a click trail leading to a key document are
termed relevant. The unusually high number of
key documents compared to relevant documents
is explained by the fact that there are only few
click trails of this kind, whereas most web pages

Table 3: Confusion matrix of TREC judgments
versus writer judgments.

TREC Writer judgment
judgment irrelevant relevant key unjudged

spam (-2) 3 0 1 2 446
spam (-1) 64 4 18 16 657

irrelevant (0) 219 13 73 33 567
relevant (1) 114 8 91 10 676
relevant (2) 44 5 56 3 711

key (3) 12 0 8 526
unjudged 5 506 221 1 690 –

have been retrieved directly. The remainder of web
pages that were viewed but discarded by our writers
are considered as irrelevant.

Each year, the NIST assessors employed for the
TREC conference manually review hundreds of
web pages that have been retrieved by experimental
retrieval systems that are submitted to the various
TREC tracks. This was also the case for the TREC
Web Tracks from which the topics of our corpus
are derived. We have compared the relevance judg-
ments provided by TREC for these tracks with the
implicit judgments from our writers. Table 3 con-
trasts the two judgment scales in the form of a con-
fusion matrix. TREC uses a six-point Likert scale
ranging from -2 (extreme Spam) to 3 (key docu-
ment). For 733 of the documents visited by our
writers, TREC relevance judgments can be found.
From these, 456 documents (62%) have been con-
sidered irrelevant for the purposes of reuse by our
writers, however, the TREC assessor disagree with
this judgment in 170 cases. Regarding the docu-
ments considered as key documents for reuse by
our writers, the TREC assessors disagree on 92 of
the 247 documents. An explanation for the dis-
agreement can be found in the differences between
the TREC ad hoc search task and our text reuse
task: the information nuggets (small chunks of
text) that satisfy specific factual information needs
from the original TREC topics are not the same as
the information “ingots” (big chunks of text) that
satisfy our writers’ needs.

3.3 Research Behavior
To analyze the writers’ search behavior during es-
say writing in Batch 2, we have recorded detailed
search logs of their queries while they used our
search engine. Figure 2 shows for each of the
150 essays of this batch a curve of the percentage
of queries at times between a writer’s first query
and an essay’s completion. We have normalized
the time axis and excluded working breaks of more
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Figure 2: Spectrum of writer search behavior. Each grid cell corresponds to one of the 150 essays of
Batch 2 and shows a curve of the percentage of submitted queries (y-axis) at times between the first query
until the essay was finished (x-axis). The numbers denote the amount of queries submitted. The cells are
sorted by area under the curve, from the smallest area in cell A1 to the largest area in cell F25.

than five minutes. The curves are organized so as
to highlight the spectrum of different search behav-
iors we have observed: in row A, 70-90% of the
queries are submitted toward the end of the writ-
ing task, whereas in row F almost all queries are
submitted at the beginning. In between, however,
sets of queries are often submitted in the form of
“bursts,” followed by extended periods of writing,
which can be inferred from the steps in the curves
(e.g., cell C12). Only in some cases (e.g., cell C10)
a linear increase of queries over time can be ob-
served for a non-trivial amount of queries, which
indicates continuous switching between searching
and writing. From these observations, it can be
inferred that our writers sometimes conducted a
“first fit” search and reused the first texts they found
easily. However, as the essay progressed and the
low hanging fruit in terms of search were used up,
they had to search more intensively in order to com-
plete their essay. More generally, this data gives
an idea of how humans perform exploratory search
in order to learn about a given topic. Our current
research on this aspect focuses on the prediction
of search mission types, since we observe that the
search mission type does not simply depend on the
writer or the perceived topic difficulty.

3.4 Visualizing Edit Histories
To analyze the writers’ writing style, that is to
say, how writers reuse texts and how the essay
is completed in both batches, we have recorded
the edit logs of their essays. Whenever a writer
stopped writing for more than 300ms, a new edit
was stored in a version control system at our site.
The edit logs document the entire text evolution,
from first the keystroke until an essay was com-
pleted. We have used the so-called history flow
visualization to analyze the writing process (Vié-

gas et al., 2004). Figure 3 shows four examples
from the set of 297 essays. Based on these visu-
alizations, a number of observations can be made.
In general, we identify two distinct writing-style
types to perform text reuse, namely to build up an
essay during writing, or, to first gather material and
then to boil down a text until the essay is completed.
Later in this section, we will analyze this observa-
tion in greater detail. Within the plots, a number
of events can be spotted that occurred during writ-
ing: in the top left plot, encircled as area A, the
insertion of a new piece of text can be observed.
Though marked as original text at first, the writer
worked on this passage and then revealed that it
was reused from another source. At area B in the
top right plot, one can observe the reorganization of
two passages as they exchange places from one edit
to another. Area C in the bottom right plot shows
that the writer, shortly before completing this essay,
reorganized substantial parts. Area D in the same
plot shows how the writer went about boiling down
the text by incorporating contents from different
passages that have been collected beforehand and,
then, from one edit to another, discarded most of
the rest. The saw-tooth shaped pattern in area E
in the bottom left plot reveals that, even though
the writer of this essay adopts a build-up style, she
still pastes passages from her sources into the text
one at a time, and then individually boils down
each. Our visualizations also include information
about the text positions where writers have been
working at a given point in time; these positions
are shown as blue dots in the plots. In this regard
distinct writing patterns are discernible of writers
who go through a text linearly versus those who do
not. Future work will include an analysis of these
writing patterns.
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Figure 3: Types of text reuse: build-up reuse (left) versus boil-down reuse (right). Each plot shows the text
length at text edit between first keystroke and essay completion; edits have been recorded during writing
whenever a writer stopped for more than 300ms. Colors encode different source documents. Original text
is white; blue dots indicate the text position of the writer’s last edit.

3.5 Build-up Reuse versus Boil-down Reuse
Based on the edit history visualizations, we have
manually classified the 297 essays of both batches
into two categories, corresponding to the two styles
build-up reuse and boil-down reuse. We found
that 40% are instances of build-up reuse, 45% are
instances of boil-down reuse, and 13% fall in be-
tween, excluding 2% of the essays as outliers due
to errors or for being too short. The in-between
cases show that a writer actually started one way
and then switched to the respective other style of
reuse so that the resulting essays could not be at-
tributed to a single category. An important question
that arises out of this observation is whether differ-
ent writers habitually exert different reuse styles
or whether they apply them at random. To obtain
a better overview, we envision the applied reuse
style of an essay by the skyline curve of its edit
history visualization (i.e., by the curve that plots
the length of an essay after each edit). Aggregating
these curves on a per-writer basis reveals distinct

Table 4: Contingency table: writers over reuse style.

Reuse Writer ID
Style A02A05A06A07A10A17A18A19A20A21A24
build-up 4 27 11 4 9 13 12 4 9 18 2
boil-down 52 5 0 14 2 13 11 3 0 0 24
mixed 10 3 0 1 1 7 6 0 0 3 1

patterns. For eight of our writers Figure 4 shows
this characteristic. The plots are ordered by the
shape of the averaged curve, starting from a linear
increase (left) to a compound of steep increase to
a certain length after which the curve levels out
(right). The former shape corresponds to writers
who typically apply build-up reuse, while the lat-
ter can be attributed to writers who typically apply
boil-down reuse.

When comparing the plots we notice a very in-
teresting effect: it appears that writers who conduct
boil-down reuse vary more wildly in their behavior.
The reuse style of some writers, however, falls in
between the two extremes. Besides the visual anal-
ysis, Table 4 shows the distribution of reuse styles
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Figure 4: Text reuse styles ranging from build-up reuse (left) to boil-down reuse (right). A gray curve
shows the normalized length of an essay over the edits that went into it during writing. Curves are grouped
by writers. The black curve marks the average of all other curves in a plot.

for the eleven writers who contributed at least five
essays. Most writers use one style for about 80%
of their essays, whereas two writers (A17, A18) are
exactly on par between the two styles. Based on
Pearson’s chi-squared test, one can safely reject the
null hypothesis that writers and text reuse styles
are independent: χ2 = 139.0 with p = 7.8 · 10−20.
Since our sample of authors and essays is sparse,
Pearson’s chi-squared test may not be perfectly
suited which is why we have also applied Fisher’s
exact test, which computes probability p = 0.0005
that the null hypothesis is true.

4 Summary and Outlook

This paper details the construction of the Webis text
reuse corpus 2012 (Webis-TRC-12), a new corpus
for text reuse research that has been created en-
tirely manually on a large scale. We have recorded
consistent interaction logs of human writers with a
search engine as well as with the used text proces-
sor; these logs serve the purpose of studying how
texts from the web are being reused for essay writ-
ing. Our setup is entirely reproducible: we have
built a static web search environment consisting of
a search engine along with a means to browse a
large corpus of web pages as if it were the “real”
web. Yet, in terms of scale, this environment is rep-
resentative of the real web. Besides our corpus also
this infrastructure is available to other researchers.

The corpus itself goes beyond existing resources in
that it allows for a much more fine-grained analysis
of text reuse, and in that it significantly improves
the realism of the data underlying evaluations of
automatic tools to detect text reuse and plagiarism.

Our analysis gives an overview of selected as-
pects of the new corpus. This includes corpus
statistics about important variables, but also ex-
ploratory studies of search behaviors and strategies
for reusing text. We present new insights about how
text is composed, revealing two types of writers:
those who build up a text as they go, and those who
first collect a lot of material which then is boiled
down until the essay is finished.

Parts of our corpus have been successfully em-
ployed to evaluate plagiarism detectors in the
PAN plagiarism detection competition 2012 (Pot-
thast et al., 2012a). Future work will include analy-
ses that may help to understand the state of mind of
writers when reusing text as well as of plagiarists.
We also expect insights with regard to the develop-
ment of algorithms for detection purposes and for
linguists studying the process of writing.
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Abstract

We present SPred, a novel method for the
creation of large repositories of semantic
predicates. We start from existing colloca-
tions to form lexical predicates (e.g., break
∗) and learn the semantic classes that best
fit the ∗ argument. To do this, we extract
all the occurrences in Wikipedia which
match the predicate and abstract its argu-
ments to general semantic classes (e.g.,
break BODY PART, break AGREEMENT,
etc.). Our experiments show that we are
able to create a large collection of seman-
tic predicates from the Oxford Advanced
Learner’s Dictionary with high precision
and recall, and perform well against the
most similar approach.

1 Introduction

Acquiring semantic knowledge from text automat-
ically is a long-standing issue in Computational
Linguistics and Artificial Intelligence. Over the
last decade or so the enormous abundance of in-
formation and data that has become available has
made it possible to extract huge amounts of pat-
terns and named entities (Etzioni et al., 2005), se-
mantic lexicons for categories of interest (Thelen
and Riloff, 2002; Igo and Riloff, 2009), large do-
main glossaries (De Benedictis et al., 2013) and
lists of concepts (Katz et al., 2003). Recently,
the availability of Wikipedia and other collabora-
tive resources has considerably boosted research
on several aspects of knowledge acquisition (Hovy
et al., 2013), leading to the creation of several
large-scale knowledge resources, such as DBPe-
dia (Bizer et al., 2009), BabelNet (Navigli and
Ponzetto, 2012), YAGO (Hoffart et al., 2013),
MENTA (de Melo and Weikum, 2010), to name
but a few. This wealth of acquired knowledge
is known to have a positive impact on important
fields such as Information Retrieval (Chu-Carroll
and Prager, 2007), Information Extraction (Krause

et al., 2012), Question Answering (Ferrucci et al.,
2010) and Textual Entailment (Berant et al., 2012;
Stern and Dagan, 2012).

Not only are these knowledge resources ob-
tained by acquiring concepts and named entities,
but they also provide semantic relations between
them. These relations are extracted from unstruc-
tured or semi-structured text using ontology learn-
ing from scratch (Velardi et al., 2013) and Open
Information Extraction techniques (Etzioni et al.,
2005; Yates et al., 2007; Wu and Weld, 2010;
Fader et al., 2011; Moro and Navigli, 2013) which
mainly stem from seminal work on is-a relation
acquisition (Hearst, 1992) and subsequent devel-
opments (Girju et al., 2003; Pasca, 2004; Snow et
al., 2004, among others).

However, these knowledge resources still lack
semantic information about language units such
as phrases and collocations. For instance, which
semantic classes are expected as a direct object
of the verb break? What kinds of noun does the
adjective amazing collocate with? Recognition of
the need for systems that are aware of the selec-
tional restrictions of verbs and, more in general, of
textual expressions, dates back to several decades
(Wilks, 1975), but today it is more relevant than
ever, as is testified by the current interest in se-
mantic class learning (Kozareva et al., 2008) and
supertype acquisition (Kozareva and Hovy, 2010).
These approaches leverage lexico-syntactic pat-
terns and input seeds to recursively learn the se-
mantic classes of relation arguments. However,
they require the manual selection of one or more
seeds for each pattern of interest, and this selec-
tion influences the amount and kind of semantic
classes to be learned. Furthermore, the learned
classes are not directly linked to existing resources
such as WordNet (Fellbaum, 1998) or Wikipedia.

The goal of our research is to create a large-
scale repository of semantic predicates whose lex-
ical arguments are replaced by their semantic
classes. For example, given the textual expres-
sion break a toe we want to create the correspond-
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ing semantic predicate break a BODY PART, where
BODY PART is a class comprising several lexical
realizations, such as leg, arm, foot, etc.

This paper provides three main contributions:

• We propose SPred, a novel approach which
harvests predicates from Wikipedia and gen-
eralizes them by leveraging core concepts
from WordNet.
• We create a large-scale resource made up of

semantic predicates.
• We demonstrate the high quality of our se-

mantic predicates, as well as the generality
of our approach, also in comparison with our
closest competitor.

2 Preliminaries

We introduce two preliminary definitions which
we use in our approach.

Definition 1 (lexical predicate). A lexical pred-
icate w1 w2 . . . wi ∗ wi+1 . . . wn is a regular
expression, where wj are tokens (j = 1, . . . , n), ∗
matches any sequence of one or more tokens, and
i ∈ {0, . . . , n}. We call the token sequence which
matches ∗ the filling argument of the predicate.

For example, a * of milk matches occurrences
such as a full bottle of milk, a glass of milk, a car-
ton of milk, etc. While in principle * could match
any sequence of words, since we aim at general-
izing nouns, in what follows we allow ∗ to match
only noun phrases (e.g., glass, hot cup, very big
bottle, etc.).

Definition 2 (semantic predicate). A semantic
predicate is a sequence w1 w2 . . . wi c wi+1

. . . wn, where wj are tokens (j = 1, . . . , n),
c ∈ C is a semantic class selected from a fixed
set C of classes, and i ∈ {0, . . . , n}.

As an example, consider the semantic predicate
cup of BEVERAGE,1 where BEVERAGE is a se-
mantic class representing beverages. This pred-
icate matches phrases like cup of coffee, cup of
tea, etc., but not cup of sky. Other examples in-
clude: MUSICAL INSTRUMENT is played by, a
CONTAINER of milk, break AGREEMENT, etc.

Semantic predicates mix the lexical information
of a given lexical predicate with the explicit se-
mantic modeling of its argument. Importantly, the
same lexical predicate can have different classes as
its argument, like cup of FOOD vs. cup of BEVER-
AGE. Note, however, that different classes might
convey different semantics for the same lexical

1In what follows we denote the SEMANTIC CLASS in
small capitals and the lexical predicate in italics.

predicate, such as cup of COUNTRY, referring to
cup as a prize instead of cup as a container.

3 Large-Scale Harvesting of Semantic
Predicates

The goal of this paper is to provide a fully auto-
matic approach for the creation of a large repos-
itory of semantic predicates in three phases. For
each lexical predicate of interest (e.g., break ∗):

1. We extract all its possible filling arguments
from Wikipedia, e.g., lease, contract, leg,
arm, etc. (Section 3.1).

2. We disambiguate as many filling arguments
as possible using Wikipedia, obtaining a
set of corresponding Wikipedia pages, e.g.,
Lease, Contract, etc. (Section 3.2).

3. We create the semantic predicates by general-
izing the Wikipedia pages to their most suit-
able semantic classes, e.g., break AGREE-
MENT, break LIMB, etc. (Section 3.3).

We can then exploit the learned semantic predi-
cates to assign the most suitable semantic class to
new filling arguments for the given lexical predi-
cate (Section 3.4).

3.1 Extraction of Filling Arguments
Let π be an input lexical predicate (e.g., break ∗).
We search the English Wikipedia for all the to-
ken sequences which match π, resulting in a list
of noun phrases filling the ∗ argument. We show
an excerpt of the output obtained when searching
Wikipedia for the arguments of the lexical predi-
cate a * of milk in Table 1. As can be seen, a wide
range of noun phrases are extracted, from quanti-
ties such as glass and cup to other aspects, such as
brand and constituent.

The output of this first step is a set Lπ of triples
(a, s, l) of filling arguments a matching the lexi-
cal predicate π in a sentence s of the Wikipedia
corpus, with a potentially linked to a page l (e.g.,
see the top 3 rows in Table 1; l = ε if no link is
provided, see bottom rows of the Table).2 Note
that Wikipedia is the only possible corpus that can
be used here for at least two reasons: first, in or-
der to extract relevant arguments, we need a large
corpus of a definitional nature; second, we need
wide-coverage semantic annotations of filling ar-
guments.

3.2 Disambiguation of Filling Arguments
The objective of the second step is to disambiguate
as many arguments in Lπ as possible for the lex-

2We will also refer to l as the sense of a in sentence s.
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a full [[bottle]] of milk
a nice hot [[cup]] of milk
a cold [[glass]] of milk
a very big bottle of milk
a brand of milk
a constituent of milk

Table 1: An excerpt of the token sequences
which match the lexical predicate a * of milk in
Wikipedia (filling argument shown in the second
column; following the Wikipedia convention we
provide links in double square brackets).

ical predicate π. We denote Dπ = {(a, s, l) :
l 6= ε} ⊆ Lπ as the set of those arguments origi-
nally linked to the corresponding Wikipedia page
(like the top three linked arguments in Table 1).
Therefore, in the rest of this section we will focus
only on the remaining triples (a, s, ε) ∈ Uπ, where
Uπ = Lπ \Dπ, i.e., those triples whose arguments
are not semantically annotated. Our goal is to re-
place ε with an appropriate sense, i.e., page, for a.
For each such triple (a, s, ε) ∈ Uπ, we apply the
following disambiguation heuristics:

• One sense per page: if another occurrence
of a in the same Wikipedia page (indepen-
dent of the lexical predicate) is linked to a
page l, then remove (a, s, ε) from Uπ and add
(a, s, l) to Dπ. In other words, we propa-
gate an existing annotation of a in the same
Wikipedia page and apply it to our ambigu-
ous item. For instance, cup of coffee appears
in the Wikipedia page Energy drink in the
sentence “[. . . ] energy drinks contain more
caffeine than a strong cup of coffee”, but this
occurrence of coffee is not linked. How-
ever the second paragraph contains the sen-
tence “[[Coffee]], tea and other naturally caf-
feinated beverages are usually not considered
energy drinks”, where coffee is linked to the
Coffee page. This heuristic naturally reflects
the broadly known assumption about lexi-
cal ambiguity presented in (Yarowsky, 1995),
namely the one-sense-per-discourse heuris-
tic.
• One sense per lexical predicate: if
∃(a, s′, l) ∈ Dπ, then remove (a, s, ε) from
Uπ and add (a, s, l) to Dπ. If multiple senses
of a are available, choose the most frequent
one in Dπ. For example, in the page Singa-
porean cuisine the occurrence of coffee in the
sentence “[. . . ] combined with a cup of cof-
fee and a half-boiled egg” is not linked, but
we have collected many other occurrences,
all linked to the Coffee page, so this link

gets propagated to our ambiguous item as
well. This heuristic mimes the one-sense-per-
collocation heuristic presented in (Yarowsky,
1995).
• Trust the inventory: if Wikipedia provides

only one sense for a, i.e., only one page title
whose lemma is a, link a to that page. Con-
sider the instance “At that point, Smith threw
down a cup of Gatorade” in page Jimmy
Clausen; there is only one sense for Gatorade
in Wikipedia, so we link the unannotated oc-
currence to it.

As a result, the initial set of disambiguated ar-
guments in Dπ is augmented with all those triples
for which any of the above three heuristics apply.
Note that Dπ might contain the same argument
several times, occurring in different sentences and
linked many times to the same page or to differ-
ent pages. Notably, the discovery of new links is
made through one scan of Wikipedia per heuristic.
The three disambiguation strategies, applied in the
same order as presented above, contribute to pro-
moting the most relevant sense for a given word.

Finally, let A be the set of arguments in Dπ,
i.e., A := {a : ∃(a, s, l) ∈ Dπ}. For each argu-
ment a ∈ Awe select the majority sense sense(a)
of a and collect the corresponding set of sen-
tences sent(a) marked with that sense. Formally,
sense(a) := argmaxl |{(x, y, z) ∈ Dπ : x =
a∧z = l}| and sent(a) := {s : (a, s, sense(a)) ∈
Dπ}.

3.3 Generalization to Semantic Classes
Our final objective is to generalize the annotated
arguments to semantic classes picked out from a
fixed set C of classes. As explained below, we as-
sume the set C to be made up of representative
synsets from WordNet. We perform this in two
substeps: we first link all our disambiguated argu-
ments to WordNet (Section 3.3.1) and then lever-
age the WordNet taxonomy to populate the seman-
tic classes in C (Section 3.3.2).

3.3.1 Linking to WordNet
So far the arguments in Dπ have been semanti-
cally annotated with the Wikipedia pages they re-
fer to. However, using Wikipedia as our sense in-
ventory is not desirable; in fact, contrarily to other
commonly used lexical-semantic networks such
as WordNet, Wikipedia is not formally organized
in a structured, taxonomic hierarchy. While it is
true that attached to each Wikipedia page there are
one or more categories, these categories just pro-
vide shallow information about the class the page
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belongs to. Indeed, categories are not ideal for
representing the semantic classes of a Wikipedia
page for at least three reasons: i) many cate-
gories do not express taxonomic information (e.g.,
the English page Albert Einstein provides cate-
gories such as DEATHS FROM ABDOMINAL AOR-
TIC ANEURYSM and INSTITUTE FOR ADVANCED
STUDY FACULTY); ii) categories are mostly struc-
tured in a directed acyclic graph with multiple
parents per category (even worse, cycles are pos-
sible in principle); iii) there is no clear way of
identifying core semantic classes from the large
set of available categories. Although efforts to-
wards the automatic taxonomization of Wikipedia
categories do exist in the literature (Ponzetto and
Strube, 2011; Nastase and Strube, 2013), the re-
sults are of a lower quality than a hand-built lexical
resource. Therefore, as was done in previous work
(Mihalcea and Moldovan, ; Ciaramita and Altun,
2006; Izquierdo et al., 2009; Erk and McCarthy,
2009; Huang and Riloff, 2010), we pick out our
semantic classes C from WordNet and leverage its
manually-curated taxonomy to associate our argu-
ments with the most suitable class. This way we
avoid building a new taxonomy and shift the prob-
lem to that of projecting the Wikipedia pages –
associated with annotated filling arguments – to
synsets in WordNet. We address this problem in
two steps:

Wikipedia-WordNet mapping. We exploit an
existing mapping implemented in BabelNet (Nav-
igli and Ponzetto, 2012), a wide-coverage
multilingual semantic network that integrates
Wikipedia and WordNet.3 Based on a disam-
biguation algorithm, BabelNet establishes a map-
ping µ : Wikipages → Synsets which links
about 50,000 pages to their most suitable Word-
Net senses.4

Mapping extension. Nevertheless, BabelNet is
able to solve the problem only partially, because it
still leaves the vast majority of the 4 million En-
glish Wikipedia pages unmapped. This is mainly
due to the encyclopedic nature of most pages,
which do not have a counterpart in the WordNet
dictionary. To address this issue, for each un-
mapped Wikipedia page p we obtain its textual
definition as the first sentence of the page.5 Next,

3http://babelnet.org
4We follow (Navigli, 2009) and denote with wip the i-th

sense of w in WordNet with part of speech p.
5According to the Wikipedia guidelines, “The article

should begin with a short declarative sentence, answer-
ing two questions for the nonspecialist reader: What (or
who) is the subject? and Why is this subject notable?”,
extracted from http://en.wikipedia.org/wiki/

we extract the hypernym from the textual defini-
tion of p by applying Word-Class Lattices (Navigli
and Velardi, 2010, WCL6), a domain-independent
hypernym extraction system successfully applied
to taxonomy learning from scratch (Velardi et al.,
2013) and freely available online (Faralli and Nav-
igli, 2013). If a hypernym h is successfully ex-
tracted and h is linked to a Wikipedia page p′

for which µ(p′) is defined, then we extend the
mapping by setting µ(p) := µ(p′). For instance,
the mapping provided by BabelNet does not pro-
vide any link for the page Peter Spence; thanks to
WCL, though, we are able to set the page Jour-
nalist as its hypernym, and link it to the WordNet
synset journalist1n.

This way our mapping extension now covers
539,954 pages, i.e., more than an order of mag-
nitude greater than the number of pages originally
covered by the BabelNet mapping.

3.3.2 Populating the Semantic Classes
We now proceed to populating the semantic
classes in C with the annotated arguments ob-
tained for the lexical predicate π.

Definition 3 (semantic class of a synset). The
semantic class for a WordNet synset S is the class
c among those in C which is the most specific hy-
pernym of S according to the WordNet taxonomy.

For instance, given the synset tap water1n, its se-
mantic class is water1n (while the other more gen-
eral subsumers in C are not considered, e.g., com-
pound2

n, chemical1n, liquid3
n, etc).

For each argument a ∈ A for which a
Wikipedia-to-WordNet mapping µ(sense(a))
could be established as a result of the linking
procedure described above, we associate a with
the semantic class of µ(sense(a)). For example,
consider the case in which a is equal to tap water
and sense(a) is equal to the Wikipedia page Tap
water, in turn mapped to tap water1n via µ; we
thus associate tap water with its semantic class
water1n. If more than one class can be found we
add a to each of them.7

Ultimately, for each class c ∈ C, we obtain
a set support(c) made up of all the arguments
a ∈ A associated with c. For instance, sup-
port(beverage1n) = { chinese tea, 3.2% beer, hot
cocoa, cider, . . . , orange juice }. Note that, thanks
to our extended mapping (cf. Section 3.3.1), the
support of a class can also contain arguments not
covered in WordNet (e.g., hot cocoa and tejuino).

Wikipedia:Writing_better_articles.
6http://lcl.uniroma1.it/wcl
7This can rarely happen due to multiple hypernyms avail-

able in WordNet for the same synset.
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Pclass(c|π) c support(c)
0.1896 wine1n wine, sack, white wine, red wine, wine in china, madeira wine, claret, kosher wine
0.1805 coffee1n turkish coffee, drip coffee, espresso, coffee, cappucino, caffè latte, decaffeinated coffee, latte
0.1143 herb2

n green tea, indian tea, black tea, orange pekoe tea, tea
0.1104 water1n water, seawater
0.0532 beverage1n chinese tea, 3.2% beer, orange soda, boiled water, hot chocolate, hot cocoa, tejuino, cider,

beverage, cocoa, coffee milk, lemonade, orange juice
0.0403 milk1

n skim milk, milk, cultured buttermilk, whole milk
0.0351 beer1n 3.2% beer, beer
0.0273 alcohol1n mead, umeshu, kava, rice wine, jägermeister, kvass, sake, gin, rum
0.0182 poison1

n poison

Table 2: Highest-probability semantic classes for the lexical predicate π = cup of *, according to our set
C of semantic classes.

Since not all classes are equally relevant to the
lexical predicate π, we estimate the conditional
probability of each class c ∈ C given π on the
basis of the number of sentences which contain an
argument in that class. Formally:

Pclass(c|π) =
∑

a∈support(c) |sent(a)|
Z

, (1)

where Z is a normalization factor calculated as
Z =

∑
c′∈C

∑
a∈support(c′) |sent(a)|. As an ex-

ample, in Table 2 we show the highest-probability
classes for the lexical predicate cup of ∗.

As a result of the probabilistic association of
each semantic class c with a target lexical predi-
cate w1 w2 . . . wi ∗ wi+1 . . . wn, we obtain a
semantic predicate w1 w2 . . . wi c wi+1 . . . wn.

3.4 Classification of new arguments
Once the semantic predicates for the input lexical
predicate π have been learned, we can classify a
new filling argument a of π. However, the class
probabilities calculated with Formula 1 might not
provide reliable scores for several classes, includ-
ing unseen ones whose probability would be 0.

To enable wide coverage we estimate a second
conditional probability based on the distributional
semantic profile of each class. To do this, we per-
form three steps:

1. For each WordNet synset S we create a dis-
tributional vector ~S summing the noun occur-
rences within all the Wikipedia pages p such
that µ(p) = S. Next, we create a distribu-
tional vector for each class c ∈ C as follows:

~c =
∑

S∈desc(c) ~S,

where desc(c) is the set of all synsets
which are descendants of the semantic class
c in WordNet. As a result we obtain a
predicate-independent distributional descrip-
tion for each semantic class in C.

2. Now, given an argument a of a lexical predi-
cate π, we create a distributional vector ~a by
summing the noun occurrences of all the sen-
tences s such that (a, s, l) ∈ Lπ (cf. Section
3.1).

3. Let Ca be the set of candidate semantic
classes for argument a, i.e., Ca contains the
semantic classes for the WordNet synsets of
a as well as the semantic classes associated
with µ(p) for all Wikipedia pages p whose
lemma is a. For each candidate class c ∈ Ca,
we determine the cosine similarity between
the distributional vectors ~c and ~a as follows:

sim(~c,~a) =
~c · ~a
||~c|| ||~a|| .

Then, we determine the most suitable seman-
tic class c ∈ Ca of argument a as the class
with the highest distributional probability, es-
timated as:

Pdistr(c|π, a) =
sim(~c,~a)∑

c′∈Ca sim(~c ′,~a)
. (2)

We can now choose the most suitable class c ∈
Ca for argument a which maximizes the proba-
bility mixture of the distributional probability in
Formula 2 and the class probability in Formula 1:

P (c|π, a) = αPdistr(c|π, a)+(1−α)Pclass(c|π),
(3)

where α ∈ [0, 1] is an interpolation factor.

We now illustrate the entire process of our al-
gorithm on a real example. Given a textual ex-
pression such as virus replicate, we: (i) extract
all the filling arguments of the lexical predicate
* replicate; (ii) link and disambiguate the ex-
tracted filling arguments; (iii) query our system for
the available virus semantic classes (i.e., {virus1n,
virus3n}); (iv) build the distributional vectors for
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the candidate semantic classes and the given in-
put argument; (v) calculate the probability mix-
ture. As a result we obtain the following rank-
ing, virus1n:0.250, virus3n:0.000894, so that the first
sense of virus in WordNet 3.0 is preferred, being
an “ultramicroscopic infectious agent that repli-
cates itself only within cells of living hosts”.

4 Experiment 1: Oxford Lexical
Predicates

We evaluate on the two forms of output produced
by SPred: (i) the top-ranking semantic classes of a
lexical predicate, as obtained with Formula 1, and
(ii) the classification of a lexical predicate’s argu-
ment with the most suitable semantic class, as pro-
duced using Formula 3. For both evaluations, we
use a lexical predicate dataset built from the Ox-
ford Advanced Learner’s Dictionary (Crowther,
1998).

4.1 Set of Semantic Classes

The selection of which semantic classes to include
in the set C is of great importance. In fact, hav-
ing too many classes will end up in an overly fine-
grained inventory of meanings, whereas an exces-
sively small number of classes will provide lit-
tle discriminatory power. As our set C of seman-
tic classes we selected the standard set of 3,299
core nominal synsets available in WordNet.8 How-
ever, our approach is flexible and can be used with
classes of an arbitrary level of granularity.

4.2 Datasets

The Oxford Advanced Learner’s Dictionary pro-
vides usage notes that contain typical predicates in
various semantic domains in English, e.g., Travel-
ing.9 Each predicate is made up of a fixed part
(e.g., a verb) and a generalizable part which con-
tains one or more nouns.

Examples include fix an election/the vote, bac-
teria/microbes/viruses spread, spend money/sav-
ings/a fortune. In the case that more than one
noun was provided, we split the textual expres-
sion into as many items as the number of nouns.
For instance, from spend money/savings/a fortune
we created three items in our dataset, i.e., spend
money, spend savings, spend a fortune. The split-
ting procedure generated 6,220 instantiated lexical
predicate items overall.

8http://wordnetcode.princeton.edu/
standoff-files/core-wordnet.txt

9http://oald8.oxfordlearnersdictionaries.
com/usage_notes/unbox_colloc/

k Prec@k Correct Total
1 0.94 46 49
2 0.87 85 98
3 0.86 124 145
4 0.83 160 192
5 0.82 194 237
6 0.81 228 282
7 0.80 261 326
8 0.78 288 370
9 0.77 318 414

10 0.76 349 458
11 0.75 379 502
12 0.75 411 546
13 0.75 445 590
14 0.76 479 634
15 0.75 510 678
16 0.75 544 721
17 0.76 577 763
18 0.76 612 806
19 0.76 643 849
20 0.75 671 892

Table 3: Precision@k for ranking the semantic
classes of lexical predicates.

4.3 Evaluating the Semantic Class Ranking

Dataset. Given the above dataset, we general-
ized each item by pairing its fixed verb part with *
(i.e., we keep “verb predicates” only, since they
are more informative). For instance, the three
items bacteria/microbes/viruses spread were gen-
eralized into the lexical predicate * spread. The to-
tal number of different lexical predicates obtained
was 1,446, totaling 1,429 distinct verbs (note that
the dataset might contain the lexical predicate *
spread as well as spread *).10

Methodology. For each lexical predicate we cal-
culated the conditional probability of each seman-
tic class using Formula 1, resulting in a ranking
of semantic classes. To evaluate the top ranking
classes, we calculated precision@k, with k rang-
ing from 1 to 20, by counting all applicable classes
as correct, e.g., location1n is a valid semantic class
for travel to * while emotion1n is not.

Results. We show in Table 3 the precision@k
calculated over a random sample of 50 lexical
predicates.11 As can be seen, while the classes
quality is pretty high with low values of k, per-
formance gradually degrades as we let k increase.
This is mostly due to the highly polysemous nature
of the predicates selected (e.g., occupy *, leave *,
help *, attain *, live *, etc.). We note that high per-
formance, attaining above 80%, can be achieved

10The low number of items per predicate is due to the orig-
inal Oxford resource.

11One lexical predicate did not have any semantic class
ranking.
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by focusing up to the first 7 classes output by our
system, with a 94% precision@1.

4.4 Evaluating Classification Performance

Dataset. Starting from the lexical predicate
items obtained as described in Section 4.2, we se-
lected those items belonging to a random sample
of 20 usage notes among those provided by the
Oxford dictionary, totaling 3,245 items. We then
manually tagged each item’s argument (e.g., virus
in viruses spread) with the most suitable seman-
tic class (e.g., virus1n), obtaining a gold standard
dataset for the evaluation of our argument classifi-
cation algorithm (cf. Section 3.4).

Methodology. In this second evaluation we
measure the accuracy of our method at assigning
the most suitable semantic class to the argument
of a lexical predicate item in our gold standard.
We use three customary measures to determine the
quality of the acquired semantic classes, i.e., pre-
cision, recall and F1. Precision is the number of
items which are assigned the correct class (as eval-
uated by a human) over the number of items which
are assigned a class by the system. Recall is the
number of items which are assigned the correct
class over the number of items to be classified. F1
is the harmonic mean of precision and recall.

Tuning. The only parameter to be tuned is the
factor α that we use to mix the two probabilities
in Formula 3 (cf. Section 3.4). For tuning α we
used a held-out set of 8 verbs, randomly sampled
from the lexical predicates not used in the dataset.
We created a tuning set using the annotated argu-
ments in Wikipedia for these verbs: we trained the
model on 80% of the annotated lexical predicate
arguments (i.e., the class probability estimates in
Formula 1) and then applied the probability mix-
ture (i.e., Formula 3) for classifying the remain-
ing 20% of arguments. Finally, we calculated the
performance in terms of precision, recall and F1
with 11 different values of α ∈ {0, 0.1, . . . , 1.0},
achieving optimal performance with α = 0.2.

Results. Table 4 shows the results on the seman-
tic class assignments. Our system shows very high
precision, above 85%, while at the same time at-
taining an adequate 68% recall. We also compared
against a random baseline that randomly selects
one out of all the candidate semantic classes for
each item, achieving only moderate results. A sub-
sequent error analysis revealed the common types
of error produced by our system: terms for which
we could not provide (1) any WordNet concept

Method Precision Recall F1
SPred 85.61 68.01 75.80
Random 40.96 40.96 40.96

Table 4: Performance on semantic class assign-
ment.

(e.g., political corruption) or (2) any candidate se-
mantic class (e.g., immune system).

4.5 Disambiguation heuristics impact
As a follow-up analysis, for each dataset we con-
sidered the impact of each disambiguation heuris-
tic described in Section 3.2 according to how many
times it was triggered. Starting from the entire set
of 1,446 lexical predicates from the Oxford dictio-
nary (see Section 4.3), we counted the number of
argument triples (a, s, l) already disambiguated in
Wikipedia (i.e., l 6= ε) and those disambiguated
thanks to our disambiguation strategies. Table
5 shows the statistics. We note that, while the
amount of originally linked arguments is very low
(about 2.5% of total), our strategies are able to
considerably increase the size of the initial set of
linked instances. The most effective strategies ap-
pear to be the One sense per page and the Trust the
inventory, which contribute 26.16% and 31.33%
of the total links, respectively.

Even though most of the triples (i.e., 68 out of
almost 74 million) remain unlinked, the ratio of
distinct arguments which we linked to WordNet
is considerably higher, calculated as 3,723,979
linked arguments over 12,431,564 distinct argu-
ments, i.e., about 30%.

5 Experiment 2: Comparison with
Kozareva & Hovy (2010)

Due to the novelty of the task carried out by SPred,
the resulting output may be compared with only a
limited number of existing approaches. The most
similar approach is that of Kozareva and Hovy
(2010, K&H) who assign supertypes to the argu-
ments of arbitrary relations, a task which resem-
bles our semantic predicate ranking. We therefore
performed a comparison on the quality of the most
highly-ranked supertypes (i.e., semantic classes)
using their dataset of 24 relation patterns (i.e., lex-
ical predicates).

Dataset. The dataset contained 14 lexical pred-
icates (e.g., work for * or * fly to), 10 of which
were expanded in order to semantify their left- and
right-side arguments (e.g., * work for and work
for *); for the remaining 4 predicates just a single
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Total Linked in One sense One sense per Trust the Not
triples Wikipedia per page lexical predicate inventory linked

73,843,415 1,795,608 1,433,634 533,946 1,716,813 68,363,414

Table 5: Statistics on argument triple linking for all the lexical predicates in the Oxford dataset.

k Prec@k Correct Total
1 0.88 21 24
2 0.90 43 48
3 0.88 63 72
4 0.89 85 96
5 0.91 109 120
6 0.91 131 144
7 0.92 154 168
8 0.91 175 192
9 0.92 198 216

10 0.92 221 240
11 0.92 242 264
12 0.92 264 288
13 0.91 284 312
14 0.90 304 336
15 0.91 327 360
16 0.91 348 384
17 0.90 367 408
18 0.89 386 432
19 0.89 407 456
20 0.89 429 480

Table 6: Precision@k for the semantic classes of
the relations of Kozareva and Hovy (2010).

side was generalized (e.g., * dress). While most of
the relations apply to persons as a supertype, our
method could find arguments for each of them.

Methodology. We carried out the same evalua-
tion as in Section 4.3. We calculated precision@k
of the semantic classes obtained for each relation
in the dataset of K&H. Because the set of appli-
cable classes was potentially unbounded, we were
not able to report recall directly.

Results. K&H reported an overall accuracy of
the top-20 supertypes of 92%. As can be seen in
Table 6 we exhibit very good performance with in-
creasing values of k. A comparison of Table 3 with
Table 6 shows considerable differences in perfor-
mance between the two datasets. We attribute this
difference to the higher average WordNet poly-
semy of the verbal component of the Oxford pred-
icates (on average 2.64 senses for K&H against
6.52 for the Oxford dataset).

Although we cannot report recall, we list the
number of Wikipedia arguments and associated
classes in Table 7, which provides an estimate of
the extraction capability of SPred. The large num-
ber of classes found for the arguments demon-
strates the ability of our method to generalize to
a variety of semantic classes.

Predicate Number of args Number of classes
cause * 181,401 1,339

live in * 143,628 600
go to * 134,712 867
* cause 92,160 1,244

work in * 79,444 770
* go to 71,794 746

* live in 61,074 541
work on * 58,760 840
work for * 58,332 681
work at * 31,904 511
* work in 24,933 528

* celebrate 23,333 408

Table 7: Number of arguments and associated
classes for the 12 most frequent lexical predicates
of Kozareva and Hovy (2010) extracted by SPred
from Wikipedia.

6 Related work

The availability of Web-scale corpora has led to
the production of large resources of relations (Et-
zioni et al., 2005; Yates et al., 2007; Wu and Weld,
2010; Carlson et al., 2010; Fader et al., 2011).
However, these resources often operate purely at
the lexical level, providing no information on the
semantics of their arguments or relations. Several
studies have examined adding semantics through
grouping relations into sets (Yates and Etzioni,
2009), ontologizing the arguments (Chklovski and
Pantel, 2004), or ontologizing the relations them-
selves (Moro and Navigli, 2013). However, analy-
sis has largely been either limited to ontologizing
a small number of relation types with a fixed in-
ventory, which potentially limits coverage, or has
used implicit definitions of semantic categories
(e.g., clusters of arguments), which limits inter-
pretability. For example, Mohamed et al. (2011)
use the semantic categories of the NELL system
(Carlson et al., 2010) to learn roughly 400 valid
ontologized relations from over 200M web pages,
whereas WiSeNet (Moro and Navigli, 2012) lever-
ages Wikipedia to acquire relation synsets for an
open set of relations. Despite these efforts, no
large-scale resource has existed to date that con-
tains ontologized lexical predicates. In contrast,
the present work provides a high-coverage method
for learning argument supertypes from a broad-
coverage ontology (WordNet), which can poten-
tially be leveraged in relation extraction to ontolo-
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gize relation arguments.
Our method for identifying the different seman-

tic classes of predicate arguments is closely related
to the task of identifying selectional preferences.
The most similar approaches to it are taxonomy-
based ones, which leverage the semantic types
of the relations arguments (Resnik, 1996; Li and
Abe, 1998; Clark and Weir, 2002; Pennacchiotti
and Pantel, 2006). Nevertheless, despite their high
quality sense-tagged data, these methods have of-
ten suffered from lack of coverage. As a result,
alternative approaches have been proposed that es-
chew taxonomies in favor of rating the quality of
potential relation arguments (Erk, 2007; Cham-
bers and Jurafsky, 2010) or generating probabil-
ity distributions over the arguments (Rooth et al.,
1999; Pantel et al., 2007; Bergsma et al., 2008;
Ritter et al., 2010; Séaghdha, 2010; Bouma, 2010;
Jang and Mostow, 2012) in order to obtain higher
coverage of preferences.

In contrast, we overcome the data sparsity of
class-based models by leveraging the large quan-
tity of collaboratively-annotated Wikipedia text in
order to connect predicate arguments with their
semantic class in WordNet using BabelNet (Nav-
igli and Ponzetto, 2012); because we map directly
to WordNet synsets, we provide a more readily-
interpretable collocation preference model than
most similarity-based or probabilistic models.

Verb frame extraction (Green et al., 2004) and
predicate-argument structure analysis (Surdeanu
et al., 2003; Yakushiji et al., 2006) are two areas
that are also related to our work. But their gener-
ality goes beyond our intentions, as we focus on
semantic predicates, which is much simpler and
free from syntactic parsing.

Another closely related work is that of Hanks
(2013) concerning the Theory of Norms and Ex-
ploitations, where norms (exploitations) represent
expected (unexpected) classes for a given lexical
predicate. Although our semantified predicates do,
indeed, provide explicit evidence of norms ob-
tained from collective intelligence and would pro-
vide support for this theory, exploitations present
a more difficult task, different from the one ad-
dressed here, due to its focus on identifying prop-
erty transfer between the semantic class and the
exploited instance.

The closest technical approach to ours is that
of Kozareva and Hovy (2010), who use recursive
patterns to induce semantic classes for the argu-
ments of relational patterns. Whereas their ap-
proach requires both a relation pattern and one
or more seeds, which bias the types of semantic
classes that are learned, our proposed method re-

quires only the pattern itself, and as a result is ca-
pable of learning an unbounded number of differ-
ent semantic classes.

7 Conclusions

In this paper we present SPred, a novel approach
to large-scale harvesting of semantic predicates.
In order to semantify lexical predicates we ex-
ploit the wide coverage of Wikipedia to extract
and disambiguate lexical predicate occurrences,
and leverage WordNet to populate the semantic
classes with suitable predicate arguments. As a re-
sult, we are able to ontologize lexical predicate in-
stances like those available in existing dictionaries
(e.g., break a toe) into semantic predicates (such
as break a BODY PART).

For each lexical predicate (such as break ∗),
our method produces a probability distribution
over the set of semantic classes (thus covering the
different expected meanings for the filling argu-
ments) and is able to classify new instances with
the most suitable class. Our experiments show
generally high performance, also in comparison
with previous work on argument supertyping.

We hope that our semantic predicates will en-
able progress in different Natural Language Pro-
cessing tasks such as Word Sense Disambigua-
tion (Navigli, 2009), Semantic Role Labeling
(Fürstenau and Lapata, 2012) or even Textual En-
tailment (Stern and Dagan, 2012) – each of which
is in urgent need of reliable semantics. While we
focused on semantifying lexical predicates, as fu-
ture work we will apply our method to the ontol-
ogization of large amounts of sequences of words,
such as phrases or textual relations (e.g., consid-
ering Google n-grams appearing in Wikipedia).
Notably, our method should, in principle, gener-
alize to any semantically-annotated corpus (e.g.,
Wikipedias in other languages), provided lexical
predicates can be extracted with associated seman-
tic classes.

In order to support future efforts we are releas-
ing our semantic predicates as a freely available
resource.12
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Abstract

In automatic summarization,centrality is
the notion that a summary should contain
the core parts of the source text. Cur-
rent systems use centrality, along with re-
dundancy avoidance and some sentence
compression, to produce mostly extrac-
tive summaries. In this paper, we investi-
gate how summarization can advance past
this paradigm towards robust abstraction
by making greater use of the domain of
the source text. We conduct a series of
studies comparing human-written model
summaries to system summaries at the se-
mantic level ofcaseframes. We show that
model summaries (1) are more abstrac-
tive and make use of more sentence aggre-
gation, (2) do not contain as many topi-
cal caseframes as system summaries, and
(3) cannot be reconstructed solely from
the source text, but can be if texts from
in-domain documents are added. These
results suggest that substantial improve-
ments are unlikely to result from better
optimizing centrality-based criteria, but
rather more domain knowledge is needed.

1 Introduction

In automatic summarization,centrality has been
one of the guiding principles for content selection
in extractive systems. We define centrality to be
the idea that a summary should contain the parts
of the source text that are most similar or repre-
sentative of the source text. This is most trans-
parently illustrated by the Maximal Marginal Rel-
evance (MMR) system of Carbonell and Goldstein
(1998), which defines the summarization objective

to be a linear combination of a centrality term and
a non-redundancy term.

Since MMR, much progress has been made on
more sophisticated methods of measuring central-
ity and integrating it with non-redundancy (See
Nenkova and McKeown (2011) for a recent sur-
vey). For example, term weighting methods such
as the signature term method of Lin and Hovy
(2000) pick out salient terms that occur more often
than would be expected in the source text based on
frequencies in a background corpus. This method
is a core component of the most successful sum-
marization methods (Conroy et al., 2006).

While extractive methods based on centrality
have thus achieved success, there has long been
recognition that abstractive methods are ultimately
more desirable. One line of work is in text simpli-
fication and sentence fusion, which focus on the
ability of abstraction to achieve a higher compres-
sion ratio (Knight and Marcu, 2000; Barzilay and
McKeown, 2005). A less examined issue is that of
aggregation and information synthesis. A key part
of the usefulness of summaries is that they provide
some synthesis or analysis of the source text and
make a more general statement that is of direct rel-
evance to the user. For example, a series of related
events can be aggregated and expressed as a trend.

The position of this paper is that centrality is
not enough to make substantial progress towards
abstractive summarization that is capable of this
type of semantic inference. Instead, summariza-
tion systems need to make more use of domain
knowledge. We provide evidence for this in a se-
ries of studies on the TAC 2010 guided summa-
rization data set that examines how the behaviour
of automatic summarizers can or cannot be dis-
tinguished from human summarizers. First, we
confirm that abstraction is a desirable goal, and
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provide a quantitative measure of the degree of
sentence aggregation in a summarization system.
Second, we show that centrality-based measures
are unlikely to lead to substantial progress towards
abstractive summarization, because current top-
performing systems already produce summaries
that are more “central” than humans do. Third, we
consider how domain knowledge may be useful as
a resource for an abstractive system, by showing
that key parts of model summaries can be recon-
structed from the source plus related in-domain
documents.

Our contributions are novel in the following re-
spects. First, our analyses are performed at the
level ofcaseframes, rather at the level of words or
syntactic dependencies as in previous work. Case-
frames are shallow approximations of semantic
roles which are well suited to characterizing a do-
main by its slots. Furthermore, we take adevel-
opmentalrather thanevaluativeperspective—our
goal is not to develop a new evaluation measure as
defined by correlation with human responsiveness
judgments. Instead, our studies reveal useful cri-
teria with which to distinguish human-written and
system summaries, helping to guide the develop-
ment of future summarization systems.

2 Related Work

Domain-dependent template-based summariza-
tion systems have been an alternative to extractive
systems which make use of rich knowledge about
a domain and information extraction techniques to
generate a summary, possibly using a natural lan-
guage generation system (Radev and McKeown,
1998; White et al., 2001; McKeown et al., 2002).
This paper can be seen as a first step towards
reconciling the advantages of domain knowledge
with the resource-lean extraction approaches pop-
ular today.

As noted above, Lin and Hovy’s (2000) sig-
nature terms have been successful in discovering
terms that are specific to the source text. These
terms are identified by a log-likelihood ratio test
based on their relative frequencies in relevant and
irrelevant documents. They were originally pro-
posed in the context of single-document summa-
rization, where they were calculated using in-
domain (relevant) vs. out-of-domain (irrelevant)
text. In multi-document summarization, the in-
domain text has been replaced by the source text
cluster (Conroy et al., 2006), thus they are now

used as a form of centrality-based features. In
this paper, we use guided summarization data as
an opportunity to reopen the investigation into the
effect of domain, because multiple document clus-
ters from the same domain are available.

Summarization evaluation is typically done by
comparing system output to human-written model
summaries, and are validated by their correlation
with user responsiveness judgments. The compar-
ison can be done at the word level, as in ROUGE
(Lin, 2004), at the syntactic level, as in Basic
Elements (Hovy et al., 2006), or at the level of
summary content units, as in the Pyramid method
(Nenkova and Passonneau, 2004). There are also
automatic measures which do not require model
summaries, but compare against the source text in-
stead (Louis and Nenkova, 2009; Saggion et al.,
2010).

Several studies complement this paper by ex-
amining the best possible extractive system us-
ing current evaluation measures, such as ROUGE
(Lin and Hovy, 2003; Conroy et al., 2006). They
find that the best possible extractive systems score
higher or as highly than human summarizers, but
it is unclear whether this means the oracle sum-
maries are actually as useful as human ones in
an extrinsic setting. Genest et al. (2009) ask hu-
mans to create extractive summaries, and find that
they score in between current automatic systems
and human-written abstracts on responsiveness,
linguistic quality, and Pyramid score. In the lec-
ture domain, He et al. (1999; 2000) find that
lecture transcripts that have been manually high-
lighted with key points improve students’ quiz
scores more than when using automated summa-
rization techniques or when providing only the
lecture transcript or slides.

Jing and McKeown (2000) manually analyzed
30 human-written summaries, and find that 19%
of sentences cannot be explained bycut-and-paste
operations from the source text. Saggion and La-
palme (2002) similarly define a list of transfor-
mations necessary to convert source text to sum-
mary text, and manually analyzed their frequen-
cies. Copeck and Szpakowicz (2004) find that
at most 55% of vocabulary items found in model
summaries occur in the source text, but they do
not investigate where the other vocabulary items
might be found.
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Sentence:
At one point, two bomb squad trucks sped to
the school after a backpack scare.

Dependencies:
num(point, one) prep at(sped, point)
num(trucks, two) nn(trucks, bomb)
nn(trucks, squad) nsubj(sped, trucks)
root(ROOT, sped) det(school, the)
prep to(sped, school) det(scare, a)
nn(scare, backpack) prep after(sped, scare)

Caseframes:
(speed, prep at) (speed, nsubj)
(speed, prep to) (speed, prep after)

Table 1: A sentence decomposed into its depen-
dency edges, and the caseframes derived from
those edges that we consider (in black).

3 Theoretical basis of our analysis

Many existing summarization evaluation methods
rely on word or N-gram overlap measures, but
these measures are not appropriate for our anal-
ysis. Word overlap can occur due to shared proper
nouns or entity mentions. Good summaries should
certainly contain the salient entities in the source
text, but when assessing the effect of the domain,
different domain instances (i.e., different docu-
ment clusters in the same domain) would be ex-
pected to contain different salient entities. Also,
the realization of entities as noun phrases depends
strongly on context, which would confound our
analysis if we do not also correctly resolve corefer-
ence, a difficult problem in its own right. We leave
such issues to other work (Nenkova and McKe-
own, 2003, e.g.).

Domains would rather be expected to shareslots
(a.k.a. aspects), which require a more semantic
level of analysis that can account for the various
ways in which a particular slot can be expressed.
Another consideration is that the structures to be
analyzed should be extracted automatically. Based
on these criteria, we selectedcaseframesto be the
appropriate unit of analysis. A caseframe is a shal-
low approximation of the semantic role structure
of a proposition-bearing unit like a verb, and are
derived from the dependency parse of a sentence1.

1Note that caseframes are distinct from (though directly

Relation Caseframe Pair Sim.
Degree (kill, dobj) (wound, dobj) 0.82
Causal (kill, dobj) (die, nsubj) 0.80
Type (rise, dobj) (drop, prep to) 0.81

Figure 1: Sample pairs of similar caseframes by
relation type, and the similarity score assigned to
them by our distributional model.

In particular, they are(gov, role) pairs, wheregov
is a proposition-bearing element, androle is an
approximation of a semantic role withgov as its
head (See Figure 1 for examples). Caseframes do
not consider the dependents of the semantic role
approximations.

The use of caseframes is well grounded in a va-
riety of NLP tasks relevant to summarization such
as coreference resolution (Bean and Riloff, 2004),
and information extraction (Chambers and Juraf-
sky, 2011), where they serve the central unit of se-
mantic analysis. Related semantic representations
are popular in Case Grammar and its derivative
formalisms such as frame semantics (Fillmore,
1982).

We use the following algorithm to extract case-
frames from dependency parses. First, we extract
those dependency edges with a relation type of
subject, direct object, indirect object, or prepo-
sitional object (with the preposition indicated),
along with their governors. The governor must be
a verb, event noun (as defined by the hyponyms
of the WordNet EVENT synset), or nominal or ad-
jectival predicate. Then, a series of deterministic
transformations are applied to the syntactic rela-
tions to account for voicing alternations, control,
raising, and copular constructions.

3.1 Caseframe Similarity

Direct caseframe matches account for some vari-
ation in the expression of slots, such as voicing
alternations, but there are other reasons different
caseframes may indicate the same slot (Figure 1).
For example,(kill, dobj) and(wound, dobj) both
indicate the victim of an attack, but differ by
the degree of injury to the victim.(kill, dobj)
and (die, nsubj) also refer to a victim, but are
linked by a causal relation. (rise, dobj) and

inspired by) the similarly namedcase framesof Case Gram-
mar (Fillmore, 1968).
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(drop, prep to) on the other hand simply share a
named entity type (in this case, numbers). To ac-
count for these issues, we measure caseframe sim-
ilarity based on their distributional similarity in a
large training corpus.

First, we construct vector representations of
each caseframe, where the dimensions of the vec-
tor correspond to the lemma of the head word that
fills the caseframe in the training corpus. For ex-
ample,kicked the ballwould result in a count of
1 added to the caseframe(kick, dobj) for the con-
text wordball. Then, we rescale the counts into
pointwise mutual information values, which has
been shown to be more effective than raw counts
at detecting semantic relatedness (Turney, 2001).
Similarity between caseframes can then be com-
pared by cosine similarity between the their vector
representations.

For training, we use the AFP portion of the
Gigaword corpus (Graff et al., 2005), which we
parsed using the Stanford parser’s typed depen-
dency tree representation with collapsed conjunc-
tions (de Marneffe et al., 2006). For reasons of
sparsity, we only considered caseframes that ap-
pear at least five times in the guided summariza-
tion corpus, and only the 3000 most common lem-
mata in Gigaword as context words.

3.2 An Example

To illustrate how caseframes indicate the slots in a
summary, we provide the following fragment of a
model summary from TAC about theUnabomber
trial :

(1) In Sacramento, Theodore Kaczynski faces a
10-count federal indictment for 4 of the 16
mail bomb attacks attributed to the
Unabomber in which two people were killed.
If found guilty, he faces a death penalty. ...
He has pleaded innocent to all charges. U.S.
District Judge Garland Burrell Jr. presides
in Sacramento.

All of the slots provided by TAC for theInves-
tigations and Trialsdomain can be identified by
one or more caseframes. The DEFENDANT can be
identified by(face, nsubj), and(plead, nsubj);
the CHARGES by (face, dobj); the REASON

by (indictment, prep for); the SENTENCE by
(face, dobj); the PLEAD by (plead, dobj); and
the INVESTIGATOR by (preside, nsubj).

4 Experiments

We conducted our experiments on the data and re-
sults of the TAC 2010 summarization workshop.
This data set contains 920 newspaper articles in
46 topics of 20 documents each. Ten are used in
an initial guided summarization task, and ten are
used in an update summarization task, in which
a summary must be produced assuming that the
original ten documents had already been read. All
summaries have a word length limit of 100 words.
We analyzed the results of the two summarization
tasks separately in our experiments.

The 46 topics belong to five different cate-
gories or domains:Accidents and natural dis-
asters, Criminal or terrorist attacks, Health and
safety, Endangered resources, and Investigations
and trials. Each domain is associated with a tem-
plate specifying the type of information that is ex-
pected in the domain, such as the participants in
the event or the time that the event occurred.

In our study, we compared the characteristics of
summaries generated by the eight human summa-
rizers with those generated by the peer summaries,
which are basically extractive systems. There
are 43 peer summarization systems, including two
baselines defined by NIST. We refer to systems
by their ID given by NIST, which are alphabetical
for the human summarizers (A to H), and numeric
for the peer summarizers (1 to 43). We removed
two peer systems (systems 29 and 43) which did
not generate any summary text in the workshop,
presumably due to software problems. For each
measure that we consider, we compare the average
among the human-written summaries to the three
individual peer systems, which we chose in order
to provide a representative sample of the average
and best performance of the automatic systems ac-
cording to current evaluation methods. These sys-
tems are all primarily extractive, like most of the
systems in the workshop:

Peer average The average of the measure
among the 41 peer summarizers.

Peer 16 This system scored the highest in re-
sponsiveness scores on the original summarization
task and in ROUGE-2, responsiveness, and Pyra-
mid score in the update task.

Peer 22 This system scored the highest in
ROUGE-2 and Pyramid score in the original sum-
marization task.
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(b) Update summarization task

Figure 2: Average sentence cover size: the average number ofsentences needed to generate the case-
frames in a summary sentence (Study 1). Model summaries are shown in darker bars. Peer system
numbers that we focus on are in bold.

Condition Initial Update
Model average 1.58 1.57
Peer average 1.06 1.06
Peer 1 1.00 1.00
Peer 16 1.04 1.04
Peer 22 1.08 1.09

Table 2: The average number of source text sen-
tences needed to cover a summary sentence. The
model average is statistically significantly differ-
ent from all the other conditionsp < 10−7

(Study 1).

Peer 1 The NIST-defined baseline, which is the
leading sentence baseline from the most recent
document in the source text cluster. This system
scored the highest on linguistic quality in both
tasks.

4.1 Study 1: Sentence aggregation

We first confirm that human summarizers are more
prone to sentence aggregation than system sum-
marizers, showing that abstraction is indeed a de-
sirable goal. To do so, we propose a measure to
quantify the degree of sentence aggregation exhib-
ited by a summarizer, which we callaverage sen-
tence cover size. This is defined to be the min-
imum number of sentences from the source text
needed to cover all of the caseframes found in a
summary sentence (for those caseframes that can
be found in the source text at all), averaged over all
of the summary sentences. Purely extractive sys-
tems would thus be expected to score1.0, as would
systems that perform text compression by remov-

ing constituents of a source text sentence. Human
summarizers would be expected to score higher, if
they actually aggregate information from multiple
points in the source text.

To illustrate, suppose we assign arbitrary in-
dices to caseframes, a summary sentence con-
tains caseframes{1, 2, 3, 4, 5}, and the source
text contains three sentences with caseframes,
which can be represented as a nested set
{{1, 3, 4}, {2, 5, 6}, {1, 4, 7}}. Then, the sum-
mary sentence can be covered by two sentences
from the source text, namely{{1, 3, 4}, {2, 5, 6}}.

This problem is actually an instance of the min-
imum set cover problem, in which sentences are
sets, and caseframes are set elements. Minimum
set cover is NP-hard in general, but the standard
integer programming formulation of set cover suf-
ficed for our data set; we used ILOG CPLEX
12.4’s mixed integer programming mode to solve
all the set cover problems optimally.

Results Figure 2 shows the ranking of the sum-
marizers by this measure. Most peer systems have
a low average sentence cover size of close to 1,
which reflects the fact that they are purely or al-
most purely extractive. Human model summariz-
ers show a higher degree of aggregation in their
summaries. The averages of the tested condi-
tions are shown in Table 2, and are statistically
significant. Peer 2 shows a relatively high level
of aggregation despite being an extractive system.
Upon inspection of its summaries, it appears that
Peer 2 tends to select many datelines, and without
punctuation to separate them from the rest of the
summary, our automatic analysis tools incorrectly
merged many sentences together, resulting in in-
correct parses and novel caseframes not found in
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(b) Update summarization task

Figure 3: Density of signature caseframes (Study 2).

Topic: Unabomber trial
(charge, dobj), (kill, dobj),
(trial, prep of), (bombing, prep in)

Topic: Mangrove forests
(beach, prep of), (save, dobj)
(development, prep of), (recover, nsubj)

Topic: Bird Flu
(infect, prep with), (die, nsubj)
(contact, dobj), (import, prep from)

Figure 4: Examples of signature caseframes found
in Study 2.

the source text.

4.2 Study 2: Signature caseframe density

Study 1 shows that human summarizers are more
abstractive in that they aggregate information from
multiple sentences in the source text, but how is
this aggregation performed? One possibility is
that human summary writers are able to pack a
greater number of salient caseframes into their
summaries. That is, humans are fundamentally re-
lying on centrality just as automatic summarizers
do, and are simply able to achieve higher compres-
sion ratios by being more succinct. If this is true,
then sentence fusion methods over the source text
alone might be able to solve the problem. Unfor-
tunately, we show that this is false and that system
summaries are actually more central than model
ones.

To extract topical caseframes, we use Lin and
Hovy’s (2000) method of calculating signature
terms, but extend the method to apply it at the
caseframe rather than the word level. We fol-
low Lin and Hovy (2000) in using a significance

Condition Initial Update
Model average 0.065 0.052
Peer average 0.080∗ 0.072∗

Peer 1 0.066 0.050
Peer 16 0.083∗ 0.085∗

Peer 22 0.101∗ 0.084∗

Table 3: Signature caseframe densities for differ-
ent sets of summarizers, for the initial and update
guided summarization tasks (Study 2).∗: p <
0.005.

threshold of0.001 to determine signature case-
frames2. Figure 4 shows examples of signature
caseframes for several topics. Then, we calculate
the signature caseframe density of each of the
summarization systems. This is defined to be the
number of signature caseframes in the set of sum-
maries divided by the number of words in that set
of summaries.

Results Figure 3 shows the density for all of the
summarizers, in ascending order of density. As
can be seen, the human abstractors actually tend to
use fewer signature caseframes in their summaries
than automatic systems. Only the leading baseline
is indistinguishable from the model average. Ta-
ble 3 shows the densities for the conditions that
we described earlier. The differences in density
between the human average and the non-baseline
conditions are highly statistically significant, ac-
cording to paired two-tailed Wilcoxon signed-rank
tests for the statistic calculated for each topic clus-
ter.

These results show that human abstractors do
2We tried various other thresholds, but the results were

much the same.
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Threshold 0.9 0.8
Condition Init. Up. Init. Up.
Model average 0.066 0.052 0.062 0.047
Peer average 0.080 0.071 0.071 0.063
Peer 1 0.068 0.050 0.060 0.044
Peer 16 0.083 0.086 0.072 0.077
Peer 22 0.100 0.086 0.084 0.075

Table 4: Density of signature caseframes after
merging to various threshold for the initial (Init.)
and update (Up.) summarization tasks (Study 2).

not merely repeat the caseframes that are indica-
tive of a topic cluster or use minor grammatical
alternations in their summaries. Rather, a genuine
sort of abstraction or distillation has taken place,
either through paraphrasing or semantic inference,
to transform the source text into the final informa-
tive summary.

Merging Caseframes We next investigate
whether simple paraphrasing could account for
the above results; it may be the case that human
summarizers simply replace words in the source
text with synonyms, which can be detected with
distributional similarity. Thus, we merged similar
caseframes into clusters according to the distribu-
tional semantic similarity defined in Section 3.1,
and then repeated the previous experiment. We
chose two relatively high levels of similarity (0.8
and 0.9), and used complete-link agglomerative
(i.e., bottom-up) clustering to merge similar
caseframes. That is, each caseframe begins as a
separate cluster, and the two most similar clusters
are merged at each step until the desired similarity
threshold is reached. Cluster similarity is defined
to be the minimum similarity (or equivalently,
maximum distance) between elements in the
two clusters; that is,maxc∈C1,c′∈C2

−sim(c, c′).
Complete-link agglomerative clustering tends to
form coherent clusters where the similarity be-
tween any pair within a cluster is high (Manning
et al., 2008).

Cluster Results Table 4 shows the results after
the clustering step, with similarity thresholds of
0.9 and0.8. Once again, model summaries contain
a lower density of signature caseframes. The sta-
tistical significance results are unchanged. This in-
dicates that simple paraphrasing alone cannot ac-
count for the difference in the signature caseframe

densities, and that some deeper abstraction or se-
mantic inference has occurred.

Note that we are not claiming that a lower den-
sity of signature caseframes necessarily correlates
with a more informative summary. For example,
some automatic summarizers are comparable to
the human abstractors in their relatively low den-
sity of signature caseframes, but these turn out to
be the lowest performing summarization systems
by all measures in the workshop, and they are un-
likely to rival human abstractors in any reasonable
evaluation of summary informativeness. It does,
however, appear that further optimizing centrality-
based measures alone is unlikely to produce bet-
ter informative summaries, even if we analyze the
summary at a syntactic/semantic rather than lexi-
cal level.

4.3 Study 3: Summary Reconstruction

The above studies show that the higher degree
of abstraction in model summaries cannot be ex-
plained by better compression of topically salient
caseframes alone. We now switch perspectives to
ask how model summaries might be automatically
generated at all. We will show that they cannot
be reconstructed solely from the source text, ex-
tending Copeck and Szpakowicz (2004)’s result to
caseframes. However, we also show that if articles
from the same domain are added, reconstruction
then becomes possible. Our measure of whether
a model summary can be reconstructed iscase-
frame coverage. We define this to be the propor-
tion of caseframes in a summary that is contained
by some reference set. This is thus a score be-
tween 0 and 1. Unlike in the previous study, we
use the full set of caseframes, not just signature
caseframes, because our goal now to create a hy-
pothesis space from which it is in principle possi-
ble to generate the model summaries.

Results We first calculated caseframe coverage
with respect to the source text alone (Figure 5).
As expected, automatic systems show close to per-
fect coverage, because of their basically extractive
nature, while model summaries show much lower
coverage. These statistics are summarized by Ta-
ble 5. These results present a fundamental limit
to extractive systems, and also text simplification
and sentence fusion methods based solely on the
source text.

The Impact of Domain Knowledge How might
automatic summarizers be able to acquire these
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(b) Update summarization task

Figure 5: Coverage of summary text caseframes in source text(Study 3).

Condition Initial Update
Model average 0.77 0.75
Peer average 0.99 0.99
Peer 1 1.00 1.00
Peer 16 1.00 1.00
Peer 22 1.00 1.00

Table 5: Coverage of caseframes in summaries
with respect to the source text. The model aver-
age is statistically significantly different from all
the other conditionsp < 10−8 (Study 3).

caseframes from other sources? Traditional sys-
tems that perform semantic inference do so from a
set of known facts about the domain in the form of
a knowledge base, but as we have seen, most ex-
tractive summarization systems do not make much
use of in-domain corpora. We examine adding
in-domain text to the source text to see how this
would affect coverage.

Recall that the 46 topics in TAC 2010 are cat-
egorized into five domains. To calculate the im-
pact of domain knowledge, we add all the docu-
ments that belong in the same domain to the source
text to calculate coverage. To ensure that coverage
does not increase simply due to increasing the size
of the reference set, we compare to the baseline of
adding the same number of documents that belong
to another domain. As shown in Table 6, the ef-
fect of adding more in-domain text on caseframe
coverage is substantial, and noticeably more than
using out-of-domain text. In fact, nearly all case-
frames can be found in the expanded set of arti-
cles. The implication of this result is that it may
be possible to generate better summaries by min-
ing in-domain text for relevant caseframes.

Reference corpus Initial Update
Source text only 0.77 0.75
+out-of-domain 0.91 0.91
+in-domain 0.98 0.97

Table 6: The effect on caseframe coverage of
adding in-domain and out-of-domain documents.
The difference between adding in-domain and out-
of-domain text is significantp < 10−3 (Study 3).

5 Conclusion

We have presented a series of studies to distin-
guish human-written informative summaries from
the summaries produced by current systems. Our
studies are performed at the level of caseframes,
which are able to characterize a domain in terms of
its slots. First, we confirm that model summaries
are more abstractive and aggregate information
from multiple source text sentences. Then, we
show that this is not simply due to summary writ-
ers packing together source text sentences contain-
ing topical caseframes to achieve a higher com-
pression ratio, even if paraphrasing is taken into
account. Indeed, model summaries cannot be re-
constructed from the source text alone. How-
ever, our results are also positive in that we find
that nearly all model summary caseframes can be
found in the source text together with some in-
domain documents.

Current summarization systems have been
heavily optimized towards centrality and lexical-
semantical reasoning, but we are nearing the bot-
tom of the barrel. Domain inference, on the other
hand, and a greater use of in-domain documents
as a knowledge source for domain inference, are
very promising indeed. Mining useful caseframes
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for a sentence fusion-based approach has the po-
tential, as our experiments have shown, to deliver
results in just the areas where current approaches
are weakest.
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Abstract

This paper presents HEADY: a novel, ab-
stractive approach for headline generation
from news collections. From a web-scale
corpus of English news, we mine syntac-
tic patterns that a Noisy-OR model gener-
alizes into event descriptions. At inference
time, we query the model with the patterns
observed in an unseen news collection,
identify the event that better captures the
gist of the collection and retrieve the most
appropriate pattern to generate a head-
line. HEADY improves over a state-of-the-
art open-domain title abstraction method,
bridging half of the gap that separates
it from extractive methods using human-
generated titles in manual evaluations, and
performs comparably to human-generated
headlines as evaluated with ROUGE.

1 Introduction

Motivation. News events are rarely reported
only in one way, from a single point of view. Dif-
ferent news agencies will interpret the event in dif-
ferent ways; various countries or locations may
highlight different aspects of it depending on how
they are affected; and opinions and in-depth anal-
yses will be written after the fact.

The variety of contents and styles is both an op-
portunity and a challenge. On the positive side, we
have the same events described in different ways;
this redundancy is useful for summarization, as
the information content reported by the majority
of news sources most likely represents the central
part of the event. On the other hand, variability
and subjectivity can be difficult to isolate. For
some applications it is important to understand,
given a collection of related news articles and re-

∗Work done during an internship at Google Zurich.

• Carmelo and La La Party It Up with Kim and Ciara

• La La Vazquez and Carmelo Anthony: Wedding
Day Bliss

• Carmelo Anthony, actress LaLa Vazquez wed in
NYC

• Stylist to the Stars

• LaLa, Carmelo Set Off Celebrity Wedding Weekend

• Ciara rocks a sexy Versace Spring 2010 mini to
LaLa Vasquez and Carmelo Anthony’s wedding
(photos)

• Lala Vasquez on her wedding dress, cake, reality tv
show and fiancé, Carmelo Anthony (video)

• VAZQUEZ MARRIES SPORTS STAR AN-
THONY

• Lebron Returns To NYC For Carmelo’s Wedding

• Carmelo Anthony’s stylist dishes on the wedding

• Paul pitching another Big Three with “Melo in
NYC”

• Carmelo Anthony and La La Vazquez Get Married
at Star-Studded Wedding Ceremony

Table 1: Headlines observed for a news collection
reporting the same wedding event.

ports, how to formulate in an objective way what
has happened.

As a motivating example, Table 1 shows the dif-
ferent headlines observed in news reporting the
wedding between basketball player Carmelo An-
thony and actress LaLa Vazquez. As can be seen,
there is a wide variety of ways to report the same
event, including different points of view, high-
lighted aspects, and opinionated statements on the
part of the reporter. When presenting this event to
a user in a news-based information retrieval or rec-
ommendation system, different event descriptions
may be more appropriate. For example, a user may
only be interested in objective, informative sum-
maries without any interpretation on the part of
the reporter. In this case, Carmelo Anthony, ac-
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tress LaLa Vazquez wed in NYC would be a good
choice.

Goal. Our final goal in this research is to build a
headline generation system that, given a news col-
lection, is able to describe it with the most com-
pact, objective and informative headline. In par-
ticular, we want the system to be able to:

• Generate headlines in an open-domain, unsu-
pervised way, so that it does not need to rely
on training data which is expensive to pro-
duce.

• Generalize across synonymous expressions
that refer to the same event.

• Do so in an abstractive fashion, to enforce
novelty, objectivity and generality.

In order to advance towards this goal, this paper
explores the following questions:

• What is a good way of using syntactic pat-
terns to represent events for generating head-
lines?

• Can we have satisfactory readability with an
open-domain abstractive approach, not rely-
ing on training data nor on manually pre-
defined generation templates?

• How far can we get in terms of informative-
ness, compared to the human-produced head-
lines, i.e., extractive approaches?

Contributions. In this paper we present
HEADY, which is at the same time a novel system
for abstractive headline generation, and a smooth
clustering of patterns describing the same events.
HEADY is fully open-domain and can scale to
web-sized data. By learning to generalize events
across the boundaries of a single news story or
news collection, HEADY produces compact and
effective headlines that objectively convey the
relevant information.

When compared to a state-of-the-art open-
domain headline abstraction system (Filippova,
2010), the new headlines are statistically signifi-
cantly better both in terms of readability and in-
formativeness. Also, automatic evaluations using
ROUGE, having objective headlines for the news
as references, show that the abstractive headlines
are on par with human-produced headlines.

2 Related work

Headline generation and summarization.
Most headline generation work in the past has
focused on the problem of single-document sum-
marization: given the main passage of a single
news article, generate a very short summary of
the article. From early in the field, it was pointed
out that a purely extractive approach is not good
enough to generate headlines from the body
text (Banko et al., 2000). Sometimes the most
important information is distributed across several
sentences in the document. More importantly,
quite often, the single sentence selected as the
most informative for the news collection is already
longer than the desired headline size. For this
reason, most early headline generation work fo-
cused on either extracting and reordering n-grams
from the document to be summarized (Banko et
al., 2000), or extracting one or two informative
sentences from the document and performing
linguistically-motivated transformations to them
in order to reduce the summary length (Dorr et
al., 2003). The first approach is not guaranteed
to produce grammatical headlines, whereas the
second approach is tightly tied to the actual
wording found in the document. Single-document
headline generation was also explored at the
Document Understanding Conferences between
2002 and 20041.

In later years, there has been more interest in
problems such as sentence compression (Galley
and McKeown, 2007; Clarke and Lapata, 2008;
Cohn and Lapata, 2009; Napoles et al., 2011;
Berg-Kirkpatrick et al., 2011), text simplification
(Zhu et al., 2010; Coster and Kauchak, 2011;
Woodsend and Lapata, 2011) and sentence fu-
sion (Barzilay and McKeown, 2005; Wan et al.,
2007; Filippova and Strube, 2008; Elsner and San-
thanam, 2011). All of them have direct applica-
tions for headline generation, as it can be con-
strued as selecting one or a few sentences from
the original document(s), and then reducing them
to the target title size. For example, Wan et al.
(2007) generate novel utterances by combining
Prim’s maximum-spanning-tree algorithm with an
n-gram language model to enforce fluency. Un-
like HEADY, the method by Wan and colleagues
is an extractive method that can summarize single
documents into a sentence, as opposed to generat-
ing a sentence that can stand for a whole collec-

1http://duc.nist.gov/
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tion of news. Filippova (2010) reports a system
that is very close to our settings: the input is a
collection of related news articles, and the system
generates a headline that describes the main event.
This system uses sentence compression techniques
and benefits from the redundancy in the collection.
One difference with respect to HEADY is that it
does not use any syntactic information aside from
part-of-speech tags, and it does not require a train-
ing step. We have used this approach as a baseline
for comparison.

There are not many fully abstractive systems for
news summarization. The few that exist, such as
the work by Genest and Lapalme (2012), rely on
manually written generation templates. In con-
trast, HEADY automatically learns the templates
or headline patterns automatically, which allows it
to work in open-domain settings without relying
on supervision or manual annotations.

Open-domain pattern learning. Pattern learn-
ing for relation extraction is an active area of re-
search that is very related to our problem of event
pattern learning for headline generation. TextRun-
ner (Yates et al., 2007), ReVerb (Fader et al., 2011)
and NELL (Carlson et al., 2010; Mohamed et al.,
2011) are some examples of open-domain systems
that learn surface patterns that express relations
between pairs of entities. PATTY (Nakashole et
al., 2012) generalizes the patterns to also include
syntactic information and ontological (class mem-
bership) constraints. Our patterns are more similar
to the ones used by PATTY, which also produces
clusters of synonymous patterns. The main differ-
ences are that (a) HEADY is not limited to con-
sider patterns expressing relations between pairs
of entities; (b) we identify synonym patterns us-
ing a probabilistic, Bayesian approach that takes
advantage of the multiplicity of news sources re-
porting the same events. Chambers and Jurafsky
(2009) present an unsupervised method for learn-
ing narrative schemas from news, i.e., coherent
sets of events that involve specific entity types (se-
mantic roles). Similarly to them, we move from
the assumptions that 1) utterances involving the
same entity types within the same document (in
our case, a collection of related documents) are
likely describing aspects of the same event, and
2) meaningful representations of the underlying
events can be learned by clustering these utter-
ances in a principled way.

Noisy-OR networks. Noisy-OR Bayesian net-
works (Pearl, 1988) have been applied in the
past to a wide class of large-scale probabilis-
tic inference problems, from the medical do-
main (Middleton et al., 1991; Jaakkola and Jor-
dan, 1999; Onisko et al., 2001), to synthetic
image-decomposition and co-citation data analy-
sis (Šingliar and Hauskrecht, 2006). By assum-
ing independence between the causes of the hid-
den variables, noisy-OR models tend to be reli-
able (Friedman and Goldszmidt, 1996) as they re-
quire a relatively small number of parameters to
be estimated (linear with the size of the network).

3 Headline generation

In this section, we describe the HEADY system for
news headline abstraction. Our approach takes as
input, for training, a corpus of news articles or-
ganized in news collections. Once the model is
trained, it can generate headlines for new collec-
tions. An outline of HEADY’s main components
follows (details of each component are provided
in Sections 3.1, 3.2 and 3.3):

Pattern extraction. Identify, in each of the news
collections, syntactic patterns connecting k enti-
ties, for k ≥ 1. These will be the candidate pat-
terns expressing events.

Training. Train a Noisy-OR Bayesian network
on the co-occurrence of syntactic patterns. Each
pattern extracted in the previous step is added as
an observed variable, and latent variables are used
to represent the hidden events that generate pat-
terns. An additional noise variable links to every
terminal node, allowing every terminal to be gen-
erated by language background (noise) instead of
by an actual event.

Inference. Generate a headline from an unseen
news collection. First, patterns are extracted using
the pattern extraction procedure mentioned above.
Given the patterns, the posterior probability of the
hidden event variables is estimated. Then, from
the activated hidden events, the likelihood of ev-
ery pattern can be estimated, even if they do not
appear in the collection. The single pattern with
the maximum probability is selected to generate a
new headline from it. Being the product of extra-
news collection generalization, the retrieved pat-
tern is more likely to be objective and informative
than patterns directly observed in the news collec-
tion.
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Algorithm 1 COLLECTIONTOPATTERNSΨ(N ):
N is a repository of news collections, Ψ is a set
of parameters controlling the extraction process.
R ← {}
for all N ∈ N do

PREPROCESSDATA(N)
E ← GETRELEVANTENTITIES(N ′)
for all Ei ← COMBINATIONSΨ(E) do

for all n ∈ N do
P ← EXTRACTPATTERNSΨ(n, Ei)
R{N,Ei} ← R{N,Ei} ∪ P

returnR

3.1 Pattern extraction

In this section we detail the process for obtain-
ing the event patterns that constitute the building
blocks of learning and inference.

Patterns are extracted from a large repository
N of news collections N1, . . . , N|N |. Each news
collection N = {ni} is an unordered collec-
tion of related news, each of which can be seen
as an ordered sequence of sentences, i.e.: n =
[s0, . . . s|n|].

Algorithm 1 presents a high-level view of the
pattern extraction process. The different steps are
described below:

PREPROCESSDATA: We start by preprocess-
ing all the news in the news collections with a
standard NLP pipeline: tokenization and sentence
boundary detection (Gillick, 2009), part-of-speech
tagging, dependency parsing (Nivre, 2006), co-
reference resolution (Haghighi and Klein, 2009)
and entity linking based on Wikipedia and Free-
base. Using the Freebase dataset, each entity is
annotated with all its Freebase types (class labels).
In the end, for each entity mentioned in the docu-
ment we have a unique identifier, a list with all its
mentions in the document and a list of class labels
from Freebase.

As a result of this process, we obtain for each
sentence in the corpus a representation as exem-
plified in Figure 1 (1). In this example, the men-
tions of three distinct entities have been identified,
i.e., e1, . . . , e3. In the Freebase list of types (class
labels), e1 is a person and a celebrity, and e3 is a
state and a location.

GETRELEVANTENTITIES: For each news col-
lection N we collect the set E of the entities men-
tioned most often within the collection. Next, we
generate the set COMBINATIONSΨ(E) consisting

NNP CC NNP TO VB IN NNP
Portia and Helen to marry in California
e1 e2 e3

person actress state
celebrity location

root

cc
conj

nsubj

aux prep pobj

1

NNP NNP
e1 e2

person actress
celebrity

conj 2

NNP CC NNP TO VB
e1 and e2 to marry

person actress
celebrity

cc
conj

nsubj

aux

3

NNP CC NNP TO VB
person and actress to marry

cc
conj

nsubj

aux

4

NNP CC NNP TO VB
celebrity and actress to marry

cc
conj

nsubj

aux

Figure 1: Pattern extraction process from an anno-
tated dependency parse. (1): an MST is extracted
from the entity pair e1, e2 (2); nodes are heuristi-
cally added to the MST to enforce grammaticality
(3); entity types are recombined to generate the fi-
nal patterns (4).

of non-empty subsets of E, without repeated en-
tities. The number of entities to consider in each
collection, and the maximum size for the subsets
of entities to consider are meta-parameters embed-
ded in Ψ.2

EXTRACTPATTERNS: For each subset of rel-
evant entities Ei, event patterns are mined from
the articles in the news collection. The process
by which patterns are extracted from a news is
explained in Algorithm 2 and exemplified graphi-
cally in Figure 1 (2–4).

GETMENTIONNODES: Using the dependency
parse T for a sentence s, we first identify the set
of nodes Mi that mention the entities in Ei. If
T does not contain exactly one mention of each
target entity in Ei, then the sentence is ignored.
Otherwise, we obtain the minimum spanning tree
for the nodeset Pi, i.e., the shortest path in the de-
pendency tree connecting all the nodes inMi (Fig-
ure 1, 2). Pi is the set of nodes around which the
patterns will be constructed.

APPLYHEURISTICS: With very high probabil-
ity, the MST Pi that we obtain does not constitute
a grammatical or useful extrapolation of the origi-
nal sentence s. For example, the MST for the en-

2As our objective is to generate very short titles (under
10 words), we only consider combinations of up to three ele-
ments of E.
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Algorithm 2 EXTRACTPATTERNSΨ(n, Ei): n is
the list of sentences in a news article. Sentences
are POS-tagged, dependency parsed and annotated
with respect to a set of entities E ⊇ Ei
P ← ∅
for all s ∈ n[0 : 2) do
T ← DEPPARSE(s)
Mi ← GETMENTIONNODES(t, Ei)
if ∃e ∈ Ei, count(e,Mi) 6= 1 then continue
Pi ← GETMINIMUMSPANNINGTREEΨ(Mi)
APPLYHEURISTICSΨ(Pi) or continue
P ← P ∪ COMBINEENTITYTYPESΨ(Pi)

return P

tity pair 〈e1, e2〉 in the example does not provide a
good description of the event as it is neither ade-
quate nor fluent. For this reason, we apply a set of
post-processing heuristic transformations that aim
at including a minimal set of meaningful nodes.
These include making sure that both the root of the
clause and its subject appear in the extracted pat-
tern, and that conjunctions between entities should
not be dropped (Figure 1, 3).

COMBINEENTITYTYPES: Finally, a distinct
pattern is generated from each possible combina-
tion of entity type assignments for the participat-
ing entities. (Figure 1, 4).

It is important to note that both at training and
test time, for pattern extraction we only consider
the title and the first sentence of the article body.
The reason is that we want to limit ourselves, in
each news collection, to the most relevant event
reported in the collection, which appears most of
the times in these two sentences. Unlike titles, first
sentences do not extensively use puns or rhetorics
as they tend to be grammatical and informative
rather than catchy.

The patterns mined from the same news collec-
tion and for the same set of entities are grouped
together, and constitute the building blocks of the
clustering algorithm which is described below.

3.2 Training

The extracted patterns are used to learn a Noisy-
OR (Pearl, 1988) model by estimating the prob-
ability that each (observed) pattern activates one
or many (hidden) events. Figure 2 represents the
two levels: the hidden event variables at the top,
and the observed pattern variables at the bottom.
An additional noise variable links to every termi-

e1 ... en noise

p3p2p1 ... pm

Figure 2: Probabilistic model. The associations
between latent event variables and observed pat-
tern variables are modeled by noisy-OR gates.
Events are assumed to be marginally independent,
and patterns conditionally independent given the
events.

nal node, allowing all terminals to be generated by
language background (noise) instead of by an ac-
tual event. The associations between latent events
and observed patterns are modeled by noisy-OR
gates.

In this model, the conditional probability of a
hidden event ei given a configuration of observed
patterns p ∈ {0, 1}|P| is calculated as:

P (ei = 0 | p) = (1− qi0)
∏

j∈πj
(1− qij)pj

= exp


−θi0 −

∑

j∈πi
θijpj


 ,

where πi is the set of active events (i.e., πi =
∪j{pj} | pj = 1), and qij = P (ei = 1 | pj = 1)
is the estimated probability that the observed pat-
tern pi can, in isolation, activate the event e. The
term qi0 is the so-called “noise” term of the model,
and it accounts for the fact that an observed event
ei might be activated by some pattern that has
never been observed (Jaakkola and Jordan, 1999).

In Algorithm 1, at the end of the process we
group in R[N,Ei] all the patterns extracted from
the same news collection N and entity sub-set Ei.
These groups represent rough clusters of patterns,
that we can use to bootstrap the optimization of
the model parameters θij = − log(1 − qij). We
initiate the training process by randomly selecting
100,000 of these groups, and optimize the weights
of the model through 40 EM (Dempster et al.,
1977) iterations.

3.3 Inference (generation of new headlines)
Given an unseen news collection N , the inference
component of HEADY generates a single headline
that captures the main event reported by the news
in N . In order to do so, we first need to select a
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single event-pattern p∗ that is especially relevant
for N . Having selected p∗, in order to generate a
headline it is sufficient to replace the entity place-
holders in p∗ with the surface forms observed in
N .

To identify p∗, we start from the assumption that
the most descriptive event encoded by N must de-
scribe an important situation in which some subset
of the relevant entities E in N are involved.

The basic inference algorithm is a two-
step random walk in the Bayesian network.
Given a set of entities E and sentences n,
EXTRACTPATTERNSΨ(n, E) collects patterns in-
volving those entities. By normalizing the fre-
quency of the extracted patterns, we get a prob-
ability distribution over the observed variables in
the network. A two-step random walk traversing
to the latent event nodes and back to the pattern
nodes allows us to generalize across events. We
call this algorithm INFERENCE(n, E).

In order to decide which is the most relevant set
of events that should appear in the headline, we
use the following procedure:

1. Given the set of entities E mentioned in the
news collection, we consider each entity sub-
set Ei ⊆ E including up to three entities3.
For each Ei, we run INFERENCE(n, Ei),
which computes a distribution wi over pat-
terns involving the entities in Ei.

2. We invoke again INFERENCE, now using at
the same time all the patterns extracted for
every subset of Ei ⊆ E. This computes a
probability distributionw over all patterns in-
volving any admissible subset of the entities
mentioned in the collection.

3. Third, we select the entity-specific distribu-
tion that approximates better the overall dis-
tribution

w∗ = arg max
i

cos(w,wi)

We assume that the corresponding set of en-
tities Ei are the most central entities in the
collection and therefore any headline should
make sure to mention them all.

3As we noted before, we impose this limitation to keep the
generated headlines relatively short and to limit data sparsity
issues.

4. Finally, we select the pattern with the highest
weight in w∗ as the pattern that better cap-
tures the main event reported in the news col-
lection:

p∗ = pj | wj = arg max
j
w∗j

The headline is then produced from p∗, replac-
ing placeholders with the entities in the document
from which the pattern was extracted.

While in many cases information about entity
types would be sufficient to decide about the or-
der of the entities in the generated sentences (e.g.,
“[person] married in [location]” for the entity
set {ea = “Mr. Brown”, eb = “Los Angeles”}),
in other cases class assignment can be ambigu-
ous (e.g., “[person] killed [person]” for {ea =
“Mr. A”, eb = “Mr. B”}). To handle these cases,
when extracting patterns for an entity set {ea, eb},
we keep track of the alphabetical ordering of
the entities, e.g., from a news collection about
“Mr. B” killing “Mr. A” we would produce
patterns such as “[person:2] killed [person:1]” or
“[person:1] was killed by [person:2]” since ea =
“Mr. A” < eb = “Mr. B”. At inference time,
when we query the model with such patterns we
can only activate events whose assignments are
compatible with the entities observed in the text,
making the replacement straightforward and un-
ambiguous.

4 Experiment settings

In our method we use patterns that are fully lex-
icalized (with the exception of entity placehold-
ers) and enriched with syntactic data. Under these
circumstances, the Noisy-OR can effectively gen-
eralize and learn meaningful clusters only if pro-
vided with large amounts of data. To our best
knowledge, available data sets for headline gen-
eration are not large enough to support this kind
of inference.

For this reason, we rely on a corpus of news
crawled from the web between 2008 and 2012
which have been clustered based on closeness in
time and cosine similarity, using the vector-space
model and tf.idf weights. News collections with
less than 5 documents are discarded4, and those

4There is a very long tail of singleton articles, which do
not offer useful examples of lexical or syntactic variation, and
many very small collections that tend to be especially noisy,
hence the decision to consider only collections with at least 5
documents.
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larger than 50 documents are capped, by randomly
picking 50 documents from the collection5. The
total number of news collections after clustering
is 1.7 million. From this set, we have set aside
a few hundred collections that will remain unseen
until the final evaluation.

As we have no development set, we have done
no tuning of the parameters for pattern extraction
nor for the Bayesian network training (100,000 la-
tent variables to represent the different events, 40
EM iterations, as mentioned in Section 3.2). The
EM iterations on the noisy-OR were distributed
across 30 machines with 16 GB of memory each.

4.1 Systems used

One of the questions we wanted to answer in
this research was whether it was possible to ob-
tain the same quality with automatically abstracted
headlines as with human-generated headlines. For
every news collection we have as many human-
generated headlines as documents. To decide
which human-generated headline should be used
in this comparison, we used three different meth-
ods that pick one of the collection headlines:

• Latest headline: selects the headline from
the latest document in the collection. Intu-
itively this should be the most relevant one
for news about sport matches and competi-
tions, where the earlier headlines offer pre-
views and predictions, and the later headlines
report who won and the final scores.

• Most frequent headline: some headlines
are repeated across the collection, and this
method chooses the most frequent one. If
there are several with the same frequency,
one is taken at random6.

• TopicSum: we use TopicSum (Haghighi and
Vanderwende, 2009), a 3-layer hierarchical
topic model, to infer the language model that
is most central for the collection. The news
title that has the smallest Kullback-Leibler

5Even though we did not run any experiment to find an
optimal value for this parameter, 50 documents seems like
a reasonable choice to avoid redundancy while allowing for
considerable lexical and syntactic variation.

6The most frequent headline only has a tie in 6 collections
in the whole test set. In 5 cases two headlines are tied at fre-
quencies around 4, and in one case three headlines are tied at
frequency 2. All six are large collections with 50 news arti-
cles, so this baseline is significantly different from a random
baseline.

R-1 R-2 R-SU4

HEADY 0.3565 0.1903 0.1966
Most frequent pattern 0.3560 0.1864 0.1959
TopicSum 0.3594 0.1821 0.1935
MSC 0.3470 0.1765 0.1855
Most frequent headline 0.3177 0.1401 0.1668
Latest headline 0.2814 0.1191 0.1425

Table 2: Results from the automatic evaluation,
sorted according to the ROUGE-2 and ROUGE-
SU4 scores.

divergence with respect the collection lan-
guage model is the one chosen.

A headline generation system that addresses
the same application as ours is (Filippova, 2010),
which generates a graph from the collection sen-
tences and selects the shortest path between the
begin and the end node traversing words in the
same order in which they were found in the orig-
inal documents. We have used this system, called
Multi-Sentence Compression (MSC), for compar-
isons.

Finally, in order to understand whether the
noisy-OR Bayesian network is useful for general-
izing across patterns into latent events, we added a
baseline that extracts all patterns from the test col-
lection following the same COLLECTIONTOPAT-
TERNS algorithm (including the application of the
linguistically motivated heuristics), and then pro-
duces a headline straightaway from the most fre-
quent pattern extracted. In other words, the only
difference with respect to HEADY is that in this
case no generalization through the Noisy-OR net-
work is carried out, and that headlines are gen-
erated from patterns directly observed in the test
news collections. We call this system Most fre-
quent pattern.

4.2 Annotation activities

In order to evaluate HEADY’s performance, we
carried out two annotation activities.

First, from the set of collections that we had
set aside at the beginning, we randomly chose 50
collections for which all the systems could gen-
erate an output, and we asked raters to manually
write titles for them. As this is not a simple task
to be crowdsourced, for this evaluation we relied
on eight trained raters. We collected between four
and five reference titles for each of the fifty news
collections, to be used to compare the headline
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Readability Informativeness

TopicSum 4.86 4.63
Most freq. headline †‡4.61 †‡34.43
Latest headline †‡4.55 † 4.00
HEADY † 4.28 † 3.75
Most freq. pattern † 3.95 † 3.82
MSC 3.00 3.05

Table 3: Results from the manual evaluation. At
95% confidence, TopicSum is significantly better
than all others for readability, and only indistin-
guishable from the most frequent pattern for in-
formativeness. For the rest, 3 means being signifi-
cantly better than HEADY, ‡ than the most frequent
pattern, and † than MSC.

generation methods using automatic summariza-
tion metrics.

Then, we took the output of the systems for the
50 test collections and asked human raters to eval-
uate the headlines:

1. Raters were shown one headline and asked to
rate it in terms of readability on a 5-point
Likert scale. In the instructions, the raters
were provided with examples of ungrammat-
ical and grammatical titles to guide them in
this annotation.

2. After the previous rating is done, raters were
shown a selection of five documents from the
collection, and they were asked to judge the
informativeness of the previous headline for
the news in the collection, again on a 5-point
Likert scale.

This second annotation was carried out by inde-
pendent raters in a crowd-sourcing setting. The
raters did not have any involvement with the in-
ception of the model or the writing of the pa-
per. They did not know that the headlines they
were rating were generated according to differ-
ent methods. We measured inter-judge agreement
on the Likert-scale annotations using their Intra-
Class Correlation (ICC) (Cicchetti, 1994). The
ICC for readability is 0.76 (0.95 confidence in-
terval [0.71, 0.80]), and for informativeness it is
0.67 (0.95 confidence interval [0.60, 0.73]). This
means strong agreement for readability, and mod-
erate agreement for informativeness.

5 Results

The COLLECTIONTOPATTERNS algorithm was
run on the training set, producing a 230 million

event patterns. Patterns that were obtained from
the same collection and involving the same entities
were grouped together, for a total of 1.7 million
pattern collections. The pattern groups are used to
bootstrap the Noisy-OR model training. Training
the HEADY model that we used for the evaluation
took around six hours on 30 cores.

Table 2 shows the results of the comparison
of the headline generation systems using ROUGE
(R-1, R-2 and R-SU4) (Lin, 2004) with the col-
lected references. According to Owczarzak et
al. (2012), ROUGE is still a competitive met-
ric that correlates well with human judgements
for ranking summarizers. The significance tests
for ROUGE are performed using bootstrap resam-
pling and a graphical significance test (Minka,
2002). The human annotators that created the
references for this evaluation were explicitly in-
structed to write objective titles, which is the kind
of headlines that the abstractive systems aim at
generating. It is common to see real headlines
that are catchy, joking, or with a double mean-
ing, and therefore they use a different vocabulary
than objective titles that simply mention what hap-
pened. TopicSum sometimes selects objective ti-
tles amongst the human-made titles and that is
why it also scores very well with the ROUGE
scores. But the other two criteria for choosing
human-made headlines select non-objective titles
much more often, and this lowers their perfor-
mance when measured with ROUGE with respect
to the objective references.

Table 3 lists the results of the manual evaluation
of readability and informativeness of the generated
headlines. The first result that we can see is the
difference in the rankings between the two evalu-
ations. Part of this difference might be due to the
fact that ROUGE is not as good for discriminating
between human-made and automatic summaries.
In fact, in the DUC competitions, the gap between
human summaries and automatic summaries was
also more apparent in the manual evaluations than
using ROUGE. Another part of the observed dif-
ference may be due to the design of the evalua-
tion. The manual evaluation is asking raters to
judge whether real, human-written titles that were
actually used for those news are grammatical and
informative. As could be expected, as these are
published titles, the real titles score very good on
the manual evaluation.

Some other interesting results are:
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Model Generated title

TopicSum Modern Family’s Eric Stonestreet laughs off
Charlize Theron rumours

MSC Modern Family star Eric Stonestreet is dating
Charlize Theron.

Latest headline Eric laughs off Theron dating rumours
Frequent pattern Eric Stonestreet jokes about Charlize relationship
Frequent headline Charlize Theron dating Modern Family star
HEADY Eric Stonestreet not dating Charlize Theron

TopicSum McFadzean rescues point for Crawley Town
MSC Crawley side challenging for a point against Old-

ham Athletic.
Latest headline Reds midfielder victim of racist tweet
Frequent pattern Kyle McFadzean fired a equaliser Crawley were

made
Frequent headline Latics halt Crawley charge
HEADY Kyle McFadzean rescues point for Crawley Town

F.C.

TopicSum UCI to strip Lance Armstrong of his 7 Tour titles
MSC The international cycling union said today.
Latest headline Letters: elderly drivers and Lance Armstrong
Frequent pattern Lance Armstrong stripped of Tour de France ti-

tles
Frequent headline Today in the news: third debate is tonight
HEADY Lance Armstrong was stripped of Tour de France

titles

Table 4: A comparison of the titles generated by
the different models for three news collections.

• Amongst the automatic systems, HEADY per-
formed better than MSC, with statistical sig-
nificance at 95% for all the metrics. Head-
lines based on the most frequent patterns
were better than MSC for all metrics but
ROUGE-2.

• The most frequent pattern baseline and
HEADY have comparable performance across
all the metrics (not statistically significantly
different), although HEADY has slightly bet-
ter scores for all metrics except for informa-
tiveness.

While we do not take any step to explicitly
model stylistic variation, estimating the weights
of the Noisy-OR network turns out to be a very
effective way of filtering out sensational wording
to the advantage of plainer, more objective style.
This may not clearly emerge from the evaluation,
as we did not explicitly ask the raters to annotate
the items based on their objectivity, but a manual
inspection of the clusters suggests that the gener-
alization is working in the right direction.

Table 4 presents a selection of outputs produced
by the six models for three different news collec-
tions. The first example shows a news collection
containing news about a rumour that was imme-
diately denied. In the second example, HEADY

generalization improves over the most frequent
pattern. In the third case, HEADY generates a

good title from a noisy collection (containing dif-
ferent but related events). The examples also
show that TopicSum is very effective in selecting
a good human-generated headline for each collec-
tion. This opens the possibility of using TopicSum
to automatically generate ROUGE references for
future evaluations of abstractive methods.

6 Conclusions

We have presented HEADY, an abstractive head-
line generation system based on the generaliza-
tion of syntactic patterns by means of a Noisy-OR
Bayesian network. We evaluated the model both
automatically and through human annotations.
HEADY performs significantly better than a state-
of-the-art open domain abstractive model (Filip-
pova, 2010) in all evaluations, and is in par with
human-generated headlines in terms of ROUGE
scores. We have shown that it is possible to
achieve high quality generation of news headlines
in an open-domain, unsupervised setting by suc-
cessfully exploiting syntactic and ontological in-
formation. The system relies on a standard NLP
pipeline, requires no manual data annotation and
can effectively scale to web-sized corpora.

For feature work, we plan to improve all compo-
nents of HEADY in order to fill in the gap with the
human-generated titles in terms of readability and
informativeness. One of the directions in which
we plan to move is the removal of the syntac-
tic heuristics that currently enforce pattern well-
formedness and to automatically learn the neces-
sary transformations from the data.

Two other lines of work that we plan to explore
are the possibility of personalizing the headlines
to user interests (as stored in user profiles or ex-
pressed as user queries), and to investigate further
applications of the Bayesian network of event pat-
terns, such as its use for relation extraction and
knowledge base population.
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Tomáš Šingliar and Miloš Hauskrecht. 2006. Noisy-or
component analysis and its application to link analy-
sis. J. Mach. Learn. Res., 7:2189–2213, December.

Stephen Wan, Robert Dale, Mark Dras, and Cécile
Paris. 2007. Global Revision in Summarisation:
Generating Novel Sentences with Prim’s Algorithm.
In Proceedings of PACLING 2007 - 10th Conference
of the Pacific Association for Computational Lin-
guistics.

Kristian Woodsend and Mirella Lapata. 2011. Learn-
ing to simplify sentences with quasi-synchronous
grammar and integer programming. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 409–420. Association
for Computational Linguistics.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. TextRunner: Open information
extraction on the web. In Proceedings of Human
Language Technologies: The Annual Conference of
the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pages
25–26. Association for Computational Linguistics.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of The
23rd International Conference on Computational
Linguistics, pages 1353–1361.

1253



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1254–1263,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Conditional Random Fields for Responsive Surface Realisation using
Global Features

Nina Dethlefs, Helen Hastie, Heriberto Cuaýahuitl and Oliver Lemon
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Abstract

Surface realisers in spoken dialogue sys-
tems need to be more responsive than con-
ventional surface realisers. They need to
be sensitive to the utterance context as well
as robust to partial or changing generator
inputs. We formulate surface realisation as
a sequence labelling task and combine the
use of conditional random fields (CRFs)
with semantic trees. Due to their extended
notion of context, CRFs are able to take
the global utterance context into account
and are less constrained by local features
than other realisers. This leads to more
natural and less repetitive surface realisa-
tion. It also allows generation from partial
and modified inputs and is therefore ap-
plicable to incremental surface realisation.
Results from a human rating study confirm
that users are sensitive to this extended no-
tion of context and assign ratings that are
significantly higher (up to14%) than those
for taking only local context into account.

1 Introduction

Surface realisation typically aims to produce out-
put that is grammatically well-formed, natural and
cohesive. Cohesion can be characterised by lexical
or syntactic cues such as repetitions, substitutions,
ellipses, or connectives. In automatic language
generation, such properties can sometimes be dif-
ficult to model, because they require rich context-
awareness that keeps track of all (or much) of what
was generated before, i.e. a growing generation
history. In text generation, cohesion can span over
the entire text. In interactive settings such as gen-
eration within a spoken dialogue system (SDS), a

challenge is often to keep track of cohesion over
several utterances. In addition, since interactions
are dynamic, generator inputs from the dialogue
manager can sometimes be partial or subject to
subsequent modification. This has been addressed
by work on incremental processing (Schlangen
and Skantze, 2009). Since dialogue acts are passed
on to the generation module as soon as possible,
this can sometimes lead to incomplete generator
inputs (because the user is still speaking), or in-
puts that are subject to later modification (because
of an initial ASR mis-recognition).

In this paper, we propose to formulate surface
realisation as a sequence labelling task. We use
conditional random fields (Lafferty et al., 2001;
Sutton and McCallum, 2006), which are suitable
for modelling rich contexts, in combination with
semantic trees for rich linguistic information. This
combination is able to keep track of dependen-
cies between syntactic, semantic and lexical fea-
tures across multiple utterances. Our model can
be trained from minimally labelled data, which re-
duces development time and may (in the future)
facilitate an application to new domains.

The domain used in this paper is a pedestrian
walking around a city looking for information and
recommendations for local restaurants from an
SDS. We describe here the module for surface re-
alisation. Our main hypothesis is that the use of
global context in a CRF with semantic trees can
lead to surface realisations that are better phrased,
more natural and less repetitive than taking only
local features into account. Results from a human
rating study confirm this hypothesis. In addition,
we compare our system with alternative surface
realisation methods from the literature, namely, a
rank and boost approach andn-grams.

Finally, we argue that our approach lends itself
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to surface realisation within incremental systems,
because CRFs are able to model context across
full as well as partial generator inputs which may
undergo modifications during generation. As a
demonstration, we apply our model to incremen-
tal surface realisation in a proof-of-concept study.

2 Related Work

Our approach is most closely related to Lu et
al. (2009) who also use CRFs to find the best
surface realisation from a semantic tree. They
conclude from an automatic evaluation that using
CRF-based generation which takes long-range de-
pendencies into account outperforms several base-
lines. However, Lu et al.’s generator does not take
context beyond the current utterance into account
and is thus restricted to local features. Further-
more, their model is not able to modify generation
results on the fly due to new or updated inputs.

In terms of surface realisation from graphical
models (and within the context of SDSs), our ap-
proach is also related to work by Georgila et al.
(2002) and Dethlefs and Cuayáhuitl (2011b), who
use HMMs, Dethlefs and Cuayáhuitl (2011a) who
use Bayes Nets, and Mairesse et al. (2010) who
use Dynamic Bayes Nets within an Active Learn-
ing framework. The last approach is also con-
cerned with generating restaurant recommenda-
tions within an SDS. Specifically, their system op-
timises its performance online, during the interac-
tion, by asking users to provide it with new textual
descriptions of concepts, for which it is unsure of
the best realisation. In contrast to these related
approaches, we use undirected graphical models
which are useful when the natural directionality
between the input variables is unknown.

In terms of surface realisation for SDSs, Oh and
Rudnicky (2000) present foundational work in us-
ing ann-gram-based system. They train a surface
realiser based on a domain-dependent language
model and use an overgeneration and ranking ap-
proach. Candidate utterances are ranked accord-
ing to a penalty function which penalises too long
or short utterances, repetitious utterances and ut-
terances which either contain more or less infor-
mation than required by the dialogue act. While
their approach is fast to execute, it has the dis-
advantage of not being able to model long-range
dependencies. They show that humans rank their
output equivalently to template-based generation.

Further, our approach is related to the SPaRKy

sentence generator (Walker et al., 2007). SPaRKy
was also developed for the domain of restaurant
recommendations and was shown to be equivalent
to or better than a carefully designed template-
based generator which had received high human
ratings in the past (Stent et al., 2002). It generates
sentences in two steps. First, it produces a ran-
domised set of alternative realisations, which are
then ranked according to a mapping from sentence
plans to predicted human ratings using a boosting
algorithm. As in our approach, SPaRKy distin-
guishes local and global features. Local features
take only information of the current tree node into
account, including its parents, siblings and chil-
dren, while global features take information of the
entire utterance into account. While SPaRKy is
shown to reach high output quality in compari-
son to a template-based baseline, the authors ac-
knowledge that generation with SPaRKy is rather
slow when applied in a real-time SDS. This could
present a problem in incremental settings, where
generation speed is of particular importance.

The SPaRKy system is also used by Rieser et
al. (2011), who focus on information presentation
strategies for restaurant recommendations, sum-
maries or comparisons within an SDS. Their sur-
face realiser is informed by the highest ranked
SPaRKy outputs for a particular information pre-
sentation strategy and will constitute one of our
baselines in the evaluation.

More work on trainable realisation for SDSs
generally includes Bulyko and Ostendorf (2002)
who use finite state transducers, Nakatsu and
White (2006) who use supervised learning, Varges
(2006) who uses chart generation, and Konstas
and Lapata (2012) who use weighted hypergraphs,
among others.

3 Cohesion across Utterances

3.1 Tree-based Semantic Representations

The restaurant recommendations we generate can
include any of the attributes shown in Table 1.
It is then the task of the surface realiser to find
the best realisation, including whether to present
them in one or several sentences. This often is
a sentence planning decision, but in our approach
it is handled using CRF-based surface realisation.
The semantic forms underlying surface realisation
can be produced in many ways. In our case, they
are produced by a reinforcement learning agent
which orders semantic attributes in the tree ac-
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Figure 1: Architecture of our SDS with a focus on
the NLG components. While the user is speaking,
the dialogue manager sends dialogue acts to the
NLG module, which uses reinforcement learning
to order semantic attributes and produce a seman-
tic tree (see Dethlefs et al. (2012b)). This paper fo-
cuses on surface realisation from these trees using
a CRF as shown in the surface realisation module.

Slot Example
ADDRESS The venue’s address is . . .
AREA It is located in . . .
FOOD The restaurant serves . . . cuisine.
NAME The restaurant’s name is . . .
PHONE The venue’s phone number is . . .
POSTCODE The postcode is . . .
QUALITY This is a . . . venue.
PRICE It is located in the . . . price range.
SIGNATURE The venue specialises in . . .
VENUE This venue is a . . .

Table 1: Semantic slots required for our domain
along with example realisations. Attributes can be
combined in all possible ways during generation.

cording to their confidence in the dialogue. This
is because SDSs can often have uncertainties with
regard to the user’s actual desired attribute values
due to speech recognition inaccuracies. We there-
fore model all semantic slots as probability distri-
butions, such asinform(food=Indian, 0.6) or in-
form(food=Italian, 0.4)and apply reinforcement
learning to finding the optimal sequence for pre-
sentation. Please see Dethlefs et al. (2012b) for
details. Here, we simply assume that a semantic
form has been produced by a previous processing
module.

As shown in the architecture diagram in Fig-
ure 1, a CRF surface realiser takes a semantic
tree as input. We represent these as context-free
trees which can be defined formally as 4-tuples

Lexical

features
Syntactic

features

Semantic

features

The Beluga is a great Italian restaurant

y0 y1 y2

root

inform(

name=

Beluga)

The Beluga

root

inform(

venue=

Restaurant)

is a great Italian

inform(

type=

Italian)

root

restaurant

(a)

(b)

The 

Beluga

is a great

Italian

restaurant

other

phrases

(c)

Figure 2: (a) Graphical representation of a linear-
chain Conditional Random Field (CRF), where
empty nodes correspond to the labelled sequence,
shaded nodes to linguistic observations, and dark
squares to feature functions between states and ob-
servations; (b) Example semantic trees that are up-
dated at each time step in order to provide linguis-
tic features to the CRF (only one possible surface
realisation is shown and parse categories are omit-
ted for brevity); (c) Finite state machine of phrases
(labels) for this example.

{S, T,N,H}, whereS is a start symbol, typically
the root node of the tree;T = {t0, t1, t2 . . . t|T |}
is a set of terminal symbols, corresponding to sin-
gle phrases;N = {n0, n1, n2 . . . n|N |} is a set of
non-terminal symbols corresponding to semantic
categories, andH = {h0, h1, h2 . . . h|H|} is a set
of production rules of the formn → α, where
n ∈ N , α ∈ T ∪ N . The production rules rep-
resent alternatives at each branching node where
the CRF is consulted for the best available expan-
sion from the subset of possible ones. All nodes
in the tree are annotated with a semantic concept
(obtained from the semantic form) as well as their
parse category.

3.2 Conditional Random Fields for
Phrase-Based Surface Realisation

The main idea of our approach is to treat surface
realisation as a sequence labelling task in which a
sequence of semantic inputs needs to be labelled
with appropriate surface realisations. The task is
therefore to find a mapping between (observed)
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lexical, syntactic and semantic features and a (hid-
den) best surface realisation.

We use the linear-chain Conditional Random
Field (CRF) model for statistical phrase-based sur-
face realisation, see Figure 2 (a). This probabilis-
tic model defines the posterior probability of la-
bels (surface realisation phrases)y={y1, . . . , y|y|}
given featuresx={x1, . . . , x|x|} (informed by a se-
mantic tree, see Figure 2 (b)), as

P (y|x) =
1

Z(x)

T∏

t=1

exp

{
K∑

k=1

θkΦk(yt, yt−1, xt)

}
,

whereZ(x) is a normalisation factor over all pos-
sible realisations (i.e. labellings) ofx such that the
sum of all terms is one. The parametersθk are
weights corresponding to feature functionsΦk(.),
which are real values describing the label statey
at timet based on the previous label stateyt−1 and
featuresxt. For example: from Figure 2 (c),Φk

might have the valueΦk = 1.0 for the transition
from “The Beluga” to “is a great Italian” , and0.0
elsewhere. The parametersθk are set to maximise
the conditional likelihood of phrase sequences in
the training data set. They are estimated using the
gradient ascent algorithm.

After training, labels can be predicted for new
sequences of observations. The most likely phrase
sequence is expressed as

y ∗ = arg max
y

P (y|x),

which is computed using the Viterbi algorithm.
We use the Mallet package1 (McCallum, 2002) for
parameter learning and inference.

3.3 Feature Selection and Training

The following features define the generation con-
text used during training of the CRF. The genera-
tion context includes everything that has been gen-
erated for the current utterance so far. All features
can be obtained from a semantic input tree.

• Lexical items of parents and siblings,
• Semantic types in expansion,
• Semantic types of parents and siblings,
• Parse category of expansion,
• Parse categories of parents and siblings.

We use the StanfordParser2 (Marneffe et al., 2006)
to obtain the parse category for each tree node.

1http://mallet.cs.umass.edu/
2http://nlp.stanford.edu/software/

lex-parser.shtml

The semantics for each node are derived from the
input dialogue acts (these are listed in Table 1) and
are associated with nodes. The lexical items are
present in the generation context and are mapped
to semantic tree nodes.

As an example, for generating an utterance (la-
bel sequence) such asThe Beluga is a great restau-
rant. It is located in the city centre., each gen-
eration step needs to take the features of the en-
tire generation history into account. This includes
all individual lexical items generated, the seman-
tic types used and the parse categories for each
tree node involved. For the first constituent,The
Beluga, this corresponds to the features{ˆ BE-
GIN NAME} indicating the beginning of a sentence
(where empty features are omitted), the beginning
of a new generation context and the next semantic
slot required. For the second constituent,is a great
restaurant, the features are{THE BELUGA NAME

NP VENUE}, i.e. including the generation history
(with lexical items and parse category added for
the first constituent) and the semantics of the next
required slot,VENUE. In this way, a sequence of
surface form constituents is generated correspond-
ing to latent states in the CRF.

Since global utterance features capture the full
generation context (i.e. beyond the current ut-
terance), we are also able to model phenomena
such as co-references and pronouns. This is useful
for longer restaurant recommendations which may
span over more than one utterance. If the genera-
tion history already contains a semantic attribute,
e.g. the restaurant name, the CRF may afterwards
choose a pronoun, e.g.it, which has a higher like-
lihood than using the proper name again. Simi-
larly, the CRF may decide to realise a new attribute
as constituents of different order, such as a sen-
tence or PP, depending on the length, number and
parse categories of previously generated output. In
this way, our approach implicitly treats sentence
planning decisions such as the distribution of con-
tent over a set of messages in the same way as (or
as part of) surface realisation. A further capabil-
ity of our surface realiser is that it can generate
complete phrases from full as well as partial dia-
logue acts. This is useful in interactive contexts,
where we need as much robustness as possible. A
demonstration of this is given in Section 5 in an
application to incremental surface realisation.

To train the CRF, we used a data set of552
restaurant recommendations from the website The

1257



List.3 The data contains recommendations such as
Located in the city centre, Beluga is a stylish yet
laid-back restaurant with a smart menu of modern
European cuisine.

3.4 Grammar Induction

The grammarg of surface realisation candidates
is obtained through an automatic grammar induc-
tion algorithm which can be run on unlabelled
data and requires only minimal human interven-
tion. This grammar defines the surface realisa-
tion space for the CRFs. We provide the human
corpus of restaurant recommendations from Sec-
tion 3.3 as input to grammar induction. The al-
gorithm is shown in Algorithm 1. It first identi-
fies all semantic attributes of interest in an utter-
ance, in our case those specified in Table 1, and re-
places them by a variable. These attributes include
food types, such asMexican, Chinese, particular
parts of town, prices, etc. About45% of them can
be identified based on heuristics. The remainder
needs to be hand-annotated at the moment, which
includes mainly attributes like restaurant names or
quality attributes, such asdelicate, exquisite, etc.
Subsequently, all utterances are parsed using the
Stanford parser to obtain constituents and are inte-
grated into the grammar under construction. The
non-terminal symbols are named after the auto-
matically annotated semantic attributes contained
in their expansion, e.g.NAME QUALITY → The
$name$ is of $quality$ quality. In this way, each
non-terminal symbol has a semantic representa-
tion and an associated parse category. In total, our
induced grammar contains more than800 rules.

4 Evaluation

To evaluate our approach, we focus on a sub-
jective human rating study which aims to deter-
mine whether CRF-based surface realisation that
takes the full generation context into account,
calledCRF (global), is perceived better by human
judges than one that uses a CRF but just takes local
context into account, calledCRF (local). While
CRF (global) uses features from the entire genera-
tion history, CRF (local) uses only features from
the current tree branch. We assume that cohe-
sion can be identified by untrained judges as natu-
ral, well-phrased and non-repetitive surface forms.
To examine differences in methodology between

3http://www.list.co.uk

Algorithm 1 Grammar Induction.
1: function FINDGRAMMAR (utterancesu, semantic at-

tributesa) return grammar

2: for each utteranceu do
3: if u contains a semantic attribute froma, such as

venue, cuisine, etc.then
4: Find and replace the attribute by its semantic

variable, e.g.$venue$.
5: end if
6: Parse the sentence and induce a set of rulesα →

β, whereα is a semantic variable andβ is its parse.
7: Traverse the parse tree in a top-down, depth-first

search and
8: if expansionβ existsthen
9: continue

10: else ifnon-terminalα existsthen
11: add new expansionβ to α.
12: elsewrite new ruleα → β.
13: end if
14: Write grammar.
15: end for
16: end function

CRFs and other state-of-the-art methods, we also
compare our system to two other baselines:

• CLASSiC corresponds to the system re-
ported in Rieser et al. (2011),4 which gen-
erates restaurant recommendations based on
the SPaRKy system (Walker et al., 2007), and
has received high ratings in the past. SPaRKy
uses global utterance features.

• n-grams represents a simple5-gram baseline
that is similar to Oh and Rudnicky (2000)’s
system. We will sample from the most likely
slot realisations that do not contain a repeti-
tion and include exactly the required slot val-
ues. Local context only is taken into account.

4.1 Human Rating Study

We carried out a user rating study on the Crowd-
Flower crowd sourcing platform.5 Each partici-
pant was shown part of a real human-system dia-
logue that emerged as part of the CLASSiC project
evaluation (Rieser et al., 2011). All dialogues
and data are freely available fromhttp://www.
classic-project.org. Each dialogue contained
two variations for one of the utterances. These
variations were generated from two out of the four
systems described above. The order that these
were presented to the participant was counterbal-
anced. Table 2 gives an example of a dialogue seg-
ment presented to the participants.

4In Rieser et al. (2011), this system is referred to as the
TIP system, which generates summaries, comparisons or rec-
ommendations for restaurants. For the present study, we com-
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SYS Thank you for calling the Cambridge Information
system. Your call will be recorded for research pur-
poses. You may ask for information about a place
to eat, such as a restaurant, a pub, or a cafe. How
may I help you?

USR I want to find an American restaurant which is in
the very expensive area.

SYS
A

The restaurant Gourmet Burger is an outstanding,
expensive restaurant located in the central area.

SYS
B

Gourmet Burger is a smart and welcoming restau-
rant. Gourmet Burger provides an expensive dining
experience with great food and friendly service. If
you’re looking for a central meal at an expensive
price.

USR What is the address and phone number?

SYS Gourmet Burger is on Regent Street and its phone
number is 01223 312598.

USR Thank you. Good bye.

Table 2: Example dialogue for participants to
compare alternative outputs in italics, USR=user,
SYS A=CRF (global), SYS B=CRF(local).

System Natural Phrasing Repetit.
CRF global 3.65 3.64 3.65
CRF local 3.10∗ 3.19∗ 3.13∗

CLASSiC 3.53∗ 3.59 3.48∗

n-grams 3.01∗ 3.09∗ 3.32∗

Table 3: Subjective user ratings. Significance with
CRF (global) at p<0.05 is indicated as∗.

44 participants gave a total of 1,830 ratings of
utterances produced across the four systems. Flu-
ent speakers of English only were requested and
the participants were from the United States. They
were asked to rate each utterance on a 5 point Lik-
ert scale in response to the following questions
(where 5 corresponds tototally agreeand 1 cor-
responds tototally disagree):

• The utterance was natural, i.e. it could have
been produced by a human. (Natural)

• The utterance was phrased well. (Phrasing)
• The utterance was repetitive. (Repetitive)

4.2 Results

We can see from Table 3 that across all the cate-
gories, the CRF (global) gets the highest overall
ratings. This difference is significant for all cat-
egories compared with CRF (local) andn-grams
(using a 1-sided Mann Whitney U-test, p< 0.001).

pare only with the subset of recommendations.
5http://www.crowdflower.com

Possibly this is because the local context taken
into account by both systems was not enough to
ensure cohesion across surface phrases. It is not
possible, e.g., to cover co-references within a lo-
cal context only or discourse markers that refer be-
yond the current utterance. This can lead to short
and repetitive phrases, such asMake your way to
Gourmet Burger. The food quality is outstanding.
The prices are expensive.generated by then-gram
baseline.

The CLASSiC baseline, based on SPaRKy, was
the most competitive system in our comparison.
None-the-less CRF (global) is rated higher across
categories and significantly so forNatural (p <
0.05) andRepetitive(p < 0.005). ForPhrasing,
there is a trend but not a significant difference (p
< 0.16). All comparisons are based on a 1-sided
Mann Whitney U-test. A qualitative comparison
between the CRF (global) and CLASSiC outputs
showed the following. CLASSiC utterances tend
to be longer and contain more sentences than CRF
(global) utterances. While CRF (global) often de-
cides to aggregate attributes into one sentence,
such asthe Beluga is an outstanding restaurant
in the city centre, CLASSiC tends to rely more on
individual messages, such asThe Beluga is an out-
standing restaurant. It is located in the city cen-
tre. A possible reason is that while CRF (global)
is able to take features beyond an utterance into
account, CLASSiC/SPaRKy is restricted to global
features of the current utterance.

We can further compare our results with Rieser
et al. (2011) and Mairesse et al. (2010) who also
generate restaurant recommendations and asked
similar questions to participants as we did. Rieser
et al. (2011)’s system received an average rating
of 3.586 in terms ofPhrasingwhich compares to
our 3.64. This difference is not significant, and
in line with the user ratings we observed for the
CLASSiC system above (3.59). Mairesse et al.
(2010) achieved an average score of4.05 in terms
of Natural in comparison to our3.65. This differ-
ence is significant at p<0.05. Possibly their better
performance is due to the data set being more “in
domain” than ours. They collected data from hu-
mans that was written specifically for the task that
the system was tested on. In contrast, our system
was trained on freely available data that was writ-
ten by professional restaurant reviewers. Unfortu-
nately, we cannot compare across other categories,

6This was rescaled from a 1-6 scale.
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USR1 I’m looking for a nice restaurant in the centre.
SYS1 inform(area=centre [0.2], food=Thai [0.3])

inform(name=Bangkok [0.3])
So you’re looking for a Thai . . .

USR2 [barges in] No, I’m looking for a restaurant
with good quality food.

SYS2 inform(quality=good [0.6], name=Beluga [0.6])
Oh sorry, so a nice restaurant located . . .

USR3 [barges in] . . . in the city centre.
SYS3 inform(area=centre [0.8])

Table 4: Example dialogue where the dialogue
manager needs to send incremental updates to the
NLG. Incremental surface realisation from seman-
tic trees for this dialogue is shown in Figure 3.

because the authors tested only forPhrasingand
Natural, respectively.

5 Incremental Surface Realisation

Recent years have seen increased interest in
incremental dialogue processing (Skantze and
Schlangen, 2009; Schlangen and Skantze, 2009).
The main characteristic of incremental architec-
tures is that instead of waiting for the end of a user
turn, they begin to process the input stream as soon
as possible, updating their processing hypotheses
as more information becomes available. From a
dialogue perspective, they can be said to work on
partial rather than full dialogue acts.

With respect to surface realisation, incremen-
tal NLG systems have predominantly relied on
pre-defined templates (Purver and Otsuka, 2003;
Skantze and Hjalmarsson, 2010; Dethlefs et al.,
2012a), which limits the flexibility and quality of
output generation. Buschmeier et al. (2012) have
presented a system which systematically takes
the user’s acoustic understanding problems into
account by pausing, repeating or re-phrasing if
necessary. Their approach is based on SPUD
(Stone et al., 2003), a constraint satisfaction-based
NLG architecture and marks important progress
towards more flexible incremental surface realisa-
tion. However, given the human labour involved in
constraint specification, cohesion is often limited
to a local context. Especially for long utterances
or such that are separated by user turns, this may
lead to surface form increments that are not well
connected and lack cohesion.

5.1 Application to Incremental SR

This section will discuss a proof-of-concept appli-
cation of our approach to incremental surface re-
alisation. Table 4 shows an example dialogue be-
tween a user and system that contains a number
of incremental phenomena that require hypothe-
sis updates, system corrections and user barge-
ins. Incremental surface realisation for this dia-
logue is shown in Figure 3, where processing steps
are indicated as bold-face numbers and are trig-
gered by partial dialogue acts that are sent from
the dialogue manager, such asinform(area=centre
[0.2]). The numbers in square brackets indicate
the system’s confidence in the attribute-value pair.
Once a dialogue act is observed by the NLG sys-
tem, a reinforcement learning agent determines the
order of attributes and produces a semantic tree, as
described in Section 3.1. Since the semantic forms
are constructed incrementally, new tree nodes can
be attached to and deleted from an existing tree,
depending on what kind of update is required.

In the dialogue in Table 4, the user first asks
for a nice restaurant in the centre. The dialogue
manager constructs a first attribute-value slot,in-
form(area=centre [0.2], . . . ), and passes it on to
NLG.7 In Figure 3, we can observe the corre-
sponding NLG action, a first tree is created with
just a root node and a node representing the area
slot (step 1). In a second step, the semantically
annotated node getsexpandedinto a surface form
that is chosen from a set of candidates (shown in
curly brackets). The CRF is responsible for this
last step. Since there is no preceding utterance, the
best surface form is chosen based on the semantics
alone. Active tree nodes, i.e. those currently under
generation, are indicated as asterisks in Figure 3.
Currently inactive nodes are shown as circles.

Step 3 then further expands the current tree
adding a node for the food type and the name of
a restaurant that the dialogue manager had passed.
We see here that attributes can either be primitive
or complex. Primitive attributes contain a single
semantic type, such asarea, whereas complex at-
tributes contain multiple types, such asfood, name
and need to be decomposed in a later processing
step (see steps 4 and 6). Step 5 again uses the CRF

7Note here that the information passed on to the NLG is
distinct from the dialogue manager’s own actions. In the ex-
ample, the NLG is asked to generate a recommendation, but
the dialogue manager actually decides to clarify the user’s
preferences due to low confidence. This scenario is an exam-
ple of generator inputs that may get revised afterwards.
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root

(1) inform

(area=centre)

(2) Right in the city centre,

{located in $area$, if 

you're looking to eat 

in $area$, in $area$, ...} 

inform(area=

centre)

(3) inform(food=Thai

        name=Bangkok)

Right in the city centre, 

root

(6) inform

(food=Thai)

(4) inform(name=

              Bangkok)

(5) Bangkok

{the $name$, 

it is called $name$,  ...}

root

inform(area=

centre)

Right in the city centre, 

inform(food=Thai, 

name=Bangkok)

root

inform(area=

centre)

Right in the city centre, 

(7) inform(quality=very

good, name=Beluga)

inform(name=

        Bangkok)

inform

(food=Thai)

Bangkok

root

inform(area=

centre)

inform(quality=nice, 

name=Beluga)

Right in the city centre, 

(8) inform(name=

Beluga)

(10) inform(quality=

very good)

(9) the Beluga

{$name$, the venue 

called $name$, ...}

(11) is of very good quality. 

{is a $quality$ venue, if you want $quality$ 

food, $quality$, a $quality$ place ...}

*

*

*

*

*

* *

**

*

**

*

Figure 3: Example of incremental surface realisation, where each generation step is indicated by a num-
ber. Active generation nodes are shown as asterisks and deletions are shown as crossed out. Lexical and
semantic features are associated with their respective nodes. Syntactic information in the form of parse
categories are also taken into account for surface realisation, but have been omitted in this figure.

to obtain the next surface realisation that connects
with the previous one (so that a sequence of real-
isation “labels” appears:Right in the city centre
andBangkok). It takes the full generation context
into account to ensure a globally optimal choice.
This is important, because the local context would
otherwise be restricted to a partial dialogue act,
which can be much smaller than a full dialogue
act and thus lead to short, repetitive sentences.

The dialogue continues as the system implicitly
confirms the user’s preferred restaurant (SYS1).
At this point, we encounter a user barge-in correct-
ing the desired choice. As a consequence, the dia-
logue manager needs toupdate its initial hypothe-
ses and communicate this to NLG. Here, the last
three tree nodes need to bedeleted from the tree
because the information is no longer valid. This
update and the deletion is shown in step 7. After-
wards, the dialogue continues and NLG involves
mainly expanding the current tree into a full se-
quence of surface realisations for partial dialogue
acts which come together into a full utterance.

This example illustrates three incremental pro-
cessing steps: expansions, updates and deletions.
Expansionsare the most frequent operation. They
add new partial dialogue acts to the semantic tree.
They also consult the CRF for the best surface

realisation. Since CRFs are not restricted by the
Markov condition, they are less constrained by lo-
cal context than other models and can take non-
local dependencies into account. For our applica-
tion, the maximal context is 9 semantic attributes
(for a surface form that uses all possible 10 at-
tributes). While their extended context aware-
ness can often make CRFs slow to train, they are
fast at execution and therefore very applicable to
the incremental scenario. For applications involv-
ing longer-spanning alternatives, such as texts or
paragraphs, the context of the CRF would likely
have to be constrained.Updatesare triggered by
the hypothesis updates of the dialogue manager.
Whenever a new attribute comes in, it is checked
against the generator’s existing knowledge. If it
is inconsistent with previous knowledge, an up-
date is triggered and often followed by adeletion.
Whenever generated output needs to be modified,
old expansions and surface forms are deleted first,
before new ones can be expanded in their place.

5.2 Updates and Processing Speed Results

Since fast responses are crucial in incremental sys-
tems, we measured the average time our system
took for a surface realisation. The time is100ms
on a MacBook Intel Core 2.6 Duo with 8GB in
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RAM. This is slightly better than other incremen-
tal systems (Skantze and Schlangen, 2009) and
much faster than state-of-the-art non-incremental
systems such as SPaRKy (Walker et al., 2007).
In addition, we measured the number of neces-
sary generation updates in comparison to a non-
incremental setting. Since updates take effect di-
rectly on partial dialogue acts, rather than the full
generated utterance, we require around50% less
updates as if generating from scratch for every
changed input hypothesis. A qualitative analysis
of the generated outputs showed that the quality is
comparable to the non-incremental case.

6 Conclusion and Future Directions

We have presented a novel technique for surface
realisation that treats generation as a sequence la-
belling task by combining a CRF with tree-based
semantic representations. An essential property
of interactive surface realisers is to keep track of
the utterance context including dependencies be-
tween linguistic features to generate cohesive ut-
terances. We have argued that CRFs are well
suited for this task because they are not restricted
by independence assumptions. In a human rating
study, we confirmed that judges rated our output
as better phrased, more natural and less repetitive
than systems that just take local features into ac-
count. This also holds for a comparison with state-
of-the-art rank and boost orn-gram approaches.
Keeping track of the global context is also impor-
tant for incremental systems since generator inputs
can be incomplete or subject to modification. In a
proof-of-concept study, we have argued that our
approach is applicable to incremental surface real-
isation. This was supported by preliminary results
on the speed, number of updates and quality dur-
ing generation. As future work, we plan to test
our model in a task-based setting using an end-to-
end SDS in an incremental and non-incremental
setting. This study will contain additional evalu-
ation categories, such as the understandability or
informativeness of system utterances. In addition,
we may compare different sequence labelling al-
gorithms for surface realisation (Nguyen and Guo,
2007) or segmented CRFs (Sarawagi and Cohen,
2005) and apply our method to more complex sur-
face realisation domains such as text generation or
summarisation. Finally, we would like to explore
methods for unsupervised data labelling so as to
facilitate portability across domains further.
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Abstract

Long distance reordering remains one of
the greatest challenges in statistical ma-
chine translation research as the key con-
textual information may well be beyond
the confine of translation units. In this
paper, we propose Two-Neighbor Orien-
tation (TNO) model that jointly models
the orientation decisions between anchors
and two neighboring multi-unit chunks
which may cross phrase or rule bound-
aries. We explicitly model the longest
span of such chunks, referred to as Max-
imal Orientation Span, to serve as a
global parameter that constrains under-
lying local decisions. We integrate our
proposed model into a state-of-the-art
string-to-dependency translation system
and demonstrate the efficacy of our pro-
posal in a large-scale Chinese-to-English
translation task. On NIST MT08 set, our
most advanced model brings around +2.0
BLEU and -1.0 TER improvement.

1 Introduction

Long distance reordering remains one of the great-
est challenges in Statistical Machine Translation
(SMT) research. The challenge stems from the
fact that an accurate reordering hinges upon the
model’s ability to make many local and global
reordering decisions accurately. Often, such
reordering decisions require contexts that span
across multiple translation units.1 Unfortunately,
previous approaches fall short in capturing such
cross-unit contextual information that could be

1We define translation units as phrases in phrase-based
SMT, and as translation rules in syntax-based SMT.

critical in reordering. Specifically, the popular dis-
tortion or lexicalized reordering models in phrase-
based SMT focus only on making good local pre-
diction (i.e. predicting the orientation of imme-
diate neighboring translation units), while transla-
tion rules in syntax-based SMT come with a strong
context-free assumption, which model only the re-
ordering within the confine of the rules. In this
paper, we argue that reordering modeling would
greatly benefit from richer cross-boundary contex-
tual information

We introduce a reordering model that incorpo-
rates such contextual information, named the Two-
Neighbor Orientation (TNO) model. We first iden-
tify anchors as regions in the source sentences
around which ambiguous reordering patterns fre-
quently occur and chunks as regions that are con-
sistent with word alignment which may span mul-
tiple translation units at decoding time. Most no-
tably, anchors and chunks in our model may not
necessarily respect the boundaries of translation
units. Then, we jointly model the orientations of
chunks that immediately precede and follow the
anchors (hence, the name “two-neighbor”) along
with the maximal span of these chunks, to which
we refer as Maximal Orientation Span (MOS).

As we will elaborate further in next sections,
our models provide a stronger mechanism to make
more accurate global reordering decisions for the
following reasons. First of all, we consider the
orientation decisions on both sides of the anchors
simultaneously, in contrast to existing works that
only consider one-sided decisions. In this way, we
hope to upgrade the unigram formulation of exist-
ing reordering models to a higher order formula-
tion. Second of all, we capture the reordering of
chunks that may cross translation units and may
be composed of multiple units, in contrast to ex-
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isting works that focus on the reordering between
individual translation units. In effect, MOS acts as
a global reordering parameter that guides or con-
strains the underlying local reordering decisions.

To show the effectiveness of our model, we
integrate our TNO model into a state-of-the-
art syntax-based SMT system, which uses syn-
chronous context-free grammar (SCFG) rules to
jointly model reordering and lexical translation.
The introduction of nonterminals in the SCFG
rules provides some degree of generalization.
However as mentioned earlier, the context-free
assumption ingrained in the syntax-based for-
malism often limits the model’s ability to in-
fluence global reordering decision that involves
cross-boundary contexts. In integrating TNO, we
hope to strengthen syntax-based system’s ability
to make more accurate global reordering deci-
sions.

Our other contribution in this paper is a prac-
tical method for integrating the TNO model into
syntax-based translations. The integration is non-
trivial since the decoding of syntax-based SMT
proceeds in a bottom-up fashion, while our model
is more natural for top-down parsing, thus the
model’s full context sometimes is often available
only at the latest stage of decoding. We implement
an efficient shift-reduce algorithm that facilitates
the accumulation of partial context in a bottom-up
fashion, allowing our model to influence the trans-
lation process even in the absence of full context.

We show the efficacy of our proposal in a large-
scale Chinese-to-English translation task where
the introduction of our TNO model provides a
significant gain over a state-of-the-art string-to-
dependency SMT system (Shen et al., 2008) that
we enhance with additional state-of-the-art fea-
tures. Even though the experimental results car-
ried out in this paper employ SCFG-based SMT
systems, we would like to point out that our mod-
els is applicable to other systems including phrase-
based SMT systems.

The rest of the paper is organized as follows.
In Section 2, we introduce the formulation of our
TNO model. In Section 3, we introduce and moti-
vate the concept of Maximal Orientation Span. In
Section 4, we introduce four variants of the TNO
model with different model complexities. In Sec-
tion 5, we describe the training procedure to esti-
mate the parameters of our models. In Section 6,
we describe our shift-reduce algorithm which inte-

grates our proposed TNO model into syntax-based
SMT. In Section 7, we describe our experiments
and present our results. We wrap up with related
work in Section 8 and conclusion in Section 9.

2 Two-Neighbor Orientation Model

Given an aligned sentence pair Θ = (F,E,∼), let
∆(Θ) be all possible chunks that can be extracted
from Θ according to: 2

{(f j2j1/e
i2
i1

) :∀j1≤ j≤ j2,∃i : (j, i)∈∼, ii≤ i≤ i2 ∧
∀i1≤ i≤ i2,∃j : (j, i)∈∼, ji≤ j≤j2}

Our Two-Neighbor Orientation model (TNO)
designatesA ⊂ ∆(Θ) as anchors and jointly mod-
els the orientation of chunks that appear immedi-
ately to the left and to the right of the anchors as
well as the identities of these chunks. We define
anchors as chunks, around which ambiguous re-
ordering patterns frequently occur. Anchors can
be learnt automatically from the training data or
identified from the linguistic analysis of the source
sentence. In our experiments, we use a simple
heuristics based on part-of-speech tags which will
be described in Section 7.

More concretely, given A ⊂ ∆(Θ), let a =
(f j2j1/e

i2
i1

) ∈ A be a particular anchor. Then, let
CL(a) ⊂ ∆(Θ) be a’s left neighbors and let
CR(a) ⊂ ∆(Θ) be a’s right neighbors, iff:

∀CL = (f j4j3/e
i4
i3

) ∈ CL(a) : j4 + 1 = j1 (1)

∀CR = (f j6j5/e
i6
i5

) ∈ CR(a) : j2 + 1 = j5 (2)

Given CL(a) and CR(a), let CL = (f j4j3/e
i4
i3

) and
CR = (f j6j5/e

i6
i5

) be a particular pair of left and right
neighbors of a = (f j2j1/e

i2
i1

). Then, the orientation
of CL and CR are OL(CL, a) and OR(CR, a) re-
spectively and each may take one of the following
four orientation values (similar to (Nagata et al.,
2006)):

• Monotone Adjacent (MA), if (i4 + 1) = i1
for OL and if (i2 + 1) = i5 for OR
• Reverse Adjacent (RA), if (i2 + 1) = i3 for
OL and if (i6 + 1) = i1 for OR
• Monotone Gap (MG), if (i4 + 1) < i1 for
OL and if (i2 + 1) < i5 for OR

2We represent a chunk as a source and target phrase pair
(f j2j1/e

i2
i1

) where the subscript and the superscript indicate the
starting and the ending indices as such f j2j1 denotes a source
phrase that spans from j1 to j2.
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Figure 1: An aligned Chinese-English sentence pair. Circles
represent alignment points. Black circle represents the an-
chor; boxes represent the anchor’s neighbors.

• Reverse Gap (RG), if (i2 + 1) < i3 for OL
and if (i6 + 1) < i1 for OR. (1)

The first clause (monotone, reverse) indicates
whether the target order of the chunks follows the
source order; the second (adjacent, gap) indicates
whether the chunks are adjacent or separated by an
intervening phrase when projected.

To be more concrete, let us consider an aligned
sentence pair in Fig. 1, which is adapted from
(Chiang, 2005). Suppose there is only one anchor,
i.e. a = (f77 /e

7
7) which corresponds to the word

de(that). By applying Eqs. 1 and 2, we can infer
that a has three left neighbors and four right neigh-
bors, i.e. CL(a) = (f66 /e

9
9), (f

6
5 /e

9
8), (f

6
3 /e

11
8 ) and

CR(a) = (f88 /e
5
5), (f

9
8 /e

6
5), (f

10
8 /e64), (f

11
8 /e63)

respectively. Then, by applying Eq.
1, we can compute the orientation val-
ues of each of these neighbors, which
are OL(CL(a), a) = RG,RA,RA and
OR(CR(a), a) = RG,RA,RA,RA. As shown,
most of the neighbors have Reverse Adjacent
(RA) orientation except for the smallest left and
right neighbors (i.e. (f66 /e

9
9) and (f88 /e

5
5)) which

have Reverse Gap (RG) orientation.
Given the anchors together with its neighboring

chunks and their orientations, the Two-Neighbor
Orientation model takes the following form:
∏

a∈A

∑

CL∈CL(a),
CR∈CR(a)

PTNO(CL, OL, CR, OR|a; Θ) (2)

For conciseness, references that are clear from
context, such the reference to CL and a in
OL(CL, a), are dropped.

3 Maximal Orientation Span

As shown in Eq. 2, the TNO model has to enu-
merate all possible pairing of CL ∈ CL(a) and
CR ∈ CR(a). To make the TNO model more
tractable, we simplify the TNO model to consider
only the largest left and right neighbors, referred
to as the Maximal Orientation Span/MOS (M ).

More formally, given a = (f j2j1/e
i2
i1

), the left and
the right MOS of a are:

ML(a) = arg max
(f
j4
j3
/e
i4
i3
)∈CL(a)

(j4 − j3)

MR(a) = arg max
(f
j6
j5
/e
i6
i5
)∈CR(a)

(j6 − j5)

Coming back to our example, the left and right
MOS of the anchor are ML(a) = (f63 /e

11
8 ) and

MR(a) = (f118 /e63). In Fig. 1, they are denoted as
the largest boxes delineated by solid lines.

As such, we reformulate Eq. 2 into:
∏

a∈A

∑

CL∈CL(a),
CR∈CR(a)

PTNO(ML, OL,MR, OR|a; Θ).δCL==ML∧
CR==MR

(3)

where δ returns 1 if (CL == ML ∧CR == MR),
otherwise 0.

Beyond simplifying the computation, the key
benefit of modeling MOS is that it serves as a
global parameter that can guide or constrain un-
derlying local reorderings. As a case in point, let
us consider a cheating exercise where we have to
translate the Chinese sentence in Fig. 1 with the
following set of hierarchical phrases3:

Xa→〈Aozhou1shi2X1,Australia1 is2X1〉
Xb→〈yu3 Beihan4X1, X1with3 North4 Korea〉
Xc→〈you5bangjiao6, have5dipl.6 rels.〉
Xd→〈X1de7shaoshu8 guojia9 zhi10 yi11,

one11of10the few8 countries9 that7X1〉

This set of hierarchical phrases represents a trans-
lation model that has resolved all local ambiguities
(i.e. local reordering and lexical mappings) except
for the spans of the hierarchical phrases. With this
example, we want to show that accurate local de-
cisions (rather obviously) don’t always lead to ac-
curate global reordering and to demonstrate that
explicit MOS modeling can play a crucial role to
address this issue. To do so, we will again focus
on the same anchor de (that).

3We use hierarchical phrase-based translation system as a
case in point, but the merit is generalizable to other systems.
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d⇒ 〈X1de7shaoshu8 guojia9 zhi10 yi11〉, 〈one11of10the few8 countries9 that7X1〉
a⇒ 〈〈Aozhou1shi2X1〉de7shaoshu8 guojia9 zhi10 yi11〉,
〈one11of10the few8 countries9 that7〈Australia1 is2X1〉〉

b⇒ 〈〈Aozhou1shi2 〈yu3 Beihan4X1〉〉de7shaoshu8 guojia9 zhi10 yi11〉,
〈one11of10the few8 countries9 that7〈Australia1 is2〈X1with3 North4 Korea〉〉〉

c⇒ 〈d 〈aAozhou1shi2 〈byu3 Beihan4 〈cyou5bangjiao6〉c〉b〉ade7shaoshu8 guojia9 zhi10 yi11 〉d ,
〈one11of10the few8 countries9 that7〈Australia1 is2〈〈have5dipl.6 rels.〉with3 North4 Korea〉〉〉

Table 1: Derivation of Xd ≺Xa ≺Xb ≺Xc that leads to an incorrect translation.

a⇒ 〈Aozhou1shi2X1〉, 〈Australia1 is2X1〉
b⇒ 〈Aozhou1shi2〈yu3Beihan4X1〉〉, 〈Australia1 is2〈X1with3 North4 Korea〉〉
d⇒ 〈Aozhou1shi2〈yu3Beihan4〈X1de7shaoshu8 guojia9 zhi10 yi11〉〉〉,
〈Australia1 is2〈〈one11of10the few8 countries9 that7X1〉with3 North4 Korea〉〉

c⇒ 〈aAozhou1shi2〈byu3Beihan4 〈d 〈cyou5bangjiao6〉cde7shaoshu8 guojia9 zhi10 yi11 〉d 〉b〉a,
Australia1 is2〈〈one11of10the few8 countries9 that7〈have5dipl.6〉〉with3 North4 Korea〉〉

Table 2: Derivation of Xa ≺Xb ≺Xd ≺Xc that leads to the correct translation.

As the rule’s identifier, we attach an alphabet
letter to each rule’s left hand side, as such the an-
chor de (that) appears in rule Xd. We also attach
the word indices as the superscript of the source
words and project the indices to the target words
aligned, as such “have5” suggests that the word
“have” is aligned to the 5-th source word, i.e. you.
Note that to facilitate the projection, the rules must
come with internal word alignment in practice.
Now the indices on the target words in the rules
are different from those in Fig. 1. We will also
extensively use indices in this sense in the sub-
sequent section about decoding. In such a sense,
ML(a) = (f63 /e

6
3) and MR(a) = (f118 /e118 ).

Given the rule set, there are three possible
derivations, i.e. Xd ≺Xa ≺Xb ≺Xc,Xa ≺Xb ≺
Xd ≺Xc, and Xa ≺Xd ≺Xb ≺Xc, where ≺ in-
dicates that the first operand dominates the second
operand in the derivation tree. The application of
the rules would show that the first derivation will
produce an incorrect reordering while the last two
will produce the correct ones. Here, we would like
to point out that even in this simple example where
all local decisions are made accurate, this ambigu-
ity occurs and it would occur even more so in the
real translation task where local decisions may be
highly inaccurate.

Next, we will show that the MOS-related in-
formation can help to resolve this ambiguity, by
focusing more closely on the first and the second
derivations, which are detailed in Tables 1 and 2.

Particularly, we want to show that the MOS gen-
erated by the incorrect derivation does not match
the MOS learnt from Fig. 1. As shown, at the
end of the derivation, we have all the informa-
tion needed to compute the MOS (i.e. Θ) which is
equivalent to that available at training time, i.e. the
source sentence, the complete translation and the
word alignment. Running the same MOS extrac-
tion procedure on both derivations would produce
the right MOS that agrees with the right MOS pre-
viously learnt from Fig. 1, i.e. (f118 /e118 ). How-
ever, that’s not the case for left MOS, which we
underline in Tables 1 and 2. As shown, the incor-
rect derivation produces a left MOS that spans six
words, i.e. (f61 /e

6
1), while the correct derivation

produces a left MOS that spans four words, i.e.
(f63 /e

6
3). Clearly, the MOS of the incorrect deriva-

tion doesn’t agree with the MOS we learnt from
Fig. 1, unlike the MOS of the correct translation.
This suggests that explicit MOS modeling would
provide a mechanism for resolving crucial global
reordering ambiguities that are beyond the ability
of local models.

Additionally, this illustration also shows a case
where MOS acts as a cross-boundary context
which effectively relaxes the context-free assump-
tion of hierarchical phrase-based formalism. In
Tables 1 and 2’s full derivations, we indicate rule
boundaries explicitly by indexing the angle brack-
ets, e.g. 〈a indicates the beginning of rule Xa in
the derivation. As the anchor appears in Xd, we
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highlight its boundaries in box frames. de (that)’s
MOS respects rule boundaries if and only if all
the words come entirely from Xd’s antecedent or
〈d and 〉d appears outside of MOS; otherwise it
crosses the rule boundaries. As clearly shown in
Table 2, the left MOS of the correct derivation (un-
derlined) crosses the rule boundary (of Xd) since
〈d appears within the MOS.

Going back to the formulation, focusing on
modeling MOS would simplify the formulation of
TNO model from Eq. 2 into:

∏

a∈A
PTNO(ML, OL,MR, OR|a; Θ) (4)

which doesn’t require enumerating of all possible
pairs of CL and CR.

4 Model Decomposition and Variants

To make the model more tractable, we decompose
PTNO in Eq. 4 into the following four factors:
P (MR|a)× P (OR|MR, a)× P (ML|OR,MR, a)
× P (OL|ML, OR,MR, a). Subsequently, we will
refer to them as PMR

, POR , PML
and POL respec-

tively. Each of these factors will act as an addi-
tional feature in the log-linear framework of our
SMT system. The above decomposition follows
a generative story that starts from generating the
right neighbor first. There are other equally credi-
ble alternatives, but based on empirical results, we
settle with the above.

Next, we present four different variants of the
model (not to be confused with the four factors
above). Each variant has a different probabilistic
conditioning of the factors. We start by making
strong independence assumptions in Model 1 and
then relax them as we progress to Model 4. The
description of the models is as follow:

• Model 1. We assume PML
and PMR

to be
equal to 1 and POR ≈ P (OR|a; Θ) to be in-
dependent of MR and POL ≈ P (OL|a; Θ) to
be in independent of ML,MR and OR.
• Model 2. On top of Model 1, we

make POL dependent on POR , thus
POL≈P (OL|OR, a; Θ).
• Model 3. On top of Model 2, we make POR

dependent on MR and POL on MR and ML,
thus POR ≈ P (OR|MR, a; Θ) and POL ≈
P (OL|ML, OR,MR; a,Θ) .
• Model 4. On top of Model 3, we model PMR

and PML
as multinomial distributions esti-

mated from training data.

Model 1 represents a model that focuses on
making accurate one-sided decisions, independent
of the decision on the other side. Model 2 is
designed to address the deficiency of Model 1
since Model 1 may assign non-zero probability to
improbable assignment of orientation values, e.g.
Monotone Adjacent for the left neighbor and Re-
verse Adjacent for the right neighbor. Model 2
does so by conditioning POL on OR. In Model 3,
we start incorporating MOS-related information in
predicting OL and OR. In Model 4, we explicitly
model the MOS of each anchor.

5 Training

The TNO model training consists of two differ-
ent training regimes: 1) discriminative for train-
ing POL ,POR ; and 2) generative for training PML

,
PMR

. Before describing the specifics, we start by
describing the procedure to extract anchors and
their corresponding MOS from training data, from
which we collect statistics and extract features to
train the model.

For each aligned sentence pair (F,E,∼) in the
training data, the training starts with the iden-
tification of the regions in the source sentences
as anchors (A). For our Chinese-English experi-
ments, we use a simple heuristic that equates as
anchors, single-word chunks whose corresponding
word class belongs to closed-word classes, bear-
ing a close resemblance to (Setiawan et al., 2007).
In total, we consider 21 part-of-speech tags; some
of which are as follow: VC (copula), DEG, DEG,
DER, DEV (de-related), PU (punctuation), AD
(adjectives) and P (prepositions).

Next we generate all possible chunks ∆(Θ)
as previously described in Sec. 3. We then de-
fine a functionMinC(∆, j1, j2) which returns the
shortest chunk that can span from j1 to j2. If
(f j2j1 /e

i2
i1

) ∈ ∆, then MinC returns (f j2j1 /e
i2
i1

).
The algorithm to extract MOS takes ∆ and an

anchor a = (f j2j1 /e
i2
i1

) as input; and outputs the
chunk that qualifies as MOS or none. Alg. 1
provides the algorithm to extract the right MOS;
the algorithm to extract the left MOS is identical
to Alg. 1, except that it scans for chunks to the
left of the anchor. In Alg. 1, there are two in-
termediate parameters si and ei which represent
the active search range and should initially be set
to j2 + 1 and |F | respectively. Once we obtain
a,ML(a) andMR(a), we computeOL(ML(a), a)
and OR(MR(a), a) and are ready for training.
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To estimate POL and POR , we train discrimi-
native classifiers that predict the orientation val-
ues and use the normalized posteriors at decoding
time as additional feature scores in SMT’s log lin-
ear framework. We train the classifiers on a rich
set of binary features ranging from lexical to part-
of-speech (POS) and to syntactic features.

Algorithm 1: Function MREx

input : a = (f j2j1 /e
i2
i1

), si, ei: int; ∆: chunks
output: (f j4j3 /e

i4
i3

) : chunk or ∅
(f j4j3 /e

i4
i3

) = MinC(∆, j2 + 1, ei)

if (j3 == j2 + 1 ∧ j4 == ei) then
→ f j4j3 /e

i4
i3

else
if (j2 + 1 == ei) then
→ ∅

else
if (ei-2 ≤ si) then
→MREx(a, si, ei− 1,∆)

else
m = d(si+ei)/2e
(f j4j3 /e

i4
i4

) = MinC(∆, j2 + 1,m)
if (j3 == j2 + 1) then

c = MREx(a,m, ei− 1,∆)
if (c == ∅) then
→ f j4j3 /e

i4
i3

else
→ c

end
else
→MREx(a, si,m− 1,∆)

end
end

end
end

Suppose a = (f j2j1 /e
i2
i1

), ML(a) = (f j4j3 /e
i4
i3

)

and ML(a) = (f j6j5 /e
i6
i5

), then based on the con-
text’s location, the elementary features employed
in our classifiers can be categorized into:

1. anchor-related: slex (the actual word of
f j2j1 ), spos (part-of-speech (POS) tag of
slex), sparent (spos’s parent in the parse
tree), tlex (ei2i1’s actual target word)..

2. surrounding: lslex (the previous word /
f j1−1j1−1 ), rslex (the next word / f j2+1

j2+1 ), lspos
(lslex’s POS tag), rspos (rslex’s POS
tag), lsparent (lslex’s parent), rsparent

(rslex’s parent).

3. non-local: lanchorslex (the previous
anchor’s word) , ranchorslex (the next an-
chor’s word), lanchorspos (lanchorslex’s
POS tag), ranchorspos (ranchorslex’s
POS tag).

4. MOS-related: mosl int slex (the actual
word of f j3j3 ), mosl ext slex (the actual word
of f j3j3 ), mosl int spos (mosl int slex’s
POS tag), mosl ext spos (mosl ext spos’s
POS tag), mosr int slex (the actual word of
f j3j3 ), mosr ext slex (the actual word of f j3j3 ),
mosr int spos (mosr int slex’s POS tag),
mosr ext spos (mosr ext spos’s POS tag).

For Model 1, we train one classifier each for
POR and POL . For Model 2-4, we train four clas-
sifiers for POL for each value of OR. We use only
the MOS features for Model 3 and 4. Addition-
ally, we augment the feature set with compound
features, e.g. conjunction of the lexical of the an-
chor and the lexical of the left and the right an-
chors. Although they increase the number of fea-
tures significantly, we found that these compound
features are empirically beneficial.

We come up with > 50 types of features, which
consist of a combination of elementary and com-
pound features. In total, we generate hundreds of
millions of such features from the training data.
To keep the number features to a manageable size,
we employ the L1-regularization in training to en-
force sparse solutions, using the off-the-shelf LIB-
LINEAR toolkit (Fan et al., 2008). After training,
the number of features in our classifiers decreases
to below 5 million features for each classifier.

We train PML
and PMR

via the relative fre-
quency principle. To avoid the sparsity issue, we
represent ML as (mosl int spos,mosl ext spos)
and MR as (mosr int spos,mosr ext spos). We
condition PML

and PMR
only on spos and the ori-

entation, estimating them as follow:

P (ML|spos, OL) =
N(ML, spos, OL)

N(spos, OL)

P (MR|spos, OR) =
N(MR, spos, OR)

N(spos, OR)

where N returns the count of the events in the
training data.
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Target string (w/ source index) Symbol(s) read Op. Stack(s)
(1) Xc have5 dipl.6 rels. [5][6] S,S,R Xc:[5-6]
(2) Xd one11 of10 few8 countries9 [11][10] S,S,R [10-11]

that7 Xc

(3) [8][9] S,S,R,R [8-11]
(4) [7] S [8-11][7]
(5) Xc:[5,6] S Xd:[8-11][7][5,6]
(6) Xb Xd with3 North4 Korea Xd:[8-11][7][5,6] S [8-11][7][5,6]
(7) [3][4] S,S,R,R Xb:[8-11][7][3-6]
(8) Xa Australia1 is2 Xb [1][2] S,S,R [1-2]
(9) Xb:[8-11][7][3,6] S,A Xa:[1-2][8-11][7][3,6]

Table 3: The application of the shift-reduce parsing algorithm, which corresponds to Table 2’s derivation.

6 Decoding

Integrating the TNO Model into syntax-based
SMT systems is non-trivial, especially with the
MOS modeling. The method described in Sec. 3
assumes Θ = (F,E,∼), thus it is only applicable
at training or at the last stage of decoding. Since
many reordering decisions may have been made
at the earlier stages, the late application of TNO
model would limit the utility of the model. In this
section, we describe an algorithm that facilitates
the incremental construction of MOS and the com-
putation of TNO model on partial derivations.

The algorithm bears a close resemblance to the
shift-reduce algorithm where a stack is used to ac-
cumulate (partial) information about a, ML and
MR for each a ∈ A in the derivation. This al-
gorithm takes an input stream and applies either
the shift or the reduce operations starting from the
beginning until the end of the stream. The shift op-
eration advances the input stream by one symbol
and push the symbol into the stack; while the re-
duce operation applies some reduction rule to the
topmost elements of the stack. The algorithm ter-
minates at the end of the input stream where the
resulting stack will be propagated to the parent for
the later stage of decoding. In our case, the in-
put stream is the target string of the rule and the
symbol is the corresponding source index of the
elements of the target string. The reduction rule
looks at two indices and merge them if they are
adjacent (i.e. has no intervening phrase). We for-
bid the application of the reduction rule to anchors.
Table 3 shows the execution trace of the algorithm
for the derivation described in Table 2.

As shown, the algorithm starts with an empty
stack. It then projects the source index to the cor-
responding target word and then enumerates the

target string in a left to right fashion. If it finds
a target word with a source index, it applies the
shift operation, pushing the index to the stack. Un-
less the symbol corresponds to an anchor, it tries
to apply the reduce operation. Line (4) indicates
the special treatment to the anchor. If the symbol
read is a nonterminal, then we push the entire stack
that corresponds to that nonterminal. For example,
when the algorithm reads Xd at line (6), it pushes
the entire stack from line (5).

This algorithm facilitates the incremental con-
struction of MOS which may cross rule bound-
aries. For example, at the end of the application of
Xd at line (5), the current left MOS is [5-6]. How-
ever, the algorithm grows it to [3-6] after the appli-
cation of ruleXb at line (7). Furthermore, it allows
us to compute the models from partial hypothesis.
For example, at line (5), we can compute POL by
considering [5,6] as ML to be updated with [3,6]
in line (7). This way, we expect our TNO model
would play a bigger role at decoding time.

Specific to SCFG-based translation, the values
of OL and OR are identical in the partial or in
the full derivations. For example, the orientation
values of de (that)’s left neighbor is always RA.
This statement holds, even though at the end of
Section 2, we stated that de (that)’s left neigh-
bor may have other orientation values, i.e. RG
for CL(a) = (f66 /e

9
9). The formal proof is omit-

ted, but the intuition comes from the fact that the
derivations for SCFG-based translation are sub-
set of ∆(Θ) and that (f66 /e

9
9) will never become

ML forMinC(CL(a), a) respectively (chunk that
spans a and CL). Consequently, for Model 1 and
Model 2, we can obtain the model score earlier in
the decoding process.
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7 Experiments

Our baseline systems is a state-of-the-art string-
to-dependency system (Shen et al., 2008). The
system is trained on 10 million parallel sentences
that are available to the Phase 1 of the DARPA
BOLT Chinese-English MT task. The training cor-
pora include a mixed genre of newswire, weblog,
broadcast news, broadcast conversation, discus-
sion forums and comes from various sources such
as LDC, HK Law, HK Hansard and UN data.

In total, our baseline model employs about
40 features, including four from our proposed
Two-Neighbor Orientation model. In addition to
the standard features including the rule transla-
tion probabilities, we incorporate features that are
found useful for developing a state-of-the-art base-
line, such as the provenance features (Chiang et
al., 2011). We use a large 6-gram language model,
which was trained on 10 billion English words
from multiple corpora, including the English side
of our parallel corpus plus other corpora such as
Gigaword (LDC2011T07) and Google News. We
also train a class-based language model (Chen,
2009) on two million English sentences selected
from the parallel corpus. As the backbone of
our string-to-dependency system, we train 3-gram
models for left and right dependencies and un-
igram for head using the target side of the bi-
lingual training data. To train our Two-Neighbor
Orientation model, we select a subset of 5 million
aligned sentence pairs.

For the tuning and development sets, we set
aside 1275 and 1239 sentences selected from
LDC2010E30 corpus. We tune the decoding
weights with PRO (Hopkins and May, 2011) to
maximize BLEU-TER. As for the blind test set,
we report the performance on the NIST MT08
evaluation set, which consists of 691 sentences
from newswire and 666 sentences from weblog.
We pick the weights that produce the highest de-
velopment set scores to decode the test set.

Table 4 summarizes the experimental results on
NIST MT08 newswire and weblog. In column 2,
we report the classification accuracy on a subset of
training data. Note that these numbers are for ref-
erence only and not directly comparable with each
other since the features used in these classifiers
include several gold standard information, such
as the anchors’ target words, the anchors’ MOS-
related features (Model 3 & 4) and the orientation
of the right MOS (Model 2-4); all of which have

Acc
MT08 nw MT08 wb

BLEU TER BLEU TER
S2D - 36.77 53.28 26.34 57.41
M1 72.5 37.60 52.70 27.59 56.33
M2 77.4 37.86 52.68 27.74 56.11
M3 84.5 38.02 52.42 28.22 55.82
M4 84.5 38.55 52.41 28.44 56.45

Table 4: The NIST MT08 results on newswire (nw) and we-
blog (wb) genres. S2D is the baseline string-to-dependency
system (line 1), on top of which Two-Neighbor Orientation
Model 1 to 4 are employed (line 2-5). The best TER and
BLEU results on each genre are in bold. For BLEU, higher
scores are better, while for TER, lower scores are better.

to be predicted at decoding time.

In columns 2 and 4, we report the BLEU scores,
while in columns 3 and 5, we report the TER
scores. The performance of our baseline string-
to-dependency syntax-based SMT is shown in the
first line, followed by the performance of our Two-
Neighbor Orientation model starting from Model
1 to Model 4. As shown, the empirical results
confirm our intuition that SMT can greatly benefit
from reordering model that incorporate cross-unit
contextual information.

Model 1 provides most of the gain across the
two genres of around +0.9 to +1.2 BLEU and -0.5
to -1.1 TER. Model 2 which conditions POL on
OR provides an additional +0.2 BLEU improve-
ment on BLEU score consistently across the two
genres. As shown in line 4, we see a stronger
improvement in the inclusion of MOS-related in-
formation as features in Model 3. In newswire,
Model 3 gives an additional +0.4 BLEU and -0.2
TER, while in weblog, it gives a stronger improve-
ment of an additional +0.5 BLEU and -0.3 TER.
The inclusion of explicit MOS modeling in Model
4 gives a significant BLEU score improvement of
+0.5 but no TER improvement in newswire. In
weblog, Model 4 gives a mixed results of +0.2
BLEU score improvement and a hit of +0.6 TER.
We conjecture that the weblog text has a more am-
biguous orientation span that are more challenging
to learn. In total, our TNO model gives an encour-
aging result. Our most advanced model gives sig-
nificant improvement of +1.8 BLEU/-0.8 TER in
newswire domain and +2.1 BLEU/-1.0 TER over
a strong string-to-dependency syntax-based SMT
enhanced with additional state-of-the-art features.
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8 Related Work

Our work intersects with existing work in many
different respects. In this section, we mainly focus
on work related to the probabilistic conditioning
of our TNO model and the MOS modeling.

Our TNO model is closely related to the Uni-
gram Orientation Model (UOM) (Tillman, 2004),
which is the de facto reordering model of phrase-
based SMT (Koehn et al., 2007). UOM views
reordering as a process of generating (b, o) in a
left-to-right fashion, where b is the current phrase
pair and o is the orientation of b with the pre-
viously generated phrase pair b′. UOM makes
strong independence assumptions and formulates
the model as P (o|b). Tillmann and Zhang (2007)
proposed a Bigram Orientation Model (BOM) to
include both phrase pairs (b and b′) into the model.
Their original intent is to model P (o, b|o′, b′), but
perhaps due to sparsity concerns, they settle with
P (o|b, b′), dropping the conditioning on the pre-
vious orientation o′. Subsequent improvements
use the P (o|b, b′) formula, for example, for in-
corporating various linguistics feature like part-of-
speech (Zens and Ney, 2006), syntactic (Chang et
al., 2009), dependency information (Bach et al.,
2009) and predicate-argument structure (Xiong et
al., 2012). Our TNO model is more faithful to the
BOM’s original formulation.

Our MOS concept is also closely related to hi-
erarchical reordering model (Galley and Manning,
2008) in phrase-based decoding, which computes
o of b with respect to a multi-block unit that may
go beyond b′. They mainly use it to avoid overes-
timating “discontiguous” orientation but fall short
in modeling the multi-block unit, perhaps due to
data sparsity issue. Our MOS is also closely re-
lated to the efforts of modeling the span of hi-
erarchical phrases in formally syntax-based SMT.
Early works reward/penalize spans that respect the
syntactic parse constituents of an input sentence
(Chiang, 2005), and (Marton and Resnik, 2008).
(Xiong et al., 2009) learn the boundaries from
parsed and aligned training data, while (Xiong et
al., 2010) learn the boundaries from aligned train-
ing data alone. Recent work couples span mod-
eling tightly with reordering decisions, either by
adding an additional feature for each hierarchical
phrase (Chiang et al., 2008; Shen et al., 2009) or
by refining the nonterminal label (Venugopal et
al., 2009; Huang et al., 2010; Zollmann and Vo-
gel, 2011). Common to this work is that the spans

modeled may not correspond to MOS, which may
be suboptimal as discussed in Sec. 3.

In equating anchors with the function word
class, our work, particularly Model 1, is closely
related to the function word-centered model of Se-
tiawan et al. (2007) and Setiawan et al. (2009).
However, we provide a discriminative treatment
to the model to include a richer set of features in-
cluding the MOS modeling. Our work in incorpo-
rating global context also intersects with existing
work in Preordering Model (PM), e.g. (Niehues
and Kolss, 2009; Costa-jussà and Fonollosa, 2006;
Genzel, 2010; Visweswariah et al., 2011; Tromble
and Eisner, 2009). The goal of PM is to reorder the
input sentence F into F ′ whose order is closer to
the target language order, whereas the goal of our
model is to directly reorder F into the target lan-
guage order. The crucial difference is that we have
to integrate our model into SMT decoder, which is
highly non-trivial.

9 Conclusion

We presented a novel approach to address a kind
of long-distance reordering that requires global
cross-boundary contextual information. Our ap-
proach, which we formulate as a Two-Neighbor
Orientation model, includes the joint modeling of
two orientation decisions and the modeling of the
maximal span of the reordered chunks through the
concept of Maximal Orientation Span. We de-
scribe four versions of the model and implement
an algorithm to integrate our proposed model into
a syntax-based SMT system. Empirical results
confirm our intuition that incorporating cross-
boundaries contextual information improves trans-
lation quality. In a large scale Chinese-to-English
translation task, we achieve a significant improve-
ment over a strong baseline. In the future, we hope
to continue this line of research, perhaps by learn-
ing to identify anchors automatically from training
data, incorporating a richer set of linguistics fea-
tures such as dependency structure and strength-
ening the modeling of Maximal Orientation Span.
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Abstract

Preordering of a source language sentence
to match target word order has proved to
be useful for improving machine transla-
tion systems. Previous work has shown
that a reordering model can be learned
from high quality manual word alignments
to improve machine translation perfor-
mance. In this paper, we focus on further
improving the performance of the reorder-
ing model (and thereby machine transla-
tion) by using a larger corpus of sentence
aligned data for which manual word align-
ments are not available but automatic ma-
chine generated alignments are available.
The main challenge we tackle is to gen-
erate quality data for training the reorder-
ing model in spite of the machine align-
ments being noisy. To mitigate the effect
of noisy machine alignments, we propose
a novel approach that improves reorder-
ings produced given noisy alignments and
also improves word alignments using in-
formation from the reordering model. This
approach generates alignments that are 2.6
f-Measure points better than a baseline su-
pervised aligner. The data generated al-
lows us to train a reordering model that
gives an improvement of 1.8 BLEU points
on the NIST MT-08 Urdu-English eval-
uation set over a reordering model that
only uses manual word alignments, and a
gain of 5.2 BLEU points over a standard
phrase-based baseline.

1 Introduction

Dealing with word order differences between
source and target languages presents a significant
challenge for machine translation systems. Failing
to produce target words in the correct order results

in machine translation output that is not fluent and
is often very hard to understand. These problems
are particularly severe when translating between
languages which have very different structure.

Phrase based systems (Koehn et al., 2003) use
lexicalized distortion models (Al-Onaizan and Pa-
pineni, 2006; Tillman, 2004) and scores from the
target language model to produce words in the cor-
rect order in the target language. These systems
typically are only able to capture short range re-
orderings and the amount of data required to po-
tentially capture longer range reordering phenom-
ena is prohibitively large.

There has been a large body of work showing
the efficacy of preordering source sentences using
a source parser and applying hand written or auto-
matically learned rules (Collins et al., 2005; Wang
et al., 2007; Ramanathan et al., 2009; Xia and Mc-
Cord, 2004; Genzel, 2010; Visweswariah et al.,
2010). Recently, approaches that address the prob-
lem of word order differences between the source
and target language without requiring a high qual-
ity source or target parser have been proposed
(DeNero and Uszkoreit, 2011; Visweswariah et
al., 2011; Neubig et al., 2012). These methods
use a small corpus of manual word alignments
(where the words in the source sentence are man-
ually aligned to the words in the target sentence)
to learn a model to preorder the source sentence to
match target order.

In this paper, we build upon the approach in
(Visweswariah et al., 2011) which uses manual
word alignments for learning a reordering model.
Specifically, we show that we can significantly
improve reordering performance by using a large
number of sentence pairs for which manual word
alignments are not available. The motivation for
going beyond manual word alignments is clear:
the reordering model can have millions of features
and estimating weights for the features on thou-
sands of sentences of manual word alignments is
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likely to be inadequate. One approach to deal with
this problem would be to use only part-of-speech
tags as features for all but the most frequent words.
This will cut down on the number of features and
perhaps the model would be learnable with a small
set of manual word alignments. Unfortunately, as
we will see in the experimental section, leaving
out lexical information from the models hurts per-
formance even with a relatively small set of man-
ual word alignments. Another option would be to
collect more manual word alignments but this is
undesirable because it is time consuming and ex-
pensive.

The challenge in going beyond manual word
alignments and using machine alignments is the
noise in the machine alignments which affects the
performance of the reordering model (see Section
5). We illustrate this with the help of a motivating
example. Consider the example English sentence
and its translation shown in Figure 1.

He went to the stadium to play

vaha khelne keliye stadium ko gaya

Figure 1: An example English sentence with
its Urdu translation with alignment links. Red
(dotted) links are incorrect links while the blue
(dashed) links are the corresponding correct links.

A standard word alignment algorithm that we
used (McCarley et al., 2011) made the mistake of
mis-aligning the Urduko and keliye (it switched
the two). Deriving reference reorderings from
these wrong alignments would give us an incor-
rect reordering. A reordering model trained on
such incorrect reorderings would obviously per-
form poorly. Our task is thus two-fold (i) im-
prove the quality of machine alignments (ii) use
these less noisy alignments to derive cleaner train-
ing data for a reordering model.

Before proceeding, we first point out that the
two tasks, viz., reordering and word alignment
are related: Having perfect reordering makes the
alignment task easier while having perfect align-
ments in turn makes the task of finding reorder-
ings trivial. Motivated by this fact, we introduce
models that allow us to connect the source/target
reordering and the word alignments and show
that these models help in mutually improving the
performance of word alignments and reordering.
Specifically, we build two models: the first scores

reorderings given the source sentence and noisy
alignments, the second scores alignments given
the noisy source and target reorderings and the
source and target sentences themselves. The sec-
ond model helps produce better alignments, while
we use the first model to help generate better ref-
erence reordering given noisy alignments. These
improved reference reorderings will then be used
to train a reordering model.

Our experiments show that reordering models
trained using these improved machine alignments
perform significantly better than models trained
only on manual word alignments. This results in
a 1.8 BLEU point gain in machine translation per-
formance on an Urdu-English machine translation
task over a preordering model trained using only
manual word alignments. In all, this increases
the gain in performance by using the preordering
model to 5.2 BLEU points over a standard phrase-
based system with no preordering.

The rest of this paper is structured as follows.
Section 2 describes the main reordering issues in
Urdu-English translation. Section 3 introduces the
reordering modeling framework that forms the ba-
sis for our work. Section 4 describes the two mod-
els we use to tie together reordering and align-
ments and how we use these models to generate
training data for training our reordering model.
Section 5 presents the experimental setup used for
evaluating the models proposed in this paper on
an Urdu-English machine translation task. Sec-
tion 6 presents the results of our experiments.
We describe related work in Section 7 and finally
present some concluding remarks and potential fu-
ture work in Section 8.

2 Reordering issues in Urdu-English
translation

In this section we describe the main sources of
word order differences between Urdu and English
since this is the language pair we experiment with
in this paper.

The typical word order in Urdu isSubject-
Object-Verb unlike English in which the order is
Subject-Verb-Object. Urdu has case markers that
sometimes (but not always) mark the subject and
the object of a sentence. This difference in the
placement of verbs can often lead to movements of
verbs over long distances (depending on the num-
ber of words in the object). Phrase based systems
do not capture such long distance movements well.
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Another difference is that Urdu uses post-
positions unlike English which uses prepositions.
This can also lead to long range movements de-
pending on the length of the noun phrase that the
post-position follows. The order of noun phrases
and prepositional phrases is also swapped in Urdu
as compared with English.

3 Reordering model

In this section we briefly describe the reordering
model (Visweswariah et al., 2011) that forms the
basis of our work. We also describe an approx-
imation we make in the training process that sig-
nificantly speeds up the training without much loss
of accuracy which enables training on much larger
data sets. Consider a source sentencew that we
would like to reorder to match the target order. Let
π represent a candidate permutation of the source
sentencew. πi denotes the index of the word in the
source sentence that maps to positioni in the can-
didate reordering, thus reordering with this candi-
date permutationπ we will reorder the sentence
w towπ1 , wπ2, ...,wπn . The reordering model we
use assigns costs to candidate permutations as:

C(π|w) =
∑

i

c(πi−1, πi).

The costsc(m,n) are pairwise costs of putting
wm immediately beforewn in the reordering. We
reorder the sentencew according to the permu-
tation π that minimizes the costC(π|w). We
find the minimal cost permutation by converting
the problem into a symmetric Travelling Salesman
Problem (TSP) and then using an implementation
of the chained Lin-Kernighan heuristic (Applegate
et al., 2003). The costs in the reordering model
c(m,n) are parameterized by a linear model:

c(m,n) = θT Φ(w,m, n)

whereθ is a learned vector of weights andΦ is a
vector of binary feature functions that inspect the
words and POS tags of the source sentence at and
around positionsm andn. We use the features
(Φ) described in Visweswariah et al. (2011) that
were based on features used in dependency pars-
ing (McDonald et al., 2005a).

To learn the weight vectorθ we require a cor-
pus of sentencesw with their desired reorderings
π∗. Past work Visweswariah et al. (2011) used
high quality manual word alignments to derive the
desired reorderingsπ∗ as follows. Given word

aligned source and target sentences, we drop the
source words that are not aligned1. Letmi be the
mean of the target word positions that the source
word at indexi is aligned to. We then sort the
source indices in increasing order ofmi (this order
definesπ∗). If mi = mj (for example, becausewi

andwj are aligned to the same set of words) we
keep them in the same order that they occurred in
the source sentence.

We used the single best Margin Infused Relaxed
Algorithm (MIRA) (McDonald et al. (2005b),
Crammer and Singer (2003)) with online updates
to our parameters given by:

θi+1 = arg min
θ

||θ − θi||

s.t. C(π∗|w) < C(π̂|w) − L(π∗, π̂).

In the equation above,̂π = arg minπ C(π|w) is
the best reordering based on the current parameter
valueθi andL is a loss function. We takeL to be
the number of words for which the hypothesized
permutationπ̂ has a different preceding word as
compared with the reference permutationπ∗.

In this paper we focus on the case where in ad-
dition to using a relatively small number of man-
ual word aligned sentences to derive the refer-
ence permutationsπ∗ used to train our model,
we would like to use more abundant but nois-
ier machine aligned sentence pairs. To handle
the larger amount of training data we obtain from
machine alignments, we make an approximation
in training that we found empirically to not af-
fect performance but that makes training faster
by more than a factor of five. This allows us
to train the reordering model with roughly 150K
sentences in about two hours. The approximation
we make is that instead of using the chained Lin-
Kernighan heuristic to solve the TSP problem to
find π̂ = arg minπ C(π|w), we select greedily
for each word the preceding word that has the low-
est cost2. Usingψi to denotearg minj c(j, i) and
letting

C(ψ|w) =
∑

i

c(ψi, i),

1Note that the unaligned source words are dropped only at
the time of training. At the time of testing all source words are
retained as the alignment information is obviously not avail-
able at test time.

2It should be noted that this approximation was done only
at the time of training. At the time of testing we still use the
chained Lin-Kernighan heuristic to solve the TSP problem.
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we do the update according to:

θi+1 = arg min
θ

||θ − θi||

s.t. C(π∗|w) < C(ψ|w) − L(π∗,ψ).

Again the lossL(π∗,ψ) is the number of positions
i for whichπ∗

i−1 is different fromψi−1.

4 Generating reference reordering from
parallel sentences

The main aim of our work is to improve the re-
ordering model by using parallel sentences for
which manual word alignments are not avail-
able. In other words, we want to generate rel-
atively clean reference reorderings from parallel
sentences and use them for training a reordering
model. A straightforward approach for this is to
use a supervised aligner to align the words in the
sentences and then derive the reference reordering
as we do for manual word alignments. However,
as we will see in the experimental results, the qual-
ity of a reordering model trained from automatic
alignments is very sensitive to the quality of align-
ments. This motivated us to explore if we can fur-
ther improve our aligner and the method for gen-
erating reference reorderings given alignments.

We improve upon the above mentioned ba-
sic approach by coupling the tasks of reorder-
ing and word alignment. We do this by build-
ing a reordering model (C(πs|ws,wt,a)) that
scores reorderingsπs given the source sentence
ws, target sentencewt and machine alignments
a. Complementing this model, we build analign-
ment model (P (a|ws,wt,πs,πt)) that scores
alignmentsa given the source and target sen-
tences and their predicted reorderings according to
source and target reordering models. The model
(C(πs|ws,wt,a)) helps to produce better refer-
ence reorderings for training our final reordering
model given fixed machine alignments and the
alignment model (P (a|ws,wt,πs,πt)) helps im-
prove the machine alignments taking into account
information from reordering models. In the fol-
lowing sections, we describe our overall approach
followed by a description of the two models.

4.1 Overall approach to generating training
data

We first describe our overall approach to gen-
erating training data for the reordering model
given a small corpus of sentences with manual

C(πs|ws) C(πt|wt)

Step 1: Train reordering models
using manual word alignments

P (a|ws,wt, πs, πt)

C(πs|ws,a) C(πt|wt,a)

Step 2: Feed predictions
of the reordering models
to the alignment model

Step 3: Feed predictions
of the alignment model
to the reordering models

Figure 2: Overall approach: Building a sequence
of reordering and alignment models.

word alignments (H) and a much larger corpus of
parallel sentences (U ) that are not word aligned.
The basic idea is to chain together the two models,
viz., reordering model and alignment model, as
illustrated in Figure 2. The steps involved are as
described below:

Step 1: First, we use manual word alignments
(H) to train source and target reordering models
as described in (Visweswariah et al., 2011).

Step 2: Next, we use the hand alignments to train
an alignment modelP (a|ws,wt,πs,πt). In
addition to the original source and target sentence,
we also feed the predictions of the reordering
model trained in Step 1 to this alignment model
(see section 4.2 for details of the model itself).

Step 3: Finally, we use the predictions of the
alignment model trained in Step 2 to train reorder-
ing modelsC(πs|ws,wt,a) (see section 4.3 for
details on the reordering model itself).

After building the sequence of models shown in
Figure 2, we apply them in sequence on the un-
aligned parallel dataU , starting with the reorder-
ing modelsC(πs|ws) and C(πt|wt). The re-
orderings obtained for the source side inU (after
applying the final modelC(πs|ws,a)) are used
along with reference reorderings obtained from
the manual word alignments to train our reorder-
ing model. Note that, in theory, we could iterate
over steps 2 and 3 several times but, in practice
we did not see a benefit of going beyond one iter-
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ation in our experiments. Also, since we are inter-
ested only in the source side reorderings produced
by the modelC(πs|ws,a), the target reordering
modelC(πt|wt,a) is needed only if we iterate
over steps 2 and 3.

We now point to some practical considerations
of our approach. Consider the case when we are
training an alignment model conditioned on re-
orderings (P (a|ws,wt,πs,πt)). If the reorder-
ing model that generated these reorderingsπs,πt

were trained on the same data that we are using
to train the alignment model, then the reorder-
ings would be much better than we would ex-
pect on unseen test data, and hence the align-
ment model (P (a|ws,wt,πs,πt)) may learn to
make the alignment overly consistent with the re-
orderingsπs andπt. To counter this problem,
we divide the training dataH into K parts and
at each stage we apply a model (reordering or
alignment) on parti that had not seen parti in
training. This ensures that the alignment model
does not see very optimistic reorderings and vice
versa. We now describe the individual models,
viz., P (a|ws,wt,πs,πt) andC(πs|ws,a).

4.2 Modeling alignments given reordering

In this section we describe how we fuse informa-
tion from source and target reordering models to
improve word alignments.

As a base model we use the correction model
for word alignments proposed by McCarley et
al. (2011). This model was significantly better
than the MaxEnt aligner (Ittycheriah and Roukos,
2005) and is also flexible in the sense that it allows
for arbitrary features to be introduced while still
keeping training and decoding tractable by using a
greedy decoding algorithm that explores potential
alignments in a small neighborhood of the current
alignment. The model thus needs a reasonably
good initial alignment to start with for which we
use the MaxEnt aligner (Ittycheriah and Roukos,
2005) as in McCarley et al. (2011).

The correction model is a log-linear model:

P (a|ws,wt) =
exp(λTφ(a,ws,wt))

Z(ws,wt)
.

The λs are trained using the LBFGS algorithm
(Liu et al., 1989) to maximize the log-likelihood
smoothed withL2 regularization. The feature
functionsφ we start with are those used in Mc-
Carley et al. (2011) and include features encoding

the Model 1 probabilities between pairs of words
linked in the alignmenta, features that inspect
source and target POS tags and parses (if avail-
able) and features that inspect the alignments of
adjacent words in the source and target sentence.

To incorporate information from the reorder-
ing model, we add features that use the predicted
sourceπs and target permutationsπt. We intro-
duce some notation to describe these features. Let
Sm andSn be the set of indices of target words
thatws

m andws
n are aligned to respectively. We de-

fine the minimum signed distance (msd) between
these two sets as:

msd(Sm, Sn) = i∗ − j∗

where,
(i∗, j∗) = arg min

(i,j)∈Sm×Sn

|i− j|

We quantize and encode with binary features
the minimum signed distance between the sets of
the indices of the target words that source words
adjacent in the reorderingπs (ws

πs
i

andws
πs

i+1
) are

aligned to. We instantiate similar features with the
roles of source and target sentences reversed. With
this addition of features we use the same training
and testing procedure as in McCarley et al. (2011).
If the reorderingsπs were perfect we would learn
to only allow alignments wherews

πs
i

andws
πs

i+1

were aligned to adjacent words in the target sen-
tence. Although the reordering model is not per-
fect, preferring alignments consistent with the re-
ordering models improves the aligner.

4.3 Modeling reordering given alignments

To model source permutations given source (ws)
and target (wt) sentences, and alignments (a) we
reuse the reordering model framework described
in Section 3 adding additional features capturing
the relation between a hypothesized permutation
π and alignmentsa. To allow for searching via
the same TSP formulation we once again assign
costs to candidate permutations as:

C(πs|ws,wt,a) =
∑

i

c(πi−1, πi|ws,a).

Note that we introduce a dependence on the target
sentencewt only through the alignmenta. Once
again we parameterize the costs by a linear model:

c(m,n) = θTΦ(ws,a,m, n).

For the feature functionsΦ, in addition to the
features that only depend onws,m, n (that we
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use in our standard reordering model) we add
binary indicator features based onmsd(Sm, Sn)
andmsd(Sm, Sn) conjoined with POS(ws

m) and
POS(ws

n).
Here,Sm andSn are the set of indices of tar-

get words thatws
m andws

n are aligned to respec-
tively. We conjoin themsd (minimum signed dis-
tance) with the POS tags to allow the model to cap-
ture the fact that the alignment error rate maybe
higher for some POS tags than others (e.g., we
have observed verbs have a higher error rate in
Urdu-English alignments).

Given these features we train the parametersθ
using the MIRA algorithm as described in Sec-
tion 3. Using this model, we can find the low-
est cost permutationC(πs|ws,a) using the Lin-
Kernighan heuristic as described in Section 3.
This model allows us to combine features from
the original reordering model along with informa-
tion coming from the alignments to find source re-
orderings given a parallel corpus and alignments.
We will see in the experimental section that this
improves upon the simple heuristic for deriving re-
orderings described in Section 3.

5 Experimental setup

In this section we describe the experimental setup
that we used to evaluate the models proposed in
this paper. All experiments were done on Urdu-
English and we evaluate reordering in two ways:
Firstly, we evaluate reordering performance di-
rectly by comparing the reordered source sentence
in Urdu with a reference reordering obtained from
the manual word alignments using BLEU (Pap-
ineni et al., 2002) (we call this measure monolin-
gual BLEU or mBLEU). All mBLEU results are
reported on a small test set of about 400 sentences
set aside from our set of sentences with manual
word alignments. Additionally, we evaluate the ef-
fect of reordering on our final systems for machine
translation measured using BLEU.

We use about 10K sentences (180K words) of
manual word alignments which were created in
house using part of the NIST MT-08 training data3

to train our baseline reordering model and to train
our supervised machine aligners. We use a parallel
corpus of 3.9M words consisting of 1.7M words
from the NIST MT-08 training data set and 2.2M
words extracted from parallel news stories on the

3http://www.ldc.upenn.edu

web4. The parallel corpus is used for building our
phrased based machine translation system and to
add training data for our reordering model. For
our English language model, we use the Gigaword
English corpus in addition to the English side of
our parallel corpus. Our Part-of-Speech tagger is
a Maximum Entropy Markov model tagger trained
on roughly fifty thousand words from the CRULP
corpus (Hussain, 2008).

For our machine translation experiments, we
used a standard phrase based system (Al-Onaizan
and Papineni, 2006) with a lexicalized distortion
model with a window size of +/-4 words5. To
extract phrases we use HMM alignments along
with higher quality alignments from a supervised
aligner (McCarley et al., 2011). We report results
on the (four reference) NIST MT-08 evaluation set
in Table 4 for the News and Web conditions. The
News and Web conditions each contain roughly
20K words in the test set, with the Web condition
containing more informal text from the web.

6 Results and Discussions

We now discuss the results of our experiments.

Need for additional data: We first show the need
for additional data in Urdu-English reordering.
Column 2 of Table 1 shows mBLEU as a function
of the number of sentences with manual word
alignments that are used to train the reordering
model. We see a roughly 3 mBLEU points drop
in performance per halving of data indicating a
potential for improvement by adding more data.

Using fewer features: We compare the perfor-
mance of a model trained using lexical features
for all words (Column 2 of Table 1) with a model
trained using lexical features only for the 1000
most frequent words (Column 3 of Table 1). The
motivation for this is to explore if a good model
can be learned even from a small amount of data if
we restrict the number of features in a reasonable
manner. However, we see that even with only
2.4K sentences with manual word alignments our
model benefits from lexical identities of more
than the 1000 most frequent words.

Effect of quality of machine alignments: We
next look at the use of automatically generated

4http://centralasiaonline.com
5Note that the same window size of +/-4 words was used

for all the systems,i.e., the baseline system as well as the
systems using different preordering techniques.

1280



Data size All features Frequent lex only
10K 52.5 50.8
5K 49.6 49.0

2.5K 46.6 46.2

Table 1: mBLEU scores for Urdu to English re-
ordering using different number of sentences of
manually word aligned training data with all fea-
tures and with lexical features instantiated only for
the 1000 most frequent words.

machine alignments to train the reordering model
and see the effect of aligner quality on the re-
ordering model generated using this data. These
experiments also form the baseline for the mod-
els we propose in this paper to clean up align-
ments. We experimented with two different super-
vised aligners : a maximum entropy aligner (Itty-
cheriah and Roukos, 2005) and an improved cor-
rection model that corrects the maximum entropy
alignments (McCarley et al., 2011).

Aligner Train size mBLEU
Type f-Measure (words)
None - 35.5

Manual 180K 52.5
MaxEnt 70.0 3.9M 49.5

Correction model 78.1 3.9M 55.1

Table 2: mBLEU scores for Urdu to English re-
ordering using models trained on different data
sources and tested on a development set of 8017
Urdu tokens.

Table 2 shows mBLEU scores when the re-
ordering model is trained on reordering references
created from aligners with different quality. We
see that the quality of the alignments matter a
great deal to the reordering model; using MaxEnt
alignments cause a degradation in performance
over just using a small set of manual word align-
ments. The alignments obtained using the aligner
of McCarley et al. (2011) are of much better
quality and hence give higher reordering perfor-
mance. Note that this reordering performance
is much better than that obtained using manual
word alignments because the size of machine
alignments is much larger (3.9M v/s 180K words).

Improvements in reordering performance us-
ing the proposed models: Table 3 shows im-
provements in the reordering model when using
the models proposed in this paper. We useH to re-
fer to the manually word aligned data andU to re-
fer to the additional sentence pairs for which man-
ual word alignments are not available. We report

the following numbers :
1. Base correction model: This is the baseline
where we use the correction model of McCar-
ley et al. (2011) for generating word alignments.
The f-Measure of this aligner is 78.1% (see row
1, column 2). Corresponding to this, we also re-
port the baseline for our reordering experiments
in the third column. Here, we first generate word
alignments forU using the aligner of McCarley et
al. (2011) and then extract reference reorderings
from these alignments. We then combine these
reference reorderings with the reference reorder-
ings derived fromH and use this combined data to
train a reordering model which serves as the base-
line (mBLEU = 55.1).
2. Correction model, C(π|a): Here, once again
we generate alignments forU using the correc-
tion model of McCarley et al. (2011). However,
instead of using the basic approach of extracting
reference reorderings, we use our improved model
C(π|a) to generate reference reorderings fromU .
These reference reorderings are again combined
with the reference reorderings derived fromH and
used to train a reordering model (mBLEU = 56.4).
3. P (a|π), C(π|a): Here, we build the entire se-
quence of models shown in Figure 2. The align-
ment modelP (a|π) is first improved by using pre-
dictions from the reordering model. These im-
proved alignments are then used to extract better
reference reorderings fromU usingC(π|a).

We see substantial improvements over simply
adding in the data from the machine alignments.
Improvements come roughly in equal parts from
the two techniques we proposed in this paper : (i)
using a model to generate reference reorderings
from noisy alignments and (ii) using reordering in-
formation to improve the aligner.

Method f-Measure mBLEU
Base Correction model 78.1 55.1

Correction model,C(π|a) 78.1 56.4
P (a|π), C(π|a) 80.7 57.6

Table 3: mBLEU with different methods to gener-
ate reordering model training data from a machine
aligned parallel corpus in addition to manual word
alignments.

Improvements in MT performance using the
proposed models: We report results for a phrase
based system with different preordering tech-
niques. For results including a reordering model,
we simply reorder the source side Urdu data both
while training and at test time. In addition to
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phrase based systems with different preordering
methods, we also report on a hierarchical phrase
based system for which we used Joshua 4.0 (Gan-
itkevitch et al., 2012). We see a significant gain of
1.8 BLEU points in machine translation by going
beyond manual word alignments using the best re-
ordering model reported in Table 3. We also note a
gain of 2.0 BLEU points over a hierarchical phrase
based system.

System type MT-08 eval
Web News All

Baseline (no preordering) 18.4 25.6 22.2
Hierarchical phrase based 19.6 30.7 25.4

Reordering: Manual alignments 20.7 30.0 25.6
+ Machine alignments simple 21.3 30.9 26.4

+ machine alignments, model based22.1 32.2 27.4

Table 4: MT performance without preordering
(phrase based and hierarchical phrase based),
and with reordering models using different data
sources (phrase based).

7 Related work

Dealing with the problem of handling word order
differences in machine translation has recently re-
ceived much attention. The approaches proposed
for solving this problem can be broadly divided
into 3 sets as discussed below.

The first set of approaches handle the reorder-
ing problem as part of the decoding process. Hier-
archical models (Chiang, 2007) and syntax based
models (Yamada and Knight, 2002; Galley et
al., 2006; Liu et al., 2006; Zollmann and Venu-
gopal, 2006) improve upon the simpler phrase
based models but with significant additional com-
putational cost (compared with phrase based sys-
tems) due to the inclusion of chart based parsing in
the decoding process. Syntax based models also
require a high quality source or target language
parser.

The second set of approaches rely on a source
language parser and treat reordering as a separate
process that is applied on the source language sen-
tence at training and test time before using a stan-
dard approach to machine translation. Preordering
the source data with hand written or automatically
learned rules is effective and efficient (Collins
et al., 2005; Wang et al., 2007; Ramanathan et
al., 2009; Xia and McCord, 2004; Genzel, 2010;
Visweswariah et al., 2010) but requires a source
language parser.

Recent approaches that avoid the need for a

source or target language parser and retain the ef-
ficiency of preordering models were proposed in
(Tromble and Eisner, 2009; DeNero and Uszko-
reit, 2011; Visweswariah et al., 2011; Neubig
et al., 2012). (DeNero and Uszkoreit, 2011;
Visweswariah et al., 2011; Neubig et al., 2012) fo-
cus on the use of manual word alignments to learn
preordering models and in both cases no benefit
was obtained by using the parallel corpus in ad-
dition to manual word alignments. Our work is
an extension of Visweswariah et al. (2011) and
we focus on being able to incorporate relatively
noisy machine alignments to improve the reorder-
ing model.

In addition to being related to work in reorder-
ing, our work is also more broadly related to sev-
eral other efforts which we now outline. Seti-
awan et al. (2010) proposed the use of function
word reordering to improve alignments. While
this work is similar to one of our models (model
of alignments given reordering) we differ in us-
ing a reordering model of all words (not just func-
tion words) and both source and target sentences
(not just the source sentence). The task of directly
learning a reordering model for language pairs that
are very different is closely related to the task of
parsing and hence work on semi-supervised pars-
ing (Koo et al., 2008; McClosky et al., 2006;
Suzuki et al., 2009) is broadly related to our work.
Our work coupling reordering and alignments is
also similar in spirit to approaches where parsing
and alignment are coupled (Wu, 1997).

8 Conclusion

In the paper we showed that a reordering model
can benefit from data beyond a relatively small
corpus of manual word alignments. We proposed
a model that scores reorderings given alignments
and the source sentence that we use to gener-
ate cleaner training data from noisy alignments.
We also proposed a model that scores alignments
given source and target sentence reorderings that
improves a supervised alignment model by 2.6
points in f-Measure. While the improvement in
alignment performance is modest, the improve-
ment does result in improved reordering models.
Cumulatively, we see a gain of 1.8 BLEU points
over a baseline reordering model that only uses
manual word alignments, a gain of 2.0 BLEU
points over a hierarchical phrase based system,
and a gain of 5.2 BLEU points over a phrase based
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system that uses no source preordering on a pub-
licly available Urdu-English test set.

As future work we would like to evaluate our
models on other language pairs. Another avenue
of future work we would like to explore is the use
of monolingual source and target data to further
assist the reordering model. We hope to be able to
learn lexical information such as how many argu-
ments a verb takes, what nouns are potential sub-
jects for a given verb by gathering statistics from
an English parser and projecting to the source lan-
guage via our word/phrase translation table.
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Abstract

This paper proposes a new approach to
domain adaptation in statistical machine
translation (SMT) based on a vector space
model (VSM). The general idea is first to
create a vector profile for the in-domain
development (“dev”) set. This profile
might, for instance, be a vector with a di-
mensionality equal to the number of train-
ing subcorpora; each entry in the vector re-
flects the contribution of a particular sub-
corpus to all the phrase pairs that can be
extracted from the dev set. Then, for
each phrase pair extracted from the train-
ing data, we create a vector with features
defined in the same way, and calculate its
similarity score with the vector represent-
ing the dev set. Thus, we obtain a de-
coding feature whose value represents the
phrase pair’s closeness to the dev. This is
a simple, computationally cheap form of
instance weighting for phrase pairs. Ex-
periments on large scale NIST evaluation
data show improvements over strong base-
lines: +1.8 BLEU on Arabic to English
and +1.4 BLEU on Chinese to English
over a non-adapted baseline, and signifi-
cant improvements in most circumstances
over baselines with linear mixture model
adaptation. An informal analysis suggests
that VSM adaptation may help in making
a good choice among words with the same
meaning, on the basis of style and genre.

1 Introduction

The translation models of a statistical machine
translation (SMT) system are trained on parallel
data. Usage of language and therefore the best
translation practice differs widely across genres,
topics, and dialects, and even depends on a partic-

ular author’s or publication’s style; the word “do-
main” is often used to indicate a particular combi-
nation of all these factors. Unless there is a per-
fect match between the training data domain and
the (test) domain in which the SMT system will
be used, one can often get better performance by
adapting the system to the test domain.

Domain adaptation is an active topic in the nat-
ural language processing (NLP) research commu-
nity. Its application to SMT systems has recently
received considerable attention. Approaches that
have been tried for SMT model adaptation include
mixture models, transductive learning, data selec-
tion, instance weighting, and phrase sense disam-
biguation, etc.

Research on mixture models has considered
both linear and log-linear mixtures. Both were
studied in (Foster and Kuhn, 2007), which con-
cluded that the best approach was to combine sub-
models of the same type (for instance, several
different TMs or several different LMs) linearly,
while combining models of different types (for in-
stance, a mixture TM with a mixture LM) log-
linearly. (Koehn and Schroeder, 2007), instead,
opted for combining the sub-models directly in the
SMT log-linear framework.

In transductive learning, an MT system trained
on general domain data is used to translate in-
domain monolingual data. The resulting bilingual
sentence pairs are then used as additional train-
ing data (Ueffing et al., 2007; Chen et al., 2008;
Schwenk, 2008; Bertoldi and Federico, 2009).

Data selection approaches (Zhao et al., 2004;
Hildebrand et al., 2005; Lü et al., 2007; Moore
and Lewis, 2010; Axelrod et al., 2011) search for
bilingual sentence pairs that are similar to the in-
domain “dev” data, then add them to the training
data.

Instance weighting approaches (Matsoukas et
al., 2009; Foster et al., 2010; Huang and Xiang,
2010; Phillips and Brown, 2011; Sennrich, 2012)
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typically use a rich feature set to decide on weights
for the training data, at the sentence or phrase pair
level. For example, a sentence from a subcorpus
whose domain is far from that of the dev set would
typically receive a low weight, but sentences in
this subcorpus that appear to be of a general na-
ture might receive higher weights.

The 2012 JHU workshop on Domain Adapta-
tion for MT 1 proposed phrase sense disambigua-
tion (PSD) for translation model adaptation. In
this approach, the context of a phrase helps the
system to find the appropriate translation.

In this paper, we propose a new instance weight-
ing approach to domain adaptation based on a vec-
tor space model (VSM). As in (Foster et al., 2010),
this approach works at the level of phrase pairs.
However, the VSM approach is simpler and more
straightforward. Instead of using word-based fea-
tures and a computationally expensive training
procedure, we capture the distributional properties
of each phrase pair directly, representing it as a
vector in a space which also contains a representa-
tion of the dev set. The similarity between a given
phrase pair’s vector and the dev set vector be-
comes a feature for the decoder. It rewards phrase
pairs that are in some sense closer to those found
in the dev set, and punishes the rest. In initial ex-
periments, we tried three different similarity func-
tions: Bhattacharyya coefficient, Jensen-Shannon
divergency, and cosine measure. They all enabled
VSM adaptation to beat the non-adaptive baseline,
but Bhattacharyya similarity worked best, so we
adopted it for the remaining experiments.

The vector space used by VSM adaptation can
be defined in various ways. In the experiments
described below, we chose a definition that mea-
sures the contribution (to counts of a given phrase
pair, or to counts of all phrase pairs in the dev
set) of each training subcorpus. Thus, the vari-
ant of VSM adaptation tested here bears a super-
ficial resemblance to domain adaptation based on
mixture models for TMs, as in (Foster and Kuhn,
2007), in that both approaches rely on information
about the subcorpora from which the data origi-
nate. However, a key difference is that in this pa-
per we explicitly capture each phrase pair’s dis-
tribution across subcorpora, and compare it to the
aggregated distribution of phrase pairs in the dev
set. In mixture models, a phrase pair’s distribu-

1http://www.clsp.jhu.edu/workshops/archive/ws-
12/groups/dasmt

tion across subcorpora is captured only implicitly,
by probabilities that reflect the prevalence of the
pair within each subcorpus. Thus, VSM adapta-
tion occurs at a much finer granularity than mix-
ture model adaptation. More fundamentally, there
is nothing about the VSM idea that obliges us to
define the vector space in terms of subcorpora.

For instance, we could cluster the words in the
source language into S clusters, and the words in
the target language into T clusters. Then, treat-
ing the dev set and each phrase pair as a pair of
bags of words (a source bag and a target bag) one
could represent each as a vector of dimension S +
T, with entries calculated from the counts associ-
ated with the S + T clusters (in a way similar to
that described for phrase pairs below). The (dev,
phrase pair) similarity would then be independent
of the subcorpora. One can think of several other
ways of defining the vector space that might yield
even better results than those reported here. Thus,
VSM adaptation is not limited to the variant of it
that we tested in our experiments.

2 Vector space model adaptation

Vector space models (VSMs) have been widely
applied in many information retrieval and natural
language processing applications. For instance, to
compute the sense similarity between terms, many
researchers extract features for each term from its
context in a corpus, define a VSM and then ap-
ply similarity functions (Hindle, 1990; Lund and
Burgess, 1996; Lin, 1998; Turney, 2001).

In our experiments, we exploited the fact that
the training data come from a set of subcorpora.
For instance, the Chinese-English training data are
made up of 14 subcorpora (see section 3 below).
Suppose we have C subcorpora. The domain vec-
tor for a phrase-pair (f, e) is defined as

V (f, e) =< w1(f, e), ...wi(f, e), ..., wC(f, e) >,
(1)

where wi(f, e) is a standard tf · idf weight, i.e.

wi(f, e) = tfi (f, e) · idf (f, e) . (2)

To avoid a bias towards longer corpora, we nor-
malize the raw joint count ci(f, e) in the corpus
si by dividing by the maximum raw count of any
phrase pair extracted in the corpus si. Let
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tfi (f, e) =
ci (f, e)

max {ci (fj , ek) , (fj , ek) ∈ si}
.

(3)
The idf (f, e) is the inverse document fre-

quency: a measure of whether the phrase-pair
(f, e) is common or rare across all subcorpora. We
use the standard formula:

idf (f, e) = log

(
C

df (f, e)
+ λ

)
, (4)

where df(f, e) is the number of subcorpora that
(f, e) appears in, and λ is an empirically deter-
mined smoothing term.

For the in-domain dev set, we first run word
alignment and phrases extracting in the usual way
for the dev set, then sum the distribution of each
phrase pair (fj , ek) extracted from the dev data
across subcorpora to represent its domain informa-
tion. The dev vector is thus

V (dev) =< w1(dev), . . . , wC(dev) >, (5)

where

wi(dev) =

j=J∑

j=0

k=K∑

k=0

cdev (fj , ek)wi(fj , ek) (6)

J,K are the total numbers of source/target
phrases extracted from the dev data respectively.
cdev (fj , ek) is the joint count of phrase pair fj , ek
found in the dev set.

The vector can also be built with other features
of the phrase pair. For instance, we could replace
the raw joint count ci(f, e) in Equation 3 with the
raw marginal count of phrase pairs (f, e). There-
fore, even within the variant of VSM adaptation
we focus on in this paper, where the definition of
the vector space is based on the existence of sub-
corpora, one could utilize other definitions of the
vectors of the similarity function than those we uti-
lized in our experiments.

2.1 Vector similarity functions

VSM uses the similarity score between the vec-
tor representing the in-domain dev set and the vec-
tor representing each phrase pair as a decoder fea-
ture. There are many similarity functions we could
have employed for this purpose (Cha, 2007). We

tested three commonly-used functions: the Bhat-
tacharyya coefficient (BC) (Bhattacharyya, 1943;
Kazama et al., 2010), the Jensen-Shannon diver-
gence (JSD), and the cosine measure. According
to (Cha, 2007), these belong to three different fam-
ilies of similarity functions: the Fidelity family,
the Shannon’s entropy family, and the inner Prod-
uct family respectively. It was BC similarity that
yielded the best performance, and that we ended
up using in subsequent experiments.

To map the BC score onto a range from 0 to
1, we first normalize each weight in the vector by
dividing it by the sum of the weights. Thus, we get
the probability distribution of a phrase pair or the
phrase pairs in the dev data across all subcorpora:

pi(f, e) =
wi(f, e)∑j=C
j=1 wj(f, e)

(7)

pi(dev) =
wi(dev)∑j=C
j=1 wj(dev)

(8)

To further improve the similarity score, we ap-
ply absolute discounting smoothing when calcu-
lating the probability distributions pi(f, e). We
subtract a discounting value α from the non-zero
pi(f, e), and equally allocate the remaining proba-
bility mass to the zero probabilities. We carry out
the same smoothing for the probability distribu-
tions pi(dev). The smoothing constant α is deter-
mined empirically on held-out data.

The Bhattacharyya coefficient (BC) is defined
as follows:

BC(dev; f, e) =
i=C∑

i=0

√
pi(dev) · pi(f, e) (9)

The other two similarity functions we also
tested are JSD and cosine (Cos). They are defined
as follows:

JSD(dev; f, e) = (10)

1

2
[

i=C∑

i=1

pi(dev) log
2pi(dev)

pi(dev) + pi(f, e)
+

i=C∑

i=1

pi(f, e) log
2pi(f, e)

pi(dev) + pi(f, e)
]

Cos(dev; f, e) =

∑
i pi(dev) · pi (f, e)√∑
i p

2
i (dev)

√∑
i p

2
i (f, e)

(11)
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corpus # segs # en tok % genres
fbis 250K 10.5M 3.7 nw
financial 90K 2.5M 0.9 fin
gale bc 79K 1.3M 0.5 bc
gale bn 75K 1.8M 0.6 bn ng
gale nw 25K 696K 0.2 nw
gale wl 24K 596K 0.2 wl
hkh 1.3M 39.5M 14.0 hans
hkl 400K 9.3M 3.3 legal
hkn 702K 16.6M 5.9 nw
isi 558K 18.0M 6.4 nw
lex&ne 1.3M 2.0M 0.7 lex
other nw 146K 5.2M 1.8 nw
sinorama 282K 10.0M 3.5 nw
un 5.0M 164M 58.2 un
TOTAL 10.1M 283M 100.0 (all)

devtest
tune 1,506 161K nw wl
NIST06 1,664 189K nw bng
NIST08 1,357 164K nw wl

Table 1: NIST Chinese-English data. In the
genres column: nw=newswire, bc=broadcast
conversation, bn=broadcast news, wl=weblog,
ng=newsgroup, un=UN proc., bng = bn & ng.

3 Experiments

3.1 Data setting
We carried out experiments in two different set-
tings, both involving data from NIST Open MT
2012.2 The first setting is based on data from
the Chinese to English constrained track, compris-
ing about 283 million English running words. We
manually grouped the training data into 14 corpora
according to genre and origin. Table 1 summa-
rizes information about the training, development
and test sets; we show the sizes of the training sub-
corpora in number of words as a percentage of all
training data. Most training subcorpora consist of
parallel sentence pairs. The isi and lex&ne cor-
pora are exceptions: the former is extracted from
comparable data, while the latter is a lexicon that
includes many named entities. The development
set (tune) was taken from the NIST 2005 evalua-
tion set, augmented with some web-genre material
reserved from other NIST corpora.

The second setting uses NIST 2012 Arabic to
English data, but excludes the UN data. There are
about 47.8 million English running words in these

2http://www.nist.gov/itl/iad/mig/openmt12.cfm

corpus # segs # en toks % gen
gale bc 57K 1.6M 3.3 bc
gale bn 45K 1.2M 2.5 bn
gale ng 21K 491K 1.0 ng
gale nw 17K 659K 1.4 nw
gale wl 24K 590K 1.2 wl
isi 1,124K 34.7M 72.6 nw
other nw 224K 8.7M 18.2 nw
TOTAL 1,512K 47.8M 100.0 (all)

devtest
NIST06 1,664 202K nwl
NIST08 1,360 205K nwl
NIST09 1,313 187K nwl

Table 2: NIST Arabic-English data. In the gen
(genres) column: nw=newswire, bc=broadcast
conversation, bn=broadcast news, ng=newsgroup,
wl=weblog, nwl = nw & wl.

training data. We manually grouped the training
data into 7 groups according to genre and origin.
Table 2 summarizes information about the train-
ing, development and test sets. Note that for this
language pair, the comparable isi data represent a
large proportion of the training data: 72% of the
English words. We use the evaluation sets from
NIST 2006, 2008, and 2009 as our development
set and two test sets, respectively.

3.2 System

Experiments were carried out with an in-house
phrase-based system similar to Moses (Koehn et
al., 2007). Each corpus was word-aligned using
IBM2, HMM, and IBM4 models, and the phrase
table was the union of phrase pairs extracted from
these separate alignments, with a length limit of
7. The translation model (TM) was smoothed in
both directions with KN smoothing (Chen et al.,
2011). We use the hierarchical lexicalized reorder-
ing model (RM) (Galley and Manning, 2008), with
a distortion limit of 7. Other features include lex-
ical weighting in both directions, word count, a
distance-based RM, a 4-gram LM trained on the
target side of the parallel data, and a 6-gram En-
glish Gigaword LM. The system was tuned with
batch lattice MIRA (Cherry and Foster, 2012).

3.3 Results

For the baseline, we simply concatenate all train-
ing data. We have also compared our approach
to two widely used TM domain adaptation ap-
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proaches. One is the log-linear combination
of TMs trained on each subcorpus (Koehn and
Schroeder, 2007), with weights of each model
tuned under minimal error rate training using
MIRA. The other is a linear combination of TMs
trained on each subcorpus, with the weights of
each model learned with an EM algorithm to max-
imize the likelihood of joint empirical phrase pair
counts for in-domain dev data. For details, refer to
(Foster and Kuhn, 2007).

The value of λ and α (see Eq 4 and Section 2.1)
are determined by the performance on the dev
set of the Arabic-to-English system. For both
Arabic-to-English and Chinese-to-English exper-
iment, these values obtained on Arabic dev were
used to obtain the results below: λ was set to 8,
and α was set to 0.01. (Later, we ran an exper-
iment on Chinese-to-English with λ and α tuned
specifically for that language pair, but the perfor-
mance for the Chinese-English system only im-
proved by a tiny, insignificant amount).

Our metric is case-insensitive IBM BLEU (Pa-
pineni et al., 2002), which performs matching of
n-grams up to n = 4; we report BLEU scores av-
eraged across both test sets NIST06 and NIST08
for Chinese; NIST08 and NIST09 for Arabic.
Following (Koehn, 2004), we use the bootstrap-
resampling test to do significance testing. In ta-
bles 3 to 5, * and ** denote significant gains over
the baseline at p < 0.05 and p < 0.01 levels, re-
spectively.

We first compare the performance of differ-
ent similarity functions: cosine (COS), Jensen-
Shannon divergence (JSD) and Bhattacharyya co-
efficient (BC). The results are shown in Table 3.
All three functions obtained improvements. Both
COS and BC yield statistically significant im-
provements over the baseline, with BC performing
better than COS by a further statistically signifi-
cant margin. The Bhattacharyya coefficient is ex-
plicitly designed to measure the overlap between
the probability distributions of two statistical sam-
ples or populations, which is precisely what we are
trying to do here: we are trying to reward phrase
pairs whose distribution is similar to that of the
dev set. Thus, its superior performance in these
experiments is not unexpected.

In the next set of experiments, we compared
VSM adaptation using the BC similarity function
with the baseline which concatenates all training
data and with log-linear and linear TM mixtures

system Chinese Arabic
baseline 31.7 46.8
COS 32.3* 47.8**
JSD 32.1 47.1
BC 33.0** 48.4**

Table 3: Comparison of different similarity func-
tions. * and ** denote significant gains over the
baseline at p < 0.05 and p < 0.01 levels, respec-
tively.

system Chinese Arabic
baseline 31.7 46.8
loglinear tm 28.4 44.5
linear tm 32.7** 47.5**
vsm, BC 33.0** 48.4**

Table 4: Results for variants of adaptation.

whose components are based on subcorpora. Ta-
ble 4 shows that log-linear combination performs
worse than the baseline: the tuning algorithm
failed to optimize the log-linear combination even
on dev set. For Chinese, the BLEU score of the
dev set on the baseline system is 27.3, while on
the log-linear combination system, it is 24.0; for
Arabic, the BLEU score of the dev set on the base-
line system is 46.8, while on the log-linear com-
bination system, it is 45.4. We also tried adding
the global model to the loglinear combination and
it didn’t improve over the baseline for either lan-
guage pair. Linear mixture was significantly better
than the baseline at the p < 0.01 level for both lan-
guage pairs. Since our approach, VSM, performed
better than the linear mixture for both pairs, it is of
course also significantly better than the baseline at
the p < 0.01 level.

This raises the question: is VSM performance
significantly better than that of a linear mixture of
TMs? The answer (not shown in the table) is that
for Arabic to English, VSM performance is bet-
ter than linear mixture at the p < 0.01 level. For
Chinese to English, the argument for the superi-
ority of VSM over linear mixture is less convinc-
ing: there is significance at the p < 0.05 for one
of the two test sets (NIST06) but not for the other
(NIST08). At any rate, these results establish that
VSM adaptation is clearly superior to linear mix-
ture TM adaptation, for one of the two language
pairs.

In Table 4, the VSM results are based on the
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system Chinese Arabic
baseline 31.7 46.8
linear tm 32.7** 47.5**
vsm, joint 33.0** 48.4**
vsm, src-marginal 32.2* 47.3*
vsm, tgt-marginal 32.6** 47.6**
vsm, src+tgt (2 feat.) 32.7** 48.2**
vsm, joint+src (2 feat.) 32.9** 48.4**
vsm, joint+tgt (2 feat.) 32.9** 48.4**
vsm, joint+src+tgt (3 feat.) 33.1** 48.6**

Table 5: Results for adaptation based on joint or
maginal counts.

vector of the joint counts of the phrase pair. In
the next experiment, we replace the joint counts
with the source or target marginal counts. In Ta-
ble 5, we first show the results based on source
and target marginal counts, then the results of us-
ing feature sets drawn from three decoder VSM
features: a joint count feature, a source marginal
count feature, and a target marginal count fea-
ture. For instance, the last row shows the results
when all three features are used (with their weights
tuned by MIRA). It looks as though the source and
target marginal counts contain useful information.
The best performance is obtained by combining all
three sources of information. The 3-feature ver-
sion of VSM yields +1.8 BLEU over the baseline
for Arabic to English, and +1.4 BLEU for Chinese
to English.

When we compared two sets of results in Ta-
ble 4, the joint count version of VSM and lin-
ear mixture of TMs, we found that for Arabic to
English, VSM performance is better than linear
mixture at the p < 0.01 level; the Chinese to
English significance test was inconclusive (VSM
found to be superior to linear mixture at p < 0.05
for NIST06 but not for NIST08). We now have
somewhat better results for the 3-feature version
of VSM shown in Table 5. How do these new re-
sults affect the VSM vs. linear mixture compari-
son? Naturally, the conclusions for Arabic don’t
change. For Chinese, 3-feature VSM is now su-
perior to linear mixture at p < 0.01 on NIST06
test set, but 3-feature VSM still doesn’t have a sta-
tistically significant edge over linear mixture on
NIST08 test set. A fair summary would be that 3-
feature VSM adaptation is decisively superior to
linear mixture adaptation for Arabic to English,
and highly competitive with linear mixture adap-

tation for Chinese to English.
Our last set of experiments examined the ques-

tion: when added to a system that already has
some form of linear mixture model adaptation,
does VSM improve performance? In (Foster and
Kuhn, 2007), two kinds of linear mixture were de-
scribed: linear mixture of language models (LMs),
and linear mixture of translation models (TMs).
Some of the results reported above involved lin-
ear TM mixtures, but none of them involved lin-
ear LM mixtures. Table 6 shows the results of
different combinations of VSM and mixture mod-
els. * and ** denote significant gains over the row
no vsm at p < 0.05 and p < 0.01 levels, re-
spectively. This means that in the table, the base-
line within each box containing three results is the
topmost result in the box. For instance, with an
initial Chinese system that employs linear mixture
LM adaptation (lin-lm) and has a BLEU of 32.1,
adding 1-feature VSM adaptation (+vsm, joint)
improves performance to 33.1 (improvement sig-
nificant at p < 0.01), while adding 3-feature VSM
instead (+vsm, 3 feat.) improves performance to
33.2 (also significant at p < 0.01). For Arabic, in-
cluding either form of VSM adaptation always im-
proves performance with significance at p < 0.01,
even over a system including both linear TM and
linear LM adaptation. For Chinese, adding VSM
still always yields an improvement, but the im-
provement is not significant if linear TM adapta-
tion is already in the system. These results show
that combining VSM adaptation and either or both
kinds of linear mixture adaptation never hurts per-
formance, and often improves it by a significant
amount.

3.4 Informal Data Analysis

To get an intuition for how VSM adaptation im-
proves BLEU scores, we compared outputs from
the baseline and VSM-adapted system (“vsm,
joint” in Table 5) on the Chinese test data. We
focused on examples where the two systems had
translated the same source-language (Chinese)
phrase s differently, and where the target-language
(English) translation of s chosen by the VSM-
adapted system, tV , had a higher Bhattacharyya
score for similarity with the dev set than did the
phrase that was chosen by the baseline system, tB .
Thus, we ignored differences in the two transla-
tions that might have been due to the secondary
effects of VSM adaptation (such as a different tar-
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no-lin-adap lin-lm lin-tm lin-lm+lin-tm
no vsm 31.7 32.1 32.7 33.1

Chinese +vsm, joint 33.0** 33.1** 33.0 33.3
+vsm, 3 feat. 33.1** 33.2** 33.1 33.4
no vsm 46.8 47.0 47.5 47.7

Arabic +vsm, joint 48.4** 48.7** 48.6** 48.8**
+vsm, 3 feat. 48.6** 48.8** 48.7** 48.9**

Table 6: Results of combining VSM and linear mixture adaptation. “lin-lm” is linear language model
adaptation, “lin-tm” is linear translation model adaptation. * and ** denote significant gains over the row
“no vsm” at p < 0.05 and p < 0.01 levels, respectively.

get phrase being preferred by the language model
in the VSM-adapted system from the one preferred
in the baseline system because of a Bhattacharyya-
mediated change in the phrase preceding it).

An interesting pattern soon emerged: the VSM-
adapted system seems to be better than the base-
line at choosing among synonyms in a way that is
appropriate to the genre or style of a text. For in-
stance, where the text to be translated is from an
informal genre such as weblog, the VSM-adapted
system will often pick an informal word where the
baseline picks a formal word with the same or sim-
ilar meaning, and vice versa where the text to be
translated is from a more formal genre. To our
surprise, we saw few examples where the VSM-
adapted system did a better job than the baseline of
choosing between two words with different mean-
ing, but we saw many examples where the VSM-
adapted system did a better job than the baseline
of choosing between two words that both have the
same meaning according to considerations of style
and genre.

Two examples are shown in Table 7. In the
first example, the first two lines show that VSM
finds that the Chinese-English phrase pair (殴打,
assaulted) has a Bhattacharyya (BC) similarity of
0.556163 to the dev set, while the phrase pair (殴
打, beat) has a BC similarity of 0.780787 to the
dev. In this situation, the VSM-adapted system
thus prefers “beat” to “assaulted” as a translation
for 殴打. The next four lines show the source
sentence (SRC), the reference (REF), the baseline
output (BSL), and the output of the VSM-adapted
system. Note that the result of VSM adaptation is
that the rather formal word “assaulted” is replaced
by its informal near-synonym “beat” in the trans-
lation of an informal weblog text.

“apprehend” might be preferable to “arrest” in
a legal text. However, it looks as though the

VSM-adapted system has learned from the dev
that among synonyms, those more characteristic
of news stories than of legal texts should be cho-
sen: it therefore picks “arrest” over its synonym
“apprehend”.

What follows is a partial list of pairs of phrases
(all single words) from our system’s outputs,
where the baseline chose the first member of a pair
and the VSM-adapted system chose the second
member of the pair to translate the same Chinese
phrase into English (because the second word
yields a better BC score for the dev set we used).
It will be seen that nearly all of the pairs involve
synonyms or near-synonyms rather than words
with radically different senses (one exception
below is “center” vs “heart”). Instead, the differ-
ences between the two words tend to be related to
genre or style: gunmen-mobsters, champion-star,
updated-latest, caricatures-cartoons, spill-leakage,
hiv-aids, inkling-clues, behaviour-actions, deceit-
trick, brazen-shameless, aristocratic-noble,
circumvent-avoid, attack-criticized, descent-born,
hasten-quickly, precipice-cliff, center-heart,
blessing-approval, imminent-approaching,
stormed-rushed, etc.

4 Conclusions and future work

This paper proposed a new approach to domain
adaptation in statistical machine translation, based
on vector space models (VSMs). This approach
measures the similarity between a vector repre-
senting a particular phrase pair in the phrase ta-
ble and a vector representing the dev set, yield-
ing a feature associated with that phrase pair that
will be used by the decoder. The approach is
simple, easy to implement, and computationally
cheap. For the two language pairs we looked
at, it provided a large performance improvement
over a non-adaptive baseline, and also compared
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1 phrase 殴打↔ assaulted (0.556163)
pairs 殴打↔ beat (0.780787)
SRC ...那些殴打村民的地皮流氓...
REF ... those local ruffians and hooligans who beat up villagers ...
BSL ... those who assaulted the villagers land hooligans ...
VSM ... hooligans who beat the villagers ...

2 phrase 缉拿↔ apprehend (0.286533)
pairs 缉拿↔ arrest (0.603342)
SRC ... 缉拿凶手并且将之绳之以法。
REF ... catch the killers and bring them to justice .
BSL ... apprehend the perpetrators and bring them to justice .
VSM ... arrest the perpetrators and bring them to justice .

Table 7: Examples show that VSM chooses translations according to considerations of style and genre.

favourably with linear mixture adaptation tech-
niques.

Furthermore, VSM adaptation can be exploited
in a number of different ways, which we have only
begun to explore. In our experiments, we based
the vector space on subcorpora defined by the na-
ture of the training data. This was done purely
out of convenience: there are many, many ways to
define a vector space in this situation. An obvi-
ous and appealing one, which we intend to try in
future, is a vector space based on a bag-of-words
topic model. A feature derived from this topic-
related vector space might complement some fea-
tures derived from the subcorpora which we ex-
plored in the experiments above, and which seem
to exploit information related to genre and style.
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Abstract

We present a method for automatically
generating input parsers from English
specifications of input file formats. We
use a Bayesian generative model to cap-
ture relevant natural language phenomena
and translate the English specification into
a specification tree, which is then trans-
lated into a C++ input parser. We model
the problem as a joint dependency pars-
ing and semantic role labeling task. Our
method is based on two sources of infor-
mation: (1) the correlation between the
text and the specification tree and (2) noisy
supervision as determined by the success
of the generated C++ parser in reading in-
put examples. Our results show that our
approach achieves 80.0% F-Score accu-
racy compared to an F-Score of 66.7%
produced by a state-of-the-art semantic
parser on a dataset of input format speci-
fications from the ACM International Col-
legiate Programming Contest (which were
written in English for humans with no in-
tention of providing support for automated
processing).1

1 Introduction

The general problem of translating natural lan-
guage specifications into executable code has been
around since the field of computer science was
founded. Early attempts to solve this problem
produced what were essentially verbose, clumsy,
and ultimately unsuccessful versions of standard
formal programming languages. In recent years

1The code, data, and experimental setup for this research
are available at http://groups.csail.mit.edu/rbg/code/nl2p

the input

a single integer T test cases

an integer N the next N lines

N characters

The input contains a single integer T that indicates the 
number of test cases. Then follow the T cases. Each test 
case begins with a line contains an integer N, representing 
the size of wall. The next N lines represent the original 
wall. Each line contains N characters. The j-th character of 
the i-th line figures out the color ...

(a) Text Specification:

(b) Specification Tree:

(c) Two Program Input Examples:

1
10
YYWYYWWWWW
YWWWYWWWWW
YYWYYWWWWW
...
WWWWWWWWWW

2
1
Y
5
YWYWW
...
WWYYY

Figure 1: An example of (a) one natural language
specification describing program input data; (b)
the corresponding specification tree representing
the program input structure; and (c) two input ex-
amples

however, researchers have had success address-
ing specific aspects of this problem. Recent ad-
vances in this area include the successful transla-
tion of natural language commands into database
queries (Wong and Mooney, 2007; Zettlemoyer
and Collins, 2009; Poon and Domingos, 2009;
Liang et al., 2011) and the successful mapping of
natural language instructions into Windows com-
mand sequences (Branavan et al., 2009; Branavan
et al., 2010).

In this paper we explore a different aspect of
this general problem: the translation of natural
language input specifications into executable code
that correctly parses the input data and generates
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data structures for holding the data. The need
to automate this task arises because input format
specifications are almost always described in natu-
ral languages, with these specifications then man-
ually translated by a programmer into the code
for reading the program inputs. Our method
highlights potential to automate this translation,
thereby eliminating the manual software develop-
ment overhead.

Consider the text specification in Figure 1a.
If the desired parser is implemented in C++, it
should create a C++ class whose instance objects
hold the different fields of the input. For exam-
ple, one of the fields of this class is an integer, i.e.,
“a single integer T” identified in the text specifi-
cation in Figure 1a. Instead of directly generating
code from the text specification, we first translate
the specification into a specification tree (see Fig-
ure 1b), then map this tree into parser code (see
Figure 2). We focus on the translation from the
text specification to the specification tree.2

We assume that each text specification is ac-
companied by a set of input examples that the de-
sired input parser is required to successfully read.
In standard software development contexts, such
input examples are usually available and are used
to test the correctness of the input parser. Note that
this source of supervision is noisy — the generated
parser may still be incorrect even when it success-
fully reads all of the input examples. Specifically,
the parser may interpret the input examples differ-
ently from the text specification. For example, the
program input in Figure 1c can be interpreted sim-
ply as a list of strings. The parser may also fail
to parse some correctly formatted input files not in
the set of input examples. Therefore, our goal is to
design a technique that can effectively learn from
this weak supervision.

We model our problem as a joint depen-
dency parsing and role labeling task, assuming
a Bayesian generative process. The distribution
over the space of specification trees is informed
by two sources of information: (1) the correla-
tion between the text and the corresponding spec-
ification tree and (2) the success of the generated
parser in reading input examples. Our method uses
a joint probability distribution to take both of these
sources of information into account, and uses a
sampling framework for the inference of specifi-

2During the second step of the process, the specification
tree is deterministically translated into code.

1 struct TestCaseType {
2 int N;
3 vector<NLinesType*> lstLines;
4 InputType* pParentLink;
5 }
6

7 struct InputType {
8 int T;
9 vector<TestCaseType*> lstTestCase;

10 }
11

12 TestCaseType* ReadTestCase(FILE * pStream,
13 InputType* pParentLink) {
14 TestCaseType* pTestCase
15 = new TestCaseType;
16 pTestCase→pParentLink = pParentLink;
17

18 ...
19

20 return pTestCase;
21 }
22

23 InputType* ReadInput(FILE * pStream) {
24 InputType* pInput = new InputType;
25

26 pInput→T = ReadInteger(pStream);
27 for (int i = 0; i < pInput→T; ++i) {
28 TestCaseType* pTestCase
29 = new TestCaseType;
30 pTestCase = ReadTestCase (pStream,
31 pInput);
32 pInput→lstTestCase.push back (pTestCase);
33 }
34

35 return pInput;
36 }

Figure 2: Input parser code for reading input files
specified in Figure 1.

cation trees given text specifications. A specifica-
tion tree is rejected in the sampling framework if
the corresponding code fails to successfully read
all of the input examples. The sampling frame-
work also rejects the tree if the text/specification
tree pair has low probability.

We evaluate our method on a dataset of in-
put specifications from ACM International Colle-
giate Programming Contests, along with the cor-
responding input examples. These specifications
were written for human programmers with no in-
tention of providing support for automated pro-
cessing. However, when trained using the noisy
supervision, our method achieves substantially
more accurate translations than a state-of-the-art
semantic parser (Clarke et al., 2010) (specifically,
80.0% in F-Score compared to an F-Score of
66.7%). The strength of our model in the face of
such weak supervision is also highlighted by the
fact that it retains an F-Score of 77% even when
only one input example is provided for each input
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Your program is supposed to read the input from the standard 
input and write its output to the standard output.
The first line of the input contains one integer N. 
N lines follow, the i-th of them contains two real numbers Xi, Yi 
separated by a single space - the coordinates of the i-th house. 
Each of the following lines contains four real numbers separated 
by a single space. These numbers are the coordinates of two 
different points (X1, Y1) and (X2, Y2), lying on the highway. 

(a)

Text Specification:

the input

one integer N N lines the following lines

Specification Tree:

(b)

two real 
numbers Xi, Yi

four real 
numbers

(c)

Input  :=  N
           Lines [size = N]
           FollowingLines [size = *]

N      :=  int
Lines  :=  Xi Yi
Xi     :=  float
Yi     :=  float

Formal Input Grammar Definition:

FollowingLines  :=  F1 F2 F3 F4

F1     :=  float

Figure 3: An example of generating input parser code from text: (a) a natural language input specifica-
tion; (b) a specification tree representing the input format structure (we omit the background phrases in
this tree in order to give a clear view of the input format structure); and (c) formal definition of the input
format constructed from the specification tree, represented as a context-free grammar in Backus-Naur
Form with additional size constraints.

specification.

2 Related Work

Learning Meaning Representation from Text
Mapping sentences into structural meaning rep-
resentations is an active and extensively studied
task in NLP. Examples of meaning representations
considered in prior research include logical forms
based on database query (Tang and Mooney, 2000;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Wong and Mooney, 2007; Poon and Domin-
gos, 2009; Liang et al., 2011; Goldwasser et al.,
2011), semantic frames (Das et al., 2010; Das
and Smith, 2011) and database records (Chen and
Mooney, 2008; Liang et al., 2009).

Learning Semantics from Feedback Our ap-
proach is related to recent research on learn-
ing from indirect supervision. Examples include
leveraging feedback available via responses from
a virtual world (Branavan et al., 2009) or from ex-
ecuting predicted database queries (Chang et al.,
2010; Clarke et al., 2010). While Branavan et
al. (2009) formalize the task as a sequence of de-
cisions and learns from local rewards in a Rein-
forcement Learning framework, our model learns
to predict the whole structure at a time. Another
difference is the way our model incorporates the
noisy feedback. While previous approaches rely
on the feedback to train a discriminative prediction
model, our approach models a generative process
to guide structure predictions when the feedback
is noisy or unavailable.

NLP in Software Engineering Researchers
have recently developed a number of approaches
that apply natural language processing techniques
to software engineering problems. Examples in-
clude analyzing API documents to infer API li-

brary specifications (Zhong et al., 2009; Pandita
et al., 2012) and analyzing code comments to de-
tect concurrency bugs (Tan et al., 2007; Tan et al.,
2011). This research analyzes natural language in
documentation or comments to better understand
existing application programs. Our mechanism, in
contrast, automatically generates parser programs
from natural language input format descriptions.

3 Problem Formulation

The task of translating text specifications to input
parsers consists of two steps, as shown in Figure 3.
First, given a text specification describing an input
format, we wish to infer a parse tree (which we
call a specification tree) implied by the text. Sec-
ond, we convert each specification tree into for-
mal grammar of the input format (represented in
Backus-Naur Form) and then generate code that
reads the input into data structures. In this paper,
we focus on the NLP techniques used in the first
step, i.e., learning to infer the specification trees
from text. The second step is achieved using a de-
terministic rule-based tool. 3

As input, we are given a set of text specifica-
tions w = {w1, · · · , wN}, where each wi is a text
specification represented as a sequence of noun
phrases {wik}. We use UIUC shallow parser to
preprocess each text specificaton into a sequence
of the noun phrases.4 In addition, we are given a
set of input examples for each wi. We use these
examples to test the generated input parsers to re-

3Specifically, the specification tree is first translated into
the grammar using a set of rules and seed words that identi-
fies basic data types such as int. Our implementation then
generates a top-down parser since the generated grammar is
simple. In general, standard techniques such as Bison and
Yacc (Johnson, 1979) can generate bottom-up parsers given
such grammar.

4http://cogcomp.cs.illinois.edu/demo/shallowparse/?id=7
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ject incorrect predictions made by our probabilis-
tic model.

We formalize the learning problem as a de-
pendency parsing and role labeling problem.
Our model predicts specification trees t =
{t1, · · · , tN} for the text specifications, where
each specification tree ti is a dependency tree over
noun phrases {wik}. In general many program in-
put formats are nested tree structures, in which the
tree root denotes the entire chunk of program in-
put data and each chunk (tree node) can be further
divided into sub-chunks or primitive fields that ap-
pear in the program input (see Figure 3). There-
fore our objective is to predict a dependency tree
that correctly represents the structure of the pro-
gram input.

In addition, the role labeling problem is to as-
sign a tag zik to each noun phrase wik in a specifi-
cation tree, indicating whether the phrase is a key
phrase or a background phrase. Key phrases are
named entities that identify input fields or input
chunks appear in the program input data, such as
“the input” or “the following lines” in Figure 3b.
In contrast, background phrases do not define in-
put fields or chunks. These phrases are used to or-
ganize the document (e.g., “your program”) or to
refer to key phrases described before (e.g., “each
line”).

4 Model

We use two kinds of information to bias our
model: (1) the quality of the generated code as
measured by its ability to read the given input ex-
amples and (2) the features over the observed text
wi and the hidden specification tree ti (this is stan-
dard in traditional parsing problems). We combine
these two kinds of information into a Bayesian
generative model in which the code quality of the
specification tree is captured by the prior probabil-
ity P (t) and the feature observations are encoded
in the likelihood probability P (w|t). The infer-
ence jointly optimizes these two factors:

P (t|w) ∝ P (t) · P (w|t).

Modeling the Generative Process. We assume
the generative model operates by first generating
the model parameters from a set of Dirichlet dis-
tributions. The model then generates text spec-
ification trees. Finally, it generates natural lan-
guage feature observations conditioned on the hid-
den specification trees.

The generative process is described formally as
follows:

• Generating Model Parameters: For every
pair of feature type f and phrase tag z, draw
a multinomial distribution parameter θzf from
a Dirichlet prior P (θzf ). The multinomial pa-
rameters provide the probabilities of observ-
ing different feature values in the text.

• Generating Specification Tree: For each
text specification, draw a specification tree t
from all possible trees over the sequence of
noun phrases in this specification. We denote
the probability of choosing a particular spec-
ification tree t as P (t).

Intuitively, this distribution should assign
high probability to good specification trees
that can produce C++ code that reads all input
examples without errors, we therefore define
P (t) as follows:5

P (t) =
1

Z
·





1 the input parser of tree t
reads all input examples
without error

ε otherwise

whereZ is a normalization factor and ε is em-
pirically set to 10−6. In other words, P (·)
treats all specification trees that pass the input
example test as equally probable candidates
and inhibits the model from generating trees
which fail the test. Note that we do not know
this distribution a priori until the specification
trees are evaluated by testing the correspond-
ing C++ code. Because it is intractable to test
all possible trees and all possible generated
code for a text specification, we never explic-
itly compute the normalization factor 1/Z of
this distribution. We therefore use sampling
methods to tackle this problem during infer-
ence.

• Generating Features: The final step gener-
ates lexical and contextual features for each
tree. For each phrase wk associated with tag
zk, let wp be its parent phrase in the tree and
ws be the non-background sibling phrase to
its left in the tree. The model generates the
corresponding set of features φ(wp, ws, wk)
for each text phrase tuple (wp, ws, wk), with

5When input examples are not available, P (t) is just uni-
form distribution.
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probability P (φ(wp, ws, wk)). We assume
that each feature fj is generated indepen-
dently:

P (w|t) = P (φ(wp, ws, wk))

=
∏

fj∈φ(wp,ws,wk)
θzkfj

where θzkfj is the j-th component in the multi-
nomial distribution θzkf denoting the proba-
bility of observing a feature fj associated
with noun phrase wk labeled with tag zk. We
define a range of features that capture the cor-
respondence between the input format and its
description in natural language. For example,
at the unigram level we aim to capture that
noun phrases containing specific words such
as “cases” and “lines” may be key phrases
(correspond to data chunks appear in the in-
put), and that verbs such as “contain” may
indicate that the next noun phrase is a key
phrase.

The full joint probability of a set w of N spec-
ifications and hidden text specification trees t is
defined as:

P (θ, t,w) = P (θ)
N∏

i=1

P (ti)P (wi|ti, θ)

= P (θ)
N∏

i=1

P (ti)
∏

k

P (φ(wip, w
i
s, w

i
k)).

Learning the Model During inference, we want
to estimate the hidden specification trees t given
the observed natural language specifications w, af-
ter integrating the model parameters out, i.e.

t ∼ P (t|w) =

∫

θ
P (t, θ|w)dθ.

We use Gibbs sampling to sample variables t from
this distribution. In general, the Gibbs sampling
algorithm randomly initializes the variables and
then iteratively solves one subproblem at a time.
The subproblem is to sample only one variable
conditioned on the current values of all other vari-
ables. In our case, we sample one hidden spec-
ification tree ti while holding all other trees t−i

fixed:

ti ∼ P (ti|w, t−i) (1)

where t−i = (t1, · · · , ti−1, ti+1, · · · , tN ).

However directly solving the subproblem (1)
in our case is still hard, we therefore use a
Metropolis-Hastings sampler that is similarly ap-
plied in traditional sentence parsing problems.
Specifically, the Hastings sampler approximates
(1) by first drawing a new ti

′ from a tractable pro-
posal distribution Q instead of P (ti|w, t−i). We
choose Q to be:

Q(ti
′|θ′, wi) ∝ P (wi|ti′, θ′). (2)

Then the probability of accepting the new sample
is determined using the typical Metropolis Hast-
ings process. Specifically, ti′ will be accepted to
replace the last ti with probability:

R(ti, ti
′
) = min

{
1,
P (ti

′|w, t−i) Q(ti|θ′, wi)
P (ti|w, t−i) Q(ti′|θ′, wi)

}

= min

{
1,
P (ti

′
, t−i,w)P (wi|ti, θ′)

P (ti, t−i,w)P (wi|ti′, θ′)

}
,

in which the normalization factors 1/Z are can-
celled out. We choose θ′ to be the parameter ex-
pectation based on the current observations, i.e.
θ′ = E

[
θ|w, t−i

]
, so that the proposal distribu-

tion is close to the true distribution. This sampling
algorithm with a changing proposal distribution
has been shown to work well in practice (John-
son and Griffiths, 2007; Cohn et al., 2010; Naseem
and Barzilay, 2011). The algorithm pseudo code is
shown in Algorithm 1.

To sample from the proposal distribution (2) ef-
ficiently, we implement a dynamic programming
algorithm which calculates marginal probabilities
of all subtrees. The algorithm works similarly to
the inside algorithm (Baker, 1979), except that we
do not assume the tree is binary. We therefore per-
form one additional dynamic programming step
that sums over all possible segmentations of each
span. Once the algorithm obtains the marginal
probabilities of all subtrees, a specification tree
can be drawn recursively in a top-down manner.

Calculating P (t,w) in R(t, t′) requires inte-
grating the parameters θ out. This has a closed
form due to the Dirichlet-multinomial conjugacy:

P (t,w) = P (t) ·
∫

θ
P (w|t, θ)P (θ)dθ

∝ P (t) ·
∏

Beta (count(f) + α) .

Here α are the Dirichlet hyper parameters and
count(f) are the feature counts observed in data
(t,w). The closed form is a product of the Beta
functions of each feature type.
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Feature Type Description Feature Value
Word each word in noun phrase wk lines, VAR
Verb verbs in noun phrase wk and the verb phrase before wk contains
Distance sentence distance between wk and its parent phrase wp 1
Coreference wk share duplicate nouns or variable names with wp or ws True

Table 1: Example of feature types and values. To deal with sparsity, we map variable names such as “N”
and “X” into a category word “VAR” in word features.

Input: Set of text specification documents
w = {w1, · · · , wN},
Number of iterations T

Randomly initialize specification trees1

t = {t1, · · · , tN}

for iter = 1 · · ·T do2

Sample tree ti for i-th document:3
for i = 1 · · ·N do4

Estimate model parameters:5

θ′ = E
[
θ′|w, t−i

]
6

Sample a new specification tree from distribution7
Q:
t′ ∼ Q(t′|θ′, wi)8

Generate and test code, and return feedback:9

f ′ = CodeGenerator(wi, t′)10

Calculate accept probability r:11

r = R(ti, t′)12

Accept the new tree with probability r:13

With probability r : ti = t′14

end15

end16

Produce final structures:17

return { ti if ti gets positive feedback }18

Algorithm 1: The sampling framework for learn-
ing the model.

Model Implementation: We define several
types of features to capture the correlation be-
tween the hidden structure and its expression in
natural language. For example, verb features are
introduced because certain preceding verbs such
as “contains” and “consists” are good indicators of
key phrases. There are 991 unique features in total
in our experiments. Examples of features appear
in Table 1.

We use a small set of 8 seed words to bias the
search space. Specifically, we require each leaf
key phrase to contain at least one seed word that
identifies the C++ primitive data type (such as “in-
teger”, “float”, “byte” and “string”).

We also encourage a phrase containing the word
“input” to be the root of the tree (for example, “the
input file”) and each coreference phrase to be a

Total # of words 7330
Total # of noun phrases 1829
Vocabulary size 781
Avg. # of words per sentence 17.29
Avg. # of noun phrase per document 17.26
Avg. # of possible trees per document 52K
Median # of possible trees per document 79
Min # of possible trees per document 1
Max # of possible trees per document 2M

Table 2: Statistics for 106 ICPC specifications.

background phrase (for example, “each test case”
after mentioning “test cases”), by initially adding
pseudo counts to Dirichlet priors.

5 Experimental Setup

Datasets: Our dataset consists of problem de-
scriptions from ACM International Collegiate Pro-
gramming Contests.6 We collected 106 problems
from ACM-ICPC training websites.7 From each
problem description, we extracted the portion that
provides input specifications. Because the test
input examples are not publicly available on the
ACM-ICPC training websites, for each specifica-
tion, we wrote simple programs to generate 100
random input examples.

Table 2 presents statistics for the text specifica-
tion set. The data set consists of 424 sentences,
where an average sentence contains 17.3 words.
The data set contains 781 unique words. The
length of each text specification varies from a sin-
gle sentence to eight sentences. The difference be-
tween the average and median number of trees is
large. This is because half of the specifications are
relatively simple and have a small number of pos-
sible trees, while a few difficult specifications have
over thousands of possible trees (as the number of
trees grows exponentially when the text length in-
creases).

Evaluation Metrics: We evaluate the model
6Official Website: http://cm.baylor.edu/welcome.icpc
7PKU Online Judge: http://poj.org/; UVA Online Judge:

http://uva.onlinejudge.org/
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performance in terms of its success in generating a
formal grammar that correctly represents the input
format (see Figure 3c). As a gold annotation, we
construct formal grammars for all text specifica-
tions. Our results are generated by automatically
comparing the machine-generated grammars with
their golden counterparts. If the formal grammar
is correct, then the generated C++ parser will cor-
rectly read the input file into corresponding C++
data structures.

We use Recall and Precision as evaluation mea-
sures:

Recall =
# correct structures
# text specifications

Precision =
# correct structures

# produced structures

where the produced structures are the positive
structures returned by our framework whose corre-
sponding code successfully reads all input exam-
ples (see Algorithm 1 line 18). Note the number of
produced structures may be less than the number
of text specifications, because structures that fail
the input test are not returned.

Baselines: To evaluate the performance of our
model, we compare against four baselines.

The No Learning baseline is a variant of our
model that selects a specification tree without
learning feature correspondence. It continues
sampling a specification tree for each text speci-
fication until it finds one which successfully reads
all of the input examples.

The second baseline Aggressive is a state-of-
the-art semantic parsing framework (Clarke et al.,
2010).8 The framework repeatedly predicts hidden
structures (specification trees in our case) using a
structure learner, and trains the structure learner
based on the execution feedback of its predictions.
Specifically, at each iteration the structure learner
predicts the most plausible specification tree for
each text document:

ti = argmaxt f(w
i, t).

Depending on whether the corresponding code
reads all input examples successfully or not, the
(wi, ti) pairs are added as an positive or negative
sample to populate a training set. After each it-
eration the structure learner is re-trained with the
training samples to improve the prediction accu-
racy. In our experiment, we follow (Clarke et al.,

8We take the name Aggressive from this paper.

Model Recall Precision F-Score
No Learning 52.0 57.2 54.5
Aggressive 63.2 70.5 66.7
Full Model 72.5 89.3 80.0
Full Model (Oracle) 72.5 100.0 84.1
Aggressive (Oracle) 80.2 100.0 89.0

Table 3: Average % Recall and % Precision of our
model and all baselines over 20 independent runs.

2010) and choose a structural Support Vector Ma-
chine SVMstruct 9 as the structure learner.

The remaining baselines provide an upper
bound on the performance of our model. The base-
line Full Model (Oracle) is the same as our full
model except that the feedback comes from an or-
acle which tells whether the specification tree is
correct or not. We use this oracle information in
the prior P (t) same as we use the noisy feedback.
Similarly the baseline Aggressive (Oracle) is the
Aggressive baseline with access to the oracle.

Experimental Details: Because no human an-
notation is required for learning, we train our
model and all baselines on all 106 ICPC text spec-
ifications (similar to unsupervised learning). We
report results averaged over 20 independent runs.
For each of these runs, the model and all baselines
run 100 iterations. For baseline Aggressive, in
each iteration the SVM structure learner predicts
one tree with the highest score for each text spec-
ification. If two different specification trees of the
same text specification get positive feedback, we
take the one generated in later iteration for evalu-
ation.

6 Experimental Results

Comparison with Baselines Table 3 presents
the performance of various models in predicting
correct specification trees. As can be seen, our
model achieves an F-Score of 80%. Our model
therefore significantly outperforms the No Learn-
ing baseline (by more than 25%). Note that the
No Learning baseline achieves a low Precision
of 57.2%. This low precision reflects the noisi-
ness of the weak supervision - nearly one half of
the parsers produced by No Learning are actually
incorrect even though they read all of the input
examples without error. This comparison shows
the importance of capturing correlations between
the specification trees and their text descriptions.

9www.cs.cornell.edu/people/tj/svm light/svm struct.html
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(a)

The next N lines of the input file contain the Cartesian coordinates of 

watchtowers, one pair of coordinates per line.
(b)

The input contains several testcases.

Each is specified by two strings S, T of alphanumeric ASCII characters 

Figure 4: Examples of dependencies and key phrases predicted by our model. Green marks correct key
phrases and dependencies and red marks incorrect ones. The missing key phrases are marked in gray.

%supervision

Figure 5: Precision and Recall of our model by
varying the percentage of weak supervision. The
green lines are the performance of Aggressive
baseline trained with full weak supervision.

Because our model learns correlations via feature
representations, it produces substantially more ac-
curate translations.

While both the Full Model and Aggressive base-
line use the same source of feedback, they capi-
talize on it in a different way. The baseline uses
the noisy feedback to train features capturing the
correlation between trees and text. Our model, in
contrast, combines these two sources of informa-
tion in a complementary fashion. This combina-
tion allows our model to filter false positive feed-
back and produce 13% more correct translations
than the Aggressive baseline.

Clean versus Noisy Supervision To assess the
impact of noise on model accuracy, we compare
the Full Model against the Full Model (Oracle).
The two versions achieve very close performance
(80% v.s 84% in F-Score), even though Full Model
is trained with noisy feedback. This demonstrates
the strength of our model in learning from such
weak supervision. Interestingly, Aggressive (Ora-
cle) outperforms our oracle model by a 5% mar-
gin. This result shows that when the supervision
is reliable, the generative assumption limits our
model’s ability to gain the same performance im-
provement as discriminative models.

#input examples

Figure 6: Precision and Recall of our model by
varying the number of available input examples
per text specification.

Impact of Input Examples Our model can also
be trained in a fully unsupervised or a semi-
supervised fashion. In real cases, it may not be
possible to obtain input examples for all text spec-
ifications. We evaluate such cases by varying the
amount of supervision, i.e. how many text specifi-
cations are paired with input examples. In each
run, we randomly select text specifications and
only these selected specifications have access to
input examples. Figure 5 gives the performance of
our model with 0% supervision (totally unsuper-
vised) to 100% supervision (our full model). With
much less supervision, our model is still able to
achieve performance comparable with the Aggres-
sive baseline.

We also evaluate how the number of provided
input examples influences the performance of the
model. Figure 6 indicates that the performance is
largely insensitive to the number of input exam-
ples — once the model is given even one input
example, its performance is close to the best per-
formance it obtains with 100 input examples. We
attribute this phenomenon to the fact that if the
generated code is incorrect, it is unlikely to suc-
cessfully parse any input.

Case Study Finally, we consider some text spec-
ifications that our model does not correctly trans-
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late. In Figure 4a, the program input is interpreted
as a list of character strings, while the correct in-
terpretation is that the input is a list of string pairs.
Note that both interpretations produce C++ input
parsers that successfully read all of the input ex-
amples. One possible way to resolve this problem
is to add other features such as syntactic depen-
dencies between words to capture more language
phenomena. In Figure 4b, the missing key phrase
is not identified because our model is not able to
ground the meaning of “pair of coordinates” to two
integers. Possible future extensions to our model
include using lexicon learning methods for map-
ping words to C++ primitive types for example
“coordinates” to 〈int, int〉.

7 Conclusion

It is standard practice to write English language
specifications for input formats. Programmers
read the specifications, then develop source code
that parses inputs in the format. Known disadvan-
tages of this approach include development cost,
parsers that contain errors, specification misunder-
standings, and specifications that become out of
date as the implementation evolves.

Our results show that taking both the correlation
between the text and the specification tree and the
success of the generated C++ parser in reading in-
put examples into account enables our method to
correctly generate C++ parsers for 72.5% of our
natural language specifications.
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Abstract

We study the task of entity linking for
tweets, which tries to associate each
mention in a tweet with a knowledge base
entry. Two main challenges of this task are
the dearth of information in a single tweet
and the rich entity mention variations.
To address these challenges, we propose
a collective inference method that
simultaneously resolves a set of mentions.
Particularly, our model integrates three
kinds of similarities, i.e., mention-entry
similarity, entry-entry similarity, and
mention-mention similarity, to enrich
the context for entity linking, and to
address irregular mentions that are not
covered by the entity-variation dictionary.
We evaluate our method on a publicly
available data set and demonstrate the
effectiveness of our method.

1 Introduction

Twitter is a widely used social networking service.
With millions of active users and hundreds of
millions of new published tweets every day1,
it has become a popular platform to capture
and transmit the human experiences of the
moment. Many tweet related researches are
inspired, from named entity recognition (Liu et al.,
2012), topic detection (Mathioudakis and Koudas,
2010), clustering (Rosa et al., 2010), to event
extraction (Grinev et al., 2009).

In this work, we study the entity linking task
for tweets, which maps each entity mention in
a tweet to a unique entity, i.e., an entry ID
of a knowledge base like Wikipedia. Entity

1http://siteanalytics.compete.com/twitter.com/

linking task is generally considered as a bridge
between unstructured text and structured machine-
readable knowledge base, and represents a critical
role in machine reading program (Singh et al.,
2011). Entity linking for tweets is particularly
meaningful, considering that tweets are often hard
to read owing to its informal written style and
length limitation of 140 characters.

Current entity linking methods are built on top
of a large scale knowledge base such as Wikipedia.
A knowledge base consists of a set of entities,
and each entity can have a variation list2. To
decide which entity should be mapped, they may
compute: 1) the similarity between the context of
a mention, e.g., a text window around the mention,
and the content of an entity, e.g., the entity page of
Wikipedia (Mihalcea and Csomai, 2007; Han and
Zhao, 2009); 2) the coherence among the mapped
entities for a set of related mentions, e.g, multiple
mentions in a document (Milne and Witten, 2008;
Kulkarni et al., 2009; Han and Zhao, 2010; Han et
al., 2011).

Tweets pose special challenges to entity linking.
First, a tweet is often too concise and too
noisy to provide enough information for similarity
computing, owing to its short and grass root
nature. Second, tweets have rich variations of
named entities3, and many of them fall out of
the scope of the existing dictionaries mined from
Wikipedia (called OOV mentions hereafter). On

2Entity variation lists can be extracted from the
entity resolution pages of Wikipedia. For example, the
link “http://en.wikipedia.org/wiki/Svm” will lead us to a
resolution page, where “Svm” are linked to entities like
“Space vector modulation” and “Support vector machine”.
As a result, “Svm” will be added into the variation lists of
“Space vector modulation” and “Support vector machine” ,
respectively.

3According to Liu et al. (2012), on average a named entity
has 3.3 different surface forms in tweets.
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the other hand, the huge redundancy in tweets
offers opportunities. That means, an entity
mention often occurs in many tweets, which
allows us to aggregate all related tweets to
compute mention-mention similarity and mention-
entity similarity.

We propose a collective inference method
that leverages tweet redundancy to address those
two challenges. Given a set of mentions, our
model tries to ensure that similar mentions are
linked to similar entities while pursuing the
high total similarity between matched mention-
entity pairs. More specifically, we define
local features, including context similarity and
edit distance, to model the similarity between
a mention and an entity. We adopt in-link
based similarity (Milne and Witten, 2008), to
measure the similarity between entities. Finally,
we introduce a set of features to compute
the similarity between mentions, including how
similar the tweets containing the mentions are,
whether they come from the tweets of the same
account, and their edit distance. Notably, our
model can resolve OOV mentions with the help
of their similar mentions. For example, for the
OOV mention “LukeBryanOnline”, our model can
find similar mentions like “TheLukeBryan” and
“LukeBryan”. Considering that most of its similar
mentions are mapped to the American country
singer “Luke Bryan”, our model tends to link
“LukeBryanOnline” to the same entity.

We evaluate our method on the public available
data set shared by Meij et al. (2012)4.
Experimental results show that our method
outperforms two baselines, i.e., Wikify! (Mihalcea
and Csomai, 2007) and system proposed by Meij
et al. (2012). We also study the effectiveness
of features related to each kind of similarity, and
demonstrate the advantage of our method for OOV
mention linkage.

We summarize our contributions as follows.

1. We introduce a novel collective inference
method that integrates three kinds of
similarities, i.e., mention-entity similarity,
entity-entity similarity, and mention-mention
similarity, to simultaneously map a set of
tweet mentions to their proper entities.

2. We propose modeling the mention-mention
similarity and demonstrate its effectiveness

4http://ilps.science.uva.nl/resources/wsdm2012-adding-
semantics-to-microblog-posts/

in entity linking for tweets, particularly for
OOV mentions.

3. We evaluate our method on a public data
set, and show our method compares favorably
with the baselines.

Our paper is organized as follows. In the next
section, we introduce related work. In Section
3, we give the formal definition of the task. In
Section 4, we present our solution, including
the framework, features related to different kinds
of similarities, and the training and decoding
procedures. We evaluate our method in Section 5.
Finally in Section 6, we conclude with suggestions
of future work.

2 Related Work

Existing entity linking work can roughly be
divided into two categories. Methods of the
first category resolve one mention at each time,
and mainly consider the similarity between
a mention-entity pair. In contrast, methods
of the second category take a set of related
mentions (e.g., mentions in the same document)
as input, and figure out their corresponding entities
simultaneously.

Examples of the first category include the first
Web-scale entity linking system SemTag (Dill
et al., 2003), Wikify! (Mihalcea and Csomai,
2007), and the recent work of Milne and Witten
(2008). SemTag uses the TAP knowledge
base5, and employs the cosine similarity with
TF-IDF weighting scheme to compute the
match degree between a mention and an entity,
achieving an accuracy of around 82%. Wikify!
identifies the important concepts in the text
and automatically links these concepts to the
corresponding Wikipedia pages. It introduces two
approaches to define mention-entity similarity,
i.e., the contextual overlap between the paragraph
where the mention occurs and the corresponding
Wikipedia pages, and a Naive Bayes classifier
that predicts whether a mention should be linked
to an entity. It achieves 80.69% F1 when two
approaches are combined. Milne and Witten
work on the same task of Wikify!, and also
train a classifier. However, they cleverly use the

5TAB (http://www.w3.org/2002/05/tap/) is a shallow
knowledge base that contains a broad range of lexical and
taxonomic information about popular objects like music,
movies, authors, sports, autos, health, etc.
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links found within Wikipedia articles for training,
exploiting the fact that for every link, a Wikipedian
has manually selected the correct destination to
represent the intended sense of the anchor. Their
method achieves an F1 score of 75.0%.

Representative studies of the second category
include the work of Kulkarni et al. (2009),
Han et al. (2011), and Shen et al. (2012).
One common feature of these studies is that
they leverage the global coherence between
entities. Kulkarni et al. (2009) propose
a graphical model that explicitly models the
combination of evidence from local mention-
entity compatibility and global document-level
topical coherence of the entities, and show that
considering global coherence between entities
significantly improves the performance. Han et
al. (2011) introduce a graph-based representation,
called Referent Graph, to model the global
interdependence between different entity linking
decisions, and jointly infer the referent entities of
all name mentions in a document by exploiting
the interdependence captured in Referent Graph.
Shen et al. (2012) propose LIEGE, a framework
to link the entities in web lists with the knowledge
base, with the assumption that entities mentioned
in a Web list tend to be a collection of entities of
the same conceptual type.

Most work of entity linking focuses on web
pages. Recently, Meij et al. (2012) study
this task for tweets. They propose a machine
learning based approach using n-gram features,
concept features, and tweet features, to identify
concepts semantically related to a tweet, and
for every entity mention to generate links to its
corresponding Wikipedia article. Their method
belongs to the first category, in the sense that
they only consider the similarity between mention
(tweet) and entity (Wikipedia article).

Our method belongs to the second category.
However, in contrast with existing collective
approaches, our method works on tweets which
are short and often noisy. Furthermore, our
method is based on the “similar mention with
similar entity” assumption, and explicitly models
and integrates the mention similarity into the
optimization framework. Compared with Meij et
al. (2012), our method is collective, and integrates
more features.

3 Task Definition

Given a sequence of mentions, denoted by
M⃗ = (m1,m2, · · · ,mn), our task is to
output a sequence of entities, denoted by
E⃗ = (e1, e2, · · · , en), where ei is the entity
corresponding to mi. Here, an entity refers
to an item of a knowledge base. Following
most existing work, we use Wikipedia as the
knowledge base, and an entity is a definition page
in Wikipedia; a mention denotes a sequence of
tokens in a tweet that can be potentially linked to
an entity.

Several notes should be made. First, we
assume that mentions are given, e.g., identified by
some named entity recognition system. Second,
mentions may come from multiple tweets. Third,
mentions with the same token sequence may
refer to different entities, depending on mention
context. Finally, we assume each entity e has
a variation list6, and a unique ID through which
all related information about that entity can be
accessed.

Here is an example to illustrate the task. Given
mentions “nbcbightlynews”, “Santiago”, “WH”
and “Libya” from the following tweet “Chuck
Todd: Prepping for @nbcnightlynews here in
Santiago, reporting on WH handling of Libya
situation.”, the expected output is “NBC Nightly
News(194735)”, “Santiago Chile(51572)”,
“White House(33057)” and “Libya(17633)”,
where the numbers in the parentheses are the IDs
of the corresponding entities.

4 Our Method

In this section, we first present the framework of
our entity linking method. Then we introduce
features related to different kinds of similarities,
followed by a detailed discussion of the training
and decoding procedures.

4.1 Framework

Given the input mention sequence M⃗ =
(m1,m2, · · · ,mn), our method outputs the entity
sequence E⃗∗ = (e∗

1, e
∗
2, · · · , e∗

n) according to
Formula 1:

6For example, the variation list of the entity “Obama” may
contain “Barack Obama”, “Barack Hussein Obama II”, etc.
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E⃗∗ = argmax∀E⃗∈C(M⃗)λ

n∑

i=1

w⃗ · f⃗(ei,mi)

+(1 − λ)
∑

i ̸=j

r(ei, ej)s(mi,mj)
(1)

Where:

• C(M⃗) is the set of all possible entity
sequences for the mention sequence M⃗ ;

• E⃗ denotes an entity sequence instance,
consisting of e1, e2, · · · , en;

• f⃗(ei,mi) is the feature vector that models the
similarity between mention mi and its linked
entity ei;

• w⃗ is the feature weight vector related to f⃗ ,
which is trained on the training data set; w⃗ ·
f⃗(ei,mi) is the similarity between mention
mi and entity ei;

• r(ei, ej) is the function that returns the
similarity between two entities ei and ej ;

• s(mi, mj) is the function that returns the
similarity between two mentions mi and mj ;

• λ ∈ (0, 1) is a systematic parameter, which
is determined on the development data set; it
is used to adjust the tradeoff between local
compatibility and global consistence. It is
experimentally set to 0.8 in our work.

From Formula 1, we can see that: 1) our
method considers the mention-entity similarly,
entity-entity similarity and mention-mention
similarity. Mention-entity similarly is used to
model local compatibility, while entity-entity
similarity and mention-mention similarity
combined are to model global consistence; and 2)
our method prefers configurations where similar
mentions have similar entities and with high local
compatibility.

C(M⃗) is worth of more discussion here.
It represents the search space, which can be
generated using the entity variation list. To
achieve this, we first build an inverted index
of all entity variation lists, with each unique
variation as an entry pointing to a list of entities.
Then for any mention m, we look up the index,
and get all possible entities, denoted by C(m).
In this way, given a mention sequence M⃗ =

(m1,m2, · · · ,mn), we can enumerate all possible
entity sequence E⃗ = (e1, e2, · · · , en), where ei ∈
C(m). This means |C(M⃗)| =

∏
m∈M |C(m)| ,

which is often large. There is one special case:
if m is an OOV mention, i.e., |C(m)| = 0, then
|C(M⃗)| = 0, and we get no solution. To address
this problem, we can generate a list of candidates
for an OOV mention using its similar mentions.
Let S(m) denote OOV mention m’s similar
mentions, we define C(m) =

∪
m

′∈S(m) C(m
′
).

If still C(m) = 0, we remove m from M⃗ , and
report we cannot map it to any entity.

Here is an example to illustrate our framework.
Suppose we have the following tweets:

• UserA: Yeaaahhgg #habemusfut..
I love monday night futbol =)
#EnglishPremierLeague ManU vs
Liverpool1

• UserA: Manchester United 3 - Liverpool2
2 #EnglishPremierLeague GLORY, GLORY,
MAN.UNITED!

• · · ·

Figure 1: An illustrative example to show our
framework. Ovals in orange and in blue represent
mentions and entities, respectively. Each mention
pair, entity pair, and mention entity pair have
a similarity score represented by s, r and f ,
respectively.

We need find out the best entity sequence
E⃗∗ for mentions M⃗ = { “Liverpool1”,
“Manchester United”, “ManU”, “Liverpool2”},
from the entity sequences C(M⃗) = { (Liverpool
(film), Manchester United F.C., Manchester
United F.C., Liverpool (film)), · · · , (Liverpool,
F.C.,Manchester United, F.C., Manchester United
F.C., Liverpool (film) }. Figure 1 illustrate
our solution, where “Liverpool1” (on the left)
and “Liverpool2” (on the right) are linked
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to “Liverpool F.C.” (the football club), and
“Manchester United” and “ManU” are linked to
“Manchester United F.C.”. Notably, “ManU”
is an OOV mention, but has a similar mention
“Manchester United”, with which “ManU” is
successfully mapped.

4.2 Features

We group features into three categories: local
features related to mention-entity similarity
(f⃗(e,m)), features related to entity-entity
similarity (r(ei, ej)) , and features related to
mention-mention similarity (s(mi,mj)).

4.2.1 Local Features
• Prior Probability:

f1(mi, ei) =
count(ei)∑

∀ek∈C(mi)
count(ek)

(2)

where count(e) denotes the frequency of
entity e in Wikipedia’s anchor texts.

• Context Similarity:

f2(mi, ei) =
coocurence number

tweet length
(3)

where: coccurence number is the the
number of the words that occur in both the
tweet containing mi and the Wikipedia page
of ei; tweet length denotes the number of
tokens of the tweet containing mention mi.

• Edit Distance Similarity:
If Length(mi)+ED(mi, ei) = Length(ei),
f3(mi, ei) = 1, otherwise 0. ED(·, ·)
computes the character level edit distance.
This feature helps to detect whether
a mention is an abbreviation of its
corresponding entity7.

• Mention Contains Title: If the mention
contains the entity title, namely the title of
the Wikipedia page introducing the entity ei,
f4(mi, ei) = 1, else 0.

• Title Contains Mention: If the entry title
contains the mention, f5(mi, ei) = 1,
otherwise 0.

7Take “ms” and “Microsoft” for example. The length of
“ms” is 2, and the edit distance between them is 7. 2 plus 7
equals to 9, which is the length of “Microsoft”.

4.2.2 Features Related to Entity Similarity
There are two representative definitions of entity
similarity: in-link based similarity (Milne and
Witten, 2008) and category based similarity (Shen
et al., 2012). Considering that the Wikipedia
categories are often noisy (Milne and Witten,
2008), we adopt in-link based similarity, as
defined in Formula 4:

r(ei, ej) =
log|g(ei) ∩ g(ej)| − log max(|g(ei)|, |g(ej)|)

log(Total) − log min(|g(ei)|, |g(ej)|)
(4)

Where:

• Total is the total number of knowledge base
entities;

• g(e) is the number of Wikipedia definition
pages that have a link to entity e.

4.2.3 Features Related to Mention Similarity
We define 5 features to model the similarity
between two mentions mi and mj , as listed
below, where t(m) denotes the tweet that contains
mention m:

• s1(mi,mj): The cosine similarity of t(mi)
and t(mj); and tweets are represented as TF-
IDF vectors;

• s2(mi,mj): The cosine similarity of t(mi)
and t(mj); and tweets are represented as
topic distribution vectors;

• s3(mi,mj): Whether t(mi) and t(mj) are
published by the same account;

• s4(mi,mj): Whether t(mi) and t(mj)
contain any common hash tag;

• s5(mi,mj): Edit distance related similarity
between mi and mj , as defined in Formula 5.

s5(mi, mj) = 1, if min{Length(mi), Length(mj)}
+ED(mi, mj) = max{Length(mi), Length(mj)},

else s5(mi, mj) = 1 − ED(mi, mj)

max{Length(mi), Length(mj)}
(5)

Note that: 1) before computing TF-IDF vectors,
stop words are removed; 2) we use the Stanford
Topic Modeling Toolbox8 to compute the topic
model, and experimentally set the number of
topics to 50.

8http://nlp.stanford.edu/software/tmt/tmt-0.4/
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Finally, Formula 6 is used to integrate all the
features. a⃗ = (a1, a2, a3, a4, a5) is the feature
weight vector for mention similarity, where ak ∈
(0, 1), k = 1, 2, 3, 4, 5, and

∑5
k=1 ak = 1.

s(mi,mj) =
5∑

k=1

aksk(mi,mj) (6)

4.3 Training and Decoding

Given n mentions m1,m2, · · · ,mn and their
corresponding entities e1, e2, · · · , en, the goal of
training is to determine: w⃗∗, the weights of local
features, and a⃗∗, the weights of the features related
to mention similarity, according to Formula 7 9.

(w⃗∗, a⃗∗) = arg minw⃗,⃗a{
1

n

n∑

i=1

L1(ei,mi)

+α1||w⃗||2 +
α2

2

n∑

i,j=1

s(mi,mj)L2(⃗a, ei, ej)}

(7)
Where:

• L1 is the loss function related to local
compatibility, which is defined as

1

w⃗·f⃗(ei,mi)+1
;

• L2(⃗a, ei, ej) is the loss function related
to global coherence, which is defined as

1
r(ei,ej)

∑5
k=1 aksk(mi,mj)+1

;

• α1 is the weight of regularization, which is
experimentally set to 1.0;

• α2 is the weight of L2 loss, which is
experimentally set to 0.2.

Since the decoding problem defined by
Formula 1 is NP hard (Kulkarni et al., 2009), we
develop a greedy hill-climbing approach to tackle
this challenge, as demonstrated in Algorithm 1.

In Algorithm 1, it is the number of iterations;
Score(E⃗, M⃗) = λ

∑n
i=1 w⃗ · f⃗(ei,mi) + (1 −

λ)
∑

i̸=j r(ei, ej)s(mi,mj); E⃗ij is the vector after
replacing ei with ej ∈ C(mi) for current E⃗;
scij is the score of E⃗ij , i.e., Score(E⃗ij , M⃗). In
each iteration, this rounding solution iteratively
substitute entry ei in E⃗ to increase the total score
cur. If the score cannot be further improved, it
stops and returns current E⃗.

9This optimization problem is non-convex. We use
coordinate descent to get a local optimal solution.

Algorithm 1 Decoding Algorithm.

Input: Mention Set M⃗ = (m1,m2, · · · ,mn)

Output: Entity Set E⃗ = (e1, e2, · · · , en)

1: for i = 1 to n do
2: Initialize e

(0)
i as the entity with the largest prior

probability given mention mi.
3: end for
4: cur = Score(E⃗(0), M⃗)

5: it = 1

6: while true do
7: for i = 1 to n do
8: for ej ∈ C(mi) do
9: if ej ̸= e

(it−1)
i then

10: E⃗
(it)
ij = E⃗(it−1) − {e

(it−1)
i } + {ej}.

11: end if
12: scij = Score(E⃗

(it)
ij , M⃗).

13: end for
14: end for
15: (l, m) = argmax(i,j)scij .
16: sc∗ = sclm

17: if sc∗ > cur then
18: cur = sc∗.
19: E⃗(it) = E⃗(it−1) − {e

(it−1)
l } + {em}.

20: it = it + 1.
21: else
22: break
23: end if
24: end while
25: return E⃗(it).

5 Experiments

In this section, we introduce the data set and
experimental settings, and present results.

5.1 Data Preparation

Following most existing studies, we choose
Wikipedia as our knowledge base10. We index
the Wikipedia definition pages, and prepare all
required prior knowledge, such as count(e), g(e),
and entity variation lists. We also build an inverted
index with about 60 million entries for the entity
variation lists.

For tweets, we use the data set shared by Meij et
al. (2012)11. This data set is annotated manually
by two volunteers. We get 502 annotated tweets
from this data set. We keep 55 of them for

10We download the December 2012 version of Wikipedia,
which contains about four million articles.

11http://ilps.science.uva.nl/resources/wsdm2012-adding-
semantics-to-microblog-posts/.
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development, and the remaining for 5 fold cross-
validation.

5.2 Settings

We consider following settings to evaluate our
method.

• Comparing our method with two baselines,
i.e., Wikify! (Mihalcea and Csomai, 2007)
and the system proposed by Meij et al. (2012)
12;

• Using only local features;

• Using various mention similarity features;

• Experiments on OOV mentions.

5.3 Results

Table 1 reports the comparison results. Our
method outperforms both systems in terms of
all metrics. Since the main difference between
our method and the baselines is that our method
considers not only local features, but also global
features related to entity similarity and mention
similarity, these results indicate the effectiveness
of collective inference and global features. For
example, we find two baselines incorrectly link
“Nickelodeon” in the tweet “BOH will make a
special appearance on Nickelodeon’s ‘Yo Gabba
Gabba’ tomorrow” to the theater instead of a TV
channel. In contrast, our method notices that “Yo
Gabba Gabba” in the same tweet can be linked
to “Yo Gabba Gabba (TV show)”, and thus it
correctly maps “Nickelodeon” to “Nickelodeon
(TV channel)”.

System Pre. Rec. F1
Wikify! 0.375 0.421 0.396

Meij’s Method 0.734 0.632 0.679
Our Method 0.752 0.675 0.711

Table 1: Comparison with Baselines.

Table 2 shows the results when local features
are incrementally added. It can be seen that:
1) using only Prior Probability feature already
yields a reasonable F1; and 2) Context Similarity
and Edit Distance Similarity feature have little
contribution to the F1, while Mention and Entity
Title Similarity feature greatly boosts the F1.

12We re-implement Wikify! since we use a new evaluation
data set.

Local Feature Pre. Rec. F1
P.P. 0.700 0.599 0.646

+C.S. 0.694 0.597 0.642
+E.D.S. 0.696 0.598 0.643

+M.E.T.S. 0.735 0.632 0.680

Table 2: Local Feature Analysis. P.P.,C.S., E.D.S.,
and M.E.T.S. denote Prior Probability, Context
Similarity, Edit Distance Similarity, and Mention
and Entity Title Similarity, respectively.

The performance of our method with various
mention similarity features is reported in Table 3.
First, we can see that with this kind of features,
the F1 can be significantly improved from 0.680
to 0.704. Second, we notice that TF-IDF (s1) and
Topic Model (s2) features perform equally well,
and combining all mention similarity features
yields the best performance.

Global Feature Pre. Rec. F1
s3+s4+s5 0.744 0.653 0.700

s3+s4+s5 +s1 0.759 0.652 0.702
s3+s4+s5+s2 0.760 0.653 0.703

s3+s4+s5+s1+s2 0.764 0.653 0.704

Table 3: Mention Similarity Feature Analysis.

For any OOV mention, we use the strategy
of guessing its possible entity candidates using
similar mentions, as discussed in Section 4.1.
Table 4 shows the performance of our system for
OOV mentions. It can be seen that with our
OOV strategy, the recall is improved from 0.653
to 0.675 (with p < 0.05) while the Precision is
slightly dropped and the overall F1 still gets better.
A further study reveals that among all the 125
OOV mentions, there are 48 for which our method
cannot find any entity; and nearly half of these
48 OOV mentions do have corresponding entities
13. This suggests that we may need enlarge the
size of variation lists or develop some mention
normalization techniques.

OOV Method Precision Recall F1
Ignore OOV Mention 0.764 0.653 0.704

+ OOV Method 0.752 0.675 0.711

Table 4: Performance for OOV Mentions.

13“NATO-ukraine cooperations” is such an example. It
is mapped to NULL but actually has a corresponding entity
“Ukraine-NATO relations”
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6 Conclusions and Future work

We have presented a collective inference method
that jointly links a set of tweet mentions to
their corresponding entities. One distinguished
characteristic of our method is that it integrates
mention-entity similarity, entity-entity similarity,
and mention-mention similarity, to address the
information lack in a tweet and rich OOV
mentions. We evaluate our method on a
public data set. Experimental results show our
method outperforms two baselines, and suggests
the effectiveness of modeling mention-mention
similarity, particularly for OOV mention linking.

In the future, we plan to explore two directions.
First, we are going to enlarge the size of entity
variation lists. Second, we want to integrate
the entity mention normalization techniques as
introduced by Liu et al. (2012).
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Abstract

Speaker identification is the task of at-
tributing utterances to characters in a lit-
erary narrative. It is challenging to auto-
mate because the speakers of the majority
of utterances are not explicitly identified in
novels. In this paper, we present a super-
vised machine learning approach for the
task that incorporates several novel fea-
tures. The experimental results show that
our method is more accurate and general
than previous approaches to the problem.

1 Introduction

Novels are important as social communication
documents, in which novelists develop the plot
by means of discourse between various charac-
ters. In spite of a frequently expressed opinion
that all novels are simply variations of a certain
number of basic plots (Tobias, 2012), every novel
has a unique plot (or several plots) and a different
set of characters. The interactions among charac-
ters, especially in the form of conversations, help
the readers construct a mental model of the plot
and the changing relationships between charac-
ters. Many of the complexities of interpersonal re-
lationships, such as romantic interests, family ties,
and rivalries, are conveyed by utterances.

A precondition for understanding the relation-
ship between characters and plot development in
a novel is the identification of speakers behind all
utterances. However, the majority of utterances
are not explicitly tagged with speaker names, as
is the case in stage plays and film scripts. In most
cases, authors rely instead on the readers’ compre-
hension of the story and of the differences between
characters.

Since manual annotation of novels is costly, a
system for automatically determining speakers of
utterances would facilitate other tasks related to

the processing of literary texts. Speaker identifica-
tion could also be applied on its own, for instance
in generating high quality audio books without hu-
man lectors, where each character would be iden-
tifiable by a distinct way of speaking. In addi-
tion, research on spoken language processing for
broadcast and multi-party meetings (Salamin et
al., 2010; Favre et al., 2009) has demonstrated that
the analysis of dialogues is useful for the study of
social interactions.

In this paper, we investigate the task of speaker
identification in novels. Departing from previous
approaches, we develop a general system that can
be trained on relatively small annotated data sets,
and subsequently applied to other novels for which
no annotation is available. Since every novel has
its own set of characters, speaker identification
cannot be formulated as a straightforward tagging
problem with a universal set of fixed tags. Instead,
we adopt a ranking approach, which enables our
model to be applied to literary texts that are differ-
ent from the ones it has been trained on.

Our approach is grounded in a variety of fea-
tures that are easily generalizable across differ-
ent novels. Rather than attempt to construct com-
plete semantic models of the interactions, we ex-
ploit lexical and syntactic clues in the text itself.
We propose several novel features, including the
speaker alternation pattern, the presence of voca-
tives in utterances, and unsupervised actor-topic
features that associate speakers with utterances on
the basis of their content. Experimental evaluation
shows that our approach not only outperforms the
baseline, but also compares favorably to previous
approaches in terms of accuracy and generality,
even when tested on novels and authors that are
different from those used for training.

The paper is organized as follows. After dis-
cussing previous work, and defining the terminol-
ogy, we present our approach and the features that
it is based on. Next, we describe the data, the an-
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notation details, and the results of our experimen-
tal evaluation. At the end, we discuss an applica-
tion to extracting a set of family relationships from
a novel.

2 Related Work

Previous work on speaker identification includes
both rule-based and machine-learning approaches.
Glass and Bangay (2007) propose a rule gener-
alization method with a scoring scheme that fo-
cuses on the speech verbs. The verbs, such as
said and cried, are extracted from the communi-
cation category of WordNet (Miller, 1995). The
speech-verb-actor pattern is applied to the utter-
ance, and the speaker is chosen from the avail-
able candidates on the basis of a scoring scheme.
Sarmento and Nunes (2009) present a similar ap-
proach for extracting speech quotes from online
news texts. They manually define 19 variations of
frequent speaker patterns, and identify a total of
35 candidate speech verbs. The rule-based meth-
ods are typically characterized by low coverage,
and are too brittle to be reliably applied to differ-
ent domains and changing styles.

Elson and McKeown (2010) (henceforth re-
ferred to as EM2010) apply the supervised ma-
chine learning paradigm to a corpus of utterances
extracted from novels. They construct a single
feature vector for each pair of an utterance and
a speaker candidate, and experiment with various
WEKA classifiers and score-combination meth-
ods. To identify the speaker of a given utterance,
they assume that all previous utterances are al-
ready correctly assigned to their speakers. Our
approach differs in considering the utterances in
a sequence, rather than independently from each
other, and in removing the unrealistic assumption
that the previous utterances are correctly identi-
fied.

The speaker identification task has also been in-
vestigated in other domains. Bethard et al. (2004)
identify opinion holders by using semantic pars-
ing techniques with additional linguistic features.
Pouliquen et al. (2007) aim at detecting direct
speech quotations in multilingual news. Krestel
et al. (2008) automatically tag speech sentences
in newspaper articles. Finally, Ruppenhofer et al.
(2010) implement a rule-based system to enrich
German cabinet protocols with automatic speaker
attribution.

3 Definitions and Conventions

In this section, we introduce the terminology used
in the remainder of the paper. Our definitions are
different from those of EM2010 partly because we
developed our method independently, and partly
because we disagree with some of their choices.
The examples are from Jane Austen’s Pride and
Prejudice, which was the source of our develop-
ment set.

An utterance is a connected text that can be at-
tributed to a single speaker. Our task is to associate
each utterance with a single speaker. Utterances
that are attributable to more than one speaker are
rare; in such cases, we accept correctly identifying
one of the speakers as sufficient. In some cases, an
utterance may include more than one quotation-
delimited sequence of words, as in the following
example.

“Miss Bingley told me,” said Jane, “that
he never speaks much.”

In this case, the words said Jane are simply a
speaker tag inserted into the middle of the quoted
sentence. Unlike EM2010, we consider this a sin-
gle utterance, rather than two separate ones.

We assume that all utterances within a para-
graph can be attributed to a single speaker. This
“one speaker per paragraph” property is rarely vi-
olated in novels — we identified only five such
cases in Pride & Prejudice, usually involving one
character citing another, or characters reading let-
ters containing quotations. We consider this an
acceptable simplification, much like assigning a
single part of speech to each word in a corpus.
We further assume that each utterance is contained
within a single paragraph. Exceptions to this rule
can be easily identified and resolved by detecting
quotation marks and other typographical conven-
tions.

The paragraphs without any quotations are re-
ferred to as narratives. The term dialogue denotes
a series of utterances together with related narra-
tives, which provide the context of conversations.
We define a dialogue as a series of utterances and
intervening narratives, with no more than three
continuous narratives. The rationale here is that
more than three narratives without any utterances
are likely to signal the end of a particular dialogue.

We distinguish three types of utterances, which
are listed with examples in Table 1: explicit
speaker (identified by name within the paragraph),
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Category Example
Implicit
speaker

“Don’t keep coughing so, Kitty,
for heaven’s sake!”

Explicit
speaker

“I do not cough for my own
amusement,” replied Kitty.

Anaphoric
speaker

“Kitty has no discretion in her
coughs,” said her father.

Table 1: Three types of utterances.

anaphoric speaker (identified by an anaphoric ex-
pression), and implicit speaker (no speaker infor-
mation within the paragraph). Typically, the ma-
jority of utterances belong to the implicit-speaker
category. In Pride & Prejudice only roughly 25%
of the utterances have explicit speakers, and an
even smaller 15% belong to the anaphoric-speaker
category. In modern fiction, the percentage of ex-
plicit attributions is even lower.

4 Speaker Identification

In this section, we describe our method of extract-
ing explicit speakers, and our ranking approach,
which is designed to capture the speaker alterna-
tion pattern.

4.1 Extracting Speakers
We extract explicit speakers by focusing on the
speech verbs that appear before, after, or between
quotations. The following verbs cover most cases
in our development data: say, speak, talk, ask, re-
ply, answer, add, continue, go on, cry, sigh, and
think. If a verb from the above short list cannot be
found, any verb that is preceded by a name or a
personal pronoun in the vicinity of the utterance is
selected as the speech verb.

In order to locate the speaker’s name or
anaphoric expression, we apply a deterministic
method based on syntactic rules. First, all para-
graphs that include narrations are parsed with a
dependency parser. For example, consider the fol-
lowing paragraph:

As they went downstairs together, Char-
lotte said, “I shall depend on hearing
from you very often, Eliza.”

The parser identifies a number of dependency rela-
tions in the text, such as dobj(went-3, downstairs-
4) and advmod(went-3, together-5). Our method
extracts the speaker’s name from the dependency
relation nsubj(said-8, Charlotte-7), which links a

speech verb with a noun phrase that is the syntac-
tic subject of a clause.

Once an explicit speaker’s name or an anaphoric
expression is located, we determine the corre-
sponding gender information by referring to the
character list or by following straightforward rules
to handle the anaphora. For example, if the utter-
ance is followed by the phrase she said, we infer
that the gender of the speaker is female.

4.2 Ranking Model
In spite of the highly sequential nature of the
chains of utterances, the speaker identification task
is difficult to model as sequential prediction. The
principal problem is that, unlike in many NLP
problems, a general fixed tag set cannot be de-
fined beyond the level of an individual novel.
Since we aim at a system that could be applied to
any novel with minimal pre-processing, sequential
prediction algorithms such as Conditional Ran-
dom Fields are not directly applicable.

We propose a more flexible approach that as-
signs scores to candidate speakers for each utter-
ance. Although the sequential information is not
directly modeled with tags, our system is able
to indirectly utilize the speaker alternation pat-
tern using the method described in the following
section. We implement our approach with SVM-
rank (Joachims, 2006).

4.3 Speaker Alternation Pattern
The speaker alternation pattern is often employed
by authors in dialogues between two charac-
ters. After the speakers are identified explicitly at
the beginning of a dialogue, the remaining odd-
numbered and even-numbered utterances are at-
tributable to the first and second speaker, respec-
tively. If one of the speakers “misses their turn”, a
clue is provided in the text to reset the pattern.

Based on the speaker alternation pattern, we
make the following two observations:

1. The speakers of consecutive utterances are
usually different.

2. The speaker of the n-th utterance in a dia-
logue is likely to be the same as the speaker
of the (n− 2)-th utterance.

Our ranking model incorporates the speaker al-
ternation pattern by utilizing a feature expansion
scheme. For each utterance n, we first gener-
ate its own features (described in Section 5), and
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Features Novelty
Distance to Utterance No
Speaker Appearance Count No
Speaker Name in Utterance No
Unsupervised Actor-Topic Model Yes
Vocative Speaker Name Yes
Neighboring Utterances Yes
Gender Matching Yes
Presence Matching Yes

Table 2: Principal feature sets.

subsequently we add three more feature sets that
represent the following neighboring utterances:
n− 2, n− 1 and n+1. Informally, the features of
the utterances n− 1 and n+1 encode the first ob-
servation, while the features representing the utter-
ance n − 2 encode the second observation. In ad-
dition, we include a set of four binary features that
are set for the utterances in the range [n−2, n+1]
if the corresponding explicit speaker matches the
candidate speaker of the current utterance.

5 Features

In this section, we describe the set of features used
in our ranking approach. The principal feature sets
are listed in Table 2, together with an indication
whether they are novel or have been used in previ-
ous work.

5.1 Basic Features

A subset of our features correspond to the features
that were proposed by EM2010. These are mostly
features related to speaker names. For example,
since names of speakers are often mentioned in
the vicinity of their utterances, we count the num-
ber of words separating the utterance and a name
mention. However, unlike EM2010, we consider
only the two nearest characters in each direction,
to reflect the observation that speakers tend to be
mentioned by name immediately before or after
their corresponding utterances. Another feature is
used to represent the number of appearances for
speaker candidates. This feature reflects the rela-
tive importance of a given character in the novel.
Finally, we use a feature to indicate the presence
or absence of a candidate speaker’s name within
the utterance. The intuition is that speakers are
unlikely to mention their own name.

Feature Example
start of utterance “Kitty . . .
before period . . . Jane.
between commas . . . , Elizabeth, . . .
between comma & period . . . , Mrs. Hurst.
before exclamation mark . . . Mrs. Bennet!
before question mark . . . Lizzy?. . .
vocative phrase Dear . . .
after vocative phrase Oh! Lydia . . .
2nd person pronoun . . . you . . .

Table 3: Features for the vocative identification.

5.2 Vocatives
We propose a novel vocative feature, which en-
codes the character that is explicitly addressed in
an utterance. For example, consider the following
utterance:

“I hope Mr. Bingley will like it, Lizzy.”

Intuitively, the speaker of the utterance is neither
Mr. Bingley nor Lizzy; however, the speaker of the
next utterance is likely to be Lizzy. We aim at cap-
turing this intuition by identifying the addressee of
the utterance.

We manually annotated vocatives in about 900
utterances from the training set. About 25% of
the names within utterance were tagged as voca-
tives. A Logistic Regression classifier (Agresti,
2006) was trained to identify the vocatives. The
classifier features are shown in Table 3. The fea-
tures are designed to capture punctuation context,
as well as the presence of typical phrases that ac-
company vocatives. We also incorporate interjec-
tions like “oh!” and fixed phrases like “my dear”,
which are strong indicators of vocatives. Under
10-fold cross validation, the model achieved an F-
measure of 93.5% on the training set.

We incorporate vocatives in our speaker identi-
fication system by means of three binary features
that correspond to the utterances n− 1, n− 2, and
n − 3. The features are set if the detected voca-
tive matches the candidate speaker of the current
utterance n.

5.3 Matching Features
We incorporate two binary features for indicating
the gender and the presence of a candidate speaker.
The gender matching feature encodes the gender
agreement between a speaker candidate and the
speaker of the current utterance. The gender in-
formation extraction is applied to two utterance
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groups: the anaphoric-speaker utterances, and the
explicit-speaker utterances. We use the technique
described in Section 4.1 to determine the gender
of a speaker of the current utterance. In contrast
with EM2010, this is not a hard constraint.

The presence matching feature indicates
whether a speaker candidate is a likely partic-
ipant in a dialogue. Each dialogue consists of
continuous utterance paragraphs together with
neighboring narration paragraphs as defined in
Section 3. The feature is set for a given character
if its name or alias appears within the dialogue.

5.4 Unsupervised Actor-Topic Features

The final set of features is generated by the unsu-
pervised actor-topic model (ACTM) (Celikyilmaz
et al., 2010), which requires no annotated train-
ing data. The ACTM, as shown in Figure 1, ex-
tends the work of author-topic model in (Rosen-
Zvi et al., 2010). It can model dialogues in a lit-
erary text, which take place between two or more
speakers conversing on different topics, as distri-
butions over topics, which are also mixtures of the
term distributions associated with multiple speak-
ers. This follows the linguistic intuition that rich
contextual information can be useful in under-
standing dialogues.

Figure 1: Graphical Representation of ACTM.

The ACTM predicts the most likely speakers of
a given utterance by considering the content of an
utterance and its surrounding contexts. The Actor-
Topic-Term probabilities are calculated by using
both the relationship of utterances and the sur-
rounding textual clues. In our system, we utilize
four binary features that correspond to the four top
ranking positions from the ACTM model.

Figure 2: Annotation Tool GUI.

6 Data

Our principal data set is derived from the text
of Pride and Prejudice, with chapters 19–26 as
the test set, chapters 27–33 as the development
set, and the remaining 46 chapters as the training
set. In order to ensure high-quality speaker anno-
tations, we developed a graphical interface (Fig-
ure 2), which displays the current utterance in con-
text, and a list of characters in the novel. After the
speaker is selected by clicking a button, the text
is scrolled automatically, with the next utterance
highlighted in yellow. The complete novel was
annotated by a student of English literature. The
annotations are publicly available1.

For the purpose of a generalization experiment,
we also utilize a corpus of utterances from the
19th and 20th century English novels compiled by
EM2010. The corpus differs from our data set in
three aspects. First, as discussed in Section 3, we
treat all quoted text within a single paragraph as
a single utterance, which reduces the total num-
ber of utterances, and results in a more realistic
reporting of accuracy. Second, our data set in-
cludes annotations for all utterances in the novel,
as opposed to only a subset of utterances from sev-
eral novels, which are not necessarily contiguous.
Lastly, our annotations come from a single expert,
while the annotations in the EM2010 corpus were
collected through Amazon’s Mechanical Turk, and
filtered by voting. For example, out of 308 utter-
ances from The Steppe, 244 are in fact annotated,
which raises the question whether the discarded
utterances tend to be more difficult to annotate.

Table 4 shows the number of utterances in all
1www.cs.ualberta.ca/˜kondrak/austen
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IS AS ES Total
Pride & P. (all) 663 292 305 1260
Pride & P. (test) 65 29 32 126
Emma 236 55 106 397
The Steppe 93 39 112 244

Table 4: The number of utterances in various
data sets by the type (IS - Implicit Speaker; AS
- Anaphoric Speaker; ES - Explicit Speaker).

data sets. We selected Jane Austen’s Emma as
a different novel by the same author, and Anton
Chekhov’s The Steppe as a novel by a different au-
thor for our generalization experiments.

Since our goal is to match utterances to charac-
ters rather than to name mentions, a preprocess-
ing step is performed to produce a list of char-
acters in the novel and their aliases. For exam-
ple, Elizabeth Bennet may be referred to as Liz,
Lizzy, Miss Lizzy, Miss Bennet, Miss Eliza, and
Miss Elizabeth Bennet. We apply a name entity
tagger, and then group the names into sets of char-
acter aliases, together with their gender informa-
tion. The sets of aliases are typically small, except
for major characters, and can be compiled with
the help of web resources, such as Wikipedia, or
study guides, such as CliffsNotesTM . This pre-
processing step could also be performed automati-
cally using a canonicalization method (Andrews et
al., 2012); however, since our focus is on speaker
identification, we decided to avoid introducing an-
notation errors at this stage.

Other preprocessing steps that are required for
processing a new novel include standarizing the
typographical conventions, and performing POS
tagging, NER tagging, and dependency parsing.
We utilize the Stanford tools (Toutanova et al.,
2003; Finkel et al., 2005; Marneffe et al., 2006).

7 Evaluation

In this section, we describe experiments conducted
to evaluate our speaker identification approach.
We refer to our main model as NEIGHBORS, be-
cause it incorporates features from the neighbor-
ing utterances, as described in Section 4.3. In
contrast, the INDIVIDUAL model relies only on
features from the current utterance. In an at-
tempt to reproduce the evaluation methodology of
EM2010, we also test the ORACLE model, which
has access to the gold-standard information about
the speakers of eight neighboring utterances in the

Pride & P. Emma Steppe
BASELINE 42.0 44.1 66.8
INDIVIDUAL 77.8 67.3 74.2
NEIGHBORS 82.5 74.8 80.3
ORACLE 86.5 80.1 83.6

Table 5: Speaker identification accuracy (in %) on
Pride & Prejudice, Emma, and The Steppe.

range [n − 4, n + 4]. Lastly, the BASELINE ap-
proach selects the name that is the closest in the
narration, which is more accurate than the “most
recent name” baseline.

7.1 Results

Table 5 shows the results of the models trained on
annotated utterances from Pride & Prejudice on
three test sets. As expected, the accuracy of all
learning models on the test set that comes from
the same novel is higher than on unseen novels.
However, in both cases, the drop in accuracy for
the NEIGHBORS model is less than 10%.

Surprisingly, the accuracy is higher on The
Steppe than on Emma, even though the differ-
ent writing style of Chekhov should make the
task more difficult for models trained on Austen’s
prose. The protagonists of The Steppe are mostly
male, and the few female characters rarely speak
in the novel. This renders our gender feature
virtually useless, and results in lower accuracy
on anaphoric speakers than on explicit speakers.
On the other hand, Chekhov prefers to mention
speaker names in the dialogues (46% of utterances
are in the explicit-speaker category), which makes
his prose slightly easier in terms of speaker identi-
fication.

The relative order of the models is the same
on all three test sets, with the NEIGHBORS

model consistently outperforming the INDIVID-
UAL model, which indicates the importance of
capturing the speaker alternation pattern. The per-
formance of the NEIGHBORS model is actually
closer to the ORACLE model than to the INDIVID-
UAL model.

Table 6 shows the results on Emma broken
down according to the type of the utterance. Un-
surprisingly, the explicit speaker is the easiest cat-
egory, with nearly perfect accuracy. Both the IN-
DIVIDUAL and the NEIGHBORS models do better
on anaphoric speakers than on implicit speakers,
which is also expected. However, it is not the
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IS AS ES Total
INDIVIDUAL 52.5 67.3 100.0 67.3
NEIGHBORS 63.1 76.4 100.0 74.8
ORACLE 74.2 69.1 99.1 80.1

Table 6: Speaker identification accuracy (in %) on
Austen’s Emma by the type of utterance.

case for the ORACLE model. We conjecture that
the ORACLE model relies heavily on the neighbor-
hood features (which are rarely wrong), and con-
sequently tends to downplay the gender informa-
tion, which is the only information extracted from
the anaphora. In addition, anaphoric speaker is the
least frequent of the three categories.

Table 7 shows the results of an ablation study
performed to investigate the relative importance of
features. The INDIVIDUAL model serves as the
base model from which we remove specific fea-
tures. All tested features appear to contribute to
the overall performance, with the distance features
and the unsupervised actor-topic features having
the most pronounced impact. We conclude that the
incorporation of the neighboring features, which
is responsible for the difference between the IN-
DIVIDUAL and NEIGHBORS models, is similar in
terms of importance to our strongest textual fea-
tures.

Feature Impact
Closest Mention -6.3
Unsupervised ACTM -5.6
Name within Utterance -4.8
Vocative -2.4

Table 7: Results of feature ablation (in % accu-
racy) on Pride & Prejudice.

7.2 Comparison to EM2010

In this section we analyze in more detail our re-
sults on Emma and The Steppe against the pub-
lished results of the state-of-the-art EM2010 sys-
tem. Recall that both novels form a part of the
corpus that was created by EM2010 for the devel-
opment of their system.

Direct comparison to EM2010 is difficult be-
cause they compute the accuracy separately for
seven different categories of utterances. For each
category, they experiment with all combinations
of three different classifiers and four score com-
bination methods, and report only the accuracy

Character
id name gender

. . .
9 Mr. Collins m
10 Charlotte f
11 Jane Bennet f
12 Elizabeth Bennet f

. . .

Relation
from to type mode

. . .
10 9 husband explicit
9 10 wife derived

10 12 friend explicit
12 10 friend derived
11 12 sister explicit

. . .

Figure 3: Relational database with extracted social
network.

achieved by the best performing combination on
that category. In addition, they utilize the ground
truth speaker information of the preceding utter-
ances. Therefore, their results are best compared
against our ORACLE approach.

Unfortunately, EM2010 do not break down their
results by novel. They report the overall ac-
curacy of 63% on both “anaphora trigram” (our
anaphoric speaker), and “quote alone” (similar to
our implicit speaker). If we combine the two cate-
gories, the numbers corresponding to our NEIGH-
BORS model are 65.6% on Emma and 64.4% on
The Steppe, while ORACLE achieves 73.2% and
70.5%, respectively. Even though a direct com-
parison is not feasible, the numbers are remarkable
considering the context of the experiment, which
strongly favors the EM2010 system.

8 Extracting Family Relationships

In this section, we describe an application of
the speaker identification system to the extraction
of family relationships. Elson et al. (2010) ex-
tract unlabeled networks where the nodes repre-
sent characters and edges indicate their proxim-
ity, as indicated by their interactions. Our goal
is to construct networks in which edges are la-
beled by the mutual relationships between charac-
ters in a novel. We focus on family relationships,
but also include social relationships, such as friend
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INSERT INTO Relation (id1, id2, t, m)
SELECT r.to AS id1, r.from AS id2 , ’wife’ AS t, ’derived’ AS m
FROM Relation r
WHERE r.type=’husband’ AND r.mode=’explicit’ AND

NOT EXISTS(SELECT * FROM Relation r2
WHERE r2.from=r.to AND r2.to=r.from AND r2.type=t)

Figure 4: An example inference rule.

and attracted-to.
Our approach to building a social network from

the novel is to build an active database of relation-
ships explicitly mentioned in the text, which is ex-
panded by triggering the execution of queries that
deduce implicit relations. This inference process
is repeated for every discovered relationship until
no new knowledge can be inferred.

The following example illustrates how speaker
identification helps in the extraction of social re-
lations among characters. Consider, the following
conversation:

“How so? how can it affect them?”
“My dear Mr. Bennet,” replied his wife,
“how can you be so tiresome!”

If the speakers are correctly identified, the utter-
ances are attributed to Mr. Bennet and Mrs. Ben-
net, respectively. Furthermore, the second utter-
ance implies that its speaker is the wife of the pre-
ceding speaker. This is an example of an explicit
relationship which is included in our database.
Several similar extraction rules are used to extract
explicit mentions indicating family and affective
relations, including mother, nephew, and fiancee.
We can also derive relationships that are not ex-
plicitly mentioned in the text; for example, that
Mr. Bennet is the husband of Mrs. Bennet.

Figure 3 shows a snippet of the relational
database of the network extracted from Pride &
Prejudice. Table Character contains all characters
in the book, each with a unique identifier and gen-
der information, while Table Relation contains all
relationships that are explicitly mentioned in the
text or derived through reasoning.

Figure 4 shows an example of an inference rule
used in our system. The rule derives a new re-
lationship indicating that character c1 is the wife
of character c2 if it is known (through an explicit
mention in the text) that c2 is the husband of c1.
One condition for the rule to be applied is that the
database must not already contain a record indi-
cating the wife relationship. This inference rule

would derive the tuple in Figure 3 indicating that
the wife or Mr. Collins is Charlotte.

In our experiment with Pride & Prejudice, a to-
tal of 55 explicitly indicated relationships were au-
tomatically identified once the utterances were at-
tributed to the characters. From those, another 57
implicit relationships were derived through infer-
ence. A preliminary manual inspection of the set
of relations extracted by this method (Makazhanov
et al., 2012) indicates that all of them are correct,
and include about 40% all personal relations that
can be inferred by a human reader from the text of
the novel.

9 Conclusion and Future Work

We have presented a novel approach to identifying
speakers of utterances in novels. Our system in-
corporates a variety of novel features which utilize
vocatives, unsupervised actor-topic models, and
the speaker alternation pattern. The results of our
evaluation experiments indicate a substantial im-
provement over the current state of the art.

There are several interesting directions for the
future work. Although the approach introduced
in this paper appears to be sufficiently general to
handle novels written in a different style and pe-
riod, more sophisticated statistical graphical mod-
els may achieve higher accuracy on this task. A re-
liable automatic generation of characters and their
aliases would remove the need for the preprocess-
ing step outlined in Section 6. The extraction of
social networks in novels that we discussed in Sec-
tion 8 would benefit from the introduction of ad-
ditional inference rules, and could be extended to
capture more subtle notions of sentiment or rela-
tionship among characters, as well as their devel-
opment over time.

We have demonstrated that speaker identifica-
tion can help extract family relationships, but the
converse is also true. Consider the following utter-
ance:

“Lizzy,” said her father, “I have given
him my consent.”
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In order to deduce the speaker of the utterance,
we need to combine the three pieces of informa-
tion: (a) the utterance is addressed to Lizzy (voca-
tive prediction), (b) the utterance is produced by
Lizzy’s father (pronoun resolution), and (c) Mr.
Bennet is the father of Lizzy (relationship ex-
traction). Similarly, in the task of compiling a
list of characters, which involves resolving aliases
such as Caroline, Caroline Bingley, and Miss Bin-
gley, simultaneous extraction of family relation-
ships would help detect the ambiguity of Miss
Benett, which can refer to any of several sis-
ters. A joint approach to resolving speaker attri-
bution, relationship extraction, co-reference reso-
lution, and alias-to-character mapping would not
only improve the accuracy on all these tasks, but
also represent a step towards deeper understanding
of complex plots and stories.
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Abstract

Hierarchical Bayesian Models (HBMs)
have been used with some success
to capture empirically observed pat-
terns of under- and overgeneralization
in child language acquisition. How-
ever, as is well known, HBMs are
“ideal” learning systems, assuming ac-
cess to unlimited computational re-
sources that may not be available
to child language learners. Conse-
quently, it remains crucial to carefully
assess the use of HBMs along with al-
ternative, possibly simpler, candidate
models. This paper presents such
an evaluation for a language acquisi-
tion domain where explicit HBMs have
been proposed: the acquisition of En-
glish dative constructions. In particu-
lar, we present a detailed, empirically-
grounded model-selection compari-
son of HBMs vs. a simpler alternative
based on clustering along with max-
imum likelihood estimation that we
call linear competition learning (LCL).
Our results demonstrate that LCL can
match HBM model performance with-
out incurring on the high computa-
tional costs associated with HBMs.

1 Introduction

In recent years, with advances in probability
and estimation theory, there has been much
interest in Bayesian models (BMs) (Chater,
Tenenbaum, and Yuille, 2006; Jones and
Love, 2011) and their application to child lan-
guage acquisition with its challenging com-

bination of structured information and in-
complete knowledge, (Perfors, Tenenbaum,
and Wonnacott, 2010; Hsu and Chater, 2010;
Parisien, Fazly, and Stevenson, 2008; Parisien
and Stevenson, 2010) as they offer several ad-
vantages in this domain. They can readily
handle the evident noise and ambiguity of ac-
quisition input, while at the same time pro-
viding efficiency via priors that mirror known
pre-existing language biases. Further, hierar-
chical Bayesian Models (HBMs) can combine
distinct abstraction levels of linguistic knowl-
edge, from variation at the level of individ-
ual lexical items, to cross-item variation, using
hyper-parameters to capture observed pat-
terns of both under- and over-generalization
as in the acquisition of e.g. dative alterna-
tions in English (Hsu and Chater, 2010; Per-
fors, Tenenbaum, and Wonnacott, 2010), and
verb frames in a controlled artificial language
(Wonnacott, Newport, and Tanenhaus, 2008).

HBMs can thus be viewed as providing a
“rational” upper bound on language learn-
ability, yielding optimal models that account
for observed data while minimizing any re-
quired prior information. In addition, the
clustering implicit in HBM modeling intro-
duces additional parameters that can be tuned
to specific data patterns. However, this comes
at a well-known price: HBMs generally are
also ideal learning systems, known to be
computationally infeasible (Kwisthout, Ware-
ham, and van Rooij, 2011). Approximations
proposed to ensure computational tractabil-
ity, like reducing the number of classes that
need to be learned may also be linguisti-
cally and cognitively implausible. For in-
stance, in terms of verb learning, this could
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take the form of reducing the number of sub-
categorization frames to the relevant subset,
as in (Perfors, Tenenbaum, and Wonnacott,
2010), where only 2 frames are considered for
‘take’, when in fact it is listed in 6 frames
by Levin (1993). Finally, comparison of vari-
ous Bayesian models of the same task is rare
(Jones and Love, 2011) and Bayesian infer-
ence generally can be demonstrated as sim-
ply one class of regularization or smooth-
ing techniques among many others; given the
problem at hand, there may well be other,
equally compelling regularization methods
for dealing with the bias-variance dilemma
(e.g., SVMs (Shalizi, 2009)). Consequently, the
relevance of HBMs for cognitively accurate ac-
counts of human learning remains uncertain
and needs to be carefully assessed.

Here we argue that the strengths of HBMs
for a given task must be evaluated in light of
their computational and cognitive costs, and
compared to other viable alternatives. The fo-
cus should be on finding the simplest statis-
tical models consistent with a given behav-
ior, particularly one that aligns with known
cognitive limitations. In the case of many
language acquisition tasks this behavior often
takes the form of overgeneralization, but with
eventual convergence to some target language
given exposure to more data.

In particular, in this paper we consider how
children acquire English dative verb construc-
tions, comparing HBMs to a simpler alterna-
tive, a linear competition learning (LCL) al-
gorithm that models the behavior of a given
verb as the linear competition between the ev-
idence for that verb, and the average behav-
ior of verbs belonging to its same class. The
results show that combining simple cluster-
ing methods along with ordinary maximum
likelihood estimation yields a result compara-
ble to HBM performance, providing an alter-
native account of the same facts, without the
computational costs incurred by HBM models
that must rely, for example, on Markov Chain
Monte Carlo (MCMC) methods for numeri-
cally integrating complex likelihood integrals,
or on Chinese Restaurant Process (CRP) for
producing partitions.

In terms of Marr’s hierarchy (Marr, 1982)
learning verb alternations is an abstract com-

putational problem (Marr’s type I), solvable
by many type II methods combining repre-
sentations (models, viz. HBMs or LCLs) with
particular algorithms. The HBM convention
of adopting ideal learning amounts to invok-
ing unbounded algorithmic resources, solv-
ability in principle, even though in practice
such methods, even approximate ones, are
provably NP-hard (cf. (Kwisthout, Wareham,
and van Rooij, 2011)). Assuming cognitive
plausibility as a desideratum, we therefore ex-
amine whether HBMs can also be approxi-
mated by another type II method (LCLs) that
does not demand such intensive computa-
tion. Any algorithm that approximates an
HBM can be viewed as implementing a some-
what different underlying model; if it repli-
cates HBM prediction performance but is sim-
pler and less computationally complex then
we assume it is preferable.

This paper is organized as follows: we start
with a discussion of formalizations of lan-
guage acquisition tasks, §2. We present our
experimental framework for the dative acqui-
sition task, formalizing a range of learning
models from simple MLE methods to HBM
techniques, §3, and a computational evalua-
tion of each model, §4. We finish with conclu-
sions and possibilities for future work, §5.

2 Evidence in Language Acquisition

A familiar problem for language acquisition is
how children learn which verbs participate in
so-called dative alternations, exemplified by
the child-produced sentences 1 to 3, from the
Brown (1973) corpus in CHILDES (MacWhin-
ney, 1995).

1. you took me three scrambled eggs (a direct object da-
tive (DOD) from Adam at age 3;6)

2. Mommy can you fix dis for me ? (a prepositional da-
tive (PD) from Adam at age 4;7)

3. *Mommy, fix me my tiger (from Adam at age 5;2)

Examples like these show that children gen-
eralize their use of verbs. For example, in sen-
tence (1), the child Adam uses take as a DOD
before any recorded occurrence of a similar
use of take in adult speech to Adam. Such
verbs alternate because they can also occur
with a prepositional form, as in sentence (2).
However, sometimes a child’s use of verbs like
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these amounts to an overgeneralization – that
is, their productive use of a verb in a pattern
that does not occur in the adult grammar, as in
sentence (3), above. Faced with these two verb
frames the task for the learner is to decide for a
particular verb if it is a non-alternating DOD
only verb, a PD only verb, or an alternating
verb that allows both forms.

This ambiguity raises an important learn-
ability question, conventionally known as
Baker’s paradox (Baker, 1979). On the as-
sumption that children only receive positive
examples of verb forms, then it is not clear
how they might recover from the overgener-
alization exhibited in sentence (3) above, be-
cause they will never receive positive sen-
tences from adults like (3), using fix in a DOD
form. As has long been noted, if negative ex-
amples were systematically available to learn-
ers, then this problem would be solved, since
the child would be given evidence that the
DOD form is not possible in the adult gram-
mar. However, although parental correction
could be considered to be a source of negative
evidence, it is neither systematic nor generally
available to all children (Marcus, 1993). Even
when it does occur, all careful studies have in-
dicated that it seems mostly concerned with
semantic appropriateness rather than syntax.
In the cases where it is related to syntax, it
is often difficult to determine what the cor-
rection refers to in the utterance and besides
children seem to be oblivious to the correction
(Brown and Hanlon, 1970; Ingram, 1989).

One alternative solution to Baker’s paradox
that has been widely discussed at least since
Chomsky (1981) is the use of indirect negative
evidence. On the indirect negative evidence
model, if a verb is not found where it would
be expected to occur, the learner may con-
clude it is not part of the adult grammar. Cru-
cially, the indirect evidence model is inher-
ently statistical. Different formalizations of in-
direct negative evidence have been incorpo-
rated in several computational learning mod-
els for learning e.g. grammars (Briscoe, 1997;
Villavicencio, 2002; Kwiatkowski et al., 2010);
dative verbs (Perfors, Tenenbaum, and Won-
nacott, 2010; Hsu and Chater, 2010); and mul-
tiword verbs (Nematzadeh, Fazly, and Steven-
son, 2013). Since a number of closely related

models can all implement the indirect nega-
tive evidence approach, the decision of which
one to choose for a given task may not be en-
tirely clear. In this paper we compare a range
of statistical models consistent with a certain
behavior: early overgeneralization, with even-
tual convergence to the correct target on the
basis of exposure to more data.

3 Materials and Methods

3.1 Dative Corpora
To emulate a child language acquisition en-
vironment we use naturalistic longitudinal
child-directed data, from the Brown corpus in
CHILDES, for one child (Adam) for a subset
of 19 verbs in the DOD and PD verb frames,
figure 1. This dataset was originally reported
in Perfors, Tenenbaum, and Wonnacott (2010),
and longitudinal and incremental aspects to
acquisition are approximated by dividing the
data available into 5 incremental epochs (E1 to
E5 in the figures), where at the final epoch the
learner has seen the full corpus.

Model comparison requires a gold standard
database for acquisition, reporting which
frames have been learned for which verbs at
each stage, and how likely a child is of mak-
ing creative uses of a particular verb in a new
frame. An independent gold standard with
developmental information (e.g. Gropen et
al. (1989)) would clearly be ideal. Absent
this, a first step is demonstrating that sim-
pler alternative models can replicate HBM
performance on their own terms. Therefore,
the gold standard we use for evaluation is
the classification predicted by Perfors, Tenen-
baum, and Wonnacott (2010). The evaluations
reported in our analysis take into account in-
trinsic characteristics of each model in rela-
tion to the likelihoods of the verbs, to deter-
mine the extent to which the models go be-
yond the data they were exposed to, discussed
in section 2. Further, since it has been ar-
gued that very low frequency verbs may not
yet be firmly placed in a child’s lexicon (Yang,
2010; Gropen et al., 1989), at each epoch we
also impose a low-frequency threshold of 5
occurrences, considering only verbs that the
learner has seen at least 5 times. This use of a
low-frequency threshold for learning has ex-
tensive support in the literature for learning
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of all kinds in both human and non-human
animals, e.g. (Gallistel, 2002). A cut-off fre-
quency in this range has also commonly been
used in NLP tasks like POS tagging (Ratna-
parkhi, 1999).

3.2 The learners
We selected a set of representative statistical
models that are capable in principle of solv-
ing this classification task, ranging from what
is perhaps the simplest possible, a simple bi-
nomial, all the way to multi-level hierarchical
Bayesian approaches.

A Binomial distribution serves as the sim-
plest model for capturing the behavior of a
verb occurring in either DOD or PD frame.
Representing the probability of DOD as θ, af-
ter n occurrences of the verb the probability
that y of them are DOD is:

p( y| θ,n) =
(
n
y

)
θy (1 − θ)n−y (1)

Considering that p(y| θ,n) is the likelihood
in a Bayesian framework, the simplest and the
most intuitive estimator of θ, given y in n verb
occurrences, is the Maximum Likelihood Esti-
mator (MLE):

θMLE =
y
n

(2)

θMLE is viable as a learning model in the sense
that its accuracy increases as the amount of ev-
idence for a verb grows (n → ∞), reflecting
the incremental, on-line character of language
learning. However, one well known limita-
tion of MLE is that it assigns zero probability
mass to unseen events. Ruling out events on
the grounds that they did not occur in a finite
data set early in learning may be too strong –
though it should be noted that this is simply
one (overly strong) version of the indirect neg-
ative evidence position.

Again as is familiar, to overcome zero
count problem, models adopt one or another
method of smoothing to assign a small prob-
ability mass to unseen events. In a Bayesian
formulation, this amounts to assigning non-
zero probability mass to some set of priors;
smoothing also captures the notion of gener-
alization, making predictions about data that
has never been seen by the learner. In the

context of verb learning smoothing could be
based on several principles:

• an (innate) expectation as to how verbs in
general should behave;

• an acquired class-based expectation of
the behavior of a verb, based on its associ-
ation to similar but more frequent verbs.

The former can be readily implemented
in terms of prior probability estimates. As
we discuss below, class-based estimates arise
from one or another clustering method, and
can produce more accurate estimates for less
frequent verbs based on patterns already
learned for more frequent verbs in the same
class; see (Perfors, Tenenbaum, and Wonna-
cott, 2010). In this case, smoothing is a side-
effect of the behavior of a class as a whole.

When learning begins, the prior probability
is the only source of information for a learner
and, as such, dominates the value of the poste-
rior probability. However, in the large sample
limit, it is the likelihood that dominates the
posterior distribution regardless of the prior.
In Hierarchical Bayesian Models both effects
are naturally incorporated. The prior distri-
bution is structured as a chain of distributions
of parameters and hyper-parameters, and the
data may be divided into classes that share
some of the hyper-parameters, as defined be-
low for the case of a three levels model:

λ ∼ Exponential(1)
µ ∼ Exponential(1)
αk ∼ Exponential(λ)
βk ∼ Beta(µ, µ)
θik ∼ Beta(αkβk, αk(1 − βk))
yi|ni ∼ Binomial(θik)

The indices refer to the possible hierarchies
among the hyper-parameters. λ and µ are in
the top, and they are shared by all verbs. Then
there are classes of different αk, βk, and the
probabilities for the DOD frame for the dif-
ferent verbs (θik) are drawn according to the
classes k assigned to them. An estimate for
(θik) for a given configuration of clusters is
given by
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Figure 1: Verb tokens per epoch (E1 to E5)

Figure 2: Verb tokens ≥ 5 per epoch (E1 to E5)

where P(Y) is the evidence of the data,
the unnormalized posterior for the hyper-
parameters is

and the likelihood for α and β is

The Hierarchical Bayesian Model prediction
forθi is the average of the estimateθik

HBM over
all possible partitions of the verbs in the task.
To simplify the notation we can write

θHBM = E
[

y + αβ
n + α

]
(3)

where in the expression E[. . . ] are included
the integrals described above and the average
of all possible class partitions. Due to this
complexity, in practice even small data sets re-
quire the use of MCMC methods, and statisti-
cal models for partitions, like CRP (Gelman et
al., 2003; Perfors, Tenenbaum, and Wonnacott,

2010). This complexity also calls into question
the cognitive fidelity of such approaches.

Eq.3 is particularly interesting because by
fixingα and β (instead of averaging over them)
it is possible to deduce simpler (and classical)
models: MLE corresponds to α = 0; the so
called “add-one” smoothing (referred in this
paper as L1) corresponds to α = 2 and β = 1/2.
From Eq.3 it is also clear that if α and β (or
their distributions) are unchanged, as the evi-
dence of a verb grows (n→∞), the HBM esti-
mate approaches MLE’s, (θHBM → θMLE). On
the other hand, when α >> n, θHBM ∼ β, so
that β can be interpreted as a prior value for θ
in the low frequency limit.

Following this reasoning, we propose an
alternative approach, a linear competition
learner (LCL), that explicitly models the be-
havior of a given verb as the linear competi-
tion between the evidence for the verb, and
the average behavior of verbs of the same
class. As clustering is defined independently
from parameter estimation, the advantages of
the proposed approach are twofold. First, it
is computationally much simpler, not requir-
ing approximations by Monte Carlo meth-
ods. Second, differently from HBMs where
the same attributes are used for clustering and
parameter estimation (in this case the DOD
and PD counts for each verb), in LCL cluster-
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ing may be done using more general contexts
that employ a variety of linguistic and envi-
ronmental attributes.

For LCL the prior and class-based informa-
tion are incorporated as:

θLCL =
yi + αCβC

ni + αC
(4)

where αC and βC are defined via justifiable
heuristic expressions dependent solely on the
statistics of the class attributed to each verb i.

The strength of the prior (αC) is a mono-
tonic function of the number of elements (mC)
in the class C, excluding the target verb vi.
To approximate the gold standard behavior of
the HBM for this task (Perfors, Tenenbaum,
and Wonnacott, 2010) we chose the following
function for αC:

αC = mC
3/2(1 −mC

−1/5) + 0.1 (5)

with the strength of the prior for the LCL
model depending on the number of verbs in
the class, not on their frequency. Eq.5 was
chosen as a good fit to HBMs, without incur-
ring their complexity. The powers are simple
fractions, not arbitrary numbers. A best fit
was not attempted due to the lack of assess-
ment of how accurate HBMs are on real data.

The prior value (βC) is a smoothed estima-
tion of the probability of DOD in a given class,
combining the evidence for all verbs in that
class:

βC =
YC + 1/2
NC + 1

(6)

in this case YC is the number of DOD occur-
rences in the class, and NC the total number
of verb occurrences in the class, in both cases
excluding the target verb vi.

The interpretation of these parameters is
as follows: βC is the estimate of θ in the ab-
sence of any data for a verb; and αC controls
the crossover between this estimate and MLE,
with a large αC requiring a larger sample (ni)
to overcome the bias given by βC.

For comparative purposes, in this paper we
examine alternative models for (a) probability
estimation and (b) clustering. The models are
the following:

• two models without clusters: MLE and
L1;

• two models where clusters are performed
independently: LCL and MLEαβ; and

• the full HBM described before.

MLEαβ corresponds to replacing α, β in eq.3
by their maximal likelihood values calculated
from P({yi,ni}i∈k|α, β) described before.

For models without clustering, estimation
is based solely on the observed behavior of
verbs. With clustering, same-cluster verbs
share some parameters, influencing one an-
other. HBMs place distributions over pos-
sible clusters, with estimation derived from
averages over distributions. In HBMs, clus-
tering and probability estimation are calcu-
lated jointly. In the other models these two
estimates are calculated separately, permit-
ting ’plug-and-play’ use of external cluster-
ing methods, like X-means (Pelleg and Moore,
2000)1. However, to further assess the impact
of cluster assignment on alternative model
performance, we also used the clusters that
maximize the evidence of the HBM for the
DOD and PD counts of the target verbs, and
we refer to these as Maximum Evidence (ME)
clusters. In MWE clusters, verbs are separated
into 3 classes: one if they have counts for both
frames; another for only the DOD frame; and
a final for only the PD frame.

4 Evaluation

The learning task consists of estimating the
probability that a given verb occurs in a partic-
ular frame, using previous occurrences as the
basis for this estimation. In this context, over-
generalization can be viewed as the model’s
predictions that a given verb seen only in one
frame (say, a PD) can also occur in the other
(say, a DOD) as well, and it decreases as the
learner receives more data. In one extreme
we have MLE, which does not overgeneralize,
and in the other the L1 model, which assigns
uniform probability for all unseen cases. The
other 3 models fall somewhere in between,
overgeneralizing beyond the observed data,
using the prior and class-based smoothing to
assign some (low) probability mass to an un-
seen verb-frame pair. The relevant models’

1Other clustering algorithms were also used; here
we report X-means results as representative of these
models. X-means is available from http://www.cs.
waikato.ac.nz/ml/weka/
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predictions for each of the target verbs in the
DOD frame, given the full corpus, are in fig-
ure 3. In either end of the figure are the verbs
that were attested in only one of the frames
(PD only at the left-hand end, and DOD only
at the right-hand end). For these verbs, LCL
and HBM exhibit similar behavior. When the
low-frequency threshold is applied, MLEαβ,
HBM and LCL work equally well, figure 4.

Figure 4: Probability of verbs in DOD frame,
Low Frequency Threshold.

To examine how overgeneralization pro-
gresses during the course of learning as the
models were exposed to increasing amounts
of data, we used the corpus divided by cumu-
lative epochs, as described in §3.1. For each
epoch, verbs seen in only one of the frames
were divided in 5 frequency bins, and the
models were assessed as to how much over-
generalization they displayed for each of these
verbs. Following Perfors, Tenenbaum, and
Wonnacott (2010) overgeneralization is calcu-
lated as the absolute difference between the
models predicted θ and θMLE, for each of the
epochs, figure 5, and for comparative pur-
poses their alternating/non-alternating clas-
sification is also adopted. For non-alternating
verbs, overgeneralization reflects the degree
of smoothing of each model. As expected, the
more frequent a verb is, the more confident
the model is in the indirect negative evidence
it has for that verb, and the less it overgeneral-
izes, shown in the lighter bars in all epochs. In
addition, the overall effect of larger amounts
of data are indicated by a reduction in over-
generalization epoch by epoch. The effects of
class-based smoothing can be assessed com-
paring L1, a model without clustering which
displays a constant degree of overgeneraliza-
tion regardless of the epoch, while HBM uses
a distribution over clusters and the other mod-
els X-means. If a low-frequency threshold is
applied, the differences between the models

decrease significantly and so does the degree
of overgeneralization in the models’ predic-
tions, as shown in the 3 lighter bars in the fig-
ure.

Figure 5: Overgeneralization, per epoch, per
frequency bin, where 0.5 corresponds to the
maximum overgeneralization.

While the models differ somewhat in their
predictions, the quantitative differences need
to be assessed more carefully. To compare
the models and provide an overall difference
measure, we use the predictions of the more
complex model, HBM, as a baseline and then
calculate the difference between its predic-
tions and those of the other models. We
used three different measures for comparing
models, one for their standard difference; one
that prioritizes agreement for high frequency
verbs; and one that focuses more on low fre-
quency verbs.

The first measure, denoted Difference, cap-
tures a direct comparison between two mod-
els, M1 and M2 as the average prediction dif-
ference among the verbs, and is defined as:

This measure treats all differences uniformly,
regardless of whether they relate to high or
low frequency verbs in the learning sample
(e.g. for bring with 150 counts and serve with
only 1 have the same weight). To focus on high
frequency verbs, we also define the Weighted
Difference between two models as:

Here we expect Dn < D since models tend to
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Figure 3: Probability of verbs in DOD frame.

agree as the amount of evidence for each verb
increases. Conversely, our third measure, de-
noted Inverted, prioritizes the agreement be-
tween two models on low frequency verbs, de-
fined as follows:

D1/n captures the degree of similarity in over-
generalization between two models. The re-
sults of applying these three difference mea-
sures are shown in figure 6 for the relevant
models, where grey is for D(M1,M2), black
for Dn(M1,M2) and white for D1/n(M1,M2).
Given the probabilistic nature of Monte Carlo
methods, there is also a variation between dif-
ferent runs of the HBM model (HBM to HBM-
2), and this indicates that models that per-
form within these bounds can be considered
to be equivalent (e.g. HBMs and ME-MLEαβ
for Weighted Difference, and the HBMs and
X-MLEαβ for the Inverted Difference).

Comparing the prediction agreement, the
strong influence of clustering is clear: the
models that have compatible clusters have
similar performances. For instance, all the
models that adopt the ME clusters for the
data perform closest to HBMs. Moreover, the
weighted differences tend to be smaller than
0.01 and around 0.02 for the inverted differ-
ences. The results for these measures become
even closer in most cases when the low fre-
quency threshold is adopted, figure 7, as the

Figure 6: Model Comparisons.

Figure 7: Model Comparison - Low Frequency
Threshold.
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Figure 8: DOD probability evolution for mod-
els with increase in evidence

evidence reduces the influence of the prior.
To examine the decay of overgeneralization

with the increase in evidence for these mod-
els, two simulated scenarios are defined for a
single generic verb: one where the evidence
for DOD amounts to 75% of the data (dashed
lines) and in the other to 100% (solid lines),
figures 9 and 8. Unsurprisingly, the perfor-
mance of the models is dependent on the
amount of evidence available. This is a con-
sequence of the decrease in the influence of
the priors as the sample size increases in a rate
of 1/N, as shown in figure 9 for the decrease
in overgeneralization. Ultimately it is the ev-
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Figure 9: Overgeneralization reduction with
increase in evidence

idence that dominates the posterior probabil-
ity. Although the Bayesian model exhibits fast
convergence, after 10 examples, the simpler
model L1 is only approximately 3% below the
Bayesian model in performance for scenario 1
and is still 90% accurate in scenario 2, figure 8.

These results suggest that while these mod-
els all differ slightly in the degree of overgen-
eralization for low frequency data and noise,
these differences are small, and as evidence
reaches approximately 10 examples per verb,
the overall performance for all models ap-
proaches that of MLE.

5 Conclusions and Future Work

HBMs have been successfully used for a
number of language acquisition tasks captur-
ing both patterns of under- and overgeneral-
ization found in child language acquisition.
Their (hyper)parameters provide robustness
for dealing with low frequency events, noise,
and uncertainty and a good fit to the data,
but this fidelity comes at the cost of complex
computation. Here we have examined HBMs
against computationally simpler approaches
to dative alternation acquisition, which imple-
ment the indirect negative approach. We also
advanced several measures for model com-
parison in order to quantify their agreement
to assist in the task of model selection. The re-
sults show that the proposed LCL model, in

particular, that combines class-based smooth-
ing with maximum likelihood estimation, ob-
tains results comparable to those of HBMs,
in a much simpler framework. Moreover,
when a cognitively-viable frequency thresh-
old is adopted, differences in the performance
of all models decrease, and quite rapidly ap-
proach the performance of MLE.

In this paper we used standard clustering
techniques grounded solely on verb counts to
enable comparison with previous work. How-
ever, a variety of additional linguistic and dis-
tributional features could be used for cluster-
ing verbs into more semantically motivated
classes, using a larger number of frames and
verbs. This will be examined in future work.
We also plan to investigate the use of cluster-
ing methods more targeted to language tasks
(Sun and Korhonen, 2009).
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Abstract

Automatic acquisition of inference rules
for predicates has been commonly ad-
dressed by computing distributional simi-
larity between vectors of argument words,
operating at the word space level. A re-
cent line of work, which addresses context
sensitivity of rules, represented contexts in
a latent topic space and computed similar-
ity over topic vectors. We propose a novel
two-level model, which computes simi-
larities between word-level vectors that
are biased by topic-level context repre-
sentations. Evaluations on a naturally-
distributed dataset show that our model
significantly outperforms prior word-level
and topic-level models. We also release a
first context-sensitive inference rule set.

1 Introduction

Inference rules for predicates have been identi-
fied as an important component in semantic ap-
plications, such as Question Answering (QA)
(Ravichandran and Hovy, 2002) and Information
Extraction (IE) (Shinyama and Sekine, 2006). For
example, the inference rule ‘X treat Y → X relieve
Y’ can be useful to extract pairs of drugs and the
illnesses which they relieve, or to answer a ques-
tion like “Which drugs relieve headache?”. Along
this vein, such inference rules constitute a crucial
component in generic modeling of textual infer-
ence, under the Textual Entailment paradigm (Da-
gan et al., 2006; Dinu and Wang, 2009).

Motivated by these needs, substantial research
was devoted to automatic learning of inference
rules from corpora, mostly in an unsupervised dis-
tributional setting. This research line was mainly
initiated by the highly-cited DIRT algorithm (Lin
and Pantel, 2001), which learns inference for bi-
nary predicates with two argument slots (like the

rule in the example above). DIRT represents a
predicate by two vectors, one for each of the ar-
gument slots, where the vector entries correspond
to the argument words that occurred with the pred-
icate in the corpus. Inference rules between pairs
of predicates are then identified by measuring the
similarity between their corresponding argument
vectors. This general scheme was further en-
hanced in several directions, e.g. directional sim-
ilarity (Bhagat et al., 2007; Szpektor and Dagan,
2008) and meta-classification over similarity val-
ues (Berant et al., 2011). Consequently, several
knowledge resources of inference rules were re-
leased, containing the top scoring rules for each
predicate (Schoenmackers et al., 2010; Berant et
al., 2011; Nakashole et al., 2012).

The above mentioned methods provide a sin-
gle confidence score for each rule, which is based
on the obtained degree of argument-vector sim-
ilarities. Thus, a system that applies an infer-
ence rule to a text may estimate the validity of
the rule application based on the pre-specified rule
score. However, the validity of an inference rule
may depend on the context in which it is applied,
such as the context specified by the given predi-
cate’s arguments. For example, ‘AT&T acquire T-
Mobile → AT&T purchase T-Mobile’, is a valid
application of the rule ‘X acquire Y → X pur-
chase Y’, while ‘Children acquire skills → Chil-
dren purchase skills’ is not. To address this issue, a
line of works emerged which computes a context-
sensitive reliability score for each rule application,
based on the given context.

The major trend in context-sensitive inference
models utilizes latent or class-based methods for
context modeling (Pantel et al., 2007; Szpektor et
al., 2008; Ritter et al., 2010; Dinu and Lapata,
2010b). In particular, the more recent methods
(Ritter et al., 2010; Dinu and Lapata, 2010b) mod-
eled predicates in context as a probability distribu-
tion over topics learned by a Latent Dirichlet Allo-
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cation (LDA) model. Then, similarity is measured
between the two topic distribution vectors corre-
sponding to the two sides of the rule in the given
context, yielding a context-sensitive score for each
particular rule application.

We notice at this point that while context-
insensitive methods represent predicates by ar-
gument vectors in the original fine-grained word
space, context-sensitive methods represent them
as vectors at the level of latent topics. This raises
the question of whether such coarse-grained topic
vectors might be less informative in determining
the semantic similarity between the two predi-
cates.

To address this hypothesized caveat of prior
context-sensitive rule scoring methods, we pro-
pose a novel generic scheme that integrates word-
level and topic-level representations. Our scheme
can be applied on top of any context-insensitive
“base” similarity measure for rule learning, which
operates at the word level, such as Cosine or
Lin (Lin, 1998). Rather than computing a single
context-insensitive rule score, we compute a dis-
tinct word-level similarity score for each topic in
an LDA model. Then, when applying a rule in a
given context, these different scores are weighed
together based on the specific topic distribution
under the given context. This way, we calculate
similarity over vectors in the original word space,
while biasing them towards the given context via
a topic model.

In order to promote replicability and equal-term
comparison with our results, we based our experi-
ments on publicly available datasets, both for un-
supervised learning of the evaluated models and
for testing them over a random sample of rule ap-
plications. We apply our two-level scheme over
three state-of-the-art context-insensitive similar-
ity measures. The evaluation compares perfor-
mances both with the original context-insensitive
measures and with recent LDA-based context-
sensitive methods, showing consistent and robust
advantages of our scheme. Finally, we release
a context-sensitive rule resource comprising over
2,000 frequent verbs and one million rules.

2 Background and Model Setting

This section presents components of prior work
which are included in our model and experiments,
setting the technical preliminaries for the rest of
the paper. We first present context-insensitive rule

learning, based on distributional similarity at the
word level, and then context-sensitive scoring for
rule applications, based on topic-level similarity.
Some further discussion of related work appears
in Section 6.

2.1 Context-insensitive Rule Learning
A predicate inference rule ‘LHS → RHS’, such
as ‘X acquire Y → X purchase Y’, specifies a
directional inference relation between two predi-
cates. Each rule side consists of a lexical pred-
icate and (two) variable slots for its arguments.1

Different representations have been used to spec-
ify predicates and their argument slots, such as
word lemma sequences, regular expressions and
dependency parse fragments. A rule can be ap-
plied when its LHS matches a predicate with a
pair of arguments in a text, allowing us to infer its
RHS, with the corresponding instantiations for the
argument variables. For example, given the text
“AT&T acquires T-Mobile”, the above rule infers
“AT&T purchases T-Mobile”.

The DIRT algorithm (Lin and Pantel, 2001)
follows the distributional similarity paradigm to
learn predicate inference rules. For each predi-
cate, DIRT represents each of its argument slots
by an argument vector. We denote the two vectors
of the X and Y slots of a predicate pred by vxpred
and vypred, respectively. Each entry of a vector v
corresponds to a particular word (or term) w that
instantiated the argument slot in a learning corpus,
with a value v(w) = PMI(pred, w) (with PMI
standing for point-wise mutual information).

To learn inference rules, DIRT considers (in
principle) each pair of binary predicates that
occurred in the corpus for a candidate rule,
‘LHS → RHS’. Then, DIRT computes a reliabil-
ity score for the rule by combining the measured
similarities between the corresponding argument
vectors of the two rule sides. Concretely, denot-
ing by l and r the predicates appearing in the two
rule sides, DIRT’s reliability score is defined as
follows:

(1)
scoreDIRT(LHS → RHS)

=
√

sim(vxl , v
x
r ) · sim(vyl , v

y
r )

where sim(v, v′) is a vector similarity measure.
Specifically, DIRT employs the Lin similarity

1We follow most of the inference-rule learning literature,
which focused on binary predicates. However, our context-
sensitive scheme can be applied to any arity.
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measure from (Lin, 1998), defined as follows:

(2)Lin(v, v′) =

∑
w∈v∩v′ [v(w) + v′(w)]∑
w∈v∪v′ [v(w) + v′(w)]

We note that the general DIRT scheme may be
used while employing other “base” vector similar-
ity measures. For example, the Lin measure is
symmetric, and thus using it would yield the same
reliability score when swapping the two sides of
a rule. This issue has been addressed in a sepa-
rate line of research which introduced directional
similarity measures suitable for inference rela-
tions (Bhagat et al., 2007; Szpektor and Dagan,
2008; Kotlerman et al., 2010). In our experiments
we apply our proposed context-sensitive similarity
scheme over three different base similarity mea-
sures.

DIRT and similar context-insensitive inference
methods provide a single reliability score for a
learned inference rule, which aims to predict the
validity of the rule’s applications. However, as
exemplified in the Introduction, an inference rule
may be valid in some contexts but invalid in oth-
ers (e.g. acquiring entails purchasing for goods,
but not for skills). Since vector similarity in DIRT
is computed over the single aggregate argument
vector, the obtained reliability score tends to be
biased towards the dominant contexts of the in-
volved predicates. For example, we may expect
a higher score for ‘acquire → purchase’ than for
‘acquire → learn’, since the former matches a
more frequent sense of acquire in a typical corpus.
Following this observation, it is desired to obtain
a context-sensitive reliability score for each rule
application in a given context, as described next.

2.2 Context-sensitive Rule Applications

To assess the reliability of applying an inference
rule in a given context we need some model for
context representation, that should affect the rule
reliability score. A major trend in past work is
to represent contexts in a reduced-dimensionality
latent or class-based model. A couple of earlier
works utilized a cluster-based model (Pantel et al.,
2007) and an LSA-based model (Szpektor et al.,
2008), in a selectional-preferences style approach.
Several more recent works utilize a Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) frame-
work. We now present an underlying unified view
of the topic-level models in (Ritter et al., 2010;
Dinu and Lapata, 2010b), which we follow in our

own model and in comparative model evaluations.
We note that a similar LDA model construction
was employed also in (Séaghdha, 2010), for esti-
mating predicate-argument likelihood.

First, an LDA model is constructed, as follows.
Similar to the construction of argument vectors
in the distributional model (described above in
subsection 2.1), all arguments instantiating each
predicate slot are extracted from a large learning
corpus. Then, for each slot of each predicate, a
pseudo-document is constructed containing the set
of all argument words that instantiated this slot in
the corpus. We denote the two documents con-
structed for the X and Y slots of a predicate pred
by dxpred and dypred, respectively. In comparison to
the distributional model, these two documents cor-
respond to the analogous argument vectors vxpred
and vypred, both containing exactly the same set of
words.

Next, an LDA model is learned from the set
of all pseudo-documents, extracted for all predi-
cates.2 The learning process results in the con-
struction of K latent topics, where each topic t
specifies a distribution over all words, denoted by
p(w|t), and a topic distribution for each pseudo-
document d, denoted by p(t|d).

Within the LDA model we can derive the
a-posteriori topic distribution conditioned on a
particular word within a document, denoted by
p(t|d,w) ∝ p(w|t) · p(t|d). In the topic-level
model, d corresponds to a predicate slot and w to
a particular argument word instantiating this slot.
Hence, p(t|d,w) is viewed as specifying the rele-
vance (or likelihood) of the topic t for the predi-
cate slot in the context of the given argument in-
stantiation. For example, for the predicate slot ‘ac-
quire Y’ in the context of the argument ‘IBM’, we
expect high relevance for a topic about companies,
while in the context of the argument ‘knowledge’
we expect high relevance for a topic about abstract
concepts. Accordingly, the distribution p(t|d,w)
over all topics provides a topic-level representa-
tion for a predicate slot in the context of a particu-
lar argument w. This representation is used by the
topic-level model to compute a context-sensitive
score for inference rule applications, as follows.

2We note that there are variants in the type of LDA model
and the way the pseudo-documents are constructed in the
referenced prior work. In order to focus on the inference
methods rather than on the underlying LDA model, we use
the LDA framework described in this paper for all compared
methods.
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Consider the application of an inference rule
‘LHS → RHS’ in the context of a particular pair
of arguments for the X and Y slots, denoted by
wx and wy, respectively. Denoting by l and r the
predicates appearing in the two rule sides, the reli-
ability score of the topic-level model is defined as
follows (we present a geometric mean formulation
for consistency with DIRT):

(3)
scoreTopic(LHS → RHS, wx, wy)

=
√

sim(dxl , d
x
r , wx) · sim(dyl , d

y
r , wy)

where sim(d, d′, w) is a topic-distribution similar-
ity measure conditioned on a given context word.
Specifically, Ritter et al. (2010) utilized the dot
product form for their similarity measure:

(4)simDC(d, d′, w) = Σt[p(t|d,w) · p(t|d′, w)]

(the subscript DC stands for double-conditioning,
as both distributions are conditioned on the argu-
ment word, unlike the measure below).

Dinu and Lapata (2010b) presented a slightly
different similarity measure for topic distributions
that performed better in their setting as well as in a
related later paper on context-sensitive scoring of
lexical similarity (Dinu and Lapata, 2010a). In this
measure, the topic distribution for the right hand
side of the rule is not conditioned on w:

(5)simSC(d, d′, w) = Σt[p(t|d,w) · p(t|d′)]

(the subscript SC stands for single-conditioning,
as only the left distribution is conditioned on the
argument word). They also experimented with a
few variants for the structure of the similarity mea-
sure and assessed that best results are obtained
with the dot product form. In our experiments,
we employ these two similarity measures for topic
distributions as baselines representing topic-level
models.

Comparing the context-insensitive and context-
sensitive models, we see that both of them mea-
sure similarity between vector representations of
corresponding predicate slots. However, while
DIRT computes sim(v, v′) over vectors in the
original word-level space, topic-level models com-
pute sim(d, d′, w) by measuring similarity of vec-
tors in a reduced-dimensionality latent space. As
conjectured in the introduction, such coarse-grain
representation might lead to loss of information.
Hence, in the next section we propose a com-
bined two-level model, which represents predicate

slots in the original word-level space while biasing
the similarity measure through topic-level context
models.

3 Two-level Context-sensitive Inference

Our model follows the general DIRT scheme
while extending it to handle context-sensitive scor-
ing of rule applications, addressing the scenario
dealt by the context-sensitive topic models. In
particular, we define the context-sensitive score
scoreWT, where WT stands for the combination
of the Word/Topic levels:

(6)
scoreWT(LHS → RHS, wx, wy)

=
√

sim(vxl , v
x
r , wx) · sim(vyl , v

y
r , wy)

Thus, our model computes similarity over word-
level (rather than topic-level) argument vectors,
while biasing it according to the specific argu-
ment words in the given rule application con-
text. The core of our contribution is thus defining
the context-sensitive word-level vector similarity
measure sim(v, v′, w), as described in the remain-
der of this section.

Following the methods in Section 2, for each
predicate pred we construct, from the learning
corpus, its argument vectors vxpred and vypred as
well as its argument pseudo-documents dxpred and
dypred. For convenience, when referring to an ar-
gument vector v, we will denote the correspond-
ing pseudo-document by dv. Based on all pseudo-
documents we learn an LDA model and obtain its
associated probability distributions.

The calculation of sim(v, v′, w) is composed of
two steps. At learning time, we compute for each
candidate rule a separate, topic-biased, similarity
score per each of the topics in the LDA model.
Then, at rule application time, we compute an
overall reliability score for the rule by combining
the per-topic similarity scores, while biasing the
score combination according to the given context
of w. These two steps are described in the follow-
ing two subsections.

3.1 Topic-biased Word-vector Similarities

Given a pair of word vectors v and v′, and
any desired “base” vector similarity measure sim
(e.g. simLin), we compute a topic-biased sim-
ilarity score for each LDA topic t, denoted by
simt(v, v

′). simt(v, v
′) is computed by applying
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the original similarity measure over topic-biased
versions of v and v′, denoted by vt and v′t:

simt(v, v
′) = sim(vt, v

′
t)

where

vt(w) = v(w) · p(t|dv, w)

That is, each value in the biased vector, vt(w),
is obtained by weighing the original value v(w)
by the relevance of the topic t to the argument
word w within dv. This way, rather than replac-
ing altogether the word-level values v(w) by the
topic probabilities p(t|dv, w), as done in the topic-
level models, we use the latter to only bias the for-
mer while preserving fine-grained word-level rep-
resentations. The notation Lint denotes the simt

measure when applied using Lin as the base simi-
larity measure sim.

This learning process results in K different
topic-biased similarity scores for each candidate
rule, where K is the number of LDA topics. Ta-
ble 1 illustrates topic-biased similarities for the Y
slot of two rules involving the predicate ‘acquire’.
As can be seen, the topic-biased score Lint for ‘ac-
quire→ learn’ for t2 is higher than the Lin score,
since this topic is characterized by arguments that
commonly appear with both predicates of the rule.
Consequently, the two predicates are found to be
distributionally similar when biased for this topic.
On the other hand, the topic-biased similarity for
t1 is substantially lower, since prominent words
in this topic are likely to occur with ‘acquire’ but
not with ‘learn’, yielding low distributional simi-
larity. Opposite behavior is exhibited for the rule
‘acquire→ purchase’.

3.2 Context-sensitive Similarity

When applying an inference rule, we compute
for each slot its context-sensitive similarity score
simWT(v, v′, w), where v and v′ are the slot’s ar-
gument vectors for the two rule sides and w is the
word instantiating the slot in the given rule appli-
cation. This score is computed as a weighted aver-
age of the rule’s K topic-biased similarity scores
simt. In this average, each topic is weighed by
its “relevance” for the context in which the rule is
applied, which consists of the left-hand-side pred-
icate v and the argument w. This relevance is cap-

Topic t1 t2

Top 5
words

calbiochem rights
corel syndrome
networks majority
viacom knowledge
financially skill

acquire→ learn
Lint(v, v

′) 0.040 0.334
Lin(v, v′) 0.165

acquire→ purchase
Lint(v, v

′) 0.427 0.241
Lin(v, v′) 0.267

Table 1: Two characteristic topics for the Y slot of
‘acquire’, along with their topic-biased Lin sim-
ilarities scores Lint, compared with the original
Lin similarity, for two rules. The relevance of each
topic to different arguments of ‘acquire’ is illus-
trated by showing the top 5 words in the argument
vector vyacquire for which the illustrated topic is the
most likely one.

tured by p(t|dv, w):

simWT(v, v′, w) =
∑

t

[p(t|dv, w) · simt(v, v
′)]

(7)

This way, a rule application would obtain a high
score only if the current context fits those topics
for which the rule is indeed likely to be valid, as
captured by a high topic-biased similarity. The no-
tation LinWT denotes the simWT measure, when
using Lint as the topic-biased similarity measure.

Table 2 illustrates the calculation of context-
sensitive similarity scores in four rule applica-
tions, involving the Y slot of the predicate ‘ac-
quire’. We observe that relative to the fixed
context-insensitive Lin score, the score of ‘ac-
quire → learn’ is substantially promoted for
the argument ‘skill’ while being demoted for
‘Skype’. The opposite behavior is observed for
‘acquire → purchase’, altogether demonstrating
how our model successfully biases the similarity
score according to rule validity in context.

4 Experimental Settings

To evaluate our model, we compare it both to
context-insensitive similarity measures as well as
to prior context-sensitive methods. Furthermore,
to better understand its applicability in typical
NLP tasks, we focus on an evaluation setting that
corresponds to a natural distribution of examples
from a large corpus.
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Topic t1 t2

Top 5
words

calbiochem rights
corel syndrome
networks majority
viacom knowledge
financially skill

‘acquire Skype→ learn Skype’
p(t|dv, w) 0.974 0.000
Lint(v, v

′) 0.040 0.334
LinWT(v, v

′, w) 0.039
Lin(v, v′) 0.165

‘acquire Skype→ purchase Skype’
p(t|dv, w) 0.974 0.000
Lint(v, v

′) 0.427 0.241
LinWT(v, v

′, w) 0.417
Lin(v, v′) 0.267

‘acquire skill→ learn skill’
p(t|dv, w) 0.000 0.380
Lint(v, v

′) 0.040 0.334
LinWT(v, v

′, w) 0.251
Lin(v, v′) 0.165

‘acquire skill→ purchase skill’
p(t|dv, w) 0.000 0.380
Lint(v, v

′) 0.427 0.241
LinWT(v, v

′, w) 0.181
Lin(v, v′) 0.267

Table 2: Context-sensitive similarity scores (in
bold) for the Y slots of four rule applications. The
components of the score calculation are shown for
the topics of Table 1. For each rule application,
the table shows a couple of the topic-biased scores
Lint of the rule (as in Table 1), along with the topic
relevance for the given context p(t|dv, w), which
weighs the topic-biased scores in the LinWT cal-
culation. The context-insensitive Lin score is
shown for comparison.

4.1 Evaluated Rule Application Methods

We evaluated the following rule application meth-
ods: the original context-insensitive word model,
following DIRT (Lin and Pantel, 2001), as de-
scribed in Equation 1, denoted by CI; our own
topic-word context-sensitive model, as described
in Equation 6, denoted by WT. In addition, we
evaluated two variants of the topic-level context-
sensitive model, denoted DC and SC. DC follows
the double conditioned contextualized similarity
measure according to Equation 4, as implemented
by (Ritter et al., 2010), while SC follows the sin-
gle conditioned one at Equation 5, as implemented
by (Dinu and Lapata, 2010b; Dinu and Lapata,
2010a).

Since our model can contextualize various dis-
tributional similarity measures, we evaluated the
performance of all the above methods on several
base similarity measures and their learned rule-

sets, namely Lin (Lin, 1998), BInc (Szpektor and
Dagan, 2008) and vector Cosine similarity. The
Lin similarity measure is described in Equation 2.
Binc (Szpektor and Dagan, 2008) is a directional
similarity measure between word vectors, which
outperformed Lin for predicate inference (Szpek-
tor and Dagan, 2008).

To build the rule-sets and models for the tested
approaches we utilized the ReVerb corpus (Fader
et al., 2011), a large scale publicly available web-
based open extractions data set, containing about
15 million unique template extractions.3 ReVerb
template extractions/instantiations are in the form
of a tuple (x, pred, y), containing pred, a verb
predicate, x, the argument instantiation of the tem-
plate’s slot X , and y, the instantiation of the tem-
plate’s slot Y .

ReVerb includes over 600,000 different tem-
plates that comprise a verb but may also include
other words, for example ‘X can accommodate up
to Y’. Yet, many of these templates share a similar
meaning, e.g. ‘X accommodate up to Y’, ‘X can
accommodate up to Y’, ‘X will accommodate up
to Y’, etc. Following Sekine (2005), we clustered
templates that share their main verb predicate in
order to scale down the number of different pred-
icates in the corpus and collect richer word co-
occurrence statistics per predicate.

Next, we applied some clean-up preprocessing
to the ReVerb extractions. This includes discard-
ing stop words, rare words and non-alphabetical
words instantiating either the X or the Y argu-
ments. In addition, we discarded all predicates
that co-occur with less than 100 unique argument
words in each slot. The remaining corpus consists
of 7 million unique extractions and 2,155 verb
predicates.

Finally, we trained an LDA model, as described
in Section 2, using Mallet (McCallum, 2002).
Then, for each original context-insensitive simi-
larity measure, we learned from ReVerb a rule-set
comprised of the top 500 rules for every identi-
fied predicate. To complete the learning, we cal-
culated the topic-biased similarity score for each
learned rule under each LDA topic, as specified
in our context-sensitive model. We release a rule
set comprising the top 500 context-sensitive rules
that we learned for each of the verb predicates in
our learning corpus, along with our trained LDA

3ReVerb is available at http://reverb.cs.
washington.edu/
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Method Lin BInc Cosine
Valid 266 254 272

Invalid 545 523 539
Total 811 777 811

Table 3: Sizes of rule application test set for each
learned rule-set.

model.4

4.2 Evaluation Task

To evaluate the performance of the different meth-
ods we chose the dataset constructed by Zeich-
ner et al. (2012). 5 This publicly available dataset
contains about 6,500 manually annotated predi-
cate template rule applications, each one labeled
as correct or incorrect. For example, ‘Jack agree
with Jill 9 Jack feel sorry for Jill’ is a rule ap-
plication in this dataset, labeled as incorrect, and
‘Registration open this month→ Registration be-
gin this month’ is another rule application, labeled
as correct. Rule applications were generated by
randomly sampling extractions from ReVerb, such
as (‘Jack’,‘agree with’,‘Jill’) and then sampling
possible rules for each, such as ‘agree with→ feel
sorry for’. Hence, this dataset provides naturally
distributed rule inferences with respect to ReVerb.

Whenever we evaluated a distributional similar-
ity measure (namely Lin, BInc, or Cosine), we
discarded instances from Zeichner et al.’s dataset
in which the assessed rule is not in the context-
insensitive rule-set learned for this measure or the
argument instantiation of the rule is not in the LDA
lexicon. We refer to the remaining instances as the
test set per measure, e.g. Lin’s test set. Table 3
details the size of each such test set in our experi-
ment.

Finally, the task under which we assessed the
tested models is to rank all rule applications in
each test set, aiming to rank the valid rule appli-
cations above the invalid ones.

5 Results

We evaluated the performance of each tested
method by measuring Mean Average Precision
(MAP) (Manning et al., 2008) of the rule appli-
cation ranking computed by this method. In order

4Our resource is available at: http://www.cs.biu.
ac.il/̃ nlp/downloads/wt-rules.html

5The dataset is available at: http://
www.cs.biu.ac.il/̃nlp/downloads/
annotation-rule-application.htm

Method Lin BInc Cosine
CI 0.503 0.513 0.513
DC 0.451 (1200) 0.455 (1200) 0.455 (1200)
SC 0.443 (1200) 0.458 (1200) 0.452 (1200)
WT 0.562 (100) 0.584 (50) 0.565 (25)

Table 4: MAP values on corresponding test set ob-
tained by each method. Figures in parentheses in-
dicate optimal number of LDA topics.

to compute MAP values and corresponding statis-
tical significance, we randomly split each test set
into 30 subsets. For each method we computed
Average Precision on every subset and then took
the average over all subsets as the MAP value.

Since all tested context-sensitive approaches are
based on LDA topics, we varied for each method
the number of LDA topics K that optimizes its
performance, ranging from 25 to 1600 topics. We
used LDA hyperparameters β = 0.01 and α = 0.1
for K < 600 and α = 50

K for K >= 600.
Table 4 presents the optimal MAP performance

of each tested measure. Our main result is that
our model outperforms all other methods, both
context-insensitive and context-sensitive, by a rel-
ative increase of more than 10% for all three sim-
ilarity measures that we tested. This improvement
is statistically significant at p < 0.01 for BInc and
Lin, and p < 0.015 for Cosine, using paired t-
test. This shows that our model indeed success-
fully leverages contextual information beyond the
basic context-agnostic rule scores and is robust
across measures.

Surprisingly, both baseline topic-level context-
sensitive methods, namely DC and SC, underper-
formed compared to their context-insensitive base-
lines. While Dinu and Lapata (Dinu and Lap-
ata, 2010b) did show improvement over context-
insensitive DIRT, this result was obtained on the
verbs of the Lexical Substitution Task in SemEval
(McCarthy and Navigli, 2007), which was manu-
ally created with a bias for context-sensitive sub-
stitutions. However, our result suggests that topic-
level models might not be robust enough when ap-
plied to a random sample of inferences.

An interesting indication of the differences be-
tween our word-topic model, WT, and topic-only
models, DC and SC, lies in the optimal number of
LDA topics required for each method. The num-
ber of topics in the range 25-100 performed almost
equally well under the WT model for all base mea-
sures, with a moderate decline for higher numbers.
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The need for this rather small number of topics is
due to the nature of utilization of topics in WT.
Specifically, topics are leveraged for high-level
domain disambiguation, while fine grained word-
level distributional similarity is computed for each
rule under each such domain. This works best for
a relatively low number of topics. However, in
higher numbers, topics relate to narrower domains
and then topic biased word level similarity may
become less effective due to potential sparseness.
On the other hand, DC and SC rely on topics as
a surrogate to predicate-argument co-occurrence
features, and thus require a relatively large num-
ber of them to be effective.

Delving deeper into our test-set, Zeichner et al.
provided a more detailed annotation for each in-
valid rule application. Specifically, they annotated
whether the context under which the rule is ap-
plied is valid. For example, in ‘John bought my
car 9 John sold my car’ the inference is invalid
due to an inherently incorrect rule, but the con-
text is valid. On the other hand in ‘my boss raised
my salary 9 my boss constructed my salary’ the
context {‘my boss’, ‘my salary’} for applying
‘raise→ construct’ is invalid. Following, we split
the test-set for the base Lin measure into two test-
sets: (a) test-setvc, which includes all correct rule
applications and incorrect ones only under valid
contexts, and (b) test-setivc, which includes again
all correct rule applications but incorrect ones only
under invalid contexts.

Table 5 presents the performance of each com-
pared method on the two test sets. On test-
setivc, where context mismatches are abundant,
our model outperformed all other baselines (sta-
tistically significant at p < 0.01). In addition,
this time DC slightly outperformed CI. This re-
sult more explicitly shows the advantages of in-
tegrating word-level and context-sensitive topic-
level similarities for differentiating valid and in-
valid contexts for rule applications. Yet, many in-
valid rule applications occur under valid contexts
due to inherently incorrect rules, and we want to
make sure that also in this scenario our model
does not fall behind the context-insensitive mea-
sure. Indeed, on test-setvc, in which context mis-
matches are rare, our algorithm is still better than
the original measure, indicating that WT can be
safely applied to distributional similarity measures
without concerns of reduced performance in dif-
ferent context scenarios.

test-setivc test-setvc
Size

(valid:invalid)
432

(266:166)
645

(266:379)
CI 0.780 0.587
DC 0.796 0.498
SC 0.779 0.512
WT 0.854 0.621

Table 5: MAP results for the two split Lin test-
sets.

6 Discussion and Future Work

This paper addressed the problem of computing
context-sensitive reliability scores for predicate in-
ference rules. In particular, we proposed a novel
scheme that applies over any base distributional
similarity measure which operates at the word
level, and computes a single context-insensitive
score for a rule. Based on such a measure, our
scheme constructs a context-sensitive similarity
measure that computes a reliability score for pred-
icate inference rules applications in the context of
given arguments.

The contextualization of the base similarity
score was obtained using a topic-level LDA
model, which was used in a novel way. First,
it provides a topic bias for learning separate per-
topic word-level similarity scores between predi-
cates. Then, given a specific candidate rule ap-
plication, the LDA model is used to infer the
topic distribution relevant to the context speci-
fied by the given arguments. Finally, the context-
sensitive rule application score is computed as a
weighted average of the per-topic word-level sim-
ilarity scores, which are weighed according to the
inferred topic distribution.

While most works on context-insensitive pred-
icate inference rules, such as DIRT (Lin and Pan-
tel, 2001), are based on word-level similarity mea-
sures, almost all prior models addressing context-
sensitive predicate inference rules are based on
topic models (except for (Pantel et al., 2007),
which was outperformed by later models). We
therefore focused on comparing the performance
of our two-level scheme with state-of-the-art prior
topic-level and word-level models of distributional
similarity, over a random sample of inference rule
applications. Under this natural setting, the two-
level scheme consistently outperformed both types
of models when tested with three different base
similarity measures. Notably, our model shows
stable performance over a large subset of the data
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where context sensitivity is rare, while topic-level
models tend to underperform in such cases com-
pared to the base context-insensitive methods.

Our work is closely related to another research
line that addresses lexical similarity and substi-
tution scenarios in context. While we focus on
lexical-syntactic predicate templates and instanti-
ations of their argument slots as context, lexical
similarity methods consider various lexical units
that are not necessarily predicates, with their con-
text typically being the collection of words in a
window around them.

Various approaches have been proposed to ad-
dress lexical similarity. A number of works are
based on a compositional semantics approach,
where a prior representation of a target lexical unit
is composed with the representations of words in
its given context (Mitchell and Lapata, 2008; Erk
and Padó, 2008; Thater et al., 2010). Other works
(Erk and Padó, 2010; Reisinger and Mooney,
2010) use a rather large word window around tar-
get words and compute similarities between clus-
ters comprising instances of word windows. In ad-
dition, (Dinu and Lapata, 2010a) adapted the pred-
icate inference topic model from (Dinu and Lap-
ata, 2010b) to compute lexical similarity in con-
text.

A natural extension of our work would be to ex-
tend our two level model to accommodate context-
sensitive lexical similarity. For this purpose we
will need to redefine the scope of context in our
model, and adapt our method to compute context-
biased lexical similarities accordingly. Then we
will also be able to evaluate our model on the
Lexical Substitution Task (McCarthy and Navigli,
2007), which has been commonly used in recent
years as a benchmark for context-sensitive lexical
similarity models.

In a different NLP task, Eidelman et al. (2012)
utilize a similar approach to ours for improving
the performance of statistical machine translation
(SMT). They learn an LDA model on the source
language side of the training corpus with the pur-
pose of identifying implicit sub-domains. Then
they utilize the distribution over topics inferred for
each document in their corpus to compute sepa-
rate per-topic translation probability tables. Fi-
nally, they train a classifier to translate a given
target word based on these tables and the inferred
topic distribution of the given document in which
the target word appears. A notable difference be-

tween our approach and theirs is that we use predi-
cate pseudo-documents consisting of argument in-
stantiations to learn our LDA model, while Eidel-
man et al. use the real documents in a corpus.
We believe that combining these two approaches
may improve performance for both textual infer-
ence and SMT and plan to experiment with this
direction in future work.
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Abstract

Semantic similarity is an essential com-
ponent of many Natural Language Pro-
cessing applications. However, prior meth-
ods for computing semantic similarity of-
ten operate at different levels, e.g., sin-
gle words or entire documents, which re-
quires adapting the method for each data
type. We present a unified approach to se-
mantic similarity that operates at multiple
levels, all the way from comparing word
senses to comparing text documents. Our
method leverages a common probabilistic
representation over word senses in order to
compare different types of linguistic data.
This unified representation shows state-of-
the-art performance on three tasks: seman-
tic textual similarity, word similarity, and
word sense coarsening.

1 Introduction
Semantic similarity is a core technique for many
topics in Natural Language Processing such as
Textual Entailment (Berant et al., 2012), Seman-
tic Role Labeling (Fürstenau and Lapata, 2012),
and Question Answering (Surdeanu et al., 2011).
For example, textual similarity enables relevant
documents to be identified for information re-
trieval (Hliaoutakis et al., 2006), while identifying
similar words enables tasks such as paraphrasing
(Glickman and Dagan, 2003), lexical substitution
(McCarthy and Navigli, 2009), lexical simplifica-
tion (Biran et al., 2011), and Web search result
clustering (Di Marco and Navigli, 2013).

Approaches to semantic similarity have often
operated at separate levels: methods for word sim-
ilarity are rarely applied to documents or even sin-
gle sentences (Budanitsky and Hirst, 2006; Radin-
sky et al., 2011; Halawi et al., 2012), while
document-based similarity methods require more

linguistic features, which often makes them in-
applicable at the word or microtext level (Salton
et al., 1975; Maguitman et al., 2005; Elsayed et
al., 2008; Turney and Pantel, 2010). Despite the
potential advantages, few approaches to semantic
similarity operate at the sense level due to the chal-
lenge in sense-tagging text (Navigli, 2009); for ex-
ample, none of the top four systems in the recent
SemEval-2012 task on textual similarity compared
semantic representations that incorporated sense
information (Agirre et al., 2012).

We propose a unified approach to semantic sim-
ilarity across multiple representation levels from
senses to documents, which offers two signifi-
cant advantages. First, the method is applicable
independently of the input type, which enables
meaningful similarity comparisons across differ-
ent scales of text or lexical levels. Second, by op-
erating at the sense level, a unified approach is able
to identify the semantic similarities that exist in-
dependently of the text’s lexical forms and any se-
mantic ambiguity therein. For example, consider
the sentences:

t1. A manager fired the worker.
t2. An employee was terminated from work by

his boss.

A surface-based approach would label the sen-
tences as dissimilar due to the minimal lexical
overlap. However, a sense-based representation
enables detection of the similarity between the
meanings of the words, e.g., fire and terminate.
Indeed, an accurate, sense-based representation is
essential for cases where different words are used
to convey the same meaning.

The contributions of this paper are threefold.
First, we propose a new unified representation of
the meaning of an arbitrarily-sized piece of text,
referred to as a lexical item, using a sense-based
probability distribution. Second, we propose a
novel alignment-based method for word sense dis-
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ambiguation during semantic comparison. Third,
we demonstrate that this single representation can
achieve state-of-the-art performance on three sim-
ilarity tasks, each operating at a different lexical
level: (1) surpassing the highest scores on the
SemEval-2012 task on textual similarity (Agirre
et al., 2012) that compares sentences, (2) achiev-
ing a near-perfect performance on the TOEFL syn-
onym selection task proposed by Landauer and
Dumais (1997), which measures word pair sim-
ilarity, and also obtaining state-of-the-art perfor-
mance in terms of the correlation with human
judgments on the RG-65 dataset (Rubenstein and
Goodenough, 1965), and finally (3) surpassing the
performance of Snow et al. (2007) in a sense-
coarsening task that measures sense similarity.

2 A Unified Semantic Representation
We propose a representation of any lexical item as
a distribution over a set of word senses, referred
to as the item’s semantic signature. We begin
with a formal description of the representation at
the sense level (Section 2.1). Following this, we
describe our alignment-based disambiguation al-
gorithm which enables us to produce sense-based
semantic signatures for those lexical items (e.g.,
words or sentences) which are not sense annotated
(Section 2.2). Finally, we propose three methods
for comparing these signatures (Section 2.3). As
our sense inventory, we use WordNet 3.0 (Fell-
baum, 1998).

2.1 Semantic Signatures

The WordNet ontology provides a rich net-
work structure of semantic relatedness, connect-
ing senses directly with their hypernyms, and pro-
viding information on semantically similar senses
by virtue of their nearby locality in the network.
Given a particular node (sense) in the network, re-
peated random walks beginning at that node will
produce a frequency distribution over the nodes
in the graph visited during the walk. To ex-
tend beyond a single sense, the random walk may
be initialized and restarted from a set of senses
(seed nodes), rather than just one; this multi-seed
walk produces a multinomial distribution over all
the senses in WordNet with higher probability as-
signed to senses that are frequently visited from
the seeds. Prior work has demonstrated that multi-
nomials generated from random walks over Word-
Net can be successfully applied to linguistic tasks
such as word similarity (Hughes and Ramage,

2007; Agirre et al., 2009), paraphrase recogni-
tion, textual entailment (Ramage et al., 2009),
and pseudoword generation (Pilehvar and Navigli,
2013).

Formally, we define the semantic signature of
a lexical item as the multinomial distribution gen-
erated from the random walks over WordNet 3.0
where the set of seed nodes is the set of senses
present in the item. This representation encom-
passes both when the item is itself a single sense
and when the item is a sense-tagged sentence.

To construct each semantic signature, we use
the iterative method for calculating topic-sensitive
PageRank (Haveliwala, 2002). Let M be the ad-
jacency matrix for the WordNet network, where
edges connect senses according to the rela-
tions defined in WordNet (e.g., hypernymy and
meronymy). We further enrich M by connecting
a sense with all the other senses that appear in its
disambiguated gloss.1 Let ~v(0) denote the prob-
ability distribution for the starting location of the
random walker in the network. Given the set of
senses S in a lexical item, the probability mass
of ~v(0) is uniformly distributed across the senses
si ∈ S, with the mass for all sj /∈ S set to zero.
The PageRank may then be computed using:

~v (t) = (1− α)M~v (t−1) + α ~v (0) (1)

where at each iteration the random walker may
jump to any node si ∈ S with probability α/|S|.
We follow standard convention and set α to 0.15.
We repeat the operation in Eq. 1 for 30 itera-
tions, which is sufficient for the distribution to
converge. The resulting probability vector ~v(t) is
the semantic signature of the lexical item, as it
has aggregated its senses’ similarities over the en-
tire graph. For our semantic signatures we used
the UKB2 off-the-shelf implementation of topic-
sensitive PageRank.

2.2 Alignment-Based Disambiguation

Commonly, semantic comparisons are between
word pairs or sentence pairs that do not have their
lexical content sense-annotated, despite the poten-
tial utility of sense annotation in making seman-
tic comparisons. However, traditional forms of
word sense disambiguation are difficult for short
texts and single words because little or no con-
textual information is present to perform the dis-
ambiguation task. Therefore, we propose a novel

1http://wordnet.princeton.edu
2http://ixa2.si.ehu.es/ukb/
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Figure 1: (a) Example alignments of the first sense of term manager (in sentence t1) to the two first
senses of the word types in sentence t2, along with the similarity of the two senses’ semantic signatures;
(b) Alignments which maximize the similarities across words in t1 and t2 (the source side of an alignment
is taken as the disambiguated sense of its corresponding word).

alignment-based sense disambiguation that lever-
ages the content of the paired item in order to dis-
ambiguate each element. Leveraging the paired
item enables our approach to disambiguate where
traditional sense disambiguation methods can not
due to insufficient context.

We view sense disambiguation as an alignment
problem. Given two arbitrarily ordered texts, we
seek the semantic alignment that maximizes the
similarity of the senses of the context words in
both texts. To find this maximum we use an align-
ment procedure which, for each word type wi in
item T1, assigns wi to the sense that has the max-
imal similarity to any sense of the word types in
the compared text T2. Algorithm 1 formalizes the
alignment process, which produces a sense dis-
ambiguated representation as a result. Senses are
compared in terms of their semantic signatures,
denoted as function R. We consider multiple def-
initions ofR, defined later in Section 2.3.

As a part of the disambiguation procedure, we
leverage the one sense per discourse heuristic of
Yarowsky (1995); given all the word types in two
compared lexical items, each type is assigned a
single sense, even if it is used multiple times. Ad-
ditionally, if the same word type appears in both
sentences, both will always be mapped to the same
sense. Although such a sense assignment is poten-
tially incorrect, assigning both types to the same
sense results in a representation that does no worse
than a surface-level comparison.

We illustrate the alignment-based disambigua-
tion procedure using the two example sentences t1
and t2 given in Section 1. Figure 1(a) illustrates
example alignments of the first sense of manager
to the first two senses of the word types in sentence
t2 along with the similarity of the two senses’

Algorithm 1 Alignment-based Sense Disambiguation

Input: T1 and T2, the sets of word types being compared
Output: P , the set of disambiguated senses for T1

1: P ← ∅
2: for each token ti ∈ T1

3: max sim← 0
4: best si← null
5: for each token tj ∈ T2

6: for each si ∈ Senses(ti), sj ∈ Senses(tj)
7: sim←R(si, sj)
8: if sim > max sim then
9: max sim = sim

10: best si = si
11: P ← P ∪ {best si}
12: return P

semantic signatures. For the senses of manager,
sense manager1n obtains the maximal similarity
value to boss1n among all the possible pairings of
the senses for the word types in sentence t2, and as
a result is selected as the sense labeling for man-
ager in sentence t1.3 Figure 1(b) shows the final,
maximally-similar sense alignment of the word
types in t1 and t2. The resulting alignment pro-
duces the following sets of senses:

Pt1 = {manager1n, fire4v, worker1n}
Pt2 = {employee1n, terminate4v, work3n, boss2n}
where Px denotes the corresponding set of senses
of sentence x.

2.3 Semantic Signature Similarity

Cosine Similarity. In order to compare seman-
tic signatures, we adopt the Cosine similarity mea-
sure as a baseline method. The measure is com-
puted by treating each multinomial as a vector and
then calculating the normalized dot product of the
two signatures’ vectors.

3We follow Navigli (2009) and denote with wip the i-th
sense of w in WordNet with part of speech p.
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However, a semantic signature is, in essence,
a weighted ranking of the importance of Word-
Net senses for each lexical item. Given that the
WordNet graph has a non-uniform structure, and
also given that different lexical items may be of
different sizes, the magnitudes of the probabilities
obtained may differ significantly between the two
multinomial distributions. Therefore, for com-
puting the similarity of two signatures, we also
consider two nonparametric methods that use the
ranking of the senses, rather than their probability
values, in the multinomial.

Weighted Overlap. Our first measure provides
a nonparametric similarity by comparing the simi-
larity of the rankings for intersection of the senses
in both semantic signatures. However, we addi-
tionally weight the similarity such that differences
in the highest ranks are penalized more than differ-
ences in lower ranks. We refer to this measure as
the Weighted Overlap. Let S denote the intersec-
tion of all senses with non-zero probability in both
signatures and rji denote the rank of sense si ∈ S
in signature j, where rank 1 denotes the highest
rank. The sum of the two ranks r1i and r2i for a
sense is then inverted, which (1) weights higher
ranks more and (2) when summed, provides the
maximal value when a sense has the same rank in
both signatures. The unnormalized weighted over-
lap is then calculated as

∑|S|
i=1(r

1
i + r2i )

−1. Then,
to bound the similarity value in [0, 1], we normal-
ize the sum by its maximum value,

∑|S|
i=1(2i)

−1,
which occurs when each sense has the same rank
in both signatures.

Top-k Jaccard. Our second measure uses the
ranking to identify the top-k senses in a signa-
ture, which are treated as the best representatives
of the conceptual associates. We hypothesize that
a specific rank ordering may be attributed to small
differences in the multinomial probabilities, which
can lower rank-based similarities when one of the
compared orderings is perturbed due to slightly
different probability values. Therefore, we con-
sider the top-k senses as an unordered set, with
equal importance in the signature. To compare two
signatures, we compute the Jaccard Index of the
two signatures’ sets:

RJac(Uk, Vk) =
|Uk ∩ Vk|
|Uk ∪ Vk|

(2)

whereUk denotes the set of k senses with the high-
est probability in the semantic signature U .

Dataset MSRvid MSRpar SMTeuroparl OnWN SMTnews
Training 750 750 734 - -
Test 750 750 459 750 399

Table 1: Statistics of the provided datasets for the
SemEval-2012 Semantic Textual Similarity task.

3 Experiment 1: Textual Similarity
Measuring semantic similarity of textual items has
applications in a wide variety of NLP tasks. As
our benchmark, we selected the recent SemEval-
2012 task on Semantic Textual Similarity (STS),
which was concerned with measuring the seman-
tic similarity of sentence pairs. The task received
considerable interest by facilitating a meaningful
comparison between approaches.

3.1 Experimental Setup

Data. We follow the experimental setup used in
the STS task (Agirre et al., 2012), which provided
five test sets, two of which had accompanying
training data sets for tuning system performance.
Each sentence pair in the datasets was given a
score from 0 to 5 (low to high similarity) by hu-
man judges, with a high inter-annotator agreement
of around 0.90 when measured using the Pearson
correlation coefficient. Table 1 lists the number of
sentence pairs in training and test portions of each
dataset.

Comparison Systems. The top-ranking partic-
ipating systems in the SemEval-2012 task were
generally supervised systems utilizing a variety of
lexical resources and similarity measurement tech-
niques. We compare our results against the top
three systems of the 88 submissions: TLsim and
TLsyn, the two systems of Šarić et al. (2012), and
the UKP2 system (Bär et al., 2012). UKP2 utilizes
extensive resources among which are a Distribu-
tional Thesaurus computed on 10M dependency-
parsed English sentences. In addition, the sys-
tem utilizes techniques such as Explicit Semantic
Analysis (Gabrilovich and Markovitch, 2007) and
makes use of resources such as Wiktionary and
Wikipedia, a lexical substitution system based on
supervised word sense disambiguation (Biemann,
2013), and a statistical machine translation sys-
tem. The TLsim system uses the New York Times
Annotated Corpus, Wikipedia, and Google Book
Ngrams. The TLsyn system also uses Google
Book Ngrams, as well as dependency parsing and
named entity recognition.
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Ranking System Overall Dataset-specific
ALL ALLnrm Mean ALL ALLnrm Mean Mpar Mvid SMTe OnWN SMTn

1 1 1 ADW 0.866 0.871 0.711 0.694 0.887 0.555 0.706 0.604
2 3 2 UKP2 0.824 0.858 0.677 0.683 0.873 0.528 0.664 0.493
3 4 6 TLsyn 0.814 0.857 0.660 0.698 0.862 0.361 0.704 0.468
4 2 3 TLsim 0.813 0.864 0.675 0.734 0.880 0.477 0.679 0.398

Table 2: Performance of our system (ADW) and the 3 top-ranking participating systems (out of 88) in
the SemEval-2012 Semantic Textual Similarity task. Rightmost columns report the corresponding Pear-
son correlation r for individual datasets, i.e., MSRpar (Mpar), MSRvid (Mvid), SMTeuroparl (SMTe),
OnWN (OnWN) and SMTnews (SMTn). We also provide scores according to the three official evalua-
tion metrics (i.e., ALL, ALLnrm, and Mean). Rankings are also presented based on the three metrics.

System Configuration. Here we describe the
configuration of our approach, which we have
called Align, Disambiguate and Walk (ADW). The
STS task uses human similarity judgments on an
ordinal scale from 0 to 5. Therefore, in ADW we
adopted a similar approach to generating similar-
ity values to that adopted by other participating
systems, whereby a supervised system is trained
to combine multiple similarity judgments to pro-
duce a final rating consistent with the human an-
notators. We utilized the WEKA toolkit (Hall et
al., 2009) to train a Gaussian Processes regression
model for each of the three training sets (cf. Table
1). The features discussed hereafter were consid-
ered in our regression model.

Main features. We used the scores calculated
using all three of our semantic signature compar-
ison methods as individual features. Although the
Jaccard comparison is parameterized, we avoided
tuning and instead used four features for distinct
values of k: 250, 500, 1000, and 2500.

String-based features. Additionally, because
the texts often contain named entities which are
not present in WordNet, we incorporated the sim-
ilarity values produced by four string-based mea-
sures, which were used by other teams in the STS
task: (1) longest common substring which takes
into account the length of the longest overlap-
ping contiguous sequence of characters (substring)
across two strings (Gusfield, 1997), (2) longest
common subsequence which, instead, finds the
longest overlapping subsequence of two strings
(Allison and Dix, 1986), (3) Greedy String Tiling
which allows reordering in strings (Wise, 1993),
and (4) the character/word n-gram similarity pro-
posed by Barrón-Cedeño et al. (2010).

We followed Šarić et al. (2012) and used the
models trained on the SMTeuroparl and MSRpar
datasets for testing on the SMTnews and OnWN
test sets, respectively.

3.2 STS Results

Three evaluation metrics are provided by the or-
ganizers of the SemEval-2012 STS task, all of
which are based on Pearson correlation r of human
judgments with system outputs: (1) the correla-
tion value for the concatenation of all five datasets
(ALL), (2) a correlation value obtained on a con-
catenation of the outputs, separately normalized
by least square (ALLnrm), and (3) the weighted
average of Pearson correlations across datasets
(Mean). Table 2 shows the scores obtained by
ADW for the three evaluation metrics, as well as
the Pearson correlation values obtained on each
of the five test sets (rightmost columns). We also
show the results obtained by the three top-ranking
participating systems (i.e., UKP2, TLsim, and TL-
syn). The leftmost three columns show the system
rankings according to the three metrics.

As can be seen from Table 2, our system (ADW)
outperforms all the 88 participating systems ac-
cording to all the evaluation metrics. Our sys-
tem shows a statistically significant improvement
on the SMTnews dataset, with an increase in the
Pearson correlation of over 0.10. MSRpar (MPar)
is the only dataset in which TLsim (Šarić et al.,
2012) achieves a higher correlation with human
judgments. Named entity features used by the TL-
sim system could be the reason for its better per-
formance on the MSRpar dataset, which contains
a large number of named entities.

3.3 Similarity Measure Analysis

To gain more insight into the impact of our
alignment-based disambiguation approach, we
carried out a 10-fold cross-validation on the three
training datasets (cf. Table 1) using the systems
described hereafter.

ADW-MF. To build this system, we utilized our
main features only; i.e., we did not make use of
additional string-based features.
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DW. Similarly to ADW-MF, this system utilized
the main features only. In DW, however, we re-
placed our alignment-based disambiguation phase
with a random walk-based WSD system that dis-
ambiguated the sentences separately, without per-
forming any alignment. As our WSD system,
we used UKB, a state-of-the-art knowledge-based
WSD system that is based on the same topic-
sensitive PageRank algorithm used by our ap-
proach. UKB initializes the algorithm from all
senses of the words in the context of a word to
be disambiguated. It then picks the most relevant
sense of the word according to the resulting prob-
ability vector. As the lexical knowledge base of
UKB, we used the same semantic network as that
utilized by our approach for calculating semantic
signatures.

Table 3 lists the performance values of the two
above-mentioned systems on the three training
sets in terms of Pearson correlation. In addition,
we present in the table correlation scores for four
other similarity measures reported by Bär et al.
(2012):

• Pairwise Word Similarity that comprises of
a set of WordNet-based similarity measures
proposed by Resnik (1995), Jiang and Con-
rath (1997), and Lin (1998b). The aggre-
gation strategy proposed by Corley and Mi-
halcea (2005) has been utilized for extend-
ing these word-to-word similarity measures
for calculating text-to-text similarities.

• Explicit Semantic Analysis (Gabrilovich
and Markovitch, 2007) where the high-
dimensional vectors are obtained on Word-
Net, Wikipedia and Wiktionary.

• Distributional Thesaurus where a similarity
score is computed similarly to that of Lin
(1998a) using a distributional thesaurus ob-
tained from a 10M dependency-parsed sen-
tences of English newswire.

• Character n-grams which were also used as
one of our additional features.

As can be seen from Table 3, our alignment-
based disambiguation approach (ADW-MF) is
better suited to the task than a conventional WSD
approach (DW). Another interesting point is the
high scores achieved by the Character n-grams

Similarity measure Dataset
Mpar Mvid SMTe

DW 0.448 0.820 0.660
ADW-MF 0.485 0.842 0.721
Explicit Semantic Analysis 0.427 0.781 0.619
Pairwise Word Similarity 0.564 0.835 0.527
Distributional Thesaurus 0.494 0.481 0.365
Character n-grams 0.658 0.771 0.554

Table 3: Performance of our main-feature sys-
tem with conventional WSD (DW) and with the
alignment-based disambiguation approach (ADW-
MF) vs. four other similarity measures, using 10-
fold cross validation on the training datasets MSR-
par (Mpar), MSRvid (Mvid), and SMTeuroparl
(SMTe).

measure. This confirms that string-based meth-
ods are strong baselines for semantic textual sim-
ilarity. Except for the MSRpar (Mpar) dataset,
our system (ADW-MF) outperforms all other sim-
ilarity measures. The scores obtained by Explicit
Semantic Analysis and Distributional Thesaurus
are not competitive on any dataset. On the other
hand, Pairwise Word Similarity achieves a high
performance on MSRpar and MSRvid datasets,
but performs surprisingly low on the SMTeuroparl
dataset.

4 Experiment 2: Word Similarity

We now proceed from the sentence level to the
word level. Word similarity has been a key prob-
lem for lexical semantics, with significant efforts
being made by approaches in distributional se-
mantics to accurately identify synonymous words
(Turney and Pantel, 2010). Different evaluation
methods exist in the literature for evaluating the
performance of a word-level semantic similarity
measure; we adopted two well-established bench-
marks: synonym recognition and correlating word
similarity judgments with those from human an-
notators.

For synonym recognition, we used the TOEFL
dataset created by Landauer and Dumais (1997).
The dataset consists of 80 multiple-choice syn-
onym questions from the TOEFL test; a word is
paired with four options, one of which is a valid
synonym. Test takers with English as a second
language averaged 64.5% correct. Despite multi-
ple approaches, only recently has the test been an-
swered perfectly (Bullinaria and Levy, 2012), un-
derscoring the challenge of synonym recognition.
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Approach Accuracy
PPMIC (Bullinaria and Levy, 2007) 85.00%
GLSA (Matveeva et al., 2005) 86.25%
LSA (Rapp, 2003) 92.50%
ADWJac 93.75±2.5%
ADWWO 95.00%
ADWCos 96.25%
PR (Turney et al., 2003) 97.50%
PCCP (Bullinaria and Levy, 2012) 100.00%

Table 4: Accuracy on the 80-question TOEFL
Synonym test. ADWJac, ADWWO, and ADWCos

correspond to results with the Jaccard, Weighted
Overlap and Cosine signature comparison mea-
sures, respectively.

For the similarity judgment evaluation, we
used as benchmark the RG-65 dataset created by
Rubenstein and Goodenough (1965). The dataset
contains 65 word pairs judged by 51 human sub-
jects on a scale of 0 to 4 according to their seman-
tic similarity. Ideally, a measure’s similarity judg-
ments are expected to be highly correlated with
those of humans. To be consistent with the previ-
ous literature (Hughes and Ramage, 2007; Agirre
et al., 2009), we used Spearman’s rank correlation
in our experiment.

4.1 Experimental Setup

Our alignment-based sense disambiguation trans-
forms the task of comparing individual words
into that of calculating the similarity of the best-
matching sense pair across the two words. As
there is no training data we do not optimize the k
value for computing signature similarity with the
Jaccard index; instead, we report, for the synonym
recognition and the similarity judgment evalua-
tions, the respective range of accuracies and the
average correlation obtained upon using five val-
ues of k randomly selected in the range [50, 2500]:
678, 1412, 1692, 2358, 2387.

4.2 Word Similarity Results: TOEFL dataset

Table 4 lists the accuracy performance of the sys-
tem in comparison to the existing state of the
art on the TOEFL test. ADWWO, ADWCos,
and ADWJac correspond to our approach when
Weighted Overlap, Cosine, and Jaccard signa-
ture comparison measures are used, respectively.
Despite not being tuned for the task, our model
achieves near-perfect performance, answering all
but three questions correctly with the Cosine mea-
sure. Among the top-performing approaches, only

Word Synonym choices (correct in bold)
fanciful familiar apparent? imaginative† logical
verbal oral† overt fitting verbose?
resolved settled? forgotten† publicized examined
percentage volume sample proportion profit†?
figure list solve? divide† express
highlight alter† imitate accentuate? restore

Table 5: Questions answered incorrectly by our
approach. Symbols † and ? correspond to the
choices of our approach with the Weighted Over-
lap and Cosine signature comparisons respec-
tively. We do not include the mistakes made when
the Jaccard measure was used as they vary with
the k value.

that of Rapp (2003) uses word senses, an approach
that is outperformed by our method.

The errors produced by our system were largely
the result of sense locality in the WordNet net-
work. Table 5 highlights the incorrect responses.
The synonym mistakes reveal cases where senses
of the two words are close in WordNet, indicating
some relatedness. For example, percentage may
be interpreted colloquially as monetary value (e.g.,
“give me my percentage”) and elicits the synonym
of profit in the economic domain, which ADW in-
correctly selects as a synonym.

4.3 Word Similarity Results: RG-65 dataset

Table 6 shows the Spearman’s ρ rank correlation
coefficients with human judgments on the RG-65
dataset. As can be seen from the Table, our ap-
proach with the Weighted Overlap signature com-
parison improves over the similar approach of
Hughes and Ramage (2007) which, however, does
not involve the disambiguation step and considers
a word as a whole unit as represented by the set of
its senses.

5 Experiment 3: Sense Similarity
WordNet is known to be a fine-grained sense in-
ventory with many related word senses (Palmer et
al., 2007). Accordingly, multiple approaches have
attempted to identify highly similar senses in or-
der to produce a coarse-grained sense inventory.
We adopt this task as a way of evaluating our sim-
ilarity measure at the sense level.

5.1 Coarse-graining Background

Earlier work on reducing the polysemy of sense
inventories has considered WordNet-based sense
relatedness measures (Mihalcea and Moldovan,
2001) and corpus-based vector representations of
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Approach Correlation
ADWCos 0.825
Agirre et al. (2009) 0.830
Hughes and Ramage (2007) 0.838
Zesch et al. (2008) 0.840
ADWJac 0.841
ADWWO 0.868

Table 6: Spearman’s ρ correlation coefficients
with human judgments on the RG-65 dataset.
ADWJac, ADWWO, and ADWCos correspond to
results with the Jaccard, Weighted Overlap and
Cosine signature comparison measures respec-
tively.

word senses (Agirre and Lopez, 2003; McCarthy,
2006). Navigli (2006) proposed an automatic ap-
proach for mapping WordNet senses to the coarse-
grained sense distinctions of the Oxford Dictio-
nary of English (ODE). The approach leverages
semantic similarities in gloss definitions and the
hierarchical relations between senses in the ODE
to cluster WordNet senses. As current state of
the art, Snow et al. (2007) developed a super-
vised SVM classifier that utilized, as its features,
several earlier sense relatedness techniques such
as those implemented in the WordNet::Similarity
package (Pedersen et al., 2004). The classifier
also made use of resources such as topic signatures
data (Agirre and de Lacalle, 2004), the WordNet
domain dataset (Magnini and Cavaglià, 2000), and
the mappings of WordNet senses to ODE senses
produced by Navigli (2006).

5.2 Experimental Setup

We benchmark the accuracy of our similarity mea-
sure in grouping word senses against those of Nav-
igli (2006) and Snow et al. (2007) on two datasets
of manually-labeled sense groupings of WordNet
senses: (1) sense groupings provided as a part of
the Senseval-2 English Lexical Sample WSD task
(Kilgarriff, 2001) which includes nouns, verbs and
adjectives; (2) sense groupings included in the
OntoNotes project4 (Hovy et al., 2006) for nouns
and verbs. Following the evaluation methodology
of Snow et al. (2007), we combine the Senseval-2
and OntoNotes datasets into a third dataset.

Snow et al. (2007) considered sense grouping as
a binary classification task whereby for each word
every possible pairing of senses has to be classified

4Sense groupings belong to a pre-version 1.0: http://

cemantix.org/download/sense/ontonotes-sense-groups.tar.gz

Onto SE-2 Onto + SE-2
Method Noun Verb Noun Verb Adj Noun Verb
RCos 0.406 0.522 0.450 0.465 0.484 0.441 0.485
RWO 0.421 0.544 0.483 0.482 0.531 0.470 0.503
RJac 0.418 0.531 0.478 0.473 0.501 0.465 0.493
SVM 0.370 0.455 NA NA 0.473 0.423 0.432
ODE 0.218 0.396 NA NA 0.371 0.331 0.288

Table 7: F-score sense merging evaluation on
three hand-labeled datasets: OntoNotes (Onto),
Senseval-2 (SE-2), and combined (Onto+SE-2).
Results are reported for all three of our signature
comparison measures and also for two previous
works (last two rows).

as either merged or not-merged. We constructed
a simple threshold-based classifier to perform the
same binary classification. To this end, we cal-
culated the semantic similarity of each sense pair
and then used a threshold value t to classify the
pair as merged if similarity ≥ t and not-merged
otherwise. We sampled out 10% of the dataset for
tuning the value of t, thus adapting our classifier
to the fine granularity of the dataset. We used the
same held-out instances to perform a tuning of the
k value used for Jaccard index, over the same val-
ues of k as in Experiment 1 (cf. Section 3).

5.3 Sense Merging Results

For a binary classification task, we can directly
calculate precision, recall and F-score by con-
structing a contingency table. We show in Ta-
ble 7 the F-score performance of our classifier as
obtained by an averaged 10-fold cross-validation.
Results are presented for all three of the mea-
sures of semantic signature comparison and for
the three datasets: OntoNotes, Senseval-2, and
the two combined. In addition, we show in Ta-
ble 7 the F-score results provided by Snow et al.
(2007) for their SVM-based system and for the
mapping-based approach of Navigli (2006), de-
noted by ODE.

Table 7 shows that our methodology yields im-
provements over previous work on both datasets
and for all parts of speech, irrespective of
the semantic signature comparison method used.
Among the three methods, Weighted Overlap
achieves the best performance, which demon-
strates that our transformation of semantic signa-
tures into ordered lists of concepts and calculating
similarity by rank comparison has been helpful.
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6 Related Work

Due to the wide applicability of semantic similar-
ity, significant efforts have been made at different
lexical levels. Early work on document-level sim-
ilarity was driven by information retrieval. Vector
space methods provided initial successes (Salton
et al., 1975), but often suffer from data spar-
sity when using small documents, or when doc-
uments use different word types, as in the case
of paraphrases. Later efforts such as LSI (Deer-
wester et al., 1990), PLSA (Hofmann, 2001) and
Topic Models (Blei et al., 2003; Steyvers and Grif-
fiths, 2007) overcame these sparsity issues using
dimensionality reduction techniques or modeling
the document using latent variables. However,
such methods were still most suitable for compar-
ing longer texts. Complementary approaches have
been developed specifically for comparing shorter
texts, such as those used in the SemEval-2012
STS task (Agirre et al., 2012). Most similar to
our approach are the methods of Islam and Inkpen
(2008) and Corley and Mihalcea (2005), who per-
formed a word-to-word similarity alignment; how-
ever, they did not operate at the sense level. Ram-
age et al. (2009) used a similar semantic represen-
tation of short texts from random walks on Word-
Net, which was applied to paraphrase recognition
and textual entailment. However, unlike our ap-
proach, their method does not perform sense dis-
ambiguation prior to building the representation
and therefore potentially suffers from ambiguity.

A significant amount of effort has also been put
into measuring similarity at the word level, fre-
quently by approaches that use distributional se-
mantics (Turney and Pantel, 2010). These meth-
ods use contextual features to represent semantics
at the word level, whereas our approach represents
word semantics at the sense level. Most similar to
our approach are those of Agirre et al. (2009) and
Hughes and Ramage (2007), which represent word
meaning as the multinomials produced from ran-
dom walks on the WordNet graph. However, un-
like our approach, neither of these disambiguates
the two words being compared, which potentially
conflates the meanings and lowers the similarity
judgment.

Measures of sense relatedness have frequently
leveraged the structural properties of WordNet
(e.g., path lengths) to compare senses. Budanit-
sky and Hirst (2006) provided a survey of such
WordNet-based measures. The main drawback

with these approaches lies in the WordNet struc-
ture itself, where frequently two semantically sim-
ilar senses are distant in the WordNet hierar-
chy. Possible solutions include relying on wider-
coverage networks such as WikiNet (Nastase and
Strube, 2013) or multilingual ones such as Babel-
Net (Navigli and Ponzetto, 2012b). Fewer works
have focused on measuring the similarity – as op-
posed to relatedness – between senses. The topic
signatures method of Agirre and Lopez (2003)
represents each sense as a vector over corpus-
derived features in order to build comparable sense
representations. However, topic signatures often
produce lower quality representations due to spar-
sity in the local structure of WordNet, especially
for rare senses. In contrast, the random walk
used in our approach provides a denser, and thus
more comparable, representation for all WordNet
senses.

7 Conclusions

This paper presents a unified approach for comput-
ing semantic similarity at multiple lexical levels,
from word senses to texts. Our method leverages
a common probabilistic representation at the sense
level for all types of linguistic data. We demon-
strate that our semantic representation achieves
state-of-the-art performance in three experiments
using semantic similarity at different lexical levels
(i.e., sense, word, and text), surpassing the per-
formance of previous similarity measures that are
often specifically targeted for each level.

In future work, we plan to explore the impact of
the sense inventory-based network used in our se-
mantic signatures. Specifically, we plan to investi-
gate higher coverage inventories such as BabelNet
(Navigli and Ponzetto, 2012a), which will handle
texts with named entities and rare senses that are
not in WordNet, and will also enable cross-lingual
semantic similarity. Second, we plan to evaluate
our method on larger units of text and formalize
comparison methods between different lexical lev-
els.
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ing subject field codes into WordNet. In Proceedings of
LREC, pages 1413–1418, Athens, Greece.

Ana G. Maguitman, Filippo Menczer, Heather Roinestad, and
Alessandro Vespignani. 2005. Algorithmic detection of
semantic similarity. In Proceedings of WWW, pages 107–
116, Chiba, Japan.

Irina Matveeva, Gina-Anne Levow, Ayman Farahat, and
Christiaan Royer. 2005. Terms representation with gener-
alized latent semantic analysis. In Proceedings of RANLP,
Borovets, Bulgaria.

Diana McCarthy and Roberto Navigli. 2009. The English
lexical substitution task. Language Resources and Evalu-
ation, 43(2):139–159.

Diana McCarthy. 2006. Relating WordNet senses for word
sense disambiguation. In Proceedings of the Workshop on
Making Sense of Sense at EACL-06, pages 17–24, Trento,
Italy.

Rada Mihalcea and Dan Moldovan. 2001. Automatic gen-
eration of a coarse grained WordNet. In Proceedings
of NAACL Workshop on WordNet and Other Lexical Re-
sources, Pittsburgh, USA.

Vivi Nastase and Michael Strube. 2013. Transforming
Wikipedia into a large scale multilingual concept network.
Artificial Intelligence, 194:62–85.

Roberto Navigli and Simone Paolo Ponzetto. 2012a. Ba-
belNet: The automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193:217–250.

Roberto Navigli and Simone Paolo Ponzetto. 2012b. Babel-
Relate! a joint multilingual approach to computing seman-
tic relatedness. In Proceedings of AAAI, pages 108–114,
Toronto, Canada.

Roberto Navigli. 2006. Meaningful clustering of senses
helps boost Word Sense Disambiguation performance. In
Proceedings of COLING-ACL, pages 105–112, Sydney,
Australia.

Roberto Navigli. 2009. Word Sense Disambiguation: A sur-
vey. ACM Computing Surveys, 41(2):1–69.

Martha Palmer, Hoa Dang, and Christiane Fellbaum. 2007.
Making fine-grained and coarse-grained sense distinc-
tions, both manually and automatically. Natural Lan-
guage Engineering, 13(2):137–163.

Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi.
2004. WordNet::Similarity - measuring the relatedness of
concepts. In Proceedings of AAAI, pages 144–152, San
Jose, CA.

Mohammad Taher Pilehvar and Roberto Navigli. 2013.
Paving the way to a large-scale pseudosense-annotated
dataset. In Proceedings of NAACL-HLT, pages 1100–
1109, Atlanta, USA.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and
Shaul Markovitch. 2011. A word at a time: comput-
ing word relatedness using temporal semantic analysis. In
Proceedings of WWW, pages 337–346, Hyderabad, India.

Daniel Ramage, Anna N. Rafferty, and Christopher D. Man-
ning. 2009. Random walks for text semantic similarity. In
Proceedings of the 2009 Workshop on Graph-based Meth-
ods for Natural Language Processing, pages 23–31, Sun-
tec, Singapore.

Reinhard Rapp. 2003. Word sense discovery based on sense
descriptor dissimilarity. In Proceedings of the Ninth Ma-
chine Translation Summit, pages 315–322, New Orleans,
LA.

Philip Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. In Proceedings of
IJCAI, pages 448–453, Montreal, Canada.

Herbert Rubenstein and John B. Goodenough. 1965. Con-
textual correlates of synonymy. Communications of the
ACM, 8(10):627–633.

Gerard Salton, A. Wong, and C. S. Yang. 1975. A vector
space model for automatic indexing. Communications of
the ACM, 18(11):613–620.

Rion Snow, Sushant Prakash, Daniel Jurafsky, and Andrew Y.
Ng. 2007. Learning to merge word senses. In EMNLP-
CoNLL, pages 1005–1014, Prague, Czech Republic.

Mark Steyvers and Tom Griffiths. 2007. Probabilistic
topic models. Handbook of Latent Semantic Analysis,
427(7):424–440.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-factoid
questions from Web collections. Computational Linguis-
tics, 37(2):351–383.

Peter D. Turney and Patrick Pantel. 2010. From frequency
to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37:141–188.

Peter D. Turney, Michael L. Littman, Jeffrey Bigham, and
Victor Shnayder. 2003. Combining independent modules
to solve multiple-choice synonym and analogy problems.
In Proceedings of RANLP, pages 482–489, Borovets, Bul-
garia.
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Abstract

We create an open multilingual wordnet
with large wordnets for over 26 languages
and smaller ones for 57 languages. It is
made by combining wordnets with open li-
cences, data from Wiktionary and the Uni-
code Common Locale Data Repository.
Overall there are over 2 million senses
for over 100 thousand concepts, linking
over 1.4 million words in hundreds of lan-
guages.

1 Introduction

We wish to create a lexicon covering as many lan-
guages as possible, with as much useful informa-
tion as possible. Generally, language resources, to
be useful, must be bothaccessible(legal to use)
andusable (of sufficient quality, size and with a
documented interface) (Ishida, 2006). We address
both of these concerns in this paper.

One of the many attractions of the semantic net-
work WordNet (Fellbaum, 1998), is that there are
numerous wordnets being built for different lan-
guages. There are, in addition, many projects
for groups of languages: Euro WordNet (Vossen,
1998), BalkaNet (Tufiş et al., 2004), Asian Word-
net (Charoenporn et al., 2008) and more. Al-
though there are over 60 languages for which
wordnets exist in some state of development (Fell-
baum and Vossen, 2012, 316), less than half of
these have released any data, and for those that
have, the data is often not freely accessible (Bond
and Paik, 2012). For those wordnets that are avail-
able, they are of widely varying size and quality,
both in terms of accuracy and richness. Further,
there is very little standardization in terms of for-
mat, what information is included, or license.

The goal of the research outlined in this paper
is to make it possible for a researcher interested in
working on the lexical semantics of a language or

languages to be able to access wordnets for those
languages with a minimum of legal and technical
barriers. In practice this means making it possible
to access multiple wordnets with a common inter-
face. We also use sources of semi-structured data
that have minimal legal restrictions to automati-
cally extend existing freely available wordnets and
to create additional wordnets which can be added
to our open wordnet grid.

Previous studies have leveraged multiple word-
nets and Wiktionary (Wikimedia, 2013) to extend
existing wordnets or create new ones (de Melo and
Weikum, 2009; Hanoka and Sagot, 2012). These
studies passed over the valuable sense groupings
of translations within Wiktionary and merely used
Wiktionary as a source of translations that were
not disambiguated according to sense. The present
study built and extended wordnets by directly link-
ing Wiktionary senses to WordNet senses.

Meyer and Gurevych (2011) demonstrated the
ability to automatically identify many matching
senses in Wiktionary and WordNet based on the
similarity of monolingual features. Our study
combines monolingual features with the disam-
biguating power of multiple languages. In ad-
dition to differences in linking methodology, our
project gives special attention to ensuring the max-
imum re-usability and accessibility of the data and
software released.

Other large scale multilingual lexicons have
been made by linking wordnet to Wikipedia
(Wikipedia, 2013; de Melo and Weikum, 2010;
Navigli and Ponzetto, 2012). Our approach is
complementary to these: in general Wikipedia has
more entities than classes, while Wiktionary has
more classes.

In Section 2 we discuss linking freely available
wordnets to form a single multilingual semantic
network. In Section 3 we extend the wordnets with
data from two sources. We show the results in
Section 4 and then discuss them and outline future
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work in Section 5.

2 Linking Multiple Wordnets

In order to make the data from existing wordnet
projects moreaccessible, we have built a simple
database with information from those wordnets
with licenses that allow redistribution of the data.
These wordnets, their licenses and recent activity
are summarized in Table 1 (sizes for most of them
are shown in Table 2).1

Wordnet Project Lng Licence Type
Albaneto als CC BY a
Arabic WordNet arb CC BY-SA s
DanNet dan wordnet a
Princeton WordNetu eng wordnet a
Persian Wordnet fas free to use u
FinnWordNetu fin CC BY a
WOLFu fra CeCILL-C s
Hebrew Wordneto heb wordnet s
MultiWordNeto ita CC BY a
Japanese Wordnetu jpn wordnet a
Multilingual cat CC BY a
Central eus CC BY-NC-SA n
Repositoryo,u glg CC BY a

spa CC BY a
Wordnet Bahasau ind MIT a

zsm MIT a
Norwegian Wordneto nno wordnet a

nob wordnet a
plWordNeto,u pol wordnet a
OpenWN-PTu por CC BY-SA s
Thai Wordnet tha wordnet a

o Re-released under an open license in 2012
u Updated in 2012
Type: u Unrestricted;a Attribution; sShare-alike;

n Non-commercial
URL: http://casta-net.jp/~kuribayashi/multi/

Table 1: Linked Open Wordnets

The first wordnet developed is the Princeton
WordNet (PWN: Fellbaum, 1998). It is a large
lexical database of English. Open class words
(nouns, verbs, adjectives and adverbs) are grouped
into concepts represented by sets of synonyms
(synsets). Synsets are linked by semantic relations
such as hyponomy and meronomy. PWN is re-
leased under an open license (allowing one to use,
copy, modify and distribute it so long as you prop-
erly acknowledge the copyright).

The majority of freely available wordnets take
the basic structure of the PWN and add new lem-
mas (words) to the existing synsets: theextend
model (Vossen, 2005). For example,dogn:1 is
linked to the lemmaschien in French,anjing in
Malay, and so on. It is widely realized that this

1We have now added Mandarin Chinese.

model is imperfect as different languages lexical-
ize different concepts and link them in different
ways (Fellbaum and Vossen, 2012). Nevertheless,
many projects have found that the overall structure
of PWN serves as a useful scaffold. The fact that,
for example, adogn:1 is ananimaln:1 is language
independent.

In theory, such wordnets can easily be com-
bined into a single resource by using the PWN
synsets as pivots. All languages are linked through
the English wordnet. Because they are linked at
the synset level, the problem of ambiguity one gets
when linking bilingual dictionaries through a com-
mon language is resolved: we are linking senses to
senses.

In practice, linking a new language’s wordnet
into the grid could be problematic for three rea-
sons. The first problem was that the wordnets were
linked to various versions of the Princeton Word-
Net. In order to combine them into a single multi-
lingual structure, we had to map to a common ver-
sion. The second problem was the incredible va-
riety of formats that the wordnets are distributed
in. Almost every project uses a different format.
Even different versions of the same project often
had slightly different formats. The final problem
was legal: not all wordnets have been released un-
der licenses that allow reuse.

The first problem can largely be overcome us-
ing the mapping scripts from Daude et al. (2003).
Mapping introduces some distortions, in particu-
lar, when a synset is split, we chose to only map
the translations to the most probable mapping, so
some new synsets will have no translations.

The second problem we are currently solving
through brute force, writing a new script for ev-
ery new project we add. We make these scripts,
along with the reformatted wordnets, freely avail-
able for download. Any problems or bugs found
when converting the wordnets have been reported
back to the original projects, with many of them
fixed in newer releases. We consider this feedback
to be an important part of our work: it means that
other researchers and users do not have to suffer
from the same problems and it encourages projects
to release updates.

The third, legal, problem is being solved by
an ongoing campaign to encourage projects to
(re-)release their data under open licenses. Since
Bond and Paik (2012) surveyed wordnet licenses
in 2011, six projects have newly released data un-
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der open licenses and eight projects have updated
their data.

Our combined wordnet includes English (Fell-
baum, 1998); Albanian (Ruci, 2008); Arabic
(Black et al., 2006); Chinese (Huang et al., 2010);
Danish (Pedersen et al., 2009); Finnish (Lindén
and Carlson., 2010); French (Sagot and Fišer,
2008); Hebrew (Ordan and Wintner, 2007); In-
donesian and Malaysian (Nurril Hirfana et al.,
2011); Italian (Pianta et al., 2002); Japanese
(Isahara et al., 2008); Norwegian (Bokmål and
Nynorsk: Lars Nygaard 2012, p.c.); Persian (Mon-
tazery and Faili, 2010); Portuguese (de Paiva
and Rademaker, 2012); Polish (Piasecki et al.,
2009); Thai (Thoongsup et al., 2009) and Basque,
Catalan, Galician and Spanish from the Multilin-
gual Common Repository (Gonzalez-Agirre et al.,
2012).

On our server, the wordnets are all in a shared
sqlite database using the schema produced by
the Japanese WordNet project (Isahara et al.,
2008). The database is based on the logical struc-
ture of the Princeton WordNet, with an additional
language attribute for lemmas, examples, defini-
tions and senses. It is a single open multilingual
resource. When we redistribute the data, each
project’s data is made available separately, with a
common format, but separate licenses.

The Scandinavian and Polish wordnets are
based on themerge approach, where indepen-
dent language specific structures are built and then
some synsets linked to PWN. Typically only a
small subset will be linked (due more to resource
limitations than semantic incompatibility).

2.1 Core Concepts

Boyd-Graber et al. (2006) created a list of 5,000
core word senses in Princeton WordNet which
represent approximately the 5,000 most frequently
used word senses.2 We use this list to evaluate the
coverage of the wordnets: do they contain words
for the most common concepts? As a very rough
measure of useful coverage, we report the percent-
age of synsets covered from this core list. Because
the list is based on English data, it is of course not
a perfect measure for other languages and cultures.
Note that some wordnet projects have deliberately
targeted the core concepts, which of course boosts
their coverage scores.

2The original list is here fromhttp://wordnetcode.
princeton.edu/standoff-files/core-wordnet.txt;
we converted it to wn30 synsets.

2.2 License Types

The licenses fall into four broad categories: (u)
completely unrestricted, (a) attribution required,
(s) share alike, and (n) non-commercial. The first
category includes any work that is in the public
domain or that the author has released without any
restrictions. The second category allows anyone
to use, adapt, improve, and redistribute the work as
long as one attributes the work in the manner spec-
ified by the copyright holder (without suggesting
an endorsement). The WordNet, MIT, and CC BY
licenses are all in this category. The third category
allows anyone to adapt and improve the licensed
work and redistribute it, but the redistributed work
must be released under the same license. The CC
BY-SA, GPL, GFDL, and CeCILL-C licenses are
of this type. Because derivative works can only
be redistributed under the same license, works li-
censed under any two of these licenses cannot
be combined with each other and legally redis-
tributed. In general, a work formed from the com-
bination of works in category (u) and (a) with a
work in category (s) will be subject to the more re-
strictive terms of the the share alike license. How-
ever, the GPL, GFDL and CeCILL-C are incom-
patible with CC BY.3 The fourth type of license
further forbids the commercial use of a work. The
CC BY-NC and the CC BY-NC-SA licenses are in
this category, they are also incompatible with li-
censes in category (s).

Releasing a work under the more restrictive li-
censes in categories (s) and (n) above substantially
limit and complicate the ability to extend and com-
bine a work into other useful forms. By maintain-
ing a separation of databases released under in-
compatible licenses, we avoid any possible legal
problems. Due to license incompatibilities, it is
impossible to release a single database with all the
wordnets, even though individually they are redis-
tributable. We can currently combine those with
licenses in groups (u) and (a) and the CC BY-
SA wordnets (now everything except French and
Basque).

3 Extending with non-wordnet data

We looked at two sources for automatically adding
new entries. The Unicode Common Locale Data
Repository (CLDR) has reliable information on
languages, territories and dates. Wiktionary is a

3http://www.gnu.org/licenses/license-list.
html\#ccby
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general purpose lexicon with much more informa-
tion for many words.

3.1 Unicode Common Locale Data
Repository (CLDR)

We added information on languages, territories
and dates from the Unicode Common Locale Data
Repository (CLDR).4 This is a collection of data
maintained by the Unicode Consortium to support
software internationalization and localization with
locale information on formatting dates, numbers,
currencies, times, and time zones, as well as help
for choosing languages and countries by name. It
has this data for over 194 languages. It is released
under an open license that allows redistribution
with proper attribution (Unicode, Inc., 2012).5

We found data for 122 languages. Most had
around 550 senses (synsets and their lemmas): for
example, for Portuguese:Englishn:1 inglês. Some
had only 40 or 50, such as Assamese, which only
has the week days, month names and a few lan-
guage names. The linked data was small enough
to check by hand. When the original CLDR data
is correct the data we generate should be correct.

The idea of using such data is not new. Quah
et al. (2001) for example, use Linux locale data
to extend a proprietary English-Malay lexicon.
de Melo and Weikum (2009) also use this data
(and data from a variety of other sources) to build
an enhanced wordnet, in addition adding new
synsets for concepts that are not in not wordnet.
However, when they released the data as LEXVO
(data about languages: CC BY-SA) and UWN (the
universal multilingual wordnet: CC BY-NC-SA),
they added additional license restrictions which
complicate the reuse of the data and make it im-
possible to integrate the data back into the original
wordnet project.

3.2 Wiktionary

Searches for a publicly-available source of Wik-
tionary in a preprocessed, machine-readable for-
mat did not turn up any sources that were recent
and publicly-available.6 Although there are sev-

4http://cldr.unicode.org/
5With the extra requirement that “there is clear notice in

each modified Data File or in the Software as well as in the
documentation associated with the Data File(s) or Software
that the data or software has been modified.”

6We later learned that McCrae et al. (2012) made a release
of Wiktionary in the lemon format (http://datahub.io/
en/dataset/dbnary). They did not, however, release the
code they used to parse Wiktionary.

eral freely-available software programs that are
capable of parsing portions of the English Wik-
tionary, none of the programs that were evaluated
appeared to extract the precise set of information
desired for our task in an easy-to-use format. So
the authors decided to build a custom parser capa-
ble of extracting the information needed for build-
ing open wordnets.

3.2.1 Wiktionary Parser

Since each language edition of Wiktionary is for-
matted in a somewhat unique way, parsers must
be tailored to recognize the structure and format-
ting of each edition on a case-by-case basis. The
authors created a parser tailored to the English
Wiktionary, although it can be extended to handle
other language versions as well. We are releasing
this code under the MIT license.7

The current version of the parser is capable of
extracting headwords, parts of speech, definitions,
synonyms and translations from the XML Wik-
tionary database dumps provided by the Wikime-
dia Foundation.8 Within these large XML files,
the main body of Wiktionary articles are stored in
a Wikitext format, which is a semi-structured for-
mat. Although anyone can edit a Wiktionary page
and use any style of formatting they desire, the
community of users encourages adhering to estab-
lished guidelines, which produces a format that is
generally predictable.

Within the English Wiktionary, synonyms and
translations are both grouped into sense groups
that correspond with definitions in the main sec-
tion. These sense groups are marked by a short
text gloss (short gloss), which is usually an abbre-
viated version of one of the full definitions (full
definition). The parser makes no attempt to match
these short glosses with the full definitions. Data
is simply extracted, cleaned, and then stored in a
relational database or flat file.

Translations proved to be easy to extract due
to the fairly consistent use of a specifically for-
matted translation template. These templates in-
clude a language code derived from ISO standards,
the translation, and optional additional informa-
tion such as gender, transliteration, script, and al-
ternate forms. The parser extracts and retains all
of this potentially valuable information.

Examples of translation templates:

7Available from the Open Multilingual Wordnet Page:
http://casta-net.jp/~kuribayashi/multi/.

8http://dumps.wikimedia.org/
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• Finnish:{{t+|fi|sanakirja}}

• French:{{t+|fr|dictionnaire|m}}

To enable later processing, it is necessary to tie
synonyms and translations to their corresponding
short gloss via a unique key. Most parsers simply
use an automatically generated surrogate key or a
key based on the ordered position of data within
a Wiktionary article. Since Wiktionary is con-
stantly changing, the side effect of this approach
is that data extracted from a specific snapshot of
the Wiktionary database can only be meaningfully
used in connection with other data extracted by
the same parser from the exact same snapshot. To
overcome this, we use a unique key that can be
recreated from the data itself, which we call the
defkey. To generate this key, we concatenate the
language code, headword, part of speech, and the
short gloss and use thesha1 hash function (NIST,
2012) to create a unique 40-character hexadecimal
string from the resulting text.

These defkeys are time and technology indepen-
dent, so they allow the ability for researchers to
efficiently share and compare results. Once a link
is established between this defkey and a particu-
lar synset, translations added to Wiktionary at a
later data can be automatically integrated into our
multilingual wordnet. Conversely, if a Wiktionary
contributor changes a short gloss, historical data
connected to the old defkey is preserved while new
data imported at a later time will not be incorrectly
linked to an older definition.

Another feature of our parser is a feedback
mode, which generates a report about poorly for-
mated data that was encountered. These automat-
ically generated reports can be used to create a
quality-enhancing feedback loop with Wiktionary.

3.2.2 Linking Senses

Meyer and Gurevych (2011) showed that auto-
matic alignments between Wiktionary senses and
PWN can be established with reasonable accuracy
and recall by combining multiple text similarity
scores to compare a bag of words based on several
pieces of information linked to a WordNet sense
with another bag of words obtained from a Wik-
tionary entry. In our study we evaluated the poten-
tial for aligning senses based on common transla-
tions in combination with monolingual similarity
features.

In this study we used 20 of the wordnets de-

scribed in Section 2,9 and the Wiktionary data ob-
tained using the parser described in Section 3.2.1.
Before searching for translation matches, we nor-
malized the data to ensure the most accurate pos-
sible overlap count. First, article headwords were
included as English translations of Wiktionary
senses (along with synonyms). Then differences
in language codes were rectified and translations
containing symbolic characters or a mixture of ro-
man and non-roman characters were marked to be
ignored, save a few exceptions. This left approx-
imately 1.4 million sense translations in 20 lan-
guages in our wordnet grid, and nearly 1.3 million
Wiktionary translations in over 1,000 languages.

We then created a list of all possible align-
ments where at least one translation of a wordnet
sense matched a translation of a Wiktionary sense.
This represented a small percentage of the possi-
ble alignments, because definitions in Wiktionary
that do not contain any translations were ignored
in our study. Of more than 500,000 English defini-
tions in Wiktionary, only about 130,000 presently
have associated translations. The resulting graph
contained over 700,000 possible sense alignments.

We calculated a number of similarity scores, the
first two based on similarity in the number of lem-
mas, calculated using the Jaccard index:

sime(sn,sk) =
|E(sk)∩E(sn)|
|E(sk)∪E(sn)|

(1)

sima(sn,sk) =
|L(sk)∩L(sn)|
|L(sk)∪L(sn)|

(2)

Wheresk,sn are concepts in Wiktionary and word-
net respectively,10 E(s) is the set of English lem-
mas for sensesandL(s) is the set of lemmas in all
languages.

As an initial pruning, we kept only matches
where either: sima ≥ 0.7 or (sime ≥ 0.5 and
sima ≥ 0.5) or, if (|L(sk) ∩ L(sn)| > 5) then
(sime ≥ 0.5 and sima ≥ 0.45). After apply-
ing these filters, approximately 220,000 alignment
candidates remained.

We reviewed a random sample of 551 alignment
candidates. Of these 136 were deemed correctly
aligned. Another 48 we considered possibly close
enough to produce valid translations for wordnet.
All others were marked as incorrect alignments.

9We didn’t use Chinese or Polish, as the wordnets were
added after we had started the evaluation.

10Precisely, synsets in wordnet and senses in Wiktionary.
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This development dataset was used to tune re-
fined similarity scores.

simt(sn,sk) =
|L(sk)∩L(sn)|√
α |L(sk)∪L(sn)|

(3)

simd(sn,sk) = BoW(wndef)·BoW(wkdef)
‖BoW(wndef)‖‖BoW(wkdef)‖ (4)

simc(sn,sk) = simt +β simc (5)

simt gives higher weight to concepts that link
through more lemmas, not just a higher proportion
of lemmas.

simd measures the similarity of the definitions
in the two resources, using a cosine similarity
score. We initially used the WordNet gloss and
example sentence(s) forwndef and the short gloss
from Wiktionary forwkdef. This improved the ac-
curacy of the combined ranking score (simc), but
since many of the short glosses are only one or
two words, the sparse input often produced a simd

score of zero even when the candidate alignment
was correct. To improve the accuracy of the simd

component, we also added in the long definitions.
Short glosses were aligned with long definitions

using a similar approach to McCrae et al. (2012).
First we search for a match where the short gloss
was a substring of the full definition. If that failed
to produce a single possible alignment, we aligned
the short gloss with the full definition that pro-
duced the greatest cosine similarity score. Finally,
where the short definition was blank and only a
long definition was present, we aligned the two.
The results of this alignment were less than 90%
accurate, so to offset the effects of this noise we in-
cluded both the full definition and the short gloss
in wkdef. Forwndef we used the WordNet gloss,
example sentence(s), and synonyms. Even though
the linking of definitions within Wiktionary left
much to be desired, the increased amount of text
improved the accuracy of the definition based sim-
ilarity component of our ranking score.

Our combined ranking score (simc), based on
both overlapping translations and a monolingual
lexical similarity score, was able to outperform
ranking based on either component in isolation.
We expect that an improved alignment of short
glosses to full definitions together with more ac-
curate measures of lexical similarity such as de-
scribed by Meyer and Gurevych (2011) would fur-
ther improve the accuracy of a combined ranking
score. We employed our combined ranking score
first as a filter, where simc ≥ τc. The ranking score

is then used to select the best match among com-
peting alignments. Alignments are based on the
belief that a definition within Wiktionary should
only map to a single WordNet synset (if any at
all). In theory, each WordNet synset should rep-
resent a meaning distinguishable from all other
synsets. Because Wiktionary is organized accord-
ing to lemma first, and sense second, multiple def-
initions in separate articles often map to the same
synset. For examplemortal “A human; someone
susceptible to death”,individual “A person con-
sidered alone . . . ”, andperson “A single human
being; an individual” all align withsomeonen:1

(00007846-n). However, two distinct definitions
within the same Wiktionary entry should not map
to the same WordNet sense. When there are mul-
tiple possible alignments where only one can be
valid, simc is used to determine the best match.

In addition to using the combined ranking score
as a filter, we found that we could obtain a small
additional increase in accuracy without reducing
recall by also requiring simt ≥ τt or simd ≥ τd.

To determine ideal values for the weights and
thresholds, we performed several grid searches.
The parameters are interdependent and can pro-
duce reasonable results at a variety of points. Ideal
values also depend on whether we wish to maxi-
mize accuracy or recall.α is set at 3.2 in order to
achieve an ideal target threshold ofτt = 1. We fi-
nally chose values ofβ = 0.7 andτc = 0.71 which
gave a reasonable balance between accuracy and
recall.

4 Results and Evaluation

We give the data for the 26 wordnets with more
than 10,000 synsets in Table 2. There are a further
57 with more than 1,000; 133 with more than 100,
200 with more than 10 and 645 with more than 1
(although most of the very small languages appear
to be simple errors in the language code entered
into Wiktionary). Individual totals are shown for
synsets and senses from the original wordnets, the
data extracted from Wiktionary, and the merged
data of the wordnets, Wiktionary and CLDR. We
do not show the CLDR data in the table as it is
so small, generally 500-600 synsets for the top
languages. Overall there are 2,040,805 senses for
117,659 concepts, using over 1,400,000 words in
over 1,000 languages.

The smaller wordnets are not of much practi-
cal use, but can still serve as the core of new
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Projects Wiktionary Merged (+CLDR)
ISO Language Synsets Senses Core Synsets Senses Core Synsets Senses Core
eng English 117,659 206,978 100 35,400 49,951 75 117,661 213,538 100
fin Finnish 116,763 189,227 100 21,516 31,154 65 116,830 199,435 100
tha Thai 73,350 95,517 81 2,560 3,193 17 73,595 97,390 81
fra French 59,091 102,671 92 20,449 27,150 63 61,258 109,64395
jpn Japanese 57,179 158,064 95 12,685 19,479 52 59,112 166,617 96
ind Indonesian 52,006 142,488 99 2,390 2,810 17 52,154 143,755 99
cat Catalan 45,826 70,622 81 8,626 10,251 36 48,007 74,806 84
spa Spanish 38,512 57,764 76 18,281 25,310 60 47,737 74,848 86
por Portuguese 41,810 68,285 79 12,331 16,178 53 43,870 74,151 84
zsm Standard Malay 42,766 119,152 99 2,833 3,744 19 43,079 120,686 99
ita Italian 34,728 60,561 83 14,605 18,710 53 38,938 68,827 87
eus Basque 29,413 48,934 71 1,693 1,943 11 29,965 49,945 72
pol Polish 14,008 21,001 30 10,888 13,431 46 20,975 30,943 55
glg Galician 19,312 27,138 36 2,492 2,871 15 20,772 29,136 42
fas Persian 17,759 30,461 41 4,229 5,443 26 20,766 35,318 55
rus Russian 0 0 0 19,983 33,716 64 20,138 34,009 64
deu German 0 0 0 19,675 29,616 64 19,857 29,884 64
cmn Mandarin Chinese 4,913 8,069 28 12,130 19,079 49 15,490 27,113 60
arb Standard Arabic 10,165 21,751 48 6,892 9,337 38 14,861 31,337 63
nld Dutch 0 0 0 13,741 19,709 56 13,950 20,003 56
ces Czech 0 0 0 12,802 15,493 54 13,030 15,813 54
swe Swedish 0 0 0 12,000 16,226 51 12,221 16,512 51
ell Modern Greek 0 0 0 10,308 13,071 44 10,549 13,472 44
dan Danish 4,476 5,859 81 7,290 8,931 35 10,328 13,551 85
nob Norwegian Bokmål 4,455 5,586 79 7,262 9,170 35 10,322 13,612 83
hun Hungarian 0 0 0 9,964 12,699 45 10,213 13,029 45

Core shows the percentage coverage of the 5,000 core concepts.

Table 2: Merged Wordnets (with more than 10,000 entries)

projects. The bigger wordnets show the data from
Wiktionary (and to a lesser extent CLDR) having
only a small increase in the number of senses. The
biggest change is for the medium size projects,
such as Persian or Arabic, which end up with
much better coverage of the most frequent core
concepts. Major languages such as German or
Russian, which currently do not have open word-
nets get good coverage as well.

The size of the mapping table is the same as the
number of English senses linked (49,951 senses).
We evaluated a random sample of 160 alignments
and found the accuracy to be 90% (Wiktionary
sense maps to the best possible wordnet sense).

We then evaluated samples of the wordnet cre-
ated from Wiktionary for several languages. For
each language we choose 100 random senses, then
checked them against existing wordnets.11 For all
unmatched entries, we then had them checked by
native speakers. The results are given in Table 3.
The sense accuracy is higher than the mapping ac-
curacy: in general, entries with more translations
are linked more accurately, thus raising the av-
erage precision. During the extraction and eval-

11For Chinese we use the wordnet from Xu et al. (2008),
which is free for research but cannot be redistributed. For
German we used Euro WordNet (Vossen, 1998).

Language % Matched % Good
Chinese∗ 46 97
Serbo-Croation∗,∗∗ 0 91
Czech∗ 0 99
English 89 92
German∗ 19 85
Indonesian 69 97
Korean∗ 0 96
Japanese 56 90
Russian∗ 0 99
Average 94.0

Table 3: Precision of Wiktionary-based Wordnets
∗ Not used to build the mapping from wordnet to Wiktionary.
∗∗ We allow terms used in either Serbian or Croatian.

uation, we noticed several language specific fea-
tures: for example, Serbo-Croatian had a mixture
of Cyrillic and Latin entries. For languages where
one script was clearly dominant, we kept only that,
but really these decisions should be done for each
language by a native speaker.

We make the data available in two ways. The
first is a set of downloads. Each language has up
to three files: the data from the wordnet project
(if it exists), the data from the CLDR and the data
from Wiktionary. They are kept separate in order
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to keep the licenses as free as possible. The sec-
ond is as two on-line searches: one using only the
data from the projects, and one with all the data
combined. The combination is done by simple
union.12 We maintain this separation as we can-
not guarantee the quality of the automatically ex-
tracted data. Because the raw data is there it is pos-
sible to combine them in other ways. The simple
structure is easy to manipulate, and there is code
to use this style of data with the popular tool kit
NLTK (Bird et al., 2010).

5 Discussion and Future Work

We have created a large open wordnet of high
quality (85%–99% measured on senses). Twenty
six languages have more than 10,000 concepts
covered, with 42–100% coverage of the most com-
mon core concepts. The data is easily download-
able with minimal restrictions. The overall ac-
curacy is estimated at over 94%, as most of the
original wordnets are hand verified (and so should
be 100% accurate). The high accuracy is largely
thanks to the disambiguating power of the multi-
ple translations, made possible by the many open
wordnets we have access to.

Because we link senses between wordnet and
Wiktionary and then use the translations of the
sense, manually validating this mapping will im-
prove the entries in multiple languages simultane-
ously. As the Wiktionary-wordnet alignment map-
ping is linked to persistent keys it will remain use-
ful even as the resources change. Further, it can be
used to identify and add missing senses to word-
net: unmapped Wiktionary entries are candidates
for new concepts.

The Universal Wordnet (UWN: de Melo and
Weikum, 2009) brings in data from even more re-
sources, and combines them to make a larger re-
source, choosing parameters with slightly lower
precision (just under 90%). It is further linked to
Wikipedia, adding many named entities. We ex-
pect that our work is complementary. Because
we use a different approach, it would be possi-
ble to merge the two if the licenses allowed us
to. However, since the CC BY-SA and CC-BY-
NC-SA licenses are mutually exclusive, the two
works cannot be combined and rereleased unless
relevant parties can relicense the works. There is
no easy way to improve UWN beyond checking
each and every entry, which is expensive. An ad-

12http://casta-net.jp/~kuribayashi/multi/

vantage of our approach, noted above, is that we
can validate the sense matches for English and the
accuracy percolates down to all the languages.

Integrating data from the most recent version
of Wiktionary can be done simply and takes a
few hours. It is therefore feasible to update the
downloadable data regularly. Improvements in ei-
ther the wordnet projects or Wiktionary (or both)
can also result in improved mappings. We further
hope to take advantage of ongoing initiatives in the
global wordnet grid to add new concepts not in the
Princeton WordNet, so that we can expand beyond
an English-centered world view.

By making the data from multiple sources eas-
ily available with minimal restrictions, we hope
that it will be easier to do research that exploits
lexical semantics. In particular, we make the data
easily accessible to the original wordnet projects,
some of whom have already started to merge it
into their own resources. We cannot check the
accuracy of data in all languages, nor, for exam-
ple, check that synsets have the most appropriate
lemmas associated with them. Many languages
have their own orthographic issues (for example
a choice of scripts, or the choice to include vow-
els or not). Our automatic extraction does not deal
with these issues at all. This kind of language spe-
cific quality control is best done by the individual
wordnet projects.

We also consider it important to keep feeding
data back to the individual wordnet projects, as
much of the innovative research comes from them:
the class/instance distinction from PWN; the dis-
tinction between rigid and non-rigid synsets from
the Kyoto Project; domain mappings from the
MultiWordNet (Pianta et al., 2002); representing
orthographic variation from the Japanese Wordnet
(Kuroda et al., 2011); combining close languages
from the Wordnet Bahasa (Nurril Hirfana et al.,
2011); and so on. For all of these reasons, we
do not consider automatic extraction from/linking
to Wiktionary a substitute for building languages
specific wordnets.

Further work that this data should allow us to
do include: automatically producing a list of bad
data found in Wiktionary that can be used by Wik-
tionary editors to correct errors; and finding gaps
in wordnet by identifying senses in Wiktionary
that have a large number of translations, but fail to
have any significant alignment with existing word-
net synsets.
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We currently only link through the English Wik-
tionary and its translations. It should be possible to
expand the multilingual wordnet in the same way
using Wiktionaries in other languages, which we
would expect to improve coverage.

Finally, Wiktionary contains a lot of useful in-
formation we are not currently using (information
on gender, transliterations, pronunciations, alter-
native spellings and so forth). We can also think
of the aligned definitions as a paraphrase corpus
for English.

We have devoted more space than is usual for
a computational linguistics paper to issues of li-
censing and sustainability. This is deliberate: we
feel papers about lexical resources should be clear
about licensing, and that it should be considered
early on when creating new resources. There are
strong arguments that open data leads to better sci-
ence (Pederson, 2008), and it has been shown that
open resources are cited more (Bond and Paik,
2012). In addition, how to maintain resources over
time is a major unsolved problem. We consider it
important that our wordnet is not just large and ac-
curate but also maintainable and as accessible as
possible.

6 Conclusions

We have created an open multilingual wordnet
with over 26 languages. It is made by combining
wordnets with open licences, data from the Uni-
code Common Locale Data Repository and Wik-
tionary. Overall there are over 2 million senses for
117,659 concepts, using over 1.4 million words in
hundreds of languages.
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Abstract
We present a new bilingual FrameNet lex-
icon for English and German. It is cre-
ated through a simple, but powerful ap-
proach to construct a FrameNet in any
language using Wiktionary as an inter-
lingual representation. Our approach is
based on a sense alignment of FrameNet
and Wiktionary, and subsequent transla-
tion disambiguation into the target lan-
guage. We perform a detailed evaluation
of the created resource and a discussion of
Wiktionary as an interlingual connection
for the cross-language transfer of lexical-
semantic resources. The created resource
is publicly available at http://www.
ukp.tu-darmstadt.de/fnwkde/.

1 Introduction

FrameNet is a valuable resource for natural lan-
guage processing (NLP): semantic role labeling
(SRL) systems based on FrameNet provide se-
mantic analysis for NLP applications, such as
question answering (Narayanan and Harabagiu,
2004; Shi and Mihalcea, 2005) and information
extraction (Mohit and Narayanan, 2003). How-
ever, their wide deployment has been prohibited
by the poor coverage and limited availability of a
similar resource in many languages.

Expert-built lexical-semantic resources are ex-
pensive to create. Previous cross-lingual trans-
fer of FrameNet used corpus-based approaches, or
resource alignment with multilingual expert-built
resources, such as EuroWordNet. The latter in-
directly also suffers from the high cost and con-
strained coverage of expert-built resources.

Recently, collaboratively created resources have
been investigated for the multilingual extension of
resources in NLP, beginning with Wikipedia (Nav-
igli and Ponzetto, 2010). They rely on the so-
called “Wisdom of the Crowds”, contributions by

a large number of volunteers, which results in a
continuously updated high-quality resource avail-
able in hundreds of languages. Due to the ency-
clopedic nature of Wikipedia, previous work fo-
cused on encyclopedic information for Wikipedia
entries, i.e., almost exclusively on nouns.

This is not enough for resources like FrameNet.
Such resources need lexical-semantic information
on various POS. For FrameNet, information on
the predicates associated with a semantic frame –
mostly verbs, nouns, and adjectives – is crucial,
for instance gloss or syntactic subcategorization.

A solution for the problem of multilingual ex-
tension of lexical semantic resources is to use
Wiktionary, a collaboratively created dictionary,
as connection between languages. It provides
high-quality lexical information on all POS, for in-
stance glosses, sense relations, syntactic subcate-
gorization, etc. Like Wikipedia, it is continuously
extended and contains translations to hundreds of
languages, including low-resource ones. To our
knowledge, Wiktionary has not been evaluated as
an interlingual index for the cross-lingual exten-
sion of lexical-semantic resources.

In this paper, we present a novel method for
the creation of bilingual FrameNet lexicons based
on an alignment to Wiktionary. We demonstrate
our method on the language pair English-German
and present the resulting resources, a lemma-based
multilingual and a sense-disambiguated German-
English FrameNet lexicon.

The understanding of lexical-semantic re-
sources and their combinations, e.g., how align-
ment algorithms can be adapted to individual re-
source pairs and different POS, is essential for
their effective use in NLP and a prerequisite for
later in-task evaluation and application. To en-
hance this understanding for the presented re-
source pair, we perform a detailed analysis of
the created resource and compare it to existing
FrameNet resources for German.
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The contributions of our work are the following:
(1) We create a novel sense alignment between
FrameNet and the English Wiktionary. It results
in a multilingual FrameNet FNWKxx, which links
FrameNet senses to lemmas in 280 languages. (2)
We create a sense-disambiguated English-German
FrameNet lexicon FNWKde based on FNWKxx
and translation disambiguation on the German
Wiktionary.1 (3) We analyze the two resources
and outline further steps for creating a multilin-
gual FrameNet.

This is a major step towards the vision of this
paper: a simple, but powerful approach to partially
construct a FrameNet in any language using Wik-
tionary as an interlingual representation.

2 Resource Overview

FrameNet (Baker et al., 1998) is an expert-built
lexical-semantic resource incorporating the theory
of frame-semantics (Fillmore, 1976). It groups
word senses in frames that represent particular sit-
uations. Thus, the verb complete and the noun
completion belong to the Activity finish frame. The
participants of these situations, typically realized
as syntactic arguments, are the semantic roles of
the frame, for instance the Agent performing an ac-
tivity, or the Activity itself. FrameNet release 1.5
contains 1,015 frames, and 11,942 word senses.
Corpus texts annotated with frames and their roles
have been used to train automatic SRL systems.

Wiktionary is a collaboratively created dictio-
nary available in over 500 language editions. It is
continuously extended and revised by a commu-
nity of volunteer editors. The English language
edition contains over 500,000 word senses.2

Wiktionary is organized like a traditional dic-
tionary in lexical entries and word senses. For the
word senses, definitions and example sentences, as
well as other lexical information, such as register
(e.g., colloquial), phonetic transcription, inflec-
tion may be available, including language-specific
types of information. Senses also provide trans-
lations to other languages. These are connected
to lexical entries in the respective language edi-
tions via hyperlinks. This allows us to use Wik-
tionary as an interlingual connection between mul-
tiple languages.

1The xx in FNWKxx stands for all the languages in the
resource. After translation disambiguation in a specific lan-
guage, xx is replaced by the corresponding language code.

2as of May 2013, see http://en.wiktionary.
org/wiki/Wiktionary:Statistics.

Figure 1: Method overview.

The quality of Wiktionary has been confirmed
by Meyer and Gurevych (2012b) who also give an
overview on the usage of Wiktionary in NLP ap-
plications such as speech synthesis.

3 Method Overview

Our method consists of two steps visualized in
Fig. 1. In the first step, we create a novel sense
alignment between FrameNet and the English
Wiktionary following Niemann and Gurevych
(2011). Thus, the FrameNet sense of to complete
with frame Activity finish is assigned to the sense
of to complete in Wiktionary meaning to finish.

This step establishes Wiktionary as an interlin-
gual index between FrameNet senses and lemmas
in many languages, and builds the foundation for
the bilingual FrameNet extension.

It results in a basic multilingual FrameNet lexi-
con FNWKxx with translations to lemmas in 283
languages. An example: by aligning the FrameNet
sense of the verb complete with gloss to finish
with the corresponding English Wiktionary sense,
we collect 39 translations to 22 languages, e.g., the
German fertigmachen and the Spanish terminar.

The second step is the disambiguation of the
translated lemmas with respect to the target lan-
guage Wiktionary in order to retrieve the lin-
guistic information of the corresponding word
sense in the target language Wiktionary (Meyer
and Gurevych, 2012a). We evaluate this step
for English and German and create the bilingual
FrameNet lexicon FNWKde. For the example
sense of complete, we extract lexical information
for the word sense of its German translation fer-
tigmachen, for instance a German gloss, an ex-
ample sentence, register information (colloquial),
and synonyms, e.g., beenden. As a side-benefit of
our method, we also extend the English FrameNet
by the linguistic information in Wiktionary.
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4 Related Work

4.1 Creating FrameNets in New Languages
There are two main lines of research in bootstrap-
ping a FrameNet for languages other than English.

The first, corpus-based approach is to automat-
ically extract word senses in the target language
based on parallel corpora and frame annotations
in the source language. In this vein, Padó and
Lapata (2005) propose a cross-lingual FrameNet
extension to German and French; Johansson and
Nugues (2005) and Johansson and Nugues (2006)
do this for Spanish and Swedish, and Basili et al.
(2009) for Italian.

Padó and Lapata (2005) observe that their ap-
proach suffers from polysemy errors, because lem-
mas in the source language need to be disam-
biguated with respect to all the frames they evoke.
To alleviate this problem, they use a disambigua-
tion approach based on the most frequent frame;
Basili et al. (2009) use distributional methods for
frame disambiguation. Our approach is based on
sense alignments and therefore explicitly aims to
avoid such errors.

The second line of work is resource-based:
FrameNet is aligned to multilingual resources in
order to extract senses in the target language. Us-
ing monolingual resources, this approach has also
been employed to extend FrameNet coverage for
English (Shi and Mihalcea, 2005; Johansson and
Nugues, 2007; Ferrandez et al., 2010).

De Cao et al. (2008) map FrameNet frames
to WordNet synsets based on the embedding of
FrameNet lemmas in WordNet. They use Multi-
WordNet, an English-Italian wordnet, to induce an
Italian FrameNet lexicon with 15,000 entries.

To create MapNet, Tonelli and Pianta (2009)
align FrameNet senses with WordNet synsets by
exploiting the textual similarity of their glosses.
The similarity measure is based on stem overlap of
the candidates’ glosses expanded by WordNet do-
mains, the WordNet synset, and the set of senses
for a FrameNet frame. In Tonelli and Pighin
(2009), they use these features to train an SVM-
classifier to identify valid alignments and report
an F1-score of 0.66 on a manually annotated gold
standard. They report 4,265 new English senses
and 6,429 new Italian senses, which were derived
via MultiWordNet.

ExtendedWordFramenet (Laparra and Rigau,
2009; Laparra and Rigau, 2010) is also based
on the alignment of FrameNet senses to Word-

Net synsets. The goal is the multilingual cover-
age extension of FrameNet, which is achieved by
linking WordNet to wordnets in other languages
(Spanish, Italian, Basque, and Catalan) in the Mul-
tilingual Central Repository. For each language,
they add more then 10,000 senses to FrameNet.
They rely on a knowledge-based word sense dis-
ambiguation algorithm to establish the alignment
and report F1=0.75 on a gold standard based on
Tonelli and Pighin (2009).

Tonelli and Giuliano (2009) align FrameNet
senses to Wikipedia entries with the goal to ex-
tract word senses and example sentences in Ital-
ian. Based on Wikipedia, this alignment is re-
stricted to nouns. Subsequent work on Wikipedia
and FrameNet follows a different path and tries to
enhance the modeling of selectional preferences
for FrameNet predicates (Tonelli et al., 2012).

Finally, there have been suggestions to com-
bine the corpus-based and the resource-based ap-
proaches: Borin et al. (2012) do this for Finnish
and Swedish. They prove the feasibility of
their approach by creating a preliminary Finnish
FrameNet with 2,694 senses.

Mouton et al. (2010) directly exploit the trans-
lations in the English and French Wiktionary edi-
tions to extend the French FrameNet. They match
the FrameNet senses to Wiktionary lexical en-
tries, thus encountering the problem of polysemy
in the target language. To solve this, they de-
fine a set of filters that control how target lemmas
are distributed over frames, increasing precision at
the expense of recall (P=0.74, R=0.3, F1=0.42).
While their approach is in theory applicable to
other languages, our approach goes beyond this
by laying the ground for simultaneous FrameNet
extension in multiple languages via FNWKxx.

4.2 Wiktionary Sense Alignments

Collaboratively created resources have become
popular for sense alignments for NLP, start-
ing with the alignment between WordNet and
Wikipedia (Ruiz-Casado et al., 2005; Ponzetto
and Navigli, 2009). Wiktionary has been subject
to few alignment efforts: de Melo and Weikum
(2009) integrate information from Wiktionary into
Universal WordNet. Meyer and Gurevych (2011)
map WordNet synsets to Wiktionary senses and
show their complementary domain coverage.
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5 FrameNet – Wiktionary Alignment

5.1 Alignment Technique

We follow the state-of-the-art sense alignment
technique introduced by Niemann and Gurevych
(2011). They align senses in WordNet to
Wikipedia entries in a supervised setting using se-
mantic similarity measures.

One reason to use their method was that it al-
lows zero alignments or one-to-many alignments.
This is crucial for obtaining a high-quality align-
ment of heterogeneous resources, such as the pre-
sented one, because their sense granularity and
coverage can diverge a lot.

The alignment algorithm consists of two steps.
In the candidate extraction step, we iterate over all
FrameNet senses and match them with all senses
from Wiktionary which have the same lemma and
thus are likely to describe the same sense.

This step yields a set of candidate sense pairs
Call. In the classification step, a similarity score
between the textual information associated with
the senses in a candidate pair (e.g., their gloss) is
computed and a threshold-based classifier decides
for each pair on valid alignments.

Niemann and Gurevych (2011) combine two
different types of similarity (i) cosine similarity
on bag-of-words vectors (COS) and (ii) a person-
alized PageRank-based similarity measure (PPR).
The PPR measure (Agirre and Soroa, 2009) maps
the glosses of the two senses to a semantic vec-
tor space spanned up by WordNet synsets and then
compares them using the chi-square measure.

The semantic vectors ppr are computed us-
ing the personalized PageRank algorithm on the
WordNet graph. They determine the important
nodes in the graph as the nodes that a random
walker following the edges visits most frequently:

ppr = cMppr+ (1− c)vppr, (1)

where M is a transition probability matrix be-
tween the n WordNet synsets, c is a damping fac-
tor, and vppr is a vector of size n representing
the probability of jumping to the node i associated
with each vi. For personalized PageRank, vppr is
initialized in a particular way: the initial weight is
distributed equally over the m vector components
(i.e., synsets) associated with a word in the sense
gloss, other components receive a 0 value.

For each similarity measure, Niemann and
Gurevych (2011) determine a threshold (tppr and

tcos) independently on a manually annotated gold
standard. The final alignment decision is the con-
junction of two decision functions:

a(ss, st) =

PPR(ss, st) > tppr& COS(ss, st) > tcos.
(2)

We differ from Niemann and Gurevych (2011) in
that we use a joint training setup which determines
tppr and tcos to optimize classification performance
directly (as proposed in Gurevych et al. (2012)):

(tppr, tcos) = argmax(tppr,tcos)F1(a), (3)

where F1 is the maximized evaluation score and a
is the decision function in equation (2).

5.2 Candidate Extraction
To compile the candidate set, we paired senses
from both resources with identical lemma-POS
combinations. FrameNet senses are defined by a
lemma, a gloss, and a frame. Wiktionary senses
are defined by a lemma and a gloss. For the
FrameNet sense Activity finish of the verb com-
plete, we find two candidate senses in Wiktionary
(to finish and to make whole). There are on av-
erage 3.7 candidates per FrameNet sense. The full
candidate setCall contains over 44,000 sense pairs
and covers 97% of the 11,942 FrameNet senses.

5.3 Gold Standard Creation
For the gold standard, we sampled 2,900 candidate
pairs from Call. The properties of the gold stan-
dard mirror the properties of Call: the sampling
preserved the distribution of POS in Call (around
40% verbs and nouns, and 12% adjectives) and
the average numbers of candidates per FrameNet
sense. This ensures that highly polysemous words
as well as words with few senses are selected.

Two human raters annotated the sense pairs
based on their glosses. The annotation task con-
sisted in a two-class annotation: Do the presented
senses have same meaning - (YES/NO). The raters
received detailed guidelines and were trained on
around 100 sense pairs drawn from the sample.

We computed Cohen’s κ to measure the inter-
rater agreement between the two raters. It is
κ=0.72 on the full set, which is considered accept-
able according to Artstein and Poesio (2008). An
additional expert annotator disambiguated ties.

For comparison: Meyer and Gurevych (2011)
report κ=0.74 for their WordNet – Wiktionary
gold standard, and Niemann and Gurevych (2011)
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adj noun verb all

κ .8 .77 .65 .72

Table 1: Inter-rater agreement.

κ=0.87 for their WordNet – Wikipedia gold stan-
dard. These gold standards only consist of nouns,
which appear to be an easier annotation task than
verb senses. This is supported by our analysis of
the agreement by POS (see Table 1): the agree-
ment on nouns and adjectives lies between the two
agreement scores previously reported on nouns.
Thus our annotation is of similar quality. Only
the agreement on verbs is slightly below the ac-
ceptability threshold of 0.67 (Artstein and Poesio,
2008). The verb senses are very fine-grained and
thus present a difficult alignment task. Therefore,
we had an expert annotator correct the verbal part
of the gold standard set. After removing the train-
ing set for the raters, the final gold standard con-
tains 2,789 sense pairs. 28% of these are aligned.

5.4 Alignment Experiments
We determined the best setting for the alignment
of FrameNet and Wiktionary in a ten-fold cross-
validation on the gold standard.

Besides the parameters for the computation of
the PPR vectors (we used the publicly available
UKB tool by Agirre and Soroa (2009)), the main
parameter in the experiments is the textual in-
formation that is used to represent the senses.
For FrameNet senses, we used the lemma-pos,
sense gloss, example sentences, frame name and
frame definition as textual features; for Wiktionary
senses, we considered lemma-pos, sense gloss, ex-
ample sentences, hyponyms and synonyms.

We computed the similarity scores on tok-
enized, lemmatized and stop-word-filtered texts.

First, we evaluated models for COS and PPR
independently based on various combinations of
the textual features listed above. We then used
the parameter setting of the best-performing sin-
gle models to train the model that jointly optimizes
the thresholds for PPR and COS (see eqn. (5)). In
Table 2, we report on the results of the best single
models and the best joint model.

For the evaluation, we compute precision P, re-
call R and F1 on the positive class (aligned=true),
e.g., precision P is the number of pairs correctly
aligned divided by all aligned pairs.

We achieved the highest precision and F1-score

Evaluation verb noun adj all

P Random-1 BL 0.503 0.559 0.661 0.557
WKT-1 BL 0.620 0.664 0.725 0.66
BEST COS 0.639 0.778 0.706 0.703
BEST PPR 0.66 0.754 0.729 0.713
BEST JOINT 0.677 0.766 0.742 0.728

R Random-1 BL 0.471 0.546 0.683 0.540
WKT-1 BL 0.581 0.65 0.75 0.64
BEST COS 0.658 0.758 0.754 0.715
BEST PPR 0.666 0.724 0.754 0.699
BEST JOINT 0.683 0.783 0.83 0.75

F1 Random-1 BL 0.487 0.552 0.672 0.549
WKT-1 BL 0.60 0.657 0.737 0.65
BEST COS 0.648 0.768 0.729 0.709
BEST PPR 0.663 0.739 0.741 0.706
BEST JOINT 0.68 0.775 0.784 0.739
UBound 0.735 0.834 0.864 0.797

Table 2: Alignment performance by POS.

for COS using all available features, but excluding
FrameNet example sentences because they intro-
duce too much noise. Adding the frame name and
frame definition to the often short glosses provides
a richer sense representation for the COS measure.

The best-performing PPR configuration uses
sense gloss and lemma-pos. For the joint model,
we employed the best single PPR configuration,
and a COS configuration that uses sense gloss ex-
tended by Wiktionary hypernyms, synonyms and
FrameNet frame name and frame definition, to
achieve the highest score, an F1-score of 0.739.

5.5 Gold Standard Evaluation
We compared the performance of our alignment
on the gold standard to a baseline which randomly
selects one target sense from the candidate set of
each source sense (Random-1). We also consider
the more competitive Wiktionary first sense base-
line (WKT-1). It is guided by the heuristic that
more frequent senses are listed first in Wiktionary
(Meyer and Gurevych, 2010). It is a stronger base-
line with an F1-score of 0.65 (see Table 2).

To derive the upper bound for the alignment per-
formance (UBound), we computed the F1 score
from the average pairwise F1-score of the annota-
tors according to Hripcsak and Rothschild (2005).

As the evaluation set mirrors the POS distri-
bution in FrameNet and is sufficiently large, un-
like earlier alignments, we can analyze the per-
formance by POS. The BEST JOINT model per-
forms well on nouns, slightly better on adjectives,
and worse on verbs, see Table 2. For the baselines
and the UBound the same applies, with the dif-
ference that adjectives receive even better results
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in comparison. This fits in with the perceived de-
gree of difficulty according to the observed poly-
semy for the POS: for verbs we have many candi-
date sets with two or more candidates, i.e., we ob-
serve higher polysemy, while for nouns and even
stronger for adjectives, many small candidate sets
occur, which stand for an easier alignment de-
cision. This is in line with the reported higher
complexity of lexical resources with respect to
verbs and greater difficulty in alignments and word
sense disambiguation (Laparra and Rigau, 2010).

The performance of BEST JOINT on all POS
is F1=0.73, which is significantly higher than the
WKT-1 baseline (p<0.05 according to McNe-
mar’s test). The performance on nouns (F1=0.775)
is on par with the results reported by Niemann and
Gurevych (2011) for nouns (F1=0.78).

5.6 Error Analysis

The confusion matrix from the evaluation of BEST
JOINT on the gold standard shows 214 false pos-
itives and 191 false negatives. The false nega-
tives suffer from low overlap between the glosses,
which are often quite short (contend - assert),
sometimes circular (sinful - relating to sin). Align-
ing senses with such glosses is difficult for a sys-
tem based on semantic similarity. In about 50% of
the analyzed pairs, highly similar words are used
in the gloss, that we should be able to detect with
second-order representations, for instance by ex-
panding short definitions with the definitions of
the contained words, or via derivational similarity.

A number of false positives occur because the
gold standard was developed in a very fine-grained
manner: distinctions such as causative vs. inchoa-
tive (enlarge: become large vs. enlarge: make
large) were explicitly stressed in the definitions
and thus annotated as different senses by the anno-
tators. This was motivated by the fact that this dis-
tinction is relevant for many frames in FrameNet.
The first meaning of enlarge belongs to the frame
Expansion, the second to Cause expansion. Our
similarity based approach cannot capture such dif-
ferences well.

6 Intermediate Resource FNWKxx

6.1 Statistics

We applied the best system setup to the full can-
didate set of over 44,000 candidates to create the
intermediate resource FNWKxx. The alignment
consists of 12,094 sense pairs. It covers 82% of

fine-grained P coarse-grained P

All POS 0.67 0.78

By POS verb noun adj verb noun adj
0.53 0.73 0.80 0.73 0.82 0.85

Table 3: Post-hoc evaluation (precision P).

the senses in FrameNet and 86% of the frames. It
connects more than 9,800 unique FrameNet senses
with more than 10,000 unique Wiktionary senses,
which shows that both non-alignments and multi-
ple alignments occur for some source senses.

6.2 Post-hoc Evaluation

Our cross-validation approach entails the danger
of over-fitting. In order to verify the quality of
the alignment, we performed a detailed post-hoc
analysis on a sample of 270 aligned sense pairs
randomly drawn from the set of aligned senses.

Because sense granularity was an issue in the
error analysis, we considered two alignment deci-
sions: (a) fine-grained alignment: the two glosses
describe the same sense; (b) coarse-grained align-
ment. The causative/inchoative distinction is,
among others, ignored.

The evaluation results are listed in Table 3. The
precision for the fine-grained (a) is lower than the
allover precision on the gold standard. The evalua-
tion by POS shows that the result for nouns and ad-
jectives is equal or superior to the evaluation result
on the gold standard, while it is worse for verbs.
This shows that over-fitting, if at all, is only a risk
for the verb senses.

The allover precision for (b) exceeds the pre-
cision on the gold standard. Particularly verbs
receive much better results. This shows that
a coarse-grained alignment may suffice for the
FrameNet extension.

This evaluation confirms the quality of the
sense alignment, in particular with respect to the
FrameNet extension. But it also elicits the ques-
tion whether a coarse-grained alignment would
suffice. We will discuss this question below.

6.3 Resource Analysis

For each of the aligned senses in the 12,094
aligned sense pairs, we extracted glosses from
Wiktionary. Because FrameNet glosses are often
very brief, the additional glosses will benefit algo-
rithms such as frame detection for SRL. We also
added 4,352 new example sentences from Wik-
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tionary to FrameNet.
We can extract 2,151 new lemma-POS for

FrameNet frames from the synonyms of the
aligned senses in Wiktionary. We also ex-
tract other related lemma-POS, for instance 487
antonyms, 126 hyponyms, and 19 hypernyms.

This step establishes Wiktionary as an interlin-
gual connection between FrameNet and a large
number of languages, including low-resource
ones: via Wiktionary, we connect FrameNet
senses to translations in 283 languages, e.g., we
translate the sense of the verb complete associ-
ated with the frame Activity Finish to the German
colloquial fertigmachen, the Spanish terminar, the
Turkish tamamlamak, and 19 other languages.

For 36 languages, we can extract more than
1,000 translations each, among them low-resource
languages such as Telugu, Swahili, or Kurdish.
The languages with most translations are: Finnish
(9,333), Russian (7,790), and German (6,871).
The number of Finnish translations is more than
three times larger than the preliminary Finnish
FrameNet by Borin et al. (2012). Likewise, we
get three times the number of German lemma-POS
than provided by the SALSA corpus.

7 Translation Disambiguation

7.1 Disambiguation Method

FNWKxx initially does not provide lexical-
semantic information for the German translations:
the translations link to a lemma in the German
Wiktionary, not a target sense. In order to inte-
grate the information attached to a German Wik-
tionary sense, e.g., the gloss, into our resource, the
lemmas need to be disambiguated.

We use the sense-disambiguated Wiktionary re-
sulting from a recently published approach for
the disambiguation of relations and translations in
Wiktionary (Meyer and Gurevych, 2012a) to cre-
ate our new bilingual (German-English) FrameNet
lexicon FNWKde.

Their approach combines information on the
source sense and all potential target senses in order
to determine the best target sense in a rule-based
disambiguation strategy. The information is en-
coded as binary features, which are ordered in a
back-off hierarchy: if the first feature applies, the
target sense is selected, otherwise the second fea-
ture is considered, and so forth.

The most important features are: definition
overlap between source and automatically trans-

SALSA2 P&L05 FNWKde

Type Corpus Corpus Lexicon
Creation Manual Automatic Automatic

Frames(+p) 266(907) 468 755
Senses 1,813 9,851 5,897
Examples 24,184 1,672,551 6,933
Glosses - - 5,897

Table 4: Frame-semantic resources for German.

lated target definition; occurrence of the source
lemma in the target definition; shared linguistic
information (e.g., same register); inverse transla-
tion relations (i.e., the source lemma occurs on the
translation list of the target sense); relation over-
lap; Lesk measure between original and translated
glosses in source and target language; and finally,
backing off to the first target sense.

For the gold standard evaluation of the approach
we refer to Meyer and Gurevych (2012a): their
system obtained an F1-score of 0.67 for the task of
disambiguating translations from English to Ger-
man, and an F1-score of 0.79 for the disambigua-
tion of English sense relations. We use the latter to
identify target senses of synonyms in FNWKxx.

8 Resource FNWKde

8.1 Statistics
Table 4 gives an overview of FNWKde. It con-
tains 5,897 pairs of German Wiktionary senses
and FrameNet senses, i.e., 86% of the translations
could be disambiguated. Each sense has a gloss,
and there are 6,933 example sentences.

Based on the relation disambiguation and in-
ference of new relations by Meyer and Gurevych
(2012a), we can also disambiguate synonyms in
the English Wiktionary. This leads to a further ex-
tension of the English FrameNet summarized in
Table 5. The number of Wiktionary senses aligned
to FrameNet senses is increased by 50%.

We also provide results for other sense relations,
e.g., antonyms. We will discuss whether and how
they can be integrated as FrameNet senses in our
resource below.

8.2 Post-hoc Evaluation
Because the errors of two subsequently applied au-
tomatic methods can multiply, we provide a post-
hoc evaluation of the results.

To evaluate the quality of the German FrameNet
lexicon, we collected the FrameNet senses for a
list of 15 frames that were sampled by Padó and
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# English senses # English senses
Relation per FrameNet sense per frame

SYNONYM 17,713 13,288
HYPONYM 4,818 3,347
HYPERNYM 6,369 3,961
ANTONYM 9,626 6,737

Table 5: Statistics after relation disambiguation.

Lapata (2005) according to three frequency bands
on a large corpus. There are 115 senses associated
with these frames in our resource. In a manual
evaluation of these 115 senses, we find that 67%
were assigned correctly to their frames. This is
higher than expected, considering the errors from
the applied methods add up.

Further analysis revealed that both resource cre-
ation steps contribute equally to the 39 errors. For
17 of the evaluated sense pairs, redundancy con-
firms their quality: they were obtained indepen-
dently by two or three alignment-and-translation
paths and do not contain alignment errors.

8.3 Comparison
We compare FNWKde to two German frame-
semantic resources, the manually annotated
SALSA corpus (Burchardt et al., 2006) and a
resource from Padó and Lapata (2005), hence-
forth P&L05. Note that both resources are frame-
annotated corpora, while FNWKde is a FrameNet-
like lexicon and contains information complemen-
tary to the corpora. The different properties of the
resources are contrasted in Table 4.

The automatically developed resources, includ-
ing FNWKde, provide a larger number of senses
than SALSA. The annotated corpora contain a
large number of examples, but they do not pro-
vide any glosses, which are useful for frame detec-
tion in SRL, nor do they contain any other lexical-
semantic information.

FNWKde covers a larger number of FrameNet
frames than the other two resources. 266 of the
907 frames in SALSA are connected to original
FrameNet frames, the others are newly-developed
proto-frames p (shown in parentheses in Table 4).

Table 6 describes the proportion of the over-
lapping frames and senses3 to the respective re-
sources. The numbers on frame overlap show
that our resource covers the frames in the other

3Note that the senses in SALSA and P&L05 are defined
by frame, lemma, and POS. In Table 6, FNWKde senses
with identical frame, lemma, and POS, but different gloss are
therefore conflated to one sense.

Resource r % of r % of FNWKde

Frame SALSA 2 89% 31%
P&L05 90% 55%

Sense SALSA 2 15% 5%
P&L05 10% 19%

Table 6: Overlap of FNWKde with resource r.

resources well (89% and 90% coverage respec-
tively), and that it adds frames not covered in the
other resources: P&L05 only covers 55% of the
frames in FNWKde. The sense overlap shows
that the resources have senses in common, which
confirms the quality of the automatically devel-
oped resources, but they also complement each
other. FNWKde, for instance, adds 3,041 senses
to P&L05.

9 Discussion: a Multilingual FrameNet

FNWKxx builds an excellent starting point to cre-
ate FrameNet lexicons in various languages: the
translation counts, for instance 6,871 for German,
compare favorably to FrameNet 1.5, which con-
tains 9,700 English lemma-POS.

To create those FrameNet lexicons, the transla-
tion disambiguation approach used for FNWKde
(step 2 in Fig. 1) needs to be adapted to other lan-
guages. The approach is in theory applicable to
any language, but there are some obstacles: first,
it relies on the availability of the target sense in
the target language Wiktionary. For many of the
top 30 languages in FNWKxx, the Wiktionary edi-
tions seem sufficiently large to provide targets for
translation disambiguation,4 and they are contin-
uously extended. Second, our approach requires
access to the target language Wiktionary, but the
data format across Wiktionary language editions
is not standardized. Third, the approach requires
machine translation into the target language. For
languages, where such a tool is not available, we
could default to the first-sense-heuristic, or en-
courage the Wiktionary community to link the
translations to their target Wiktionary senses in-
spired by Sajous et al. (2010).

Another issue that applies to all automatic
(and also manual) approaches of cross-lingual
FrameNet extension is the restricted cross-
language applicability of frames. Boas (2005)
reports that, while many frames are largely

4see overview table at http://www.ukp.
tu-darmstadt.de/fnwkde/.
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language-independent, other frames receive
culture-specific or language-specific interpreta-
tions, for example calendars or holidays. Also,
fine-grained sense and frame distinctions may be
more relevant in one language than in another
language. Such granularity differences also led
to the addition of proto-frames in SALSA 2 (Re-
hbein et al., 2012). Therefore, manual correction
or extension of a multilingual FrameNet based on
FNWKde may be desired for specific applications.
In this case, the automatically created FrameNets
in other languages are good starting points that
can be quickly and efficiently compiled.

The quality of the multilingual FNWKxx de-
pends on i) the translations in the interlingual con-
nection Wiktionary, which are manually created,
controlled by the community, and therefore reli-
able, and ii) on the FrameNet–Wiktionary align-
ment. Therefore, we evaluated our sense align-
ment method in detail. The alignment reaches
state-of-the-art results, and the analysis shows that
the method is particularly fit for a coarse-grained
alignment. We however find lower performance
for verbs in a fine-grained setting. We argue
that an improved alignment algorithm, for instance
taking subcategorization information into account,
can identify the fine-grained distinctions.

The post-hoc analysis raised the question of
FrameNet frame granularity. Do separate frames
exist for causative/inchoative alternations (as Be-
ing dry and Cause to be dry for to dry), or do they
belong to the same frame (Make noise for to creak
and to creak something)? For the coarse-grained
frames, fine-grained decisions can be merged in a
second classification step. Alternatively, we could
map Wiktionary senses directly to frames, and in-
clude features that cover the granularity distinc-
tions, e.g., whether the existing senses of a frame
show the semantic alternation.

We could use the same approach to assign
senses to a frame which are derived via sense
relations other than synonymy, i.e., for linking
antonyms or hyponyms to a frame. Some frames
do cover antonymous predicates, others do not.

Based on Wiktionary, our approach suffers less
from the disadvantages of previous resource-based
work, i.e., the constraints of expert-built resources
and the lack of lexical information in Wikipedia.
Unlike corpus-based approaches for cross-lingual
FrameNet extension, our approach does not pro-
vide frame-semantic annotations for the example

sentences. Our advantage is that we create a
FrameNet lexicon with lexical-semantic informa-
tion in the target language. Example annotations
can be additionally obtained via cross-lingual an-
notation projection (Padó and Lapata, 2009), and
the lexical information in FNWKde can be used to
guide this process.

10 Conclusion

The resource-coverage bottleneck for frame-
semantic resources is particularly severe for less
well-resourced languages. We present a simple,
but effective approach to solve this problem using
the English Wiktionary as an interlingual repre-
sentation and subsequent translation disambigua-
tion in the target language. We validate our ap-
proach on the language pair English-German and
discuss the options and requirements for creating
FrameNets in further languages.

As part of this work, we created the first sense
alignment between FrameNet and the English
Wiktionary. The resulting resource FNWKxx con-
nects FrameNet senses to over 280 languages. The
bilingual English-German FrameNet lexicon FN-
WKde competes with manually created resources,
as shown by a comparison to the SALSA corpus.

We make both resources publicly available in
the standardized format UBY-LMF (Eckle-Kohler
et al., 2012), which supports automatic processing
of the resources via the UBY Java API, see
http://www.ukp.tu-darmstadt.de/
fnwkde/.

We also extended FrameNet by several thou-
sand new English senses from Wiktionary which
are provided as part of FNWKde. In our future
work, we will evaluate the benefits of the extracted
information to SRL.
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Sebastian Padó and Mirella Lapata. 2005. Cross-
lingual bootstrapping of semantic lexicons: the case
of FrameNet. In Proceedings of the 20th national
conference on Artificial intelligence - Volume 3,
AAAI’05, pages 1087–1092, Pittsburgh, PA, USA.
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Abstract

Parallel text is the fuel that drives modern
machine translation systems. The Web is a
comprehensive source of preexisting par-
allel text, but crawling the entire web is
impossible for all but the largest compa-
nies. We bring web-scale parallel text to
the masses by mining the Common Crawl,
a public Web crawl hosted on Amazon’s
Elastic Cloud. Starting from nothing more
than a set of common two-letter language
codes, our open-source extension of the
STRAND algorithm mined 32 terabytes of
the crawl in just under a day, at a cost of
about $500. Our large-scale experiment
uncovers large amounts of parallel text in
dozens of language pairs across a variety
of domains and genres, some previously
unavailable in curated datasets. Even with
minimal cleaning and filtering, the result-
ing data boosts translation performance
across the board for five different language
pairs in the news domain, and on open do-
main test sets we see improvements of up
to 5 BLEU. We make our code and data
available for other researchers seeking to
mine this rich new data resource.1

1 Introduction

A key bottleneck in porting statistical machine
translation (SMT) technology to new languages
and domains is the lack of readily available paral-
lel corpora beyond curated datasets. For a handful
of language pairs, large amounts of parallel data

∗This research was conducted while Chris Callison-
Burch was at Johns Hopkins University.

1github.com/jrs026/CommonCrawlMiner

are readily available, ordering in the hundreds of
millions of words for Chinese-English and Arabic-
English, and in tens of millions of words for many
European languages (Koehn, 2005). In each case,
much of this data consists of government and news
text. However, for most language pairs and do-
mains there is little to no curated parallel data
available. Hence discovery of parallel data is an
important first step for translation between most
of the world’s languages.

The Web is an important source of parallel
text. Many websites are available in multiple
languages, and unlike other potential sources—
such as multilingual news feeds (Munteanu and
Marcu, 2005) or Wikipedia (Smith et al., 2010)—
it is common to find document pairs that are di-
rect translations of one another. This natural par-
allelism simplifies the mining task, since few re-
sources or existing corpora are needed at the outset
to bootstrap the extraction process.

Parallel text mining from the Web was origi-
nally explored by individuals or small groups of
academic researchers using search engines (Nie
et al., 1999; Chen and Nie, 2000; Resnik, 1999;
Resnik and Smith, 2003). However, anything
more sophisticated generally requires direct access
to web-crawled documents themselves along with
the computing power to process them. For most
researchers, this is prohibitively expensive. As a
consequence, web-mined parallel text has become
the exclusive purview of large companies with the
computational resources to crawl, store, and pro-
cess the entire Web.

To put web-mined parallel text back in the
hands of individual researchers, we mine parallel
text from the Common Crawl, a regularly updated
81-terabyte snapshot of the public internet hosted
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on Amazon’s Elastic Cloud (EC2) service.2 Us-
ing the Common Crawl completely removes the
bottleneck of web crawling, and makes it possi-
ble to run algorithms on a substantial portion of
the web at very low cost. Starting from nothing
other than a set of language codes, our extension
of the STRAND algorithm (Resnik and Smith,
2003) identifies potentially parallel documents us-
ing cues from URLs and document content (§2).
We conduct an extensive empirical exploration of
the web-mined data, demonstrating coverage in
a wide variety of languages and domains (§3).
Even without extensive pre-processing, the data
improves translation performance on strong base-
line news translation systems in five different lan-
guage pairs (§4). On general domain and speech
translation tasks where test conditions substan-
tially differ from standard government and news
training text, web-mined training data improves
performance substantially, resulting in improve-
ments of up to 1.5 BLEU on standard test sets, and
5 BLEU on test sets outside of the news domain.

2 Mining the Common Crawl

The Common Crawl corpus is hosted on Ama-
zon’s Simple Storage Service (S3). It can be
downloaded to a local cluster, but the transfer cost
is prohibitive at roughly 10 cents per gigabyte,
making the total over $8000 for the full dataset.3

However, it is unnecessary to obtain a copy of the
data since it can be accessed freely from Amazon’s
Elastic Compute Cloud (EC2) or Elastic MapRe-
duce (EMR) services. In our pipeline, we per-
form the first step of identifying candidate docu-
ment pairs using Amazon EMR, download the re-
sulting document pairs, and perform the remain-
ing steps on our local cluster. We chose EMR be-
cause our candidate matching strategy fit naturally
into the Map-Reduce framework (Dean and Ghe-
mawat, 2004).

Our system is based on the STRAND algorithm
(Resnik and Smith, 2003):

1. Candidate pair selection: Retrieve candidate
document pairs from the CommonCrawl cor-
pus.

2. Structural Filtering:

(a) Convert the HTML of each document
2commoncrawl.org
3http://aws.amazon.com/s3/pricing/

into a sequence of start tags, end tags,
and text chunks.

(b) Align the linearized HTML of candidate
document pairs.

(c) Decide whether to accept or reject each
pair based on features of the alignment.

3. Segmentation: For each text chunk, perform
sentence and word segmentation.

4. Sentence Alignment: For each aligned pair of
text chunks, perform the sentence alignment
method of Gale and Church (1993).

5. Sentence Filtering: Remove sentences that
appear to be boilerplate.

Candidate Pair Selection We adopt a strategy
similar to that of Resnik and Smith (2003) for find-
ing candidate parallel documents, adapted to the
parallel architecture of Map-Reduce.

The mapper operates on each website entry in
the CommonCrawl data. It scans the URL string
for some indicator of its language. Specifically,
we check for:

1. Two/three letter language codes (ISO-639).

2. Language names in English and in the lan-
guage of origin.

If either is present in a URL and surrounded by
non-alphanumeric characters, the URL is identi-
fied as a potential match and the mapper outputs
a key value pair in which the key is the original
URL with the matching string replaced by *, and
the value is the original URL, language name, and
full HTML of the page. For example, if we en-
counter the URL www.website.com/fr/, we
output the following.

• Key: www.website.com/*/

• Value: www.website.com/fr/, French,
(full website entry)

The reducer then receives all websites mapped
to the same “language independent” URL. If two
or more websites are associated with the same key,
the reducer will output all associated values, as
long as they are not in the same language, as de-
termined by the language identifier in the URL.

This URL-based matching is a simple and in-
expensive solution to the problem of finding can-
didate document pairs. The mapper will discard
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most, and neither the mapper nor the reducer do
anything with the HTML of the documents aside
from reading and writing them. This approach is
very simple and likely misses many good potential
candidates, but has the advantage that it requires
no information other than a set of language codes,
and runs in time roughly linear in the size of the
dataset.

Structural Filtering A major component of the
STRAND system is the alignment of HTML docu-
ments. This alignment is used to determine which
document pairs are actually parallel, and if they
are, to align pairs of text blocks within the docu-
ments.

The first step of structural filtering is to lin-
earize the HTML. This means converting its DOM
tree into a sequence of start tags, end tags, and
chunks of text. Some tags (those usually found
within text, such as “font” and “a”) are ignored
during this step. Next, the tag/chunk sequences
are aligned using dynamic programming. The ob-
jective of the alignment is to maximize the number
of matching items.

Given this alignment, Resnik and Smith (2003)
define a small set of features which indicate the
alignment quality. They annotated a set of docu-
ment pairs as parallel or non-parallel, and trained
a classifier on this data. We also annotated 101
Spanish-English document pairs in this way and
trained a maximum entropy classifier. However,
even when using the best performing subset of fea-
tures, the classifier only performed as well as a
naive classifier which labeled every document pair
as parallel, in both accuracy and F1. For this rea-
son, we excluded the classifier from our pipeline.
The strong performance of the naive baseline was
likely due to the unbalanced nature of the anno-
tated data— 80% of the document pairs that we
annotated were parallel.

Segmentation The text chunks from the previ-
ous step may contain several sentences, so before
the sentence alignment step we must perform sen-
tence segmentation. We use the Punkt sentence
splitter from NLTK (Loper and Bird, 2002) to
perform both sentence and word segmentation on
each text chunk.

Sentence Alignment For each aligned text
chunk pair, we perform sentence alignment using
the algorithm of Gale and Church (1993).

Sentence Filtering Since we do not perform any
boilerplate removal in earlier steps, there are many
sentence pairs produced by the pipeline which
contain menu items or other bits of text which are
not useful to an SMT system. We avoid perform-
ing any complex boilerplate removal and only re-
move segment pairs where either the source and
target text are identical, or where the source or
target segments appear more than once in the ex-
tracted corpus.

3 Analysis of the Common Crawl Data

We ran our algorithm on the 2009-2010 version
of the crawl, consisting of 32.3 terabytes of data.
Since the full dataset is hosted on EC2, the only
cost to us is CPU time charged by Amazon, which
came to a total of about $400, and data stor-
age/transfer costs for our output, which came to
roughly $100. For practical reasons we split the
run into seven subsets, on which the full algo-
rithm was run independently. This is different
from running a single Map-Reduce job over the
entire dataset, since websites in different subsets
of the data cannot be matched. However, since
the data is stored as it is crawled, it is likely that
matching websites will be found in the same split
of the data. Table 1 shows the amount of raw par-
allel data obtained for a large selection of language
pairs.

As far as we know, ours is the first system built
to mine parallel text from the Common Crawl.
Since the resource is new, we wanted to under-
stand the quantity, quality, and type of data that
we are likely to obtain from it. To this end, we
conducted a number of experiments to measure
these features. Since our mining heuristics are
very simple, these results can be construed as a
lower bound on what is actually possible.

3.1 Recall Estimates

Our first question is about recall: of all the pos-
sible parallel text that is actually available on the
Web, how much does our algorithm actually find
in the Common Crawl? Although this question
is difficult to answer precisely, we can estimate
an answer by comparing our mined URLs against
a large collection of previously mined URLs that
were found using targeted techniques: those in the
French-English Gigaword corpus (Callison-Burch
et al., 2011).

We found that 45% of the URL pairs would
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French German Spanish Russian Japanese Chinese
Segments 10.2M 7.50M 5.67M 3.58M 1.70M 1.42M

Source Tokens 128M 79.9M 71.5M 34.7M 9.91M 8.14M
Target Tokens 118M 87.5M 67.6M 36.7M 19.1M 14.8M

Arabic Bulgarian Czech Korean Tamil Urdu
Segments 1.21M 909K 848K 756K 116K 52.1K

Source Tokens 13.1M 8.48M 7.42M 6.56M 1.01M 734K
Target Tokens 13.5M 8.61M 8.20M 7.58M 996K 685K

Bengali Farsi Telugu Somali Kannada Pashto
Segments 59.9K 44.2K 50.6K 52.6K 34.5K 28.0K

Source Tokens 573K 477K 336K 318K 305K 208K
Target Tokens 537K 459K 358K 325K 297K 218K

Table 1: The amount of parallel data mined from CommonCrawl for each language paired with English.
Source tokens are counts of the foreign language tokens, and target tokens are counts of the English
language tokens.

have been discovered by our heuristics, though we
actually only find 3.6% of these URLs in our out-
put.4 If we had included “f” and “e” as identi-
fiers for French and English respectively, coverage
of the URL pairs would increase to 74%. How-
ever, we chose not to include single letter identi-
fiers in our experiments due to the high number of
false positives they generated in preliminary ex-
periments.

3.2 Precision Estimates

Since our algorithms rely on cues that are mostly
external to the contents of the extracted data
and have no knowledge of actual languages, we
wanted to evaluate the precision of our algorithm:
how much of the mined data actually consists of
parallel sentences?

To measure this, we conducted a manual anal-
ysis of 200 randomly selected sentence pairs for
each of three language pairs. The texts are het-
erogeneous, covering several topical domains like
tourism, advertising, technical specifications, fi-
nances, e-commerce and medicine. For German-
English, 78% of the extracted data represent per-
fect translations, 4% are paraphrases of each other
(convey a similar meaning, but cannot be used
for SMT training) and 18% represent misalign-
ments. Furthermore, 22% of the true positives
are potentially machine translations (judging by
the quality), whereas in 13% of the cases one of
the sentences contains additional content not ex-

4The difference is likely due to the coverage of the Com-
monCrawl corpus.

pressed in the other. As for the false positives,
13.5% of them have either the source or target
sentence in the wrong language, and the remain-
ing ones representing failures in the alignment
process. Across three languages, our inspection
revealed that around 80% of randomly sampled
data appeared to contain good translations (Table
2). Although this analysis suggests that language
identification and SMT output detection (Venu-
gopal et al., 2011) may be useful additions to the
pipeline, we regard this as reasonably high preci-
sion for our simple algorithm.

Language Precision
Spanish 82%
French 81%
German 78%

Table 2: Manual evaluation of precision (by sen-
tence pair) on the extracted parallel data for Span-
ish, French, and German (paired with English).

In addition to the manual evaluation of preci-
sion, we applied language identification to our
extracted parallel data for several additional lan-
guages. We used the “langid.py” tool (Lui and
Baldwin, 2012) at the segment level, and report the
percentage of sentence pairs where both sentences
were recognized as the correct language. Table 3
shows our results. Comparing against our man-
ual evaluation from Table 2, it appears that many
sentence pairs are being incorrectly judged as non-
parallel. This is likely because language identifi-
cation tends to perform poorly on short segments.
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French German Spanish Arabic
63% 61% 58% 51%

Chinese Japanese Korean Czech
50% 48% 48% 47%

Russian Urdu Bengali Tamil
44% 31% 14% 12%

Kannada Telugu Kurdish
12% 6.3% 2.9%

Table 3: Automatic evaluation of precision
through language identification for several lan-
guages paired with English.

3.3 Domain Name and Topic Analysis

Although the above measures tell us something
about how well our algorithms perform in aggre-
gate for specific language pairs, we also wondered
about the actual contents of the data. A major
difficulty in applying SMT even on languages for
which we have significant quantities of parallel
text is that most of that parallel text is in the news
and government domains. When applied to other
genres, such systems are notoriously brittle. What
kind of genres are represented in the Common
Crawl data?

We first looked at the domain names which con-
tributed the most data. Table 4 gives the top five
domains by the number of tokens. The top two do-
main names are related to travel, and they account
for about 10% of the total data.

We also applied Latent Dirichlet Allocation
(LDA; Blei et al., 2003) to learn a distribution over
latent topics in the extracted data, as this is a pop-
ular exploratory data analysis method. In LDA
a topic is a unigram distribution over words, and
each document is modeled as a distribution over
topics. To create a set of documents from the ex-
tracted CommonCrawl data, we took the English
side of the extracted parallel segments for each
URL in the Spanish-English portion of the data.
This gave us a total of 444, 022 documents. In
our first experiment, we used the MALLET toolkit
(McCallum, 2002) to generate 20 topics, which
are shown in Table 5.

Some of the topics that LDA finds cor-
respond closely with specific domains,
such as topics 1 (blingee.com) and 2
(opensubtitles.org). Several of the topics
correspond to the travel domain. Foreign stop
words appear in a few of the topics. Since our sys-

tem does not include any language identification,
this is not surprising.5 However it does suggest an
avenue for possible improvement.

In our second LDA experiment, we compared
our extracted CommonCrawl data with Europarl.
We created a set of documents from both Com-
monCrawl and Europarl, and again used MAL-
LET to generate 100 topics for this data.6 We then
labeled each document by its most likely topic (as
determined by that topic’s mixture weights), and
counted the number of documents from Europarl
and CommonCrawl for which each topic was most
prominent. While this is very rough, it gives some
idea of where each topic is coming from. Table 6
shows a sample of these topics.

In addition to exploring topics in the datasets,
we also performed additional intrinsic evaluation
at the domain level, choosing top domains for
three language pairs. We specifically classified
sentence pairs as useful or boilerplate (Table 7).
Among our observations, we find that commer-
cial websites tend to contain less boilerplate ma-
terial than encyclopedic websites, and that the ra-
tios tend to be similar across languages in the same
domain.

FR ES DE
www.booking.com 52% 71% 52%
www.hotel.info 34% 44% -

memory-alpha.org 34% 25% 55%

Table 7: Percentage of useful (non-boilerplate)
sentences found by domain and language pair.
hotel.info was not found in our German-
English data.

4 Machine Translation Experiments

For our SMT experiments, we use the Moses
toolkit (Koehn et al., 2007). In these experiments,
a baseline system is trained on an existing parallel
corpus, and the experimental system is trained on
the baseline corpus plus the mined parallel data.
In all experiments we include the target side of the
mined parallel data in the language model, in order
to distinguish whether results are due to influences
from parallel or monolingual data.

5We used MALLET’s stop word removal, but that is only
for English.

6Documents were created from Europarl by taking
“SPEAKER” tags as document boundaries, giving us
208,431 documents total.
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Genre Domain Pages Segments Source Tokens Target Tokens
Total 444K 5.67M 71.5M 67.5M

travel www.booking.com 13.4K 424K 5.23M 5.14M
travel www.hotel.info 9.05K 156K 1.93M 2.13M

government www.fao.org 2.47K 60.4K 1.07M 896K
religious scriptures.lds.org 7.04K 47.2K 889K 960K
political www.amnesty.org 4.83K 38.1K 641K 548K

Table 4: The top five domains from the Spanish-English portion of the data. The domains are ranked by
the combined number of source and target tokens.

Index Most Likely Tokens
1 glitter graphics profile comments share love size girl friends happy blingee cute anime twilight sexy emo

2 subtitles online web users files rar movies prg akas dwls xvid dvdrip avi results download eng cd movie

3 miles hotels city search hotel home page list overview select tokyo discount destinations china japan

4 english language students details skype american university school languages words england british college

5 translation japanese english chinese dictionary french german spanish korean russian italian dutch

6 products services ni system power high software design technology control national applications industry

7 en de el instructions amd hyper riv saab kfreebsd poland user fr pln org wikimedia pl commons fran norway

8 information service travel services contact number time account card site credit company business terms

9 people time life day good years work make god give lot long world book today great year end things

10 show km map hotels de hotel beach spain san italy resort del mexico rome portugal home santa berlin la

11 rotary international world club korea foundation district business year global hong kong president ri

12 hotel reviews stay guest rooms service facilities room smoking submitted customers desk score united hour

13 free site blog views video download page google web nero internet http search news links category tv

14 casino game games play domaine ago days music online poker free video film sports golf live world tags bet

15 water food attribution health mango japan massage medical body baby natural yen commons traditional

16 file system windows server linux installation user files set debian version support program install type

17 united kingdom states america house london street park road city inn paris york st france home canada

18 km show map hotels hotel featured search station museum amsterdam airport centre home city rue germany

19 hotel room location staff good breakfast rooms friendly nice clean great excellent comfortable helpful

20 de la en le el hotel es het del und die il est der les des das du para

Table 5: A list of 20 topics generated using the MALLET toolkit (McCallum, 2002) and their most likely
tokens.

4.1 News Domain Translation

Our first set of experiments are based on systems
built for the 2012 Workshop on Statistical Ma-
chine Translation (WMT) (Callison-Burch et al.,
2012) using all available parallel and monolingual
data for that task, aside from the French-English
Gigaword. In these experiments, we use 5-gram
language models when the target language is En-
glish or German, and 4-gram language models for
French and Spanish. We tune model weights using
minimum error rate training (MERT; Och, 2003)
on the WMT 2008 test data. The results are given
in Table 8. For all language pairs and both test
sets (WMT 2011 and WMT 2012), we show an
improvement of around 0.5 BLEU.

We also included the French-English Gigaword
in separate experiments given in Table 9, and Table
10 compares the sizes of the datasets used. These
results show that even on top of a different, larger
parallel corpus mined from the web, adding Com-
monCrawl data still yields an improvement.

4.2 Open Domain Translation

A substantial appeal of web-mined parallel data
is that it might be suitable to translation of do-
mains other than news, and our topic modeling
analysis (§3.3) suggested that this might indeed be
the case. We therefore performed an additional
set of experiments for Spanish-English, but we
include test sets from outside the news domain.
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Europarl CommonCrawl Most Likely Tokens
9 2975 hair body skin products water massage treatment natural oil weight acid plant

2 4383 river mountain tour park tours de day chile valley ski argentina national peru la

8 10377 ford mercury dealer lincoln amsterdam site call responsible affiliates displayed

7048 675 market services european competition small public companies sector internal

9159 1359 time president people fact make case problem clear good put made years situation

13053 849 commission council european parliament member president states mr agreement

1660 5611 international rights human amnesty government death police court number torture

1617 4577 education training people cultural school students culture young information

Table 6: A sample of topics along with the number of Europarl and CommonCrawl documents where
they are the most likely topic in the mixture. We include topics that are mostly found in Europarl or
CommonCrawl, and some that are somewhat prominent in both.

WMT 11 FR-EN EN-FR ES-EN EN-ES EN-DE
Baseline 30.46 29.96 30.79 32.41 16.12

+Web Data 30.92 30.51 31.05 32.89 16.74
WMT 12 FR-EN EN-FR ES-EN EN-ES EN-DE
Baseline 29.25 27.92 32.80 32.83 16.61

+Web Data 29.82 28.22 33.39 33.41 17.30

Table 8: BLEU scores for several language pairs before and after adding the mined parallel data to
systems trained on data from WMT data.

WMT 11 FR-EN EN-FR
Baseline 30.96 30.69

+Web Data 31.24 31.17
WMT 12 FR-EN EN-FR
Baseline 29.88 28.50

+Web Data 30.08 28.76

Table 9: BLEU scores for French-English and
English-French before and after adding the mined
parallel data to systems trained on data from
WMT data including the French-English Giga-
word (Callison-Burch et al., 2011).

For these experiments, we also include training
data mined from Wikipedia using a simplified ver-
sion of the sentence aligner described by Smith
et al. (2010), in order to determine how the ef-
fect of such data compares with the effect of web-
mined data. The baseline system was trained using
only the Europarl corpus (Koehn, 2005) as par-
allel data, and all experiments use the same lan-
guage model trained on the target sides of Eu-
roparl, the English side of all linked Spanish-
English Wikipedia articles, and the English side
of the mined CommonCrawl data. We use a 5-
gram language model and tune using MERT (Och,

Corpus EN-FR EN-ES EN-DE
News Commentary 2.99M 3.43M 3.39M

Europarl 50.3M 49.2M 47.9M
United Nations 316M 281M -

FR-EN Gigaword 668M - -
CommonCrawl 121M 68.8M 88.4M

Table 10: The size (in English tokens) of the train-
ing corpora used in the SMT experiments from Ta-
bles 8 and 9 for each language pair.

2003) on the WMT 2009 test set.
Unfortunately, it is difficult to obtain meaning-

ful results on some open domain test sets such as
the Wikipedia dataset used by Smith et al. (2010).
Wikipedia copied across the public internet, and
we did not have a simple way to filter such data
from our mined datasets.

We therefore considered two tests that were
less likely to be problematic. The Tatoeba cor-
pus (Tiedemann, 2009) is a collection of example
sentences translated into many languages by vol-
unteers. The front page of tatoeba.org was
discovered by our URL matching heuristics, but
we excluded any sentence pairs that were found in
the CommonCrawl data from this test set.
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The second dataset is a set of crowdsourced
translation of Spanish speech transcriptions from
the Spanish Fisher corpus.7 As part of a re-
search effort on cross-lingual speech applications,
we obtained English translations of the data using
Amazon Mechanical Turk, following a protocol
similar to one described by Zaidan and Callison-
Burch (2011): we provided clear instructions,
employed several quality control measures, and
obtained redundant translations of the complete
dataset (Lopez et al., 2013). The advantage of
this data for our open domain translation test is
twofold. First, the Fisher dataset consists of con-
versations in various Spanish dialects on a wide
variety of prompted topics. Second, because we
obtained the translations ourselves, we could be
absolutely assured that they did not appear in some
form anywhere on the Web, making it an ideal
blind test.

WMT10 Tatoeba Fisher
Europarl 89/72/46/20 94/75/45/18 87/69/39/13

+Wiki 92/78/52/24 96/80/50/21 91/75/44/15
+Web 96/82/56/27 99/88/58/26 96/83/51/19
+Both 96/84/58/29 99/89/60/27 96/83/52/20

Table 11: n-gram coverage percentages (up to 4-
grams) of the source side of our test sets given our
different parallel training corpora computed at the
type level.

WMT10 Tatoeba Fisher
Europarl 27.21 36.13 46.32

+Wiki 28.03 37.82 49.34
+Web 28.50 41.07 51.13
+Both 28.74 41.12 52.23

Table 12: BLEU scores for Spanish-English be-
fore and after adding the mined parallel data to a
baseline Europarl system.

We used 1000 sentences from each of the
Tatoeba and Fisher datasets as test. For com-
parison, we also test on the WMT 2010 test
set (Callison-Burch et al., 2010). Following
Munteanu and Marcu (2005), we show the n-gram
coverage of each corpus (percentage of n-grams
from the test corpus which are also found in the
training corpora) in Table 11. Table 12 gives
end-to-end results, which show a strong improve-
ment on the WMT test set (1.5 BLEU), and larger

7Linguistic Data Consortium LDC2010T04.

improvements on Tatoeba and Fisher (almost 5
BLEU).

5 Discussion

Web-mined parallel texts have been an exclusive
resource of large companies for several years.
However, when web-mined parallel text is avail-
able to everyone at little or no cost, there will
be much greater potential for groundbreaking re-
search to come from all corners. With the advent
of public services such as Amazon Web Services
and the Common Crawl, this may soon be a re-
ality. As we have shown, it is possible to obtain
parallel text for many language pairs in a variety
of domains very cheaply and quickly, and in suf-
ficient quantity and quality to improve statistical
machine translation systems. However, our effort
has merely scratched the surface of what is pos-
sible with this resource. We will make our code
and data available so that others can build on these
results.

Because our system is so simple, we believe that
our results represent lower bounds on the gains
that should be expected in performance of systems
previously trained only on curated datasets. There
are many possible means through which the sys-
tem could be improved, including more sophisti-
cated techniques for identifying matching URLs,
better alignment, better language identification,
better filtering of data, and better exploitation of
resulting cross-domain datasets. Many of the com-
ponents of our pipeline were basic, leaving consid-
erable room for improvement. For example, the
URL matching strategy could easily be improved
for a given language pair by spending a little time
crafting regular expressions tailored to some ma-
jor websites. Callison-Burch et al. (2011) gathered
almost 1 trillion tokens of French-English parallel
data this way. Another strategy for mining parallel
webpage pairs is to scan the HTML for links to the
same page in another language (Nie et al., 1999).

Other, more sophisticated techniques may also
be possible. Uszkoreit et al. (2010), for ex-
ample, translated all non-English webpages into
English using an existing translation system and
used near-duplicate detection methods to find can-
didate parallel document pairs. Ture and Lin
(2012) had a similar approach for finding paral-
lel Wikipedia documents by using near-duplicate
detection, though they did not need to apply a full
translation system to all non-English documents.
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Instead, they represented documents in bag-of-
words vector space, and projected non-English
document vectors into the English vector space us-
ing the translation probabilities of a word align-
ment model. By comparison, one appeal of our
simple approach is that it requires only a table
of language codes. However, with this system
in place, we could obtain enough parallel data to
bootstrap these more sophisticated approaches.

It is also compelling to consider ways in which
web-mined data obtained from scratch could be
used to bootstrap other mining approaches. For
example, Smith et al. (2010) mine parallel sen-
tences from comparable documents in Wikipedia,
demonstrating substantial gains on open domain
translation. However, their approach required seed
parallel data to learn models used in a classifier.
We imagine a two-step process, first obtaining par-
allel data from the web, followed by comparable
data from sources such as Wikipedia using mod-
els bootstrapped from the web-mined data. Such a
process could be used to build translation systems
for new language pairs in a very short period of
time, hence fulfilling one of the original promises
of SMT.
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Abstract
We consider the problem of using sentence
compression techniques to facilitate query-
focused multi-document summarization. We
present a sentence-compression-based frame-
work for the task, and design a series of
learning-based compression models built on
parse trees. An innovative beam search de-
coder is proposed to efficiently find highly
probable compressions. Under this frame-
work, we show how to integrate various in-
dicative metrics such as linguistic motivation
and query relevance into the compression pro-
cess by deriving a novel formulation of a com-
pression scoring function. Our best model
achieves statistically significant improvement
over the state-of-the-art systems on several
metrics (e.g. 8.0% and 5.4% improvements in
ROUGE-2 respectively) for the DUC 2006 and
2007 summarization task.

1 Introduction

The explosion of the Internet clearly warrants
the development of techniques for organizing and
presenting information to users in an effective
way. Query-focused multi-document summariza-
tion (MDS) methods have been proposed as one
such technique and have attracted significant at-
tention in recent years. The goal of query-focused
MDS is to synthesize a brief (often fixed-length)
and well-organized summary from a set of topic-
related documents that answer a complex ques-
tion or address a topic statement. The result-
ing summaries, in turn, can support a number of
information analysis applications including open-
ended question answering, recommender systems,
and summarization of search engine results. As
further evidence of its importance, the Document
Understanding Conference (DUC) has used query-
focused MDS as its main task since 2004 to foster

new research on automatic summarization in the
context of users’ needs.

To date, most top-performing systems for
multi-document summarization—whether query-
specific or not—remain largely extractive: their
summaries are comprised exclusively of sen-
tences selected directly from the documents
to be summarized (Erkan and Radev, 2004;
Haghighi and Vanderwende, 2009; Celikyilmaz
and Hakkani-Tür, 2011). Despite their simplicity,
extractive approaches have some disadvantages.
First, lengthy sentences that are partly relevant
are either excluded from the summary or (if se-
lected) can block the selection of other important
sentences, due to summary length constraints.
In addition, when people write summaries, they
tend to abstract the content and seldom use
entire sentences taken verbatim from the original
documents. In news articles, for example, most
sentences are lengthy and contain both potentially
useful information for a summary as well as un-
necessary details that are better omitted. Consider
the following DUC query as input for a MDS
system:1 “In what ways have stolen artworks
been recovered? How often are suspects arrested
or prosecuted for the thefts?” One manually gen-
erated summary includes the following sentence
but removes the bracketed words in gray:

A man suspected of stealing a million-dollar collection

of [hundreds of ancient] Nepalese and Tibetan art objects in

New York [11 years ago] was arrested [Thursday at his South

Los Angeles home, where he had been hiding the antiquities,

police said].

In this example, the compressed sentence is rela-

1From DUC 2005, query for topic d422g.
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tively more succinct and readable than the origi-
nal (e.g. in terms of Flesch-Kincaid Reading Ease
Score (Kincaid et al., 1975)). Likewise, removing
information irrelevant to the query (e.g. “11 years
ago”, “police said”) is crucial for query-focused
MDS.

Sentence compression techniques (Knight and
Marcu, 2000; Clarke and Lapata, 2008) are the
standard for producing a compact and grammat-
ical version of a sentence while preserving rel-
evance, and prior research (e.g. Lin (2003)) has
demonstrated their potential usefulness for generic
document summarization. Similarly, strides have
been made to incorporate sentence compression
into query-focused MDS systems (Zajic et al.,
2006). Most attempts, however, fail to produce
better results than those of the best systems built
on pure extraction-based approaches that use no
sentence compression.

In this paper we investigate the role of sentence
compression techniques for query-focused MDS.
We extend existing work in the area first by inves-
tigating the role of learning-based sentence com-
pression techniques. In addition, we design three
types of approaches to sentence-compression—
rule-based, sequence-based and tree-based—and
examine them within our compression-based
framework for query-specific MDS. Our top-
performing sentence compression algorithm in-
corporates measures of query relevance, con-
tent importance, redundancy and language qual-
ity, among others. Our tree-based methods rely on
a scoring function that allows for easy and flexi-
ble tailoring of sentence compression to the sum-
marization task, ultimately resulting in significant
improvements for MDS, while at the same time
remaining competitive with existing methods in
terms of sentence compression, as discussed next.

We evaluate the summarization models on
the standard Document Understanding Confer-
ence (DUC) 2006 and 2007 corpora 2 for query-
focused MDS and find that all of our compression-
based summarization models achieve statistically
significantly better performance than the best
DUC 2006 systems. Our best-performing sys-
tem yields an 11.02 ROUGE-2 score (Lin and
Hovy, 2003), a 8.0% improvement over the best
reported score (10.2 (Davis et al., 2012)) on the

2We believe that we can easily adapt our system for tasks
(e.g. TAC-08’s opinion summarization or TAC-09’s update
summarization) or domains (e.g. web pages or wikipedia
pages). We reserve that for future work.

DUC 2006 dataset, and an 13.49 ROUGE-2, a
5.4% improvement over the best score in DUC
2007 (12.8 (Davis et al., 2012)). We also ob-
serve substantial improvements over previous sys-
tems w.r.t. the manual Pyramid (Nenkova and
Passonneau, 2004) evaluation measure (26.4 vs.
22.9 (Jagarlamudi et al., 2006)); human annota-
tors furthermore rate our system-generated sum-
maries as having less redundancy and compara-
ble quality w.r.t. other linguistic quality metrics.
With these results we believe we are the first
to successfully show that sentence compression
can provide statistically significant improvements
over pure extraction-based approaches for query-
focused MDS.

2 Related Work

Existing research on query-focused multi-
document summarization (MDS) largely relies
on extractive approaches, where systems usually
take as input a set of documents and select
the top relevant sentences for inclusion in the
final summary. A wide range of methods have
been employed for this task. For unsupervised
methods, sentence importance can be estimated
by calculating topic signature words (Lin and
Hovy, 2000; Conroy et al., 2006), combining
query similarity and document centrality within
a graph-based model (Otterbacher et al., 2005),
or using a Bayesian model with sophisticated
inference (Daumé and Marcu, 2006). Davis et
al. (2012) first learn the term weights by Latent
Semantic Analysis, and then greedily select
sentences that cover the maximum combined
weights. Supervised approaches have mainly
focused on applying discriminative learning for
ranking sentences (Fuentes et al., 2007). Lin and
Bilmes (2011) use a class of carefully designed
submodular functions to reward the diversity of
the summaries and select sentences greedily.

Our work is more related to the less studied
area of sentence compression as applied to (sin-
gle) document summarization. Zajic et al. (2006)
tackle the query-focused MDS problem using a
compress-first strategy: they develop heuristics to
generate multiple alternative compressions of all
sentences in the original document; these then be-
come the candidates for extraction. This approach,
however, does not outperform some extraction-
based approaches. A similar idea has been stud-
ied for MDS (Lin, 2003; Gillick and Favre, 2009),
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but limited improvement is observed over extrac-
tive baselines with simple compression rules. Fi-
nally, although learning-based compression meth-
ods are promising (Martins and Smith, 2009;
Berg-Kirkpatrick et al., 2011), it is unclear how
well they handle issues of redundancy.

Our research is also inspired by probabilis-
tic sentence-compression approaches, such as the
noisy-channel model (Knight and Marcu, 2000;
Turner and Charniak, 2005), and its extension via
synchronous context-free grammars (SCFG) (Aho
and Ullman, 1969; Lewis and Stearns, 1968) for
robust probability estimation (Galley and McKe-
own, 2007). Rather than attempt to derive a new
parse tree like Knight and Marcu (2000) and Gal-
ley and McKeown (2007), we learn to safely re-
move a set of constituents in our parse tree-based
compression model while preserving grammati-
cal structure and essential content. Sentence-level
compression has also been examined via a dis-
criminative model McDonald (2006), and Clarke
and Lapata (2008) also incorporate discourse in-
formation by using integer linear programming.

3 The Framework

We now present our query-focused MDS frame-
work consisting of three steps: Sentence Rank-
ing, Sentence Compression and Post-processing.
First, sentence ranking determines the importance
of each sentence given the query. Then, a sen-
tence compressor iteratively generates the most
likely succinct versions of the ranked sentences,
which are cumulatively added to the summary, un-
til a length limit is reached. Finally, the post-
processing stage applies coreference resolution
and sentence reordering to build the summary.

Sentence Ranking. This stage aims to rank sen-
tences in order of relevance to the query. Un-
surprisingly, ranking algorithms have been suc-
cessfully applied to this task. We experimented
with two of them – Support Vector Regres-
sion (SVR) (Mozer et al., 1997) and Lamb-
daMART (Burges et al., 2007). The former
has been used previously for MDS (Ouyang et
al., 2011). LambdaMart on the other hand has
shown considerable success in information re-
trieval tasks (Burges, 2010); we are the first to
apply it to summarization. For training, we use
40 topics (i.e. queries) from the DUC 2005 cor-
pus (Dang, 2005) along with their manually gener-
ated abstracts. As in previous work (Shen and Li,

Basic Features
relative/absolute position
is among the first 1/3/5 sentences?
number of words (with/without stopwords)
number of words more than 5/10 (with/without stopwords)
Query-Relevant Features
unigram/bigram/skip bigram (at most four words apart) overlap
unigram/bigram TF/TF-IDF similarity
mention overlap
subject/object/indirect object overlap
semantic role overlap
relation overlap
Query-Independent Features
average/total unigram/bigram IDF/TF-IDF
unigram/bigram TF/TF-IDF similarity with the centroid of the cluster
average/sum of sumBasic/SumFocus (Toutanova et al., 2007)
average/sum of mutual information
average/sum of number of topic signature words (Lin and Hovy, 2000)
basic/improved sentence scorers from Conroy et al. (2006)
Content Features
contains verb/web link/phone number?
contains/portion of words between parentheses

Table 1: Sentence-level features for sentence ranking.

2011; Ouyang et al., 2011), we use the ROUGE-
2 score, which measures bigram overlap between
a sentence and the abstracts, as the objective for
regression.

While space limitations preclude a longer dis-
cussion of the full feature set (ref. Table 1), we
describe next the query-relevant features used for
sentence ranking as these are the most impor-
tant for our summarization setting. The goal of
this feature subset is to determine the similarity
between the query and each candidate sentence.
When computing similarity, we remove stopwords
as well as the words “discuss, describe, specify,
explain, identify, include, involve, note” that are
adopted and extended from Conroy et al. (2006).
Then we conduct simple query expansion based
on the title of the topic and cross-document coref-
erence resolution. Specifically, we first add the
words from the topic title to the query. And for
each mention in the query, we add other mentions
within the set of documents that corefer with this
mention. Finally, we compute two versions of the
features—one based on the original query and an-
other on the expanded one. We also derive the
semantic role overlap and relation instance over-
lap between the query and each sentence. Cross-
document coreference resolution, semantic role la-
beling and relation extraction are accomplished
via the methods described in Section 5.

Sentence Compression. As the main focus of
this paper, we propose three types of compression
methods, described in detail in Section 4 below.

Post-processing. Post-processing performs
coreference resolution and sentence ordering.
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Basic Features Syntactic Tree Features
first 1/3/5 tokens (toks)? POS tag
last 1/3/5 toks? parent/grandparent label
first letter/all letters capitalized? leftmost child of parent?
is negation? second leftmost child of parent?
is stopword? is headword?
Dependency Tree Features in NP/VP/ADVP/ADJP chunk?
dependency relation (dep rel) Semantic Features
parent/grandparent dep rel is a predicate?
is the root? semantic role label
has a depth larger than 3/5?
Rule-Based Features
For each rule in Table 2 , we construct a corresponding feature to
indicate whether the token is identified by the rule.

Table 3: Token-level features for sequence-based com-
pression.

We replace each pronoun with its referent unless
they appear in the same sentence. For sentence
ordering, each compressed sentence is assigned
to the most similar (tf-idf) query sentence. Then
a Chronological Ordering algorithm (Barzilay et
al., 2002) sorts the sentences for each query based
first on the time stamp, and then the position in
the source document.

4 Sentence Compression

Sentence compression is typically formulated as
the problem of removing secondary information
from a sentence while maintaining its grammati-
cality and semantic structure (Knight and Marcu,
2000; McDonald, 2006; Galley and McKeown,
2007; Clarke and Lapata, 2008). We leave other
rewrite operations, such as paraphrasing and re-
ordering, for future work. Below we describe
the sentence compression approaches developed
in this research: RULE-BASED COMPRESSION,
SEQUENCE-BASED COMPRESSION, and TREE-
BASED COMPRESSION.

4.1 Rule-based Compression

Turner and Charniak (2005) have shown that ap-
plying hand-crafted rules for trimming sentences
can improve both content and linguistic qual-
ity. Our rule-based approach extends existing
work (Conroy et al., 2006; Toutanova et al., 2007)
to create the linguistically-motivated compression
rules of Table 2. To avoid ill-formed output, we
disallow compressions of more than 10 words by
each rule.

4.2 Sequence-based Compression

As in McDonald (2006) and Clarke and Lapata
(2008), our sequence-based compression model
makes a binary “keep-or-delete” decision for each
word in the sentence. In contrast, however, we

Figure 1: Diagram of tree-based compression. The
nodes to be dropped are grayed out. In this example,
the root of the gray subtree (a “PP”) would be labeled
REMOVE. Its siblings and parent are labeled RETAIN
and PARTIAL, respectively. The trimmed tree is real-
ized as “Malaria causes millions of deaths.”

view compression as a sequential tagging problem
and make use of linear-chain Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) to se-
lect the most likely compression. We represent
each sentence as a sequence of tokens, X =
x0x1 . . . xn, and generate a sequence of labels,
Y = y0y1 . . . yn, that encode which tokens are
kept, using a BIO label format: {B-RETAIN de-
notes the beginning of a retained sequence, I-
RETAIN indicates tokens “inside” the retained se-
quence, O marks tokens to be removed}.

The CRF model is built using the features
shown in Table 3. “Dependency Tree Features”
encode the grammatical relations in which each
word is involved as a dependent. For the “Syntac-
tic Tree”, “Dependency Tree” and “Rule-Based”
features, we also include features for the two
words that precede and the two that follow the cur-
rent word. Detailed descriptions of the training
data and experimental setup are in Section 5.

During inference, we find the maximally likely
sequence Y according to a CRF with parameter
θ (Y = argmaxY ′ P (Y ′|X; θ)), while simulta-
neously enforcing the rules of Table 2 to reduce
the hypothesis space and encourage grammatical
compression. To do this, we encode these rules as
features for each token, and whenever these fea-
ture functions fire, we restrict the possible label
for that token to “O”.

4.3 Tree-based Compression

Our tree-based compression methods are in line
with syntax-driven approaches (Galley and McK-
eown, 2007), where operations are carried out
on parse tree constituents. Unlike previous
work (Knight and Marcu, 2000; Galley and McK-
eown, 2007), we do not produce a new parse tree,
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Rule Example
Header [MOSCOW , October 19 ( Xinhua ) –] Russian federal troops Tuesday continued...
Relative dates ...Centers for Disease Control confirmed [Tuesday] that there was...
Intra-sentential attribution ...fueling the La Nina weather phenomenon, [the U.N. weather agency said].
Lead adverbials [Interestingly], while the Democrats tend to talk about...
Noun appositives Wayne County Prosecutor [John O’Hara] wanted to send a message...
Nonrestrictive relative clause Putin, [who was born on October 7, 1952 in Leningrad], was elected in the presidential election...
Adverbial clausal modifiers [Starting in 1998], California will require 2 per cent of a manufacturer...
(Lead sentence) [Given the short time], car makers see electric vehicles as...
Within Parentheses ...to Christian home schoolers in the early 1990s [(www.homecomputermarket.com)].

Table 2: Linguistically-motivated rules for sentence compression. The grayed-out words in brackets are removed.

but focus on learning to identify the proper set of
constituents to be removed. In particular, when a
node is dropped from the tree, all words it sub-
sumes will be deleted from the sentence.

Formally, given a parse tree T of the sentence
to be compressed and a tree traversal algorithm,
T can be presented as a list of ordered constituent
nodes, T = t0t1 . . . tm. Our objective is to find a
set of labels, L = l0l1 . . . lm, where li ∈ {RETAIN,
REMOVE, PARTIAL}. RETAIN (RET) and RE-
MOVE (REM) denote whether the node ti is re-
tained or removed. PARTIAL (PAR) means ti is
partly removed, i.e. at least one child subtree of ti
is dropped.

Labels are identified, in order, according to the
tree traversal algorithm. Every node label needs
to be compatible with the labeling history: given
a node ti, and a set of labels l0 . . . li−1 predicted
for nodes t0 . . . ti−1, li =RET or li =REM is com-
patible with the history when all children of ti are
labeled as RET or REM, respectively; li =PAR is
compatible when ti has at least two descendents
tj and tk (j < i and k < i), one of which is
RETained and the other, REMoved. As such, the
root of the gray subtree in Figure 1 is labeled as
REM; its left siblings as RET; its parent as PAR.

As the space of possible compressions is expo-
nential in the number of leaves in the parse tree,
instead of looking for the globally optimal solu-
tion, we use beam search to find a set of highly
likely compressions and employ a language model
trained on a large corpus for evaluation.

A Beam Search Decoder. The beam search de-
coder (see Algorithm 1) takes as input the sen-
tence’s parse tree T = t0t1 . . . tm, an order-
ing O for traversing T (e.g. postorder) as a se-
quence of nodes in T , the set L of possible
node labels, a scoring function S for evaluat-
ing each sentence compression hypothesis, and
a beam size N . Specifically, O is a permuta-
tion on the set {0, 1, . . . ,m}—each element an

index onto T . Following O, T is re-ordered as
tO0tO1 . . . tOm , and the decoder considers each or-
dered constituent tOi in turn. In iteration i, all
existing sentence compression hypotheses are ex-
panded by one node, tOi , labeling it with all com-
patible labels. The new hypotheses (usually sub-
sentences) are ranked by the scorer S and the top
N are preserved to be extended in the next itera-
tion. See Figure 2 for an example.

Input : parse tree T , ordering O = O0O1 . . . Om,
L ={RET, REM, PAR}, hypothesis scorer S,
beam size N

Output: N best compressions

stack← Φ (empty set);
foreach node tOi in T = tO0 . . . tOm do

if i == 0 (first node visited) then
foreach label lO0 in L do

newHypothesis h′ ← [lO0 ];
put h′ into Stack;

end
else

newStack← Φ (empty set);
foreach hypothesis h in stack do

foreach label lOi in L do
if lOi is compatible then

newHypothesis h′ ← h+ [lOi ];
put h′ into newStack;

end
end

end
stack← newStack;

end
Apply S to sort hypotheses in stack in descending
order;
Keep the N best hypotheses in stack;

end

Algorithm 1: Beam search decoder.

Our BASIC Tree-based Compression in-
stantiates the beam search decoder with
postorder traversal and a hypothesis scorer
that takes a possible sentence compression—
a sequence of nodes (e.g. tO0 . . . tOk ) and
their labels (e.g. lO0 . . . lOk )—and returns∑k

j=1 logP (lOj |tOj ) (denoted later as
ScoreBasic). The probability is estimated by
a Maximum Entropy classifier (Berger et al.,
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Figure 2: Example of beam search decoding. For
postorder traversal, the three nodes are visited in a
bottom-up order. The associated compression hypothe-
ses (boxed) are ranked based on the scores in parenthe-
ses. Beam scores for other nodes are omitted.

Basic Features Syntactic Tree Features
projection falls w/in first 1/3/5 toks?∗ constituent label
projection falls w/in last 1/3/5 toks?∗ parent left/right sibling label
subsumes first 1/3/5 toks?∗ grandparent left/right sibling label
subsumes last 1/3/5 toks?∗ is leftmost child of parent?
number of words larger than 5/10?∗ is second leftmost child of parent?
is leaf node?∗ is head node of parent?
is root of parsing tree?∗ label of its head node
has word with first letter capitalized? has a depth greater than 3/5/10?
has word with all letters capitalized? Dependency Tree Features
has negation? dep rel of head node†
has stopwords? dep rel of parent’s head node†
Semantic Features dep rel of grandparent’s head node†
the head node has predicate? contain root of dep tree?†
semantic roles of head node has a depth larger than 3/5?†
Rule-Based Features
For each rule in Table 2 , we construct a corresponding feature to indicate
whether the token is identified by the rule.

Table 4: Constituent-level features for tree-based com-
pression. ∗ or † denote features that are concatenated
with every Syntactic Tree feature to compose a new
one.

1996) trained at the constituent level using the
features in Table 4. We also apply the rules of
Table 2 during the decoding process. Concretely,
if the words subsumed by a node are identified
by any rule, we only consider REM as the node’s
label.

Given the N -best compressions from the de-
coder, we evaluate the yield of the trimmed trees
using a language model trained on the Giga-
word (Graff, 2003) corpus and return the compres-
sion with the highest probability. Thus, the de-
coder is quite flexible — its learned scoring func-
tion allows us to incorporate features salient for
sentence compression while its language model
guarantees the linguistic quality of the compressed
string. In the sections below we consider addi-
tional improvements.

4.3.1 Improving Beam Search
CONTEXT-aware search is based on the intu-
ition that predictions on preceding context can
be leveraged to facilitate the prediction of the
current node. For example, parent nodes with

children that have all been removed (retained)
should have a label of REM (RET). In light of
this, we encode these contextual predictions as
additional features of S, that is, ALL-CHILDREN-
REMOVED/RETAINED, ANY-LEFTSIBLING-
REMOVED/RETAINED/PARTLY REMOVED,
LABEL-OF-LEFT-SIBLING/HEAD-NODE.

HEAD-driven search modifies the BASIC pos-
torder tree traversal by visiting the head node first
at each level, leaving other orders unchanged. In
a nutshell, if the head node is dropped, then its
modifiers need not be preserved. We adopt the
same features as CONTEXT-aware search, but re-
move those involving left siblings. We also add
one more feature: LABEL-OF-THE-HEAD-NODE-
IT-MODIFIES.

4.3.2 Task-Specific Sentence Compression
The current scorer ScoreBasic is still fairly naive
in that it focuses only on features of the sen-
tence to be compressed. However extra-sentential
knowledge can also be important for query-
focused MDS. For example, information regard-
ing relevance to the query might lead the de-
coder to produce compressions better suited for
the summary. Towards this goal, we construct
a compression scoring function—the multi-scorer
(MULTI)—that allows the incorporation of mul-
tiple task-specific scorers. Given a hypothesis at
any stage of decoding, which yields a sequence of
words W = w0w1...wj , we propose the following
component scorers.

Query Relevance. Query information ought to
guide the compressor to identify the relevant con-
tent. The query Q is expanded as described in
Section 3. Let |W ∩ Q| denote the number of
unique overlapping words betweenW andQ, then
scoreq = |W ∩Q|/|W |.

Importance. A query-independent impor-
tance score is defined as the average Sum-
Basic (Toutanova et al., 2007) value in W ,
i.e. scoreim =

∑j
i=1 SumBasic(wi)/|W |.

Language Model. We let scorelm be the proba-
bility of W computed by a language model.

Cross-Sentence Redundancy. To encourage di-
versified content, we define a redundancy score to
discount replicated content: scorered = 1− |W ∩
C|/|W |, whereC is the words already selected for
the summary.
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The multi-scorer is defined as a linear
combination of the component scorers: Let
~α = (α0, . . . , α4), 0 ≤ αi ≤ 1, −−−→score =
(scoreBasic, scoreq, scoreim, scorelm, scorered),

S = scoremulti = ~α · −−−→score (1)

The parameters ~α are tuned on a held-out tuning
set by grid search. We linearly normalize the score
of each metric, where the minimum and maximum
values are estimated from the tuning data.

5 Experimental Setup

We evaluate our methods on the DUC 2005, 2006
and 2007 datasets (Dang, 2005; Dang, 2006;
Dang, 2007), each of which is a collection of
newswire articles. 50 complex queries (topics) are
provided for DUC 2005 and 2006, 35 are collected
for DUC 2007 main task. Relevant documents for
each query are provided along with 4 to 9 human
MDS abstracts. The task is to generate a summary
within 250 words to address the query. We split
DUC 2005 into two parts: 40 topics to train the
sentence ranking models, and 10 for ranking algo-
rithm selection and parameter tuning for the multi-
scorer. DUC 2006 and DUC 2007 are reserved as
held out test sets.

Sentence Compression. The dataset
from Clarke and Lapata (2008) is used to
train the CRF and MaxEnt classifiers (Section 4).
It includes 82 newswire articles with one manually
produced compression aligned to each sentence.

Preprocessing. Documents are processed by a
full NLP pipeline, including token and sentence
segmentation, parsing, semantic role labeling,
and an information extraction pipeline consist-
ing of mention detection, NP coreference, cross-
document resolution, and relation detection (Flo-
rian et al., 2004; Luo et al., 2004; Luo and Zitouni,
2005).

Learning for Sentence Ranking and Compres-
sion. We use Weka (Hall et al., 2009) to train a
support vector regressor and experiment with var-
ious rankers in RankLib (Dang, 2011)3. As Lamb-
daMART has an edge over other rankers on the
held-out dataset, we selected it to produce ranked
sentences for further processing. For sequence-
based compression using CRFs, we employ Mal-
let (McCallum, 2002) and integrate the Table 2
rules during inference. NLTK (Bird et al., 2009)

3Default parameters are used. If an algorithm needs a val-
idation set, we use 10 out of 40 topics.

MaxEnt classifiers are used for tree-based com-
pression. Beam size is fixed at 2000.4 Sen-
tence compressions are evaluated by a 5-gram lan-
guage model trained on Gigaword (Graff, 2003)
by SRILM (Stolcke, 2002).

6 Results

The results in Table 5 use the official ROUGE soft-
ware with standard options5 and report ROUGE-
2 (R-2) (measures bigram overlap) and ROUGE-
SU4 (R-SU4) (measures unigram and skip-bigram
separated by up to four words). We compare our
sentence-compression-based methods to the best
performing systems based on ROUGE in DUC
2006 and 2007 (Jagarlamudi et al., 2006; Pingali
et al., 2007), system by Davis et al. (2012) that
report the best R-2 score on DUC 2006 and 2007
thus far, and to the purely extractive methods of
SVR and LambdaMART.

Our sentence-compression-based systems
(marked with †) show statistically significant
improvements over pure extractive summarization
for both R-2 and R-SU4 (paired t-test, p < 0.01).
This means our systems can effectively remove
redundancy within the summary through compres-
sion. Furthermore, our HEAD-driven beam search
method with MULTI-scorer beats all systems on
DUC 20066 and all systems on DUC 2007 except
the best system in terms of R-2 (p < 0.01). Its
R-SU4 score is also significantly (p < 0.01)
better than extractive methods, rule-based and
sequence-based compression methods on both
DUC 2006 and 2007. Moreover, our systems with
learning-based compression have considerable
compression rates, indicating their capability to
remove superfluous words as well as improve
summary quality.

Human Evaluation. The Pyramid (Nenkova
and Passonneau, 2004) evaluation was developed
to manually assess how many relevant facts or
Summarization Content Units (SCUs) are cap-
tured by system summaries. We ask a professional
annotator (who is not one of the authors, is highly
experienced in annotating for various NLP tasks,
and is fluent in English) to carry out a Pyramid
evaluation on 10 randomly selected topics from

4We looked at various beam sizes on the heldout data, and
observed that the performance peaks around this value.

5ROUGE-1.5.5.pl -n 4 -w 1.2 -m -2 4 -u -c 95 -r 1000 -f
A -p 0.5 -t 0 -a -d

6The system output from Davis et al. (2012) is not avail-
able, so significance tests are not conducted on it.
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DUC 2006 DUC 2007
System C Rate R-2 R-SU4 C Rate R-2 R-SU4
Best DUC system – 9.56 15.53 – 12.62 17.90
Davis et al. (2012) – 10.2 15.2 – 12.8 17.5
SVR 100% 7.78 13.02 100% 9.53 14.69
LambdaMART 100% 9.84 14.63 100% 12.34 15.62
Rule-based 78.99% 10.62 ∗† 15.73 † 78.11% 13.18† 18.15†
Sequence 76.34% 10.49 † 15.60 † 77.20% 13.25† 18.23†
Tree (BASIC + ScoreBasic) 70.48% 10.49 † 15.86 † 69.27% 13.00† 18.29†
Tree (CONTEXT + ScoreBasic) 65.21% 10.55 ∗† 16.10 † 63.44% 12.75 18.07†
Tree (HEAD + ScoreBasic) 66.70% 10.66 ∗† 16.18 † 65.05% 12.93 18.15†
Tree (HEAD + MULTI) 70.20% 11.02 ∗† 16.25 † 73.40% 13.49† 18.46†

Table 5: Query-focused MDS performance comparison: C Rate or compression rate is the proportion of words
preserved. R-2 (ROUGE-2) and R-SU4 (ROUGE-SU4) scores are multiplied by 100. “–” indicates that data is
unavailable. BASIC, CONTEXT and HEAD represent the basic beam search decoder, context-aware and head-driven
search extensions respectively. ScoreBasic and MULTI refer to the type of scorer used. Statistically significant
improvements (p < 0.01) over the best system in DUC 06 and 07 are marked with ∗. † indicates statistical
significance (p < 0.01) over extractive approaches (SVR or LambdaMART). HEAD + MULTI outperforms all the
other extract- and compression-based systems in R-2.

System Pyr Gra Non-Red Ref Foc Coh
Best DUC system (ROUGE) 22.9±8.2 3.5±0.9 3.5±1.0 3.5±1.1 3.6±1.0 2.9±1.1
Best DUC system (LQ) – 4.0±0.8 4.2±0.7 3.8±0.7 3.6±0.9 3.4±0.9
Our System 26.4±10.3 3.0±0.9 4.0±1.1 3.6±1.0 3.4±0.9 2.8±1.0

Table 6: Human evaluation on our multi-scorer based system, Jagarlamudi et al. (2006) (Best DUC system
(ROUGE)), and Lacatusu et al. (2006) (Best DUC system (LQ)). Our system can synthesize more relevant content
according to Pyramid (×100). We also examine linguistic quality (LQ) in Grammaticality (Gra), Non-redundancy
(Non-Red), Referential clarity (Ref), Focus (Foc), and Structure and Coherence (Coh) like Dang (2006), each rated
from 1 (very poor) to 5 (very good). Our system has better non-redundancy than Jagarlamudi et al. (2006) and is
comparable to Jagarlamudi et al. (2006) and Lacatusu et al. (2006) in other metrics except grammaticality.

the DUC 2006 task with gold-standard SCU an-
notation in abstracts. The Pyramid score (see Ta-
ble 6) is re-calculated for the system with best
ROUGE scores in DUC 2006 (Jagarlamudi et al.,
2006) along with our system by the same annota-
tor to make a meaningful comparison.

We further evaluate the linguistic quality (LQ)
of the summaries for the same 10 topics in ac-
cordance with the measurement in Dang (2006).
Four native speakers who are undergraduate stu-
dents in computer science (none are authors) per-
formed the task, We compare our system based
on HEAD-driven beam search with MULTI-scorer
to the best systems in DUC 2006 achieving top
ROUGE scores (Jagarlamudi et al., 2006) (Best
DUC system (ROUGE)) and top linguistic quality
scores (Lacatusu et al., 2006) (Best DUC system
(LQ))7. The average score and standard deviation
for each metric is displayed in Table 6. Our sys-
tem achieves a higher Pyramid score, an indication
that it captures more of the salient facts. We also

7Lacatusu et al. (2006) obtain the best scores in three lin-
guistic quality metrics (i.e. grammaticality, focus, structure
and coherence), and overall responsiveness on DUC 2006.

attain better non-redundancy than Jagarlamudi et
al. (2006), meaning that human raters perceive
less replicative content in our summaries. Scores
for other metrics are comparable to Jagarlamudi
et al. (2006) and Lacatusu et al. (2006), which
either uses minimal non-learning-based compres-
sion rules or is a pure extractive system. However,
our compression system sometimes generates less
grammatical sentences, and those are mostly due
to parsing errors. For example, parsing a clause
starting with a past tense verb as an adverbial
clausal modifier can lead to an ill-formed com-
pression. Those issues can be addressed by an-
alyzing k-best parse trees and we leave it in the
future work. A sample summary from our multi-
scorer based system is in Figure 3.

Sentence Compression Evaluation. We
also evaluate sentence compression separately
on (Clarke and Lapata, 2008), adopting the same
partitions as (Martins and Smith, 2009), i.e. 1, 188
sentences for training and 441 for testing. Our
compression models are compared with Hedge
Trimmer (Dorr et al., 2003), a discriminative
model proposed by McDonald (2006) and a
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System C Rate Uni-Prec Uni-Rec Uni-F1 Rel-F1
HedgeTrimmer 57.64% 0.72 0.65 0.64 0.50
McDonald (2006) 70.95% 0.77 0.78 0.77 0.55
Martins and Smith (2009) 71.35% 0.77 0.78 0.77 0.56
Rule-based 87.65% 0.74 0.91 0.80 0.63
Sequence 70.79% 0.77 0.80 0.76 0.58
Tree (BASIC) 69.65% 0.77 0.79 0.75 0.56
Tree (CONTEXT) 67.01% 0.79 0.78 0.76 0.57
Tree (HEAD) 68.06% 0.79 0.80 0.77 0.59

Table 7: Sentence compression comparison. The true c rate is 69.06% for the test set. Tree-based approaches
all use single-scorer. Our context-aware and head-driven tree-based approaches outperform all the other systems
significantly (p < 0.01) in precision (Uni-Prec) without sacrificing the recalls (i.e. there is no statistically signifi-
cant difference between our models and McDonald (2006) / M & S (2009) with p > 0.05). Italicized numbers for
unigram F1 (Uni-F1) are statistically indistinguishable (p > 0.05). Our head-driven tree-based approach also pro-
duces significantly better grammatical relations F1 scores (Rel-F1) than all the other systems except the rule-based
method (p < 0.01).

Topic D0626H: How were the bombings of the US em-
bassies in Kenya and Tanzania conducted? What terror-
ist groups and individuals were responsible? How and
where were the attacks planned?
WASHINGTON, August 13 (Xinhua) – President Bill
Clinton Thursday condemned terrorist bomb attacks at
U.S. embassies in Kenya and Tanzania and vowed to find
the bombers and bring them to justice. Clinton met with
his top aides Wednesday in the White House to assess the
situation following the twin bombings at U.S. embassies
in Kenya and Tanzania, which have killed more than 250
people and injured over 5,000, most of them Kenyans and
Tanzanians. Local sources said the plan to bomb U.S. em-
bassies in Kenya and Tanzania took three months to com-
plete and bombers destined for Kenya were dispatched
through Somali and Rwanda. FBI Director Louis Freeh,
Attorney General Janet Reno and other senior U.S. gov-
ernment officials will hold a news conference at 1 p.m.
EDT (1700GMT) at FBI headquarters in Washington “to
announce developments in the investigation of the bomb-
ings of the U.S. embassies in Kenya and Tanzania,” the
FBI said in a statement. ...

Figure 3: Part of the summary generated by the multi-
scorer based summarizer for topic D0626H (DUC
2006). Grayed out words are removed. Query-
irrelevant phrases, such as temporal information or
source of the news, have been removed.

dependency-tree based compressor (Martins and
Smith, 2009)8. We adopt the metrics in Martins
and Smith (2009) to measure the unigram-level
macro precision, recall, and F1-measure with
respect to human annotated compression. In
addition, we also compute the F1 scores of
grammatical relations which are annotated by
RASP (Briscoe and Carroll, 2002) according
to Clarke and Lapata (2008).

In Table 7, our context-aware and head-driven
tree-based compression systems show statistically
significantly (p < 0.01) higher precisions (Uni-

8Thanks to André F.T. Martins for system outputs.

Prec) than all the other systems, without decreas-
ing the recalls (Uni-Rec) significantly (p > 0.05)
based on a paired t-test. Unigram F1 scores (Uni-
F1) in italics indicate that the corresponding sys-
tems are not statistically distinguishable (p >
0.05). For grammatical relation evaluation, our
head-driven tree-based system obtains statistically
significantly (p < 0.01) better F1 score (Rel-F1
than all the other systems except the rule-based
system).

7 Conclusion

We have presented a framework for query-focused
multi-document summarization based on sentence
compression. We propose three types of com-
pression approaches. Our tree-based compres-
sion method can easily incorporate measures of
query relevance, content importance, redundancy
and language quality into the compression pro-
cess. By testing on a standard dataset using the
automatic metric ROUGE, our models show sub-
stantial improvement over pure extraction-based
methods and state-of-the-art systems. Our best
system also yields better results for human eval-
uation based on Pyramid and achieves comparable
linguistic quality scores.
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Abstract

We address the challenge of generating natu-
ral language abstractive summaries for spoken
meetings in a domain-independent fashion.
We apply Multiple-Sequence Alignment to in-
duce abstract generation templates that can be
used for different domains. An Overgenerate-
and-Rank strategy is utilized to produce and
rank candidate abstracts. Experiments us-
ing in-domain and out-of-domain training on
disparate corpora show that our system uni-
formly outperforms state-of-the-art supervised
extract-based approaches. In addition, human
judges rate our system summaries significantly
higher than compared systems in fluency and
overall quality.

1 Introduction

Meetings are a common way to collaborate,
share information and exchange opinions. Con-
sequently, automatically generated meeting sum-
maries could be of great value to people and busi-
nesses alike by providing quick access to the es-
sential content of past meetings. Focused meet-
ing summaries have been proposed as particularly
useful; in contrast to summaries of a meeting as
a whole, they refer to summaries of a specific as-
pect of a meeting, such as the DECISIONS reached,
PROBLEMS discussed, PROGRESS made or AC-
TION ITEMS that emerged (Carenini et al., 2011).
Our goal is to provide an automatic summariza-
tion system that can generate abstract-style fo-
cused meeting summaries to help users digest the
vast amount of meeting content in an easy manner.

Existing meeting summarization systems re-
main largely extractive: their summaries are com-
prised exclusively of patchworks of utterances se-
lected directly from the meetings to be summa-
rized (Riedhammer et al., 2010; Bui et al., 2009;
Xie et al., 2008). Although relatively easy to con-
struct, extractive approaches fall short of produc-
ing concise and readable summaries, largely due

C: Looking at what we’ve got, we we want an LCD dis-
play with a spinning wheel.
B: You have to have some push-buttons, don’t you?
C: Just spinning and not scrolling, I would say.
B: I think the spinning wheel is definitely very now.
A: but since LCDs seems to be uh a definite yes,
C: We’re having push-buttons on the outside
C: and then on the inside an LCD with spinning wheel,

Decision Abstract (Summary):
The remote will have push buttons outside, and an LCD
and spinning wheel inside.
A: and um I’m not sure about the buttons being in the
shape of fruit though.
D: Maybe make it like fruity colours or something.
C: The power button could be like a big apple or some-
thing.
D: Um like I’m just thinking bright colours.

Problem Abstract (Summary):
How to incorporate a fruit and vegetable theme into the
remote.

Figure 1: Clips from the AMI meeting corpus (Mc-
cowan et al., 2005). A, B, C and D refer to distinct
speakers. Also shown is the gold-standard (manual)
abstract (summary) for the decision and the problem.

to the noisy, fragmented, ungrammatical and un-
structured text of meeting transcripts (Murray et
al., 2010b; Liu and Liu, 2009).

In contrast, human-written meeting summaries
are typically in the form of abstracts — distilla-
tions of the original conversation written in new
language. A user study from Murray et al. (2010b)
showed that people demonstrate a strong prefer-
ence for abstractive summaries over extracts when
the text to be summarized is conversational. Con-
sider, for example, the two types of focused sum-
mary along with their associated dialogue snippets
in Figure 1. We can see that extracts are likely to
include unnecessary and noisy information from
the meeting transcripts. On the contrary, the man-
ually composed summaries (abstracts) are more
compact and readable, and are written in a dis-
tinctly non-conversational style.
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To address the limitations of extract-based sum-
maries, we propose a complete and fully automatic
domain-independent abstract generation frame-
work for focused meeting summarization. Fol-
lowing existing language generation research (An-
geli et al., 2010; Konstas and Lapata, 2012), we
first perform content selection: given the dia-
logue acts relevant to one element of the meet-
ing (e.g. a single decision or problem), we train
a classifier to identify summary-worthy phrases.
Next, we develop an “overgenerate-and-rank”
strategy (Walker et al., 2001; Heilman and Smith,
2010) for surface realization, which generates and
ranks candidate sentences for the abstract. Af-
ter redundancy reduction, the full meeting abstract
can thus comprise the focused summary for each
meeting element. As described in subsequent sec-
tions, the generation framework allows us to iden-
tify and reformulate the important information for
the focused summary. Our contributions are as fol-
lows:

• To the best of our knowledge, our system is
the first fully automatic system to generate
natural language abstracts for spoken meet-
ings.

• We present a novel template extraction al-
gorithm, based on Multiple Sequence Align-
ment (MSA) (Durbin et al., 1998), to induce
domain-independent templates that guide ab-
stract generation. MSA is commonly used
in bioinformatics to identify equivalent frag-
ments of DNAs (Durbin et al., 1998) and
has also been employed for learning para-
phrases (Barzilay and Lee, 2003).

• Although our framework requires labeled
training data for each type of focused sum-
mary (decisions, problems, etc.), we also
make initial tries for domain adaptation so
that our summarization method does not need
human-written abstracts for each new meet-
ing domain (e.g. faculty meetings, theater
group meetings, project group meetings).

We instantiate the abstract generation frame-
work on two corpora from disparate domains
— the AMI Meeting Corpus (Mccowan et al.,
2005) and ICSI Meeting Corpus (Janin et al.,
2003) — and produce systems to generate fo-
cused summaries with regard to four types of

meeting elements: DECISIONs, PROBLEMs, AC-
TION ITEMSs, and PROGRESS. Automatic eval-
uation (using ROUGE (Lin and Hovy, 2003) and
BLEU (Papineni et al., 2002)) against manually
generated focused summaries shows that our sum-
marizers uniformly and statistically significantly
outperform two baseline systems as well as a
state-of-the-art supervised extraction-based sys-
tem. Human evaluation also indicates that the
abstractive summaries produced by our systems
are more linguistically appealing than those of
the utterance-level extraction-based system, pre-
ferring them over summaries from the extraction-
based system of comparable semantic correctness
(62.3% vs. 37.7%).

Finally, we examine the generality of our model
across domains for two types of focused summa-
rization — decisions and problems — by train-
ing the summarizer on out-of-domain data (i.e. the
AMI corpus for use on the ICSI meeting data,
and vice versa). The resulting systems yield re-
sults comparable to those from the same system
trained on in-domain data, and statistically signif-
icantly outperform supervised extractive summa-
rization approaches trained on in-domain data.

2 Related Work

Most research on spoken dialogue summariza-
tion attempts to generate summaries for full dia-
logues (Carenini et al., 2011). Only recently has
the task of focused summarization been studied.
Supervised methods are investigated to identify
key phrases or utterances for inclusion in the de-
cision summary (Fernández et al., 2008; Bui et
al., 2009). Based on Fernández et al. (2008), a
relation representation is proposed by Wang and
Cardie (2012) to form structured summaries; we
adopt this representation here for content selec-
tion.

Our research is also in line with generating ab-
stractive summaries for conversations. Extrac-
tive approaches (Murray et al., 2005; Xie et al.,
2008; Galley, 2006) have been investigated exten-
sively in conversation summarization. Murray et
al. (2010a) present an abstraction system consist-
ing of interpretation and transformation steps. Ut-
terances are mapped to a simple conversation on-
tology in the interpretation step according to their
type, such as a decision or problem. Then an in-
teger linear programming approach is employed
to select the utterances that cover more entities as
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Dialogue Acts: 
C: Looking at what we've got, 
we we want [an LCD display 
with a spinning wheel]. 
B: You have to have some 
push-buttons, don't you? 
C: Just spinning and not 
scrolling , I would say . 
B: I think the spinning wheel is 
definitely very now. 
A: but since LCDs seems to be 
uh a definite yes, 
C: We're having push-buttons 
[on the outside] 
C: and then on the inside an 
LCD with spinning wheel, 

Relation Instances: 
<want, an LCD display with a spinning 
wheel> 
<an LCD display, with a spinning 
wheel> 
<have, some push-buttons> 
<having, push-buttons on the outside> 
<push-buttons, on the outside> 
<an LCD, with spinning wheel> 
… (other possibilities) 

<want, an LCD display with a spinning wheel> 
• The team will want an LCD display with a 

spinning wheel. 
• The team with work with an LCD display 

with a spinning wheel. 
• The group decide to use an LCD display with 

a spinning wheel. 
… (other possibilities) 

<push-buttons, on the outside> 
• Push-buttons are going to be on the outside. 
• Push-buttons on the outside will be used. 
• There will be push-buttons on the outside. 
… (other possibilities) 

One-Best 
Abstract: 
The group decide to 
use an LCD display 
with a spinning 
wheel. 

One-Best 
Abstract: 
There will be push-
buttons on the 
outside. 

Final Summary: 
The group decide to 
use an LCD display with 
a spinning wheel. 
There will be push-
buttons on the outside. 

Learned Templates 

… (all possible abstracts per relation 
instance) 

Relation 
Extraction 

Content Selection 

Template 
Filling 

Statistical 
Ranking 

Surface Realization 

… (one-best abstract 
per relation instance) 

Post-
Selection 

Figure 2: The abstract generation framework. It takes as input a cluster of meeting-item-specific dialogue acts,
from which one focused summary is constructed. Sample relation instances are denoted in bold (The indicators
are further italicized and the arguments are in [brackets]). Summary-worthy relation instances are identified by
content selection module (see Section 4) and then filled into the learned templates individually. A statistical ranker
subsequently selects one best abstract per relation instance (see Section 5.2). The post-selection component reduces
the redundancy and outputs the final summary (see Section 5.3).

determined by an external ontology. Liu and Liu
(2009) apply sentence compression on extracted
summary utterances. Though some of the unnec-
essary words are dropped, the resulting compres-
sions can still be ungrammatical and unstructured.

This work is also broadly related to ex-
pert system-based language generation (Reiter
and Dale, 2000) and concept-to-text generation
tasks (Angeli et al., 2010; Konstas and Lapata,
2012), where the generation process is decom-
posed into content selection (or text planning) and
surface realization. For instance, Angeli et al.
(2010) learn from structured database records and
parallel textual descriptions. They generate texts
based on a series of decisions made to select the
records, fields, and proper templates for render-
ing. Those techniques that are tailored to specific
domains (e.g. weather forecasts or sportcastings)
cannot be directly applied to the conversational
data, as their input is well-structured and the tem-
plates learned are domain-specific.

3 Framework

Our domain-independent abstract generation
framework produces a summarizer that gener-
ates a grammatical abstract from a cluster of
meeting-element-related dialogue acts (DAs) —
all utterances associated with a single decision,
problem, action item or progress step of interest.
Note that identifying these DA clusters is a diffi-
cult task in itself (Bui et al., 2009). Accordingly,
our experiments evaluate two conditions — one
in which we assume that they are perfectly iden-
tified, and one in which we identify the clusters
automatically.

The summarizer consists of two major compo-
nents and is depicted in Figure 2. Given the DA
cluster to be summarized, the Content Selection
module identifies a set of summary-worthy rela-
tion instances represented as indicator-argument
pairs (i.e. these constitute a finer-grained represen-
tation than DAs). The Surface Realization compo-
nent then generates a short summary in three steps.
In the first step, each relation instance is filled into
templates with disparate structures that are learned
automatically from the training set (Template Fill-
ing). A statistical ranker then selects one best ab-
stract per relation instance (Statistical Ranking).
Finally, selected abstracts are processed for redun-
dancy removal in Post-Selection. Detailed descrip-
tions for each individual step are provided in Sec-
tions 4 and 5.

4 Content Selection

Phrase-based content selection approaches have
been shown to support better meeting sum-
maries (Fernández et al., 2008). Therefore, we
chose a content selection representation of a finer
granularity than an utterance: we identify relation
instances that can both effectively detect the cru-
cial content and incorporate enough syntactic in-
formation to facilitate the downstream surface re-
alization.

More specifically, our relation instances are
based on information extraction methods that
identify a lexical indicator (or trigger) that evokes
a relation of interest and then employ syntac-
tic information, often in conjunction with se-
mantic constraints, to find the argument con-
stituent(or target phrase) to be extracted. Rela-
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tion instances, then, are represented by indicator-
argument pairs (Chen et al., 2011). For example,
in the DA cluster of Figure 2, 〈want, an LCD dis-
play with a spinning wheel〉 and 〈push-buttons, on
the outside〉 are two relation instances.

Relation Instance Extraction We adopt and
extend the syntactic constraints from Wang and
Cardie (2012) to identify all relation instances in
the input utterances; the summary-worthy ones
will be selected by a discriminative classifier.
Constituent and dependency parses are obtained
by the Stanford parser (Klein and Manning, 2003).
Both the indicator and argument take the form of
constituents in the parse tree. We restrict the el-
igible indicator to be a noun or verb; the eligi-
ble arguments is a noun phrase (NP), prepositional
phrase (PP) or adjectival phrase (ADJP). A valid
indicator-argument pair should have at least one
content word and satisfy one of the following con-
straints:

• When the indicator is a noun, the argument
has to be a modifier or complement of the in-
dicator.

• When the indicator is a verb, the argument
has to be the subject or the object if it is an
NP, or a modifier or complement of the indi-
cator if it is a PP/ADJP.

We view relation extraction as a binary classifi-
cation problem rather than a clustering task (Chen
et al., 2011). All relation instances can be cate-
gorized as summary-worthy or not, but only the
summary-worthy ones are used for abstract gen-
eration. A discriminative classifier is trained for
this purpose based on Support Vector Machines
(SVMs) (Joachims, 1998) with an RBF kernel.
For training data construction, we consider a re-
lation instance to be a positive example if it shares
any content word with its corresponding abstracts,
and a negative example otherwise. The features
used are shown in Table 1.

5 Surface Realization

In this section, we describe surface realization,
which renders the relation instances into natural
language abstracts. This process begins with tem-
plate extraction (Section 5.1). Once the templates
are learned, the relation instances from Section 4
are filled into the templates to generate an abstract
(see Section 5.2). Redundancy handling is dis-
cussed in Section 5.3.

Basic Features
number of words/content words
portion of content words/stopwords
number of content words in indicator/argument
number of content words that are also in previous DA
indicator/argument only contains stopword?
number of new nouns
Content Features
has capitalized word?
has proper noun?
TF/IDF/TFIDF min/max/average
Discourse Features
main speaker or not?
is in an adjacency pair (AP)?
is in the source/target of the AP?
number of source/target DA in the AP
is the target of the AP a positive/negative/neutral response?
is the source of the AP a question?
Syntax Features
indicator/argument constituent tag
dependency relation of indicator and argument

Table 1: Features for content selection. Most are
adapted from previous work (Galley, 2006; Xie et al.,
2008; Wang and Cardie, 2012). Every basic or con-
tent feature is concatenated with the constituent tags of
indicator and argument to compose a new one. Main
speakers include the most talkative speaker (who has
said the most words) and other speakers whose word
count is more than 20% of the most talkative one (Xie
et al., 2008). Adjacency pair (AP) (Galley, 2006) is
an important conversational analysis concept; each AP
consists of a source utterance and a target utterance pro-
duced by different speakers.

5.1 Template Extraction

Sentence Clustering. Template extraction starts
with clustering the sentences that constitute the
manually generated abstracts in the training data
according to their lexical and structural similarity.
From each cluster, multiple-sequence alignment
techniques are employed to capture the recurring
patterns.

Intuitively, desirable templates are those that
can be applied in different domains to generate
the same type of focused summary (e.g. decision
or problem summaries). We do not want sen-
tences to be clustered only because they describe
the same domain-specific details (e.g. they are all
about “data collection”), which will lead to frag-
mented templates that are not reusable for new do-
mains. We therefore replace all appearances of
dates, numbers, and proper names with generic la-
bels. We also replace words that appear in both
the abstract and supporting dialogue acts by a la-
bel indicating its phrase type. For any noun phrase
with its head word abstracted, the whole phrase is
also replaced with “NP”.
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start They 

The group were not sure whether to VP NP 

use 

NP should include end 

how much would cost to make 

1) The group were not sure whether to [include]VP [a recharger for the remote]NP . 
2) The group were not sure whether to use [plastic and rubber or titanium for the case]NP . 
3) The group were not sure whether [the remote control]NP should include [functions for 
controlling video]NP . 
4) They were not sure how much [a recharger]NP would cost to make . 
… (Other abstracts) 

1) The group were not sure whether to VP NP .  
2) The group were not sure whether to use NP .  
3) The group were not sure whether NP should include NP .  
4) They were not sure how much NP would cost to make . 

Generic Label Replacement + Clustering 

Template Examples:  
Fine T1: The group were not sure whether to SLOTVP NP . (1, 2)  
Fine T2: The group were not sure whether NP SLOTVP SLOTVP NP . (3)  
Fine T3: SLOTNP were not sure SLOTWHADJP SLOTWHADJP NP SLOTVP SLOTVP SLOTVP SLOTVP 
SLOTVP . (4)  
Coarse T1: SLOTNP SLOTNP were not sure SLOTSBAR SLOTVP SLOTVP SLOTNP . (1, 2)  
Coarse T2: SLOTNP SLOTNP were not sure SLOTSBAR SLOTNP SLOTVP SLOTVP SLOTNP . (3)  
Coarse T3: SLOTNP were not sure SLOTWHADJP SLOTWHADJP SLOTNP SLOTVP SLOTVP SLOTVP 
SLOTVP . (4) 

Template Induction 

MSA 

Figure 3: Example of template extraction by Multiple-
Sequence Alignment for problem abstracts from AMI.
Backbone nodes shared by at least 50% sentences are
shaded. The grammatical errors exist in the original
abstracts.

Following Barzilay and Lee (2003), we ap-
proach the sentence clustering task by hierarchical
complete-link clustering with a similarity metric
based on word n-gram overlap (n = 1, 2, 3). Clus-
ters with fewer than three abstracts are removed1.

Learning the Templates via MSA. For learn-
ing the structural patterns among the abstracts,
Multiple-Sequence Alignment (MSA) is first com-
puted for each cluster. MSA takes as input multi-
ple sentences and one scoring function to measure
the similarity between any two words. For inser-
tions or deletions, a gap cost is also added. MSA
can thus find the best way to align the sequences
with insertions or deletions in accordance with the
scorer. However, computing an optimal MSA is
NP-complete (Wang and Jiang, 1994), thus we
implement an approximate algorithm (Needleman
and Wunsch, 1970) that iteratively aligns two se-
quences each time and treats the resulting align-
ment as a new sequence2. Figure 3 demonstrates
an MSA computed from a sample cluster of ab-

1Clustering stops when the similarity between any pair-
wise clusters is below 5. This is applied to every type of sum-
marization. We tune the parameter on a small held-out devel-
opment set by manually evaluating the induced templates. No
significant change is observed within a small range.

2We adopt the scoring function for MSA from Barzilay
and Lee (2003), where aligning two identical words scores
1, inserting a gap scores −0.01, and aligning two different
words scores −0.5.

stracts. The MSA is represented in the form of
word lattice, from which we can detect the struc-
tural similarities shared by the sentences.

To transform the resulting MSAs into templates,
we need to decide whether a word in the sentence
should be retained to comprise the template or ab-
stracted. The backbone nodes in an MSA are iden-
tified as the ones shared by more than 50%3 of the
cluster’s sentences (shaded in gray in Figure 3).
We then create a FINE template for each sentence
by abstracting the non-backbone words, i.e. re-
placing each of those words with a generic token
(last step in Figure 3). We also create a COARSE

template that only preserves the nodes shared by
all of the cluster’s sentences. By using the op-
erations above, domain-independent patterns are
thus identified and domain-specific details are re-
moved.

Note that we do not explicitly evaluate the qual-
ity of the learned templates, which would require
a significant amount of manual evaluation. In-
stead, they are evaluated extrinsically. We encode
the templates as features (Angeli et al., 2010) that
could be selected or ignored in the succeeding ab-
stract ranking model.

5.2 Template Filling

An Overgenerate-and-Rank Approach. Since
filling the relation instances into templates of dis-
tinct structures may result in abstracts of vary-
ing quality, we rank the abstracts based on the
features of the template, the transformation con-
ducted, and the generated abstract. This is realized
by the Overgenerate-and-Rank strategy (Walker et
al., 2001; Heilman and Smith, 2010). It takes as
input a set of relation instances (from the same
cluster) R = {〈indi, argi〉}Ni=1 that are produced
by content selection component, a set of templates
T = {tj}Mj=1 that are represented as parsing trees,
a transformation function F (described below),
and a statistical ranker S for ranking the generated
abstracts, for which we defer description later in
this Section.

For each 〈indi, argi〉, the overgenerate-and-
rank approach fills it into each template in T by
applying F to generate all possible abstracts. Then
the ranker S selects the best abstract absi. Post-
selection is conducted on the abstracts {absi}Ni=1

to form the final summary.

3See Barzilay and Lee (2003) for a detailed discussion
about the choice of 50% according to pigeonhole principle.
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The transformation function F models the
constituent-level transformations of relation in-
stances and their mappings to the parse trees of
templates. With the intuition that people will reuse
the relation instances from the transcripts albeit
not necessarily in their original form to write the
abstracts, we consider three major types of map-
ping operations for the indicator or argument in the
source pair, namely, Full-Constituent Mapping,
Sub-Constituent Mapping, and Removal. Full-
Constituent Mapping denotes that a source con-
stituent is mapped directly to a target constituent
of the template parse tree with the same tag. Sub-
Constituent Mapping encodes more complex and
flexible transformations in that a sub-constituent
of the source is mapped to a target constituent
with the same tag. This operation applies when
the source has a tag of PP or ADJP, in which case
its sub-constituent, if any, with a tag of NP, VP or
ADJP can be mapped to the target constituent with
the same tag. For instance, an argument “with a
spinning wheel” (PP) can be mapped to an NP in a
template because it has a sub-constituent “a spin-
ning wheel” (NP). Removal means a source is not
mapped to any constituent in the template.

Formally, F is defined as:

F (〈indsrc, argsrc〉, t) =

{〈indtrank , argtrank , indtark , argtark 〉}Kk=1

where 〈indsrc, argsrc〉 ∈ R is a relation in-
stance (source pair); t ∈ T is a template; indtrank

and argtrank is the transformed pair of indsrc and
argsrc; indtark and argtark are constituents in t, and
they compose one target pair for 〈indsrc, argsrc〉.
We require that indsrc and argsrc are not removed
at the same time. Moreover, for valid indtark and
argtark , the words subsumed by them should be all
abstracted in the template, and they do not overlap
in the parse tree.

To obtain the realized abstract, we traverse the
parse tree of the filled template in pre-order. The
words subsumed by the leaf nodes are thus col-
lected sequentially.

Learning a Statistical Ranker. We utilize a dis-
criminative ranker based on Support Vector Re-
gression (SVR) (Smola and Schölkopf, 2004) to
rank the generated abstracts. Given the train-
ing data that includes clusters of gold-standard
summary-worthy relation instances, associated ab-
stracts they support, and the parallel templates for
each abstract, training samples for the ranker are

Basic Features
number of words in indsrc/argsrc

number of new nouns in indsrc/argsrc

indtrank /argtrank only has stopword?
number of new nouns in indtrank /argtrank

Structure Features
constituent tag of indsrc/argsrc

constituent tag of indsrc with constituent tag of indtar

constituent tag of argsrc with constituent tag of argtar

transformation of indsrc/argsrc combined with constituent tag
dependency relation of indsrc and argsrc

dependency relation of indtar and argtar

above 2 features have same value?
Template Features
template type (fine/coarse)
realized template (e.g. “the group decided to”)
number of words in template
the template has verb?
Realization Features
realization has verb?
realization starts with verb?
realization has adjacent verbs/NPs?
indsrc precedes/succeeds argsrc?
indtar precedes/succeeds argtar?
above 2 features have same value?
Language Model Features
log pLM (first word in indtrank |previous 1/2 words)
log pLM (realization)
log pLM (first word in argtrank |previous 1/2 words)
log pLM (realization)/length
log pLM (next word | last 1/2 words in indtrank )
log pLM (next word | last 1/2 words in argtrank )

Table 2: Features for abstracts ranking. The language
model features are based on a 5-gram language model
trained on Gigaword (Graff, 2003) by SRILM (Stolcke,
2002).

constructed according to the transformation func-
tion F mentioned above. Each sample is repre-
sented as:
(〈indsrc, argsrc〉, 〈indtrank , argtrank , indtark , argtark 〉, t, a)

where 〈indsrc, argsrc〉 is the source pair,
〈indtrank , argtrank 〉 is the transformed pair,
〈indtark , argtark 〉 is the target pair in template t,
and a is the abstract parallel to t.

We first find 〈indtar,absk , argtar,absk 〉, which
is the corresponding constituent pair of
〈indtark , argtark 〉 in a. Then we identify
the summary-worthy words subsumed by
〈indtrank , argtrank 〉 that also appear in a. If those
words are all subsumed by 〈indtar,absk , argtar,absk 〉,
then it is considered to be a positive sample, and
a negative sample otherwise. Table 2 displays the
features used in abstract ranking.

5.3 Post-Selection: Redundancy Handling.

Post-selection aims to maximize the information
coverage and minimize the redundancy of the
summary. Given the generated abstracts A =
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Input : relation instances R = {〈indi, argi〉}Ni=1,
generated abstracts A = {absi}Ni=1, objective
function f , cost function C

Output: final abstract G

G← Φ (empty set);
U ← A;
while U 6= Φ do

abs← arg maxabsi∈U
f(A,G∪absi)−f(A,G)

C(absi)
;

if f(A,G ∪ abs)− f(A,G) ≥ 0 then
G← G ∪ abs;

end
U ← U \ abs;

end

Algorithm 1: Greedy algorithm for post-
selection to generate the final summary.

{absi}Ni=1, we use a greedy algorithm (Lin and
Bilmes, 2010) to select a subsetA′, whereA′ ⊆ A,
to form the final summary. We define wij as
the unigram similarity between abstracts absi and
absj , C(absi) as the number of words in absi. We
employ the following objective function:
f(A,G) =

∑
absi∈A\G

∑
absj∈G wi,j , G ⊆ A

Algorithm 1 sequentially finds an abstract with
the greatest ratio of objective function gain to
length, and add it to the summary if the gain is
non-negative.

6 Experimental Setup

Corpora. Two disparate corpora are used for
evaluation. The AMI meeting corpus (Mccowan
et al., 2005) contains 139 scenario-driven meet-
ings, where groups of four people participate in
a series of four meetings for a fictitious project of
designing remote control. The ICSI meeting cor-
pus (Janin et al., 2003) consists of 75 naturally oc-
curring meetings, each of them has 4 to 10 par-
ticipants. Compared to the fabricated topics in
AMI, the conversations in ICSI tend to be special-
ized and technical, e.g. discussion about speech
and language technology. We use 57 meetings in
ICSI and 139 meetings in AMI that include a short
(usually one-sentence), manually constructed ab-
stract summarizing each important output for ev-
ery meeting. Decision and problem summaries are
annotated for both corpora. AMI has extra ac-
tion item summaries, and ICSI has progress sum-
maries. The set of dialogue acts that support each
abstract are annotated as such.

System Inputs. We consider two system input
settings. In the True Clusterings setting, we
use the annotations to create perfect partitions of
the DAs for input to the system; in the System

Figure 4: Content selection evaluation by using
ROUGE-SU4 (multiplied by 100). SVM-DA and
SVM-TOKEN denotes for supervised extract-based
methods with SVMs on utterance- and token-level.
Summaries for decision, problem, action item, and
progress are generated and evaluated for AMI and ICSI
(with names in parentheses). X-axis shows the number
of meetings used for training.

Clusterings setting, we employ a hierarchical ag-
glomerative clustering algorithm used for this task
in (Wang and Cardie, 2011). DAs are grouped ac-
cording to a classifier trained beforehand.

Baselines and Comparisons. We compare our
system with (1) two unsupervised baselines, (2)
two supervised extractive approaches, and (3) an
oracle derived from the gold standard abstracts.

Baselines. As in Riedhammer et al. (2010), the
LONGEST DA in each cluster is selected as the
summary. The second baseline picks the clus-
ter prototype (i.e. the DA with the largest TF-
IDF similarity with the cluster centroid) as the
summary according to Wang and Cardie (2011).
Although it is possible that important content is
spread over multiple DAs, both baselines allow
us to determine summary quality when summaries
are restricted to a single utterance.

Supervised Learning. We also compare our
approach to two supervised extractive sum-
marization methods — Support Vector Ma-
chines (Joachims, 1998) trained with the same fea-
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tures as our system (see Table 1) to identify the im-
portant DAs (no syntax features) (Xie et al., 2008;
Sandu et al., 2010) or tokens (Fernández et al.,
2008) to include into the summary4.

Oracle. We compute an oracle consisting of the
words from the DA cluster that also appear in the
associated abstract to reflect the gap between the
best possible extracts and the human abstracts.

7 Results

Content Selection Evaluation. We first employ
ROUGE (Lin and Hovy, 2003) to evaluate the
content selection component with respect to the
human written abstracts. ROUGE computes the
ngram overlapping between the system summaries
with the reference summaries, and has been used
for both text and speech summarization (Dang,
2005; Xie et al., 2008). We report ROUGE-2 (R-
2) and ROUGE-SU4 (R-SU4) that are shown to
correlate with human evaluation reasonably well.

In AMI, four meetings of different functions are
carried out in each group5. 35 meetings for “con-
ceptual design” are randomly selected for testing.
For ICSI, we reserve 12 meetings for testing.

The R-SU4 scores for each system are displayed
in Figure 4 and show that our system uniformly
outperforms the baselines and supervised systems.
The learning curve of our system is relatively flat,
which means not many training meetings are re-
quired to reach a usable performance level.

Note that the ROUGE scores are relative low
when the reference summaries are human ab-
stracts, even for evaluation among abstracts pro-
duced by different annotators (Dang, 2005). The
intrinsic difference of styles between dialogue and
human abstract further lowers the scores. But the
trend is still respected among the systems.

Abstract Generation Evaluation. To evaluate
the full abstract generation system, the BLEU
score (Papineni et al., 2002) (the precision of uni-
grams and bigrams with a brevity penalty) is com-
puted with human abstracts as reference. BLEU
has a fairly good agreement with human judge-
ment and has been used to evaluate a variety of
language generation systems (Angeli et al., 2010;
Konstas and Lapata, 2012).

4We use SVMlight (Joachims, 1999) with RBF kernel by
default parameters for SVM-based classifiers and regressor.

5The four types of meetings in AMI are: project kick-off
(35 meetings), functional design (35 meetings), conceptual
design (35 meetings), and detailed design (34 meetings).

Figure 5: Full abstract generation system evaluation
by using BLEU (multiplied by 100). SVM-DA de-
notes for supervised extractive methods with SVMs on
utterance-level.

We are not aware of any existing work gen-
erating abstractive summaries for conversations.
Therefore, we compare our full system against
a supervised utterance-level extractive method
based on SVMs along with the baselines. The
BLEU scores in Figure 5 show that our system im-
proves the scores consistently over the baselines
and the SVM-based approach.

Domain Adaptation Evaluation. We further
examine our system in domain adaptation sce-
narios for decision and problem summarization,
where we train the system on AMI for use on ICSI,
and vice versa. Table 3 indicates that, with both
true clusterings and system clusterings, our sys-
tem trained on out-of-domain data achieves com-
parable performance with the same system trained
on in-domain data. In most experiments, it also
significantly outperforms the baselines and the
extract-based approaches (p < 0.05).

Human Evaluation. We randomly select 15 de-
cision and 15 problem DA clusters (true cluster-
ings). We evaluate fluency (is the text gram-
matical?) and semantic correctness (does the
summary convey the gist of the DAs in the clus-
ter?) for OUR SYSTEM trained on IN-domain data
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System (True Clusterings) AMI Decision ICSI Decision AMI Problem ICSI Problem
R-2 R-SU4 BLEU R-2 R-SU4 BLEU R-2 R-SU4 BLEU R-2 R-SU4 BLEU

CENTROID DA 1.3 3.0 7.7 1.8 3.5 3.8 1.0 2.7 4.2 1.0 2.3 2.8
LONGEST DA 1.6 3.3 7.0 2.8 4.7 6.5 1.0 3.0 3.6 1.2 3.4 4.6
SVM-DA (IN) 3.4 4.7 9.7 3.4 4.5 5.7 1.4 2.4 5.0 1.6 3.4 3.4

SVM-DA (OUT) 2.7 4.2 6.6 3.1 4.2 4.6 1.4 2.2 2.5 1.3 3.0 4.6
OUR SYSTEM (IN) 4.5 6.2 11.6 4.9 7.1 10.0 3.1 4.8 7.2 4.0 5.9 6.0

OUR SYSTEM (OUT) 4.6 6.1 10.3 4.8 6.4 7.8 3.5 4.7 6.2 3.0 5.5 5.3
ORACLE 7.5 12.0 22.8 9.9 14.9 20.2 6.6 11.3 18.9 6.4 12.6 13.0

System (System Clusterings) AMI Decision ICSI Decision AMI Problem ICSI Problem
R-2 R-SU4 BLEU R-2 R-SU4 BLEU R-2 R-SU4 BLEU R-2 R-SU4 BLEU

CENTROID DA 1.4 3.3 3.8 1.4 2.1 2.0 0.8 2.8 2.9 0.9 2.3 1.8
LONGEST DA 1.4 3.3 5.7 1.7 3.4 5.5 0.8 3.2 4.1 0.9 3.4 4.4
SVM-DA (IN) 2.6 4.6 10.5 3.5 6.5 7.1 1.8 3.7 4.9 1.8 4.0 4.6

SVM-DA (OUT) 3.4 5.8 10.3 2.7 4.8 6.3 2.1 3.8 4.3 1.5 3.8 3.5
OUR SYSTEM (IN) 3.5 5.4 11.7 4.4 7.4 9.1 3.3 4.6 9.5 2.3 4.2 7.4

OUR SYSTEM (OUT) 3.9 6.4 11.4 4.1 5.1 8.4 3.6 5.6 8.9 1.8 4.0 6.8
ORACLE 6.4 12.0 15.1 8.2 15.2 17.6 6.5 13.0 20.9 5.5 11.9 15.5

Table 3: Domain adaptation evaluation. Systems trained on out-of-domain data are denoted with “(OUT)”, oth-
erwise with “(IN)”. ROUGE and BLEU scores are multiplied by 100. Our systems that statistically significantly
outperform all the other approaches (except ORACLE) are in bold (p < 0.05, paired t-test). The numbers in italics
show the significant improvement over the baselines by our systems.

System Fluency Semantic Length
Mean S.D. Mean S.D.

OUR SYSTEM (IN) 3.67 0.85 3.27 1.03 23.65
OUR SYSTEM (OUT) 3.58 0.90 3.25 1.16 24.17

SVM-DA (IN) 3.36 0.84 3.44 1.26 38.83

Table 4: Human evaluation results of Fluency and Se-
mantic correctness for the generated abstracts. The rat-
ings are on 1 (worst) to 5 (best) scale. The average
Length of the abstracts for each system is also listed.

and OUT-of-domain data, and for the utterance-
level extraction system (SVM-DA) trained on in-
domain data. Each cluster of DAs along with three
randomly ordered summaries are presented to the
judges. Five native speaking Ph.D. students (none
are authors) performed the task.

We carry out an one-way Analysis of Variance
which shows significant differences in score as a
function of system (p < 0.05, paired t-test). Re-
sults in Table 4 demonstrate that our system sum-
maries are significantly more compact and fluent
than the extract-based method (p < 0.05) while
semantic correctness is comparable.

The judges also rank the three summaries in
terms of the overall quality in content, concise-
ness and grammaticality. An inter-rater agreement
of Fleiss’s κ = 0.45 (moderate agreement (Landis
and Koch, 1977)) was computed. Judges selected
our system as the best system in 62.3% scenarios
(IN-DOMAIN: 35.6%, OUT-OF-DOMAIN: 26.7%).
Sample summaries are exhibited in Figure 6.

8 Conclusion

We presented a domain-independent abstract gen-
eration framework for focused meeting summa-
rization. Experimental results on two disparate
meeting corpora show that our system can uni-

Decision Summary:
Human: The remote will have push buttons outside, and
an LCD and spinning wheel inside.
Our System (In): The group decide to use an LCD dis-
play with a spinning wheel. There will be push-buttons on
the outside.
Our System (Out): LCD display is going to be with a
spinning wheel. It is necessary having push-buttons on
the outside.
SVM-DA: Looking at what we’ve got, we we want an
LCD display with a spinning wheel. Just spinning and not
scrolling, I would say. I think the spinning wheel is defi-
nitely very now. We’re having push-buttons on the outside
Problem Summary:
Human: How to incorporate a fruit and vegetable theme
into the remote.
Our System (In): Whether to include the shape of fruit.
The team had to thinking bright colors.
Our System (Out): It is unclear that the buttons being in
the shape of fruit.
SVM-DA: and um Im not sure about the buttons being in
the shape of fruit though.

Figure 6: Sample decision and problem sum-
maries generated by various systems for examples
in Figure 1.

formly outperform the state-of-the-art supervised
extraction-based systems in both automatic and
manual evaluation. Our system also exhibits an
ability to train on out-of-domain data to generate
abstracts for a new target domain.
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Abstract

We present a hybrid natural language gen-
eration (NLG) system that consolidates
macro and micro planning and surface re-
alization tasks into one statistical learn-
ing process. Our novel approach is based
on deriving a template bank automatically
from a corpus of texts from a target do-
main. First, we identify domain specific
entity tags and Discourse Representation
Structures on a per sentence basis. Each
sentence is then organized into semanti-
cally similar groups (representing a do-
main specific concept) by k-means cluster-
ing. After this semi-automatic processing
(human review of cluster assignments), a
number of corpus–level statistics are com-
piled and used as features by a ranking
SVM to develop model weights from a
training corpus. At generation time, a set
of input data, the collection of semanti-
cally organized templates, and the model
weights are used to select optimal tem-
plates. Our system is evaluated with au-
tomatic, non–expert crowdsourced and ex-
pert evaluation metrics. We also introduce
a novel automatic metric – syntactic vari-
ability – that represents linguistic variation
as a measure of unique template sequences
across a collection of automatically gener-
ated documents. The metrics for generated
weather and biography texts fall within ac-
ceptable ranges. In sum, we argue that our
statistical approach to NLG reduces the
need for complicated knowledge-based ar-
chitectures and readily adapts to different
domains with reduced development time.

∗*Ravi Kondadadi is now affiliated with Nuance Commu-
nications, Inc.

1 Introduction

NLG is the process of generating natural-sounding
text from non-linguistic inputs. A typical NLG
system contains three main components: (1) Doc-
ument (Macro) Planning - deciding what content
should be realized in the output and how it should
be structured; (2) Sentence (Micro) planning -
generating a detailed sentence specification and
selecting appropriate referring expressions; and
(3) Surface Realization - generating the final text
after applying morphological modifications based
on syntactic rules (see e.g., Bateman and Zock
(2003), Reiter and Dale (2000) and McKeown
(1985)). However, document planning is arguably
one of the most crucial components of an NLG
system and is responsible for making the texts ex-
press the desired communicative goal in a coher-
ent structure. If the document planning stage fails,
the communicative goal of the generated text will
not be met even if the other two stages are perfect.
While most traditional systems simplify develop-
ment by using a pipelined approach where (1-3)
are executed in a sequence, this can result in er-
rors at one stage propagating to successive stages
(see e.g., Robin and McKeown (1996)). We pro-
pose a hybrid framework that combines (1-3) by
converting data to text in one single process.

Most NLG systems fall into two broad
categories: knowledge-based and statistical.
Knowledge-based systems heavily depend on hav-
ing domain expertise to come up with hand-
crafted rules at each stage of a pipeline. Although
knowledge-based systems can produce high qual-
ity text, they are (1) very expensive to build, in-
volving a lot of discussion with the end users of the
system for the document planning stage alone; (2)
have limited linguistic coverage, as it is time con-
suming to capture linguistic variation; and (3) one
has to start from scratch for each new domain be-
cause the developed components cannot be reused.
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Statistical systems, on the other hand, are fairly
inexpensive, more adaptable and rely on having
historical data for the given domain. Coverage is
likely to be high if more historical data is avail-
able. The main disadvantage with statistical sys-
tems is that they are more prone to errors and the
output text may not be coherent as there are less
constraints on the generated text.

Our framework is a hybrid of statistical and
template-based systems. Many knowledge-based
systems use templates to generate text. A tem-
plate structure contains “gaps” that are filled to
generate the output. The idea is to create a lot
of templates from the historical data and select
the right template based on some constraints. To
the best of our knowledge, this is the first hy-
brid statistical-template-based system that com-
bines all three stages of NLG. Experiments with
different variants of our system (for biography and
weather subject matter domains) demonstrate that
our system generates reasonable texts.

Also, in addition to the standard metrics used
to evaluate NLG systems (e.g., BLEU, NIST, etc.),
we present a unique text evaluation metric called
syntactic variability to measure the linguistic vari-
ation of generated texts. This metric applies to the
document collection level and is based on com-
puting the number of unique template sequences
among all the generated texts. A higher number
indicates the texts are more variable and natural-
sounding whereas a lower number shows they are
more redundant. We argue that this metric is use-
ful for evaluating template-based systems and for
any type of text generation for domains where lin-
guistic variability is favored (e.g., the user is ex-
pected to go through more than one document in
the same session).

The main contributions of this paper are (1) A
statistical NLG system that combines document
and sentence planning and surface realization into
one single process; and (2) A new metric – syntac-
tic variability – is proposed to measure the syntac-
tic and morphological variability of the generated
texts. We believe this is the first work to propose
an automatic metric to measure linguistic variabil-
ity of generated texts in NLG.

Section 2 provides an overview of related work
on NLG. We present our main system in Section 3.
The system is evaluated and discussed in Section
4. Finally, we conclude in Section 5 and point out
future directions of research.

2 Background

Typically, knowledge-based NLG systems are im-
plemented by rules and, as mentioned above, have
a pipelined architecture for the document and
sentence planning stages and surface realization
(Hovy, 1993; Moore and Paris, 1993). However,
document planning is arguably the most impor-
tant task (Sripada et al., 2001). It follows that ap-
proaches to document planning are rule-based as
well and, concomitantly, are usually domain spe-
cific. For example, Bouayad-Agha, et al. (2011)
proposed document planning based on an ontol-
ogy knowledge base to generate football sum-
maries. For rule–based systems, rules exist for
selecting content to grammatical choices to post-
processing (e.g., pronoun generation). These rules
are often tailored to a given system, with input
from multiple experts; consequently, there is a
high associated development cost (e.g., 12 person
months for the SUMTIME-METEO system (Belz,
2007)).

Statistical approaches can reduce extensive de-
velopment time by relying on corpus data to
“learn” rules for one or more components of an
NLG system (Langkilde and Knight, 1998). For
example, Duboue and McKeown (2003) proposed
a statistical approach to extract content selection
rules for biography descriptions. Further, statisti-
cal approaches should be more adaptable to differ-
ent domains than their rule-based equivalents (An-
geli et al., 2012). For example, Barzilay and Lap-
ata (2005) formulated content selection as a clas-
sification task to produce football summaries and
Kelly et al. (2009) extended Barzilay and Lapata’s
approach for generating match reports for cricket.

The present work builds on Howald et al.
(2013) where, in a given corpus, a combination of
domain specific named entity tagging and cluster-
ing sentences (based on semantic predicates) were
used to generate templates. However, while the
system consolidated both sentence planning and
surface realization with this approach (described
in more detail in Section 3), the document plan
was given via the input data and sequencing infor-
mation was present in training documents. For the
present research, we introduce a similar method
that leverages the distributions of document–level
features in the training corpus to incorporate a
statistical document planning component. Con-
sequently, we are able to create a streamlined
statistical NLG architecture that balances natural
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human–like variability with appropriate and accu-
rate information.

3 Methodology

In order to generate text for a given domain our
system runs input data through a statistical ranking
model to select a sequence of templates that best
fit the input data (E). In order to build the rank-
ing model, our system takes historical data (cor-
pus) for the domain through four components: (A)
preprocessing; (B) “conceptual unit” creation; (C)
collecting statistics; and (D) ranking model build-
ing (summarized in Figure 1). In this section, we
describe each component in detail.

Figure 1: System Architecture.

3.1 Preprocessing
The first component processes the given corpus to
extract templates. We assume that each document
in the corpus is classified to a specific domain.
Preprocessing involves uncovering the underlying
semantic structure of the corpus and using this as
a foundation for template creation (Lu et al., 2009;
Lu and Ng, 2011; Konstas and Lapata, 2012).

We first split each document in the corpus into
sentences and create a shallow Discourse Repre-
sentation Structure (following Discourse Repre-
sentation Theory (Kamp and Reyle, 1993)) of each
sentence. The DRS consists of semantic predi-
cates and named entity tags. We use Boxer se-
mantic analyzer (Bos, 2008) to extract semantic
predicates such as EVENT or DATE. In parallel,
domain specific named entity tags are identified
and, in conjunction with the semantic predicates,
are used to create templates. We developed the
named-entity tagger for the weather domain our-
selves. To tag entities in the biography domain,
we used OpenCalais (www.opencalais.com). For
example, in the biography in (1), the conceptual

meaning (semantic predicates and domain-specific
entities) of sentences (a-b) are represented in (c-d).
The corresponding templates are showing in (e-f).
(1) Sentence
a. Mr. Mitsutaka Kambe has been serving as Managing Di-
rector of the 77 Bank, Ltd. since June 27, 2008.
b. He holds a Bachelor’s in finance from USC and a MBA
from UCLA.

Conceptual Meaning
c. SERVING | TITLE | PERSON | COMPANY | DATE
d. HOLDS | DEGREE | SUBJECT | INSTITUTION| EVENT

Templates
e. [person] has been serving as [title] of the [company]
since [date].
f. [person] holds a [degree] in [subject] from [institution]
and a [degree] from [institution].

The outputs of the preprocessing stage are the tem-
plate bank and predicate information for each tem-
plate in the corpus.1

3.2 Creating Conceptual Units
The next step is to create conceptual units for the
corpus by clustering templates. This is a semi-
automatic process where we use the predicate in-
formation for each template to compute similar-
ity between templates. We use k-means clustering
with k (equivalent to the number of semantic con-
cepts in the domain) set to an arbitrarily high value
(100) to over-generate (using the WEKA toolkit
(Witten and Frank, 2005)). This allows for easier
manual verification of the generated clusters and
we merge them if necessary. We assign a unique
identifier called a CuId (Conceptual Unit Identi-
fier) to each cluster, which represents a “concep-
tual unit”. We associate each template in the cor-
pus to a corresponding CuId. For example, in (2),
using the templates in (1e-f), the identified named
entities are assigned to a clustered CuId (2a-b).
(2) Conceptual Units
a. {CuId : 000} – [person] has been serving as [title] of the
[company] since [date].
b. {CuId : 001} – [person] holds a [degree] in [subject]
from [institution] and a [degree] from [institution].

At this stage, we will have a set of conceptual
units with corresponding template collections (see
Howald et al. (2013) for a further explanation of
Sections 3.1-3.2).

1A similar approach to the clustering of semantic content
is found in Duboue and McKeown (2003), where text with
stopwords removed were used as semantic input. Boxer pro-
vides a similar representation with the addition of domain
general tags. However, to contrast our work from Duboue
and McKeown, which focused on content selection, we are
focused on learning templates from the semantic representa-
tions for the complete generation system (covering content
selection, aggregation, sentence and document planning).
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3.3 Collecting Corpus Statistics

After identifying the different conceptual units and
the template bank, we collect a number of statistics
from the corpus:

• Frequency distribution of templates overall and per po-
sition

• Frequency distribution of CuIds overall and per posi-
tion

• Average number of entity tags by CuId as well as the
entity distribution by CuId

• Average number of entity tags by position as well as
the entity distribution by position

• Average number of words per CuId.
• Average number of words per CuId and position com-

bination.
• Average number of words per position
• Frequency distribution of the main verbs by position
• Frequency distribution of CuId sequences (bigrams and

trigrams only) overall and per position
• Frequency distribution of template sequences (bigrams

and trigrams only) overall and per position
• Frequency distribution of entity tag sequences overall

and per position
• The average, minimum, maximum number of CuIds

across all documents

As discussed in the next section, these statistics
are turned into features used for building a ranking
model in the next component.

3.4 Building a ranking model

The core component of our system is a statistical
model that ranks a set of templates for a given
position (sentence 1, sentence 2, ..., sentence n)
based on the input data. The input data in our
tasks was extracted from a training document; this
serves as a temporary surrogate to a database. The
task is to learn the ranks of all the templates from
all CuIds at each position.

To generate the training data, we first filter the
templates that have named entity tags not specified
in the input data. This will make sure the gener-
ated text does not have any unfilled entity tags. We
then rank templates according to the Levenshtein
edit distance (Levenshtein, 1966) from the tem-
plate corresponding to the current sentence in the
training document (using the top 10 ranked tem-
plates in training for ease of processing effort). We
experimented with other ranking schemes such as
entity-based similarity (similarity between entity
sequences in the templates) and a combination of
edit-distance based and entity-based similarities.
We obtained better results with edit distance. For
each template, we generate the following features
to build the ranking model. Most of the features
are based on the corpus statistics mentioned above.

• CuId given position: This is a binary feature where
the current CuId is either the same as the most frequent
CuId for the position (1) or not (0).

• Overlap of named entities: Number of common enti-
ties between current CuId and most likely CuId for the
position

• Prior template: Probability of the sequence of tem-
plates selected at the previous position and the current
template (iterated for the last three positions).

• Prior CuId: Probability of the sequence of the CuId
selected at the previous position and the current CuId
(iterated for the last three positions).

• Difference in number of words: Absolute difference
between number of words for current template and av-
erage number of words for the CuId

• Difference in number of words given position: Ab-
solute difference between number of words for cur-
rent template and average number of words for CuId
at given position

• Percentage of unused data: This feature represents
the portion of the unused input so far.

• Difference in number of named entities: Absolute
difference between the number of named entities in the
current template and the average number of named en-
tities for the current position

• Most frequent verb for the position: Binary valued
feature where the main verb of the template belongs to
the most frequent verb group given the position is either
the same (1) or not (0).

• Average number of words used: Ratio of number of
words in the generated text so far to the average number
of words.

• Average number of entities: Ratio of number of
named entities in the generated text so far to the av-
erage number of named entities.

• Most likely CuId given position and previous CuId:
Binary feature indicating if the current CuId is most
likely given the position and the previous CuId.

• Similarity between the most likely template in CuId
and current template: Edit distance between the cur-
rent template and the most likely template for the cur-
rent CuId.

• Similarity between the most likely template in CuId
given position and current template: Edit distance
between the current template and the most likely tem-
plate for the current CuId at the current position.

We used a linear kernel for a ranking SVM
(Joachims, 2002) (cost set to total queries) to learn
the weights associated with each feature for the
different domains.

3.5 Generation

At generation time, our system has a set of in-
put data, a semantically organized template bank
(collection of templates organized by CuId) and a
model from training on the documents for a given
domain. We first filter out those templates that
contain a named entity tag not present in the in-
put data. Then, we compute a score for each of the
remaining templates from the feature values and
the feature weights from the model. The template
with the highest overall score is selected and filled
with matching entity tags from the input data and
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appended to the generated text.

Before generating the next sentence, we track
those entities used in the initial sentence gener-
ation and decide to either remove those entities
from the input data or keep the entity for one or
more additional sentence generations. For exam-
ple, in the biography discourses, the name of the
person may occur only once in the input data, but
it may be useful for creating good texts to have
that person’s name available for subsequent gen-
erations. To illustrate in (3), if we remove James
Smithton from the input data after the initial gen-
eration, an irrelevant sentence (d) is generated as
the input data will only have one company after
the removal of James Smithton and the model will
only select a template with one company. If we
keep James Smithton, then the generations in (a-b)
are more cohesive.

(3) Use more than once
a. Mr. James Smithton was appointed CFO at Fordway

Internation in April.
b. Previously, Mr. Smithton was CFO of the Keyes

Development Group.

Use once and remove
c. Mr. James Smithton was appointed CFO at Fordway

Internation in April.
d. Keyes Development Group is a venture capital firm.

Deciding on what type of entities and how to
remove them is different for each domain. For ex-
ample, some entities are very unique to a text and
should not be made available for subsequent gen-
erations as doing so would lead to unwanted re-
dundancies (e.g., mentioning the name of current
company in a biography discourse more than once
as in (3)) and some entities are general and should
be retained. Our system possesses the ability to
monitor the data usage from historical data and we
can set parameters (based on the distribution of en-
tities) on the usage to ensure coherent generations
for a given domain.

Once the input data has been modified (i.e., an
entity have been removed, replaced or retained),
it serves as the new input data for the next sen-
tence generation. This process repeats until reach-
ing the minimum number of sentences for the do-
main (determined from the training corpus statis-
tic) and then continues until all of the remaining
input data is consumed (and not to exceed the pre-
determined maximum number of sentences, also
determined from the training corpus statistic).

4 Evaluation and Discussion

In this section, we first discuss the corpus data
used to train and generate texts. Then, the re-
sults of both automatic and human evaluations of
our system’s generations against the original and
baseline texts are considered as a means of de-
termining performance. For all experiments re-
ported in this section, the baseline system selects
the most frequent conceptual unit at the given po-
sition, chooses the most likely template for the
conceptual unit, and fills the template with input
data. The above process is repeated until the num-
ber of sentences is less than or equal to the average
number of sentences for the given domain.

4.1 Data

We ran our system on two different domains: cor-
porate officer and director biographies and off-
shore oil rig weather reports from the SUMTIME-
METEO corpus ((Reiter et al., 2005)). The biogra-
phy domain includes 1150 texts ranging from 3-17
sentences and the weather domain includes 1045
weather reports ranging from 1-6 sentences.2 We
used a training-test(generation) split of 70/30.

(4) provides generation comparisons for the
system ( DocSys), baseline ( DocBase) and orig-
inal ( DocOrig) randomly selected text snippets
from each domain. The variability of the gener-
ated texts ranges from a close similarity to slightly
shorter - not an uncommon (Belz and Reiter,
2006), but not necessarily detrimental, observation
for NLG systems (van Deemter et al., 2005).
(4) Weather DocOrig
a. Another weak cold front will move ne to Cornwall by later

Friday.
Weather DocSys

b. Another weak cold front will move ne to Cornwall during
Friday.
Weather DocBase

c. Another weak cold front from ne through the Cornwall will
remain slow moving.

Bio DocOrig
d. He previously served as Director of Sales Planning and

Manager of Loan Center.
Bio DocSys

e. He previously served as Director of Sales in Loan Center
of the Company.
Bio DocBase

2The SUMTIME-METEO project is a common bench
mark in NLG. However, we provide no comparison between
our system and SUMTIME-METEO as our system utilized the
generated forecasts from SUMTIME-METEO’s system as the
historical data. We cannot compare with other statistical gen-
eration systems like (Belz, 2007) as they only focussed on the
part of the forecasts the predicts wind characteristics whereas
our system generates the complete forecasts.
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f. He previously served as Director of Sales of the Company.

The DocSys and DocBase generations are
largely grammatical and coherent on the surface
with some variance, but there are graded semantic
variations (e.g., Director of Sales Planning vs. Di-
rector of Sales (4g-h) and move ne to Cornwall vs.
from ne through the Cornwall). Both automatic
and human evaluations are required in NLG to de-
termine the impact of these variances on the under-
standability of the texts in general (non-experts)
and as they are representative of particular subject
matter domains (experts). The following sections
discuss the evaluation results.

4.2 Automatic Metrics
We used BLEU–4 (Papineni et al., 2002), METEOR

(v.1.3) (Denkowski and Lavie, 2011) to evaluate
the texts at document level. Both BLEU–4 and
METEOR originate from machine translation re-
search. BLEU–4 measures the degree of 4-gram
overlap between documents. METEOR uses a un-
igram weighted f–score less a penalty based on
chunking dissimilarity. These metrics only eval-
uate the text on a document level but fail to iden-
tify “syntactic repetitiveness” across documents in
a document collection. This is an important char-
acteristic of a document collection to avoid banal-
ity. To address this issue, we propose a new auto-
matic metric called syntactic variability. In order
to compute this metric, each document should be
represented as a sequence of templates by associ-
ating each sentence in the document with a tem-
plate in the template bank. Syntactic variability is
defined as the percentage of unique template se-
quences across all generated documents. It ranges
between 0 and 1. A higher value indicates that
more documents in the collection are linguistically
different from each other and a value closer to zero
shows that most of documents have the similar
language despite different input data.3

As indicated in Figure 2, the BLEU-4 scores are
low for all DocSys and DocBase generations (as
compared to DocOrig) for each domain. How-
ever, the METEOR scores, while low overall (rang-
ing from .201-.437) are noticeably increased over
BLEU-4 (which ranges from .199-.320).

Given the nature of each metric, the results in-
dicate that the generated and baseline texts have

3Of course, syntactic and semantic repetitiveness could be
captured by syntactic variability, but only if this is the nature
of the underlying historical data - financial texts tend to be
fairly repetitive.

Figure 2: Automatic Evaluations.

very different surface realizations compared to the
originals (low BLEU-4), but are still capturing the
content of the originals (higher METEOR). Both
BLEU–4 and METEOR measure the similarity of
the generated text to the original text, but fail to
penalize repetitiveness across texts, which is ad-
dressed by the syntactic variability metric. There
is no statistically significant difference between
DocSys and DocBase generations for METEOR

and BLEU–4.4 However, there is a statistically
significant difference in the syntactic variability
metric for both domains (weather - χ2=137.16,
d.f.=1, p<.0001; biography - χ2=96.641, d.f.=1,
p<.0001) - the variability of the DocSys gener-
ations is greater than the DocBase generations,
which shows that texts generated by our system
are more variable than the baseline texts.

The use of automatic metrics is a common eval-
uation method in NLG, but they must be recon-
ciled against non–expert and expert level evalua-
tions.

4.3 Non-Expert Human Evaluations

Two sets of crowdsourced human evaluation tasks
(run on CrowdFlower) were constructed to com-
pare against the automatic metrics: (1) an under-
standability evaluation of the entire text on a three-
point scale: Fluent = no grammatical or infor-
mative barriers; Understandable = some gram-
matical or informative barriers; Disfluent = sig-
nificant grammatical or informative barriers; and
(2) a sentence–level preference between sentence
pairs (e.g., “Do you prefer Sentence A (from Do-
cOrig) or the corresponding Sentence B (from
DocBase/DocSys)”).

4BLEU–4: weather - χ2=1.418, d.f.=1, p=.230; biography
- χ2=0.311, d.f.=1, p=.354. METEOR: weather - χ2=1.016,
d.f.=1, p=.313; biography - χ2=0.851, d.f.=1, p=.354.
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Over 100 native English speakers contributed,
each one restricted to providing no more than
50 responses and only after they successfully an-
swered 4 “gold data” questions correctly. We also
omitted those evaluators with a disproportionately
high response rate. No other data was collected on
the contributors (although geographic data (coun-
try, region, city) and IP addresses were available).
For the sentence–level preference task, the pair or-
derings were randomized to prevent click bias.

For the text–understandability task, 40 docu-
ments were chosen at random from the DocOrig
test set along with the corresponding 40 Doc-
Sys and DocBase generations (240 documents to-
tal/120 for each domain). 8 judgments per doc-
ument were solicited from the crowd (1920 to-
tal judgments, 69.51 average agreement) and are
summarized in Figures 3 and 4 (biography and
weather respectively).

If the system is performing well and the rank-
ing model is actually contributing to increased
performance, the accepted trend should be that
the DocOrig texts are more fluent and preferred
compared to both the DocSys and DocBase sys-
tems. However, the differences between DocOrig
and DocSys will not be significant, the differences
between DocOrig and DocBase and DocSys and
DocBase will be significantly different.

Figure 3: Biography Text Evaluations.

Focusing on fluency ratings, it is expected that
the DocOrig generations will have the highest flu-
ency (as they are human generated). Further, if the
DocSys is performing well, it is expected that the
fluency rating will be less than the DocOrig and
higher than DocBase. Figure 3, which shows the
biography text evaluations, demonstrates this ac-
ceptable distribution of performances.

For the weather discourses, as evident from
Figure 4, the acceptable trend holds between the

DocSys and DocBase generations, and the Doc-
Sys generation fluency is actually slightly higher
than DocOrig. This is possibly because the Do-
cOrig texts are from a particular subject matter -
weather forecasts for offshore oil rigs in the U.K.
- which may be difficult for people in general to
understand. Nonetheless, the demonstrated trend
is favorable to our system.

In terms of significance, there are no statisti-
cally significant differences between the systems
for weather (DocOrig vs. DocSys - χ2=.347,
d.f.=1, p=.555; DocOrig vs. DocBase - χ2=.090,
d.f.=1, p=.764; DocSys vs. DocBase - χ2=.790,
d.f.=1, p=.373). While this is a good result for
comparing DocOrig and DocSys generations, it is
not for the other pairs. However, numerically, the
trend is in the right direction despite not being
able to demonstrate significance. For biography,
the trend fits nicely both numerically and in terms
of statistical significance (DocOrig vs. DocSys -
χ2=5.094, d.f.=1, p=.024; DocOrig vs. DocBase -
χ2=35.171, d.f.=1, p<.0001; DocSys vs. DocBase
- χ2=14.000, d.f.=1, p<.0001).

Figure 4: Weather Text Evaluations.

For the sentence preference task, equivalent
sentences across the 120 documents were chosen
at random (80 sentences from biography and 74
sentences from weather). 8 judgments per com-
parison were solicited from the crowd (3758 to-
tal judgments, 75.87 average agreement) and are
summarized in Figures 5 and 6 (biography and
weather, respectively).

Similar to the text–understandability task, an
acceptable performance pattern should include the
DocOrig texts being preferred to both DocSys and
DocBase generations and the DocSys generation
preferred to the DocBase. The closer the Doc-
Sys generation is to the DocOrig, the better Doc-
Sys is performing. The biography domain illus-

1412



Figure 5: Biography Sentence Evaluations.

trates this scenario (Figure 5) where the results are
similar to the text-understandability experiments.
In contrast, for weather domain, sentences from
DocBase system were preferred to our system’s
(Figure 6). We looked at the cases where the
preferences were in favor of DocBase. It appears
that because of high syntactic variability, our sys-
tem can produce quite complex sentences where as
the non-experts seem to prefer shorter and simpler
sentences because of the complexity of the text.

In terms of significance, there are no statisti-
cally significant differences between the systems
for weather (DocOrig vs. DocSys - χ2=6.48,
d.f.=1, p=.011; DocOrig vs. DocBase - χ2=.720,
d.f.=1, p=.396; DocSys vs. DocBase - χ2=.720,
d.f.=1, p=.396). The trend is different compared to
the fluency metric above in that the DocBase sys-
tem is outperforming the DocOrig generations to
an almost statistically significant difference - the
remaining comparisons follow the trend. We be-
lieve that this is for similar reasons stated above
- i.e., the generation may be a more digestible
version of a technical document. More problem-
atic is the results of the biography evaluations.
Here there is a statistically significant difference
between the DocSys and DocOrig and no sta-
tistically significant difference between the Doc-
Sys and DocBase generations (DocOrig vs. Doc-
Sys - χ2=76.880, d.f.=1, p<.0001; DocOrig vs.
DocBase - χ2=38.720, d.f.=1, p<.0001; DocSys
vs. DocBase - χ2=.720, d.f.=1, p=.396). Again,
this distribution of preferences is numerically sim-
ilar to the trend we would like to see, but the sta-
tistical significance indicates that there is some
ground to make up. Expert evaluations are po-
tentially informative for identifying specific short-
comings and how best to address them.

Figure 6: Weather Sentence Evaluations.

4.4 Expert Human Evaluations

We performed expert evaluations for the biogra-
phy domain only as we do not have access to
weather experts. The four biography reviewers are
journalists who write short biographies for news
archives.

For the biography domain, evaluations of the
texts were largely similar to the evaluations of
the non-expert crowd (76.22 average agreement
for the sentence–preference task and 72.95 for the
text–understandability task). For example, the dis-
fluent ratings were highest for the DocBase gen-
erations and lowest for the DocOrig generations.
Also, the fluent ratings were highest for the Do-
cOrig generations, and while the combined flu-
ent and understandable are higher for DocSys as
compared to DocBase, the DocBase generations
had a 10% higher fluent score (58.22%) as com-
pared to the DocSys fluent score (47.97%). Based
on notes from the reviewers, the succinctness of
the the DocBase generations are preferred in some
ways as they are in keeping with certain editorial
standards. This is further reflected in the sentence
preferences being 70% in favor of the DocBase
generations as compared to the DocSys genera-
tions (all other sentence comparisons were consis-
tent with the non-expert crowd).

These expert evaluations provide much needed
clarity to the NLG process. Overall, our system
is generating clearly acceptable texts. Further,
there are enough parameters inherent in the system
to tune to different domain expectations. This is
an encouraging result considering that no experts
were involved in the development of the system -
a key contrast to many other existing (especially
rule-based) NLG systems.
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5 Conclusions and Future Work

We have presented a hybrid (template-based and
statistical), single–staged NLG system that gen-
erates natural sounding texts and is domain–
adaptable. Our experiments with both ex-
perts and non–experts demonstrate that the
system-generated texts are comparable to human–
authored texts. The development time to adapt
our system to new domains is small compared to
other NLG systems; around a week to adapt the
system to weather and biography domains. Most
of the development time was spent on creating the
domain-specific entity taggers for the weather do-
main. The development time would be reduced to
hours if the historical data for a domain is readily
available with the corresponding input data.

The main limitation of our system is that it re-
quires significant historical data. Our system does
consolidate many traditional components (macro-
and micro-planning, lexical choice and aggrega-
tion),5 but the system cannot be applied to the do-
mains with no historical data. The quality and the
linguistic variability of the generated text is di-
rectly proportional to the amount of historical data
available.

We also presented a new automatic metric to
evaluate generated texts at document collection
level to identify boilerplate texts. This metric
computes “syntactic repetitiveness” by counting
the number of unique template sequences across
the given document collection.

Future work will focus on extending our frame-
work by adding additional features to the model
that could improve the quality of the generated
text. For example, most NLG pipelines have a
separate component responsible for referring ex-
pression generation (Krahmer and van Deemter,
2012). While we address the associated concern
of data consumption in Section 3.5, we currently
do not have any features that would handle refer-
ring expression generation. We believe that this
is possible by identifying referring expressions in
templates and adding features to the model to give
higher scores to the templates having relevant re-
ferring expressions. We also would like to inves-
tigate using all the top-scored templates instead
of the highest-scoring template. This would help
achieve better syntactic-variability scores by pro-
ducing more natural-sounding texts.

5Lexical choice and aggregation are “handled” insofar as
their existence in the historical data.
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Abstract

What do we want to learn from a trans-
lation competition and how do we learn
it with confidence? We argue that a dis-
proportionate focus on ranking competi-
tion participants has led to lots of differ-
ent rankings, but little insight about which
rankings we should trust. In response, we
provide the first framework that allows an
empirical comparison of different analy-
ses of competition results. We then use
this framework to compare several analyt-
ical models on data from the Workshop on
Machine Translation (WMT).

1 The WMT Translation Competition

Every year, the Workshop on Machine Transla-
tion (WMT) conducts a competition between ma-
chine translation systems. The WMT organizers
invite research groups to submit translation sys-
tems in eight different tracks: Czech to/from En-
glish, French to/from English, German to/from
English, and Spanish to/from English.

For each track, the organizers also assemble a
panel of judges, typically machine translation spe-
cialists.1 The role of a judge is to repeatedly rank
five different translations of the same source text.
Ties are permitted. In Table 1, we show an ex-
ample2 where a judge (we’ll call him “jdoe”) has
ranked five translations of the French sentence “Il
ne va pas.”

Each such elicitation encodes ten pairwise com-
parisons, as shown in Table 2. For each compe-
tition track, WMT typically elicits between 5000
and 20000 comparisons. Once the elicitation pro-
cess is complete, WMT faces a large database
of comparisons and a question that must be an-
swered: whose system is the best?

1Although in recent competitions, some of the judging has
also been crowdsourced (Callison-Burch et al., 2010).

2The example does not use actual system output.

rank system translation
1 bbn “He does not go.”

2 (tie) uedin “He goes not.”
2 (tie) jhu “He did not go.”

4 cmu “He go not.”
5 kit “He not go.”

Table 1: WMT elicits preferences by asking
judges to simultaneously rank five translations,
with ties permitted. In this (fictional) example, the
source sentence is the French “Il ne va pas.”

source text sys1 sys2 judge preference
“Il ne va pas.” bbn cmu jdoe 1
“Il ne va pas.” bbn jhu jdoe 1
“Il ne va pas.” bbn kit jdoe 1
“Il ne va pas.” bbn uedin jdoe 1
“Il ne va pas.” cmu jhu jdoe 2
“Il ne va pas.” cmu kit jdoe 1
“Il ne va pas.” cmu uedin jdoe 2
“Il ne va pas.” jhu kit jdoe 1
“Il ne va pas.” jhu uedin jdoe 0
“Il ne va pas.” kit uedin jdoe 2

Table 2: Pairwise comparisons encoded by Ta-
ble 1. A preference of 0 means neither translation
was preferred. Otherwise the preference specifies
the preferred system.

2 A Ranking Problem

For several years, WMT used the following heuris-
tic for ranking the translation systems:

ORIGWMT(s) =
win(s) + tie(s)

win(s) + tie(s) + loss(s)

For system s, win(s) is the number of pairwise
comparisons in which s was preferred, loss(s) is
the number of comparisons in which s was dispre-
ferred, and tie(s) is the number of comparisons in
which s participated but neither system was pre-
ferred.

Recently, (Bojar et al., 2011) questioned the ad-
equacy of this heuristic through the following ar-
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gument. Consider a competition with systems A
and B. Suppose that the systems are different but
equally good, such that one third of the time A
is judged better than B, one third of the time B
is judged better than A, and one third of the time
they are judged to be equal. The expected values
of ORIGWMT(A) and ORIGWMT(B) are both
2/3, so the heuristic accurately judges the systems
to be equivalently good. Suppose however that
we had duplicated B and had submitted it to the
competition a second time as system C. Since B
and C produce identical translations, they should
always tie with one another. The expected value
of ORIGWMT(A) would not change, but the ex-
pected value of ORIGWMT(B) would increase to
5/6, buoyed by its ties with system C.

This vulnerability prompted (Bojar et al., 2011)
to offer the following revision:

BOJAR(s) =
win(s)

win(s) + loss(s)

The following year, it was BOJAR’s turn to be crit-
icized, this time by (Lopez, 2012):

Superficially, this appears to be an im-
provement....couldn’t a system still be
penalized simply by being compared
to [good systems] more frequently than
its competitors? On the other hand,
couldn’t a system be rewarded simply
by being compared against a bad system
more frequently than its competitors?

Lopez’s concern, while reasonable, is less obvi-
ously damning than (Bojar et al., 2011)’s criti-
cism of ORIGWMT. It depends on whether the
collected set of comparisons is small enough or
biased enough to make the variance in competi-
tion significant. While this hypothesis is plausi-
ble, Lopez makes no attempt to verify it. Instead,
he offers a ranking heuristic of his own, based on
a Minimum Feedback Arc solver.

The proliferation of ranking heuristics contin-
ued from there. The WMT 2012 organizers
(Callison-Burch et al., 2012) took Lopez’s ranking
scheme and provided a variant called Most Proba-
ble Ranking. Then, noting some potential pitfalls
with that, they created two more, called Monte
Carlo Playoffs and Expected Wins. While one
could raise philosophical objections about each of
these, where would it end? Ultimately, the WMT
2012 findings presented five different rankings for

the English-German competition track, with no
guidance about which ranking we should pay at-
tention to. How can we know whether one rank-
ing is better than other? Or is this even the right
question to ask?

3 A Problem with Rankings

Suppose four systems participate in a translation
competition. Three of these systems are extremely
close in quality. We’ll call these close1, close2,
and close3. Nevertheless, close1 is very slightly
better3 than close2, and close2 is very slightly bet-
ter than close3. The fourth system, called terrific,
is a really terrific system that far exceeds the other
three.

Now which is the better ranking?

terrific, close3, close1, close2 (1)

close1, terrific, close2, close3 (2)

Spearman’s rho4 would favor the second ranking,
since it is a less disruptive permutation of the gold
ranking. But intuition favors the first. While its
mistakes are minor, the second ranking makes the
hard-to-forgive mistake of placing close1 ahead of
the terrific system.

The problem is not with Spearman’s rho. The
problem is the disconnnect between the knowl-
edge that we want a ranking to reflect and the
knowledge that a ranking actually contains. With-
out this additional knowledge, we cannot deter-
mine whether one ranking is better than another,
even if we know the gold ranking. We need to
determine what information they lack, and define
more rigorously what we hope to learn from a
translation competition.

4 From Rankings to Relative Ability

Ostensibly the purpose of a translation competi-
tion is to determine the relative ability of a set
of translation systems. Let S be the space of all
translation systems. Hereafter, we will refer to S
as the space of students. We choose this term to
evoke the metaphor of a translation competition as
a standardized test, which shares the same goal: to
assess the relative abilities of a set of participants.

But what exactly do we mean by “ability”? Be-
fore formally defining this term, first recognize
that it means little without context, namely:

3What does “better” mean? We’ll return to this question.
4Or Pearson’s correlation coefficient.

1417



1. What kind of source text do we want the
systems to translate well? Say system A is
great at translating travel-related documents,
but terrible at translating newswire. Mean-
while, system B is pretty good at both. The
question “which system is better?” requires
us to state how much we care about travel
versus newswire documents – otherwise the
question is underspecified.

2. Who are we trying to impress? While it’s
tempting to think that translation quality is
a universal notion, the 50-60% interannota-
tor agreement in WMT evaluations (Callison-
Burch et al., 2012) suggests otherwise. It’s
also easy to imagine reasons why one group
of judges might have different priorities than
another. Think a Fortune 500 company ver-
sus web forum users. Lawyers versus lay-
men. Non-native versus native speakers.
Posteditors versus Google Translate users.
Different groups have different uses for trans-
lation, and therefore different definitions of
what “better” means.

With this in mind, let’s define some additional el-
ements of a translation competition. Let X be the
space of all possible segments of source text, J be
the space of all possible judges, and Π = {0, 1, 2}
be the space of pairwise preferences.5 We as-
sume all spaces are countable. Unless stated oth-
erwise, variables s1 and s2 represent students from
S, variable x represents a segment from X , vari-
able j represents a judge from J , and variable π
represents a preference from Π. Moreover, define
the negation π̂ of preference π such that π̂ = 2 (if
π = 1), π̂ = 1 (if π = 2), and π̂ = 0 (if π = 0).

Now assume a joint distribution
P (s1, s2, x, j, π) specifying the probability
that we ask judge j to evaluate students s1 and
s2’s respective translations of source text x, and
that judge j’s preference is π. We will further
assume that the choice of student pair, source
text, and judge are marginally independent of one
another. In other words:

P (s1, s2, x, j, π)

=
P (π|s1, s2, x, j) · P (x|s1, s2, j)

·P (j|s1, s2) · P (s1, s2)

= P (π|s1, s2, x, j) · P (x) · P (j) · P (s1, s2)

= PX (x) · PJ (j) · P (s1, s2) · P (π|s1, s2, x, j)
5As a reminder, 0 indicates no preference.

It will be useful to reserve notation PX and PJ
for the marginal distributions over source text and
judges. We can marginalize over the source seg-
ments and judges to obtain a useful quantity:

P (π|s1, s2)
=

∑

x∈X

∑

j∈J
PX (x) · PJ (j) · P (π|s1, s2, x, j)

We refer to this as the 〈PX , PJ 〉-relative ability of
students s1 and s2. By using different marginal
distributions PX , we can specify what kinds of
source text interest us (for instance, PX could
focus most of its probability mass on German
tweets). Similarly, by using different marginal
distributions PJ , we can specify what judges we
want to impress (for instance, PJ could focus all
of its mass on one important corporate customer
or evenly among all fluent bilingual speakers of a
language pair).

With this machinery, we can express the pur-
pose of a translation competition more clearly:
to estimate the 〈PX , PJ 〉-relative ability of a set
of students. In the case of WMT, PJ presum-
ably6 defines a space of competent source-to-
target bilingual speakers, while PX defines a space
of newswire documents.

We’ll refer to an estimate of P (π|s1, s2) as
a preference model. In other words, a prefer-
ence model is a distribution Q(π|s1, s2). Given
a set of pairwise comparisons (e.g., Table 2),
the challenge is to estimate a preference model
Q(π|s1, s2) such that Q is “close” to P . For mea-
suring distributional proximity, a natural choice is
KL-divergence (Kullback and Leibler, 1951), but
we cannot use it here because P is unknown.

Fortunately, if we have i.i.d. data drawn from P ,
then we can do the next best thing and compute the
perplexity of preference model Q on this heldout
test data. LetD be a sequence of triples 〈s1, s2, π〉
where the preferences π are i.i.d. samples from
P (π|s1, s2). The perplexity of preference model
Q on test data D is:

perplexity(Q|D) = 2
−∑

〈s1,s2,π〉∈D
1

|D| log2Q(π|s1,s2)

How do we obtain such a test set from competi-
tion data? Recall that a WMT competition pro-
duces pairwise comparisons like those in Table 2.

6One could argue that it specifies a space of machine
translation specialists, but likely these individuals are thought
to be a representative sample of a broader community.
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Let C be the set of comparisons 〈s1, s2, x, j, π〉
obtained from a translation competition. Com-
petition data C is not necessarily7 sampled i.i.d.
from P (s1, s2, x, j, π) because we may intention-
ally8 bias data collection towards certain students,
judges or source text. Also, because WMT elicits
its data in batches (see Table 1), every segment x
of source text appears in at least ten comparisons.

To create an appropriately-sized test set that
closely resembles i.i.d. data, we isolate the sub-
set C′ of comparisons whose source text appears
in at most k comparisons, where k is the smallest
positive integer such that |C′| >= 2000. We then
create the test set D from C′:

D = {〈s1, s2, π〉|〈s1, s2, x, j, π〉 ∈ C′}

We reserve the remaining comparisons for training
preference models. Table 3 shows the resulting
dataset sizes for each competition track.

Unlike with raw rankings, the claim that
one preference model is better than another has
testable implications. Given two competing mod-
els, we can train them on the same comparisons,
and compare their perplexities on the test set. This
gives us a quantitative9 answer to the question of
which is the better model. We can then publish
a system ranking based on the most trustworthy
preference model.

5 Baselines

Let’s begin then, and create some simple prefer-
ence models to serve as baselines.

5.1 Uniform

The simplest preference model is a uniform distri-
bution over preferences, for any choice of students
s1, s2:

Q(π|s1, s2) =
1

3
∀π ∈ Π

This will be our only model that does not require
training data, and its perplexity on any test set will
be 3 (i.e. equal to number of possible preferences).

5.2 Adjusted Uniform

Now suppose we have a set C of comparisons
available for training. Let Cπ ⊆ C denote the
subset of comparisons with preference π, and let

7In WMT, it certainly is not.
8To collect judge agreement statistics, for instance.
9As opposed to philosophical.

C(s1, s2) denote the subset comparing students s1
and s2.

Perhaps the simplest thing we can do with the
training data is to estimate the probability of ties
(i.e. preference 0). We can then distribute the
remaining probability mass uniformly among the
other two preferences:

Q(π|s1, s2) =





|C0|
|C| if π = 0

1− |C0||C|
2

otherwise

6 Simple Bayesian Models

6.1 Independent Pairs
Another simple model is the direct estimation of
each relative ability P (π|s1, s2) independently. In
other words, for each pair of students s1 and s2, we
estimate a separate preference distribution. The
maximum likelihood estimate of each distribution
would be:

Q(π|s1, s2) =
|Cπ(s1, s2)|+ |Cπ̂(s2, s1)|
|C(s1, s2)|+ |C(s2, s1)|

However the maximum likelihood estimate would
test poorly, since any zero probability estimates
for test set preferences would result in infinite per-
plexity. To make this model practical, we assume a
symmetric Dirichlet prior with strength α for each
preference distribution. This gives us the follow-
ing Bayesian estimate:

Q(π|s1, s2) =
α+ |Cπ(s1, s2)|+ |Cπ̂(s2, s1)|
3α+ |C(s1, s2)|+ |C(s2, s1)|

We call this the Independent Pairs preference
model.

6.2 Independent Students
The Independent Pairs model makes a strong inde-
pendence assumption. It assumes that even if we
know that student A is much better than student B,
and that student B is much better than student C,
we can infer nothing about how student A will fare
versus student C. Instead of directly estimating the
relative ability P (π|s1, s2) of students s1 and s2,
we could instead try to estimate the universal abil-
ity P (π|s1) =

∑
s2∈S P (π|s1, s2) · P (s2|s1) of

each individual student s1 and then try to recon-
struct the relative abilities from these estimates.

For the same reasons as before, we assume a
symmetric Dirichlet prior with strength α for each
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preference distribution, which gives us the follow-
ing Bayesian estimate:

Q(π|s1) =
α+

∑
s2∈S |Cπ(s1, s2)|+ |Cπ̂(s2, s1)|

3α+
∑

s2∈S |C(s1, s2)|+ |C(s2, s1)|

The estimatesQ(π|s1) do not yet constitute a pref-
erence model. A downside of this approach is that
there is no principled way to reconstruct a pref-
erence model from the universal ability estimates.
We experiment with three ad-hoc reconstructions.
The asymmetric reconstruction simply ignores any
information we have about student s2:

Q(π|s1, s2) = Q(π|s1)

The arithmetic and geometric reconstructions
compute an arithmetic/geometric average of the
two universal abilities:

Q(π|s1, s2) =
Q(π|s1) +Q(π̂|s2)

2

Q(π|s1, s2) = [Q(π|s1) ∗Q(π̂|s2)]
1
2

We respectively call these the (Asymmet-
ric/Arithmetic/Geometric) Independent Students
preference models. Notice the similarities be-
tween the universal ability estimates Q(π|s1) and
the BOJAR ranking heuristic. These three models
are our attempt to render the BOJAR heuristic as
preference models.

7 Item-Response Theoretic (IRT) Models

Let’s revisit (Lopez, 2012)’s objection to the BO-
JAR ranking heuristic: “...couldn’t a system still be
penalized simply by being compared to [good sys-
tems] more frequently than its competitors?” The
official WMT 2012 findings (Callison-Burch et al.,
2012) echoes this concern in justifying the exclu-
sion of reference translations from the 2012 com-
petition:

[W]orkers have a very clear preference
for reference translations, so includ-
ing them unduly penalized systems that,
through (un)luck of the draw, were pit-
ted against the references more often.

Presuming the students are paired uniformly at
random, this issue diminishes as more compar-
isons are elicited. But preference elicitation is ex-
pensive, so it makes sense to assess the relative
ability of the students with as few elicitations as
possible. Still, WMT 2012’s decision to eliminate

references entirely is a bit of a draconian mea-
sure, a treatment of the symptom rather than the
(perceived) disease. If our models cannot function
in the presence of training data variation, then we
should change the models, not the data. A model
that only works when the students are all about the
same level is not one we should rely on.

We experiment with a simple model that relaxes
some independence assumptions made by previ-
ous models, in order to allow training data vari-
ation (e.g. who a student has been paired with)
to influence the estimation of the student abili-
ties. Figure 1(left) shows plate notation (Koller
and Friedman, 2009) for the model’s indepen-
dence structure. First, each student’s ability dis-
tribution is drawn from a common prior distribu-
tion. Then a number of translation items are gen-
erated. Each item is authored by a student and has
a quality drawn from the student’s ability distri-
bution. Then a number of pairwise comparisons
are generated. Each comparison has two options,
each a translation item. The quality of each item
is observed by a judge (possibly noisily) and then
the judge states a preference by comparing the two
observations.

We investigate two parameterizations of this
model: Gaussian and categorical. Figure 1(right)
shows an example of the Gaussian parameteriza-
tion. The student ability distributions are Gaus-
sians with a known standard deviation σa, drawn
from a zero-mean Gaussian prior with known stan-
dard deviation σ0. In the example, we show
the ability distributions for students 6 (an above-
average student, whose mean is 0.4) and 14 (a
poor student, whose mean is -0.6). We also show
an item authored by each student. Item 43 has
a somewhat low quality of -0.3 (drawn from stu-
dent 14’s ability distribution), while item 205 is
not student 6’s best work (he produces a mean
quality of 0.4), but still has a decent quality at 0.2.
Comparison 1 pits these items against one another.
A judge draws noise from a zero-mean Gaussian
with known standard deviation σobs, then adds this
to the item’s actual quality to get an observed qual-
ity. For the first option (item 43), the judge draws a
noise of -0.12 to observe a quality of -0.42 (worse
than it actually is). For the second option (item
205), the judge draws a noise of 0.15 to observe a
quality of 0.35 (better than it actually is). Finally,
the judge compares the two observed qualities. If
the absolute difference is lower than his decision
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student.6.ability 
Gauss(0.4, σa) 

item.43.author 

14 

item.43.quality 

-0.3 

comp.1.opt1 

43 

comp.1.opt1.obs 

-0.42 

comp.1.pref 

2 

comp.1.opt2 

205 

comp.1.opt2.obs 

0.35 

student.prior 
Gauss(0.0, σ0)  

decision.radius 

0.5 

obs.parameters 
Gauss(0.0, σobs) 

item.205.author 

6 

item.205.quality 

0.2 

student.14.ability 
Gauss(-0.6, σa) 

student.s.ability item.i.author 

item.i.quality 

comp.c.opt1 

comp.c.opt1.obs 

comp.c.pref 

comp.c.opt2 

comp.c.opt2.obs 

S 

I 

C 

student.prior 

decision.radius 

obs.parameters 

Figure 1: Plate notation (left) showing the independence structure of the IRT Models. Example instan-
tiated subnetwork (right) for the Gaussian parameterization. Shaded rectangles are hyperparameters.
Shaded ellipses are variables observable from a set of comparisons.

radius (which here is 0.5), then he states no prefer-
ence (i.e. a preference of 0). Otherwise he prefers
the item with the higher observed quality.

The categorical parameterization is similar to
the Gaussian parameterization, with the following
differences. Item quality is not continuous, but
rather a member of the discrete set {1, 2, ...,Λ}.
The student ability distributions are categorical
distributions over {1, 2, ...,Λ}, and the student
ability prior is a symmetric Dirichlet with strength
αa. Finally, the observed quality is the item qual-
ity λ plus an integer-valued noise ν ∈ {1 −
λ, ...,Λ− λ}. Noise ν is drawn from a discretized
zero-mean Gaussian with standard deviation σobs.
Specifically, Pr(ν) is proportional to the value of
the probability density function of the zero-mean
Gaussian N (0, σobs).

We estimated the model parameters with Gibbs
sampling (Geman and Geman, 1984). We found
that Gibbs sampling converged quickly and con-
sistently10 for both parameterizations. Given the
parameter estimates, we obtain a preference model
Q(π|s1, s2) through the inference query:

Pr(comp.c′.pref = π | item.i′.author = s1,

item.i′′.author = s2,

comp.c′.opt1 = i′,

comp.c′.opt2 = i′′)
10We ran 200 iterations with a burn-in of 50.

where c′, i′, i′′ are new comparison and item ids
that do not appear in the training data.

We call these models Item-Response Theo-
retic (IRT) models, to acknowledge their roots
in the psychometrics (Thurstone, 1927; Bradley
and Terry, 1952; Luce, 1959) and item-response
theory (Hambleton, 1991; van der Linden and
Hambleton, 1996; Baker, 2001) literature. Item-
response theory is the basis of modern testing
theory and drives adaptive standardized tests like
the Graduate Record Exam (GRE). In particular,
the Gaussian parameterization of our IRT models
strongly resembles11 the Thurstone (Thurstone,
1927) and Bradley-Terry-Luce (Bradley and Terry,
1952; Luce, 1959) models of paired compari-
son and the 1PL normal-ogive and Rasch (Rasch,
1960) models of student testing. From the test-
ing perspective, we can view each comparison as
two students simultaneously posing a test question
to the other: “Give me a translation of the source
text which is better than mine.” The students can
answer the question correctly, incorrectly, or they
can provide a translation of analogous quality. An
extra dimension of our models is judge noise, not
a factor when modeling multiple-choice tests, for
which the right answer is not subject to opinion.

11These models are not traditionally expressed using
graphical models, although it is not unprecedented (Mislevy
and Almond, 1997; Mislevy et al., 1999).
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wmt10 wmt11 wmt12
lp train test train test train test
ce 3166 2209 1706 3216 5969 6806
fe 5918 2376 2556 4430 7982 5840
ge 7422 3002 3708 5371 8106 6032
se 8411 2896 1968 3684 3910 7376
ec 10490 3048 8859 9016 13770 9112
ef 5720 2242 3328 5758 7841 7508
eg 10852 2842 5964 7032 10210 7191
es 2962 2212 4768 6362 5664 8928

Table 3: Dataset sizes for each competition track
(number of comparisons).

Figure 2: WMT10 model perplexities. The per-
plexity of the uniform preference model is 3.0 for
all training sizes.

8 Experiments

We organized the competition data as described at
the end of Section 4. To compare the preference
models, we did the following:

• Randomly chose a subset of k compar-
isons from the training set, for k ∈
{100, 200, 400, 800, 1600, 3200}.12

• Trained the preference model on these com-
parisons.

• Evaluated the perplexity of the trained model
on the test preferences, as described in Sec-
tion 4.

For each model and training size, we averaged
the perplexities from 5 trials of each competition
track. We then plotted average perplexity as a
function of training size. These graphs are shown

12If k was greater than the total number of training com-
parisons, then we took the entire set.

Figure 3: WMT11 model perplexities.

Figure 4: WMT12 model perplexities.

in Figure 2 (WMT10)13, and Figure 4 (WMT12).
For WMT10 and WMT11, the best models were
the IRT models, with the Gaussian parameteriza-
tion converging the most rapidly and reaching the
lowest perplexity. For WMT12, in which refer-
ence translations were excluded from the compe-
tition, four models were nearly indistinguishable:
the two IRT models and the two averaged Indepen-
dent Student models. This somewhat validates the
organizers’ decision to exclude the references, par-
ticularly given WMT’s use of the BOJAR ranking
heuristic (the nucleus of the Independent Student
models) for its official rankings.

13Results for WMT10 exclude the German-English and
English-German tracks, since we used these to tune our
model hyperparameters. These were set as follows. The
Dirichlet strength for each baseline was 1. For IRT-Gaussian:
σ0 = 1.0, σobs = 1.0, σa = 0.5, and the decision radius was
0.4. For IRT-Categorical: Λ = 8, σobs = 1.0, αa = 0.5, and
the decision radius was 0.
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Figure 6: English-Czech WMT11 results (average of 5 trainings on 1600 comparisons). Error bars
(left) indicate one stddev of the estimated ability means. In the heatmap (right), cell (s1, s2) is darker if
preference model Q(π|s1, s2) skews in favor of student s1, lighter if it skews in favor of student s2.

Figure 5: WMT10 model perplexities (crowd-
sourced versus expert training).

The IRT models proved the most robust at han-
dling judge noise. We repeated the WMT10 ex-
periment using the same test sets, but using the
unfiltered crowdsourced comparisons (rather than
“expert”14 comparisons) for training. Figure 5
shows the results. Whereas the crowdsourced
noise considerably degraded the Geometric Inde-
pendent Students model, the IRT models were re-
markably robust. IRT-Gaussian in particular came
close to replicating the performance of Geometric
Independent Students trained on the much cleaner
expert data. This is rather impressive, since the
crowdsourced judges agree only 46.6% of the
time, compared to a 65.8% agreement rate among

14I.e., machine translation specialists.

expert judges (Callison-Burch et al., 2010).
Another nice property of the IRT models is

that they explicitly model student ability, so they
yield a natural ranking. For training size 1600 of
the WMT11 English-Czech track, Figure 6 (left)
shows the mean student abilities learned by the
IRT-Gaussian model. The error bars show one
standard deviation of the ability means (recall that
we performed 5 trials, each with a random training
subset of size 1600). These results provide fur-
ther insight into a case analyzed by (Lopez, 2012),
which raised concern about the relative ordering
of online-B, cu-bojar, and cu-marecek. Accord-
ing to IRT-Gaussian’s analysis of the data, these
three students are so close in ability that any order-
ing is essentially arbitrary. Short of a full ranking,
the analysis does suggest four strata. Viewing one
of IRT-Gaussian’s induced preference models as
a heatmap15 (Figure 6, right), four bands are dis-
cernable. First, the reference sentences are clearly
the darkest (best). Next come students 2-7, fol-
lowed by the slightly lighter (weaker) students 8-
10, followed by the lightest (weakest) student 11.

9 Conclusion

WMT has faced a crisis of confidence lately, with
researchers raising (real and conjectured) issues
with its analytical methodology. In this paper,
we showed how WMT can restore confidence in

15In the heatmap, cell (s1, s2) is darker if preference model
Q(π|s1, s2) skews in favor of student s1, lighter if it skews
in favor of student s2.
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its conclusions – by shifting the focus from rank-
ings to relative ability. Estimates of relative ability
(the expected head-to-head performance of system
pairs over a probability space of judges and source
text) can be empirically compared, granting sub-
stance to previously nebulous questions like:

1. Is my analysis better than your analysis?
Rather than the current anecdotal approach
to comparing competition analyses (e.g. pre-
senting example rankings that seem some-
how wrong), we can empirically compare the
predictive power of the models on test data.

2. How much of an impact does judge noise
have on my conclusions? We showed
that judge noise can have a significant im-
pact on the quality of our conclusions, if we
use the wrong models. However, the IRT-
Gaussian appears to be quite noise-tolerant,
giving similar-quality conclusions on both
expert and crowdsourced comparisons.

3. How many comparisons should I elicit?
Many of our preference models (including
IRT-Gaussian and Geometric Independent
Students) are close to convergence at around
1000 comparisons. This suggests that we can
elicit far fewer comparisons and still derive
confident conclusions. This is the first time
a concrete answer to this question has been
provided.
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Abstract 

Currently, almost all of the statistical ma-

chine translation (SMT) models are trained 

with the parallel corpora in some specific 

domains. However, when it comes to a lan-

guage pair or a different domain without 

any bilingual resources, the traditional SMT 

loses its power. Recently, some research 

works study the unsupervised SMT for in-

ducing a simple word-based translation 

model from the monolingual corpora. It 

successfully bypasses the constraint of 

bitext for SMT and obtains a relatively 

promising result. In this paper, we take a 

step forward and propose a simple but effec-

tive method to induce a phrase-based model 

from the monolingual corpora given an au-

tomatically-induced translation lexicon or a 

manually-edited translation dictionary. We 

apply our method for the domain adaptation 

task and the extensive experiments show 

that our proposed method can substantially 

improve the translation quality. 

1 Introduction 

During the last decade, statistical machine trans-

lation has made great progress. Novel translation 

models, such as phrase-based models (Koehn et 

a., 2007), hierarchical phrase-based models 

(Chiang, 2007) and linguistically syntax-based 

models (Liu et a., 2006; Huang et al., 2006; Gal-

ley, 2006; Zhang et al, 2008; Chiang, 2010; 

Zhang et al., 2011; Zhai et al., 2011, 2012) have 

been proposed and achieved higher and higher 

translation performance. However, all of these 

state-of-the-art translation models rely on the 

parallel corpora to induce translation rules and 

estimate the corresponding parameters.  

It is unfortunate that the parallel corpora are 

very expensive to collect and are usually not 

available for resource-poor languages and for 

many specific domains even in a resource-rich 

language pair. 

Recently, more and more researchers concen-

trated on taking full advantage of the monolin-

gual corpora in both source and target languages, 

and proposed methods for bilingual lexicon in-

duction from non-parallel data (Rapp, 1995, 

1999; Koehn and Knight, 2002; Haghighi et al., 

2008; Daumé III and Jagarlamudi, 2011) and 

proposed unsupervised statistical machine trans-

lation (bilingual lexicon is a byproduct) with 

only monolingual corpora (Ravi and Knight, 

2011; Nuhn et al., 2012; Dou and Knight, 2012). 

In the bilingual lexicon induction (Koehn and 

Knight, 2002; Haghighi et al., 2008; Daumé III 

and Jagarlamudi, 2011), with the help of the or-

thographic and context features, researchers 

adopted an unsupervised method, such as canon-

ical correlation analysis (CCA) model, to auto-

matically induce the word translation pairs be-

tween two languages from non-parallel data only 

requiring that the monolingual data in each lan-

guage are from a fairly comparable domain. 

The unsupervised statistical machine transla-

tion method (Ravi and Knight, 2011; Nuhn et al., 

2012; Dou and Knight, 2012) viewed the trans-

lation task as a decipherment problem and de-

signed a generative model with the objective 

function to maximize the likelihood of the 

source language monolingual data. To tackle the 

large-scale vocabulary, they mainly considered 

the word-based model (e.g. IBM Model 3) and 

applied the Bayesian method with Gibbs sam-

pling or slice sampling. Finally, they used the 

learned translation model directly to translate 

unseen data (Ravi and Knight, 2011; Nuhn et al., 

2012) or incorporated the learned bilingual lexi-

con as a new in-domain translation resource into 

the phrase-based model which is trained with 

out-of-domain data to improve the domain adap-

tation performance in machine translation (Dou 

and Knight, 2012).  

We can easily see that these unsupervised 

methods can only induce the word-based transla-

tion rules (bilingual lexicon) at present. It is a 

big challenge that whether we can induce phrase 
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1, word reordering example:

本   发明   的  目的   在于 ||| the purpose of the invention is to ||| 0-0 0-3 1-4 2-2 3-1 4-5 4-6

2, idiom example:

辨识   真伪   的 ||| distinguish the true from the false ||| 0-0 1-2 1-5 2-1 2-4

3, unknown word translation:

发光   二极管   芯片   的 ||| of the light-emitting diode chip ||| 0-2 1-2 2-4 3-0 3-1

 
Table 1: Examples of new translation knowledge learned with the proposed phrase pair induction method. For 

the three fields separated by “|||”, the first two are respectively Chinese and English phrase, and the last one is 

the word alignment between these two phrases. 

 

level translation rules and learn a phrase-based 

model from the monolingual corpora. 

In this paper, we focus on exploring this di-

rection and propose a simple but effective meth-

od to induce the phrase-level translation rules 

from monolingual data. The main idea of our 

method is to divide the phrase-level translation 

rule induction into two steps: bilingual lexicon 

induction and phrase pair induction.  

Since many researchers have studied the bi-

lingual lexicon induction, in this paper, we 

mainly concentrate ourselves on phrase pair in-

duction given a probabilistic bilingual lexicon 

and two in-domain large monolingual data 

(source and target language). In addition, we 

will further introduce how to refine the induced 

phrase pairs and estimate the parameters of the 

induced phrase pairs, such as four standard 

translation features and phrase reordering feature 

used in the conventional phrase-based models 

(Koehn et al., 2007). The induced phrase-based 

model will be used to help domain adaptation 

for machine translation. 

In the rest of this paper, we first explain with 

examples to show what new translation 

knowledge can be learned with our proposed 

phrase pair induction method (Section 2), and 

then we introduce the approach for probabilistic 

bilingual lexicon acquisition in Section 3. In Sec-

tion 4 and 5, we respectively present our method 

for phrase pair induction and introduce an ap-

proach for phrase pair refinement and parameter 

estimation. Section 6 will show the detailed ex-

periments for the task of domain adaptation. We 

will introduce some related work in Section 7 

and conclude this paper in Section 8. 

2 What Can We Learn with Phrase 

Pair   Induction? 

Readers may doubt that if phrase pair induction 

is performed only using bilingual lexicon and 

monolingual data, what new translation 

knowledge can be learned? 

The bilingual lexicon can only express the 

translation equivalence between source- and tar-

get-side word pair and has little ability to deal 

with word reordering and idiom translation. In 

contrast, phrase pair induction can make up for 

this deficiency to some extent. Furthermore, our 

method is able to learn some unknown word 

translations. 

From the induced phrase pairs with our meth-

od, we have conducted a deep analysis and find 

that we can learn three kinds of new translation 

knowledge: 1) word reordering in a phrase pair; 

2) idioms; and 3) unknown word translations. 

Table 1 gives examples for each of the three 

kinds. For the first example, the source and tar-

get phrase are extracted respectively from mono-

lingual data, each word in the source phrase has 

a translation in the target phrase, but the word 

order is different. The word order encoded in a 

phrase pair is difficult to learn in a word-based 

SMT.  In the second example, the italic source 

word corresponds to two target words (in italic), 

and the phrase pair is an idiom which cannot be 

learned from word-based SMT. In the third ex-

ample, as we learn from the source and target 

monolingual text that the words around the italic 

ones are translations with each other, thus we 

cannot only extract a new phrase pair but also 

learn a translation pair of unknown words in 

italic. 

3 Probabilistic Bilingual Lexicon Ac-

quisition 

In order to induce the phrase pairs from the in-

domain monolingual data for domain adaptation, 

the probabilistic bilingual lexicon is essential. 

In this paper, we acquire the probabilistic bi-

lingual lexicon from two approaches: 1) build a 

bilingual lexicon from large-scale out-of-domain 

parallel data; 2) adopt a manually collected in-

domain lexicon. This paper uses Chinese-to-

English translation as a case study and electronic 

data is the in-domain data we focus on.  
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In Chinese-to-English translation, there are 

lots of parallel data on News. Here, we utilize 

about 2.08 million sentence pairs
1
 in News do-

main to learn a probabilistic bilingual lexicon. 

Basically, we can use GIZA++ (Och, 2003) to 

get the probabilistic lexicon. However, the prob-

lem is that each source-side word associates too 

many possible translations which contain much 

noise. For instance, in the lexicon obtained with 

GIZA++, each source-side word has about 13 

translations on average. The noise of the lexicon 

can influence the accuracy of the induced phrase 

pairs to a large extent. To learn a lexicon with a 

high precision, we follow Munteanu and Marcu 

(2006) to apply Log-Likelihood-Ratios (Dunning, 

1993; Melamed, 2000; Moore, 2004a, 2004b) to 

estimate how strong the association is between a 

source-side word and its aligned target-side word. 

We employ the same algorithm used in (Munte-

anu and Marcu, 2006) which first use the GI-

ZA++ (with grow-diag-final-and heuristic) to 

obtain the word alignment between source and 

target words, and then calculate the association 

strength between the aligned words. After using 

the log-likelihood-ratios algorithm
2
, we obtain a 

probabilistic bilingual lexicon with bidirectional 

translation probabilities from the out-of-domain 

data. In the final lexicon, the number of average 

translations is only 5. We call this lexicon LLR-

lex. 

   In the electronic domain, we manually collect-

ed a lexicon which contains about 140k entries. 

It should be noted that there is no translation 

probability in this lexicon. In order to assign 

probabilities to each entry, we apply the Corpus 

Translation Probability which used in (Wu et al., 

2008): given an in-domain source language 

monolingual data, we translate this data with the 

phrase-based model trained on the out-of-domain 

News data, the in-domain lexicon and the in-

domain target language monolingual data (for 

language model estimation).  With the source 

language data and its translation, we estimate the 

bidirectional translation probabilities for each 

entry in the original lexicon. For the entries 

whose translation probabilities are not estimated, 

we just assign a uniform probability. That is if a 

source word has n translations, then the transla-

tion probability of target word given the source 

word is 1/n. We call this lexicon Domain-lex. 

                                                 
1 LDC category numbers are: LDC2000T50, LDC2003E14, 

LDC2003E07, LDC2004T07, LDC2005T06, LDC2002L27, 

LDC2005T10 and LDC2005T34. 
2  Following Moore (2004b), we use the threshold 10 on 

LLR to filter out unlikely translations. 

  We combine LLR-lex and Domain-lex to obtain 

the final probabilistic bilingual lexicon for phrase 

pair induction. 

4 Phrase Pair Induction Method 

Given a probabilistic bilingual lexicon and two 

monolingual data, we present a simple but effec-

tive method for phrase pair induction in this sec-

tion. 

 

 
Figure 1: a naïve algorithm for phrase pair induction. 

4.1 A Naïve Method 

We first introduce a relatively naïve way to ex-

tract phrase pairs from the given resources. For a 

source phrase (word sequence), we can reorder 

the words in the phrase (permutation) first, and 

then obtain the target phrases with the bilingual 

lexicon (translation), and finally check if the tar-

get phrase is in the target monolingual data. The 

algorithm is given in Figure 1. 

Figure 1 shows that the naïve algorithm is very 

easy to implement. However, the time complexi-

ty is too high. For each source phrase j

is  (with 

 1 !j i   permutations), suppose a source word 

has C translations on average and checking 

whether the target phrase '

'

j

it  in T needs time 

 O T , then, phrase pair induction for a single 

source phrase needs time   1
1 !

j i
O C T j i

 
  . 

It is very time consuming. One may design 

smarter algorithms. For example, one can collect 

distinct n-grams from source and target monolin-

gual data. Then, for a source-side phrase with 

length L, one can find the best translation candi-

date using the probabilistic bilingual lexicon 

from the target-side phrases with the same length 

L. The biggest disadvantage of these algorithms 

is that they can only induce phrase pair (with the 

Input:   Probabilistic bilingual lexicon V (each source word 

s maps a translation set V[s]) 

            Source language monolingual data S={sn} n=1...N 

            Target language monolingual data T={tm} m=1...M 

Output: Phrase pairs  P 

 

1: For each distinct source-side phrase 
j

is  in S:  

2:       If each 
j

k is s in V: 

3: Collect [ ] j

k k iV s   

4: For each permutation 
'

'

j

is  of 
j

is :  

5:        If 
'

'

j

it  in T:     ' '[ ] ' [ , ]k kt V s k i j   

6:  Add phrase pair  '',j j

i is t into P 

1427



same length) encoding word reordering, but can-

not learn phrase pairs in different length. Fur-

thermore, they cannot learn idioms and unknown 

word translations from monolingual data. Obvi-

ously, these kind of approaches is not optimal. 

4.2 Phrase Pair Induction with Inverted 

Index 

In order to make the phrase pair induction both 

effective and efficient, we propose a method 

using inverted index data structure which is usu-

ally a central component of a typical search en-

gine.  

The inverted index is employed to represent 

the target language monolingual data. For a tar-

get language word, the inverted index not only 

records the sentence position in monolingual 

data, but also records the word position in a sen-

tence. Some examples are shown in Table 2. By 

doing this, we do not need to iterate all the per-

mutations of source language phrase j

is  to ex-

plore possible phrase pairs encoding word reor-

dering. Furthermore, it is possible to learn idiom 

translation and unknown word translations. We 

will elaborate how to induce phrase pairs with 

the help of inverted index. 

Target Language 

Word 
Position 

communication (2,5), (106,20), …, (23022, 12) 

… … 

zoom (90,2), (280,21), …, (90239,15) 

Table 2: Some examples of inverted index for tar-

get language words, (2,5) means that “communica-

tion” occurs at the 5
th

 word of the 2
nd

 sentence in the 

target monolingual data. 

The new algorithm for phrase pair induction is 

presented in Figure 2. Line 1 iterates all the dis-

tinct phrases in the source-side monolingual data. 

It can be implemented by collecting all the dis-

tinct n-grams in which n is the phrase length we 

are interested in (3 to 7 in this paper). For each 

distinct source-side phrase, Line 2-5 efficiently 

collects all the positions in the target monolin-

gual data for the translations of each word in the 

source phrase. Line 6 sorts the positions so that 

we can easily find the position sequence belong-

ing to a same sentence. Line 8-9 discards all the 

position sub-sequences that lack translations for 

more than one source-side words. That is to say 

we allow at most one unknown word in an in-

duced phrase pair in order to make the induction 

more accurate. Line 10 and Line 12 is the core 

of this algorithm. We first define a constraint 

before detailing the algorithm. 

Figure 2: Phrase pair induction using inverted index. 

Constraint: we require that there exists at 

most one phrase in a target sentence that is the 

translation of the source-side phrase. 

According to our analysis, it is not often to 

find that two phrases (length larger than 2) in a 

same sentence have the same meaning. Even if it 

happens, it is reasonable to keep the one with the 

highest probability. Given a position sequence 

belonging to a same sentence, Line 10 smoothes 

the probability of the single word gap according 

to the probabilities of the around words. Single 

word gap means that this word is not aligned but 

its left and right words are aligned with the 

words of the source-side phrase. Suppose the 

target sub-sequence is i i r jt t t  and i rt   is the 

only word that is not aligned with source-side 

words. We smooth the probability  |i rp t null  

as follows: 

 

    

   
1 11 1

min | , |
, 1 1

2|

| |
,

2

i j

i r i r

i t j t

i r

i r t i r t

p t s p t s
if r or r j

p t null

p t s p t s
otherwise

   



   




  
 
 



        (1) 

The above formula means that if the left or the 

right side only has one word, then the smoothed 

probability is one half of the minimum of the 

probabilities of the two neighbors, otherwise the 

smoothed probability is the average of the prob-

abilities of the two neighbors. This smoothing 

strategy encourages that if more words around 

the un-aligned word are translations of the 

source-side phrase, then the gap word is more 

likely to belong to the translations of the source-

side phrase. 

Input:   Probabilistic bilingual lexicon V (each source word s 

maps a translation set V[s]) 

            Source language monolingual data S={sn} n=1...N 

            Inverted index representing target language monolin-

gual data IMap 

Output: Phrase pairs P 

1: For each distinct source-side phrase 
j

is  in S:  

2:      positionArray = [] 

3:      For each 
j

k is s : 

4:            For each [ ]kt V s : 

5:       add  IMap[ t ]  into positionArray 

6:      Sort  positionArray 

7:      For each sequence in a same sentence in positionArray:  

8:              If more than 1 word in 
j

is has no trans in the seq: 

9:                    Discard this seq and continue 

10:             Probability smoothing for single word gap 

11:             For all continuous position sub-sequence: 

12:                  Find the one 
k

ht  with maximum probability 

13:                 Add phrase pair  ,j k

i hs t into P 
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After probability smoothing of the single gap 

word, we are ready to extract the candidate 

translation of the source-side phrase. Similar 

with Line 9 in Figure 2, we further filter the tar-

get continuous phrase if more than one word in 

source-side phrase has no translation in this tar-

get phrase. After that, we just choose the contin-

uous target phrase with the largest probability if 

two or more continuous target phrases exist in 

the same target sentence. The probability of a 

target-side phrase given the source-side phrase is 

computed similar to that of (Koehn et al., 2003) 

except that we impose length normalization: 

 
  

 
 

1

,1

1
| , |

| ,

n
n

lex i j

i j ai

p t s a p t s
j i j a  

 
 
 
 

          (2) 

where the alignment a is produced using 

probabilistic bilingual lexicon. If a target word 

in t is a gap word, we suppose there is a word 

alignment between the target gap word and the 

source-side null.  

Similarly, we can compute the probability of 

source-side phrase given the target-side phrase 

 | ,lexp s t a . Then, we find the target-side phrase 

which has the biggest value of 

   | , | ,lex lexp t s a p s t a . Line 13 in Figure 2 col-

lects the induced phrase pairs. 

For the time complexity, it depends on the 

length of positionArray, since the time complex-

ity of the core algorithm (Line 7-13) is propor-

tional to the length of positionArray. If posi-

tionArray contains almost all the positions in the 

target monolingual data T, then the worst time 

complexity will be  logO T T  (for array sort). 

However, we find in the target monolingual data 

(1 million sentences) that each distinct word 

happens 110 times on average. Then, for a 

sources-side phrase with 7 words, the average 

length of positionArray will be 3850, since each 

source word has averagely 5 target translations 

(mentioned in Section 3). Therefore, the algo-

rithm is relatively efficient in the average case. 

5 Phrase Pair Refinement and Parame-

terization 

5.1 Phrase Pair Refinement 

Some of the phrase pairs induced in Section 4 

may contain noise. According to our analysis, 

we find that the biggest problem is that in the 

target-side of the phrase pair, there are two or 

more identical words aligned to the same source-

side word. For example, we extract a phrase pair 

as follows: 

的  商业  信息

of  business information of
 

In the above phrase pair, there are two words 

“of” in the target side and the first one is redun-

dant. The phrase pair induction algorithm pre-

sented in Section 4 cannot deal with this situa-

tion. In this section, we propose a simple ap-

proach to handle this problem. For each entry in 

LLR-lex, such as (的, of), we can learn two kinds 

of information from the out-of-domain word-

aligned sentence pairs: one is whether the target 

translation is before or after the translation of the 

preceding source-side word (Order); the other is 

whether the target translation is adjacent with 

the translation of the preceding source-side word 

(Adjacency). If the source-side word is the be-

ginning of the phrase, we calculate the corre-

sponding information with the succeeding word 

instead of the preceding word. For the entries in 

Domain-lex, we constrain that the target transla-

tion should be adjacent with the translations of 

its source-side neighbors and translation order is 

the same with the source-side words. 

With the Order and Adjacency information, 

we first check the order information, and then 

check the adjacency information if the dupli-

cates cannot be handled using order information. 

For example, since (的, of) is an entry in LLR-

lex and we have learned that “of” is much more 

likely to be behind the translation of the suc-

ceeding word. Thus, the first word “of” can be 

discarded. This refinement can be applied before 

finding the phrase pair with maximum probabil-

ity (Line 12 in Figure 2) so that the duplicate 

words do not affect the calculation of translation 

probability of phrase pair. 

5.2 Translation Probability Estimation 

It is well known that in the phrase-based SMT 

there are four translation probabilities and the 

reordering probability for each phrase pair. 

   The translation probabilities in the traditional 

phrase-based SMT include bidirectional phrase 

translation probabilities and bidirectional lexical 

weights. For the lexical weights, we can use the 

 | ,lexp s t a  and  | ,lexp t s a computed in the 

above section without length normalization. 

However, for the phrase-level probability, we 

cannot use maximum likelihood estimation since 

the phrase pairs are not extracted from parallel 

sentences. 
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 In this paper, we borrow and extend the idea of 

(Klementiev et al., 2012) to calculate the phrase-

level translation probability with context infor-

mation in source and target monolingual corpus. 

The value is calculated using a vector space 

model. With source and target vocabularies 

 1 2, , , Ns s s  and  1 2, , , Mt t t , the source-side 

phrase s and target-side phrase t can be respec-

tively represented in an N- and M-dimensional 

vector. The k-th component of s’s contextual 

vector is computed using the method of (Fung 

and Yee, 1998) as follows: 

  , maxlog / 1k s k kw n n n                  (3) 

where ,s kn and kn denotes the number of times ks  

occurs in the context of s and in the entire source 

language monolingual data, and maxn is the max-

imum number of occurrence of any source-side 

word in the source language monolingual data. 

The k-th element of t’s vector can be computed 

with the same method. We finally normalize 

these vectors with L2-norm. 

   With the s’s and t’s contextual vector represen-

tations, we calculate two similarities: 1) project 

s’s vector into target side t  with the lexical 

mapping p(t|s), and then get the similarity by 

computing the cosine of two angles between t’s 

and t ’s vectors; 2) project t’s vector into source 

side s  with the lexical mapping p(s|t), and then 

obtain the similarity between s’s and s ’s vectors. 

These two contextual similarities will serve as 

two phrase-level translation probabilities. 

5.3 Reordering Probability Estimation 

For the reordering probabilities of newly induced 

phrase pairs, we can also follow Klementiev et al. 

(2012) to estimate these probabilities using 

source and target monolingual data. The method 

is to calculate six probabilities for monotone, 

swap or discontinuous cases. For the phrase pair 

(的 商业 信息 , business information of), we 

find a source sentence containing 的 商业 信息, 

and find a target sentence containing business 

information of. If there is another phrase pair 

 ,s t ,  t  exactly follows business information of 

and s  occurs in the same source sentence with 

的 商业 信息, then we compare the position 

relationship between s  and 的 商业 信息. We 

increment the swap count if s  is just before 的 

商业 信息. After counting, we finally use max-

imum likelihood estimation method to compute 

the reordering probabilities. 

6 Related Work 

As far as we know, few researchers study phrase 

pair induction from only monolingual data. 

   There are three research works that are most 

related with ours. One is using an in-domain 

probabilistic bilingual lexicon to extract sub-

sentential parallel fragments from comparable 

corpora (Munteanu and Marcu, 2006; Quirk et al., 

2007; Cettolo et al., 2010). Munteanu and Marcu 

(2006) first extract the candidate parallel sen-

tences from the comparable corpora and further 

extract the accurate sub-sentential bilingual 

fragments from the candidate parallel sentences 

using the in-domain probabilistic bilingual lexi-

con. Compared with their work, our focus is to 

induce phrase pairs directly from monolingual 

data rather than comparable data. Thus, finding 

the candidate parallel sentences is not possible in 

our situation. 

Another is to make full use of monolingual da-

ta with transductive learning (Ueffing et al., 2007; 

Schwenk, 2008; Wu et al., 2008; Bertoldi and 

Federico, 2009). For the target-side monolingual 

data, they just use it to train language model, and 

for the source-side monolingual data, they em-

ploy a baseline (word-based SMT or phrase-

based SMT trained with small-scale bitext) to 

first translate the source sentences, combining 

the source sentence and its target translation as a 

bilingual sentence pair, and then train a new 

phrase-base SMT with these pseudo sentence 

pairs. This method cannot learn idiom transla-

tions and unknown word translations. 

The third is to estimate the translation parame-

ters and reordering parameters using monolin-

gual data given the phrase pairs (Klementiev et 

al., 2012). Their work supposes the phrase pairs 

are already given and then corresponding param-

eters can be learned with monolingual data. Dif-

ferent from their work, we concentrate ourselves 

on inducing phrase pairs from monolingual data 

and then borrow some ideas from theirs for pa-

rameter estimation. Furthermore, we extend their 

contextual similarity between source and target 

phrases to both directions. 

7 Experiments 

7.1 Experimental Setup  

Our purpose is to induce phrase pairs to improve 

translation quality for domain adaptation. We 

have introduced the out-of-domain data and the 

electronic in-domain lexicon in Section 3. Here 

we introduce other information about the in-
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domain data. Besides the in-domain lexicon, we 

have collected respectively 1 million monolin-

gual sentences in electronic area from the web. 

They are neither parallel nor comparable because 

we cannot even extract a small number of paral-

lel sentence pairs from this monolingual data 

using the method of (Munteanu and Marcu, 

2006). We further employ experts to translate 

2000 Chinese electronic sentences into English. 

The first half is used as the tuning set (elec1000-

tune) and the second half is employed as the test-

ing set (elec1000-test). 

   We construct two kinds of phrase-based mod-

els using Moses (Koehn et al., 2007): one uses 

out-of-domain data and the other uses in-domain 

data. For the out-of-domain data, we build the 

phrase table and reordering table using the 2.08 

million Chinese-to-English sentence pairs, and 

we use the SRILM toolkit (Stolcke, 2002) to 

train the 5-gram English language model with 

the target part of the parallel sentences and the 

Xinhua portion of the English Gigaword. For the 

in-domain electronic data, we first consider the 

lexicon as a phrase table in which we assign a 

constant 1.0 for each of the four probabilities, 

and then we combine this initial phrase table and 

the induced phrase pairs to form the new phrase 

table. The in-domain reordering table is created 

for the induced phrase pairs. An in-domain 5-

gram English language model is trained with the 

target 1 million monolingual data. 

   We use BLEU (Papineni et al., 2002) score 

with shortest length penalty as the evaluation 

metric and apply the pairwise re-sampling ap-

proach (Koehn, 2004) to perform the signifi-

cance test. 

7.2 Experimental Results  

In this section, we first conduct experiments to 

figure out how the translation performance de-

grades when the domain changes. To better illus-

trate the comparison, we first use News data to 

evaluate the NIST evaluation tests and then use 

the same News data to evaluate the electronic 

test sets. For the NIST evaluation, we employ 

Chinese-to-English NIST MT03 as the tuning set 

and NIST MT05 as the test set. Table 3 gives the 

results. It is obvious that, it is relatively high 

when using the News training data to evaluate 

the same News test set. However, when the test 

domain is changed, the translation performance 

decreases to a large extent. 

Given the in-domain bilingual lexicon and two 

monolingual data, previous works also proposed 

some good methods to explore the potential of 

the given data to improve the translation quality. 

Here, we implement their approaches and use 

them as our strong baseline. Wu et al. (2008) 

regards the in-domain lexicon with corpus trans-

lation probability as another phrase table and 

further use the in-domain language model be-

sides the out-of-domain language model. Table 4 

gives the results. We can see from the table that 

the domain lexicon is much helpful and signifi-

cantly outperforms the baseline with more than 

4.0 BLEU points. When it is enhanced with the 

in-domain language model, it can further im-

prove the translation performance by more than 

2.5 BLEU points. This method has made good 

use of in-domain lexicon and the target-side in-

domain monolingual data, but it does not take 

full advantage of the in-domain source-side 

monolingual data. 

In order to use source-side monolingual data, 

Ueffing et al. (2007), Schwenk (2008), Wu et al. 

(2008) and Bertoldi and Federico (2009) em-

ployed the transductive learning to first translate 

the source-side monolingual data using the best 

configuration (baseline+in-domain lexicon+in-

domain language model) and obtain 1-best trans-

lation for each source-side sentence. With the 

source-side sentences and their translations, the 

new phrase table and reordering table are built. 

Then, these resources are added into the best 

configuration. The experimental results are pre-

sented in the last low of Table 4. From the results, 

we see that transductive learning can further im-

prove the translation performance significantly 

by 0.6 BLEU points. 

In tranductive learning, in-domain lexicon and 

both-side monolingual data have been explored. 

However, this method does not take full ad-

vantage of both-side monolingual data because it 

uses source and target monolingual data individ-

ually. In our method, we explore fully the source 

and target monolingual data to induce translation 

equivalence on the phrase level. In order to make 

the phrase pair induction more efficient, we first 

sort all the sentences in the both-side monolin-

gual data according to the word hit rate in the 

bilingual lexicon. Then, we conduct six sets of 

experiments respectively on the first 100k, 200k, 

300k, 500k and whole 1m sentences. All the ex-

periments are run based on the configuration 

with BLEU 13.41 in Table 4, and we call this 

configuration BestConfig. Note that the unknown 

words are only allowed if the source-side of a 

phrase pair has more than 3 words. Table 5 

shows the results. 
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Training Data Tune Data (NIST MT03) Test Data (NIST MT05) 

2.08M sentence pairs in News 

35.79 34.26 

Tune Data (elec1000-tune) Test Data (elec1000-test) 

7.93 6.69 

Table 3: Experimental results using News training data to test NIST evaluation data and electronic data (numbers 

denote BLEU score points in percent). 

 

Method Tune (elec1000-tune) Test (elec1000-test) 

Baseline 7.93 6.69 

baseline + in-domain lexicon 10.97 10.87 

baseline + in-domain lexicon + in-

domain language model 
13.72 13.41++ 

Transductive Learning 14.13 14.01* 

Table 4: Experimental results using News training data, in-domain lexicon, language model and transductive 

learning. Bold figures mean that the results are statistically significant better than the baseline with p<0.01, and 

“++” denotes the result is statistically significant better than baseline+in-domain lexicon. “*” means that the 

result is statistically significant better than 13.41 with p<0.05. 

 
Method Tune (BLEU %) Test (BLEU %) 

BestConfig 13.72 13.41 

+phrase pair induction (100k) 14.23 14.06 

+phrase pair induction (200k) 14.45 14.24 

+phrase pair induction (300k) 14.76 14.83++ 

+phrase pair induction (500k) 14.98 15.16++ 

+phrase pair induction (1m) 15.11 15.30++ 

Table 5: Experimental results of our phrase pair induction method. Bold figures denotes the corresponding 

method significantly outperform the BestConfig with p<0.05. Bold and Italic figures means the results are sig-

nificantly better than that of BestConfig with p<0.01. “++” denotes that the corresponding approach performs 

significantly better than Transductive Learning with p<0.01. 

 

Method Before Filtering After Filtering 

+phrase pair induction (100k) 72,615 8,724 

+phrase pair induction (200k) 108,948 12,328 

+phrase pair induction (300k) 136,529 17,505 

+phrase pair induction (500k) 150,263 19,862 

+phrase pair induction (1m) 169,172 21,486 

Table 6: the number of phrase pairs induced with different size of monolingual data. 

 

  We can see from the table that our method ob-

tains the best translation performance. When us-

ing the first 100k sentences for phrase pair induc-

tion, it obtains a significant improvement over 

the BestConfig by 0.65 BLEU points and can 

outperform the transductive learning method.  

When we use more monolingual data, the per-

formance becomes even better.  The method of 

phrase pair induction using 300k sentences per-

forms quite well. It outperforms the BestConfig 

significantly with an improvement of 1.42 BLEU 

points and it also performs much better than 

transductive learning method with gains of 0.82 

BLEU points. With the monolingual data larger 

and larger, the gains become smaller and smaller 

because the word hit rate gets lower and lower. 

These experimental results empirically show the 

effectiveness of our proposed phrase pair induc-

tion method. 

   A question remains that how many new phrase 

pairs are induced with different size of monolin-

gual data. Here, we give respectively the statis-

tics before and after filtering with the 1000 test 

sentences. Table 6 shows the statistics. We can 

see from the table that lots of new phrase pairs 

can be induced since the source and target mono-

lingual data is in the same domain. However, 

since the source and target monolingual data is 
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far from parallel, most of the phrase pairs are not 

long. For example, in the 108,948 distinct phrase 

pairs, we find that the phrase pair distribution 

according to source-side length is (3:50.6%, 

4:35.6%, 5:3.3%, 6:9.8%, 7:0.7%). It is easy to 

see that the phrase pairs whose source-side 

length longer than 4 account for only a very 

small part. 

8 Conclusion and Future Work 

This paper proposes a simple but effective meth-

od to induce phrase pairs from monolingual data. 

Given the probabilistic bilingual lexicon and 

both-side monolingual data in the same domain, 

the method employs inverted index structure to 

represent the target-side monolingual data, and 

induce the translations for each distinct source-

side phrase with the help of the bilingual lexicon. 

We further propose an approach to refine the re-

sult phrase pairs to make them more accurate. 

We also introduce how to estimate the translation 

and reordering parameters for the induced phrase 

pairs with monolingual data. Extensive experi-

ments on domain adaptation have shown that our 

method can significantly outperform previous 

methods which also focus on exploring the in-

domain lexicon and monolingual data. 

However, through the analysis we find that our 

induced phrase pairs still contain some noise, 

such as the words in source- and target-side of 

the phrase pair are all aligned but the target-side 

phrase expresses the different meaning. Further-

more, our proposed method cannot learn expres-

sions which are not lexical translations but are 

semantic ones. In the future, we will study fur-

ther on these phenomena and propose new meth-

ods to handle these problems. 
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Abstract

Words often gain new senses in new do-
mains. Being able to automatically iden-
tify, from a corpus of monolingual text,
which word tokens are being used in a pre-
viously unseen sense has applications to
machine translation and other tasks sensi-
tive to lexical semantics. We define a task,
SENSESPOTTING, in which we build sys-
tems to spot tokens that have new senses
in new domain text. Instead of difficult
and expensive annotation, we build a gold-
standard by leveraging cheaply available
parallel corpora, targeting our approach to
the problem of domain adaptation for ma-
chine translation. Our system is able to
achieve F-measures of as much as 80%,
when applied to word types it has never
seen before. Our approach is based on
a large set of novel features that capture
varied aspects of how words change when
used in new domains.

1 Introduction

As Magnini et al. (2002) observed, the domain of
the text that a word occurs in is a useful signal for
performing word sense disambiguation (e.g. in a
text about finance, bank is likely to refer to a finan-
cial institution while in a text about geography, it
is likely to refer to a river bank). However, in the
classic WSD task, ambiguous word types and a set
of possible senses are known in advance. In this
work, we focus on the setting where we observe
texts in two different domains and want to iden-
tify words in the second text that have a sense that
did not appear in the first text, without any lexical
knowledge in the new domain.

To illustrate the task, consider the French noun
rapport. In the parliament domain, this means

état rapport régime
Govt. geo. state report (political) regime

Medical state (mind) report diet
geo. state ratio (political) regime

Science geo. state ratio (political) regime
report diet

Movies geo. state report (political) regime
diet

Table 1: Examples of French words and their most
frequent senses (translations) in four domains.

(and is translated as) “report.” However, in mov-
ing to a medical or scientific domain, the word
gains a new sense: “ratio”, which simply does not
exist in the parliament domain. In a science do-
main, the “report” sense exists, but it is dominated
about 12:1 by “ratio.” In a medical domain, the
“report” sense remains dominant (about 2:1), but
the new “ratio” sense appears frequently.

In this paper we define a new task that we call
SENSESPOTTING. The goal of this task is to iden-
tify words in a new domain monolingual text that
appeared in old domain text but which have a
new, previously unseen sense1. We operate un-
der the framework of phrase sense disambiguation
(Carpuat and Wu, 2007), in which we take au-
tomatically align parallel data in an old domain
to generate an initial old-domain sense inventory.
This sense inventory provides the set of “known”
word senses in the form of phrasal translations.
Concrete examples are shown in Table 1. One of
our key contributions is the development of a rich
set of features based on monolingual text that are
indicative of new word senses.

This work is driven by an application need.
When machine translation (MT) systems are ap-
plied in a new domain, many errors are a result
of: (1) previously unseen (OOV) source language
words, or (2) source language words that appear
with a new sense and which require new transla-

1All features, code, data and raw results are at: github.
com/hal3/IntrinsicPSDEvaluation
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tions2 (Carpuat et al., 2012). Given monolingual
text in a new domain, OOVs are easy to identify,
and their translations can be acquired using dictio-
nary extraction techniques (Rapp, 1995; Fung and
Yee, 1998; Schafer and Yarowsky, 2002; Schafer,
2006; Haghighi et al., 2008; Mausam et al., 2010;
Daumé III and Jagarlamudi, 2011), or active learn-
ing (Bloodgood and Callison-Burch, 2010). How-
ever, previously seen (even frequent) words which
require new translations are harder to spot.

Because our motivation is translation, one sig-
nificant point of departure between our work and
prior related work (§3) is that we focus on word
tokens. That is, we are not interested only in the
question of “has this known word (type) gained
a new sense?”, but the much more specific ques-
tion of “is this particular (token) occurrence of this
known word being used in a new sense?” Note
that for both the dictionary mining setting and the
active learning setting, it is important to consider
words in context when acquiring their translations.

2 Task Definition

Our task is defined by two data components. De-
tails about their creation are in §5. First, we need
an old-domain sense dictionary, extracted from
French-English parallel text (in our case, parlia-
mentary proceedings). Next, we need new-domain
monolingual French text (we use medical text, sci-
entific text and movie subtitle text). Given these
two inputs, our challenge is to find tokens in the
new-domain text that are being used in a new sense
(w.r.t. the old-domain dictionary).

We assume that we have access to a small
amount of new domain parallel “tuning data.”
From this data, we can extract a small new do-
main dictionary (§5). By comparing this new do-
main dictionary to the old domain dictionary, we
can identify which words have gained new senses.
In this way, we turn the SENSESPOTTING problem
into a supervised binary classification problem: an
example is a French word in context (in the new
domain monolingual text) and its label is positive
when it is being used in a sense that did not ex-
ist in the old domain dictionary. In this task, the
classifier is always making predictions on words

2Sense shifts do not always demand new translations;
some ambiguities are preserved across languages. E.g.,
fenêtre can refer to a window of a building or on a moni-
tor, but translates as “window” either way. Our experiments
use bilingual data with an eye towards improving MT perfor-
mance: we focus on words that demand new translations.

outside this tuning data on word types it has never
seen before! From an applied perspective, the as-
sumption of a small amount of parallel data in the
new domain is reasonable: if we want an MT sys-
tem for a new domain, we will likely have some
data for system tuning and evaluation.

3 Related Work

While word senses have been studied extensively
in lexical semantics, research has focused on word
sense disambiguation, the task of disambiguating
words in context given a predefined sense inven-
tory (e.g., Agirre and Edmonds (2006)), and word
sense induction, the task of learning sense inven-
tories from text (e.g., Agirre and Soroa (2007)). In
contrast, detecting novel senses has not received as
much attention, and is typically addressed within
word sense induction, rather than as a distinct
SENSESPOTTING task. Novel sense detection
has been mostly motivated by the study of lan-
guage change over time. Most approaches model
changes in co-occurrence patterns for word types
when moving between corpora of old and modern
language (Sagi et al., 2009; Cook and Stevenson,
2010; Gulordava and Baroni, 2011).

Since these type-based models do not capture
polysemy in the new language, there have been a
few attempts at detecting new senses at the token-
level as in SENSESPOTTING. Lau et al. (2012)
leverage a common framework to address sense
induction and disambiguation based on topic mod-
els (Blei et al., 2003). Sense induction is framed
as learning topic distributions for a word type,
while disambiguation consists of assigning topics
to word tokens. This model can interestingly be
used to detect newly coined senses, which might
co-exist with old senses in recent language. Bam-
man and Crane (2011) use parallel Latin-English
data to learn to disambiguate Latin words into En-
glish senses. New English translations are used as
evidence that Latin words have shifted sense. In
contrast, the SENSESPOTTING task consists of de-
tecting when senses are unknown in parallel data.

Such novel sense induction methods require
manually annotated datasets for the purpose of
evaluation. This is an expensive process and there-
fore evaluation is typically conducted on a very
small scale. In contrast, our SENSESPOTTING task
leverages automatically word-aligned parallel cor-
pora as a source of annotation for supervision dur-
ing training and evaluation.
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The impact of domain on novel senses has also
received some attention. Most approaches oper-
ate at the type-level, thus capturing changes in the
most frequent sense of a word when shifting do-
mains (McCarthy et al., 2004; McCarthy et al.,
2007; Erk, 2006; Chan and Ng, 2007). Chan and
Ng (2007) notably show that detecting changes in
predominant sense as modeled by domain sense
priors can improve sense disambiguation, even af-
ter performing adaptation using active learning.

Finally, SENSESPOTTING has not been ad-
dressed directly in MT. There has been much inter-
est in translation mining from parallel or compara-
ble corpora for unknown words, where it is easy to
identify which words need translations. In con-
trast, SENSESPOTTING detects when words have
new senses and, thus, frequently a new translation.
Work on active learning for machine translation
has focused on collecting translations for longer
unknown segments (e.g., Bloodgood and Callison-
Burch (2010)). There has been some interest in
detecting which phrases that are hard to translate
for a given system (Mohit and Hwa, 2007), but dif-
ficulties can arise for many reasons: SENSESPOT-
TING focuses on a single problem.

4 New Sense Indicators
We define features over both word types and word
tokens. In our classification setting, each instance
consists of a French word token in context. Our
word type features ignore this context and rely on
statistics computed over our entire new domain
corpus. In contrast, our word token features con-
sider the context of the particular instance of the
word. If it were the case that only one sense ex-
isted for all word tokens of a particular type within
a single domain, we would expect our word type
features to be able to spot new senses without the
help of the word token features. However, in fact,
even within a single domain, we find that often a
word type is used with several senses, suggesting
that word token features may also be useful.

4.1 Type-level Features
Lexical Item Frequency Features A very ba-
sic property of the new domain that we hope to
capture is that word frequencies change, and such
changes might be indicative of a domain shift. As
such, we compute unigram log probabilities (via
smoothed relative frequencies) of each word un-
der consideration in the old domain and the new
domain. We then add as features these two log

probabilities as well as their difference. These are
our Type:RelFreq features.

N-gram Probability Features The goal of the
Type:NgramProb feature is to capture the fact
that “unusual contexts” might imply new senses.
To capture this, we can look at the log probability
of the word under consideration given its N-gram
context, both according to an old-domain language
model (call this `old

ng ) and a new-domain language
model (call this `new

ng ). However, we do not sim-
ply want to capture unusual words, but words that
are unlikely in context, so we also need to look at
the respective unigram log probabilities: `old

ug and
`new

ug . From these four values, we compute corpus-
level (and therefore type-based) statistics of the
new domain n-gram log probability (`new

ng , the dif-
ference between the n-gram probabilities in each
domain (`new

ng − `old
ng ), the difference between the

n-gram and unigram probabilities in the new do-
main (`new

ng − `new
ug ), and finally the combined differ-

ence: `new
ng − `new

ug + `old
ug − `old

ng ). For each of these
four values, we compute the following type-based
statistics over the monolingual text: mean, stan-
dard deviation, minimum value, maximum value
and sum. We use trigram models.

Topic Model Feature The intuition behind the
topic model feature is that if a word’s distribu-
tion over topics changes when moving into a new
domain, it is likely to also gain a new sense.
For example, suppose that in our old domain, the
French word enceinte is only used with the sense
“wall,” but in our new domain, enceinte may have
senses corresponding to either “wall” or to “preg-
nant.” We would expect to see this reflected in
enceinte’s distribution over topics: the topic that
places relatively high probabilities on words such
as “bébé” (English “baby”) and enfant (English
“child”) will also place a high probability on en-
ceinte when trained on new domain data. In the
old domain, however, we would not expect a sim-
ilar topic (if it exists) to give a high probabil-
ity to enceinte. Based on this intuition, for all
words w, where To and Tn are the set of old
and new topics and Po and Pn are the old and
new distributions defined over them, respectively,
and cos is the cosine similarity between a pair
of topics, we define the feature Type:TopicSim:∑

t∈Tn,t′∈To Pn(t|w)Po(t′|w) cos(t, t′). For a
word w, the feature value will be high if, for
each new domain topic t that places high proba-
bility on w, there is an old domain topic t′ that
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is similar to t and also places a high probabil-
ity on w. Conversely, if no such topic exists, the
score will be low, indicating the word has gained
a new sense. We use the online LDA (Blei et
al., 2003; Hoffman et al., 2010), implemented
in http://hunch.net/˜vw/ to compute topics on
the two domains separately. We use 100 topics.
Context Feature It is expected that words acquir-
ing new senses will tend to neighbor different sets
of words (e.g. different arguments, prepositions,
parts of speech, etc.). Thus, we define an addi-
tional type level feature to be the ratio of the num-
ber of new domain n-grams (up to length three)
that contain word w and which do not appear in
the old domain to the total number of new domain
n-grams containing w. With Nw indicating the set
of n-grams in the new domain which contain w,
Ow indicating the set of n-grams in the old domain
which contain w, and |Nw − Ow| indicating the
n-grams which contain w and appear in the new
but not the old domain, we define Type:Contextas
|Nw−Ow|
|Nw| . We do not count n-grams containing

OOVs, as they may simply be instances of apply-
ing the same sense of a word to a new argument

4.2 Token-level Features
N-gram Probability Features Akin to the N-
gram probability features at the type level (namely,
Token:NgramProb), we compute the same val-
ues at the token level (new/old domain and un-
igram/trigram). Instead of computing statistics
over the entire monolingual corpus, we use the in-
stantaneous values of these features for the token
under consideration. The six features we construct
are: unigram (and trigram) log probabilities in the
old domain, the new domain, and their difference.
Context Features Following the type-level n-
gram feature, we define features for a particular
word token based on its n-gram context. For token
wi, in position i in a given sentence, we consider
its context words in a five word window: wi−2,
wi−1, wi+1, and wi+2. For each of the four con-
textual words in positions p = {−2,−1, 1, 2},
relative to i, we define the following feature, To-
ken:CtxCnt: log(cwp) where cwp is the number
of times word wp appeared in position p relative
to wi in the OLD-domain data. We also define a
single feature which is the percent of the four con-
textual words which had been seen in the OLD-
domain data, Token:Ctx%.
Token-Level PSD Features These features aim
to capture generalized characteristics of a context.

Towards this end, first, we pose the problem as a
phrase sense disambiguation (PSD) problem over
the known sense inventory. Given a source word in
a context, we train a classifier to predict the most
likely target translation. The ground truth labels
(target translation for a given source word) for this
classifier are generated from the phrase table of
the old domain data. We use the same set of fea-
tures as in Carpuat and Wu (2007). Second, given
a source word s, we use this classifier to com-
pute the probability distribution of target transla-
tions

(
p(t|s)

)
. Subsequently, we use this prob-

ability distribution to define new features for the
SENSESPOTTING task. The idea is that, if a word
is used in one of the known senses then its con-
text must have been seen previously and hence we
hope that the PSD classifier outputs a spiky dis-
tribution. On the other hand, if the word takes a
new sense then hopefully it is used in an unseen
context resulting in the PSD classifier outputting
an uniform distribution. Based on this intuition,
we add the following features: MaxProb is the
maximum probability of any target translation:
maxt p(t|s). Entropy is the entropy of the proba-
bility distribution: −∑t p(t|s) log p(t|s). Spread
is the difference between maximum and mini-
mum probabilities of the probability distribution:(
maxt p(t|s) − mint p(t|s)

)
. Confusion is the

uncertainty in the most likely prediction given the
source token: mediantp(t|s)

maxt p(t|s) . The use of median in
the numerator rather than the second best is mo-
tivated by the observation that, in most cases, top
ranked translations are of the same sense but differ
in morphology.

We train the PSD classifier in two modes:
1) a single global classifier that predicts the
target translation given any source word; 2) a
local classifier for each source word. When
training the global PSD classifier, we include
some lexical features that depend on the source
word. For both modes, we use real valued
and binned features giving rise to four families
of features Token:G-PSD, Token:G-PSDBin,
Token:L-PSD and Token:L-PSDBin.

Prior vs. Posterior PSD Features When the
PSD classifier is trained in the second mode, i.e.
one classifier per word type, we can define ad-
ditional features based on the prior (with out the
word context) and posterior (given the word’s
context) probability distributions output by the
classifier, i.e. pprior(t|s) and ppost.(t|s) respec-
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Domain Sentences Lang Tokens Types

Hansard 8,107,356 fr 161,695,309 191,501
en 144,490,268 186,827

EMEA 472,231 fr 6,544,093 34,624
en 5,904,296 29,663

Science 139,215 fr 4,292,620 117,669
en 3,602,799 114,217

Subs 19,239,980 fr 154,952,432 361,584
en 174,430,406 293,249

Table 2: Basic characteristics of the parallel data.

tively. We compute the following set of fea-
tures referred to as Token:PSDRatio: SameMax
checks if both the prior and posterior distri-
butions have the same translation as the most
likely translation. SameMin is same as the
above feature but check if the least likely trans-
lation is same. X-OR MinMax is the exclusive-
OR of SameMax and SameMin features. KL
is the KL-divergence between the two distri-
butions. Since KL-divergence is asymmetric,
we use KL(pprior||ppost.) and KL(ppost.||pprior).
MaxNorm is the ratio of maximum probabilities
in prior and posterior distributions. SpreadNorm
is the ratio of spread of the prior and posterior dis-
tributions, where spared is the difference between
maximum and minimum probabilities of the dis-
tribution as defined earlier. ConfusionNorm is the
ratio of confusion of the prior and posterior distri-
butions, where confusion is defined as earlier.

5 Data and Gold Standard

The first component of our task is a parallel cor-
pus of old domain data, for which we use the
French-English Hansard parliamentary proceed-
ings (http://www.parl.gc.ca). From this, we
extract an old domain sense dictionary, using the
Moses MT framework (Koehn et al., 2007). This
defines our old domain sense dictionary. For new
domains, we use three sources: (1) the EMEA
medical corpus (Tiedemann, 2009), (2) a corpus of
scientific abstracts, and (3) a corpus of translated
movie subtitles (Tiedemann, 2009). Basic statis-
tics are shown in Table 2. In all parallel corpora,
we normalize the English for American spelling.

To create the gold standard truth, we followed
a lexical sample apparoach and collected a set
of 300 “representative types” that are interest-
ing to evaluate on, because they have multiple
senses within a single domain or whose senses
are likely to change in a new domain. We used
a semi-automatic approach to identify represen-
tative types. We first used the phrase table from

Parallel Repr. Repr. % New
Sents fr-tok Types Tokens Sense

EMEA 24k 270k 399 35,266 52.0%
Science 22k 681k 425 8,355 24.3%
Subs 36k 247k 388 22,598 43.4%

Table 3: Statistics about representative words and
the size of the development sets. The columns
show: the total amount of parallel development
data (# of sentences and tokens in French), # of
representative types that appear in this corpus, the
corresponding # of tokens, and the percentage of
these tokens that correspond to “new senses.”

the Moses output to rank phrases in each domain
using TF-IDF scores with Okapi BM25 weight-
ing. For each of the three new domains (EMEA,
Science, and Subs), we found the intersection of
phrases between the old and the new domain. We
then looked at the different translations that each
had in the phrase table and a French speaker se-
lected a subset that have multiple senses.3

In practice, we limited our set almost entirely
to source words, and included only a single multi-
word phrase, vue des enfants, which usually trans-
lates as “for children” in the old domain but al-
most always translates as “sight of children” in
the EMEA domain (as in “. . . should be kept out
of the sight of children”). Nothing in the way we
have defined, approached, or evaluated the SENS-
ESPOTTING task is dependent on the use of rep-
resentative words instead of longer representative
phrases. We chose to consider mostly source lan-
guage words for simplicity and because it was eas-
ier to identify good candidate words.

In addition to the manually chosen words, we
also identified words where the translation with
the highest lexical weight varied in different do-
mains, with the intuition being that are the words
that are likely to have acquired a new sense. The
top 200 words from this were added to the man-
ually selected representative words to form a list
of 450. Table 3 shows some statistics about these
words across our three test domains.

6 Experiments
6.1 Experimental setup
Our goal in evaluation is to be able to under-
stand what our approach is realistically capa-
ble of. One challenge is that the distribution

3In order to create the evaluation data, we used both sides
of the full parallel text; we do not use the English side of the
parallel data for actually building systems.
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of representative words is highly skewed.4 We
present results in terms of area under the ROC
curve (AUC),5 micro-averaged precision/recall/f-
measure and macro-averaged precision/recall/f-
measure. For macro-averaging, we compute a sin-
gle confusion matrix over all the test data and
determining P/R/F from that matrix. For micro-
averaging, we compute a separate confusion ma-
trix for each word type on the French side, com-
pute P/R/F for each of these separately, and then
average the results. (Thus, micro-F is not a
function of micro-P and micro-R.) The AUC and
macro-averaged scores give a sense of how well
the system is doing on a type-level basis (es-
sentially weighted by type frequency), while the
micro-averaged scores give a sense as to how well
the system is doing on individual types, not taking
into account their frequencies.

For most of our results, we present standard
deviations to help assess significance (±2σ is
roughly a 90% confidence interval). For our re-
sults, in which we use new-domain training data,
we compute these results via 16-fold cross valida-
tion. The folds are split across types so the sys-
tem is never being tested on a word type that it has
seen before. We do this because it more closely re-
sembles our application goals. We do 16-fold for
convenience, because we divide the data into bi-
nary folds recursively (thus having a power-of-two
is easier), with an attempt to roughly balance the
size of the training sets in each fold (this is tricky
because of the skewed nature of the data). This en-
tire 16-fold cross-validation procedure is repeated
10 times and averages and standard deviations are
over the 160 replicates.

We evaluate performance using our type-level
features only, TYPEONLY, our token-level fea-
tures only, TOKENONLY, and using both our type
and our token level features, ALLFEATURES.

We compare our results with two baselines:
RANDOM and CONSTANT. RANDOM predicts
new-sense or not-new-sense randomly and with
equal probability. CONSTANT always predicts
new-sense, achieving 100% recall and a macro-
level precision that is equal to the percent of repre-
sentative words which do have a new sense, mod-
ulo cross-validation splits (see Table 3). Addi-

4The most frequent (voie) appears 3881 times; there are
60 singleton words on average across the three new domains.

5AUC is the probability that the classifier will assign a
higher score to a randomly chosen positive example than to a
randomly chosen negative example (Wikipedia, 2013).

tionally, we compare our results with a type-level
oracle, TYPEORACLE. For all tokens of a given
word type, the oracle predicts the majority label
(new-sense or not-new-sense) for that word type.
These results correspond to an upper bound for the
TYPEONLY experiments.

6.2 Classification Setup
For all experiments, we use a linear classifier
trained by stochastic gradient descent to optimize
logistic loss. We also did some initial experi-
ments on development data using boosted deci-
sion trees instead and other loss functions (hinge
loss, squared loss), but they never performed as
well. In all cases, we perform 20 passes over
the training data, using development data to per-
form early stopping (considered at the end of each
pass). We also use development data to tune a
regularizer (either `1 or `2) and its regularization
weight.6 Finally, all real valued features are au-
tomatically bucketed into 10 consecutive buckets,
each with (approximately) the same number of
elements. Each learner uses a small amount of
development data to tune a threshold on scores
for predicting new-sense or not-a-new-sense, us-
ing macro F-measure as an objective.

6.3 Result Summary
Table 4 shows our results on the SENSESPOT-
TING task. Classifiers based on the features
that we defined outperform both baselines in all
macro-level evaluations for the SENSESPOTTING

task. Using AUC as an evaluation metric, the
TOKENONLY, TYPEONLY, and ALLFEATURES

models performed best on EMEA, Science, and
Subtitles data, respectively. Our token-level fea-
tures perform particularly poorly on the Science
and Subtitles data. Although the model trained on
only those features achieves reasonable precision
(72.59 and 70.00 on Science and Subs, respec-
tively), its recall is very low (20.41 and 35.15), in-
dicating that the model classifies many new-sense
words as not-new-sense. Most of our token-level
features capture the intuition that when a word to-
ken appears in new or infrequent contexts, it is
likely to have gained a new sense. Our results indi-
cate that this intuition was more fruitful for EMEA
than for Science or Subs.

In contrast, the type-only features (TYPEONLY)

6We use http://hunch.net/˜vw/ version 7.1.2,
and run it with the following arguments that affect learning
behavior: --exact adaptive norm --power t 0.5
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Macro Micro
AUC P R F P R F

EMEA
RANDOM 50.34 ± 0.60 51.24 ± 0.59 50.09 ± 1.18 50.19 ± 0.75 47.04 ± 0.60 56.07 ± 1.99 37.27 ± 0.91
CONSTANT 50.00 ± 0.00 50.99 ± 0.00 100.0 ± 0.00 67.09 ± 0.00 45.80 ± 0.00 100.0 ± 0.00 52.30 ± 0.00
TYPEONLY 55.91 ± 1.13 69.76 ± 3.45 43.13 ± 1.42 41.61 ± 1.07 77.92 ± 2.04 50.12 ± 2.35 31.26 ± 0.63
TYPEORACLE 88.73 ± 0.00 87.32 ± 0.00 86.76 ± 0.00 87.04 ± 0.00 90.01 ± 0.00 67.46 ± 0.00 59.39 ± 0.00
TOKENONLY 78.80 ± 0.52 69.83 ± 1.59 75.58 ± 2.61 69.40 ± 1.92 59.03 ± 1.70 62.53 ± 1.66 43.39 ± 0.94
ALLFEATURES 79.60 ± 1.20 68.11 ± 1.19 79.84 ± 2.27 71.64 ± 1.83 55.28 ± 1.11 71.50 ± 1.62 46.83 ± 0.62
Science
RANDOM 50.18 ± 0.78 24.48 ± 0.57 50.32 ± 1.33 32.92 ± 0.79 46.99 ± 0.51 60.32 ± 1.06 34.72 ± 1.03
CONSTANT 50.00 ± 0.00 24.34 ± 0.00 100.0 ± 0.00 39.15 ± 0.00 44.39 ± 0.00 100.0 ± 0.00 50.44 ± 0.00
TYPEONLY 77.06 ± 1.23 66.07 ± 2.80 36.28 ± 4.10 34.50 ± 4.06 84.97 ± 0.82 36.81 ± 2.33 24.22 ± 1.70
TYPEORACLE 88.76 ± 0.00 78.43 ± 0.00 69.29 ± 0.00 73.54 ± 0.00 84.19 ± 0.00 67.41 ± 0.00 52.67 ± 0.00
TOKENONLY 66.62 ± 0.47 60.50 ± 3.11 28.05 ± 2.06 30.81 ± 2.75 76.21 ± 1.78 36.57 ± 2.23 24.68 ± 1.36
ALLFEATURES 73.91 ± 0.66 50.59 ± 2.08 60.60 ± 2.04 47.54 ± 1.52 66.72 ± 1.19 62.30 ± 1.36 40.22 ± 1.03
Subs
RANDOM 50.26 ± 0.69 42.47 ± 0.60 50.17 ± 0.84 45.68 ± 0.68 52.18 ± 1.32 54.63 ± 2.01 39.87 ± 2.10
CONSTANT 50.00 ± 0.00 42.51 ± 0.00 100.0 ± 0.00 59.37 ± 0.00 50.63 ± 0.00 100.0 ± 0.00 58.67 ± 0.00
TYPEONLY 67.16 ± 0.73 76.41 ± 1.51 31.91 ± 3.15 36.37 ± 2.58 90.03 ± 0.61 34.78 ± 1.12 26.20 ± 0.61
TYPEORACLE 81.35 ± 0.00 83.12 ± 0.00 70.23 ± 0.00 76.12 ± 0.00 90.62 ± 0.00 52.37 ± 0.00 44.43 ± 0.00
TOKENONLY 63.30 ± 0.99 63.17 ± 2.31 45.38 ± 2.07 43.30 ± 1.29 76.38 ± 1.68 49.70 ± 1.76 37.92 ± 1.20
ALLFEATURES 69.26 ± 0.60 63.48 ± 1.77 56.22 ± 2.66 52.78 ± 1.96 67.55 ± 0.83 62.18 ± 1.45 43.85 ± 0.90

Table 4: Complete SENSESPOTTING results for all domains. The scores are from cross-validation on
a single domain; in all cases, higher is better. Two standard deviations of performance over the cross-
validation are shown in small type. For all domains and metrics, the highest (not necessarily statistically
significant) non-oracle results are bolded.

are relatively weak for predicting new senses on
EMEA data but stronger on Subs (TYPEONLY

AUC performance is higher than both baselines)
and even stronger on Science data (TYPEONLY

AUC and f-measure performance is higher
than both baselines as well as the ALLFEA-
TURESmodel). In our experience with the three
datasets, we know that the Science data, which
contains abstracts from a wide variety of scientific
disciplines, is the most diverse, followed by the
Subs data, and then EMEA, which mostly consists
of text from drug labels and tends to be quite repet-
itive. Thus, it makes sense that type-level features
would be the most informative for the least homo-
geneous dataset. Representative words in scien-
tific text are likely to appear in variety of contexts,
while in the EMEA data they may only appear in
a few, making it easier to contrast them with the
distributions observed in the old domain data.

For all domains, in micro-level evaluation, our
models fail to outperform the CONSTANT base-
line. Recall that the micro-level evaluation com-
putes precision, recall, and f-measure for all word
tokens of a given word type and then averages
across word types. We observe that words that are
less frequent in both the old and the new domains
are more likely to have a new sense than more fre-
quent words, which causes the CONSTANT base-

line to perform reasonably well. In contrast, it is
more difficult for our models to make good pre-
dictions for less frequent words. A low frequency
in the new domain makes type level features (esti-
mated over only a few instances) noisy and unreli-
able. Similarly, a low frequency in the old domain
makes the our token level features, which all con-
trast with old domain instances of the word type.

6.4 Feature Ablation
In the previous section, we observed that (with one
exception) both Type-level and Token-level fea-
tures are useful in our task (in some cases, essen-
tial). In this section, we look at finer-grained fea-
ture distinctions through a process of feature ab-
lation. In this setting, we begin with all features
in a model and remove one feature at a time, al-
ways removing the feature that hurts performance
least. For these experiments, we determine which
feature to remove using AUC. Note that we’re ac-
tually able to beat (by 2-4 points AUC) the scores
from Table 4 by removing features!

The results here are somewhat mixed. In EMEA
and Science, one can actually get by (accord-
ing to AUC) with very few features: just two
(Type:NgramProband Type:Context) are suffi-
cient to achieve optimal AUC scores. To get
higher Macro-F scores requires nearly all the fea-
tures, though this is partially due to the choice of
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EMEA AUC MacF
ALLFEATURES 79.60 71.64
–Token:L-PSDBin 77.09 70.50
–Type:RelFreq 78.43 72.19
–Token:G-PSD 79.66 72.11
–Type:Context 79.66 72.45
–Token:Ctx% 78.91 73.37
–Type:TopicSim 78.05 71.33
–Token:CtxCnt 76.90 71.72
–Token:L-PSD 76.03 73.35
–Type:NgramProb 73.32 69.54
–Token:G-PSDBin 74.41 69.76
–Token:NgramProb 69.78 68.89
–Token:PSDRatio 48.38 3.45

Science AUC MacF
ALLFEATURES 73.91 47.54
–Token:L-PSDBin 76.26 53.69
–Token:G-PSD 77.04 53.56
–Token:G-PSDBin 77.44 54.54
–Token:L-PSD 77.85 56.05
–Token:PSDRatio 77.92 57.34
–Token:CtxCnt 77.85 54.42
–Type:Context 78.17 55.45
–Token:Ctx% 78.06 55.04
–Type:TopicSim 77.83 54.57
–Token:NgramProb 76.98 51.02
–Type:RelFreq 74.25 49.57
–Type:NgramProb 50.00 0.00

Subs AUC MacF
ALLFEATURES 69.26 52.78
–Type:NgramProb 69.13 53.33
–Token:G-PSDBin 70.23 54.72
–Token:CtxCnt 71.23 58.35
–Token:L-PSDBin 72.07 57.85
–Token:G-PSD 72.17 57.33
–Type:TopicSim 72.31 58.41
–Token:Ctx% 72.17 56.17
–Token:NgramProb 71.35 59.26
–Token:PSDRatio 70.33 46.88
–Token:L-PSD 69.05 53.31
–Type:RelFreq 65.25 48.22
–Type:Context 50.00 0.00

Table 5: Feature ablation results for all three corpora. Selection criteria is AUC, but Macro-F is presented
for completeness. Feature selection is run independently on each of the three datasets. The features
toward the bottom were the first selected.

AUC Macro-F Micro-F
EMEA
TYPEONLY 71.43 ± 0.94 52.62 ± 3.41 38.67 ± 1.35
TOKENONLY 73.75 ± 1.11 67.77 ± 4.18 45.49 ± 3.96
ALLFEATURES 72.19 ± 4.07 67.26 ± 7.88 49.29 ± 3.55
XV-ALLFEATURES 79.60 ± 1.20 71.64 ± 1.83 46.83 ± 0.62
Science
TYPEONLY 75.19 ± 0.89 51.53 ± 2.55 37.14 ± 4.41
TOKENONLY 71.24 ± 1.45 47.27 ± 1.11 40.48 ± 1.84
ALLFEATURES 74.14 ± 0.93 48.86 ± 3.94 43.20 ± 3.16
XV-ALLFEATURES 73.91 ± 0.66 47.54 ± 1.52 40.22 ± 1.03
Subs
TYPEONLY 60.90 ± 1.47 39.21 ± 14.78 24.77 ± 2.78
TOKENONLY 62.00 ± 1.16 49.74 ± 6.30 42.95 ± 3.92
ALLFEATURES 60.12 ± 2.11 50.16 ± 8.63 38.56 ± 5.20
XV-ALLFEATURES 69.26 ± 0.60 52.78 ± 1.96 43.85 ± 0.90

Table 6: Cross-domain test results on the SENS-
ESPOTTING task. Two standard deviations are
shown in small type. Only AUC, Macro-F and
Micro-F are shown for brevity.

AUC as the measure on which to ablate. It’s quite
clear that for Science, all the useful information
is in the type-level features, a result that echoes
what we saw in the previous section. While for
EMEA and Subs, both type- and token-level fea-
tures play a significant role. Considering the six
most useful features in each domain, the ones that
pop out as frequently most useful are the global
PSD features, the ngram probability features (ei-
ther type- or token-based), the relative frequency
features and the context features.

6.5 Cross-Domain Training
One disadvantage to the previous method for eval-
uating the SENSESPOTTING task is that it requires
parallel data in a new domain. Suppose we have no
parallel data in the new domain at all, yet still want
to attack the SENSESPOTTING task. One option is

to train a system on domains for which we do have
parallel data, and then apply it in a new domain.
This is precisely the setting we explore in this sec-
tion. Now, instead of performing cross-validation
in a single domain (for instance, Science), we take
the union of all of the training data in the other
domains (e.g., EMEA and Subs), train a classifier,
and then apply it to Science. This classifier will al-
most certainly be worse than one trained on NEW

(Science) but does not require any parallel data in
that domain. (Hyperparameters are chosen by de-
velopment data from the OLD union.)

The results of this experiment are shown in
Table 6. We include results for TOKENONLY,
TYPEONLY and ALLFEATURES; all of these are
trained in the cross-domain setting. To ease com-
parison to the results that do not suffer from do-
main shift, we also present “XV-ALLFEATURES”,
which are results copied from Table 4 in which
parallel data from NEW is used. Overall, there is a
drop of about 7.3% absolute in AUC, moving from
XV-ALLFEATURES to ALLFEATURES, including
a small improvement in Science (likely because
Science is markedly smaller than Subs, and “more
difficult” than EMEA with many word types).

6.6 Detecting Most Frequent Sense Changes
We define a second, related task: MOSTFRE-
QSENSECHANGE. In this task, instead of predict-
ing if a given word token has a sense which is
brand new with respect to the old domain, we pre-
dict whether it is being used with a a sense which
is not the one that was observed most frequently
in the old domain. In our EMEA, Science, and
Subtitles data, 68.2%, 48.3%, and 69.6% of word
tokens’ predominant sense changes.
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Figure 1: Learning curves for the three domains. X-axis is percent of data used, Y-axis is Macro-F score.
Both axes are in log scale to show the fast rate of growth. A horizontal bar corresponding to random
predictions, and the TYPEORACLE results are shown for comparison.

AUC Macro-F Micro-F
EMEA
RANDOM 50.54 ± 0.41 58.23 ± 0.34 49.69 ± 0.85
CONSTANT 50.00 ± 0.00 82.15 ± 0.00 74.43 ± 0.00
TYPEONLY 55.05 ± 1.00 67.45 ± 1.35 65.72 ± 0.59
TYPEORACLE 88.36 ± 0.00 90.64 ± 0.00 77.46 ± 0.00
TOKENONLY 66.42 ± 1.07 80.27 ± 0.50 68.96 ± 0.58
ALLFEATURES 58.64 ± 3.45 80.57 ± 0.45 69.40 ± 0.51
Science
RANDOM 50.13 ± 0.78 49.05 ± 0.82 48.19 ± 1.47
CONSTANT 50.00 ± 0.00 65.21 ± 0.00 73.22 ± 0.00
TYPEONLY 68.32 ± 1.05 54.70 ± 2.35 57.04 ± 1.52
TYPEORACLE 91.41 ± 0.00 86.71 ± 0.00 74.26 ± 0.00
TOKENONLY 68.49 ± 0.59 62.76 ± 0.89 64.40 ± 1.08
ALLFEATURES 68.31 ± 0.93 64.73 ± 1.93 67.20 ± 1.65
Subs
RANDOM 50.27 ± 0.27 56.93 ± 0.29 50.93 ± 1.11
CONSTANT 50.00 ± 0.00 79.96 ± 0.00 76.26 ± 0.00
TYPEONLY 60.36 ± 0.90 67.78 ± 1.98 61.58 ± 1.78
TYPEORACLE 82.16 ± 0.00 87.96 ± 0.00 73.87 ± 0.00
TOKENONLY 59.49 ± 1.04 77.79 ± 0.82 73.51 ± 0.68
ALLFEATURES 54.97 ± 0.89 77.30 ± 1.58 72.29 ± 1.68

Table 7: Cross-validation results on the MOST-
FREQSENSECHANGE task. Two standard devia-
tions are shown in small type.

We use the same set of features and learn-
ing framework to generate and evaluate models
for this task. While the SENSESPOTTING task
has MT utility in suggesting which new domain
words demand a new translation, the MOSTFRE-
QSENSECHANGE task has utility in suggesting
which words demand a new translation proba-
bility distribution when shifting to a new do-
main. Table 7 shows the results of our MOSTFRE-
QSENSECHANGE task experiments.

Results on the MOSTFREQSENSECHANGE

task are somewhat similar to those for the SENS-
ESPOTTING task. Again, our models perform bet-
ter under a macro-level evaluation than under a
micro-level evaluation. However, in contrast to
the SENSESPOTTING results, token-level features

perform quite well on their own for all domains.
It makes sense that our token level features have a
better chance of success on this task. The impor-
tant comparison now is between a new domain to-
ken in context and the majority of the old domain
tokens of the same word type. This comparison
is likely to be more informative than when we are
equally interested in identifying overlap between
the current token and any old domain senses. Like
the SENSESPOTTING results, when doing a micro-
level evaluation, our models do not perform as
well as the CONSTANT baseline, and, as before,
we attribute this to data sparsity.

6.7 Learning Curves
All of the results presented so far use classi-
fiers trained on instances of representative types
(i.e. “representative tokens”) extracted from fairly
large new domain parallel corpora (see Table 3),
consisting of between 22 and 36 thousand parallel
sentences, which yield between 8 and 35 thousand
representative tokens. Although we expect some
new domain parallel tuning data to be available
in most MT settings, we would like to know how
many representative types are required to achieve
good performance on the SENSESPOTTING task.
Figure 6.5 shows learning curves over the num-
ber of representative tokens that are used to train
SENSESPOTTING classifiers. In fact, only about
25-50% of the data we used is really necessary to
achieve the performance observed before.
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Zürich, Switzerland
daniele.pighin@gmail.com

Carlo Strapparava
FBK-irst

Trento, Italy
strappa@fbk.eu

Abstract

We present BRAINSUP, an extensible
framework for the generation of creative
sentences in which users are able to
force several words to appear in the sen-
tences and to control the generation pro-
cess across several semantic dimensions,
namely emotions, colors, domain related-
ness and phonetic properties. We evalu-
ate its performance on a creative sentence
generation task, showing its capability of
generating well-formed, catchy and effec-
tive sentences that have all the good qual-
ities of slogans produced by human copy-
writers.

1 Introduction
A variety of real-world scenarios involve talented
and knowledgable people in a time-consuming
process to write creative, original sentences gen-
erated according to well-defined requisites. For
instance, to advertise a new product it could be
desirable to have its name appearing in a punchy
sentence together with some keywords relevant for
marketing, e.g. “fresh”, or “thirst” for the adver-
tisement of a drink. Besides, it could be interesting
to characterize the sentence with respect to a spe-
cific color, like “blue” to convey the idea of fresh-
ness, or to a color more related to the brand of the
company, e.g. “red” for a new Ferrari. Moreover,
making the slogan evoke “joy” or “satisfaction”
could make the advertisement even more catchy
for customers. On the other hand, there are many
examples of provocative slogans in which copy-
writers try to impress their readers by suscitating
strong negative feelings, as in the case of anti-
smoke campaigns (e.g., “there are cooler ways to
die than smoking” or “cancer cures smoking”), or
the famous beer motto “Guinness is not good for

you”. As another scenario, creative sentence gen-
eration is also a useful teaching device. For ex-
ample, the keyword or linkword method used for
second language learning links the translation of
a foreign (target) word to one or more keywords
in the native language which are phonologically
or lexically similar to the target word (Sagarra and
Alba, 2006). To illustrate, for teaching the Ital-
ian word “tenda”, which means “curtain” in En-
glish, the learners are asked to imagine “rubbing
a tender part of their leg with a curtain”. These
words should co-occur in the same sentence, but
constructing such sentences by hand can be a dif-
ficult and very time-consuming process. Özbal
and Strapparava (2011), who attempted to auto-
mate the process, conclude that the inability to re-
trieve from the web a good sentence for all cases
is a major bottleneck.

Although state of the art computational mod-
els of creativity often produce remarkable results,
e.g., Manurung et al. (2008), Greene et al. (2010),
Guerini et al. (2011), Colton et al. (2012) just to
name a few, to our best knowledge there is no at-
tempt to develop an unified framework for the gen-
eration of creative sentences in which users can
control all the variables involved in the creative
process to achieve the desired effect.

In this paper, we advocate the use of syntactic
information to generate creative utterances by de-
scribing a methodology that accounts for lexical
and phonetic constraints and multiple semantic di-
mensions at the same time. We present BRAIN-
SUP, an extensible framework for creative sen-
tence generation in which users can control all the
parameters of the creative process, thus generat-
ing sentences that can be used for practical ap-
plications. First, users can define a set of key-
words which must appear in the final sentence.
Second, they can slant the output towards a spe-
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Domain Keywords BRAINSUP output examples

coffee waking,
cup

Between waking and doing there
is a wondrous cup.

coke drink, ex-
haustion

The physical exhaustion wants
the dark drink.

health day, juice,
sunshine

With juice and cereal the normal
day becomes a summer sunshine.

beauty kiss,
lips

Passionate kiss, perfect lips. –
Lips and eyes want the kiss.

mascara drama,
lash

Lash your drama to the stage. –
A mighty drama, a biting lash.

pickle crunch, bite Crunch your bite to the top. –
Crunch of a savage byte. – A
large byte may crunch a little at-
tention.

soap
skin,
love,
touch

A touch of love is worth a fortune
of skin. – The touch of froth is
the skin of love. – A skin of water
is worth a touch of love.

Table 1: A selection of sentences automatically
generated by BRAINSUP for specific domains.

cific emotion, color or domain. At the same time,
they can require a sentence to include desired pho-
netic properties, such as rhymes, alliteration or
plosives. The combination of these features al-
lows for the generation of potentially catchy and
memorable sentences by establishing connections
between linguistic, emotional (LaBar and Cabeza,
2006), echoic and visual (Borman et al., 2005)
memory, as exemplified by the system outputs
showcased in Table 1. Other creative dimensions
can easily be plugged in, due to the inherently
modular structure of the system.

BRAINSUP supports the creative process by
greedily exploring a huge solution space to pro-
duce completely novel utterances responding to
user requisites. It exploits syntactic constraints to
dramatically cut the size of the search space, thus
making it possible to focus on the creative aspects
of sentence generation.

2 Related work

Research in creative language generation has
bloomed in recent years. In this section, we pro-
vide a necessarily succint overview of a selection
of the studies that most heavily inspired and influ-
enced the development of BRAINSUP.

Humor generators are a notable class of sys-
tems exploring new venues in computational cre-
ativity (Binsted and Ritchie, 1997; McKay, 2002;
Manurung et al., 2008). Valitutti et al. (2009)
present an interactive system which generates hu-
morous puns obtained through variation of famil-

iar expressions with word substitution. The varia-
tion takes place considering the phonetic distance
and semantic constraints such as semantic similar-
ity, semantic domain opposition and affective po-
larity difference. Possibly closer to slogan genera-
tion, Guerini et al. (2011) slant existing textual ex-
pressions to obtain more positively or negatively
valenced versions using WordNet (Miller, 1995)
semantic relations and SentiWordNet (Esuli and
Sebastiani, 2006) annotations. Stock and Strap-
parava (2006) generate acronyms based on lexical
substitution via semantic field opposition, rhyme,
rythm and semantic relations. The model is lim-
ited to the generation of noun phrases.

Poetry generation systems face similar chal-
lenges to BRAINSUP as they struggle to combine
semantic, lexical and phonetic features in a unified
framework. Greene et al. (2010) describe a model
for poetry generation in which users can control
meter and rhyme scheme. Generation is modeled
as a cascade of weighted Finite State Transduc-
ers that only accept strings conforming to the de-
sired rhyming scheme. Toivanen et al. (2012) at-
tempt to generate novel poems by replacing words
in existing poetry with morphologically compat-
ible words that are semantically related to a tar-
get domain. Content control and the inclusion of
phonetic features are left as future work and syn-
tactic information is not taken into account. The
Electronic Text Composition project1 is a corpus
based approach to poetry generation which recur-
sively combines automatically generated linguistic
constituents into grammatical sentences. Colton et
al. (2012) propose another data-driven approach to
poetry generation based on simile transformation.
The mood and theme of the poems are influenced
by daily news. Constraints about phonetic proper-
ties of the selected words or their frequencies can
be enforced during retrieval. Unlike these exam-
ples, BRAINSUP makes heavy use of syntactic in-
formation to enforce well-formed sentences and to
constraint the search for a solution, and provides
an extensible framework in which various forms
of linguistic creativity can easily be incorporated.

Several slogan generators are available on the
web2, but their capabilities are very limited as they
can only replace single words or word sequences
within existing slogan. This often results in syn-
tactically incorrect outputs. Furthermore, they do
not allow for other forms of user control.

1http://slought.org/content/11199
2E.g.: http://www.procato.com/slogan+

generator, http://www.sloganizer.net/en/,
http://www.sloganmania.com/index.htm.
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3 Architecture of BRAINSUP

To effectively support the creative process with
useful suggestions, we must be able to generate
sentences conforming to the user needs. First of
all, users can select the target words that need to
appear in the sentence. In the context of second
language learning, these might be the words that a
learner must associate in order to expand her vo-
cabulary. For slogan generation, the target words
could be the key features of a product, or target-
defining keywords that copywriters want to explic-
itly mention. On top of that, a user can character-
ize the generated sentences according to several
dimensions, namely: 1) a specific semantic do-
main, e.g.: “sports” or “blankets”; 2) a specific
emotion, e.g., “joy”, “anger” or just “negative”; 3)
a specific color, e.g., “red” or “blue”; 4) a com-
bination of phonetic properties of the words that
will appear in the sentence, i.e., rhymes, allitera-
tions and plosives. More formally, the user input
is a tuple: U = 〈t,d, c, e, p,w〉 , where t is the
set of target words, d is a set of words defining the
target domain, c and p are, respectively, the color
and the emotion towards which the user wants to
slant the sentence, p represents the desired pho-
netic features, and w is a set of weights that control
the influence of each dimension on the generative
process, as detailed in Section 3.3. For target and
domain words, users can explicitly select one or
more POSes to be considered, e.g., “drink/verb”
or “drink/verb,noun”.

The sentence generation process is based on
morpho-syntactic patterns which we automati-
cally discover from a corpus of dependency parsed
sentences P . These patterns represent very gen-
eral skeletons of well-formed sentences that we
employ to generate creative sentences by only
focusing on the lexical aspects of the process.
Candidate fillers for each empty position (slot)
in the patterns are chosen according to the lexi-
cal and syntactic constraints enforced by the de-
pendency relations in the patterns. These con-
straints are learned from relation-head-modifier
co-occurrence counts estimated from a depen-
dency treebank L. A beam search in the space of
all possible lexicalizations of a syntactic pattern
promotes the words with the highest likelihood of
satisfying the user specification.

Algorithm 1 provides a high-level description of
the creative sentence generation process. Here, Θ
is a set of meta-parameters that affect search com-
plexity and running time of the algorithm, such
as the minimum/maximum number of solutions to

Algorithm 1 SentenceGeneration(U,Θ,P,L): U is the
user specification, Θ is a set of meta-parameters; P and L are
two dependency treebanks.
O ← ∅
for all p ∈ CompatiblePatternsΘ(U,P) do

while NotEnoughSolutionsΘ(O) do
O ← O ∪ FillInPatternΘ(U, p,L)

return SelectBestSolutionsΘ(O)

DT NNS VBD DT JJ NN IN DT NN
The * * a * * in the *

det nsubj

dobj

det

amod

prep

pobj

det

Figure 1: Example of a syntactic pattern. A “*”
represents an empty slot to be filled with a filler.

be generated, the maximum number of patterns to
consider, or the maximum size of the generated
sentences. CompatiblePatterns(·) finds the most
frequent syntactic patterns in P that are compat-
ible with the user specification, as explained in
Section 3.1; FillInPattern(·) carries out the beam
search, and returns the best solutions generated for
each pattern p given U . The algorithm terminates
when at least a minimum number of solutions have
been generated, or when all the compatible pat-
terns have been exhausted. Finally, only the best
among the generated solutions are shown to the
user. More details about the search in the solution
space are provided in Section 3.2.

3.1 Pattern selection
We generate creative sentences starting from
morpho-syntactic patterns which have been au-
tomatically learned from a large corpus P . The
choice of the corpus from which the patterns
are extracted constitutes the first element of the
creative sentence generation process, as differ-
ent choices will generate sentences with different
styles. For example, a corpus of slogans or punch-
lines can result in short, catchy and memorable
sentences, whereas a corpus of simplified English
would be a better choice to learn a second lan-
guage or to address low reading level audiences.

A pattern is the syntactic skeleton of a class
of sentences observed in P . Within a pattern, a
second element of creativity involves the selec-
tion of original combinations of words (fillers) that
do not violate the grammaticality of the sentence.
The patterns that we employ are automatic de-
pendency trees from which all content-words have
been removed, as exemplified in Figure 1. After
selecting the target corpus, we parse all the sen-
tences with the Stanford Parser (Klein and Man-
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ning, 2003) and produce the patterns by stripping
away all content words from the parses. Then,
for each pattern we count how many times it has
been observed in the corpus. Additionally, we
keep track of what kind of empty slots, i.e., empty
positions, are available in each pattern. For ex-
ample, the pattern in Figure 1 can accommodate
up to two singular nouns (NN), one plural noun
(NNS), one adjective (JJ) and one verb in the past
tense (VBD). This information is needed to se-
lect the patterns which are compatible with the
target words t in the user specification U . For
example, this pattern is not compatible with t =
[heading/VBG, edge/NN] as the pattern does not
have an empty slot for a gerundive verb, while it
satisfies t = [heading/NN, edge/NN] as it can
accommodate the two singular nouns. While re-
trieving patterns, we also need to enforce that a
pattern be not completely filled just by adding the
target words t, as under these conditions there
would be no room to achieve any kind of creative
effect. Therefore, we also require that the pat-
terns retrieved by CompatiblePatterns(·) have
more empty slots than the size of t. The mini-
mum and maximum number of excess slots in the
pattern are two other meta-parameters controlled
by Θ. CompatiblePatterns(·) returns compati-
ble patterns ordered by their frequency, i.e. when
generating solutions the first patterns that are ex-
plored are the most frequently observed ones. In
this way, we achieve the following two objectives:
1) we compensate for the unavoidable errors intro-
duced by the automatic parser, as frequently ob-
served parses are less likely to be the result of
an erroneous interpretation of a sentence; and 2)
we generate sentences that are most likely to be
catchy and memorable, being based on syntactic
constructs that are used more frequently. To avoid
always selecting the same patterns for the same
kinds of inputs, we add a small random compo-
nent (also controlled by Θ) to the pattern sorting
algorithm, thus allowing for sentences to be gen-
erated also from non-top ranked patterns.

3.2 Searching the solution space

With the compatible patterns selected, we can ini-
tiate a beam search in the space of all possible
lexicalizations of the patterns, i.e., the space of
all sentences that can be generated by respect-
ing the syntactic constraints encoded by each pat-
tern. The process starts with a syntactic pattern
p containing only stop words, syntactic relations
and morphologic constraints (i.e., part-of-speech

DT NNS VBD DT JJ NN IN DT NN
The fires X a * smoke in the *

det nsubj

dobj

det

amod

prep

pobj

det

Figure 2: A partially lexicalized sentence with a
highlighted empty slot marked with X. The rele-
vant dependencies to fill in the slot are shown in
boldface.

tags) for the empty slots. The search advances to-
wards a complete solution by selecting an empty
slot to fill and trying to place candidate fillers in
the selected position. Each partially lexicalized
solution is scored by a battery of scoring func-
tions that compete to generate creative sentences
respecting the user specificationU , as explained in
Section 3.3. The most promising solutions are ex-
tended by filling another slot, until completely lex-
icalized sentences, i.e., sentences without empty
slots, are generated.

To limit the number of words that can occupy
a given position in a sentence, we define a set of
operators that return a list of candidate fillers for
a slot solely based on syntactic clues. To achieve
that, we analyze a large corpus of parsed sentences
L3 and store counts of observed head-relation-
modifier (〈h, r,m〉) dependency relations. Let
τr(h) be an operator that, when applied to a head
word h in a relation r, returns the set of words in
L which have been observed as modifiers for h in
r with a specific POS. To simplify the notation,
we assume that the relation r also carries along
the POS of the head and modifier slots. As an
example, with respect to the tree depicted in Fig-
ure 2, τamod(smoke) would return all the words
with POS equal to “JJ” that have been observed as
adjective modifiers for the singular noun “smoke”.
We will refer to τr(·) as the dependency operator
for r. For every τr(·), we also define an inverse
dependency operator τ−1r (·), which returns the list
of the possible heads in r when applied to a mod-
ifier word m. For instance, with respect to Fig-
ure 2, τ−1nsubj(fires) would return the set of verbs in
the past tense of which “fires” as a plural noun can
be a subject.

While filling in a given slot X , the dependency
operators can be combined to obtain a list of words
which are likely to occupy that position given the
syntactic constraints induced by the structure of
the pattern. Let W = ∪i{wi} be the set of words
which are directly connected to the empty slot by

3Distinct from the corpus used for pattern selection, P .
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a dependency relation. Each word wi implies a
constraint that candidate fillers for X must satisfy.
If wi is the head of X , then a direct operator is
used to retrieve a list of fillers that satisfy the ith

constraint. Conversely, if wi is a modifier of X ,
an inverse operator is employed.

As an example, let us consider the partially
completed sentence shown in Figure 2 having
an empty slot marked with X . Here, the word
“smoke” is a modifier for X , to which it is con-
nected by a dobj relation. Therefore, we can ex-
ploit τ−1dobj(smoke) to obtain a ranked list of words
that can occupy X according to this constraint.
Similarly, the τ−1nsubj(fires) operator can be used to
retrieve a list of verbs in the past tense that ac-
cept “fires” as nsubj modifier. Finally τ−1prep(in)
can further restrict our options to verbs that ac-
cepts complements introduced by the preposition
“in”. For example, the words “generated”, “pro-
duced”, “caused” or “formed” would be good can-
didates to fill in the slot considering all the pre-
vious constraints. More formally, we can de-
fine the set of candidate fillers for a slot X , CX ,
as: CX = τ−1rhX,X

(hX) ∩ (
⋂
wi|wi∈MX

τrwi,X
(wi)),

where rwi,X is the type of relation between wi and
X , MX is the set of modifiers of X and hX is the
syntactic head of X .4

Concerning the order in which slots are filled,
we start from those that have the highest num-
ber of dependencies (both head or modifiers) that
have been already instantiated in the sentence, i.e.,
we start from the slots that are connected to the
highest number of non-empty slots. In doing so
we maximize the constraints that we can rely on
when inserting a new word, and eventually gener-
ate more reliable outputs.

3.3 Filler selection and solution scoring
We have devised a set of feature functions that ac-
count for different aspects of the creative sentence
generation process. By changing the weight w of
the feature functions in U , users can control the
extent to which each creativity component will af-
fect the sentence generation process, and tune the
output of the system to better match their needs.
As explained in the remainder of this section, fea-
ture functions are responsible for ranking the can-
didate slot fillers to be used during sentence gen-
eration and for selecting the best solutions to be

4An empty slot does not generate constraints for X . In
addition, there might be cases in which it is not possible to
find a filler that satisfies all the constraints at the same time.
In such cases, all the fillers that satisfy the maximum number
of constraints are considered.

Algorithm 2 RankCandidates(U, f , c1, c2, s,X): c1
and c2 are two candidate fillers for the slot X in the sentence
s = [s0, . . . sn]; f is the set of feature functions; U is the user
specification.

sc1 ← s, sc2 ← s, sc1 [X]← c1, s
c2 [X]← c2

for all f ∈ SortFeatureFunctionsΘ(U, f) do
if f(sc1 , U) > f(sc2 , U) then return c1 � c2
else if f(sc1 , U) < f(sc2 , U) then

return c1 ≺ c2
return c1 ≡ c2

shown to the users.
Algorithm 2 details the process of ranking can-

didate fillers. To compare two candidates c1 and c2
for the slot X in the sentence s, we first generate
two sentences sc1 and sc2 in which the empty slot
X is occupied by c1 and c2, respectively. Then, we
sort the feature functions based on their weights
in descending order, and in turn we apply them
to score the two sentences. As soon as we find
a scorer for which one sentence is better than the
other, we can take a decision about the ranking of
the fillers. This approach makes it possible to es-
tablish a strict order of precedence among feature
functions and to select fillers that have a highest
chance of maximizing the user satisfaction.

Concerning the scoring of partial solutions and
complete sentences, we adopt a simple linear com-
bination of scoring functions. Let s be a (partial)
sentence, f = [f0, . . . , fk] be the vector of scor-
ing functions and w = [w0, . . . , wk] the associ-
ated vector of weights in U . The overall score of s
is calculated as score(s, U) =

∑k
i=0wifi(s, U) .

Solutions that do not contain all the required target
words are discarded and not shown to the user.

Currently, the model employs the following 12
feature functions:

Chromatic and emotional connota-
tion. The chromatic connotation of a
sentence s = [s0, . . . , sn] is computed as
f(s, U) =

∑
si

(sim(si, c) −
∑

cj 6=c sim(si, cj)),
where c is the user selected target color and
sim(si, cj) is the degree of association between
the word si and the color cj as calculated by
Mohammad (2011). All the words in the sentence
which have an association with the target color
c give a positive contribution, while those that
are associated with a color ci 6= c contribute
negatively. Emotional connotation works exactly
in the same way, but in this case word-emotion
associations are taken from (Mohammad and
Turney, 2010).

Domain relatedness. This feature function uses
an LSA (Deerwester et al., 1990) vector space
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model to measure the similarity between the words
in the sentence and the target domain d speci-
fied by the user. It is calculated as: f(s, U) =∑

di
v(di)·

∑
si

v(si)

‖∑di
v(di)‖·‖

∑
si

v(si)‖ where v(·) returns the rep-

resentation of a word in the vector space.

Semantic cohesion. This feature behaves ex-
actly like domain relatedness, with the only dif-
ference that it measures the similarity between the
words in the sentence and the target words t.

Target-words scorer. This feature function
simply counts what fraction of the target
words t is present in a partial solution:
f(s, U) = (

∑
si|si∈t 1)/|t|. The target word scorer

takes care of enforcing the presence of the target
words in the sentences. Letting beam search find
the best placement for the target words comes at
no extra cost and results in a simple and elegant
model.

Phonetic features (plosives, alliteration and
rhyme). All the phonetic features are based on
the phonetic representation of English words of
the Carnegie Mellon University pronouncing dic-
tionary (Lenzo, 1998). The plosives feature is cal-
culated as the ratio between the number of plo-
sive sounds in a sentence and the overall num-
ber of phonemes. For the alliteration scorer, we
store the phonetic representation of each word in
s in a trie (i.e., prefix tree), and count how many
times each node ni of the trie (corresponding to a
phoneme) is traversed. Let ci be the value of the
counts for ni. The alliteration score is then cal-
culated as f(s, U) = (

∑
i|ci>1 ci)/

∑
i ci. More

simply put, we count how many of the phonetic
prefixes of the words in the sentence are repeated,
and then we normalize this value by the total num-
ber of phonemes in s. The rhyme feature works
exactly in the same way, with the only difference
that we invert the phonetic representation of each
word before adding it to the TRIE. Thus, we give
higher scores to sentences in which several words
share the same phonetic ending.

Variety scorer. This feature function promotes
sentences that contain as many different words as
possible. It is calculated as the number of distinct
words in the sentence over the size of the sentence.

Unusual-words scorer. To increase the ability
of the model to generate sentences containing non-
trivial word associations, we may want to prefer
solutions in which relatively uncommon words are
employed. Inversely, we may want to lower lex-

ical complexity to generate sentences more ap-
propriate for certain education or reading levels.
We define ci as the number of times each word
si ∈ s is observed in a corpus V . Accord-
ingly, the value of this feature is calculated as:
f(s, U) = (1/|s|)(∑si

1/ci).

N-gram likelihood. This is simply the likeli-
hood of a sentence estimated by an n-gram lan-
guage model, to enforce the generation of well-
formed word sequences. When a solution is not
complete, in the computation we include only the
sequences of contiguous words (i.e., not inter-
rupted by empty slots) having length greater than
or equal to the order of the n-gram model.

Dependency likelihood. This feature is re-
lated to the dependency operators introduced
in Section 3.2 and it enforces sentences in
which dependency chains are well formed. We
estimate the probability of a modifier word
m and its head h to be in the relation r
as pr(h,m) = cr(h,m)/(

∑
hi

∑
mi

cr(hi,mi)),
where cr(·) is the number of times that m
depends on h in the dependency treebank
L and hi,mi are all the head/modifier pairs
observed in L. The dependency-likelihood
of a sentence s can then be calculated as
f(s, U) = exp(

∑
〈h,m,r〉∈r(s) log pr(h,m)), r(s)

being the set of dependency relations in s.

4 Evaluation

We evaluated our model on a creative sentence
generation task. The objective of the evaluation
is twofold: we wanted to demonstrate 1) the effec-
tiveness of our approach for creative sentence gen-
eration, in general, and 2) the potential of BRAIN-
SUP to support the brainstorming process behind
slogan generation. To this end, the annotation tem-
plate included one question asking the annotators
to rate the quality of the generated sentences as
slogans.

Five experienced annotators were asked to rate
432 creative sentences according to the follow-
ing criteria, namely: 1) Catchiness: is the sen-
tence attractive, catchy or memorable? [Yes/No]
2) Humor: is the sentence witty or humorous?
[Yes/No]; 3) Relatedness: is the sentence seman-
tically related to the target domain? [Yes/No]; 4)
Correctness: is the sentence grammatically cor-
rect? [Ungrammatical/Slightly disfluent/Fluent];
5) Success: could the sentence be a good slogan
for the target domain? [As it is/With minor edit-
ing/No]. In these last two cases, the annotators
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were instructed to select the middle option only
in cases where the gap with a correct/successful
sentence could be filled just by performing minor
editing. The annotation form had no default val-
ues, and the annotators did not know how the eval-
uated sentences were generated, or whether they
were the outcome of one or more systems.

We started by collecting slogans from an on-
line repository of slogans5. Then, we randomly
selected a subset of these slogans and for each of
them we generated an input specification U for the
system. We used the commercial domain of the
advertised product as the target domain d. Two
or three content words appearing in each slogan
were randomly selected as the target words t. We
did so to simulate the brainstorming phase behind
the slogan generation process, where copywriters
start with a set of relevant keywords to come up
with a catchy slogan. In all cases, we set the tar-
get emotion to “positive” as we could not estab-
lish a generally valid criteria to associate a spe-
cific emotion to a product. Concerning chromatic
slanting, for target domains having a strong chro-
matic correlation we allowed the system to slant
the generated sentences accordingly. In the other
cases, a random color association was selected. In
this manner, we produced 10 tuples 〈t,d, c, e, p〉.
Then, from each tuple we produced 5 complete
user specifications by enabling or disabling differ-
ent feature function combinations6. The four com-
binations of features are: base: Target-word scorer
+ N-gram likelihood + Dependency likelihood +
Variety scorer + Unusual-words scorer + Seman-
tic cohesion; base+D: all the scorers in base +
Domain relatedness; base+D+C: all the scorers in
base+D + Chromatic connotation; base+D+E: all
the scorers in base+D + Emotional connotation;
base+D+P: all the scorers in base+D + Phonetic
features. For each of the resulting 50 input config-
urations, we generated up to 10 creative sentences.
As the system could not generate exactly 10 solu-
tions in all the cases, we ended up with a set of
432 items to annotate. The weights of the feature
functions were set heuristically, due to the lack
of an annotated dataset suitable to learn an opti-

5http://www.tvacres.com/advertising_
slogans.htm

6An alternative strategy to keep the annotation effort un-
der control would have been to generate fewer sentences from
a larger number of inputs. We adopted the former setting
since we regarded it as more similar to a brainstorming ses-
sion, where the system proposes different alternatives to in-
spire human operators. Forcing BRAINSUP to only output
one or two sentences would have limited its ability to explore
and suggest potentially valuable outputs.

MC Cat. Hum. Corr. Rel. Succ. RND2 RND3

2 - - 16.67 - 22.22 - 37.04
3 47.45 39.58 43.52 13.66 44.21 62.50 49.38
4 33.10 37.73 32.18 21.99 22.22 31.25 12.35
5 19.44 22.69 07.64 64.35 11.34 06.25 01.23

Table 2: Majority classes (%) for the five dimen-
sions of the annotation.

mal weight configuration. We started by assign-
ing the highest weight to the Target Word scorer
(i.e., 1.0), followed by the Variety and Unusual
Word scorers (0.99), the Phonetic Features, Chro-
matic/Emotional Connotation and Semantic Co-
hesion scorers (0.98) and finally the Domain, N -
gram and Dependency Likelihood scorers (0.97).
These settings allow us to enforce an order of
precedence among the scorers during slot-filling,
while giving them virtually equal relevance for so-
lution ranking.

As discussed in Section 3 we use two differ-
ent treebanks to learn the syntactic patterns (P)
and the dependency operators (L). For these ex-
periments, patterns were learned from a corpus
of 16,000 proverbs (Mihalcea and Strapparava,
2006), which offers a good selection of short sen-
tences with a good potential to be used for slo-
gan generation. This choice seemed to be a good
compromise as, to our best knowledge, there is
no published slogan dataset with an adequate size.
Besides, using existing slogans might have legal
implications that we might not be aware of. De-
pendency operators were learned by dependency
parsing the British National Corpus7. To reduce
the amount of noise introduced by the automatic
parses, we only considered sentences having less
than 20 words. Furthermore, we only considered
sentences in which all the content words are listed
in WordNet (Miller, 1995) with the observed part
of speech.8 The LSA space used for the semantic
feature functions was also learned on BNC data,
but in this case no filtering was applied.

4.1 Results

To measure the agreement among the annota-
tors, similarly to Mohammad (2011) and Ozbal
and Strapparava (2012) we calculated the majority
class for each dimension of the annotation task. A

7http://www.natcorp.ox.ac.uk/
8Since the CMU pronouncing dictionary used by the pho-

netic scorers is based on the American pronunciation of
words, we actually pre-processed the whole BNC by replac-
ing all British-English words with their American-English
counterparts. To this end, we used the mapping available at
http://wordlist.sourceforge.net/.
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Cat. Rel. Hum. Succ. Corr.

Yes 67.59 93.98 12.73 32.41 64.35
Partly - - - 23.15 31.71
No 32.41 06.02 87.27 44.44 03.94

Table 3: Majority decisions (%) for each annota-
tion dimension.

majority class greater than or equal to 3 means that
the absolute majority of the 5 annotators agreed
on the same decision9. Table 2 shows the ob-
served agreement for each dimension. The column
labeled RND2 (RND3) shows the random agree-
ment for a given number of annotators and a binary
(ternary) decision. For example, all five annotators
(MC=5) agreed on the annotation of the catchiness
of the slogans in 19.44% of the cases. The random
chance of agreement for 5 annotators on the binary
decision problem is 6.25%. The figures for MC ≥
4 are generally high, confirming a good agreement
among the annotators. The agreement on the relat-
edness of the slogans is especially high, with all 5
annotators taking the same decision in almost two
cases out of three, i.e., 64.35%.

Table 3 lists the distribution of answers for each
dimension in the cases where a decision can be
taken by majority vote. The generated slogans
are found to be catchy in more than 2/3 of the
cases, (i.e., 67.59%), completely successful in 1/3
of the cases (32.41%) and completely correct in
2/3 of the cases (64.35%). These figures demon-
strate that BRAINSUP is very effective in gener-
ating grammatical utterances that have all the ap-
pealing properties of a successful slogan. As for
humor, the sentences are found to have this prop-
erty in only 12.73% of cases. Even though the
figure is not very high, we should also consider
that BRAINSUP is not explicitly trying to gener-
ate amusing utterances. Concerning success, we
should point out that in 23.15% of the cases the
annotators have found that the generated slogans
have the potential to be turned into successful ones
only with minor editing. This is a very important
piece of result, as it corroborates our claim that
BRAINSUP can indeed be a valuable tool for copy-
writing, even when it does not manage to output a
perfectly good sentence. Similar conclusions can
be drawn concerning the correctness of the output,
as in almost one third of the cases the slogans are

9For the binary decisions (i.e., catchiness, relatedness and
humor), at least 3 annotators out of 5 must necessarily agree
on the same option.

only affected by minor disfluencies.
The relatedness figure is especially high, as in

almost 94% of the cases the majority of annota-
tors found the slogans to be pertinent to the tar-
get domain. This result is not surprising, as all
the slogans are generated by considering keywords
that already exist in real slogans for the same do-
main. Anyhow, this is exactly the kind of setting in
which we expect BRAINSUP to be employed, i.e.,
to support creative sentence generation starting
from a good set of relevant keywords. Nonethe-
less, it is very encouraging to observe that the gen-
eration process does not deteriorate the positive
impact of the input keywords.

We would also like to mention that in 63 cases
(14.58%) the majority of the annotators have la-
beled the slogans favorably across all 5 dimen-
sions. The examples listed in Table 1 are selected
from this set. It is interesting to observe how
the word associations established by BRAINSUP
can result in pertinent yet unintentional rhetori-
cal devices such as metaphors (“a summer sun-
shine”), puns (“lash your drama”) and personifica-
tions (“lips and eyes want”). Some examples show
the effect of the phonetic features, e.g. plosives in
“passionate kiss, perfect lips”, alliteration in “the
dark drink” and rhyming in “lips and eyes want
the kiss”. In some cases, the output of BRAINSUP
seems to be governed by mysterious philosophical
reasoning, as in the delicate examples generated
for “soap”.

For comparison, Table 4 lists a selection of
the examples that have been labeled as unsuc-
cessful by the majority of raters. In some cases,
BRAINSUP is improperly selecting attributes that
highlight undesirable properties in the target do-
main, e.g., “A pleasant tasting, a heady wine”. To
avoid similar errors, it would be necessary to rea-
son about the valence of an attribute for a spe-
cific domain. In other cases, the N -gram and the
Dependency Likelihood features may introduce
phrases which are very cohesive but unrelated to
the rest of the sentence, e.g., “Unscrupulous doc-
tors smoke armored units”. Many of these errors
could be solved by increasing the weight of the
Semantic Cohesion and Domain Relatedness scor-
ers. In other cases, such as “A sixth calorie may
taste an own good” or “A same sunshine is fewer
than a juice of day”, more sophisticated reason-
ing about syntactic and semantic relations in the
output might be necessary in order to enforce the
generation of sound and grammatical sentences.

We could not find a significant correlation be-
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Domain Keywords BRAINSUP output examples

pleasure wine, tast-
ing

A pleasant tasting, a heady wine.
– A fruity tasting may drink a
sparkling wine.

healthy day, juice,
sunshine

Drink juice of your sunshine, and
your weight will choose day of
you. – A same sunshine is fewer
than a juice of day.

cigarette doctors,
smoke

Unscrupulous doctors smoke ar-
mored units. – Doctors smoke no
arrow.

mascara drama,
lash

The such drama is the lash.

soap skin, love,
touch

The touch of skin is the love of
cacophony. – You love an own
skin for a first touch.

coke calorie,
taste, good

A sixth calorie may taste an own
good.

coffee waking,
cup

You cannot cup hands without
waking some fats.

Table 4: Unsuccessful BRAINSUP outputs.

tween the input variables (e.g., presence or ab-
sence of phonetic features or chromatic slanting)
and the outcome of the annotation, i.e. the sys-
tem by and large produces correct, catchy, related
and (at least potentially) successful outputs regard-
less of the specific input configurations. In this re-
spect, it should be noted that we did not carry out
any kind of optimization of the feature weights,
which might be needed to obtain more heavily
characterized sentences. Furthermore, to better
appreciate the contribution of the individual fea-
tures, comparative experiments in which the users
evaluate the system before and after triggering a
feature function might be necessary. Concern-
ing the correlation among output dimensions, we
only observed relatively high Spearman correla-
tion between correctness and relatedness (0.65),
and catchiness and success (0.68).

5 Conclusion

We have presented BRAINSUP, a novel system
for creative sentence generation that allows users
to control many aspects of the creativity process,
from the presence of specific target words in the
output, to the selection of a target domain, and
to the injection of phonetic and semantic proper-
ties in the generated sentences. BRAINSUP makes
heavy use of dependency parsed data and statistics
collected from dependency treebanks to ensure the
grammaticality of the generated sentences, and to
trim the search space while seeking the sentences
that maximize the user satisfaction.

The system has been designed as a support-
ing tool for a variety of real-world applications,
from advertisement to entertainment and educa-
tion, where at the very least it can be a valu-
able support for time-consuming and knowledge-
intensive sentence generation needs. To demon-
strate this point, we carried out an evaluation on a
creative sentence generation benchmark showing
that BRAINSUP can effectively produce catchy,
memorable and successful sentences that have the
potential to inspire the work of copywriters.

To our best knowledge, this is the first system-
atic attempt to build an extensible framework that
allows for multi-dimensional creativity while at
the same time relying on syntactic constraints to
enforce grammaticality. In this regard, our ap-
proach is dual with respect to previous work based
on lexical substitution, which suffers from limited
expressivity and creativity latitude. In addition, by
acquiring the lexicon and the sentence structure
from two distinct corpora, we can guarantee that
the sentences that we generate have never been
observed. We believe that our contribution con-
stitutes a valid starting point for other researchers
to deal with unexplored dimensions of creativity.

As future work, we plan to use machine learn-
ing techniques to estimate optimal weights for the
feature functions in different use cases. We would
also like to consider syntactic clues while reason-
ing about semantic properties of the sentence, e.g.,
color and emotion associations, instead on relying
solely on lexical semantics. Concerning the exten-
sion of the capabilities of BRAINSUP, we want to
include common-sense knowledge and reasoning
to profit from more sophisticated semantic rela-
tions and to inject humor on demand. Further tun-
ing of BRAINSUP to build a dedicated system for
slogan generation is also part of our future plans.
After these improvements, we would like to con-
duct a more focused evaluation on slogan genera-
tion involving human copywriters and domain ex-
perts in an interactive setting.

We would like to conclude this paper with a pearl
of BRAINSUP’s wisdom:

It is wiser to believe in science
than in everlasting love.
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Abstract

We propose a joint inference algorithm for

grammatical error correction. Different

from most previous work where different

error types are corrected independently,

our proposed inference process considers

all possible errors in a uni�ed framework.

We use integer linear programming (ILP)

to model the inference process, which can

easily incorporate both the power of exist-

ing error classi�ers and prior knowledge

on grammatical error correction. Exper-

imental results on the Helping Our Own

shared task show that our method is com-

petitive with state-of-the-art systems.

1 Introduction

Grammatical error correction is an important task

of natural language processing (NLP). It has many

potential applications and may help millions of

people who learn English as a second language

(ESL). As a research �eld, it faces the challenge of

processing ungrammatical language, which is dif-

ferent from other NLP tasks. The task has received

much attention in recent years, and was the focus

of two shared tasks on grammatical error correc-

tion in 2011 and 2012 (Dale and Kilgarriff, 2011;

Dale et al., 2012).

To detect and correct grammatical errors, two

different approaches are typically used � knowl-

edge engineering or machine learning. The �rst

relies on handcrafting a set of rules. For exam-

ple, the superlative adjective best is preceded by

the article the. In contrast, the machine learn-

ing approach formulates the task as a classi�cation

problem based on learning from training data. For

example, an article classi�er takes a noun phrase

(NP) as input and predicts its article using class

labels a/an, the, or ɛ (no article).
Both approaches have their advantages and dis-

advantages. One can readily handcraft a set of

rules to incorporate various prior knowledge from

grammar books and dictionaries, but rules often

have exceptions and it is dif�cult to build rules

for all grammatical errors. On the other hand, the

machine learning approach can learn from texts

written by ESL learners where grammatical errors

have been annotated. However, training data may

be noisy and classi�ers may need prior knowledge

to guide their predictions.

Another consideration in grammatical error cor-

rection is how to deal with multiple errors in an

input sentence. Most previous work deals with

errors individually: different classi�ers (or rules)

are developed for different types of errors (article

classi�er, preposition classi�er, etc). Classi�ers

are then deployed independently. An example is

a pipeline system, where each classi�er takes the

output of the previous classi�er as its input and

proposes corrections of one error type.

One problem of this pipeline approach is that

the relations between errors are ignored. For ex-

ample, assume that an input sentence contains a

cats. An article classi�er may propose to delete

a, while a noun number classi�er may propose

to change cats to cat. A pipeline approach will

choose one of the two corrections based purely

on which error classi�er is applied �rst. Another

problem is that when applying a classi�er, the sur-

rounding words in the context are assumed to be

correct, which is not true if grammatical errors ap-

pear close to each other in a sentence.

In this paper, we formulate grammatical er-

ror correction as a task suited for joint inference.

Given an input sentence, different types of errors

are jointly corrected as follows. For every possi-

ble error correction, we assign a score which mea-

sures how grammatical the resulting sentence is if

the correction is accepted. We then choose a set

of corrections which will result in a corrected sen-

tence that is judged to be the most grammatical.

The inference problem is solved by integer lin-
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ear programming (ILP). Variables of ILP are indi-

cators of possible grammatical error corrections,

the objective function aims to select the best set of

corrections, and the constraints help to enforce a

valid and grammatical output. Furthermore, ILP

not only provides a method to solve the inference

problem, but also allows for a natural integration

of grammatical constraints into a machine learn-

ing approach. We will show that ILP fully utilizes

individual error classi�ers, while prior knowledge

on grammatical error correction can be easily ex-

pressed using linear constraints. We evaluate our

proposed ILP approach on the test data from the

Helping Our Own (HOO) 2011 shared task (Dale

and Kilgarriff, 2011). Experimental results show

that the ILP formulation is competitive with state-

of-the-art grammatical error correction systems.

The remainder of this paper is organized as fol-

lows. Section 2 gives the related work. Section

3 introduces a basic ILP formulation. Sections

4 and 5 improve the basic ILP formulation with

more constraints and second order variables, re-

spectively. Section 6 presents the experimental re-

sults. Section 7 concludes the paper.

2 Related Work

The knowledge engineering approach has been

used in early grammatical error correction systems

(Murata and Nagao, 1993; Bond et al., 1995; Bond

and Ikehara, 1996; Heine, 1998). However, as

noted by (Han et al., 2006), rules usually have ex-

ceptions, and it is hard to utilize corpus statistics

in handcrafted rules. As such, the machine learn-

ing approach has become the dominant approach

in grammatical error correction.

Previous work in the machine learning approach

typically formulates the task as a classi�cation

problem. Article and preposition errors are the two

main research topics (Knight and Chander, 1994;

Han et al., 2006; Tetreault and Chodorow, 2008;

Dahlmeier and Ng, 2011). Features used in classi-

�cation include surrounding words, part-of-speech

tags, language model scores (Gamon, 2010), and

parse tree structures (Tetreault et al., 2010). Learn-

ing algorithms used include maximum entropy

(Han et al., 2006; Tetreault and Chodorow, 2008),

averaged perceptron, na�̈ve Bayes (Rozovskaya

and Roth, 2011), etc. Besides article and prepo-

sition errors, verb form errors also attract some

attention recently (Liu et al., 2010; Tajiri et al.,

2012).

Several research efforts have started to deal with

correcting different errors in an integrated manner

(Gamon, 2011; Park and Levy, 2011; Dahlmeier

and Ng, 2012a). Gamon (2011) uses a high-order

sequential labeling model to detect various errors.

Park and Levy (2011) models grammatical error

correction using a noisy channel model, where a

prede�ned generative model produces correct sen-

tences and errors are added through a noise model.

The work of (Dahlmeier and Ng, 2012a) is proba-

bly the closest to our current work. It uses a beam-

search decoder, which iteratively corrects an in-

put sentence to arrive at the best corrected output.

The difference between their work and our ILP

approach is that the beam-search decoder returns

an approximate solution to the original inference

problem, while ILP returns an exact solution to an

approximate inference problem.

Integer linear programming has been success-

fully applied to many NLP tasks, such as depen-

dency parsing (Riedel and Clarke, 2006; Martins

et al., 2009), semantic role labeling (Punyakanok

et al., 2005), and event extraction (Riedel and Mc-

Callum, 2011).

3 Inference with First Order Variables

The inference problem for grammatical error cor-

rection can be stated as follows: �Given an input

sentence, choose a set of corrections which results

in the best output sentence.� In this paper, this

problem will be expressed and solved by integer

linear programming (ILP).

To express an NLP task in the framework of ILP

requires the following steps:

1. Encode the output space of the NLP task us-

ing integer variables;

2. Express the inference objective as a linear

objective function; and

3. Introduce problem-speci�c constraints to re-

�ne the feasible output space.

In the following sections, we follow the above

formulation. For the grammatical error correc-

tion task, the variables in ILP are indicators of the

corrections that a word needs, the objective func-

tion measures how grammatical the whole sen-

tence is if some corrections are accepted, and the

constraints guarantee that the corrections do not

con�ict with each other.
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3.1 First Order Variables

Given an input sentence, the main question that a

grammatical error correction system needs to an-

swer is: What corrections at which positions? For

example, is it reasonable to change the word cats

to cat in the sentence A cats sat on the mat? Given

the corrections at various positions in a sentence,

the system can readily come up with the corrected

sentence. Thus, a natural way to encode the output

space of grammatical error correction requires in-

formation about sentence position, error type (e.g.,

noun number error), and correction (e.g., cat).

Suppose s is an input sentence, and |s| is its

length (i.e., the number of words in s). De�ne �rst
order variables:

Zk
l,p ∈ {0, 1}, (1)

where

p∈ {1, 2, . . . , |s|} is a position in a sentence,

l∈ L is an error type,

k∈ {1, 2, . . . , C(l)} is a correction of type l.

L: the set of error types,

C(l): the number of corrections for error type l.

If Zk
l,p = 1, the word at position p should be cor-

rected to k that is of error type l. Otherwise, the
word at position p is not applicable for this correc-
tion. Deletion of a word is represented as k = ɛ.
For example, Za

Art,1 = 1 means that the article

(Art) at position 1 of the sentence should be a. If

Za
Art,1 = 0, then the article should not be a. Ta-

ble 1 contains the error types handled in this work,

their possible corrections and applicable positions

in a sentence.

3.2 The Objective Function

The objective of the inference problem is to �nd

the best output sentence. However, there are expo-

nentially many different combinations of correc-

tions, and it is not possible to consider all com-

binations. Therefore, instead of solving the orig-

inal inference problem, we will solve an approx-

imate inference problem by introducing the fol-

lowing decomposable assumption: Measuring the

output quality of multiple corrections can be de-

composed into measuring the quality of the indi-

vidual corrections.

Let s′ be the resulting sentence if the correction
Zk

l,p is accepted for s, or for simplicity denoting

it as s
Zk

l,p−−→ s′. Let wl,p,k ∈ R, measure how

grammatical s′ is. De�ne the objective function as

max
∑

l,p,k

wl,p,kZ
k
l,p.

This linear objective function aims to select a set

of Zk
l,p, such that the sum of their weights is the

largest among all possible candidate corrections,

which in turn gives the most grammatical sentence

under the decomposable assumption.

Although the decomposable assumption is a

strong assumption, it performs well in practice,

and one can relax the assumption by using higher

order variables (see Section 5).

For an individual correction Zk
l,p, we measure

the quality of s′ based on three factors:
1. The language model score h(s′,LM) of s′

based on a large web corpus;

2. The con�dence scores f(s′, t) of classi�ers,
where t ∈ E and E is the set of classi�ers. For ex-

ample, an article classi�er trained on well-written

documents will score every article in s′, and mea-
sure the quality of s′ from the perspective of an

article �expert�.

3. The disagreement scores g(s′, t) of classi-

�ers, where t ∈ E. A disagreement score mea-

sures how ungrammatical s′ is from the perspec-

tive of a classi�er. Take the article classi�er as an

example. For each article instance in s′, the clas-
si�er computes the difference between the maxi-

mum con�dence score among all possible choices

of articles, and the con�dence score of the ob-

served article. This difference represents the dis-

agreement on the observed article by the article

classi�er or �expert�. De�ne the maximum differ-

ence over all article instances in s′ to be the article
classi�er disagreement score of s′. In general, this
score is large if the sentence s′ is more ungram-

matical.

The weight wl,p,k is a combination of these

scores:

wl,p,k = νLMh(s′,LM) +
∑

t∈E

λtf(s′, t)

+
∑

t∈E

µtg(s′, t), (2)

where νLM, λt, and µt are the coef�cients.

3.3 Constraints

An observation on the objective function is that

it is possible, for example, to set Za
Art,p = 1 and
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Type l Correction k C(l) Applicable Variables

article a, the, ɛ 3 article or NP Za
Art,p, Z

the
Art,p,Z

ɛ
Art,p

preposition on, at, in, . . . |confusion set| preposition Zon
Prep,p, Z

at
Prep,p, Z

in
Prep,p, . . .

noun number singular, plural 2 noun Z
singular
Noun,p , Z

plural
Noun,p

punctuation punctuation symbols |candidates| determined by rules Z
original
Punct,p , Z

cand1
Punct,p, Z

cand2
Punct,p,. . .

spelling correctly spelled |candidates| determined by a Z
original
Spell,p , Z

cand1
Spell,p, Z

cand2
Spell,p,. . .

words spell checker

Table 1: Error types and corrections. The Applicable column indicates which parts of a sentence are

applicable to an error type. In the �rst row, ɛ means deleting an article.

Z the
Art,p = 1, which means there are two corrections

a and the for the same sentence position p, but ob-
viously only one article is allowed.

A simple constraint to avoid these con�icts is

∑

k

Zk
l,p = 1, ∀ applicable l, p

It reads as follows: for each error type l, only one
output k is allowed at any applicable position p
(note that Zk

l,p is a Boolean variable).

Putting the variables, objective function, and

constraints together, the ILP problem with respect

to �rst order variables is as follows:

max
∑

l,p,k

wl,p,kZ
k
l,p (3)

s.t.
∑

k

Zk
l,p = 1, ∀ applicable l, p (4)

Zk
l,p ∈ {0, 1} (5)

The ILP problem is solved using lp solve1, an

integer linear programming solver based on the re-

vised simplex method and the branch-and-bound

method for integers.

3.4 An Illustrating Example

To illustrate the ILP formulation, consider an ex-

ample input sentence s:

A cats sat on the mat . (6)

First, the constraint (4) at position 1 is:

Za
Art,1 + Z the

Art,1 + Zɛ
Art,1 = 1,

which means only one article in {a, the, ɛ} is se-

lected.

1http://lpsolve.sourceforge.net/

Next, to compute wl,p,k, we collect language

model score and con�dence scores from the arti-

cle (ART), preposition (PREP), and noun number

(NOUN) classi�er, i.e., E = {ART,PREP,NOUN}.
The weight for Z

singular
Noun,2 is:

wNoun,2,singular = νLMh(s′,LM)+

λARTf(s′,ART) + λPREPf(s′,PREP) + λNOUNf(s′,NOUN)+

µARTg(s′,ART) + µPREPg(s′,PREP) + µNOUNg(s′,NOUN).

where s
Z

singular
Noun,2−−−−→ s′ = A cat sat on the mat .

The con�dence score f(s′, t) of classi�er t is

the average of the con�dence scores of t on the

applicable instances in s′.
For example, there are two article instances in

s′, located at position 1 and 5 respectively, hence,

f(s′,ART)=
1

2

�
f(s′[1], 1,ART) + f(s′[5], 5,ART)

�

=
1

2

�
f(a, 1,ART) + f(the, 5,ART)

�
.

Here, the symbol ft(s
′[p], p,ART) refers to the

con�dence score of the article classi�er at position

p, and s′[p] is the word at position p of s′.
Similarly, the disagreement score g(s′,ART) of

the article classi�er is

g(s′,ART) = max(g1, g2)

g1= arg max
k

f(k, 1,ART) − f(a, 1,ART)

g2= arg max
k

f(k, 5,ART) − f(the, 5,ART)

Putting them together, the weight forZ
singular
Noun,2 is:

wNoun,2,singular = νLMh(s′,LM)

+
λART

2

�
f(a, 1,ART) + f(the, 5,ART)

�

+ λPREPf(on, 4,PREP)

+
λNOUN

2

�
f(cat, 2,NOUN) + f(mat, 6,NOUN)

�

+ µARTg(s′,ART)

+ µPREPg(s′,PREP)

+ µNOUNg(s′,NOUN)
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Input A cats sat on the mat

Corrections The, ɛ cat at, in a, ɛ mats

Za
Art,1 Z

singular
Noun,2 Zon

Prep,4 Za
Art,5 Z

singular
Noun,6

Variables Z the
Art,1 Z

plural
Noun,2 Zat

Prep,4 Z the
Art,5 Z

plural
Noun,6

Zɛ
Art,1 Z in

Prep,4 Zɛ
Art,5

Table 2: The possible corrections on example (6).

3.5 Complexity

The time complexity of ILP is determined by

the number of variables and constraints. Assume

that for each sentence position, at most K classi-

�ers are applicable2. The number of variables is

O(K|s|C(l∗)), where l∗ = arg maxl∈LC(l). The
number of constraints is O(K|s|).

4 Constraints for Prior Knowledge

4.1 Modi�cation Count Constraints

In practice, we usually have some rough gauge

of the quality of an input sentence. If an input

sentence is mostly grammatical, the system is ex-

pected to make few corrections. This require-

ment can be easily satis�ed by adding modi�ca-

tion count constraints.

In this work, we constrain the number of modi�-

cations according to error types. For the error type

l, a parameter Nl controls the number of modi�-

cations allowed for type l. For example, the mod-
i�cation count constraint for article corrections is

∑

p,k

Zk
Art,p ≤ NArt, where k 6= s[p]. (7)

The condition ensures that the correction k is dif-

ferent from the original word in the input sentence.

Hence, the summation only counts real modi�ca-

tions. There are similar constraints for preposi-

tion, noun number, and spelling corrections:

∑

p,k

Zk
Prep,p≤ NPrep, where k 6= s[p], (8)

∑

p,k

Zk
Noun,p≤ NNoun, where k 6= s[p], (9)

∑

p,k

Zk
Spell,p≤ NSpell, where k 6= s[p]. (10)

2In most cases, K = 1. An example of K > 1 is a noun
that requires changing the word form (between singular and
plural) and inserting an article, for which K = 2.

4.2 Article-Noun Agreement Constraints

An advantage of the ILP formulation is that it

is relatively easy to incorporate prior linguistic

knowledge. We now take article-noun agreement

as an example to illustrate how to encode such

prior knowledge using linear constraints.

A noun in plural form cannot have a (or an)

as its article. That two Boolean variables Z1 and

Z2 are mutually exclusive can be handled using a

simple inequality Z1 + Z2 ≤ 1. Thus, the fol-

lowing inequality correctly enforces article-noun

agreement:

Za
Art,p1

+ Z
plural
Noun,p2

≤ 1, (11)

where the article at p1 modi�es the noun at p2.

4.3 Dependency Relation Constraints

Another set of constraints involves dependency

relations, including subject-verb relation and

determiner-noun relation. Speci�cally, for a noun

n at position p, we check the word w related to n
via a child-parent or parent-child relation. Ifw be-

longs to a set of verbs or determiners (are, were,

these, all) that takes a plural noun, then the noun

n is required to be in plural form by adding the

following constraint:

Z
plural
Noun,p = 1. (12)

Similarly, if a noun n at position p is required to

be in singular form due to subject-verb relation

or determiner-noun relation, we add the following

constraint:

Z
singular
Noun,p = 1. (13)

5 Inference with Second Order Variables

5.1 Motivation and De�nition

To relax the decomposable assumption in Section

3.2, instead of treating each correction separately,

one can combine multiple corrections into a single

correction by introducing higher order variables.
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Consider the sentence A cat sat on the mat.

When measuring the gain due to Z
plural
Noun,2 = 1

(change cat to cats), the weight wNoun,2,plural is

likely to be small since A cats will get a low lan-

guage model score, a low article classi�er con-

�dence score, and a low noun number classi�er

con�dence score. Similarly, the weight wArt,1,ɛ of

Zɛ
Art,1 (delete article A) is also likely to be small

because of the missing article. Thus, if one con-

siders the two corrections separately, they are both

unlikely to appear in the �nal corrected output.

However, the correction from A cat sat on the

mat. toCats sat on the mat. should be a reasonable

candidate, especially if the context indicates that

there are many cats (more than one) on the mat.

Due to treating corrections separately, it is dif�cult

to deal with multiple interacting corrections with

only �rst order variables.

In order to include the correction ɛ Cats, one

can use a new set of variables, second order vari-

ables. To keep symbols clear, let Z = {Zu|Zu =
Zk

l,p, ∀l, p, k} be the set of �rst order variables, and
wu = wl,p,k be the weight of Zu = Zk

l,p. De�ne a

second order variable Xu,v:

Xu,v = Zu ∧ Zv, (14)

where Zu and Zv are �rst order variables:

Zu , Zk1
l1,p1

, Zv , Zk2
l2,p2

. (15)

The de�nition of Xu,v states that a second order

variable is set to 1 if and only if its two compo-

nent �rst order variables are both set to 1. Thus, it
combines two corrections into a single correction.

In the above example, a second order variable is

introduced:

Xu,v = Zɛ
Art,1 ∧ Z

plural
Noun,2,

s
Xu,v−−−→ s′ = Cats sat on the mat .

Similar to �rst order variables, let wu,v be the

weight of Xu,v. Note that de�nition (2) only de-

pends on the output sentence s′, and the weight of
the second order variable wu,v can be de�ned in

the same way:

wu,v = νLMh(s′,LM) +
∑

t∈E

λtf(s′, t)

+
∑

t∈E

µtg(s′, t). (16)

5.2 ILP with Second Order Variables

A set of new constraints is needed to enforce con-

sistency between the �rst and second order vari-

ables. These constraints are the linearization of

de�nition (14) of Xu,v:

Xu,v = Zu ∧ Zv ⇔
Xu,v ≤ Zu

Xu,v ≤ Zv

Xu,v ≥ Zu + Zv − 1
(17)

A new objective function combines the weights

from both �rst and second order variables:

max
∑

l,p,k

wl,p,kZ
k
l,p +

∑

u,v

wu,vXu,v. (18)

In our experiments, due to noisy data, some

weights of second order variables are small, even

if both of its �rst order variables have large

weights and satisfy all prior knowledge con-

straints. They will affect ILP proposing good cor-

rections. We �nd that the performance will be bet-

ter if we change the weights of second order vari-

ables to w′
u,v, where

w′
u,v , max{wu,v, wu, wv}. (19)

Putting them together, (20)-(25) is an ILP for-

mulation using second order variables, whereX is

the set of all second order variables which will be

explained in the next subsection.

max
∑

l,p,k

wl,p,kZ
k
l,p +

∑

u,v

w′
u,vXu,v (20)

s.t.
∑

k

Zk
l,p = 1, ∀ applicable l, p (21)

Xu,v ≤ Zu, (22)

Xu,v ≤ Zv, (23)

Xu,v ≥ Zu + Zv − 1, ∀Xu,v ∈ X (24)

Xu,v, Z
k
l,p ∈ {0, 1} (25)

5.3 Complexity and Variable Selection

Using the notation in section 3.5, the num-

ber of second order variables is O(|Z|2) =
O(K2|s|2C(l∗)2) and the number of constraints is
O(K2|s|2C(l∗)2). More generally, for variables

with higher order h ≥ 2, the number of variables
(and constraints) is O(Kh|s|hC(l∗)h).
Note that both the number of variables and the

number of constraints increase exponentially with

increasing variable order. In practice, a small

subset of second order variables is suf�cient to
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Data set Sentences Words Edits

Dev set 939 22,808 1,264

Test set 722 18,790 1,057

Table 3: Overview of the HOO 2011 data sets.

Corrections are called edits in the HOO 2011

shared task.

achieve good performance. For example, noun

number corrections are only coupled with nearby

article corrections, and have no connection with

distant or other types of corrections.

In this work, we only introduce second or-

der variables that combine article corrections and

noun number corrections. Furthermore, we re-

quire that the article and the noun be in the same

noun phrase. The set X of second order variables

in Equation (24) is de�ned as follows:

X ={Xu,v = Zu ∧ Zv|l1 = Art, l2 = Noun,

s[p1], s[p2] are in the same noun phrase},

where l1, l2, p1, p2 are taken from Equation (15).

6 Experiments

Our experiments mainly focus on two aspects:

how our ILP approach performs compared to other

grammatical error correction systems; and how

the different constraints and the second order vari-

ables affect the ILP performance.

6.1 Evaluation Corpus and Metric

We follow the evaluation setup in the HOO 2011

shared task on grammatical error correction (Dale

and Kilgarriff, 2011). The development set and

test set in the shared task consist of conference and

workshop papers taken from the Association for

Computational Linguistics (ACL). Table 3 gives

an overview of the data sets.
System performance is measured by precision,

recall, and F measure:

P =
# true edits

# system edits
, R =

# true edits

# gold edits
, F =

2PR

P + R
.

(26)

The dif�culty lies in how to generate the system

edits from the system output. In the HOO 2011

shared task, participants can submit system edits

directly or the corrected plain-text system output.

In the latter case, the of�cial HOO scorer will ex-

tract system edits based on the original (ungram-

matical) input text and the corrected system output

text, using GNU Wdiff3.

Consider an input sentence The data is simi-

lar with test set. taken from (Dahlmeier and Ng,

2012a). The gold-standard edits are with → to and

ɛ → the. That is, the grammatically correct sen-

tence should be The data is similar to the test set.

Suppose the corrected output of a system to be

evaluated is exactly this perfectly corrected sen-

tence The data is similar to the test set. However,

the of�cial HOO scorer using GNUWdiff will au-

tomatically extract only one system edit with → to

the for this system output. Since this single system

edit does not match any of the two gold-standard

edits, the HOO scorer returns an F measure of 0,
even though the system output is perfectly correct.

In order to overcome this problem, the Max-

Match (M2) scorer was proposed in (Dahlmeier

and Ng, 2012b). Given a set of gold-standard ed-

its, the original (ungrammatical) input text, and

the corrected system output text, the M2 scorer

searches for the system edits that have the largest

overlap with the gold-standard edits. For the above

example, the system edits automatically deter-

mined by the M2 scorer are identical to the gold-

standard edits, resulting in an F measure of 1 as we
would expect. We will use the M2 scorer in this

paper to determine the best system edits. Once the

system edits are found, P , R, and F are computed

using the standard de�nition (26).

6.2 ILP Con�guration

6.2.1 Variables

The �rst order variables are given in Table 1. If

the inde�nite article correction a is chosen, then

the �nal choice between a and an is decided by a

rule-based post-processing step. For each prepo-

sition error variable Zk
Prep,p, the correction k is re-

stricted to a pre-de�ned confusion set of prepo-

sitions which depends on the observed preposi-

tion at position p. For example, the confusion

set of on is { at, for, in, of }. The list of prepo-

sitions corrected by our system is about, among,

at, by, for, in, into, of, on, over, to, under, with,

and within. Only selected positions in a sentence

(determined by rules) undergo punctuation correc-

tion. The spelling correction candidates are given

by a spell checker. We used GNU Aspell4 in our

work.

3http://www.gnu.org/software/wdiff/
4http://aspell.net
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6.2.2 Weights

As described in Section 3.2, the weight of each

variable is a linear combination of the language

model score, three classi�er con�dence scores,

and three classi�er disagreement scores. We use

the Web 1T 5-gram corpus (Brants and Franz,

2006) to compute the language model score for

a sentence. Each of the three classi�ers (article,

preposition, and noun number) is trained with the

multi-class con�dence weighted algorithm (Cram-

mer et al., 2009). The training data consists of all

non-OCR papers in the ACL Anthology5, minus

the documents that overlap with the HOO 2011

data set. The features used for the classi�ers fol-

low those in (Dahlmeier and Ng, 2012a), which

include lexical and part-of-speech n-grams, lexi-

cal head words, web-scale n-gram counts, depen-

dency heads and children, etc. Over 5 million

training examples are extracted from the ACL An-

thology for use as training data for the article and

noun number classi�ers, and over 1 million train-

ing examples for the preposition classi�er.

Finally, the language model score, classi�er

con�dence scores, and classi�er disagreement

scores are normalized to take values in [0, 1],
based on the HOO 2011 development data. We use

the following values for the coef�cients: νLM = 1
(language model); λt = 1 (classi�er con�dence);

and µt = −1 (classi�er disagreement).

6.2.3 Constraints

In Section 4, three sets of constraints are in-

troduced: modi�cation count (MC), article-noun

agreement (ANA), and dependency relation (DR)

constraints. The values for the modi�cation count

parameters are set as follows: NArt = 3, NPrep =
2, NNoun = 2, and NSpell = 1.

6.3 Experimental Results

We compare our ILP approach with two other sys-

tems: the beam search decoder of (Dahlmeier and

Ng, 2012a) which achieves the best published per-

formance to date on the HOO 2011 data set, and

UI Run1 (Rozovskaya et al., 2011) which achieves

the best performance among all participating sys-

tems at the HOO 2011 shared task. The results are

given in Table 4.

The HOO 2011 shared task provides two sets of

gold-standard edits: the original gold-standard ed-

its produced by the annotator, and the of�cial gold-

5http://aclweb.org/anthology-new/

System Original Of�cial
P R F P R F

UI Run1 40.86 11.21 17.59 54.61 14.57 23.00
Beam search 30.28 19.17 23.48 33.59 20.53 25.48
ILP 20.54 27.93 23.67 21.99 29.04 25.03

Table 4: Comparison of three grammatical error

correction systems.

standard edits which incorporated corrections pro-

posed by the HOO 2011 shared task participants.

All three systems listed in Table 4 use the M2

scorer to extract system edits. The results of the

beam search decoder and UI Run1 are taken from

Table 2 of (Dahlmeier and Ng, 2012a).

Overall, ILP inference outperforms UI Run1 on

both the original and of�cial gold-standard edits,

and the improvements are statistically signi�cant

at the level of signi�cance 0.01. The performance

of ILP inference is also competitive with the beam

search decoder. The results indicate that a gram-

matical error correction system bene�ts from cor-

rections made at a whole sentence level, and that

joint correction of multiple error types achieves

state-of-the-art performance.

Table 5 provides the comparison of the beam

search decoder and ILP inference in detail. The

main difference between the two is that, except for

spelling errors, ILP inference gives higher recall

than the beam search decoder, while its precision

is lower. This indicates that ILP inference is more

aggressive in proposing corrections.

Next, we evaluate ILP inference in different

con�gurations. We only focus on article and noun

number error types. Table 6 shows the perfor-

mance of ILP in different con�gurations. From

the results, MC and DR constraints improve pre-

cision, indicating that the two constraints can help

to restrict the number of erroneous corrections. In-

cluding second order variables gives the best F
measure, which supports our motivation for intro-

ducing higher order variables.

Adding article-noun agreement constraints

(ANA) slightly decreases performance. By exam-

ining the output, we �nd that although the overall

performance worsens slightly, the agreement re-

quirement is satis�ed. For example, for the input

We utilize search engine to . . . , the output without

ANA isWe utilize a search engines to . . . but with

ANA is We utilize the search engines to . . . , while

the only gold edit inserts a.
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Original Of�cial

Error type Beam search ILP Beam search ILP

P R F P R F P R F P R F
Spelling 36.84 0.69 1.35 60.00 0.59 1.17 36.84 0.66 1.30 60.00 0.57 1.12
+ Article 19.84 12.59 15.40 18.54 14.75 16.43 22.45 13.72 17.03 20.37 15.61 17.68
+ Preposition 22.62 14.26 17.49 17.61 18.58 18.09 24.84 15.14 18.81 19.24 19.68 19.46
+ Punctuation 24.27 18.09 20.73 20.52 23.50 21.91 27.13 19.58 22.75 22.49 24.98 23.67
+ Noun number 30.28 19.17 23.48 20.54 27.93 23.67 33.59 20.53 25.48 21.99 29.04 25.03

Table 5: Comparison of the beam search decoder and ILP inference. ILP is equipped with all constraints

(MC, ANA, DR) and default parameters. Second order variables related to article and noun number error

types are also used in the last row.

Setting Original Of�cial

P R F P R F

Art+Nn, 1st ord. 17.19 19.37 18.22 18.59 20.44 19.47

+ MC 17.87 18.49 18.17 19.23 19.39 19.31

+ ANA 17.78 18.39 18.08 19.04 19.11 19.07

+ DR 17.95 18.58 18.26 19.23 19.30 19.26

+ 2nd ord. 18.75 18.88 18.81 20.04 19.58 19.81

Table 6: The effects of different constraints and second order variables.

7 Conclusion

In this paper, we model grammatical error correc-

tion as a joint inference problem. The inference

problem is solved using integer linear program-

ming. We provide three sets of constraints to in-

corporate additional linguistic knowledge, and in-

troduce a further extension with second order vari-

ables. Experiments on the HOO 2011 shared task

show that ILP inference achieves state-of-the-art

performance on grammatical error correction.
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Abstract

Toponym resolvers identify the specific lo-
cations referred to by ambiguous place-
names in text. Most resolvers are based on
heuristics using spatial relationships be-
tween multiple toponyms in a document,
or metadata such as population. This pa-
per shows that text-driven disambiguation
for toponyms is far more effective. We ex-
ploit document-level geotags to indirectly
generate training instances for text classi-
fiers for toponym resolution, and show that
textual cues can be straightforwardly in-
tegrated with other commonly used ones.
Results are given for both 19th century
texts pertaining to the American Civil War
and 20th century newswire articles.

1 Introduction

It has been estimated that at least half of the
world’s stored knowledge, both printed and digi-
tal, has geographic relevance, and that geographic
information pervades many more aspects of hu-
manity than previously thought (Petras, 2004;
Skupin and Esperbé, 2011). Thus, there is value
in connecting linguistic references to places (e.g.
placenames) to formal references to places (coor-
dinates) (Hill, 2006). Allowing for the querying
and exploration of knowledge in a geographically
informed way requires more powerful tools than a
keyword-based search can provide, in part due to
the ambiguity of toponyms (placenames).

Toponym resolution is the task of disambiguat-
ing toponyms in natural language contexts to geo-
graphic locations (Leidner, 2008). It plays an es-
sential role in automated geographic indexing and
information retrieval. This is useful for histori-
cal research that combines age-old geographic is-
sues like territoriality with modern computational
tools (Guldi, 2009), studies of the effect of histor-

ically recorded travel costs on the shaping of em-
pires (Scheidel et al., 2012), and systems that con-
vey the geographic content in news articles (Teitler
et al., 2008; Sankaranarayanan et al., 2009) and
microblogs (Gelernter and Mushegian, 2011).

Entity disambiguation systems such as those of
Kulkarni et al. (2009) and Hoffart et al. (2011)
disambiguate references to people and organiza-
tions as well as locations, but these systems do not
take into account any features or measures unique
to geography such as physical distance. Here we
demonstrate the utility of incorporating distance
measurements in toponym resolution systems.

Most work on toponym resolution relies on
heuristics and hand-built rules. Some use sim-
ple rules based on information from a gazetteer,
such as population or administrative level (city,
state, country, etc.), resolving every instance of
the same toponym type to the same location re-
gardless of context (Ladra et al., 2008). Others use
relationships between multiple toponyms in a con-
text (local or whole document) and look for con-
tainment relationships, e.g. London and England
occurring in the same paragraph or as the bigram
London, England (Li et al., 2003; Amitay et al.,
2004; Zong et al., 2005; Clough, 2005; Li, 2007;
Volz et al., 2007; Jones et al., 2008; Buscaldi and
Rosso, 2008; Grover et al., 2010). Still others first
identify unambiguous toponyms and then disam-
biguate other toponyms based on geopolitical re-
lationships with or distances to the unambiguous
ones (Ding et al., 2000). Many favor resolutions of
toponyms within a local context or document that
cover a smaller geographic area over those that are
more dispersed (Rauch et al., 2003; Leidner, 2008;
Grover et al., 2010; Loureiro et al., 2011; Zhang
et al., 2012). Roberts et al. (2010) use relation-
ships learned between people, organizations, and
locations from Wikipedia to aid in toponym reso-
lution when such named entities are present, but
do not exploit any other textual context.
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Most of these approaches suffer from a major
weakness: they rely primarily on spatial relation-
ships and metadata about locations (e.g., popu-
lation). As such, they often require nearby to-
ponyms (including unambiguous or containing to-
ponyms) to resolve ambiguous ones. This reliance
can result in poor coverage when the required in-
formation is missing in the context or when a doc-
ument mentions locations that are neither nearby
geographically nor in a geopolitical relationship.
There is a clear opportunity that most ignore:
use non-toponym textual context. Spatially rel-
evant words like downtown that are not explicit
toponyms can be strong cues for resolution (Hol-
lenstein and Purves, 2012). Furthermore, the con-
nection between non-spatial words and locations
has been successfully exploited in data-driven
approaches to document geolocation (Eisenstein
et al., 2010, 2011; Wing and Baldridge, 2011;
Roller et al., 2012) and other tasks (Hao et al.,
2010; Pang et al., 2011; Intagorn and Lerman,
2012; Hecht et al., 2012; Louwerse and Benesh,
2012; Adams and McKenzie, 2013).

In this paper, we learn resolvers that use all
words in local or document context. For example,
the word lobster appearing near the toponym Port-
land indicates the location is Portland in Maine
rather than Oregon or Michigan. Essentially, we
learn a text classifier per toponym. There are no
massive collections of toponyms labeled with lo-
cations, so we train models indirectly using geo-
tagged Wikipedia articles. Our results show these
text classifiers are far more accurate than algo-
rithms based on spatial proximity or metadata.
Furthermore, they are straightforward to combine
with such algorithms and lead to error reductions
for documents that match those algorithms’ as-
sumptions.

Our primary focus is toponym resolution, so we
evaluate on toponyms identified by human anno-
tators. However, it is important to consider the
utility of an end-to-end toponym identification and
resolution system, so we also demonstrate that
performance is still strong when toponyms are de-
tected with a standard named entity recognizer.

We have implemented all the models discussed
in this paper in an open source software package
called Fieldspring, which is available on GitHub:
http://github.com/utcompling/fieldspring

Explicit instructions are provided for preparing
data and running code to reproduce our results.

Figure 1: Points representing the United States.

2 Data

2.1 Gazetteer

Toponym resolvers need a gazetteer to obtain can-
didate locations for each toponym. Additionally,
many gazetteers include other information such as
population and geopolitical hierarchy information.
We use GEONAMES, a freely available gazetteer
containing over eight million entries worldwide.1

Each location entry contains a name (sometimes
more than one) and latitude/longitude coordinates.
Entries also include the location’s administrative
level (e.g. city or state) and its position in the
geopolitical hierarchy of countries, states, etc.

GEONAMES gives the locations of regional
items like states, provinces, and countries as single
points. This is clearly problematic when we seek
connections between words and locations: e.g. we
might learn that many words associated with the
USA are connected to a point in Kansas. To get
around this, we represent regional locations as a
set of points derived from the gazetteer. Since re-
gional locations are named in the entries for loca-
tions they contain, all locations contained in the
region are extracted (in some cases over 100,000
of them) and then k-means is run to find a smaller
set of spatial centroids. These act as a tractable
proxy for the spatial extent of the entire region. k
is set to the number of 1◦ by 1◦ grid cells covered
by that region. Figure 1 shows the points com-
puted for the United States.2 A nice property of
this representation is that it does not involve re-
gion shape files and the additional programming
infrastructure they require.

1Downloaded April 16, 2013 from www.geonames.
org.

2The representation also contains three points each in
Hawaii and Alaska not shown in Figure 1.
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Corpus docs toks types tokstop typestop ambavg ambmax
TRC-DEV 631 136k 17k 4356 613 15.0 857
TRC-DEV-NER - - - 3165 391 18.2 857
TRC-TEST 315 68k 11k 1903 440 13.7 857
TRC-TEST-NER - - - 1346 305 15.7 857
CWAR-DEV 228 33m 200k 157k 850 29.9 231
CWAR-TEST 113 25m 305k 85k 760 31.5 231

Table 1: Statistics of the corpora used for evaluation. Columns subscripted by top give figures for
toponyms. The last two columns give the average number of candidate locations per toponym token and
the number of candidate locations for the most ambiguous toponym.

A location for present purposes is thus a set of
points on the earth’s surface. The distance be-
tween two locations is computed as the great circle
distance between the closest pair of representative
points, one from each location.

2.2 Toponym Resolution Corpora

We need corpora with toponyms identified and re-
solved by human annotators for evaluation. The
TR-CONLL corpus (Leidner, 2008) contains 946
REUTERS news articles published in August
1996. It has about 204,000 words and articles
range in length from a few hundred words to sev-
eral thousand words. Each toponym in the corpus
was identified and resolved by hand.3 We place
every third article into a test portion (TRC-TEST)
and the rest in a development portion. Since our
methods do not learn from explicitly labeled to-
ponyms, we do not need a training set.

The Perseus Civil War and 19th Century Amer-
ican Collection (CWAR) contains 341 books (58
million words) written primarily about and during
the American Civil War (Crane, 2000). Toponyms
were annotated by a semi-automated process: a
named entity recognizer identified toponyms, and
then coordinates were assigned using simple rules
and corrected by hand. We divide CWAR into de-
velopment (CWAR-DEV) and test (CWAR-TEST)
sets in the same way as TR-CONLL.

Table 1 gives statistics for both corpora, includ-
ing the number and ambiguity of gold standard
toponyms for both as well as NER identified to-

3We found several systematic types of errors in the origi-
nal TR-CONLL corpus, such as coordinates being swapped
for some locations and some longitudes being zero or the neg-
ative of their correct values. We repaired many of these er-
rors, though some more idiosyncratic mistakes remain. We,
along with Jochen Leidner, will release this updated version
shortly and will link to it from our Fieldspring GitHub page.

ponyms for TR-CONLL.4 We use the pre-trained
English NER from the OpenNLP project.5

2.3 Geolocated Wikipedia Corpus

The GEOWIKI dataset contains over one million
English articles from the February 11, 2012 dump
of Wikipedia. Each article has human-annotated
latitude/longitude coordinates. We divide the cor-
pus into training (80%), development (10%), and
test (10%) at random and perform preprocessing
to remove markup in the same manner as Wing
and Baldridge (2011). The training portion is used
here to learn models for text-driven resolvers.

3 Toponym Resolvers

Given a set of toponyms provided via annotations
or identified using NER, a resolver must select a
candidate location for each toponym (or, in some
cases, a resolver may abstain). Here, we describe
baseline resolvers, a heuristic resolver based on
the usual cues used in most toponym resolvers,
and several text-driven resolvers. We also discuss
combining heuristic and text-driven resolvers.

3.1 Baseline Resolvers

RANDOM For each toponym, the RANDOM re-
solver randomly selects a location from those as-
sociated in the gazetteer with that toponym.

POPULATION The POPULATION resolver se-
lects the location with the greatest population for
each toponym. It is generally quite effective, but
when a toponym has several locations with large
populations, it is often wrong. Also, it can only be
used when such information is available, and it is

4States and countries are not annotated in CWAR, so we
do not evaluate end-to-end using NER plus toponym resolu-
tion for it as there are many (falsely) false positives.

5opennlp.apache.org
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less effective if the population statistics are from a
time period different from that of the corpus.

3.2 SPIDER
Leidner (2008) describes two general and useful
minimality properties of toponyms:

• one sense per discourse: multiple tokens of
a toponym in the same text generally do not
refer to different locations in the same text
• spatial minimality: different toponyms in a

text tend refer to spatially near locations

Many toponym resolvers exploit these (Smith and
Crane, 2001; Rauch et al., 2003; Leidner, 2008;
Grover et al., 2010; Loureiro et al., 2011; Zhang
et al., 2012). Here, we define SPIDER (Spatial
Prominence via Iterative Distance Evaluation and
Reweighting) as a strong representative of such
textually unaware approaches. In addition to cap-
turing both minimality properties, it also identifies
the relative prominence of the locations for each
toponym in a given corpus.

SPIDER resolves each toponym by finding the
location for each that minimizes the sum distance
to all locations for all other toponyms in the same
document. On the first iteration, it tends to select
locations that clump spatially: if Paris occurs with
Dallas, it will choose Paris, Texas even though the
topic may be a flight from Texas to France. Further
iterations bring Paris, France into focus by captur-
ing its prominence across the corpus. The key in-
tuition is that most documents will discuss Paris,
France and only a small portion of these mention
places close to Paris, Texas; thus, Paris, France
will be selected on the first iteration for many
documents (though not for the Dallas document).
SPIDER thus assigns each candidate location a
weight (initialized to 1.0), which is re-estimated
on each iteration. The adjusted distance between
two locations is computed as the great circle dis-
tance divided by the product of the two locations’
weights. At the end of an iteration, each candi-
date location’s weight is updated to be the frac-
tion of the times it was chosen times the number
of candidates for that toponym. The weights are
global, with one for each location in the gazetteer,
so the same weight vector is used for each token
of a given toponym on a given iteration.

For example, if after the first iteration Paris,
France is chosen thrice, Paris, Texas once, and
Paris, Arkansas never, the global weights of these
locations are (3/4)∗3=2.25, (1/4)∗3=.75, and

(0/4)∗3=0, respectively (assume, for the exam-
ple, there are no other locations named Paris). The
sum of the weights remains equal to the number
of candidate locations. The updated weights are
used on the next iteration, so Paris, France will
seem “closer” since any distance computed to it
is divided by a number greater than one. Paris,
Texas will seem somewhat further away, and Paris,
Arkansas infinitely far away. The algorithm con-
tinues for a fixed number of iterations or until the
weights do not change more than some thresh-
old. Here, we run SPIDER for 10 iterations; the
weights have generally converged by this point.

When only one toponym is present in a doc-
ument, we simply select the candidate with the
greatest weight. When there is no such weight in-
formation, such as when the toponym does not co-
occur with other toponyms anywhere in the cor-
pus, we select a candidate at random.

SPIDER captures prominence, but we stress it
is not our main innovation: its purpose is to be a
benchmark for text-driven resolvers to beat.

3.3 Text-Driven Resolvers

The text-driven resolvers presented in this section
all use local context windows, document context,
or both, to inform disambiguation.

TRIPDL We use a document geolocator
trained on GEOWIKI’s document location labels.
Others—such as Smith and Crane (2001)—have
estimated a document-level location to inform
toponym resolution, but ours is the first we are
aware of to use training data from a different
domain to build a document geolocator that uses
all words (not only toponyms) to estimate a
document’s location. We use the document geolo-
cation method of Wing and Baldridge (2011). It
discretizes the earth’s surface into 1◦ by 1◦ grid
cells and assigns Kullback-Liebler divergences to
each cell given a document, based on language
models learned for each cell from geolocated
Wikipedia articles. We obtain the probability of a
cell c given a document d by the standard method
of exponentiating the negative KL-divergence and
normalizing these values over all cells:

P (c|d) = exp(−KL(c, d))∑
c′ exp(−KL(c′, d))

This distribution is used for all toponyms t in d
to define distributions PDL(l|t, d) over candidate
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locations of t in document d to be the portion of
P (c|d) consistent with the t’s candidate locations:

PDL(l|t, d) =
P (cl|d)∑

l′∈G(t) P (cl′ |d)
where G(t) is the set of the locations for t in the
gazetteer, and cl is the cell containing l. TRIPDL
(Toponym Resolution Informed by Predicted Doc-
ument Locations) chooses the location that maxi-
mizes PDL.

WISTR While TRIPDL uses an off-the-shelf
document geolocator to capture the geographic
gist of a document, WISTR (Wikipedia Indirectly
Supervised Toponym Resolver) instead directly
targets each toponym. It learns text classifiers
based on local context window features trained on
instances automatically extracted from GEOWIKI.

To create the indirectly supervised training data
for WISTR, the OpenNLP named entity recog-
nizer detects toponyms in GEOWIKI, and can-
didate locations for each toponym are retrieved
from GEONAMES. Each toponym with a loca-
tion within 10km of the document location is con-
sidered a mention of that location. For example,
the Empire State Building Wikipedia article has a
human-provided location label of (40.75,-73.99).
The toponym New York is mentioned several times
in the article, and GEONAMES lists a New York at
(40.71,-74.01). These points are 4.8km apart, so
each mention of New York in the document is con-
sidered a reference to New York City.

Next, context windows w of twenty words to
each side of each toponym are extracted as fea-
tures. The label for a training instance is the
candidate location closest to the document loca-
tion. We extract 1,489,428 such instances for to-
ponyms relevant to our evaluation corpora. These
instances are used to train logistic regression clas-
sifiers P (l|t, w) for location l and toponym t. To
disambiguate a new toponym, WISTR chooses
the location that maximizes this probability.

Few such probabilistic toponym resolvers ex-
ist in the literature. Li (2007) builds a probabil-
ity distribution over locations for each toponym,
but still relies on nearby toponyms that could refer
to regions that contain that toponym and requires
hand construction of distributions. Other learn-
ing approaches to toponym resolution (e.g. Smith
and Mann (2003)) require explicit unambiguous
mentions like Portland, Maine to construct train-
ing instances, while our data gathering methodol-

ogy does not make such an assumption. Overell
and Rüger (2008) and Overell (2009) only use
nearby toponyms as features. Mani et al. (2010)
and Qin et al. (2010) use other word types but
only in a local context, and they require toponym-
labeled training data. Our approach makes use of
all words in local and document context and re-
quires no explicitly labeled toponym tokens.

TRAWL We bring TRIPDL, WISTR, and
standard toponym resolution cues about ad-
ministrative levels together with TRAWL (To-
ponym Resolution via Administrative levels and
Wikipedia Locations). The general form of a prob-
abilistic resolver that utilizes such information to
select a location l̂ for a toponym t in document d
may be defined as

l̂ = argmaxl P (l, al|t, d).
where al is the administrative level (country, state,
city) for l in the gazetteer. This captures the fact
that countries (like Sudan) tend to be referred to
more often than small cities (like Sudan, Texas).
The above term is simplified as follows:

P (l, al|t, d) = P (al|t, d)P (l|al, t, d)
≈ P (al|t)P (l|t, d)

where we approximate the administrative level
prediction as independent of the document, and
the location as independent of administrative level.
The latter term is then expressed as a linear combi-
nation of the local context (WISTR) and the doc-
ument context (TRIPDL):

P (l|t, d) = λtP (l|t, ct) + (1−λt)PDL(l|t, d).
λt, the weight of the local context distribution, is
set according to the confidence that a prediction
based on local context is correct:

λt =
f(t)

f(t)+C ,

where f(t) is the fraction of training instances
of toponym t of all instances extracted from
GEOWIKI. C is set experimentally; C=.0001 was
the optimal value for CWAR-DEV. Intuitively, the
larger C is, the greater f(t) must be for the local
context to be trusted over the document context.

We define P (a|t), the administrative level com-
ponent, to be the fraction of representative points
for a location l̂ out of the number of representa-
tives points for all candidate locations l ∈ t,

||Rl̂||∑
l′∈t ||Rl′ ||
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where ||Rl|| is the number of representative points
of l. This boosts states and countries since higher
probability is assigned to locations with more
points (and cities have just one point).

Taken together, the above definitions yield the
TRAWL resolver, which selects the optimal can-
didate location l̂ according to

l̂ = argmaxl P (al|t)(λtP (l|t, ct) + (1−λt)PDL(l|t, d)).

3.4 Combining Resolvers and Backoff

SPIDER begins with uniform weights for each
candidate location of each toponym. WISTR
and TRAWL both output distributions over these
locations based on outside knowledge sources,
and can be used as more informed initializa-
tions of SPIDER than the uniform ones. We
call these combinations WISTR+SPIDER and
TRAWL+SPIDER.6

WISTR fails to predict when encountering a
toponym it has not seen in the training data, and
TRIPDL fails when a toponym only has locations
in cells with no probability mass. TRAWL fails
when both of these are true. In these cases, we
select the candidate location geographically clos-
est to the most likely cell according to TRIPDL’s
P (c|d) distribution.

3.5 Document Size

For SPIDER, runtime is quadratic in the size
of documents, so breaking up documents vastly
reduces runtime. It also restricts the minimal-
ity heuristic—appropriately—to smaller spans of
text. For resolvers that take into account the sur-
rounding document when determining how to re-
solve a toponym, such as TRIPDL and TRAWL,
it can often be beneficial to divide documents into
smaller subdocuments in order to get a better esti-
mate of the overall geographic prominence of the
text surrounding a toponym, but at a more coarse-
grained level than the local context models pro-
vide. For these reasons, we simply divide each
book in the CWAR corpus into small subdocu-
ments of at most 20 sentences.

4 Evaluation

Many prior efforts use a simple accuracy metric:
the fraction of toponyms whose predicted location

6We scale each toponym’s distribution as output by
WISTR or TRAWL by the number of candidate locations
for that toponym, since the total weight for each toponym in
SPIDER is the number of candidate locations, not 1.

is the same as the gold location. Such a met-
ric can be problematic, however. The gazetteer
used by a resolver may not contain, for a given
toponym, a location whose latitude and longitude
exactly match the gold label for the toponym (Lei-
dner, 2008). Also, some errors are worse than oth-
ers, e.g. predicting a toponym’s location to be on
the other side of the world versus predicting it to
be a different city in the same country—accuracy
does not reflect this difference.

We choose a metric that instead measures the
distance between the correct and predicted loca-
tion for each toponym and compute the mean and
median of all such error distances. This is used
in document geolocation work (Eisenstein et al.,
2010, 2011; Wing and Baldridge, 2011; Roller
et al., 2012) and is related to the root mean squared
distance metric discussed by Leidner (2008).

It is important to understand performance on
plain text (without gold toponyms), which is the
typical use case for applications using toponym
resolvers. Both the accuracy metric and the error-
distance metric encounter problems when the set
of predicted toponyms is not the same as the set
of gold toponyms (regardless of locations), e.g.
when a named entity recognizer is used to iden-
tify toponyms. In this case, we can use precision
and recall, where a true positive is defined as the
prediction of a correctly identified toponym’s lo-
cation to be as close as possible to its gold la-
bel, given the gazetteer used. False positives oc-
cur when the NER incorrectly predicts a toponym,
and false negatives occur when it fails to predict a
toponym identified by the annotator. When a cor-
rectly identified toponym receives an incorrect lo-
cation prediction, this counts as both a false nega-
tive and a false positive. We primarily present re-
sults from experiments with gold toponyms but in-
clude an accuracy measure for comparability with
results from experiments run on plain text with
a named entity recognizer. This accuracy met-
ric simply computes the fraction of toponyms that
were resolved as close as possible to their gold la-
bel given the gazetteer.

5 Results

Table 2 gives the performance of the resolvers
on the TR-CONLL and CWAR test sets when
gold toponyms are used. Values for RANDOM

and SPIDER are averaged over three trials. The
ORACLE row gives results when the candidate
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Resolver TRC-TEST CWAR-TEST

Mean Med. A Mean Med. A
ORACLE 105 19.8 100.0 0.0 0.0 100.0
RANDOM 3915 1412 33.5 2389 1027 11.8
POPULATION 216 23.1 81.0 1749 0.0 59.7
SPIDER10 2180 30.9 55.7 266 0.0 57.5
TRIPDL 1494 29.3 62.0 847 0.0 51.5
WISTR 279 22.6 82.3 855 0.0 69.1
WISTR+SPIDER10 430 23.1 81.8 201 0.0 85.9
TRAWL 235 22.6 81.4 945 0.0 67.8
TRAWL+SPIDER10 297 23.1 80.7 148 0.0 78.2

Table 2: Accuracy and error distance metrics on test sets with gold toponyms.

Figure 2: Visualization of how SPIDER clumps
most predicted locations in the same region
(above), on the CWAR-DEV corpus. TRAWL’s
output (below) is much more dispersed.

from GEONAMES closest to the annotated loca-
tion is always selected. The ORACLE mean and
median error values on TR-CONLL are nonzero
due to errors in the annotations and inconsisten-
cies stemming from the fact that coordinates from
GEONAMES were not used in the annotation of
TR-CONLL.

On both datasets, SPIDER achieves errors and
accuracies much better than RANDOM, validating
the intuition that authors tend to discuss places
near each other more often than not, while some
locations are more prominent in a given corpus
despite violating the minimality heuristic. The
text-driven resolvers vastly outperform SPIDER,
showing the effectiveness of textual cues for to-
ponym resolution.

The local context resolver WISTR is very
effective: it has the highest accuracy for
TR-CONLL, though two other text-based re-
solvers also beat the challenging POPULATION

baseline’s accuracy. TRAWL achieves a better
mean distance metric for TR-CONLL, and when
used to seed SPIDER, it obtains the lowest mean
error on CWAR by a large margin. SPIDER
seeded with WISTR achieves the highest accu-
racy on CWAR. The overall geographic scope
of CWAR, a collection of documents about the
American Civil War, is much smaller than that of
TR-CONLL (articles about international events).
This makes toponym resolution easier overall (es-
pecially error distances) for minimality resolvers
like SPIDER, which primarily seek tightly clus-
tered sets of locations. This behavior is quite
clear in visualizations of predicted locations such
as Figure 2.

On the CWAR dataset, POPULATION performs
relatively poorly, demonstrating the fragility of
population-based decisions for working with his-
torical corpora. (Also, we note that POPULATION

is not a resolver per se since it only ever predicts
one location for a given toponym, regardless of
context.)

Table 3 gives results on TRC-TEST when NER-
identified toponyms are used. In this case, the
ORACLE results are less than 100% due to the lim-
itations of the NER, and represent the best possible
results given the NER we used.

When resolvers are run on NER-identified to-
ponyms, the text-driven resolvers that use lo-
cal context again easily beat SPIDER. WISTR
achieves the best performance. The named en-
tity recognizer is likely better at detecting com-
mon toponyms than rare toponyms due to the na-
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Resolver P R F
ORACLE 82.6 59.9 69.4
RANDOM 25.1 18.2 21.1
POPULATION 71.6 51.9 60.2
SPIDER10 40.5 29.4 34.1
TRIPDL 51.8 37.5 43.5
WISTR 73.9 53.6 62.1
WISTR+SPIDER10 73.2 53.1 61.5
TRAWL 72.5 52.5 60.9
TRAWL+SPIDER10 72.0 52.2 60.5

Table 3: Precision, recall, and F-score of resolvers
on TRC-TEST with NER-identified toponyms.

ture of its training data, and many more local con-
text training instances were extracted from com-
mon toponyms than from rare ones in Wikipedia.
Thus, our model that uses only these local context
models does best when running on NER-identified
toponyms. We also measured the mean and me-
dian error distance for toponyms correctly identi-
fied by the named entity recognizer, and found that
they tended to be 50-200km worse than for gold
toponyms. This also makes sense given the named
entity recognizer’s tendency to detect common to-
ponyms: common toponyms tend to be more am-
biguous than others.

Results on TR-CONLL indicate much higher
performance than the resolvers presented by Lei-
dner (2008), whose F-scores do not exceed 36.5%
with either gold or NER toponyms.7 TRC-TEST

is a subset of the documents Leidner uses (he did
not split development and test data), but the results
still come from overlapping data. The most direct
comparison is SPIDER’s F-score of 39.7% com-
pared to his LSW03 algorithm’s 35.6% (both are
minimality resolvers). However, our evaluation is
more penalized since SPIDER loses precision for
NER’s false positives (Jack London as a location)
while Leidner only evaluated on actual locations.
It thus seems fair to conclude that the text-driven
classifiers, with F-scores in the mid-50’s, are much
more accurate on the corpus than previous work.

6 Error Analysis

Table 4 shows the ten toponyms that caused the
greatest total error distances from TRC-DEV with
gold toponyms when resolved by TRAWL, the re-
solver that achieves the lowest mean error on that

7Leidner (2008) reports precision, recall, and F-score val-
ues even with gold toponyms, since his resolvers can abstain.

dataset among all our resolvers.

Washington, the toponym contributing the most
total error, is a typical example of a toponym that
is difficult to resolve, as there are two very promi-
nent locations within the United States with the
name. Choosing one when the other is correct re-
sults in an error of over 4000 kilometers. This oc-
curs, for example, when TRAWL chooses Wash-
ington state in the phrase Israel’s ambassador to
Washington, where more knowledge about the
status of Washington, D.C. as the political cen-
ter of the United States (e.g. in the form of more
or better contextual training instances) could over-
turn the administrative level component’s prefer-
ence for states.

An instance of California in a baseball-related
news article is incorrectly predicted to be the town
California, Pennsylvania. The context is: ...New
York starter Jimmy Key left the game in the first
inning after Seattle shortstop Alex Rodriguez lined
a shot off his left elbow. The Yankees have lost
12 of their last 19 games and their lead in the AL
East over Baltimore fell to five games. At Califor-
nia, Tim Wakefield pitched a six-hitter for his third
complete game of the season and Mo Vaughn and
Troy O’Leary hit solo home runs in the second in-
ning as the surging Boston Red Sox won their third
straight 4-1 over the California Angels. Boston
has won seven of eight and is 20-6... The pres-
ence of many east coast cues—both toponym and
otherwise—make it unsurprising that the resolver
would predict California, Pennsylvania despite the
administrative level component’s heavier weight-
ing of the state.

The average errors for the toponyms Australia
and Russia are fairly small and stem from differ-
ences in how countries are represented across dif-
ferent gazetteers, not true incorrect predictions.

Table 5 shows the toponyms with the great-
est errors from CWAR-DEV with gold toponyms
when resolved by WISTR+SPIDER. Rome is
sometimes predicted as cities in Italy and other
parts of Europe rather than Rome, Georgia, though
it correctly selects the city in Georgia more often
than not due to SPIDER’s preference for tightly
clumped sets of locations. Mexico, however, fre-
quently gets incorrectly selected as a city in Mary-
land near many other locations in the corpus when
TRAWL’s administrative level component is not
present. Many other of the toponyms contributing
to the total error such as Jackson and Lexington are
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Toponym N Mean Total
Washington 25 3229 80717
Gaza 12 5936 71234
California 8 5475 43797
Montana 3 11635 34905
WA 3 11221 33662
NZ 2 14068 28136
Australia 88 280 24600
Russia 72 260 18712
OR 2 9242 18484
Sydney 12 1422 17067

Table 4: Toponyms with the greatest total error
distances in kilometers from TRC-DEV with gold
toponyms resolved by TRAWL. N is the number
of instances, and the mean error for each toponym
type is also given.

Toponym N Mean Total
Mexico 1398 2963 4142102
Jackson 2485 1210 3007541
Monterey 353 2392 844221
Haymarket 41 15663 642170
McMinnville 145 3307 479446
Alexandria 1434 314 450863
Eastport 184 2109 388000
Lexington 796 442 351684
Winton 21 15881 333499
Clinton 170 1401 238241

Table 5: Top errors from CWAR-DEV resolved by
TRAWL+SPIDER.

simply the result of many American towns sharing
the same names and a lack of clear disambiguating
context.

7 Conclusion

Our text-driven resolvers prove highly effective
for both modern day newswire texts and 19th cen-
tury texts pertaining to the Civil War. They eas-
ily outperform standard minimality toponym re-
solvers, but can also be combined with them. This
strategy works particularly well when predicting
toponyms on a corpus with relatively restricted
geographic extents. Performance remains good
when resolving toponyms identified automatically,
indicating that end-to-end systems based on our
models may improve the experience of digital hu-
manities scholars interested in finding and visual-
izing toponyms in large corpora.
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Abstract 

As a paratactic language, sentence-level 
argument extraction in Chinese suffers 
much from the frequent occurrence of 
ellipsis with regard to inter-sentence 
arguments. To resolve such problem, this 
paper proposes a novel global argument 
inference model to explore specific 
relationships, such as Coreference, 
Sequence and Parallel, among relevant 
event mentions to recover those inter-
sentence arguments in the sentence, 
discourse and document layers which 
represent the cohesion of an event or a 
topic. Evaluation on the ACE 2005 
Chinese corpus justifies the effectiveness 
of our global argument inference model 
over a state-of-the-art baseline. 

1 Introduction 

The task of event extraction is to recognize event 
mentions of a predefined event type and their 
arguments (participants and attributes). 
Generally, it can be divided into two subtasks: 
trigger extraction, which aims to identify 
trigger/event mentions and determine their event 
type, and argument extraction, which aims to 
extract various arguments of a specific event and 
assign the roles to them. In this paper, we focus 
on argument extraction in Chinese event 
extraction. While most of previous studies in 
Chinese event extraction deal with Chinese 
trigger extraction (e.g., Chen and Ji, 2009a; Qin 
et al., 2010; Li et al., 2012a, 2012b), there are 
only a few on Chinese argument extraction (e.g., 
Tan et al., 2008; Chen and Ji, 2009b). Following 
previous studies, we divide argument extraction 
into two components, argument identification 

and role determination, where the former 
recognizes the arguments in a specific event 
mention and the latter classifies these arguments 
by roles.  

With regard to methodology, most of previous 
studies on argument extraction recast it as a 
Semantic Role Labeling (SRL) task and focus on 
intra-sentence information to identify the 
arguments and their roles. However, argument 
extraction is much different from SRL in the 
sense that, while the relationship between a 
predicate and its arguments in SRL can be 
mainly decided from the syntactic structure, the 
relationship between an event trigger and its 
arguments are more semantics-based, especially 
in Chinese, as a paratactic (e.g., discourse-driven 
and pro-drop) language with the wide spread of 
ellipsis and the open flexible sentence structure. 
Therefore, some arguments of a specific event 
mention are far away from the trigger and how to 
recover those inter-sentence arguments becomes 
a challenging issue in Chinese argument 
extraction. Consider the following discourse 
(from ACE 2005 Chinese corpus) as a sample: 

D1: 巴勒斯坦自治政府否认和加沙走廊 20 号

清晨造成两名以色列人丧生(E1)的炸弹攻击

(E2)事件有关…表示将对这起攻击(E3)事件展

开调查。 (The Palestinian National Authority 
denied any involvement in the bomb attack (E2) 
occurred in the Gaza Strip on the morning of the 
20th, which killed (E1) two Israelites. … They 
claimed that they will be investigating this 
attack (E3).) - From CBS20001120.1000.0823 

In above discourse, there are three event 
mentions, one kill (E1) and two Attack (E2, E3). 
While it is relatively easy to identify 20 号清晨 
(morning of 20th), 加沙走廊 (Gaza Strip) and 炸
弹  (bomb) as the Time, Place and Instrument 
roles in E2 by a sentence-based argument 
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extractor, it is really challenging to recognize 
these entities as the arguments of its corefered 
mention E3 since to reduce redundancy in a 
Chinese discourse, the later Chinese sentences 
omit many of these entities already mentioned in 
previous sentences. Similarly, it is hard to 
recognize 两名以色列人 (two Israelites) as the 
Target role for event mention E2 and identify 炸

弹  (bomb) as the Instrument role for event 
mention E1. An alternative way is to employ 
various relationships among relevant event 
mentions in a discourse to infer those inter-
sentence arguments. 

The contributions of this paper are: 
1) We propose a novel global argument 

inference model, in which various kinds of 
event relations are involved to infer more 
arguments on their semantic relations. 

2) Different from Liao and Grishman (2010) 
and Hong et al. (2011), which only consider 
document-level consistency, we propose a 
more fine-gained consistency model to 
enforce the consistency in the sentence, 
discourse and document layers. 

3) We incorporate argument semantics into our 
global argument inference model to unify the 
semantics of the event and its arguments. 

The rest of this paper is organized as follows. 
Section 2 overviews the related work. Section 3 
describes a state-of-the-art Chinese argument 
extraction system as the baseline. Section 4 
introduces our global model in inferring those 
inter-sentence arguments. Section 5 reports 
experimental results and gives deep analysis. 
Finally, we conclude our work in Section 6. 

2 Related Work 

Almost all the existing studies on argument 
extraction concern English. While some apply 
pattern-based approaches (e.g., Riloff, 1996; 
Califf and Mooney, 2003; Patwardhan and Riloff, 
2007; Chambers and Jurafsky, 2011), the others 
use machine learning-based approaches (e.g., 
Grishman et al., 2005; Ahn, 2006; Patwardhan 
and Riloff, 2009; Lu and Roth, 2012), most of 
which rely on various kinds of features in the 
context of a sentence. In comparison, there are 
only a few studies exploring inter-sentence 
information or argument semantics (e.g., Liao 
and Grishman, 2010; Hong et al., 2011; Huang 
and Riloff, 2011, 2012). 

Compared with the tremendous work on 
English event extraction, there are only a few 
studies (e.g., Tan et al., 2008; Chen and Ji, 2009b; 

Fu et al., 2010; Qin et al., 2010; Li et al., 2012) 
on Chinese event extraction with focus on either 
feature engineering or trigger expansion, under 
the same framework as English trigger 
identification. In additional, there are only very 
few of them focusing on Chinese argument 
extraction and almost all aim to feature 
engineering and are based on sentence-level 
information and recast this task as an SRL-style 
task. Tan et al. (2008) introduce multiple levels 
of patterns to improve the coverage in Chinese 
argument classification. Chen and Ji (2009b) 
apply various kinds of lexical, syntactic and 
semantic features to address the special issues in 
Chinese argument extraction. Fu et al. (2010) use 
a feature weighting scheme to re-weight various 
features for Chinese argument extraction. Li et al. 
(2012b) introduce more refined features to the 
system of Chen and Ji (2009b) as their baseline. 

Specially, several studies have successfully 
incorporated cross-document or document-level 
information and argument semantics into event 
extraction, most of them focused on English.  

Yangarber et al. (2007) apply a cross-
document inference mechanism to refine local 
extraction results for the disease name, location 
and start/end time. Mann (2007) proposes some 
constraints on relationship rescoring to impose 
the discourse consistency on the CEO’s personal 
information. Chambers and Jurafsky (2008) 
propose a narrative event chain which are 
partially ordered sets of event mentions centered 
around a common protagonist and this chain can 
represent the relationship among the relevant 
event mentions in a document. 

Ji and Grishman (2008) employ a rule-based 
approach to propagate consistent triggers and 
arguments across topic-related documents. Liao 
and Grishman (2010) mainly focus on employing 
the cross-event consistency information to 
improve sentence-level trigger extraction and 
they also propose an inference method to infer 
the arguments following role consistency in a 
document. Hong et al. (2011) employ the 
background information to divide an entity type 
into more cohesive subtypes to create the bridge 
between two entities and then infer arguments 
and their roles using cross-entity inference on the 
subtypes of entities. Huang and Rillof (2012) 
propose a sequentially structured sentence 
classifier which uses lexical associations and 
discourse relations across sentences to identify 
event-related document contexts and then apply 
it to recognize arguments and their roles on the 
relation among triggers and arguments. 
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3 Baseline 

In the task of event extraction as defined in ACE 
evaluations, an event is defined as a specific 
occurrence involving participants (e.g., Person, 
Attacker, Agent, Defendant) and attributes (e.g., 
Place, Time). Commonly, an event mention is 
triggered via a word (trigger) in a phrase or 
sentence which clearly expresses the occurrence 
of a specific event. The arguments are the entity 
mentions involved in an event mention with a 
specific role, the relation of an argument to an 
event where it participates. Hence, extracting an 
event consists of four basic steps, identifying an 
event trigger, determining its event type, 
identifying involved arguments (participants and 
attributes) and determining their roles. 

As the baseline, we choose a state-of-the-art 
Chinese event extraction system, as described in 
Li et al. (2012b), which consists of four typical 
components: trigger identification, event type 
determination, argument identification and role 
determination. In their system, the former two 
components, trigger identification and event type 
determination, are processed in a joint model, 
where the latter two components are run in a 
pipeline way. Besides, the Maximum-Entropy 
(ME) model is employed to train individual 
component classifiers for above four components. 

This paper focuses on argument identification 
and role determination. In order to provide a 
stronger baseline, we introduce more refined 
features in such two components, besides those 
adopted in Li et al. (2012b). Following is a list of 
features adopted in our baseline. 
1) Basic features: trigger, POS (Part Of Speech) 

of the trigger, event type, head word of the 
entity, entity type, entity subtype; 

2) Neighbouring features: left neighbouring 
word of the entity + its POS, right neighbour 
word of the entity + its POS, left neighbour 
word of the trigger + its POS, right neighbour 
word of the trigger + its POS;  

3) Dependency features: dependency path from 
the entity to the trigger, depth of the 
dependency path; 

4) Syntactic features: path from the trigger to the 
entity, difference of the depths of the trigger 
and entity, place of the entity (before trigger 
or after trigger), depth of the path from the  
trigger to the entity, siblings of the entity; 

5) Semantic features: semantic role of the entity 
tagged by an SRL tool (e.g., ARG0, ARG1) 
(Li et al., 2010), sememe of trigger in Hownet 
(Dong and Dong, 2006). 

4 Inferring Inter-Sentence Arguments 
on Relevant Event Mentions 

In this paper, a global argument inference model 
is proposed to infer those inter-sentence 
arguments and their roles, incorporating with 
semantic relations between relevant event 
mention pairs and argument semantics. 

4.1 Motivation 

It’s well-known that Chinese is a paratactic 
language, with an open flexible sentence 
structure and often omits the subject or the object, 
while English is a hypotactic language with a 
strict sentence structure and emphasizes on 
cohesion between clauses. Hence, there are two 
issues in Chinese argument extraction, associated 
with its nature of the paratactic language. 

The first is that many arguments of an event 
mention are out of the event mention scope since 
ellipsis is a common phenomenon in Chinese. 
We call them inter-sentence arguments in this 
paper. Table 1 gives the statistics of intra-
sentence and inter-sentence arguments in the 
ACE 2005 Chinese corpus and it shows that 
20.8% of the arguments are inter-sentence ones 
while this figure is less than 1% of the ACE 2005 
English corpus. The main reason of that 
difference is that some Chinese arguments are 
omitted in the same sentence of the trigger since 
Chinese is a paratactic language with the wide 
spread of ellipsis. Besides, a Chinese sentence 
does not always end with a full stop. In particular, 
a comma is used frequently as the stop sign of a 
sentence in Chinese. We detect sentence 
boundaries, relying on both full stop and comma 
signs, since in a Chinese document, comma can 
be also used to sign the end of a sentence. In 
particular, we detect sentence boundaries on full 
stop, exclamatory mark and question mark firstly. 
Then, we identify the sentence boundaries on 
comma, using a binary classifier with a set of 
lexical and constituent-based syntactic features, 
similar to Xue and Yang (2010). 
 

Category Number 
#Arguments 8032 

#Inter-sentence 1673(20.8%) 
#Intra-sentence 6359(79.2%) 

Table 1. Statistics: Chinese argument extraction 
with regard to intra- sentence and inter-sentence 

arguments. 
 

The second issue is that the Chinese word 
order in a sentence is rather agile for the open 
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flexible sentence structure. Hence, different word 
orders can often express the same semantics. For 
example, a Die event mention “Three person 
died in this accident.” can be expressed in many 
different orders in Chinese, such as “在事故中三

人死亡。”, “事故中死亡三人。”, “三人在事故

中死亡。”, etc. 
In a word, above two issues indicate that 

syntactic feature-based approaches are limited in 
identifying Chinese arguments and it will lead to 
low recall in argument identification. Therefore, 
employing those high level information to 
capture the semantic relation, not only the 
syntactic structure, between the trigger and its 
long distance arguments is the key to improve 
the performance of the Chinese argument 
identification. Unfortunately, it is really hard to 
find their direct relations since they always 
appear in different clauses or sentences. An 
alternative way is to link the different event 
mentions with their predicates (triggers) and use 
the trigger as a bridge to connect the arguments 
to the trigger in another event mention indirectly. 
Hence, the semantic relations among event 
mentions are helpful to be a bridge to identify 
those inter-sentence arguments. 

4.2 Relations of Event Mention Pairs 

In a discourse, most event mentions are 
surrounding a specific topic. It’s obvious that 
those mentions have the intrinsic relationships to 
reveal the essential structure of a discourse. 
Those relevant semantics-based relations are 
helpful to infer the arguments for a specific 
trigger mention when the syntactic relations in 
Chinese argument extraction are not as effective 
as that in English. In this paper, we divide the 
relations among relevant event mentions into 
three categories: Coreference, Sequence and 
Parallel. 

An event may have more than one mention in 
a document and coreference event mentions refer 
to the same event, as same as the definition in the 
ACE evaluations. Those coreference event 
mentions always have the same arguments and 
roles. Therefore, employing this relation can 
infer the arguments of an event mention from 
their Coreference ones. For example, we can 
recover the Time, Place and Instrument for E3 
via its Coreference mention E2 in discourse D1, 
mentioned in Section 1. 

Li et al. (2012a) find out that sometimes two 
trigger mentions are within a Chinese word 
whose morphological structure is Coordination. 

Take the following sentence as a sample: 

D2: 一名 17 岁的少年劫持一辆巴士，刺(E4)
死 (E5) 一名妇女 。 (A 12-year-old younger 
hijacked a bus and then stabbed (E4) a woman 
to death (E5).) - From ZBN20001218.0400.0005 

In D2, 刺死  (stab a person to death) is a 
trigger with the Coordination structure and can 
be divided into two single-morpheme words 刺 
(stab) and 死 (die) while the former triggers an 
Attack event and the latter refers to a Die one. 
It’s interesting that they share all arguments in 
this sentence. The relation between those event 
mentions whose triggers merge a Chinese word 
or share the subject and the object are Parallel. 
For the errors in the syntactic parsing, the second 
single-morpheme trigger is often assigned a 
wrong tag (e.g., NN, JJ) and this leads to the 
errors in the argument extraction. Therefore, 
inferring the arguments of the second single-
morpheme trigger from that of the first one based 
on Parallel relation is also an available way to 
recover arguments. 

Like that the topic is an axis in a discourse, the 
relations among those relevant event mentions 
with the different types is the bone to link them 
into a narration. There are a few studies on using 
the event relations in NLP (e.g., summarization 
(Li et al., 2006), learning narrative event chains 
(Chambers and Jurafsky, 2007)) to ensure its 
effectiveness. In this paper, we define two types 
of Sequence relations of relevant event mentions: 
Cause and Temporal for their high probabilities 
of sharing arguments.  

The Cause relation between the event 
mentions are similar to that in the Penn 
Discourse TreeBank 2.0 (Prasad et al., 2008). 
For example, an Attack event often is the cause 
of an Die or Injure event. Our Temporal relation 
is limited to those mentions with the same or 
relevant event types (e.g., Transport and Arrest) 
for the high probabilities of sharing arguments. 
Take the following discourse as a sample: 

D3: 这批战俘离开(E6)阿尔及利亚西部城市廷

杜夫前往(E7)摩洛哥西南部城市阿加迪尔。
(These prisoners left (E6) Tindouf, a western 
city of Algeria, and went (E7) to Agadir, a 
southwestern city of Morocco.) - From 
Xin20001215.2000.0158 

In D3, there are two Transport mentions and it 
is natural to infer 阿加迪尔  (Agadir) as the 
Destination role of E6 and 廷杜夫 (Tindouf) as 
the Origin role of E7 via their Sequence relation. 
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4.3 Identifying Relations of Event Mention 
Pairs 

Currently, there are only few studies focusing on 
such area (e.g., Ahn, 2006; Chamber and 
Jurafsky, 2007; Huang and Rillof, 2012; Do et al., 
2012) and their approaches cannot be introduced 
to our system directly for the language nature 
and the different goal. We try to achieve a higher 
accuracy in this stage so that our argument 
inference can recover more true arguments.  

Inspired by Li and Zhou (2012), we also use 
the morphological structure to identify the 
Parallel relation. Two parallel event mentions 
with the adjacent trigger mentions w1 and w2 must 
satisfy follows two conditions: 
1) Morph(w1,w2) is Coordination 
2) jiTwHMTwHM ji ≠∈∈ )(,)( 21   

where Morph(w1,w2) is a function to recognize 
the morphological structure of joint word w1w2, 
HM(wi) is to identify the head morpheme 1  in 
word wi and Ti is the set of the head morphemes 
with ith event type. These constraints are 
enlightened by the fact that only Chinese words 
with Coordination structure can be divided into 
two new words and each word can trigger an 
event with the different event type 2 . The 
implementation of Morph(w1,w2) and HM(w) are 
described in Li and Zhou (2012). 

The Coreference relation is divided into two 
types: Noun-based Coreference (NC) and Event-
based Coreference (EC) while the former always 
uses a verbal noun to refer to an event mentioned 
in current or previous sentence and the latter is 
that an event is mentioned twice or more actually. 
For example, the relation between E2 and E3 in 
D1 is NC while the trigger of E3 is only a verbal 
noun without any direct arguments and it refers 
to E2. 

We adopt a simple rule to recognize those NC 
relations: for each event mention whose trigger is 
a noun and doesn’t act as the subject/object, we 
regard their relation as NC if there is another 
event mention with the same trigger in current or 
previous sentence. 

Inspired by Ahn (2006), we use the following 
conditions to infer the EC relations between two 
event mentions with the same event type: 
1) Their trigger mentions refer to the same 
trigger; 
2) They have at least one same or similar 
                                                           
1 It acts as the governing semantic element in a Chinese 
word. 
2 If they have the same event type, they will be regarded as 
a single event mention. 

subject/object; 
3) The score of cosine similarity of two event 

mentions is more than a threshold3. 
Finally, for the Sequence relation, instead of 

identifying and classifying the relations clearly 
and correctly, our goal is to identify whether 
there are relevant event mentions in a long 
sentence or two adjacent short sentences who 
share arguments. Algorithm 1 illustrates a 
knowledge-based approach to identify the 
Sequence event relation in a discourse for any 
two trigger mentions tri1 and tri2 as follows: 

 
Algorithm 1 
1: input: tri1 and tri2 and their type et1 and et2 
2:  output: whether their relation is Sequence 
3:  begin 
4:      hm1 ←HM(tri1);  hm2 ←HM(tri2) 
5:  MP ←FindAllMP(hm1,et1,hm2,et2) 
6:     for any mpi in MP 
7:         if ShareArg(mpi) is true then 
8:             return true   // Sequence 
9:        end if 
10:    end for 
11:    return false 
12:  end 
 
In algorithm 1, HM(tri) is to identify the head 

morpheme in trigger tri and FindAllMP(hm1, et1, 
hm2, et2) is to find all event mention pairs in the 
training set which satisfy the condition that their 
head morphemes are hm1 and hm2, and their 
event types are et1 and et2 respectively. Besides, 
ShareArg(mpi)is used to identify whether the 
event mention pair mpi sharing at least one 
argument. In this algorithm, since the relations 
on the event types are too coarse, we introduce a 
more fine-gained Sequence relation both on the 
event types and the head morphemes of the 
triggers which can divide an event type into 
many subtypes on the head morpheme. Li and 
Zhou (2012) have ensured the effectiveness of 
using head morpheme to infer the triggers and 
our experiment results also show it is helpful for 
identifying relevant event mentions which aims 
to the higher accuracy. 

4.4 Global Argument Inference Model 

Our global argument inference model is 
composed of two steps: 1) training two sentence-
based classifiers: argument identifier (AI) and 
role determiner (RD) that estimate the score of a 
candidate acts as an argument and belongs to a 
                                                           
3 The threshold is tuned to 0.78 on the training set. 
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specific role following Section 3. 2) Using the 
scores of two classifiers and the event relations 
in a sentence, a discourse or a document, we 
perform global optimization to infer those 
missing or long distance arguments and their 
roles.  

To incorporate those event relations with our 
global argument inference model, we regard a 
document as a tree and divide it into three layers: 
document, discourse and sentence. A document 
is composed of a set of the discourses while a 
discourse contains three sentences. Since almost 
all arguments (~98%) of a specific event mention 
in the ACE 2005 Chinese corpus appear in the 
sentence containing the specific event mention 
and its two adjacent sentences (previous and next 
sentences), we only consider these three 
sentences as a discourse to simplify the process 
of identifying the scope of a discourse.  

We incorporate different event relations into 
our model on the different layer and the goal of 
our global argument inference model is to 
achieve the maximized scores over a document 
on its three layers and two classifiers: AI and RD. 
The score of document D is defined as 
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where Ii is the ith discourses in document D; 
S<i,j> is the jth sentences in discourse Ii; T<i,j,k> is 
the kth event mentions in sentence S<i,j>; A<i,j,k,l> 
is the lth candidate arguments in event mention 
T<i,j,k>; Z is used to denote <i,j,k,l>; fI(EZ) is the 
score of AI identifying entity mention EZ as an 
argument, where EZ is the lth entity of the kth 
event mention of the jth sentence of the ith 
discourse in document D. fD(EZ, Rm) is the score 
of RD assigning role Rm to argument EZ. Finally, 
XZ and Y<Z,m> are the indicators denoting whether 
entity EZ is an argument and whether the role Rm 
is assigned to entity EZ respectively. Besides, Eq. 
4 and Eq. 5 are the inferences to enforce that:  
1) if an entity belongs to a role, it must be an 

argument; 
2) if a entity is an argument of a specific event 

mention, it must have a role. 

Parallel relation: Sentence-based 
optimization is used to incorporate the Parallel 
relation of two event mentions into our model 
and they share all arguments in a sentence. Since 
different event type may have different role set, 
each role in a specific event should be mapped to 
the corresponding role in its Parallel event when 
they have the different event type. For example, 
the argument “一名 17 岁的少年” (A 12-year-
old younger) in D2 acts as the Attacker role in 
the Attack event and the Agent role in the Die 
event. We learn those role-pairs from the training 
set and Table 2 shows part of the role relations 
learning from the training set. 

 
Event type pair Role pair 

Attack-Die Attacker-Agent; Target-
Victim;… 

Injure-Die Agent-Agent; Victim-
Victim;… 

Transport-
Demonstrate 

Artifact-Entity; 
Destination-Place;… 

Table 2. Part of role-pairs for those event 
mention pairs with Parallel relation. 

 
To infer the arguments and their roles on the 

Parallel relation, we enforce the consistency on 
the role-pair as follows: 
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where 
'hh etetRP ×  is the set of role-pairs between 

two Parallel event mention eth and eth’ and 
><>< = ',',,,,, lkjilkji EE  means they refer to the 

same entity mention. With the transitivity 
between the indicators X and Y, Eq. 6 also 
enforces the consistency on X<i,j,k,l> and X<i,j,k’,l’>. 

Coreference relation: Since the NC and EC 
relcation between two event mentions are 
different in the event expression, we introduce 
the discourse-based optimization for the former 
and document-based optimization for the latter. 

For two NC mentions, we ensure that the 
succeeding mentions can inherit the arguments 
form the previous one. To enforce this 
consistency, we just replace all fI(EZ) and fD(EZ, 
Rm) of the succeeding event mention with that of 
the previous one, since the previous one have the 
more context information. 

As for two EC event mentions, algorithm 2 
shows how to create the constraints for our 
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global argument inference model to infer 
arguments and roles. 

 
Algorithm 2 
1: input: two event mentions T, T’ and their 

arguments set A and A’ 
2:  output: the constraints set C 
3:  begin 
4:       for each argument a in A do 
5:            a’←FindSim(a) 
6:    if a’≠∅ then 
7:                 ),( 'aa YYyConsistencCC ∪←  
8:             end if 
9:        end for 
10: end 

 
In algorithm 2, the function FindSim(a) is 

used to find a similar candidate argument a’ in 
A’ for a. If it’s found, we enforce the consistency 
of argument a and a’ in the role by using 
Consistency(Ya,Ya’) where Ya  and Ya’ are the 
indicators in Eq. 1. To evaluate the similarity 
between two candidates a and a’, we regard them 
as similar ones when they are the same word or 
in the same entity coreference chain. We use a 
coreference resolution tool to construct the entity 
coreference chains, as described in Kong et al 
(2010). 

Sequence relation: For any two event 
mentions in a discourse, we use the event type 
pair with their head morphemes (e.g., Attack:炸
(burst) - Die:死(die), Trial-Hearing:审(trial) - 
Sentence:判(sentence)) to search the training set 
and then obtain the probabilities of sharing the 
arguments as mentioned in algorithm 1. We 
denoted Pro<et,et’,HM(tri),HM(tri’),Rm,Rm’> as the 
probability of the trigger mentions tri and tri’ 
(their event types are et and et’ respectively.) 
sharing an argument whose roles are Rm and Rm’ 
respectively. We propose following discourse-
based constraint to enforce the consistency 
between the roles of two arguments, which are 
related semantically, temporally, causally or 
conditionally, based on the probability of sharing 
an argument and the absolute value of the 
difference between the scores of RD: 
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where δ and λ are the thresholds learned from the 

development set; tri and tri’ are triggers of kth 
and k’th event mention whose event types are et 
and et’ in S<i,j> and S<i,j’> respectively. 

4.5 Incorporating Argument Semantics into 
Global Argument Inference Model 

We also introduce the argument semantics, 
which represent the semantic relations of 
argument-argument pair, argument-role pair and 
argument-trigger pair, to reflect the cohesion 
inside an event. Hong et al. (2011) found out that 
there is a strong argument and role consistency in 
the ACE 2005 English corpus. Those 
consistencies also occur in Chinese and they 
reveal the relation between the trigger and its 
arguments, and also explore the relation between 
the argument and its role. Besides, those entities 
act as non-argument also have the consistency 
with high probabilities.  

To let the global argument inference model 
combine those knowledges of argument 
semantics, we compute the prior probabilities 
P(X<i,j>=1) and P(Y<i,j,m>=1) that entity enj 
occurrs in a specific event type eti as an 
argument and its role is Rm respectively. To 
overcome the sparsity of the entities, we cluster 
those entities into more cohesive subtype 
following Hong et al. (2011). Hence, following 
the independence assumptions described by 
Berant et al. (2011), we modify the fI(EZ) and 
fD(EZ,Rm)in Eq. 1 as follows: 
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where )|1( ZZ FXP =  and )|1( ,, ><>< = mZmZ FYP  
are the probabilities from the AI and AD 
respectively while FZ and F<Z,m> are the feature 
vectors. Besides, )1( , =>< mZXP  and )1( =ZXP  
are the prior probabilities learning from the 
training set. 

5 Experimentation 

In this section, we first describe the experimental 
settings and the baseline, and then evaluate our 
global argument inference model incorporating 
with relevant event mentions and argument 
semantics to infer arguments and their roles. 

5.1 Experimental Settings and Baseline 

For fair comparison, we adopt the same 
experimental settings as the state-of-the-art event 
extraction system (Li et al. 2012b) and all the 
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evaluations are experimented on the ACE 2005 
Chinese corpus. We randomly select 567 
documents as the training set and the remaining 
66 documents as the test set. Besides, we reserve 
33 documents in the training set as the 
development set and use the ground truth entities, 
times and values for our training and testing. As 
for evaluation, we also follow the standards as 
defined in Li et al. (2012b). Finally, all the 
sentences in the corpus are divided into words 
using a Chinese word segmentation tool 
(ICTCLAS) 1  with all entities annotated in the 
corpus kept. We use Berkeley Parser 2  and 
Stanford Parser 3  to create the constituent and 
dependency parse trees.  Besides, the ME tool 
(Maxent) 4  is employed to train individual 
component classifiers and lp_solver5 is used to 
construct our global argument inference model. 

Besides, all the experiments on argument 
extraction are done on the output of the trigger 
extraction system as described in Li et al. 
(2012b). Table 3 shows the performance of the 
baseline trigger extraction system and Line 1 in 
Table 4 illustrates the results of argument 
identification and role determination based on 
this system. 

 
Trigger 

identification 
Event type 

determination 
P(%) R(%) F1 P(%) R(%) F1 
74.4 71.9 73.1 71.4 68.9 70.2
Table 3. Performance of the baseline on trigger 

identification and event type determination. 

5.2 Inferring Arguments on Relevant Event 
Mentions and Argument Semantics 

We develop a baseline system as mentioned in 
Section 3 and Line 2 in Table 4 shows that it 
slightly improves the F1-measure by 0.9% over 
Li et al. (2012b) due to the incorporation of more 
refined features. This result indicates the 
limitation of syntactic-based feature engineering. 

Before evaluating our global argument 
inference model, we should identify the event 
relations between two mentions in a sentence, a 
discourse or a document. The experimental 
results show that the accuracies of identifying 
NC, EC, Parallel and Sequence relation are 
80.0%, 72.4%, 88.5% and 87.7% respectively. 
Those results ensure that our simple methods are 
                                                           
1http://ictclas.org/  
2 http://code.google.com/p/berkeleyparser/ 
3 http://nlp.stanford.edu/software/lex-parser.shtml 
4 http://mallet.cs.umass.edu/ 
5 http://lpsolve.sourceforge.net/5.5/ 

effective. Our statistics on the development set 
shows almost 65% of the event mentions are 
involved in those Correfrence, Parallel and 
Sequence relations, which occupy 63%, 50%, 9% 
respectively6. Most of the exceptions are isolated 
event mentions. 

 

System 
Argument 

identification 
Argument role 
determination

P(%) R(%) F1 P(%) R(%) F1
Li et al.(2012b) 59.1 57.2 58.1 55.8 52.1 53.9
Baseline 60.5 57.6 59.0 55.7 53.0 54.4
BIM 59.3 60.1 59.7 54.4 55.2 54.8
BIM+RE 60.2 65.6 62.8 55.0 60.0 57.4
BIM+RE+AS 62.9 66.1 64.4 57.2 60.2 58.7

Table 4. Performance comparison of argument 
extraction on argument identification and role 

determination. 

Once the classifier AI and RD are trained, we 
would like to apply our global argument 
inference model to infer more inter-sentence 
arguments and roles. To achieve an optimal 
solution, we formulate the global inference 
problem as an Integer Linear Program (ILP), 
which leads to maximize the objective function. 
ILP is a mathematical method for constraint-
based inference to find the optimal values for a 
set of variables that maximize an objective 
function in satisfying a certain number of 
constraints. In the literature, ILP has been widely 
used in many NLP applications (e.g., Barzilay 
and Lapata, 2006; Do et al., 2012; Li et al., 
2012b).  

For our systems, we firstly evaluate the 
performance of our basic global argument 
inference model (BIM) with the Eq. 2–5 which 
enforce the consistency on AI and RD and then 
introduce the inference on the relevant event 
mentions (RE) and argument semantics (AS) to 
BIM. Table 4 shows their results and we can find 
out that: 
1) BIM only slightly improves the performance 

in F1-measure, as the result of more increase 
in recall (R) than decrease in precision (P). 
This suggests that those constraints just 
enforcing the consistency on AI and RD is not 
effective enough to infer more arguments. 

2) Compared to the BIM, our model BIM+RE 
enhances the performance of argument 
identification and role determination by 3.1% 
and 2.6% improvement in F1-measure 
respectively. This suggests the effectiveness 

                                                           
6 20% of the mentions belongs to both Coreference and 
Sequence relations. 
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of our global argument inference model on 
the relevant event mentions to infer inter-
sentence arguments. Table 5 shows the 
contributions of the different event relations 
while the Sequence relation gains the highest 
improvement of argument identification and 
role determination in F1-measure respectively. 
 

Constraint 
Argument 

identification 
Argument role 
determination 

P(%) R(%) F1 P(%) R(%) F1
BIM 59.3 60.1 59.7 54.4 55.2 54.8
+Parallel +0.6 +0.7 +0.6 +0.4 +0.6 +0.5
+NC +0.0 +0.8 +0.4 -0.2 +0.6 +0.2
+EC +0.6 +1.2 +0.9 +0.5 +1.0 +0.7
+ Sequence -0.3 +2.8 +1.2 -0.2 +2.6 +1.1

Table 5. Contributions of different event 
relations on argument identification and role 

determination. (Incremental) 

3) Our model BIM+ER+AS gains 1.6% 
improvement for argument identification, and 
1.3% for role determination. The results 
ensure that argument semantics not only can 
improve the performance of argument 
identification, but also is helpful to assign a 
correct role to an argument in role 
determination. 

Table 3 shows 25.6% of trigger mentions 
introduced into argument extraction are pseudo 
ones. If we use the golden trigger extraction, our 
exploration shows that the precision and recall of 
argument identification can be up to 78.6% and 
88.3% respectively. Table 6 shows the 
performance comparison of argument extraction 
on AI and RD given golden trigger extraction. 
Compared to the Baseline, our system improves 
the performance of argument identification and 
role determination by 6.4% and 5.8% 
improvement in F1-measure respectively, largely 
due to the dramatic increase in recall of 10.9% 
and 10.4%. 

 
 

System 
Argument 

identification 
Argument role 
determination 

P(%) R(%) F1 P(%) R(%) F1
Baseline 76.2 77.4 76.8 70.4 72.0 71.2
Model2 78.6 88.3 83.2 72.3 82.4 77.0

Table 6. Performance comparison of argument 
identification and type determination. (Golden 

trigger extraction) 

5.3 Discussion 

The initiation of our paper is that syntactic 
features play an important role in current 
machine learning-based approaches for English 

event extraction, however, their effectiveness is 
much reduced in Chinese. So the improvement of 
our model for English event extraction is much 
less than that of Chinese. However, our model 
can be an effective complement of the sentence-
level English argument extraction systems since 
the performance of argument extraction is still 
low in English and using discourse-level 
information is a way to improve its performance, 
especially for those event mentions whose 
arguments spread in complex sentences. 

Moreover, our exploration shows that our 
global argument inference model can mine those 
arguments within a long distance which are un-
annotated as arguments of a special event 
mention in the corpus since the annotators just 
tagged arguments in a narrow scope or omitted a 
few arguments. Actually, they are the true ones 
to our knowledge and  are more than 30.6% of 
those pseudo arguments inferred by our model. 
This ensures that our global argument inference 
model and those relations among event mentions 
is helpful to argument extraction. 

6 Conclusion 

In this paper we propose a global argument 
inference model to extract those inter-sentence 
arguments due to the nature of Chinese that it is a 
discourse-driven pro-drop language with the 
wide spread of ellipsis and the open flexible 
sentence structure. In particular, we incorporate 
various kinds of event relations and the argument 
semantics into the model in the sentence, 
discourse and document layers which represent 
the cohesion of an event or a topic. The 
experimental results ensure that our global 
argument inference model outperforms the state-
of-the-art system. 

In future work, we will focus on introducing 
more semantic information and cross-document 
information into the global argument inference 
model to improve the performance of argument 
extraction. 
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Abstract

Methods for information extraction (IE)
and knowledge base (KB) construction
have been intensively studied. However, a
largely under-explored case is tapping into
highly dynamic sources like news streams
and social media, where new entities are
continuously emerging. In this paper, we
present a method for discovering and se-
mantically typing newly emerging out-of-
KB entities, thus improving the freshness
and recall of ontology-based IE and im-
proving the precision and semantic rigor
of open IE. Our method is based on a prob-
abilistic model that feeds weights into in-
teger linear programs that leverage type
signatures of relational phrases and type
correlation or disjointness constraints. Our
experimental evaluation, based on crowd-
sourced user studies, show our method
performing significantly better than prior
work.

1 Introduction

A large number of knowledge base (KB) con-
struction projects have recently emerged. Promi-
nent examples include Freebase (Bollacker 2008)
which powers the Google Knowledge Graph, Con-
ceptNet (Havasi 2007), YAGO (Suchanek 2007),
and others. These KBs contain many millions of
entities, organized in hundreds to hundred thou-
sands of semantic classes, and hundred millions
of relational facts between entities. However, de-
spite these impressive advances, there are still ma-
jor limitations regarding coverage and freshness.
Most KB projects focus on entities that appear in
Wikipedia (or other reference collections such as
IMDB), and very few have tried to gather entities
“in the long tail” beyond prominent sources. Vir-

tually all projects miss out on newly emerging en-
tities that appear only in the latest news or social
media. For example, the Greenlandic singer Nive
Nielsen has gained attention only recently and is
not included in any KB (a former Wikipedia article
was removed because it “does not indicate the im-
portance or significance of the subject”), and the
resignation of BBC director Entwistle is a recently
new entity (of type event).

Goal. Our goal in this paper is to discover emerg-
ing entities of this kind on the fly as they become
noteworthy in news and social-media streams. A
similar theme is pursued in research on open infor-
mation extraction (open IE) (Banko 2007; Fader
2011; Talukdar 2010; Venetis 2011; Wu 2012),
which yields higher recall compared to ontology-
style KB construction with canonicalized and se-
mantically typed entities organized in prespecified
classes. However, state-of-the-art open IE meth-
ods extract all noun phrases that are likely to de-
note entities. These phrases are not canonical-
ized, so the same entity may appear under many
different names, e.g., “Mr. Entwistle”, “George
Entwistle”, “the BBC director”, “BBC head En-
twistle”, and so on. This is a problem because
names and titles are ambiguous, and this hampers
precise search and concise results.

Our aim is for all recognized and newly dis-
covered entities to be semantically interpretable
by having fine-grained types that connect them
to KB classes. The expectation is that this will
boost the disambiguation of known entity names
and the grouping of new entities, and will also
strengthen the extraction of relational facts about
entities. For informative knowledge, new entities
must be typed in a fine-grained manner (e.g., gui-
tar player, blues band, concert, as opposed to crude
types like person, organization, event).

Strictly speaking, the new entities that we cap-
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ture are typed noun phrases. We do not attempt
any cross-document co-reference resolution, as
this would hardly work with the long-tail na-
ture and sparse observations of emerging entities.
Therefore, our setting resembles the established
task of fine-grained typing for noun phrases (Fleis-
chmann 2002), with the difference being that we
disregard common nouns and phrases for promi-
nent in-KB entities and instead exclusively focus
on the difficult case of phrases that likely denote
new entities. The baselines to which we compare
our method are state-of-the-art methods for noun-
phrase typing (Lin 2012; Yosef 2012).
Contribution. The solution presented in this
paper, called PEARL, leverages a repository of
relational patterns that are organized in a type-
signature taxonomy. More specifically, we har-
ness the PATTY collection consisting of more
than 300,000 typed paraphrases (Nakashole 2012).
An example of PATTY’s expressive phrases is:
〈musician〉 * cover * 〈song〉 for a musician per-
forming someone else’s song. When extract-
ing noun phrases, PEARL also collects the co-
occurring PATTY phrases. The type signatures of
the relational phrases are cues for the type of the
entity denoted by the noun phrase. For example,
an entity named Snoop Dogg that frequently co-
occurs with the 〈singer〉 * distinctive voice in *
〈song〉 pattern is likely to be a singer. Moreover,
if one entity in a relational triple is in the KB and
can be properly disambiguated (e.g., a singer), we
can use a partially bound pattern to infer the type
of the other entity (e.g., a song) with higher confi-
dence.

In this line of reasoning, we also leverage the
common situation that many input sentences con-
tain one entity registered in the KB and one novel
or unknown entity. Known entities are recognized
and mapped to the KB using a recent tool for
named entity disambiguation (Hoffart 2011). For
cleaning out false hypotheses among the type can-
didates for a new entity, we devised probabilistic
models and an integer linear program that consid-
ers incompatibilities and correlations among entity
types.

In summary, our contribution in this paper is
a model for discovering and ontologically typ-
ing out-of-KB entities, using a fine-grained type
system and harnessing relational paraphrases with
type signatures for probabilistic weight computa-

tion. Crowdsourced quality assessments demon-
strate the accuracy of our model.

2 Detection of New Entities

To detect noun phrases that potentially refer to en-
tities, we apply a part-of-speech tagger to the in-
put text. For a given noun phrase, there are four
possibilities: a) The noun phrase refers to a gen-
eral concept (a class or abstract concept), not an
individual entity. b) The noun phrase is a known
entity that can be directly mapped to the knowl-
edge base. c) The noun phrase is a new name for
a known entity. d) The noun phrase is a new entity
not known to the knowledge base at all. In this pa-
per, our focus is on case d); all other cases are out
of the scope of this paper.

We use an extensive dictionary of surface forms
for in-KB entities (Hoffart 2012), to determine if
a name or phrase refers to a known entity. If a
phrase does not have any match in the dictionary,
we assume that it refers to a new entity. To decide
if a noun phrase is a true entity (i.e., an individ-
ual entity that is a member of one or more lexi-
cal classes) or a non-entity (i.e., a common noun
phrase that denotes a class or a general concept),
we base the decision on the following hypothesis
(inspired by and generalizing (Bunescu 2006): A
given noun phrase, not known to the knowledge
base, is a true entity if its headword is singular
and is consistently capitalized (i.e., always spelled
with the first letter in upper case).

3 Typing Emerging Entities

To deduce types for new entities we propose to
align new entities along the type signatures of pat-
terns they occur with. In this manner we use the
patterns to suggest types for the entities they occur
with. In particular, we infer entity types from pat-
tern type signatures. Our approach builds on the
following hypothesis:

Hypothesis 3.1 (Type Alignment Hypothesis)
For a given pattern such as 〈actor〉’s character
in 〈movie〉, we assume that an entity pair (x, y)

frequently occurring with the pattern in text
implies that x and y are of the types 〈actor〉 and
〈movie〉, respectively.

Challenges and Objective. While the type align-
ment hypothesis works as a starting point, it in-
troduces false positives. Such false positives stem
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from the challenges of polysemy, fuzzy pattern
matches, and incorrect paths between entities.
With polysemy, the same lexico-syntactic pattern
can have different type signatures. For example,
the following are three different patterns: 〈singer〉
released 〈album〉, 〈music band〉 released 〈album〉,
〈company〉 released 〈product〉. For an entity pair
(x, y) occurring with the pattern “released”, x can
be one of three different types.

We cannot expect that the phrases we extract in
text will be exact matches of the typed relational
patterns learned by PATTY. Therefore, for better
recall, we must accept fuzzy matches. Quite often
however, the extracted phrase matches multiple re-
lational patterns to various degrees. Each of the
matched relational patterns has its own type sig-
nature. The type signatures of the various matched
patterns can be incompatible with one another.

The problem of incorrect paths between entities
emerges when a pair of entities occurring in the
same sentence do not stand in a true subject-object
relation. Dependency parsing does not adequately
solve the issue. Web sources contain a plethora
of sentences that are not well-formed. Such sen-
tences mislead the dependency parser to extract
wrong dependencies.

Our solution takes into account polysemy, fuzzy
matches, as well as issues stemming from poten-
tial incorrect-path limitations. We define and solve
the following optimization problem:

Definition 1 (Type Inference Optimization)
Given all the candidate types for x, find the
best types or “strongly supported” types for x.
The final solution must satisfy type disjointness
constraints. Type disjointness constraints are
constraints that indicate that, semantically, a pair
of types cannot apply to the same entity at the
same time. For example, a 〈university〉 cannot be
a 〈person〉.
We also study a relaxation of type disjointness
constraints through the use of type correlation con-
straints. Our task is therefore twofold: first, gen-
erate candidate types for new entities; second, find
the best types for each new entity among its can-
didate types.

4 Candidate Types for Entities

For a given entity, candidate types are types that
can potentially be assigned to that entity, based on

the entity’s co-occurrences with typed relational
patterns.

Definition 2 (Candidate Type) Given a new en-
tity x which occurs with a number of patterns
p1, p2, ..., pn, where each pattern pi has a type sig-
nature with a domain and a range: if x occurs on
the left of pi, we pick the domain of pi as a candi-
date type for x; if x occurs on the right of pi, we
pick the range of pi as a candidate type for x.

For each candidate type, we compute confi-
dence weights. Ideally, if an entity occurs with
a pattern which is highly specific to a given type
then the candidate type should have high con-
fidence. For example “is married to” is more
specific to people then “expelled from”. A per-
son can be expelled from an organization but a
country can also be expelled from an organization
such as NATO. There are various ways to com-
pute weights for candidate types. We first intro-
duce a uniform weight approach and then present a
method for computing more informative weights.

4.1 Uniform Weights

We are given a new entity x which occurs with
phrases (x phrase1 y1), (x phrase2 y2), ..., (x

phrasen yn). Suppose these occurrences lead
to the facts (x, p1, y1), (x, p2, y2),..., (x, pn, yn).
The pis are the typed relational patterns extracted
by PATTY. The facts are generated by matching
phrases to relational patterns with type signa-
tures. The type signature of a pattern is denoted
by:

sig(pi) = (domain(pi), range(pi))

We allow fuzzy matches, hence each fact comes
with a match score. This is the similarity degree
between the phrase observed in text and the typed
relational pattern.

Definition 3 (Fuzzy Match Score) Suppose we
observe the surface string: (x phrase y) which
leads to the fact: x, pi, y. The fuzzy match similar-
ity score is: sim(phrase, pi), where similarity is
the n-gram Jaccard similarity between the phrase
and the typed pattern.

The confidence that x is of type domain is de-
fined as follows:

Definition 4 (Candidate Type Confidence)
For a given observation (x phrase y), where
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phrase matches patterns p1, ..., pn, with domains
d1, ..., db which are possibly the same:

typeConf(x, phrase, d) =
∑

{pi:domain(pi)=d}

(
sim(phrase, pi)

)

Observe that this sums up over all patterns that
match the phrase.

To compute the final confidence for
typeConf(x, domain), we aggregate the
confidences over all phrases occurring with x.
Definition 5 (Aggregate Confidence) For
a set of observations (x, phrase1, y1),
(x, phrase2, y2), ..., (x, phrasen, yn), the
aggregate candidate type confidence is given by:

aggTypeConf(x, d) =
∑

phrasei

typeConf(x, phrasei, d)

=
∑

phrasei

∑

{pj :domain(pj)=d}
(sim(phrasei, pj))

The confidence for the range
typeConf(x, range) is computed analogously.
All confidence weights are normalized to values
in [0, 1].

The limitation of the uniform weight approach
is that each pattern is considered equally good for
suggesting candidate types. Thus this approach
does not take into account the intuition that an en-
tity occurring with a pattern which is highly spe-
cific to a given type is a stronger signal that the
entity is of the type suggested. Our next approach
addresses this limitation.

4.2 Co-occurrence Likelihood Weight
Computation

We devise a likelihood model for computing
weights for entity candidate types. Central to this
model is the estimation of the likelihood of a given
type occurring with a given pattern.

Suppose using PATTY methods we mined a
typed relational pattern 〈t1〉 p 〈t2〉. Suppose that
we now encounter a new entity pair (x, y) occur-
ring with a phrase that matches p. We can com-
pute the likelihood of x and y being of types t1
and t2, respectively, from the likelihood of p co-
occurring with entities of types t1, t2. Therefore
we are interested in the type-pattern likelihood,
defined as follows:

Definition 6 (Type-Pattern Likelihood) The
likelihood of p co-occurring with an entity pair
(x, y) of the types (t1, t2) is given by:

P [t1, t2|p] (1)

where t1 and t2 are the types of the arguments ob-
served with p from a corpus such as Wikipedia.
P [t1, t2|p] is expanded as follows:

P [t1, t2|p] =
P [t1, t2, p]

P [p]
. (2)

The expressions on the right-hand side of Equa-
tion 2 can be directly estimated from a corpus.
We use Wikipedia (English), for corpus-based es-
timations. P [t1, t2, p] is the relative occurrence
frequency of the typed pattern among all entity-
pattern-entity triples in a corpus (e.g., the frac-
tion of 〈musican〉 plays 〈song〉 among all triples).
P[p] is the relative occurrence frequency of the un-
typed pattern (e.g., plays) regardless of the argu-
ment types. For example, this sums up over both
〈musican〉 plays 〈song〉 occurrences and 〈actor〉
plays 〈fictional character〉. If we observe a fact
where one argument name can be easily disam-
biguated to a knowledge-base entity so that its type
is known, and the other argument is considered to
be an out-of-knowledge-base entity, we condition
the joint probability of t1, p, and t2 in a different
way:

Definition 7 (Conditional Type-PatternLikelihood)
The likelihood of an entity of type t1 occurring
with a pattern p and an entity of type t2 is given
by:

P [t1|t2, p] =
P [t1, t2, p]

P [p, t2]
(3)

where the P [p, t2] is the relative occurrence fre-
quency of a partial triple, for example, 〈*〉 plays
〈song〉.

Observe that all numbers refer to occurrence
frequencies. For example, P [t1, p, t2] is a frac-
tion of the total number of triples in a corpus.

Multiple patterns can suggest the same type for
an entity. Therefore, the weight of the assertion
that y is of type t, is the total support strength from
all phrases that suggest type t for y.

Definition 8 (Aggregate Likelihood) The aggre-
gate likelihood candidate type confidence is given
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by:

typeConf(x, domain)) =
∑

phrasei

∑

pj

(
sim(phrasei, pj) ∗Υ

)

Where Υ = P [t1, t2|p] or P [t1|t2, p] or P [t2|t1, p]

The confidence weights are normalized to values
in [0, 1]. So far we have presented a way of gener-
ating a number of weighted candidate types for x.
In the next step we pick the best types for an entity
among all its candidate types.

4.3 Integer Linear Program Formulation

Given a set of weighted candidate types, our goal
is to pick a compatible subset of types for x. The
additional asset that we leverage here is the com-
patibility of types: how likely is it that an entity
belongs to both type ti and type tj . Some types
are mutually exclusive, for example, the type loca-
tion rules out person and, at finer levels, city rules
out river and building, and so on. Our approach
harnesses these kinds of constraints. Our solution
is formalized as an Integer Linear Program (ILP).
We have candidate types for x: t1, .., tn. First, we
define a decision variable Ti for each candidate
type i = 1, . . . , n. These are binary variables:
Ti = 1 means type ti is selected to be included
in the set of types for x, Ti = 0 means we discard
type ti for x.

In the following we develop two variants of this
approach: a “hard” ILP with rigorous disjointness
constraints, and a “soft” ILP which considers type
correlations.

“Hard” ILP with Type Disjointness Con-
straints. We infer type disjointness constraints
from the YAGO2 knowledge base using occur-
rence statistics. Types with no overlap in entities
or insignificant overlap below a specified thresh-
old are considered disjoint. Notice that this intro-
duces hard constraints whereby selecting one type
of a disjoint pair rules out the second type. We de-
fine type disjointness constraints Ti + Tj ≤ 1 for
all disjoint pairs ti, tj (e.g. person-artifact, movie-
book, city-country, etc.). The ILP is defined as
follows:

objective
max

∑
i Ti × wi

type disjointness constraint
∀(ti, tj)disjoint Ti + Tj ≤ 1

The weights wi are the aggregrated likelihoods
as specified in Definition 8.
“Soft” ILP with Type Correlations. In many
cases, two types are not really mutually exclusive
in the strict sense, but the likelihood that an en-
tity belongs to both types is very low. For exam-
ple, few drummers are also singers. Conversely,
certain type combinations are boosted if they are
strongly correlated. An example is guitar players
and electric guitar players. Our second ILP con-
siders such soft constraints. To this end, we pre-
compute Pearson correlation coefficients for all
type pairs (ti, tj) based on co-occurrences of types
for the same entities. These values vij ∈ [−1, 1]

are used as weights in the objective function of
the ILP. We additionally introduce pair-wise deci-
sion variables Yij , set to 1 if the entity at hand be-
longs to both types ti and tj , and 0 otherwise. This
coupling between the Yij variables and the Ti, Tj
variables is enforced by specific constraints. For
the objective function, we choose a linear combi-
nation of per-type evidence, using weights wi as
before, and the type-compatibility measure, using
weights vij . The ILP with correlations is defined
as follows:

objective
max α

∑
i Ti × wi + (1− α)

∑
ij Yij × vij

type correlation constraints
∀i,j Yij + 1 ≥ Ti + Tj
∀i,j Yij ≤ Ti
∀i,j Yij ≤ Tj

Note that both ILP variants need to be solved
per entity, not over all entities together. The “soft”
ILP has a size quadratic in the number of candidate
types, but this is still a tractable input for modern
solvers. We use the Gurobi software package to
compute the solutions for the ILP’s. With this de-
sign, PEARL can efficiently handle a typical news
article in less than a second, and is well geared for
keeping up with high-rate content streams in real
time. For both the “hard” and “soft” variants of
the ILP, the solution is the best types for entity x
satisfying the constraints.
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5 Evaluation

To define a suitable corpus of test data, we ob-
tained a stream of news documents by subscrib-
ing to Google News RSS feeds for a few topics
over a six-month period (April 2012 – Septem-
ber 2012). This produced 318, 434 documents.
The topics we subscribed to are: Angela Merkel,
Barack Obama, Business, Entertainment, Hillary
Clinton, Joe Biden, Mitt Romney, Newt Gingrich,
Rick Santorum, SciTech and Top News. All our ex-
periments were carried out on this data. The type
system used is that of YAGO2, which is derived
from WordNet. Human evaluations were carried
out on Amazon Mechanical Turk (MTurk), which
is a platform for crowd-sourcing tasks that require
human input. Tasks on MTurk are small question-
naires consisting of a description and a set of ques-
tions.
Baselines. We compared PEARL against two
state-of-the-art baselines: i). NNPLB (No Noun
Phrase Left Behind), is the method presented in
(Lin 2012), based on the propagation of types
for known entities through salient patterns occur-
ring with both known and unknown entities. We
implemented the algorithm in (Lin 2012) in our
framework, using the relational patterns of PATTY
(Nakashole 2012) for comparability. For assess-
ment we sampled from the top-5 highest ranked
types for each entity. In our experiments, our im-
plementation of NNPLB achieved precision values
comparable to those reported in (Lin 2012). ii).
HYENA (Hierarchical tYpe classification for En-
tity NAmes), the method of (Yosef 2012), based
on a feature-rich classifier for fine-grained, hierar-
chical type tagging. This is a state-of-the-art rep-
resentative of similar methods such as (Rahman
2010; Ling 2012).
Evaluation Task. To evaluate the quality of types
assigned to emerging entities, we presented turk-
ers with sentences from the news tagged with out-
of-KB entities and the types inferred by the meth-
ods under test. The turkers task was to assess the
correctness of types assigned to an entity mention.
To make it easy to understand the task for the turk-
ers, we combined the extracted entity and type into
a sentence. For example if PEARL inferred that
Brussels Summit is an political event, we generate
and present the sentence: Brussels Summit is an
event. We allowed four possible assessment val-

ues: a) Very good output corresponds to a perfect
result. b) Good output exhibits minor errors. For
instance, the description G20 Summit is an orga-
nization is wrong, because the summit is an event,
but G20 is indeed an organization. The problem in
this example is incorrect segmentation of a named
entity. c) Wrong for incorrect types (e.g., Brussels
Summit is a politician). d) Not sure / do not know
for other cases.
Comparing PEARL to Baselines. Per method,
turkers evaluated 105 entity-type pair test sam-
ples. We first sampled among out-of-KB entities
that were mentioned frequently in the news cor-
pus: in at least 20 different news articles. Each
test sample was given to 3 different turkers for as-
sessment. Since the turkers did not always agree
if the type for a sample is good or not, we ag-
gregate their answers. We use voting to decide
whether the type was assigned correctly to an en-
tity. We consider the following voting variants:
i) majority “very good” or “good”, a conservative
notion of precision: precisionlower. ii) at least
one “very good” or “good”, a liberal notion of
precision: precisionupper. Table 1 shows preci-
sion for PEARL-hard, PEARL-soft, NNPLB, and
HYENA, with a 0.9-confidence Wilson score in-
terval (Brown 2001). PEARL-hard outperformed
PEARL-soft and also both baselines. HYENA’s
relatively poor performance can be attributed to
the fact that its features are mainly syntactic such
as bi-grams and part-of-speech tags. Web data is
challenging, it has a lot of variations in syntac-
tic formulations. This introduces a fair amount
of ambiguity which can easily mislead syntactic
features. Leveraging semantic features as done
by PEARL could improve HYENA’s performance.
While the NNPLB method performs better than
HYENA, in comparison to PEARL-hard, there is
room for improvement. Like HYENA, NNPLB
assigns negatively correlated types to the same en-
tity. This limitation could be addressed by apply-
ing PEARL’s ILPs and probabilistic weights to the
candidate types suggested by NNPLB.

To compute inter-judge agreement we calcu-
lated Fleiss’ kappa and Cohen’s kappa κ, which
are standard measures. The usual assumption for
Fleiss’κ is that labels are categorical, so that each
disagreement counts the same. This is not the case
in our settings, where different labels may indicate
partial agreement (“good”, “very good”). There-
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Precisionlower Precisionupper
PEARL-hard 0.77±0.08 0.88±0.06

PEARL-soft 0.53±0.09 0.77±0.09

HYENA 0.26±0.08 0.56±0.09

NNPLB 0.46±0.09 0.68±0.09

Table 1: Comparison of PEARL to baselines.

κ F leiss Cohen

0.34 0.45

Table 2: Lower bound estimations for inter-judge
agreement kappa: Fleiss’ κ & adapted Cohen’s κ.

fore the κ values in Table 2 are lower-bound esti-
mates of agreement in our experiments; the “true
agreement” seems higher. Nevertheless, the ob-
served Fleiss κ values show that the task was fairly
clear to the turkers; values > 0.2 are generally
considered as acceptable (Landis 1977). Cohen’s
κ is also not directly applicable to our setting. We
approximated it by finding pairs of judges who as-
sessed a significant number of the same entity-type
pairs.

Precisionlower Precisionupper
Freq. mentions 0.77±0.08 0.88±0.06

All mentions 0.65±0.09 0.77±0.08

Table 3: PEARL-hard performance on a sample of
frequent entities (mention frequency≥ 20) and on
a sample of entities of all mention frequencies.

Mention Frequencies. We also studied PEARL-
hard’s performance on entities of different men-
tion frequencies. The results are shown in Ta-
ble 3. Frequently mentioned entities provide
PEARL with more evidence as they potentially oc-
cur with more patterns. Therefore, as expected,
precision when sampling over all entities drops
a bit. For such infrequent entities, PEARL does
not have enough evidence for reliable type assign-
ments.
Variations of PEARL. To quantify how various
aspects of our approach affect performance, we
studied a few variations. The first method is the
full PEARL-hard. The second method is PEARL
with no ILP (denoted No ILP), only using the
probabilistic model. The third variation is PEARL
without probabilistic weights (denoted Uniform

Figure 1: Variations of the PEARL method.

Weights). From Figure 1, it is clear that both the
ILP and the weighting model contribute signifi-
cantly to PEARL’s ability to make precise type as-
signments. Sample results from PEARL-hard are
shown in Table 4.
NDCG. For a given entity mention e, an entity-
typing system returns a ranked list of types
{t1, t2, ..., tn}. We evaluated ranking quality us-
ing the top-5 ranks for each method. These assess-
ments were aggregated into the normalized dis-
counted cumulative gain (NDCG), a widely used
measure for ranking quality. The NDCG values
obtained are 0.53, 0.16, and 0.16, for PEARL-
hard, HYENA, and NNPLB, respectively. PEARL
clearly outperforms the baselines on ranking qual-
ity, too.

6 Related Work

Tagging mentions of named entities with lexical
types has been pursued in previous work. Most
well-known is the Stanford named entity recog-
nition (NER) tagger (Finkel 2005) which assigns
coarse-grained types like person, organization, lo-
cation, and other to noun phrases that are likely to
denote entities. There is fairly little work on fine-
grained typing, notable results being (Fleischmann
2002; Rahman 2010; Ling 2012; Yosef 2012).
These methods consider type taxonomies similar
to the one used for PEARL, consisting of several
hundreds of fine-grained types. All methods use
trained classifiers over a variety of linguistic fea-
tures, most importantly, words and bigrams with
part-of-speech tags in a mention and in the textual
context preceding and following the mention. In
addition, the method of (Yosef 2012) (HYENA)
utilizes a big gazetteer of per-type words that oc-
cur in Wikipedia anchor texts. This method out-
performs earlier techniques on a variety of test
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Entity Inferred Type Sample Source Sentence (s)

Lochte medalist Lochte won America’s lone gold ...
Malick director ... the red carpet in Cannes for Malick’s 2011 movie ...
Bonamassa musician Bonamassa recorded Driving Towards the Daylight in Las Vegas ...

... Bonamassa opened for B.B. King in Rochester , N.Y.
Analog Man album Analog Man is Joe Walsh’s first solo album in 20 years.
Melinda Liu journalist ... in a telephone interview with journalist Melinda Liu of the Daily Beast.
RealtyTrac publication Earlier this month, RealtyTrac reported that ...

Table 4: Sample types inferred by PEARL.

cases; hence it served as one of our baselines.
Closely related to our work is the recent ap-

proach of (Lin 2012) (NNPLB) for predicting
types for out-of-KB entities. Noun phrases in the
subject role in a large collection of fact triples
are heuristically linked to Freebase entities. This
yields type information for the linked mentions.
For unlinkable entities the NNPLB method (in-
spired by (Kozareva 2011)) picks types based on
co-occurrence with salient relational patterns by
propagating types of linked entities to unlinkable
entities that occur with the same patterns. Unlike
PEARL, NNPLB does not attempt to resolve in-
consistencies among the predicted types. In con-
trast, PEARL uses an ILP with type disjointness
and correlation constraints to solve and penalize
such inconsistencies. NNPLB uses untyped pat-
terns, whereas PEARL harnesses patterns with
type signatures. Furthermore, PEARL computes
weights for candidate types based on patterns and
type signatures. Weight computations in NNPLB
are only based on patterns. NNPLB only assigns
types to entities that appear in the subject role of
a pattern. This means that entities in the object
role are not typed at all. In contrast, PEARL in-
fers types for entities in both the subject and object
role.

Type disjointness constraints have been studied
for other tasks in information extraction (Carlson
2010; Suchanek 2009), but using different formu-
lations.

7 Conclusion

This paper addressed the problem of detecting and
semantically typing newly emerging entities, to
support the life-cycle of large knowledge bases.
Our solution, PEARL, draws on a collection of
semantically typed patterns for binary relations.
PEARL feeds probabilistic evidence derived from

occurrences of such patterns into two kinds of
ILPs, considering type disjointness or type corre-
lations. This leads to highly accurate type predic-
tions, significantly better than previous methods,
as our crowdsourcing-based evaluation showed.
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Abstract

Relation Extraction (RE) is the task of
extracting semantic relationships between
entities in text. Recent studies on rela-
tion extraction are mostly supervised. The
clear drawback of supervised methods is
the need of training data: labeled data is
expensive to obtain, and there is often a
mismatch between the training data and
the data the system will be applied to.
This is the problem of domain adapta-
tion. In this paper, we propose to combine
(i) term generalization approaches such as
word clustering and latent semantic anal-
ysis (LSA) and (ii) structured kernels to
improve the adaptability of relation ex-
tractors to new text genres/domains. The
empirical evaluation on ACE 2005 do-
mains shows that a suitable combination
of syntax and lexical generalization is very
promising for domain adaptation.

1 Introduction

Relation extraction is the task of extracting se-
mantic relationships between entities in text, e.g.
to detect an employment relationship between the
person Larry Page and the company Google in
the following text snippet: Google CEO Larry
Page holds a press announcement at its headquar-
ters in New York on May 21, 2012. Recent stud-
ies on relation extraction have shown that super-
vised approaches based on either feature or ker-
nel methods achieve state-of-the-art accuracy (Ze-
lenko et al., 2002; Culotta and Sorensen, 2004;

∗ The first author was affiliated with the Department of
Computer Science and Information Engineering of the Uni-
versity of Trento (Povo, Italy) during the design of the mod-
els, experiments and writing of the paper.

Zhang et al., 2005; Zhou et al., 2005; Zhang et
al., 2006; Bunescu, 2007; Nguyen et al., 2009;
Chan and Roth, 2010; Sun et al., 2011). How-
ever, the clear drawback of supervised methods is
the need of training data, which can slow down
the delivery of commercial applications in new
domains: labeled data is expensive to obtain, and
there is often a mismatch between the training data
and the data the system will be applied to. Ap-
proaches that can cope with domain changes are
essential. This is the problem of domain adapta-
tion (DA) or transfer learning (TL). Technically,
domain adaptation addresses the problem of learn-
ing when the assumption of independent and iden-
tically distributed (i.i.d.) samples is violated. Do-
main adaptation has been studied extensively dur-
ing the last couple of years for various NLP tasks,
e.g. two shared tasks have been organized on do-
main adaptation for dependency parsing (Nivre et
al., 2007; Petrov and McDonald, 2012). Results
were mixed, thus it is still a very active research
area.

However, to the best of our knowledge, there
is almost no work on adapting relation extraction
(RE) systems to new domains.1 There are some
prior studies on the related tasks of multi-task
transfer learning (Xu et al., 2008; Jiang, 2009)
and distant supervision (Mintz et al., 2009), which
are clearly related but different: the former is the
problem of how to transfer knowledge from old
to new relation types, while distant supervision
tries to learn new relations from unlabeled text
by exploiting weak-supervision in the form of a
knowledge resource (e.g. Freebase). We assume
the same relation types but a shift in the underlying

1Besides an unpublished manuscript of a student project,
but it is not clear what data was used. http://tinyurl.com/
bn2hdwk
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data distribution. Weak supervision is a promis-
ing approach to improve a relation extraction sys-
tem, especially to increase its coverage in terms of
types of relations covered. In this paper we ex-
amine the related issue of changes in the underly-
ing data distribution, while keeping the relations
fixed. Even a weakly supervised system is ex-
pected to perform well when applied to any kind of
text (other domain/genre), thus ideally, we believe
that combining domain adaptation with weak su-
pervision is the way to go in the future. This study
is a first step towards this.

We focus on unsupervised domain adaptation,
i.e. no labeled target data. Moreover, we consider
a particular domain adaptation setting: single-
system DA, i.e. learning a single system able to
cope with different but related domains. Most
studies on DA so far have focused on building
a specialized system for every specific target do-
main, e.g. Blitzer et al. (2006). In contrast, the
goal here is to build a single system that can ro-
bustly handle several domains, which is in line
with the setup of the recent shared task on pars-
ing the web (Petrov and McDonald, 2012). Par-
ticipants were asked to build a single system that
can robustly parse all domains (reviews, weblogs,
answers, emails, newsgroups), rather than to build
several domain-specific systems. We consider this
as a shift in what was considered domain adapta-
tion in the past (adapt from source to a specific tar-
get) and what can be considered a somewhat dif-
ferent recent view of DA, that became widespread
since 2011/2012. The latter assumes that the tar-
get domain(s) is/are not really known in advance.
In this setup, the domain adaptation problem boils
down to finding a more robust system (Søgaard
and Johannsen, 2012), i.e. one wants to build a
system that can robustly handle any kind of data.

We propose to combine (i) term generalization
approaches and (ii) structured kernels to improve
the performance of a relation extractor on new
domains. Previous studies have shown that lexi-
cal and syntactic features are both very important
(Zhang et al., 2006). We combine structural fea-
tures with lexical information generalized by clus-
ters or similarity. Given the complexity of feature
engineering, we exploit kernel methods (Shawe-
Taylor and Cristianini, 2004). We encode word
clusters or similarity in tree kernels, which, in
turn, produce spaces of tree fragments. For ex-
ample, “president”, “vice-president” and “Texas”,

“US”, are terms indicating an employment rela-
tion between a person and a location. Rather than
only matching the surface string of words, lexi-
cal similarity enables soft matches between similar
words in convolution tree kernels. In the empir-
ical evaluation on Automatic Content Extraction
(ACE) data, we evaluate the impact of convolu-
tion tree kernels embedding lexical semantic sim-
ilarities. The latter is derived in two ways with:
(a) Brown word clustering (Brown et al., 1992);
and (b) Latent Semantic Analysis (LSA). We first
show that our system aligns well with the state of
the art on the ACE 2004 benchmark. Then, we
test our RE system on the ACE 2005 data, which
exploits kernels, structures and similarities for do-
main adaptation. The results show that combining
the huge space of tree fragments generalized at the
lexical level provides an effective model for adapt-
ing RE systems to new domains.

2 Semantic Syntactic Tree Kernels

In kernel-based methods, both learning and classi-
fication only depend on the inner product between
instances. Kernel functions can be efficiently and
implicitly computed by exploiting the dual formu-
lation:

∑
i=1..l yiαiφ(oi)φ(o) + b = 0, where oi

and o are two objects, φ is a mapping from an ob-
ject to a feature vector ~xi and φ(oi)φ(o) =K(oi, o)
is a kernel function implicitly defining such a map-
ping. In case of structural kernels, K determines
the shape of the substructures describing the ob-
jects. Commonly used kernels in NLP are string
kernels (Lodhi et al., 2002) and tree kernels (Mos-
chitti, 2006; Moschitti, 2008).

NP

PP

NP

E2

NNP

Texas

IN

from

NP

E1

NNP

governor

→

NP

PPNP

NP

PPNP

E1

NP

PPNP

E1

NNP

governor

E1

NNP

governor

. . .

NNP

Texas

Figure 1: Syntactic tree kernel (STK).

Syntactic tree kernels (Collins and Duffy, 2001)
compute the similarity between two trees T1
and T2 by counting common sub-trees (cf. Fig-
ure 1), without enumerating the whole fragment
space. However, if two trees have similar sub-
structures that employ different though related ter-
minal nodes, they will not be matched. This is
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clearly a limitation. For instance, the fragments
corresponding to governor from Texas and
head of Maryland are intuitively semanti-
cally related and should obtain a higher match
when compared to mother of them.

Semantic syntactic tree kernels (Bloehdorn
and Moschitti, 2007a; Bloehdorn and Moschitti,
2007b; Croce et al., 2011) provide one way to ad-
dress this problem by introducing similarity σ that
allows soft matches between words and, conse-
quently, between fragments containing them. Let
N1 and N2 be the set of nodes in T1 and T2, re-
spectively. Moreover, let Ii(n) be an indicator
variable that is 1 if subtree i is rooted at n and
0 otherwise. The syntactic semantic convolution
kernel TKσ (Bloehdorn and Moschitti, 2007b)
over T1 and T2 is computed as TKσ(T1, T2) =∑
n1∈N1,n2∈N2

∆σ(n1, n2) where ∆σ(n1, n2) =∑
n1∈N1

∑
n2∈N2

∑
i Ii(n1)Ii(n2) is computed ef-

ficiently using the following recursive defini-
tion: i) If the nodes n1 and n2 are ei-
ther different or have different number of chil-
dren then ∆σ(n1, n2) = 0; else ii) If
n1 and n2 are pre-terminals then ∆σ(n1, n2)

= λ
∏nc(n1)
j=1 ∆σ(ch(n1, j), ch(n2, j)), where σ

measures the similarity between the correspond-
ing children of n1 and n2; iii) If n1 and n2 have
identical children: ∆σ(n1, n2) = λ

∏nc(n1)
j=1 (1 +

∆σ(ch(n1, j)), ch(n2, j)); else ∆σ(n1, n2) = 0.
TKσ combines generalized lexical with structural
information: it allows matching tree fragments
that have the same syntactic structure but differ in
their terminals. After introducing related work, we
will discuss computational structures for RE and
their extension with semantic similarity.

3 Related Work

Semantic syntactic tree kernels have been previ-
ously used for question classification (Bloehdorn
and Moschitti, 2007a; Bloehdorn and Moschitti,
2007b; Croce et al., 2011). These kernels have
not yet been studied for either domain adaptation
or RE. Brown clusters were studied previously for
feature-based approaches to RE (Sun et al., 2011;
Chan and Roth, 2010), but they were not yet eval-
uated in kernels. Thus, we present a novel applica-
tion of semantic syntactic tree kernels and Brown
clusters for domain adaptation of tree-kernel based
relation extraction.

Regarding domain adaptation, several meth-
ods have been proposed, ranging from instance

weighting (Jiang and Zhai, 2007) to approaches
that change the feature representation (Daumé III,
2007) or try to exploit pivot features to find
a generalized shared representation between do-
mains (Blitzer et al., 2006). The easy-adapt ap-
proach presented in Daumé III (2007) assumes the
supervised adaptation setting and is thus not ap-
plicable here. Structural correspondence learn-
ing (Blitzer et al., 2006) exploits unlabeled data
from both source and target domain to find cor-
respondences among features from different do-
mains. These correspondences are then integrated
as new features in the labeled data of the source
domain. The key to SCL is to exploit pivot fea-
tures to automatically identify feature correspon-
dences, and as such is applicable to feature-based
approaches but not in our case since we do not as-
sume availability of target domain data. Instead,
we apply a similar idea where we exploit an en-
tire unlabeled corpus as pivot, and compare our
approach to instance weighting (Jiang and Zhai,
2007).

Instance weighting is a method for domain
adaptation in which instance-dependent weights
are assigned to the loss function that is mini-
mized during the training process. Let l(x, y, θ)
be some loss function. Then, as shown in Jiang
and Zhai (2007), the loss function can be weighted
by βil(x, y, θ), such that βi = Pt(xi)

Ps(xi)
, where Ps

and Pt are the source and target distributions, re-
spectively. Huang et al. (2007) present an appli-
cation of instance weighting to support vector ma-
chines by minimizing the following re-weighted
function: minθ,ξ

1
2 ||θ||2 + C

∑m
i=1 βiξi. Finding

a good weight function is non-trivial (Jiang and
Zhai, 2007) and several approximations have been
evaluated in the past, e.g. Søgaard and Haulrich
(2011) use a bigram-based text classifier to dis-
criminate between domains. We will use a binary
classifier trained on RE instance representations.

4 Computational Structures for RE

A common way to represent a constituency-based
relation instance is the PET (path-enclosed-tree),
the smallest subtree including the two target enti-
ties (Zhang et al., 2006). This is basically the for-
mer structure PAF2 (predicate argument feature)
defined in Moschitti (2004) for the extraction of
predicate argument relations. The syntactic rep-

2It is the smallest subtree enclosing the predicate and one
of its argument node.
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resentation used by Zhang et al. (2006) (we will
refer to it as PET Zhang) is the PET with enriched
entity information: e.g. E1-NAM-PER, including
entity type (PER, GPE, LOC, ORG) and mention
type (NAM, NOM, PRO, PRE: name, nominal,
pronominal or premodifier). An alternative ker-
nel that does not use syntactic information is the
Bag-of-Words (BOW) kernel, where a single root
node is added above the terminals. Note that in
this BOW kernel we actually mark target entities
with E1/E2. Therefore, our BOW kernel can be
considered an enriched BOW model. If we do not
mark target entities, performance drops consider-
ably, as discussed later.

As shown by Zhang et al. (2006), includ-
ing gold-standard information on entity and men-
tion type substantially improves relation extrac-
tion performance. We will use this gold infor-
mation also in Section 6.1 to show that our sys-
tem aligns well to the state of the art on the ACE
2004 benchmark. However, in a realistic setting
this information is not available or noisy. In fact,
as we discuss later, excluding gold entity informa-
tion decreases system performance considerably.
In the case of porting a system to new domains
entity information will be unreliable or missing.
Therefore, in our domain adaptation experiments
on the ACE 2005 data (Section 6.3) we will not
rely on this gold information but rather train a sys-
tem using PET (target mentions only marked with
E1/E2 and no gold entity label).3

4.1 Syntactic Semantic Structures

Combining syntax with semantics has a clear ad-
vantage: it generalizes lexical information encap-
sulated in syntactic parse trees, while at the same
time syntax guides semantics in order to obtain an
effective semantic similarity. In fact, lexical infor-
mation is highly affected by data-sparseness, thus
tree kernels combined with semantic information
created from additional resources should provide
a way to obtain a more robust system.

We exploit this idea here for domain adaptation
(DA): if words are generalized by semantic simi-
larity LS, then in a hypothetical world changing
LS such that it reflects the target domain would

3In a setup where gold label info is included, the impact
of similarity-based methods is limited – gold information
seems to predominate. We argue that whenever gold data is
not available, distributional semantics paired with kernels can
be useful to improve generalization and complement missing
gold info.

allow the system to perform better in the target
domain. The question remains how to establish a
link between the semantic similarity in the source
and target domain. We propose to use an entire
unlabeled corpus as pivot: this corpus must be
general enough to encapsulate the source and tar-
get domains of interest. The idea is to (i) learn
semantic similarity between words on the pivot
corpus and (ii) use tree kernels embedding such
a similarity to learn a RE system on the source,
which allows to generalize to the new target do-
main. This reasoning is related to Structural Cor-
respondence Learning (SCL) (Blitzer et al., 2006).
In SCL, a representation shared across domains is
learned by exploiting pivot features, where a set
of pivot features has to be selected (usually a few
thousands). In our case pivots are words that co-
occur with the target words in a large unlabeled
corpus and are thus implicitly represented in the
similarity matrix. Thus, in contrast to SCL, we do
not need to select a set of pivot features but rather
rely on the distributional hypothesis to infer a se-
mantic similarity from a large unlabeled corpus.
Then, this similarity is incorporated into the tree
kernel that provides the necessary restriction for
an effective semantic similarity calculation. One
peculiarity of our work is that we exploit a large
amount of general data, i.e. data gathered from the
web, which is a different but also more challeng-
ing scenario than the general unsupervised DA set-
ting where domain specific data is available. We
study two ways for term generalization in tree ker-
nels: Brown words clusters and Latent Semantic
Analysis (LSA), both briefly described next.

a) replace pos

NP

PP

NP

E2

1111100110

Seoul

10001110

from

NP

E1

1101100011

officials

b) replace word

..

NP

E2

NNP

1111100110

c) above pos

..

NP

E2

1111100110

NNP

Seoul

Figure 2: Integrating Brown cluster information

The Brown algorithm (Brown et al., 1992) is
a hierarchical agglomerative hard-clustering algo-
rithm. The path from the root of the tree down to
a leaf node is represented compactly as a bitstring.
By cutting the hierarchy at different levels one can
obtain different granularities of word clusters. We
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evaluate different ways to integrate cluster infor-
mation into tree kernels, some of which are illus-
trated in Figure 2.

For LSA, we compute term similarity functions
following the distributional hypothesis (Harris,
1964), i.e. the meaning of a word can be described
by the set of textual contexts in which it appears.
The original word-by-word context matrix M is
decomposed through Singular Value Decomposi-
tion (SVD) (Golub and Kahan, 1965), where M
is approximated by UlSlV

T
l . This approxima-

tion supplies a way to project a generic term wi
into the l-dimensional space using W = UlS

1/2
l ,

where each row corresponds to the vectors ~wi.
Given two words w1 and w2, the term similarity
function σ is estimated as the cosine similarity be-
tween the corresponding projections ~w1, ~w2 and
used in the kernel as described in Section 2.

5 Experimental Setup

We treat relation extraction as a multi-class classi-
fication problem and use SVM-light-TK4 to train
the binary classifiers. The output of the classifiers
is combined using the one-vs-all approach. We
modified the SVM-light-TK package to include
the semantic tree kernels and instance weight-
ing. The entire software package is publicly avail-
able.5 For the SVMs, we use the same parameters
as Zhang et al. (2006): λ = 0.4, c = 2.4 using the
Collins Kernel (Collins and Duffy, 2001). The pre-
cision/recall trade-off parameter for the none class
was found on held-out data: j = 0.2. Evalua-
tion metrics are standard micro average Precision,
Recall and balanced Fscore (F1). To compute sta-
tistical significance, we use the approximate ran-
domization test (Noreen, 1989).6 In all our exper-
iments, we model argument order of the relations
explicitly. Thus, for instance for the 7 coarse ACE
2004 relations, we build 14 coarse-grained classi-
fiers (two for each coarse ACE 2004 relation type
except for PER-SOC, which is symmetric, and one
classifier for the none relation).

Data We use two datasets. To compare our
model against the state of the art we use the ACE
2004 data. It contains 348 documents and 4,374
positive relation instances. To generate the train-
ing data, we follow prior studies and extract an
instance for every pair of mentions in the same

4
http://disi.unitn.it/moschitti/Tree-Kernel.htm

5
http://disi.unitn.it/ikernels/RelationExtraction

6
http://www.nlpado.de/˜sebastian/software/sigf.shtml

sentence, which are separated by no more than
three other mentions (Zhang et al., 2006; Sun et
al., 2011). After data preprocessing, we obtained
4,327 positive and 39,120 negative instances.

ACE 2005 docs sents ASL relations
nw+bn 298 5029 18.8 3562
bc 52 2267 16.3 1297
cts 34 2696 15.3 603
wl 114 1697 22.6 677

Table 1: Overview of the ACE 2005 data.

For the domain adaptation experiments we use
the ACE 2005 corpus. An overview of the data
is given in Table 1. Note that this data is dif-
ferent from ACE 2004: it covers different years
(ACE 2004: texts from 2001-2002; ACE 2005:
2003-2005). Moreover, the annotation guidelines
have changed (for example, ACE 2005 contains no
discourse relation, some relation (sub)types have
changed/moved, and care must be taken for differ-
ences in SGM markup, etc.).

More importantly, the ACE 2005 corpus cov-
ers additional domains: weblogs, telephone con-
versation, usenet and broadcast conversation. In
the experiments, we use news (the union of nw
and bn) as source domain, and weblogs (wl), tele-
phone conversations (cts) and broadcast conversa-
tion (bc) as target domains.7 We take half of bc
as only target development set, and leave the re-
maining data and domains for final testing (since
they are already small, cf. Table 1). To get a feel-
ing of how these domains differ, Figure 3 depicts
the distribution of relations in each domain and Ta-
ble 2 provides the most frequent out-of-vocabulary
words together with their percentage.

Lexical Similarity and Clustering We applied
LSA to ukWaC (Baroni et al., 2009), a 2 billion
word corpus constructed from the Web8 using the
s-space toolkit.9 Dimensionality reduction was
performed using SVD with 250 dimensions, fol-
lowing (Croce et al., 2011). The co-occurrence
matrix was transformed by tfidf. For the Brown
word clusters, we used Percy Liang’s implemen-
tation10 of the Brown clustering algorithm (Liang,
2005). We incorporate cluster information by us-

7We did not consider the usenet subpart, since it is among
the smaller domains and data-preprocessing was difficult.

8
http://wacky.sslmit.unibo.it/

9
http://code.google.com/p/airhead-research/

10
https://github.com/percyliang/brown-cluster
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Figure 3: Distribution of relations in ACE 2005.

Dom Most frequent OOV words
bc
(24%)

insurance, unintelligible, malprac-
tice, ph, clip, colonel, crosstalk

cts
(34%)

uh, Yeah, um, eh, mhm, uh-huh, ˜,
ah, mm, th, plo, topic, y, workplace

wl
(49%)

title, Starbucks, Well, blog, !!,
werkheiser, undefeated, poor, shit

Table 2: For each domain the percentage of target
domain words (types) that are unseen in the source
together with the most frequent OOV words.

ing the 10-bit cluster prefix (Sun et al., 2011; Chan
and Roth, 2010). For the domain adaptation exper-
iments, we use ukWaC corpus-induced clusters as
bridge between domains. We limited the vocabu-
lary to that in ACE 2005, which are approximately
16k words. Following previous work, we left case
intact in the corpus and induced 1,000 word clus-
ters from words appearing at least 100 times.11

DA baseline We compare our approach to in-
stance weighting (Jiang and Zhai, 2007). We mod-
ified SVM-light-TK such that it takes a parameter
vector βi, .., βm as input, where each βi represents
the relative importance of example i with respect
to the target domain (Huang et al., 2007; Wid-
mer, 2008). To estimate the importance weights,
we train a binary classifier that distinguishes be-
tween source and target domain instances. We
consider the union of the three target domains as
target data. To train the classifier, the source in-
stances are marked as negative and the target in-
stances are marked as positive. Then, this classi-

11Clusters are available at http://disi.unitn.it/ikernels/
RelationExtraction

Prior Work: Type P R F1
Zhang (2006), tree only K,yes 74.1 62.4 67.7
Zhang (2006), linear K,yes 73.5 67.0 70.1
Zhang (2006), poly K,yes 76.1 68.4 72.1
Sun & Grishman (2011) F,yes 73.4 67.7 70.4
Jiang & Zhai (2007) F,no 73.4 70.2 71.3
Our re-implementation: Type P R F1
Tree only (PET Zhang) K,yes 70.7 62.5 66.3
Linear composite K,yes 71.3 66.6 68.9
Polynomial composite K,yes 72.6 67.7 70.1

Table 3: Comparison to previous work on the 7 re-
lations of ACE 2004. K: kernel-based; F: feature-
based; yes/no: models argument order explicitly.

fier is applied to the source data. To obtain the
weights βi, we convert the SVM scores into pos-
terior probabilities by training a sigmoid using the
modified Platt algorithm (Lin et al., 2007).12

6 Results

6.1 Alignment to Prior Work

Although most prior studies performed 5-fold
cross-validation on ACE 2004, it is often not clear
whether the partitioning has been done on the in-
stance or on the document level. Moreover, it is
often not stated whether argument order is mod-
eled explicitly, making it difficult to compare sys-
tem performance. Citing Wang (2008), “We feel
that there is a sense of increasing confusion down
this line of research”. To ease comparison for fu-
ture research we use the same 5-fold split on the
document level as Sun et al. (2011)13 and make
our system publicly available (see Section 5).

Table 3 shows that our system (bottom) aligns
well with the state of the art. Our best sys-
tem (composite kernel with polynomial expan-
sion) reaches an F1 of 70.1, which aligns well to
the 70.4 of Sun et al. (2011) that use the same data-
split. This is slightly behind that of Zhang (2006);
the reason might be threefold: i) different data par-
titioning; ii) different pre-processing; iii) they in-
corporate features from additional sources, i.e. a
phrase chunker, dependency parser and semantic
resources (Zhou et al., 2005) (we have on aver-
age 9 features/instance, they use 40). Since we
focus on evaluating the impact of semantic simi-
larity in tree kernels, we think our system is very
competitive. Removing gold entity and mention

12Other weightings/normalizations (like LDA) didn’t im-
prove the results; best was to take the posteriors and add c.

13
http://cs.nyu.edu/˜asun/pub/ACL11_CVFileList.txt
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information results in a significant F1 drop from
66.3% to 54.2%. However, in a realistic setting
we do not have gold entity info available, espe-
cially not in the case when we apply the system
to any kind of text. Thus, in the domain adapta-
tion setup we assume entity boundaries given but
not their label. Clearly, evaluating the approach on
predicted mentions, e.g. Giuliano et al. (2007), is
another important dimension, however, out of the
scope of the current paper.

6.2 Tree Kernels with Brown Word Clusters

To evaluate the effectiveness of Brown word clus-
ters in tree kernels, we evaluated different instance
representations (cf. Figure 2) on the ACE 2005 de-
velopment set. Table 4 shows the results.

bc-dev P R F1
baseline 52.2 41.7 46.4
replace word 49.7 38.6 43.4
replace pos 56.3 41.9 48.0
replace pos only mentions 55.3 41.6 47.5
above word 54.5 42.2 47.6
above pos 55.8 41.1 47.3

Table 4: Brown clusters in tree kernels (cf. Fig 2).

To summarize, we found: i) it is generally a bad
idea to dismiss lexical information completely,
i.e. replacing or ignoring terminals harms perfor-
mance; ii) the best way to incorporate Brown clus-
ters is to replace the Pos tag with the cluster bit-
string; iii) marking all words is generally better
than only mentions; this is in contrast to Sun et
al. (2011) who found that in their feature-based
system it was better to add cluster information
to entity mentions only. As we will discuss, the
combination of syntax and semantics exploited in
this novel kernel avoids the necessity of restricting
cluster information to mentions only.

6.3 Semantic Tree Kernels for DA

To evaluate the effectiveness of the proposed ker-
nels across domains, we use the ACE 2005 data
as testbed. Following standard practices on ACE
2004, the newswire (nw) and broadcast news (bn)
data from ACE 2005 are considered training data
(labeled source domain). The test data consists
of three targets: broadcast conversation, telephone
conversation, weblogs. As we want to build a sin-
gle system that is able to handle heterogeneous
data, we do not assume that there is further unla-

beled domain-specific data, but we assume to have
a large unlabeled corpus (ukWaC) at our disposal
to improve the generalizability of our models.

Table 5 presents the results. In the first three
rows we see the performance of the baseline
models (PET, BOW and BOW without mark-
ing). In-domain (col 1): when evaluated on the
same domain the system was trained on (nw+bn,
5-fold cross-validation). Out-of-domain perfor-
mance (cols 2-4): the system evaluated on the
targets, namely broadcast conversation (bc), tele-
phone conversation (cts) and weblogs (wl). While
the system achieves a performance of 46.0 F1
within its own domain, the performance drops to
45.3, 43.4 and 34.0 F1 on the target domains, re-
spectively. The BOW kernel that disregards syn-
tax is often less effective (row 2). We see also
the effect of target entity marking: the BOW ker-
nel without entity marking performs substantially
worse (row 3). For the remaining experiments we
use the BOW kernel with entity marking.

Rows 4 and 5 of Table 5 show the effect of
using instance weighting for the PET baseline.
Two models are shown: they differ in whether
PET or BOW was used as instance representa-
tion for training the discriminative classifier. In-
stance weighting shows mixed results: it helps
slightly on the weblogs domain, but does not help
on broadcast conversation and telephone conversa-
tions. Interestingly, the two models used to obtain
the weights perform similarly, despite the fact that
their performance differs (F1: 70.5 BOW, 73.5
PET); it turns out that the correlation between the
weights is high (+0.82).

The next part (rows 6-9) shows the effect of en-
riching the syntactic structures with either Brown
word clusters or LSA. The Brown cluster ker-
nel applied to PET (P WC) improves performance
over the baseline over all target domains. The
same holds also for the lexical semantic kernel
based on LSA (P LSA), however, to only two out
of three domains. This suggests that the two ker-
nels capture different information and a combined
kernel might be effective. More importantly, the
table shows the effect of adding Brown clusters or
LSA semantics to the BOW kernel: it can actually
hurt performance, sometimes to a small but other
times to a considerably degree. For instance, WC
applied to PET achieves an F1 of 47.0 (baseline:
45.3) on the bc domain, while applied to BOW it
hurts performance significantly, i.e. it drops from
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nw+bn (in-dom.) bc cts wl
Baseline: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
PET 50.6 42.1 46.0 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
BOW 55.1 37.3 44.5 57.2 37.1 45.0 57.5 31.8 41.0 41.1 27.2 32.7
BOW no marking 49.6 34.6 40.7 51.5 34.7 41.4 54.6 30.7 39.3 37.6 25.7 30.6
PET adapted: P: R: F: P: R: F: P: R: F: P: R: F:
IW1 (using PET) 51.4 44.1 47.4 49.1 41.1 44.7 50.8 37.5 43.1 35.5 33.9 34.7
IW2 (using BOW) 51.2 43.6 47.1 49.1 41.3 44.9 51.2 37.8 43.5 35.6 33.8 34.7
With Similarity: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
P WC 55.4 44.6 49.4 54.3 41.4 47.0 55.9 37.1 44.6 40.0 32.7 36.0
B WC 47.9 36.4 41.4 49.5 35.2 41.2 53.3 33.2 40.9 31.7 24.1 27.4
P LSA 52.3 44.1 47.9 51.4 41.7 46.0 49.7 36.5 42.1 38.1 36.5 37.3
B LSA 53.7 37.8 44.4 55.1 33.8 41.9 54.9 32.3 40.7 39.2 28.6 33.0
P+P WC 55.0 46.5 50.4 54.4 43.4 48.3 54.1 38.1 44.7 38.4 34.5 36.3
P+P LSA 52.7 46.6 49.5 53.9 45.2 49.2 49.9 37.6 42.9 37.9 38.3 38.1
P+P WC+P LSA 55.1 45.9 50.1 55.3 43.1 48.5† 53.1 37.0 43.6 39.9 35.8 37.8†

Table 5: In-domain (first column) and out-of-domain performance (columns two to four) on ACE 2005.
PET and BOW are abbreviated by P and B, respectively. If not specified BOW is marked.

45.0 to 41.2. This is also the case for LSA ap-
plied to the BOW kernel, which drops to 41.9. On
the cts domain this is less pronounced. Only on
the weblogs domain B LSA achieves a minor im-
provement (from 32.7 to 33.0). In general, dis-
tributional semantics constrained by syntax (i.e.
combined with PET) can be effectively exploited,
while if applied ‘blindly’ – without the guide of
syntax (i.e. BOW) – performance might drop, of-
ten considerably. We believe that the semantic in-
formation does not help the BOW kernel as there is
no syntactic information that constrains the appli-
cation of the noisy source, as opposed to the case
with the PET kernel.

As the two semantically enriched kernels,
PET LSA and PET WC, seem to capture different
information we use composite kernels (rows 10-
11): the baseline kernel (PET) summed with the
lexical semantic kernels. As we can see, results
improve further: for instance on the bc test set,
PET WC reaches an F1 of 47.0, while combined
with PET (PET+PET WC) this improves to 48.3.
Adding also PET LSA results in the best perfor-
mance and our final system (last row): the com-
posite kernel (PET+PET WC+PET LSA) reaches
an F1 of 48.5, 43.6 and 37.8 on the target domains,
respectively, i.e. with an absolute improvement of:
+3.2%, +0.2% and +3.8%, respectively. Two out
of three improvements are significant at p < 0.05
(indicated by † in Table 5). Moreover, the system
also improved in its own domain (first column),

therefore having achieved robustness.
By performing an error analysis we found that,

for instance, the Brown clusters help to general-
ize locations and professions. For example, the
baseline incorrectly considered ‘Dutch filmmaker’
in a PART-WHOLE relation, while our system
correctly predicted GEN-AFF(filmmaker,Dutch).
‘Filmmaker’ does not appear in the source, how-
ever ‘Dutch citizen’ does. Both ‘citizen’ and ‘film-
maker’ appear in the same cluster, thereby helping
the system to recover the correct relation.

bc cts wl
Relation: BL SYS BL SYS BL SYS
PART-WHOLE 37.8 43.1 59.3 52.3 30.5 36.3
ORG-AFF 60.7 62.9 35.5 42.3 41.0 42.0
PHYS 35.3 37.6 25.4 28.7 25.2 26.9
ART 20.8 37.9 34.5 43.5 26.5 40.3
GEN-AFF 30.1 33.0 16.8 18.6 21.6 28.1
PER-SOC 74.1 74.2 66.3 63.1 42.6 48.0
µ average 45.3 48.5 43.4 43.6 34.0 37.8

Table 6: F1 per coarse relation type (ACE
2005). SYS is the final model, i.e. last row
(PET+PET WC+PET LSA) of Table 5.

Furthermore, Table 6 provides the performance
breakdown per relation for the baseline (BL) and
our best system (SYS). The table shows that our
system is able to improve F1 on all relations for
the broadcast and weblogs data. On most rela-
tions, this is also the case for the telephone (cts)
data, although the overall improvement is not sig-
nificant. Most errors were made on the PER-SOC
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relation, which constitutes the largest portion of
cts (cf. Figure 3). As shown in the same figure,
the relation distribution of the cts domain is also
rather different from the source. This conversation
data is a very hard domain, with a lot of disflu-
encies and spoken language patterns. We believe
it is more distant from the other domains, espe-
cially from the unlabeled collection, thus other ap-
proaches might be more appropriate, e.g. domain
identification (Dredze et al., 2010).

7 Conclusions and Future Work

We proposed syntactic tree kernels enriched by
lexical semantic similarity to tackle the portabil-
ity of a relation extractor to different domains.
The results of diverse kernels exploiting (i) Brown
clustering and (ii) LSA show that a suitable com-
bination of syntax and lexical generalization is
very promising for domain adaptation. The pro-
posed system is able to improve performance sig-
nificantly on two out of three target domains (up
to 8% relative improvement). We compared it to
instance weighting, which gave only modest or
no improvements. Brown clusters remained un-
explored for kernel-based approaches. We saw
that adding cluster information blindly might ac-
tually hurt performance. In contrast, adding lex-
ical information combined with syntax can help
to improve performance: the syntactic structure
enriched with lexical information provides a fea-
ture space where syntax constrains lexical similar-
ity obtained from unlabeled data. Thus, seman-
tic syntactic tree kernels appear to be a suitable
mechanism to adequately trade off the two kinds
of information. In future we plan to extend the
evaluation to predicted mentions, which necessar-
ily includes a careful evaluation of pre-processing
components, as well as evaluating the approach on
other semantic tasks.
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Abstract

Word-final /t/-deletion refers to a common
phenomenon in spoken English where
words such as /wEst/ “west” are pro-
nounced as [wEs] “wes” in certain con-
texts. Phonological variation like this is
common in naturally occurring speech.
Current computational models of unsu-
pervised word segmentation usually as-
sume idealized input that is devoid of
these kinds of variation. We extend a
non-parametric model of word segmenta-
tion by adding phonological rules that map
from underlying forms to surface forms
to produce a mathematically well-defined
joint model as a first step towards han-
dling variation and segmentation in a sin-
gle model. We analyse how our model
handles /t/-deletion on a large corpus of
transcribed speech, and show that the joint
model can perform word segmentation and
recover underlying /t/s. We find that Bi-
gram dependencies are important for per-
forming well on real data and for learning
appropriate deletion probabilities for dif-
ferent contexts.1

1 Introduction

Computational models of word segmentation try
to solve one of the first problems language learn-
ers have to face: breaking an unsegmented stream
of sound segments into individual words. Cur-
rently, most such models assume that the input
consists of sequences of phonemes with no pro-
nunciation variation across different occurrences
of the same word type. In this paper we describe

1The implementation of our model as well as
scripts to prepare the data will be made available at
http://web.science.mq.edu.au/~bborschi.
We can’t release our version of the Buckeye Corpus (Pitt et
al., 2007) directly because of licensing issues.

an extension of the Bayesian models of Gold-
water et al. (2009) that incorporates phonologi-
cal rules to “explain away” surface variation. As
a concrete example, we focus on word-final /t/-
deletion in English, although our approach is not
limited to this case. We choose /t/-deletion be-
cause it is a very common and well-studied phe-
nomenon (see Coetzee (2004, Chapter 5) for a
review) and segmental deletion is an interesting
test-case for our architecture. Recent work has
found that /t/-deletion (among other things) is in-
deed common in child-directed speech (CDS) and,
importantly, that its distribution is similar to that in
adult-directed speech (ADS) (Dilley et al., to ap-
pear). This justifies our using ADS to evaluate our
model, as discussed below.

Our experiments are consistent with long-
standing and recent findings in linguistics, in par-
ticular that /t/-deletion heavily depends on the im-
mediate context and that models ignoring context
work poorly on real data. We also examine how
well our models identify the probability of /t/-
deletion in different contexts. We find that models
that capture bigram dependencies between under-
lying forms provide considerably more accurate
estimates of those probabilities than correspond-
ing unigram or “bag of words” models of underly-
ing forms.

In section 2 we discuss related work on han-
dling variation in computational models and on /t/-
deletion. Section 3 describes our computational
model and section 4 discusses its performance for
recovering deleted /t/s. We look at both a sit-
uation where word boundaries are pre-specified
and only inference for underlying forms has to
be performed; and the problem of jointly finding
the word boundaries and recovering deleted un-
derlying /t/s. Section 5 discusses our findings, and
section 6 concludes with directions for further re-
search.
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2 Background and related work

The work of Elsner et al. (2012) is most closely
related to our goal of building a model that han-
dles variation. They propose a pipe-line archi-
tecture involving two separate generative models,
one for word-segmentation and one for phonolog-
ical variation. They model the mapping to sur-
face forms using a probabilistic finite-state trans-
ducer. This allows their architecture to handle
virtually arbitrary pronunciation variation. How-
ever, as they point out, combining the segmenta-
tion and the variation model into one joint model
is not straight-forward and usual inference proce-
dures are infeasible, which requires the use of sev-
eral heuristics. We pursue an alternative research
strategy here, starting with a single well-studied
example of phonological variation. This permits
us to develop a joint generative model for both
word segmentation and variation which we plan to
extend to handle more phenomena in future work.

An earlier work that is close to the spirit of our
approach is Naradowsky and Goldwater (2009),
who learn spelling rules jointly with a simple
stem-suffix model of English verb morphology.
Their model, however, doesn’t naturally extend to
the segmentation of entire utterances.

/t/-deletion has received a lot of attention within
linguistics, and we point the interested reader to
Coetzee (2004, Chapter 5) for a thorough review.
Briefly, the phenomenon is as follows: word-final
instances of /t/ may undergo deletion in natural
speech, such that /wEst/ “west” is actually pro-
nounced as [wEs] “wes”.2 While the frequency of
this phenomenon varies across social and dialectal
groups, within groups it has been found to be ro-
bust, and the probability of deletion depends on
its phonological context: a /t/ is more likely to
be dropped when followed by a consonant than
a vowel or a pause, and it is more likely to be
dropped when following a consonant than a vowel
as well. We point out two recent publications that
are of direct relevance to our research. Dilley et al.
(to appear) study word-final variation in stop con-
sonants in CDS, the kind of input we ideally would
like to evaluate our models on. They find that “in-
fants largely experience statistical distributions of
non-canonical consonantal pronunciation variants
[including deletion] that mirror those experienced
by adults.” This both directly establishes the need

2Following the convention in phonology, we give under-
lying forms within “/. . . /” and surface forms within “[. . . ]”.

for computational models to handle this dimension
of variation, and justifies our choice of using ADS
for evaluation, as mentioned above.

Coetzee and Kawahara (2013) provide a com-
putational study of (among other things) /t/-
deletion within the framework of Harmonic Gram-
mar. They do not aim for a joint model that also
handles word segmentation, however, and rather
than training their model on an actual corpus, they
evaluate on constructed lists of examples, mimick-
ing frequencies of real data. Overall, our findings
agree with theirs, in particular that capturing the
probability of deletion in different contexts does
not automatically result in good performance for
recovering individual deleted /t/s. We will come
back to this point in our discussion at the end of
the paper.

3 The computational model

Our models build on the Unigram and the Bigram
model introduced in Goldwater et al. (2009). Fig-
ure 1 shows the graphical model for our joint Bi-
gram model (the Unigram case is trivially recov-
ered by generating the Ui,js directly from L rather
than from LUi,j−1). Figure 2 gives the mathemati-
cal description of the graphical model and Table 1
provides a key to the variables of our model.

The model generates a latent sequence of un-
derlying word-tokens U1, . . . , Un. Each word to-
ken is itself a non-empty sequence of segments or
phonemes, and each Uj corresponds to an under-
lying word form, prior to the application of any
phonological rule. This generative process is re-
peated for each utterance i, leading to multiple
utterances of the form Ui,1, . . . , Ui,ni where ni is
the number of words in the ith utterance, and Ui,j
is the jth word in the ith utterance. Each utter-
ance is padded by an observed utterance bound-
ary symbol $ to the left and to the right, hence
Ui,0 = Ui,ni+1 = $.3 Each Ui,j+1 is generated
conditionally on its predecessor Ui,j from LUi,j ,
as shown in the first row of the lower plate in Fig-
ure 1. Each Lw is a distribution over the pos-
sible words that can follow a token of w and L
is a global distribution over possible words, used
as back-off for all Lw. Just as in Goldwater et
al. (2009), L is drawn from a Dirichlet Process
(DP) with base distribution B and concentration

3Each utterance terminates as soon as a $ is generated,
thus determining the number of words ni in the ith utterance.
See Goldwater et al. (2009) for discussion.
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Figure 1: The graphical model for our joint
model of word-final /t/-deletion and Bigram
word segmentation. The corresponding math-
ematical description is given in Figure 2. The
generative process mimics the intuitively plau-
sible idea of generating underlying forms from
some kind of syntactic model (here, a Bi-
gram language model) and then mapping the
underlying form to an observed surface-form
through the application of a phonological rule
component, here represented by the collection
of rule probabilities ρc.

L |γ, α0 ∼DP (α0, B(· | γ))

Lw |L,α1 ∼DP (α1, L)

ρc |β ∼Beta(1, 1)

Ui,0 = $

Si,0 = $

Ui,j+1 |Ui,j , LUi,j ∼LUi,j
Si,j |Ui,j , Ui,j+1,ρ =PR(· | Ui,j , Ui,j+1)

Wi |Si,1, . . . , Si,ni = CAT(Si,0, . . . , Si,ni)

Figure 2: Mathematical description of our joint
Bigram model. The lexical generator B(· | γ)
is specified in Figure 3 and PR is explained in
the text below. CAT stands for concatenation
without word-boundaries, ni refers to the num-
ber of words in utterance i.

Variable Explanation
B base distribution over possible words
L back-off distribution over words
Lw distribution over words following w
Ui,j underlying form, a word
Si,j surface realization of Ui,j , a word
ρc /t/-deletion probability in context c
Wi observed segments for ith utterance

Table 1: Key for the variables in Figure 1 and
Figure 2. See Figure 3 for the definition of B.

parameter α0, and the word type specific distri-
butions Lw are drawn from a DP (L,α1), result-
ing in a hierarchical DP model (Teh et al., 2006).
The base distribution B functions as a lexical gen-
erator, defining a prior distribution over possible
words. In principle, B can incorporate arbitrary
prior knowledge about possible words, for exam-
ple syllable structure (cf. Johnson (2008)). In-
spired by Norris et al. (1997), we use a simpler
possible word constraint that only rules out se-
quences that lack a vowel (see Figure 3). While
this is clearly a simplification it is a plausible as-
sumption for English data.

Instead of generating the observed sequence of
segments W directly by concatenating the under-
lying forms as in Goldwater et al. (2009), we
map each Ui,j to a corresponding surface-form
Si,j by a probabilistic rule component PR. The
values over which the Si,j range are determined
by the available phonological processes. In the

model we study here, the phonological processes
only include a rule for deleting word-final /t/s
but in principle, PR can be used to encode a
wide variety of phonological rules. Here, Si,j ∈
{Ui,j ,DELF(Ui,j)} if Ui,j ends in a /t/, and Si,j =
Ui,j otherwise, where DELF(u) refers to the same
word as u except that it lacks u’s final segment.

We look at three kinds of contexts on which a
rule’s probability of applying depends:

1. a uniform context that applies to every word-
final position

2. a right context that also considers the follow-
ing segment

3. a left-right context that additionally takes the
preceeding segment into account

For each possible context c there is a prob-
ability ρc which stands for the probability of
the rule applying in this context. Writing
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γ ∼Dir(〈0.01, . . . , 0.01〉)

B(w = x1:n | γ) =

{
[
∏n
i=1 γxi ]γ#

Z if V(w)
0.0 if ¬V(w)

Figure 3: Lexical generator with possible word-
constraint for words in Σ+, Σ being the alphabet
of available phonemes. x1:n is a sequence of ele-
ments of Σ of length n. γ is a probability vector
of length |Σ| + 1 drawn from a sparse Dirichlet
prior, giving the probability for each phoneme and
the special word-boundary symbol #. The pred-
icate V holds of all sequences containing at least
one vowel. Z is a normalization constant that ad-
justs for the mass assigned to the empty and non-
possible words.

contexts in the notation familiar from genera-
tive phonology (Chomsky and Halle, 1968), our
model can be seen as implementing the fol-
lowing rules under the different assumptions:4

uniform /t/ → ∅ / ]word

right /t/ → ∅ / ]word β
left-right /t/ → ∅ / α ]word β

We let β range over V(owel), C(onsonant) and $
(utterance-boundary), and α over V and C. We
define a function CONT that maps a pair of ad-
jacent underlying forms Ui,j , Ui,j+1 to the con-
text of the final segment of Ui,j . For example,
CONT(/wEst/,/@v/) returns “C ]word V” in the
left-right setting, or simply “ ]word” in the uni-
form setting. CONT returns a special NOT con-
text if Ui,j doesn’t end in a /t/. We stipulate that
ρNOT = 0.0. Then we can define PR as follows:

PR(DELFINAL(u) | u, r)) = ρCONT(u,r)

PR(u | u, r) = 1− ρCONT(u,r)

Depending on the context setting used, our
model includes one (uniform), three (right) or six
(left-right) /t/-deletion probabilities ρc. We place a
uniform Beta prior on each of those so as to learn
their values in the LEARN-ρ experiments below.

Finally, the observed unsegmented utterances
Wi are generated by concatenating all Si,j using
the function CAT.

We briefly comment on the central intuition
of this model, i.e. why it can infer underlying

4For right there are three and for left-right six different
rules, one for every instantiation of the context-template.

from surface forms. Bayesian word segmentation
models try to compactly represent the observed
data in terms of a small set of units (word types)
and a short analysis (a small number of word
tokens). Phonological rules such as /t/-deletion
can “explain away” an observed surface type such
as [wEs]] in terms of the underlying type /wEst/
which is independently needed for surface tokens
of [wEst]. Thus, the /t/→ ∅ rule makes possi-
ble a smaller lexicon for a given number of sur-
face tokens. Obviously, human learners have ac-
cess to additional cues, such as the meaning of
words, knowledge of phonological similarity be-
tween segments and so forth. One of the advan-
tages of an explicitly defined generative model
such as ours is that it is straight-forward to grad-
ually extend it by adding more cues, as we point
out in the discussion.

3.1 Inference

Just as for the Goldwater et al. (2009) segmen-
tation models, exact inference is infeasible for
our joint model. We extend the collapsed Gibbs
breakpoint-sampler described in Goldwater et al.
(2009) to perform inference for our extended mod-
els. We refer the reader to their paper for addi-
tional details such as how to calculate the Bigram
probabilities in Figure 4. Here we focus on the
required changes to the sampler so as to perform
inference under our richer model. We consider the
case of a single surface string W , so we drop the
i-index in the following discussion.

Knowing W , the problem is to recover the un-
derlying forms U1, . . . , Un and the surface forms
S1, . . . , Sn for unknown n. A major insight in
Goldwater’s work is that rather than sampling over
the latent variables in the model directly (the num-
ber of which we don’t even know), we can instead
perform Gibbs sampling over a set of boundary
variables b1, . . . , b|W |−1 that jointly determine the
values for our variables of interest where |W | is
the length of the surface string W . For our model,
each bj ∈ {0, 1, t}, where bj = 0 indicates ab-
sence of a word boundary, bj = 1 indicates pres-
ence of a boundary and bj = t indicates pres-
ence of a boundary with a preceeding underlying
/t/. The relation between the bj and the S1, . . . , Sn
and U1, . . . , Un is illustrated in Figure 5. The re-
quired sampling equations are given in Figure 4.
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P (bj = 0 | b−j) ∝ P (w12,u | wl,u, b−j)× Pr(w12,s | w12,u, wr,u)× P (wr,u | w12,u, b
−j ⊕ 〈wl,u, w12,u〉) (1)

P (bj = t | b−j) ∝ P (w1,t | wl,u, b−j)× Pr(w1,s | w1,t, w2,u)× P (w2,u | w1,t, b
−j ⊕ 〈wl,u, w1,t〉)

× Pr(w2,s | w2,u, wr,u)× P (wr,u | w2,u, b
−j ⊕ 〈wl,u, w1,t〉 ⊕ 〈w1,t, w2,u〉) (2)

P (bj = 1 | b−j) ∝ P (w1,s | wl,u, b−j)× Pr(w1,s | w1,s, w2,u)× P (w2,u | w1,s, b
−j ⊕ 〈wl,u, w1,s〉)

× Pr(w2,s | w2,u, wr,u)× P (wr,u | w2,u, b
−j ⊕ 〈wl,u, w1,s〉 ⊕ 〈w1,s, w2,u〉) (3)

Figure 4: Sampling equations for our Gibbs sampler, see figure 5 for illustration. bj = 0 corresponds
to no boundary at this position, bj = t to a boundary with a preceeding underlying /t/ and bj = 1 to a
boundary with no additional underlying /t/. We use b−j for the statistics determined by all but the jth

position and b−j ⊕ 〈r, l〉 for these statistics plus an additional count of the bigram 〈r, l〉. P (w | l, b)
refers to the bigram probability of 〈l, w〉 given the the statistics b; we refer the reader to Goldwater et
al. (2009) for the details of calculating these bigram probabilities and details about the required statistics
for the collapsed sampler. PR is defined in the text.

1 10 t 1
I h      i  i       t $

underlying

surface
boundaries

observed I h i i t $

I h      i       t  i       t $

Figure 5: The relation between the observed se-
quence of segments (bottom), the boundary vari-
ables b1, . . . , b|W |−1 the Gibbs sampler operates
over (in squares), the latent sequence of sur-
face forms and the latent sequence of underly-
ing forms. When sampling a new value for
b3 = t, the different word-variables in fig-
ure 4 are: w12,u=w12,s=hiit, w1,t=hit and w1,s=hi,
w2,u=w2,s=it, wl,u=I, wr,u=$. Note that we need
a boundary variable at the end of the utterance as
there might be an underlying /t/ at this position as
well. The final boundary variable is set to 1, not t,
because the /t/ in it is observed.

4 Experiments

4.1 The data

We are interested in how well our model han-
dles /t/-deletion in real data. Ideally, we’d eval-
uate it on CDS but as of now, we know of no
available large enough corpus of accurately hand-
transcribed CDS. Instead, we used the Buckeye
Corpus (Pitt et al., 2007) for our experiments,
a large ADS corpus of interviews with English
speakers that have been transcribed with relatively
fine phonetic detail, with /t/-deletion among the
things manually annotated. Pointing to the re-
cent work by Dilley et al. (to appear) we want
to emphasize that the statistical distribution of /t/-
deletion has been found to be similar for ADS and

orthographic I don’t intend to
transcript /aI R oU n I n t E n d @/
idealized /aI d oU n t I n t E n d t U/
t-drop /aI d oU n I n t E n d t U/

Figure 6: An example fragment from the Buckeye-
corpus in orthographic form, the fine transcript
available in the Buckeye corpus, a fully idealized
pronunciation with canonical dictionary pronunci-
ations and our version of the data with dropped
/t/s.

CDS, at least for read speech.
We automatically derived a corpus of 285,792

word tokens across 48,795 utterances from the
Buckeye Corpus by collecting utterances across all
interviews and heuristically splitting utterances at
speaker-turn changes and indicated silences. The
Buckeye corpus lists for each word token a man-
ually transcribed pronunciation in context as well
as its canonical pronunciation as given in a pro-
nouncing dictionary. As input to our model, we
use the canonical pronunciation unless the pronun-
ciation in context indicates that the final /t/ has
been deleted in which case we also delete the final
/t/ of the canonical pronunciation Figure 6 shows
an example from the Buckeye Corpus, indicating
how the original data, a fully idealized version
and our derived input that takes into account /t/-
deletions looks like.

Overall, /t/-deletion is a quite frequent phe-
nomenon with roughly 29% of all underlying /t/s
being dropped. The probabilities become more
peaked when looking at finer context; see Table 3
for the empirical distribution of /t/-dropping for
the six different contexts of the left-right setting.
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4.2 Recovering deleted /t/s, given word
boundaries

In this set of experiments we are interested in how
well our model recovers /t/s when it is provided
with the gold word boundaries. This allows us
to investigate the strength of the statistical sig-
nal for the deletion rule without confounding it
with the word segmentation performance, and to
see how the different contextual settings uniform,
right and left-right handle the data. Concretely,
for the example in Figure 6 this means that we tell
the model that there are boundaries between /aI/,
/doUn/, /IntEnd/, /tu/ and /liv/ but we don’t tell it
whether or not these words end in an underlying
/t/. Even in this simple example, there are 5 possi-
ble positions for the model to posit an underlying
/t/. We evaluate the model in terms of F-score, the
harmonic mean of recall (the fraction of underly-
ing /t/s the model correctly recovered) and preci-
sion (the fraction of underlying /t/s the model pre-
dicted that were correct).

In these experiments, we ran a total of 2500 it-
erations with a burnin of 2000. We collect sam-
ples with a lag of 10 for the last 500 iterations and
perform maximum marginal decoding over these
samples (Johnson and Goldwater, 2009), as well
as running two chains so as to get an idea of the
variance.5

We are also interested in how well the model
can infer the rule probabilities from the data, that
is, whether it can learn values for the different ρc
parameters. We compare two settings, one where
we perform inference for these parameters assum-
ing a uniform Beta prior on each ρc (LEARN-ρ)
and one where we provide the model with the em-
pirical probabilities for each ρc as estimated off
the gold-data (GOLD-ρ), e.g., for the uniform con-
dition 0.29. The results are shown in Table 2.

Best performance for both the Unigram and
the Bigram model in the GOLD-ρ condition is
achieved under the left-right setting, in line with
the standard analyses of /t/-deletion as primarily
being determined by the preceding and the follow-
ing context. For the LEARN-ρ condition, the Bi-
gram model still performs best in the left-right set-
ting but the Unigram model’s performance drops

5As manually setting the hyper-parameters for the DPs in
our model proved to be complicated and may be objected to
on principled grounds, we perform inference for them under
a vague gamma prior, as suggested by Teh et al. (2006) and
Johnson and Goldwater (2009), using our own implementa-
tion of a slice-sampler (Neal, 2003).

uniform right left-right

Unigram LEARN-ρ 56.52 39.28 23.59
GOLD-ρ 62.08 60.80 66.15

Bigram LEARN-ρ 60.85 62.98 77.76
GOLD-ρ 69.06 69.98 73.45

Table 2: F-score of recovered /t/s with known
word boundaries on real data for the three differ-
ent context settings, averaged over two runs (all
standard errors below 2%). Note how the Uni-
gram model always suffers in the LEARN-ρ condi-
tion whereas the Bigram model’s performance is
actually best for LEARN-ρ in the left-right setting.

C C C V C $ V C V V V $
empirical 0.62 0.42 0.36 0.23 0.15 0.07
Unigram 0.41 0.33 0.17 0.07 0.05 0.00
Bigram 0.70 0.58 0.43 0.17 0.13 0.06

Table 3: Inferred rule-probabilities for different
contexts in the left-right setting from one of the
runs. “C C” stands for the context where the
deleted /t/ is preceded and followed by a conso-
nant, “V $” stands for the context where it is pre-
ceded by a vowel and followed by the utterance
boundary. Note how the Unigram model severely
under-estimates and the Bigram model slightly
over-estimates the probabilities.

in all settings and is now worst in the left-right and
best in the uniform setting.

In fact, comparing the inferred probabilities
to the “ground truth” indicates that the Bigram
model estimates the true probabilities more ac-
curately than the Unigram model, as illustrated
in Table 3 for the left-right setting. The Bi-
gram model somewhat overestimates the probabil-
ity for all post-consonantal contexts but the Uni-
gram model severely underestimates the probabil-
ity of /t/-deletion across all contexts.

4.3 Artificial data experiments

To test our Gibbs sampling inference procedure,
we ran it on artificial data generated according to
the model itself. If our inference procedure fails
to recover the underlying /t/s accurately in this set-
ting, we should not expect it to work well on actual
data. We generated our artificial data as follows.
We transformed the sequence of canonical pronun-
ciations in the Buckeye corpus (which we take to
be underlying forms here) by randomly deleting
final /t/s using empirical probabilities as shown in
Table 3 to generate a sequence of artificial sur-
face forms that serve as input to our models. We
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uniform right left-right

Unigram LEARN-ρ 94.35 23.55 (+) 63.06
GOLD-ρ 94.45 94.20 91.83

Bigram LEARN-ρ 92.72 91.64 88.48
GOLD-ρ 92.88 92.33 89.32

Table 4: F-score of /t/-recovery with known word
boundaries on artificial data, each condition tested
on data that corresponds to the assumption, aver-
aged over two runs (standard errors less than 2%
except (+) = 3.68%)).

Unigram Bigram
LEARN-ρ 33.58 55.64
GOLD-ρ 55.92 57.62

Table 5: /t/-recovery F-scores when performing
joint word segmention in the left-right setting, av-
eraged over two runs (standard errors less than
2%). See Table 6 for the corresponding segmenta-
tion F-scores.

did this for all three context settings, always es-
timating the deletion probability for each context
from the gold-standard. The results of these exper-
iments are given in table 4. Interestingly, perfor-
mance on these artificial data is considerably bet-
ter than on the real data. In particular the Bigram
model is able to get consistently high F-scores for
both the LEARN-ρ and the GOLD-ρ setting. For
the Unigram model, we again observe the severe
drop in the LEARN-ρ setting for the right and left-
right settings although it does remarkably well in
the uniform setting, and performs well across all
settings in the GOLD-ρ condition. We take this to
show that our inference algorithm is in fact work-
ing as expected.

4.4 Segmentation experiments

Finally, we are also interested to learn how well
we can do word segmentation and underlying /t/-
recovery jointly. Again, we look at both the
LEARN-ρ and GOLD-ρ conditions but focus on the
left-right setting as this worked best in the exper-
iments above. For these experiments, we perform
simulated annealing throughout the initial 2000 it-
erations, gradually cooling the temperature from
5 to 1, following the observation by Goldwater
et al. (2009) that without annealing, the Bigram
model gets stuck in sub-optimal parts of the solu-
tion space early on. During the annealing stage,
we prevent the model from performing inference

for underlying /t/s so that the annealing stage can
be seen as an elaborate initialisation scheme, and
we perform joint inference for the remaining 500
iterations, evaluating on the last sample and av-
eraging over two runs. As neither the Unigram
nor the Bigram model performs “perfect” word
segmentation, we expect to see a degradation in
/t/-recovery performance and this is what we find
indeed. To give an impression of the impact of
/t/-deletion, we also report numbers for running
only the segmentation model on the Buckeye data
with no deleted /t/s and on the data with deleted
/t/s. The /t/-recovery scores are given in Table 5
and segmentation scores in Table 6. Again the
Unigram model’s /t/-recovery score degrades dra-
matically in the LEARN-ρ condition. Looking at
the segmentation performance this isn’t too sur-
prising: the Unigram model’s poorer token F-
score, the standard measure of segmentation per-
formance on a word token level, suggests that it
misses many more boundaries than the Bigram
model to begin with and, consequently, can’t re-
cover any potential underlying /t/s at these bound-
aries. Also note that in the GOLD-ρ condition, our
joint Bigram model performs almost as well on
data with /t/-deletions as the word segmentation
model on data that includes no variation at all.

The generally worse performance of handling
variation as measured by /t/-recovery F-score
when performing joint segmentation is consistent
with the finding of Elsner et al. (2012) who report
considerable performance drops for their phono-
logical learner when working with induced bound-
aries (note, however, that their model does not per-
form joint inference, rather the induced boundaries
are given to their phonological learner as ground-
truth).

5 Discussion

There are two interesting findings from our exper-
iments. First of all, we find a much larger differ-
ence between the Unigram and the Bigram model
in the LEARN-ρ condition than in the GOLD-ρ con-
dition. We suggest that this is due to the Unigram
model’s lack of dependencies between underlying
forms, depriving it of an important source of ev-
idence. Bigram dependencies provide additional
evidence for underlying /t/ that are deleted on the
surface, and because the Bigram model identifies
these underlying /t/ more accurately, it can also es-
timate the /t/ deletion probability more accurately.
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Unigram Bigram
LEARN-ρ 54.53 72.55 (2.3%)
GOLD-ρ 54.51 73.18

NO-ρ 54.61 70.12
NO-VAR 54.12 73.99

Table 6: Word segmentation F-scores for the /t/-
recovery F-scores in Table 5 averaged over two
runs (standard errors less than 2% unless given).
NO-ρ are scores for running just the word segmen-
tation model with no /t/-deletion rule on the data
that includes /t/-deletion, NO-VAR for running just
the word segmentation model on the data with no
/t/-deletions.

For example, /t/ dropping in “don’t you” yields
surface forms “don you”. Because the word bi-
gram probability P (you | don’t) is high, the bi-
gram model prefers to analyse surface “don” as
underlying “don’t”. The Unigram model does not
have access to word bigram information so the
underlying forms it posits are less accurate (as
shown in Table 2), and hence the estimate of the
/t/-deletion probability is also less accurate. When
the probabilities of deletion are pre-specified the
Unigram model performs better but still consider-
ably worse than the Bigram model when the word
boundaries are known, suggesting the importance
of non-phonological contextual effects that the Bi-
gram model but not the Unigram model can cap-
ture. This suggests that for example word pre-
dictability in context might be an important factor
contributing to /t/-deletion.

The other striking finding is the considerable
drop in performance between running on natural-
istic and artificially created data. This suggests
that the natural distribution of /t/-deletion is much
more complex than can be captured by statistics
over the phonological contexts we examined. Fol-
lowing Guy (1991), a finer-grained distinction for
the preceeding segments might address this prob-
lem.

Yet another suggestion comes from the recent
work in Coetzee and Kawahara (2013) who claim
that “[a] model that accounts perfectly for the
overall rate of application of some variable pro-
cess therefore does not necessarily account very
well for the actual application of the process to in-
dividual words.” They argue that in particular the
extremely high deletion rates typical of high fre-
quency items aren’t accurately captured when the

deletion probability is estimated across all types.
A look at the error patterns of our model on a sam-
ple from the Bigram model in the LEARN-ρ setting
on the naturalistic data suggests that this is in fact a
problem. For example, the word “just” has an ex-
tremely high rate of deletion with 1746

2442 = 0.71%.
While many tokens of “jus” are “explained away”
through predicting underlying /t/s, the (literally)
extra-ordinary frequency of “jus”-tokens lets our
model still posit it as an underlying form, although
with a much dampened frequency (of the 1746 sur-
face tokens, 1081 are analysed as being realiza-
tions of an underlying “just”).

The /t/-recovery performance drop when per-
forming joint word segmentation isn’t surprising
as even the Bigram model doesn’t deliver a very
high-quality segmentation to begin with, leading
to both sparsity (through missed word-boundaries)
and potential noise (through misplaced word-
boundaries). Using a more realistic generative
process for the underlying forms, for example an
Adaptor Grammar (Johnson et al., 2007), could
address this shortcoming in future work without
changing the overall architecture of the model al-
though novel inference algorithms might be re-
quired.

6 Conclusion and outlook

We presented a joint model for word segmentation
and the learning of phonological rule probabili-
ties from a corpus of transcribed speech. We find
that our Bigram model reaches 77% /t/-recovery
F-score when run with knowledge of true word-
boundaries and when it can make use of both the
preceeding and the following phonological con-
text, and that unlike the Unigram model it is able
to learn the probability of /t/-deletion in different
contexts. When performing joint word segmen-
tation on the Buckeye corpus, our Bigram model
reaches around above 55% F-score for recovering
deleted /t/s with a word segmentation F-score of
around 72% which is 2% better than running a Bi-
gram model that does not model /t/-deletion.

We identified additional factors that might help
handling /t/-deletion and similar phenomena. A
major advantage of our generative model is the
ease and transparency with which its assump-
tions can be modified and extended. For fu-
ture work we plan to incorporate into our model
richer phonological contexts, item- and frequency-
specific probabilities and more direct use of word
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predictability. We also plan to extend our model
to handle additional phenomena, an obvious can-
didate being /d/-deletion.

Also, the two-level architecture we present is
not limited to the mapping being defined in terms
of rules rather than constraints in the spirit of Op-
timality Theory (Prince and Smolensky, 2004); we
plan to explore this alternative path as well in fu-
ture work.

To conclude, we presented a model that pro-
vides a clean framework to test the usefulness of
different factors for word segmentation and han-
dling phonological variation in a controlled man-
ner.
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Abstract
Speakers of a language can construct an
unlimited number of new words through
morphological derivation. This is a major
cause of data sparseness for corpus-based
approaches to lexical semantics, such as
distributional semantic models of word
meaning. We adapt compositional meth-
ods originally developed for phrases to the
task of deriving the distributional meaning
of morphologically complex words from
their parts. Semantic representations con-
structed in this way beat a strong baseline
and can be of higher quality than represen-
tations directly constructed from corpus
data. Our results constitute a novel evalua-
tion of the proposed composition methods,
in which the full additive model achieves
the best performance, and demonstrate the
usefulness of a compositional morphology
component in distributional semantics.

1 Introduction

Effective ways to represent word meaning are
needed in many branches of natural language pro-
cessing. In the last decades, corpus-based meth-
ods have achieved some degree of success in mod-
eling lexical semantics. Distributional semantic
models (DSMs) in particular represent the mean-
ing of a word by a vector, the dimensions of which
encode corpus-extracted co-occurrence statistics,
under the assumption that words that are semanti-
cally similar will occur in similar contexts (Turney
and Pantel, 2010). Reliable distributional vectors
can only be extracted for words that occur in many
contexts in the corpus. Not surprisingly, there is
a strong correlation between word frequency and
vector quality (Bullinaria and Levy, 2007), and
since most words occur only once even in very
large corpora (Baroni, 2009), DSMs suffer data
sparseness.

While word rarity has many sources, one of the
most common and systematic ones is the high pro-
ductivity of morphological derivation processes,
whereby an unlimited number of new words can
be constructed by adding affixes to existing stems
(Baayen, 2005; Bauer, 2001; Plag, 1999).1 For
example, in the multi-billion-word corpus we in-
troduce below, perfectly reasonable derived forms
such as lexicalizable or affixless never occur. Even
without considering the theoretically infinite num-
ber of possible derived nonce words, and restrict-
ing ourselves instead to words that are already
listed in dictionaries, complex forms cover a high
portion of the lexicon. For example, morphologi-
cally complex forms account for 55% of the lem-
mas in the CELEX English database (see Section
4.1 below). In most of these cases (80% according
to our corpus) the stem is more frequent than the
complex form (e.g., the stem build occurs 15 times
more often than the derived form rebuild, and the
latter is certainly not an unusual derived form).

DSMs ignore derivational morphology alto-
gether. Consequently, they cannot provide mean-
ing representations for new derived forms, nor can
they harness the systematic relation existing be-
tween stems and derivations (any English speaker
can infer that to rebuild is to build again, whether
they are familiar with the prefixed form or not)
in order to mitigate derived-form sparseness prob-
lems. A simple way to handle derivational mor-

1Morphological derivation constructs new words (in
the sense of lemmas) from existing lexical items (re-
source+ful→resourceful). In this work, we do not treat in-
flectional morphology, pertaining to affixes that encode gram-
matical features such as number or tense (dog+s). We use
morpheme for any component of a word (resource and -ful
are both morphemes). We use stem for the lexical item that
constitutes the base of derivation (resource) and affix (pre-
fix or suffix) for the element attached to the stem to derive
the new form (-ful). In English, stems are typically indepen-
dent words, affixes bound morphemes, i.e., they cannot stand
alone. Note that a stem can in turn be morphologically de-
rived, e.g., point+less in pointless+ly. Finally, we use mor-
phologically complex as synonymous with derived.
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phology would be to identify the stem of rare de-
rived words and use its distributional vector as a
proxy to derived-form meaning.2 The meaning of
rebuild is not that far from that of build, so the
latter might provide a reasonable surrogate. Still,
something is clearly lost (if the author of a text
felt the need to use the derived form, the stem was
not fully appropriate), and sometimes the jump in
meaning can be quite dramatic (resourceless and
resource mean very different things!).

In the past few years there has been much in-
terest in how DSMs can scale up to represent the
meaning of larger chunks of text such as phrases
or even sentences. Trying to represent the mean-
ing of arbitrarily long constructions by directly
collecting co-occurrence statistics is obviously in-
effective and thus methods have been developed
to derive the meaning of larger constructions as a
function of the meaning of their constituents (Ba-
roni and Zamparelli, 2010; Coecke et al., 2010;
Mitchell and Lapata, 2008; Mitchell and Lapata,
2010; Socher et al., 2012). Compositional distri-
butional semantic models (cDSMs) of word units
aim at handling, compositionally, the high produc-
tivity of phrases and consequent data sparseness.
It is natural to hypothesize that the same methods
can be applied to morphology to derive the mean-
ing of complex words from the meaning of their
parts: For example, instead of harvesting a rebuild
vector directly from the corpus, the latter could be
constructed from the distributional representations
of re- and build. Besides alleviating data sparse-
ness problems, a system of this sort, that automati-
cally induces the semantic contents of morpholog-
ical processes, would also be of tremendous theo-
retical interest, given that the semantics of deriva-
tion is a central and challenging topic in linguistic
morphology (Dowty, 1979; Lieber, 2004).

In this paper, we explore, for the first time (ex-
cept for the proof-of-concept study in Guevara
(2009)), the application of cDSMs to derivational
morphology. We adapt a number of composition
methods from the literature to the morphological
setting, and we show that some of these methods
can provide better distributional representations of
derived forms than either those directly harvested
from a large corpus, or those obtained by using
the stem as a proxy to derived-form meaning. Our

2Of course, spotting and segmenting complex words is a
big research topic unto itself (Beesley and Karttunen, 2000;
Black et al., 1991; Sproat, 1992), and one we completely
sidestep here.

results suggest that exploiting morphology could
improve the quality of DSMs in general, extend
the range of tasks that cDSMs can successfully
model and support the development of new ways
to test their performance.

2 Related work

Morphological induction systems use corpus-
based methods to decide if two words are mor-
phologically related and/or to segment words into
morphemes (Dreyer and Eisner, 2011; Goldsmith,
2001; Goldwater and McClosky, 2005; Goldwater,
2006; Naradowsky and Goldwater, 2009; Wicen-
towski, 2004). Morphological induction has re-
cently received considerable attention since mor-
phological analysis can mitigate data sparseness in
domains such as parsing and machine translation
(Goldberg and Tsarfaty, 2008; Lee, 2004). Among
the cues that have been exploited there is distri-
butional similarity among morphologically related
words (Schone and Jurafsky, 2000; Yarowsky and
Wicentowski, 2000). Our work, however, dif-
fers substantially from this track of research. We
do not aim at segmenting morphological complex
words or identifying paradigms. Our goal is to
automatically construct, given distributional rep-
resentations of stems and affixes, semantic repre-
sentations for the derived words containing those
stems and affixes. A morphological induction sys-
tem, given rebuild, will segment it into re- and
build (possibly using distributional similarity be-
tween the words as a cue). Our system, given
re- and build, predicts the (distributional seman-
tic) meaning of rebuild.

Another emerging line of research uses distribu-
tional semantics to model human intuitions about
the semantic transparency of morphologically de-
rived or compound expressions and how these im-
pact various lexical processing tasks (Kuperman,
2009; Wang et al., 2012). Although these works
exploit vectors representing complex forms, they
do not attempt to generate them compositionally.

The only similar study we are aware of is that
of Guevara (2009). Guevara found a systematic
geometric relation between corpus-based vectors
of derived forms sharing an affix and their stems,
and used this finding to motivate the composition
method we term lexfunc below. However, unlike
us, he did not test alternative models, and he only
presented a qualitative analysis of the trajectories
triggered by composition with various affixes.
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3 Composition methods

Distributional semantic models (DSMs), also
known as vector-space models, semantic spaces,
or by the names of famous incarnations such as
Latent Semantic Analysis or Topic Models, ap-
proximate the meaning of words with vectors that
record their patterns of co-occurrence with cor-
pus context features (often, other words). There
is an extensive literature on how to develop such
models and on their evaluation. Recent surveys
include Clark (2012), Erk (2012) and Turney and
Pantel (2010). We focus here on compositional
DSMs (cDSMs). Since the very inception of dis-
tributional semantics, there have been attempts to
compose meanings for sentences and larger pas-
sages (Landauer and Dumais, 1997), but inter-
est in compositional DSMs has skyrocketed in
the last few years, particularly since the influen-
tial work of Mitchell and Lapata (2008; 2009;
2010). For the current study, we have reimple-
mented and adapted to the morphological setting
all cDSMs we are aware of, excluding the tensor-
product-based models that Mitchell and Lapata
(2010) have shown to be empirically disappointing
and the models of Socher and colleagues (Socher
et al., 2011; Socher et al., 2012), that require com-
plex optimization procedures whose adaptation to
morphology we leave to future work.

Mitchell and Lapata proposed a set of simple
and effective models in which the composed vec-
tors are obtained through component-wise opera-
tions on the constituent vectors. Given input vec-
tors u and v, the multiplicative model (mult) re-
turns a composed vector c with: ci = uivi. In the
weighted additive model (wadd), the composed
vector is a weighted sum of the two input vectors:
c = αu + βv, where α and β are two scalars. In
the dilation model, the output vector is obtained
by first decomposing one of the input vectors, say
v, into a vector parallel to u and an orthogonal
vector. Following this, the parallel vector is dilated
by a factor λ before re-combining. This results in:
c = (λ− 1)〈u,v〉u+ 〈u,u〉v.

Guevara (2010) and Zanzotto et al. (2010) pro-
pose the full additive model (fulladd), where the
two vectors to be added are pre-multiplied by
weight matrices: c = Au+Bv

Since the Mitchell and Lapata and fulladd mod-
els were developed for phrase composition, the
two input vectors were taken to be, very straight-
forwardly, the vectors of the two words to be com-

posed into the phrase of interest. In morphological
derivation, at least one of the items to be composed
(the affix) is a bound morpheme. In our adapta-
tion of these composition models, we build bound
morpheme vectors by accumulating the contexts
in which a set of derived words containing the rel-
evant morphemes occur, e.g., the re- vector aggre-
gates co-occurrences of redo, remake, retry, etc.

Baroni and Zamparelli (2010) and Coecke et
al. (2010) take inspiration from formal semantics
to characterize composition in terms of function
application, where the distributional representa-
tion of one element in a composition (the func-
tor) is not a vector but a function. Given that
linear functions can be expressed by matrices and
their application by matrix-by-vector multiplica-
tion, in this lexical function (lexfunc) model, the
functor is represented by a matrix U to be multi-
plied with the argument vector v: c = Uv. In
the case of morphology, it is natural to treat bound
affixes as functions over stems, since affixes en-
code the systematic semantic patterns we intend
to capture. Unlike the other composition meth-
ods, lexfunc does not require the construction of
distributional vectors for affixes. A matrix repre-
sentation for every affix is instead induced directly
from examples of stems and the corresponding de-
rived forms, in line with the intuition that every af-
fix corresponds to a different pattern of change of
the stem meaning.

Finally, as already discussed in the Introduc-
tion, performing no composition at all but using
the stem vector as a surrogate of the derived form
is a reasonable strategy. We saw that morphologi-
cally derived words tend to appear less frequently
than their stems, and in many cases the meanings
are close. Consequently, we expect a stem-only
“composition” method to be a strong baseline in
the morphological setting.

4 Experimental setup

4.1 Morphological data

We obtained a list of stem/derived-form pairs from
the CELEX English Lexical Database, a widely
used 100K-lemma lexicon containing, among
other things, information about the derivational
structure of words (Baayen et al., 1995). For each
derivational affix present in CELEX, we extracted
from the database the full list of stem/derived
pairs matching its most common part-of-speech
signature (e.g., for -er we only considered pairs
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Affix Stem/Der. Training HQ/Tot. Avg.
POS Items Test Items SDR

-able verb/adj 177 30/50 5.96
-al noun/adj 245 41/50 5.88
-er verb/noun 824 33/50 5.51
-ful noun/adj 53 42/50 6.11
-ic noun/adj 280 43/50 5.99

-ion verb/noun 637 38/50 6.22
-ist noun/noun 244 38/50 6.16
-ity adj/noun 372 33/50 6.19
-ize noun/verb 105 40/50 5.96
-less noun/adj 122 35/50 3.72
-ly adj/adv 1847 20/50 6.33

-ment verb/noun 165 38/50 6.06
-ness adj/noun 602 33/50 6.29
-ous noun/adj 157 35/50 5.94
-y noun/adj 404 27/50 5.25
in- adj/adj 101 34/50 3.39
re- verb/verb 86 27/50 5.28
un- adj/adj 128 36/50 3.23
tot */* 6549 623/900 5.52

Table 1: Derivational morphology dataset

having a verbal stem and nominal derived form).
Since CELEX was populated by semi-automated
morphological analysis, it includes forms that are
probably not synchronically related to their stems,
such as crypt+ic or re+form. However, we did not
manually intervene on the pairs, since we are in-
terested in training and testing our methods in re-
alistic, noisy conditions. In particular, the need to
pre-process corpora to determine which forms are
“opaque”, and should thus be bypassed by our sys-
tems, would greatly reduce their usefulness. Pairs
in which either word occurred less than 20 times
in our source corpus (described in Section 4.2 be-
low) were filtered out and, in our final dataset, we
only considered the 18 affixes (3 prefixes and 15
suffixes) with at least 100 pairs meeting this con-
dition. We randomly chose 50 stem/derived pairs
(900 in total) as test data. The remaining data were
used as training items to estimate the parameters
of the composition methods. Table 1 summarizes
various characteristics of the dataset3 (the last two
columns of the table are explained in the next para-
graphs).

Annotation of quality of test vectors The qual-
ity of the corpus-based vectors representing de-
rived test items was determined by collecting hu-
man semantic similarity judgments in a crowd-
sourcing survey. In particular, we use the similar-
ity of a vector to its nearest neighbors (NNs) as a
proxy measure of quality. The underlying assump-

3Available from http://clic.cimec.unitn.it/
composes

tion is that a vector, in order to be a good represen-
tation of the meaning of the corresponding word,
should lie in a region of semantic space populated
by intuitively similar meanings, e.g., we are more
likely to have captured the meaning of car if the
NN of its vector is the automobile vector rather
than potato. Therefore, to measure the quality of
a given vector, we can look at the average simi-
larity score provided by humans when comparing
this very vector with its own NNs.

All 900 derived vectors from the test set were
matched with their three closest NNs in our se-
mantic space (see Section 4.2), thus producing a
set of 2, 700 word pairs. These pairs were admin-
istered to CrowdFlower users,4 who were asked
to judge the relatedness of the two meanings on a
7-point scale (higher for more related). In order
to ensure that participants were committed to the
task and exclude non-proficient English speakers,
we used 60 control pairs as gold standard, consist-
ing of either perfect synonyms or completely un-
related words. We obtained 30 judgments for each
derived form (10 judgments for each of 3 neighbor
comparisons), with mean participant agreement of
58%. These ratings were averaged item-wise, re-
sulting in a Gaussian distribution with a mean of
3.79 and a standard deviation of 1.31. Finally,
each test item was marked as high-quality (HQ)
if its derived form received an average score of at
least 3, as low-quality (LQ) otherwise. Table 1 re-
ports the proportion of HQ test items for each af-
fix, and Table 2 reports some examples of HQ and
LQ items with the corresponding NNs. It is worth
observing that the NNs of the LQ items, while not
as relevant as the HQ ones, are hardly random.

Annotation of similarity between stem and de-
rived forms Derived forms differ in terms of
how far their meaning is with respect to that of
their stem. Certain morphological processes have
systematically more impact than others on mean-
ing: For example, the adjectival prefix in- negates
the meaning of the stem, whereas -ly has the sole
function to convert an adjective into an adverb.
But the very same affix can affect different stems
in different ways. For example, remelt means lit-
tle more than to melt again, but rethink has subtler
implications of changing one’s way to look at a
problem, and while one of the senses of cycling is
present in recycle, it takes some effort to see their
relation.

4http://www.crowdflower.com
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Affix Type Derived form Neighbors

-ist
HQ transcendentalist mythologist, futurist, theosophist
LQ florist Harrod, wholesaler, stockist

-ity
HQ publicity publicise, press, publicize
LQ sparsity dissimilarity, contiguity, perceptibility

-ment
HQ advertisement advert, promotional, advertising
LQ inducement litigant, contractually, voluntarily

in-
HQ inaccurate misleading, incorrect, erroneous
LQ inoperable metastasis, colorectal, biopsy

re-
HQ recapture retake, besiege, capture
LQ rename defunct, officially, merge

Table 2: Examples of HQ and LQ derived vectors with their NNs

We conducted a separate crowdsourcing study
where participants were asked to rate the 900
test stem/derived pairs for the strength of their
semantic relationship on a 7-point scale. We
followed a procedure similar to the one de-
scribed for quality measurement; 7 judgments
were collected for each pair. Participants’ agree-
ment was at 60%. The last column of Ta-
ble 1 reports the average stem/derived related-
ness (SDR) for the various affixes. Note that
the affixes with systematically lower SDR are
those carrying a negative meaning (in-, un-, -less),
whereas those with highest SDR do little more
than changing the POS of the stem (-ion, -ly, -
ness). Among specific pairs with very low related-
ness we encounter hand/handy, bear/bearable and
active/activist, whereas compulsory/compulsorily,
shameless/shamelessness and chaos/chaotic have
high SDR. Since the distribution of the average
ratings was negatively skewed (mean rating: 5.52,
standard deviation: 1.26),5 we took 5 as the rating
threshold to classify items as having high (HR) or
low (LR) relatedness to their stems.

4.2 Distributional semantic space6

We use as our source corpus the concatenation of
ukWaC, the English Wikipedia (2009 dump) and
the BNC,7 for a total of about 2.8 billion tokens.
We collect co-occurrence statistics for the top 20K
content words (adjectives, adverbs, nouns, verbs)

5The negative skew is not surprising, as derived forms
must have some relation to their stems!

6Most steps of the semantic space construction
and composition pipelines were implemented using
the DISSECT toolkit: https://github.com/
composes-toolkit/dissect.

7http://wacky.sslmit.unibo.it, http:
//en.wikipedia.org, http://www.natcorp.
ox.ac.uk

in lemma format, plus any item from the mor-
phological dataset described above that was below
this rank. The top 20K content words also con-
stitute our context elements. We use a standard
bag-of-words approach, counting collocates in a
narrow 2-word before-and-after window. We ap-
ply (non-negative) Pointwise Mutual Information
as weighting scheme and dimensionality reduc-
tion by Non-negative Matrix Factorization, setting
the number of reduced-space dimensions to 350.
These settings are chosen without tuning, and are
based on previous experiments where they pro-
duced high-quality semantic spaces (Boleda et al.,
2013; Bullinaria and Levy, 2007).

4.3 Implementation of composition methods

All composition methods except mult and stem
have weights to be estimated (e.g., the λ parame-
ter of dilation or the affix matrices of lexfunc). We
adopt the estimation strategy proposed by Gue-
vara (2010) and Baroni and Zamparelli (2010),
namely we pick parameter values that optimize
the mapping between stem and derived vectors di-
rectly extracted from the corpus. To learn, say, a
lexfunc matrix representing the prefix re-, we ex-
tract vectors of V/reV pairs that occur with suffi-
cient frequency (visit/revisit, think/rethink. . . ). We
then use least-squares methods to find weights for
the re- matrix that minimize the distance between
each reV vector generated by the model given the
input V and the corresponding corpus-observed
derived vector (e.g., we try to make the model-
predicted re+visit vector as similar as possible
to the corpus-extracted one). This is a general
estimation approach that does not require task-
specific hand-labeled data, and for which simple
analytical solutions of the least-squares error prob-
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lem exist for all our composition methods. We use
only the training items from Section 4.1 for esti-
mation. Note that, unlike the test items, these have
not been annotated for quality, so we are adopting
an unsupervised (no manual labeling) but noisy es-
timation method.8

For the lexfunc model, we use the training items
separately to obtain weight matrices represent-
ing each affix, whereas for the other models all
training data are used together to globally de-
rive single sets of affix and stem weights. For
the wadd model, the learning process results in
0.16×affix+0.33× stem, i.e., the affix contributes
only half of its mass to the composition of the
derived form. For dilation, we stretch the stem
(i.e., v of the dilation equation is the stem vector),
since it should provide richer contents than the af-
fix to the derived meaning. We found that, on av-
erage across the training pairs, dilation weighted
the stem 20 times more heavily than the affix
(0.05×affix+1×stem). We then expect that the di-
lation model will have similar performance to the
baseline stem model, as confirmed below.9

For all methods, vectors were normalized be-
fore composing both in training and in generation.

5 Experiment 1: approximating
high-quality corpus-extracted vectors

The first experiment investigates to what extent
composition models can approximate high-quality
(HQ) corpus-extracted vectors representing de-
rived forms. Note that since the test items were
excluded from training, we are simulating a sce-
nario in which composition models must generate
representations for nonce derived forms.

Cosine similarity between model-generated and
corpus-extracted vectors were computed for all
models, including the stem baseline (i.e., co-
sine between stem and derived form). The first
row of Table 3 reports mean similarities. The
stem method sets the level of performance rel-
atively high, confirming its soundness. Indeed,
the parameter-free mult model performs below the
baseline.10 As expected, dilation performs simi-

8More accurately, we relied on semi-manual CELEX in-
formation to identify derived forms. A further step towards a
fully knowledge-free system would be to pre-process the cor-
pus with an unsupervised morphological induction system to
extract stem/derived pairs.

9The other models have thousands of weights to be es-
timated, so we cannot summarize the outcome of parameter
estimation here.

10This result does not necessarily contradict those of

stem mult dil. wadd fulladd lexfunc
All 0.47 0.39 0.48 0.50 0.56 0.54
HR 0.52 0.43 0.53 0.55 0.61 0.58
LR 0.32 0.28 0.33 0.38 0.41 0.42

Table 3: Mean similarity of composed vectors to
high-quality corpus-extracted derived-form vec-
tors, for all as well as high- (HR) and low-
relatedness (LR) test items

larly to the baseline, while wadd outperforms it,
although the effect does not reach significance
(p=.06).11 Both fulladd and lexfunc perform sig-
nificantly better than stem (p < .001). Lexfunc
provides a flexible way to account for affixation,
since it models it directly as a function mapping
from and onto word vectors, without requiring a
vector representation of bound affixes. The rea-
son at the base of its good performance is thus
quite straightforward. On the other hand, it is
surprising that a simple representation of bound
affixes (i.e., as vectors aggregating the contexts
of words containing them) can work so well, at
least when used in conjunction with the granular
dimension-by-dimension weights assigned by the
fulladd method. We hypothesize that these aggre-
gated contexts, by providing information about the
set of stems an affix combines with, capture the
shared semantic features that the affix operates on.

When the meaning of the derived form is far
from that of its stem, the stem baseline should no
longer constitute a suitable surrogate of derived-
form meaning. The LR cases (see Section 4.1
above) are thus crucial to understand how well
composition methods capture not only stem mean-
ing, but also affix-triggered semantics. The HR
and LR rows of Table 3 present the results for
the respective test subsets. As expected, the stem
approach undergoes a strong drop when perfor-
mance is measured on LR items. At the other ex-
treme, fulladd and lexfunc, while also finding the
LR cases more difficult, still clearly outperform
the baseline (p<.001), confirming that they cap-
ture the meaning of derived forms beyond what
their stems contribute to it. The effect of wadd,
again, approaches significance when compared to
the baseline (p= .05). Very encouragingly, both

Mitchell and Lapata and others who found mult to be highly
competitive. Due to differences in co-occurrence weighting
schemes (we use a logarithmically scaled measure, they do
not), their multiplicative model is closer to our additive one.

11Significance assessed by means of Tukey Honestly Sig-
nificant Difference tests (Abdi and Williams, 2010)
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stem mult wadd dil. fulladd lexfunc
-less 0.22 0.23 0.30 0.24 0.38 0.44
in- 0.39 0.34 0.45 0.40 0.47 0.45
un- 0.33 0.33 0.41 0.34 0.44 0.46

Table 4: Mean similarity of composed vectors to
high-quality corpus-extracted derived-form vec-
tors with negative affixes

fulladd and lexfunc significantly outperform stem
also in the HR subset (p<.001). That is, the mod-
els provide better approximations of derived forms
even when the stem itself should already be a good
surrogate. The difference between the two models
is not significant.

We noted in Section 4.1 that forms containing
the “negative” affixes -less, un- and in- received
on average low SDR scores, since negation im-
pacts meaning more drastically than other opera-
tions. Table 4 reports the performance of the mod-
els on these affixes. Indeed, the stem baseline per-
forms quite poorly, whereas fulladd, lexfunc and,
to a lesser extent, wadd are quite effective in this
condition as well, all performing greatly above the
baseline. These results are intriguing in light of
the fact that modeling negation is a challenging
task for DSMs (Mohammad et al., 2013) as well as
cDSMs (Preller and Sadrzadeh, 2011). To the ex-
tent that our best methods have captured the negat-
ing function of a prefix such as in-, they might be
applied to tasks such as recognizing lexical op-
posites, or even simple forms of syntactic nega-
tion (modeling inoperable is just a short step away
from modeling not operable compositionally).

6 Experiment 2: Comparing the quality
of corpus-extracted and
compositionally generated words

The first experiment simulated the scenario in
which derived forms are not in our corpus, so
that directly extracting their representation from
it is not an option. The second experiment tests
if compositionally-derived representations can be
better than those extracted directly from the corpus
when the latter is a possible strategy (i.e., the de-
rived forms are attested in the source corpus). To
this purpose, we focused on those 277 test items
that were judged as low-quality (LQ, see Section
4.1), which are presumably more challenging to
generate, and where the compositional route could
be most useful.

We evaluated the derived forms generated by

corpus stem wadd fulladd lexfunc
All 2.28 3.26 4.12 3.99 3.09
HR 2.29 3.56 4.48 4.31 3.31
LR 2.22 2.48 3.14 3.12 2.52

Table 5: Average quality ratings of derived vectors

Target Model Neighbors

florist
wadd flora, fauna, ecosystem
fulladd flora, fauna, egologist
lexfunc ornithologist, naturalist, botanist

sparsity
wadd sparse, sparsely, dense
fulladd sparse, sparseness, angularity
lexfunc fragility, angularity, smallness

inducement
wadd induce, inhibit, inhibition
fulladd induce, inhibition, mediate
lexfunc impairment, cerebral, ocular

inoperable
wadd operable, palliation, biopsy
fulladd operable, inoperative, ventilator
lexfunc inoperative, unavoidably, flaw

rename
wadd name, later, namesake
fulladd name, namesake, later
lexfunc temporarily, reinstate, thereafter

Table 6: Examples of model-predicted neighbors
for words with LQ corpus-extracted vectors

the models that performed best in the first exper-
iment (fulladd, lexfunc and wadd), as well as the
stem baseline, by means of another crowdsourcing
study. We followed the same procedure used to
assess the quality of corpus-extracted vectors, that
is, we asked judges to rate the relatedness of the
target forms to their NNs (we obtained on average
29 responses per form).

The first line of Table 5 reports the average
quality (on a 7-point scale) of the representations
of the derived forms as produced by the models
and baseline, as well as of the corpus-harvested
ones (corpus column). All compositional models
produce representations that are of significantly
higher quality (p < .001) than the corpus-based
ones. The effect is also evident in qualitative
terms. Table 6 presents the NNs predicted by the
three compositional methods for the same LQ test
items whose corpus-based NNs are presented in
Table 2. These results indicate that morpheme
composition is an effective solution when the qual-
ity of corpus-extracted derived forms is low (and
the previous experiment showed that, when their
quality is high, composition can at least approxi-
mate corpus-based vectors).

With respect to Experiment 1, we obtain a dif-
ferent ranking of the models, with lexfunc being
outperformed by both wadd and fulladd (p<.001),
that are statistically indistinguishable. The wadd
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composition is dominated by the stem, and by
looking at the examples in Table 6 we notice that
both this model and fulladd tend to feature the
stem as NN (100% of the cases for wadd, 73%
for fulladd in the complete test set). The question
thus arises as to whether the good performance of
these composition techniques is simply due to the
fact that they produce derived forms that are near
their stems, with no added semantic value from the
affix (a “stemploitation” strategy).

However, the stemploitation hypothesis is dis-
pelled by the observation that both models signifi-
cantly outperform the stem baseline (p<.001), de-
spite the fact that the latter, again, has good per-
formance, significantly outperforming the corpus-
derived vectors (p < .001). Thus, we confirm
that compositional models provide higher qual-
ity vectors that are capturing the meaning of de-
rived forms beyond the information provided by
the stem.

Indeed, if we focus on the third row of Ta-
ble 5, reporting performance on low stem-derived
relatedness (LR) items (annotated as described in
Section 4.1), fulladd and wadd still significantly
outperform the corpus representations (p<.001),
whereas the quality of the stem representations of
LR items is not significantly different form that of
the corpus-derived ones. Interestingly, lexfunc dis-
plays the smallest drop in performance when re-
stricting evaluation to LR items; however, since it
does not significantly outperform the LQ corpus
representations, this is arguably due to a floor ef-
fect.

7 Conclusion and future work

We investigated to what extent cDSMs can gener-
ate effective meaning representations of complex
words through morpheme composition. Several
state-of-the-art composition models were adapted
and evaluated on this novel task. Our results sug-
gest that morpheme composition can indeed pro-
vide high-quality vectors for complex forms, im-
proving both on vectors directly extracted from the
corpus and on a stem-backoff strategy. This re-
sult is of practical importance for distributional se-
mantics, as it paves the way to address one of the
main causes of data sparseness, and it confirms the
usefulness of the compositional approach in a new
domain. Overall, fulladd emerged as the best per-
forming model, with both lexfunc and the simple
wadd approach constituting strong rivals. The ef-

fectiveness of the best models extended also to the
challenging cases where the meaning of derived
forms is far from that of the stem, including nega-
tive affixes.

The fulladd method requires a vector represen-
tation for bound morphemes. A first direction for
future work will thus be to investigate which as-
pects of the meaning of bound morphemes are
captured by our current simple-minded approach
to populating their vectors, and to explore alterna-
tive ways to construct them, seeing if they further
improve fulladd performance.

A natural extension of our research is to ad-
dress morpheme composition and morphological
induction jointly, trying to model the intuition that
good candidate morphemes should have coherent
semantic representations. Relatedly, in the cur-
rent setting we generate complex forms from their
parts. We want to investigate the inverse route,
namely “de-composing” complex words to de-
rive representations of their stems, especially for
cases where the complex words are more frequent
(e.g. comfort/comfortable).

We would also like to apply composition to in-
flectional morphology (that currently lies outside
the scope of distributional semantics), to capture
the nuances of meaning that, for example, distin-
guish singular and plural nouns (consider, e.g., the
difference between the mass singular tea and the
plural teas, which coerces the noun into a count
interpretation (Katz and Zamparelli, 2012)).

Finally, in our current setup we focus on a single
composition step, e.g., we derive the meaning of
inoperable by composing the morphemes in- and
operable. But operable is in turn composed of op-
erate and -able. In the future, we will explore re-
cursive morpheme composition, especially since
we would like to apply these methods to more
complex morphological systems (e.g., agglutina-
tive languages) where multiple morphemes are the
norm.
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Abstract

In this paper, we present a solution to one
aspect of the decipherment task: the pre-
diction of consonants and vowels for an
unknown language and alphabet. Adopt-
ing a classical Bayesian perspective, we
performs posterior inference over hun-
dreds of languages, leveraging knowledge
of known languages and alphabets to un-
cover general linguistic patterns of typo-
logically coherent language clusters. We
achieve average accuracy in the unsuper-
vised consonant/vowel prediction task of
99% across 503 languages. We further
show that our methodology can be used
to predict more fine-grained phonetic dis-
tinctions. On a three-way classification
task between vowels, nasals, and non-
nasal consonants, our model yields unsu-
pervised accuracy of 89% across the same
set of languages.

1 Introduction

Over the past centuries, dozens of lost languages
have been deciphered through the painstaking
work of scholars, often after decades of slow
progress and dead ends. However, several impor-
tant writing systems and languages remain unde-
ciphered to this day.

In this paper, we present a successful solution
to one aspect of the decipherment puzzle: auto-
matically identifying basic phonetic properties of
letters in an unknown alphabetic writing system.
Our key idea is to use knowledge of the phonetic
regularities encoded in known language vocabu-
laries to automatically build a universal probabilis-
tic model to successfully decode new languages.

Our approach adopts a classical Bayesian per-
spective. We assume that each language has
an unobserved set of parameters explaining its

observed vocabulary. We further assume that
each language-specific set of parameters was itself
drawn from an unobserved common prior, shared
across a cluster of typologically related languages.
In turn, each cluster derives its parameters from
a universal prior common to all language groups.
This approach allows us to mix together data from
languages with various levels of observations and
perform joint posterior inference over unobserved
variables of interest.

At the bottom layer (see Figure 1), our
model assumes a language-specific data generat-
ing HMM over words in the language vocabulary.
Each word is modeled as an emitted sequence of
characters, depending on a corresponding Markov
sequence of phonetic tags. Since individual letters
are highly constrained in their range of phonetic
values, we make the assumption of one-tag-per-
observation-type (e.g. a single letter is constrained
to be always a consonant or always a vowel across
all words in a language).

Going one layer up, we posit that the language-
specific HMM parameters are themselves drawn
from informative, non-symmetric distributions
representing a typologically coherent language
grouping. By applying the model to a mix of lan-
guages with observed and unobserved phonetic se-
quences, the cluster-level distributions can be in-
ferred and help guide prediction for unknown lan-
guages and alphabets.

We apply this approach to two small decipher-
ment tasks:

1. predicting whether individual characters in
an unknown alphabet and language represent
vowels or consonants, and

2. predicting whether individual characters in
an unknown alphabet and language represent
vowels, nasals, or non-nasal consonants.

For both tasks, our approach yields considerable
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success. We experiment with a data set consist-
ing of vocabularies of 503 languages from around
the world, written in a mix of Latin, Cyrillic, and
Greek alphabets. In turn for each language, we
consider it and its alphabet “unobserved” — we
hide the graphic and phonetic properties of the
symbols — while treating the vocabularies of the
remaining languages as fully observed with pho-
netic tags on each of the letters.

On average, over these 503 leave-one-language-
out scenarios, our model predicts consonant/vowel
distinctions with 99% accuracy. In the more chal-
lenging task of vowel/nasal/non-nasal prediction,
our model achieves average accuracy over 89%.

2 Related Work

The most direct precedent to the present work is
a section in Knight et al. (2006) on universal pho-
netic decipherment. They build a trigram HMM
with three hidden states, corresponding to conso-
nants, vowels, and spaces. As in our model, indi-
vidual characters are treated as the observed emis-
sions of the hidden states. In contrast to the present
work, they allow letters to be emitted by multiple
states.

Their experiments show that the HMM trained
with EM successfully clusters Spanish letters into
consonants and vowels. They further design a
more sophisticated finite-state model, based on
linguistic universals regarding syllable structure
and sonority. Experiments with the second model
indicate that it can distinguish sonorous conso-
nants (such as n, m, l, r) from non-sonorous con-
sonants in Spanish. An advantage of the linguis-
tically structured model is that its predictions do
not require an additional mapping step from unin-
terpreted hidden states to linguistic categories, as
they do with the HMM.

Our model and experiments can be viewed as
complementary to the work of Knight et al., while
also extending it to hundreds of languages. We
use the simple HMM with EM as our baseline. In
lieu of a linguistically designed model structure,
we choose an empirical approach, allowing poste-
rior inference over hundreds of known languages
to guide the model’s decisions for the unknown
script and language.

In this sense, our model bears some similarity
to the decipherment model of Snyder et al. (2010),
which used knowledge of a related language (He-
brew) in an elaborate Bayesian framework to de-

cipher the ancient language of Ugaritic. While the
aim of the present work is more modest (discover-
ing very basic phonetic properties of letters) it is
also more widely applicable, as we don’t required
detailed analysis of a known related language.

Other recent work has employed a simi-
lar perspective for tying learning across lan-
guages. Naseem et al. (2009) use a non-parametric
Bayesian model over parallel text to jointly learn
part-of-speech taggers across 8 languages, while
Cohen and Smith (2009) develop a shared logis-
tic normal prior to couple multilingual learning
even in the absence of parallel text. In simi-
lar veins, Berg-Kirkpatrick and Klein (2010) de-
velop hierarchically tied grammar priors over lan-
guages within the same family, and Bouchard-
Côté et al. (2013) develop a probabilistic model of
sound change using data from 637 Austronesian
languages.

In our own previous work, we have developed
the idea that supervised knowledge of some num-
ber of languages can help guide the unsupervised
induction of linguistic structure, even in the ab-
sence of parallel text (Kim et al., 2011; Kim and
Snyder, 2012)1. In the latter work we also tack-
led the problem of unsupervised phonemic predic-
tion for unknown languages by using textual reg-
ularities of known languages. However, we as-
sumed that the target language was written in a
known (Latin) alphabet, greatly reducing the dif-
ficulty of the prediction task. In our present case,
we assume no knowledge of any relationship be-
tween the writing system of the target language
and known languages, other than that they are all
alphabetic in nature.

Finally, we note some similarities of our model
to some ideas proposed in other contexts. We
make the assumption that each observation type
(letter) occurs with only one hidden state (con-
sonant or vowel). Similar constraints have been
developed for part-of-speech tagging (Lee et al.,
2010; Christodoulopoulos et al., 2011), and the
power of type-based sampling has been demon-
strated, even in the absence of explicit model con-
straints (Liang et al., 2010).

3 Model

Our generative Bayesian model over the ob-
served vocabularies of hundreds of languages is

1We note that similar ideas were simultaneously proposed
by other researchers (Cohen et al., 2011).
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For example, the cluster Poisson parameter over
vowel observation types might be λ = 9 (indi-
cating 9 vowel letters on average for the cluster),
while the parameter over consonant observation
types might be λ = 20 (indicating 20 consonant
letters on average). These priors will be distinct
for each language cluster and serve to characterize
its general linguistic and typological properties.

We pause at this point to review the Dirich-
let distribution in more detail. A k−dimensional
Dirichlet with parameters α1 ...αk defines a distri-
bution over the k − 1 simplex with the following
density:

f(θ1 ... θk|α1 ... αk) ∝
∏

i

θαi−1
i

where αi > 0, θi > 0, and
∑

i θi = 1. The Dirich-
let serves as the conjugate prior for the Multino-
mial, meaning that the posterior θ1...θk|X1...Xn is
again distributed as a Dirichlet (with updated pa-
rameters). It is instructive to reparameterize the
Dirichlet with k + 1 parameters:

f(θ1 ... θk|α0, α
′
1 ... α′

k) ∝
∏

i

θ
α0α′

i−1
i

where α0 =
∑

i αi, and α′
i = αi/α0. In this

parameterization, we have E[θi] = α′
i. In other

words, the parameters α′
i give the mean of the dis-

tribution, and α0 gives the precision of the dis-
tribution. For large α0 ≫ k, the distribution is
highly peaked around the mean (conversely, when
α0 ≪ k, the mean lies in a valley).

Thus, the Dirichlet parameters of a language
cluster characterize both the average HMMs of in-
dividual languages within the cluster, as well as
how much we expect the HMMs to vary from
the mean. In the case of emission distribu-
tions, we assume symmetric Dirichlet priors — i.e.
one-parameter Dirichlets with densities given by
f(θ1 ...θk|β) ∝ ∏

θ
(β−1)
i . This assumption is nec-

essary, as we have no way to identify characters
across languages in the decipherment scenario,
and even the number of consonants and vowels
(and thus multinomial/Dirichlet dimensions) can
vary across the languages of a cluster. Thus, the
mean of these Dirichlets will always be a uniform
emission distribution. The single Dirichlet emis-
sion parameter per cluster will specify whether
this mean is on a peak (large β) or in a valley
(small β). In other words, it will control the ex-
pected sparsity of the resulting per-language emis-
sion multinomials.

In contrast, the transition Dirichlet parameters
may be asymmetric, and thus very specific and
informative. For example, one cluster may have
the property that CCC consonant clusters are ex-
ceedingly rare across all its languages. This prop-
erty would be expressed by a very small mean
α′

CCC ≪ 1 but large precision α0. Later we shall
see examples of learned transition Dirichlet pa-
rameters.

3.3 Cluster Generation

The generation of the cluster parameters (Algo-
rithm 1) defines the highest layer of priors for our
model. As Dirichlets lack a standard conjugate
prior, we simply use uniform priors over the in-
terval [0, 500]. For the cluster Poisson parameters,
we use conjugate Gamma distributions with vague
priors.3

4 Inference

In this section we detail the inference proce-
dure we followed to make predictions under our
model. We run the procedure over data from
503 languages, assuming that all languages but
one have observed character and tag sequences:
w1, w2, . . . , t1, t2, . . . Since each character type w
is assumed to have a single tag category, this is
equivalent to observing the character token se-
quence along with a character-type-to-tag map-
ping tw. For the target language, we observe only
character token sequence w1, w2, . . .

We assume fixed and known parameter val-
ues only at the cluster generation level. Unob-
served variables include (i) the cluster parameters
α, β, λ, (ii) the cluster assignments z, (iii) the per-
language HMM parameters θ, φ for all languages,
and (iv) for the target language, the tag tokens
t1, t2, . . . — or equivalently the character-type-to-
tag mappings tw — along with the observation
type-counts Nt.

4.1 Monte Carlo Approximation

Our goal in inference is to predict the most likely
tag tw,ℓ for each character type w in our target lan-
guage ℓ according to the posterior:

f (tw,ℓ | w, t−ℓ)

=

ˆ

f (tℓ, z, α, β | w, t−ℓ) d Θ (1)

3(1,19) for consonants, (1,10) for vowels, (0.2, 15) for
nasals, and (1,16) for non-nasal consonants.
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where Θ = (t−w,ℓ, z, α, β), w are the observed
character sequences for all languages, t−ℓ are the
character-to-tag mappings for the observed lan-
guages, z are the language-to-cluster assignments,
and α and β are all the cluster-level transition and
emission Dirichlet parameters.

Sampling values (tℓ, z, α, β)N
n=1 from the inte-

grand in Equation 1 allows us to perform the stan-
dard Monte Carlo approximation:

f (tw,ℓ = t | w, t−ℓ)

≈ N−1
N∑

n=1

I (tw,ℓ = t in sample n) (2)

To maximize the Monte Carlo posterior, we sim-
ply take the most commonly sampled tag value
for character type w in language ℓ. Note that
we leave out the language-level HMM parame-
ters (θ, φ) as well as the cluster-level Poisson pa-
rameters λ from Equation 1 (and thus our sample
space), as we can analytically integrate them out
in our sampling equations.

4.2 Gibbs Sampling
To sample values (tℓ, z, α, β) from their poste-
rior (the integrand of Equation 1), we use Gibbs
sampling, a Monte Carlo technique that constructs
a Markov chain over a high-dimensional sample
space by iteratively sampling each variable condi-
tioned on the currently drawn sample values for
the others, starting from a random initialization.
The Markov chain converges to an equilibrium
distribution which is in fact the desired joint den-
sity (Geman and Geman, 1984). We now sketch
the sampling equations for each of our sampled
variables.

Sampling tw,ℓ

To sample the tag assignment to character w in
language ℓ, we need to compute:

f (tw,ℓ | w, t−w,ℓ, t−ℓ, z, α, β) (3)

∝ f (wℓ, tℓ, Nℓ | αk, βk,Nk−ℓ) (4)

where Nℓ are the types-per-tag counts implied by
the mapping tℓ, k is the current cluster assignment
for the target language (zℓ = k), αk and βk are the
cluster parameters, and Nk−ℓ are the types-per-tag
counts for all languages currently assigned to the
cluster, other than language ℓ.

Applying the chain rule along with our model’s
conditional independence structure, we can further

re-write Equation 4 as a product of three terms:

f(Nℓ|Nk−ℓ) (5)

f(t1, t2, . . . |αk) (6)

f(w1, w2, . . . |Nℓ, t1, t2, . . . , βk) (7)

The first term is the posterior predictive distribu-
tion for the Poisson-Gamma compound distribu-
tion and is easy to derive. The second term is the
tag transition predictive distribution given Dirich-
let hyperparameters, yielding a familiar Polya urn
scheme form. Removing terms that don’t depend
on the tag assignment tℓ,w gives us:

∏
t,t′

(
αk,t,t′ + n(t, t′)

)[n′(t,t′)]

∏
t

(∑
t′ αk,t,t′ + n(t)

)[n′(t)]

where n(t) and n(t, t′) are, respectively, unigram
and bigram tag counts excluding those containing
character w. Conversely, n′(t) and n′(t, t′) are,
respectively, unigram and bigram tag counts only
including those containing character w. The no-
tation a[n] denotes the ascending factorial: a(a +
1) · · · (a+n−1). Finally, we tackle the third term,
Equation 7, corresponding to the predictive dis-
tribution of emission observations given Dirichlet
hyperparameters. Again, removing constant terms
gives us:

β
[n(w)]
k,t∏

t′ Nℓ,t′β
[n(t′)]
k,t′

where n(w) is the unigram count of character w,
and n(t′) is the unigram count of tag t, over all
characters tokens (including w).

Sampling αk,t,t′

To sample the Dirichlet hyperparameter for cluster
k and transition t → t′, we need to compute:

f(αk,t,t′ |t, z)
∝ f(t, z|αz,t,t′)

= f(tk|αz,t,t′)

where tk are the tag sequences for all languages
currently assigned to cluster k. This term is a pre-
dictive distribution of the multinomial-Dirichlet
compound when the observations are grouped into
multiple multinomials all with the same prior.
Rather than inefficiently computing a product of
Polya urn schemes (with many repeated ascending
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factorials with the same base), we group common
terms together and calculate:

∏
j=1(αk,t,t′ + k)n(j,k,t,t′)

∏
j=1(

∑
t′′ αk,t,t′′ + k)n(j,k,t)

where n(j, k, t) and n(j, k, t, t′) are the numbers
of languages currently assigned to cluster k which
have more than j occurrences of unigram (t) and
bigram (t, t′), respectively.

This gives us an efficient way to compute un-
normalized posterior densities for α. However, we
need to sample from these distributions, not just
compute them. To do so, we turn to slice sam-
pling (Neal, 2003), a simple yet effective auxiliary
variable scheme for sampling values from unnor-
malized but otherwise computable densities.

The key idea is to supplement the variable
x, distributed according to unnormalized density
p̃(x), with a second variable u with joint density
defined as p(x, u) ∝ I(u < p̃(x)). It is easy
to see that p̃(x) ∝

´

p(x, u)du. We then itera-
tively sample u|x and x|u, both of which are dis-
tributed uniformly across appropriately bounded
intervals. Our implementation follows the pseudo-
code given in Mackay (2003).

Sampling βk,t

To sample the Dirichlet hyperparameter for cluster
k and tag t we need to compute:

f(βk,t|t,w, z,N)

∝ f(w|t, z, βk,t,N)

∝ f(wk|tk, βk,t,Nk)

where, as before, tk are the tag sequences for
languages assigned to cluster k, Nk are the tag
observation type-counts for languages assigned
to the cluster, and likewise wk are the char-
acter sequences of all languages in the cluster.
Again, we have the predictive distribution of
the multinomial-Dirichlet compound with multi-
ple grouped observations. We can apply the same
trick as above to group terms in the ascending fac-
torials for efficient computation. As before, we
use slice sampling for obtaining samples.

Sampling zℓ

Finally, we consider sampling the cluster assign-
ment zℓ for each language ℓ. We calculate:

f(zℓ = k|w, t,N, z−ℓ, α, β)

∝ f(wℓ, tℓ, Nℓ|αk, βk,Nk−ℓ)

= f(Nℓ|Nk−ℓ)f(tℓ|αk)f(wℓ|tℓ, Nℓ, βk)

The three terms correspond to (1) a standard pre-
dictive distributions for the Poisson-gamma com-
pound and (2) the standard predictive distribu-
tions for the transition and emission multinomial-
Dirichlet compounds.

5 Experiments

To test our model, we apply it to a corpus of 503
languages for two decipherment tasks. In both
cases, we will assume no knowledge of our tar-
get language or its writing system, other than that
it is alphabetic in nature. At the same time, we
will assume basic phonetic knowledge of the writ-
ing systems of the other 502 languages. For our
first task, we will predict whether each character
type is a consonant or a vowel. In the second task,
we further subdivide the consonants into two ma-
jor categories: the nasal consonants, and the non-
nasal consonants. Nasal consonants are known to
be perceptually very salient and are unique in be-
ing high frequency consonants in all known lan-
guages.

5.1 Data
Our data is drawn from online electronic transla-
tions of the Bible (http://www.bible.is,
http://www.crosswire.org/index.
jsp, and http://www.biblegateway.
com). We have identified translations covering
503 distinct languages employing alphabetic
writing systems. Most of these languages (476)
use variants of the Latin alphabet, a few (26)
use Cyrillic, and one uses the Greek alphabet.
As Table 1 indicates, the languages cover a very
diverse set of families and geographic regions,
with Niger-Congo languages being the largest
represented family.4 Of these languages, 30 are
either language isolates, or sole members of their
language family in our data set.

For our experiments, we extracted unique word
types occurring at least 5 times from the down-
loaded Bible texts. We manually identified vowel,
nasal, and non-nasal character types. Since the let-
ter “y” can frequently represent both a consonant
and vowel, we exclude it from our evaluation. On
average, the resulting vocabularies contain 2,388
unique words, with 19 consonant characters, two
2 nasal characters, and 9 vowels. We include the
data as part of the paper.

4In fact, the Niger-Congo grouping is often considered
the largest language family in the world in terms of distinct
member languages.
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Language Family #lang
Niger-Congo 114
Austronesian 67
Oto-Manguean 41
Indo-European 39
Mayan 34
Quechuan 17
Afro-Asiatic 17
Uto-Aztecan 16
Altaic 16
Trans-New Guinea 15
Nilo-Saharan 14
Sino-Tibetan 13
Tucanoan 9
Creole 8
Chibchan 6
Maipurean 5
Tupian 5
Nakh-Daghestanian 4
Uralic 4
Cariban 4
Totonacan 4
Mixe-Zoque 3
Jivaroan 3
Choco 3
Guajiboan 2
Huavean 2
Austro-Asiatic 2
Witotoan 2
Jean 2
Paezan 2
Other 30

Table 1: Language families in our data set. The
Other category includes 9 language isolates and
21 language family singletons.

5.2 Baselines and Model Variants

As our baseline, we consider the trigram HMM
model of Knight et al. (2006), trained with EM. In
all experiments, we run 10 random restarts of EM,
and pick the prediction with highest likelihood.
We map the induced tags to the gold-standard tag
categories (1-1 mapping) in the way that maxi-
mizes accuracy.

We then consider three variants of our model.
The simplest version, SYMM, disregards all in-
formation from other languages, using simple
symmetric hyperparameters on the transition and
emission Dirichlet priors (all hyperparameters set
to 1). This allows us to assess the performance of

Model Cons vs Vowel C vs V vs N

A
ll

EM 93.37 74.59
SYMM 95.99 80.72
MERGE 97.14 86.13
CLUST 98.85 89.37

Is
ol

at
es EM 94.50 74.53

SYMM 96.18 78.13
MERGE 97.66 86.47
CLUST 98.55 89.07

N
on

-L
at

in EM 92.93 78.26
SYMM 95.90 79.04
MERGE 96.06 83.78
CLUST 97.03 85.79

Table 2: Average accuracy for EM baseline and
model variants across 503 languages. First panel:
results on all languages. Second panel: results for
30 isolate and singleton languages. Third panel:
results for 27 non-Latin alphabet languages (Cyril-
lic and Greek). Standard Deviations across lan-
guages are about 2%.

our Gibbs sampling inference method for the type-
based HMM, even in the absence of multilingual
priors.

We next consider a variant of our model,
MERGE, that assumes that all languages reside in
a single cluster. This allows knowledge from the
other languages to affect our tag posteriors in a
generic, language-neutral way.

Finally, we consider the full version of our
model, CLUST, with 20 language clusters. By al-
lowing for the division of languages into smaller
groupings, we hope to learn more specific param-
eters tailored for typologically coherent clusters of
languages.

6 Results

The results of our experiments are shown in Ta-
ble 2. In all cases, we report token-level accuracy
(i.e. frequent characters count more than infre-
quent characters), and results are macro-averaged
over the 503 languages. Variance across languages
is quite low: the standard deviations are about 2
percentage points.

For the consonant vs. vowel prediction task,
all tested models perform well. Our baseline, the
EM-based HMM, achieves 93.4% accuracy. Sim-
ply using our Gibbs sampler with symmetric priors
boosts the performance up to 96%. Performance
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Figure 4: Inferred Dirichlet transition hyperparameters for bigram CLUST on three-way classification
task with four latent clusters. Row gives starting state, column gives target state. Size of red blobs are
proportional to magnitude of corresponding hyperparameters.

Language Family Portion #langs Ent.

Indo-European
0.38 26 2.26
0.24 41 3.19
0.21 38 3.77

Quechuan 0.89 18 0.61
Mayan 0.64 33 1.70
Oto-Manguean 0.55 31 1.99
Maipurean 0.25 8 2.75
Tucanoan 0.2 45 3.98
Uto-Aztecan 0.4 25 2.85
Altaic 0.44 27 2.76

Niger-Congo

1 2 0.00
0.78 23 1.26
0.74 27 1.05
0.68 22 1.22
0.67 33 1.62
0.5 18 2.21

0.24 25 3.27

Austronesian
0.91 22 0.53
0.71 21 1.51
0.24 17 3.06

Table 3: Plurality language families across 20
clusters. The columns indicate portion of lan-
guages in the plurality family, number of lan-
guages, and entropy over families.

with a bigram HMM with four language clus-
ters. Examining just the first row, we see that
the languages are partially grouped by their pref-
erence for the initial tag of words. All clus-
ters favor languages which prefer initial conso-
nants, though this preference is most weakly ex-
pressed in cluster 3. In contrast, both clusters
2 and 4 have very dominant tendencies towards
consonant-initial languages, but differ in the rel-
ative weight given to languages preferring either
vowels or nasals initially.

Finally, we examine the relationship between
the induced clusters and language families in Ta-
ble 3, for the trigram consonant vs. vowel CLUST

model with 20 clusters. We see that for about
half the clusters, there is a majority language fam-
ily, most often Niger-Congo. We also observe
distinctive clusters devoted to Austronesian and
Quechuan languages. The largest two clusters are
rather indistinct, without any single language fam-
ily achieving more than 24% of the total.

8 Conclusion

In this paper, we presented a successful solution
to one aspect of the decipherment task: the predic-
tion of consonants and vowels for an unknown lan-
guage and alphabet. Adopting a classical Bayesian
perspective, we develop a model that performs
posterior inference over hundreds of languages,
leveraging knowledge of known languages to un-
cover general linguistic patterns of typologically
coherent language clusters. Using this model, we
automatically distinguish between consonant and
vowel characters with nearly 99% accuracy across
503 languages. We further experimented on a
three-way classification task involving nasal char-
acters, achieving nearly 90% accuracy.

Future work will take us in several new direc-
tions: first, we would like to move beyond the as-
sumption of an alphabetic writing system so that
we can apply our method to undeciphered syllabic
scripts such as Linear A. We would also like to
extend our methods to achieve finer-grained reso-
lution of phonetic properties beyond nasals, con-
sonants, and vowels.
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Abstract

In this paper we examine language mod-
eling for text simplification. Unlike some
text-to-text translation tasks, text simplifi-
cation is a monolingual translation task al-
lowing for text in both the input and out-
put domain to be used for training the lan-
guage model. We explore the relation-
ship between normal English and simpli-
fied English and compare language mod-
els trained on varying amounts of text
from each. We evaluate the models intrin-
sically with perplexity and extrinsically
on the lexical simplification task from Se-
mEval 2012. We find that a combined
model using both simplified and normal
English data achieves a 23% improvement
in perplexity and a 24% improvement on
the lexical simplification task over a model
trained only on simple data. Post-hoc anal-
ysis shows that the additional unsimplified
data provides better coverage for unseen
and rare n-grams.

1 Introduction

An important component of many text-to-text
translation systems is the language model which
predicts the likelihood of a text sequence being
produced in the output language. In some problem
domains, such as machine translation, the trans-
lation is between two distinct languages and the
language model can only be trained on data in
the output language. However, some problem do-
mains (e.g. text compression, text simplification
and summarization) can be viewed as monolingual
translation tasks, translating between text varia-
tions within a single language. In these monolin-
gual problems, text could be used from both the
input and output domain to train a language model.
In this paper, we investigate this possibility for text

simplification where both simplified English text
and normal English text are available for training
a simple English language model.

Table 1 shows the n-gram overlap proportions
in a sentence aligned data set of 137K sentence
pairs from aligning Simple English Wikipedia and
English Wikipedia articles (Coster and Kauchak,
2011a).1 The data highlights two conflicting
views: does the benefit of additional data out-
weigh the problem of the source of the data?
Throughout the rest of this paper we refer to
sentences/articles/text from English Wikipedia as
normal and sentences/articles/text from Simple
English Wikipedia as simple.

On the one hand, there is a strong correspon-
dence between the simple and normal data. At the
word level 96% of the simple words are found in
the normal corpus and even for n-grams as large as
5, more than half of the n-grams can be found in
the normal text. In addition, the normal text does
represent English text and contains many n-grams
not seen in the simple corpus. This extra informa-
tion may help with data sparsity, providing better
estimates for rare and unseen n-grams.

On the other hand, there is still only modest
overlap between the sentences for longer n-grams,
particularly given that the corpus is sentence-
aligned and that 27% of the sentence pairs in
this aligned data set are identical. If the word
distributions were very similar between simple
and normal text, then the overlap proportions be-
tween the two languages would be similar re-
gardless of which direction the comparison is
made. Instead, we see that the normal text has
more varied language and contains more n-grams.
Previous research has also shown other differ-
ences between simple and normal data sources
that could impact language model performance
including average number of syllables, reading

1http://www.cs.middlebury.edu/˜dkauchak/simplification
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n-gram size: 1 2 3 4 5
simple in normal 0.96 0.80 0.68 0.61 0.55
normal in simple 0.87 0.68 0.58 0.51 0.46

Table 1: The proportion of n-grams that overlap
in a corpus of 137K sentence-aligned pairs from
Simple English Wikipedia and English Wikipedia.

complexity, and grammatical complexity (Napoles
and Dredze, 2010; Zhu et al., 2010; Coster and
Kauchak, 2011b). In addition, for some monolin-
gual translation domains, it has been argued that it
is not appropriate to train a language model using
data from the input domain (Turner and Charniak,
2005).

Although this question arises in other monolin-
gual translation domains, text simplification rep-
resents an ideal problem area for analysis. First,
simplified text data is available in reasonable
quantities. Simple English Wikipedia contains
more than 60K articles written in simplified En-
glish. This is not the case for all monolingual
translation tasks (Knight and Marcu, 2002; Cohn
and Lapata, 2009). Second, the quantity of sim-
ple text data available is still limited. After pre-
processing, the 60K articles represents less than
half a million sentences which is orders of mag-
nitude smaller than the amount of normal English
data available (for example the English Gigaword
corpus (David Graff, 2003)). Finally, many recent
text simplification systems have utilized language
models trained only on simplified data (Zhu et al.,
2010; Woodsend and Lapata, 2011; Coster and
Kauchak, 2011a; Wubben et al., 2012); improve-
ments in simple language modeling could translate
into improvements for these systems.

2 Related Work

If we view the normal data as out-of-domain data,
then the problem of combining simple and nor-
mal data is similar to the language model do-
main adaption problem (Suzuki and Gao, 2005),
in particular cross-domain adaptation (Bellegarda,
2004) where a domain-specific model is improved
by incorporating additional general data. Adapta-
tion techniques have been shown to improve lan-
guage modeling performance based on perplexity
(Rosenfeld, 1996) and in application areas such
as speech transcription (Bacchiani and Roark,
2003) and machine translation (Zhao et al., 2004),
though no previous research has examined the lan-

guage model domain adaptation problem for text
simplification. Pan and Yang (2010) provide a sur-
vey on the related problem of domain adaptation
for machine learning (also referred to as “transfer
learning”), which utilizes similar techniques. In
this paper, we explore some basic adaptation tech-
niques, however this paper is not a comparison of
domain adaptation techniques for language mod-
eling. Our goal is more general: to examine the
relationship between simple and normal data and
determine whether normal data is helpful. Previ-
ous domain adaptation research is complementary
to our experiments and could be explored in the
future for additional performance improvements.

Simple language models play a role in a va-
riety of text simplification applications. Many
recent statistical simplification techniques build
upon models from machine translation and uti-
lize a simple language model during simplifica-
tion/decoding both in English (Zhu et al., 2010;
Woodsend and Lapata, 2011; Coster and Kauchak,
2011a; Wubben et al., 2012) and in other lan-
guages (Specia, 2010). Simple English language
models have also been used as predictive features
in other simplification sub-problems such as lexi-
cal simplification (Specia et al., 2012) and predict-
ing text simplicity (Eickhoff et al., 2010).

Due to data scarcity, little research has been
done on language modeling in other monolin-
gual translation domains. For text compression,
most systems are trained on uncompressed data
since the largest text compression data sets con-
tain only a few thousand sentences (Knight and
Marcu, 2002; Galley and McKeown, 2007; Cohn
and Lapata, 2009; Nomoto, 2009). Similarly for
summarization, systems that have employed lan-
guage models trained only on unsummarized text
(Banko et al., 2000; Daume and Marcu, 2002).

3 Corpus

We collected a data set from English Wikipedia
and Simple English Wikipedia with the former
representing normal English and the latter sim-
ple English. Simple English Wikipedia has been
previously used for many text simplification ap-
proaches (Zhu et al., 2010; Yatskar et al., 2010;
Biran et al., 2011; Coster and Kauchak, 2011a;
Woodsend and Lapata, 2011; Wubben et al., 2012)
and has been shown to be simpler than normal En-
glish Wikipedia by both automatic measures and
human perception (Coster and Kauchak, 2011b;
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simple normal
sentences 385K 2540K
words 7.15M 64.7M
vocab size 78K 307K

Table 2: Summary counts for the simple-normal
article aligned data set consisting of 60K article
pairs.

Woodsend and Lapata, 2011). We downloaded all
articles from Simple English Wikipedia then re-
moved stubs, navigation pages and any article that
consisted of a single sentence, resulting in 60K
simple articles.

To partially normalize for content and source
differences we generated a document aligned cor-
pus for our experiments. We extracted the cor-
responding 60K normal articles from English
Wikipedia based on the article title to represent the
normal data. We held out 2K article pairs for use
as a testing set in our experiments. The extracted
data set is available for download online.2

Table 2 shows count statistics for the collected
data set. Although the simple and normal data
contain the same number of articles, because nor-
mal articles tend to be longer and contain more
content, the normal side is an order of magnitude
larger.

4 Language Model Evaluation:
Perplexity

To analyze the impact of data source on simple
English language modeling, we trained language
models on varying amounts of simple data, nor-
mal data, and a combination of the two. For our
first task, we evaluated these language models us-
ing perplexity based on how well they modeled the
simple side of the held-out data.

4.1 Experimental Setup

We used trigram language models with interpo-
lated Kneser-Kney discounting trained using the
SRI language modeling toolkit (Stolcke, 2002). To
ensure comparability, all models were closed vo-
cabulary with the same vocabulary set based on
the words that occurred in the simple side of the
training corpus, though similar results were seen
for other vocabulary choices. We generated differ-
ent models by varying the size and type of training

2http://www.cs.middlebury.edu/˜dkauchak/simplification

 100

 150

 200

 250

 300

 350

0.5M 1M 1.5M 2M 2.5M 3M

pe
rp

le
xi

ty

total number of sentences

simple-only
normal-only

simple-ALL+normal

Figure 1: Language model perplexities on the
held-out test data for models trained on increasing
amounts of data.

data:
- simple-only: simple sentences only
- normal-only: normal sentences only
- simple-X+normal: X simple sentences com-

bined with a varying number of normal sen-
tences
To evaluate the language models we calculated

the model perplexity (Chen et al., 1998) on the
simple side of the held-out data. The test set con-
sisted of 2K simple English articles with 7,799
simple sentences and 179K words. Perplexity
measures how likely a model finds a test set, with
lower scores indicating better performance.

4.2 Perplexity Results
Figure 1 shows the language model perplexi-
ties for the three types of models for increasing
amounts of training data. As expected, when
trained on the same amount of data, the language
models trained on simple data perform signifi-
cantly better than language models trained on nor-
mal data. In addition, as we increase the amount of
data, the simple-only model improves more than
the normal-only model.

However, the results also show that the normal
data does have some benefit. The perplexity for
the simple-ALL+normal model, which starts with
all available simple data, continues to improve as
normal data is added resulting in a 23% improve-
ment over the model trained with only simple data
(from a perplexity of 129 down to 100). Even
by itself the normal data does have value. The
normal-only model achieves a slightly better per-
plexity than the simple-only model, though only
by utilizing an order of magnitude more data.
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Figure 2: Language model perplexities for com-
bined simple-normal models. Each line represents
a model trained on a different amount of simple
data as normal data is added.

To better understand how the amount of sim-
ple and normal data impacts perplexity, Figure 2
shows perplexity scores for models trained on
varying amounts of simple data as we add increas-
ing amounts of normal data. We again see that
normal data is beneficial; regardless of the amount
of simple data, adding normal data improves per-
plexity. This improvement is most beneficial when
simple data is limited. Models trained on less
simple data achieved larger performance increases
than those models trained on more simple data.

Figure 2 also shows again that simple data
is more valuable than normal data. For ex-
ample, the simple-only model trained on 250K
sentences achieves a perplexity of approximately
150. To achieve this same perplexity level start-
ing with 200K simple sentences requires an ad-
ditional 300K normal sentences, or starting with
100K simple sentences an additional 850K normal
sentences.

4.3 Language Model Adaptation

In the experiments above, we generated the lan-
guage models by treating the simple and normal
data as one combined corpus. This approach has
the benefit of simplicity, however, better perfor-
mance for combining related corpora has been
seen by domain adaptation techniques which com-
bine the data in more structured ways (Bacchiani
and Roark, 2003). Our goal for this paper is not
to explore domain adaptation techniques, but to
determine if normal data is useful for the simple
language modeling task. However, to provide an-
other dimension for comparison and to understand
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Figure 3: Perplexity scores for a linearly interpo-
lated model between the simple-only model and
the normal-only model for varying lambda values.

if domain adaptation techniques may be useful, we
also investigated a linearly interpolated language
model.

A linearly interpolated language model com-
bines the probabilities of two or more language
models as a weighted sum. In our case, the in-
terpolated model combines the simple model esti-
mate, ps(wi|wi−2, wi−1), and the normal model esti-
mate, pn(wi|wi−2, wi−1), linearly (Jelinek and Mer-
cer, 1980; Hsu, 2007):
pinterpolated(wi|wi−2, wi−1) =

λ pn(wi|wi−2, wi−1) + (1− λ) ps(wi|wi−2, wi−1)

where 0 ≥ λ ≥ 1.
Figure 3 shows perplexity scores for vary-

ing lambda values ranging from the simple-only
model on the left with λ = 0 to the normal-only
model on the right with λ = 1. As with the pre-
vious experiments, adding normal data improves
improves perplexity. In fact, with a lambda of
0.5 (equal weight between the models) the per-
formance is slightly better than the aggregate ap-
proaches above with a perplexity of 98. The re-
sults also highlight the balance between simple
and normal data; normal data is not as good as
simple data and adding too much of it can cause
the results to degrade.

5 Language Model Evaluation:
Lexical Simplification

Currently, no automated methods exist for eval-
uating sentence-level or document-level text sim-
plification systems and manual evaluation is time-
consuming, expensive and has not been vali-
dated. Because of these evaluation challenges, we
chose to evaluate the language models extrinsi-
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Word: tight
Context: With the physical market as tight as it has been in memory, silver could fly at any time.
Candidates: constricted, pressurised, low, high-strung, tight
Human ranking: tight, low, constricted, pressurised, high-strung

Figure 4: A lexical substitution example from the SemEval 2012 data set.

cally based on the lexical simplification task from
SemEval 2012 (Specia et al., 2012).

Lexical simplification is a sub-problem of the
general text simplification problem (Chandrasekar
and Srinivas, 1997); a sentence is simplified by
substituting words or phrases in the sentence with
“simpler” variations. Lexical simplification ap-
proaches have been shown to improve the read-
ability of texts (Urano, 2000; Leroy et al., 2012),
are useful in domains such as medical texts where
major content changes are restricted, and they may
be useful as a pre- or post-processing step for gen-
eral simplification systems.

5.1 Experimental Setup

Examples from the lexical simplification data set
from SemEval 2012 consist of three parts: w, the
word to be simplified; s1, ..., si−1, w, si+1, ..., sn,
a sentence containing the word; and, r1, r2, ..., rm,
a list of candidate simplifications for w. The goal
of the task is to rank the candidate simplifications
according to their simplicity in the context of the
sentence. Figure 4 shows an example from the
data set. The data set contains a development set
of 300 examples and a test set of 1710 examples.3

For our experiments, we evaluated the models on
the test set.

Given a language model p(·) and a lexical sim-
plification example, we ranked the list of candi-
dates based on the probability the language model
assigns to the sentence with the candidate simplifi-
cation inserted in context. Specifically, we scored
each candidate simplification rj by
p(s1... si−1 rj si+1... sn)

and then ranked them based on this score. For ex-
ample, to calculate the ranking for the example in
Figure 4 we calculate the probability of each of:

With the physical market as constricted as it has been ...
With the physical market as pressurised as it has been ...
With the physical market as low as it has been ...
With the physical market as high-strung as it has been ...
With the physical market as tight as it has been ...

with the language model and then rank them by
their probability. We do not suggest this as a com-

3http://www.cs.york.ac.uk/semeval-2012/task1/
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Figure 5: Kappa rank scores for the models trained
on increasing amounts of data.

plete lexical substitution system, but it was a com-
mon feature for many of the submitted systems, it
performs well relative to the other systems, and it
allows for a concrete comparison between the lan-
guage models on a simplification task.

To evaluate the rankings, we use the metric from
the SemEval 2012 task, the Cohen’s kappa coeffi-
cient (Landis and Koch, 1977) between the system
ranking and the human ranking, which we denote
the “kappa rank score”. See Specia et al. (2012)
for the full details of how the evaluation metric is
calculated.

We use the same setup for training the language
models as in the perplexity experiments except
the models are open vocabulary instead of closed.
Open vocabulary models allow for the language
models to better utilize the varying amounts of
data and since the lexical simplification problem
only requires a comparison of probabilities within
a given model to produce the final ranking, we do
not need the closed vocabulary requirement.

5.2 Lexical Simplification Results
Figure 5 shows the kappa rank scores for the
simple-only, normal-only and combined models.
As with the perplexity results, for similar amounts
of data the simple-only model performs better than
the normal-only model. We also again see that the
performance difference between the two models
grows as the amount of data increases. However,
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Figure 6: Kappa rank scores for models trained
with varying amounts of simple data combined
with increasing amounts of normal data.

unlike the perplexity results, simply appending ad-
ditional normal data to the entire simple data set
does not improve the performance of the lexical
simplifier.

To determine if additional normal data im-
proves the performance for models trained on
smaller amounts of simple data, Figure 6 shows
the kappa rank scores for models trained on differ-
ent amounts of simple data as additional normal
data is added. For smaller amounts of simple data
adding normal data does improve the kappa rank
score. For example, a language model trained with
100K simple sentences achieves a score of 0.246
and is improved by almost 40% to 0.344 by adding
all of the additional normal data. Even the perfor-
mance of a model trained with 300K simple sen-
tences is increased by 3% (0.01 improvement in
kappa rank score) by adding normal data.

5.3 Language Model Adaptation

The results in the previous section show that
adding normal data to a simple data set can im-
prove the lexical simplifier if the amount of simple
data is limited. To investigate this benefit further,
we again generated linearly interpolated language
models between the simple-only model and the
normal-only model. Figure 7 shows results for the
same experimental design as Figure 6 with vary-
ing amounts of simple and normal data, however,
rather than appending the normal data we trained
the models separately and created a linearly inter-
polated model as described in Section 4.3. The
best lambda was chosen based on a linear search
optimized on the SemEval 2012 development set.

For all starting amounts of simple data, interpo-
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Figure 7: Kappa rank scores for linearly inter-
polated models between simple-only and normal-
only models trained with varying amounts of sim-
ple and normal data.

lating the simple model with the normal model re-
sults in a large increase in the kappa rank score.
Combining the model trained on all the simple
data with the model trained on all the normal data
achieves a score of 0.419, an improvement of 23%
over the model trained on only simple data. Al-
though our goal was not to create the best lexical
simplification system, this approach would have
ranked 6th out of 11 submitted systems in the
SemEval 2012 competition (Specia et al., 2012).

Interestingly, although the performance of the
simple-only models varied based on the amount of
simple data, when these models are interpolated
with a model trained on normal data, the perfor-
mance tended to converge. This behavior is also
seen in Figure 6, though to a lesser extent. This
may indicate that for some tasks like lexical sim-
plification, only a modest amount of simple data is
required when combining with additional normal
data to achieve reasonable performance.

6 Why Does Unsimplified Data Help?

For both the perplexity experiments and the lexi-
cal simplification experiments, utilizing additional
normal data resulted in large performance im-
provements; using all of the simple data available,
performance is still significantly improved when
combined with normal data. In this section, we
investigate why the additional normal data is ben-
eficial for simple language modeling.

6.1 More n-grams

Intuitively, adding normal data provides additional
English data to train on. Most language models are
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Perplexity test data Lexical simplification
simple normal % inc. simple normal % inc.

1-grams 0.85 0.93 9.4% 0.74 0.78 6.2%
2-grams 0.66 0.82 24% 0.34 0.54 56%
3-grams 0.39 0.57 46% 0.088 0.19 117%

Table 3: Proportion of n-grams in the test sets that
occur in the simple and normal training data sets.

trained using a smoothed version of the maximum
likelihood estimate for an n-gram. For trigrams,
this is:

p(a|bc) = count(abc)

count(bc)

where count(·) is the number of times the n-gram
occurs in the training corpus. For interpolated
and backoff n-gram models, these counts are
smoothed based on the probabilities of lower or-
der n-gram models, which are in-turn calculated
based on counts from the corpus.

We hypothesize that the key benefit of addi-
tional normal data is access to more n-gram counts
and therefore better probability estimation, partic-
ularly for n-grams in the simple corpus that are
unseen or have low frequency. For n-grams that
have never been seen before, the normal data pro-
vides some estimate from English text. This is
particularly important for unigrams (i.e. words)
since there is no lower order model to gain infor-
mation from and most language models assume a
uniform prior on unseen words, treating them all
equally. For n-grams that have been seen but are
rare, the additional normal data can help provide
better probability estimates. Because frequencies
tend to follow a Zipfian distribution, these rare
n-grams make up a large portion of n-grams in
real data (Ha et al., 2003).

To partially validate this hypothesis, we exam-
ined the n-gram overlap between the n-grams in
the training data and the n-grams in the test sets
from the two tasks. Table 3 shows the percentage
of unigrams, bigrams and trigrams from the two
test sets that are found in the simple and normal
training data.

For all n-gram sizes the normal data contained
more test set n-grams than the simple data. Even
at the unigram level, the normal data contained
significantly more of the test set unigrams than the
simple data. On the perplexity data set, the 9.4%
increase in word occurrence between the simple
and normal data set represents an over 50% reduc-
tion in the number of out of vocabulary words. For

Perplexity test data Lexical simplification
simple + % inc. over simple + % inc. over
normal normal normal normal

1-grams 0.93 0.2% 0.78 0.0%
2-grams 0.83 0.8% 0.54 1.1%
3-grams 0.58 2.5% 0.20 2.6%

Table 4: Proportion of n-grams in the test sets that
occur in the combination of both the simple and
normal data.

larger n-grams, the difference between the simple
and normal data sets are even more pronounced.
On the lexical simplification data the normal data
contained more than twice as many test trigrams
as the simple data. These additional n-grams al-
low for better probability estimates on the test data
and therefore better performance on the two tasks.

6.2 The Role of Normal Data

Estimation of rare events is one component of lan-
guage model performance, but other factors also
impact performance. Table 4 shows the test set
n-gram overlap on the combined data set of simple
and normal data. Because the simple and normal
data come from the same content areas, the simple
data provides little additional coverage if the nor-
mal data is already used. For example, adding the
simple data to the normal data only increases the
number of seen unigrams by 0.2%, representing
only about 600 new words. However, the exper-
iments above showed the combined models per-
formed much better than models trained only on
normal data.

This discrepancy highlights the key problem
with normal data: it is out-of-domain data. While
it shares some characteristics with the simple data,
it represents a different distribution over the lan-
guage. To make this discrepancy more explicit,
we created a sentence aligned data set by align-
ing the simple and normal articles using the ap-
proach from Coster and Kauchak (2011b). This
approach has been previously used for aligning
English Wikipedia and Simple English Wikipedia
with reasonable accuracy. The resulting data set
contains 150K aligned simple-normal sentence
pairs.

Figure 8 shows the perplexity scores for lan-
guage models trained on this data set. Because
the data is aligned and therefore similar, we see
the perplexity curves run parallel to each other as
more data is added. However, even though these
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Figure 8: Language model perplexities for mod-
els trained on increasing data sizes for a simple-
normal sentence aligned data set.

sentences represent the same content, the language
use is different between simple and normal and the
normal data performs consistently worse.

6.3 A Balance Between Simple and Normal

Examining the optimal lambda values for the lin-
early interpolated models also helps understand
the role of the normal data. On the perplexity task,
the best perplexity results were obtained with a
lambda of 0.5, or an equal weighting between the
simple and normal models. Even though the nor-
mal data contained six times as many sentences
and nine times as many words, the best model-
ing performance balanced the quality of the simple
model with the coverage of the normal model.

For the simplification task, the optimal lambda
value determined on the development set was 0.98,
with a very strong bias towards the simple model.
Only when the simple model did not provide dif-
ferentiation between lexical choices will the nor-
mal model play a role in selecting the candidates.
For the lexical simplification task, the role of the
normal model is even more clear: to handle rare
occurrences not covered by the simple model and
to smooth the simple model estimates.

7 Conclusions and Future Work

In the experiments above we have shown that on
two different tasks utilizing additional normal data
improves the performance of simple English lan-
guage models. On the perplexity task, the com-
bined model achieved a performance improvement
of 23% over the simple-only model and on the
lexical simplification task, the combined model
achieved a 24% improvement. These improve-

ments are achieved over a simple-only model that
uses all simple English data currently available in
this domain.

For both tasks, the best improvements were
seen when using language model adaptation tech-
niques, however, the adaptation results also indi-
cated that the role of normal data is partially task
dependent. On the perplexity task, the best results
were achieved with an equal weighting between
the simple-only and normal-only model. How-
ever, on the lexical simplification task, the best
results were achieved with a very strong bias to-
wards the simple-only model. For other simplifi-
cation tasks, the optimal parameters will need to
be investigated.

For many of the experiments, combining a
smaller amount of simple data (50K-100K sen-
tences) with normal data achieved results that were
similar to larger simple data set sizes. For ex-
ample, on the lexical simplification task, when
using a linearly interpolated model, the model
combining 100K simple sentences with all the
normal data achieved comparable results to the
model combining all the simple sentences with all
the normal data. This is encouraging for other
monolingual domains such as text compression
or text simplification in non-English languages
where less data is available.

There are still a number of open research ques-
tions related to simple language modeling. First,
further experiments with larger normal data sets
are required to understand the limits of adding
out-of-domain data. Second, we have only uti-
lized data from Wikipedia for normal text. Many
other text sources are available and the impact of
not only size, but also of domain should be in-
vestigated. Third, it still needs to be determined
how language model performance will impact
sentence-level and document-level simplification
approaches. In machine translation, improved
language models have resulted in significant im-
provements in translation performance (Brants et
al., 2007). Finally, in this paper we only in-
vestigated linearly interpolated language models.
Many other domain adaptations techniques exist
and may produce language models with better per-
formance.
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Abstract

We suggest a generation task that inte-
grates discourse-level referring expression
generation and sentence-level surface re-
alization. We present a data set of Ger-
man articles annotated with deep syntax
and referents, including some types of im-
plicit referents. Our experiments compare
several architectures varying the order of a
set of trainable modules. The results sug-
gest that a revision-based pipeline, with in-
termediate linearization, significantly out-
performs standard pipelines or a parallel
architecture.

1 Introduction

Generating well-formed linguistic utterances from
an abstract non-linguistic input involves making
a multitude of conceptual, discourse-level as well
as sentence-level, lexical and syntactic decisions.
Work on rule-based natural language generation
(NLG) has explored a number of ways to com-
bine these decisions in an architecture, ranging
from integrated systems where all decisions hap-
pen jointly (Appelt, 1982) to strictly sequential
pipelines (Reiter and Dale, 1997). While inte-
grated or interactive systems typically face issues
with efficiency and scalability, they can directly
account for interactions between discourse-level
planning and linguistic realization. For instance,
Rubinoff (1992) mentions Example (1) where the
sentence planning component needs to have ac-
cess to the lexical knowledge that “order” and not
“home” can be realized as a verb in English.

(1) a. *John homed him with an order.
b. John ordered him home.

In recent data-driven generation research, the
focus has somewhat shifted from full data-to-text
systems to approaches that isolate well-defined

subproblems from the NLG pipeline. In particular,
the tasks of surface realization and referring ex-
pression generation (REG) have received increas-
ing attention using a number of available anno-
tated data sets (Belz and Kow, 2010; Belz et al.,
2011). While these single-task approaches have
given rise to many insights about algorithms and
corpus-based modelling for specific phenomena,
they can hardly deal with aspects of the architec-
ture and interaction between generation levels.

This paper suggests a middle ground between
full data-to-text and single-task generation, com-
bining two well-studied NLG problems. We in-
tegrate a discourse-level approach to REG with
sentence-level surface realization in a data-driven
framework. We address this integrated task with a
set of components that can be trained on flexible
inputs which allows us to systematically explore
different ways of arranging the components in a
generation architecture. Our main goal is to inves-
tigate how different architectural set-ups account
for interactions between generation decisions at
the level of referring expressions (REs), syntax
and word order.

Our basic set-up is inspired from the Generating
Referring Expressions in Context (GREC) tasks,
where candidate REs have to be assigned to in-
stances of a referent in a Wikipedia article (Belz
and Kow, 2010). We have created a dataset of Ger-
man texts with annotations that extend this stan-
dard in three substantial ways: (i) our domain con-
sists of articles about robbery events that mainly
involve two main referents, a victim and a per-
petrator (perp), (ii) annotations include deep and
shallow syntactic relations similar to the repre-
sentations used in (Belz et al., 2011) (iii) anno-
tations include empty referents, as e.g. in passives
and nominalizations directing attention to the phe-
nomenon of implicit reference, which is largely
understudied in NLG. Figure 1 presents an exam-
ple for a deep syntax tree with underspecified RE
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(Tree) be
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trial
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men
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they <empty>

victim man

a young

victim

the

he <empty>

Figure 1: Underspecified tree with RE candidates

slots and lists of candidates REs for each referent.
Applying a strictly sequential pipeline on our

data, we observe incoherent system output that
is related to an interaction of generation levels,
very similar to the interleaving between sentence
planning and lexicalization in Example (1). A
pipeline that first inserts REs into the underspec-
ified tree in Figure 1, then generates syntax and fi-
nally linearizes, produces inappropriate sentences
like (2-a).

(2) a. *[The two men]p are on trial because of an attack
by [two italians]p on [a young man]v .

b. [Two italians]p are on trial because of an attack on
[a young man]v .

Sentence (2-a) is incoherent because the syntac-
tic surface obscurs the intended meaning that “two
italians” and “the two men” refer to the same ref-
erent. In order to generate the natural Sentence
(2-b), the RE component needs information about
linear precedence of the two perp instances and the
nominalization of “attack”. These types of inter-
actions between referential and syntactic realiza-
tion have been thoroughly discussed in theoretical
accounts of textual coherence, as e.g. Centering
Theory (Grosz et al., 1995).

The integrated modelling of REG and surface
realization leads to a considerable expansion of
the choice space. In a sentence with 3 referents
that each have 10 RE candidates and can be freely
ordered, the number of surface realizations in-
creases from 6 to 6·103, assuming that the remain-
ing words can not be syntactically varied. Thus,
even when the generation problem is restricted to
these tasks, a fully integrated architecture faces
scalability issues on realistic corpus data.

In this work, we assume a modular set-up of
the generation system that allows for a flexible
ordering of the single components. Our experi-
ments vary 3 parameters of the generation archi-
tecture: 1) the sequential order of the modules,
2) parallelization of modules, 3) joint vs. sepa-
rate modelling of implicit referents. Our results
suggest that the interactions between RE and syn-
tax can be modelled in sequential generation ar-
chitecture where the RE component has access
to information about syntactic realization and an
approximative, intermediate linearization. Such
a system is reminiscent of earlier work in rule-
based generation that implements an interactive or
revision-based feedback between discourse-level
planning and linguistic realisation (Hovy, 1988;
Robin, 1993).

2 Related Work

Despite the common view of NLG as a pipeline
process, it is a well-known problem that high-
level, conceptual knowledge and low-level lin-
guistic knowledge are tightly interleaved (Danlos,
1984; Mellish et al., 2000). In rule-based, strictly
sequential generators these interactions can lead
to a so-called generation gap, where a down-
stream module cannot realize a text or sentence
plan generated by the preceding modules (Meteer,
1991; Wanner, 1994). For this reason, a num-
ber of other architectures has been proposed, see
De Smedt et al. (1996) for an overview. For rea-
sons of tractability and scalability, many prac-
tical NLG systems still have been designed as
sequential pipelines that follow the basic layout
of macroplanning-microplanning-linguistic real-
ization (Reiter, 1994; Cahill et al., 1999; Bateman
and Zock, 2003).

In recent data-driven research on NLG, many
single tasks have been addressed with corpus-
based methods. For surface realization, the stan-
dard set-up is to regenerate from syntactic rep-
resentations that have been produced for realis-
tic corpus sentences. The first widely known sta-
tistical approach by Langkilde and Knight (1998)
used language-model n-gram statistics on a word
lattice of candidate realisations to guide a ranker.
Subsequent work explored ways of exploiting lin-
guistically annotated data for trainable generation
models (Ratnaparkhi, 2000; Belz, 2005). Work on
data-driven approaches has led to insights about
the importance of linguistic features for sentence
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linearization decisions (Ringger et al., 2004; Filip-
pova and Strube, 2007; Cahill and Riester, 2009).
(Zarrieß et al., 2012) have recently argued that
the good performance of these linguistically mo-
tivated word order models, which exploit morpho-
syntactic features of noun phrases (i.e. refer-
ents), is related to the fact that these morpho-
syntactic features implicitly encode a lot of knowl-
edge about the underlying discourse or informa-
tion structure.

A considerable body of REG research has been
done in the paradigm established by Dale (1989;
1995). More closely related to our work are ap-
proaches in the line of Siddarthan and Copes-
take (2004) or Belz and Varges (2007) who gener-
ate contextually appropriate REs for instances of a
referent in a text. Belz and Varges (2007)’s GREC
data set includes annotations of implicit subjects
in coordinations. Zarrieß et al. (2011) deal with
implicit subjects in passives, proposing a set of
heuristics for adding these agents to the genera-
tion input. Roth and Frank (2012) acquire au-
tomatic annotations of implicit roles for the pur-
pose of studying coherence patterns in texts. Im-
plicit referents have also received attention for the
analysis of semantic roles (Gerber and Chai, 2010;
Ruppenhofer et al., 2010).

Statistical methods for data-to-text generation
have been explored only recently. Belz (2008)
trains a probabilistic CFG to generate weather
forecasts, Chen et al. (2010) induce a synchronous
grammar to generate sportcaster text. Both ad-
dress a restricted domain where a direct align-
ment between units in the non-linguistic represen-
tation and the linguistic utterance can be learned.
Marciniak and Strube (2005) propose an ILP
model for global optimization in a generation task
that is decomposed into a set of classifiers. Bohnet
et al. (2011) deal with multi-level generation in a
statistical framework and in a less restricted do-
main. They adopt a standard sequential pipeline
approach.

Recent corpus-based generation approaches
faced the problem that existing standard treebank
representations for parsing or other analysis tasks
do not necessarily fit the needs of generation
(Bohnet et al., 2010; Wanner et al., 2012). Zarrieß
et al. (2011) discuss the problem of an input rep-
resentation that is appropriately underspecified for
the realistic generation of voice alternations.

3 The Data Set

The data set for our generation experiments con-
sists of 200 newspaper articles about robbery
events. The articles were extracted from a large
German newspaper corpus. A complete example
text with RE annotations is given in Figure 2, Ta-
ble 1 summarizes some data set statistics.

3.1 RE annotation

The RE annotations mark explicit and implicit
mentions of referents involved in the robbery event
described in an article. Explicit mentions are
marked as spans on the surface sentence, labeled
with the referent’s role and an ID. We annotate the
following referential roles: (i) perpetrator (perp),
(ii) victim, (iii) source, according to the core roles
of the Robbery frame in English FrameNet. We
include source since some texts do not mention a
particular victim, but rather the location of the rob-
bery (e.g. a bank, a service station). The ID distin-
guishes referents that have the same role, e.g. “the
husband” and the “young family” in Sentences
(3-a) and (3-d) in Figure 2. Each RE is linked to
its syntactic head. This complies with the GREC
data sets, and is also useful for further annotation
of the deep syntax level (see Section 3.2).

The RE implicit mentions of victim, perp, and
source are annotated as attributes of their syntac-
tic heads in the surface sentence. We consider the
following types of implicit referents: (i) agents in
passives (e.g. “robbed” in (3-a)), (ii) arguments of
nominalizations (e.g. “resistance” in (3-e)), (iii)
possessives (e.g. “watch” in (3-f)), (iv) missing
subjects in coordinations. (e.g. “flee” in (3-f))

The brat tool (Stenetorp et al., 2012) was used
for annotation. We had 2 annotators with a compu-
tational linguistic background, provided with an-
notation guidelines. They were trained on a set of
20 texts. We measure a good agreement on another
set of 15 texts: the simple pairwise agreement for
explicit mentions is 95.14%-96.53% and 78.94%-
76.92% for implicit mentions.1

3.2 Syntax annotation

The syntactic annotation of our data includes two
layers: shallow and deep, labeled dependencies,
similar to the representation used in surface real-
ization shared tasks (Belz et al., 2011). We use

1Standard measures for the “above chance annotator
agreement” are only defined for task where the set of anno-
tated items is pre-defined.
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(3) a.
�� ��Junge Familie v:0�� ��Young family

auf
on

dem
the

Heimwegposs:v
way homeposs:v

ausgeraubtag:p
robbedag:p

b. Die
The

Polizei
police

sucht
looks

nach
for

zwei ungepflegt wirkenden jungen Männern im Alter von etwa 25 Jahren p:0.

two shabby-looking young men of about 25 years .

c. Sie p:0

They
sollen
are said to

am
on

Montag
Monday

gegen
around

20
20

Uhr
o’clock

�� ��eine junge Familie mit ihrem sieben Monate alten Baby v:0�� ��a young family with their seven month old baby

auf
on

dem
the

Heimwegposs:v
way homeposs:v

von
from

einem
a

Einkaufsbummel
shopping tour

überfallen
attacked

und
and

ausgeraubt
robbed

haben.
have.

d. Wie
As

die
the

Polizei
police

berichtet,
reports,

drohten
threatened

die zwei Männer p:0
the two men

�� ��dem Ehemann v:1,�� ��the husband

�� ��ihn v:1�� ��him
zusammenzuschlagen.
beat up.

e.
�� ��Er v:1�� ��He

gab
gave

deshalb
therefore

�� ��seine v:1�� ��his
Brieftasche
wallet

ohne
without

Gegenwehrag:v,the:p
resistanceag:v,the:p

heraus.
out.

f. Anschließend
Afterwards

nahmen
took

�� ��ihm v:1�� ��him
die Räuber p:0
the robbers

noch
also

die
the

Armbanduhrposs:v
watchposs:v

ab
off

und
and

flüchtetenag:p.
fleedag:p.

Figure 2: Example text with RE annotations, oval boxes mark victim mentions, square boxes mark perp
mentions, heads of implicit arguments are underlined

the Bohnet (2010) dependency parser to obtain an
automatic annotation of shallow or surface depen-
dencies for the corpus sentences.

The deep syntactic dependencies are derived
from the shallow layer by a set of hand-written
transformation rules. The goal is to link referents
to their main predicate in a uniform way, indepen-
dently of the surface-syntactic realization of the
verb. We address passives, nominalizations and
possessives corresponding to the contexts where
we annotated implicit referents (see above). The
transformations are defined as follows:

1. remove auxiliary nodes, verb morphology and finite-
ness, a tense feature distinguishes past and present, e.g.
“haben:AUX überfallen:VVINF” (have attacked) maps
to “überfallen:VV:PAST” (attack:PAST)

2. map subjects in actives and oblique agents in passives
to “agents”; objects in actives and subjects in passive to
“themes”, e.g. victim/subj was attacked by perp/obl-ag
maps to perp/agent attack victim/theme

3. attach particles to verb lemma, e.g. “gab” ... “heraus”
in (3-e) is mapped to “herausgeben” (give to)

4. map nominalized to verbal lemmas, their prepositional
and genitive arguments to semantic subjects and ob-
jects, e.g. attack on victim is mapped to attack vic-
tim/theme

5. normalize prenominal and genitive postnominal poses-
sives, e.g. “seine Brieftasche” (his wallet) and “die
Brieftasche des Opfers” (the wallet of the victim) map
to “die Brieftasche POSS victim” (the wallet of victim),
only applies if possessive is an annotated RE

Nominalizations are mapped to their verbal
base forms on the basis of lexicalized rules for the
nominalized lemmas observed in the corpus. The
other transformations are defined on the shallow
dependency annotation.

# sentences 2030
# explicit REs 3208
# implicit REs 1778
# passives 383
# nominalizations 393
# possessives 1150

Table 1: Basic annotation statistics

3.3 Multi-level Representation
In the final representation of our data set, we inte-
grate the RE and deep syntax annotation by replac-
ing subtrees corresponding to an RE span. The RE
slot in the tree of the sentence is labeled with its
referential role and its ID. All RE subtrees for a
referent in a text are collected in a candidate list
which is initialized with three default REs: (i) a
pronoun, (ii) a default nominal (e.g. “the victim”),
(iii) the empty RE. In contrast to the GREC data
sets, our RE candidates are not represented as the
original surface strings, but as non-linearized sub-
trees. The resulting multi-layer representation for
each text is structured as follows:

1. unordered deep trees with RE slots (deepSyn−re)

2. unorderd shallow trees with RE slots
(shallowSyn−re)

3. unordered RE subtrees

4. linearized, fully specified surface trees (linSyn+re)

5. alignments between nodes in 1., 2., 4.

The generation components in Section 4 also
use intermediate layers where REs are inserted
into the deep trees (deepSyn+re) or shallow trees
(shallowSyn+re).

Nodes in unordered trees are deterministically
sorted by their : 1. distance to the root, 2. label,
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3. PoS tag, 4. lemma. The generation components
traverse the nodes in this the order.

4 Generation Systems

Our main goal is to investigate different architec-
tures for combined surface realization and refer-
ring expression generation. We assume that this
task is split into three main modules: a syntax gen-
erator, an REG component, and a linearizer. The
components are implemented in a way that they
can be trained and applied on varying inputs, de-
pending on the pipeline. Section 4.1 describes the
basic set-up of our components. Section 4.2 de-
fines the architectures that we will compare in our
experiments (Section 5). Section 4.3 presents the
implementation of the underlying feature models.

4.1 Components

4.1.1 SYN: Deep to Shallow Syntax
For mapping deep to shallow dependency trees,
the syntax generator induces a probabilistic tree
transformation. The transformations are restricted
to verb nodes in the deep tree (possessives are
handled in the RE module) and extracted from
the alignments between the deep and shallow
layer in the training input. As an example, the
deep node “attack:VV” aligns to “have:AUX at-
tacked:VVINF”, “attacks:VVFIN”, “the:ART at-
tack:NN on:PRP”. The learner is implemented
as a ranking component, trained with SVMrank
(Joachims, 2006). During training, each instance
of a verb node has one optimal shallow depen-
dency alignment and a set of distractor candidates.
During testing, the module has to pick the best
shallow candidate according to its feature model.

In our crossvalidation set-up (see Section 5),
we extract, on average, 374 transformations from
the training sets. This set subdivides into non-
lexicalized and lexicalized transformations. The
mapping rule in (4-a) that simply rewrites the verb
underspecified PoS tag to the finite verb tag in the
shallow tree illustrates the non-lexicalized case.
Most transformation rules (335 out of 374 on aver-
age) are lexicalized for a specific verb lemma and
mostly transform nominalizations as in rule (4-b)
and particles (see Section 3.2).
(4) a. (x,lemma,VV,y)→ (x,lemma,VVFIN,y)

b. (x,überfallen/attack,VV,y) → (x,bei/at,PREP,y),
(z,Überfall/attack,NN,x),(q,der/the,ART,z)

The baseline for the verb transformation com-
ponent is a two-step procedure: 1) pick a lexical-

ized rule if available for that verb lemma, 2) pick
the most frequent transformation.

4.1.2 REG: Realizing Referring Expressions
Similar to the syntax component, the REG mod-
ule is implemented as a ranker that selects surface
RE subtrees for a given referential slot in a deep
or shallow dependency tree. The candidates for
the ranking correspond to the entire set of REs
used for that referential role in the original text
(see Section 3.1). The basic RE module is a joint
model of all RE types, i.e. nominal, pronominal
and empty realizations of the referent. For the ex-
periment in Section 5.4, we use an additional sep-
arate classifier for implicit referents, also trained
with SVMrank. It uses the same feature model
as the full ranking component, but learns a binary
distinction for implicit or explicit mentions of a
referent. The explicit mentions will be passed to
the RE ranking component.

The baseline for the REG component is defined
as follows: if the preceding and the current RE
slot are instances of the same referent, realize a
pronoun, else realize the longest nominal RE can-
didate that has not been used in the preceding text.

4.1.3 LIN: Linearization
For linearization, we use the state-of-the-art
dependency linearizer described in Bohnet et
al. (2012). We train the linearizer on an auto-
matically parsed version of the German TIGER
treebank (Brants et al., 2002). This version
was produced with the dependency parser by
Bohnet (2010), trained on the dependency conver-
sion of TIGER by Seeker and Kuhn (2012).

4.2 Architectures

Depending on the way the generation components
are combined in an architecture, they will have ac-
cess to different layers of the input representation.
The following definitions of architectures recur to
the layers introduced in Section 3.3.

4.2.1 First Pipeline
The first pipeline corresponds most closely to a
standard generation pipeline in the sense of (Reiter
and Dale, 1997). REG is carried out prior to sur-
face realization such that the RE component does
not have access to surface syntax or word order
whereas the SYN component has access to fully
specified RE slots.

• training
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1. train REG: (deepSyn−re, deepSyn+re)
2. train SYN: (deepSyn+re, shallowSyn+re)

• prediction

1. apply REG: deepSyn−re → deepSyn+re

2. apply SYN: deepSyn+re → shallowSyn+re

3. linearize: shallowSyn+re → linSyn+re

4.2.2 Second Pipeline
In the second pipeline, the order of the RE and
SYN component is switched. In this case, REG
has access to surface syntax without word order
but the surface realization is trained and applied
on trees with underspecified RE slots.
• training

1. train SYN: (deepSyn−re, shallowSyn−re)
2. train REG: (shallowSyn−re, shallowSyn+re)

• prediction

1. apply SYN: deepSyn−re → shallowSyn−re
2. apply REG: shallowSyn−re →
shallowSyn+re

3. linearize: shallowSyn+re → linSyn+re

4.2.3 Parallel System
A well-known problem with pipeline architectures
is the effect of error propagation. In our parallel
system, the components are trained independently
of each other and applied in parallel on the deep
syntactic input with underspecified REs.
• training

1. train SYN: (deepSyn−re, shallowSyn−re)
2. train REG: (deepSyn−re, deepSyn+re)

• prediction

1. apply REG and SYN:
deepSyn−re → shallowSyn+re

2. linearize: shallowSyn+re → linSyn+re

4.2.4 Revision-based System
In the revision-based system, the RE component
has access to surface syntax and a preliminary lin-
earization, called prelinSyn. In this set-up, we ap-
ply the linearizer first on trees with underspeci-
fied RE slots. For this step, we insert the default
REs for the referent into the respective slots. After
REG, the tree is linearized once again.
• training

1. train SYN on gold pairs of
(deepSyn−re, shallowSyn−re)

2. train REG on gold pairs of
(prelinSyn−re, prelinSyn+re)

• prediction

1. apply SYN: deepSyn−re → shallowSyn−re
2. linearize: shallowSyn−re → prelinSyn−re
3. apply REG: prelinSyn−re → prelinSyn+re

4. linearize: prelinSyn+re → linSyn+re

4.3 Feature Models

The implementation of the feature models is based
on a general set of templates for the SYN and REG
component. The exact form of the models depends
on the input layer of a component in a given ar-
chitecture. For instance, when SYN is trained on
deepSyn−re, the properties of the children nodes
are less specific for verbs that have RE slots as
their dependents. When the SYN component is
trained on deepSyn+re, lemma and POS of the
children nodes are always specified.

The feature templates for SYN combine prop-
erties of the shallow candidate nodes (label, PoS
and lemma for top node and its children) with the
properties of the instance in the tree: (i) lemma,
tense, (ii) sentence is a header, (iii) label, PoS,
lemma of mother node, children and grandchil-
dren nodes (iv) number, lemmas of other verbs in
the sentence.

The feature templates for REG combine proper-
ties of the candidate RE (PoS and lemma for top
node and its children, length) with properties of
the RE slot in the tree: lemma, PoS and labels for
the (i) mother node, (ii) grandmother node, (iii)
uncle and sibling nodes. Additionally, we imple-
ment a small set of global properties of a referent
in a text: (i) identity is known, (ii) plural or sin-
gular referent, (iii) age is known, and a number of
contextual properties capturing the previous refer-
ents and their predicted REs: (i) role and realiza-
tion of the preceding referent, (ii) last mention of
the current referent, (iii) realization of the referent
in the header.

5 Experiments

In this experimental section, we provide a corpus-
based evaluation of the generation components
and architectures introduced in Section 4. In the
following, Section 5.1 presents the details of our
evaluation methodology. In Section 5.2, we dis-
cuss the first experiment that evaluates the pipeline
architectures and the single components on oracle
inputs. Section 5.3 describes an experiment which
compares the parallel and the revision-based ar-
chitecture against the pipeline. In Section 5.4, we
compare two methods for dealing with the implicit
referents in our data. Section 5.5 provides some
general discussion of the results.
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Sentence overlap SYN Accuracy RE Accuracy
Input System BLEU NIST BLEUr String Type String Type Impl
deepSyn−re Baseline 42.38 9.9 47.94 35.66 44.81 33.3 36.03 50.43
deepSyn−re 1st pipeline 54.65 11.30 59.95 57.09 68.15 54.61 71.51 84.72
deepSyn−re 2nd pipeline 54.28 11.25 59.62 59.14 68.58 52.24 68.2 82
gold deepSyn+re SYN→LIN 63.9 12.7 62.86 60.83 69.74 100 100 100
gold shallowSyn−re REG→LIN 60.57 11.87 68.06 100 100 60.53 75.86 88.86
gold shallowSyn+re LIN 79.17 13.91 72.7 100 100 100 100 100

Table 2: Evaluating pipeline architectures against the baseline and upper bounds

5.1 Evaluation Measures

We split our data set into 10 splits of 20 articles.
We use one split as the development set, and cross-
validate on the remaining splits. In each case,
the downstream modules of the pipeline will be
trained on the jackknifed training set.

Text normalization: We carry out automatic
evaluation calculated on lemmatized text with-
out punctuation, excluding additional effects that
would be introduced from a morphology genera-
tion component.

Measures: First, we use a number of evalua-
tion measures familiar from previous generation
shared tasks:

1. BLEU, sentence-level geometric mean of 1- to 4-gram
precision, as in (Belz et al., 2011)

2. NIST, sentence-level n-gram overlap weighted in
favour of less frequent n-grams, as in (Belz et al., 2011)

3. RE Accuracy on String, proportion of REs selected by
the system with a string identical to the RE string in the
original corpus, as in (Belz and Kow, 2010)

4. RE Accuracy on Type, proportion of REs selected by
the system with an RE type identical to the RE type in
the original corpus, as in (Belz and Kow, 2010)

Second, we define a number of measures moti-
vated by our specific set-up of the task:

1. BLEUr , sentence-level BLEU computed on post-
processed output where predicted referring expressions
for victim and perp are replaced in the sentences (both
gold and predicted) by their original role label, this
score does not penalize lexical mismatches between
corpus and system REs

2. RE Accuracy on Impl, proportion of REs predicted cor-
rectly as implicit/non-implicit

3. SYN Accuracy on String, proportion of shallow verb
candidates selected by the system with a string identical
to the verb string in the original corpus

4. SYN Accuracy on Type, proportion of shallow verb
candidates selected by the system with a syntactic cat-
egory identical to the category in the original corpus

5.2 Pipelines and Upper Bounds

The first experiment addresses the first and sec-
ond pipeline introduced in Section 4.2.1 and 4.2.2.
The baseline combines the baseline version of
the SYN component (Section 4.1.1) and the REG
component (Section 4.1.2) respectively. As we re-
port in Table 2, both pipelines largely outperform
the baseline. Otherwise, they obtain very similar
scores in all measures with a small, weakly signif-
icant tendency for the first pipeline. The only re-
markable difference is that the accuracy of the in-
dividual components is, in each case, lower when
they are applied as the second step in the pipeline.
Thus, the RE accuracy suffers from mistakes from
the predicted syntax in the same way that the qual-
ity of syntax suffers from predicted REs.

The three bottom rows in Table 2 report the per-
formance of the individual components and lin-
earization when they are applied to inputs with an
REG and SYN oracle, providing upper bounds for
the pipelines applied on deepSyn−re. When REG
and linearization are applied on shallowSyn−re
with gold shallow trees, the BLEU score is
lower (60.57) as compared to the system that ap-
plies syntax and linearization on deepSyn+re,
deep trees with gold REs (BLEU score of 63.9).
However, the BLEUr score, which generalizes
over lexical RE mismatches, is higher for the
REG→LIN components than for SYN→LIN.
Moreover, the BLEUr score for the REG→LIN
system comes close to the upper bound that ap-
plies linearization on linSyn+re, gold shallow
trees with gold REs (BLEUr of 72.4), whereas
the difference in standard BLEU and NIST is
high. This effect indicates that the RE predic-
tion mostly decreases BLEU due to lexical mis-
matches, whereas the syntax prediction is more
likely to have a negative impact on final lineariza-
tion.

The error propagation effects that we find in the
first and second pipeline architecture clearly show
that decisions at the levels of syntax, reference
and word order interact, otherwise their predic-
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Input System BLEU NIST BLEUr
deepSyn−re 1st pipeline 54.65 11.30 59.95
deepSyn−re Parallel 54.78 11.30 60.05
deepSyn−re Revision 56.31 11.42 61.30

Table 3: Architecture evaluation

tion would not affect each other. In particular, the
REG module seems to be affected more seriously,
the String Accuracy decreases from 60.53 on gold
shallow trees to 52.24 on predicted shallow trees
whereas the Verb String Accuracy decreases from
60.83 on gold REs to 57.04 on predicted REs.

5.3 Revision or parallelism?

The second experiment compares the first pipeline
against the parallel and the revision-based ar-
chitecture introduced in Section 4.2.3 and 4.2.4.
The evaluation in Table 3 shows that the paral-
lel architecture improves only marginally over the
pipeline. By contrast, we obtain a clearly signifi-
cant improvement for the revision-based architec-
ture on all measures. The fact that this architec-
ture significantly improves the BLEU, NIST and
the BLEUr score of the parallel system indicates
that the REG benefits from the predicted syntax
when it is approximatively linearized. The fact
that also the BLEUr score improves shows that a
higher lexical quality of the REs leads to better fi-
nal linearizations.

Table 4 shows the performance of the REG
module on varying input layers, providing a more
detailed analysis of the interaction between RE,
syntax and word order. In order to produce the
deeplinSyn−re layer, deep syntax trees with ap-
proximative linearizations, we preprocessed the
deep trees by inserting a default surface trans-
formation for the verb nodes. We compare this
input for REG against the prelinSyn−re layer
used in the revision-based architecture, and the
deepSyn−re layer used in the pipeline and the par-
allel architecture. The REG module benefits from
the linearization in the case of deeplinSyn−re
and prelinSyn−re, outperforming the compo-
nent trained applied on the non-linearized deep
syntax trees. However, the REG module ap-
plied on prelinSyn−re, predicted shallow and lin-
earized trees, clearly outperforms the module ap-
plied on deeplinSyn−re. This shows that the
RE prediction can actually benefit from the pre-
dicted shallow syntax, but only when the predicted
trees are approximatively linearized. As an up-
per bound, we report the performance obtained on

RE Accuracy
Input System String Type Impl
deepSyn−re RE 54.61 71.51 84.72
deeplinSyn−re RE 56.78 72.23 84.71
prelinSyn−re RE 58.81 74.34 86.37
gold linSyn−re RE 68.63 83.63 94.74

Table 4: RE generation from different input layers

linSyn−re, gold shallow trees with gold lineariza-
tions. This set-up corresponds to the GREC tasks.
The gold syntax leads to a huge increase in perfor-
mance.

These results strengthen the evidence from the
previous experiment that decisions at the level of
syntax, reference and word order are interleaved.
A parallel architecture that simply “circumvents”
error propagation effects by making decisions in-
dependent of each other is not optimal. Instead,
the automatic prediction of shallow syntax can
positively impact on RE generation if these shal-
low trees are additionally processed with an ap-
proximative linearization step.

5.4 A joint treatment of implicit referents?
The previous experiments have pursued a joint
approach for modeling implicit referents. The
hypothesis for this experiment is that the SYN
component and the intermediate linearization in
a revision-based architecture could benefit from a
separate treatment of implicit referents since verb
alternations like passive or nominalization often
involve referent deletions.

The evaluation in Table 5 provides contradic-
tory results depending on the evaluation measure.
For the first pipeline, the system with a separate
treatment of implicit referents significantly outper-
forms the joint system in terms of BLEU. How-
ever, the BLEUr score does not improve. In the
revision-based architecture, we do not find a clear
result for or against a joint modelling approach.
The revision-based system with disjoint modelling
of implicits shows a slight, non-significant in-
crease in BLEU score. By contrast, the BLEUr

score is signficantly better for the joint approach.
We experimented with parallelization of syntax
generation and prediction of implicit referents in
a revision-based system. This has a small positive
effect on the BLEUr score and a small negative
effect on the plain BLEU and NIST score. These
contradictory scores might indicate that the auto-
matic evaluation measures cannot capture all as-
pects of text quality, an issue that we discuss in
the following.
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(5) Generated by sequential system:

a. Deshalb
Therefore

gab
gave

dem Täter
to the robber

�� ��seine�� ��his
Brieftasche
wallet

ohne
without

daß
that

�� ��das Opfer�� ��the victim

Widerstand
resistance

leistet
shows

heraus.
out.

b. Er
He

nahm
takes

anschließend
afterwards

�� ��dem Opfer�� ��the victim

die
the

Armbanduhr
watch

ab
off

und
and

der Täter
the robber

flüchtete.
fleed.

(6) Generated by revision-based system:

a.
�� ��Das Opfer�� ��The victim

gibt
gave

deshalb
therefore

�� ��seine�� ��his
Brieftasche
wallet

ohne
without

Widerstand
resistance

zu
to

leisten
show

heraus.
out.

b. Anschließend
Afterwards

nahm
took

der Täter
the robber

�� ��dem Opfer�� ��the victim

die
the

Armbanduhr
watch

ab
off

und
and

flüchtete.
fleed.

Figure 3: Two automatically generated outputs for the Sentences (3e-f) in Figure 2.

Joint System BLEU NIST BLEUr
+ 1st pipeline 54.65 11.30 59.95
- 1st pipeline 55.38 11.48 59.52
+ Revision 56.31 11.42 61.30
- Revision 56.42 11.54 60.52
- Parallel+Revision 56.29 11.51 60.63

Table 5: Implicit reference and architectures

5.5 Discussion

The results presented in the preceding evaluations
consistenly show the tight connections between
decisions at the level of reference, syntax and word
order. These interactions entail highly interde-
pendent modelling steps: Although there is a di-
rect error propagation effect from predicted verb
transformation on RE accuracy, predicted syntax
still leads to informative intermediate lineariza-
tions that improve the RE prediction. Our optimal
generation architecture thus has a sequential set-
up, where the first linearization step can be seen
as an intermediate feedback that is revised in the
final linearization. This connects to work in, e.g.
(Hovy, 1988; Robin, 1993).

In Figure 3, we compare two system outputs for
the last two sentences of the text in Figure 2. The
output of the sequential system is severely inco-
herent and would probably be rejected by a hu-
man reader: In sentence (5a) the victim subject of
an active verb is deleted, and the relation between
the possessive and the embedded victim RE is not
clear. In sentence (5b) the first conjunct realizes
a pronominal perp RE and the second conjunct a
nominal perp RE. The output of the revision-based
system reads much more natural. This example
shows that the extension of the REG problem to
texts with more than one main referent (as in the
GREC data set) yields interesting inter-sentential
interactions that affect textual coherence.

We are aware of the fact that our automatic eval-

uation might only partially render certain effects,
especially with respect to textual coherence. It
is likely that the BLEU scores do not capture the
magnitude of the differences in text quality illus-
trated by the Examples (5-6). Ultimately, a hu-
man evaluation for this task is highly desirable.
We leave this for future work since our integrated
set-up rises a number of questions with respect to
evaluation design. In a preliminary analysis, we
noticed the problem that human readers find it dif-
ficult to judge discourse-level properties of a text
like coherence or naturalness when the generation
output is not perfectly grammatical or fluent at the
sentence level.

6 Conclusion

We have presented a data-driven approach for in-
vestigating generation architectures that address
discourse-level reference and sentence-level syn-
tax and word order. The data set we created for our
experiments basically integrates standards from
previous research on REG and surface realization
and extends the annotations to further types of im-
plicit referents. Our results show that interactions
between the different generation levels are best
captured in a sequential, revision-based pipeline
where the REG component has access to predic-
tions from the syntax and the linearization mod-
ule. These empirical findings obtained from ex-
periments with generation architectures have clear
connections to theoretical accounts of textual co-
herence.
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Abstract

Some languages lack large knowledge bases
and good discriminative features for Name
Entity Recognition (NER) that can general-
ize to previously unseen named entities. One
such language is Arabic, which: a) lacks a
capitalization feature; and b) has relatively
small knowledge bases, such as Wikipedia. In
this work we address both problems by in-
corporating cross-lingual features and knowl-
edge bases from English using cross-lingual
links. We show that such features have a
dramatic positive effect on recall. We show
the effectiveness of cross-lingual features and
resources on a standard dataset as well as
on two new test sets that cover both news
and microblogs. On the standard dataset, we
achieved a 4.1% relative improvement in F-
measure over the best reported result in the
literature. The features led to improvements
of 17.1% and 20.5% on the new news and mi-
croblogs test sets respectively.

1 Introduction

Named Entity Recognition (NER) is essential for a
variety of Natural Language Processing (NLP) ap-
plications such as information extraction. There has
been a fair amount of work on NER for a variety of
languages including Arabic. To train an NER sys-
tem, some of the following feature types are typi-
cally used (Benajiba and Rosso, 2008; Nadeau and
Sekine, 2009):

- Orthographic features: These features include
capitalization, punctuation, existence of digits, etc.
One of the most effective orthographic features is
capitalization in English, which helps NER to gener-
alize to new text of different genres. However, capi-
talization is not very useful in some languages such
as German, and nonexistent in other languages such

as Arabic. Further, even in English social media,
capitalization may be inconsistent.

- Contextual features: Certain words are indica-
tive of the existence of named entities. For example,
the word “said” is often preceded by a named en-
tity of type “person” or “organization”. Sequence
labeling algorithms (ex. Conditional Random Fields
(CRF)) can often identify such indicative words.

- Character-level features: These features typ-
ically include the leading and trailing letters of
words. In some languages, these letters could pre-
fixes and suffixes. Such features can be indicative or
counter-indicative of the existence of named entities.
For example, a word ending with “ing” is typically
not a named entity, while a word ending in “berg” is
often a named entity.

- Part-of-speech (POS) tags and morphological
features: POS tags indicate (or counter-indicate) the
possible presence of a named entity at word level or
at word sequence level. Morphological features can
mostly indicate the absence of named entities. For
example, Arabic allows the attachment of pronouns
to nouns and verbs. However, pronouns are rarely
ever attached to named entities.

- Gazetteers: This feature checks the presence of
a word or a sequence of words in large lists of named
entities. If gazetteers are small, then they would
have low coverage, and if they are very large then
their entries may be ambiguous. For example, “syn-
tax” may refer to sentence construction or the music
band “Syntax”.

Typically, a subset of these features are available
for different languages. For example, morpholog-
ical, contextual, and character-level features have
been shown to be effective for Arabic NER (Bena-
jiba and Rosso, 2008). However, Arabic lacks in-
dicative orthographic features that generalize to pre-
viously unseen named entities. Also, although some
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of the Arabic gazetteers that were used for NER
were small (Benajiba and Rosso, 2008), there has
been efforts to build larger Arabic gazetteers (Attia
et al., 2010). Since training and test parts of stan-
dard datasets for Arabic NER are drawn from the
same genre in relatively close temporal proximity,
a named entity recognizer that simply memorizes
named entities in the training set generally performs
well on such test sets. Thus, the results that are re-
ported in the literature are generally high (Abdul-
Hamid and Darwish, 2010; Benajiba et al., 2008).
We illustrate the limited capacity of existing recog-
nizers to generalize to previously unseen named en-
tities using two new test sets that include microblogs
as well as news texts that cover local and interna-
tional politics, economics, health, sports, entertain-
ment, and science. As we will show later, recall is
well below 50% for all named entity types on the
new test sets.

To address this problem, we introduce the use
of cross-lingual links between a disadvantaged lan-
guage, Arabic, and a language with good discrim-
inative features and large resources, English, to
improve Arabic NER. We exploit English’s ortho-
graphic features, particularly capitalization, as well
as Arabic and English Wikipedias, including exist-
ing annotations from large knowledge sources such
as DBpedia. We also show how to use transliter-
ation mining to improve NER, even when neither
language has a capitalization (or similar) feature.
The intuition is that if the translation of a word is
in fact a transliteration, then the word is likely a
named entity. Cross-lingual links are obtained using
Wikipedia cross-language links and a large Machine
Translation (MT) phrase table that is true cased,
where word casing is preserved during training. We
show the effectiveness of these new features on a
standard dataset as well as two new test sets. The
contributions of this paper are as follows:
- Using cross-lingual links to exploit orthographic
features in other languages.
- Employing transliteration mining to improve NER.
- Using cross-lingual links to exploit a large knowl-
edge base, namely English DBpedia, to benefit
NER.
- Introducing two new NER test sets for Arabic that
include recent news as well as microblogs. We plan
to release these test sets.

- Improving over the best reported results in the liter-
ature by 4.1% (Abdul-Hamid and Darwish, 2010) by
strictly adding cross-lingual features. We also show
improvements of 17.1% and 20.5% on the new test
sets.

The remainder of the paper is organized as fol-
lows: Section 2 provides related work; Section 3 de-
scribes the baseline system; Section 4 introduces the
cross-lingual features and reports on their effective-
ness; and Section 5 concludes the paper.

2 Related Work

2.1 Using cross-lingual Features

For many NLP tasks, some languages may have sig-
nificantly more training data, better knowledge re-
sources, or more discriminating features than other
languages. If cross-lingual resources are available,
such as parallel data, increased training data, better
resources, or superior features can be used to im-
prove the processing (ex. tagging) for other lan-
guages (Ganchev et al., 2009; Shi et al., 2010;
Yarowsky and Ngai, 2001). Some work has at-
tempted to use bilingual features in NER. Burkett
et al. (2010) used bilingual text to improve mono-
lingual models including NER models for German,
which lacks a good capitalization feature. They did
so by training a bilingual model and then generat-
ing more training data from unlabeled parallel data.
They showed significant improvement in German
NER effectiveness, particularly for recall. In our
work, there is no need for tagged text that has a
parallel equivalent in another language. Benajiba et
al. (2008) used an Arabic English dictionary from
MADA, an Arabic analyzer, to indicate if a word
is capitalized in English or not. They reported that
it was the second most discriminating feature that
they used. However, there seems to be room for im-
provement because: (1) MADA’s dictionary is rela-
tively small and would have low coverage; and (2)
the use of such a binary feature is problematic, be-
cause Arabic names are often common Arabic words
and hence a word may be translated as a named en-
tity and as a common word. To overcome these two
problems, we use cross-lingual features to improve
NER using large bilingual resources, and we incor-
porate confidences to avoid having a binary feature.
Richman and Schone (2008) used English linguis-
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tic tools and cross language links in Wikipedia to
automatically annotate text in different languages.
Transliteration Mining (TM) has been used to en-
rich MT phrase tables or to improve cross language
search (Udupa et al., 2009). Conversely, people have
used NER to determine if a word is to be transliter-
ated or not (Hermjakob et al., 2008). However, we
are not aware of any prior work on using TM to de-
termine if a sequence is a NE. Further, we are not
aware of prior work on using TM (or transliteration
in general) as a cross lingual feature in any annota-
tion task. In our work, we use state-of-the-art TM as
described by El-Kahki et al. (2011)

2.2 Arabic NER

Much work has been done on NER with mul-
tiple public evaluation forums. Nadeau and
Sekine (Nadeau and Sekine, 2009) surveyed lots of
work on NER for a variety of languages. Signifi-
cant work has been conducted by Benajiba and col-
leagues on Arabic NER (Benajiba and Rosso, 2008;
Benajiba et al., 2008; Benajiba and Rosso, 2007;
Benajiba et al., 2007). Benajiba et al. (2007) used
a maximum entropy classifier trained on a feature
set that includes the use of gazetteers and a stop-
word list, appearance of a NE in the training set,
leading and trailing word bigrams, and the tag of the
previous word. They reported 80%, 37%, and 47%
F-measure for locations, organizations, and persons
respectively on the ANERCORP dataset that they
created and publicly released. Benajiba and Rosso
(2007) improved their system by incorporating POS
tags to improve NE boundary detection. They re-
ported 87%, 46%, and 52% F-measure for loca-
tions, organizations, and persons respectively. Be-
najiba and Rosso (2008) used CRF sequence label-
ing and incorporated many language specific fea-
tures, namely POS tagging, base-phrase chunking,
Arabic tokenization, and adjectives indicating na-
tionality. They reported that tokenization generally
improved recall. Using POS tagging generally im-
proved recall at the expense of precision, leading
to overall improvements in F-measure. Using all
their suggested features, they reported 90%, 66%,
and 73% F-measure for location, organization, and
persons respectively. In Benajiba et al. (2008),
they examined the same feature set on the Auto-
matic Content Extraction (ACE) datasets using CRF

sequence labeling and a Support Vector Machine
(SVM) classifier. They did not report per category
F-measure, but they reported overall 81%, 75%, and
78% macro-average F-measure for broadcast news
and newswire on the ACE 2003, 2004, and 2005
datasets respectively. Huang (2005) used an HMM-
based NE recognizer for Arabic and reported 77%
F-measure on the ACE 2003 dataset. Farber et
al. (2008) used POS tags obtained from an Ara-
bic tagger to enhance NER. They reported 70% F-
measure on the ACE 2005 dataset. Shaalan and
Raza (2007) reported on a rule-based system that
uses hand crafted grammars and regular expressions
in conjunction with gazetteers. They reported up-
wards of 93% F-measure, but they conducted their
experiments on non-standard datasets, making com-
parison difficult. Abdul-Hamid and Darwish (2010)
used a simplified feature set that relied primarily on
character level features, namely leading and trailing
letters in a word. They also experimented with a
variety of phrase level features with little success.
They reported an F-measure of 76% and 81% for
the ACE2005 and the ANERCorp datasets datasets
respectively. We used their simplified features in our
baseline system. The different experiments reported
in the literature may not have been done on the same
training/test splits. Thus, the results may not be
completely comparable. Mohit et al. (2012) per-
formed NER on a different genre from news, namely
Arabic Wikipedia articles, and reported recall values
as low as 35.6%. They used self training and recall
oriented classification to improve recall, typically at
the expense of precision. McNamee and Mayfield
(2002) and Mayfield et al. (2003) used thousands
of language independent features such as character
n-grams, capitalization, word length, and position in
a sentence, along with language dependent features
such as POS tags and BP chunking. The use of CRF
sequence labeling for NER has shown success (Mc-
Callum and Li, 2003; Nadeau and Sekine, 2009; Be-
najiba and Rosso, 2008).

3 Baseline Arabic NER System

For the baseline system, we used the CRF++1 im-
plementation of CRF sequence labeling with default
parameters. We opted to reimplement the most suc-

1http://code.google.com/p/crfpp/

1560



cessful features that were reported by Benajiba et
al. (2008) and Abdul-Hamid and Darwish (2010),
namely the leading and trailing 1, 2, 3, and 4 letters
in a word; whether a word appears in the gazetteer
that was created by Benajiba et al. (2008), which
is publicly available, but is rather small (less than
5,000 entries); and the stemmed form of words (after
removing coordinating conjunctions, prepositions,
and determiners using a rule-based stemmer akin
to (Larkey et al., 2002)). As mentioned earlier, the
leading and trailing letters in a word may indicate
or counter-indicate the presence of named entities.
Stemming is important due to the morphological
complexity of Arabic. We used the previous and
the next words in their raw and stemmed forms as
features. For training and testing, we used the AN-
ERCORP dataset (Benajiba and Rosso, 2007). The
dataset has approximately 150k tokens and we used
the 80/20 training/test splits of Abdul-Hamid and
Darwish (2010), who graciously provided us with
their splits of the collection and they achieved the
best reported results on the dataset. We will re-
fer to their results, which are provided in Table 1,
as “baseline-lit”. Table 2 (a) shows our results on
the ANERCORP dataset. Our results were slightly
lower than their results (Abdul-Hamid and Darwish,
2010). It is noteworthy that 69% of the named enti-
ties in the test part were seen during training.

We also created two new test sets. The first test
set is composed of news snippets from the RSS feed
of the Arabic (Egypt) version of news.google.com
from Oct. 6, 2012. The RSS feed contains the
headline and the first 50-100 words in the news ar-
ticles. The set has news from over a dozen differ-
ent news sources and covers international and local
news, politics, financial news, health, sports, enter-
tainment, and technology. This set contains roughly
15k tokens. The second set contains a set of 1,423
tweets that were randomly selected from tweets au-
thored between November 23, 2011 and Novem-
ber 27, 2011. We scraped tweets from Twitter us-
ing the query “lang:ar” (language=Arabic). This set
contains approximately 26k tokens. The test sets
will be henceforth be referred to as the NEWS and
TWEETS sets respectively. They were annotated by
one person, a native Arabic speaker, using the Lin-
guistics Data Consortium tagging guidelines. Ta-
ble 2 (b) and (c) report on the results for the baseline

system on both test sets. The results on the NEWS
test are substantially lower than those for ANER-
CORP. It is worth noting that only 27% of the named
entities in the NEWS test set were observed in the
training set (compared to 69% for ANERCORP). As
Table 3 shows for the ANERCORP dataset, using
only the tokens as features, where the labeler mainly
memorizes previously seen named entities, yields
higher results than the baseline results for the NEWS
dataset (Table 2 (b)). The results on the TWEETS
test are very poor, with 24% of the named entities in
the test set appearing in the training set.

ANERCORP Dataset
Precision Recall Fβ=1

LOC 93 83 88
ORG 84 64 73
PERS 90 75 82
Overall 89 74 81

Table 1: “Baseline-lit” Results from (Abdul-Hamid and
Darwish, 2010)

(a) ANERCORP Dataset
Precision Recall Fβ=1

LOC 93.6 83.3 88.1
ORG 83.8 61.2 70.8
PERS 84.3 64.4 73.0
Overall 88.9 72.5 79.9

(b) NEWS Test Set
Precision Recall Fβ=1

LOC 84.1 53.2 65.1
ORG 73.2 23.2 35.2
PERS 74.8 47.1 57.8
Overall 78.0 41.9 54.6

(c) TWEETS Test Set
Precision Recall Fβ=1

LOC 79.9 27.1 40.4
ORG 44.4 9.1 15.1
PERS 45.7 27.8 34.5
Overall 58.0 23.1 33.1

Table 2: Baseline Results for the three test sets

ANERCORP Dataset
Precision Recall Fβ=1

LOC 95.3 62.7 75.6
ORG 86.3 44.7 58.9
PERS 85.4 36.4 51.0
Overall 91.0 50.0 64.5

Table 3: Results of using only tokens as features on AN-
ERCORP
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4 Cross-lingual Features

We experimented with three different cross-lingual
features that used Arabic and English Wikipedia
cross-language links and a true-cased phrase ta-
ble that was generated using Moses (Koehn et al.,
2007). True-casing preserves case information dur-
ing training. We used the Arabic Wikipedia snap-
shot from September 28, 2012. The snapshot has
348,873 titles including redirects, which are alter-
native names to articles. Of these articles, 254,145
have cross-lingual links to English Wikipedia. We
used DBpedia 3.8 which includes 6,157,591 entries
of Wikipedia titles and their “types”, such as “per-
son”, “plant”, or “device”, where a title can have
multiple types. The phrase table was trained on a set
of 3.69 million parallel sentences containing 123.4
million English tokens. The sentences were drawn
from the UN parallel data along with a variety of
parallel news data from LDC and the GALE project.
The Arabic side was stemmed (by removing just pre-
fixes) using the Stanford word segmenter (Green and
DeNero, 2012).

4.1 Cross-lingual Capitalization
As we mentioned earlier, Arabic lacks capitalization
and Arabic names are often common Arabic words.
For example, the Arabic name “Hasan” means good.
To capture cross-lingual capitalization, we used the
aforementioned true-cased phrase table at word and
phrase levels as follows:
Input: True-cased phrase table PT , sentence S containing n words
w0..n, max sequence length l, translations T1..k..m of wi..j
for i = 0→ n do

j = min(i+ l − 1, n)
if PT contains wi..j & ∃ Tk isCaps then

weight(wi..j) =

∑
Tk isCaps

P (Tk)

∑
Tk isCaps

P (Tk)+
∑

Tk notCaps
P (Tk)

round weight(wi..j) to first significant figure
set tag of wi = B-CAPS-weight
set tag for words wi+1..j = I-CAPS-weight

else
if j > i then

j- -
else

tag of wi = null
end if

end if
end for

Where: PT was the aforementioned phrase ta-
ble; l = 4; P (Tk) equaled to the product of
p(source|target) and p(target|source) for a word
sequence; isCaps and notCaps were whether the

translation was capitalized or not respectively; and
the weights were binned because CRF++ only takes
nominal features. In essence we tried every subse-
quence of S of length l or less to see if the translation
was capitalized. A subsequence can be 1 word long.
We tried longer sequences first. To determine if the
corresponding phrase was capitalized (isCaps), all
non-function words on the English side needed to be
capitalized. As an example, the phrase ø



XAêË @ ¡J
jÖÏ @

(meaning ”Pacific Ocean”) was translated to a cap-
italized phrase 36.7% of the time. Thus, the word
¡J
jÖÏ @ was assigned B-CAPS-0.4 and ø



XAêË @ was

assigned I-CAPS-0.4. Using weights avoids using
capitalization as a binary feature.

Table 4 reports on the results of the baseline
system with the capitalization feature on the three
datasets. In comparing baseline results in Table 2
and cross-lingual capitalization results in Table 4,
recall consistently increased for all datasets, par-
ticularly for “persons” and “locations”. For the
different test sets, recall increased by 3.1 to 6.1
points (absolute) or by 8.4% to 13.6% (relative).
This led to an overall improvement in F-measure of
1.8 to 3.4 points (absolute) or 4.2% to 5.7% (rela-
tive). Precision dropped overall on the ANERCORP
dataset and dropped substantially for the NEWS and
TWEETS test sets.

(a) ANERCORP Dataset
Precision Recall Fβ=1

LOC 92.0/-1.6/-1.7 86.8/3.5/4.2 89.3/1.2/1.4
ORG 82.8/-1.1/-1.3 63.9/2.7/4.4 72.1/1.4/1.9
PERS 86.0/1.7/2.0 75.4/11.0/17.1 80.3/7.3/10.1
Overall 88.4/-0.4/-0.5 78.6/6.1/8.4 83.2/3.4/4.2

(b) NEWS Test Set
Precision Recall Fβ=1

LOC 82.1/-2.0/-2.4 59.0/5.8/11.0 68.7/3.5/5.4
ORG 68.4/-4.9/-6.6 23.2/0.0/0.0 34.6/-0.6/-1.7
PERS 70.7/-4.0/-5.4 55.6/8.4/17.9 62.2/4.4/7.6
Overall 74.5/-3.5/-4.5 47.0/5.1/12.2 57.7/3.1/5.7

(c) TWEETS Test Set
Precision Recall Fβ=1

LOC 76.9/-3.0/-3.7 27.9/0.9/3.2 41.0/0.5/1.4
ORG 44.4/0.0/0.0 10.4/1.3/14.3 16.8/1.8/11.6
PERS 40.0/-5.7/-12.5 35.0/7.3/26.2 37.3/2.8/8.1
Overall 51.8/-6.2/-10.7 26.3/3.1/13.6 34.9/1.8/5.4

Table 4: Results with cross-lingual capitalization with
/absolute/relative differences compared to baseline
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4.2 Transliteration Mining

An alternative to capitalization can be translitera-
tion mining. The intuition is that named entities are
often transliterated, particularly the names of loca-
tions and persons. This feature is helpful if cross-
lingual resources do not have capitalization infor-
mation, or if the “helper” language to be consulted
does not have a useful capitalization feature. We per-
formed transliteration mining (aka cognate match-
ing) at word level for each Arabic word against all
its possible translations in the phrase table. We
used a transliteration miner akin to that of El-Kahki
et al. (2011) that was trained using 3,452 parallel
Arabic-English transliteration pairs. We aligned the
word-pairs at character level using GIZA++ and the
phrase extractor and scorer from the Moses machine
translation package (Koehn et al., 2007). The align-
ment produced mappings between English letters se-
quences and Arabic letter sequences with associated
mapping probabilities. Given an Arabic word, we
produced all its possible segmentations along with
their associated mappings into English letters. We
retained valid target sequences that produced trans-
lations in the phrase table.

Again we used a weight similar to the one for
cross-lingual capitalization and we rounded the val-
ues of the ratio the significant figure. The weights
were computed as:

∑
Tk isTransliteration

P (Tk)

∑
Tk isTransliteration

P (Tk) +
∑

Tk notTransliteration
P (Tk)

(1)

where P (Tk) is probability of the kth translation of
a word in the phrase table.

If a word was not found in the phrase table, the
feature value was assigned null. For example, if the
translations of the word 	á�k are “Hasan”, “Has-
san”, and “good”, where the first two are transliter-
ations and the last not, then the weight of the word
would be:

P (Hasan| 	á�k) + P (Hassan| 	á�k)

P (Hasan| 	á�k) + P (Hassan| 	á�k) + P (good| 	á�k)
(2)

In our experiments, the weight of 	á�k was equal
to 0.5 (after rounding). Table 5 reports on the re-
sults using the baseline system with the transliter-
ation mining feature. Like the capitalization fea-

ture, transliteration mining slightly lowered preci-
sion – except for the TWEETS test set where the
drop in precision was significant – and positively
increased recall, leading to an overall improvement
in F-measure for all test sets. Overall, F-measure
improved by 1.9%, 3.7%, and 3.9% (relative) com-
pared to the baseline for the ANERCORP, NEWS,
and TWEETS test sets respectively. The similarity
of results between using transliteration mining and
word-level cross-lingual capitalization suggests that
perhaps they can serve as surrogates.

4.3 Using DBpedia

DBpedia2 is a large collaboratively-built knowledge
base in which structured information is extracted
from Wikipedia (Bizer et al., 2009). DBpedia 3.8,
the release we used in this paper, contains 6,157,591
Wikipedia titles belonging to 296 types. Types vary
in granularity with each Wikipedia title having one
or more type. For example, NASA is assigned the
following types: Agent, Organization, and Govern-
mentAgency. In all, DBpedia includes the names of
764k persons, 573k locations, and 192k organiza-
tions. Of the Arabic Wikipedia titles, 254,145 have
Wikipedia cross-lingual links to English Wikipedia,
and of those English Wikipedia titles, 185,531 have
entries in DBpedia. Since Wikipedia titles may have
multiple DBpedia types, we opted to keep the most
popular type (by count of how many Wikipedia ti-
tles are assigned a particular type) for each title, and
we disregarded the rest. We also chose not to use
the “Agent” and “Work” types because they were
highly ambiguous. We found word sequences in
the manner described in the pseudocode for cross-
lingual capitalization. For translation, we gener-
ated two features using two translation resources,
namely the aforementioned phrase table and Arabic-
English Wikipedia cross-lingual links. When using
the phrase table, we used the most likely transla-
tion into English that matches an entry in DBpedia
provided that the product of p(source|target) and
p(target|source) of translation was above 10−5.
We chose the threshold qualitatively using offline
experiments. When using Arabic-English Wikipedia
cross-lingual links, if an entry was found in the
Arabic Wikipedia, we performed a look up in DB-

2http://dbpedia.org
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pedia using the English Wikipedia title that corre-
sponds to the Arabic Wikipedia title. We used Ara-
bic Wikipedia page-redirects to improve coverage.
For both features (using the two translation meth-
ods), for an Arabic word sequence corresponding to
the DBpedia entry, the first word in the sequence
was assigned the feature “B-” plus the DBpedia
type and subsequent words were assigned the fea-
ture “I-” plus the DBpedia type. For example, for
é
�
ÊË @ H.

	Qk (meaning “Hezbollah”), the words H.
	Qk

and é
�
ÊË @ were assigned “B-Organization” and “I-

Organization” respectively. For all other words, the
feature was assigned “null”. Using the phrase ta-
ble for translation likely yielded improved coverage
over using Wikipedia cross-lingual links. However,
Wikipedia cross-lingual links likely led to higher
quality translations, because they were manually cu-
rated. Table 6 reports on the results of using the
baseline system with the two DBpedia features. Us-
ing DBpedia consistently improved precision and re-
call for named entity types on all test sets, except
for a small drop in precision for locations on the
ANERCORP dataset and for locations and persons
on the TWEETS test set. For the different test sets,
improvements in recall ranged between 4.4 and 7.5
points (absolute) or 6.5% and 19.1% (relative). Pre-
cision improved by 0.9 and 5.5 points (absolute) or
1.0% and 7.1% (relative) for the ANERCORP and
NEWS test sets respectively. Overall improvement
in F-measure ranged between 3.2 and 7.6 points (ab-
solute) or 4.1% and 13.9% (relative).

4.4 Putting it All Together

Table 7 reports on the results of using all aforemen-
tioned cross-lingual features together. Figures 1, 2,
and 3 compare the results of the different setups. As
the results show, the impact of cross-lingual features
on recall were much more pronounced on the NEWS
and TWEETS test sets – compared to the ANER-
CORP dataset. Further, the recall values for the AN-
ERCORP dataset in the baseline experiments were
much higher than those for the two other test sets.
This confirms our suspicion that the reported values
in the literature on the standard datasets are unrealis-
tically high due to the similarity between the training
and test sets. Hence, these high effectiveness results
may not generalize to other test sets. Of all the cross-

(a) ANERCORP Dataset
Precision Recall Fβ=1

LOC 92.9/-0.7/-0.7 83.5/0.2/0.3 88.0/-0.2/-0.2
ORG 82.9/-0.9/-1.0 61.8/0.6/1.0 70.9/0.1/0.1
PERS 84.5/0.3/0.3 71.9/7.5/11.7 77.7/4.7/6.5
Overall 88.3/-0.5/-0.6 75.5/2.9/4.1 81.4/1.5/1.9

(b) NEWS Test Set
Precision Recall Fβ=1

LOC 84.9/0.7/0.9 53.6/0.5/0.9 65.7/0.6/0.9
ORG 67.2/-6.1/-8.3 22.9/-0.3/-1.1 34.2/-1.0/-2.9
PERS 72.8/-1.9/-2.6 55.0/7.8/16.7 62.7/4.8/8.4
Overall 75.9/-2.1/-2.6 45.0/3.1/7.4 56.6/2.0/3.7

(c) TWEETS Test Set
Precision Recall Fβ=1

LOC 79.1/-0.8/-1.0 27.1/0.0/0.0 40.3/-0.1/-0.3
ORG 41.8/-2.7/-6.0 9.1/0.0/0.0 14.9/-0.2/-1.1
PERS 40.0/-5.7/-12.5 35.5/7.7/27.8 37.6/3.1/8.8
Overall 51.7/-6.3/-10.9 25.8/2.6/11.3 34.4/1.3/3.9

Table 5: Results with transliteration mining with /abso-
lute/relative differences compared to baseline

(a) ANERCORP Dataset
Precision Recall Fβ=1

LOC 92.7/-0.9/-0.9 87.1/3.9/4.6 89.9/1.7/1.9
ORG 84.6/0.8/0.9 66.6/5.3/8.7 74.5/3.7/5.3
PERS 87.8/3.6/4.2 69.9/5.5/8.6 77.8/4.8/6.6
Overall 89.8/0.9/1.0 77.2/4.7/6.5 83.0/3.2/4.0

(b) NEWS Test Set
Precision Recall Fβ=1

LOC 87.8/3.6/4.3 61.8/8.6/16.2 72.5/7.4/11.3
ORG 76.1/2.9/3.9 30.2/7.0/30.1 43.2/8.0/22.7
PERS 83.2/8.5/11.3 54.2/7.1/15.0 65.7/7.8/13.6
Overall 83.5/5.5/7.1 49.5/7.5/18.0 62.2/7.6/13.9

(c) TWEETS Test Set
Precision Recall Fβ=1

LOC 77.4/-2.5/-3.1 30.5/3.5/12.9 43.8/3.4/8.4
ORG 57.0/12.5/28.2 15.9/6.8/75.1 24.8/9.8/64.9
PERS 40.8/-4.9/-10.6 31.7/4.0/14.3 35.7/1.2/3.4
Overall 55.3/-2.6/-4.5 27.5/4.4/19.1 36.8/3.7/11.2

Table 6: Results using DBpedia with /absolute/relative
differences compared to baseline

lingual features that we experimented with, the use
of DBpedia led to improvements in both precision
and recall (except for precision on the TWEETS test
set). Other cross-lingual features yielded overall im-
provements in F-measure, mostly due to gains in re-
call, typically at the expense of precision. Overall,
F-measure improved by 5.5%, 17.1%, and 20.5%
(relative) compared to the baseline for the ANER-
CORP, NEWS, and TWEETS test sets respectively.
For the ANERCORP test set, our results improved
over the baseline-lit results (Abdul-Hamid and Dar-
wish, 2010) by 4.1% (relative).
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Figure 1: ANERCORP Dataset Results

Figure 2: NEWS Test Set Results

When using all the features together, one notable
result is that precision dropped significantly for the
TWEETS test sets. We examined the output for the
TWEETS test set and here are some of the factors
that affected precision:
- the presence of words that would typically be
named entities in news but would generally be reg-
ular words in tweets. For example, the Arabic word
“Mubarak” is most likely the name of the former
Egyptian president in the context of news, but it
would most likely mean “blessed”, which is com-
mon in expressions of congratulations, in tweets.
- the use of dialectic words that may have transliter-
ations or a named entity as the most likely transla-
tion into English. For example, the word ú



æ
�
� is typ-

ically the dialectic version of the Arabic word Zú


æ
�
�,

meaning something. However, since the MT sys-
tem that we used was trained on modern standard
Arabic, the dialectic word would not appear in train-
ing and would typically be translated/transliterated
to the name “Che” (as in Che Guevara).
- Since tweets are restricted in length, authors fre-
quently use shortened versions of named entities.
For example, tweets would mostly have “Morsi”
instead of “Mohamed Morsi” and without trigger
words such as “Dr.” or “president”. The full ver-
sion of a name and trigger words are more com-

Figure 3: TWEETS Test Set Results

(a) ANERCORP Dataset
Precision Recall Fβ=1

LOC 92.3/-1.3/-1.4 87.8/4.6/5.5 90.0/1.9/2.1
ORG 81.4/-2.4/-2.9 66.0/4.7/7.7 72.9/2.1/3.0
PERS 87.0/2.8/3.3 77.7/13.3/20.7 82.1/9.1/12.5
Overall 88.7/-0.2/-0.2 80.3/7.8/10.7 84.3/4.4/5.5

(b) NEWS Test Set
Precision Recall Fβ=1

LOC 85.1/1.0/1.2 64.1/11.0/20.6 73.1/8.0/12.3
ORG 73.8/0.5/0.7 29.4/6.2/26.9 42.1/6.8/19.4
PERS 76.8/2.0/2.7 63.4/16.3/34.5 69.5/11.7/20.2
Overall 79.2/1.2/1.6 53.6/11.6/27.7 63.9/9.4/17.1

(c) TWEETS Test Set
Precision Recall Fβ=1

LOC 81.4/1.5/1.8 33.5/6.5/23.9 47.5/7.1/17.4
ORG 52.1/7.6/17.2 16.2/7.1/78.6 24.7/9.6/64.1
PERS 40.5/-5.2/-11.4 39.2/11.5/41.3 39.8/5.3/15.4
Overall 54.4/-3.6/-6.2 31.4/8.3/35.9 39.9/6.8/20.5

Table 7: Results using all the cross-lingual features with
/absolute/relative differences compared to baseline

mon in news. This same problem was present in the
NEWS test set, because it was constructed from an
RSS feed, and headlines, which are typically com-
pact, had a higher representation in the test collec-
tion. We observed the same phenomenon for orga-
nization names. For example, “the Real” refers to
“Real Madrid”. Nicknames are also prevalent. For
example, “the Land of the two Sanctuaries” refers to
“Saudi Arabia”.
We believe that this problem can be overcome by
introducing new training data that include tweets (or
other social text) and performing domain adaptation.
New training data would help: identify words and
expressions that are common in conversations, ac-
count for common dialectic words, and learn a bet-
ter word transition model. Further, gazetteers that
cover shortened versions of names could be helpful
as well.
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5 Conclusion

In this paper, we presented different cross-lingual
features that can make use of linguistic properties
and knowledge bases of other languages for NER.
For translation, we used an MT phrase table and
Wikipedia cross-lingual links. We used English
as the “helper” language and we exploited the En-
glish capitalization feature and an English knowl-
edge base, DBpedia. If the helper language did
not have capitalization, then transliteration mining
could provide some of the benefit of capitalization.
Transliteration mining requires limited amounts of
training examples. We believe that the proposed
cross-lingual features can be used to help NER for
other languages, particularly languages that lack
good features that generalize well. For Arabic NER,
the new features yielded an improvement of 5.5%
over a strong baseline system on a standard dataset,
with 10.7% gain in recall and negligible change in
precision. We tested on a new news test set, NEWS,
which has recent news articles (the same genre as
the standard dataset), and indeed NER effective-
ness was much lower. For the new NEWS test set,
cross-lingual features led to a small increase in pre-
cision (1.6%) and a very large improvement in re-
call (27.7%). This led to a 17.1% improvement
in overall F-measure. We also tested NER on the
TWEETS test set, where we observed substantial
improvements in recall (35.9%). However, precision
dropped by 6.2% for the reasons we mentioned ear-
lier. For future work, it would be interesting to apply
cross-lingual features to other language pairs and to
make use of joint cross-lingual models. Further, we
also plan to investigate Arabic NER on social media,
particularly microblogs.

References

A. Abdul-Hamid and K. Darwish. 2010. Simplified Fea-
ture Set for Arabic Named Entity Recognition. Pro-
ceedings of the 2010 Named Entities Workshop, ACL
2010, pages 110115.

Mohammed Attia, Antonio Toral, Lamia Tounsi, Mon-
ica Monachini, and Josef van Genabith. 2010. An au-
tomatically built named entity lexicon for Arabic. In:
LREC 2010 - 7th conference on International Lan-
guage Resources and Evaluation, 17-23 May 2010,
Valletta, Malta.

Y. Benajiba, M. Diab, and P. Rosso. 2008. Arabic Named
Entity Recognition using Optimized Feature Sets. Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 284293,
Honolulu, October 2008.

Y. Benajiba and P. Rosso. 2008. Arabic Named En-
tity Recognition using Conditional Random Fields. In
Proc. of Workshop on HLT & NLP within the Arabic
World, LREC08.

Y. Benajiba, P. Rosso and J. M. Benedi. 2007. ANER-
sys: An Arabic Named Entity Recognition system
based on Maximum Entropy. In Proc. of CICLing-
2007, Springer-Verlag, LNCS(4394), pp.143-153

Y. Benajiba and P. Rosso. 2007. ANERsys 2.0: Con-
quering the NER task for the Arabic language by
combining the Maximum Entropy with POS-tag infor-
mation. In Proc. of Workshop on Natural Language-
Independent Engineering, IICAI-2007.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sren
Auer, Christian Becker, Richard Cyganiak, Sebastian
Hellmann. 2009. DBpedia A Crystallization Point for
the Web of Data. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, Issue 7,
Pages 154165, 2009.

D. Burkett, S. Petrov, J. Blitzer, D. Klein. 2010. Learning
Better Monolingual Models with Unannotated Bilin-
gual Text. Proceedings of the Fourteenth Conference
on Computational Natural Language Learning, pages
46–54.

A. El Kahki, K. Darwish, A. Saad El Din, M. Abd El-
Wahab and A. Hefny. 2011. Improved Transliteration
Mining Using Graph Reinforcement. EMNLP-2011.

B. Farber, D. Freitag, N. Habash, and O. Rambow. 2008.
Improving NER in Arabic Using a Morphological Tag-
ger. In Proc. of LREC08.

K. Ganchev, J. Gillenwater, and B. Taskar. 2009. Depen-
dency grammar induction via bitext projection con-
straints. In ACL-2009.

Spence Green and John DeNero. 2012. A Class-Based
Agreement Model for Generating Accurately Inflected
Translations. In ACL-2012.

Ulf Hermjakob, Kevin Knight, and Hal Daum III. 2008.
Name translation in statistical machine translation:
Learning when to transliterate. ACL-08: HLT, Pages
389-397.

F. Huang. 2005. Multilingual Named Entity Extraction
and Translation from Text and Speech. Ph.D. Thesis.
Pittsburgh: Carnegie Mellon University.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, Evan Herbst, Moses: Open Source Toolkit

1566



for Statistical Machine Translation, Annual Meeting of
the Association for Computational Linguistics (ACL),
demonstration session, Prague, Czech Republic, June
2007.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data, In Proc. of ICML,
pp.282-289, 2001.

Leah S. Larkey, Lisa Ballesteros, and Margaret E. Con-
nell. 2002. Improving stemming for Arabic informa-
tion retrieval: light stemming and co-occurrence anal-
ysis. SIGIR-2002.

J. Mayfield, P. McNamee, and C. Piatko. 2003.Named
Entity Recognition using Hundreds of Thousands of
Features. HLT-NAACL 2003-Volume 4, 2003.

A. McCallum and W. Li. 2003. Early Results for Named
Entity Recognition with Conditional Random Fields,
Features Induction and Web-Enhanced Lexicons. In
Proc. Conference on Computational Natural Language
Learning.

P. McNamee and J. Mayfield. 2002. Entity extraction
without language-specific. Proceedings of CoNLL,
.2002

Behrang Mohit, Nathan Schneider, Rishav Bhowmick,
Kemal Oflazer, Noah A. Smith. 2012. Recall-oriented
learning of named entities in Arabic Wikipedia. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL 2012), pp. 162-173. 2012.

D. Nadeau and S. Sekine. 2009. A Survey of Named En-
tity Recognition and Classification. Named Entities:
Recognition, Classification and Use, ed. S. Sekine and
E. Ranchhod, John Benjamins Publishing Company.

Alexander E. Richman and Patrick Schone. 2008. Mining
wiki resources for multilingual named entity recogni-
tion. Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. 2008.

K. Shaalan and H. Raza. 2007. Person Name Entity
Recognition for Arabic. Proceedings of the 5th Work-
shop on Important Unresolved Matters, pages 1724,
Prague, Czech Republic, June 2007.

L. Shi, R. Mihalcea, M. Tian. 2010. Cross Language
Text Classification by Model Translation and Semi-
supervised Learning. Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2010.

Raghavendra Udupa, Anton Bakalov, and Abhijit Bhole.
2009. They Are Out There, If You Know Where to
Look: Mining Transliterations of OOV Query Terms
for Cross-Language Information Retrieval. Advances
in Information Retrieval. Pages: 437-448.

D. Yarowsky and G. Ngai. 2001. Inducing Multilingual
POS Taggers and NP Bracketers via Robust Projection
across Aligned Corpora. In NAACL-2001.

1567



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1568–1576,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Beam Search for Solving Substitution Ciphers

Malte Nuhn and Julian Schamper and Hermann Ney
Human Language Technology and Pattern Recognition

Computer Science Department, RWTH Aachen University, Aachen, Germany
<surname>@cs.rwth-aachen.de

Abstract

In this paper we address the problem of
solving substitution ciphers using a beam
search approach. We present a concep-
tually consistent and easy to implement
method that improves the current state of
the art for decipherment of substitution ci-
phers and is able to use high order n-gram
language models. We show experiments
with 1:1 substitution ciphers in which the
guaranteed optimal solution for 3-gram
language models has 38.6% decipherment
error, while our approach achieves 4.13%
decipherment error in a fraction of time
by using a 6-gram language model. We
also apply our approach to the famous
Zodiac-408 cipher and obtain slightly bet-
ter (and near to optimal) results than pre-
viously published. Unlike the previous
state-of-the-art approach that uses addi-
tional word lists to evaluate possible deci-
pherments, our approach only uses a letter-
based 6-gram language model. Further-
more we use our algorithm to solve large
vocabulary substitution ciphers and im-
prove the best published decipherment er-
ror rate based on the Gigaword corpus of
7.8% to 6.0% error rate.

1 Introduction

State-of-the-art statistical machine translation
(SMT) systems use large amounts of parallel data
to estimate translation models. However, parallel
corpora are expensive and not available for every
domain.

Recently different works have been published
that train translation models using only non-
parallel data. Although first practical applications
of these approaches have been shown, the overall

decipherment accuracy of the proposed algorithms
is still low. Improving the core decipherment algo-
rithms is an important step for making decipher-
ment techniques useful for practical applications.

In this paper we present an effective beam
search algorithm which provides high decipher-
ment accuracies while having low computational
requirements. The proposed approach allows us-
ing high order n-gram language models, is scal-
able to large vocabulary sizes and can be adjusted
to account for a given amount of computational
resources. We show significant improvements in
decipherment accuracy in a variety of experiments
while being computationally more effective than
previous published works.

2 Related Work

The experiments proposed in this paper touch
many of previously published works in the deci-
pherment field.

Regarding the decipherment of 1:1 substitution
ciphers various works have been published: Most
older papers do not use a statistical approach and
instead define some heuristic measures for scoring
candidate decipherments. Approaches like (Hart,
1994) and (Olson, 2007) use a dictionary to check
if a decipherment is useful. (Clark, 1998) defines
other suitability measures based on n-gram counts
and presents a variety of optimization techniques
like simulated annealing, genetic algorithms and
tabu search.

On the other hand, statistical approaches for
1:1 substitution ciphers were published in the nat-
ural language processing community: (Ravi and
Knight, 2008) solve 1:1 substitution ciphers opti-
mally by formulating the decipherment problem as
an integer linear program (ILP) while (Corlett and
Penn, 2010) solve the problem using A∗ search.
We use our own implementation of these methods
to report optimal solutions to 1:1 substitution ci-
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phers for language model orders n = 2 and n = 3.
(Ravi and Knight, 2011a) report the first au-

tomatic decipherment of the Zodiac-408 cipher.
They use a combination of a 3-gram language
model and a word dictionary. We run our beam
search approach on the same cipher and report
better results without using an additional word
dictionary—just by using a high order n-gram lan-
guage model.

(Ravi and Knight, 2011b) report experiments on
large vocabulary substitution ciphers based on the
Transtac corpus. (Dou and Knight, 2012) improve
upon these results and provide state-of-the-art re-
sults on a large vocabulary word substitution ci-
pher based on the Gigaword corpus. We run our
method on the same corpus and report improve-
ments over the state of the art.

(Ravi and Knight, 2011b) and (Nuhn et al.,
2012) have shown that—even for larger vocabu-
lary sizes—it is possible to learn a full translation
model from non-parallel data. Even though this
work is currently only able to deal with substi-
tution ciphers, phenomena like reordering, inser-
tions and deletions can in principle be included in
our approach.

3 Definitions

In the following we will use the machine trans-
lation notation and denote the ciphertext with
fN1 = f1 . . . fj . . . fN which consists of cipher
tokens fj ∈ Vf . We denote the plaintext with
eN1 = e1 . . . ei . . . eN (and its vocabulary Ve re-
spectively). We define

e0 = f0 = eN+1 = fN+1 = $ (1)

with “$” being a special sentence boundary token.
We use the abbreviations V e = Ve ∪ {$} and V f

respectively.
A general substitution cipher uses a table

s(e|f) which contains for each cipher token f a
probability that the token f is substituted with the
plaintext token e. Such a table for substituting
cipher tokens {A,B,C,D} with plaintext tokens
{a, b, c, d} could for example look like

a b c d
A 0.1 0.2 0.3 0.4
B 0.4 0.2 0.1 0.3
C 0.4 0.1 0.2 0.3
D 0.3 0.4 0.2 0.1

The 1:1 substitution cipher encrypts a given
plaintext into a ciphertext by replacing each plain-
text token with a unique substitute: This means
that the table s(e|f) contains all zeroes, except for
one “1.0” per f ∈ Vf and one “1.0” per e ∈ Ve.
For example the text

abadcab

would be enciphered to

BCBADBC

when using the substitution

a b c d
A 0 0 0 1
B 1 0 0 0
C 0 1 0 0
D 0 0 1 0

In contrast to the 1:1 substitution cipher, the ho-
mophonic substitution cipher allows multiple ci-
pher tokens per plaintext token, which means that
the table s(e|f) is all zero, except for one “1.0” per
f ∈ Vf . For example the above plaintext could be
enciphered to

ABCDECF

when using the homophonic substitution

a b c d
A 1 0 0 0
B 0 1 0 0
C 1 0 0 0
D 0 0 0 1
E 0 0 1 0
F 0 1 0 0

We will use the definition

nmax = max
e

∑

f

s(e|f) (2)

to characterize the maximum number of different
cipher symbols allowed per plaintext symbol.

We formalize the 1:1 substitutions with a bijec-
tive function φ : Vf → Ve and homophonic sub-
stitutions with a general function φ : Vf → Ve.

Following (Corlett and Penn, 2010), we call
cipher functions φ, for which not all φ(f)’s are
fixed, partial cipher functions . Further, φ′ is
said to extend φ, if for all f that are fixed in φ, it
holds that f is also fixed in φ′ with φ′(f) = φ(f).
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The cardinality of φ counts the number of fixed
f ’s in φ.

When talking about partial cipher functions we
use the notation for relations, in which φ ⊆ Vf ×
Ve. For example with

φ = {(A, a)} φ′ = {(A, a), (B, b)}

it follows that φ ⊆1φ′ and

|φ| = 1 |φ′| = 2

φ(A) = a φ′(A) = a

φ(B) = undefined φ′(B) = b

The general decipherment goal is to obtain a
mapping φ such that the probability of the deci-
phered text is maximal:

φ̂ = argmax
φ

p(φ(f1)φ(f2)φ(f3)...φ(fN )) (3)

Here p(. . . ) denotes the language model. De-
pending on the structure of the language model
Equation 3 can be further simplified.

4 Beam Search

In this Section we present our beam search ap-
proach to solving Equation 3. We first present the
general algorithm, containing many higher level
functions. We then discuss possible instances of
these higher level functions.

4.1 General Algorithm

Figure 1 shows the general structure of the beam
search algorithm for the decipherment of substi-
tution ciphers. The general idea is to keep track
of all partial hypotheses in two arrays Hs and Ht.
During search all possible extensions of the partial
hypotheses in Hs are generated and scored. Here,
the function EXT ORDER chooses which cipher
symbol is used next for extension, EXT LIMITS

decides which extensions are allowed, and SCORE

scores the new partial hypotheses. PRUNE then se-
lects a subset of these hypotheses which are stored
to Ht. Afterwards the array Hs is copied to Ht

and the search process continues with the updated
array Hs.

Due to the structure of the algorithm the car-
dinality of all hypotheses in Hs increases in each
step. Thus only hypotheses of the same cardinality

1shorthand notation for φ′ extends φ

1: function BEAM SEARCH(EXT ORDER,
EXT LIMITS, PRUNE)

2: init sets Hs, Ht

3: CARDINALITY = 0
4: Hs.ADD((∅, 0))
5: while CARDINALITY < |Vf | do
6: f = EXT ORDER[CARDINALITY]
7: for all φ ∈ Hs do
8: for all e ∈ Ve do
9: φ′ := φ ∪ {(e, f)}

10: if EXT LIMITS(φ′) then
11: Ht.ADD(φ′,SCORE (φ′))
12: end if
13: end for
14: end for
15: PRUNE(Ht)
16: CARDINALITY = CARDINALITY + 1
17: Hs = Ht

18: Ht.CLEAR()
19: end while
20: return best scoring cipher function in Hs

21: end function

Figure 1: The general structure of the beam
search algorithm for decipherment of substitu-
tion ciphers. The high level functions SCORE,
EXT ORDER, EXT LIMITS and PRUNE are de-
scribed in Section 4.

are compared in the pruning step. When Hs con-
tains full cipher relations, the cipher relation with
the maximal score is returned.2

Figure 2 illustrates how the algorithm explores
the search space for a homophonic substitution ci-
pher. In the following we show several instances
of EXT ORDER, EXT LIMITS, SCORE, and PRUNE.

4.2 Extension Limits (EXT LIMITS)
In addition to the implicit constraint of φ being
a function Vf → Ve, one might be interested in
functions of a specific form:

For 1:1 substitution ciphers
(EXT LIMITS SIMPLE) φ must fulfill that the
number of cipher letters f ∈ Vf that map to any
e ∈ Ve is at most one. Since partial hypotheses
violating this condition can never “recover” when
being extended, it becomes clear that these partial
hypotheses can be left out from search.

2n-best output can be implemented by returning the n best
scoring hypotheses in the final array Hs.
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Figure 2: Illustration of the search space explored by the beam search algorithm with cipher vocabulary
Vf = {A,B,C,D}, plaintext vocabulary Ve = {a, b, c, d}, EXT ORDER = (B,C,A,D), homophonic
extension limits (EXT LIMITS HOMOPHONIC) with nmax = 4, and histogram pruning with nkeep = 4.
Hypotheses are visualized as nodes in the tree. The x-axis represents the extension order. At each level
only those 4 hypotheses that survived the histogram pruning process are extended.

Homophonic substitution ciphers can be han-
dled by the beam search algorithm, too. Here
the condition that φ must fulfill is that the num-
ber of cipher letters f ∈ Vf that map to any
e ∈ Ve is at most nmax (which we will call
EXT LIMITS HOMOPHONIC). As soon as this con-
dition is violated, all further extensions will also
violate the condition. Thus, these partial hypothe-
ses can be left out.

4.3 Score Estimation (SCORE)
The score estimation function needs to predict
how good or bad a partial hypothesis (cipher func-
tion) might become. We propose simple heuristics
that use the n-gram counts rather than the original
ciphertext. The following formulas consider the
2-gram case. Equations for higher n-gram orders
can be obtained analogously.

With Equation 3 in mind, we want to estimate
the best possible score

N+1∏

j=1

p(φ′(fj)|φ′(fj−1)) (4)

which can be obtained by extensions φ′ ⊇ φ. By
defining counts3

Nff ′ =
N+1∑

i=1

δ(f, fi−1)δ(f ′, fi) (5)

3δ denotes the Kronecker delta.

we can equivalently use the scores
∑

f,f ′∈V f

Nff ′ log p(φ
′(f ′)|φ′(f)) (6)

Using this formulation it is easy to propose
a whole class of heuristics: We only present
the simplest heuristic, which we call TRIV-
IAL HEURISTIC. Its name stems from the fact that
it only evaluates those parts of a given φ′ that are
already fixed, and thus does not estimate any fu-
ture costs. Its score is calculated as

∑

f,f ′∈φ′
Nff ′ log p(φ

′(f ′)|φ′(f)). (7)

Here f, f ′ ∈ φ′ denotes that f and f ′ need to
be covered in φ′. This heuristic is optimistic since
we implicitly use “0” as estimate for the non fixed
parts of the sum, for which Nff ′ log p(·|·) ≤ 0
holds.

It should be noted that this heuristic can be im-
plemented very efficiently. Given a partial hypoth-
esis φ with given SCORE(φ) the score of an exten-
sion φ′ can be calculated as

SCORE(φ′) = SCORE(φ) + NEWLY FIXED(φ, φ′)
(8)

where NEWLY FIXED only includes scores for
n-grams that have been newly fixed in φ′ during
the extension step from φ to φ′.
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4.4 Extension Order (EXT ORDER)
For the choice which ciphertext symbol should be
fixed next during search, several possibilities ex-
ist: The overall goal is to choose an extension or-
der that leads to an overall low error rate. Intu-
itively it seems a good idea to first try to decipher
higher frequent words rather than the lowest fre-
quent ones. It is also clear that the choice of a good
extension order is dependent on the score estima-
tion function SCORE: The extension order should
lead to informative scores early on so that mislead-
ing hypotheses can be pruned out early.

In most of our experiments we will
make use of a very simple extension order:
HIGHEST UNIGRAM FREQUENCY simply fixes
the most frequent symbols first.

In case of the Zodiac-408, we use another strat-
egy that we call HIGHEST NGRAM COUNT ex-
tension order. In each step it greedily chooses
the symbol that will maximize the number of
fixed ciphertext n-grams. This strategy is use-
ful because the SCORE function we use is TRIV-
IAL HEURISTIC, which is not able to provide in-
formative scores if only few full n-grams are fixed.

4.5 Pruning (PRUNE)
We propose two pruning methods:
HISTOGRAM PRUNING sorts all hypotheses
according to their score and then keeps only the
best nkeep hypotheses.

THRESHOLD PRUNING keeps only those hy-
potheses φkeep for which

SCORE(φkeep) ≥ SCORE(φbest)− β (9)

holds for a given parameter β ≥ 0. Even though
THRESHOLD PRUNING has the advantage of not
needing to sort all hypotheses, it has proven dif-
ficult to choose proper values for β. Due to this,
all experiments presented in this paper only use
HISTOGRAM PRUNING.

5 Iterative Beam Search

(Ravi and Knight, 2011b) propose a so called “it-
erative EM algorithm”. The basic idea is to run a
decipherment algorithm—in their case an EM al-
gorithm based approach—on a subset of the vo-
cabulary. After having obtained the results from
the restricted vocabulary run, these results are used
to initialize a decipherment run with a larger vo-
cabulary. The results from this run will then be
used for a further decipherment run with an even

larger vocabulary and so on. In our large vocabu-
lary word substitution cipher experiments we it-
eratively increase the vocabulary from the 1000
most frequent words, until we finally reach the
50000 most frequent words.

6 Experimental Evaluation

We conduct experiments on letter based 1:1 sub-
stitution ciphers, the homophonic substitution ci-
pher Zodiac-408, and word based 1:1 substitution
ciphers.

For a given reference mapping φref , we eval-
uate candidate mappings φ using two error mea-
sures: Mapping Error Rate MER(φ, φref ) and
Symbol Error Rate SER(φ, φref ). Roughly
speaking, SER reports the fraction of symbols
in the deciphered text that are not correct, while
MER reports the fraction of incorrect mappings
in φ.

Given a set of symbols Veval with unigram
countsN(v) for v ∈ Veval, and the total amount of
running symbols Neval =

∑
v∈Veval

N(v) we define

MER = 1−
∑

v∈Veval

1

|Veval|
· δ(φ(v), φref (v))

(10)

SER = 1−
∑

v∈Veval

N(v)

Neval
· δ(φ(v), φref (v))

(11)

Thus the SER can be seen as a weighted form of
the MER, emphasizing errors for frequent words.
In decipherment experiments, SER will often be
lower than MER, since it is often easier to deci-
pher frequent words.

6.1 Letter Substitution Ciphers

As ciphertext we use the text of the English
Wikipedia article about History4, remove all pic-
tures, tables, and captions, convert all letters to
lowercase, and then remove all non-letter and non-
space symbols. This corpus forms the basis for
shorter cryptograms of size 2, 4, 8, 16, 32, 64, 128,
and 256—of which we generate 50 each. We make
sure that these shorter cryptograms do not end or
start in the middle of a word. We create the ci-
phertext using a 1:1 substitution cipher in which
we fix the mapping of the space symbol ’ ’. This

4http://en.wikipedia.org/wiki/History
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Order Beam MER [%] SER [%] RT [s]

3 10 33.15 25.27 0.01
3 100 12.00 6.95 0.06
3 1k 7.37 3.06 0.53
3 10k 5.10 1.42 5.33
3 100k 4.93 1.31 47.70
3 ∞∗ 4.93 1.31 19 700.00

4 10 55.97 48.19 0.02
4 100 18.15 14.41 0.10
4 1k 5.13 3.42 0.89
4 10k 1.55 1.00 8.57
4 100k 0.39 0.06 81.34

5 10 69.19 60.13 0.02
5 100 35.57 29.02 0.14
5 1k 10.89 8.47 1.29
5 10k 0.38 0.06 11.91
5 100k 0.38 0.06 120.38

6 10 74.65 64.77 0.03
6 100 40.26 33.38 0.17
6 1k 13.53 10.08 1.58
6 10k 2.45 1.28 15.77
6 100k 0.09 0.05 151.85

Table 1: Symbol error rates (SER), Mapping er-
ror rates (MER) and runtimes (RT) in dependence
of language model order (ORDER) and histogram
pruning size (BEAM) for decipherment of letter
substitution ciphers of length 128. Runtimes are
reported on a single core machine. Results for
beam size “∞” were obtained using A∗ search.

makes our experiments comparable to those con-
ducted in (Ravi and Knight, 2008). Note that fix-
ing the ’ ’ symbol makes the problem much eas-
ier: The exact methods show much higher com-
putational demands for lengths beyond 256 letters
when not fixing the space symbol.

The plaintext language model we use a letter
based (Ve = {a, . . . , z, }) language model trained
on a subset of the Gigaword corpus (Graff et al.,
2007).

We use extension limits fitting the 1:1 substi-
tution cipher nmax = 1 and histogram pruning
with different beam sizes.

For comparison we reimplemented the ILP ap-
proach from (Ravi and Knight, 2008) as well as
the A∗ approach from (Corlett and Penn, 2010).

Figure 3 shows the results of our algorithm for
different cipher length. We use a beam size of
100k for the 4, 5 and 6-gram case. Most remark-
ably our 6-gram beam search results are signifi-
cantly better than all methods presented in the lit-
erature. For the cipher length of 32 we obtain a
symbol error rate of just 4.1% where the optimal
solution (i.e. without search errors) for a 3-gram
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Figure 3: Symbol error rates for decipherment of
letter substitution ciphers of different lengths. Er-
ror bars show the 95% confidence interval based
on decipherment on 50 different ciphers. Beam
search was performed with a beam size of “100k”.

language model has a symbol error rate as high as
38.3%.

Table 1 shows error rates and runtimes of our
algorithm for different beam sizes and language
model orders given a fixed ciphertext length of 128
letters. It can be seen that achieving close to op-
timal results is possible in a fraction of the CPU
time needed for the optimal solution: In the 3-
gram case the optimal solution is found in 1

400 th
of the time needed using A∗ search. It can also
be seen that increasing the language model order
does not increase the runtime much while provid-
ing better results if the beam size is large enough:
If the beam size is not large enough, the decipher-
ment accuracy decreases when increasing the lan-
guage model order: This is because the higher or-
der heuristics do not give reliable scores if only
few n-grams are fixed.

To summarize: The beam search method is sig-
nificantly faster and obtains significantly better re-
sults than previously published methods. Further-
more it offers a good trade-off between CPU time
and decipherment accuracy.
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Figure 4: First 136 letters of the Zodiac-408 cipher
and its decipherment.

6.2 Zodiac-408 Cipher

As ciphertext we use a transcription of the
Zodiac-408 cipher. It consists of 54 different sym-
bols and has a length of 408 symbols.5 The ci-
pher has been deciphered by hand before. It con-
tains some mistakes and ambiguities: For exam-
ple, it contains misspelled words like forrest (vs.
forest), experence (vs. experience), or paradice
(vs. paradise). Furthermore, the last 17 letters
of the cipher do not form understandable English
when applying the same homophonic substitution
that deciphers the rest of the cipher. This makes
the Zodiac-408 a good candidate for testing the ro-
bustness of a decipherment algorithm.

We assume a homophonic substitution cipher,
even though the cipher is not strictly homophonic:
It contains three cipher symbols that correspond
to two or more plaintext symbols. We ignore this
fact for our experiments, and count—in case of the
MER only—the decipherment for these symbols
as correct when the obtained mapping is contained
in the set of reference symbols. We use extension
limits with nmax = 8 and histogram pruning
with beam sizes of 10k up to 10M .

The plaintext language model is based on the
same subset of Gigaword (Graff et al., 2007) data
as the experiments for the letter substitution ci-
phers. However, we first removed all space sym-

5hence its name

Order Beam MER [%] SER [%] RT [s]

4 10k 71.43 67.16 222
4 100k 66.07 61.52 1 460
4 1M 39.29 34.80 12 701
4 10M 19.64 16.18 125 056

5 10k 94.64 96.57 257
5 100k 10.71 5.39 1 706
5 1M 8.93 3.19 14 724
5 10M 8.93 3.19 152 764

6 10k 87.50 84.80 262
6 100k 94.64 94.61 1 992
6 1M 8.93 2.70 17 701
6 10M 7.14 1.96 167 181

Table 2: Symbol error rates (SER), Mapping er-
ror rates (MER) and runtimes (RT) in dependence
of language model order (ORDER) and histogram
pruning size (BEAM) for the decipherment of the
Zodiac-408 cipher. Runtimes are reported on a
128-core machine.

bols from the training corpus before training the
actual letter based 4-gram, 5-gram, and 6-gram
language model on it. Other than (Ravi and
Knight, 2011a) we do not use any word lists and
by that avoid any degrees of freedom in how to in-
tegrate it into the search process: Only an n-gram
language model is used.

Figure 4 shows the first parts of the cipher and
our best decipherment. Table 2 shows the results
of our algorithm on the Zodiac-408 cipher for dif-
ferent language model orders and pruning settings.

To summarize: Our final decipherment—for
which we only use a 6-gram language model—has
a symbol error rate of only 2.0%, which is slightly
better than the best decipherment reported in (Ravi
and Knight, 2011a). They used an n-gram lan-
guage model together with a word dictionary and
obtained a symbol error rate of 2.2%. We thus ob-
tain better results with less modeling.

6.3 Word Substitution Ciphers

As ciphertext, we use parts of the JRC corpus
(Steinberger et al., 2006) and the Gigaword cor-
pus (Graff et al., 2007). While the full JRC corpus
contains roughly 180k word types and consists of
approximately 70M running words, the full Giga-
word corpus contains around 2M word types and
roughly 1.5G running words.

We run experiments for three different setups:
The “JRC” and “Gigaword” setups use the first
half of the respective corpus as ciphertext, while
the plaintext language model of order n = 3 was
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Setup Top MER [%] SER [%] RT [hh:mm]

Gigaword 1k 81.91 27.38 03h 10m
Gigaword 10k 30.29 8.55 09h 21m
Gigaword 20k 21.78 6.51 16h 25m
Gigaword 50k 19.40 5.96 49h 02m

JRC 1k 73.28 15.42 00h 32m
JRC 10k 15.82 2.61 13h 03m

JRC-Shuf 1k 76.83 19.04 00h 31m
JRC-Shuf 10k 15.08 2.58 13h 03m

Table 3: Word error rates (WER), Mapping error
rates (MER) and runtimes (RT) for iterative deci-
pherment run on the (TOP) most frequent words.
Error rates are evaluated on the full vocabulary.
Runtimes are reported on a 128-core machine.

trained on the second half. The “JRC-Shuf” setup
is created by randomly selecting half of the sen-
tences of the JRC corpus as ciphertext, while the
language model was trained on the complemen-
tary half of the corpus.

We encrypt the ciphertext using a 1:1 substi-
tution cipher on word level, imposing a much
larger vocabulary size. We use histogram prun-
ing with a beam size of 128 and use extension
limits of nmax = 1. Different to the previous
experiments, we use iterative beam search with
iterations as shown in Table 3.

The results for the Gigaword task are directly
comparable to the word substitution experiments
presented in (Dou and Knight, 2012). Their fi-
nal decipherment has a symbol error rate of 7.8%.
Our algorithm obtains 6.0% symbol error rate. It
should be noted that the improvements of 1.8%
symbol error rate correspond to a larger improve-
ment in terms of mapping error rate. This can also
be seen when looking at Table 3: An improvement
of the symbol error rate from 6.51% to 5.96% cor-
responds to an improvement of mapping error rate
from 21.78% to 19.40%.

To summarize: Using our beam search algo-
rithm in an iterative fashion, we are able to im-
prove the state-of-the-art decipherment accuracy
for word substitution ciphers.

7 Conclusion

We have presented a simple and effective beam
search approach to the decipherment problem. We
have shown in a variety of experiments—letter
substitution ciphers, the Zodiac-408, and word
substitution ciphers—that our approach outper-
forms the current state of the art while being con-

ceptually simpler and keeping computational de-
mands low.

We want to note that the presented algorithm is
not restricted to 1:1 and homophonic substitution
ciphers: It is possible to extend the algorithm to
solve n:m mappings. Along with more sophis-
ticated pruning strategies, score estimation func-
tions, and extension orders, this will be left for fu-
ture research.
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Abstract

We introduce a social media text normal-
ization system that can be deployed as a
preprocessing step for Machine Transla-
tion and various NLP applications to han-
dle social media text. The proposed sys-
tem is based on unsupervised learning of
the normalization equivalences from unla-
beled text. The proposed approach uses
Random Walks on a contextual similarity
bipartite graph constructed from n-gram
sequences on large unlabeled text corpus.
We show that the proposed approach has a
very high precision of (92.43) and a rea-
sonable recall of (56.4). When used as
a preprocessing step for a state-of-the-art
machine translation system, the translation
quality on social media text improved by
6%. The proposed approach is domain and
language independent and can be deployed
as a preprocessing step for any NLP appli-
cation to handle social media text.

1 Introduction

Social Media text is usually very noisy and con-
tains a lot of typos, ad-hoc abbreviations, pho-
netic substitutions, customized abbreviations and
slang language. The social media text is evolving
with new entities, words and expressions. Natural
language processing and understanding systems
such as Machine Translation, Information Extrac-
tion and Text-to-Speech are usually trained and
optimized for clean data; therefore such systems
would face a challenging problem with social me-
dia text.

Various social media genres developed distinct
characteristics. For example, SMS developed a
nature of shortening messages to avoid multiple
keystrokes. On the other hand, Facebook and in-
stant messaging developed another genre where

more emotional expressions and different abbre-
viations are very common. Somewhere in be-
tween, Twitter’s statuses come with some brevity
similar to SMS along with the social aspect of
Facebook. On the same time, various social me-
dia genres share many characteristics and typo
styles. For example, repeating letters or punctu-
ation for emphasizing and emotional expression
such as ”‘goooood morniiing”’. Using phonetic
spelling in a generalized way or to reflect a lo-
cal accent; such as ”‘wuz up bro”’ (what is up
brother). Eliminating vowels such as ”‘cm to c
my luv”’. Substituting numbers for letters such as
”‘4get”’ (forget) , ”‘2morrow”’ (tomorrow), and
”‘b4”’ (before). Substituting phonetically sim-
ilar letters such as ”‘phone”’ (fon). Slang ab-
breviations which usually abbreviates multi-word
expression such as ”‘LMS”’ (like my status) ,
”‘idk”’ (i do not know), ”‘rofl”’ (rolling on floor
laughing).

While social media genres share many charac-
teristics, they have significant differences as well.
It is crucial to have a solution for text normaliza-
tion that can adapt to such variations automati-
cally. We propose a text normalization approach
using an unsupervised method to induce normal-
ization equivalences from noisy data which can
adapt to any genre of social media.

In this paper, we focus on providing a solu-
tion for social media text normalization as a pre-
processing step for NLP applications. However,
this is a challenging problem for several reasons.
First, it is not straightforward to define the Out-of-
Vocabulary (OOV) words. Traditionally, an OOV
word is defined as a word that does not exist in
the vocabulary of a given system. However, this
definition is not adequate for the social media text
which has a very dynamic nature. Many words
and named entities that do not exist in a given vo-
cabulary should not be considered for normaliza-
tion. Second, same OOV word may have many
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appropriate normalization depending on the con-
text and on the domain. Third, text normalization
as a preprocessing step should have very high pre-
cision; in other words, it should provide conser-
vative and confident normalization and not over-
correct. Moreover, the text normalization should
have high recall, as well, to have a good impact on
the NLP applications.

In this paper, we introduce a social media text
normalization system which addresses the chal-
lenges mentioned above. The proposed system is
based on constructing a lattice from possible nor-
malization candidates and finding the best normal-
ization sequence according to an n-gram language
model using a Viterbi decoder. We propose an
unsupervised approach to learn the normalization
candidates from unlabeled text data. The proposed
approach uses Random Walks on a contextual sim-
ilarity graph constructed form n-gram sequences
on large unlabeled text corpus. The proposed ap-
proach is very scalable, accurate and adaptive to
any domain and language. We evaluate the ap-
proach on the normalization task as well as ma-
chine translation task.

The rest of this paper is organized as follows:
Section(2) discusses the related work, Section(3)
introduces the text normalization system and the
baseline candidate generators, Section(4) intro-
duces the proposed graph-based lexicon induction
approach, Section(5) discusses the experiments
and output analysis, and finally Section(6) con-
cludes and discusses future work.

2 Related Work

Early work handled the text normalization prob-
lem as a noisy channel model where the normal-
ized words go through a noisy channel to produce
the noisy text. (Brill and Moore, 2000) introduced
an approach for modeling the spelling errors as
a noisy channel model based on string to string
edits. Using this model gives significant perfor-
mance improvements compared to previously pro-
posed models. (Toutanova and Moore, 2002) im-
proved the string to string edits model by mod-
eling pronunciation similarities between words.
(Choudhury et al., 2007) introduced a supervised
HMM channel model for text normalization which
has been expanded by (Cook and Stevenson, 2009)
to introduce unsupervised noisy channel model
using probabilistic models for common abbrevi-
ation and various spelling errors types. Some

researchers used Statistical Machine Translation
approach for text normalization; formalizing the
problem as a translation from the noisy forms to
the normalized forms. (Aw et al., 2006) proposed
an approach for normalizing Short Messaging Ser-
vice (SMS) texts by translating it into normal-
ized forms using Phrase-based SMT techniques on
character level. The main drawback of these ap-
proaches is that the noisy channel model cannot
accurately represent the errors types without con-
textual information.

More recent approaches tried to handle the text
normalization problem using normalization lexi-
cons which map the noisy form of the word to a
normalized form. For example, (Han et al., 2011)
proposed an approach using a classifier to identify
the noisy words candidate for normalization; then
using some rules to generate lexical variants and a
small normalization lexicon. (Gouws et al., 2011)
proposed an approach using an impoverished nor-
malization lexicon based on string and distribu-
tional similarity along with a dictionary lookup
approach to detect noisy words. More recently,
(Han et al., 2012) introduced a similar approach
by generating a normalization lexicon based on
distributional similarity and string similarity. This
approach uses pairwise similarity where any two
words that share the same context are considered
as normalization equivalences. The pairwise ap-
proach has a number of limitations. First, it does
not take into account the relative frequencies of
the normalization equivalences that might share
different contexts. Therefore, the selection of the
normalization equivalences is performed on pair-
wise basis only and is not optimized over the
whole data. Secondly, the normalization equiva-
lences must appear in the exact same context to
be considered as a normalization candidate. These
limitations affect the accuracy and the coverage of
the produced lexicon.

Our approach also adopts a lexicon based ap-
proach for text normalization, we construct a lat-
tice from possible normalization candidates and
find the best normalization sequence according
to an n-gram language model using a Viterbi de-
coder. The normalization lexicon is acquired from
unlabeled data using random walks on a contex-
tual similarity graph constructed form n-gram se-
quences on large unlabeled text corpus. Our ap-
proach has some similarities with (Han et al.,
2012) since both approaches utilize a normaliza-
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tion lexicon acquired form unlabeled data using
distributional and string similarities. However, our
approach is significantly different since we acquire
the lexicon using random walks on a contextual
similarity graph which has a number of advantages
over the pairwise similarity approach used in (Han
et al., 2012). Namely, the acquired normalization
equivalence are optimized globally over the whole
data, the rare equivalences are not considered as
good candidates unless there is a strong statistical
evidence across the data, and finally the normal-
ization equivalences may not share the same con-
text. Those are clear advantages over the pairwise
similarity approach and result in a lexicon with
higher accuracy as well as wider coverage. Those
advantages will be clearer when we describe the
proposed approach in details and during evalua-
tion and comparison to the pairwise approach.

3 Text Normalization System

In this paper, we handle text normalization as a
lattice scoring approach, where the translation is
performed from noisy text as the source side to
the normalized text as the target side. Unlike con-
ventional MT systems, the translation table is not
learned from parallel aligned data; instead it is
modeled by the graph-based approach of lexicon
generation as we will describe later. We construct
a lattice from possible normalization candidates
and find the best normalization sequence accord-
ing to an n-gram language model using a Viterbi
decoder.

In this paper, we restrict the normalization lexi-
con to one-to-one word mappings, we do not con-
sider multi words mapping for the lexicon induc-
tion. To identify OOV candidates for normaliza-
tion; we restrict proposing normalization candi-
dates to the words that we have in our induced
normalization lexicon only. This way, the system
would provide more confident and conservative
normalization. We move the problem of identi-
fying OOV words to training time; at training time
we use soft criteria to identify OOV words.

3.1 Baseline Normalization Candidates
Generation

We experimented with two normalization candi-
date generators as baseline systems. The first is a
dictionary based spelling correction similar to As-
pell1. In this experiment we used the spell checker

1http://aspell.net/

to generate all possible candidates for OOV words
and then applied the Viterbi decoder on the con-
structed lattice to score the best correction candi-
dates using a language model.

Our second candidates generator is based on
a trie approximate string matching with K errors
similar to the approach proposed in (Chang et al.,
2010), where K errors can be caused by substi-
tution, insertion, or deletion operations. In our
implementation, we customized the errors opera-
tions to accommodate the nature of the social me-
dia text. Such as lengthening, letter substitution,
letter-number substitution and phonetic substitu-
tion. This approach overcomes the main problem
of the dictionary-based approach which is provid-
ing inappropriate normalization candidates to the
errors styles in the social media text.

As we will show in the experiments in
Section(5), dictionary-based normalization meth-
ods proved to be inadequate for social media do-
main normalization for many reasons. First, they
provide generic corrections which are inappropri-
ate for social media text. Second, they usually pro-
vide corrections with the minimal edit distance for
any word or named entity regardless of the nature
of the words. Finally, the previous approaches do
not take into account the dynamics of the social
media text where new terms can be introduced on
a daily basis.

4 Normalization Lexicons using
Graph-based Random Walks

4.1 Bipartite Graph Representation

The main motivation of this approach is that
normalization equivalences share similar context;
which we call contextual similarity. For instance,
assume 5-gram sequences of words, two words
may be normalization equivalences if their n-gram
context shares the same two words on the left and
the same two words on the right. In other words,
they are sharing a wild card pattern such as (word
1 word 2 * word 4 word 5).

This contextual similarity can be represented as
a bipartite graph with the first partite representing
the words and the second partite representing the
n-gram contexts that may be shared by words. A
word node can be either normalized word or noisy
word. Identifying if a word is normalized or noisy
(candidate for normalization) is crucial since this
decision limits the candidate noisy words to be
normalized. We adopted a soft criteria for iden-
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Figure 1: Bipartite Graph Representation, left
nodes represent contexts, gray right nodes repre-
sent the noisy words and white right nodes rep-
resent the normalized words. Edge weight is the
co-occurrence count of a word and its context.

tifying noisy words. A vocabulary is constructed
from a large clean corpus. Any word that does not
appear in this vocabulary more than a predefined
threshold (i.e. 10 times) is considered as a can-
didate for normalization (noisy word). Figure(1)
shows a sample of the bipartite graph G(W,C, E),
where noisy words are shown as gray nodes.

Algorithm 4.1: CONSTRUCTBIPARTITE(text)

comment: Construct Bipartite Graph

output (G(W, C, E))
comment: Extract all n-gram sequences

Ngrams← EXTRACTNGRAMS(TextCorpus)
for each n ∈ Ngrams

do



comment: Check for center word

if ISNOISY(CenterWord)
W ← ADDSOURCENODE(CenterWord)

else
W ← ADDABSORBINGNODE(CenterWord)
comment: add the context pattern

C ← ADD(Context)
comment: edge weight

E ← ADD(Context, Word, count)

The bipartite graph, G(W,C,E), is composed
of W which includes all nodes representing nor-
malized words and noisy words, C which includes
all nodes representing shared context, and finally
E which represents the edges of the graph con-
necting word nodes and context nodes. The weight
on the edge is simply the number of occurrences
of a given word in a context. While construct-
ing the graph, we identify if a node represents a

noisy word (N) (called source node) or a normal-
ized word (M) (called absorbing node). The bi-
partite graph is constructed using the procedure in
Algorithm(4.1).

4.2 Lexicon generation using Random Walks

Our proposed approach uses Markov Random
Walks on the bipartite graph in Figure(1) as de-
fined in (Norris, 1997). The main objective is to
identify pairs of noisy and normalized words that
can be considered as normalization equivalences.
In principal, this is similar to using random walks
for semi-supervised label propagation which has
been introduced in (Szummer and Jaakkola, 2002)
and then used in many other applications. For
example, (Hughes and Ramage, 2007) used ran-
dom walks on Wordnet graph to measure lexical
semantic relatedness between words. (Das and
Petrov, 2011) used graph-based label propagation
for cross-lingual knowledge transfers to induce
POS tags between two languages. (Minkov and
Cohen, 2012) introduced a path constrained graph
walk algorithm given a small number of labeled
examples to assess nodes relatedness in the graph.
In this paper, we apply the label propagation ap-
proach to the text normalization problem.

Consider a random walk on the bipartite graph
G(W,C, E) starting at a noisy word (source
node) and ending at a normalized word (absorb-
ing node). The walker starts from any source
node Ni belonging to the noisy words then move
to any other connected node Mj with probability
Pij . The transition between each pair of nodes
is defined by a transition probability Pij which
represents the normalized probability of the co-
occurrence counts of the word and the correspond-
ing context. Though the counts are symmetric, the
probability is not symmetric. This is due to the
probability normalization which is done according
to the nodes connectivity. Therefore, the transition
probability between any two nodes i, j is defined
as:

Pij = Wij/
∑

∀k

Wik (1)

For any non-connected pair of nodes, Pij =0. It
is worth noting that due to the bipartite graph rep-
resentation; any word node, either noisy (source)
or normalized (absorbing), is only connected to
context nodes and not directly connected to any
other word node.
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The algorithm repeats independent random
walks for K times where the walks traverse the
graph randomly according to the transition prob-
ability distribution in Eqn(1); each walk starts
from the source noisy node and ends at an absorb-
ing normalized node, or consumes the maximum
number of steps without hitting an absorbing node.

For any random walk the number of steps taken
to traverse between any two nodes is called the
hitting time (Norris, 1997). Therefore, the hit-
ting time between a noisy and a normalized pair
of nodes (n,m) with a walk r is hr(n,m). We
define the cost between the two nodes as the aver-
age hitting time H(n,m) of all walks that connect
those two nodes:

H(n, m) =
∑

∀r

hr(n, m)/R (2)

Consider the bipartite graph in Figure(1), as-
sume a random walk starting at the source node
representing the noisy word ”tkin” then moves to
the context node C1 then to the absorbing node
representing the normalized word ”taking”. This
random walk will associate ”tkin” with ”taking”
with a walk of two steps (hits). Another random
walk that can connect the two words is [”tkin”
→ C4 → ”takin” → C1 → ”taking”], which has
4 steps (hits). In this case, the cost of this pair
of nodes is the average number of hits connecting
them which is 3.

It is worth noting that the random walks are
selected according to the transition probability in
Eqn(1); therefore, the more probable paths will be
picked more frequently. The same pair of nodes
can be connected with many walks of various steps
(hits), and the same noisy word can be connected
to many other normalized words.

We define the contextual similarity probabil-
ity of a normalization equivalence pair n,m as
L(n,m). Which is the relative frequency of the
average hitting of those two nodes, H(n,m), and
all other normalized nodes linked to that noisy
word. Thus L(n,m), is calculated as:

L(n, m) = H(n, m)/
∑

i

H(n, mi) (3)

Furthermore, we add another similarity cost be-
tween a noisy word and a normalized word based
on the lexical similarity cost, SimCost(n,m),
which we will describe in the next section. The
final cost associated with a pair is:

Cost(n, m) = λ1L(n, m) + λ2SimCost(n, m) (4)

Algorithm 4.2: INDUCELEXICON(G)

output (Lexicon)
INIT((Lexicon))
for each n ∈W ∈ G(W, C, E)

do



comment: for noisy nodes only

if ISNOISY(n)



INIT(Rn)
comment: do K random walks

for i← 0 to K
do

Rn← RANDOMWALK(n)
comment: Calculate Avg. hits and normalize

Ln← NORMALIZE(Rn)
comment: Calculate Lexical Sim Cost

Ln← SIMCOST(Ln)
Ln← PRUNE(Ln)
Lexicon← ADD(Ln)

We used uniform interpolation, both λ1 and λ2

equals 1. The final Lexicon is constructed using
those entries and if needed we prune the list to take
top N according to the cost above. The algorithm
is outlined in 4.2.

4.3 Lexical Similarity Cost
We use a similarity function proposed in (Con-
tractor et al., 2010) which is based on Longest
Common Subsequence Ratio (LCSR) (Melamed,
1999). This cost function is defined as the ratio
of LCSR and Edit distance between two strings as
follows:

SimCost(n, m) = LCSR(n, m)/ED(n, m) (5)

LCSR(n, m) = LCS(n, m)/MaxLenght(n, m) (6)

We have modified the Edit Distance calculation
ED(n,m) to be more adequate for social media text.
The edit distance is calculated between the conso-
nant skeleton of the two words; by removing all
vowels, we used Editex edit distance as proposed
in (Zobel and Philip, 1996), repetition is reduced
to a single letter before calculating the edit dis-
tance, and numbers in the middle of words are sub-
stituted by their equivalent letters.

5 Experiments

5.1 Training and Evaluation Data
We collected large amount of social media data to
generate the normalization lexicon using the ran-
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dom walk approach. The data consists of 73 mil-
lion Twitter statuses. All tweets were collected
from March/April 2012 using the Twitter Stream-
ing APIs2. We augmented this data with 50 mil-
lion sentences of clean data from English LDC Gi-
gaword corpus 3. We combined both data, noisy
and clean, together to induce the normalization
dictionary from them. While the Gigaword clean
data was used to train the language model to score
the normalized lattice.

We constructed a test set of 1000 sentences of
social media which had been corrected by a na-
tive human annotator, the main guidelines were to
normalize noisy words to its corresponding clean
words in a consistent way according to the evi-
dences in the context. We will refer to this test
set as SM-Test. Furthermore, we developed a test
set for evaluating the effect of the normalization
system when used as a preprocessing step for Ma-
chine translation. The machine translation test set
is composed of 500 sentences of social media En-
glish text translated to normalized Spanish text by
a bi-lingual translator.

5.2 Evaluating Normalization Lexicon
Generation

We extracted 5-gram sequences from the com-
bined noisy and clean data; then we limited the
space of noisy 5-gram sequences to those which
contain only one noisy word as the center word
and all other words, representing the context, are
not noisy. As we mentioned before, we identify
whether the word is noisy or not by looking up
a vocabulary list constructed from clean data. In
these experiments, the vocabulary is constructed
from the Language Model data (50M sentences of
the English Gigaword corpus). Any word that ap-
pears less than 10 times in this vocabulary is con-
sidered noisy and candidate for normalization dur-
ing the lexicon induction process. It is worth not-
ing that our notion of noisy word does not mean it
is an OOV that has to be corrected; instead it in-
dicates that it is candidate for correction but may
be opted not to be normalized if there is no con-
fident normalization for it. This helps to maintain
the approach as a high precision text normaliza-
tion system which is highly preferable as an NLP
preprocessing step.

We constructed a lattice using normalization

2https://dev.twitter.com/docs/streaming-apis
3http://www.ldc.upenn.edu/Catalog/LDC2011T07

candidates and score the best Viterbi path with 5-
gram language model. We experimented with two
candidate generators as baseline systems, namely
the dictionary-based spelling correction and the
trie approximate match with K errors; where K=3.
For both candidate generators the cost function for
a given candidate is calculated using the lexical
similarity cost in Eqn(5). We compared those ap-
proaches with our newly proposed unsupervised
normalization lexicon induction; for this case the
cost for a candidate is the combined cost of the
contextual similarity probability and the lexical
similarity cost as defined in Eqn(4). We examine
the effect of data size and the steps of the random
walks on the accuracy and the coverage of the in-
duced dictionary.

We constructed the bipartite graph with the n-
gram sequences as described in Algorithm 4.1.
Then the Random Walks Algorithm in 4.2 is ap-
plied with 100 walks. The total number of word
nodes is about 7M nodes and the total number
of context nodes is about 480M nodes. We used
MapReduce framework to implement the pro-
posed technique to handle such large graph. We
experimented with the maximum number of ran-
dom walk steps of 2, 4 and 6; and with different
portions of the data as well. Finally, we pruned
the lexicon to keep the top 5 candidates per noisy
word.

Table(1) shows the resulting lexicons from dif-
ferent experiments.

Lexicon Lexicon Data Steps
Lex1 123K 20M 4
Lex2 281K 73 M 2
Lex3 327K 73M 4
Lex4 363K 73M 6

Table 1: Generated Lexicons, steps are the Ran-
dom Walks maximum steps.

As shown in Table(1), we experimented with
different data sizes and steps of the random walks.
The more data we have the larger the lexicon we
get. Also larger steps increase the induced lexi-
con size. A random walk step size of 2 means that
the noisy/normalized pair shares the same context;
while a step size of 4 or more means that they may
not share the same context. Next, we will exam-
ine the effect of lexicon size on the normalization
task.
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5.3 Text Normalization Evaluation

We experimented different candidate generators
and compared it to the unsupervised lexicon ap-
proach. Table(2) shows the precision and recall on
a the SM-Test set.

System Candidates Precision Recall F-Measure
Base1 Dict 33.9 15.1 20.98
Base2 Trie 26.64 27.65 27.13
RW1 Lex1 88.76 59.23 71.06
RW2 Lex2 90.66 54.06 67.73
RW3 Lex3 92.43 56.4 70.05
RW4 Lex4 90.87 60.73 72.8

Table 2: Text Normalization with different lexi-
cons

In Table(2), the first baseline is using a dictio-
nary based spell checker; which gets low precision
and very low recall. Similarly the trie approximate
string match is doing a similar job with better re-
call though the precision is worst. Both of the
baseline approaches are inadequate for social me-
dia text since both will try to correct any word that
is similar to a word in the dictionary. The Trie ap-
proximate match is doing better job on the recall
since the approximate match is based on phonetic
and lexical similarities.

On the other hand, the induced normalization
lexicon approach is doing much better even with
a small amount of data as we can see with sys-
tem RW1 which uses Lex1 generated from 20M
sentences and has 123K lexicon entry. Increas-
ing the amount of training data does impact the
performance positively especially the recall. On
the other hand, increasing the number of steps has
a good impact on the recall as well; but with a
considerable impact on the precision. It is clear
that increasing the amount of data and keeping the
steps limit at ”‘4”’ gives better precision and cov-
erage as well. This is a preferred setting since the
main objective of this approach is to have better
precision to serve as a reliable preprocessing step
for Machine Translation and other NLP applica-
tions.

5.4 Comparison with Pairwise Similarity

We present experimental results to compare our
proposed approach with (Han et al., 2012) which
used pairwise contextual similarity to induce a
normalization lexicon of 40K entries, we will refer
to this lexicon as HB-Dict. We compare the per-
formance of HB-Dict and our induced dictionary
(system RW3). We evaluate both system on SM-

Test test set and on (Han et al., 2012) test set of
548 sentences which we call here HB-Test.

System Precision Recall F-Measure
SM-Test
HB-Dict 71.90 26.30 38.51

RW3 92.43 56.4 70.05
HB-Test
HB-Dict 70.0 17.9 26.3

RW3 85.37 56.4 69.93

Table 3: Text Normalization Results

As shown in Table(3), RW3 system signifi-
cantly outperforms HB-Dict system with the lex-
icon from (Han et al., 2012) on both test sets for
both precision and recall. The contextual graph
random walks approach helps in providing high
precision lexicon since the sampling nature of the
approach helps in filtering out unreliable normal-
ization equivalences. The random walks will tra-
verse more frequent paths; which would lead to
more probable normalization equivalence. On the
other hand, the proposed approach provides high
recall as well which is hard to achieve with higher
precision. Since the proposed approach deploys
random walks to sample paths that can traverse
many steps, this relaxes the constraints that the
normalization equivalences have to share the same
context. Instead a noisy word may share a con-
text with another noisy word which in turn shares
a context with a clean equivalent normalization
word. Therefore, we end up with a lexicon that
have much higher recall than the pairwise simi-
larity approach since it explores equivalences be-
yond the pairwise relation. Moreover, the random
walk sampling emphasis the more frequent paths
and hence provides high precision lexicon.

5.5 Output Analysis

Table(4) shows some examples of the induced nor-
malization equivalences, the first part shows good
examples where vowels are restored and phonetic
similar words are matched. Remarkably the cor-
rection ”‘viewablity”’ to ”‘visibility”’ is interest-
ing since the system picked the more frequent
form. Moreover, the lexicon contains some entries
with foreign language words normalized to its En-
glish translation. On the other hand, the lexicon
has some bad normalization such as ”‘unrecycled
”’ which should be normalized to ”‘non recycled”’
but since the system is limited to one word cor-
rection it did not get it. Another interesting bad
normalization is ”‘tutting”’ which is new type of
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dancing and should not be corrected to ”‘tweet-
ing”’.

Noisy Clean Remarks
tnght tonight Vowels restored
darlin darling g restored
urung orange phonetic similarity

viewablity visibility good correction
unrecycled recycled negation ignored

tutting tweeting tutting is dancing type

Table 4: Lexicon Samples

Table 5 lists a number of examples and their
normalization using both Baseline1 and RW3. At
the first example, RW3 got the correct normaliza-
tion as ”interesting” which apparently is not the
one with the shortest edit distance, though it is
the most frequent candidate at the generated lex-
icon. The baseline system did not get it right; it
got a wrong normalization with shorter edit dis-
tance. Example(2) shows the same effect by get-
ting ”cuz” normalized to ”because”. At Exam-
ple(3), both the baseline and RW3 did not get
the correct normalization of ”yur” to ”you are”
which is currently a limitation in our system since
we only allow one-to-one word mapping in the
generated lexicons not one-to-many or many-to-
many. At Example(4), RW3 did not normalize
”dure” to ”sure” ; however the baseline normal-
ized it by mistake to ”dare”. This shows a char-
acteristic of the proposed approach; it is very con-
servative in proposing normalization which is de-
sirable as a preprocessing step for NLP applica-
tions. This limitation can be marginalized by pro-
viding more data for generating the lexicon. Fi-
nally, Example 4 shows also that the system nor-
malize ”gr8” which is mainly due to having a flex-
ible similarity cost during the normalization lexi-
con construction.

1. Source: Mad abt dt so mch intesting
Baseline1: Mad at do so much ingesting
RW3: Mad about that so much interesting
2. Source: i’l do cuz ma parnts r ma lyf
Baseline1: I’ll do cut ma parents r ma life
RW3: I’ll do because my parents are my life
3. Source: yur cuuuuute
Baseline1: yur cuuuuute
RW3: your cute
4. Source: I’m dure u will get a gr8 score
Baseline1: I’m dare you will get a gr8 score
RW3: I’m dure you will get a great score

Table 5: Normalization Examples

5.6 Machine Translation Task Evaluation

The final evaluation of the text normalization sys-
tem is an extrinsic evaluation where we evaluate
the effect of the text normalization task on a so-
cial media text translating from English to Span-
ish using a large scale translation system trained
on general domain data. The system is trained
on English-Spanish parallel data from WMT 2012
evaluation 4. The data consists of about 5M paral-
lel sentences on news, europal and UN data. The
system is a state of the art phrase based system
similar to Moses (Hoang et al., 2007). We used
The BLEU score (Papineni et al., 2002) to evaluate
the translation accuracy with and without the nor-
malization. Table(6) shows the translation evalua-
tion with different systems. The translation with
normalization was improved by about 6% from
29.02 to 30.87 using RW3 as a preprocessing step.

System BLEU Impreovemnet
No Normalization 29.02 0%

Baseline1 29.13 0.37%
HB-Dict 29.76 3.69%

RW3 30.87 6.37%

Table 6: Translation Results

6 Conclusion and Future Work

We introduced a social media text normalization
system that can be deployed as a preprocessor
for MT and various NLP applications to han-
dle social media text. The proposed approach is
very scalable, adaptive to any domain and lan-
guage. We show that the proposed unsupervised
approach provides a normalization system with
very high precision and a reasonable recall. We
compared the system with conventional correction
approaches and with recent previous work; and we
showed that it highly outperforms other systems.
Finally, we have used the system as a preprocess-
ing step for a machine translation system which
improved the translation quality by 6%.

As an extension to this work, we will extend the
approach to handle many-to-many normalization
pairs; also we plan to apply the approach to more
languages. Furthermore, the approach can be eas-
ily extended to handle similar problems such as ac-
cent restoration and generic entity normalization.

4http://www.statmt.or/wmt12
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Abstract

Hiero translation models have two lim-
itations compared to phrase-based mod-
els: 1) Limited hypothesis space; 2) No
lexicalized reordering model. We pro-
pose an extension of Hiero called Phrasal-
Hiero to address Hiero’s second problem.
Phrasal-Hiero still has the same hypoth-
esis space as the original Hiero but in-
corporates a phrase-based distance cost
feature and lexicalized reodering features
into the chart decoder. The work consists
of two parts: 1) for each Hiero transla-
tion derivation, find its corresponding dis-
continuous phrase-based path. 2) Extend
the chart decoder to incorporate features
from the phrase-based path. We achieve
significant improvement over both Hiero
and phrase-based baselines for Arabic-
English, Chinese-English and German-
English translation.

1 Introduction

Phrase-based and tree-based translation model are
the two main streams in state-of-the-art machine
translation. The tree-based translation model, by
using a synchronous context-free grammar for-
malism, can capture longer reordering between
source and target language. Yet, tree-based trans-
lation often underperforms phrase-based transla-
tion in language pairs with short range reordering
such as Arabic-English translation (Zollmann et
al., 2008; Birch et al., 2009).

We follow Koehn et al. (2003) for our phrase-
based system and Chiang (2005) for our Hiero sys-
tem. In both systems, the translation of a source
sentence f is the target sentence e∗ that maximizes
a linear combination of features and weights:

〈e∗,a∗〉 = argmax
〈e,a〉∈H(f)

∑

m∈M
λmhm (e, f ,a) . (1)

where

• a is a translation path of f . In the phrase-
based system, aph represents a segmentation
of e and f and a correspondance of phrases.
In the Hiero system, atr is a derivation of a
parallel parse tree of f and e, each nontermi-
nal representing a rule in the derivation.

• H (f) is the hypothesis space of the sentence
f . We denote Hph (f) as the phrase-based
hypothesis space of f and Htr (f) as its tree-
based hypothesis space. Galley and Manning
(2010) point out that due to the hard con-
straints of rule combination, the tree-based
system does not have the same excessive hy-
pothesis space as the phrase-based system.

• M is the set of feature indexes used in the
decoder. Many features are shared between
phrase-based and tree-based systems includ-
ing language model, word count, and trans-
lation model features. Phrase-based systems
often use a lexical reordering model in addi-
tion to the distance cost feature.

The biggest difference in a Hiero system and a
phrase-based system is in how the reordering is
modeled. In the Hiero system, the reordering de-
cision is encoded in weighted translation rules, de-
termined by nonterminal mappings. For example,
the rule X → ne X1 pas ; not X1 : w indicates
the translation of the phrase between ne and pas to
be after the English word not with scorew. During
decoding, the system parses the source sentence
and synchronously generates the target output.

To achieve reordering, the phrase-based sys-
tem translates source phrases out of order. A re-
ordering distance limit is imposed to avoid search
space explosion. Most phrase-based systems are
equipped with a distance reordering cost feature
to tune the system towards the right amount of
reordering, but then also a lexicalized reordering

1587



model to model the direction of adjacent source
phrases reordering as either monotone, swap or
discontinuous.

There are two reasons to explain the shortcom-
ings of the current Hiero system:

1. A limited hypothesis space because the syn-
chronous context-free grammar is not appli-
cable to non-projective dependencies.

2. It does not have the expressive lexicalized re-
ordering model and distance cost features of
the phrase-based system.

When comparing phrase-based and Hiero trans-
lation models, most of previous work on tree-
based translation addresses its limited hypothesis
space problem. Huck et al. (2012) add new rules
into the Hiero system, Carreras and Collins (2009)
apply the tree adjoining grammar formalism to al-
low highly flexible reordering. On the other hand,
the Hiero model has the advantage of capturing
long distance and structure reordering. Galley
and Manning (2010) extend phrase-based trans-
lation by allowing gaps within phrases such as
〈ne . . . pas, not〉, so the decoder still has the dis-
criminative reordering features of phrase-based,
but also uses on average longer phrases. How-
ever, these phrase pairs with gaps do not capture
structure reordering as do Hiero rules with non-
terminal mappings. For example, the rule X →
ne X1 pas ; not X1 explicitly places the transla-
tion of the phrase between ne and pas behind the
English word not through nonterminal X1. This
is important for language pairs with strict reorder-
ing. In our Chinese-English experiment, the Hiero
system still outperforms the discontinuous phrase-
based system.

We address the second problem of the origi-
nal Hiero decoder by mapping Hiero translation
derivations to corresponding phrase-based paths,
which not only have the same output but also pre-
serve structure distortion of the Hiero translation.
We then include phrase-based features into the Hi-
ero decoder.

A phrase-based translation path is the sequence
of phrase-pairs, whose source sides cover the
source sentence and whose target sides generate
the target sentence from left to right. If we look at
the leaves of a Hiero derivation tree, the lexicals
also form a segmentation of the source and target
sentence, thus also form a discontinuous phrase-
based translation path. As an example, let us look

at the translation of the French sentence je ne parle
pas le française into English i don’t speak french
in Figure 1. The Hiero decoder translates the sen-
tence using a derivation of three rules:

• r1 = X→ parle ; speak.

• r2 = X→ ne X1 pas ; don
′t X1.

• r3 = X→
Je X1 le Français ; I X1 french.

From this Hiero derivation, we have a seg-
mentation of the sentence pairs into phrase
pairs according to the word alignments, as
shown on the left side of Figure 1. Or-
dering these phrase pairs according the word
sequence on the target side, shown on the
right side of Figure 1, we have a phrase-
based translation path consisting of four phrase
pairs: (je, i) , (ne . . . pas, not) , (parle, speak) ,
(lefrancaise, french) that has the same output
as the Hiero system. Note that even though the
Hiero decoder uses a composition of three rules,
the corresponding phrase-based path consists of
four phrase pairs. We name this new variant of the
Hiero decoder, which uses phrase-based features,
Phrasal-Hiero.

Our Phrasal-Hiero addresses the shortcomming
of the original Hiero system by incorporating
phrase-based features. Let us revisit machine
translation’s loglinear model combination of fea-
tures in equation 1. We denote ph(a) as the corre-
sponding phrase-based path of a Hiero derivation
a, and MPh\H as the indexes of phrase-based fea-
tures currently not applicable to the Hiero decoder.
Our Phrasal-Hiero decoder seeks to find the trans-
lation, which optimizes:

〈e∗,a∗〉 = argmax
〈e,a〉∈Htr(f)

( ∑

m∈MH

λmhm (e, f ,a) +

+
∑

m′∈MPh\H

λm′hm′ (e, f , ph(a))
)
.

We focus on improving the modelling of re-
ordering within Hiero and include discriminative
reordering features (Tillmann, 2004) and a dis-
tance cost feature, both of which are not modeled
in the original Hiero system. Chiang et al. (2008)
added structure distortion features into their de-
coder and showed improvements in their Chinese-
English experiment. To our knowledge, Phrasal-
Hiero is the first system, which directly integrates
phrase-based and Hiero features into one model.
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Figure 1: Example of French-English Hiero Translation on the left and its corresponding discontinuous
phrase-based translation on the right.

Rules Alignments Phrase pairs & nonterminals
r1 = X→ parle ; speak. 0-0 (parle ; speak)

r2 = X→ ne X1 pas ; don
′t X1. 0-0 1-1 2-0 (ne . . . pas ; don′t) ; X1

r3 = X→ Je X1 le Francais ; I X1 French 0-0 1-1 3-2 (Je ; I) ; X1 ; (le Francais; french)

r4 = X→ je X1 le X2 ; i X1 X2 0-0 1-1 3-2 Not Applicable

Table 1: Rules and their sequences of phrase pairs and nonterminals

Previous work has attempted to weaken the con-
text free assumption of the synchronous context
free grammar formalism, for example using syn-
tactic non-terminals (Zollmann and Venugopal,
2006). Our approach can be viewed as applying
soft context constraint to make the probability of
substituting a nonterminal by a subtree depending
on the corresponding phrase-based reordering fea-
tures.

In the next section, we explain the model in de-
tail.

2 Phrasal-Hiero Model

Phrasal-Hiero maps a Hiero derivation into a dis-
continuous phrase-based translation path by the
following two steps:

1. Training: Represent each rule as a sequence
of phrase pairs and nonterminals.

2. Decoding: Use the rules’ sequences of
phrase pairs and nonterminals to find the
corresponding phrase-based path of a Hiero
derivation and calculate its feature scores.

2.1 Map Rule to A Sequence of Phrase Pairs
and Nonterminals

We segment the rules’ lexical items into phrase
pairs. These phrase pairs will be part of the phrase-
based translation path in the decoding step. The
rules’ nonterminals are also preserved in the se-
quence, during the decoding they will be substi-
tuted by other rules’ phrase pairs. We now explain
how to map a rule to a sequence of phrase pairs
and nonterminals.

Let r = X →
s0X1s1 . . . Xksk ; t0Xα(1)t1 . . . Xα(k)tk be a rule
of k nonterminals, α(.) defines the sequence of
nonterminals on the target. si or ti , i = 0 . . . k
are phrases between nonterminals, they can be
empty because nonterminals can be at the border
of the rule or two nonterminals are adjacent. For
example the rule X → ne X1 pas ; not X1

has k = 1, s0 = ne, s1 = pas, t0 = not, t1 is
an empty phrase because the target X1 is at the
rightmost position.

Phrasal-Hiero retains both nonterminals and
lexical alignments of Hiero rules instead of only
nonterminal mappings as in (Chiang, 2005). A
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rule’s lexical alignment is the most frequent one
in the training data. We use the lexical alignments
of a rule to decide how source phrases and tar-
get phrases are connected. In the rule r, a source
phrase si is connected to a target phrase ti′ if at
least one word in si aligns to a target word in ti′ . In
the rule X→ Je X1 le Français ; I X1 french
extract from sentence pair in Figure 1, the phrase
le Français connects to the phrase french because
the French word Français aligns with the English
word french even though le is unaligned.

We then group the source phrases and target
phrases into phrase pairs such that only phrases
that are connected to each other are in the same
phrase pair. So phrase pairs still preserve the lexi-
cal dependency of the rule. Phrase pairs and non-
terminals are then ordered according to the target
side of the rule. Table 1 shows an example of rules,
alignments and their sequences of phrase pairs and
nonterminals on the last column.

Figure 2: Alignment of a sentence pair.

There are Hiero rules in which one of its source
phrases or target phrases is not aligned. For exam-
ple in the rule r4 = X → je X1 le X2 ; i X1 X2

extracted from the sentence pair in Figure 2, the
phrase le is not aligned. In our Arabic-English
experiment, rules without nonaligned phrases ac-
count for only 48.54% of the total rules. We com-
pared the baseline Hiero translation from the full
set of rules and the translation from only rules
without nonaligned phrases. The later translation
is faster and Table 2 1 shows that it outperforms
the translation with the whole set of rules. We
therefore decided to not use rules with nonaligned
phrases in Phrasal-Hiero.

It is important to note that there are different
ways to use all the rules and map rules with un-
aligned phrases into a sequence of phrase pairs.

1The dataset and experiment setting description are in sec-
tion 4.

Test set MT04 MT05 MT09
All rules 48.17 47.85 42.37
Phrasal Hiero 48.52 47.78 42.8

Table 2: Arabic-English pilot experiment. Com-
pare BLEU scores of translation using all ex-
tracted rules (the first row) and translation using
only rules without nonaligned subphrases (the sec-
ond row).

For example, adding these unaligned phrases to
the previous phrase pair i.e. the rule r4 has one dis-
continuous phrase pair (je . . . le, i) or treat these
unaligned phrases as deletion/insertion phrases.
We started the work with Arabic-English transla-
tion and decided not to use rules with nonaligned
phrases in Phrasal-Hiero. In the experiment sec-
tion, we will discuss the impact of removing
rules with nonaligned sub-phrases in our German-
English and Chinese-English experiments.

2.2 Training: Lexicalized Reordering Table

Phrasal-Hiero needs a phrase-based lexicalized re-
ordering table to calculate the features. The lexi-
calized reordering table could be from a discontin-
uous phrase-based system. To guarantee the lexi-
calized reordering table to cover all phrase pairs
of the rule table, we extract phrase-pairs and their
reordering directions during rule extraction.

Let (s, t) be a sentence pair in the training data
and r = X→ s0X1s1 . . . Xksk ; t0X1t1 . . . Xktk
be a rule extracted from the sentence. The lex-
ical phrase pair corresponding to the rule r is
ph = (s0 . . . s1 . . . sk, t0 . . . t1 . . . tk), with non-
terminals are replaced by the gaps. Because the
nonterminal could be at the border of the rule, the
lexical phrase pair might have smaller coverage
than the rule. For example, the training sentence
pair in Figure 2 generates the rule r2 = X →
ne X1 pas ; don′t X1 spanning (1 . . . 3, 1 . . . 2)
but its lexical phrase pair (ne . . . pas, not) only
spans (1 . . . 3, 1 . . . 1).

Also, two different rules can have the same
lexical phrase pairs. In Phrasal-Hiero, each lex-
ical phrase pair is only generated once for a
sentence. Look at the example of the train-
ing sentence pair in Figure 2, the rule X →
je ; I spanning (0 . . . 1, 0 . . . 1) and the rule X →
je X1 ; I X1 spanning (0 . . . 3, 0 . . . 2) are both
sharing the same lexical phrase pair (je, i) span-
ning (0 . . . 1, 0 . . . 1). But Phrasal-Hiero only gen-
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erates (je, i) once for the sentence. Phrase pairs
are generated together with phrase-based reorder-
ing orientations to build lexicalized reordering ta-
ble.

3 Decoding

Chiang (2007) applied bottom up chart parsing to
parse the source sentence and project on the tar-
get side for the best translation. Each chart cell
[X, i, j, r] indicates a subtree with rule r at the root
covers the translation of the i-th word upto the j-th
word of the source sentence. We extend the chart
parsing, mapping the subtree to the equivalent dis-
continuous phrase-based path and includes phrase-
based features to the log-linear model.

In Phrasal-Hiero, each chart cell [X, i, j, r] also
stores the first phrase pair and the last phrase pair
of the phrase-based translation path covered the i-
th to the j-th word of the source sentence. These
two phrase pairs are the back pointers to calcu-
late reordering features of later larger spans. Be-
cause the distance cost feature and phrase-based
discriminative reordering feature calculation are
both only required the source coverage of two ad-
jacent phrase pairs, we explain here the distance
cost calculation.

We will again use three rules r1, r2, r3 in Ta-
ble 1 and the translation je ne parle pas le français
into I don’t speak French to present the technique.
Table 3 shows the distance cost calculation.

First, when the rule r has only terminals, the
rule’s sequence of phrase pairs and nonterminals
consists of only a phrase pair. No calculation is
needed, the first phrase pair and the last phrase
pair are the same. The chart cell X1 : 2 . . . 2 in
Table 3 shows the translation with the rule r1 =
X → parle ; speak. The first phrase pair and the
last phrase pair point to the phrase (parle, speak)
spanning 2 . . . 2 of the source sentence.

When the translation rule’s right hand side has
nonterminals, the nonterminals in the sequence
belong to smaller chart cells that we already found
phrase-based paths and calculated their features
before. The decoder then substitute these paths
into the rule’s sequence of phrase pairs and non-
terminals to form the complete path for the current
span.

We now demonstrate finding the phrase based
path and calculate distance cost of the chart
cell X2 spanning 1 . . . 3. The next phrase pair
of (ne . . . pas, don′t) is the first phrase pair

of the chart cell X1 which is (parle, speak).
The distance cost of these two phrase pairs ac-
cording to discontinuous phrase-based model is
|2− 3− 1| = 2. The distance cost of the
whole chart cell X2 also includes the cost of the
translation path covered by chart cell X1 which
is 0, therefore the distance cost for X2 is 2 +
dist(X1) = 2. We then update the first phrase
pair and the last phrase pair of cell X2. The first
phrase pair of X2 is (ne . . . pas, don′t), the last
phrase pair is also the last phrase pair of cell X1

which is (parle, speak).
Similarly, finding the phrase-based path and

calculate its distortion features in the chart cell
X3 include calculate the feature values for mov-
ing from the phrase pair (je, I) to the first
phrase pair of chart cell X2 and also from last
phrase pair of chart cell X2 to the phrase pair
(le française, french).

4 Experiment Results

In all experiments we use phrase-orientation lex-
icalized reordering (Galley and Manning, 2008)2

which models monotone, swap, discontinuous
orientations from both reordering with previous
phrase pair and with the next phrase pair. There
are total six features in lexicalized reordering
model.

We will report the impact of integrating phrase-
based features into Hiero systems for three lan-
guage pairs: Arabic-English, Chinese-English and
German-English.

4.1 System Setup
We are using the following three baselines:

• Phrase-based without lexicalized reodering
features. (PB+nolex)

• Phrase-based with lexicalized reordering fea-
tures.(PB+lex)

• Hiero system with all rules extracted from
training data. (Hiero)

We use Moses phrase-based and chart decoder
(Koehn et al., 2007) for the baselines. The score
difference between PB+nolex and PB+lex results
indicates the impact of lexicalized reordering fea-
tures on phrase-based system. In Phrasal-Hiero we

2Galley and Manning (2008) introduce three orientation
models for lexicalized reordering: word-based, phrase-based
and hierarchical orientation model. We apply phrase-based
orientation in all experiment using lexicalized reordering.

1591



Chart Cell Rule’s phrase pairs & NTs Distance First Phrase Pair Last Phrase Pair
X1 : 2 . . . 2 (parle, speak) ∅ 2 . . . 2 (parle, speak)

X2 : 1 . . . 3 (ne . . . pas, don′t) ; X1
2 + dist (X1) 1 . . . 3

2 . . . 2 (parle, speak)
= 2 (ne . . . pas, don′t)

X3 : 0 . . . 5
(Je ; I) ; X2 ; 0 + dist (X2) 0 . . . 0 (je, I)

4 . . . 5
(le Français; french) +1 = 3 (le Français; french)

Table 3: Phrasal-Hiero Decoding Example: Calculate distance cost feature for the translation in Figure 1.

will compare if these improvements still carry on
into Hiero systems.

The original Hiero system with all rules ex-
tracted from training data (Hiero) is the most rele-
vant baseline. We will evaluate the difference be-
tween this Hiero baseline and our Phrasal-Hiero.

To implement Phrasal-Hiero, we extented
Moses chart decoder (Koehn et al., 2007) to in-
clude distance-based reordering as well as the lex-
icalized phrase orientation reordering model. We
will report the following results for Phrasal-Hiero:

• Hiero translation results on the subset of rules
without unaligned phrases. (we denote this in
the table scores as P.H.)

• Phrasal-Hiero with phrase-based distance
cost feature (P.H.+dist).

• Phrasal-Hiero with phrase-based lexicalized
reordering features(P.H.+lex).

• Phrasal-Hiero with distance cost and lexical-
ized reordering features(P.H.+dist+lex).

4.2 Arabic-English Results

The Arabic-English system was trained from
264K sentence pairs with true case English. The
Arabic is in ATB morphology format. The lan-
guage model is the interpolation of 5-gram lan-
guage models built from news corpora of the NIST
2012 evaluation. We tuned the parameters on
the MT06 NIST test set (1664 sentences) and re-
port the BLEU scores on three unseen test sets:
MT04 (1353 sentences), MT05 (1056 sentences)
and MT09 (1313 sentences). All test sets have four
references per each sentence.

The results are in Table 4. The three
rows in the first block are the baseline scores.
Phrase-based with lexicalized reordering fea-
tures(PB+lex) shows significant improvement on
all test sets over the simple phrase-based system
without lexicalized reordering (PB+nolex). On av-
erage the improvement is 1.07 BLEU score (45.66

MT04 MT05 MT09 Avg.
PB+nolex 47.40 46.83 42.75 45.66
PB+lex 48.62 48.07 43.51 46.73
Hiero 48.17 47.85 42.37 46.13
P.H.

48.52 47.78 42.80 46.37
(48.54% rules)
P.H.+dist 48.46 47.92 42.62 46.33
P.H. +lex 48.70 48.59 43.84 47.04
P.H +lex+dist 49.35 49.07 43.40 47.27
Improv. over

0.73 1.00 0.34 0.54
PB+lex
Improv. over

0.83 1.29 1.04 0.90
P.H.
Improv. over

1.18 1.22 1.47 1.14
Hiero

Table 4: Arabic-English true case translation
scores in BLEU metric. The three rows in the first
block are the baseline scores. The next four rows
in the second block are Phrasal-Hiero scores, the
best scores are in boldface. The three rows in the
last block are the Phrasal-Hiero improvements.

versus 46.73). We make the same observation as
Zollmann et al. (2008), i.e, that the Hiero baseline
system underperforms compared to the phrase-
based system with lexicalized phrase-based re-
ordering for Arabic-English in all test sets, on av-
erage by about 0.60 BLEU points (46.13 versus
46.73). This is because Arabic language has rel-
ative free reordering, but mostly short distance,
which is better captured by discriminative reorder-
ing features.

The next four rows in the second block of Ta-
ble 4 show Phrasal-Hiero results. The P.H. line is
the result of Hiero experiment on only a subset of
rules without nonaligned phrases. As mentioned
in section 2.1, Phrasal-Hiero only uses 48.54% of
the rules but achieves as good or even better per-
formance (on average 0.24 BLEU points better)
compared to the original Hiero system using the
full set of rules.

We do not benefit from adding only the
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distance-based reordering feature (P.H+dist) to the
Arabic-English experiment but get significant im-
provements when adding the six features of the
lexicalized reordering (P.H+lex). Table 4 shows
that the P.H.+lex system gains on average 0.67
BLEU points (47.04 versus 46.37). Even though
the baseline Hiero underperforms phrase-based
system with lexicalized reordering(P.B+lex), the
P.H.+lex system already outperforms P.B+lex in
all test sets (on average 47.04 versus 46.73).

Adding both distance cost and lexicalized re-
ordering features (P.H.+dist+lex) performs the
best. On average P.H.+dist+lex improves 0.90
BLEU points over P.H. without new phrase-based
features and 1.14 BLEU score over the base-
line Hiero system. Note that Hiero rules already
have lexical context in the reordering, but adding
phrase-based lexicalized reordering features to the
system still gives us about as much improvement
as the phrase-based system gets from lexicalized
reordering features, here 1.07 BLEU points. And
our best Phrasal-Hiero significantly improves over
the best phrase-based baseline by 0.54 BLEU
points. This shows that the underperformance of
the Hiero system is due to its lack of lexicalized
reordering features rather than a limited hypothe-
sis space.

4.3 Chinese-English Results

The Chinese-English system was trained on FBIS
corpora of 384K sentence pairs, the English cor-
pus is lower case. The language model is the tri-
gram SRI language model built from Xinhua cor-
pus of 180 millions words. We tuned the parame-
ters on MT06 NIST test set of 1664 sentences and
report the results of MT04, MT05 and MT08 un-
seen test sets. The results are in Table 5.

We also make the same observation as Zoll-
mann et al. (2008) on the baselines for Chinese-
English translation. Even though the phrase-
based system benefits from lexicalized reordering,
PB+lex on average outperforms PB+nolex by 1.16
BLEU points (25.87 versus 27.03), it is the Hiero
system that has the best baseline scores across all
test sets, with and average of 27.70 BLEU points.

Phrasal Hiero scores are given in the second
block of Table 5. It uses 84.19% of the total train-
ing rules, but unlike the Arabic-English system,
using a subset of the rules costs Phrasal-Hiero on
all test sets and on average it loses 0.49 BLEU
points (27.21 versus 27.70). Similar to Chiang

MT04 MT05 MT08 Avg.
PB+nolex 29.99 26.4 21.23 25.87
PB+lex 31.03 27.57 22.41 27.03
Hiero 32.49 28.06 22.57 27.70
P.H.

31.83 27.66 22.16 27.21
(84.19% rules)
P.H.+dist 32.18 28.25 22.46 27.63
P.H.+lex 32.55 28.51 23.08 28.05
P.H+lex+dist 33.06 28.78 23.23 28.35
Improv. over

2.03 1.21 0.82 1.32
PB+lex
Improv. over

1.23 1.12 1.07 1.14
P.H.
Improv. over

0.57 0.72 0.66 0.65
Hiero

Table 5: Chinese-English lower case translation
scores in BLEU metric.

et al. (2008) in their Chinese-English experiment,
we benefit by adding the distance cost feature.
PH.+dist outperforms P.H. on all test sets. We
have better improvements when adding the six fea-
tures of the lexicalized reordering model: P.H.+lex
on average has 28.05 BLEU points, i.e. gains
0.84 over P.H.. The P.H.+lex system is even better
than the best Hiero baseline using the whole set of
rules.

We again get the best translation when adding
both the distance cost feature and the lexicalized
reordering features. The P.H+dist+lex has the best
score across all the test sets and on average gains
1.14 BLEU points over P.H. So adding phrase-
based features to the Hiero system yields nearly
the same improvement as adding lexicalized re-
ordering features to the phrase-based system. This
shows that a strong Chinese-English Hiero system
still benefits from phrase-based features. Further
more, the P.H+dist+lex also outperforms the Hi-
ero baseline using all rules from training data.

4.4 German-English Results

We next consider German-English translation.
The systems were trained on 1.8 million sentence
pairs using the Europarl corpora. The language
model is three-gram SRILM trained from the tar-
get side of the training corpora. We use WMT
2010 (2489 sentences) as development set and
report scores on WMT 2008 (2051 sentences),
WMT 2009 (2525 sentences), WMT 2011 (3003
sentences). All test sets have one reference per
test sentence. The results are in Table 6.
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WMT test 08 09 11 Avg.
PB+nolex 17.46 17.38 16.76 17.20
PB+lex 18.16 17.85 17.18 17.73
Hiero 18.20 18.23 17.46 17.96
P.H.

18.24 18.15 17.39 17.92
(80.54% rules)
P.H. +dist 18.19 17.97 17.41 17.85
P.H. +lex 18.59 18.46 17.69 18.24
P.H.+lex+dist 18.70 18.53 17.81 18.34
Improv. over

0.54 0.68 0.63 0.61
PB+lex
Improv. over

0.46 0.38 0.42 0.42
P.H.
Improv. over

0.50 0.30 0.35 0.38
Hiero

Table 6: German-English lower case translation
scores in BLEU metric.

The Hiero baseline performs on average 0.26
BLEU points better than the phrase-based sys-
tem with lexicalized reordering features (PB+lex).
The hrasal-Hiero system used 80.54% of the total
training rules, but on average the P.H. system has
the same performance as the Hiero system using
all the rules extracted from training data. Similar
to the Arabic-English experiment, Phrasal-Hiero
does not benefit from adding the distance cost fea-
ture. We do, however, see improvements on all
test sets when adding lexicalized reordering fea-
tures. On average the P.H.+lex results are 0.32
BLEU points higher than the P.H. results. The
best scores are achieved with P.H+lex+dist. The
German-English translations on average gain 0.38
BLEU score by adding both distance cost and dis-
criminative reordering features.

4.5 Impact of segment rules into phrase pairs

Phrasal Hiero is the first system using rules’ lexi-
cal alignments. If lexical alignments are not avail-
able, we can not divide the rules’ lexicals into
phrase pairs without losing their dependancies. An
alternative approach would be combining all lex-
icals of a rule into one phrase pair. We run an
addition experiment for this approach on Arabic-
English dataset. Table 7 shows the examples rules
and its new sequence of nonterminals and phrase
pairs. The rules r1 and r2 have the same se-
quences as in Table 1. Without segment rules into
phrase pairs, the rule r3 has only one phrase pair:
ph = (Je . . . le Francaise ; I . . . french) and

ph is repeated twice in r3’s sequence of phrase
pairs and nonterminals. The new experiment uses
the complete set of rules so the rule r4 is included.

According to the new sequence of phrase pairs
and nonterminals, during decoding the rule r3 has
discontinous translation directions on both from
phrase pair ph to the nonterminal X1 and from
X1 to ph. But using lexical alignment and divide
the rule into phrase pairs as in section 2.1 , the
sequence preserves the translation order of r3 as
two monotone translations from (je; I) to X1 and
from X1 to (le Francaise ; french).

Avg
Hiero 46.13
Hiero+lex

46.45 ( +0.32)
(no lex. alignments)
P.H 46.37
P.H.+lex

47.04 (+0.67)
(with lex. alignments)

Table 8: Average of Arabic-English translation
scores in BLEU metric. Compare the improve-
ment of using rules’ lexical alignments (2nd
block) and not using rules’ lexical alignments (1st
block).

Table 8 compares the two experiments results.
The additional experiment is denoted as Hiero+lex
in the table. The first block shows an improvement
of 0.32 BLEU score when adding discriminated
reordering features on Hiero (using the whole set
of rules and no rule segmentation). The second
block is the impact of adding discriminated re-
ordering features on Phrasal Hiero (using a sub-
set of rules and segment rules into phrase pairs).
Here the improvement of P.H+lex over P.H is 0.67
BLEU score. It shows the benefit of segment rules
into phrase pairs.

4.6 Rules without unaligned phrases

A-E C-E G-E
Hiero 46.13 27.70 17.96
P.H. 46.36 27.21 17.92
%Rules used 48.54% 84.19% 80.54%

P.H.+lex+dist 47.27 28.35 18.34

Table 9: The impact of using only rules without
nonaligned phrases on Phrasal-Hiero results.

Table 9 summarizes the impact of using only
rules without nonaligned phrases on Phrasal-
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Rules Phrase pairs & nonterminals
r1 = X→ parle ; speak. (parle ; speak)

r2 = X→ ne X1 pas ; don
′t X1. (ne . . . pas ; don′t) ; X1

r3 = X→ Je X1 le Francais ; I X1 French (Je . . . le Francais ; I . . . french) ; X1 ;
(Je . . . le Francais ; I . . . french)

r4 = X→ je X1 le X2 ; i X1 X2 (je . . . le ; i) ; X1 ; X2

Table 7: Example of translation rules and their sequences of phrase pairs and nonterminals when lexical
alignments are not available.

Hiero. Using only rules without nonaligned
phrases can get the same performance with trans-
lation with full set of rules for Arabic-English and
German-English experiments but underperforms
for the Chinese-English system. We suggest the
difference might come from the linguistic diver-
gences of source and target languages.

Phrasal Hiero includes all lexical rules (rules
without nonterminal) therefore it still has the same
lexical coverage as the original Hiero system.
In the Arabic-English system, the Arabic is in
ATB format, therefore most English words should
have alignments in the ATB source, rules with
nonaligned phrases could be the results of bad
alignments or non-informative rules, therefore we
could have better performance by using a subset of
rules in Phrasal-Hiero.

As Chinese and English are highly divergent,
we expect many phrases in one language correctly
unaligned in the other language. So leaving out
the rules with nonaligned phrases could degrade
the system. Even though the current Phrasal-Hiero
with extra phrase-based features outperforms the
Hiero baseline, future work for Phrasal-Hiero will
focus on including all rules extracted from training
corpora.

4.7 Discontinuous Phrase-Based

C-E G-E
PB+lex 27.03 17.73
PB+lex+gap 27.11 17.55
Hiero 27.70 17.96
P.H.+lex+dist 28.35 18.34

Table 10: Comparing Phrasal-Hiero with transla-
tion with gap for Chinese-English and German-
English. The numbers are average BLEU scores
of all test sets.

We compare Phrasal-Hiero with a discontinu-
ous phrase-based system introduced by Galley and

Manning (2010) for Chinese-English and German-
English system. Table 10 shows the average re-
sults. We used Phrasal decoder (Cer et al., 2010)
for phrase-based with gaps (PB+lex+gap) results.
While we do not focus on the differences in the
toolkits, our Phrasal-Hiero still outperforms the
phrase-based with gaps experiments.

Conclusion

We have presented a technique to combine phrase-
based features and tree-based features into one
model. Adding a distance cost feature, we only
get better translation for Chinese-English transla-
tion. Phrasal-Hiero benefits from adding discrim-
inative reodering features in all experiment. We
achieved the best result when adding both distance
cost and lexicalized reordering features. Phrasal-
Hiero currently uses only a subset of rules from
training data. A future work on the model can in-
clude complete rule sets together with word inser-
tion/deletion features for nonaligned phrases.

References
A. Birch, P. Blunsom, and M. Osborne. 2009. A

Quantitative Analysis of Reordering Phenomena. In
StatMT ’09: Proceedings of the Fourth Workshop on
Statistical Machine Translation, pages 197–205.

X. Carreras and M. Collins. 2009. Non-Projective
Parsing for Statistical Machine Translation. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1 -
Volume 1, EMNLP ’09, pages 200–209.

D. Cer, M. Galley, D. Jurafsky, and C. Manning. 2010.
Phrasal: A Statistical Machine Translation Toolkit
for Exploring New Model Features. In Proceedings
of the NAACL HLT 2010 Demonstration Session,
pages 9–12. Association for Computational Linguis-
tics, June.

D. Chiang, Y. Marton, and P. Resnik. 2008. Online
Large-Margin Training of Syntactic and Structural
Translation Features. In Proceedings of the Con-
ference on Empirical Methods in Natural Language

1595



Processing, pages 224–233. Association for Com-
putational Linguistics.

D. Chiang. 2005. A Hierarchical Phrase-Based Model
for Statistical Machine Translation. In Proc. of ACL.

D. Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

M. Galley and C. Manning. 2008. A Simple and Effec-
tive Hierarchical Phrase Reordering Model. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 847–
855, Honolulu, Hawaii, October.

M. Galley and C. D. Manning. 2010. Accurate Non-
Hierarchical Phrase-Based Translation. In Proceed-
ings of NAACL-HLT, pages 966–974.

M. Huck, S. Peitz, M. Freitag, and H. Ney. 2012. Dis-
criminative Reordering Extensions for Hierarchical
Phrase-Based Machine Translation. In EAMT, pages
313–320.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
Phrase-Based Translation. In Proc. of HLT-NAACL,
pages 127–133.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In ACL demon-
stration session.

C. Tillmann. 2004. A Unigram Orientation Model for
Statistical Machine Translation. In Proceedings of
HLT-NAACL: Short Papers, pages 101–104.

A. Zollmann and A. Venugopal. 2006. Syntax Aug-
mented Machine Translation via Chart Parsing. In
Proc. of NAACL 2006 - Workshop on Statistical Ma-
chine Translation.

A. Zollmann, A. Venugopal, F. Och, and J. Ponte.
2008. A Systematic Comparison of Phrase-Based,
Hierarchical and Syntax-Augmented Statistical MT.
In Proceedings of the Conference on Computational
Linguistics (COLING).

1596



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1597–1607,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Machine Translation Detection from Monolingual Web-Text

Yuki Arase
Microsoft Research Asia

No. 5 Danling St., Haidian Dist.
Beijing, P.R. China

yukiar@microsoft.com

Ming Zhou
Microsoft Research Asia

No. 5 Danling St., Haidian Dist.
Beijing, P.R. China

mingzhou@microsoft.com

Abstract

We propose a method for automatically
detecting low-quality Web-text translated
by statistical machine translation (SMT)
systems. We focus on the phrase salad
phenomenon that is observed in existing
SMT results and propose a set of computa-
tionally inexpensive features to effectively
detect such machine-translated sentences
from a large-scale Web-mined text. Un-
like previous approaches that require bilin-
gual data, our method uses only monolin-
gual text as input; therefore it is applicable
for refining data produced by a variety of
Web-mining activities. Evaluation results
show that the proposed method achieves
an accuracy of 95.8% for sentences and
80.6% for text in noisy Web pages.

1 Introduction

The Web provides an extremely large volume
of textual content on diverse topics and areas.
Such data is beneficial for constructing a large
scale monolingual (Microsoft Web N-gram Ser-
vices, 2010; Google N-gram Corpus, 2006) and
bilingual (Nie et al., 1999; Shi et al., 2006;
Ishisaka et al., 2009; Jiang et al., 2009) corpus
that can be used for training statistical models for
NLP tools, as well as for building a large-scale
knowledge-base (Suchanek et al., 2007; Zhu et al.,
2009; Fader et al., 2011; Nakashole et al., 2012).
With recent advances in statistical machine trans-
lation (SMT) systems and their wide adoption in
Web services through APIs (Microsoft Translator,
2009; Google Translate, 2006), a large amount
of text in Web pages is translated by SMT sys-
tems. According to Rarrick et al. (2011), their
Web crawler finds that more than 15% of English-
Japanese parallel documents are machine transla-
tion. Machine-translated sentences are useful if

they are of sufficient quality and indistinguish-
able from human-generated sentences; however,
the quality of these machine-translated sentences
is generally much lower than sentences generated
by native speakers and professional translators.
Therefore, a method to detect and filter such SMT
results is desired to best make use of Web-mined
data.

To solve this problem, we propose a method
for automatically detecting Web-text translated by
SMT systems1. We especially target machine-
translated text produced through the Web APIs
that is rapidly increasing. We focus on the phrase
salad phenomenon (Lopez, 2008), which char-
acterizes translations by existing SMT systems,
i.e., each phrase in a sentence is semantically
and syntactically correct but becomes incorrect
when combined with other phrases in the sentence.
Based on this trait, we propose features for eval-
uating the likelihood of machine-translated sen-
tences and use a classifier to determine whether
the sentence is generated by the SMT systems.

The primary contributions of the proposed
method are threefold. First, unlike previous stud-
ies that use parallel text and bilingual features,
such as (Rarrick et al., 2011), our method only
requires monolingual text as input. Therefore,
our method can be used in monolingual Web data
mining where bilingual information is unavailable.
Second, the proposed features are designed to be
computationally light so that the method is suit-
able for handling a large-scale Web-mined data.
Our method determines if an input sentence con-
tains phrase salads using a simple yet effective fea-
tures, i.e., language models (LMs) and automati-
cally obtained non-contiguous phrases that are fre-
quently used by people but difficult for SMT sys-
tems to generate. Third, our method computes fea-
tures using both human-generated text and SMT

1In this paper, the term machine-translated is used for in-
dicating translation by SMT systems.
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results to capture a phrase salad by contrasting
these features, which significantly improves detec-
tion accuracy.

We evaluate our method using Japanese and En-
glish datasets, including a human evaluation to as-
sess its performance. The results show that our
method achieves an accuracy of 95.8% for sen-
tences and 80.6% for noisy Web-text.

2 Related Work

Previous methods for detecting machine-
translated text are mostly designed for bilingual
corpus construction. Antonova and Misyurev
(2011) design a phrase-based decoder for
detecting machine-translated documents in
Russian-English Web data. By evaluating the
BLEU score (Papineni et al., 2002) of trans-
lated documents (by their decoder) against the
target-side documents, machine translation (MT)
results are detected. Rarrick et al. (2011) extract a
variety of features, such as the number of tokens
and character types, from sentences in both the
source and target languages to capture words that
are mis-translated by MT systems. With these
features, the likelihood of a bilingual sentence
pair being machine-translated can be determined.

Confidence estimation of MT results is also
a related area. These studies aim to precisely
replicate human judgment in terms of the qual-
ity of machine-translated sentences based on fea-
tures extracted using a syntactic parser (Corston-
Oliver et al., 2001; Gamon et al., 2005; Avramidis
et al., 2011) or essay scoring system (Parton
et al., 2011), assuming that their input is al-
ways machine-translated. In contrast, our method
aims at making a binary judgment to distin-
guish machine-translated sentences from a mix-
ture of machine-translated and human-generated
sentences. In addition, although methods for
confidence estimation can assume sentences of a
known source language and reference translations
as inputs, these are unavailable in our problem set-
ting.

Another related area is automatic grammatical
error detection for English as a second language
(ESL) learners (Leacock et al., 2010). We use
common features that are also used in this area.
They target specific error types commonly made
by ESL learners, such as errors in prepositions and
subject-verb agreement. In contrast, our method
does not specify error types and aims to de-

tect machine-translated sentences focusing on the
phrase salad phenomenon produced by SMT sys-
tems. In addition, errors generated by ESL learn-
ers and SMT systems are different. ESL learners
make spelling and grammar mistakes at the word
level but their sentence are generally structured
while SMT results are unstructured due to phrase
salads. Works on translationese detection (Baroni
and Bernardini, 2005; Kurokawa et al., 2009; Ilisei
et al., 2010) aim to automatically identify human-
translated text by professionals using text gener-
ated by native speakers. These are related, but our
work focuses on machine-translated text.

The closest to our approach is the method pro-
posed by Moore and Lewis (2010). It automat-
ically selects data for creating a domain-specific
LM. Specifically, the method constructs LMs us-
ing corpora of target and non-target domains and
computes a cross-entropy score of an input sen-
tence for estimating the likelihood that the input
sentence belongs to the target or non-target do-
mains. While the context is different, our work
uses a similar idea of data selection for the pur-
pose of detecting low-quality sentences translated
by SMT systems.

3 Proposed Method

When APIs of SMT services are used for machine-
translating an Web page, they typically insert
specific tags into the HTML source. Utilizing
such tags makes MT detection trivial. How-
ever, the actual situation is more complicated in
real Web data. When people manually copy and
paste machine-translated sentences, such tags are
lost. In addition, human-generated and machine-
translated sentences are often mixed together even
in a single paragraph. To observe the distribu-
tion of machine-translated sentences in such diffi-
cult cases, we examine 3K sentences collected by
our in-house Web crawler. Among them, exclud-
ing the pages with the tags of MT APIs, 6.7% of
them are found to be clearly machine translation.
Our goal is to automatically identify these sen-
tences that cannot be simply detected by the tags,
except when the sentences are of sufficient qual-
ity to be indistinguishable from human-generated
sentences.

3.1 Phrase Salad Phenomenon

Fig. 1 illustrates the phrase salad phenomenon that
characterizes a sentence translated by an existing
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| Of surprise | was up | foreigners flocked | overseas | as well, | they publicized not only | Japan, | saw an article from the news. |

Natural English: The news was broadcasted not only in Japan but also overseas, and it surprised foreigners who read the article.

Unnatural phrase sequence

Natural phrase|       |

Missing combinational word

Figure 1: The phrase salad phenomenon in a sentence translated by an SMT system; each (segmented) phrase is correct and

fluent, but dotted arcs show unnatural sequences of phrases and the boxed phrase shows an incomplete non-contiguous phrase.

SMT system. Each phrase, a sequence of con-
secutive words, is fluent and grammatically cor-
rect; however, the fluency and grammar correct-
ness are both poor in inter-phrases. In addition, a
phrase salad becomes obvious by observing dis-
tant phrases. For example, the boxed phrase in
Fig. 1 is a part of the non-contiguous phrase “not
only ? but also2;” however, it lacks the latter part
of the phrase (“but also”) that is also necessary
for composing a meaning. Such non-contiguous
phrases are difficult for most SMT systems to gen-
erate, since these phrases require insertion of sub-
phrases in distant parts of the sentence.

Based on the observation of these characteris-
tics, we define features to capture a phrase salad
by examining local and distant phrases. These
features evaluate (1) fluency (Sec. 3.2), (2) gram-
maticality (Sec. 3.3), and (3) completeness of
non-contiguous phrases in a sentence (Sec. 3.4).
Furthermore, humans can distinguish machine-
translated text because they have prior knowledge
of how a human-generated sentence would look
like, which has been accumulated by observing a
lot of examples through their life. This knowl-
edge makes phrase-salads, e.g., missing objects
and influent sequence of words, obvious for hu-
mans since they rarely appear on human-generated
sentences. Based on this assumption, we ex-
tract these features using both human-generated
and machine-translated text. Features extracted
from human-generated text represent the similar-
ity to human-generated text. Likewise, features
extracted from machine-translated text depict the
similarity to machine-translated text. By contrast-
ing these feature weights, we can effectively cap-
ture phrase salads in the sentence.

3.2 Fluency Feature

In a machine-translated sentence, fluency becomes
poor among phrases where a phrase salad occurs.
We capture this influency using two independent
LM scores; fw,H and fw,MT . The former LM is

2We use the symbol ? to represent a gap in which any
word or phrase can be placed.

trained with human-generated sentences and the
latter one is trained with machine-translated sen-
tences. We input a sentence into both of the LMs
and use the scores as the fluency features.

3.3 Grammaticality Feature

In a sentence with phrase salads, its grammatical-
ity is poor because tense and voice become in-
consistent among phrases. We capture this using
LMs trained with part-of-speech (POS) sequences
of human-generated and machine-translated sen-
tences, and the features of fpos,H and fpos,MT are
respectively computed. In a similar manner with a
word-based LM, such grammatical inconsistency
among phrases is detectable when computing a
POS LM score, since the score becomes worse
when an N -gram covers inter-phrases where a
phrase salad occurs. This approach achieves com-
putational efficiency since it only requires a POS
tagger.

Since a phrase salad may occur among distant
phrases of a sentence, it is also effective to evalu-
ate combinations of phrases that cannot be cov-
ered by the span of N -gram. For this purpose,
we make use of function words that sparsely ap-
pear in a sentence where their combinations are
syntactically constrained. For example, the same
preposition rarely appears many times in a human-
generated sentence, while it does in a machine-
translated sentence due to the phrase salad. Simi-
lar to the POS LM, we first analyze sentences gen-
erated by human or SMT by a POS tagger, extract
sequences of function words, and finally train LMs
with the sequences. We use these LMs to obtain
scores that are used as features ffw,H and ffw,MT .

3.4 Gappy-Phrase Feature

There are a lot of common non-contiguous phrases
that consist of sub-phrases (contiguous word
string) and gaps, which we refer to as gappy-
phrases (Bansal et al., 2011). We specifically use
gappy-phrases of 2-tuple, i.e., phrases consisting
of two sub-phrases and one gap in the middle.
Let us take an English example “not only ? but
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Sequences
World population not only grows , but grows old .
A press release not only informs but also teases .
Hazelnuts are not only for food , but also fuel .
The coalition must not only listen but also act .

Table 1: Example of a sequence database

also.” When a sentence contains the phrase “not
only,” the phrase “but also” is likely to appear in
human-generated setences. Such a gappy-phrase
is difficult for SMT systems to correctly generate
and causes a phrase salad. Therefore, we define a
feature to evaluate how likely a sentence contains
gappy-phrases in a complete form without missing
sub-phrases. This feature is effective to comple-
ment LMs that capture characteristics inN -grams.

Sequential Pattern Mining It is costly to man-
ually collect a lot of such gappy-phrases. There-
fore, we regard the task as sequential pattern min-
ing and apply PrefixSpan proposed by Pei et al.
(2001), which is a widely used sequential pattern
mining method3.

Given a set of sequences and a user-specified
min support ∈ N threshold, the sequential pattern
mining finds all frequent subsequences whose oc-
currence frequency is no less than min support.
For example, given a sequence database like Ta-
ble 1, the sequential pattern mining finds all fre-
quent subsequences, e.g., “not only,” “not only ?
but also,” “not ? but ?,” and etc.

To capture a phrase salad by contrasting appear-
ance of gappy-phrases in human-generated and
machine-translated text, we independently extract
gappy-phrases from each of them using PrefixS-
pan. We then compute features fg,H and fg,MT

using the obtained phrases.

Observation of Extracted Gappy-Phrases
Based on a preliminary experiment, we set
the parameter min support of PrefixSpan to
100 for computational efficiency. We extract
gappy-phrases (of 2-tuple) from our develop-
ment dataset described in Sec. 4.1 that includes
254K human-generated and 134K machine-
translated sentences in Japanese, and 210K
human-generated and 159K machine-translated
sentences in English.

Regarding the Japanese dataset, we obtain
about 104K and 64K gappy-phrases from human-

3Due to the severe space limitation, readers are referred to
that paper.

generated and machine-translated sentences, re-
spectively. According to our observation of the
extracted phrases, 21K phrases commonly ap-
pear in human-generated and machine-translated
sentences. Many of these common phrases are
incomplete forms of gappy-phrases that lack se-
mantic meaning to humans, such as “not only ?
the” and “not only ? and.” On the other hand,
complete forms of gappy-phrases that preserve se-
mantic meaning exclusively appear in phrases ex-
tracted from human-generated sentences. We also
obtain about 74K and 42K phrases from human-
generated and machine-translated sentences in the
English dataset (21K of them are common).

Phrase Selection As a result of sequential
pattern mining, we can gather a huge num-
ber of gappy-phrases from human-generated and
machine-translated text, but as we described
above, many of them are common. In addition,
it is computationally expensive to use all of them.
Therefore, our method selects useful phrases for
detecting machine-translated sentences.

Although there are several approaches for fea-
ture selection, e.g., (Sebastiani, 2002), we use a
method that is suitable for handling a large num-
ber of feature candidates. Specifically, we evaluate
gappy-phrases based on the information gain that
measures the amount of information in bits ob-
tained for class prediction when knowing the pres-
ence or absence of a phrase and the corresponding
class distribution. This corresponds to measuring
an expected reduction in entropy, i.e., uncertainty
associated with a random factor. The information
gain G ∈ R for a gappy-phrase g is defined as

G(g)
.
= H(C)− P (X1

g )H(C|X1
g )

−P (X0
g )H(C|X0

g ),

where H(C) represents the entropy of the classifi-
cation, C is a stochastic variable taking a class,Xg

is a stochastic variable representing the presence
(X1

g ) or absence (X0
g ) of the phrase g, P (Xg) rep-

resents the probability of presence or absence of
the phrase g, and H(C|Xg) is the conditional en-
tropy due to the phrase g. We use top-k phrases
based on the information gain G. Specifically, we
use the top 40% of phrases to compute the feature
values. Table 2 shows examples of gappy-phrases
extracted from human-generated and machine-
translated text in our development dataset and re-
main after feature selection.
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in the early ? period after ? after the
known as ? to and also ? and

Human more ? than MT and ? but the
not only ? but also no ? not
with ? as well as not ? not

Table 2: Example of gappy-phrases extracted from human-

generated and machine-translated text; phrases preserving se-

mantic meaning are extracted only from human-generated

text.

The gappy-phrases depend on each other, and
the more phrases extracted from human-generated
(machine-translated) text are found in a sentence,
the more likely the sentence is human-generated
(machine-translated). Therefore, we compute the
feature as

fc(s) =
∑

i∈k
wiδ(i, s),

where wi is a weight of the i-th phrase, and δ(i, s)
is a Kronecker’s delta function that takes 1 if the
sentence s includes the i-th phrase and takes 0 oth-
erwise. We may set the weight wi according to the
importance of the phrase, such as the information
gain. In this work, we set wi to 1 for simplicity.

3.5 Classification
Table 3 summarizes the features employed in
our method. In addition to the discussed fea-
tures, we use the length of a sentence as a fea-
ture flen to avoid the bias of LM-based fea-
tures that favor shorter sentences. The proposed
method takes a monolingual sentence from Web
data as input and computes a feature vector of
f = (fw,H , . . . , flen) ∈ R9. Each feature is fi-
nally normalized to have a zero-mean and unit
variance distribution. In the feature space, a
support vector machine (SVM) classifier (Vap-
nik, 1995) is used to determine the likelihoods
of machine-translated and human-generated sen-
tences.

4 Experiments

We evaluate our method using both Japanese and
English datasets from various aspects and investi-
gate its characteristics. In this section, we describe
our experiment settings.

4.1 Data Preparation
For the purpose of evaluation, we use human-
generated and machine-translated sentences for

Feature Notation
Fluency fw,H , fw,MT

Grammaticality fpos,H , fpos,MT

ffw,H , ffw,MT

Gappy-phrase fg,H , fg,MT

Length flen

Table 3: List of proposed features and their notations

constructing LMs, extracting gappy-phrases, and
training a classifier. These sentences should
be ensured to be human-generated or machine-
translated, and the human-generated and machine-
translated sentences express the same content for
fairness of evaluation to avoid effects due to vo-
cabulary difference.

As a dataset that meets these requirements, we
use parallel text in public websites (this is for fair
evaluation and our method can be trained using
nonparallel text on an actual deployment). Eight
popular sites having Japanese and English paral-
lel pages are crawled, whose text is manually veri-
fied to be human-generated. The main textual con-
tent of these 131K parallel pages are extracted,
and the sentences are aligned using (Ma, 2006).
As illustrated in Fig. 2, the text in one language
is fed to the Bing translator, Google Translate,
and an in-house SMT system4 implemented based
on (Chiang, 2005) by ourselves for obtaining sen-
tences translated by SMT systems. Due to a severe
limitation on the number of requests to the APIs,
we randomly subsample sentences before sending
them to these SMT systems. We use text in the
other language as human-generated sentences5.

In this manner, we prepare 508K human-
generated and 268K machine-translated sentences
as a Japanese dataset, and 420K human-generated
and 318K machine-translated sentences as an En-
glish dataset. We split each of them into two even
datasets and use one for development and the other
for evaluation.

4.2 Experiment Setting

For the fluency and grammaticality features, we
train 4-gram LMs using the development dataset
with the SRI toolkit (Stolcke, 2002). To obtain
the POS information, we use Mecab (Kudo et al.,
2004) for Japanese and a POS tagger developed by
Toutanova et al. (2003) for English. We evaluate

4A preliminary evaluation of the in-house SMT system
shows that it has comparable quality with Bing translator.

5These are a mixture of sentences generated by native
speakers and professional translators/editors.
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Figure 2: Experimental data preparation; text in one lan-

guage is fed to SMT systems and the other is used as human-

generated sentences.

the effect of the sizes of N -grams and develop-
ment dataset in the experiments.

Using the proposed features, we train an SVM
classifier for detecting machine-translated sen-
tences. We use an implementation of LIB-
SVM (Chang and Lin, 2011) with a radial basis
function kernel due to the relatively small number
of features in the proposed method. We set appro-
priate parameters by grid search in a preliminary
experiment.

We evaluate the performance of MT detection
based on accuracy6 that is a broadly used evalua-
tion metric for classification problems:

accuracy =
nTP + nTN

n
,

where nTP and nTN are the numbers of true-
positives and true-negatives, respectively, and n
is the total number of exemplars. The accuracy
scores that we report in Sec. 5 are all based on 10-
fold cross validation.

4.3 Comparison Method
We compare our method with the method
of (Moore and Lewis, 2010) (Cross-Entropy). Al-
though the Cross-Entropy method is designed for
the task of domain adaptation of an LM, our prob-
lem is a variant of their original problem and
thus their method is directly relevant. In our
context, the method computes the cross-entropy
scores IMT (s) and IH(s) of an input sentence
s against LMs trained on machine-translated and
human-generated sentences. Cross-entropy and
perplexity are monotonically related, as perplex-
ity of s according to an LM M is simply ob-

6Although we also examine precision and recall of clas-
sification results, they are similar to accuracy reported in this
paper.

Method Accuracy
Cross-Entropy 90.7
Lexical Feature 87.8

Proposed feature Word LMs 94.1
POS LMs 91.3
FW LMs 82.7

GPs 85.7

Table 4: Accuracy (%) of individual features and compari-

son methods

tained by bIM (s) where IM (s) is cross-entropy
score and b is a base with regard to which the
cross-entropy is measured. The method scores
the sentence according to the cross-entropy differ-
ence, i.e., IMT (s)− IH(s), and decides that the
sentence is machine-translated when the score is
lower than a predefined threshold. The classifica-
tion is performed by 10-fold cross validation. We
find the best performing threshold on a training set
and evaluate the accuracy with a test set using the
determined threshold.

Additionally, we compare our method to a
method that uses a feature indicating presence or
absence of unigrams, which we call Lexical Fea-
ture. This feature is commonly used for transla-
tionese detection and shows the best performance
as a single feature in (Baroni and Bernardini,
2005). It is also used by Rarrick et al. (2011) and
shows the best performance by itself in detecting
machine-translated sentences in English-Japanese
translation in the setting of bilingual input. We
implement the feature and use it against a mono-
lingual input to fit our problem setting.

5 Results and Discussions

In this section, we analyze and discuss the experi-
ment results in detail.

5.1 Accuracy on Japanese Dataset

We evaluate the sentence-level and document-
level accuracy of our method using the Japanese
dataset. Specifically, we evaluate effects of indi-
vidual features and their combinations, compare
with human annotations, and assess performance
variations across different sentence lengths and
various settings on LM training.

Effect of Individual Feature Table 4 shows the
accuracy scores of individual features and com-
parison methods. We refer to features for flu-
ency (fw,H , fw,MT ) as Word LMs, grammatical-
ity using POS LMs (fpos,H , fpos,MT ) as POS LMs
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Method Accuracy
Word LMs + GPs 94.7

Word LMs + POS LMs 95.1
Word LMs + POS LMs + GPs 95.4

Word LMs + POS LMs + FW LMs 95.5
All 95.8

Table 5: Accuracy (%) of feature combinations; there are

significant differences (p � .01) against the accuracy score

of Word LMs.

and function word LMs (ffw,H , ffw,MT ) as FW
LMs, respectively, and for completeness of gappy-
phrases (fg,H , fg,MT ) as GPs. The Word LMs
show the best accuracy that outperforms Cross-
Entropy by 3.4% and Lexical Feature by 6.3%.
This high accuracy is achieved by contrasting flu-
ency in human-generated and machine-translated
text to capture the phrase salad phenomenon. The
accuracy of Word LM trained only on human-
generated sentences is limited to 65.5%. On the
other hand, the accuracy of Word LM trained on
machine-translated sentences shows a better per-
formance (84.4%). By combining these into a
single feature vector f = (fw,H , fw,MT , flen), the
accuracy is largely improved.

It is interesting that Lexical Feature achieves
a high accuracy of 87.8% despite its simplicity.
Since Lexical Feature is a bag-of-words model,
it can consider distant words in a sentence. This
is effective for capturing a phrase salad that oc-
curs among distant phrases, which N -gram can-
not cover. As for Cross-Entropy, a simple sub-
traction of cross-entropy scores cannot well con-
trast the fluency in human-generated and machine-
translated text and results in poorer accuracy than
Word LMs.

The accuracy of POS LMs (91.3%) is slightly
lower than that of Word LMs due to the limited
vocabulary, i.e., the number of POSs. The accu-
racy of FW LMs and GPs are even lower. This
is convincing since these features cannot have rea-
sonable values when a sentence does not include a
function word and gappy-phrase. However, these
features are complementary to Word LMs as we
will see in the next paragraph.

Effect of Feature Combination Table 5 shows
the accuracy when combining features. Sign tests
show that the accuracy scores of these feature
combinations are significantly different (p� .01)
against the accuracy of Word LMs. The results
show that the features complement each other. The

Error Ratio Accuracy
(%) Word

LMs
All

Has wrong content words 37.8 93.1 95.0
Misses content words 12.2 91.8 96.5
Has wrong function words 19.7 92.7 97.1
Misses function words 13.0 93.3 95.6
Has wrong inflections 10.8 97.3 98.7

Table 6: Distribution (%) of machine translation errors and

accuracy (%) of proposed method on the different errors

combination of all features reaches an accuracy
of 95.8%, which improves the accuracy of Word
LMs by 1.7%. This result supports that FW LMs
and GPs are effective to capture a phrase salad oc-
curring in distant phrases and complement the ev-
idence in N -grams that is captured by LMs. This
effect becomes more obvious in the human evalu-
ation.

We also evaluate the accuracy of the proposed
method at a document level. Due to the high accu-
racy at the sentence-level, we use a voting method
to judge a document, i.e., deciding if the docu-
ment is machine-translated when γ% of its sen-
tences are judged as machine-translated. We use
all features and find that our method achieves 99%
precision and recall with γ = 50.

Human Evaluation To further investigate the
characteristics of our method, we conduct a human
evaluation. We sample Japanese sentences and ask
three native speakers to 1) judge whether a sen-
tence is human-generated or machine-translated
and 2) list errors that the sentence contains. Re-
garding the task 1), we allow the annotators to as-
sign “hard to determine” for difficult cases. We al-
locate about 230 sentences for each annotator (in
total 700 sentences) without overlapping annota-
tion sets.

The accuracy of annotations is found to be
88.2%, which shows that our method is even su-
perior to native speakers. Agreement between the
annotators and our method (with all features) is
85.1%. As we interview the annotators, we find
that human annotations are strongly affected by
the annotators’ domain knowledge. For example,
technical sentences are more often misclassified
by the annotators.

Table 6 shows the distribution of errors on
machine-translated sentences found by the anno-
tators (on sentences that they correctly classified)
with the accuracy of Word LMs and all features on
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Figure 3: Accuracy (%) across different sentence lengths

(the primary axis) and distribution (%) of sentence lengths in

the evaluation dataset (the secondly axis)

these sentences (a sentence may contain multiple
errors). It indicates that the accuracy of Word LMs
is improved by feature combination; from 1.4% on
sentences of “Has wrong inflections” to 4.7% on
sentences of “Misses content words”.

Effect of Sentence Length The accuracy of the
proposed method is significantly affected by sen-
tence length (the number of words in a sentence).
Fig. 3 shows the accuracy of the proposed method
(with all features) and comparison methods w.r.t.
sentence lengths (with the primary axis), as well
as the distribution of sentence lengths in the eval-
uation dataset (with the secondly axis). We ag-
gregate the classification results on each cross-
validation (test results). It also shows the accu-
racy of human annotations w.r.t. sentence lengths,
which we obtain for the 700 sentences in the hu-
man evaluation. The accuracy drops on all meth-
ods when sentences are short; the accuracy of our
method is 91.6% when a sentence contains less
than or equal to 10 words. The proposed method
shows the similar trend with the human annota-
tions, and even the accuracy of human annota-
tions significantly drops on such short sentences.
This result indicates that SMT results on short
sentences tend to be of sufficient quality and in-
distinguishable from human-generated sentences.
Since such high-quality machine-translations do
not harm the quality of Web-mined data, we do
not need to detect them.

Effect of Setting on LM Training We evalu-
ate the performance variation w.r.t. the sizes of
N -grams and development dataset. Fig. 4 shows
the accuracy of the LM based features and feature
combination when changing sizes of N -grams.
The performance of Word LMs is stabilized after
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Figure 4: Effect of the sizes of N -grams on MT detection

accuracy (%)

3-gram while that of POS LMs is still improved
at 4-gram. This is because POS LMs need more
evidence to compensate for their limited vocabu-
lary. FW LMs become stable at 3-gram because
the possible number of function words in a sen-
tence should be small.

When we change the size of the development
dataset with 10% increments, the accuracy curve is
stabilized when the size is 40% of all set. Consid-
ering the fact that the overall development dataset
is small, it shows that our method is deployable
with a small dataset.

5.2 Accuracy on English Dataset

To investigate the applicability of our method to
other languages, we apply the same method to
the English dataset. Because English is a config-
urational language, function words are less flex-
ible than case markers in Japanese. Therefore,
SMT systems may better handle English function
words, which potentially decreases the effect of
FW LMs in our method. In addition, because En-
glish is a morphologically poor language, the ef-
fect of POS LMs may be reduced.

Nevertheless, in our experiment, all features
are shown to be effective even with the English
dataset. The combination of all features achieves
the best performance, with an accuracy of 93.1%,
which outperforms Cross-Entropy by 1.9%, and
Lexical Feature by 8.5%. Even though improve-
ments by POS LMs and FW LMs are smaller than
Japanese case, their effects are still positive. We
also find that GPs stably contribute to the accu-
racy. These results show the applicability of our
method to other languages.

5.3 Accuracy on Raw Web Pages

To avoid unmodeled factors affecting the evalua-
tion, we have carefully removed noise from our
experiment datasets. However, real Web pages are
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more complex; there are often instances of sen-
tence fragments, such as captions and navigational
link text. To evaluate the accuracy of our method
on real Web pages, we conduct experiments using
the dataset generated by Rarrick et al. (2011) that
contains randomly crawled Web pages annotated
by two annotators to judge if a page is human-
generated or machine-translated. We use Japanese
sentences extracted from 69 pages (43 human-
generated and 26 machine-translated pages) where
the annotators’ judgments agree; 3, 312 sentences
consisting of 1, 399 machine-translated and 1, 913
human-generated sentences. To replicate the sit-
uation in real Web pages, we conduct a minimal
preprocessing, i.e., simply removing HTML tags,
and then feed all the remaining text to our method.

An SVM classifier is trained with features ob-
tained by the LMs and gappy-phrases computed
from the data described in Sec. 4.1. Our method
shows 80.6% accuracy at a sentence level and
82.4% accuracy at a document level using the vot-
ing method. One factor for this performance dif-
ference is again sentence lengths, as SMT results
of short phrases in Web pages can be of high-
quality. Another factor is the noise in Web pages.
We find that experimental pages contain lots of
non-sentences, such as fragments of scripts and
product codes. The results show that we need a
preprocessing to remove typical noise in Web text
before SMT detection to handle noisy Web pages.

5.4 Quality of Cleaned Data

Finally, we briefly demonstrate the effect of
machine-translation filtering in an end-to-end sce-
nario, taking LM construction as an example.
We construct LMs reusing the Japanese evalua-
tion dataset described in Sec. 4.1 where machine-
translated sentences are removed by the pro-
posed method (LM-Proposed), Lexical Feature
(LM-LF), and Cross-Entropy (LM-CE), as well
as an LM with all sentences, i.e., with machine-
translated sentences (LM-All). As a result of 5-
fold cross-validation, LM-Proposed has 17.8%,
17.1%, and 16.3% lower perplexities on average
compared to LM-All, LM-LF, and LM-CE, re-
spectively. These results show that our method
is useful for improving the quality of Web-mined
data.

6 Conclusion

We propose a method for detecting machine-
translated sentences from monolingual Web-text
focusing on the phrase salad phenomenon pro-
duced by existing SMT systems. The experimen-
tal results show that our method achieves an accu-
racy of 95.8% for sentences and 80.6% for noisy
Web text.

We plan to extend our method to detect
machine-translated sentences produced by differ-
ent MT systems, e.g., a rule-based system, and
develop a unified framework for cleaning various
types of noise in Web-mined data. In addition, we
will investigate the effect of source and target lan-
guages on translation in terms of MT detection. As
Lopez (2008) describes, a phrase-salad is a com-
mon phenomenon that characterizes current SMT
results. Therefore, we expect that our method is
basically effective on different language pairs. We
will conduct experiments to evaluate performance
difference using various language pairs.

Acknowledgments

We sincerely appreciate Spencer Rarrick and Will
Lewis for active discussion and sharing the exper-
imental data with us. We thank Junichi Tsujii for
his valuable feedback to improve our work.

References
Alexandra Antonova and Alexey Misyurev. 2011.

Building a web-based parallel corpus and filtering
out machine translated text. In Proceedings of the
Workshop on Building and Using Comparable Cor-
pora, pages 136–144.

Eleftherios Avramidis, Maja Popovic, David Vilar Tor-
res, and Aljoscha Burchardt. 2011. Evaluate with
confidence estimation: Machine ranking of trans-
lation outputs using grammatical features. In Pro-
ceedings of the Workshop on Statistical Machine
Translation (WMT 2011), pages 65–70.

Mohit Bansal, Chris Quirk, and Robert C. Moore.
2011. Gappy phrasal alignment by agreement. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (ACL-HLT 2011), pages 1308–
1317.

Marco Baroni and Silvia Bernardini. 2005. A new
approach to the study of translationese: Machine-
learning the difference between original and trans-
lated text. Literary and Linguistic Computing,
21(3):259–274.

1605



Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM : a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2(3):27:1–27:27.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL 2005), pages
263–270.

Simon Corston-Oliver, Michael Gamon, and Chris
Brockett. 2001. A machine learning approach to the
automatic evaluation of machine translation. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL 2001), pages
148–155.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2011), pages 1535–1545.

Michael Gamon, Anthony Aue, and Martine Smets.
2005. Sentence-level MT evaluation without refer-
ence translations: Beyond language modeling. In
Proceedings of European Association for Machine
Translation (EAMT 2005).

Google N-gram Corpus. 2006. http://www.ldc.
upenn.edu/Catalog/CatalogEntry.
jsp?catalogId=LDC2006T13.

Google Translate. 2006. http://code.google.
com/apis/language/.

Iustina Ilisei, Diana Inkpen, Gloria Corpas Pastor, and
Ruslan Mitkov. 2010. Identification of transla-
tionese: A machine learning approach. In Proceed-
ings of the International Conference on Intelligent
Text Processing and Computational Linguistics (CI-
CLing 2010), pages 503–511.

Tatsuya Ishisaka, Masao Utiyama, Eiichiro Sumita, and
Kazuhide Yamamoto. 2009. Development of a
Japanese-English software manual parallel corpus.
In Proceedings of the Machine Translation Summit
(MT Summit XII).

Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu,
and Qingsheng Zhu. 2009. Mining bilingual data
from the web with adaptively learnt patterns. In
Proceedings of the Joint Conference of the Annual
Meeting of the Association for Computational Lin-
guistics and the International Joint Conference on
Natural Language Processing of the Asian Federa-
tion of Natural Language Processing (ACL-IJCNLP
2009), pages 870–878.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
Japanese morphological analysis. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2004), pages 230–
237.

David Kurokawa, Cyril Goutte, and Pierre Isabelle.
2009. Automatic detection of translated text and its
impact on machine translation. In Proceedings of
the Machine Translation Summit (MT-Summit XII).

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated Grammatical
Error Detection for Language Learners. Morgan
and Claypool Publishers.

Adam Lopez. 2008. Statistical machine translation.
ACM Computing Surveys, 40(3):1–49.

Xiaoyi Ma. 2006. Champollion: a robust parallel text
sentence aligner. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC 2006), pages 489–492.

Microsoft Translator. 2009. http://www.
microsofttranslator.com/dev/.

Microsoft Web N-gram Services. 2010. http://
research.microsoft.com/web-ngram.

Robert Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL 2010), pages
220–224.

Ndapandula Nakashole, Gerhard Weikum, and
Fabian M. Suchanek. 2012. PATTY: A taxonomy
of relational patterns with semantic types. In
Proceedings of the Joint Conference on Empir-
ical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP-CoNLL 2012), pages 1135–1145.

Jian-Yun Nie, Michel Simard, Pierre Isabelle, and
Richard Durand. 1999. Cross-language information
retrieval based on parallel texts and automatic min-
ing of parallel texts from the web. In Proceedings
of the Annual International ACM SIGIR Conference
(SIGIR 1999), pages 74–81.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the Annual Meeting of the Association for Com-
putational Linguistics (ACL 2002), pages 311–318.

Kristen Parton, Joel Tetreault, Nitin Madnani, and Mar-
tin Chodorow. 2011. E-rating machine translation.
In Proceedings of the Workshop on Statistical Ma-
chine Translation (WMT 2011), pages 108–115.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen
Pinto, Qiming Chen, Umeshwar Dayal, and Mei-
Chun Hsu. 2001. PrefixSpan: Mining sequen-
tial patterns efficiently by prefix-projected pattern
growth. In Proceedings of the International Con-
ference on Data Engineering (ICDE 2001), pages
215–224.

1606



Spencer Rarrick, Chris Quirk, and Will Lewis. 2011.
MT detection in web-scraped parallel corpora. In
Proceedings of the Machine Translation Summit
(MT Summit XIII).

Fabrizio Sebastiani. 2002. Machine learning in au-
tomated text categorization. ACM Computing Sur-
veys, 34(1):1–47.

Lei Shi, Cheng Niu, Ming Zhou, and Jianfeng Gao.
2006. A DOM tree alignment model for mining par-
allel data from the web. In Proceedings of the Inter-
national Conference on Computational Linguistics
and the Annual Meeting of the Association for Com-
putational Linguistics (COLING-ACL 2006), pages
489–496.

Andreas Stolcke. 2002. SRILM-an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Process-
ing (ICSLP 2002), pages 901–904.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of International Conference
on World Wide Web (WWW 2007), pages 697–706.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology (HLT-
NAACL 2003), pages 252–259.

Vladimir N. Vapnik. 1995. The nature of statistical
learning theory. Springer.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and
Ji-Rong Wen. 2009. StatSnowball: a statistical
approach to extracting entity relationships. In Pro-
ceedings of International Conference on World Wide
Web (WWW 2009), pages 101–110.

1607



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1608–1618,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Paraphrase-Driven Learning for Open Question Answering

Anthony Fader Luke Zettlemoyer Oren Etzioni
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{afader, lsz, etzioni}@cs.washington.edu

Abstract

We study question answering as a ma-
chine learning problem, and induce a func-
tion that maps open-domain questions to
queries over a database of web extrac-
tions. Given a large, community-authored,
question-paraphrase corpus, we demon-
strate that it is possible to learn a se-
mantic lexicon and linear ranking func-
tion without manually annotating ques-
tions. Our approach automatically gener-
alizes a seed lexicon and includes a scal-
able, parallelized perceptron parameter es-
timation scheme. Experiments show that
our approach more than quadruples the re-
call of the seed lexicon, with only an 8%
loss in precision.

1 Introduction

Open-domain question answering (QA) is a long-
standing, unsolved problem. The central challenge
is to automate every step of QA system construc-
tion, including gathering large databases and an-
swering questions against these databases. While
there has been significant work on large-scale in-
formation extraction (IE) from unstructured text
(Banko et al., 2007; Hoffmann et al., 2010; Riedel
et al., 2010), the problem of answering questions
with the noisy knowledge bases that IE systems
produce has received less attention. In this paper,
we present an approach for learning to map ques-
tions to formal queries over a large, open-domain
database of extracted facts (Fader et al., 2011).

Our system learns from a large, noisy, question-
paraphrase corpus, where question clusters have
a common but unknown query, and can span
a diverse set of topics. Table 1 shows exam-
ple paraphrase clusters for a set of factual ques-
tions. Such data provides strong signal for learn-
ing about lexical variation, but there are a number

Who wrote the Winnie the Pooh books?
Who is the author of winnie the pooh?
What was the name of the authur of winnie the pooh?
Who wrote the series of books for Winnie the poo?
Who wrote the children’s storybook ‘Winnie the Pooh’?
Who is poohs creator?
What relieves a hangover?
What is the best cure for a hangover?
The best way to recover from a hangover?
Best remedy for a hangover?
What takes away a hangover?
How do you lose a hangover?
What helps hangover symptoms?
What are social networking sites used for?
Why do people use social networking sites worldwide?
Advantages of using social network sites?
Why do people use social networks a lot?
Why do people communicate on social networking sites?
What are the pros and cons of social networking sites?
How do you say Santa Claus in Sweden?
Say santa clause in sweden?
How do you say santa clause in swedish?
How do they say santa in Sweden?
In Sweden what is santa called?
Who is sweden santa?

Table 1: Examples of paraphrase clusters from the
WikiAnswers corpus. Within each cluster, there is
a wide range of syntactic and lexical variations.

of challenges. Given that the data is community-
authored, it will inevitably be incomplete, contain
incorrectly tagged paraphrases, non-factual ques-
tions, and other sources of noise.

Our core contribution is a new learning ap-
proach that scalably sifts through this para-
phrase noise, learning to answer a broad class
of factual questions. We focus on answer-
ing open-domain questions that can be answered
with single-relation queries, e.g. all of the para-
phrases of “Who wrote Winnie the Pooh?” and
“What cures a hangover?” in Table 1. The
algorithm answers such questions by mapping
them to executable queries over a tuple store
containing relations such as authored(milne,

winnie-the-pooh) and treat(bloody-mary,

hangover-symptoms).
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The approach automatically induces lexical
structures, which are combined to build queries for
unseen questions. It learns lexical equivalences for
relations (e.g., wrote, authored, and creator), en-
tities (e.g., Winnie the Pooh or Pooh Bear), and
question templates (e.g., Who r the e books? and
Who is the r of e?). Crucially, the approach
does not require any explicit labeling of the ques-
tions in our paraphrase corpus. Instead, we use
16 seed question templates and string-matching to
find high-quality queries for a small subset of the
questions. The algorithm uses learned word align-
ments to aggressively generalize the seeds, pro-
ducing a large set of possible lexical equivalences.
We then learn a linear ranking model to filter the
learned lexical equivalences, keeping only those
that are likely to answer questions well in practice.

Experimental results on 18 million paraphrase
pairs gathered from WikiAnswers1 demonstrate
the effectiveness of the overall approach. We
performed an end-to-end evaluation against a
database of 15 million facts automatically ex-
tracted from general web text (Fader et al., 2011).
On known-answerable questions, the approach
achieved 42% recall, with 77% precision, more
than quadrupling the recall over a baseline system.

In sum, we make the following contributions:

• We introduce PARALEX, an end-to-end open-
domain question answering system.

• We describe scalable learning algorithms that
induce general question templates and lexical
variants of entities and relations. These algo-
rithms require no manual annotation and can
be applied to large, noisy databases of rela-
tional triples.

• We evaluate PARALEX on the end-task of an-
swering questions from WikiAnswers using a
database of web extractions, and show that it
outperforms baseline systems.

• We release our learned lexicon and
question-paraphrase dataset to the
research community, available at
http://openie.cs.washington.edu.

2 Related Work

Our work builds upon two major threads of re-
search in natural language processing: informa-
tion extraction (IE), and natural language inter-
faces to databases (NLIDB).

1http://wiki.answers.com/

Research in IE has been moving towards the
goal of extracting facts from large text corpora,
across many domains, with minimal supervision
(Mintz et al., 2009; Hoffmann et al., 2010; Riedel
et al., 2010; Hoffmann et al., 2011; Banko et al.,
2007; Yao et al., 2012). While much progress
has been made in converting text into structured
knowledge, there has been little work on an-
swering natural language questions over these
databases. There has been some work on QA over
web text (Kwok et al., 2001; Brill et al., 2002), but
these systems do not operate over extracted rela-
tional data.

The NLIDB problem has been studied for
decades (Grosz et al., 1987; Katz, 1997). More
recently, researchers have created systems that
use machine learning techniques to automatically
construct question answering systems from data
(Zelle and Mooney, 1996; Popescu et al., 2004;
Zettlemoyer and Collins, 2005; Clarke et al., 2010;
Liang et al., 2011). These systems have the abil-
ity to handle questions with complex semantics
on small domain-specific databases like GeoQuery
(Tang and Mooney, 2001) or subsets of Freebase
(Cai and Yates, 2013), but have yet to scale to the
task of general, open-domain question answering.
In contrast, our system answers questions with
more limited semantics, but does so at a very large
scale in an open-domain manner. Some work has
been made towards more general databases like
DBpedia (Yahya et al., 2012; Unger et al., 2012),
but these systems rely on hand-written templates
for question interpretation.

The learning algorithms presented in this pa-
per are similar to algorithms used for paraphrase
extraction from sentence-aligned corpora (Barzi-
lay and McKeown, 2001; Barzilay and Lee, 2003;
Quirk et al., 2004; Bannard and Callison-Burch,
2005; Callison-Burch, 2008; Marton et al., 2009).
However, we use a paraphrase corpus for extract-
ing lexical items relating natural language patterns
to database concepts, as opposed to relationships
between pairs of natural language utterances.

3 Overview of the Approach

In this section, we give a high-level overview of
the rest of the paper.

Problem Our goal is to learn a function that will
map a natural language question x to a query z
over a database D. The database D is a collection
of assertions in the form r(e1, e2) where r is a bi-
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nary relation from a vocabulary R, and e1 and e2
are entities from a vocabulary E. We assume that
the elements of R and E are human-interpretable
strings like population or new-york. In our
experiments, R and E contain millions of en-
tries representing ambiguous and overlapping con-
cepts. The database is equipped with a simple in-
terface that accepts queries in the form r(?, e2) or
r(e1, ?). When executed, these queries return all
entities e that satisfy the given relationship. Thus,
our task is to find the query z that best captures the
semantics of the question x.

Model The question answering model includes a
lexicon and a linear ranking function. The lexicon
L associates natural language patterns to database
concepts, thereby defining the space of queries
that can be derived from the input question (see
Table 2). Lexical entries can pair strings with
database entities (nyc and new-york), strings with
database relations (big and population), or ques-
tion patterns with templated database queries (how
r is e? and r(?,e)). We describe this model in
more detail in Section 4.

Learning The learning algorithm induces a lex-
icon L and estimates the parameters θ of the
linear ranking function. We learn L by boot-
strapping from an initial seed lexicon L0 over a
corpus of question paraphrases C = {(x, x′) :
x′ is a paraphrase of x}, like the examples in Ta-
ble 1. We estimate θ by using the initial lexicon to
automatically label queries in the paraphrase cor-
pus, as described in Section 5.2. The final result
is a scalable learning algorithm that requires no
manual annotation of questions.

Evaluation In Section 8, we evaluate our system
against various baselines on the end-task of ques-
tion answering against a large database of facts
extracted from the web. We use held-out known-
answerable questions from WikiAnswers as a test
set.

4 Question Answering Model

To answer questions, we must find the best query
for a given natural language question.

4.1 Lexicon and Derivations

To define the space of possible queries, PARALEX

uses a lexicon L that encodes mappings from nat-
ural language to database concepts (entities, rela-
tions, and queries). Each entry in L is a pair (p, d)

Entry Type NL Pattern DB Concept
Entity nyc new-york

Relation big population

Question (1-Arg.) how big is e population(?, e)

Question (2-Arg.) how r is e r(?, e)

Table 2: Example lexical entries.

where p is a pattern and d is an associated database
concept. Table 2 gives examples of the entry types
in L: entity, relation, and question patterns.

Entity patterns match a contiguous string of
words and are associated with some database en-
tity e ∈ E.

Relation patterns match a contiguous string of
words and are associated with a relation r ∈ R and
an argument ordering (e.g. the string child could
be modeled as either parent-of or child-of with
opposite argument ordering).

Question patterns match an entire question
string, with gaps that recursively match an en-
tity or relation patterns. Question patterns are as-
sociated with a templated database query, where
the values of the variables are determined by the
matched entity and relation patterns. A question
pattern may be 1-Argument, with a variable for
an entity pattern, or 2-Argument, with variables
for an entity pattern and a relation pattern. A 2-
argument question pattern may also invert the ar-
gument order of the matched relation pattern, e.g.
who r e? may have the opposite argument order
of who did e r?

The lexicon is used to generate a derivation y
from an input question x to a database query z.
For example, the entries in Table 2 can be used
to make the following derivation from the ques-
tion How big is nyc? to the query population(?,

new-york):

This derivation proceeds in two steps: first match-
ing a question form like How r is e? and then
mapping big to population and nyc to new-york.
Factoring the derivation this way allows the lexi-
cal entries for big and nyc to be reused in semanti-
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cally equivalent variants like nyc how big is it? or
approximately how big is nyc? This factorization
helps the system generalize to novel questions that
do not appear in the training set.

We model a derivation as a set of (pi, di) pairs,
where each pi matches a substring of x, the sub-
strings cover all words in x, and the database con-
cepts di compose to form z. Derivations are rooted
at either a 1-argument or 2-argument question en-
try and have entity or relation entries as leaves.

4.2 Linear Ranking Function
In general, multiple queries may be derived from a
single input question x using a lexicon L. Many of
these derivations may be incorrect due to noise in
L. Given a question x, we consider all derivations
y and score them with θ ·φ(x, y), where φ(x, y) is
a n-dimensional feature representation and θ is a
n-dimensional parameter vector. Let GEN(x;L)
be the set of all derivations y that can be generated
from x using L. The best derivation y∗(x) accord-
ing to the model (θ, L) is given by:

y∗(x) = argmax
y∈GEN(x;L)

θ · φ(x, y)

The best query z∗(x) can be computed directly
from the derivation y∗(x).

Computing the set GEN(x;L) involves finding
all 1-Argument and 2-Argument question patterns
that match x, and then enumerating all possible
database concepts that match entity and relation
strings. When the database and lexicon are large,
this becomes intractable. We prune GEN(x;L)
using the model parameters θ by only considering
the N -best question patterns that match x, before
additionally enumerating any relations or entities.

For the end-to-end QA task, we return a ranked
list of answers from the k highest scoring queries.
We score an answer a with the highest score of all
derivations that generate a query with answer a.

5 Learning

PARALEX uses a two-part learning algorithm; it
first induces an overly general lexicon (Section
5.1) and then learns to score derivations to increase
accuracy (Section 5.2). Both algorithms rely on an
initial seed lexicon, which we describe in Section
7.4.

5.1 Lexical Learning
The lexical learning algorithm constructs a lexi-
con L from a corpus of question paraphrases C =

{(x, x′) : x′ is a paraphrase of x}, where we as-
sume that all paraphrased questions (x, x′) can be
answered with a single, initially unknown, query
(Table 1 shows example paraphrases). This as-
sumption allows the algorithm to generalize from
the initial seed lexicon L0, greatly increasing the
lexical coverage.

As an example, consider the paraphrase pair x
= What is the population of New York? and x′ =
How big is NYC? Suppose x can be mapped to a
query under L0 using the following derivation y:

what is the r of e = r(?, e)

population = population

new york = new-york

We can induce new lexical items by aligning the
patterns used in y to substrings in x′. For example,
suppose we know that the words in (x, x′) align in
the following way:

Using this information, we can hypothesize that
how r is e, big, and nyc should have the same in-
terpretations as what is the r of e, population, and
new york, respectively, and create the new entries:

how r is e = r(?, e)

big = population

nyc = new-york

We call this procedure InduceLex(x, x′, y, A),
which takes a paraphrase pair (x, x′), a derivation
y of x, and a word alignment A, and returns a new
set of lexical entries. Before formally describing
InduceLex we need to introduce some definitions.

Let n and n′ be the number of words in x and
x′. Let [k] denote the set of integers {1, . . . , k}.
A word alignment A between x and x′ is a subset
of [n] × [n′]. A phrase alignment is a pair of in-
dex sets (I, I ′) where I ⊆ [n] and I ′ ⊆ [n′]. A
phrase alignment (I, I ′) is consistent with a word
alignment A if for all (i, i′) ∈ A, i ∈ I if and only
if i′ ∈ I ′. In other words, a phrase alignment is
consistent with a word alignment if the words in
the phrases are aligned only with each other, and
not with any outside words.

We will now define InduceLex(x, x′, y, A) for
the case where the derivation y consists of a 2-
argument question entry (pq, dq), a relation entry
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function LEARNLEXICON

Inputs:
- A corpus C of paraphrases (x, x′). (Table 1)
- An initial lexicon L0 of (pattern, concept) pairs.
- A word alignment function WordAlign(x, x′).

(Section 6)
- Initial parameters θ0.
- A function GEN(x;L) that derives queries from

a question x using lexicon L. (Section 4)
- A function InduceLex(x, x′, y, A) that induces

new lexical items from the paraphrases (x, x′) us-
ing their word alignment A and a derivation y of
x. (Section 5.1)

Output: A learned lexicon L.

L = {}
for all x, x′ ∈ C do

if GEN(x;L0) is not empty then
A←WordAlign(x, x′)
y∗ ← argmaxy∈GEN(x;L0)

θ0 · φ(x, y)
L← L ∪ InduceLex(x, x′, y∗, A)

return L

Figure 1: Our lexicon learning algorithm.

(pr, dr), and an entity entry (pe, de), as shown in
the example above.2 InduceLex returns the set of
all triples (p′q, dq), (p

′
r, dr), (p

′
e, de) such that for

all p′q, p
′
r, p
′
e such that

1. p′q, p
′
r, p
′
e are a partition of the words in x′.

2. The phrase pairs (pq, p
′
q), (pr, p

′
r), (pe, p

′
e)

are consistent with the word alignment A.

3. The p′r and p′e are contiguous spans of words
in x′.

Figure 1 shows the complete lexical learning al-
gorithm. In practice, for a given paraphrase pair
(x, x′) and alignment A, InduceLex will gener-
ate multiple sets of new lexical entries, resulting
in a lexicon with millions of entries. We use an
existing statistical word alignment algorithm for
WordAlign (see Section 6). In the next section,
we will introduce a scalable approach for learning
to score derivations to filter out lexical items that
generalize poorly.

5.2 Parameter Learning

Parameter learning is necessary for filtering out
derivations that use incorrect lexical entries like
new mexico = mexico, which arise from noise in
the paraphrases and noise in the word alignment.

2InduceLex has similar behavior for the other type of
derivation, which consists of a 1-argument question entry
(pq, dq) and an entity (pe, de).

We use the hidden variable structured perceptron
algorithm to learn θ from a list of (question x,
query z) training examples. We adopt the itera-
tive parameter mixing variation of the perceptron
(McDonald et al., 2010) to scale to a large number
of training examples.

Figure 2 shows the parameter learning algo-
rithm. The parameter learning algorithm operates
in two stages. First, we use the initial lexicon
L0 to automatically generate (question x, query z)
training examples from the paraphrase corpus C.
Then we feed the training examples into the learn-
ing algorithm, which estimates parameters for the
learned lexicon L.

Because the number of training examples is
large, we adopt a parallel perceptron approach.
We first randomly partition the training data T
into K equally-sized subsets T1, . . . , TK . We then
perform perceptron learning on each partition in
parallel. Finally, the learned weights from each
parallel run are aggregated by taking a uniformly
weighted average of each partition’s parameter
vector. This procedure is repeated for T iterations.

The training data consists of (question x, query
z) pairs, but our scoring model is over (question
x, derivation y) pairs, which are unobserved in
the training data. We use a hidden variable ver-
sion of the perceptron algorithm (Collins, 2002),
where the model parameters are updated using the
highest scoring derivation y∗ that will generate the
correct query z using the learned lexicon L.

6 Data

For our database D, we use the publicly avail-
able set of 15 million REVERB extractions (Fader
et al., 2011).3 The database consists of a set
of triples r(e1, e2) over a vocabulary of ap-
proximately 600K relations and 2M entities, ex-
tracted from the ClueWeb09 corpus.4 The RE-
VERB database contains a large cross-section of
general world-knowledge, and thus is a good
testbed for developing an open-domain QA sys-
tem. However, the extractions are noisy, unnor-
malized (e.g., the strings obama, barack-obama,
and president-obama all appear as distinct en-
tities), and ambiguous (e.g., the relation born-in

contains facts about both dates and locations).
3We used version 1.1, downloaded from http://

reverb.cs.washington.edu/.
4The full set of REVERB extractions from ClueWeb09

contains over six billion triples. We used the smaller subset
of triples to simplify our experiments.
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function LEARNPARAMETERS

Inputs:
- A corpus C of paraphrases (x, x′). (Table 1)
- An initial lexicon L0 of (pattern, db concept)

pairs.
- A learned lexiconL of (pattern, db concept) pairs.
- Initial parameters θ0.
- Number of perceptron epochs T .
- Number of training-data shards K.
- A function GEN(x;L) that derives queries from

a question x using lexicon L. (Section 4)
- A function PerceptronEpoch(T , θ, L) that runs

a single epoch of the hidden-variable structured
perceptron algorithm on training set T with initial
parameters θ, returning a new parameter vector
θ′. (Section 5.2)

Output: A learned parameter vector θ.

// Step 1: Generate Training Examples T
T = {}
for all x, x′ ∈ C do

if GEN(x;L0) is not empty then
y∗ ← argmaxy∈GEN(x;L0)

θ0 · φ(x, y)
z∗ ← query of y∗

Add (x′, z∗) to T
// Step 2: Learn Parameters from T
Randomly partition T into shards T1, . . . , TK
for t = 1 . . . T do

// Executed on k processors
θk,t = PerceptronEpoch(Tk, θt−1, L)

// Average the weights
θt =

1
K

∑
k θk,t

return θT

Figure 2: Our parameter learning algorithm.

Our paraphrase corpus C was constructed from
the collaboratively edited QA site WikiAnswers.
WikiAnswers users can tag pairs of questions as
alternate wordings of each other. We harvested
a set of 18M of these question-paraphrase pairs,
with 2.4M distinct questions in the corpus.

To estimate the precision of the paraphrase cor-
pus, we randomly sampled a set of 100 pairs and
manually tagged them as ‘paraphrase’ or ‘not-
paraphrase.’ We found that 55% of the sampled
pairs are valid paraphrased. Most of the incorrect
paraphrases were questions that were related, but
not paraphrased e.g. How big is the biggest mall?
and Most expensive mall in the world?

We word-aligned each paraphrase pair using
the MGIZA++ implementation of IBM Model 4
(Och and Ney, 2000; Gao and Vogel, 2008). The
word-alignment algorithm was run in each direc-
tion (x, x′) and (x′, x) and then combined using
the grow-diag-final-and heuristic (Koehn et al.,
2003).

7 Experimental Setup

We compare the following systems:

• PARALEX: the full system, using the lexical
learning and parameter learning algorithms
from Section 5.

• NoParam: PARALEX without the learned
parameters.

• InitOnly: PARALEX using only the initial
seed lexicon.

We evaluate the systems’ performance on the end-
task of QA on WikiAnswers questions.

7.1 Test Set
A major challenge for evaluation is that the RE-
VERB database is incomplete. A system may cor-
rectly map a test question to a valid query, only
to return 0 results when executed against the in-
complete database. We factor out this source of
error by semi-automatically constructing a sample
of questions that are known to be answerable us-
ing the REVERB database, and thus allows for a
meaningful comparison on the task of question un-
derstanding.

To create the evaluation set, we identified ques-
tions x in a held out portion of the WikiAnswers
corpus such that (1) x can be mapped to some
query z using an initial lexicon (described in Sec-
tion 7.4), and (2) when z is executed against the
database, it returns at least one answer. We then
add x and all of its paraphrases as our evaluation
set. For example, the question What is the lan-
guage of Hong-Kong satisfies these requirements,
so we added these questions to the evaluation set:

What is the language of Hong-Kong?
What language do people in hong kong use?
How many languages are spoken in hong kong?
How many languages hong kong people use?
In Hong Kong what language is spoken?
Language of Hong-kong?

This methodology allows us to evaluate the sys-
tems’ ability to handle syntactic and lexical varia-
tions of questions that should have the same an-
swers. We created 37 question clusters, result-
ing in a total of 698 questions. We removed all
of these questions and their paraphrases from the
training set. We also manually filtered out any in-
correct paraphrases that appeared in the test clus-
ters.

We then created a gold-standard set of (x, a, l)
triples, where x is a question, a is an answer, and l
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Question Pattern Database Query
who r e r(?, e)

what r e r(?, e)

who does e r r(e, ?)

what does e r r(e, ?)

what is the r of e r(?, e)

who is the r of e r(?, e)

what is r by e r(e, ?)

who is e’s r r(?, e)

what is e’s r r(?, e)

who is r by e r(e, ?)

when did e r r-in(e, ?)

when did e r r-on(e, ?)

when was e r r-in(e, ?)

when was e r r-on(e, ?)

where was e r r-in(e, ?)

where did e r r-in(e, ?)

Table 3: The question patterns used in the initial
lexicon L0.

is a label (correct or incorrect). To create the gold-
standard, we first ran each system on the evalua-
tion questions to generate (x, a) pairs. Then we
manually tagged each pair with a label l. This
resulted in a set of approximately 2, 000 human
judgments. If (x, a) was tagged with label l and x′

is a paraphrase of x, we automatically added the
labeling (x′, a, l), since questions in the same clus-
ter should have the same answer sets. This process
resulted in a gold standard set of approximately
48, 000 (x, a, l) triples.

7.2 Metrics

We use two types of metrics to score the systems.
The first metric measures the precision and recall
of each system’s highest ranked answer. Precision
is the fraction of predicted answers that are cor-
rect and recall is the fraction of questions where a
correct answer was predicted. The second metric
measures the accuracy of the entire ranked answer
set returned for a question. We compute the mean
average precision (MAP) of each systems’ output,
which measures the average precision over all lev-
els of recall.

7.3 Features and Settings

The feature representation φ(x, y) consists of in-
dicator functions for each lexical entry (p, d) ∈ L
used in the derivation y. For parameter learning,
we use an initial weight vector θ0 = 0, use T = 20

F1 Precision Recall MAP
PARALEX 0.54 0.77 0.42 0.22
NoParam 0.30 0.53 0.20 0.08
InitOnly 0.18 0.84 0.10 0.04

Table 4: Performance on WikiAnswers questions
known to be answerable using REVERB.

F1 Precision Recall MAP
PARALEX 0.54 0.77 0.42 0.22
No 2-Arg. 0.40 0.86 0.26 0.12
No 1-Arg 0.35 0.81 0.22 0.11

No Relations 0.18 0.84 0.10 0.03
No Entity 0.36 0.55 0.27 0.15

Table 5: Ablation of the learned lexical items.
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Figure 3: Precision-recall curves for PARALEX

with and without 2-argument question patterns.

iterations and shard the training data into K = 10
pieces. We limit each system to return the top 100
database queries for each test sentence. All input
words are lowercased and lemmatized.

7.4 Initial Lexicon
Both the lexical learning and parameter learning
algorithms rely on an initial seed lexicon L0. The
initial lexicon allows the learning algorithms to
bootstrap from the paraphrase corpus.

We construct L0 from a set of 16 hand-written
2-argument question patterns and the output of the
identity transformation on the entity and relation
strings in the database. Table 3 shows the question
patterns that were used in L0.

8 Results

Table 4 shows the performance of PARALEX on
the test questions. PARALEX outperforms the
baseline systems in terms of both F1 and MAP.
The lexicon-learning algorithm boosts the recall
by a factor of 4 over the initial lexicon, show-
ing the utility of the InduceLex algorithm. The
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String Learned Database Relations for String
get rid of treatment-for, cause, get-rid-of, cure-for, easiest-way-to-get-rid-of
word word-for, slang-term-for, definition-of, meaning-of, synonym-of
speak speak-language-in, language-speak-in, principal-language-of, dialect-of
useful main-use-of, purpose-of, importance-of, property-of, usefulness-of

String Learned Database Entities for String
smoking smoking, tobacco-smoking, cigarette, smoking-cigar, smoke, quit-smoking
radiation radiation, electromagnetic-radiation, nuclear-radiation
vancouver vancouver, vancouver-city, vancouver-island, vancouver-british-columbia
protein protein, protein-synthesis, plasma-protein, monomer, dna

Table 6: Examples of relation and entity synonyms learned from the WikiAnswers paraphrase corpus.

parameter-learning algorithm also results in a
large gain in both precision and recall: InduceLex
generates a noisy set of patterns, so selecting the
best query for a question is more challenging.

Table 5 shows an ablation of the different types
of lexical items learned by PARALEX. For each
row, we removed the learned lexical items from
each of the types described in Section 4, keeping
only the initial seed lexical items. The learned 2-
argument question templates significantly increase
the recall of the system. This increased recall
came at a cost, lowering precision from 0.86 to
0.77. Thresholding the query score allows us to
trade precision for recall, as shown in Figure 3.
Table 6 shows some examples of the learned en-
tity and relation synonyms.

The 2-argument question templates help PAR-
ALEX generalize over different variations of the
same question, like the test questions shown in
Table 7. For each question, PARALEX combines
a 2-argument question template (shown below the
questions) with the rules celebrate = holiday-of

and christians = christians to derive a full
query. Factoring the problem this way allows
PARALEX to reuse the same rules in different
syntactic configurations. Note that the imperfect
training data can lead to overly-specific templates
like what are the religious r of e, which can lower
accuracy.

9 Error Analysis

To understand how close we are to the goal of
open-domain QA, we ran PARALEX on an unre-
stricted sample of questions from WikiAnswers.
We used the same methodology as described in the
previous section, where PARALEX returns the top
answer for each question using REVERB.

We found that PARALEX performs significantly
worse on this dataset, with recall maxing out at ap-

Celebrations for Christians?
r for e?

Celebrations of Christians?
r of e?

What are some celebrations for Christians?
what are some r for e?

What are some celebrations of the Christians?
what are some r of e?

What are some of Christians celebrations?
what are some of e r?

What celebrations do Christians do?
what r do e do?

What did Christians celebrate?
what did e r?

What are the religious celebrations of Christians?
what are the religious r of e?

What celebration do Christians celebrate?
what r do e celebrate?

Table 7: Questions from the test set with 2-
argument question patterns that PARALEX used to
derive a correct query.

proximately 6% of the questions answered at pre-
cision 0.4. This is not surprising, since the test
questions are not restricted to topics covered by
the REVERB database, and may be too complex to
be answered by any database of relational triples.

We performed an error analysis on a sample
of 100 questions that were either incorrectly an-
swered or unanswered. We examined the can-
didate queries that PARALEX generated for each
question and tagged each query as correct (would
return a valid answer given a correct and com-
plete database) or incorrect. Because the input
questions are unrestricted, we also judged whether
the questions could be faithfully represented as a
r(?, e) or r(e, ?) query over the database vocabu-
lary. Table 8 shows the distribution of errors.

The largest source of error (36%) were on com-

1615



plex questions that could not be represented as a
query for various reasons. We categorized these
questions into groups. The largest group (14%)
were questions that need n-ary or higher-order
database relations, for example How long does
it take to drive from Sacramento to Cancun? or
What do cats and dogs have in common? Approx-
imately 13% of the questions were how-to ques-
tions like How do you make axes in minecraft?
whose answers are a sequence of steps, instead
of a database entity. Lastly, 9% of the questions
require database operators like joins, for example
When were Bobby Orr’s children born?

The second largest source of error (32%) were
questions that could be represented as a query, but
where PARALEX was unable to derive any cor-
rect queries. For example, the question Things
grown on Nigerian farms? was not mapped to
any queries, even though the REVERB database
contains the relation grown-in and the entity
nigeria. We found that 13% of the incorrect
questions were cases where the entity was not rec-
ognized, 12% were cases where the relation was
not recognized, and 6% were cases where both the
entity and relation were not recognized.

We found that 28% of the errors were cases
where PARALEX derived a query that we judged to
be correct, but returned no answers when executed
against the database. For example, given the ques-
tion How much can a dietician earn? PARALEX

derived the query salary-of(?, dietician) but
this returned no answers in the REVERB database.

Finally, approximately 4% of the questions in-
cluded typos or were judged to be inscrutable, for
example Barovier hiriacy of evidence based for
pressure sore?

Discussion Our experiments show that the learn-
ing algorithms described in Section 5 allow PAR-
ALEX to generalize beyond an initial lexicon and
answer questions with significantly higher accu-
racy. Our error analysis on an unrestricted set of
WikiAnswers questions shows that PARALEX is
still far from the goal of truly high-recall, open-
domain QA. We found that many questions asked
on WikiAnswers are either too complex to be
mapped to a simple relational query, or are not
covered by the REVERB database. Further, ap-
proximately one third of the missing recall is due
to entity and relation recognition errors.

Incorrectly Answered/Unanswered Questions
36% Complex Questions

Need n-ary or higher-order relations (14%)

Answer is a set of instructions (13%)

Need database operators e.g. joins (9%)

32% Entity or Relation Recognition Errors

Entity recognition errors (13%)

Relation recognition errors (12%)

Entity & relation recognition errors (7%)

28% Incomplete Database

Derived a correct query, but no answers

4% Typos/Inscrutable Questions

Table 8: Error distribution of PARALEX on an un-
restricted sample of questions from the WikiAn-
swers dataset.

10 Conclusion

We introduced a new learning approach that in-
duces a complete question-answering system from
a large corpus of noisy question-paraphrases. Us-
ing only a seed lexicon, the approach automat-
ically learns a lexicon and linear ranking func-
tion that demonstrated high accuracy on a held-out
evaluation set.

A number of open challenges remain. First,
precision could likely be improved by adding
new features to the ranking function. Second,
we would like to generalize the question under-
standing framework to produce more complex
queries, constructed within a compositional se-
mantic framework, but without sacrificing scala-
bility. Third, we would also like to extend the
system with other large databases like Freebase or
DBpedia. Lastly, we believe that it would be pos-
sible to leverage the user-provided answers from
WikiAnswers as a source of supervision.
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Abstract

The 2011 Great East Japan Earthquake
caused a wide range of problems, and as
countermeasures, many aid activities were
carried out. Many of these problems and
aid activities were reported via Twitter.
However, most problem reports and corre-
sponding aid messages were not success-
fully exchanged between victims and lo-
cal governments or humanitarian organi-
zations, overwhelmed by the vast amount
of information. As a result, victims could
not receive necessary aid and humanitar-
ian organizations wasted resources on re-
dundant efforts. In this paper, we propose
a method for discovering matches between
problem reports and aid messages. Our
system contributes to problem-solving in
a large scale disaster situation by facilitat-
ing communication between victims and
humanitarian organizations.

1 Introduction

The 2011 Great East Japan Earthquake in March
11, 2011 killed 15,883 people and destroyed over
260,000 households (National Police Agency of
Japan, 2013). Accustomed way of living suddenly
became unmanageable and people found them-
selves in extreme conditions for months.

Just after the disaster, many people used Twitter
for posting problem reports and aid messages as
it functioned while most communication channels
suffered disruptions (Winn, 2011; Acar and Mu-
raki, 2011; Sano et al., 2012). Examples of such
problem reports and aid messages, translated from
Japanese tweets, are given below (P1, A1).

P1 My friend said infant formula is sold out. If
somebody knows shops in Sendai-city where
they still have it in stock, please let us know.

A1 At Jusco supermarket in Sendai, you can still
buy water and infant formula.

If A1 would have been forwarded to the sender
of P1, it could have helped since it would help
the “friend” to obtain infant formula. But in re-
ality, the majority of such reports/messages, es-
pecially unforeseen ones went unnoticed amongst
the mass of information (Ohtake et al., 2013). In
addition, there were cases where many humani-
tarian organizations responded to the same prob-
lems and wasted precious resources. For instance,
many volunteers responded to problems which
were heavily reported by public media, leading
to oversupply (Saijo, 2012). Such waste of re-
sources could have been avoided if the organiza-
tions would have successfully shared the aid mes-
sages for the same problems.

Such observations motivated this work. We de-
veloped methods for recognizing problem reports
and aid messages in tweets and finding proper
matches between them. By browsing the discov-
ered matches, victims can be assisted to over-
come their problems, and humanitarian organiza-
tions can avoid redundant relief efforts. We define
problem reports, aid messages and their successful
matches as follows.

Problem report: A tweet that informs about the
possibility or emergence of a problem that re-
quires a treatment or countermeasure.

Aid message: A tweet that (1) informs about sit-
uations or actions that can be a remedy or so-
lution for a problem, or (2) informs that the
problem is solved or is about to be solved.

Problem-aid tweet match: A tweet pair is a
problem-aid tweet match (1) if the aid mes-
sage informs how to overcome the problem,
(2) if the aid message informs about the set-
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tlement of the problem, or (3) if the aid mes-
sage provides information which contributes
to the settlement of the problem.

In this work we excluded direct requests, such as
“Send us food!”, from problem reports. This is be-
cause it is relatively easy to recognize such direct
requests by checking mood types (i.e., imperative)
and their behavior is quite different from prob-
lem reports like “People in Sendai are starving”.
Problem reports in this work do not directly state
which actions are required, only implying the ne-
cessity of a countermeasure through claiming the
existence of problems.

An underlying assumption of our method is that
we can find a noun-predicate dependency relation
that works as an indicator of problems and aids in
problem reports and aid messages, which we refer
to as problem nucleus and aid nucleus.1 An exam-
ple of problem nucleus is “infant formula is sold
out” in P1, and that of aid nucleus is “(can) buy
infant formula” in A1. Many problem-aid tweet
matches can be recognized through problem and
aid nuclei pairs.

We also assume that if the problem and aid nu-
clei match, they share the same noun. Then, the
semantics of predicates in the nuclei is the main
factor that decides whether the nuclei constitute
a match. We introduce a semantic classification
of predicates according to the framework of ex-
citation polarities proposed in Hashimoto et al.
(2012). Our hypothesis is that excitation polarities
along with trouble expressions can characterize
problem reports, aid messages and their matches.
We developed a supervised method encoding such
information into its features.

An evident alternative to this approach is to use
sentiment analysis (Mandel et al., 2012; Tsagkali-
dou et al., 2011) assuming that problem reports
should include something ‘bad’ while aid mes-
sages describe something ‘good’. However, we
will show that this does not work well in our exper-
iments. We think this is due to mismatch between
the concepts of problem/aid and sentiment polar-
ity. Note that previous work on ‘demand’ recogni-
tion also found similar tendencies (Kanayama and
Nasukawa, 2008).

Another issue in this task is, of course, the
context surrounding problem/aid nuclei. The fol-

1We found that out of 500 random tweets only 4.5% of
problem reports and 9.1% of aid messages did not contain
any problem report/aid message nuclei.

lowing (imaginary) tweets exemplify the problems
caused by contexts.

FP1 I do not believe infant formula is sold out
in Sendai.

FA1 At Jusco supermarket in Iwaki, you can still
buy infant formula.

The problem nuclei of FP1 and P1 are the same
but FP1 is not a problem report because of the ex-
pression “I do not believe”. The aid nuclei of FA1
and A1 are the same but FA1 does not constitute
a proper match with P1 because FA1 and P1 re-
fer to different cities, “Iwaki” and “Sendai”. In
this work, the problems concerning the modality
and other semantic modifications to problem/aid
nuclei by context are dealt with by the introduc-
tion of features representing the text surrounding
the nuclei in machine learning. As for the loca-
tion problem, we apply a location recognizer to all
tweets and restrict the matching candidates to the
tweet pairs referring to the same location.

2 Approach
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Figure 1: Problem-aid matching system overview.

We developed machine learning based systems
to recognize problem reports, aid messages and
problem-aid tweet matches. Figure 1 illustrates
the whole system. First, location names in tweets
are identified by matching tweets against our loca-
tion dictionary, described in Section 3. Then, each
tweet is paired with each dependency relation in
the tweet, which is a candidate of problem/aid nu-
clei and given to the problem report and aid mes-
sage recognizers. A tweet-nucleus-candidate pair
judged as problem report is combined with another
tweet-nucleus-candidate pair recognized as an aid
message if the two nuclei share the same noun and
the tweets share the same location name, and given
to the problem-aid match recognizer.
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In the following, problem and aid nuclei are
denoted by a noun-template pair. A template is
composed of a predicate and its argument posi-
tion. For instance, “water supply stopped” in P2
is a problem nucleus, “water supply recovered” in
A2 is an aid nucleus and they are denoted by the
noun-template pairs ⟨water supply, X stopped⟩ and
⟨water supply, X recovered⟩.

P2 In Sendai city, water supply stopped.

A2 In Sendai city, water supply recovered.

Roughly speaking, we regard the tasks of prob-
lem report recognition and aid message recogni-
tion as the tasks of finding proper problem/aid
nuclei in tweets and our method performs these
tasks based on the semantic properties of nouns
and templates in problem/aid nucleus candidates
and their surrounding contexts.

The basic intuition behind this approach can
be explained using excitation polarity proposed in
Hashimoto et al. (2012). Excitation polarity differ-
entiates templates into ‘excitatory’ or ‘inhibitory’
with regard to the main function or effect of en-
tities referred to by their argument noun. While
excitatory templates (e.g., cause X, buy X, suf-
fer from X) entail that the main function or ef-
fect is activated or enhanced, inhibitory templates
(e.g., ruin X, prevent X, X runs out) entail that
the main function or effect is deactivated or sup-
pressed. The templates that do not fit into the
above categorization are classified as ‘neutral’.

We observed that problem reports in general
included either of (A) a dependency relation be-
tween a noun referring to some trouble and an
excitatory template or (B) a dependency rela-
tion between a noun not referring to any trouble
and an inhibitory template. Examples of (A) in-
clude ⟨carbon monoxide poisoning, suffer from
X⟩, ⟨false rumor, spread X⟩. They refer to events
that activate troubles. On the other hand, (B) is
exemplified by ⟨school, X is collapsed⟩, ⟨battery,
X runs out⟩, which imply that some non-trouble
objects such as resources, appliances and facilities
are dysfunctional. We assume that if we can find
such dependency relations in tweets, the tweets are
likely to be problem reports.

Contrary, a tweet is more likely to be an aid
message when it includes either (C) a dependency
relation between a noun referring to some trouble
and an inhibitory template or (D) a dependency re-
lation between a noun not referring to any trou-

trouble non-trouble
excitatory (A) problem nucleus (D) aid nucleus

inhibitory (C) aid nucleus (B) problem nucleus

Table 1: Problem/aid-excitation matrix.

ble and an excitatory template. Examples of (C)
are ⟨flu, X was eradicated (in some shelter)⟩ and
⟨debris, remove X⟩. They represent the dysfunc-
tion of troubles and can mean the solution or the
settlement of troubles. On the other hand, exam-
ples of (D) include ⟨school, X re-build⟩ and ⟨baby
formula, buy X⟩. They entail that some resources
function properly or become available. These for-
mulations are summarized in Table 1.

As an interesting consequence of such a view
on problem/aid nucleus, we can say the following
regarding problem-aid tweet matchings: when a
problem nucleus and an aid nucleus are an ade-
quate match, the excitation polarities of their tem-
plates are opposite. Consider the following tweets.

P3 Some people were going back to Iwaki, but the
water system has not come back yet. It’s ter-
rible that bath is unusable.

A3 We open the bath for the public, located on
the 2F of Iwaki Kuhon temple. If you’re stay-
ing at a relief shelter and would like to take a
bath, you can use it.

“Bath is unusable” in P3 is a problem nucleus
while “open the bath” in A3 is an aid nucleus.
Since the problem reported in P3 can be solved
with A3, they are a successful match. The in-
hibitory template “X is unusable” indicates that
the function of “bath”, a non-trouble expression,
is suppressed. The excitatory template “open X”
indicates that the function of “bath” is activated.

The same holds when we consider the noun re-
ferring to troubles like “flu”. The polarity of the
template in a problem nucleus should be excita-
tory like “flu is raging” while that of an aid nucleus
should be inhibitory like ⟨flu, X was eradicated⟩.
These examples keep the constraint that the prob-
lem and aid nucleus should have opposite polari-
ties when they constitute a match.

Note that the formulations of problem report,
aid message and their matches or the excitation
matrix (Table 1) were not presented to our anno-
tators and our test/training data may contain data
that contradict with the formulations. These for-
mulations constitute the hypothesis to be validated
in this work.
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An important point to be stressed here is that
there are problem-aid tweet matches that do not
fit into our formulations. For instance, we as-
sume that the problem nucleus and aid nucleus in
a proper match share the same noun. However,
tweet pairs such as “There are many injured people
in Sendai city” and “We are sending ambulances
to Sendai” can constitute a proper match, but there
is no proper problem-aid nuclei pair that share the
same noun in these tweets. (We can find the de-
pendency relations sharing “Sendai” but they do
not express anything about the contents of prob-
lem and aid.) The point is that the tweet pairs can
be judged because people know ambulances can
be a countermeasure to injured people as world
knowledge. Introducing such world knowledge is
beyond the scope of this current study.

Also, we exclude direct requests from problem
reports. As mentioned in the introduction, identi-
fying direct requests is relatively easy, hence we
excluded them from our target.

3 Problem Report and Aid Message
Recognizers

We recognize problem reports and aid messages in
given tweets using a supervised classifier, SVMs
with linear kernel, which worked best in our pre-
liminary experiments. The feature set given to
the SVMs are summarized in the top part of Ta-
ble 2. Note that we used a common feature
set for both the problem report recognizer and
aid message recognizer and that it is categorized
into several types: features concerning trouble
expressions (TR), excitation polarity (EX), their
combination (TREX1) and word sentiment polar-
ity (WSP), features expressing morphological and
syntactic structures of nuclei and their context sur-
rounding problem/aid nuclei (MSA), features con-
cerning semantic word classes (SWC) appearing
in nuclei and their context, request phrases, such
as “Please help us”, appearing in tweets (REQ),
and geographical locations in tweets recognized
by our location recognizer (GL). MSA is used to
express the modality of nuclei and other contex-
tual information surrounding nuclei. REQ was in-
troduced based on our observation that if there are
some requests in tweets, problem nuclei tend to
appear as justification for the requests.

We also attempted to represent nucleus template
IDs, noun IDs and their combinations directly in
our feature set to capture typical templates fre-

TR Whether the nucleus noun is a trouble/non-trouble expression.
EX1 The excitation polarity and the value of the excitation score of the

nucleus template.
TREX1 All possible combinations of trouble/non-trouble of TR and exci-

tation polarities of EX1.
WSP1 Whether the nucleus noun is positive/negative/not in the Word Sen-

timent Polarity (WSP) dictionary.
WSP2 Whether the nucleus template is positive/negative/not in the WSP

dictionary.
WSP3 Whether the nucleus template is followed by a positive/negative

word within the tweet.
MSA1 Morpheme n-grams, syntactic dependency n-grams in the tweet

and morpheme n-grams before and after the nucleus template.
(1 ≤ n ≤ 3)

MSA2 Character n-grams of the nucleus template to capture conjugation
and modality variations. (1 ≤ n ≤ 3)

MSA3 Morpheme and part-of-speech n-grams within the bunsetsu con-
taining the nucleus template to capture conjugation and modality
variations. (1 ≤ n ≤ 3) (A bunsetsu is a syntactic constituent
composed of a content word and several function words, the small-
est unit of syntactic analysis in Japanese.)

MSA4 The part-of-speech of the nucleus template’s head to capture
modality variations outside the nucleus template’s bunsetsu.

MSA5 The number of bunsetsu between the nucleus noun and the nucleus
template. We found that a long distance between the noun and the
template suggests parsing errors.

MSA6 Re-occurrence of the nucleus noun’s postpositional particle be-
tween the nucleus noun and the nucleus template. We found
that the re-occurrence of the same postpositional particle within
a clause suggests parsing errors.

SWC1 The semantic class n-grams in the tweet.
SWC2 The semantic class(es) of the nucleus noun.
REQ Presence of a request phrase in the tweet, identified from within

426 manually collected request phrases.
GL Geographical locations in the tweet identified using our location

recognizer. Existence/non-existence of locations in tweets are also
encoded.

EX2 Whether the problem and aid nucleus templates have the same or
opposite excitation polarities.

EX3 Product of the values of the excitation scores for the problem and
the aid nucleus template.

TREX2 All possible combinations of trouble/non-trouble of TR, excitation
polarity EX1 of the problem nucleus template and excitation po-
larity EX1 of the aid nucleus template.

SIM1 Common semantic word classes of the problem report and aid mes-
sage.

SIM2 Whether there are common nouns modifying the common nucleus
noun or not in the problem report and aid message.

SIM3 Whether the words in the same word class modify the common
nucleus noun or not in the problem report and aid message.

SIM4 The semantic similarity score between the problem nucleus tem-
plate and the aid nucleus template.

CTP Whether the problem nucleus template and the aid nucleus tem-
plate are in contradiction relation dictionary or not.

SSR1 Problem report recognizer’s SVM score of problem nucleus tem-
plate.

SSR2 Problem report recognizer’s SVM score of aid nucleus template.
SSR3 Aid message recognizer’s SVM score of the problem nucleus tem-

plate.
SSR4 Aid message recognizer’s SVM score of the aid nucleus template.

Table 2: Features used with the problem re-
port recognizer and the aid message recognizer
(above); additional features used in training the
problem-aid match recognizer (below).

quently appearing in problem and aid nuclei, but
since there was no improvement we omit them.

The other feature types need some non-trivial
dictionaries. In the following, we explain how we
created the dictionaries for each feature type along
with the motivation behind their introduction.

Trouble Expressions (TR) As mentioned previ-
ously, trouble expressions work as good evidence
for recognizing problem reports and aid messages.
The TR feature indicates whether the noun in the
problem/aid nucleus candidate is a trouble ex-
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pression or not. For this purpose, we created
a list of trouble expressions following the semi-
supervised procedure presented in De Saeger et al.
(2008). After manual validation of the list, we ob-
tained 20,249 expressions referring to some trou-
bles, such as “tsunami” and “flu”. The value of the
TR feature is determined by checking whether the
nucleus noun is contained in the list.

Excitation Polarities (EX) The excitation po-
larities are also important in recognizing problem
reports and aid messages as mentioned before. For
constructing the dictionary for excitation polarities
of templates, we applied the bootstrapping proce-
dure in Hashimoto et al. (2012) to 600 million Web
pages. Hashimoto’s method provides the value of
the excitation score in [−1, 1] for each template
indicating the polarities and their strength. Posi-
tive value indicates excitatory, negative value in-
hibitory and small absolute value neutral. After
manual checking of the results by the majority
vote of three human annotators (other than the au-
thors), we limited the templates to the ones that
have score values consistent with the majority vote
of the annotators, obtaining a dictionary consisting
of 7,848 excitatory, 836 inhibitory and 7,230 neu-
tral templates. The Fleiss’ (1971) kappa-score was
0.48 (moderate agreement). We used the excita-
tion score values as feature values. Excitation has
already been used in many works, such as causal-
ity and contradiction extraction (Hashimoto et al.,
2012) or Why-QA (Oh et al., 2013).

Word Sentiment Polarity (WSP) As we sug-
gested before, full-fledged sentiment analysis to
recognize the expressions, including clauses and
phrases, that refer to something good or bad was
not effective in our task. However, the sentiment
polarity, assigned to single words turned out to
be effective. To identify the sentiment polarity
of words, we employed the word sentiment polar-
ity dictionary used with a sentiment analysis tool
for Japanese, the Opinion Extraction Tool soft-
ware2, which is an implementation of Nakagawa
et al. (2010). The dictionary includes 9,030 posi-
tive and 27,951 negative words. Note that we used
the Opinion Extraction Tool in the experiments to
check the effectiveness of the full-fledged senti-
ment analysis in this task.

Semantic Word Class (SWC) We assume that
nouns in the same semantic class behave simi-

2Provided at the ALAGIN Forum (http://www.alagin.jp/).

larly in crisis situations. For example, if “infec-
tion” appears in a problem report, the tweets in-
cluding “pulmonary embolism” are also likely to
be problem reports. Semantic word class features
are used to capture such tendencies. We applied
an EM-style word clustering algorithm in Kazama
and Torisawa (2008) to 600 million Web pages and
clustered 1 million nouns into 500 classes. This
algorithm has been used in many works, such as
relation extraction (De Saeger et al., 2011) and
Why-QA (Oh et al., 2012), and can generate vari-
ous kinds of semantically clean word classes, such
as foods, disease names, and natural disasters. We
used the word classes in tweets as features.3

Geographical Locations (GL) Our location
recognizer matches tweets against our loca-
tion dictionary. Location names and their
existence/non-existence in tweets constitute evi-
dence, thus we encoded such information into our
features. The location dictionary was created from
the Japan Post code data4 and Wikipedia, contain-
ing 2.7 million location names including cities,
schools and other facilities (Kazama et al., 2013).

4 Problem-Aid Match Recognizer

After problem report and aid message recogni-
tion, the positive outputs of the respective classi-
fiers are used as input in this step. The problem-
aid match recognizer classifies an aid message-
nucleus pair together with the problem report-
nucleus pair employing SVMs with linear ker-
nel, which performed best in this task again. The
problem-aid match recognizer uses all the features
used in the problem report recognizer and the aid
message recognizer along with additional features
regarding: excitation polarity (EX) and trouble
expressions (TR), distributional similarity (SIM),
contradiction (CTP) and SVM-scores of the prob-
lem report and aid message recognizers (SSR).
Here also we attempted to capture typical or fre-
quent matches of nuclei using template and noun
IDs and their combinations, but we did not observe
any improvement so we omit them from the fea-
ture set. The bottom part of Table 2 summarizes
the additional feature set, some of which are de-
scribed below in more detail.

3There is a slight complication here. For each noun n, EM
clustering estimates a probability distribution P (n|c∗) for n
and semantic class c∗. From this distribution we obtained
discrete semantic word classes by assigning each noun n to
semantic class c = argmaxc∗ p(c∗|n).

4http://www.post.japanpost.jp/zipcode/download.html

1623



As for TR and EX, our intuition is that if a prob-
lem nucleus and an aid nucleus are an adequate
match, their excitation polarities are opposite, as
described in Section 2. We encode whether the ex-
citation polarities of nuclei templates are the same
or not in our features. Also, the excitation polar-
ities of problem and aid nuclei and TR are com-
bined (TREX1, TREX2) so that the classifier can
know whether the nuclei follow the constraint for
adequate matches described in Section 2.

As for SIM, if an aid message matches a prob-
lem report, besides the common nucleus noun, it is
reasonable to assume that certain contexts are se-
mantically similar. We capture this characteristic
in three ways. SIM1 looks for common semantic
word classes in the problem report and aid mes-
sage. SIM2 and SIM3 target the modifiers of the
common nucleus noun if they exist.

We also observed that if an aid message matches
a problem report, the problem nucleus template
and aid nucleus template are often distributionally
similar. A typical example is “X is sold out” and
“buy X”. SIM4 captures this tendency. As the dis-
tributional similarity between templates, we used
a Bayesian distributional similarity measure pro-
posed by Kazama et al. (2010).5

CTP indicates whether the problem and aid nu-
clei are in contradiction relation or not. This fea-
ture was implemented based on the observation
that when problem and aid nuclei are in contradic-
tion relation, they are often proper matches (e.g.,
⟨blackout, “X starts”⟩ and ⟨blackout, “X ends”⟩).
CTP indicates whether nucleus pairs are in the
one million contradiction phrase pairs6 automat-
ically obtained by applying a method proposed by
Hashimoto et al. (2012) to 600 million Web pages.

5 Experiments

We evaluated our problem report recognizer and
problem-aid match recognizer. For the sake of
space, we give only the performance figures of the
aid message recognizer at the end of Section 5.1.

We collected tweets posted during and after
the 2011 Great East Japan Earthquake, between
March 10 and April 4, 2011. After applying
keyword-based filtering with a list of over 300

5The original similarity was defined over noun pairs and it
was estimated from dependency relations. Obtaining similar-
ity between template pairs, not noun pairs, is straightforward
given the same dependency relations. We used 600 million
Web pages for this similarity estimation.

6The precision of the pairs was reported as around 70%.

disaster related keywords, we obtained 55 million
tweets. After dependency parsing7, we used them
in our evaluation.

5.1 Problem Report Recognition
Firstly, we evaluated our problem report recog-
nizer. Particularly, we assessed the effect of ex-
citation polarities and trouble expressions in two
settings. The first is against a naturally distributed
gold standard data. The second targets problem
reports with problem nuclei unseen in the training
data.

In both experiments we observed that the per-
formance drops when excitation polarities and
trouble expressions are removed from the feature
set. The performance drop was larger in the sec-
ond experiment which suggests that the excitation
polarities and trouble expressions are more effec-
tive against unseen problem reports.

Training and test data for problem report recog-
nition consist of tweet-nucleus candidate pairs
randomly sampled from our 55 million tweet data.
The training data (R) and test data (T ) consist of
13,000 and 1,000 pairs, respectively, manually la-
beled by three annotators (other than the authors)
as problem or other. Final judgment was made by
majority vote. The Fleiss’ kappa score for train-
ing and test data for annotation judgement is 0.74
(substantial agreement).

Our problem report recognizer and its variants
are listed in Table 3. Table 4 shows the evalua-
tion results. The proposed method achieved about
44% recall and nearly 80% precision, outperform-
ing all other systems in terms of precision, F-score
and average precision8. The improvement in pre-
cision when using TR&EX is statistically signif-
icant (p < 0.05).9 Note that F-measure dropped

PROPOSED: Our proposed method with all features used.
PROPOSED-*: The proposed method without the feature set de-

noted by “*”. Here EX and TR denote all excitation po-
larity and trouble expression related features, respectively,
including their combinations (TREX1).

PROPOSED+OET: The proposed method incorporating the
classification results of problem nucleus candidates by the
Opinion Extraction Tool as additional binary features.

RULE-BASED: The method that regards only nuclei satisfying
the constraint in Table 1 as problem nuclei.

Table 3: Evaluated problem report recognizers.
7http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
8We calculate average precision using the formula: aP =∑n

k=1
(Prec(k)×rel(k))

n
, where Prec(k) is the precision at

cut-off k and rel(k) is an indicator function equaling 1 if
the item at rank k is relevant, zero otherwise.

9Throughout this paper we performed two-tailed test of
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Recognition system R (%) P (%) F (%) aP (%)
PROPOSED 44.26 79.41 56.83 71.82
PROPOSED-TR&EX 45.08 74.83 56.26 69.67
PROPOSED-EX 44.67 74.66 55.89 69.90
PROPOSED-TR 43.85 74.31 55.15 69.44
PROPOSED-MSA 28.69 70.71 40.81 57.74
PROPOSED-SWC 43.42 75.97 55.25 70.61
PROPOSED-WSP 43.14 77.83 55.50 70.45
PROPOSED-REQ 42.64 76.16 55.50 54.67
PROPOSED-GL 44.14 78.34 55.50 56.46
PROPOSED+OET 44.24 79.41 56.82 71.81
RULE-BASED 30.32 67.96 41.93 n/a

Table 4: Recall (R), precision (P), F-score (F) and
average precision (aP) of the problem report rec-
ognizers.

whenever each type of feature was removed, im-
plying that each type of feature is effective in this
task. Especially note the performance drop if we
remove excitation polarities (EX), trouble expres-
sion (TR) and both excitation and trouble expres-
sion features (TR&EX), confirming that they are
crucial in recognizing problem reports with high
accuracy. Also note that the performance of PRO-
POSED+OET was actually slightly worse than that
of the proposed method. This suggests that full-
fledged sentiment analysis is not effective at least
in this setting. The rule-based method achieved
relatively high precision despite of the low recall,
demonstrating the importance of problem and aid
nuclei formulations described in Section 1.

The second experiment assessed the efficiency
of our problem report recognizer against unseen
problem nuclei under the condition that every tem-
plate in nuclei has excitation polarity. We sampled
the training and test data so that the problem nu-
cleus nouns and templates in the training and test
data are disjoint. First we created a subset of the
test data by selecting the samples which had nu-
clei with excitation templates. We call this sub-
set T ′. Next, we removed samples from training
data R if either of their problem nouns or tem-
plates appeared in the nuclei of T ′. The result-
ing new training data (called R′) and test data (T ′)
consist of 6,484 and 407 tweet-nucleus candidate
pairs, respectively. We trained our problem report
recognizer using R′ and tested its performance us-
ing T ′. Figure 2 shows the precision-recall curves
obtained by changing the threshold on the SVM
scores. The effectiveness of excitation polarities
and trouble expressions was more evident in this
setting. The PROPOSED’s performance was ac-
tually better in this setting (almost 50% recall at

population proportion (Ott and Longnecker, 2010) using
SVM-threshold=0.
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Figure 2: Precision-recall curves of problem re-
port recognizers against unseen problem nuclei.

more that 80% precision), than the previous set-
ting, showing that excitation templates and trouble
expressions are crucial in achieving high perfor-
mance especially for unseen problem nuclei. The
same was confirmed when we removed excitation
polarity and trouble expression related features,
with performance dropping by 7.43 points in terms
of average precision. The improvement in pre-
cision when using TR&EX is statistically signif-
icant (p < 0.01). This implies, assuming that we
have a wide-coverage dictionary of templates with
excitation polarities, that excitation polarities are
important in dealing with unexpected problems in
disaster situations.

We also evaluated the aid-message recognizer,
using tweet-nucleus pairs in R and T as train-
ing and test data and the annotation scheme was
also the same. The average Fleiss’ kappa score
was 0.55 (moderate agreement). Our recognizer
achieved 53.82% recall and 65.67% precision and
showed similar tendencies with the problem report
recognizer, with the excitation polarities and trou-
ble expressions contributing to higher accuracy.

We can conclude that excitation polarities and
trouble expressions are important in identifying
problem reports and aid messages during disaster
situations.

5.2 Problem-Aid Matching
Next, we evaluated the performance of the
problem-aid match recognizer. We applied our
problem report recognizer and aid message recog-
nizer to all 55 million tweets and combined the
tweet-nucleus pairs judged as problem reports and
aid messages, respectively, to create the training
and test data.

The training data consists of two parts (M1 and
M2). M1 includes many variations of the aid
messages for each problem report, while M2 en-
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sures diversity in nouns and templates in problem
nuclei. For M1, we randomly picked up problem
reports from the output of the problem report rec-
ognizer and to each we attached up to 30 randomly
picked, distinct aid messages that have the same
nucleus noun. Building M2 follows the construc-
tion method of M1, except that: (1) we used up
to 30 distinct problem nuclei for each noun; (2)
for each problem report we attached only one ran-
domly picked aid message.

In creating the test data T2, we followed the
construction method used for M2 to assess the
performance of our proposal with a large variety
of problems. M1, M2 and T2 consist of 3,000,
6,000 and 1,000 samples, respectively. The an-
notation was done by majority vote of three hu-
man annotators (other than the authors), the aver-
age Fleiss’ kappa-score for training and test data
was 0.63 (substantial agreement).

We trained the problem-aid match recognizers
of Table 5 with M1 and M2. The evaluation
results performed on T2 are shown in Table 6.
We can observe that, among the nuclei related
features, the trouble expression (TR) and excita-
tion polarity (EX) features and their combination
(TR&EX) contribute most to the performance, al-
though the contribution of nuclei related features
is less in comparison to the problem report and aid
message recognition. The improvement in preci-
sion when using TR&EX is marginally significant
(p = 0.056). Instead, morphological and syntactic
analysis (MSA) and semantic word class (SWC)
features greatly improved performance.

As the final experiments, we evaluated top-
ranking matches of our problem-aid match recog-
nizer, where the recognizer classified all the possi-
ble combinations of tweet-nuclei pairs taken from
55 million tweets. In addition, we assessed the ef-
fectiveness of excitation polarities and trouble ex-
pressions by comparing all positive matches pro-
duced by our full problem-aid match recognizer
(PROPOSED) and those produced by the problem-
aid match recognizer (PROPOSED-TR&EX) that

PROPOSED: Our proposed method with all features used.
PROPOSED-*: The proposed method without the feature set de-

noted by “*”. Here also EX and TR denote all excitation
polarity and trouble expression related features, respec-
tively, including their combinations (TREX1 and TREX2).

RULE-BASED: The method that judges only problem-aid nuclei
combinations with opposite excitation polarities as proper
matches.

Table 5: Evaluated problem-aid match recogniz-
ers.

Matching system R (%) P (%) F (%) aP (%)
PROPOSED 30.67 70.42 42.92 55.16
PROPOSED-TR&EX 28.83 67.14 40.33 53.99
PROPOSED-EX 31.29 67.11 42.68 54.19
PROPOSED-TR 30.56 69.33 42.42 54.85
PROPOSED-MSA 13.50 53.66 21.57 44.52
PROPOSED-SWC 26.99 67.69 38.59 52.23
PROPOSED-WSP 30.61 69.51 42.50 54.81
PROPOSED-CTP 30.06 70.00 42.05 54.94
PROPOSED-SIM 29.95 70.11 41.97 54.98
PROPOSED-REQ 30.58 70.25 42.61 54.67
PROPOSED-GL 30.61 70.31 42.65 55.02
PROPOSED-SSR 30.67 69.44 42.72 54.91
RULE-BASED 15.33 17.36 16.28 n/a

Table 6: Recall (R), precision (P), F-score (F) and
average precision (aP) of the problem-aid match
recognizers.

did not use excitation polarities and trouble ex-
pressions in its feature set. Note that PROPOSED-
TR&EX was fed by the problem report and aid
message recognizers that didn’t use excitation po-
larities and trouble expressions. For both systems’
training data we used R for the problem report
and aid message recognizers; M1 and M2 for the
problem-aid matching recognizers.

PROPOSED and PROPOSED-TR&EX output 15.2
million and 13.4 million positive matches, cover-
ing 1,691 and 1,442 nucleus nouns, respectively.
Table 7 shows match samples identified with PRO-
POSED. We observed that the output of each sys-
tem was dominated by just a handful of frequent
nucleus nouns, such as “water” or “gasoline”. We
preferred to assess the performance of our system
against a large variation of problem-aid nuclei,
thus we restricted the number of matches to 10
for each noun10. After this restriction the number
of matches found by PROPOSED and PROPOSED-
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Figure 3: Problem-aid match recognition perfor-
mance for ‘all’ and ‘unseen’ problem reports.

10Note that this setting is a pessimistic estimation of our
system’s overall performance, since according to our obser-
vations problem reports with very frequent nucleus nouns had
proper matches with a higher accuracy than problem reports
with less frequent nucleus nouns.
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Problem report: いわきの常磐病院、いわき泌尿器科病院、
竹林貞吉記念クリニック、泉中央クリニックは、１７日か
ら透析を中止します。患者の方は至急連絡してください。
(Starting from the 17th, the Iwaki Joban Hospital, the Iwaki
Urology Clinique, the Takebayashi Sadakichi Memorial Clin-
ique and the Izumi Central Clinique have all suspended dial-
ysis sessions. Patients are advised to urgently make contact.)
Aid message: いわき泌尿器科病院で短時間透析が可能で
す。受付時間は９時から１６時までです。（透析の再開）
(Restart of dialysis sessions: short dialysis sessions are
available at the Iwaki Urology Clinique between 9 AM and
4 PM.)
Problem report: ごめんなさい拡散をお願いしてもいいで
すか。仙台の父親の話ですと携帯の充電がもうない人が
続出しているそうです。携帯充電器の支援が必要かと思
われます。
(Please spread this message. According to my father in
Sendai, there are more and more people whose phones ran
out of battery. We need phone chargers!)
Aid message: 【拡散希望】仙台若林区役所で携帯電話の
充電ができるそうです。
([Please spread] At the City Hall of Wakabayashi-ku, Sendai,
you can recharge your phone battery.)

Table 7: Examples from the output of the proposed
method in the ‘all’ setting. Problem report and aid
message nuclei are boldfaced in the English trans-
lations.

TR&EX was 8,484 and 7,363, respectively.
The performance of PROPOSED and

PROPOSED-TR&EX were assessed in two
settings: ‘all’ and ‘unseen’. For ‘all’, we selected
400 problem-aid matches from the outputs of the
respective systems after applying the 10-match
restriction. For ‘unseen’, first we removed the
samples from the systems’ outputs if either the
nucleus noun or template pair appear in the nuclei
of the problem-aid match recognizers’ training
data. Next we applied the same sampling process
as with ‘all’. Three annotators (other than the
authors) manually labeled the sample sets, final
judgment being made by majority vote. The
Fleiss’ kappa score for all test data was 0.73
(substantial agreement).

Figure 3 shows the systems’ precision curves,
drawn from the samples whose X-axis positions
represent the ranks according to SVM scores. In
both scenarios we can confirm that excitation po-
larity and trouble expression related features con-
tribute to this task. In the ‘all’ setting in terms
of average precision calculated over the top 7,200
matches, PROPOSED’s 62.36% is 10.48 points
higher than that of PROPOSED-TR&EX. For un-
seen problem/aid nuclei PROPOSED method’s av-
erage precision of 58.57% calculated at the top
3,800 matches is 5.47 points higher than that of
PROPOSED-TR&EX at the same data point. The
improvement in precision when using TR&EX is

statistically significant in both settings (p < 0.01).

6 Related Work

Twitter has been observed as a platform for situ-
ational awareness during various crisis situations
(Starbird et al., 2010; Vieweg et al., 2010), as sen-
sors for an earthquake reporting system (Sakaki et
al., 2010; Okazaki and Matsuo, 2010) or to de-
tect epidemics (Aramaki et al., 2011). Besides
Twitter, blogs or forums have also been the tar-
get of community response analysis (Qu et al.,
2009; Torrey et al., 2007). Similar to our work
are the ones of Neubig et al. (2011) and Ishino et
al. (2012), who tackle specific problems that occur
during disasters (i.e., safety information and trans-
portation information, respectively); and Munro
(2011), who extracted “actionable messages” (re-
quests and aids, indiscriminately), matching being
performed manually. Our work differs from (Neu-
big et al., 2011) and (Ishino et al., 2012) in that we
do not restrict the range of problem reports, and as
opposed to (Munro, 2011), matching is automatic.

Systems such as that of Seki (2011)11 or Munro
(2013)12 are successful examples of crisis crowd-
sourcing, but these require extensive human inter-
vention to coordinate useful information.

Another category of related work relevant to our
task is troubleshooting. Baldwin et al. (2007) and
Raghavan et al. (2010) use discussion forums to
solve technical problems using supervised learn-
ing methods, but these approaches presume that
the solution of a specific problem is within the
same thread. In our work we do not employ struc-
tural characteristics of tweets as restrictions (e.g.,
a problem report and its aid message need to be in
the same tweet chain).

7 Conclusions

In this paper, we proposed a method to dis-
cover matches between problem reports and aid
messages from tweets in large-scale disasters.
Through a series of experiments, we demonstrated
that the performance of the problem-aid match-
ing can be improved with the usage of seman-
tic orientation of excitation polarities, proposed in
(Hashimoto et al., 2012), and trouble expressions.

We are planning to deploy our system and re-
lease model files of the classifiers to assist relief
efforts in future crisis scenarios.

11http://www.sinsai.info/
12http://www.mission4636.org/
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Abstract
We propose a joint model for unsuper-
vised induction of sentiment, aspect and
discourse information and show that by in-
corporating a notion of latent discourse re-
lations in the model, we improve the pre-
diction accuracy for aspect and sentiment
polarity on the sub-sentential level. We
deviate from the traditional view of dis-
course, as we induce types of discourse re-
lations and associated discourse cues rel-
evant to the considered opinion analysis
task; consequently, the induced discourse
relations play the role of opinion and as-
pect shifters. The quantitative analysis that
we conducted indicated that the integra-
tion of a discourse model increased the
prediction accuracy results with respect to
the discourse-agnostic approach and the
qualitative analysis suggests that the in-
duced representations encode a meaning-
ful discourse structure.

1 Introduction

With the rapid growth of the Web, it is becoming
increasingly difficult to discern useful from irrel-
evant information, particularly in user-generated
content, such as product reviews. To make it easier
for the reader to separate the wheat from the chaff,
it is necessary to structure the available informa-
tion. In the review domain, this is done in aspect-
based sentiment analysis which aims at identify-
ing text fragments in which opinions are expressed
about ratable aspects of products, such as ‘room
quality’ or ‘service quality’. Such fine-grained
analysis can serve as the first step in aspect-based
sentiment summarization (Hu and Liu, 2004), a
task with many practical applications.

Aspect-based summarization is an active re-
search area for which various techniques have
been developed, both statistical (Mei et al., 2007;
Titov and McDonald, 2008b) and not (Hu and Liu,
2004), and relying on different types of supervi-
sion sources, such as sentiment-annotated texts or
polarity lexica (Turney and Littman, 2002). Most
methods rely on local information (bag-of-words,
short ngrams or elementary syntactic fragments)
and do not attempt to account for more complex
interactions. However, these local lexical repre-
sentations by themselves are often not sufficient to
infer a sentiment or aspect for a fragment of text.
For instance, in the following example taken from
a TripAdvisor1 review:

Example 1. The room was nice but let’s not talk
about the view.

it is difficult to deduce on the basis of local lexical
features alone that the opinion about the view is
negative. The clause let’s not talk about the view
could by itself be neutral or even positive given the
right context (e.g., I’ve never seen such a fancy ho-
tel room, my living room doesn’t look that cool...
and let’s not talk about the view). However, the
contrast relation signaled by the connective but
makes it clear that the second clause has a nega-
tive polarity. The same observations can be made
about transitions between aspects: changes in as-
pect are often clearly marked by discourse connec-
tives. Importantly, some of these cues are not dis-
course connectives in the strict linguistic sense and
are specific to the review domain (e.g., the phrase
I would also in a review indicates that the topic
is likely to be changed). In order to accurately
predict sentiment and topic,2 a model needs to ac-

1http://www.tripadvisor.com/
2In what follows, we use the terms aspect and topic, inter-
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count for these discourse phenomena and cannot
rely solely on local lexical information.

These issues have not gone unnoticed to the re-
search community. Consequently, there has re-
cently been an increased interest in models that
leverage content and discourse structure in senti-
ment analysis tasks. However, discourse-level in-
formation is typically incorporated in a pipeline
architecture, either in the form of sentiment po-
larity shifters (Polanyi and Zaenen, 2006; Naka-
gawa et al., 2010) that operate on the lexical level
or by using discourse relations (Taboada et al.,
2008; Zhou et al., 2011) that comply with dis-
course theories like Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988). Such ap-
proaches have a number of disadvantages. First,
they require additional resources, such as lists of
polarity shifters or discourse connectives which
signal specific relations. These resources are avail-
able only for a handful of languages. Second, re-
lying on a generic discourse analysis step that is
carried out before sentiment analysis may intro-
duce additional noise and lead to error propaga-
tion. Furthermore, these techniques will not nec-
essarily be able to induce discourse relations in-
formative for the sentiment analysis domain (Voll
and Taboada, 2007).

An alternative approach is to define a task-
specific scheme of discourse relations (Somasun-
daran et al., 2009). This previous work showed
that task-specific discourse relations are helpful in
predicting sentiment, however, in doing so they re-
lied on gold-standard discourse annotation at test
time rather than predicting it automatically or in-
ducing it jointly with sentiment polarity.

We take a different approach and induce dis-
course and sentiment information jointly in an un-
supervised (or weakly supervised) manner. This
has the advantage of not having to pre-specify a
mapping from discourse cues to discourse rela-
tions; our model induces this automatically, which
makes it portable to new domains and languages.
Joint induction of discourse and sentiment struc-
ture also has the added benefit that the model is
able to learn exactly those aspects of discourse
structure that are relevant for sentiment analysis.

We start with a relatively standard joint model
of sentiment and topic, which can be regarded as a
cross-breed between the JST model (Lin and He,
2009) and the ASUM model (Jo and Oh, 2011),

changeably as well as sentiment levels and opinion polarity.

both state-of-the-art techniques. This model is
weakly supervised, as it relies solely on document-
level (i.e. not aspect-specific) opinion polarity la-
bels to induce topics and sentiment on the sub-
sentential level. In order to test our hypothesis
that discourse information is beneficial, we add
a discourse modeling component. Note that in
modeling discourse we do not exploit any kind
of supervision. We demonstrate that the resulting
model outperforms the baseline on a product re-
view dataset (see Section 5).

To the best of our knowledge, unsupervised
joint induction of discourse structure, sentiment
and topic information has not been considered
before, particularly not in the context of the
aspect-based sentiment analysis task. Importantly,
our method for discourse modeling is a general
method which can be integrated in virtually any
LDA-style model of aspect and sentiment.

2 Modeling Discourse Structure

Discourse cues typically do not directly indicate
sentiment polarity (or aspect). However, they can
indicate how polarity (or aspect) changes as the
text unfolds. As we have seen in the examples
above, changes in polarity can happen on a sub-
sentential level, i.e., between adjacent clauses or,
from a discourse-theoretic point of view, between
adjacent elementary discourse units (EDUs). To
model these changes we need a strong linguistic
signal, for example, in the form of discourse con-
nectives or other discourse cues. We hypothesize
that these are more likely to occur at the beginning
of an EDU than in the middle or at the end. This is
certainly true for most of the traditional discourse
relation cues (particularly connectives).

Changes in polarity or aspect are often cor-
related with specific discourse relations, such as
‘contrast’. However, not all relations are rele-
vant and there is no one-to-one correspondence
between relations and sentiment changes.3 Fur-
thermore, if a discourse relation signals a change,
it is typically ambiguous whether this change oc-
curs with the polarity (example 1) or the aspect
(the room was nice but the breakfast was even bet-
ter) or both (the room was nice but the breakfast
was awful). Therefore, we do not explicitly model

3The ‘explanation’ relation, for example, can occur with
a polarity change (We were upgraded to a really nice room
because the hotel made a terrible blunder with our booking)
but does not have to (The room was really nice because the
hotel was newly renovated).
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Name Description
AltSame different polarity, same aspect
SameAlt same polarity, different aspect
AltAlt different polarity and aspect

Table 1: Discourse relations

generic discourse relations; instead, inspired by
the work of Somasundaran et al. (2008), we define
three very general relations which encode how po-
larity and aspect change (Table 1). Note that we
do not have a discourse relation SameSame since
we do not expect to have strong linguistic evidence
which states that an EDU contains the same senti-
ment information as the previous one.4 However,
we assume that the sentiment and topic flow is
fairly smooth in general. In other words, for two
adjacent EDUs not connected by any of the above
three relations, the prior probability of staying at
the same topic and sentiment level is higher than
picking a new topic and sentiment level (i.e. we
use “sticky states” (Fox et al., 2008)).

3 Model

In this section we describe our Bayesian model,
first the discourse-agnostic model and then an ex-
tension needed to encode discourse information.
The formal generative story is presented in Fig-
ure 1: the red fragments correspond to the dis-
course modeling component. In order to obtain the
generative story for the discourse-agnostic model,
they simply need to be ignored.

3.1 Discourse-agnostic model
In our approach we make an assumption that all
the words in an EDU correspond to the same topic
and sentiment level. We also assume that an over-
all sentiment of the document is defined, this is
the only supervision we use in inducing the model.
Unlike some of the previous work (e.g., (Titov and
McDonald, 2008a)), we do not constrain aspect-
specific sentiment to be the same across the docu-
ment. We describe our discourse-agnostic model
by first describing the set of corpus-level and
document-level parameters, and then explain how
the content of each document is generated.

Drawing model parameters On the corpus
level, for every topic z ∈ {1, . . . ,K} and ev-
ery sentiment polarity level y ∈ {−1, 0,+1},
we start by drawing a unigram language model

4The typical connective in this situation would be and
which is highly ambiguous and can signal several traditional
discourse relations.

from a Dirichlet prior. For example, the language
model of the aspect service may indicate that the
word friendly is used to express a positive opinion,
whereas the word rude expresses a negative one.

Similarly, for every topic z and every over-
all sentiment polarity ŷ, we draw a distribution
ψŷ,z over opinion polarity in this topic z. Intu-
itively, one would expect the sentiment of an as-
pect to more often agree with the overall sentiment
ŷ than not. This intuition is encoded in an asym-
metric Dirichlet prior Dir(γ ŷ) for ψŷ,z : γ ŷ =
(γŷ,1, . . . , γŷ,M ), γŷ,y = β + τδy,ŷ, where δy,ŷ is
the Kronecker symbol, β and τ are nonnegative
scalar parameters. Using these “heavy-diagonal”
priors is crucial, as this is the way to ensure that
the overall sentiment level is tied to the aspect-
specific sentiment level. Otherwise, sentiment lev-
els will be specific to individual aspects (e.g., the
”+1” sentiment for one topic may correspond to
a ”-1” sentiment for another one). Without this
property we would not be able to encode soft con-
straints imposed by the discourse relations.

Drawing documents On the document level, as
in the standard LDA model, we choose the distri-
bution over topics for the document from a sym-
metric Dirichlet prior parametrized by α, which is
used to control sparsity of topic assignments. Fur-
thermore, we draw the global sentiment ŷd from a
uniform distribution.

The generation of a document is done on the
EDU-by-EDU basis. In this work, we assume
that EDU segmentation is provided by the prepro-
cessing step. First, we generate the aspect zd,s
for EDU s according to the distribution of top-
ics θd. Then, we choose a sentiment level yd,s
for the considered EDU from the categorical dis-
tribution ψŷd,zd,s , conditioned on the aspect zd,s,
as well as on the global sentiment of the document
ŷd. Finally, we generate the bag of words for the
EDU by drawing the words from the aspect- and
sentiment-specific language model.

This model can be seen as a variant of a state-of-
the-art model for jointly inducing sentiment and
aspect at the sentence level (Jo and Oh, 2011), or,
more precisely, as its combination with the JST
model (Lin and He, 2009), adapted to the specifics
of our setting. Both these models have been shown
to perform well on sentiment and topic prediction
tasks, outperforming earlier models, such as the
TSM model (Mei et al., 2007). Consequently, it
can be considered as a strong baseline.
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3.2 Discourse-informed model
In order to integrate discourse information into the
discourse-agnostic model, we need to define a set
of extra parameters and random variables.

Drawing model parameters First, at the corpus
level, we draw a distribution ϕ̃ over four discourse
relations: three relations as defined in Table 1 and
an additional dummy relation 4 to indicate that
there is no relation between two adjacent EDUs
(NoRelation). This distribution is drawn from an
asymmetric Dirichlet prior parametrized by a vec-
tor of hyperparameters ν. These parameters en-
code the intuition that most pairs of EDUs do not
exhibit a discourse relation relevant for the task
(i.e. favor NoRelation), that is ν4 has a distinct
and larger value than other parameters ν4̄.

Every discourse relation c (including
NoRelation which is treated here as Same-
Same) is associated with two groups of transition
distributions, one governing transitions of sen-
timent (ψ̃c) and another one controlling topic
transitions (θ̃c). The parameter ψ̃c,ys , defines a
distribution over sentiment polarity for the EDU
s+ 1 given the sentiment for the sth EDU ys and
the discourse relation c. This distribution encodes
our beliefs about sentiment transitions between
EDUs s and s+ 1 related through c. For example,
the distribution ψ̃SameAlt,+1 would assign higher
probability mass to the positive sentiment polarity
(+1) than to the other 2 sentiment levels (0,
-1). Similarly, the parameter θ̃c,zs , defines a
distribution over K aspects.

These two families of transition distributions
are each defined in the following way. For the dis-
tribution θ̃, for relations that favor changing the
aspect (SameAlt and AltAlt), the probability of the
preferred (K-1) transitions is proportional to ωθ
and for the remaining transitions it is proportional
to 1. On the other hand, for the relations that fa-
vor keeping the same aspect (NoRelation and Alt-
Same), the probability of the preferred transition is
proportional to ω′θ, whereas the probability of the
(K-1) remaining transitions is again proportional
to 1. For the sentiment transitions, the distribution
ψ̃c,ys is defined in the analogous way (but depends
on ωψ and ω′ψ). These scalars are hand-coded and
define soft constraints that discourse relations im-
pose on the local flow of sentiment and aspects.

The parameter φ̃c is a language model over dis-
course cues w̃, which are not restricted to uni-
grams but can generate phrases of arbitrary (and

variable) size. For this reason, we draw them
from a Dirichlet process (DP) (i.e. one for each
discourse relation, except for NoRelation). The
base measure G0 provides the probability of an n-
word sequence calculated with the bigram prob-
ability model estimated from the corpus.5 This
model component bears strong similarities to the
Bayesian model of word segmentation (Goldwa-
ter et al., 2009), though we use the DP process
to generate only the prefix of the EDU, whereas
the rest of the EDU is generated from the bag-of-
words model.

Drawing documents As pointed out above, the
content generation is broken into two steps, where
first we draw the discourse cue w̃d,s from φ̃c and
then we generate the remaining words.

The second difference at the data generation
step (Figure 1) is in the way the aspect and sen-
timent labels are drawn. As the discourse rela-
tion between the EDUs has already been chosen,
we have some expectations about the values of the
sentiment and aspect of the following EDU, which
are encoded by the distributions ψ̃ and θ̃. These
are only soft constraints that have to be taken into
consideration along with the information provided
by the aspect-sentiment model. This coupling of
information naturally translates into the product-
of-experts (PoE) (Hinton, 1999) approach, where
two sources of information jointly contribute to
the final result. The PoE model seems to be more
appropriate here than a mixture model, as we do
not want the discourse transition to overpower the
sentiment-topic model. In the PoE model, in or-
der for an outcome to be chosen, it needs to have
a non-negligible probability under both models.

4 Inference

Since exact inference of our model is intractable,
we use collapsed Gibbs sampling. The variables
that need to be inferred are the topic assignments
z, the sentiment assignments y, the discourse re-
lations c and the discourse cue w̃ (or, more pre-
cisely, its length) and are all sampled jointly (for
each EDU) since we expect them to be highly de-
pendent. All other variables (i.e. unknown dis-
tributions) could be marginalized out to obtain a
collapsed Gibbs sampler (Griffiths and Steyvers,
2004).

5This measure is improper but it serves the purpose of
favoring long cues, the behavior arguably desirable for our
application.
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Global parameters:

ϕ̃ ∼ Dir(ν) [distrib of disc rel]
for each discourse relation c = 1, .., 4:
φ̃c ∼ DP(η,Go) [distrib of disc rel specific disc cues]
θ̃c,k - fixed [distrib of rel specific aspect transitions]
φ̃c,y - fixed [distrib of rel specific sent transitions]

for each aspect k = 1, 2...K:
for each sentiment y = −1, 0,+1:
φk,y ∼ Dir(λk) [unigram language models]

for each global sentiment ŷ = −1, 0,+1:
ψŷ,k ∼ Dir(γ) [sent distrib given overall sentiment]

Data Generation:

for each document d:
ŷd ∼ Unif(−1, 0,+1) [global sentiment]
θd ∼ Dir(α) [distr over aspects]
for every EDU s:
cd,s ∼ ϕ̃ [draw disc relation]
if cd,s 6= NoRelation
w̃d,s ∼ φ̃cd,s [draw disc cue]

zd,s ∼ θd ∗ θ̃cd,s, zd,s−1
[draw aspect]

yd,s ∼ ψŷd,zd,s∗ ψ̃cd,s,yd,s−1
[draw sentiment level]

for each word after disc cue:
wd,s ∼ φzd,s,yd,s [draw words]

Figure 1: The generative story for the joint model.
The components responsible for modeling dis-
course information are emphasized in red: when
dropped, one is left with the discourse-agnostic
model.

Unfortunately, the use of the PoE model pre-
vents us from marginalizing the parameters ex-
actly. Instead, as in Naseem et al. (2009), we re-
sort to an approximation. We assume that zd,s and
yd,s are drawn twice; once from the document spe-
cific distribution and once from the discourse tran-
sition distributions. Under this simplification, we
can easily derive the conditional probabilities for
the collapsed Gibbs sampling.

5 Experiments

To the best of our knowledge, this is the first work
that aims at evaluating directly the joint informa-
tion of the sentiment and aspect assignment at the
sub-sentential level of full reviews; most existing
studies either focus on indirect evaluation of the
produced models (e.g., classifying the overall sen-
timent of sentences (Titov and McDonald, 2008a;
Brody and Elhadad, 2010) or even reviews (Naka-
gawa et al., 2010; Jo and Oh, 2011)) or evaluated
solely at the sentential or even document level.
Consequently, in order to evaluate our methods,
we created a new dataset which will be publicly
released.

Aspects Frequency
service 246
value 55
location 121
rooms 316
sleep quality 56
cleanliness 59
amenities 180
food 81
recommendation 121
rest 306
Total 1541

Table 2: Distribution of aspects in the data.

Dataset and Annotation The dataset we created
consists of 13559 hotel reviews from TripAdvi-
sor.com.6 Since our modeling is performed on the
EDU level, all sentences where segmented using
the SLSEG software package.7 As a result, our
dataset consists of 322,935 EDUs.

For creating the gold standard, 9 annotators an-
notated a random subset of our dataset (65 re-
views, 1541 EDUs). The annotators were pre-
sented with the whole review partitioned in EDUs
and were asked to annotate every EDU with the
aspect and sentiment (i.e. +1, 0 or −1) it ex-
presses. Table 2 presents the distribution of as-
pects in the dataset. The distribution of the sen-
timents is uniform. The label rest captures cases
where EDUs do not refer to any aspect or to a very
rare aspect. The inter-annotator agreement (IAA),
as measured in terms of Cohen’s kappa score, was
66% for the aspect labeling, 70% for the sentiment
annotation and 61% for the joint task of sentiment
and aspect annotation. Though these scores may
not seem very high, they are similar to the ones re-
ported in related sentiment annotation efforts (see
e.g., Ganu et al. (2009)).

Experimental setup In order to quantitatively
evaluate the model predictions, we run two sets of
experiments. In the first, we treat the task as an un-
supervised classification problem and evaluate the
output of the models directly against the gold stan-
dard annotation. This is a very challenging set-up,
as the model has no prior information about the
aspects defined (Table 2). In the second set of
experiments, we show that aspects and sentiments
induced by our model can be used to construct in-
formative features for supervised classification. In

6Downloadable from http://clic.cimec.
unitn.it/˜angeliki.lazaridou/datasets/
ACL2013Sentiment.tar.gz

7www.sfu.ca/˜mtaboada/research/SLSeg.
html
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Model Precision Recall F1
Random 3.9 3.8 3.8
SentAsp 15.0 10.2 9.2
Discourse 16.5 13.8 10.8

Table 3: Results in terms of macro-averaged pre-
cision, recall and F1.

Model Unmarked Marked
SentAsp 9.2 5.4
Discourse 9.3 11.5

Table 4: Separate evaluation (F1) of the “marked”
and the “unmarked” EDUs.

all the cases, we compare the discourse-agnostic
and the discourse-informed models.

In order to induce the model, we let the sampler
run for 2000 iterations. We use the last sample to
define the labeling. The number of topics K was
set to 10 in order to match the number of aspects
defined in our annotation scheme (see Table 2).
The hyperpriors were chosen in a qualitative ex-
periment over a subset of our dataset by manually
inspecting the produced languages models. The
resulting values are: α = 10−3, β = 5 ∗ 10−4,
τ = 5 ∗ 10−4, η = 10−3, ν4 = 103, ν4̄ = 10−4,
ωθ = 85 and ω′θ = ωψ = ω′ψ = 5.

5.1 Direct clustering evaluation

Our labels encoding aspect and sentiment level can
be regarded as clusters. Consequently we can ap-
ply techniques developed in the context of cluster-
ing evaluation. We use a version of the standard
metrics considered for the word sense induction
task (Agirre and Soroa, 2007) where a clustering
is converted to a classification problem. This is
achieved by splitting the gold standard into two
subsets; the training portion is used to choose one-
to-one correspondence from the gold classes to the
induced clusters and then the chosen mapping is
applied to the testing portion. We perform 10-fold
cross validation and report precision, recall and F1
score. Our dataset is very skewed and the majority
class (rest) is arguably the least important, so we
use macro-averaging over labels and then average
those across folds to arrive to the reported num-
bers. We compare the discourse-informed model
(Discourse) against two baselines; the discourse-
agnostic SentAsp model and Random which as-
signs a random label to an EDU while respecting
the distribution of labels in the training set.

Table 3 presents the first analysis conducted on
the full set of EDUs. We observe that by incor-
porating latent discourse relation we improve per-

Content Aspect Polarity
1 but certainly off its greatness value neg
2 and while small they are nice rooms pos
3 but it is not free for all guests amenities neg
4 and the water was brown clean neg
5 and no tea making facilities rooms neg
6 when i checked out service pos
7 and if you do not service neg
8 when we got home clean neu

Table 5: Examples of EDUs where local informa-
tion is not sufficiently informative.

formance over the discourse-agnostic model Sen-
tAsp (statistically significant according to paired t-
test with p < 0.01). Note that fairly low scores in
this evaluation setting are expected for any unsu-
pervised model of sentiment and topics, as models
are unsupervised both in the aspect-specific senti-
ment and in topic labels and the total number of
labels is 28 (all aspects can be associated with the
3 sentiment levels except for rest which can only
be used with neutral (0) sentiment). Consequently,
induced topics, though informative (as we confirm
in Section 5.3), may not correspond to the topics
defined in the gold standard. For example, one
well-known property of LDA-style topic models
is their tendency to induce topics which account
for similar fraction of words in the dataset (Jagar-
lamudi et al., 2012), thus, over-splitting ‘heavy’
topics (e.g. rooms in our case). The same, though
to lesser degree, is true for sentiment levels where
the border between neutral and positive (or nega-
tive) is also vaguely defined.

To gain insight into our model, we conducted
an experiment similar to the one presented in So-
masundaran et al. (2009). We divide the dataset in
two subsets; one containing all EDUs starting with
a discourse cue (“marked”) and one containing the
remaining EDUs (“unmarked”). We hypothesize
that the effect of the discourse-aware model should
be stronger on the first subset, since the presence
of the connective indicates the possibility of a dis-
course relation with the previous EDU. The set of
discourse connectives is taken from the Penn Dis-
course Treebank (Prasad et al., 2008), thus creat-
ing a list of 240 potential connectives.

Table 5 presents a subset of “marked” EDUs for
which trying to assign the sentiment and aspect
out of context (i.e. without the previous EDU) is
a difficult task. In examples 1-3 there is no ex-
plicit mention of the aspect. However, there is
an anaphoric expression (marked in bold) which
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refers to a mention of the aspect in some previous
EDU. On the other hand, in examples 4 and 5 there
is an ambiguity in the choice of aspect; in example
5, tea making facilities can refer to a breakfast at
the hotel (label food) or to facilities in the room
(label rooms). Finally, examples 6-8 are too short
and not informative at all which indicates that the
segmentation tool does not always predict a de-
sirable segmentation. Consequently, automatic in-
duction of segmentation may be a better option.

Table 4 presents quantitative results of this anal-
ysis. Although the performance over the “un-
marked” example is the same for the two mod-
els, this is not the case for the “marked” instances
where the discourse-informed model leverages the
discourse signal and achieves better performance.
This behavior agrees with our initial hypothesis,
and suggests that our discourse representation,
though application-specific, relies in part on the
information encoded in linguistically-defined dis-
course cues. We will confirm this intuition in the
qualitative evaluation section. The increase for the
“marked” EDUs does not translate into greater dif-
ferences for the overall scores (Table 3) as marked
relations are considerably less frequent than un-
marked ones in our gold standard (i.e. 35% of the
EDUs are “marked”). Nevertheless, this clearly
suggests that the discourse-informed model is in
fact capable of exploiting discourse signal.

5.2 Qualitative analysis

To investigate the quality of the induced discourse
structure, we present the most frequent discourse
cues extracted for every discourse relation. Ta-
ble 6 presents a selection of cues that best explain
the discourse relation they have been associated
with. A general observation is that among the cues
there are not only “traditional” discourse connec-
tives like even though, although, and, but also cues
that are discriminative for the specific application.

In relation SameAlt we can mostly observe
phrases that tend to introduce a new aspect, since
an explicit mention of it is provided (e.g the loca-
tion is, the room was) and more specific phrases
like in addition are used to introduce a new aspect
with the same sentiment. However, these cues re-
veal important information about the aspect of the
EDU, and since they are associated with the lan-
guage model φ̃, they are not visible anymore to
the language model of aspects φ.

Cues for the relation AltSame also include

Discourse Discourse Cues
relation
SameAlt the location is , the room was, the hotel

has, and the room, and the bed, breakfast
was, the staff were, in addition, good luck

AltSame but, and, it was, and it was, and they, al-
though, and it, but it, but it was, however,
which was, this is, this was, they were,
the only thing, even though, unfortunately,
needless to say, fortunately

AltAlt the room was, the staff were, the only, the
hotel is, but the, however, also, or, overall
i, unfortunately, we will definitely, on the
plus, the only downside , even though, and
even though, i would definately

Table 6: Induced cues from the discourse relations

phrases that contain some anaphoric expressions,
which might refer to previous mentions of an as-
pect in the discourse (i.e. previous EDU). We ex-
pect that since there is an anaphoric expression,
explicit lexical features for the aspect will be miss-
ing, making thus the decision concerning aspect
assignment ambiguous for any discourse-agnostic
model. Interestingly, we found the expressions un-
fortunately, fortunately, the only thing in the same
relation, since all indicate a change in sentiment.
Finally, AltAlt can be viewed as a mixture of the
other two relations. Furthermore, for this relation
we can find expressions that tend to be used at the
end of a review, since at this point we normally
change the aspect and often even sentiment. Some
examples of these cases are overall, we will defi-
nitely and even the misspelled version of the latter
i would definately.

5.3 Features in supervised learning

As an additional experiment to demonstrate infor-
mative of the output of the two models, we de-
sign a supervised learning task of predicting sen-
timent and topic of EDUs. In this setting, the
feature vector of every EDU consists of its bag-
of-word-representation to which we add two extra
features; the models’ predictions of topic and sen-
timent. We train a support vector machine with a
polynomial kernel using the default parameters of
Weka8 and perform 10-fold cross-validation.

Table 7 presents results of this analysis in terms
of accuracy for four classification tasks, i.e. pre-
dicting both sentiment and topic, only sentiment
and only topic for all EDUs, as well as predict-
ing sentiment and topic for the “marked” dataset.
First, we observe that incorporation of the topic-

8http://www.cs.waikato.ac.nz/ml/weka/
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Features aspect+sentiment aspect sentiment Marked only
(28 classes) (10 classes) (3 classes) sentiment+aspect (28 classes)

only unigrams 36.3 49.8 57.1 26.2
unigrams + SentAsp 38.0 50.4 59.3 27.8
unigrams + Discourse 39.1 52.4 59.4 29.1

Table 7: Supervised learning at the EDU level (accuracy)

model features on a unigram-only model results
in an improvement in classification performance
across all tasks (predicting sentiment, predicting
aspects, or both); as a matter of fact, our accu-
racy results for predicting sentiment are compa-
rable to the sentence-level results presented by
Täckström and McDonald (2011). We have to
stress that accuracies for the joint task (i.e. pre-
dicting both sentiment and topic) are expected to
be lower since it can also be seen as the product
of the two other tasks (i.e. predicting only senti-
ment and only topic). We also observe that the fea-
tures induced from the Discourse model result in
higher accuracy than the ones from the discourse-
agnostic model SentAsp both in the complete set
of EDUs and the “marked” subset, results that are
in line with the ones presented in Table 4. Fi-
nally, the fact that the results for the complete set
of EDUs are higher than the ones for the “marked”
dataset clearly suggests that the latter constitute a
hard case for sentiment analysis, in which exploit-
ing discourse signal proves to be beneficial.

6 Related Work

Recently, there has been significant interest in
leveraging content structure for a number of NLP
tasks (Webber et al., 2011). Sentiment analysis
has not been an exception to this and discourse has
been used in order to enforce constraints on the
assignment of polarity labels at several granular-
ity levels, ranging from the lexical level (Polanyi
and Zaenen, 2006) to the review level (Taboada
et al., 2011). One way to deal with this prob-
lem is to model the interactions by using a pre-
compiled set of polarity shifters (Nakagawa et al.,
2010; Polanyi and Zaenen, 2006; Sadamitsu et al.,
2008). Socher et al. (2011) defined a recurrent
neural network model, which, in essence, learns
those polarity shifters relying on sentence-level
sentiment labels. Though successful, this model is
unlikely to capture intra-sentence non-local phe-
nomena such as effect of discourse connectives,
unless it is provided with syntactic information
as an input. This may be problematic for the
noisy sentiment-analysis domain and especially

for poor-resource languages. Similar to our work,
others have focused on modeling interactions be-
tween phrases and sentences. However, this has
been achieved by either using a subset of relations
that can be found in discourse theories (Zhou et
al., 2011; Asher et al., 2008; Snyder and Barzi-
lay, 2007) or by using directly (Taboada et al.,
2008) the output of discourse parsers (Soricut and
Marcu, 2003). Discourse cues as predictive fea-
tures of topic boundaries have also been consid-
ered in Eisenstein and Barzilay (2008). This work
was extended by Trivedi and Eisenstein (2013),
where discourse connectors are used as features
for modeling subjectivity transitions.

Another related line of research was presented
in Somasundaran et al. (2009) where a domain-
specific discourse scheme is considered. Simi-
larly to our set-up, discourse relations enforce con-
straints on sentiment polarity of associated sen-
timent expressions. Somasundaran et al. (2009)
show that gold-standard discourse information en-
coded in this way provides a useful signal for pre-
diction of sentiment, but they leave automatic dis-
course relation prediction for future work. They
use an integer linear programming framework to
enforce agreement between classifiers and soft
constraints provided by discourse annotations.
This contrasts with our work; we do not rely on
expert discourse annotation, but rather induce both
discourse relations and cues jointly with aspect
and sentiment.

7 Conclusions and Future Work

In this work, we showed that by jointly induc-
ing discourse information in the form of discourse
cues, we can achieve better predictions for aspect-
specific sentiment polarity. Our contribution con-
sists in proposing a general way of how discourse
information can be integrated in any LDA-style
discourse-agnostic model of aspect and sentiment.
In the future, we aim at modeling more flexible
sets of discourse relations and automatically in-
ducing discourse segmentation relevant to the task.
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Abstract

This paper addresses the task of fine-
grained opinion extraction – the identi-
fication of opinion-related entities: the
opinion expressions, the opinion hold-
ers, and the targets of the opinions, and
the relations between opinion expressions
and their targets and holders. Most ex-
isting approaches tackle the extraction
of opinion entities and opinion relations
in a pipelined manner, where the inter-
dependencies among different extraction
stages are not captured. We propose a joint
inference model that leverages knowledge
from predictors that optimize subtasks
of opinion extraction, and seeks a glob-
ally optimal solution. Experimental re-
sults demonstrate that our joint inference
approach significantly outperforms tradi-
tional pipeline methods and baselines that
tackle subtasks in isolation for the problem
of opinion extraction.

1 Introduction

Fine-grained opinion analysis is concerned with
identifying opinions in text at the expression level;
this includes identifying the subjective (i.e., opin-
ion) expression itself, the opinion holder and the
target of the opinion (Wiebe et al., 2005). The
task has received increasing attention as many nat-
ural language processing applications would ben-
efit from the ability to identify text spans that cor-
respond to these key components of opinions. In
question-answering systems, for example, users
may submit questions in the form “What does en-
tity A think about target B?”; opinion-oriented
summarization systems also need to recognize
opinions and their targets and holders.

In this paper, we address the task of identifying
opinion-related entities and opinion relations. We

consider three types of opinion entities: opinion
expressions or direct subjective expressions as de-
fined in Wiebe et al. (2005) — expressions that ex-
plicitly indicate emotions, sentiment, opinions or
other private states (Quirk et al., 1985) or speech
events expressing private states; opinion targets
— expressions that indicate what the opinion is
about; and opinion holders — mentions of whom
or what the opinion is from. Consider the follow-
ing examples in which opinion expressions (O) are
underlined and targets (T) and holders (H) of the
opinion are bracketed.

S1: [The workers][H1,2] were irked[O1]

by [the government report][T1] and
were worried[O2] as they went about
their daily chores.

S2: From the very start it could be
predicted[O1] that on the subject of
economic globalization, [the developed
states][T1,2] were going to come across
fierce opposition[O2].

The numeric subscripts denote linking relations,
one of IS-ABOUT or IS-FROM. In S1, for in-
stance, opinion expression “were irked” (O1) IS-
ABOUT “the government report” (T1). Note that
the IS-ABOUT relation can contain an empty tar-
get (e.g. “were worried” in S1); similarly for IS-
FROM w.r.t. the opinion holder (e.g. “predicted” in
S2). We also allow an opinion entity to be involved
in multiple relations (e.g. “the developed states” in
S2).

Not surprisingly, fine-grained opinion extrac-
tion is a challenging task due to the complexity
and variety of the language used to express opin-
ions and their components (Pang and Lee, 2008).
Nevertheless, much progress has been made in ex-
tracting opinion information from text. Sequence
labeling models have been successfully employed
to identify opinion expressions (e.g. (Breck et al.,
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2007; Yang and Cardie, 2012)) and relation ex-
traction techniques have been proposed to extract
opinion holders and targets based on their link-
ing relations to the opinion expressions (e.g. Kim
and Hovy (2006), Kobayashi et al. (2007)). How-
ever, most existing work treats the extraction of
different opinion entities and opinion relations in a
pipelined manner: the interaction between differ-
ent extraction tasks is not modeled jointly and er-
ror propagation is not considered. One exception
is Choi et al. (2006), which proposed an ILP ap-
proach to jointly identify opinion holders, opinion
expressions and their IS-FROM linking relations,
and demonstrated the effectiveness of joint infer-
ence. Their ILP formulation, however, does not
handle implicit linking relations, i.e. opinion ex-
pressions with no explicit opinion holder; nor does
it consider IS-ABOUT relations.

In this paper, we present a model that jointly
identifies opinion-related entities, including opin-
ion expressions, opinion targets and opinion hold-
ers as well as the associated opinion linking rela-
tions, IS-ABOUT and IS-FROM. For each type of
opinion relation, we allow implicit (i.e. empty) ar-
guments for cases when the opinion holder or tar-
get is not explicitly expressed in text. We model
entity identification as a sequence tagging prob-
lem and relation extraction as binary classifica-
tion. A joint inference framework is proposed to
jointly optimize the predictors for different sub-
problems with constraints that enforce global con-
sistency. We hypothesize that the ambiguity in
the extraction results will be reduced and thus,
performance increased. For example, uncertainty
w.r.t. the spans of opinion entities can adversely
affect the prediction of opinion relations; and evi-
dence of opinion relations might provide clues to
guide the accurate extraction of opinion entities.

We evaluate our approach using a standard cor-
pus for fine-grained opinion analysis (the MPQA
corpus (Wiebe et al., 2005)) and demonstrate that
our model outperforms by a significant margin tra-
ditional baselines that do not employ joint infer-
ence for extracting opinion entities and different
types of opinion relations.

2 Related Work

Significant research effort has been invested into
fine-grained opinion extraction for open-domain
text such as news articles (Wiebe et al., 2005; Wil-
son et al., 2009). Many techniques were proposed

to identify the text spans for opinion expressions
(e.g. (Breck et al., 2007; Johansson and Moschitti,
2010b; Yang and Cardie, 2012)), opinion hold-
ers (e.g. (Choi et al., 2005)) and topics of opin-
ions (Stoyanov and Cardie, 2008). Some consider
extracting opinion targets/holders along with their
relation to the opinion expressions. Kim and Hovy
(2006) identifies opinion holders and targets by us-
ing their semantic roles related to opinion words.
Ruppenhofer et al. (2008) argued that semantic
role labeling is not sufficient for identifying opin-
ion holders and targets. Johansson and Moschitti
(2010a) extract opinion expressions and holders
by applying reranking on top of sequence label-
ing methods. Kobayashi et al. (2007) considered
extracting “aspect-evaluation” relations (relations
between opinion expressions and targets) by iden-
tifying opinion expressions first and then search-
ing for the most likely target for each opinion ex-
pression via a binary relation classifier. All these
methods extract opinion arguments and opinion
relations in separate stages instead of extracting
them jointly.

Most similar to our method is Choi et al. (2006),
which jointly extracts opinion expressions, hold-
ers and their IS-FROM relations using an ILP ap-
proach. In contrast, our approach (1) also consid-
ers the IS-ABOUT relation which is arguably more
complex due to the larger variety in the syntac-
tic structure exhibited by opinion expressions and
their targets, (2) handles implicit opinion relations
(opinion expressions without any associated argu-
ment), and (3) uses a simpler ILP formulation.

There has also been substantial interest in opin-
ion extraction from product reviews (Liu, 2012).
Most existing approaches focus on the extrac-
tion of opinion targets and their associated opin-
ion expressions and usually employ a pipeline
architecture: generate candidates of opinion ex-
pressions and opinion targets first, and then use
rule-based or machine-learning-based approaches
to identify potential relations between opinions
and targets (Hu and Liu, 2004; Wu et al., 2009;
Liu et al., 2012). In addition to pipeline ap-
proaches, bootstrapping-based approaches were
proposed (Qiu et al., 2009; Qiu et al., 2011; Zhang
et al., 2010) to identify opinion expressions and
targets iteratively; however, they suffer from the
problem of error propagation.

There is much work demonstrating the bene-
fit of performing global inference. Roth and Yih
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(2004) proposed a global inference approach in the
formulation of a linear program (LP) and applied
it to the task of extracting named entities and re-
lations simultaneously. Their problem is similar
to ours — the difference is that Roth and Yih Roth
and Yih (2004) assume that named entity spans are
known a priori and only their labels need to be as-
signed. Joint inference has also been applied to
semantic role labeling (Punyakanok et al., 2008;
Srikumar and Roth, 2011; Das et al., 2012), where
the goal is to jointly identify semantic arguments
for given lexical predicates. The problem is con-
ceptually similar to identifying opinion arguments
for opinion expressions, however, we do not as-
sume prior knowledge of opinion expressions (un-
like in SRL, where predicates are given).

3 Model

As proposed in Section 1, we consider the task of
jointly identifying opinion entities and opinion re-
lations. Specifically, given a sentence, our goal is
to identify spans of opinion expressions, opinion
arguments (targets and holders) and their associ-
ated linking relations. Training data consists of
text with manually annotated opinion expression
and argument spans, each with a list of relation
ids specifying the linking relation between opin-
ion expressions and their arguments.

In this section, we will describe how we model
opinion entity identification and opinion relation
extraction, and how we combine them in a joint
inference model.

3.1 Opinion Entity Identification

We formulate the task of opinion entity identifica-
tion as a sequence labeling problem and employ
conditional random fields (CRFs) (Lafferty et al.,
2001) to learn the probability of a sequence as-
signment y for a given sentence x. Through in-
ference we can find the best sequence assignment
for sentence x and recover the opinion entities ac-
cording to the standard “IOB” encoding scheme.
We consider four entity labels: D,T,H,N , where
D denotes opinion expressions, T denotes opinion
targets, H denotes opinion holders and N denotes
“NONE” entities.

We define potential function fiz that gives the
probability of assigning a span i with entity label
z, and the probability is estimated based on the
learned parameters from CRFs. Formally, given
a within-sentence span i = (a, b), where a is the

starting position and b is the end position, and la-
bel z ∈ {D,T,H}, we have

fiz = p(ya = Bz,ya+1 = Iz, ...,

yb = Iz,yb+1 6= Iz|x)

fiN = p(ya = O, ...,yb = O|x)
These probabilities can be efficiently computed

using the forward-backward algorithm.

3.2 Opinion Relation Extraction
We consider extracting the IS-ABOUT and IS-
FROM opinion relations. In the following we will
not distinguish these two relations, since they can
both be characterized as relations between opinion
expressions and opinion arguments, and the meth-
ods for relation extraction are the same.

We treat the relation extraction problem as a
combination of two binary classification prob-
lems: opinion-arg classification, which decides
whether a pair consisting of an opinion candidate o
and an argument candidate a forms a relation; and
opinion-implicit-arg classification, which decides
whether an opinion candidate o is linked to an im-
plicit argument, i.e. no argument is mentioned. We
define a potential function r to capture the strength
of association between an opinion candidate o and
an argument candidate a,

roa = p(y = 1|x)− p(y = 0|x)

where p(y = 1|x) and p(y = 0|x) are the logistic
regression estimates of the positive and negative
relations. Similarly, we define potential ro∅ to de-
note the confidence of predicting opinion span o
associated with an implicit argument.

3.2.1 Opinion-Arg Relations
For opinion-arg classification, we construct can-
didates of opinion expressions and opinion argu-
ments and consider each pair of an opinion can-
didate and an argument candidate as a potential
opinion relation. Conceptually, all possible sub-
sequences in the sentence are candidates. To filter
out candidates that are less reasonable, we con-
sider the opinion expressions and arguments ob-
tained from the n-best predictions by CRFs1. We
also employ syntactic patterns from dependency

1We randomly split the training data into 10 parts and ob-
tained the 50-best CRF predictions on each part for the gen-
eration of candidates. We also experimented with candidates
generated from more CRF predictions, but did not find any
performance improvement for the task.
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trees to generate candidates. Specifically, we se-
lected the most common patterns of the shortest
dependency paths2 between an opinion candidate
o and an argument candidate a in our dataset, and
include all pairs of candidates that satisfy at least
one dependency pattern. For the IS-ABOUT rela-
tion, the top three patterns are (1) o ↑dobj a, (2)
o ↑ccomp x ↑nsubj a (x is a word in the path that is
not covered by either o nor a), (3) o ↑ccomp a; for
the IS-FROM relation, the top three patterns are (1)
o ↑nsubj a, (2) o ↑poss a, (3) o ↓ccomp x ↑nsubj a.

Note that generating candidates this way will
give us a large number of negative examples. Sim-
ilar to the preprocessing approach in (Choi et al.,
2006), we filter pairs of opinion and argument can-
didates that do not overlap with any gold standard
relation in our training data.

Many features we use are common features
in the SRL tasks (Punyakanok et al., 2008)
due to the similarity of opinion relations to the
predicate-argument relations in SRL (Ruppen-
hofer et al., 2008; Choi et al., 2006). In general,
the features aim to capture (a) local properties of
the candidate opinion expressions and arguments
and (b) syntactic and semantic attributes of their
relation.

Words and POS tags: the words contained in the
candidate and their POS tags.
Lexicon: For each word in the candidate, we
include its WordNet hypernyms and its strength
of subjectivity in the Subjectivity Lexicon3

(e.g. weaksubj, strongsubj).
Phrase type: the syntactic category of the deepest
constituent that covers the candidate in the parse
tree, e.g. NP, VP.
Semantic frames: For each verb in the opinion
candidate, we include its frame types according to
FrameNet4.
Distance: the relative distance (number of words)
between the opinion and argument candidates.
Dependency Path: the shortest path in the
dependency tree between the opinion candidate
and the target candidate, e.g. ccomp↑nsubj↑. We
also include word types and POS types in the
paths, e.g. opinion↑ccompsuffering↑nsubjpatient,

2We use the Stanford Parser to generate parse trees and
dependency graphs.

3http://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/

4https://framenet.icsi.berkeley.edu/
fndrupal/

NN↑ccompVBG↑nsubjNN. The dependency path
has been shown to be very useful in extracting
opinion expressions and opinion holders (Johans-
son and Moschitti, 2010a).

3.2.2 Opinion-Implicit-Arg Relations
When the opinion-arg relation classifier predicts
that there is no suitable argument for the opinion
expression candidate, it does not capture the possi-
bility that an opinion candidate may associate with
an implicit argument. To incorporate knowledge
of implicit relations, we build an opinion-implicit-
arg classifier to identify an opinion candidate with
an implicit argument based on its own properties
and context information.

For training, we consider all gold-standard
opinion expressions as training examples —
including those with implicit arguments — as
positive examples and those associated with
explicit arguments as negative examples. For
features, we use words, POS tags, phrase types,
lexicon and semantic frames (see Section 3.2.1
for details) to capture the properties of the opinion
expression, and also features that capture the
context of the opinion expression:

Neighboring constituents: The words and gram-
matical roles of neighboring constituents of the
opinion expression in the parse tree — the left and
right sibling of the deepest constituent containing
the opinion expression in the parse tree.
Parent Constituent: The grammatical role of
the parent constituent of the deepest constituent
containing the opinion expression.
Dependency Argument: The word types and
POS types of the arguments of the dependency
patterns in which the opinion expression is
involved. We consider the same dependency
patterns that are used to generate candidates for
opinion-arg classification.

3.3 Joint Inference

The inference goal is to find the optimal prediction
for both opinion entity identification and opinion
relation extraction. For a given sentence, we de-
note O as a set of opinion candidates, Ak as a set
of argument candidates, where k denotes the type
of opinion relation — IS-ABOUT or IS-FROM —
and S as a set of within-sentence spans that cover
all of the opinion candidates and argument can-
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didates. We introduce binary variable xiz , where
xiz = 1 means span i is associated with label z.
We also introduce binary variable uij for every
pair of opinion candidate i and argument candidate
j, where uij = 1 means i forms an opinion rela-
tion with j, and binary variable vik for every opin-
ion candidate i in relation type k, where vik = 1
means i associates with an implicit argument in
relation k. Given the binary variables xiy, uij , vik,
it is easy to recover the entity and relation assign-
ment by checking which spans are labeled as opin-
ion entities, and which opinion span and argument
span form an opinion relation.

The objective function is defined as a linear
combination of the potentials from different pre-
dictors with a parameter λ to balance the contribu-
tion of two components: opinion entity identifica-
tion and opinion relation extraction.

argmax
x,u,v

λ
∑

i∈S

∑

z

fizxiz

+ (1− λ)
∑

k

∑

i∈O


∑

j∈Ak
rijuij + ri∅vik




(1)

It is subject to the following linear constraints:
Constraint 1: Uniqueness. For each span i, we
must assign one and only one label z, where z ∈
{H,D, T,N}.

∑

z

xiz = 1

Constraint 2: Non-overlapping. If two spans i and
j overlap, then at most one of the spans can be
assigned to a non-NONE entity label: H,D, T .

∑

z 6=N
xiz +

∑

z 6=N
xjz ≤ 1

Constraint 3: Consistency between the opinion-
arg and opinion-implicit-arg classifiers. For an
opinion candidate i, if it is predicted to have an
implicit argument in relation k, vik = 1, then no
argument candidate should form a relation with i.
If vik = 0, then there exists some argument can-
didate j ∈ Ak such that uij = 1. We introduce
two auxiliary binary variables aik and bik to limit
the maximum number of relations associated with
each opinion candidate to be less than or equal to

three5. When vik = 1, aik and bik have to be 0.
∑

j∈Ak
uij = 1− vik + aik + bik

aik ≤ 1− vik, bik ≤ 1− vik
Constraint 4: Consistency between opinion-arg
classifier and opinion entity extractor. Suppose
an argument candidate j in relation k is assigned
an argument label by the entity extractor, that is
xjz = 1 (z = T for IS-ABOUT relation and z = H
for IS-FROM relation), then there exists some opin-
ion candidates that associate with j. Similar to
constraint 3, we introduce auxiliary binary vari-
ables cj and dj to enforce that an argument j links
to at most three opinion expressions. If xjz = 0,
then no relations should be extracted for j.

∑

i∈O
uij = xjz + cjk + djk

cjk ≤ xjz, djk ≤ xjz
Constraint 5: Consistency between the opinion-
implicit-arg classifier and opinion entity extractor.
When an opinion candidate i is predicted to asso-
ciate with an implicit argument in relation k, that
is vik = 1, then we allow xiD to be either 1 or
0 depending on the confidence of labeling i as an
opinion expression. When vik = 0, there exisits
some opinion argument associated with the opin-
ion candidate, and we enforce xiD = 1, which
means the entity extractor agrees to label i as an
opinion expression.

vik + xiD ≥ 1

Note that in our ILP formulation, the label
assignment for a candidate span involves one
multiple-choice decision among different opinion
entity labels and the “NONE” entity label. The
scores of different label assignments are compara-
ble for the same span since they come from one
entity extraction model. This makes our ILP for-
mulation advantageous over the ILP formulation
proposed in Choi et al. (2006), which needs m bi-
nary decisions for a candidate span, wherem is the
number of types of opinion entities, and the score
for each possible label assignment is obtained by

5It is possible to add more auxiliary variables to allow
more than three arguments to link to an opinion expression,
but this rarely happens in our experiments. For the IS-FROM
relation, we set aik = 0, bik = 0 since an opinion expression
usually has only one holder.
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the sum of raw scores from m independent extrac-
tion models. This design choice also allows us
to easily deal with multiple types of opinion ar-
guments and opinion relations.

4 Experiments

For evaluation, we used version 2.0 of the MPQA
corpus (Wiebe et al., 2005; Wilson, 2008), a
widely used data set for fine-grained opinion anal-
ysis.6 We considered the subset of 482 docu-
ments7 that contain attitude and target annotations.
There are a total of 9,471 sentences with opinion-
related labels at the phrase level. We set aside 132
documents as a development set and use 350 doc-
uments as the evaluation set. All experiments em-
ploy 10-fold cross validation on the evaluation set;
the average over the 10 runs is reported.

Our gold standard opinion expressions, opinion
targets and opinion holders correspond to the di-
rect subjective annotations, target annotations and
agent annotations, respectively. The IS-FROM re-
lation is obtained from the agent attribute of each
opinion expression. The IS-ABOUT relation is ob-
tained from the attitude annotations: each opinion
expression is annotated with attitude frames and
each attitude frame is associated with a list of tar-
gets. The relations may overlap: for example, in
the following sentence, the target of relation 1 con-
tains relation 2.

[John]H1 is happyO1 because [[he]H2

lovesO2 [being at Enderly Park]T2]T1 .

We discard relations that contain sub-relations be-
cause we believe that identifying the sub-relations
usually is sufficient to recover the discarded rela-
tions. (Prediction of overlapping relations is con-
sidered as future work.) In the example above, we
will identify (loves, being at Enderly Park) as an
IS-ABOUT relation and happy as an opinion ex-
pression associated with an implicit target. Table 1
shows some statistics of the corpus.

We adopted the evaluation metrics for entity and
relation extraction from Choi et al. (2006), which
include precision, recall, and F1-measure accord-
ing to overlap and exact matching metrics.8 We

6Available at http://www.cs.pitt.edu/mpqa/.
7349 news articles from the original MPQA corpus, 84

Wall Street Journal articles (Xbank), and 48 articles from the
American National Corpus.

8Overlap matching considers two spans to match if they
overlap, while exact matching requires two spans to be ex-
actly the same.

Opinion Target Holder
TotalNum 5849 4676 4244

Opinion-arg Relations Implicit Relations
IS-ABOUT 4823 1302
IS-FROM 4662 1187

Table 1: Data Statistics of the MPQA Corpus.

will focus our discussion on results obtained us-
ing overlap matching, since the exact boundaries
of opinion entities are hard to define even for hu-
man annotators (Wiebe et al., 2005).

We trained CRFs for opinion entity identifica-
tion using the following features: indicators for
words, POS tags, and lexicon features (the sub-
jectivity strength of the word in the Subjectivity
Lexicon). All features are computed for the cur-
rent token and tokens in a [−1,+1] window. We
used L2-regularization; the regularization param-
eter was tuned using the development set. We
trained the classifiers for relation extraction using
L1-regularized logistic regression with default pa-
rameters using the LIBLINEAR (Fan et al., 2008)
package. For joint inference, we used GLPK9 to
provide the optimal ILP solution. The parameter
λ was tuned using the development set.

4.1 Baseline Methods

We compare our approach to several pipeline base-
lines. Each extracts opinion entities first using
the same CRF employed in our approach, and
then predicts opinion relations on the opinion en-
tity candidates obtained from the CRF prediction.
Three relation extraction techniques were used in
the baselines:

• Adj: Inspired by the adjacency rule used
in Hu and Liu (2004), it links each argu-
ment candidate to its nearest opinion candi-
date. Arguments that do not link to any opin-
ion candidate are discarded. This is also used
as a strong baseline in Choi et al. (2006).

• Syn: Links pairs of opinion and argument
candidates that present prominent syntactic
patterns. (We consider the syntactic patterns
listed in Section 3.2.1.) Previous work also
demonstrates the effectiveness of syntactic
information in opinion extraction (Johansson
and Moschitti, 2012).

9http://www.gnu.org/software/glpk/
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Opinion Expression Opinion Target Opinion Holder
Method P R F1 P R F1 P R F1

CRF 82.21 66.15 73.31 73.22 48.58 58.41 72.32 49.09 58.48
CRF+Adj 82.21 66.15 73.31 80.87 42.31 55.56 75.24 48.48 58.97
CRF+Syn 82.21 66.15 73.31 81.87 30.36 44.29 78.97 40.20 53.28
CRF+RE 83.02 48.99 61.62 85.07 22.01 34.97 78.13 40.40 53.26

Joint-Model 71.16 77.85 74.35∗ 75.18 57.12 64.92∗∗ 67.01 66.46 66.73∗∗

CRF 66.60 52.57 58.76 44.44 29.60 35.54 65.18 44.24 52.71
CRF+Adj 66.60 52.57 58.76 49.10 25.81 33.83 68.03 43.84 53.32
CRF+Syn 66.60 52.57 58.76 50.26 18.41 26.94 74.60 37.98 50.33
CRF+RE 69.27 40.09 50.79 60.45 15.37 24.51 75 38.79 51.13

Joint-Model 57.39 62.40 59.79∗ 49.15 38.33 43.07∗∗ 62.73 62.22 62.47∗∗

Table 2: Performance on opinion entity extraction using overlap and exact matching metrics (the top table uses overlap and

the bottom table uses exact). Two-tailed t-test results are shown on F1 measure for our method compared to the other baselines

(statistical significance is indicated with ∗(p < 0.05), ∗∗(p < 0.005)).

IS-ABOUT IS-FROM
Method P R F1 P R F1

CRF+Adj 73.65 37.34 49.55 70.22 41.58 52.23
CRF+Syn 76.21 28.28 41.25 77.48 36.63 49.74
CRF+RE 78.26 20.33 32.28 74.81 37.55 50.00

CRF+Adj-merged-10-best 25.05 61.18 35.55 30.28 62.82 40.87
CRF+Syn-merged-10-best 41.60 45.66 43.53 48.08 54.03 50.88
CRF+RE-merged-10-best 51.60 33.09 40.32 47.73 54.40 50.84

Joint-Model 64.38 51.20 57.04∗∗ 64.97 58.61 61.63∗∗

Table 3: Performance on opinion relation extraction using the overlap metric.

• RE: Predicts opinion relations by employ-
ing the opinion-arg classifier and opinion-
implicit-arg classifier. First, the opinion-arg
classifier identifies pairs of opinion and argu-
ment candidates that form valid opinion rela-
tions, and then the opinion-implicit-arg clas-
sifier is used on the remaining opinion candi-
dates to further identify opinion expressions
without explicit arguments.

We report results using opinion entity candi-
dates from the best CRF output and from the
merged 10-best CRF output.10 The motivation of
merging the 10-best output is to increase recall for
the pipeline methods.

5 Results

Table 2 shows the results of opinion entity identi-
fication using both overlap and exact metrics. We
compare our approach with the pipeline baselines
and CRF (the first step of the pipeline). We can
see that our joint inference approach significantly
outperforms all the baselines in F1 measure on ex-
tracting all types of opinion entities. In general,

10It is similar to the merged 10-best baseline in Choi et
al. (2006). If an entity Ei extracted by the ith-best sequence
overlaps with an entityEj extracted by the jth-best sequence,
where i ≤ j, then we discard Ej . If Ei and Ej do not over-
lap, then we consider both entities.

by adding the relation extraction step, the pipeline
baselines are able to improve precision over the
CRF but fail at recall. CRF+Syn and CRF+Adj
provide the same performance as CRF, since the
relation extraction step only affects the results of
opinion arguments. By incorporating syntactic
information, CRF+Syn provides better precision
than CRF+Adj on extracting arguments at the ex-
pense of recall. This indicates that using simple
syntactic rules would mistakenly filter many cor-
rect relations. By using binary classifiers to pre-
dict relations, CRF+RE produces high precision
on opinion and target extraction but also results in
very low recall. Using the exact metric, we ob-
serve the same general trend in the results as the
overlap metric. The scores are lower since the
metric is much stricter.

Table 3 shows the results of opinion relation ex-
traction using the overlap metric. We compare our
approach with pipelined baselines in two settings:
one employs relation extraction on 1-best output
of CRF (top half of table) and the other employs
the merged 10-best output of CRF (bottom half of
table). We can see that in general, using merged
10-best CRF outputs boosts the recall while sac-
rificing precision. This is expected since merging
the 10-best CRF outputs favors candidates that are
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IS-ABOUT Relation Extraction IS-FROM Relation Extraction
Method P R F1 P R F1

ILP-W/O-ENTITY 49.10 40.48 44.38 44.77 58.24 50.63
ILP-W-SINGLE-RE 63.88 49.35 55.68 53.64 65.02 58.78

ILP-W/O-IMPLICIT-RE 62.00 44.73 51.97 73.23 51.28 60.32
Joint-Model 64.38 51.20 57.04∗∗ 64.97 58.61 61.63∗

Table 4: Comparison between our approach and ILP baselines that omit some potentials in our approach.

believed to be more accurate by the CRF predictor.
If CRF makes mistakes, the mistakes will propa-
gate to the relation extraction step. The poor per-
formance on precision further confirms the error
propagation problem in the pipeline approaches.
In contrast, our joint-inference method success-
fully boosts the recall while maintaining reason-
able precision. This demonstrates that joint infer-
ence can effectively leverage the advantage of in-
dividual predictors and limit error propagation.

To demonstrate the effectiveness of different
potentials in our joint inference model, we con-
sider three variants of our ILP formulation that
omit some potentials in the joint inference: one
is ILP-W/O-ENTITY, which extracts opinion rela-
tions without integrating information from opin-
ion entity identification; one is ILP-W-SINGLE-RE,
which focuses on extracting a single opinion re-
lation and ignores the information from the other
relation; the third one is ILP-W/O-IMPLICIT-RE,
which omits the potential for opinion-implicit-arg
relation and assumes every opinion expression is
linked to an explicit argument. The objective func-
tion of ILP-W/O-ENTITY can be represented as

argmax
u

∑

k

∑

i∈O

∑

j∈Ak
rijuij (2)

which is subject to constraints on uij to enforce
relations to not overlap and limit the maximum
number of relations that can be extracted for each
opinion expression and each argument. For ILP-
W-SINGLE-RE, we simply remove the variables as-
sociated with one opinion relation in the objective
function (1) and constraints. The formulation of
ILP-W/O-IMPLICIT-RE removes the variables as-
sociated with potential ri in the objective function
and corresponding constraints. It can be viewed
as an extension to the ILP approach in Choi et al.
(2006) that includes opinion targets and uses sim-
pler ILP formulation with only one parameter and
fewer binary variables and constraints to represent
entity label assignments 11.

11We compared the proposed ILP formulation with the ILP

Table 4 shows the results of these methods on
opinion relation extraction. We can see that with-
out the knowledge of the entity extractor, ILP-
W/O-ENTITY provides poor performance on both
relation extraction tasks. This confirms the effec-
tiveness of leveraging knowledge from entity ex-
tractor and relation extractor. The improvement
yielded by our approach over ILP-W-SINGLE-RE

demonstrates the benefit of jointly optimizing dif-
ferent types of opinion relations. Our approach
also outperforms ILP-W/O-IMPLICIT-RE, which
does not take into account implicit relations. The
results demonstrate that incorporating knowledge
of implicit opinion relations is important.

6 Discussion

We note that the joint inference model yields a
clear improvement on recall but not on precision
compared to the CRF-based baselines. Analyz-
ing the errors, we found that the joint model ex-
tracts comparable number of opinion entities com-
pared to the gold standard, while the CRF-based
baselines extract significantly fewer opinion enti-
ties (around 60% of the number of entities in the
gold standard). With more extracted opinion enti-
ties, the precision is sacriced but recall is boosted
substantially, and overall we see an increase in
F-measure. We also found that a good portion
of errors were made because the generated candi-
dates failed to cover the correct solutions. Recall
that the joint model finds the global optimal solu-
tion over a set of opinion entity and relation can-
didates, which are obtained from the n-best CRF
predictions and constituents in the parse tree that
satisfy certain syntactic patterns. It is possible
that the generated candidates do not contain the
gold standard answers. For example, our model
failed to identify the IS-ABOUT relation (offers,
general aid) from the following sentence Powell
had contacted ... and received offersO1 of [gen-

formulation in Choi et al. (2006) on extracting opinion hold-
ers, opinion expressions and IS-FROM relations, and showed
that the proposed ILP formulation performs better on all three
extraction tasks.
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eral aid]T1 ... because both the CRF predictor and
syntactic heuristics fail to capture (offers, general
aid) as a potential relation candidate. By applying
simple heuristics such as treating all verbs or verb
phrases as opinion candidates would not help be-
cause it would introduce a large number of nega-
tive candidates and lower the accuracy of relation
extraction (only 52% of the opinion expressions
are verbs or verb phrases and 64% of the opinion
targets are noun or noun phrases in the corpus we
used). Therefore a more effective candidate gen-
eration method is needed to allow more candidates
while limiting the number of negative candidates.
We also observed incorrect parsing to be a cause of
error. We hope to study ways to account for such
errors in our approach as future work.

For computational time, our ILP formulation
can be solved very efficiently using advanced ILP
solvers. In our experiment, using GLPK’s branch-
and-cut solver took 0.2 seconds to produce opti-
mal ILP solutions for 1000 sentences on a machine
with Intel Core 2 Duo CPU and 4GB RAM.

7 Conclusion

In this paper we propose a joint inference ap-
proach for extracting opinion-related entities and
opinion relations. We decompose the task into
different subproblems, and jointly optimize them
using constraints that aim to encourage their con-
sistency and reduce prediction uncertainty. We
show that our approach can effectively integrate
knowledge from different predictors and achieve
significant improvements in overall performance
for opinion extraction. For future work, we plan to
extend our model to handle more complex opinion
relations, e.g. nesting or cross-sentential relations.
This can be potentially addressed by incorporat-
ing more powerful predictors and more complex
linguistic constraints.
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Abstract

Unbiased language is a requirement for
reference sources like encyclopedias and
scientific texts. Bias is, nonetheless, ubiq-
uitous, making it crucial to understand its
nature and linguistic realization and hence
detect bias automatically. To this end we
analyze real instances of human edits de-
signed to remove bias from Wikipedia ar-
ticles. The analysis uncovers two classes
of bias: framing bias, such as praising or
perspective-specific words, which we link
to the literature on subjectivity; and episte-
mological bias, related to whether propo-
sitions that are presupposed or entailed in
the text are uncontroversially accepted as
true. We identify common linguistic cues
for these classes, including factive verbs,
implicatives, hedges, and subjective inten-
sifiers. These insights help us develop fea-
tures for a model to solve a new prediction
task of practical importance: given a bi-
ased sentence, identify the bias-inducing
word. Our linguistically-informed model
performs almost as well as humans tested
on the same task.

1 Introduction

Writers and editors of reference works such as
encyclopedias, textbooks, and scientific articles
strive to keep their language unbiased. For ex-
ample, Wikipedia advocates a policy called neu-
tral point of view (NPOV), according to which
articles should represent “fairly, proportionately,
and as far as possible without bias, all signifi-
cant views that have been published by reliable
sources” (Wikipedia, 2013b). Wikipedia’s style
guide asks editors to use nonjudgmental language,
to indicate the relative prominence of opposing
points of view, to avoid presenting uncontroversial

facts as mere opinion, and, conversely, to avoid
stating opinions or contested assertions as facts.

Understanding the linguistic realization of bias
is important for linguistic theory; automatically
detecting these biases is equally significant for
computational linguistics. We propose to ad-
dress both by using a powerful resource: edits in
Wikipedia that are specifically designed to remove
bias. Since Wikipedia maintains a complete revi-
sion history, the edits associated with NPOV tags
allow us to compare the text in its biased (before)
and unbiased (after) form, helping us better under-
stand the linguistic realization of bias. Our work
thus shares the intuition of prior NLP work apply-
ing Wikipedia’s revision history (Nelken and Ya-
mangil, 2008; Yatskar et al., 2010; Max and Wis-
niewski, 2010; Zanzotto and Pennacchiotti, 2010).

The analysis of Wikipedia’s edits provides valu-
able linguistic insights into the nature of biased
language. We find two major classes of bias-driven
edits. The first, framing bias, is realized by sub-
jective words or phrases linked with a particular
point of view. In (1), the term McMansion, unlike
homes, appeals to a negative attitude toward large
and pretentious houses. The second class, episte-
mological bias, is related to linguistic features that
subtly (often via presupposition) focus on the be-
lievability of a proposition. In (2), the assertive
stated removes the bias introduced by claimed,
which casts doubt on Kuypers’ statement.

(1) a. Usually, smaller cottage-style houses have been de-
molished to make way for these McMansions.

b. Usually, smaller cottage-style houses have been de-
molished to make way for these homes.

(2) a. Kuypers claimed that the mainstream press in Amer-
ica tends to favor liberal viewpoints.

b. Kuypers stated that the mainstream press in America
tends to favor liberal viewpoints.

Bias is linked to the lexical and grammatical cues
identified by the literature on subjectivity (Wiebe
et al., 2004; Lin et al., 2011), sentiment (Liu et
al., 2005; Turney, 2002), and especially stance
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or “arguing subjectivity” (Lin et al., 2006; So-
masundaran and Wiebe, 2010; Yano et al., 2010;
Park et al., 2011; Conrad et al., 2012). For ex-
ample, like stance, framing bias is realized when
the writer of a text takes a particular position on
a controversial topic and uses its metaphors and
vocabulary. But unlike the product reviews or de-
bate articles that overtly use subjective language,
editors in Wikipedia are actively trying to avoid
bias, and hence biases may appear more subtly,
in the form of covert framing language, or pre-
suppositions and entailments that may not play as
important a role in other genres. Our linguistic
analysis identifies common classes of these subtle
bias cues, including factive verbs, implicatives and
other entailments, hedges, and subjective intensi-
fiers.

Using these cues could help automatically de-
tect and correct instances of bias, by first finding
biased phrases, then identifying the word that in-
troduces the bias, and finally rewording to elim-
inate the bias. In this paper we propose a so-
lution for the second of these tasks, identifying
the bias-inducing word in a biased phrase. Since,
as we show below, this task is quite challenging
for humans, our system has the potential to be
very useful in improving the neutrality of refer-
ence works like Wikipedia. Tested on a subset of
non-neutral sentences from Wikipedia, our model
achieves 34% accuracy—and up to 59% if the
top three guesses are considered—on this difficult
task, outperforming four baselines and nearing hu-
mans tested on the same data.

2 Analyzing a Dataset of Biased
Language

We begin with an empirical analysis based on
Wikipedia’s bias-driven edits. This section de-
scribes the data, and summarizes our linguistic
analysis.1

2.1 The NPOV Corpus from Wikipedia

Given Wikipedia’s strict enforcement of an NPOV
policy, we decided to build the NPOV corpus,
containing Wikipedia edits that are specifically de-
signed to remove bias. Editors are encouraged to
identify and rewrite biased passages to achieve a
more neutral tone, and they can use several NPOV

1The data and bias lexicon we developed are available at
http://www.mpi-sws.org/˜cristian/Biased_
language.html

Data Articles Revisions Words Edits Sents

Train 5997 2238K 11G 13807 1843
Dev 653 210K 0.9G 1261 163
Test 814 260K 1G 1751 230

Total 7464 2708K 13G 16819 2235

Table 1: Statistics of the NPOV corpus, extracted
from Wikipedia. (Edits refers to bias-driven ed-
its, i.e., with an NPOV comment. Sents refers to
sentences with a one-word bias-driven edit.)

tags to mark biased content.2 Articles tagged this
way fall into Wikipedia’s category of NPOV dis-
putes.

We constructed the NPOV corpus by retrieving
all articles that were or had been in the NPOV-
dispute category3 together with their full revision
history. We used Stanford’s CoreNLP tools4 to to-
kenize and split the text into sentences. Table 1
shows the statistics of this corpus, which we split
into training (train), development (dev), and test.
Following Wikipedia’s terminology, we call each
version of a Wikipedia article a revision, and so an
article can be viewed as a set of (chronologically
ordered) revisions.

2.2 Extracting Edits Meant to Remove Bias
Given all the revisions of a page, we extracted the
changes between pairs of revisions with the word-
mode diff function from the Diff Match and Patch
library.5 We refer to these changes between revi-
sions as edits, e.g., McMansion > large home. An
edit consists of two strings: the old string that is
being replaced (i.e., the before form), and the new
modified string (i.e., the after form).

Our assumption was that among the edits hap-
pening in NPOV disputes, we would have a high
density of edits intended to remove bias, which we
call bias-driven edits, like (1) and (2) from Sec-
tion 1. But many other edits occur even in NPOV
disputes, including edits to fix spelling or gram-
matical errors, simplify the language, make the
meaning more precise, or even vandalism (Max

2{{POV}}, {{POV-check}}, {{POV-section}}, etc.
Adding these tags displays a template such as “The neutrality
of this article is disputed. Relevant discussion may be found
on the talk page. Please do not remove this message until the
dispute is resolved.”

3http://en.wikipedia.org/wiki/
Category:All_NPOV_disputes

4http://nlp.stanford.edu/software/
corenlp.shtml

5http://code.google.com/p/google-diff-
match-patch
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and Wisniewski, 2010). Therefore, in order to ex-
tract a high-precision set of bias-driven edits, we
took advantage of the comments that editors can
associate with a revision—typically short and brief
sentences describing the reason behind the revi-
sion. We considered as bias-driven edits those that
appeared in a revision whose comment mentioned
(N)POV, e.g., Attempts at presenting some claims
in more NPOV way; or merging in a passage
from the researchers article after basic NPOV-
ing. We only kept edits whose before and af-
ter forms contained five or fewer words, and dis-
carded those that only added a hyperlink or that
involved a minimal change (character-based Lev-
enshtein distance < 4). The final number of bias-
driven edits for each of the data sets is shown in
the “Edits” column of Table 1.

2.3 Linguistic Analysis
Style guides talk about biased language in a pre-
scriptive manner, listing a few words that should
be avoided because they are flattering, vague, or
endorse a particular point of view (Wikipedia,
2013a). Our focus is on analyzing actual bi-
ased text and bias-driven edits extracted from
Wikipedia.

As we suggested above, this analysis uncovered
two major classes of bias: epistemological bias
and framing bias. Table 2 shows the distribution
(from a sample of 100 edits) of the different types
and subtypes of bias presented in this section.

(A) Epistemological bias involves propositions
that are either commonly agreed to be true or com-
monly agreed to be false and that are subtly pre-
supposed, entailed, asserted or hedged in the text.

1. Factive verbs (Kiparsky and Kiparsky, 1970)
presuppose the truth of their complement
clause. In (3-a) and (4-a), realize and re-
veal presuppose the truth of “the oppression
of black people...” and “the Meditation tech-
nique produces...”, whereas (3-b) and (4-b)
present the two propositions as somebody’s
stand or an experimental result.

(3) a. He realized that the oppression of black peo-
ple was more of a result of economic exploita-
tion than anything innately racist.

b. His stand was that the oppression of black
people was more of a result of economic ex-
ploitation than anything innately racist.

(4) a. The first research revealed that the Meditation
technique produces a unique state fact.

b. The first research indicated that the Medita-
tion technique produces a unique state fact.

Bias Subtype %

A. Epistemological bias 43

- Factive verbs 3
- Entailments 25
- Assertives 11
- Hedges 4

B. Framing bias 57

- Intensifiers 19
- One-sided terms 38

Table 2: Proportion of the different bias types.

2. Entailments are directional relations that
hold whenever the truth of one word or
phrase follows from another, e.g., murder en-
tails kill because there cannot be murdering
without killing (5). However, murder en-
tails killing in an unlawful, premeditated way.
This class includes implicative verbs (Kart-
tunen, 1971), which imply the truth or un-
truth of their complement, depending on the
polarity of the main predicate. In (6-a), co-
erced into accepting entails accepting in an
unwilling way.

(5) a. After he murdered three policemen, the
colony proclaimed Kelly a wanted outlaw.

b. After he killed three policemen, the colony
proclaimed Kelly a wanted outlaw.

(6) a. A computer engineer who was coerced into
accepting a plea bargain.

b. A computer engineer who accepted a plea bar-
gain.

3. Assertive verbs (Hooper, 1975) are those
whose complement clauses assert a proposi-
tion. The truth of the proposition is not pre-
supposed, but its level of certainty depends
on the asserting verb. Whereas verbs of say-
ing like say and state are usually neutral,
point out and claim cast doubt on the cer-
tainty of the proposition.

(7) a. The “no Boeing” theory is a controversial is-
sue, even among conspiracists, many of whom
have pointed out that it is disproved by ...

b. The “no Boeing” theory is a controversial is-
sue, even among conspiracists, many of whom
have said that it is disproved by...

(8) a. Cooper says that slavery was worse in South
America and the US than Canada, but clearly
states that it was a horrible and cruel practice.

b. Cooper says that slavery was worse in South
America and the US than Canada, but points
out that it was a horrible and cruel practice.
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4. Hedges are used to reduce one’s commit-
ment to the truth of a proposition, thus
avoiding any bold predictions (9-b) or state-
ments (10-a).6

(9) a. Eliminating the profit motive will decrease the
rate of medical innovation.

b. Eliminating the profit motive may have a
lower rate of medical innovation.

(10) a. The lower cost of living in more rural areas
means a possibly higher standard of living.

b. The lower cost of living in more rural areas
means a higher standard of living.

Epistemological bias is bidirectional, that is,
bias can occur because doubt is cast on a propo-
sition commonly assumed to be true, or because
a presupposition or implication is made about a
proposition commonly assumed to be false. For
example, in (7) and (8) above, point out is replaced
in the former case, but inserted in the second case.
If the truth of the proposition is uncontroversially
accepted by the community (i.e., reliable sources,
etc.), then the use of a factive is unbiased. In con-
trast, if only a specific viewpoint agrees with its
truth, then using a factive is biased.

(B) Framing bias is usually more explicit than
epistemological bias because it occurs when sub-
jective or one-sided words are used, revealing the
author’s stance in a particular debate (Entman,
2007).

1. Subjective intensifiers are adjectives or ad-
verbs that add (subjective) force to the mean-
ing of a phrase or proposition.

(11) a. Schnabel himself did the fantastic reproduc-
tions of Basquiat’s work.

b. Schnabel himself did the accurate reproduc-
tions of Basquiat’s work.

(12) a. Shwekey’s albums are arranged by many tal-
ented arrangers.

b. Shwekey’s albums are arranged by many dif-
ferent arrangers.

2. One-sided terms reflect only one of the sides
of a contentious issue. They often belong
to controversial subjects (e.g., religion, ter-
rorism, etc.) where the same event can be
seen from two or more opposing perspec-
tives, like the Israeli-Palestinian conflict (Lin
et al., 2006).

6See Choi et al. (2012) for an exploration of the interface
between hedging and framing.

(13) a. Israeli forces liberated the eastern half of
Jerusalem.

b. Israeli forces captured the eastern half of
Jerusalem.

(14) a. Concerned Women for America’s major ar-
eas of political activity have consisted of op-
position to gay causes, pro-life law...

b. Concerned Women for America’s major ar-
eas of political activity have consisted of op-
position to gay causes, anti-abortion law...

(15) a. Colombian terrorist groups.
b. Colombian paramilitary groups.

Framing bias has been studied within the liter-
ature on stance recognition and arguing subjectiv-
ity. Because this literature has focused on iden-
tifying which side an article takes on a two-sided
debate such as the Israeli-Palestinian conflict (Lin
et al., 2006), most studies cast the problem as a
two-way classification of documents or sentences
into for/positive vs. against/negative (Anand et
al., 2011; Conrad et al., 2012; Somasundaran and
Wiebe, 2010), or into one of two opposing views
(Yano et al., 2010; Park et al., 2011). The fea-
tures used by these models include subjectivity
and sentiment lexicons, counts of unigrams and
bigrams, distributional similarity, discourse rela-
tionships, and so on.

The datasets used by these studies come from
genres that overtly take a specific stance (e.g.,
debates, editorials, blog posts). In contrast,
Wikipedia editors are asked not to advocate a par-
ticular point of view, but to provide a balanced ac-
count of the different available perspectives. For
this reason, overtly biased opinion statements such
as “I believe that...” are not common in Wikipedia.
The features used by the subjectivity literature
help us detect framing bias, but we also need fea-
tures that capture epistemological bias expressed
through presuppositions and entailments.

3 Automatically Identifying Biased
Language

We now show how the bias cues identified in Sec-
tion 2.3 can help solve a new task. Given a biased
sentence (e.g., a sentence that a Wikipedia editor
has tagged as violating the NPOV policy), our goal
in this new task is to identify the word that intro-
duces bias. This is part of a potential three-step
process for detecting and correcting biased lan-
guage: (1) finding biased phrases, (2) identifying
the word that introduces the bias, (3) rewording to
eliminate the bias. As we will see below, it can be
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hard even for humans to track down the sources of
bias, because biases in reference works are often
subtle and implicit. An automatic bias detector
that can highlight the bias-inducing word(s) and
draw the editors’ attention to words that need to
be modified could thus be important for improving
reference works like Wikipedia or even in news re-
porting.

We selected the subset of sentences that had a
single NPOV edit involving one (original) word.
(Although the before form consists of only one
word, the after form can be either one or more
words or the null string (i.e., deletion edits); we do
not use the after string in this identification task).
The number of sentences in the train, dev and test
sets is shown in the last column of Table 1.

We trained a logistic regression model on a
feature vector for every word that appears in the
NPOV sentences from the training set, with the
bias-inducing words as the positive class, and all
the other words as the negative class. The features
are described in the next section.

At test time, the model is given a set of sen-
tences and, for each of them, it ranks the words ac-
cording to their probability to be biased, and out-
puts the highest ranked word (TOP1 model), the
two highest ranked words (TOP2 model), or the
three highest ranked words (TOP3 model).

3.1 Features

The types of features used in the logistic regres-
sion model are listed in Table 3, together with
their value space. The total number of features is
36,787. The ones targeting framing bias draw on
previous work on sentiment and subjectivity de-
tection (Wiebe et al., 2004; Liu et al., 2005). Fea-
tures to capture epistemological bias are based on
the bias cues identified in Section 2.3.

A major split separates the features that de-
scribe the word under analysis (e.g., lemma, POS,
whether it is a hedge, etc.) from those that de-
scribe its surrounding context (e.g., the POS of the
word to the left, whether there is a hedge in the
context, etc.). We define context as a 5-gram win-
dow, i.e., two words to the left of the word un-
der analysis, and two to the right. Taking con-
text into account is important given that biases can
be context-dependent, especially epistemological
bias since it depends on the truth of a proposition.
To define some of the features like POS and gram-
matical relation, we used the Stanford’s CoreNLP

tagger and dependency parser (de Marneffe et al.,
2006).

Features 9–10 use the list of hedges from Hy-
land (2005), features 11–14 use the factives and
assertives from Hooper (1975), features 15–16
use the implicatives from Karttunen (1971), fea-
tures 19–20 use the entailments from Berant et
al. (2012), features 21–25 employ the subjectiv-
ity lexicon from Riloff and Wiebe (2003), and fea-
tures 26–29 use the sentiment lexicon—positive
and negative words—from Liu et al. (2005). If the
word (or a word in the context) is in the lexicon,
then the feature is true, otherwise it is false.

We also included a “bias lexicon” (feature 31)
that we built based on our NPOV corpus from
Wikipedia. We used the training set to extract the
lemmas of words that were the before form of at
least two NPOV edits, and that occurred in at least
two different articles. Of the 654 words included
in this lexicon, 433 were unique to this lexicon
(i.e., recorded in neither Riloff and Wiebe’s (2003)
subjectivity lexicon nor Liu et al.’s (2005) senti-
ment lexicon) and represented many one-sided or
controversial terms, e.g., abortion, same-sex, exe-
cute.

Finally, we also included a “collaborative fea-
ture” that, based on the previous revisions of the
edit’s article, computes the ratio between the num-
ber of times that the word was NPOV-edited and
its frequency of occurrence. This feature was de-
signed to capture framing bias specific to an article
or topic.

3.2 Baselines

Previous work on subjectivity and stance recog-
nition has been evaluated on the task of classify-
ing documents as opinionated vs. factual, for vs.
against, positive vs. negative. Given that the task
of identifying the bias-inducing word of a sentence
is novel, there were no previous results to compare
directly against. We ran the following five base-
lines.

1. Random guessing. Naively returns a random
word from every sentence.

2. Role baseline. Selects the word with the
syntactic role that has the highest probabil-
ity to be biased, as computed on the train-
ing set. This is the parse tree root (proba-
bility p = .126 to be biased), followed by
verbal arguments (p = .085), and the subject
(p = .084).
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ID Feature Value Description

1* Word <string> Word w under analysis.
2 Lemma <string> Lemma of w.
3* POS {NNP, JJ, ...} POS of w.
4* POS – 1 {NNP, JJ, ...} POS of one word before w.
5 POS – 2 {NNP, JJ, ...} POS of two words before w.
6* POS + 1 {NNP, JJ, ...} POS of one word after w.
7 POS + 2 {NNP, JJ, ...} POS of two words after w.
8 Position in sentence {start, mid, end} Position of w in the sentence (split into three parts).
9 Hedge {true, false} w is in Hyland’s (2005) list of hedges (e.g., apparently).
10* Hedge in context {true, false} One/two words) around w is a hedge (Hyland, 2005).
11* Factive verb {true, false} w is in Hooper’s (1975) list of factives (e.g., realize).
12* Factive verb in context {true, false} One/two word(s) around w is a factive (Hooper, 1975).
13* Assertive verb {true, false} w is in Hooper’s (1975) list of assertives (e.g., claim).
14* Assertive verb in context {true, false} One/two word(s) around w is an assertive (Hooper, 1975).
15 Implicative verb {true, false} w is in Karttunen’s (1971) list of implicatives (e.g., manage).
16* Implicative verb in context {true, false} One/two word(s) around w is an implicative (Karttunen, 1971).
17* Report verb {true, false} w is a report verb (e.g., add).
18 Report verb in context {true, false} One/two word(s) around w is a report verb.
19* Entailment {true, false} w is in Berant et al.’s (2012) list of entailments (e.g., kill).
20* Entailment in context {true, false} One/two word(s) around w is an entailment (Berant et al., 2012).
21* Strong subjective {true, false} w is in Riloff and Wiebe’s (2003) list of strong subjectives (e.g.,

absolute).
22 Strong subjective in context {true, false} One/two word(s) around w is a strong subjective (Riloff and

Wiebe, 2003).
23* Weak subjective {true, false} w is in Riloff and Wiebe’s (2003) list of weak subjectives (e.g.,

noisy).
24* Weak subjective in context {true, false} One/two word(s) around w is a weak subjective (Riloff and

Wiebe, 2003).
25 Polarity {+, –, both, ...} The polarity of w according to Riloff and Wiebe (2003), e.g.,

praising is positive.
26* Positive word {true, false} w is in Liu et al.’s (2005) list of positive words (e.g., excel).
27* Positive word in context {true, false} One/two word(s) around w is positive (Liu et al., 2005).
28* Negative word {true, false} w is in Liu et al.’s (2005) list of negative words (e.g., terrible).
29* Negative word in context {true, false} One/two word(s) around w is negative (Liu et al., 2005).
30* Grammatical relation {root, subj, ...} Whether w is the subject, object, root, etc. of its sentence.
31 Bias lexicon {true, false} w has been observed in NPOV edits (e.g., nationalist).
32* Collaborative feature <numeric> Number of times that w was NPOV-edited in the article’s prior

history / frequency of w.

Table 3: Features used by the bias detector. The star (*) shows the most contributing features.

3. Sentiment baseline. Logistic regression
model that only uses the features based on
Liu et al.’s (2005) lexicons of positive and
negative words (i.e., features 26–29).

4. Subjectivity baseline. Logistic regression
model that only uses the features based on
Riloff and Wiebe’s (2003) lexicon of subjec-
tive words (i.e., features 21–25).

5. Wikipedia baseline. Selects as biased the
words that appear in Wikipedia’s list of words
to avoid (Wikipedia, 2013a).

These baselines assessed the difficulty of the
task, as well as the extent to which traditional
sentiment-analysis and subjectivity features would
suffice to detect biased language.

3.3 Results and Discussion

To measure performance, we used accuracy de-
fined as:

#sentences with the correctly predicted biased word

#sentences

The results are shown in Table 4. As explained
earlier, we evaluated all the models by outputting
as biased either the highest ranked word or the
two or three highest ranked words. These corre-
spond to the TOP1, TOP2 and TOP3 columns, re-
spectively. The TOP3 score increases to 59%. A
tool that highlights up to three words to be revised
would simplify the editors’ job and decrease sig-
nificantly the time required to revise.

Our model outperforms all five baselines by a
large margin, showing the importance of consid-
ering a wide range of features. Wikipedia’s list
of words to avoid falls very short on recall. Fea-
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System TOP1 TOP2 TOP3

Baseline 1: Random 2.18 7.83 9.13
Baseline 2: Role 15.65 20.43 25.65
Baseline 3: Sentiment 14.78 22.61 27.83
Baseline 4: Subjectivity 16.52 25.22 33.91
Baseline 5: Wikipedia 10.00 10.00 10.00
Our system 34.35 46.52 58.70
Humans (AMT) 37.39 50.00 59.13

Table 4: Accuracy (%) of the bias detector on the
test set.

tures that contribute the most to the model’s per-
formance (in a feature ablation study on the dev
set) are highlighted with a star (*) in Table 3. In
addition to showing the importance of linguistic
cues for different classes of bias, the ablation study
highlights the role of contextual features. The bias
lexicon does not seem to help much, suggesting
that it is overfit to the training data.

An error analysis shows that our system makes
acceptable errors in that words wrongly predicted
as bias-inducing may well introduce bias in a dif-
ferent context. In (16), the system picked eschew,
whereas orthodox would have been the correct
choice according to the gold edit. Note that both
the sentiment and the subjectivity lexicons list es-
chew as a negative word. The bias type that poses
the greatest challenge to the system are terms that
are one-sided or loaded in a particular topic, such
as orthodox in this example.

(16) a. Some Christians eschew orthodox theology; such
as the Unitarians, Socinian, [...]

b. Some Christians eschew mainstream trinitarian
theology; such as the Unitarians, Socinian, [...]

The last row in Table 4 lists the performance
of humans on the same task, presented in the next
section.

4 Human Perception of Biased Language

Is it difficult for humans to find the word in a
sentence that induces bias, given the subtle, of-
ten implicit biases in Wikipedia. We used Ama-
zon Mechanical Turk7 (AMT) to elicit annotations
from humans for the same 230 sentences from the
test set that we used to evaluate the bias detector
in Section 3.3. The goal of this annotation was
twofold: to compare the performance of our bias
detector against a human baseline, and to assess
the difficulty of this task for humans. While AMT
labelers are not trained Wikipedia editors, under-

7http://www.mturk.com

standing how difficult these cases are for untrained
labelers is an important baseline.

4.1 Task
Our HIT (Human Intelligence Task) was called
“Find the biased word!”. We kept the task descrip-
tion succinct. Turkers were shown Wikipedia’s
definition of a “biased statement” and two exam-
ple sentences that illustrated the two types of bias,
framing and epistemological. In each HIT, annota-
tors saw 10 sentences, one after another, and each
one followed by a text box entitled “Word intro-
ducing bias.” For each sentence, they were asked
to type in the text box the word that caused the
statement to be biased. They were only allowed to
enter a single word.

Before the 10 sentences, turkers were asked to
list the languages they spoke as well as their pri-
mary language in primary school. This was En-
glish in all the cases. In addition, we included a
probe question in the form of a paraphrasing task:
annotators were given a sentence and two para-
phrases (a correct and a bad one) to choose from.
The goal of this probe question was to discard
annotators who were not paying attention or did
not have a sufficient command of English. This
simple test was shown to be effective in verifying
and eliciting linguistic attentiveness (Munro et al.,
2010). This was especially important in our case
as we were interested in using the human annota-
tions as an oracle. At the end of the task, partici-
pants were given the option to provide additional
feedback.

We split the 230 sentences into 23 sets of 10
sentences, and asked for 10 annotations of each
set. Each approved HIT was rewarded with $0.30.

4.2 Results and Discussion
On average, it took turkers about four minutes to
complete each HIT. The feedback that we got from
some of them confirmed our hypothesis that find-
ing the bias source is difficult: “Some of the ‘bi-
ases’ seemed very slight if existent at all,” “This
was a lot harder than I thought it would be... Inter-
esting though!”.

We postprocessed the answers ignoring case,
punctuation signs, and spelling errors. To ensure
an answer quality as high as possible, we only
kept those turkers who answered attentively by ap-
plying two filters: we only accepted answers that
matched a valid word from the sentence, and we
discarded answers from participants who did not
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Figure 1: Distribution of the number of turkers
who selected the top word (i.e., the word selected
by the majority of turkers).

pass the paraphrasing task—there were six such
cases. These filters provided us with confidence in
the turkers’ answers as a fair standard of compari-
son.

Overall, humans correctly identified the biased
word 30% of the time. For each sentence, we
ranked the words according to the number of turk-
ers (out of 10) who selected them and, like we
did for the automated system, we assessed per-
formance when considering only the top word
(TOP1), the top 2 words (TOP2), and the top 3
words (TOP3). The last row of Table 4 reports the
results. Only 37.39% of the majority answers co-
incided with the gold label, slightly higher than
our system’s accuracy. The fact that the human
answers are very close to the results of our system
reflects the difficulty of the task. Biases in refer-
ence works can be very subtle and go unnoticed
by humans; automated systems could thus be ex-
tremely helpful.

As a measure of inter-rater reliability, we com-
puted pairwise agreement. The turkers agreed
40.73% of the time, compared to the 5.1% chance
agreement that would be achieved if raters had
randomly selected a word for each sentence. Fig-
ure 1 plots the number of times the top word of
each sentence was selected. The bulk of the sen-
tences only obtained between four and six answers
for the same word.

There is a good amount of overlap (∼34%) be-
tween the correct answers predicted by our system
and those from humans. Much like the automated
system, humans also have the hardest time identi-
fying words that are one-sided or controversial to

a specific topic. They also picked eschew for (16)
instead of orthodox. Compared to the system, they
do better in detecting bias-inducing intensifiers,
and about the same with epistemological bias.

5 Related Work

The work in this paper builds upon prior work on
subjectivity detection (Wiebe et al., 2004; Lin et
al., 2011; Conrad et al., 2012) and stance recogni-
tion (Yano et al., 2010; Somasundaran and Wiebe,
2010; Park et al., 2011), but applied to the genre
of reference works such as Wikipedia. Unlike the
blogs, online debates and opinion pieces which
have been the major focus of previous work, bias
in reference works is undesirable. As a result,
the expression of bias is more implicit, making it
harder to detect by both computers and humans.
Of the two classes of bias that we uncover, fram-
ing bias is indeed strongly linked to subjectiv-
ity, but epistemological bias is not. In this re-
spect, our research is comparable to Greene and
Resnik’s (2009) work on identifying implicit sen-
timent or perspective in journalistic texts, based on
semantico-syntactic choices.

Given that the data that we use is not supposed
to be opinionated, our task consists in detecting
(implicit) bias instead of classifying into side A
or B documents about a controversial topic like
ObamaCare (Conrad et al., 2012) or the Israeli-
Palestinian conflict (Lin et al., 2006; Greene and
Resnik, 2009). Our model detects whether all
the relevant perspectives are fairly represented by
identifying statements that are one-sided. To this
end, the features based on subjectivity and senti-
ment lexicons turn out to be helpful, and incor-
porating more features for stance detection is an
important direction for future work.

Other aspects of Wikipedia structure have been
used for other NLP applications. The Wikipedia
revision history has been used for spelling correc-
tion, text summarization (Nelken and Yamangil,
2008), lexical simplification (Yatskar et al., 2010),
paraphrasing (Max and Wisniewski, 2010), and
textual entailment (Zanzotto and Pennacchiotti,
2010). Ganter and Strube (2009) have used
Wikipedia’s weasel-word tags to train a hedge de-
tector. Callahan and Herring (2011) have exam-
ined cultural bias based on Wikipedia’s NPOV
policy.
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6 Conclusions

Our study of bias in Wikipedia has implications
for linguistic theory and computational linguis-
tics. We show that bias in reference works falls
broadly into two classes, framing and epistemo-
logical. The cues to framing bias are more ex-
plicit and are linked to the literature on subjec-
tivity; cues to epistemological bias are subtle and
implicit, linked to presuppositions and entailments
in the text. Epistemological bias has not received
much attention since it does not play a major role
in overtly opinionated texts, the focus of much re-
search on stance recognition. However, our logis-
tic regression model reveals that epistemological
and other features can usefully augment the tradi-
tional sentiment and subjectivity features for ad-
dressing the difficult task of identifying the bias-
inducing word in a biased sentence.

Identifying the bias-inducing word is a chal-
lenging task even for humans. Our linguistically-
informed model performs nearly as well as hu-
mans tested on the same task. Given the sub-
tlety of some of these biases, an automated sys-
tem that highlights one or more potentially biased
words would provide a helpful tool for editors of
reference works and news reports, not only mak-
ing them aware of unnoticed biases but also sav-
ing them hours of time. Future work could in-
vestigate the incorporation of syntactic features or
further features from the stance detection litera-
ture. Features from the literature on veridicality
(de Marneffe et al., 2012) could be informative of
the writer’s commitment to the truth of the events
described, and document-level features could help
assess the extent to which the article provides a
balanced account of all the facts and points of
view.

Finally, the NPOV data and the bias lexicon that
we release as part of this research could prove use-
ful in other bias related tasks.
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Abstract

We present a city navigation and tourist
information mobile dialogue app with in-
tegrated question-answering (QA) and ge-
ographic information system (GIS) mod-
ules that helps pedestrian users to nav-
igate in and learn about urban environ-
ments. In contrast to existing mobile apps
which treat these problems independently,
our Android app addresses the prob-
lem of navigation and touristic question-
answering in an integrated fashion using
a shared dialogue context. We evaluated
our system in comparison with Samsung
S-Voice (which interfaces to Google nav-
igation and Google search) with 17 users
and found that users judged our system to
be significantly more interesting to inter-
act with and learn from. They also rated
our system above Google search (with the
Samsung S-Voice interface) for tourist in-
formation tasks.

1 Introduction

We present a mobile dialogue system (an Android
app) called Spacebook that addresses the problem
of pedestrian navigation and tourist information in
urban environments. There has been little prior
work that addresses these two problems - naviga-
tion and tourist information provision - in an inte-
grated way. By navigation, we refer to the prob-
lem of finding appropriate destinations to go to
and the task of wayfinding to reach them and by
tourist information provision we refer to the prob-
lem of meeting the informational needs of a user
about entities such as museums, statues and fa-
mous personalities. A dialogue system such as this
could serve as a personal tour guide to pedestrian
tourists as they walk around unknown cities. With
the proliferation of smartphones, there has been a

number of mobile apps developed to address these
problems. However these apps have the following
problems: first, they demand the user’s visual at-
tention because they predominantly present infor-
mation on a mobile screen. This can be dangerous
in urban environments, as well as being distract-
ing. Second, these apps address the problems of
navigation and tourist information independently
and therefore do not have a shared interaction con-
text. This means that users cannot switch between
information and navigation tasks in a natural and
fluid manner.

User1: Take me to the National Museum.

System2: The National Museum is about 300m away..

System3: At the KFC, turn left on to South Bridge

System4 : Near you is the statue of David Hume.

User2: Who is David Hume.

System5: David Hume was a Scottish philosopher....

User3: Tell me more about David Hume.

System6: He was one of the most important figures in..

System7: You should be able to see the museum ...

User4: Tell me more about the museum.

System8: The National Museum of Scotland is a....

Table 1: An example interaction with the evalu-
ated system

In contrast to many existing mobile apps,
Spacebook has a speech-only interface and ad-
dresses both problems in an integrated way. We
conjecture that with a speech-only interface, users
can immerse themselves in exploring the city,
and that because of the shared context they can
switch between navigation and tourist information
tasks more easily. Using the navigational context,
Spacebook pushes point-of-interest information
which can then initiate tourist information tasks
using the QA module. Table 1 presents an example
interaction with our system showing the integrated
use of navigation and question-answering capabil-
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ities. Utterances System4-8 show the system’s ca-
pability to push information about nearby points-
of-interest (PoI) during a navigation task and an-
swer followup questions using the QA system (in
utterances User2 and User3). The final 3 utter-
ances show a natural switch between navigation to
an entity and QA about that entity.

We investigate whether our system using a com-
bination of geographical information system (GIS)
and natural language processing (NLP) technolo-
gies would be a better companion to pedestrian
city explorers than the current state-of-the-art mo-
bile apps. We hypothesize that, (1) users will find
our speech-only interface to navigation efficient as
it allows them to navigate without having to re-
peatedly look at a map and (2), that users will
find a dialogue interface which integrates touris-
tic question-answering and navigation within a
shared context to be useful for finding information
about entities in the urban environment. We first
present some related work in section 2. We de-
scribe the architecture of the system in section 3.
We then present our experimental design, results
and analysis in sections 5, 6 and 7.

2 Related work

Mobile apps such as Siri, Google Maps Naviga-
tion, Sygic, etc. address the problem of naviga-
tion while apps like Triposo, Guidepal, Wikihood,
etc. address the problem of tourist information by
presenting the user with descriptive information
about various points of interest (PoI) in the city.
While some exploratory apps present snippets of
information about a precompiled list of PoIs, other
apps dynamically generate a list of PoIs arranged
based on their proximity to the users. Users can
also obtain specific information about PoIs using
Search apps. Also, since these navigation and ex-
ploratory/search apps do not address both prob-
lems in an integrated way, users need to switch
between them and therefore lose interaction con-
text.

While most apps address these two problems
independently, some like Google Now, Google
Field Trip, etc, mix navigation with exploration.
But such apps present information primarily vi-
sually on the screen for the user to read. Some
of these are available for download at the Google
Play Android app store1. Several dialogue and
natural language systems have addressed the issue

1https://play.google.com/store

of pedestrian navigation (Malaka and Zipf, 2000;
Raubal and Winter, 2002; Dale et al., 2003; Bar-
tie and Mackaness, 2006; Shroder et al., 2011;
Dethlefs and Cuayáhuitl, 2011). There has also
been recent interest in shared tasks for generat-
ing navigation instructions in indoor and urban en-
vironments (Byron et al., 2007; Janarthanam and
Lemon, 2011). Some dialogue systems deal with
presenting information concerning points of inter-
est (Ko et al., 2005; Kashioka et al., 2011) and in-
teractive question answering (Webb and Webber,
2009).

In contrast, Spacebook has the objective of
keeping the user’s cognitive load low and prevent-
ing users from being distracted (perhaps danger-
ously so) from walking in the city (Kray et al.,
2003). Also, it allows users to interleave the two
sub-tasks seamlessly and can keep entities dis-
cussed in both tasks in shared context (as shown
in Table 1).

3 Architecture

The architecture of the Spacebook system is
shown in figure 1. Our architecture brings to-
gether Spoken Dialogue Systems (SDS), Geo-
graphic Information Systems (GIS) and Question-
Answering (QA) technologies (Janarthanam et al.,
2012). Its essentially a spoken dialogue system
(SDS) consisting of an automatic speech recog-
niser (ASR), a semantic parser, an Interaction
Manager, an utterance generator and a text-to-
speech synthesizer (TTS). The GIS modules in
this architecture are the City Model, the Visibility
Engine, and the Pedestrian tracker. Users commu-
nicate with the system using a smartphone-based
client app (an Android app) that sends users’ po-
sition, pace rate, and spoken utterances to the sys-
tem, and delivers synthesised system utterances to
the user.

Figure 1: System Architecture
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3.1 Dialogue interface

The dialogue interface consists of a speech recog-
nition module, an utterance parser, an interaction
manager, an utterance generator and a speech syn-
thesizer. The Nuance 9 speech recogniser with
a domain specific language model was used for
speech recognition. The recognised speech is cur-
rently parsed using a rule-based parser into dia-
logue acts and semantic content.

The Interaction Manager (IM) is the central
component of this architecture, which provides
the user with navigational instructions, pushes PoI
information and manages QA questions. It re-
ceives the user’s input in the form of a dialogue
act (DA), the user’s location (latitude and longi-
tude) and pace rate. Based on these inputs and the
dialogue context, it responds with system output
dialogue act, based on a dialogue policy. The IM
initiates the conversation with a calibration phase
where the user’s initial location and orientation are
obtained. The user can then initiate tasks that in-
terest him/her. These tasks include searching for
an entity (e.g. a museum or a restaurant), request-
ing navigation instructions to a destination, ask-
ing questions about the entities in the City Model,
and so on. When the user is mobile, the IM iden-
tifies points of interest2 on the route proximal to
the user. We call this “PoI push”. The user is en-
couraged to ask for more information if he/she is
interested. The system also answers adhoc ques-
tions from the user (e.g. “Who is David Hume?”,
“What is the Old College?”, etc) (see section 3.4).

Navigation instructions are given in-situ by ob-
serving user’s position continuously, in relation
to the next node (street junction) on the current
planned route, and they are given priority if in con-
flict with a PoI push at the same time. Navigation
instructions use landmarks near route nodes when-
ever possible (e.g. “When you reach Clydesdale
Bank , keep walking forward”). The IM also in-
forms when users pass by recognisable landmarks,
just to reassure them that they are on track (e.g.
“You will pass by Tesco on the right”). In addition
to navigation instructions, the IM also answers
users’ questions concerning the route, his/her lo-
cation, and location of and distance to the various
entities. Finally, the IM uses the city model’s Vis-
ibility Engine (VE) to determine whether the des-
tination is visible to the user (see section 3.3).

2Using high scoring ones when there are many, based on
tourist popularity ratings in the City Model.

The shared spatial and dialogue context em-
ploys a feature-based representation which is up-
dated every 1 second (for location), and after every
dialogue turn. Spatial context such as the user’s
coordinates, street names, PoIs and landmarks
proximal to the user, etc are used by PoI push-
ing and navigation. The dialogue context main-
tains the history of landmarks and PoIs pushed,
latest entities mentioned, etc to resolve anaphoric
references in navigation and QA requests, and to
deliver coherent dialogue responses. The IM re-
solves anaphoric references by keeping a record
of entities mentioned in the dialogue context. It
also engages in clarification sub-dialogues when
the speech recognition confidence scores are low.
The IM stores the name and type information for
each entity (such as landmark, building, etc) men-
tioned in navigation instructions and PoI pushes.
Subsequent references to these entities using ex-
pressions such as “the museum”, “the cafe” etc
are resolved by searching for the latest entity of
the given type. Pronouns are resolved to the last
mentioned entity.

The IM also switches between navigation, PoI
push, and QA tasks in an intelligent manner by
using the shared context to prioritise its utterances
from these different tasks. The utterance genera-
tor is a Natural Language Generation module that
translates the system DA into surface text which is
converted into speech using the Cereproc Text-to-
Speech Synthesizer using a Scottish female voice.
The only changes made were minor adjustments
to the pronunciation of certain place names.

3.2 Pedestrian tracker
Urban environments can be challenging with lim-
ited sky views, and hence limited line of sight
to satellites, in deep urban corridors. There is
therefore significant uncertainty about the user’s
true location reported by GNSS sensors on smart-
phones (Zandbergen and Barbeau, 2011). This
module improves on the reported user position
by combining smartphone sensor data (e.g. ac-
celerometer) with map matching techniques, to
determine the most likely location of the pedes-
trian (Bartie and Mackaness, 2012).

3.3 City Model
The City Model is a spatial database containing
information about thousands of entities in the city
of Edinburgh (Bartie and Mackaness, 2013). This
data has been collected from a variety of exist-
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ing resources such as Ordnance Survey, Open-
StreetMap, Google Places, and the Gazetteer for
Scotland. It includes the location, use class, name,
street address, and where relevant other properties
such as build date and tourist ratings. The model
also includes a pedestrian network (streets, pave-
ments, tracks, steps, open spaces) which is used
by an embedded route planner to calculate min-
imal cost routes, such as the shortest path. The
city model also consists of a Visibility Engine
that identifies the entities that are in the user’s
vista space (Montello, 1993). To do this it ac-
cesses a digital surface model, sourced from Li-
DAR, which is a 2.5D representation of the city
including buildings, vegetation, and land surface
elevation. The Visibility Engine uses this dataset
to offer a number of services, such as determining
the line of sight from the observer to nominated
points (e.g. which junctions are visible), and de-
termining which entities within the city model are
visible. Using these services, the IM determines if
the destination is visible or not.

3.4 Question-Answering server

The QA server currently answers a range of def-
inition and biographical questions such as, “Tell
me more about the Scottish Parliament”, “Who
was David Hume?”, “What is haggis?”, and re-
quests to resume (eg. “Tell me more”). QA
is also capable of recognizing out of scope re-
quests, that is, either navigation-related questions
that can be answered by computations from the
City Model and dealt with elsewhere in the sys-
tem (“How far away is the Scottish Parliament?”,
“How do I get there?”), or exploration queries
that cannot be handled yet (“When is the can-
non gun fired from the castle?”). Question clas-
sification is entirely machine learning-based using
the SMO algorithm (Keerthi et al., 1999) trained
over 2013 annotated utterances. Once the question
has been typed, QA proceeds to focus detection
also using machine learning techniques (Mikhail-
sian et al., 2009). Detected foci include possi-
bly anaphoric expressions (“Who was he?”, “Tell
me more about the castle”). These expressions
are resolved against the dialogue history and ge-
ographical context. QA then proceeds to a tex-
tual search on texts from the Gazetteer of Scotland
(Gittings, 2012) and Wikipedia, and definitions
from WordNet glosses. The task is similar to TAC
KBP 2013 Entity Linking Track and named en-

tity disambiguation (Cucerzan, 2007). Candidate
answers are reranked using a trained confidence
score with the top candidate used as the final an-
swer. These are usually long, descriptive answers
and are provided as a flow of sentence chunks that
the user can interrupt (see table 2). The Interaction
Manager queries the QA model and pushes infor-
mation when a salient PoI is in the vicinity of the
user.

“Edinburgh’s most famous and historic thoroughfare,
which has formed the heart of the Old Town since
mediaeval times. The Royal Mile includes Castlehill,
the Lawnmarket, the Canongate and the Abbey Strand,
but, is officially known simply as the High Street.”

Table 2: QA output: query on “Royal Mile”

3.5 Mobile client

The mobile client app, installed on an Android
smartphone (Samsung Galaxy S3), connects the
user to the dialogue system using a 3G data con-
nection. The client senses the user’s location us-
ing positioning technology using GNSS satellites
(GPS and GLONASS) which is sent to the dia-
logue system at the rate of one update every two
seconds. It also sends pace rate of the user from
the accelerometer sensor. In parallel, the client
also places a phone call using which the user com-
municates with the dialogue system.

4 Baseline system

The baseline system chosen for evaluation was
Samsung S-Voice, a state-of-the-art commercial
smartphone speech interface. S-Voice is a Sam-
sung Android mobile phone app that allows a user
to use the functionalities of device using a speech
interface. For example, the user can say “Call
John” and it will dial John from the user’s con-
tacts. It launches the Google Navigation app when
users request directions and it activates Google
Search for open ended touristic information ques-
tions. The Navigation app is capable of providing
instructions in-situ using speech. We used the S-
Voice system for comparison because it provided
an integrated state-of-the-art interface to use both
a navigation app and also an information-seeking
app using the same speech interface. Users were
encouraged to use these apps using speech but
were allowed to use the GUI interface when us-
ing speech wasn’t working (e.g. misrecognition of
local names). Users obtained the same kind of in-
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formation (i.e. navigation directions, descriptions
about entities such as people, places, etc) from the
baseline system as they would from our system.
However, our system interacted with the user us-
ing the speech modality only.

5 Experimental design

Spacebook and the baseline were evaluated in the
summer of 2012. We evaluated both systems with
17 subjects in the streets of Edinburgh. There
were 11 young subjects (between 20 and 26 years,
mean=22 ± 2) and 6 older subjects (between 50
and 71 years, mean=61 ± 11). They were mostly
native English speakers (88%). 59% of the users
were regular smartphone users and their mean
overall time spent in the city was 76 months. The
test subjects had no previous experience with the
proposed system. They were recruited via email
adverts and mail shots. Subjects were given a task
sheet with 8 tasks in two legs (4 tasks per leg).
These tasks included both navigation and tourist
information tasks (see table 3). Subjects used our
system for one of the legs and the baseline system
for the other and the order was balanced. Each leg
took up to 30 mins to finish and the total duration
including questionnaires was about 1.5 hours. Fig-
ure 2 shows the route taken by the subjects. The
route is about 1.3 miles long. Subjects were fol-
lowed by the evaluator who made notes on their
behaviour (e.g. subject looks confused, subject
looks at or manipulates the phone, subject looks
around, etc).

Subjects filled in a demographic questionnaire
prior to the experiment. After each leg, they filled
in a system questionnaire (see appendix) rating
their experience. After the end of the experi-
ment, they filled out a comparative questionnaire
and were debriefed. They were optionally asked
to elaborate on their questionnaire ratings. Users
were paid £20 after the experiment was over.

6 Results

Subjects were asked to identify tasks that they
thought were successfully completed. The per-
ceived task success rates of the two systems were
compared for each task using the Chi square test.
The results show that there is no statistically sig-
nificant difference between the two systems in
terms of perceived task success although the base-
line system had a better task completion rate in
tasks 1-3, 5 and 6. Our system performed better in

Figure 2: Task route

tourist information tasks (4, 7) (see table 4).

Task Our system Baseline p
T1 (N) 77.7 100 0.5058
T2 (TI) 88.8 100 0.9516
T3 (N) 100 100 NA
T4 (TI) 100 87.5 0.9516
T5 (N+TI) 62.5 100 0.1654
T6 (N+TI) 87.5 100 0.9516
T7 (TI) 100 55.5 0.2926
T8 (N) 75.0 88.8 0.9105

Table 4: % Perceived Task success - task wise
comparison (N - navigation task, TI - Tourist In-
formation task)

The system questionnaires that were filled out
by users after each leg were analysed. These
consisted of questions concerning each system to
be rated on a six point Likert scale (1-Strongly
Disagree, 2-Disagree, 3-Somewhat Disagree, 4-
Somewhat Agree, 5-Agree, 6-Strongly Agree).
The responses were paired and tested using a
Wilcoxon Sign Rank test. Median and Mode for
each system and significance in differences are
shown in table 5. Results show that although
our system is not performing significantly better
than the baseline system (SQ1-SQ10 except SQ7),
users seem to find it more understanding (SQ7)
and more interesting to interact with (SQ11) than
the baseline. We grouped the subjects by age
group and tested their responses. We found that
the young subjects (age group 20-26), also felt that
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Leg 1
(Task 1) Ask the system to guide you to the Red Fort restaurant.
(Task 2) You’ve heard that Mary Queen of Scots lived in Edinburgh. Find out about her.
(Task 3) Walk to the university gym.
(Task 4) Near the gym there is an ancient wall with a sign saying “Flodden Wall”. Find out what that is.
Leg 2
(Task 5) Try to find John Knox House and learn about the man.
(Task 6) Ask the system to guide you to the Old College. What can you learn about this building?
(Task 7) Try to find out more about famous Edinburgh people and places, for example, David Hume,
John Napier, and Ian Rankin. Try to find information about people and places that you are personally
interested in or that are related to what you see around you.
(Task 8) Ask the system to guide you back to the Informatics Forum.

Table 3: Tasks for the user

they learned something new about the city using it
(SQ12) (p < 0.05) while the elderly (age group
50-71) didn’t. We also found statistically signifi-
cant differences in smartphone users rating for our
system on their learning compared to the baseline
(SQ12).

Subjects were also asked to choose between the
two systems given a number of requirements such
as ease of use, use for navigation, tourist infor-
mation, etc. There was an option to rank the sys-
tems equally (i.e. a tie). They were presented with
the same requirements as the system questionnaire
with one additional question - “Overall which sys-
tem do you prefer?” (CQ0). Users’ choice of sys-
tem based on a variety of requirements is shown
in table 6. Users’ choice counts were tested us-
ing Chi-square test. Significant differences were
found in users’ choice of system for navigation
and tourist information requirements. Users pre-
ferred the baseline system for navigation (CQ2)
and our system for touristic information (CQ3) on
the city. Although there was a clear choice of sys-
tems based on the two tasks, there was no signifi-
cant preference of one system over the other over-
all (CQ0). They chose our system as the most in-
teresting system to interact with (CQ11) and that
it was more informative than the baseline (CQ12).
Figure 3 shows the relative frequency between
user choices on comparative questions.

7 Analysis

Users found it somewhat difficult to navigate using
Spacebook (see comments in table 7). Although
the perceived task success shows that our system
was able to get the users to their destination and
there was no significant difference between the
two systems based on their questionnaire response
on navigation, they pointed out a number of issues
and suggested a number of modifications. Many

Figure 3: Responses to comparative questions

users noted that a visual map and the directional
arrow in the baseline system was helpful for nav-
igation. In addition, they noted that our system’s
navigation instructions were sometimes not satis-
factory. They observed that there weren’t enough
instructions coming from the system at street junc-
tions. They needed more confirmatory utterances
(that they are walking in the right direction) (5
users) and quicker recovery and notification when
walking the wrong way (5 users). They observed
that the use of street names was confusing some-
times. Some users also wanted a route summary
before the navigation instructions are given.

The problem with Spacebook’s navigation pol-
icy was that it did not, for example, direct the
user via easily visible landmarks (e.g. “Head to-
wards the Castle”), and relies too much on street
names. Also, due to the latency in receiving GPS
information, the IM sometimes did not present in-
structions soon enough during evaluation. Some-
times it received erroneous GPS information and
therefore got the user’s orientation wrong. These
problems will be addressed in the future version.
Some users did find navigation instructions use-
ful because of the use of proximal landmarks such
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Question B Mode B Median S Mode S Median p
SQ1 - Ease of use 4 4 5 4 0.8207
SQ2 - Navigation 4 4 5 4 0.9039
SQ3 - Tourist Information 2 3 4 4 0.07323
SQ4 - Easy to understand 5 5 5 5 0.7201
SQ5 - Useful messages 5 4 5 4 1
SQ6 - Response time 5 5 2 2 0.2283
SQ7 - Understanding 3 3 5 4 0.02546
SQ8 - Repetitive 2 3 2 3 0.3205
SQ9 - Aware of user environment 5 5 4 4 0.9745
SQ10 - Cues for guidance 5 5 5 5 0.1371
SQ11 - Interesting to interact with 5 4 5 5 0.01799
SQ12 - Learned something new 5 4 5 5 0.08942

Table 5: System questionnaire responses (B=Baseline, S=our system)

Task Baseline Our system Tie p-
Preferred Preferred value

CQ0 23.52 35.29 41.17 0.66
CQ1 35.29 29.41 35.29 0.9429
CQ2 64.70 0 35.29 0.004
CQ3 17.64 64.70 17.64 0.0232
CQ4 35.29 29.41 23.52 0.8187
CQ5 23.52 52.94 23.52 0.2298
CQ6 23.52 29.41 35.29 0.8187
CQ7 17.64 47.05 35.29 0.327
CQ8 29.41 23.52 47.05 0.4655
CQ9 29.41 52.94 17.64 0.1926
CQ10 47.05 29.41 23.52 0.4655
CQ11 5.88 76.47 17.64 0.0006
CQ12 0 70.58 29.41 0.005

Table 6: User’s choice on comparative questions
(CQ are the same questions as SQ but requesting
a ranking of the 2 systems)

as KFC, Tesco, etc. (popular chain stores). Some
users also suggested that our system should have
a map and that routes taken should be plotted on
them for reference. Based on the ratings and ob-
servations made by the users, we conclude that our
first hypothesis that Spacebook would be more ef-
ficient for navigation than the baseline because of
its speech-only interface was inconclusive. We be-
lieve so because users’ poor ratings for Spacebook
may be due to the current choice of dialogue pol-
icy for navigation. It may be possible to reassure
the user with a better dialogue policy with just the
speech interface. However, this needs further in-
vestigation.

Users found the information-search task inter-
esting and informative when they used Spacebook
(see sample user comments in table 8). They
also found push information on nearby PoIs un-
expected and interesting as they would not have
found them otherwise. Many users believed that
this could be an interesting feature that could help
tourists. They also found that asking questions and

finding answers was much easier with Spacebook
compared to the baseline system, where some-
times users needed to type search keywords in.
Another user observation was that they did not
have to stop to listen to information presented
by our system (as it was in speech) and could
carry on walking. However, with the baseline sys-
tem, they had to stop to read information off the
screen. Although users in general liked the QA
feature, many complained that Spacebook spoke
too quickly when it was presenting answers. Some
users felt that the system might lose context of the
navigation task if presented with a PoI question.
In contrast, some others noted Spacebook’s ability
to interleave the two tasks and found it to be an
advantage.

Users’ enthusiasm for our system was observed
when (apart from the points of interest that were
in the experimental task list) they also asked spon-
taneous questions about James Watt, the Talbot
Rice gallery, the Scottish Parliament and Edin-
burgh Castle. Some of the PoIs that the system
pushed information about were the Royal College
of Surgeons, the Flodden Wall, the Museum of
Childhood, and the Scottish Storytelling Centre.
Our system answered a mean of 2.5 out of 6.55
questions asked by users in leg 1 and 4.88 out of
8.5 questions in leg 2. Please note that an utter-
ance is sent to QA if it is not parsed by the parser
and therefore some utterances may not be legit-
mate questions themselves. Users were pushed a
mean of 2.88 and 6.37 PoIs during legs 1 and 2.
There were a total of 17 “tell me more” requests
requesting the system to present more information
(mean=1.35 ± 1.57).

Evaluators who followed the subjects noted that
the subjects felt difficulty using the baseline sys-
tem as they sometimes struggled to see the screen
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1. “It’s useful when it says ’Keep walking’ but it should say it more often.”
2. “[Your system] not having a map, it was sometimes difficult to check how aware it was of my environment.”
3. “[Google] seemed to be easier to follow as you have a map as well to help.”
4. “It told me I had the bank and Kentucky Fried Chicken so I crossed the road because I knew it’d be somewhere over
beside them. I thought ’OK, great. I’m going the right way.’ but then it didn’t say anything else. I like those kind of
directions because when it said to go down Nicolson Street I was looking around trying to find a street sign.”
5. “The system keeps saying ’when we come to a junction, I will tell you where to go’, but I passed junctions and it
didn’t say anything. It should say ’when you need to change direction, I will tell you.’”
6. “I had to stop most of the times for the system to be aware of my position. If walking very slowly, its awareness of
both landmarks and streets is excellent.”

Table 7: Sample user comments on the navigation task

1. “Google doesn’t *offer* any information. I would have to know what to ask for...”
2. “Since many information is given without being asked for (by your system), one can discover new places and
landmarks even if he lives in the city. Great feature!!”
3. “I didn’t feel confident to ask [your system] a question and still feel it would remember my directions”
4. “Google could only do one thing at a time, you couldn’t find directions for a place whilst learning more.”
5. “If she talked a little bit slower [I would use the system for touristic purposes]. She just throws masses of information
really, really quickly.”

Table 8: Sample user comments on the tourist information task

in bright sunlight. They sometimes had difficulty
identifying which way to go based on the route
plotted on the map. In comparison, subjects did
not have to look at the screen when they used
our system. Based on the ratings and observa-
tions made by the users about our system’s tourist
information features such as answering questions
and pushing PoI information, we have support for
our second hypothesis: that users find a dialogue
interface which integrates question-answering and
navigation within a shared context to be useful for
finding information about entities in the urban en-
vironment.

8 Future plans

We plan to extend Spacebook’s capabilities to ad-
dress other challenges in pedestrian navigation and
tourist information. Many studies have shown
that visible landmarks provide better cues for nav-
igation than street names (Ashweeni and Steed,
2006; Hiley et al., 2008). We will use visible
landmarks identified using the visibility engine to
make navigation instructions more effective, and
we plan to include entities in dialogue and visual
context as candidates for PoI push, and to imple-
ment an adaptive strategy that will estimate user
interests and push information that is of interest
to them. We are also taking advantage of user’s
local knowledge of the city to present navigation
instructions only for the part of the route that the
user does not have any knowledge of. These fea-
tures, we believe, will make users’ experience of

the interface more pleasant, useful and informa-
tive.

9 Conclusion

We presented a mobile dialogue app called Space-
book to support pedestrian users in navigation
and tourist information gathering in urban envi-
ronments. The system is a speech-only interface
and addresses navigation and tourist information
in an integrated way, using a shared dialogue con-
text. For example, using the navigational context,
Spacebook can push point-of-interest information
which can then initiate touristic exploration tasks
using the QA module.

We evaluated the system against a state-of-the-
art baseline (Samsung S-Voice with Google Navi-
gation and Search) with a group of 17 users in the
streets of Edinburgh. We found that users found
Spacebook interesting to interact with, and that
it was their system of choice for touristic infor-
mation exploration tasks. These results were sta-
tistically significant. Based on observations and
user ratings, we conclude that our speech-only
system was less preferred for navigation and more
preferred for tourist information tasks due to fea-
tures such as PoI pushing and the integrated QA
module, when compared to the baseline system.
Younger users, who used Spacebook, even felt that
they learned new facts about the city.
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Abstract

Procedural dialog systems can help users
achieve a wide range of goals. However,
such systems are challenging to build,
currently requiring manual engineering of
substantial domain-specific task knowl-
edge and dialog management strategies. In
this paper, we demonstrate that it is pos-
sible to learn procedural dialog systems
given only light supervision, of the type
that can be provided by non-experts. We
consider domains where the required task
knowledge exists in textual form (e.g., in-
structional web pages) and where system
builders have access to statements of user
intent (e.g., search query logs or dialog
interactions). To learn from such tex-
tual resources, we describe a novel ap-
proach that first automatically extracts task
knowledge from instructions, then learns a
dialog manager over this task knowledge
to provide assistance. Evaluation in a Mi-
crosoft Office domain shows that the indi-
vidual components are highly accurate and
can be integrated into a dialog system that
provides effective help to users.

1 Introduction

Procedural dialog systems aim to assist users
with a wide range of goals. For example, they
can guide visitors through a museum (Traum et
al., 2012; Aggarwal et al., 2012), teach students
physics (Steinhauser et al., 2011; Dzikovska et
al., 2011), or enable interaction with a health care

U: “I want to add page numbers and a title”
S: “Top or Bottom of the page?”
U: “Top”
S: “Please select page design from the tem-
plates” (*System shows drop down menu*)
U: *User selects from menu*
S: “Enter header or footer content”
U: “C.V.”
S: “Task completed.”

Figure 1: An example dialog interaction between
a system (S) and user (U) that can be automatically
achieved by learning from instructional web page
and query click logs.

system (Morbini et al., 2012; Rizzo et al., 2011).
However, such systems are challenging to build,
currently requiring expensive, expert engineering
of significant domain-specific task knowledge and
dialog management strategies.

In this paper, we present a new approach for
learning procedural dialog systems from task-
oriented textual resources in combination with
light, non-expert supervision. Specifically, we as-
sume access to task knowledge in textual form
(e.g., instructional web pages) and examples of
user intent statements (e.g., search query logs or
dialog interactions). Such instructional resources
are available in many domains, ranging from
recipes that describe how to cook meals to soft-
ware help web pages that describe how to achieve
goals by interacting with a user interface.1

1ehow.com,wikianswers.com
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There are two key challenges: we must (1)
learn to convert the textual knowledge into a us-
able form and (2) learn a dialog manager that pro-
vides robust assistance given such knowledge. For
example, Figure 1 shows the type of task assis-
tance that we are targeting in the Microsoft Office
setting, where the system should learn from web
pages and search query logs. Our central contribu-
tion is to show that such systems can be built with-
out the help of knowledge engineers or domain ex-
perts. We present new approaches for both of our
core problems. First, we introduce a method for
learning to map instructions to tree representations
of the procedures they describe. Nodes in the tree
represent points of interaction with the questions
the system can ask the user, while edges represent
user responses. Next, we present an approach that
uses example user intent statements to simulate di-
alog interactions, and learns how to best map user
utterances to nodes in these induced dialog trees.
When combined, these approaches produce a com-
plete dialog system that can engage in conversa-
tions by automatically moving between the nodes
of a large collection of induced dialog trees.

Experiments in the Windows Office help do-
main demonstrate that it is possible to build an
effective end-to-end dialog system. We evaluate
the dialog tree construction and dialog manage-
ment components in isolation, demonstrating high
accuracy (in the 80-90% range). We also conduct
a small-scale user study which demonstrates that
users can interact productively with the system,
successfully completing over 80% of their tasks.
Even when the system does fail, it often does so in
a graceful way, for example by asking redundant
questions but still reaching the goal within a few
additional turns.

2 Overview of Approach

Our task-oriented dialog system understands user
utterances by mapping them to nodes in dialog
trees generated from instructional text. Figure 2
shows an example of a set of instructions and the
corresponding dialog tree. This section describes
the problems that we must solve to enable such in-
teractions, and outlines our approach for each.

Knowledge Acquisition We extract task knowl-
edge from instructional text (e.g., Figure 2, left)
that describes (1) actions to be performed, such
as clicking a button, and (2) places where input
is needed from the user, for example to enter the

contents of the footer or header they are trying to
create. We aim to convert this text into a form that
will enable a dialog system to automatically assist
with the described task. To this end, we construct
dialog trees (e.g., Figure 2, right) with nodes to
represent entire documents (labeled as topics t),
nodes to represent user goals or intents (g), and
system action nodes (a) that enable execution of
specific commands. Finally, each node has an as-
sociated system action as, which can prompt user
input (e.g., with the question “Top or bottom of
the page?”) and one or more user actions au that
represent possible responses. All nodes connect
to form a tree structure that follows the workflow
described in the document. Section 3 presents a
scalable approach for inducing dialog trees.

Dialog Management To understand user intent
and provide task assistance, we need a dialog man-
agement approach that specifies what the system
should do and say. We adopt a simple approach
that at all times maintains an index into a node in
a dialog tree. Each system utterance is then simply
the action as for that node. However, the key chal-
lenge comes in interpreting user utterances. After
each user statement, we must automatically up-
date our node index. At any point, the user can
state a general goal (e.g., “I want to add page num-
bers”), refine their goal (e.g., “in a footer”), or both
(e.g.,“I want to add page numbers in the footer”).
Users can also change their goals in the process of
completing the tasks.

We develop a simple classification approach
that is robust to these different types of user behav-
ior. Specifically, we learn classifiers that, given the
dialog interaction history, predict how to pick the
next tree node from the space of all nodes in the di-
alog trees that define the task knowledge. We iso-
late two specific cases, classifying initial user ut-
terances (Section 4) and classifying all subsequent
utterances (Section 5). This approach allows us to
isolate the difference in language for the two cases,
and bias the second case to prefer tree nodes near
the current one. The resulting approach allows for
significant flexibility in traversing the dialog trees.

Data and Evaluation We collected a large set of
such naturally-occurring web search queries that
resulted in a user click on a URL in the Microsoft
Office help domain.2 We found that queries longer
that 4-5 words often resembled natural language
utterances that could be used for dialog interac-

2http://office.microsoft.com
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Figure 2: An example instructional text paired with a section of the corresponding dialog tree.

tions, for example how do you add borders, how
can I add a footer, how to insert continuous page
numbers, and where is the header and footer.

We also collected instructional texts from the
web pages that describe how to solve 76 of the
most pressing user goals, as indicated by query
click log statistics. On average 1,000 user queries
were associated with each goal. To some extent
clickthroughs can be treated as a proxy for user
frustration; popular search targets probably repre-
sent user pain points.

3 Building Dialog Trees from
Instructions

Our first problem is to convert sets of instructions
for user goals to dialog trees, as shown in Figure
2. These goals are broadly grouped into topics
(instructional pages). In addition, we manually
associate each node in a dialog tree with a train-
ing set of 10 queries. For the 76 goals (246 in-
structions) in our data, this annotation effort took
a single annotator a total of 41 hours. Scaling this
approach to the entire Office help domain would
require a focused annotation effort. Crucially,
though, this annotation work can be carried out by
non-specialists, and could even be crowdsourced
(Bernstein et al., 2010).

Problem Definition As input, we are given in-
structional text (p1 . . . pn), comprised of topics
(t1 . . . tn) describing:
(1) high-level user intents (e.g., t1 – “add and for-

mat page numbers”)
(2) goals (g1, . . . , gk) that represent more spe-

cific user intents (e.g., g1 – “add header or
footer content to a preformatted page number
design”, g2 – “place the page number in the
side margin of the page”).

Given instructional text p1 . . . pn and queries
q1 . . . qm per topic ti, our goals are as follows:

Figure 3: Relationships between user queries and
OHP with goals, instructions and dialog trees.

- for every instructional page pi extract a topic
ti and a set of goals g1 . . . gk;

- for every goal gj for a topic ti, extract a set of
instructions i1 . . . il;

- from topics, goals and instructions, construct
dialog trees f1 . . . fn (one dialog tree per
topic). Classify instructions to user interac-
tion types thereby identifying system action
nodes a1s . . . a

l
s. Transitions between these

nodes are the user actions a1u . . . a
l
u.

Figure 2 (left) presents an example of a topic
extracted from the help page, and a set of goals
and instructions annotated with user action types.

In the next few sections of the paper, we out-
line an overall system component design demon-
strating how queries and topics are mapped to the
dialog trees in Figure 3. The figure shows many-
to-one relations between queries and topics, one-
to-many relations between topics and goals, goals
and instructions, and one-to-one relations between
topics and dialog trees.

User Action Classification We aim to classify
instructional text (i1 . . . il) for every goal gj in the
decision tree into four categories: binary, selec-
tion, input or none.

Given a single instruction i with category au,
we use a log-linear model to represent the distri-
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bution over the space of possible user actions. Un-
der this representation, the user action distribution
is defined as:

p(au|i, θ) =
eθ·φ(au,i)∑
a′u
eθ·φ(au,i)

, (1)

where φ(au, i) ∈ Rn is an n-dimensional fea-
ture representation and ~θ is a parameter vector we
aim to learn. Features are indicator functions of
properties of the instructions and a particular class.
For smoothing we use a zero mean, unit variance
Gaussian prior (0, 1) that penalizes ~θ for drifting
too far from the mean, along with the following
optimization function:

log p(Au, θ|I) = log p(Au|I, θ)− log p(θ) =

=
∑

au,i∈(Au,I)
p(au|i, θ)−

∑

i

(θ − µi)2
2σ2i

+ k

(2)

We use L-BFGS (Nocedal and Wright, 2000) as
an optimizer.

Experimental Setup As described in Section 2,
our dataset consists of 76 goals grouped into 30
topics (average 2-3 goals per topic) for a total of
246 instructions (average 3 instructions per goal).
We manually label all instructions with user ac-
tion au categories. The distribution over cate-
gories is binary=14, input=23, selection=80 and
none=129. The data is skewed towards the cat-
egories none and selection. Many instruction do
not require any user input and can be done auto-
matically, e.g., “On the Insert tab, in the Header
and Footer group, click Page Number”. The ex-
ample instructions with corresponding user action
labels are shown in Figure 2 (left) . Finally, we di-
vide the 246 instructions into 2 sets: 80% training
and 20% test, 199 and 47 instructions respectively.

Results We apply the user action type classifi-
cation model described in the Eq.1 and Eq.2 to
classify instructions from the test set into 4 cate-
gories. In Table 1 we report classification results
for 2 baselines: a majority class and heuristic-
based approach, and 2 models with different fea-
ture types: ngrams and ngrams + stems. For a
heuristic baseline, we use simple lexical clues to
classify instructions (e.g., X or Y for binary, select
Y for selection and type X, insert Y for input). Ta-
ble 1 summarizes the results of mapping instruc-
tional text to user actions.

Features # Features Accuracy
Baseline 1: Majority – 0.53
Baseline 2: Heuristic – 0.64
Ngrams 10,556 0.89
Ngrams + Stems 12,196 0.89

Table 1: Instruction classification results.

Building the Dialog Trees Based on the classi-
fied user action types, we identify system actions
a1s . . . a

l
s which correspond to 3 types of user ac-

tions a1s . . . a
l
s (excluding none type) for every goal

in a topic ti. This involved associating all words
from an instruction il with a system action als. Fi-
nally, for every topic we automatically construct a
dialog tree as shown in Figure 2 (right). The dia-
log tree includes a topic t1 with goals g1 . . . g4, and
actions (user actions au and system actions as).

Definition 1. A dialog tree encodes a user-system
dialog flow about a topic ti represented as a di-
rected unweighted graph fi = (V,E) where top-
ics, goals and actions are nodes of correspond-
ing types {t1 . . . tn}, {g1 . . . gk}, {a1 . . . al} ∈ V .
There is a hierarchical dependency between topic,
goal and action nodes. User interactions are
represented by edges ti → {g1 . . . gk}, a1u =
(gj , a1) . . . a

l
u = (ak−1, ak) ∈ E.

For example, in the dialog tree in Figure 2 there
is a relation t1 → g4 between the topic t1 “add
and format page numbers” and the goal g4 “in-
clude page of page X of Y with the page number”.
Moreover, in the dialog tree, the topic level node
has one index i ∈ [1..n], where n is the number
of topics. Every goal node includes information
about its parent (topic) node and has double index
i.j, where j ∈ [1..k]. Finally, action nodes include
information about their parent (goal) and grand-
parent (topic) nodes and have triple index i.j.z,
where z ∈ [1..l].

4 Understanding Initial Queries

This section presents a model for classifying ini-
tial user queries to nodes in a dialog tree, which
allows for a variety of different types of queries.
They can be under-specified, including informa-
tion about a topic only (e.g., “add or delete page
numbers”); partially specified, including informa-
tion about a goal (e.g., “insert page number”); or
over-specified, including information about an ac-
tion ( e.g., “page numbering at bottom page”.)
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Figure 4: Mapping initial user queries to the nodes
on different depth in a dialog tree.

Problem Definition Given an initial query, the
dialog system initializes to a state s0, searches for
the deepest relevant node given a query, and maps
the query to a node on a topic ti, goal gj or action
ak level in the dialog tree fi, as shown in Figure 4.

More formally, as input, we are given automati-
cally constructed dialog trees f1 . . . fn for instruc-
tional text (help pages) annotated with topic, goal
and action nodes and associated with system ac-
tions as shown in Figure 2 (right). From the query
logs, we associate queries with each node type:
topic qt, goal qg and action qa. This is shown in
Figure 2 and 4. We join these dialog trees repre-
senting different topics into a dialog network by
introducing a global root. Within the network,
we aim to find (1) an initial dialog state s0 that
maximizes the probability of state given a query
p(s0|q, θ); and (2) the deepest relevant node v ∈ V
on topic ti, goal gj or action ak depth in the tree.

Initial Dialog State Model We aim to predict
the best node in a dialog tree ti, gj , al ∈ V based
on a user query q. A query-to-node mapping is en-
coded as an initial dialog state s0 represented by a
binary vector over all nodes in the dialog network:
s0 = [t1, g1.1, g1.2, g1.2.1 . . . , tn, gn.1, gn.1.1].
We employ a log-linear model and try to maxi-

mize initial dialog state distribution over the space
of all nodes in a dialog network:

p(s0|q, θ) =
e
∑
i θiφi(s0,q)

∑
s′0
e
∑
i θiφi(s

′
0,q)

, (3)

Optimization follows Eq. 2.
We experimented with a variety of features.

Lexical features included query ngrams (up to 3-
grams) associated with every node in a dialog tree
with removed stopwords and stemming query un-
igrams. We also used network structural features:

Accuracy
Features Topic Goal Action
Random 0.10 0.04 0.04
TFIDF 1Best 0.81 0.21 0.45
Lexical (L) 0.92 0.66 0.63
L + 10TFIDF 0.94 0.66 0.64
L + 10TFIDF + PO 0.94 0.65 0.65
L + 10TFIDF + QO 0.95 0.72 0.69
All above + QHistO 0.96 0.73 0.71

Table 2: Initial dialog state classification results
where L stands for lexical features, 10TFIDF - 10
best tf-idf scores, PO - prompt overlap, QO - query
overlap, and QHistO - query history overlap.

tf-idf scores, query ngram overlap with the topic
and goal descriptions, as well as system action
prompts, and query ngram overlap with a history
including queries from parent nodes.

Experimental Setup For each dialog tree,
nodes corresponding to single instructions were
hand-annotated with a small set of user queries,
as described in Section 3. Approximately 60% of
all action nodes have no associated queries3 For
the 76 goals, the resulting dataset consists of 972
node-query pairs, 80% training and 20% test.

Results The initial dialog state classification
model of finding a single node given an initial
query is described in Eq. 3.

We chose two simple baselines: (1) randomly
select a node in a dialog network and (2) use a tf-
idf 1-best model.4 Stemming, stopword removal
and including top 10 tf-idf results as features led
to a 19% increase in accuracy on an action node
level over baseline (2). Adding the following fea-
tures led to an overall 26% improvement: query
overlap with a system prompt (PO), query overlap
with other node queries (QO), and query overlap
with its parent queries (QHistO) .

We present more detailed results for topic, goal
and action nodes in Table 2. For nodes deeper in
the network, the task of mapping a user query to an
action becomes more challenging. Note, however,
that the action node accuracy numbers actually un-

3There are multiple possible reasons for this: the soft-
ware user interface may already make it clear how to accom-
plish this intent, the user may not understand that the software
makes this fine-grained option available to them, or their ex-
perience with search engines may lead them to state their in-
tent in a more coarse-grained way.

4We use cosine similarity to rank all nodes in a dialog
network and select the node with the highest rank.
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derstate the utility of the resulting dialog system.
The reason is that even incorrect node assignments
can lead to useful system performance. As long
as a misclassification results being assigned to a
too-high node within the correct dialog tree, the
user will experience a graceful failure: they may
be forced to answer some redundant questions, but
they will still be able to accomplish the task.

5 Understanding Query Refinements

We also developed a classifier model for mapping
followup queries to the nodes in a dialog network,
while maintaining a dialog state that summarizes
the history of the current interaction.

Problem Definition Similar to the problem def-
inition in Section 4, we are given a network of di-
alog trees f1 . . . fn and a query q′, but in addition
we are given the previous dialog state s, which
contains the previous user utterance q and the last
system action as. We aim to find a new dialog
state s′ that pairs a node from the dialog tree with
updated history information, thereby undergoing a
dialog state update.

We learn a linear classifier that models
p(s′|q′, q, as, θ), the dialog state update distribu-
tion, where we constrain the new state s′ to contain
the new utterance q′ we are interpreting. This dis-
tribution models 3 transition types: append, over-
ride and reset.

Definition 2. An append action defines a dialog
state update when transitioning from a node to its
children at any depth in the same dialog tree e.g.,
ti → gi.j (from a topic to a goal node), gi.j →
ai.j.z (from a goal to an action node) etc.

Definition 3. An override action defines a dialog
state update when transitioning from a goal to its
sibling node. It could also be from an action node5

to another in its parent sibling node in the same di-
alog tree e.g., gi.j−1 → gi.j (from one goal to an-
other goal in the same topic tree), ai.j.z → ai.¬j.z
(from an action node to another action node in a
different goal in the same dialog tree) etc.

Definition 4. A reset action defines a dialog state
update when transitioning from a node in a current
dialog tree to any other node at any depth in a
dialog tree other than the current dialog tree e.g.,
ti → t¬i, (from one topic node to another topic

5A transition from ai.j.z must be to a different goal or an
action node in a different goal but in the same dialog tree.

(a) Updates from topic node ti

(b) Updates from goal node gj

(c) Updates from action node al

Figure 5: Information state updates: append, reset
and override updates based on Definition 2, 3 and
4, respectively, from topic, goal and action nodes.

node) ti → g¬i.j (from a topic node to a goal node
in a different topic subtree), etc.

The append action should be selected when the
user’s intent is to clarify a previous query (e.g.,
“insert page numbers” → “page numbers in the
footer”). An override action is appropriate when
the user’s intent is to change a goal within the
same topic (e.g., “insert page number→ “change
page number”). Finally, a reset action should be
used when the user’s intent is to restart the dialog
(e.g., “insert page x of y” → “set default font”).
We present more examples for append, override
and reset dialog state update actions in Table 3.
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Previous Utterance, q User Utterance, q′ Transition Update Action, a
inserting page numbers qt1 add a background ti → t¬i 2, reset-T, reset
how to number pages qt2 insert numbers on pages in margin ti → si.j 1.4, append-G, append
page numbers qt3 set a page number in a footer ti → ai.j.z 1.2.1, append-A, append
page number a document qt4 insert a comment ti → g¬i.j 21.1, reset-G, reset
page number qt5 add a comment “redo” ti → a¬i.j.z 21.2.1, reset-A, reset
page x of y qg1 add a border gi.j → t¬i 6, reset-T, reset
format page x of x qg2 enter text and page numbers gi.j → gi.¬j 1.1, override-G, override
enter page x of y qg3 page x of y in footer gi.j → ai.j.z 1.3.1, append-A, append
inserting page x of y qg4 setting a default font gi.j → g¬i.j 6.1, reset-G, reset
showing page x of x qg5 set default font and style gi.j → a¬i.j.z 6.4.1, reset-A, reset
page numbers bottom qa1 make a degree symbol ai.j.z → t¬i 13, reset-T, reset
numbering at bottom page qa2 insert page numbers ai.j.z → gi.¬j 1.1, override-G, override
insert footer page numbers qa3 page number design ai.j.z−1 → ai.j.z 1.2.2, append-A, append
headers page number qa4 comments in document ai.j.z → g¬i.j 21.1, reset-G, reset
page number in a footer qa5 changing initials in a comment ai.j.z → a¬i.j.z 21.2.1, reset-A, reset

Table 3: Example q and q′ queries for append, override and reset dialog state updates.

Figure 5 illustrates examples of append, over-
ride and reset dialog state updates. All transitions
presented in Figure 5 are aligned with the example
q and q′ queries in Table 3.

Dialog State Update Model We use a log-linear
model to maximize a dialog state distribution over
the space of all nodes in a dialog network:

p(s′|q′, q, asθ) =
e
∑
i θiφi(s

′,q′,as,q)
∑

s′′ e
∑
i θiφi(s

′′,q′,as,q)
, (4)

Optimization is done as described in Section 3.

Experimental Setup Ideally, dialog systems
should be evaluated relative to large volumes of
real user interaction data. Our query log data,
however, does not include dialog turns, and so we
turn to simulated user behavior to test our system.

Our approach, inspired by recent work (Schatz-
mann et al., 2006; Scheffler and Young, 2002;
Georgila et al., 2005), involves simulating dialog
turns as follows. To define a state s we sam-
ple a query q from a set of queries per node v
and get a corresponding system action as for this
node; to define a state s′, we sample a new query
q′ from another node v′ ∈ V, v 6= v′ which
is sampled using a prior probability biased to-
wards append: p(append)=0.7, p(override)=0.2,
p(reset)=0.1. This prior distribution defines a dia-
log strategy where the user primarily continues the
current goal and rarely resets.

We simulate 1100 previous state and new query
pairs for training and 440 pairs for testing. The
features were lexical, including word ngrams,
stems with no stopwords; we also tested network
structure, such as:

- old q and new q′ query overlap (QO);
- q′ overlap with a system prompt as (PO);

- q′ ngram overlap with all queries from the old
state s (SQO);

- q′ ngram overlap with all queries from the
new state s′ (S′QO);

- q′ ngram overlap with all queries from the
new state parents (S′ParQO).

Results Table 4 reports results for dialog state
updates for topic, goal and action nodes. We also
report performance for two types of dialog updates
such as: append (App.) and override (Over.).

We found that the combination of lexical and
query overlap with the previous and new state
queries yielded the best accuracies: 0.95, 0.84 and
0.83 for topic, goal and action node level, respec-
tively. As in Section 4, the accuracy on the topic
level node was highest. Perhaps surprisingly, the
reset action was perfectly predicted (accuracy is
100% for all feature combinations, not included
in figure). The accuracies for append and override
actions are also high (append 95%, override 90%).

Features Topic Goal Action App. Over.
L 0.92 0.76 0.78 0.90 0.89
L+Q 0.93 0.80 0.80 0.92 0.83
L+P 0.93 0.80 0.79 0.91 0.85
L+Q+P 0.94 0.80 0.80 0.93 0.85
L+SQ 0.94 0.82 0.81 0.93 0.85
L+S′Q 0.93 0.80 0.80 0.91 0.90
L+S′+ParQ 0.94 0.80 0.80 0.91 0.86
L+Q+S′Q 0.94 0.81 0.81 0.91 0.88
L+SQ+S′Q 0.95 0.84 0.83 0.94 0.88

Table 4: Dialog state updates classification ac-
curacies where L stands for lexical features, Q -
query overlap, P - prompt overlap, SQ - previous
state query overlap, S′Q - new state query overlap,
S′ParQ - new state parent query overlap.
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6 The Complete Dialog System

Following the overall setup described in Section 2,
we integrate the learned models into a complete
dialog system. To evaluate the quality of the in-
teractions with this system, we performed a small
scale user study, as described here.

Experimental Setup We randomly chose 8
goals, across topics, from the 76 used to train our
models. For each goal, six users were shown a Mi-
crosoft Word document before and after the goal
was executed. Users were allowed to interact with
the system in an unconstrained manner providing a
total of 48 interactions. If at any point they thought
the system response was irrelevant to their intent,
they could either rephrase or start over.

User Study We objectively measured task com-
pletion and the quality of individual system utter-
ances. We also asked the users to rate the system
(on a scale of 1-5, with 5 being best) on various
measures, including whether the system asked rel-
evant questions. Table 5 summarizes the results.
In general, users were able to complete the tasks
and were reasonably satisfied.

Discussion Figure 6 shows four example di-
alogs. User utterances ranged from single key-
words to rich, sentence-like goal descriptions. For
the shorter inputs, the system was generally able
to identify a small cohort of high-probability in-
tents. For longer inputs, especially with explicitly
specified parameter settings, the system was usu-
ally able to elicit whatever additional information
was required to complete the task. The majority of
errors fell into two categories when the system:

I. missed key information in the input and
asked redundant questions – Figure 6 (C);

II. failed to correctly identify the intent, and
asked an irrelevant question – Figure 6 (D).

Table 5 shows the frequency of each error type.

Objective Measures Observed Rates
User achieved task 83%
System asked irrelevant questions 19%
System asked redundant questions 18%
User Satisfaction Score Std.Dev.
Overall satisfaction 3.42 0.49
Questions were relevant 4.17 0.41
Ambiguity was managed 4.00 0.89

Table 5: User study results.

U: “I want a page number and title at the bot-
tom of the page”
S: “Choose a page number design from the
gallery of designs”
U: *User selects design*
S: “To insert header or footer content before the
page number, type the content, and then press
TAB to position the content”
U: “Professional Resume”
S: “Task Completed”

(A)

U: “Alphabetize bullets”
S: “Do you want to sort a list alphabetically”
U: “Sort a list”
S: “Select the text in a bulleted or numbered
list”
U: *User selection*
S: “Ascending or Descending?”
U: “Ascending”
S: “Task Completed”

(B)

U: “I want the background color to be yellow”
S: “Choose a color for the document”
U: “Yellow ”
S: “Task completed”

(C)

U: “I want to change the font face and size”
S: “Choose the default font”
U: “No, reduce the size of the text”
S: *System Restarts*

(D)

Figure 6: Four example dialogs from the user
study, including cases that (A and B) complete
successfully, (C) have a redundant question, and
(D) fail to recognize the user intent.

7 Related work

To the best of our knowledge, this paper presents
the first effort to induce full procedural dialog sys-
tems from instructional text and query click logs.

Grounded Language Learning There has been
significant interest in grounded language learn-
ing. Perhaps the most closely related work
learns to understand instructions and automati-

1676



cally complete the tasks they describe (Branavan
et al., 2009; Vogel and Jurafsky, 2010; Kush-
man et al., 2009; Branavan et al., 2010; Artzi and
Zettlemoyer, 2013). However, these approaches
did not model user interaction. There are also
many related approaches for other grounded lan-
guage problems, including understanding game
strategy guides (Branavan et al., 2011), model-
ing users goals in a Windows domain (Horvitz
et al., 1998), learning from conversational inter-
action (Artzi and Zettlemoyer, 2011), learning
to sportscast (Chen and Mooney, 2011), learning
from event streams (Liang et al., 2009), and learn-
ing paraphrases from crowdsourced captions of
video snippets (Chen and Dolan, 2011).

Dialog Generation from Text Similarly to Pi-
wek’s work (2007; 2010; 2011), we study extract-
ing dialog knowledge from documents (mono-
logues or instructions). However, Piwek’s ap-
proach generates static dialogs, for example to
generate animations of virtual characters having a
conversation. There is no model of dialog man-
agement or user interaction, and the approach does
not use any machine learning. In contrast, to the
best of our knowledge, we are the first to demon-
strate it is possible to learn complete, interactive
dialog systems using instructional texts (and non-
expert annotation).

Learning from Web Query Logs Web query
logs have been extensively studied. For example,
they are widely used to represent user intents in
spoken language dialogs (Tür et al., 2011; Celiky-
ilmaz et al., 2011; Celikyilmaz and Hakkani-Tur,
2012). Web query logs are also used in many other
NLP tasks, including entity linking (Pantel et al.,
2012) and training product and job intent classi-
fiers (Li et al., 2008).

Dialog Modeling and User Simulation Many
existing dialog systems learn dialog strategies
from user interactions (Young, 2010; Rieser and
Lemon, 2008). Moreover, dialog data is often lim-
ited and, therefore, user simulation is commonly
used (Scheffler and Young, 2002; Schatzmann et
al., 2006; Georgila et al., 2005).

Our overall approach is also related to many
other dialog management approaches, including
those that construct dialog graphs from dialog data
via clustering (Lee et al., 2009), learn information
state updates using discriminative classification
models (Hakkani-Tur et al., 2012; Mairesse et al.,

2009), optimize dialog strategy using reinforce-
ment learning (RL) (Scheffler and Young, 2002;
Rieser and Lemon, 2008), or combine RL with
information state update rules (Heeman, 2007).
However, our approach is unique in the use of in-
ducing task and domain knowledge with light su-
pervision to assist the user with many goals.

8 Conclusions and Future Work

This paper presented a novel approach for au-
tomatically constructing procedural dialog sys-
tems with light supervision, given only textual re-
sources such as instructional text and search query
click logs. Evaluations demonstrated highly accu-
rate performance, on automatic benchmarks and
through a user study.

Although we showed it is possible to build com-
plete systems, more work will be required to scale
the approach to new domains, scale the complex-
ity of the dialog manager, and explore the range of
possible textual knowledge sources that could be
incorporated. We are particularly interested in sce-
narios that would enable end users to author new
goals by writing procedural instructions in natural
language.
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Abstract 
Social media platforms have enabled people to 
freely express their views and discuss issues of 
interest with others. While it is important to dis-
cover the topics in discussions, it is equally use-
ful to mine the nature of such discussions or de-
bates and the behavior of the participants. There 
are many questions that can be asked. One key 
question is whether the participants give rea-
soned arguments with justifiable claims via 
constructive debates or exhibit dogmatism and 
egotistic clashes of ideologies. The central idea 
of this question is tolerance, which is a key 
concept in the field of communications. In this 
work, we perform a computational study of tol-
erance in the context of online discussions. We 
aim to identify tolerant vs. intolerant partici-
pants and investigate how disagreement affects 
tolerance in discussions in a quantitative 
framework. To the best of our knowledge, this 
is the first such study. Our experiments using 
real-life discussions demonstrate the effective-
ness of the proposed technique and also provide 
some key insights into the psycholinguistic 
phenomenon of tolerance in online discussions. 

1 Introduction 

Social media platforms have enabled people 
from anywhere in the world to express their 
views and discuss any issue of interest in online 
discussions/debates. Existing works in this con-
text include recognition of support and oppose 
camps (Agrawal et al., 2003), mining of authori-
ties and subgroups (Mayfield and Rosè, 2011; 
Abu-Jbara et al. (2012), dialogue act segmenta-
tion and classification (Morbini and Sagae, 2011; 
Boyer et al., 2011), etc. 

This paper probes further to study a different 
and important angle, i.e., the psycholinguistic 
phenomenon of tolerance in online discussions. 
Tolerance is an important concept in the field of 
communications. It is a subfacet of deliberation 
which refers to critical thinking and exchange of 
rational arguments on an issue among partici-
pants that seek to achieve consensus/solution 

(Habermas, 1984). 
Perhaps the most widely accepted definition 

of tolerance is that of Gastil (2005; 2007), who 
defines tolerance as a means to engage (in writ-
ten or spoken communication) in critical think-
ing, judicious argument, sound reasoning, and 
justifiable claims through constructive discus-
sion as opposed to mere coercion/egotistic clash-
es of ideologies.  

In this work, we adopt this definition, and also 
employ the following characteristics of tolerance 
(also known as “code of conduct”) (Crocker, 
2005; Gutmann and Thompson, 1996) to guide 
our work.  
Reciprocity: Each member (or participant) offers 

proposals and justifications in terms that others 
could understand and accept. 

Publicity: Each member engages in a process 
that is transparent to all and each member 
knows with whom he is agreeing or disagree-
ing.  

Accountability: Each member gives acceptable 
and sound reasons to others on the various 
claims or proposals suggested by him. 

Mutual respect and civic integrity: Each mem-
ber’s speech should be morally acceptable, i.e., 
using proper language irrespective of agree-
ment or disagreement of views. 

The issue of tolerance has been actively re-
searched in the field of communications for the 
past two decades, and has been investigated in 
multiple dimensions. However, existing studies 
are typically qualitative and focus on theorizing 
the socio-linguistic aspects of tolerance (more 
details in §2).  

With the rapid growth of social media, the 
large volumes of online discussions/debates offer 
a golden opportunity to investigate people’s im-
plicit psyche in discussions quantitatively based 
on the real-life data, i.e., their tolerance levels 
and their arguing nature, which are of fundamen-
tal interest to several fields, e.g., communica-
tions, marketing, politics, and sociology 
(Dahlgren, 2005; Gastil, 2005; Moxey and 
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Sanford, 2000). Communication and political 
scholars are hopeful that technologies capable of 
identifying tolerance levels of people on social 
issues (often discussed in online discussions) can 
render vital statistics which can be used in pre-
dicting political outcomes in elections and help-
ful in tailoring voting campaigns and agendas to 
maximize winning chances (Dahlgren, 2002). 
Objective: The objective of this work is two-
fold:  
1. Identifying tolerant and intolerant participants 

in discussions.  
2. Analyzing how disagreement affects toler-

ance and estimating the tipping point of such 
effects.  

To the best of our knowledge, these tasks have 
not been attempted quantitatively before. The 
first task is a classification/prediction problem. 
Due to the complex and interactive nature of dis-
cussions, the traditional n-gram features are no 
longer sufficient for accurate classification. We 
thus propose a generative model, called DTM, to 
discover some key pieces of information which 
characterize the nature of discussions and their 
participants, e.g., the arguing nature (agreeing 
vs. disagreeing), topic and expression distribu-
tions. These allow us to generate a set of novel 
features from the estimated latent variables of 
DTM capable of capturing authors’ tolerance 
psyche during discussions. The features are then 
used in learning to identify tolerant and intoler-
ant authors. Our experimental results show that 
the proposed approach is effective and outper-
forms several strong baselines significantly. 

The second task studies the interplay of toler-
ance and disagreement. It is well-known that 
tolerance facilitates constructive disagreements, 
but sustained disagreements often result in a 
transition to destructive disagreement leading to 
polarization and intolerance (Dahlgren, 2005). 
An interesting question is: What is the tipping 
point of disagreement to exhibit intolerance? We 
take a Bayesian approach to seek an answer and 
discover issue-specific tipping points. Our em-
pirical results discover some interesting relation-
ships which are supported by theoretical studies 
in psychology and linguistic communications. 

Finally, this work also produces an annotated 
corpus of tolerant and intolerant users in online 
discussions across two domains: politics and re-
ligion. We believe this is the first such dataset 
and will be a valuable resource to the communi-
ty. 

2 Related Work 

Although limited work has been done on analy-
sis of tolerance in online discussions, there are 
several general research areas that are related to 
our work.  
Communications: Tolerance has been an active 
research area in the field of communications for 
the past two decades. Ryfe (2005) provided a 
comprehensive survey of the literature. The topic 
has been studied in multiple dimensions, e.g., 
opinion and attitude (Luskin et al., 2004; Price et 
al., 2002), public engagement (Escobar, 2012), 
psychoanalysis (Slavin and Kriegman, 1992), 
argument repertoire (Cappella et al., 2002), etc. 

Tolerance has also been investigated in the 
domain of political communications with an em-
phasis on political sophistication (Gastil and 
Dillard, 1999), civic culture (Dahlgren, 2002), 
and democracy (Fishkin, 1991). These existing 
works study tolerance from the qualitative per-
spective. Our focus is quantitative analysis. 
Sentiment analysis: Sentiment analysis deter-
mines positive or negative opinions expressed on 
topics (Liu, 2012; Pang and Lee, 2008). Main 
tasks include aspect extraction (Hu and Liu, 
2004; Popescu and Etzioni, 2005; Mukherjee and 
Liu, 2012c; Chen et al., 2013), opinion polarity 
identification (Hassan and Radev, 2010; Choi 
and Cardie, 2010) and subjectivity analysis 
(Wiebe, 2000). Although related, tolerance is 
different from sentiment. Sentiments are mainly 
indicated by sentiment terms (e.g., great, good, 
bad, and poor). Tolerance in discussions refers 
to the reception of certain views and often indi-
cated by agreement and disagreement expres-
sions and other features (§5). 
Online discussions or debates: Several works 
put authors in debate into support and oppose 
camps. Agrawal et al. (2003) used a graph based 
method, and Murakami and Raymond (2010) 
used a rule-based method. In (Mukherjee and 
Liu, 2012a), contention points were identified, in 
(Mukherjee and Liu, 2012b), various expressions 
in review comment discussions were mined, and 
in (Galley et al., 2004; Hillard et al., 2003), 
speaker utterances were classified into agree-
ment, disagreement, and backchannel classes. 
Also related are studies on linguistic style ac-
commodation (Mukherjee and Liu, 2012d) and 
user pair interactions (Mukherjee and Liu, 2013) 
in online debates. However, these works do not 
consider tolerance analysis in debate discussions, 
which is the focus of this work. 
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In a similar vein, several classification meth-
ods have been proposed to recognize opinion 
stances and speaker sides in online debates (So-
masundaran and Wiebe, 2009; Thomas et al., 
2006; Bansal et al., 2008; Burfoot et al., 2011; 
Yessenalina et al., 2010). Lin and Hauptmann 
(2006) also proposed a method to identify oppos-
ing perspectives. Abu-Jbara et al. (2012) identi-
fied subgroups. Kim and Hovy (2007) studied 
election prediction by analyzing online discus-
sions. Other related works studying dialogue and 
discourse in discussions include authority recog-
nition (Mayfield and Rosè, 2011), dialogue act 
segmentation and classification (Morbini and 
Sagae, 2011; Boyer et al., 2011), discourse struc-
ture prediction (Wang et al., 2011). 

All these prior works are valuable. But they 
are not designed to identify tolerance or to ana-
lyze tipping points of disagreements for intoler-
ance in discussions which are the focus of this 
work. 

3 Discussion/Debate Data 

For this research, we used discussion posts from 
Volconvo.com. This forum is divided into vari-
ous domains: Politics, Religion, Science, etc. 
Each domain consists of multiple discussion 
threads. Each thread consists of a list of posts. 
Our experimental data is from two domains, Pol-
itics and Religion. The data is summarized in 
Table 1(a). In this work, the terms users, authors 
and participants are used interchangeably. The 
full data is used for modeling, but 436 and 501 
authors from Politics and Religion domains were 
manually labeled as being tolerant or intolerant 
(Table 1(c)) respectively for classification exper-
iments.   

Two judges (graduate students) were used to 
label the data. The judges are fluent in English 
and were briefed on the definition of tolerance 
(see §1). From each domain (Politics, Religion), 
we randomly sampled authors having not more 
than 60 posts in order to reduce the labeling bur-
den as the judges need to read all posts and see 
all interactions of each author before providing a 
label. Given all posts by an author, 𝑎 and his/her 
associated interactions (posts by other authors 
replying or quoting 𝑎), the judges were asked to 
provide a label for author 𝑎 as being tolerant or 
intolerant. In our labeling, we found that users 
strongly exhibit one dominant trait: tolerant or 
intolerant, as our data consists of topics like elec-
tions, immigration, theism, terrorism, and vege-
tarianism across politics and religion domains, 

which are often heated and thus attract people 
with pre-determined, strong, and polarized 
stances1.  

The judges worked in isolation (to prevent bi-
as) during annotation/labeling and were also 
asked to provide a short reason for their judg-
ment. The agreement statistics using Cohen’s 
kappa are given in Table 1(b), which shows sub-
stantial agreements according to the scale 2  in 
(Landis and Koch, 1977). This shows that toler-
ance as defined in §1 is quite decisive and one 
can decide whether a debater is exhibiting toler-
ant vs. intolerant quite well. To account for disa-
greements in labels, the judges discussed their 
reasons to reach a consensus. The final labeled 
data is reported in Table 1(c). 

4 Model 

We now present our generative model to capture 
the key aspects of discussions/debates and their 
intricate relationships, which enable us to (1) 
design sophisticated features for classification 
and (2) perform an in-depth analysis of the inter-
play of disagreement and tolerance. The model is 
called Debate Topic Model (DTM).  

DTM is a semi-supervised generative model 
motivated by the joint occurrence of various top-
ics; and agreement and disagreement expressions 
(abbreviated AD-expressions hereon) in debate 
posts. A typical debate post mentions a few top-
ics (using similar topical terms) and expresses 
some viewpoints with one or more AD-
expression types (Agreement and Disagreement) 
using semantically related expressions. This ob-
servation forms the basis of the generative pro-
cess of our model where documents (posts) are 
represented as admixtures of latent topics and 
AD-expression types (Agreement and Disagree-
ment). This key observation and the motivation 
of modeling debates are from our previous work 
in (Mukherjee and Liu, 2012a). In the new set-
                                                           
1  These hardened perspectives are theoretically supported 
by the polarization effect (Sunstein, 2002), and the hostile 
media effect, a scenario where partisans rigidly hold on to 
their stances (Hansen and Hyunjung, 2011). 
2  Agreement levels are as follows. 𝜅 ∈ [0, 0.2]: Poor, 
𝜅 ∈ (0.2, 0.4]:Fair, 𝜅 ∈ (0.4, 0.6]: Moderate, 𝜅 ∈ (0.6, 0.8]: 
Substantial, and 𝜅 ∈ (0.8, 1.0]: Almost perfect agreement. 

Domain Posts Authors  Cohen’s 𝜅   Tol.   Intol.  Total 
Politics 48605 1027  0.74    213  223  436 

 Religion 66835 1370  0.77    207  294  501 

             (a) Full Data     (b) Agreement   (c) Labeled data 
Table 1: Data statistics (Tol: Tolerant users; Intol: 
Intolerant users. Total = Tol. + Intol). 
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ting, we model topics and debate expression dis-
tributions specific to authors as this work is con-
cerned with modeling authors’ (in)tolerance na-
ture. Making latent variable 𝜃𝐸 and 𝜃𝑇 author 
specific facilitates modeling user behaviors 
(§5.3). 

Assume we have 𝑡1…𝑇  topics and 𝑒1…𝐸  expres-
sion types in our corpus. In our case of debate 
posts, based upon reading various posts, we hy-
pothesize that 𝐸 = 2 as in debates as we mostly 
find 2 dominant expression types: Agreement 
and Disagreement. Meanings of variables used in 
the following discussion are detailed in Table 2. 

In this work, a document/post is viewed as a bag 
of n-grams and we use terms to denote both 
words (unigrams) and phrases (n-grams)3. DTM 
is a switching graphical model performing a 
switch between topics and AD-expressions simi-
lar to that in (Zhao et al., 2010). The switch is 
done using a learned maximum entropy (Max-
Ent) model. The rationale here is that topical and 
AD-expression terms usually play different syn-
tactic roles in a sentence. Topical terms (e.g., 
“U.S. elections,” “government,” “income tax”) 
tend to be noun and noun phrases while expres-
sion terms (“I refute,” “how can you say,” “I’d 
agree”) usually contain pronouns, verbs, wh-
determiners, and modals. In order to utilize the 
part-of-speech (POS) tag information, we place 
the topic/AD-expression distribution, 𝜓𝑎,𝑑,𝑗  (the 
prior over the indicator variable 𝑟𝑎,𝑑,𝑗) in the term 
plate (Figure 1)  and set it using a Max-Ent mod-
el conditioned on the observed context 𝑥𝑎,𝑑,𝑗  as-
sociated with 𝑤𝑎,𝑑,𝑗  and the learned Max-Ent 
parameters 𝜆 (details in §4.1). In this work, we 
use both lexical and POS features of the previ-
ous, current and next POS tags/lexemes of the 
term 𝑤𝑎,𝑑,𝑗  as the contextual information, 
i.e., 𝑥𝑎,𝑑,𝑗 = [𝑃𝑂𝑆𝑤𝑎,𝑑,𝑗−1 , 𝑃𝑂𝑆𝑤𝑎,𝑑,𝑗 , 𝑃𝑂𝑆𝑤𝑎,𝑑,𝑗+1 ,
𝑤𝑎,𝑑,𝑗−1,𝑤𝑎,𝑑,𝑗 , 𝑤𝑎,𝑑,𝑗+1], which is used to produce 
feature functions for Max-Ent. For phrasal terms 
(n-grams), all POS tags and lexemes of 𝑤𝑑,𝑗  are 
considered as contextual information for compu-
ting feature functions in Max-Ent. DTM has the 
following generative process: 

A. For each AD-expression type 𝑒, draw 𝜑𝑒𝐸~𝐷𝑖𝑟(𝛽𝐸) 
B. For each topic t, draw 𝜑𝑡𝑇~𝐷𝑖𝑟(𝛽𝑇) 
C. For each author 𝑎 ∈ {1 …𝐴}: 

i. Draw 𝜃𝑎𝐸~𝐷𝑖𝑟(𝛼𝐸) 
ii. Draw 𝜃𝑎𝑇~𝐷𝑖𝑟(𝛼𝑇) 
iii. For each document/post 𝑑 ∈ {1 …𝐷𝑎}: 

I. For each term 𝑤𝑎,𝑑,𝑗, 𝑗 ∈ {1 …𝑁𝑎,𝑑}: 
a. Set 𝜓𝑎,𝑑,𝑗 ← 𝑀𝑎𝑥𝐸𝑛𝑡(𝑥𝑎,𝑑,𝑗; 𝜆) 
b. Draw 𝑟𝑎,𝑑,𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑎,𝑑,𝑗) 
c. if (𝑟𝑎,𝑑,𝑗 =  𝑒̂) // 𝑤𝑑,𝑗is an AD-expression term 

Draw 𝑧𝑎,𝑑,𝑗~ 𝑀𝑢𝑙𝑡(𝜃𝑎𝐸) 
else // 𝑟𝑎,𝑑,𝑗 =  𝑡̂, 𝑤𝑎,𝑑,𝑗is a topical term 

Draw 𝑧𝑎,𝑑,𝑗~ 𝑀𝑢𝑙𝑡(𝜃𝑎𝑇) 
d. Emit 𝑤𝑎,𝑑,𝑗~𝑀𝑢𝑙𝑡(𝜑𝑧𝑎,𝑑,𝑗

𝑟𝑎,𝑑,𝑗) 

4.1 Inference 

We employ posterior inference using Monte Car-
                                                           
3 Topics in most topic models (e.g., LDA (Blei et al., 2003)) 
are unigram distributions and a document is treated as an 
exchangeable bag-of-words. This offers a computational 
advantage over models considering word orders (Wallach, 
2006). As our goal is to enhance the expressiveness of 
DTM (rather than “modeling” word order), we use 1-4 
grams preserving the advantages of exchangeable modeling. 

 
 
 
 

 
 
 
 
 

Figure 1: Plate notation of DTM 

Variable/Function Description 

𝑎; 𝐴; 𝑑 An author 𝑎; set of all authors; docu-
ment, 𝑑 

(𝑎,𝑑); 𝐷𝑎 Post 𝑑 by author 𝑎; Set of all posts by 
𝑎 

𝑇;𝐸;𝑉 # of topics; expression types; vocabu-
lary 

𝑤𝑎,𝑑,𝑗; 𝑁𝑎,𝑑 𝑗𝑡ℎ term in (𝑎,𝑑); Total # of terms in 
(𝑎,𝑑) 

𝜓𝑎,𝑑,𝑗  Distribution over topics and AD-
expressions 

𝑥𝑎,𝑑,𝑗 
Associated feature context of observed 
𝑤𝑎,𝑑,𝑗 

𝜆 Learned Max-Ent parameters 

𝑟𝑎,𝑑,𝑗 ∈ {𝑡̂, 𝑒̂} Binary indicator/switch variable ( topic 
(𝑡̂) or AD-expression (𝑒̂) ) for 𝑤𝑎,𝑑,𝑗 

𝜃𝑎𝑇; 
𝜃𝑎𝐸(𝜃𝑎,𝐴𝑔

𝐸  , 
𝜃𝑎,𝐷𝑖𝑠𝐴𝑔
𝐸 ) 

𝑎’s distribution over topics ; expression 
types (Agreement: 𝜃𝑎,𝐴𝑔

𝐸 , Disagree-
ment: 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 ) 

𝜃𝑎,𝑑
𝑇 ;𝜃𝑎,𝑑,𝑡

𝑇  Topic distribution of post 𝑑 by author 
𝑎; Probability mass of topic 𝑡 in 𝜃𝑎,𝑑

𝑇 . 

𝜃𝑎,𝑑,𝑒∈{𝐴𝑔,𝐷𝑖𝑠𝐴𝑔}
𝐸  

𝜃𝑎,𝑑
𝐸 ; 

Expression type distribution of post 𝑑 
by author 𝑎; Corresponding probability 
masses of Agreement: 𝜃𝑎,𝑑,𝑒=𝐴𝑔

𝐸  and 
Disagreement in 𝜃𝑎,𝑑,𝑒=𝐷𝑖𝑠𝐴𝑔

𝐸 . 
𝑧𝑎,𝑑,𝑗 Topic/Expression type of 𝑤𝑎,𝑑,𝑗 

𝜑𝑡𝑇;  𝜑𝑒𝐸  Topic 𝑡’s ; Expression type 𝑒’s distri-
bution over vocabulary terms 

𝛼𝑇; 𝛼𝐸; 𝛽𝑇; 𝛽𝐸 Dirichlet priors of 𝜃𝑎𝑇;  𝜃𝑎𝐸 ;𝜑𝑡𝑇;  𝜑𝑒𝐸 

𝑛𝑎,𝑡
𝐴𝑇; 𝑛𝑎,𝑒

𝐴𝐸  # of times topic 𝑡; expression type 𝑒 
assigned to 𝑎 

𝑛𝑡,𝑣
𝑇𝑉; 𝑛𝑒,𝑣

𝐸𝑉  # of times term 𝑣 appears in topic 𝑡; 
expression type 𝑒 

Table 2: List of notations 
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lo Gibbs sampling. Denoting the random varia-
bles {𝑤, 𝑧, 𝑟}  by singular 
scripts{𝑤𝑘, 𝑧𝑘, 𝑟𝑘} ,𝑘1…𝐾 , where 𝐾 = ∑ ∑ 𝑁𝑎,𝑑𝑑𝑎 , a 
single iteration consists of performing the fol-
lowing sampling: 
𝑝(𝑧𝑘 = 𝑡, 𝑟𝑘 = 𝑡̂|𝑊¬𝑘,𝑍¬𝑘,𝑅¬𝑘,𝑤𝑘 = 𝑣) ∝

exp (∑ 𝜆𝑖𝑓𝑖(𝑥𝑎,𝑑,𝑗,𝑡̂)𝑛
𝑖=1 )

∑ exp (∑ 𝜆𝑖𝑓𝑖(𝑥𝑎,𝑑,𝑗,𝑦)𝑛
𝑖=1 )𝑦∈{𝑡�,𝑒�}

×
𝑛𝑎,𝑡
𝐴𝑇

¬𝑘+𝛼
𝑇

𝑛𝑎,(·)
𝐴𝑇

¬𝑘
+𝑇𝛼𝑇

×
𝑛𝑡,𝑣
𝑇𝑉

¬𝑘+𝛽
𝑇

𝑛𝑡,(·)
𝑇𝑉

¬𝑘
+𝑉𝛽𝑇

  (1) 

𝑝(𝑧𝑘 = 𝑒, 𝑟𝑘 = 𝑒̂|𝑊¬𝑘,𝑍¬𝑘,𝑅¬𝑘 ,𝑤𝑘 = 𝑣) ∝
exp (∑ 𝜆𝑖𝑓𝑖(𝑥𝑎,𝑑,𝑗,𝑒̂)𝑛

𝑖=1 )
∑ exp (∑ 𝜆𝑖𝑓𝑖(𝑥𝑎,𝑑,𝑗,𝑦)𝑛

𝑖=1 )𝑦∈{𝑡�,𝑒�}
×

𝑛𝑎,𝑒
𝐴𝐸

¬𝑘+𝛼
𝐸

𝑛𝑎,(·)
𝐴𝐸

¬𝑘
+𝐸𝛼𝐸

×
𝑛𝑒,𝑣
𝐸𝑉

¬𝑘+𝛽
𝐸

𝑛𝑒,(·)
𝐸𝑉

¬𝑘
+𝑉𝛽𝐸

  (2) 

where 𝑘 = (𝑎,𝑑, 𝑗) denotes the 𝑗𝑡ℎ  term of docu-
ment 𝑑 by author 𝑎 and the subscript ¬𝑘 denotes 
assignments excluding the term at (𝑎,𝑑, 𝑗). Omis-
sion of the latter index denoted by (·) represents 
the marginalized sum over the latter index. 
Count variables are detailed in Table 1 (last two 
rows). 𝜆1…𝑛  are the parameters of the learned 
Max-Ent model corresponding to the 𝑛  binary 
feature functions 𝑓1…𝑛 for Max-Ent. The learned 
Max-Ent 𝜆  parameters in conjunction with the 
observed context, 𝑥𝑎,𝑑,𝑗 feed the supervision sig-
nal for updating the topic/expression switch pa-
rameter, 𝑟 in equations (1) and (2).  

The hyper-parameters for the model were set 
to the values 𝛽𝑇= 𝛽𝐸= 0.1 and 𝛼𝑇  = 50/𝑇, 𝛼𝐸  = 
50/ 𝐸 , suggested in (Griffiths and Steyvers, 
2004). Model parameters were estimated after 
5000 Gibbs iterations with a burn-in of 1000 it-
erations. The Max-Ent parameters 𝜆  were 
learned using 500 labeled terms in each domain 
(politics:- topical: 376 and AD-expression: 124; 
religion:- topical: 349 and AD-expression: 151) 
appearing at least 10 times in debate threads oth-
er than the data in Table 1 (we do so since the 

data in Table 1(c) is later used in the classifica-
tion experiments in §6.1). 

Table 3 lists some top AD-expressions discov-
ered by DTM. We see that DTM can cluster 
many correct AD-expressions, e.g., “I disagree”, 
“I refute”, “don’t accept”, etc. in disagreement; 
and “I agree”, “you’re correct”, “agree with 
you”, etc. in agreement. Further, it also discovers 
highly specific and more distinctive expressions 
beyond those used in Max-Ent training (marked 
blue in italics), e.g., “I don’t buy your”, “can you 
prove,” “you fail to”, and “you have no clue” in 
disagreement; and phrases like “valid point”, 
“rightly said”, “I do support”, and “very well 
put” in agreement. In §6.1, we will see that these 
AD-expressions serve as high quality features 
for predicting tolerance. 

Lastly, we note that DTM also estimates sev-
eral pieces of useful information (e.g., AD-
expressions, posterior estimates of author’s argu-
ing nature, 𝜃𝑎𝐸 ; latent topics and expressions, 
𝜑𝑡𝑇;  𝜑𝑒𝐸 , etc.). These will be used to produce a 
rich set of user behavioral features for character-
izing tolerance in §5.3. 

5 Feature Engineering 

We now propose features which will be used for 
model building to classify tolerant and intolerant 
authors in Table 1(c). We use three sets of fea-
tures. 

5.1 Language based Features of Tolerance 

Word and POS n-grams: As tolerance in com-
munication is directly reflected in language us-
age, word n-grams are obvious features. We also 
use POS tags (obtained using Stanford Tagger4) 
as features. The rationale of using POS tag based 
features is that intolerant communications are 
often characterized by hate/egotistic speech 
which have pronounced use of specific part of 
speech (e.g., pronouns) (Zingo, 1998). 

Heuristic Factor Analysis: In psycholinguistics, 
factor analysis refers to the process of finding 
groups of semantically similar linguistic con-
structs (words/phrases). It is also called meaning 
extraction in (Chung and Pennebaker, 2007). As 
tolerance in discussions is characterized by rea-
soned expressions which often accompany 
sourcing (e.g., providing a hyperlink, making an 
attempt to clarify with some evidence, etc.), we 
compiled a list of reasoned and sourced expres-
sions (shown in Table 4) from prior works 
                                                           
4 http://nlp.stanford.edu/software/tagger.shtml 

Disagreement expressions (𝜑𝑒=𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
𝐸  ) 

I, disagree, I don’t, I disagree, argument, reject, claim, I reject, 
I refute, and, your, I refuse, won’t, the claim, nonsense, I con-
test, dispute, I think, completely disagree, don’t accept, don’t 
agree, incorrect, doesn’t, hogwash, I don’t buy your, I really 
doubt, your nonsense, true, can you prove, argument fails, you 
fail to, your assertions, bullshit, sheer nonsense, doesn’t make 
sense, you have no clue, how can you say, do you even, contra-
dict yourself, … 

Agreement expressions (𝜑𝑒=𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
𝐸 ) 

agree, I, correct, yes, true, accept, I agree, don’t, indeed correct, 
your, point, that, I concede, is valid, your claim, not really, 
would agree, might, agree completely, yes indeed, absolutely, 
you’re correct, valid point, argument, the argument, proves, do 
accept, support, agree with you, rightly said, personally, well 
put, I do support, personally agree, doesn’t necessarily, exactly, 
very well put, absolutely correct, kudos, point taken,... 

Table 3: Top terms (comma delimited) of two expres-
sion types. Red (bold) terms denote possible errors. 
Blue (italics) terms are newly discovered; rest (black) 
terms have been used in Max-Ent training. 
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(Chung and Pennebaker, 2007; Flor and Hadar, 
2005; Moxey and Sanford, 2000; Pennebaker, et 
al.,  2007).  

5.2 Debate Expression Features 

AD-expressions: As we have seen in §4, DTM 
can discover specific agreement and disagree-
ment expressions in debates. We use these ex-
pressions as another feature set. Estimated AD-
expressions (Table 3) serve as a principled way 
of performing factor analysis in debates instead 
of heuristic factor analysis as in Table 4 used in 
prior works.  

As the AD-expression types are modeled as 
Dirichlet distributions (𝜑𝐸~𝐷𝑖𝑟(𝛽𝐸)), due to the 
smoothing effect, each term in the vocabulary 
has some non-zero probability mass associated 
with the expression types. To ensure that the dis-
covered expressions are representative AD-
expressions, we only consider the terms in 𝜑𝐸 
with 𝑝(𝑣|𝑒) = 𝜑𝑒,𝑣

𝐸 > 0.001  as probability 
masses lower than 0.001 are more due to the 
smoothing effect of Dirichlet distribution than 
true correlation. 

5.3 User Behavioral Features 

Here we propose several features of user interac-
tion which reflect the socio-psychological state 
of tolerance while participating in discussions. 
We note that these features rely on the posterior 
estimates of latent variables 𝜃𝐸, 𝑧, and 𝑟 in DTM 
(§4) and are thus difficult to obtain without 
modeling. 

Overall Arguing Nature: The posterior on 𝜃𝑎𝐸 
(Table 2) for each author, 𝑎 gives an estimate of 
𝑎’s overall arguing nature (agreeing or disagree-
ing). We use the probability mass assigned to 
each arguing nature type as a user behavioral 
feature. This gives us two features 𝑓1, 𝑓2 as fol-

lows: 
𝑓1(𝑎) =  𝜃𝑎,𝐴𝑔

𝐸  ;   𝑓2(𝑎) =  𝜃𝑎,𝐷𝑖𝑠𝐴𝑔
𝐸      (3) 

Behavioral Response: As intolerant users are 
likely to attract more disagreement, it is naturally 
useful to estimate the response (agreeing vs. dis-
agreeing) a user receives from other users. For 
computing behavioral response, we first use the 
posterior on 𝑧 to compute the distribution of AD-
expressions (i.e., the relative probability masses 
of agreeing and disagreeing expressions) in a 
document 𝑑 by an author 𝑎 as follows: 

𝜃𝑎,𝑑,𝐴𝑔
𝐸 = ��𝑗�𝑧𝑎,𝑑,𝑗=𝐴𝑔,1≤𝑗≤𝑁𝑎,𝑑��

��𝑗�𝑟𝑎,𝑑,𝑗=𝑒̂,1≤𝑗≤𝑁𝑎,𝑑��
; 

𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔
𝐸 = ��𝑗�𝑧𝑎,𝑑,𝑗=𝐷𝑖𝑠𝐴𝑔,1≤𝑗≤𝑁𝑎,𝑑��

��𝑗�𝑟𝑎,𝑑,𝑗=𝑒̂,1≤𝑗≤𝑁𝑎,𝑑��
     (4) 

Now to get the overall behavioral response of an 
author, 𝑎  we take the expected value of the 
agreeing and disagreeing responses that 𝑎  re-
ceived from other authors 𝑎′  who replied to or 
quoted 𝑎 ’s posts. The expectations below are 
taken over all posts 𝑑′  by 𝑎′  which reply/quote 
posts of 𝑎. 

𝑓3(𝑎) =  𝐸[𝜃𝑎′ 𝑑′,𝐴𝑔
𝐸 ]; 𝑓4(𝑎) =  𝐸�𝜃𝑎′ 𝑑′,𝐷𝑖𝑠𝐴𝑔

𝐸 �  (5) 

Equality of Speech: In communication literature 
(Dahlgren, 2005; Habermas, 1984), equality is 
theorized as an essential element of tolerance. 
Each participant must be able to participate on an 
equal footing with others without anybody domi-
nating the discussion. In online debates, we can 
measure this phenomenon using the following 
feature: 

𝑓5(𝑎) = 𝐸 ��# 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑏𝑦 𝑎 𝑖𝑛 𝑡ℎ𝑟𝑒𝑎𝑑 𝑙
# 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑟𝑒𝑎𝑑 𝑙

� 𝐸[𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔
𝐸 ]�  (6) 

where the inner expectation is taken over all 
posts of 𝑎 in thread 𝑙 and the outer expectation is 
taken over all threads 𝑙  in which 𝑎  participated. 
The above definition computes the aggressive 
posting behavior of author 𝑎 whereby he tires to 
dominate the thread by posting more than others. 
The aggressive posting behavior is weighted by 
author’s disagreeing nature because a person 
usually exhibits a dominating nature when he 
pushes hard to establish his ideology (which is 
often in disagreement with others) (Moxey and 
Sanford, 2000).  

Topic Shifts: An interesting phenomenon of hu-
man (social) psyche is that when people are una-
ble to logically argue their stances and feel they 
are losing the debate, they often try to belit-
tle/deride others by pulling unrelated topics into 
discussion (Slavin and Kriegman, 1992). This is 

Factor: Reasoning words/phrases 
because, because of, since, reason, reason being, reason is, 
reason why, due to, owing to, as in, therefore, thus, hence-
forth, hence, implies, implies that, implying, hints, hinting, 
hints towards, it follows that, it turns out, conclude, conse-
quence, consequently, the cause, rationale, the rationale, justi-
fication, the justification, provided, premise, assumption, on 
the proviso, in spite, … 

Factor: Sourcing words/phrases 
presence of hyperlinks/urls, source, reference, for example, 
for instance, namely, to explain, to detail, to clarify, to eluci-
date, to illustrate, to be precise, furthermore, moreover, apart 
from, besides, we find, … 
 

Table 4: Heuristic Factor Analysis (HFA). 
Words/Phrases in each factor compiled from prior 
works in psycholinguistics. 
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referred to as topic shifts. Topic shifts thus have a 
relation with tolerance in deliberation. Stromer-
Galley (2005) reported that if the discussion is 
off topic, then tolerance or deliberation cannot 
meet its objective of deep consideration of an 
issue. Hence, the average topic shifts of an au-
thor, 𝑎 across various posts in a thread can serve 
as a good feature for measuring tolerance. We 
use the posterior on per-document topic distribu-
tion, 𝜃𝑎,𝑑,𝑡

𝑇 = ��𝑗�𝑧𝑎,𝑑,𝑗=𝑡,1≤𝑗≤𝑁𝑎,𝑑��
��𝑗�𝑟𝑎,𝑑,𝑗=𝑡̂,1≤𝑗≤𝑁𝑎,𝑑��

 to measure topic 
shifts using KL-Divergence as follows: 

𝑓6 = 𝐸 �avg𝑑,𝑑′∈ 𝑡ℎ𝑟𝑒𝑎𝑑 𝑙 �𝐷𝐾𝐿�𝜃𝑎,𝑑
𝑇 ||𝜃𝑎,𝑑′

𝑇 ���     (7) 

We first compute author, 𝑎’s average topic shifts 
in a thread, 𝑙 which measures his topic shifts in 𝑙. 
But this only gives us his behavior in one thread. 
To capture his overall behavior, we take the ex-
pected value of this behavior over all threads in 
which 𝑎  participated. We take average KL-
divergence (KL-Div.) over all pairs of posts by 𝑎 
in a given thread to account for the asymmetry of 
KL-Div. 

Finally, we note that by no means do we claim 
that the mere presence and a large value of any of 
the above features imply that a user is intolerant 
or tolerant. They are indicators of the phenome-
non of tolerance in discussions/debates. The ac-
tual prediction is done using the learned models 
in §6.1. 
6 Experimental Evaluation 

We now detail the experiments that investigate 
the strengths of features in §5. In particular, we 
first consider the task of classifying whether an 
author is tolerant or intolerant in discussions. 
Then, we analyze how disagreement affects tol-
erance. 

6.1 Tolerant and Intolerant Classification 

Here, we show that the features in §5 can help 
build accurate models for predicting tolerance. 
We employ a linear kernel 5  SVM (using the 
SVMLight system (Joachims, 1999)) and report 5-
fold cross validation (CV) results on the task of 
predicting the socio-psychological nature of us-
ers’ communication: tolerant vs. intolerant in 
politics and religion domains (Table 1(c)). Note 
that for each fold of 5-fold CV, DTM was run on 
the full data of each domain (Table 1(a)) exclud-
ing the users (and their associated posts) in the 
test set of that fold for generating the features of 
the training instances (users). The learned DTM 
                                                           
5 Other kernels (rbf, poly, sigmoid) did not perform as well. 

was then fitted (using the approach in (Hofmann, 
1999)) to the test set users and their posts for 
generating the features of the test instances.  

To investigate the effectiveness of the pro-
posed framework, we incrementally add feature 
sets starting with the baseline features.  Word 
unigrams and bigrams (inclusive of unigrams)6  
serve as our first baseline (B1a, B1b). Word + 
POS bigrams is our second baseline (B2). 
“Word” in B2 uses bigrams as B1b gives better 
results. B2 + Heuristic Factor Analysis (HFA) 
(Table 4) serve as our third baseline (B3). Table 
5 shows the experiment results. We note the fol-
lowing: 
1. Across both domains, adding POS bigrams 

slightly improves classification accuracy and 
F1-score beyond standard word unigrams and 
bigrams. Feature selection using information 
gain (IG) does not help much. 

2. Using heuristic factor analyses (HFA) of rea-
soned and sourced expressions (Table 4) 
brings about 1% and 2% improvement in ac-
curacy in politics and religion domains re-
spectively. 

3. Debate expression features (DE) in §5.2 and 
user behavioral features (UB) in §5.3 pro-
duced from DTM progressively improve clas-
sification accuracies by 4% and 8% in politics 
domains and 5% and 6% in religion domains. 
The improvements are also statistically signif-
icant.  

In summary, we can see that modeling made a 
major impact. It improved the accuracy by about 
10% than traditional unigram and bigram base-
lines. This shows that the debate expressions and 
user behaviors computed using the DTM model 
can capture various dimensions of (in)tolerance 
not captured by n-grams. 

6.2 How Disagreement affects Tolerance? 

We now quantitatively study the effect of disa-
greement on tolerance. We recall from §1 that 
tolerance indicates constructive discussion and 
allows disagreement. Some level of disagree-
ment is often times an integral component of 
deliberation and tolerance (Cappella et al., 
2002). 

Disagreements, however, can be either con-
structive or destructive. The distinction is that 
the former is aimed at arriving at a consensus or 
solution, while the latter leads to polarization 
and intolerance (Sunstein, 2002). It was also 
shown in (Dahlgren, 2005) that sustained disa-
                                                           
6 Higher order n-grams did not result in better results. 

1686



greement often takes a transition towards de-
structive disagreement and is likely to lead to 
intolerance. Similar phenomena was also identi-
fied in psychology literature (Critchley, 1964). 
In such cases, the participants often stubbornly 
stick to an extreme attitude, which eventually 
results in intolerance and defeats the very pur-
pose of deliberative discussion.  

An intriguing research question is: What is the 
relationship between disagreement and intoler-
ance? The question is interesting from both the 
communication and psycholinguistic perspec-
tives. The best of our knowledge, this is the first 
attempt towards seeking an answer. We work in 
the context of five issues/threads in real-life 
online debates. To derive quantitative and defi-
nite conclusions, it is required to perform the 
following tasks: 
• For each issue, empirically investigate in ex-

pectation the tipping point of disagreement 
beyond which a user tends to be intolerant. 

• Further, investigate the confidence on the es-
timated tipping point (i.e., what is the likeli-
hood that the estimated tipping point is statis-
tically significant instead of chance alone). 

We formalize the above tasks in the Bayesian 
setting. Recall from Table 2 of §4, that 𝜃𝑎,𝐴𝑔

𝐸  (re-
spectively, 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 ) are the estimates of agreeing 
and disagreeing nature of an author and 𝜃𝑎,𝐴𝑔

𝐸  + 
𝜃𝑎,𝐷𝑖𝑠𝐴𝑔
𝐸  = 1. Let 𝑇𝑃(𝜏) denote the event that in 

expectation a threshold value of 0 < 𝜏 < 1 
serves as a tipping point of disagreement beyond 
which intolerance is exhibited. Note that we em-
phasize the term “in expectation” (taken over all 
authors). We do not mean that every author 
whose disagreement, 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 >  𝜏 , is intolerant. 
The empirical likelihood of 𝑇𝑃(𝜏)  can be ex-
pressed by the following probability expression: 
ℒ�𝑇𝑃(𝜏)� = 

𝐸�𝑃�𝜃𝑎,𝐷𝑖𝑠𝐴𝑔
𝐸 > 𝜏|𝑎 = 𝐼� − 𝑃�𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 > 𝜏|𝑎 = 𝑇�� (8) 

The events 𝑎 = 𝐼 and 𝑎 = 𝑇 denote that author 
𝑎 is intolerant and tolerant respectively. The ex-
pectation is taken over authors. Showing that 𝜏 
indeed serves as the tipping point of disagree-
ment to exhibit intolerance corresponds is to re-
jecting the null hypothesis that the probabilities 
in (8) are equal. We employ a Fisher’s exact test 
to test significance and report confidence 
measures (using p-values) for the tipping point 
thresholds. The results are shown in Table 6. 

The threshold 𝜏 is computed using the entropy 
method in (Fayyad and Irani, 1993) as follows: 
We first fit our previously learned model (using 
the data in Table 1 (a)) to the new threads in Ta-
ble 6 and its users and posts to obtain the esti-
mates of 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸  and other latent variables for 
feature generation. The learned classifier in §6.1 
is used to predict the nature of users (tolerant vs. 

Feature Setting 
Politics Religion 

Precision Recall F1 Accuracy Precision Recall F1 Accuracy 
B1a: Word unigrams 64.1 86.3 73.7 70.1 61.9 86.8 72.6 71.9 
Word unigram + IG 64.5 86.2 73.9 70.2 62.7 86.9 72.9 71.9 
B1b: Word bigrams 66.8 87.8 75.9 72.4 64.9 89.1 75.9 75.1 

B2: W+POS bigrams 68.5 86.8 76.4 73.7 66.6 88.4 76.8 76.7 
B3: B2 + HFA(Table 4) 69.2 90.5 78.1 75.2 66.4 90.6 76.8 77.5 

B3 + DE (§5.2) 74.7 91.3 82.4† 79.5† 70.2 92.8 80.8† 82.1† 
B3 + DE + UB (§5.3) 76.1 92.2 83.1‡ 83.2‡ 71.7 93.4 82.1‡ 83.3‡ 

Table 5: Precision, Recall, F1 score on the tolerant class, and Accuracy for different feature settings across 2 
domains. DE: Debate expression features (AD-expressions, Table3, §5.2). UB: User behavioral features 
(§5.3). Improvements in F1 and Accuracy using DTM features (beyond baselines, B1-B3) are statistically 
significant (†: p<0.02; ‡: p<0.01) using paired t-test with 5-fold CV. 

Thread/Issue # Posts # Users % InTol. 𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔
𝐸 � 𝜏 p-value 

Repeal Healthcare 1823 33 39.9 0.57 0.65 0.02 
Europe’s Collapse 1824 33 42.5 0.61 0.61 0.01 
Obama Euphoria 1244 26 30.7 0.66 0.71 0.01 

Socialism 831 49 44.8 0.69 0.48 0.03 
Abortion 1232 58 48.4 0.78 0.37 0.01 

Table 6: Tipping points of disagreements for intolerance (𝜏) of different issues. 𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔
𝐸 �: the expected 

disagreement over all posts in each issue/thread, # Posts: the total number of posts, # Users: the total number 
of users/authors, % Intol: % of intolerant users in each thread, 𝜏: the estimated tipping point, and p-value: 
computed from two-tailed Fisher’s exact test. 
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intolerant) in the new threads7. Then, for each 
user we have his predicted deliberative (social) 
psyche (Tolerant vs. Intolerant) and also his 
overall disagreeing nature exhibited in that 
thread (the posterior on 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 ∈ [0, 1]). For a 
thread, tolerant and intolerant users (data points) 
span the range [0, 1] attaining different values 
for 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸 . Each candidate tipping point of disa-
greement, 0 ≤ 𝜏′ ≤ 1 results in a binary partition 
of the range with each partition containing some 
proportion of tolerant and intolerant users. We 
compute the entropy of the partition for every 
candidate tipping point in the range [0, 1]. The 
final tipping point threshold, 𝜏  is chosen such 
that it minimizes the partition entropy based on 
the binary cut-point method in (Fayyad and 
Irani, 1993).  

Since we perform a thread level analysis, the 
results in Table 6 are thread/issue specific. We 
note the following from Table 6: 
1. Across all threads/issues, we find that the ex-

pected disagreement over all posts, 𝑑, 
𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔

𝐸 � > 0.5 showing that in discussions 
of the reported issues, disagreement predomi-
nates. 

2. 𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔
𝐸 � also gives an estimate of overall 

heat in the issue being discussed. We find 
sensitive issues like abortion and socialism 
being more heated than healthcare, Obama, 
etc. 

3. The percentage of intolerant users increases 
with the expected overall disagreement in the 
issue except for the issue Obama euphoria. 

4. The estimated tipping point of disagreement 
to exhibit intolerance, 𝜏  happens to vary in-
versely with the expected disagreement, 
𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔

𝐸 � except the issue Obama euphoria. 
This reflects that as overall disagreement in 
the issue increases, the tipping point of intol-
erance decreases, i.e., due to high discussion 
heat, people are likely to turn intolerant even 
with relatively small amount of disagreement. 
This finding dovetails with prior studies in 
psychology (Rokeach and Fruchter, 1956) that 
heated discussions are likely to reduce thresh-

                                                           
7 Although this prediction may not be perfect, it can be 
regarded as considerably reliable to study the trend of toler-
ance across different issues as our classifier (in §6.1) attains 
a high (83%) classification accuracy using the full feature 
set. As judging all users across all threads would require 
reading about 7000 posts, for confirmation, we randomly 
sampled 30 authors across various threads for labeling by 
our judges. 28 out of 30 predictions produced by the classi-
fier correlated with the judges' labels, which should be suf-
ficiently accurate for our analysis. 

olds of reception leading to dogmatism, ego-
tism, and intolerance. Table 6 shows that for 
moderately heated issues (healthcare, Eu-
rope’s collapse), in expectation, author’s dis-
agreement 𝜃𝑎,𝐷𝑖𝑠𝐴𝑔

𝐸  should exceed 61-65% to 
exhibit intolerance. However, for sensitive is-
sues, we find that the tipping point is much 
lower, abortion: 37%; socialism: 48%. 

5. The issue Obama Euphoria is an exception to 
other issues’ trends. Even though in expecta-
tion, it has 𝐸�𝜃𝑎,𝑑,𝐷𝑖𝑠𝐴𝑔

𝐸 �  = 66% overall disa-
greement, the percentage of intolerant users 
remains the lowest (30%) and the tipping 
point attains a highest value (𝜏 = 0.71), show-
ing more tolerance on the issue. A plausible 
reason could be that Obama is somewhat more 
liked and hence attracts less intolerance from 
users8. 

6. The p-values of the estimated tipping points, 𝜏 
across all issues are statistically significant at 
98-99% confidence levels. 

7 Conclusion 

This work performed a deep analysis of the soci-
opsychological and psycholinguistic phenome-
non of tolerance in online discussions, which is 
an important concept in the field of communica-
tions. A novel framework is proposed, which is 
capable of characterizing and classifying toler-
ance in online discussions. Further, a novel tech-
nique was also proposed to quantitatively evalu-
ate the interplay of tolerance and disagreement. 
Our empirical results using real-life online dis-
cussions render key insights into the psycholin-
guistic process of tolerance and dovetail with 
existing theories in psychology and communica-
tions. To the best of our knowledge, this is the 
first such quantitative study. In our future work, 
we want to further this research and study the 
role of diversity of opinions in the context of 
tolerance and its relation to polarization. 
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8 This observation may be linked to the political phenome-
non of “democratic citizenship through exposure to diverse 
perspectives” (Mutz, 2006) where it was shown that expo-
sure to heterogeneous opinions (i.e., greater disagreement), 
often enhances tolerance.  
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Abstract

Repeating experiments is an important in-
strument in the scientific toolbox to vali-
date previous work and build upon exist-
ing work. We present two concrete use
cases involving key techniques in the NLP
domain for which we show that reproduc-
ing results is still difficult. We show that
the deviation that can be found in repro-
duction efforts leads to questions about
how our results should be interpreted.
Moreover, investigating these deviations
provides new insights and a deeper under-
standing of the examined techniques. We
identify five aspects that can influence the
outcomes of experiments that are typically
not addressed in research papers. Our use
cases show that these aspects may change
the answer to research questions leading
us to conclude that more care should be
taken in interpreting our results and more
research involving systematic testing of
methods is required in our field.

1 Introduction

Research is a collaborative effort to increase
knowledge. While it includes validating previous
approaches, our experience is that most research
output in our field focuses on presenting new ap-
proaches, and to a somewhat lesser extent building
upon existing work.

In this paper, we argue that the value of research
that attempts to replicate previous approaches goes
beyond simply validating what is already known.
It is also an essential aspect for building upon
existing approaches. Especially when validation

fails or variations in results are found, systematic
testing helps to obtain a clearer picture of both the
approach itself and of the meaning of state-of-the-
art results leading to a better insight into the qual-
ity of new approaches in relation to previous work.

We support our claims by presenting two use
cases that aim to reproduce results of previous
work in two key NLP technologies: measuring
WordNet similarity and Named Entity Recogni-
tion (NER). Besides highlighting the difficulty of
repeating other researchers’ work, new insights
about the approaches emerged that were not pre-
sented in the original papers. This last point shows
that reproducing results is not merely part of good
practice in science, but also an essential part in
gaining a better understanding of the methods we
use. Likewise, the problems we face in reproduc-
ing previous results are not merely frustrating in-
conveniences, but also pointers to research ques-
tions that deserve deeper investigation.

We investigated five aspects that cause exper-
imental variation that are not typically described
in publications: preprocessing (e.g. tokenisa-
tion), experimental setup (e.g. splitting data for
cross-validation), versioning (e.g. which version
of WordNet), system output (e.g. the exact fea-
tures used for individual tokens in NER), and sys-
tem variation (e.g. treatment of ties).

As such, reproduction provides a platform for
systematically testing individual aspects of an ap-
proach that contribute to a given result. What is
the influence of the size of the dataset, for exam-
ple? How does using a different dataset affect the
results? What is a reasonable divergence between
different runs of the same experiment? Finding
answers to these questions enables us to better in-
terpret our state-of-the-art results.
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Moreover, the experiments in this paper show
that even while strictly trying to replicate a pre-
vious experiment, results may vary up to a point
where they lead to different answers to the main
question addressed by the experiment. The Word-
Net similarity experiment use case compares the
performance of different similarity measures. We
will show that the answer as to which measure
works best changes depending on factors such as
the gold standard used, the strategy towards part-
of-speech or the ranking coefficient, all aspects
that are typically not addressed in the literature.

The main contributions of this paper are the
following:

1) An in-depth analysis of two reproduction use
cases in NLP

2) New insights into the state-of-the-art results
for WordNet similarities and NER, found because
of problems in reproducing prior research

3) A categorisation of aspects influencing
reproduction of experiments and suggestions on
testing their influence systematically

The code, data and experimental setup
for the WordNet experiments are avail-
able at http://github.com/antske/
WordNetSimilarity, and for the NER exper-
iments at http://github.com/Mvanerp/
NER. The experiments presented in this paper
have been repeated by colleagues not involved in
the development of the software using the code
included in these repositories. The remainder of
this paper is structured as follows. In Section 2,
previous work is discussed. Sections 3 and 4
describe our real-world use cases. In Section 5,
we present our observations, followed by a more
general discussion in Section 6. In Section 7, we
present our conclusions.

2 Background

This section provides a brief overview of recent
work addressing reproduction and benchmark re-
sults in computer science related studies and dis-
cusses how our research fits in the overall picture.

Most researchers agree that validating results
entails that a method should lead to the same over-
all conclusions rather than producing the exact
same numbers (Drummond, 2009; Dalle, 2012;
Buchert and Nussbaum, 2012, etc.). In other
words, we should strive to reproduce the same an-
swer to a research question by different means,

perhaps by re-implementing an algorithm or eval-
uating it on a new (in domain) data set. Replica-
tion has a somewhat more limited aim, and simply
involves running the exact same system under the
same conditions in order to get the exact same re-
sults as output.

According to Drummond (2009) replication is
not interesting, since it does not lead to new in-
sights. On this point we disagree with Drum-
mond (2009) as replication allows us to: 1) vali-
date prior research, 2) improve on prior research
without having to rebuild software from scratch,
and 3) compare results of reimplementations and
obtain the necessary insights to perform reproduc-
tion experiments. The outcome of our use cases
confirms the statement that deeper insights into an
approach can be obtained when all resources are
available, an observation also made by Ince et al.
(2012).

Even if exact replication is not a goal many
strive for, Ince et al. (2012) argue that insightful
reproduction can be an (almost) impossible un-
dertaking without the source code being available.
Moreover, it is not always clear where replication
stops and reproduction begins. Dalle (2012) dis-
tinguishes levels of reproducing results related to
how close they are to the original work and how
each contributes to research. In general, an in-
creasing awareness of the importance of reproduc-
tion research and open code and data can be ob-
served based on publications in high-profile jour-
nals (e.g. Nature (Ince et al., 2012)) and initiatives
such as myExperiment.1

Howison and Herbsleb (2013) point out that,
even though this is important, often not enough
(academic) credit is gained from making resources
available. What is worse, the same holds for re-
search that investigates existing methods rather
than introducing new ones, as illustrated by the
question that is found on many review forms ‘how
novel is the presented approach?’. On the other
hand, initiatives for journals addressing exactly
this issue (Neylon et al., 2012) and tracks focus-
ing on results verification at conferences such as
VLDB2 show that this opinion is not universal.

A handful of use cases on reproducing or repli-
cating results have been published. Louridas and
Gousios (2012) present a use case revealing that
source code alone is not enough for reproducing

1http://www.myexperiment.org
2http://www.vldb.org/2013/

1692



results, a point that is also made by Mende (2010)
who provides an overview of all information re-
quired to replicate results.

The experiments in this paper provide use cases
that confirm the points brought out in the litera-
ture mentioned above. This includes both obser-
vations that a detailed level of information is re-
quired for truly insightful reproduction research as
well as the claim that such research leads to better
understanding of our techniques. Furthermore, the
work in this paper relates to Bikel (2004)’s work.
He provides all information needed in addition to
Collins (1999) to replicate Collins’ benchmark re-
sults. Our work is similar in that we also aim to fill
in the blanks needed to replicate results. It must
be noted, however, that the use cases in this paper
have a significantly smaller scale than Bikel’s.

Our research distinguishes itself from previous
work, because it links the challenges of reproduc-
tion to what they mean for reported results be-
yond validation. Ruml (2010) mentions variations
in outcome as a reason not to emphasise compar-
isons to benchmarks. Vanschoren et al. (2012)
propose to use experimental databases to system-
atically test variations for machine learning, but
neither links the two issues together. Raeder et al.
(2010) come closest to our work in a critical study
on the evaluation of machine learning. They show
that choices in the methodology, such as data sets,
evaluation metrics and type of cross-validation can
influence the conclusions of an experiment, as we
also find in our second use case. However, they
focus on the problem of evaluation and recom-
mendations on how to achieve consistent repro-
ducible results. Our contribution is to investigate
how much results vary. We cannot control how
fellow researchers carry out their evaluation, but
if we have an idea of the variations that typically
occur within a system, we can better compare ap-
proaches for which not all details are known.

3 WordNet Similarity Measures

Patwardhan and Pedersen (2006) and Pedersen
(2010) present studies where the output of a va-
riety of WordNet similarity and relatedness mea-
sures are compared. They rank Miller and Charles
(1991)’s set (henceforth “mc-set”) of 30 word
pairs according to their semantic relatedness with
several WordNet similarity measures.

Each measure ranks the mc-set of word pairs
and these outputs are compared to Miller and

Charles (1991)’s gold standard based on human
rankings using the Spearman’s Correlation Coeffi-
cient (Spearman, 1904, ρ). Pedersen (2010) also
ranks the original set of 65 word pairs ranked
by humans in an experiment by Rubenstein and
Goodenough (1965) (rg-set) which is a superset of
Miller and Charles’s set.

3.1 Replication Attempts

This research emerged from a project run-
ning a similar experiment for Dutch on Cor-
netto (Vossen et al., 2013). First, an attempt
was made to reproduce the results reported in
Patwardhan and Pedersen (2006) and Peder-
sen (2010) on the English WordNet using their
WordNet::Similarity web-interface.3 Results dif-
fered from those reported in the aforementioned
works, even when using the same versions as
the original, WordNet::Similarity-1.02 and Word-
Net 2.1 (Patwardhan and Pedersen, 2006) and
WordNet::Similarity-2.05 and WordNet 3.0 (Ped-
ersen, 2010), respectively.4

The fact that results of similarity measures on
WordNet can differ even while the same software
and same versions are used indicates that proper-
ties which are not addressed in the literature may
influence the output of similarity measures. We
therefore conducted a range of experiments that,
in addition to searching for the right settings to
replicate results of previous research, address the
following questions:

1) Which properties have an impact on the per-
formance of WordNet similarity measures?

2) How much does the performance of individ-
ual measures vary?

3) How do commonly used measures compare
when the variation of their performance are taken
into account?

3.2 Methodology and first observations

The questions above were addressed in two stages.
In the first stage, Fokkens, who was not involved
in the first replication attempt implemented a
script to calculate similarity measures using Word-
Net::Similarity. This included similarity mea-
sures introduced by Wu and Palmer (1994) (wup),

3Obtained from http://talisker.d.umn.edu/
cgi-bin/similarity/similarity.cgi, Word-
Net::Similarity version 2.05. This web interface has now
moved to http://maraca.d.umn.edu

4WordNet::Similarity were obtained http://
search.cpan.org/dist/WordNet-Similarity/.
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Leacock and Chodorow (1998) (lch), Resnik
(1995) (res), Jiang and Conrath (1997) (jcn),
Lin (1998) (lin), Banerjee and Pedersen (2003)
(lesk), Hirst and St-Onge (1998) (hso) and
Patwardhan and Pedersen (2006) (vector and
vpairs) respectively.

Consequently, settings and properties were
changed systematically and shared with Pedersen
who attempted to produce the new results with his
own implementations. First, we made sure that
the script implemented by Fokkens could produce
the same WordNet similarity scores for each in-
dividual word pair as those used to calculate the
ranking on the mc-set by Pedersen (2010). Finally,
the gold standard and exact implementation of the
Spearman ranking coefficient were compared.

Differences in results turned out to be related
to variations in the experimental setup. First,
we made different assumptions on the restriction
of part-of-speech tags (henceforth “PoS-tag”) con-
sidered in the comparison. Miller and Charles
(1991) do not discuss how they deal with words
with more than one PoS-tag in their study. Ped-
ersen therefore included all senses with any PoS-
tag in his study. The first replication attempt had
restricted PoS-tags to nouns based on the idea
that most items are nouns and subjects would be
primed to primarily think of the noun senses. Both
assumptions are reasonable. Pos-tags were not re-
stricted in the second replication attempt, but be-
cause of a bug in the code only the first identified
PoS-tag (“noun” in all cases) was considered. We
therefore mistakenly assumed that PoS-tag restric-
tions did not matter until we compared individual
scores between Pedersen and the replication at-
tempts.

Second, there are two gold standards for the
Miller and Charles (1991) set: one has the scores
assigned during the original experiment run by
Rubenstein and Goodenough (1965), the other
has the scores assigned during Miller and Charles
(1991)’s own experiment. The ranking correlation
between the two sets is high, but they are not iden-
tical. Again, there is no reason why one gold stan-
dard would be a better choice than the other, but in
order to replicate results, it must be known which
of the two was used. Third, results changed be-
cause of differences in the treatment of ties while
calculating Spearman ρ. The influence of the ex-
act gold standard and calculation of Spearman ρ
could only be found because Pedersen could pro-

measure Spearman ρ Kendall τ ranking
min max min max variation

path based similarity
path 0.70 0.78 0.55 0.62 1-8
wup 0.70 0.79 0.53 0.61 1-6
lch 0.70 0.78 0.55 0.62 1-7

path based information content
res 0.65 0.75 0.26 0.57 4-11
lin 0.49 0.73 0.36 0.53 6-10
jcn 0.46 0.73 0.32 0.55 5, 7-11

path based relatedness
hso 0.73 0.80 0.36 0.41 1-3,5-10

dictionary and corpus based relatedness
vpairs 0.40 0.70 0.26 0.50 7-11
vector 0.48 0.92 0.33 0.76 1,2,4,6-11
lesk 0.66 0.83 -0.02 0.61 1-8,11,12

Table 1: Variation WordNet measures’ results

vide the output of the similarity measures he used
to calculate the coefficient. It is unlikely we would
have been able to replicate his results at all with-
out the output of this intermediate step. Finally,
results for lch, lesk and wup changed accord-
ing to measure specific configuration settings such
as including a PoS-tag specific root node or turn-
ing on normalisation.

In the second stage of this research, we ran ex-
periments that systematically manipulate the influ-
ential factors described above. In this experiment,
we included both the mc-set and the complete rg-
set. The implementation of Spearman ρ used in
Pedersen (2010) assigned the lowest number in
ranking to ties rather than the mean, resulting in
an unjustified drop in results for scores that lead
to many ties. We therefore experimented with a
different correlation measure, Kendall tau coeffi-
cient (Kendall, 1938, τ ) rather than two versions
of Spearman ρ.

3.3 Variation per measure

All measures varied in their performance.
The complete outcome of our experiments
(both the similarity measures assigned to
each pair as well as the output of the ranking
coefficients) are included in the data set pro-
vided at http://github.com/antske/
WordNetSimilarity. Table 1 presents an
overview of the main point we wish to make
through this experiment: the minimal and maxi-
mal results according to both ranking coefficients.
Results for similarity measures varied from 0.06-
0.42 points for Spearman ρ and from 0.05-0.60
points for Kendall τ . The last column indi-
cates the variation of performance of a measure
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compared to the other measures, where 1 is the
best performing measure and 12 is the worst.5

For instance, path has been best performing
measure, second best, eighth best and all positions
in between, vector has ranked first, second and
fourth, but also occupied all positions from six to
eleven.

In principle, it is to be expected that num-
bers are not exactly the same while evaluating
against a different data set (the mc-set versus the
rg-set), taking a different set of synsets to evalu-
ate on (changing PoS-tag restrictions) or changing
configuration settings that influence the similarity
score. However, a variation of up to 0.44 points
in Spearman ρ and 0.60 in Kendall τ 6 leads to
the question of how indicative these results really
are. A more serious problem is the fact that the
comparative performance of individual measure
changes. Which measure performs best depends
on the evaluation set, ranking coefficient, PoS-tag
restrictions and configuration settings. This means
that the answer to the question of which similarity
measure is best to mimic human similarity scores
depends on aspects that are often not even men-
tioned, let alone systematically compared.

3.4 Variation per category

For each influential category of experimental vari-
ation, we compared the variation in Spearman ρ
and Kendall τ , while similarity measure and other
influential categories were kept stable. The cat-
egories we varied include WordNet and Word-
Net::Similarity version, the gold standard used to
evaluate, restrictions on PoS-tags, and measure
specific configurations. Table 2 presents the maxi-
mum variation found across measures for each cat-
egory. The last column indicates how often the
ranking of a specific measure changed as the cat-
egory changed, e.g. did the measure ranking third
using specific configurations, PoS-tag restrictions
and a specific gold standard using WordNet 2.1
still rank third when WordNet 3.0 was used in-
stead? The number in parentheses next to the ‘dif-
ferent ranks’ in the table presents the total num-
ber of scores investigated. Note that this num-
ber changes for each category, because we com-

5Some measures ranked differently as their individual
configuration settings changed. In these cases, the measure
was included in the overall ranking multiple times, which is
why there are more ranking positions than measures.

6Section 3.4 explains why the variation in Kendall is this
extreme and ρ is more appropriate for this task.

Variation Maximum difference Different
Spearman ρ Kendall τ rank (tot)

WN version 0.44 0.42 223 (252)
gold standard 0.24 0.21 359 (504)
PoS-tag 0.09 0.08 208 (504)
configuration 0.08 0.60 37 (90)

Table 2: Variations per category

pared two WordNet versions (WN version), three
gold standard and PoS-tag restriction variations
and configuration only for the subset of scores
where configuration matters.

There are no definite statements to make as to
which version (Patwardhan and Pedersen (2006)
vs Pedersen (2010)), PoS-tag restriction or con-
figuration gives the best results. Likewise, while
most measures do better on the smaller data set,
some achieve their highest results on the full set.
This is partially due to the fact that ranking coef-
ficients are sensitive to outliers. In several cases
where PoS-tag restrictions led to different results,
only one pair received a different score. For in-
stance, path assigns a relatively high score to
the pair chord-smile when verbs are included, be-
cause the hierarchy of verbs in WordNet is rela-
tively flat. This effect is not observed in wup and
lch which correct for the depth of the hierarchy.
On the other hand, res, lin and jcn score bet-
ter on the same set when verbs are considered, be-
cause they cannot detect any relatedness for the
pair crane-implement when restricted to nouns.

On top of the variations presented above, we no-
tice a discrepancy between the two coefficients.
Kendall τ generally leads to lower coefficiency
scores than Spearman ρ. Moreover, they each
give different relative indications: where lesk
achieves its highest Spearman ρ, it has an ex-
tremely low Kendall τ of 0.01. Spearman ρ uses
the difference in rank as its basis to calculate a cor-
relation, where Kendall τ uses the number of items
with the correct rank. The low Kendall τ for lesk
is the result of three pairs receiving a score that is
too high. Other pairs that get a relatively accurate
score are pushed one place down in rank. Because
only items that receive the exact same rank help to
increase τ , such a shift can result in a drastic drop
in the coefficient. In our opinion, Spearman ρ is
therefore preferable over Kendall τ . We included
τ , because many authors do not mention the rank-
ing coefficient they use (cf. Budanitsky and Hirst
(2006), Resnik (1995)) and both ρ and τ are com-
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monly used coefficients.
Except for WordNet, which Budanitsky and

Hirst (2006) hold accountable for minor variations
in a footnote, the influential categories we investi-
gated in this paper, to our knowledge, have not yet
been addressed in the literature. Cramer (2008)
points out that results from WordNet-Human sim-
ilarity correlations lead to scattered results report-
ing variations similar to ours, but she compares
studies using different measures, data and exper-
imental setup. This study shows that even if
the main properties are kept stable, results vary
enough to change the identity of the measure that
yields the best performance. Table 1 reveals a
wide variation in ranking relative to alternative ap-
proaches. Results in Table 2 show that it is com-
mon for the ranking of a score to change due to
variations that are not at the core of the method.

This study shows that it is far from clear how
different WordNet similarity measures relate to
each other. In fact, we do not know how we can
obtain the best results. This is particularly chal-
lenging, because the ‘best results’ may depend on
the intended use of the similarity scores (Meng
et al., 2013). This is also the reason why we
presented the maximum variation observed, rather
than the average or typical variation (mostly be-
low 0.10 points). The experiments presented in
this paper resulted in a vast amount of data. An
elaborate analysis of this data is needed to get a
better understanding of how measures work and
why results vary to such an extent. We leave this
investigation to future work. If there is one take-
home message from this experiment, it is that one
should experiment with parameters such as restric-
tions on PoS-tags or configurations and determine
which score to use depending on what it is used
for, rather than picking something that did best in
a study using different data for a different task and
may have used a different version of WordNet.

4 Reproducing a NER method

Freire et al. (2012) describe an approach to clas-
sifying named entities in the cultural heritage do-
main. The approach is based on the assumption
that domain knowledge, encoded in complex fea-
tures, can aid a machine learning algorithm in
NER tasks when only little training data is avail-
able. These features include information about
person and organisation names, locations, as well
as PoS-tags. Additionally, some general features

are used such as a window of three preceding and
two following tokens, token length and capitalisa-
tion information. Experiments are run in a 10-fold
cross-validation setup using an open source ma-
chine learning toolkit (McCallum, 2002).

4.1 Reproducing NER Experiments
This experiment can be seen as a real-world case
of the sad tale of the Zigglebottom tagger (Peder-
sen, 2008). The (fictional) Zigglebottom tagger is
a tagger with spectacular results that looks like it
will solve some major problems in your system.
However, the code is not available and a new im-
plementation does not yield the same results. The
original authors cannot provide the necessary de-
tails to reproduce their results, because most of the
work has been done by a PhD student who has fin-
ished and moved on to something else. In the end,
the newly implemented Zigglebottom tagger is not
used, because it does not lead to the promised bet-
ter results and all effort went to waste.

Van Erp was interested in the NER approach
presented in Freire et al. (2012). Unfortunately,
the code could not be made available, so she de-
cided to reimplement the approach. Despite feed-
back from Freire about particular details of the
system, results remained 20 points below those
reported in Freire et al. (2012) in overall F-score
(Van Erp and Van der Meij, 2013).

The reimplementation process involved choices
about seemingly small details such as rounding
to how many decimals, how to tokenise or how
much data cleanup to perform (normalisation of
non-alphanumeric characters for example). Try-
ing different parameter combinations for feature
generation and the algorithm never yielded the ex-
act same results as Freire et al. (2012). The results
of the best run in our first reproduction attempt,
together with the original results from Freire et al.
(2012) are presented in Table 3. Van Erp and Van
der Meij (2013) provide an overview of the imple-
mentation efforts.

4.2 Following up from reproduction
Since the experiments in Van Erp and Van der Meij
(2013) introduce several new research questions
regarding the influence of data cleaning and the
limitations of the dataset, we performed some ad-
ditional experiments.

First, we varied the tokenisation, removing non-
alphanumeric characters from the data set. This
yielded a significantly smaller data set (10,442
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(Freire et al., 2012) results Van Erp and Van der Meij’s replication results
Precision Recall Fβ=1 Precision Recall Fβ=1

LOC (388) 92% 55% 69 77.80% 39.18% 52.05
ORG (157) 90% 57% 70 65.75% 30.57% 41.74
PER (614) 91% 56% 69 73.33% 37.62% 49.73
Overall (1,159) 91% 55% 69 73.33% 37.19% 49.45

Table 3: Precision, recall and Fβ=1 scores for the original experiments from Freire et al. 2012 and our
replication of their approach as presented in Van Erp and Van der Meij (2013)

tokens vs 12,510), and a 15 point drop in over-
all F-score. Then, we investigated whether vari-
ation in the cross-validation splits made any dif-
ference as we noticed that some NEs were only
present in particular fields in the data, which can
have a significant impact on a small dataset. We
inspected the difference between different cross-
validation folds by computing the standard devi-
ations of the scores and found deviations of up
to 25 points in F-score between the 10 splits. In
the general setup, database records were randomly
distributed over the folds and cut off to balance the
fold sizes. In a different approach to dividing the
data by distributing individual sentences from the
records over the folds, performance increases by
8.57 points in overall F-score to 58.02. This is not
what was done in the original Freire et al. (2012)
paper, but shows that the results obtained with this
dataset are quite fragile.

As we worried about the complexity of the fea-
ture set relative to the size of the data set, we de-
viated somewhat from Freire et al. (2012)’s exper-
iments in that we switched some features on and
off. Removal of complex features pertaining to the
window around the focus token improved our re-
sults by 3.84 points in overall F-score to 53.39.
The complex features based on VIAF,7 GeoN-
ames8 and WordNet do contribute to the classifica-
tion in the Mallet setup as removing them and only
using the focus token, window and generic fea-
tures causes a slight drop in overall F-score from
49.45 to 47.25.

When training the Stanford NER system (Finkel
et al., 2005) on just the tokens from the
Freire data set and the parameters from en-
glish.all.3class.distsim.prop (included in the Stan-
ford NER release, see also Van Erp and Van der
Meij (2013)), our F-scores come very close to
those reported by Freire et al. (2012), but mostly
with a higher recall and lower precision. It is puz-
zling that the Stanford system obtains such high

7http://www.viaf.org
8http://www.geonames.org

results with only very simple features, whereas
for Mallet the complex features show improve-
ment over simpler features. This leads to ques-
tions about the differences between the CRF im-
plementations and the influence of their parame-
ters, which we hope to investigate in future work.

4.3 Reproduction difficulties explained

Several reasons may be the cause of why we fail to
reproduce results. As mentioned, not all resources
and data were available for this experiment, thus
causing us to navigate in the dark as we could not
reverse-engineer intermediate steps, but only com-
pare to the final precision, recall and F-scores.

The experiments follow a general machine
learning setup consisting roughly of four steps:
preprocess data, generate features, train model and
test model. The novelty and replication problems
lie in the first three steps. How the data was pre-
processed is a major factor here. The data set con-
sisted of XML files marked up with inline named
entity tags. In order to generate machine learn-
ing features, this data has to be tokenised, possi-
bly cleaned up and the named entity markup had
to be converted to a token-based scheme. Each of
these steps can be carried out in several ways, and
choices made here can have great influence on the
rest of the pipeline.

Similar choices have to be made for prepro-
cessing external resources. From the descriptions
in the original paper, it is unclear how records
in VIAF and GeoNames were preprocessed, or
even which versions of these resources were used.
Preprocessing and calculating occurrence statis-
tics over VIAF takes 30 hours for each run. It
is thus not feasible to identify the main potential
variations without the original data to verify this
prepatory step.

Numbers had to be rounded when generating
the features, leading to the question of how many
decimals are required to be discriminative with-
out creating an overly sparse dataset. Freire recalls
that encoding features as multi-value discrete fea-
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tures versus several boolean features can have sig-
nificant impact. These settings are not mentioned
in the paper, making reproduction very difficult.

As the project in which the original research
was performed has ended, and there is no cen-
tral repository where such information can be re-
trieved, we are left to wonder how to reuse this
approach in order to further domain-specific NER.

5 Observations

In this section, we generalise the observations
from our use cases to the main categories that can
influence reproduction.

Despite our efforts to describe our systems as
clearly as possible, details that can make a tremen-
dous difference are often omitted in papers. It will
be no surprise to researchers in the field that pre-
processing of data can make or break an experi-
ment.

The choice of which steps we perform, and how
each of these steps is carried out exactly are part
of our experimental setup. A major difference in
the results for the NER experiments was caused by
variations in the way in which we split the data for
cross-validation.

As we fine-tune our techniques, software gets
updated, data sets are extended or annotation bugs
are fixed. In the WordNet experiment, we found
that there were two different gold standard data
sets. There are also different versions of Word-
Net, and the WordNet::Similarity packages. Sim-
ilarly for the NER experiment, GeoNames, VIAF
and Mallet are updated regularly. It is therefore
critical to pay attention to versioning.

Our experiments often consist of several differ-
ent steps whose outputs may be difficult to retrace.
In order to check the output of a reproduction ex-
periment at every step of the way, system out-
put of experiments, including intermediate steps,
is vital. The WordNet replication was only pos-
sible, because Pedersen could provide the similar-
ity scores of each word pair. This enabled us to
compare the intermediate output and identify the
source of differences in output.

Lastly, there may be inherent system variations
in the techniques used. Machine learning algo-
rithms may for instance use coin flips in case of
a tie. This was not observed in our experiments,
but such variations may be determined by running
an experiment several times and taking the average
over the different runs (cf. Raeder et al. (2010)).

All together, these observations show that shar-
ing data and software play a key role in gaining in-
sight into how our methods work. Vanschoren et
al. (2012) propose a setup that allows researchers
to provide their full experimental setup, which
should include exact steps followed in preprocess-
ing the data, documentation of the experimen-
tal setup, exact versions of the software and re-
sources used and experimental output. Having
access to such a setup allows other researchers
to validate research, but also tweak the approach
to investigate system variation, systematically test
the approach in order to learn its limitations and
strengths and ultimately improve on it.

6 Discussion

Many of the aspects addressed in the previous sec-
tion such as preprocessing are typically only men-
tioned in passing, or not at all. There is often not
enough space to capture all details, and they are
generally not the core of the research described.
Still, our use cases have shown that they can have a
tremendous impact on reproduction, and can even
lead to different conclusions. This leads to serious
questions on how we can interpret our results and
how we can compare the performance of different
methods. Is an improvement of a few per cent re-
ally due to the novelty of the approach if larger
variations are found when the data is split differ-
ently? Is a method that does not quite achieve the
highest reported state-of-the-art result truly less
good? What does a state-of-the-art result mean if
it is only tested on one data set?

If one really wants to know whether a result
is better or worse than the state-of-the-art, the
range of variation within the state-of-the-art must
be known. Systematic experiments such as the
ones we carried out for WordNet similarity and
NER, can help determine this range. For results
that fall within the range, it holds that they can
only be judged by evaluations going beyond com-
paring performance numbers, i.e. an evaluation of
how the approach achieves a given result and how
that relates to alternative approaches.

Naturally, our use cases do not represent the en-
tire gamut of research methodologies and prob-
lems in the NLP community. However, they do
represent two core technologies and our observa-
tions align with previous literature on replication
and reproduction.

Despite the systematic variation we employed
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in our experiments, they do not answer all ques-
tions that the problems in reproduction evoked.
For the WordNet experiments, deeper analysis is
required to gain full understanding of how indi-
vidual influential aspects interact with each mea-
surement. For the NER experiments, we are yet to
identify the cause of our failure to reproduce.

The considerable time investment required for
such experiments forms a challenge. Due to pres-
sure to publish or other time limitations, they can-
not be carried out for each evaluation. There-
fore, it is important to share our experiments, so
that other researchers (or students) can take this
up. This could be stimulated by instituting repro-
duction tracks in conferences, thus rewarding sys-
tematic investigation of research approaches. It
can also be aided by adopting initiatives that en-
able authors to easily include data, code and/or
workflows with their publications such as the
PLOS/figshare collaboration.9 We already do a
similar thing for our research problems by organ-
ising challenges or shared tasks, why not extend
this to systematic testing of our approaches?

7 Conclusion

We have presented two reproduction use cases for
the NLP domain. We show that repeating other
researchers’ experiments can lead to new research
questions and provide new insights into and better
understanding of the investigated techniques.

Our WordNet experiments show that the perfor-
mance of similarity measures can be influenced by
the PoS-tags considered, measure specific varia-
tions, the rank coefficient and the gold standard
used for comparison. We not only find that such
variations lead to different numbers, but also dif-
ferent rankings of the individual measures, i.e.
these aspects lead to a different answer to the
question as to which measure performs best. We
did not succeed in reproducing the NER results
of Freire et al. (2012), showing the complexity
of what seems a straightforward reproduction case
based on a system description and training data
only. Our analyses show that it is still an open
question whether additional complex features im-
prove domain specific NER and that this may par-
tially depend on the CRF implementation.

Some observations go beyond our use cases. In
particular, the fact that results vary significantly

9http://blogs.plos.org/plos/2013/01/
easier-access-to-plos-data/

because of details that are not made explicit in
our publications. Systematic testing can provide
an indication of this variation. We have classi-
fied relevant aspects in five categories occurring
across subdisciplines of NLP: preprocessing, ex-
perimental setup, versioning, system output,
and system variation.

We believe that knowing the influence of differ-
ent aspects in our experimental workflow can help
increase our understanding of the robustness of
the approach at hand and will help understand the
meaning of the state-of-the-art better. Some tech-
niques are reused so often (the papers introducing
WordNet similarity measures have around 1,000-
2,000 citations each as of February 2013, for ex-
ample) that knowing their strengths and weak-
nesses is essential for optimising their use.

As mentioned many times before, sharing is key
to facilitating reuse, even if the code is imper-
fect and contains hacks and possibly bugs. In the
end, the same holds for software as for documen-
tation: it is like sex: if it is good, it is very good
and if it is bad, it is better than nothing!10 But
most of all: when reproduction fails, regardless of
whether original code or a reimplementation was
used, valuable insights can emerge from investi-
gating the cause of this failure. So don’t let your
failing reimplementations of the Zigglebottom tag-
ger collect dusk on a shelf while others reimple-
ment their own failing Zigglebottoms. As a com-
munity, we need to know where our approaches
fail, as much –if not more– as where they succeed.
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Abstract

This work proposes a new segmentation
evaluation metric, named boundary simi-
larity (B), an inter-coder agreement coef-
ficient adaptation, and a confusion-matrix
for segmentation that are all based upon an
adaptation of the boundary edit distance in
Fournier and Inkpen (2012). Existing seg-
mentation metrics such as Pk, WindowD-
iff, and Segmentation Similarity (S) are
all able to award partial credit for near
misses between boundaries, but are biased
towards segmentations containing few or
tightly clustered boundaries. Despite S’s
improvements, its normalization also pro-
duces cosmetically high values that over-
estimate agreement & performance, lead-
ing this work to propose a solution.

1 Introduction

Text segmentation is the task of splitting text into
segments by placing boundaries within it. Seg-
mentation is performed for a variety of purposes
and is often a pre-processing step in a larger task.
E.g., text can be topically segmented to aid video
and audio retrieval (Franz et al., 2007), question
answering (Oh et al., 2007), subjectivity analysis
(Stoyanov and Cardie, 2008), and even summa-
rization (Haghighi and Vanderwende, 2009).

A variety of segmentation granularities, or
atomic units, exist, including segmentations at the
morpheme (e.g., Sirts and Alumäe 2012), word
(e.g., Chang et al. 2008), sentence (e.g., Rey-
nar and Ratnaparkhi 1997), and paragraph (e.g.,
Hearst 1997) levels. Between each atomic unit lies
the potential to place a boundary. Segmentations
can also represent the structure of text as being
organized linearly (e.g., Hearst 1997), hierarchi-
cally (e.g., Eisenstein 2009), etc. Theoretically,
segmentations could also contain varying bound-

ary types, e.g., two boundary types could differen-
tiate between act and scene breaks in a play.

Because of its value to natural language pro-
cessing, various text segmentation tasks have
been automated such as topical segmentation—
for which a variety of automatic segmenters exist
(e.g., Hearst 1997, Malioutov and Barzilay 2006,
Eisenstein and Barzilay 2008, and Kazantseva and
Szpakowicz 2011). This work addresses how to
best select an automatic segmenter and which seg-
mentation metrics are most appropriate to do so.

To select an automatic segmenter for a particu-
lar task, a variety of segmentation evaluation met-
rics have been proposed, including Pk (Beefer-
man and Berger, 1999, pp. 198–200), WindowDiff
(WD; Pevzner and Hearst 2002, p. 10), and most
recently Segmentation Similarity (S; Fournier and
Inkpen 2012, p. 154–156). Each of these met-
rics have a variety of flaws: Pk and WindowD-
iff both under-penalize errors at the beginning of
segmentations (Lamprier et al., 2007) and have a
bias towards favouring segmentations with few or
tightly-clustered boundaries (Niekrasz and Moore,
2010), while S produces overly optimistic values
due to its normalization (shown later).

To overcome the flaws of existing text segmen-
tation metrics, this work proposes a new series of
metrics derived from an adaptation of boundary
edit distance (Fournier and Inkpen, 2012, p. 154–
156). This new metric is named boundary similar-
ity (B). A confusion matrix to interpret segmenta-
tion as a classification problem is also proposed,
allowing for the computation of information re-
trieval (IR) metrics such as precision and recall.1

In this work: §2 reviews existing segmentation
metrics; §3 proposes an adaptation of boundary
edit distance, a new normalization of it, a new
confusion matrix for segmentation, and an inter-

1An implementation of boundary edit distance, bound-
ary similarity, B-precision, and B-recall, etc. is provided at
http://nlp.chrisfournier.ca/
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coder agreement coefficient adaptation; §4 com-
pares existing segmentation metrics to those pro-
posed herein; §5 evaluates S and B based inter-
coder agreement; and §6 compares B, S, and WD
while evaluating automatic segmenters.

2 Related Work

2.1 Segmentation Evaluation

Many early studies evaluated automatic seg-
menters using information retrieval (IR) metrics
such as precision, recall, etc. These metrics looked
at segmentation as a binary classification prob-
lem and were very harsh in their comparisons—no
credit was awarded for nearly missing a boundary.

Near misses occur frequently in segmentation—
although manual coders often agree upon the bulk
of where segment lie, they frequently disagree
upon the exact position of boundaries (Artstein
and Poesio, 2008, p. 40). To attempt to overcome
this issue, both Passonneau and Litman (1993) and
Hearst (1993) conflated multiple manual segmen-
tations into one that contained only those bound-
aries which the majority of coders agreed upon. IR
metrics were then used to compare automatic seg-
menters to this majority solution. Such a major-
ity solution is unsuitable, however, because it does
not contain actual subtopic breaks, but instead the
conflation of a collection of potentially disagree-
ing solutions. Additionally, the definition of what
constitutes a majority is subjective (e.g., Passon-
neau and Litman (1993, p. 150), Litman and Pas-
sonneau (1995), Hearst (1993, p. 6) each used 4/7,
3/7, and > 50%, respectively).

To address the issue of awarding partial
credit for an automatic segmenter nearly missing
a boundary—without conflating segmentations,
Beeferman and Berger (1999, pp. 198–200) pro-
posed a new metric named Pk. Pevzner and Hearst
(2002, pp. 3–4) explain Pk well: a window of size
k—where k is half of the mean manual segmen-
tation length—is slid across both automatic and
manual segmentations. A penalty is awarded if
the window’s edges are found to be in differing
or the same segments within the manual segmen-
tation and the automatic segmentation disagrees.
Pk is the sum of these penalties over all windows.
Measuring the proportion of windows in error al-
lows Pk to penalize a fully missed boundary by
k windows, whereas a nearly missed boundary is
penalized by the distance that it is offset.

Pk was not without issue, however. Pevzner

and Hearst (2002, pp. 5–10) identified that Pk:
i) penalizes false negatives (FNs)2 more than false
positives (FPs); ii) does not penalize full misses
within k units of a reference boundary; iii) penal-
ize near misses too harshly in some situations; and
iv) is sensitive to internal segment size variance.

To solve Pk’s issues, Pevzner and Hearst (2002,
pp. 10) proposed a modification referred to as
WindowDiff (WD). Its major difference is in how
it decides to penalized windows: within a window,
if the number of boundaries in the manual segmen-
tation (Mij) differs from the number of bound-
aries in the automatic segmentation (Aij), then a
penalty is given. The ratio of penalties over win-
dows then represents the degree of error between
the segmentations, as in Equation 1. This change
better allowed WD to: i) penalize FPs and FNs
more equally;3 ii) Not skip full misses; iii) Less
harshly penalize near misses; and iv) Reduce its
sensitivity to internal segment size variance.

WD(M,A) =
1

N − k
N−k∑

i=1,j=i+k

(|Mij −Aij | > 0) (1)

WD did not, however, solve all of the issues
related to window-based segmentation compari-
son. WD, and inherently Pk: i) Penalize er-
rors less at the beginning and end of segmenta-
tions (Lamprier et al., 2007); ii) Are biased to-
wards favouring automatic segmentations with ei-
ther few or tightly-clustered boundaries (Niekrasz
and Moore, 2010); iii) Calculate window size k
inconsistently;4 iv) Are not symmetric5 (meaning
that they cannot be used to produce a pairwise
mean of multiple manual segmentations6).

Segmentation Similarity (S; Fournier and
Inkpen 2012, pp. 154–156) took a different ap-
proach to comparing segmentations. Instead of us-
ing windows, the work proposes a new restricted
edit distance called boundary edit distance which
differentiates between full and near misses. S then

2I.e., a boundary present in the manual but not the auto-
matic segmentation, and the reverse for a false positive.

3Georgescul et al. (2006, p. 48) noted that WD interprets
a near miss as a FP probabilistically more than as a FN.

4k must be an integer, but half of a mean may be a frac-
tion, thus rounding must be used, but no rounding method
is specified. It is also not specified whether k should be set
once during a study or recalculated for each comparison—
this work assumes the latter.

5Window size is calculated only upon the manual segmen-
tation, meaning that one must be a manual and other an auto-
matic segmentation.

6This also means that WD and Pk cannot be adapted to
compute inter-coder agreement coefficients.
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normalizes the counts of full and near misses iden-
tified by boundary edit distance, as shown in Equa-
tion 2, where sa and sb are the segmentations, nt
is the maximum distance that boundaries may span
to be considered a near miss, edits(sa, sb, nt) is the
edit distance, and pb(D) is the number of potential
boundaries in a document D (pb(D) = |D| − 1).

S(sa, sb, nt) = 1− |edits(sa, sb, nt)|
pb(D)

(2)

Boundary edit distance models full misses as
the addition/deletion of a boundary, and near
misses as n-wise transpositions. An n-wise trans-
position is the act of swapping the position of
a boundary with an empty position such that it
matches a boundary in the segmentation compared
against (up to a spanning distance of nt). S also
scales the severity of a near miss by the distance
over which it is transposed, allowing it to scale
the penalty of a near misses much like WD. S is
also symmetric, allowing it to be used in pairwise
means and inter-coder agreement coefficients.

The usage of an edit distance that supported
transpositions to compare segmentations was an
advancement over window-based methods, but
boundary edit distance and its normalization S are
not without problems, specifically: i) This edit dis-
tance uses string reversals (ABCD =⇒ DCBA)
to perform transpositions, making it cumbersome
to analyse individual pairs of boundaries between
segmentations; ii) S is sensitive to variations in the
total size of a segmentation, leading it to favour
very sparse segmentations with few boundaries;
iii) S produces cosmetically high values, making
it difficult to interpret and causing over-estimation
of inter-coder agreement. In this work, these defi-
ciencies are demonstrated and a new set of metrics
are proposed as replacements.

2.2 Inter-Coder Agreement
Inter-coder agreement coefficients are used to
measure whether a group of human judges (i.e.
coders) agree with each other greater than chance.
Such coefficients are used to determine the relia-
bility and replicability of the coding scheme and
instructions used to collect manual codings (Car-
letta, 1996). Although direct interpretation of such
coefficients is difficult, they are an invaluable tool
when comparing segmentation data that has been
collected with differing labels and when estimat-
ing the replicability of a study. A variety of inter-

coder agreement coefficients exist, but this work
focuses upon a selection of those discussed by Art-
stein and Poesio (2008), specifically: Scott’s π
(Scott, 1955) Fleiss’ multi-π (π∗, Fleiss 1971)7,
Cohen’s κ (Cohen, 1960), and multi-κ (κ∗, Davies
and Fleiss 1982). Their general forms are shown in
Equation 3, where Aa represents actual agreement,
and Ae expected (i.e., chance) agreement between
coders.

κ, π, κ∗, and π∗ =
Aa − Ae

1− Ae
(3)

When calculating agreement between manual
segmenters, boundaries are considered labels and
their positions the decisions. Unfortunately, be-
cause of the frequency of near misses that oc-
cur in segmentation, using such labels and de-
cisions causes inter-coder agreement coefficients
to drastically underestimate actual agreement—
much like how automatic segmenter performance
is underestimated when segmentation is treated
as a binary classification problem. Hearst (1997,
pp. 53–54) attempted to adapt π∗ to award par-
tial credit for near misses by using the percentage
agreement metric of Gale et al. (1992, p. 254) to
compute actual agreement—which conflates mul-
tiple manual segmentations together according to
whether a majority of coders agree upon a bound-
ary or not. Unfortunately, such a method of com-
puting agreement grossly inflates results, and “the
statistic itself guarantees at least 50% agreement
by only pairing off coders against the majority
opinion” (Isard and Carletta, 1995, p. 63).

Fournier and Inkpen (2012, pp. 154–156) pro-
posed using pairwise mean S for actual agree-
ment to allow inter-coder agreement coefficients
to award partial credit for near misses. Unfor-
tunately, because S produces cosmetically high
values, it also causes inter-coder agreement coef-
ficients to drastically overestimates actual agree-
ment. This work demonstrates this deficiency and
proposes and evaluates a solution.

3 A New Proposal for Edit-Based Text
Segmentation Evaluation

In this section, a new boundary edit distance based
segmentation metric and confusion matrix is pro-
posed to solve the deficiencies of S for both seg-
mentation comparison and inter-coder agreement.

7Sometimes referred to as K (Siegel and Castellan, 1988).
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3.1 Boundary Edit Distance
In this section, Boundary Edit Distance (BED; as
proposed in Fournier and Inkpen 2012, pp. 154–
156) is introduced in more detail, and a few termi-
nological and conceptual changes are made.

Boundary Edit Distance uses three main edit op-
erations to model segmentation differences:

• Additions/deletions (AD; referred to origi-
nally as substitutions) for full misses;

• Substitutions (S; not shown for brevity) for
confusing one boundary type with another;

• n-wise transpositions (T) for near misses.

These edit operations are symmetric and oper-
ate upon the set of boundaries that occur at each
potential boundary position in a pair of segmenta-
tions. An example of how these edit operations are
applied8 is shown in Figure 1, where a near miss
(T), a matching pair of boundaries (M), and two
full misses (ADs) are shown with the maximum
distance that a transposition can span (nt) set to 2
potential boundaries (i.e., only adjacent positions
can be transposed).

s1 22 44 44 44

s2 33 33 66 22

T

M

AD

AD

Figure 1: Boundary edit operations

In Figure 1, the location of the errors is clearly
shown. Importantly, however, pairs of boundaries
between the segmentations can be seen that rep-
resent the decisions made, and the correctness of
these decisions. Imagine that s1 is a manual seg-
mentation, and s2 is an automatic segmenter’s hy-
pothesis. The transposition is a partially correct
decision, or boundary pair. The match is a correct
boundary pair. The additions/deletions, however,
could be one of two erroneous decisions: to not
place an expected boundary (FN), or to place a su-
perfluous boundary (FP).9

This work proposes assigning a correctness
score for each boundary pair/decision (shown in
Table 1) and then using the mean of this score as
a normalization of boundary edit distance. This
interpretation intuitively relates boundary edit dis-
tance to coder judgements, making it ideal for

8A complete explanation of Boundary Edit Distance is de-
tailed in Fournier (2013, Section 4.1.2).

9Also note that the ADs are close together, and if nt > 2,
then they would be considered a T, and not two ADs—this is
one way to award partial credit for near misses.

calculating actual agreement in inter-coder agree-
ment coefficients and comparing segmentations.

Pair Correctness
Match 1
Addition/deletion 0
Transposition 1− wt span(Te, nt)
Substitution 1− ws ord(Se,Tb)

Table 1: Correctness of boundary pair

3.2 Boundary Similarity
The new boundary edit distance normalization
proposed herein is referred to as boundary similar-
ity (B). Assuming that boundary edit distance pro-
duces sets of edit operations where Ae is the set of
additions/deletions, Te the set of n-wise transpo-
sitions, Se the set of substitutions, and BM the set
of matching boundary pairs, boundary similarity
similarity can be defined as shown in Equation 4—
one minus the incorrectness of each boundary pair
over the total number of boundary pairs.

B(s1, s2, nt) = 1−|Ae|+ wt span(Te, nt) + ws ord(Se,Tb)
|Ae|+ |Te|+ |Se|+ |BM |

(4)

This form, one minus a penalty function, was
chosen so that it was easier to compare against
other penalty functions considered (not shown
here for brevity). This normalization was also cho-
sen because it is equivalent to mean boundary pair
correctness and so that it ranges in value from 0 to
1. In the worst case, a segmentation comparison
will result in no matches, no near misses, no sub-
stitutions, andX full misses, i.e., |Ae| = X and all
other terms in Equation 4 are zero, meaning that:

B = 1− X + 0 + 0

X + 0 + 0 + 0

= 1− X/X = 1− 1 = 0

In the best case, a segmentation comparison will
result in X matches, no near misses, no substitu-
tions, and no full misses, i.e., |BM | = X and all
other terms in Equation 4 are zero, meaning that:

B = 1− 0 + 0 + 0

0 + 0 + 0 +X

= 1− 0/X = 1− 0 = 1

For all other scenarios, varying numbers of
matches, near misses, substitutions and full misses
will result in values of B between 0 and 1.

Equation 4 takes two segmentations (in any or-
der), and the maximum transposition spanning
distance (nt). This distance represents the great-
est offset between boundary positions that could
be considered a near miss and can be used to scale
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the severity of a near miss. A variety of scaling
functions could be used, and this work arbitrarily
chooses a simple fraction to represent each trans-
position’s severity in terms of its distance from its
paired boundary over nt plus a constant wt (0 by
default), as shown in Equation 5.

wt span(Te, nt) =
|Te|∑

j=1

(
wt +

abs(Te[j][1]− Te[j][2])
nt − 1

)

(5)

If multiple boundary types are used, then sub-
stitution edit operations would occur when one
boundary type was confused with another. As-
signing each boundary type tb ∈ Tb a number on
an ordinal scale, substitutions can be weighted by
their distance on this scale over the maximum dis-
tance plus a constant ws (0 by default), as shown
in Equation 6.

ws ord(Se,Tb) =
|Se|∑

j=1

(
ws +

abs(Se[j][1]− Se[j][2])
max(Tb)−min(Tb)

)

(6)

These scaling functions allow for edit penalties
to range from 0 to ws/t plus some linear distance.

3.3 A Confusion Matrix for Segmentation
The mean correctness of each pair (i.e., B) gives an
indication of just how similar one segmentation is
to another, but what if one wants to identify some
specific attributes of the performance of an auto-
matic segmenter? Is the segmenter confusing one
boundary type with another, or is it very precise
but has poor recall? The answers to these ques-
tions can be obtained by looking at text segmenta-
tion as a multi-class classification problem.

This work proposes using a task’s set of bound-
ary types (Tb) and the lack of a boundary (∅)
to represent the set of segmentation classes in
a boundary classification problem. Using these
classes, a confusion matrix (defined in Equation 7)
can be created which sums boundary pair correct-
ness so that information-retrieval metrics can be
calculated that award partial credit to near misses
by scaling edits operations.

CM(a, p) =





|BM,a| + ws ord(Sa,p
e , Tb)

+wt span(Ta,p
e , nt) if a = p

ws ord(Sa,p
e , Tb)

+wt span(Ta,p
e , nt) if a 6= p

|Ae,a| if p = ∅
|Ae,p| if a = ∅

(7)

An example confusion matrix is shown in Fig-
ure 2 from which IR metrics such as precision, re-
call, and Fβ-measure can be computed (referred to
as B-precision, B-recall, etc.).

Actual

P
re

di
ct

ed B Non-B
B CM(1, 1) CM(∅, 1)

Non-B CM(1,∅) CM(∅,∅)

Figure 2: Example confusion matrix (Tb = {1})

3.4 B-Based Inter-coder Agreement
Fournier and Inkpen (2012, p. 156–157) adapted
four inter-coder agreement formulations provided
by Artstein and Poesio (2008) to use S to award
partial credit for near misses, but because S pro-
duces cosmetically high agreement values they
grossly overestimate agreement. To solve this
issue, this work instead proposes using micro-
average B (i.e., mean boundary pair correctness
over all documents and codings compared) to
solve this issue (demonstrated in §5) because it
does not over-estimate actual agreement (demon-
strated in §4 and 5).

4 Discussion of Segmentation Metrics

Before analysing how each metric compares to
each other upon a large data set, it would be useful
to investigate how they act on a smaller scale. To
that end, this section discusses how each metric in-
terprets a set of hypothetical segmentations of an
excerpt of a poem by Coleridge (1816, pp. 55–58)
titled Kubla Khan (shown in Figure 3)—chosen ar-
bitrarily for its brevity (and beauty). These seg-
mentations are topical and at the line-level.

1. In Xanadu did Kubla Khan
2. A stately pleasure-dome decree:
3. Where Alph, the sacred river, ran
4. Through caverns measureless to man
5. Down to a sunless sea.
6. So twice five miles of fertile ground
7. With walls and towers were girdled round:
8. And here were gardens bright with sinuous rills,
9. Where blossomed many an incense-bearing tree;

10. And here were forests ancient as the hills,
11. Enfolding sunny spots of greenery.

Figure 3: Excerpt from the poem Kubla Khan (Co-
leridge, 1816, pp. 55–58) with line numbers

Topical segmentations of this poem are difficult
to produce because there is still some structural
form (i.e., punctuation) which may dictate where
a boundary lies, but the imagery, places, times, and
subjects of the poem appear to twist and wind like
a vision in a dream. Thus, placing a topical bound-
ary in this text is a highly subjective task. One
hypothetical topical segmentation of the excerpt is
shown in Figure 4. In this section, a variety of

1706



contrived automatic segmentations are compared
to this manual segmentation to illustrate how each
metric reacts to different mistakes.

Lines Description
1–2 Kubla Khan and his decree
3–5 Waterways

6–11 Fertile ground and greenery

Figure 4: A hypothetical manual segmentation

Assuming that Figure 4 represents an accept-
able manual segmentation (m), how would each
metric react to an automatic segmentation (a) that
combines the segments 1–2 and 3–5 together?
This would represent a full miss, or a false neg-
ative, as shown in Figure 5. S interprets these seg-
mentations as being quite similar, yet, the auto-
matic segmentation is missing a boundary. B and
1−WD,10 in this case, better reflect this error.

m

a

S B 1−WD

0.9 0.5 0.777̄
k = 2

Figure 5: False negative

How would each metric react to an automatic
segmentation that is very close to placing the
boundaries correctly, but makes the slight mis-
take of thinking that the segment on waterways
(3–5) ends a bit too early? This would repre-
sent a near miss, as shown in Figure 6. S and
1−WD incorrectly interpret this error as being
equivalent to the previous false negative—a trou-
bling result. Segmentation comparison metrics
should be able to discern between the full and a
near miss shown in these two figures, and an au-
tomatic segmenter that nearly misses a boundary
should be awarded a better score than one which
fully misses a boundary—B recognizes this and
awards the near miss a higher score.

m

a

S B 1−WD

0.9 0.75 0.777̄
k = 2

Figure 6: Near miss

How would each metric react to an automatic
segmentation that adds an additional boundary be-
tween line 8 and 9? This would not be ideal
because such a boundary falls in the middle of
a cohesive description of a garden, representing

10WD is reported as 1−WD because WD is normally a
penalty metric where a value of 0 is ideal, unlike S and B. Ad-
ditionally, k = 2 for all examples in this section because WD
computes k from the manual segmentationm, which does not
change in these examples.

a full miss, or false positive, as in Figure 7. S
and 1−WD incorrectly interpret this error as be-
ing equivalent to the previous two errors—an even
more troubling result. In this case, there are two
matching boundaries and a pair that do not match,
which is arguably preferable to the full miss and
one match in Figure 5, but not to the match and
near miss in Figure 6. B recognizes this, and
awards a higher score to this automatic segmenter
than that in Figure 5, but below Figure 6.

m

a

S B 1−WD

0.9 0.666̄ 0.777̄
k = 2

Figure 7: False positive

How would each metric react to an automatic
segmentation that compensates for its lack of pre-
cision by spuriously adding boundaries in clusters
around where it thinks that segments should begin
or end? This is shown in Figure 8. This kind of
behaviour is finally penalized differently by S and
1−WD (unlike the other errors shown in this sec-
tion), but it only barely results in a dip in their val-
ues. B also penalizes this behaviour, but does so
much more harshly—in B’s interpretation, this is
as egregious as committing a false negative (e.g.,
Figure 5)—an arguably correct interpretation, if
the evaluation desires to maximize similarity with
a manual segmentation.

m

a

S B 1−WD

0.8 0.5 0.666̄
k = 2

Figure 8: Cluster of false positives

These short demonstrations of how S, B, and
1−WD interpret error should lead one to con-
clude that: i) WD can penalize near misses to
the same degree as full misses—overly harshly;
ii) Both S and WD are not very discriminating
when small segments are analysed; and iii) B is
the only one of the three metrics that is able to
often discriminate between these situations. B, if
used to rank these automatic segmenters, would
rank them from best to worst performing as: the
near miss, false positive, and then a tie between
the false negative and cluster of false positives—a
reasonable ranking in the context of an evaluation
seeking similarity with a manual segmentation.

5 Segmentation Agreement

Having a bit more confidence in B compared to S
and WD on a small scale from the previous sec-
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(b) B-based π∗ showing increasing full
misses with constant near misses
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(c) S and B based π∗ with fully random
segmentations

Figure 9: Artificial data sets illustrating how π adapted to use either S or B reacts to increasing full
misses and random segmentations and varying numbers of coders

tion, it makes sense to analyse some larger data
sets. Two such data sets are The Stargazer data
set collected by Hearst (1997) and The Moonstone
data set collected by Kazantseva and Szpakowicz
(2012). Both are linear topical segmentations at
the paragraph level with only one boundary type,
but that is where their similarities end.

The Stargazer text is a science magazine article
titled “Stargazers look for life” (Baker, 1990) seg-
mented by 7 coders and was one of twelve articles
chosen for its length (between 1,800 and 2,500
words) and for having little structural demarca-
tion. “The Moonstone” is a 19th century romance
novel by Collins (1868) segmented by 4–6 coders
per chapter; of its 23 chapters, 2 were coded in a
pilot study and another 20 were coded individually
by 27 undergraduate English students in 5 groups.

For the Stargazer data set, using S-based π∗,
an inter-coder agreement coefficient of 0.7562 is
obtained—a reasonable level by content analysis
standards. Unfortunately, this value is highly in-
flated, and B-based π∗ gives a much more conser-
vative coefficient at 0.4405. For the Moonstone
data set, the agreement coefficients for each group
of 4–6 coders using S-based π∗ is again over-
inflated at 0.91, 0.92, 0.90, 0.94, 0.83. B-based
π∗ instead reports that the coefficients should be
0.20, 0.18, 0.40, 0.38, 0.23.

Which of these coefficients should be trusted?
Is agreement in these data sets high or low? To
help answer that, this work looks at how the coders
in the data sets behaved. If the segmenters in the
Moonstone data set truly agreed with each other,
then they should have all behaved similarly. One
measure of coder behaviour is the frequency that
they placed boundaries (normalized by their op-
portunity to place boundaries, i.e. the sum of the
potential boundaries in the chapters that each seg-
mented). This normalized frequency is shown per

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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Figure 11: Normalized boundaries placed by each
coder in the Moonstone data set (with mean±SD)

coder in Figure 11 for The Moonstone data set,
along with bars indicating the mean and one stan-
dard deviation above and below. As can be seen,
the coders fluctuated wildly in the frequency with
which they placed boundaries—some (e.g., coder
7) to degrees exceeding 2 standard deviations. The
Moonstone data set as a whole does not exhibit
coders who behaved similarly, supporting the as-
sertion by B-based π∗ that these coders do not
agree well (though pockets of agreement exist).

How can it be demonstrated that S-based
agreement over-estimates agreement, and B-based
agreement does not? One way to demonstrate this
is through simulation. By estimating parameters
from the large Moonstone data set such as the dis-
tribution of internal segment sizes produced by all
coders, a random segmentation of the novel with
similar characteristics can be created. From this
single random segmentation, other segmentation
can be created with a probability of either placing
an offset boundary (i.e., a near miss) or placing
an extra/omitting a boundary (i.e., a full miss)—
a pseudo-coding. Manipulating these probabilities
and keeping the probability of a near miss at a con-
stant natural level should produce a slowly declin-
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Figure 10: Mean performance of 5 segmenters using varying metrics with 95% confidence intervals

ing amount of agreement which is unaffected by
the number of pseudo-coders. This is not appar-
ent, however, for S-based π∗ in Figure 9a; as the
probability of a full miss increases, agreement ap-
pears to rise and varies depending upon the num-
ber of pseudo-coders. B-based π∗ however shows
declining agreement and little to no variation de-
pending upon the number of pseudo-coders, as
shown in Figure 9b.

If instead of creating pseudo-coders from a ran-
dom segmentation a series of random segmenta-
tions with the same parameters were generated, a
properly functioning inter-coder agreement coef-
ficient should report some agreement (due to the
similar parameters used to create the segmenta-
tions) but it should be quite low. Figure 9c shows
this, and that S-based π∗ drastically over-estimates
what should be very low agreement whereas B-
based π∗ properly reports low agreement.

From these demonstrations, it is evident that
S-based inter-coder agreement coefficients dras-
tically over-estimate agreement, as does S itself
in pairwise mean form. B-based coefficients,
however, properly discriminate between levels of
agreement regardless of the number of coders and
do not over-estimate.

6 Evaluation of Automatic Segmenters

Having looked at how S, WD, and B perform at
a small scale in §4 and on larger data set in §5,
this section demonstrates the use of these met-
rics to evaluate some automatic segmenters. Three
automatic segmenters were trained—or had their
parameters estimated upon—The Moonstone data
set, including MinCut; (Malioutov and Barzilay,
2006), BayesSeg; (Eisenstein and Barzilay, 2008),
and APS (Kazantseva and Szpakowicz, 2011).

To put this evaluation into context, an upper and
lower bound were also created comprised of a ran-
dom coder from the manual data (Human) and a

random segmenter (Random), respectively. These
automatic segmenters, and the upper and lower
bounds, were created, trained, and run by another
researcher (Anna Kazantseva) with their labels re-
moved during the development of the metrics de-
tailed herein (to improve the impartiality of these
analyses). An ideal segmentation evaluation met-
ric should, in theory, place the three automatic seg-
menters between the upper and lower bounds in
terms of performance if the metrics, and the seg-
menters, function properly.

The mean performance of the upper and lower
bounds upon the test set of the Moonstone data
set using S, B, and WD are shown in Figure 10a–
10c along with 95% confidence intervals. Despite
the difference in the scale of their values, both S
and WD performed almost identically, placing the
three automatic segmenters between the upper and
lower bounds as expected. For S, statistically sig-
nificant differences11 (α = 0.05) were found be-
tween all segmenters except between APS–human
and MinCut–BayesSeg, and WD could only find
significant differences between the automatic seg-
menters and the upper and lower bounds. B, how-
ever, shows a marked deviation, and places Min-
Cut and APS statistically significantly below the
random baseline with only BayesSeg between the
upper and lower bounds—to a significant degree.

Why would pairwise mean B act in such an
unexpected manner? The answer lies in a fur-
ther analysis using the confusion matrix proposed
earlier to calculate B-precision and B-recall (as
shown in Table 2). From the values in Table 2,
all three automatic segmenters appear to have B-
precision above the baseline and below the upper
bound, but the B-recall of both APS and MinCut
is below that of the random baseline (illustrated

11Using Kruskal-Wallis rank sum multiple comparison
tests (Siegel and Castellan, 1988, pp. 213-214) for S and
WD and the Wilcoxon-Nemenyi-McDonald-Thompson test
(Hollander and Wolfe, 1999, p. 295) for B.
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B n B-P B-R B-F1 TP FP FN TN
Random 0.2640± 0.0129 1057 0.3991 0.4673 0.4306 279.0 420 318 4236.0
Human 0.5285± 0.0164 841 0.6854 0.7439 0.7135 444.5 204 153 4451.5
BayesSeg 0.3745± 0.0146 964 0.5247 0.6224 0.5694 361.0 327 219 4346.0
APS 0.2873± 0.0163 738 0.6773 0.3403 0.4530 212.0 101 411 4529.0
MinCut 0.2468± 0.0141 871 0.4788 0.3496 0.4041 215.0 234 400 4404.0

Table 2: Mean performance of 5 segmenters using micro-average B, B-precision (B-P), B-recall (B-R),
and B-Fβ-measure (B-F1) along with the associated confusion matrix values for 5 segmenters
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Figure 12: Mean B-precision versus B-recall of 5
automatic segmenters

in Figure 12). These automatic segmenters were
developed and performance tuned using WD, thus
it would be expected that they would perform as
they did according to WD, but the evaluation using
B highlights WD’s bias towards sparse segmenta-
tions (i.e., those with low B-recall)—a failing that
S also appears to share. Mean B shows an un-
biased ranking of these automatic segmenters in
terms of the upper and lower bounds. B, then,
should be preferred over S and WD for an un-
biased segmentation evaluation that assumes that
similarity to a human solution is the best measure
of performance for a task.

7 Conclusions

In this work, a new segmentation evaluation met-
ric, referred to as boundary similarity (B) is
proposed as an unbiased metric, along with a
boundary-edit-distance-based (BED-based) con-
fusion matrix to compute predictably biased IR
metrics such as precision and recall. Additionally,
a method of adapting inter-coder agreement coef-
ficients to award partial credit for near misses is
proposed that uses B as opposed to S for actual
agreement so as to not over-estimate agreement.

B overcomes the cosmetically high values of S
and, the bias towards segmentations with few or
tightly-clustered boundaries of WD–manifesting
in this work as a bias towards precision over recall
for both WD and S. When such precision is desir-
able, however, B-precision can be computed from
a BED-based confusion matrix, along with other
IR metrics. WD and Pk should not be preferred
because their biases do not occur consistently in
all scenarios, whereas BED-based IR metrics offer
expected biases built upon a consistent, edit-based,
interpretation of segmentation error.

B also allows for an intuitive comparison of
boundary pairs between segmentations, as op-
posed to the window counts of WD or the sim-
plistic edit count normalization of S. When an un-
biased segmentation evaluation metric is desired,
this work recommends the usage of B and the use
of an upper and lower bound to provide context.
Otherwise, if the evaluation of a segmentation task
requires some biased measure, the predictable bias
of IR metrics computed from a BED-based con-
fusion matrix is recommended. For all evalua-
tions, however, a justification for the biased/un-
biased metrics used should be given, and more
than one metric should be reported so as to allow
a reader to ascertain for themselves whether a par-
ticular automatic segmenter’s bias in some manner
is cause for concern or not.

8 Future Work

Future work includes adapting this work to anal-
yse hierarchical segmentations and using it to at-
tempt to explain the low inter-coder agreement co-
efficients reported in topical segmentation tasks.
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Abstract

Query segmentation, like text chunking,
is the first step towards query understand-
ing. In this study, we explore the effec-
tiveness of crowdsourcing for this task.
Through carefully designed control ex-
periments and Inter Annotator Agreement
metrics for analysis of experimental data,
we show that crowdsourcing may not be a
suitable approach for query segmentation
because the crowd seems to have a very
strong bias towards dividing the query into
roughly equal (often only two) parts. Sim-
ilarly, in the case of hierarchical or nested
segmentation, turkers have a strong prefer-
ence towards balanced binary trees.

1 Introduction

Text chunkingof Natural Language (NL) sentences
is a well studied problem that is an essential pre-
processing step for many NLP applications (Ab-
ney, 1991; Abney, 1995). In the context of Web
search queries,query segmentationis similarly the
first step towards analysis and understanding of
queries (Hagen et al., 2011). The task in both the
cases is to divide the sentence or the query into
contiguoussegmentsor chunks of words such that
the words from a segment are related to each other
more strongly than words from different segments
(Bendersky et al., 2009). It is typically assumed
that the segments are structurally and semantically
coherent and, therefore, the information contained
in them can be processed holistically.

∗The work was done during author’s internship at Mi-
crosoft Research Lab India.

† This author was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research
India PhD Fellowship Award.

f Pipe representation Boundary var.
4 apply| first aid course| on line 1 0 0 1 0
3 apply first aid course| on line 0 0 0 1 0
2 apply first aid| course on line 0 0 1 0 0
1 apply| first aid| course| on line 1 0 1 1 0

Table 1: Example of flat segmentation by Turkers.
f is the frequency of annotations; segment bound-
aries are represented by|.

f Bracket representation Boundary var.
4 ((apply first) ((aid course) (on line))) 0 2 0 1 0
2 (((apply (first aid)) course) (on line)) 1 0 2 3 0
2 ((apply ((first aid) course)) (on line)) 2 0 1 3 0
1 (apply (((first aid) course) (on line))) 3 0 1 2 0
1 ((apply (first aid)) (course (on line))) 1 0 2 1 0

Table 2: Example of nested segmentation by Turk-
ers.f is the frequency of annotations.

A majority of work on query segmentation re-
lies on manually segmented queries by human ex-
perts for training and evaluation of segmentation
algorithms. These are typically small datasets and
even with detailed annotation guidelines and/or
close supervision, low Inter Annotator Agreement
(IAA) remains an issue. For instance, Table 1 il-
lustrates the variation in flat segmentation by 10
annotators. This confusion is mainly because the
definition of a segment in a query is ambiguous
and of an unspecified granularity. This is fur-
ther compounded by the fact that other than eas-
ily recognizable and agreed upon segments such as
Named Entities or Multi-Word Expressions, there
is no established notion of linguistic grouping such
as phrases and clauses in a query.

Although there is little work on the use of
crowdsourcing for query segmentation (Hagen et
al., 2011; Hagen et al., 2012), the idea that the
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crowd could be a potential (and cheaper) source
for reliable segmentation seems a reasonable as-
sumption. The need for larger datasets makes this
an attractive proposition. Also, a larger number
of annotations could be appropriately distilled to
obtain better quality segmentations.

In this paper we explore crowdsourcing as an
option for query segmentation through experi-
ments designed using Amazon Mechanical Turk
(AMT)1. We compare the results against gold
datasets created by trained annotators. We ad-
dress the issues pertaining to disagreements due to
both ambiguity and granularity and attempt to ob-
jectively quantify their role in IAA. To this end,
we also conduct similar annotation experiments
for NL sentences and randomly generated queries.
While queries are not as structured as NL sen-
tences they are not simply a set of random words.
Thus, it is necessary to compare query segmenta-
tion to theüber-structure of NL sentences as well
as the unter-structure of randomn-grams. This has
important implications for understanding any in-
herent biases annotators may have as a result of
the apparent lack of structure of the queries.

To quantify the effect of granularity on segmen-
tation, we also ask annotators to provide hierar-
chical or nested segmentations for real and ran-
dom queries, as well as sentences. Following
Abney’s (1992) proposal for hierarchical chunk-
ing of NL, we ask the annotators to groupex-
actly two words or segments at a time to recur-
sively form bigger segments. The concept is illus-
trated in Fig. 1. Table 2 shows annotations from
10 Turkers. It is important to constrain the join-
ing of exactly two segments or words at a time
to avoid the issue of fuzziness in granularity. We
shall refer to this style of annotation asNested
segmentation, whereas the non-hierarchical non-
constrained chunking will be referred to asFlat
segmentation.

Through statistical analysis of the experimen-
tal data we show that crowdsourcing may not be
the best practice for query segmentation, not only
because of ambiguity and granularity issues, but
because there exist very strong biases amongst an-
notators to divide a query into two roughly equal
parts that result in misleadingly high agreements.
As a part of our analysis framework, we introduce
a new IAA metric for comparison across flat and
nested segmentations. This versatile metric can be

1https://www.mturk.com/mturk/welcome

3

2

1

apply 0

first aid

course

0

on line

Figure 1: Nested Segmentation: Illustration.

readily adapted for measuring IAA for other lin-
guistic annotation tasks, especially when done us-
ing crowdsourcing.

The rest of the paper is organized as follows.
Sec 2 provides a brief overview of related work.
Sec 3 describes the experiment design and proce-
dure. In Sec 4, we introduce a new metric for IAA,
that could be uniformly applied across flat and
nested segmentations. Results of the annotation
experiments are reported in Sec 5. In Sec 6, we an-
alyze the possible statistical and linguistic biases
in annotation. Sec 7 concludes the paper by sum-
marizing the work and discussing future research
directions. All the annotated datasets used in this
research are freely available for non-commercial
research purposes2.

2 Related Work

Query segmentation was introduced by Risvik et.
al. (2003) as a possible means to improve Informa-
tion Retrieval. Since then there has been a signif-
icant amount of research exploring various algo-
rithms for this task and its use in IR (see Hagen et.
al. (2011) for a survey). Most of the research and
evaluation considers query segmentation as a pro-
cess analogous to identification of phrases within
a query which when put within double-quotes (im-
plying exact matching of the quoted phrase in the
document) leads to better IR performance. How-
ever, this is a very restricted view of the process
and does not take into account the full potential of
query segmentation.

A more generic notion of segments leads to di-
verse and ambiguous definitions, making its eval-
uation a hard problem (see Saha Roy et. al. (2012)
for a discussion on issues with evaluation). Most
automatic segmentation techniques (Bergsma and
Wang, 2007; Tan and Peng, 2008; Zhang et al.,

2Related datasets and supplementary material can be ac-
cessed fromhttp://bit.ly/161Gkk9 or can be ob-
tained by directly emailing the authors.
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2009; Brenes et al., 2010; Hagen et al., 2011; Li et
al., 2011) have so far been evaluated only against
a small set of human-annotated queries (Bergsma
and Wang, 2007). The reported low IAA for such
datasets casts serious doubts on the reliability of
annotation and the performance of the algorithms
evaluated on them (Hagen et al., 2011; Saha Roy
et al., 2012).

To address the problem of data scarcity, Ha-
gen et. al. (2011) have created larger annotated
datasets through crowdsourcing3. However, in
their approach the crowd is provided with a few
(four) possible segmentations of a query to choose
from (known through a personal communication
with a authors). Thus, it presupposes an automatic
process that can generate the correct segmentation
of a query within top few options. It is far from
obvious how to generate these initial segmenta-
tions in a reliable manner. This may also result
in an over-optimistic IAA. An ideal segmentation
should be based on the annotators’ own interpreta-
tion of the query. Nevertheless, if large scale data
has to be procured, crowdsourcing seems to be the
only efficient and effective model for this task, and
has been proven to be so for other IR and linguistic
annotations; see Carvalho et al. (2011) for exam-
ples of crowdsourcing for IR resources and (Snow
et al., 2008; Callison-Burch, 2009) for language
resources.

In the context of NL text, segmentation has
been traditionally referred to aschunkingand is
a well-studied problem. Abney (1991; 1992;
1995) defines a chunk as a sub-tree within a
syntactic phrase structure tree corresponding to
Noun, Prepositional, Adjectival, Adverbial and
Verb Phrases. Similarly, Bharati et al (1995) de-
fines it as Noun Group and Verb Group based only
on local surface information. However, cognitive
and annotation experiments for chunking of En-
glish (Abney, 1992) and other language text (Bali
et al., 2009) have shown that native speakers agree
on major clause and phrase boundaries, but may
not do so on more fine-grained chunks. One im-
portant implication of this is that annotators are
expected to agree more on the higher level bound-
aries for nested segmentation than the lower ones.
We note that hierarchical query segmentation was
proposed for the first time by Huang et al. (2010),
where the authors recursively split a query (or its
fragment) into exactly two parts and evaluate the

3http://www.webis.de/research/corpora

final output against human annotations.

3 Experiments

The annotation experiments have been designed to
systematically study the various aspects of query
segmentation. In order to verify the effective-
ness and reliability of crowdsourcing, we designed
an AMT experiment for flat segmentation of Web
search queries. As a baseline, we would like to
compare these annotations with those from hu-
man experts trained for the task. We shall refer
to this baseline as theGold annotationset. Since
we believe that the issue of granularity could be
the prime reason for previously reported low IAA
for segmentation, we also designed AMT-based
nested segmentation experiments for the same set
of queries, and obtained the corresponding gold
annotations.

Finally, to estimate the role of ambiguity inher-
ent in the structure of Web search queries on IAA,
we conducted two more control experiments, both
through crowdsourcing. First, flat and nested seg-
mentation of well-formed English, i.e., NL sen-
tences of similar length distribution; and second,
flat and nested segmentation of randomly gener-
ated queries. Higher IAA for NL sentences would
lead us to conclude that ambiguity and lack of
structure in queries is the main reason for low
agreements. On the other hand high or comparable
IAA for random queries would mean that annota-
tions have strong biases.

Thus, we have the following four pairs of anno-
tation experiments: flat and nested segmentation
of queries from crowdsourcing, corresponding flat
and nested gold annotations, flat and nested seg-
mentation of English sentences from crowdsourc-
ing, and flat and nested segmentations for ran-
domly generated queries through crowdsourcing.

3.1 Dataset

For our experiments, we need a set of Web search
queries and well-formed English sentences. Fur-
thermore, for generating the random queries, we
will use search query logs to learnn-gram mod-
els. In particular, we use the following datasets:

Q500, QG500: Saha Roy et al. (2012) re-
leased a dataset of500 queries, 5 to 8 words long,
for evaluation of various segmentation algorithms.
This dataset has flat segmentations from three an-
notators obtained under controlled experimental
settings, and can be considered asGold annota-
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Figure 2: Length distribution of datasets.

tions. Hence, we select this set for our experiments
as well. We procured the corresponding nested
segmentation for these queries from two human
experts, who are regular search engine users, be-
tween 20 and 30 years old, and familiar with var-
ious linguistic annotation tasks. They annotated
the data under supervision. They were trained and
paid for the task. We shall refer to the set of flat
and nested gold annotations asQG500, whereas
Q500will be reserved for AMT experiments.

Q700: Since500 queries may not be enough
for reliable conclusion and since the queries may
not have been chosen specifically for the purpose
of annotation experiments, we expanded the set
with another 700 queries sampled from a slice of
the query logs of Bing Australia4 containing 16.7
million queries issued over a period of one month
(May 2010). We picked, uniformly at random,
queries that are4 to 8 words long, have only En-
glish letters and numerals, and a highclick entropy
because “a query with a larger click entropy value
is more likely to be an informational or ambiguous
query” (Dou et al., 2008).Q500 consists of tail-
ish queries with frequency between 5 and 15 that
have at least one multiword named entity; but un-
like the case ofQ700, click-entropy was not con-
sidered during sampling. As we shall see, this dif-
ference is clearly reflected in the results.

S300: We randomly selected300 English sen-
tences from a collection of full texts of public do-
main books5 that were5 to 15 words long, and
checked them for well-formedness. This set will
be referred to asS300.

QRand: Instead of generating search queries
by throwing in words randomly, we thought it
will be more interesting to explore annotation of

4http://www.bing.com/?cc=au
5http://www.gutenberg.org

Parameter Flat Details Nested Details

Time needed: actual (allotted) 49 sec (10 min) 1 min 52 sec (15 min)
Reward per HIT $0.02 $0.06
Instruction video duration 26 sec 1 min 40 sec
Turker qualification Completion rate>100 tasks
Turker approval rate Acceptance rate>60 %
Turker location United States of America

Table 3: Specifics of the HITs for AMT.

queries generated usingn-gram models forn =
1, 2, 3. We estimated the models from the Bing
Australia log of 16.7 million queries. We gener-
ated 250 queries each of desired length distribu-
tion using the 1, 2 and 3-gram models. We shall
refer to these asU250, B250, T250 (for Uni, Bi
and Trigram) respectively, and the whole dataset
asQRand. Fig. 2 shows the query and sentence
length distribution for the various sets.

3.2 Crowdsourcing Experiments

We used AMT to get our annotations through
crowdsourcing. Pilot experiments were carried out
to test the instruction set and examples presented.
Based on the feedback, the precise instructions for
the final experiments were designed.

Two separate AMT Human Intelligence Tasks
(HITs) were designed for flat and nested query
segmentation. Also, the experiments for queries
(Q500+Q700) were conducted separately from
S300 and QRand. Thus, we had six HITs in
all. The concept of flat and nested segmentation
was introduced to the Turkers with the help of ex-
amples presented in two short videos6. When in
doubt regarding the meaning of a query, the Turk-
ers were advised to issue the query on a search
engine of their choice and find out its possible
interpretation(s). Note that we intentionally kept
definitions of flat and nested segmentation fuzzy
because (a) it would require very long instruction
manuals to cover all possible cases and (b) Turkers
do not tend to read verbose and complex instruc-
tions. Table 3 summarizes other specifics of HITs.

Honey potsor trap questions whose answers are
known a priori are often included in a HIT to iden-
tify turkers who are unable to solve the task ap-
propriately leading to incorrect annotations. How-
ever, this trick cannot be employed in our case be-
cause there is no notion of an absolutely correct
segmentation. We observe that even with unam-
biguous queries, even expert annotators may dis-

6Flat: http://youtu.be/eMeLjJIvIh0, Nested:
http://youtu.be/xE3rwANbFvU
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agree on some of the segment boundaries. Hence,
we decided to include annotations from all the
turkers, except for those that were syntactically ill-
formed (e.g., non-binary nested segmentation).

4 Inter Annotator Agreement

Inter Annotator Agreementis the only way to
judge the reliability of annotated data in absence
of an end application. Therefore, before we can
venture into analysis of the experimental data, we
need to formalize the notion of IAA for flat and
nested queries. The task is non-trivial for two
reasons. First, traditional IAA measures are de-
fined for a fixed set of annotators. However, for
crowdsourcing based annotations, different anno-
tators might have annotated different parts of the
dataset. For instance, we observed that a total
of 128 turkers have provided the flat annotations
for Q700, when we had only asked for10 anno-
tations per query. Thus, on average, a turker has
annotated only7.81% of the700 queries. In fact,
we found that31 turkers had annotated less than
5 queries. Hence, measures such as Cohen’sκ
(1960) cannot be directly applied in this context
because for crowdsourced annotations, we cannot
meaningfully compute annotator-specific distribu-
tion of the labels and biases.

Second, most of the standard annotation metrics
do not generalize for flat segmentation and trees.
Artstein and Poesio (2008) provides a comprehen-
sive survey of the IAA metrics and their usage in
NLP. They note that all the metrics assume that
a fixed set of labels are used for items. There-
fore, it is far from obvious how to compare chunk-
ing or segmentation thatcoversthe whole text or
that might haveoverlappingunits as in the case of
nested segmentation. Furthermore, we would like
to compare the reliability of flat and nested seg-
mentation, and therefore, ideally we would like to
have an IAA metric that can be meaningfully ap-
plied to both of these cases.

After considering various measures, we decided
to appropriately generalize one of the most versa-
tile and effective IAA metrics proposed till date,
the Kripendorff’sα (2004). To be consistent with
prior work, we will stick to the notation used
in Artstein and Poesio (2008) and redefine the
α in the context of flat and nested segmentation.
Note that though the notations introduced here will
be from the perspective of queries, it is equally
applicable to sentences and the generalization is

straightforward.

4.1 Notations and Definitions

Let Q be the set of all queries with cardinalityq.
A queryq ∈ Q can be represented as a sequence of
|q| words:w1w2 . . . w|q|. We introduce|q−1| ran-
dom variables,b1, b2, . . . b|q|−1, such thatbi rep-
resents the boundary between the wordswi and
wi+1. A flat or nested segmentation ofq, repre-
sented byqj , j varying from 1 to total number of
annotationsc, is a particular instantiation of these
boundary variables as described below.

Definition. A flat segmentation, qj can be
uniquely defined by a binary assignment of the
boundary variablesbj,i, wherebj,i = 1 iff wi and
wi+1 belong to two different flat segments. Oth-
erwise,bj,i = 0. Thus,q has2|q|−1 possible flat
segmentations.

Definition. A nested segmentationqj can also
be uniquely defined by assigning non-negative in-
tegers to the boundary variables such thatbj,i = 0
iff words wi and wi+1 form an atomic segment
(i.e., they are grouped together), elsebj,i = 1 +
max(lefti, righti), where lefti and righti are
the heights of the largest subtrees ending atwi and
beginning atwi+1 respectively.

This numbering scheme for nested segmenta-
tion can be understood through Fig. 1. Every in-
ternal node of the binary tree corresponding to the
nested segmentation is numbered according to its
height. The lowest internal nodes, both of whose
children are query words, are assigned a value of
0. Other internal nodes get a value of one greater
than the height of its higher child. Since every in-
ternal node corresponds to a boundary, we assign
the height of the node to the corresponding bound-
aries. The number of unique nested segmentations
of a query of length|q| is its correspondingCata-
lan number7.

Boundary variables for flat and nested segmen-
tation are illustrated with an example of each kind
in Tables 1 and 2 (last column).

4.2 Krippendorff ’s α for Segmentation

Krippendorff ’s α (Krippendorff, 2004) is an ex-
tremely versatile agreement coefficient, which is
based on the assumption that the expected agree-
ment is calculated by looking at the overall distri-
bution of judgments without regard to which anno-
tator produced them (Artstein and Poesio, 2008).

7http://goo.gl/vKQvK
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Hence, it is appropriate for crowdsourced annota-
tion, where the judgments come from a large num-
ber of unrelated annotators. Moreover, it allows
for different magnitudes of disagreement, which
is a useful feature as we might want to differen-
tially penalize disagreements at various levels of
the tree for nested segmentation.

α is defined as

α = 1 − Do

De
= 1 − s2

within

s2
total

(1)

whereDo andDe are, respectively, the observed
and expected disagreements that are measured by
s2
within – the variance within the annotation of an

item ands2
total – variance across annotations of

all items. We adapt the equations presented in
pp.565-566 of Artstein and Poesio (2008) for mea-
suring these quantities for queries:

s2
within =

1

2qc(c − 1)

∑

q∈Q

c∑

m=1

c∑

n=1

d(qm, qn)

(2)

s2
total =

1

2qc(qc − 1)

∑

q∈Q

c∑

m=1

∑

q′∈Q

c∑

n=1

d(qm, q′
n)

(3)
where,d(qm, q′

n) is a distance metric for the agree-
ment between annotationsqm andq′

n.
We define two different distance metricsd1 and

d2 that are applicable to flat and nested segmenta-
tion. We shall first define these metrics for com-
paring queries with equal length (i.e.,|q| = |q′|):

d1(qm, q′
n) =

1

|q| − 1

|q|−1∑

i=1

|bm,i − b′
n,i| (4)

d2(qm, q′
n) =

1

|q| − 1

|q|−1∑

i=1

|b2
m,i − (b′

n,i)
2| (5)

While d1 penalizes all disagreements equally,d2

penalizes disagreements higher up the tree more.
d2 might be a desirable metric for nested seg-
mentation, because research on sentence chunk-
ing shows that annotators agree more on clause or
major phrase boundaries, even though they may
not always agree on intra-clausal or intra-phrasal
boundaries (Bali et al., 2009). Note that for flat
segmentation,d1 andd2 are identical, and hence
we will denote them asd.

We propose the following extension to these
metrics for queries of unequal lengths. Without

loss of generality, let us assume that|q| < |q′|. k
is 1 or 2;r = |q′| − |q| + 1.

dk(qm, q′
n) =

1

r(|q| − 1)

r−1∑

a=0

|q|−1∑

i=1

|bk
m,i − (b′

n,i+a)k| (6)

4.3 IAA under Random Bias Assumption

Krippendorff’s α uses the cross-item variance as
an estimate of chance agreement, which is reli-
able in general. However, this might result in mis-
leadingly low values of IAA, especially when the
items in the set are indeed expected to have sim-
ilar annotations. To resolve this, we also com-
pute the chance agreement under a random bias
model. The random model assumes thatall the
structural annotations ofq are equiprobable. For
flat segmentation, it boils down to the fact that
all the2|q|−1 annotations are equally likely, which
is equivalent to the assumption that any boundary
variablebi has 0.5 probability of being 0 and 0.5
for 1.

Analytical computation of the expected proba-
bility distributions of d1(qm, qn) and d2(qm, qn)
is harder for nested segmentation. Therefore, we
programmatically generate all possible trees forq,
which is again dependent only on|q| and com-
pute d1 and d2 between all pairs of trees, from
which the expected distributions can be readily
estimated. Let us denote this expected cumula-
tive probability distribution for flat segmentation
as Pd(x; |q|) = the probability that for a pair
of randomly chosen flat segmentations ofq, qm

andqn, d(qm, qn) ≥ x. Likewise, letPd1(x; |q|)
andPd2(x; |q|) be the respective probabilities that
for any two nested segmentationsqm and qn of
q, the following holds: d1(qm, qn) ≥ x and
d2(qm, qn) ≥ x.

We define the IAA under random bias model as
(k is 1, 2 or null):

S =
1

qc2

∑

q∈Q

c∑

m=1

c∑

n=1

Pdk
(dk(qm, qn); |q|) (7)

Thus,S is the expected probability of observing a
similar or worse agreement by random chance, av-
eraged over all pairs of annotations for all queries,
and not a chance corrected IAA metric such as
α. Thus,S = 1 implies that the observed agree-
ment isalmost always better thanthat by random
chance andS = 0.5 and0 respectively imply that
the observed agreement isas good asandalmost
always worse thanthat by random chance. We
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Dataset Flat Nested
d1 d1 d2

Q700 0.21(0.59) 0.21(0.89) 0.16(0.68)
Q500 0.22(0.62) 0.15(0.70) 0.15(0.44)

QG500 0.61(0.88) 0.66(0.88) 0.67(0.80)
S300 0.27(0.74) 0.18(0.94) 0.14(0.75)
U250 0.23(0.89) 0.42(0.90) 0.30(0.78)
B250 0.22(0.86) 0.34(0.88) 0.22(0.71)
T250 0.20(0.86) 0.44(0.89) 0.34(0.76)

Table 4: Agreement Statistics:α(S).

also note that a high value ofS and low value
of α indicate that though the annotators agree on
the judgment of individual items, they also tend to
agree on judgments of two different items, which
in turn, could be due to strong annotator biases or
due to lack of variability of the dataset.

In the supplementary material, computations of
α and S have been explained in further details
through worked out examples. Tables for the ex-
pected distributions ofd, d1 andd2 under the ran-
dom annotation assumption are also available.

5 Results

Table 4 reports the values ofα and S for flat
and nested segmentation on the various datasets.
For nested segmentation, the values were com-
puted for two different distance metricsd1 and
d2. As expected, the highest value ofα for both
flat and nested segmentation is observed for gold
annotations. Anα > 0.6 indicates quite good
IAA, and thus, reliable annotations. Higherα for
nested segmentationQG500 than flat further vali-
dates our initial postulate that nested segmentation
may reduce disagreement from granularity issues
inherent in the definition of flat segmentation.

Opposite trends are observed forQ700, Q500
andS300, whereα for flat is the highest, followed
by that for nested usingd1, and thend2. More-
over, except for flat segmentation of sentences,α
lies between 0.14 and 0.22, which is quite low.
This clearly shows that segmentation, either flat
or nested, cannot be reliably procured through
crowdsourcing. Lowerα for d2 than d1 further
indicates that annotators disagree more for higher
levels of the trees, contrary to what we had ex-
pected. However, nearly equal IAA for sentences
and queries implies that low agreement may not be
an outcome of inherent ambiguity in the structure

of queries. Slightly higherα for flat segmentation
and a much higherα for nested segmentation of
QRand reinforce the fact that low IAA is not due
to a lack of structure in queries.

It is interesting to note thatα for nested segmen-
tation of S300and all segmentations ofQRand
are low or medium despite the fact thatS is very
high in all these cases. Thus, it is clear that an-
notators have a strong bias towards certain struc-
tures across queries. In the next section, we will
analyze some of these biases. We also computed
the IAA betweenQG500 and Q500, and found
α = 0.27. This is much lower thanα for QG500,
though slightly higher than that forQ500. We did
not observe any significant variation in agreement
with respect to the length of the queries.

6 Biases in Annotation

The IAA statistics clearly show that there are cer-
tain strong biases in both flat and nested query
segmentation, especially those obtained through
crowdsourcing. To identify these biases, we went
through the annotations and came up with possi-
ble hypotheses, which we tried to verify through
statistical analysis of the data. Here, we report the
most prominent biases that were thus discovered.
Bias 1: During flat segmentation, annotators pre-
fer dividing the query into two segments of roughly
equal length.

As discussed earlier, one of the major problems
of flat segmentation is the fuzziness in granularity.
In our experiments, we intentionally left the de-
cision of whether to go for fine or coarse-grained
segmentation to the annotator. However, it is sur-
prising to observe that annotators typically divide
the query into two segments (see Fig. 3, plots A1
and A2), and at times three, but hardly ever more
than three. This bias is observed across queries,
sentences and random queries, where the percent-
age of annotations with 2 or 3 segments are greater
than83%, 91% and96% respectively. This bias
is most strongly visible forQRand because the
lack of syntactic or semantic cohesion between the
words provides no clue for segmentation.

Furthermore, we observe that typically seg-
ments tend to be of equal length. For this, we com-
puted standard deviations (sd) of segment lengths
for all annotations having 2 or 3 segments; the dis-
tribution of sd is shown in Fig. 3, plots B1 and B2.
We observe that for all datasets, sd lies mainly be-
tween 0.5 and 1 (for perspective, consider a query
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Figure 3: Analysis of annotation biases: A1, A2 – number of segments per flat segmentation vs. length;
B1, B2 – standard deviation of segment length for flat segmentation; C1, C2– distribution of the tree
heights in nested segmentation.

Length Expected Q500 QG500 Q700 S300 QRand

5 2.57 2.00 2.02 2.08 2.02 2.01
6 3.24 2.26 2.23 2.23 2.24 2.02
7 3.88 2.70 2.71 2.67 2.55 2.62
8 4.47 2.89 2.68 2.72 2.72 2.35

Table 5: Average height for nested segmentation.

with 7 words; with two segments of length 3 and
4 the sd is 0.5, and for 2 and 5, the sd is 1.5), im-
plying that segments are roughly of equal length.

It is likely that due to this bias, theS or observed
agreement is moderately high for queries and very
high for sentences, but then it also leads to high
agreement across different queries and sentences
(i.e., highs2

total) especially when they are of equal
length, which in turn brings down the value ofα –
the true agreement after bias correction.
Bias 2: During nested segmentation, annotators
prefer balanced binary trees.

Quite analogous to bias 1, for nested segmen-
tation we observe that annotators tend to prefer
more balanced binary trees. Fig. 3 plots C1 and C2
show the distribution of the tree heights for various
cases and Table 5 reports the corresponding aver-
age height of the trees for queries and sentences
of various lengths and the the expected value of
the height if all trees were equally likely. The ob-
served heights are much lower than the expected
values clearly implying the preference of the an-
notators for more balanced trees.

Thus, the crowd seems to choose the middle

path, avoiding extremes and hence may not be a
reliable source of annotation for query segmen-
tation. It can be argued that similar biases are
also observed for gold annotations, and therefore,
probably it is the inherent structure of the queries
and sentences that lead to such biased distribution
of segmentation patterns. However, note thatα for
QG500 is much higher than all other cases, which
shows that the true agreement between gold anno-
tators is immune to such biases or skewed distri-
butions in the datasets. Furthermore, high values
of α for QRand despite the very strong biases in
annotation shows that there perhaps is very little
choice that the annotators have while segmenting
randomly generated queries. On the other hand,
the textual coherence of the real queries and sen-
tences provide many different choices for segmen-
tation and the Turker typically gets carried away
by these biases, leading to lowα.

Bias 3: Phrase structure drives segmentation only
when reconcilable with Bias 1.Whenever the sen-
tence or query has a verb phrase (VP) spanning
roughly half of it, annotators seem to chunk be-
fore the VP as one would expect, quite as of-
ten as just after the verb, which is quite unex-
pected. For instance, the sentenceA gentle
sarcasm ruffled her anger. gathers as
many as eight flat annotations with a boundary be-
tweensarcasm and ruffled, and four with
a boundary betweenruffled andher. How-
ever, if the VP is very short consisting of a single
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Position Q500 QG500 Q700 S300 QRand

Both 2.24 0.37 2.78 2.08 0.63
None 50.34 56.85 35.74 35.84 39.81
Right 23.86 21.50 19.02 12.52 15.23
Left 18.08 15.97 40.59 45.96 21.21

Table 6: Percentages of positions of segment
boundaries with respect to prepositions. Prepo-
sitions occurring in the beginning or end of a
query/sentence have been excluded from the anal-
ysis; hence, numbers in a column do not total 100.

verb, as inA fleeting and furtive air
of triumph erupted., annotators seem to
attempt for a balanced annotation due toBias 1.
As a clear middle boundary is not present in such
sentences, the annotations show a lot more varia-
tion and disagreement. For instance, only 1 out of
10 annotations had a boundary beforeerupted
in the above example. In fact, at least one anno-
tation had a boundary after each word in the sen-
tence, with no clear majority.
Bias 4: Prepositions influence segment bound-
aries differently for queries and sentences.We
automatically labeled all the prepositions in the
flat annotations and classified them according to
the criterion of whether a boundary was placed
immediately before or after it, or on both sides
or neither side. The statistics, reported in Ta-
ble 6, show that for NL sentences a majority
of the boundaries are present before the prepo-
sition, marking the beginning of a prepositional
phrase. However, for queries, a much richer pat-
tern emerges depending on the specific preposi-
tion. For instance,to, of and for are often
chunked with the previous word (e.g.,how to |
choose a bike size, birthday party
ideas for | one year old). We believe
that this difference is because in sentences due
to the presence of a verb, the PP has a well-
defined head, lack of which leads to preposition
in queries getting chunked with words that form
more commonly seen patterns (e.g.,flights
to andtickets for).

Bias 3 and 4 present the complex interpretation
of the structure of queries by the annotators which
could be due to some emerging cognitive model of
queries among the search engine users. This is a
fascinating and unexplored aspect of query struc-
tures that demands deeper investigation through
cognitive and psycholinguistic experiments.

7 Conclusion

We have studied various aspects of query segmen-
tation through crowdsourcing by designing and
conducting suitable experiments. Analysis of ex-
perimental data leads us to conclude the follow-
ing: (a) crowdsoucing may not be a very effective
way to collect judgments for query segmentation;
(b) addressing fuzziness of granularity for flat seg-
mentation by introducing strict binary nested seg-
ments does not lead to better agreement in crowd-
sourced annotations, though it definitely improves
the IAA for gold standard segmentations, imply-
ing that low IAA in flat segmentation among ex-
perts is primarily an effect of unspecified granular-
ity of segments; (c) low IAA is not due to the in-
herent structural ambiguity in queries as this holds
true for sentences as well; (d) there are strong bi-
ases in crowdsourced annotations, mostly because
turkers prefer more balanced segment structures;
and (e) while annotators are by and large guided
by linguistic principles, application of these prin-
ciples differ between query and NL sentences and
also closely interact with other biases.

One of the important contributions of this work
is the formulation of a new IAA metric for com-
paring across flat and nested segmentations, espe-
cially for crowdsourcing based annotations. Since
trees are commonly used across various linguistic
annotations, this metric can have wide applicabil-
ity. The metric, moreover, can be easily adapted
to other annotation schemes as well by defining an
appropriate distance metric between annotations.
Since large scale data for query segmentation is
very useful, it would be interesting to see if the
problem can be rephrased to the Turkers in a way
so as to obtain more reliable judgments. Yet a
deeper question is regarding the theoretical status
of query structure, which though in an emergent
state is definitely an operating model for the anno-
tators. Our future work in this area would specifi-
cally target understanding and formalization of the
theoretical model underpinning a query.
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Abstract

In Community question answering (QA)
sites, malicious users may provide decep-
tive answers to promote their products or
services. It is important to identify and fil-
ter out these deceptive answers. In this
paper, we first solve this problem with
the traditional supervised learning meth-
ods. Two kinds of features, including tex-
tual and contextual features, are investi-
gated for this task. We further propose
to exploit the user relationships to identify
the deceptive answers, based on the hy-
pothesis that similar users will have simi-
lar behaviors to post deceptive or authentic
answers. To measure the user similarity,
we propose a new user preference graph
based on the answer preference expressed
by users, such as “helpful” voting and
“best answer” selection. The user prefer-
ence graph is incorporated into traditional
supervised learning framework with the
graph regularization technique. The ex-
periment results demonstrate that the user
preference graph can indeed help improve
the performance of deceptive answer pre-
diction.

1 Introduction

Currently, Community QA sites, such as Yahoo!
Answers1 and WikiAnswers2, have become one of
the most important information acquisition meth-
ods. In addition to the general-purpose web search
engines, the Community QA sites have emerged as
popular, and often effective, means of information
seeking on the web. By posting questions for other
participants to answer, users can obtain answers
to their specific questions. The Community QA

1http://answers.yahoo.com
2http://wiki.answers.com

sites are growing rapidly in popularity. Currently
there are hundreds of millions of answers and mil-
lions of questions accumulated on the Community
QA sites. These resources of past questions and
answers are proving to be a valuable knowledge
base. From the Community QA sites, users can di-
rectly get the answers to meet some specific infor-
mation need, rather than browse the list of returned
documents to find the answers. Hence, in recent
years, knowledge mining in Community QA sites
has become a popular topic in the field of artifi-
cial intelligence (Adamic et al., 2008; Wei et al.,
2011).

However, some answers may be deceptive. In
the Community QA sites, there are millions of
users each day. As the answers can guide the
user’s behavior, some malicious users are moti-
vated to give deceptive answers to promote their
products or services. For example, if someone
asks for recommendations about restaurants in the
Community QA site, the malicious user may post a
deceptive answer to promote the target restaurant.
Indeed, because of lucrative financial rewards, in
several Community QA sites, some business own-
ers provide incentives for users to post deceptive
answers for product promotion.

There are at least two major problems that the
deceptive answers cause. On the user side, the
deceptive answers are misleading to users. If
the users rely on the deceptive answers, they will
make the wrong decisions. Or even worse, the pro-
moted link may lead to illegitimate products. On
the Community QA side, the deceptive answers
will hurt the health of the Community QA sites. A
Community QA site without control of deceptive
answers could only benefit spammers but could
not help askers at all. If the asker was cheated by
the provided answers, he will not trust and visit
this site again. Therefore, it is a fundamental task
to predict and filter out the deceptive answers.

In this paper, we propose to predict deceptive
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answer, which is defined as the answer, whose pur-
pose is not only to answer the question, but also
to promote the authors’ self-interest. In the first
step, we consider the deceptive answer prediction
as a general binary-classification task. We extract
two types of features: one is textual features from
answer content, including unigram/bigram, URL,
phone number, email, and answer length; the other
is contextual features from the answer context, in-
cluding the relevance between answer and the cor-
responding question, the author of the answer, an-
swer evaluation from other users and duplication
with other answers. We further investigate the user
relationship for deceptive answer prediction. We
assume that similar users tend to have similar be-
haviors, i.e. posting deceptive answers or post-
ing authentic answers. To measure the user rela-
tionship, we propose a new user preference graph,
which is constructed based on the answer evalu-
ation expressed by users, such as “helpful” vot-
ing and “best answer” selection. The user prefer-
ence graph is incorporated into traditional super-
vised learning framework with graph regulariza-
tion, which can make answers, from users with
same preference, tend to have the same category
(deceptive or authentic). The experiment results
demonstrate that the user preference graph can fur-
ther help improve the performance for deceptive
answer prediction.

2 Related Work
In the past few years, it has become a popular task
to mine knowledge from the Community QA sites.
Various studies, including retrieving the accumu-
lated question-answer pairs to find the related an-
swer for a new question, finding the expert in a
specific domain, summarizing single or multiple
answers to provide a concise result, are conducted
in the Community QA sites (Jeon et al., 2005;
Adamic et al., 2008; Liu et al., 2008; Song et
al., 2008; Si et al., 2010a; Figueroa and Atkin-
son, 2011). However, an important issue which
has been neglected so far is the detection of decep-
tive answers. If the acquired question-answer cor-
pus contains many deceptive answers, it would be
meaningless to perform further knowledge mining
tasks. Therefore, as the first step, we need to pre-
dict and filter out the deceptive answers. Among
previous work, answer quality prediction (Song et
al., 2010; Harper et al., 2008; Shah and Pomer-
antz, 2010; Ishikawa et al., 2010) is most related to
the deceptive answer prediction task. But these are

still significant differences between two tasks. An-
swer quality prediction measures the overall qual-
ity of the answers, which refers to the accuracy,
readability, completeness of the answer. While
the deceptive answer prediction aims to predict if
the main purpose of the provided answer is only
to answer the specific question, or includes the
user’s self-interest to promote something. Some
of the previous work (Song et al., 2010; Ishikawa
et al., 2010; Bian et al., 2009) views the “best
answer” as high quality answers, which are se-
lected by the askers in the Community QA sites.
However, the deceptive answer may be selected as
high-quality answer by the spammer, or because
the general users are mislead. Meanwhile, some
answers from non-native speakers may have lin-
guistic errors, which are low-quality answers, but
are still authentic answers. Our experiments also
show that answer quality prediction is much dif-
ferent from deceptive answer prediction.

Previous QA studies also analyze the user graph
to investigate the user relationship (Jurczyk and
Agichtein, 2007; Liu et al., 2011). They mainly
construct the user graph with asker-answerer rela-
tionship to estimate the expertise score in Commu-
nity QA sites. They assume the answerer is more
knowledgeable than the asker. However, we don’t
care which user is more knowledgeable, but are
more likely to know if two users are both spam-
mers or authentic users. In this paper, we pro-
pose a novel user preference graph based on their
preference towards the target answers. We assume
that the spammers may collaboratively promote
the target deceptive answers, while the authen-
tic users may generally promote the authentic an-
swers and demote the deceptive answers. The user
preference graph is constructed based on their an-
swer evaluation, such as “helpful” voting or “best
answer” selection.

3 Proposed Features
We first view the deceptive answer prediction as a
binary-classification problem. Two kinds of fea-
tures, including textual features and contextual
features, are described as follows:

3.1 Textual Features
We first aim to predict the deceptive answer by an-
alyzing the answer content. Several textual fea-
tures are extracted from the answer content:
3.1.1 Unigrams and Bigrams
The most common type of feature for text classi-
fication is the bag-of-word. We use an effective
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feature selection method χ2 (Yang and Pedersen,
1997) to select the top 200 unigrams and bigrams
as features. The top ten unigrams related to decep-
tive answers are shown on Table 1. We can see that
these words are related to the intent for promotion.

professional service advice address
site telephone therapy recommend

hospital expert

Table 1: Top 10 Deceptive Related Unigrams

3.1.2 URL Features
Some malicious users may promote their products
by linking a URL. We find that URL is good indi-
cator for deceptive answers. However, some URLs
may provide the references for the authentic an-
swers. For example, if you ask the weather in
mountain view, someone may just post the link
to ”http://www.weather.com/”. Therefore, besides
the existence of URL, we also use the following
URL features:

1). Length of the URLs: we observe that the
longer urls are more likely to be spam.

2). PageRank Score: We employ the PageRank
(Page et al., 1999) score of each URL as popularity
score.

3.1.3 Phone Numbers and Emails
There are a lot of contact information mentioned
in the Community QA sites, such as phone num-
bers and email addresses, which are very likely to
be deceptive, as good answers are found to be less
likely to refer to phone numbers or email addresses
than the malicious ones. We extract the number of
occurrences of email and phone numbers as fea-
tures.

3.1.4 Length
We have also observed some interesting patterns
about the length of answer. Deceptive ones tend
to be longer than authentic ones. This can be ex-
plained as the deceptive answers may be well pre-
pared to promote the target. We also employ the
number of words and sentences in the answer as
features.

3.2 Contextual Features
Besides the answer textual features, we further in-
vestigate various features from the context of the
target answer:

3.2.1 Question Answer Relevance
The main characteristic of answer in Community
QA site is that the answer is provided to answer
the corresponding question. We can use the corre-
sponding question as one of the context features by
measuring the relevance between the answer and
the question. We employ three different models
for Question-Answer relevance:

Vector Space Model
Each answer or question is viewed as a word

vector. Given a question q and the answer a, our
vector model uses weighted word counts(e.g.TF-
IDF) as well as the cosine similarity (q · a) of
their word vectors as relevant function (Salton and
McGill, 1986). However, vector model only con-
sider the exact word match, which is a big prob-
lem, especially when the question and answer are
generally short compared to the document. For ex-
ample, Barack Obama and the president of the US
are the same person. But the vector model would
indicate them to be different. To remedy the word-
mismatch problem, we also look for the relevance
models in higher semantic levels.

Translation Model
A translation model is a mathematical model in

which the language translation is modeled in a sta-
tistical way. The probability of translating a source
sentence (as answer here) into target sentence (as
question here) is obtained by aligning the words
to maximize the product of all the word probabil-
ities. We train a translation model (Brown et al.,
1990; Och and Ney, 2003) using the Community
QA data, with the question as the target language,
and the corresponding best answer as the source
language. With translation model, we can com-
pute the translation score for new question and an-
swer.

Topic Model
To reduce the false negatives of word mismatch

in vector model, we also use the topic models to
extend matching to semantic topic level. The topic
model, such as Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), considers a collection of doc-
uments with K latent topics, where K is much
smaller than the number of words. In essence,
LDA maps information from the word dimen-
sion to a semantic topic dimension, to address the
shortcomings of the vector model.

3.2.2 User Profile Features
We extract several user’s activity statistics to con-
struct the user profile features, including the level
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of the user in the Community QA site, the number
of questions asked by this user, the number of an-
swers provided by this user, and the best answer
ratio of this user.

3.2.3 User Authority Score
Motivated by expert finding task (Jurczyk and
Agichtein, 2007; Si et al., 2010a; Li et al., 2011),
the second type of author related feature is author-
ity score, which denotes the expertise score of this
user. To compute the authority score, we first con-
struct a directed user graph with the user interac-
tions in the community. The nodes of the graph
represent users. An edge between two users in-
dicates a contribution from one user to the other.
Specifically, on a Q&A site, an edge from A to
B is established when user B answered a question
asked by A, which shows user B is more likely to
be an expert than A. The weight of an edge indi-
cates the number of interactions. We compute the
user’s authority score (AS) based on the link anal-
ysis algorithm PageRank:

AS(ui) =
1− d
N

+ d
∑

uj∈M(ui)

AS(uj)

L(uj)
(1)

where u1, . . . , uN are the users in the collection,
N is the total number of users, M(ui) is the set
of users whose answers are provided by user ui,
L(ui) is the number of users who answer ui’s
questions, d is a damping factor, which is set as
0.85. The authority score can be computed itera-
tively with random initial values.

3.2.4 Robot Features
The third type of author related feature is used for
detecting whether the author is a robot, which are
scripts crafted by malicious users to automatically
post answers. We observe that the distributions of
the answer-posting time are very different between
general user and robot. For example, some robots
may make posts continuously and mechanically,
hence the time increment may be smaller that hu-
man users who would need time to think and pro-
cess between two posts. Based on this observa-
tion, we design an time sequence feature for robot
detection. For each author, we can get a list of
time points to post answers, T = {t0, t1, ..., tn},
where ti is the time point when posting the ith an-
swer. We first convert the time sequence T to time
interval sequence ∆T = {∆t0,∆t1, ...,∆tn−1},
where ∆ti = ti+1 − ti. Based on the interval
sequences for all users, we then construct a ma-
trix Xm×b whose rows correspond to users and

columns correspond to interval histogram with
predefined range. We can use each row vector as
time sequence pattern to detect robot. To reduce
the noise and sparse problem, we use the dimen-
sion reduction techniques to extract the latent se-
mantic features with Singular Value Decomposi-
tion (SVD) (Deerwester et al., 1990; Kim et al.,
2006).

3.2.5 Evaluation from Other Users
In the Community QA sites, other users can ex-
press their opinions or evaluations on the answer.
For example, the asker can choose one of the an-
swers as best answer. We use a bool feature to de-
note if this answer is selected as the best answer.
In addition, other users can label each answer as
“helpful” or “not helpful”. We also use this helpful
evaluation by other users as the contextual feature,
which is defined as the ratio between the number
of “helpful” votes and the number of total votes.

3.2.6 Duplication with Other Answers
The malicious user may post the pre-written prod-
uct promotion documents to many answers, or just
change the product name. We also compute the
similarity between different answers. If the two
answers are totally same, but the question is differ-
ent, these answer is potentially as a deceptive an-
swer. Here, we don’t want to measure the semantic
similarity between two answers, but just measure
if two answers are similar to the word level, there-
fore, we apply BleuScore (Papineni et al., 2002),
which is a standard metric in machine translation
for measuring the overlap between n-grams of two
text fragments r and c. The duplication score of
each answer is the maximum BleuScore compared
to all other answers.

4 Deceptive Answer Prediction with User
Preference Graph

Besides the textual and contextual features, we
also investigate the user relationship for decep-
tive answer prediction. We assume that similar
users tend to perform similar behaviors (posting
deceptive answers or posting authentic answers).
In this section, we first show how to compute the
user similarity (user preference graph construc-
tion), and then introduce how to employ the user
relationship for deceptive answer prediction.

4.1 User Preference Graph Construction
In this section, we propose a new user graph to de-
scribe the relationship among users. Figure 1 (a)
shows the general process in a question answering
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Figure 1: User Preference Graph Construction

thread. The asker, i.e. u1, asks a question. Then,
there will be several answers to answer this ques-
tion from other users, for example, answerers u2
and u3. After the answers are provides, users can
also vote each answer as “helpful” or “not help-
ful” to show their evaluation towards the answer .
For example, users u4, u5 vote the first answer as
“not helpful”, and user u6 votes the second answer
as “helpful”. Finally, the asker will select one an-
swer as the best answer among all answers. For
example, the asker u1 selects the first answer as
the “best answer”.

To mine the relationship among users, previous
studies mainly focus on the asker-answerer rela-
tionship (Jurczyk and Agichtein, 2007; Liu et al.,
2011). They assume the answerer is more knowl-
edgeable than the asker. Based on this assump-
tion, they can extract the expert in the commu-
nity, as discussed in Section 3.2.3. However, we
don’t care which user is more knowledgeable, but
are more interested in whether two users are both
malicious users or authentic users. Here, we pro-
pose a new user graph based on the user prefer-
ence. The preference is defined based on the an-
swer evaluation. If two users show same pref-
erence towards the target answer, they will have
the user-preference relationship. We mainly use
two kinds of information: “helpful” evaluation and
“best answer” selection. If two users give same
“helpful” or “not helpful” to the target answer, we
view these two users have same user preference.
For example, user u4 and user u5 both give “not
helpful” evaluation towards the first answer, we
can say that they have same user preference. Be-
sides the real “helpful” evaluation, we also assume
the author of the answer gives the “helpful” evalu-

ation to his or her own answer. Then if user u6 give
“helpful” evaluation to the second answer, we will
view user u6 has same preference as user u3, who
is the author of the second answer. We also can ex-
tract the user preference with “best answer” selec-
tion. If the asker selects the “best answer” among
all answers, we will view that the asker has same
preference as the author of the “best answer”. For
example, we will view user u1 and user u2 have
same preference.

Based on the two above assumptions, we can
extract three user preference relationships (with
same preference) from the question answering ex-
ample in Figure 1 (a): u4 ∼ u5, u3 ∼ u6, u1 ∼ u2,
as shown in Figure1 (b). After extracting all user
preference relationships, we can construct the user
preference graph as shown in Figure 1 (c). Each
node represents a user. If two users have the user
preference relationship, there will be an edge be-
tween them. The edge weight is the number of
user preference relationships.

In the Community QA sites, the spammers
mainly promote their target products by promoting
the deceptive answers. The spammers can collab-
oratively make the deceptive answers look good,
by voting them as high-quality answer, or select-
ing them as “best answer”. However, the authen-
tic users generally have their own judgements to
the good and bad answers. Therefore, the evalu-
ation towards the answer reflects the relationship
among users. Although there maybe noisy rela-
tionship, for example, an authentic user may be
cheated, and selects the deceptive answer as “best
answer”, we hope the overall user preference rela-
tion can perform better results than previous user
interaction graph for this task.
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4.2 Incorporating User Preference Graph
To use the user graph, we can just compute the
feature value from the graph, and add it into the
supervised method as the features introduced in
Section 3. Here, we propose a new technique to
employ the user preference graph. We utilize the
graph regularizer (Zhang et al., 2006; Lu et al.,
2010) to constrain the supervised parameter learn-
ing. We will introduce this technique based on
a commonly used model f(·), the linear weight
model, where the function value is determined by
linear combination of the input features:

f(xi) = wT · xi =
∑

k

wk · xik (2)

where xi is a K dimension feature vector for the
ith answer, the parameter value wk captures the
effect of the kth feature in predicting the deceptive
answer. The best parameters w∗ can be found by
minimizing the following objective function:

Ω1(w) =
∑

i

L(wTxi, yi) + α · |w|2F (3)

where L(wTxi, yi) is a loss function that mea-
sures discrepancy between the predicted label
wT · xi and the true label yi, where yi ∈
{+1,−1}. The common used loss functions in-
clude L(p, y) = (p−y)2 (least square), L(p, y) =
ln (1 + exp (−py)) (logistic regression). For sim-
plicity, here we use the least square loss function.
|w|2F =

∑
k w

2
k is a regularization term defined

in terms of the Frobenius norm of the parameter
vector w and plays the role of penalizing overly
complex models in order to avoid fitting.

We want to incorporate the user preference re-
lationship into the supervised learning framework.
The hypothesis is that similar users tend to have
similar behaviors, i.e. posting deceptive answers
or authentic answers. Here, we employ the user
preference graph to denote the user relationship.
Based on this intuition, we propose to incorporate
the user graph into the linear weight model with
graph regularization. The new objective function
is changed as:

Ω2(w) =
∑

i

L(wTxi, yi) + α · |w|2F +

β
∑

ui,uj∈Nu

∑

x∈Aui ,y∈Auj

wui,uj (f(x)− f(y))2 (4)

where Nu is the set of neighboring user pairs in
user preference graph, i.e, the user pairs with same

preference. Aui is the set of all answers posted by
user ui. wui,uj is the weight of edge between ui
and uj in user preference graph. In the above ob-
jective function, we impose a user graph regular-
ization term

β
∑

ui,uj∈Nu

∑

x∈Aui ,y∈Auj

wui,uj (f(x)− f(y))2

to minimize the answer authenticity difference
among users with same preference. This regu-
larization term smoothes the labels on the graph
structure, where adjacent users with same prefer-
ence tend to post answers with same label.

5 Experiments
5.1 Experiment Setting
5.1.1 Dataset Construction

In this paper, we employ the Confucius (Si et
al., 2010b) data to construct the deceptive an-
swer dataset. Confucius is a community question
answering site, developed by Google. We first
crawled about 10 million question threads within
a time range. Among these data, we further sam-
ple a small data set, and ask three trained annota-
tors to manually label the answer as deceptive or
not. If two or more people annotate the answer as
deceptive, we will extract this answer as a decep-
tive answer. In total, 12446 answers are marked
as deceptive answers. Similarly, we also manu-
ally annotate 12446 authentic answers. Finally,
we get 24892 answers with deceptive and authen-
tic labels as our dataset. With our labeled data,
we employ supervised methods to predict decep-
tive answers. We conduct 5-fold cross-validation
for experiments. The larger question threads data
is employed for feature learning, such as transla-
tion model, and topic model training.

5.1.2 Evaluation Metrics
The evaluation metrics are precision, recall and
F -score for authentic answer category and de-
ceptive answer category: precision =

Sp∩Sc
Sp

,

recall =
Sp∩Sc
Sc

, and F = 2∗precision∗recall
precision+recall , where

Sc is the set of gold-standard positive instances for
the target category, Sp is the set of predicted re-
sults. We also use the accuracy as one metric,
which is computed as the number of answers pre-
dicted correctly, divided by the number of total an-
swers.

1728



Deceptive Answer Authentic Answer Overall
Prec. Rec. F-Score Prec. Rec. F-Score Acc.

Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Unigram/Bigram (UB) 0.61 0.71 0.66 0.66 0.55 0.60 0.63

URL 0.93 0.26 0.40 0.57 0.98 0.72 0.62
Phone/Mail 0.94 0.15 0.25 0.53 0.99 0.70 0.57

Length 0.56 0.91 0.69 0.76 0.28 0.41 0.60
All Textual Features 0.64 0.67 0.66 0.66 0.63 0.64 0.65

QA Relevance 0.66 0.57 0.61 0.62 0.71 0.66 0.64
User Profile 0.62 0.53 0.57 0.59 0.67 0.63 0.60

User Authority 0.54 0.80 0.65 0.62 0.33 0.43 0.56
Robot 0.66 0.62 0.64 0.61 0.66 0.64 0.64

Answer Evaluation 0.55 0.53 0.54 0.55 0.57 0.56 0.55
Answer Duplication 0.69 0.71 0.70 0.70 0.68 0.69 0.69

All Contextual Feature 0.78 0.74 0.76 0.75 0.79 0.77 0.77
Textutal + Contextual 0.80 0.82 0.81 0.82 0.79 0.80 0.81

Table 2: Results With Textual and Contextual Features

5.2 Results with Textual and Contextual
Features

We tried several different classifiers, including
SVM, ME and the linear weight models with least
square and logistic regression. We find that they
can achieve similar results. For simplicity, the lin-
ear weight with least square is employed in our
experiment. Table 2 shows the experiment results.
For textual features, it achieves much better re-
sult with unigram/bigram features than the ran-
dom guess. This is very different from the an-
swer quality prediction task. The previous stud-
ies (Jeon et al., 2006; Song et al., 2010) find that
the word features can’t improve the performance
on answer quality prediction. However, from Ta-
ble 1, we can see that the word features can pro-
vide some weak signals for deceptive answer pre-
diction, for example, words “recommend”, “ad-
dress”, “professional” express some kinds of pro-
motion intent. Besides unigram and bigram, the
most effective textual feature is URL. The phone
and email features perform similar results with
URL. The observation of length feature for decep-
tive answer prediction is very different from previ-
ous answer quality prediction. For answer quality
prediction, length is an effective feature, for exam-
ple, long-length provides very strong signals for
high-quality answer (Shah and Pomerantz, 2010;
Song et al., 2010). However, for deceptive answer
prediction, we find that the long answers are more
potential to be deceptive. This is because most of
deceptive answers are well prepared for product

promotion. They will write detailed answers to at-
tract user’s attention and promote their products.
Finally, with all textual features, the experiment
achieves the best result, 0.65 in accuracy.

For contextual features, we can see that, the
most effective contextual feature is answer dupli-
cation. The malicious users may copy the pre-
pared deceptive answers or just simply edit the tar-
get name to answer different questions. Question-
answer relevance and robot are the second most
useful single features for deceptive answer predic-
tion. The main characteristics of the Community
QA sites is to accumulate the answers for the tar-
get questions. Therefore, all the answers should be
relevant to the question. If the answer is not rel-
evant to the corresponding question, this answer
is more likely to be deceptive. Robot is one of
main sources for deceptive answers. It automat-
ically post the deceptive answers to target ques-
tions. Here, we formulate the time series as in-
terval sequence. The experiment result shows that
the robot indeed has his own posting behavior pat-
terns. The user profile feature also can contribute
a lot to deceptive answer prediction. Among the
user profile features, the user level in the Com-
munity QA site is a good indicator. The other
two contextual features, including user authority
and answer evaluation, provide limited improve-
ment. We find the following reasons: First, some
malicious users post answers to various questions
for product promotion, but don’t ask any question.
From Equation 1, when iteratively computing the
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Deceptive Answer Authentic Answer Overall
Prec. Rec. F-Score Prec. Rec. F-Score Acc.

Interaction Graph as Feature 0.80 0.82 0.81 0.82 0.79 0.80 0.81
Interaction Graph as Regularizer 0.80 0.83 0.82 0.82 0.80 0.81 0.82

Preference Graph as Feature 0.79 0.83 0.81 0.82 0.78 0.80 0.81
Preference Graph as Regularizer 0.83 0.86 0.85 0.85 0.83 0.84 0.85

Table 3: Results With User Preference Graph

final scores, the authority scores for these mali-
cious users will be accumulated to large values.
Therefore, it is hard to distinguish whether the
high authority score represents real expert or mali-
cious user. Second, the “best answer” is not a good
signal for deceptive answer prediction. This may
be selected by malicious users, or the authentic
asker was misled, and chose the deceptive answer
as “best answer”. This also demonstrates that the
deceptive answer prediction is very different from
the answer quality prediction. When combining
all the contextual features, it can achieve the over-
all accuracy 0.77, which is much better than the
textual features. Finally, with all the textual and
contextual features, we achieve the overall result,
0.81 in accuracy.

5.3 Results with User Preference Graph

Table 3 shows the results with user preference
graph. We compare with several baselines. Inter-
action graph is constructed by the asker-answerer
relationship introduced in Section 3.2.3. When
using the user graph as feature, we compute the
authority score for each user with PageRank as
shown in Equation 1. We also incorporating the
interaction graph with a regularizer as shown in
Equation 4. Note that we didn’t consider the edge
direction when using interaction graph as a regu-
larizer. From the table, we can see that when in-
corporating user preference graph as a feature, it
can’t achieve a better result than the interaction
graph. The reason is similar as the interaction
graph. The higher authority score may boosted
by other spammer, and can’t be a good indica-
tor to distinguish deceptive and authentic answers.
When we incorporate the user preference graph
as a regularizer, it can achieve about 4% further
improvement, which demonstrates that the user
evaluation towards answers, such as “helpful” vot-
ing and “best answer” selection, is a good signal
to generate user relationship for deceptive answer
prediction, and the graph regularization is an ef-
fective technique to incorporate the user prefer-

ence graph. We also analyze the parameter sen-
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Figure 2: Results with different values of β

sitivity. β is the tradeoff weight for graph regular-
ization term. Figure 2 shows the results with dif-
ferent values of β. We can see that when β ranges
from 10−4 ∼ 10−2, the deceptive answer predic-
tion can achieve best results.

6 Conclusions and Future Work
In this paper, we discuss the deceptive answer
prediction task in Community QA sites. With
the manually labeled data set, we first predict the
deceptive answers with traditional classification
method. Two types of features, including textual
features and contextual features, are extracted and
analyzed. We also introduce a new user prefer-
ence graph, constructed based on the user evalua-
tions towards the target answer, such as “helpful”
voting and “best answer” selection. A graph reg-
ularization method is proposed to incorporate the
user preference graph for deceptive answer predic-
tion. The experiments are conducted to discuss
the effects of different features. The experiment
results also show that the method with user pref-
erence graph can achieve more accurate results for
deceptive answer prediction.

In the future work, it is interesting to incorpo-
rate more features into deceptive answer predic-
tion. It is also important to predict the deceptive
question threads, which are posted and answered
both by malicious users for product promotion.
Malicious user group detection is also an impor-
tant task in the future.
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Abstract

In this paper, we explore the utility of
intra- and inter-sentential causal relations
between terms or clauses as evidence for
answering why-questions. To the best of
our knowledge, this is the first work that
uses both intra- and inter-sentential causal
relations for why-QA. We also propose
a method for assessing the appropriate-
ness of causal relations as answers to a
given question using the semantic orienta-
tion of excitation proposed by Hashimoto
et al. (2012). By applying these ideas
to Japanese why-QA, we improved preci-
sion by 4.4% against all the questions in
our test set over the current state-of-the-
art system for Japanese why-QA. In addi-
tion, unlike the state-of-the-art system, our
system could achieve very high precision
(83.2%) for 25% of all the questions in the
test set by restricting its output to the con-
fident answers only.

1 Introduction

“Why-question answering” (why-QA) is a task to
retrieve answers from a given text archive for a
why-question, such as “Why are tsunamis gen-
erated?” The answers are usually text fragments
consisting of one or more sentences. Although
much research exists on this task (Girju, 2003;
Higashinaka and Isozaki, 2008; Verberne et al.,
2008; Verberne et al., 2011; Oh et al., 2012), its
performance remains much lower than that of the
state-of-the-art factoid QA systems, such as IBM’s
Watson (Ferrucci et al., 2010).

In this work, we propose a quite straightfor-
ward but novel approach for such difficult why-
QA task. Consider the sentence A1 in Table 1,
which represents the causal relation between the
cause, “the ocean’s water mass ..., waves are gen-

A1 [Tsunamis that can cause large coastal inundation
are generated]effect because [the ocean’s water
mass is displaced and, much like throwing a stone
into a pond, waves are generated.]cause

A2 [Earthquake causes seismic waves which set up
the water in motion with a large force.]cause
This causes [a tsunami.]effect

A3 [Tsunamis]effect are caused by [the sudden dis-
placement of huge volumes of water.]cause

A4 [Tsunamis weaken as they pass through
forests]effect because [the hydraulic resistance of
the trees diminish their energy.]cause

A5 [Automakers in Japan suspended production for an
array of vehicles]effect because [the magnitude 9
earthquake and tsunami hit their country on Friday,
March 11, 2011.]cause

Table 1: Examples of intra/inter-sentential causal
relations. Cause and effect parts of each causal re-
lation, marked with [..]cause and [..]effect, are con-
nected by the underlined cue phrases for causality,
such as because, this causes, and are caused by.

erated,” and its effect, “Tsunamis ... are gener-
ated.” This is a good answer to the question, “Why
are tsunamis generated?”, since the effect part is
more or less equivalent to the (propositional) con-
tent of the question. Our method finds text frag-
ments that include such causal relations with an
effect part that resembles a given question and pro-
vides them as answers.

Since this idea looks quite intuitive, many peo-
ple would probably consider it as a solution to
why-QA. However, to our surprise, we could not
find any previous work on why-QA that took this
approach. Some methods utilized the causal re-
lations between terms as evidence for finding an-
swers (i.e., matching a cause term with an answer
text and its effect term with a question) (Girju,
2003; Higashinaka and Isozaki, 2008). Other ap-
proaches utilized such clue terms for causality as
“because” as evidence for finding answers (Mu-
rata et al., 2007). However, these algorithms did
not check whether an answer candidate, i.e., a text
fragment that may be provided as an answer, ex-
plicitly contains a complex causal relation sen-
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tence with the effect part that resembles a ques-
tion. For example, A5 in Table 1 is an incorrect an-
swer to “Why are tsunamis generated?”, but these
previous approaches would probably choose it as a
proper answer due to “because” and “earthquake”
(i.e., a cause of tsunamis). At least in our exper-
imental setting, our approach outperformed these
simpler causality-based QA systems.

Perhaps this approach was previously deemed
infeasible due to two non-trivial technical chal-
lenges. The first challenge is to accurately iden-
tify a wide range of causal relations like those in
Table 1 in answer candidates. To meet this chal-
lenge, we developed a sequence labeling method
that identifies not only intra-sentential causal re-
lations, i.e., the causal relations between two
terms/phrases/clauses expressed in a single sen-
tence (e.g., A1 in Table 1), but also the inter-
sentential causal relations, which are the causal
relations between two terms/phrases/clauses ex-
pressed in two adjacent sentences (e.g., A2) in a
given text fragment.

The second challenge is assessing the appropri-
ateness of each identified causal relation as an an-
swer to a given question. This is important since
the causal relations identified in the answer candi-
dates may have nothing to do with a given ques-
tion. In this case, we have to reject these causal
relations because they are inappropriate as an an-
swer to the question. When a single answer candi-
date contains many causal relations, we also have
to select the appropriate ones. Consider the causal
relations in A1–A4. Those in A1–A3 are appro-
priate answers to “Why are tsunamis generated?”,
but not the one in A4. To assess the appropri-
ateness, the system must recognize textual entail-
ment, i.e., “tsunamis (are) generated” in the ques-
tion is entailed by all “tsunamis are generated” in
A1, “cause a tsunami” in A2 and “tsunamis are
caused” in A3 but not by “tsunamis weaken” in
A4. This quite difficult task is currently being
studied by many researchers in the RTE field (An-
droutsopoulos and Malakasiotis, 2010; Dagan et
al., 2010; Shima et al., 2011; Bentivogli et al.,
2011). To meet this challenge, we developed a
relatively simple method that can be seen as a
lightweight approximation for this difficult RTE
task, using excitation polarities (Hashimoto et al.,
2012).

Through our experiments on Japanese why-QA,
we show that a combination of the above methods

can improve why-QA accuracy. In addition, our
proposed method can be successfully combined
with other approaches to why-QA and can con-
tribute to higher accuracy. As a final result, we im-
proved the precision by 4.4% against all the ques-
tions in our test set over the current state-of-the-art
system of Japanese why-QA (Oh et al., 2012). The
difference in the performance became much larger
when we only compared the highly confident an-
swers of each system. When we made our sys-
tem provide only its confident answers according
to their confidence score given by our system, the
precision of these confident answers was 83.2%
for 25% of all the questions in our test set. In the
same setting, the precision of the state-of-the-art
system (Oh et al., 2012) was only 62.4%.

2 Related Work

Although there were many previous works on the
acquisition of intra- and inter-sentential causal re-
lations from texts (Khoo et al., 2000; Girju, 2003;
Inui and Okumura, 2005; Chang and Choi, 2006;
Torisawa, 2006; Blanco et al., 2008; De Saeger et
al., 2009; De Saeger et al., 2011; Riaz and Girju,
2010; Do et al., 2011; Radinsky et al., 2012), their
application to why-QA was limited to causal re-
lations between terms (Girju, 2003; Higashinaka
and Isozaki, 2008).

As previous attempts to improve why-QA per-
formance, such semantic knowledge as Word-
Net synsets (Verberne et al., 2011), semantic
word classes (Oh et al., 2012), sentiment analy-
sis (Oh et al., 2012), and causal relations between
terms (Girju, 2003; Higashinaka and Isozaki,
2008) has been used. These previous studies took
basically bag-of-words approaches and used the
semantic knowledge to identify certain seman-
tic associations using terms and n-grams. On
the other hand, our method explicitly identifies
intra- and inter-sentential causal relations between
terms/phrases/clauses that have complex struc-
tures and uses the identified relations to answer
a why-question. In other words, our method
considers more complex linguistic structures than
those used in the previous studies. Note that our
method can complement the previous approaches.
Through our experiments, we showed that it is
possible to achieve a higher precision by combin-
ing our proposed method with bag-of-words ap-
proaches considering semantic word classes and
sentiment analysis in our previous work (Oh et al.,
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Figure 1: System architecture

2012).

3 System Architecture

We first describe the system architecture of
our QA system before describing our proposed
method. It is composed of two components: an-
swer candidate extraction and answer re-ranking
(Fig. 1). This architecture is basically the same as
that used in our previous work (Oh et al., 2012).
We extended our previous work by introducing
causal relations recognized from answer candi-
dates to the answer re-ranking. The features used
in our previous work are very different from those
in this work, and we found that combining both
improves accuracy.

Answer candidate extraction: In our previous
work, we implemented the method of Murata et
al. (2007) for our answer candidate extractor. We
retrieved documents from Japanese web texts us-
ing Boolean AND and OR queries generated from
the content words in why-questions. Then we ex-
tracted passages of five sentences from these re-
trieved documents and ranked them with the rank-
ing function proposed by Murata et al. (2007).
This method ranks a passage higher when it con-
tains more query terms that are closer to each other
in the passage. We used a set of clue terms, includ-
ing the Japanese counterparts of cause and reason,
as query terms for the ranking. The top ranked
passages are regarded as answer candidates in the
answer re-ranking. See Murata et al. (2007) for
more details.

Answer re-ranking: Re-ranking the answer
candidates is done by a supervised classifier
(SVMs) (Vapnik, 1995). In our previous work, we

employed three types of features for training the
re-ranker: morphosyntactic features (n-grams of
morphemes and syntactic dependency chains), se-
mantic word class features (semantic word classes
obtained by automatic word clustering (Kazama
and Torisawa, 2008)) and sentiment polarity fea-
tures (word and phrase polarities). Here, we used
semantic word classes and sentiment polarities for
identifying such semantic associations between a
why-question and its answer as “if a disease’s
name appears in a question, then answers that in-
clude nutrient names are more likely to be correct”
by semantic word classes and “if something un-
desirable happens, the reason is often also some-
thing undesirable” by sentiment polarities. In this
work, we propose causal relation features gener-
ated from intra- and inter-sentential causal rela-
tions in answer candidates and use them along
with the features proposed in our previous work
for training our re-ranker.

4 Causal Relations for Why-QA

We describe causal relation recognition in Sec-
tion 4.1 and describe the features (of our re-ranker)
generated from causal relations in Section 4.2.

4.1 Causal Relation Recognition
We restrict causal relations to those expressed by
such cue phrases for causality as (the Japanese
counterparts of) because and as a result like in
the previous work (Khoo et al., 2000; Inui and
Okumura, 2005) and recognize them in the fol-
lowing two steps: extracting causal relation candi-
dates and recognizing causal relations from these
candidates.

4.1.1 Extracting Causal Relation Candidates
We identify cue phrases for causality in answer
candidates using the regular expressions in Ta-
ble 2. Then, for each identified cue phrase, we
extract three sentences as a causal relation candi-
date, where one contains the cue phrase and the
other two are the previous and next sentences in
the answer candidates. When there is more than
one cue phrase in an answer candidate, we use
all of them for extracting the causal relation can-
didates, assuming that each of the cue phrases is
linked to different causal relations. We call a cue
phrase used for extracting a causal relation candi-
date a c-marker (causality marker) of the candi-
date to distinguish it from the other cue phrases in
the same causal relation candidate.
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Regular expressions Examples
(D|の)? ため P? ため (for),のため (for),そのため

(as a result),のために (for)
ので ので (since or because of)
こと (から|で) ことから (from the fact that),こと

で (by the fact that)
(から|ため) C からだ (because),ためだ (It is be-

cause)
D? RCT (P|C)+ 理由は (the reason is), 原因だ

(is the cause),この理由から (from
this reason)

Table 2: Regular expressions for identifying cue
phrases for causality. D, P and C represent
demonstratives (e.g.,この (this) andその (that)),
postpositions (including case markers such as が
(nominative), の (genitive)), and copula (e.g., で
す (is) andである (is)) in Japanese, respectively.
RCT, which represents Japanese terms meaning
reason, cause, or thanks to, is defined as fol-
lows: RCT = {理由 (reason), 原因 (cause), 要
因 (cause), 引き金 (cause), おかげ (thanks to),
せい (thanks to),わけ (reason) }.

4.1.2 Recognizing Causal Relations

Next, we recognize the spans of the cause and ef-
fect parts of a causal relation linked to a c-marker.
We regard this task as a sequence labeling problem
and use Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) as a machine learning frame-
work. In our task, CRFs take three sentences
of a causal relation candidate as input and gen-
erate their cause-effect annotations with a set of
possible cause-effect IOB labels, including Begin-
Cause (B-C), Inside-Cause (I-C), Begin-Effect (B-
E), Inside-Effect (I-E), and Outside (O). Fig 2
shows an example of such sequence labeling. Al-
though this example is about sequential labeling
shown on English sentences for ease of explana-
tion, it was actually done on Japanese sentences.

We used the three types of feature sets in Table 3
for training the CRFs, where j is in the range of
i− 4 ≤ j ≤ i+4 for current position i in a causal
relation candidate.

Type Features
Morphological feature mj , mj+1

j , posj , posj+1
j

Syntactic feature sj , sj+1
j , bj , bj+1

j

C-marker feature (mj , cm), (mj+1
j , cm)

(sj , cm), (sj+1
j , cm)

Table 3: Features for training CRFs, where
xj+1
j = xjxj+1

Morphological features: mj and posj in Ta-
ble 3 represent the jth morpheme and the POS tag.

S1:	
  Earthquake	
  causes	
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  set	
  up	
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  in	
  mo7on	
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  a	
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  a	
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S3:	
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S1	
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   EOS	
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A	
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  rela7on	
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Figure 2: Recognizing causal relations by se-
quence labeling: Underlined text This causes rep-
resents a c-marker, and EOS and EOA represent
end-of-sentence and end-of-answer candidates.
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root	
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Figure 3: Example of syntactic information related
to a c-marker used for syntactic features

We use JUMAN1, a Japanese morphological ana-
lyzer, for generating our morphological features.

Syntactic features: The span of the causal rela-
tions in a given causal relation candidate strongly
depends on the c-marker in the candidate. Es-
pecially for intra-sentential causal relations, their
cause and effect parts often appear in the subtrees
of the c-marker’s node or those of the c-marker’s
parent node in a syntactic dependency tree struc-
ture. Fig. 3 shows an example that follows this ob-
servation, where the c-marker node is represented
in a hexagon and the other nodes are in a rectan-
gle. Note that each node in Fig. 3 is a word phrase
(called a bunsetsu), which is the smallest unit of
syntactic analysis in Japanese. A bunsetsu is a
syntactic constituent composed of a content word
and several function words such as postpositions
and case markers. Syntactic dependency is repre-
sented by an arrow in Fig. 3. For example, there
is syntactic dependency from word phrase 水が

1 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
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(water) toなると (if (it) becomes), i.e.,水が dep−−→
なると. We encode this subtree information into
sj , which is the syntactic information of a word
phrase to which the jth morpheme belongs. sj
only has one of six values: 1) the c-marker’s node
(c-marker), 2) the c-marker’s child node (child),
3) the c-marker’s parent node (parent), 4) in the c-
marker’s subtree but not the c-marker’s child node
(subtree), 5) in the subtree of the c-marker’s par-
ent node but not the c-marker’s node (subtree-of-
parent) and 6) the others (others). bj is the word
phrase information of the jth morpheme (mj) that
represents whether mj is in the beginning or in-
side a word phrase. For generating our syntactic
features, we use KNP2, a Japanese syntactic de-
pendency parser.

C-marker features: As our c-marker features,
we use a pair composed of c-marker cm and one
of the following: mj , m

j+1
j , sj , or sj+1

j .

4.2 Causal Relation Features

We use terms, partial trees (in a syntactic depen-
dency tree structure), and the semantic orienta-
tion of excitation (Hashimoto et al., 2012) to as-
sess the appropriateness of each causal relation ob-
tained by our causal relation recognizer as an an-
swer to a given question. Finding answers with
term matching and partial tree matching has been
used in the literature of question answering (Girju,
2003; Narayanan and Harabagiu, 2004; Moschitti
et al., 2007; Higashinaka and Isozaki, 2008; Ver-
berne et al., 2008; Surdeanu et al., 2011; Verberne
et al., 2011; Oh et al., 2012), while that with the
excitation polarity is proposed in this work.

We use three types of features. Each fea-
ture type expresses the causal relations in an an-
swer candidate that are determined to be appro-
priate as answers to a given question by term
matching (tf1–tf4), partial tree matching (pf1–
pf4) and excitation polarity matching (ef1–ef4).
We call these causal relations used for generating
our causal relation features candidates of an ap-
propriate causal relation in this section. Note that
if one answer candidate has more than one candi-
date of an appropriate causal relation found by one
matching method, we generated features for each
appropriate candidate and merged all of them for
the answer candidate.

2 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP

Type Description
tf1 word n-grams of causal relations
tf2 word class version of tf1
tf3 indicator for the existence of candidates of an

appropriate causal relation identified by term
matching in an answer candidate

tf4 number of matched terms in candidates of an ap-
propriate causal relation

pf1 syntactic dependency n-grams (n dependency
chain) of causal relations

pf2 word class version of pf1
pf3 indicator for the existence of candidates of an ap-

propriate causal relation identified by partial tree
matching in an answer candidate

pf4 number of matched partial trees in candidates of
an appropriate causal relation

ef1 types of noun-polarity pairs shared by causal re-
lations and the question

ef2 ef1 coupled with each noun’s word class
ef3 indicator for the existence of candidates of an ap-

propriate causal relation identified by excitation
polarity matching in an answer candidate

ef4 number of noun-polarity pairs shared by the
question and the candidates of an appropriate
causal relation

Table 4: Causal relation features: n in n-grams
is n = {2, 3} and n-grams in an effect part are
distinguished from those in a cause part.

4.2.1 Term Matching

Our term matching method judges that a causal re-
lation is a candidate of an appropriate causal rela-
tion if its effect part contains at least one content
word (nouns, verbs, and adjectives) in the ques-
tion. For example, all the causal relations of A1–
A4 in Table 1 are candidates of an appropriate
causal relation to the question, “Why is a tsunami
generated?”, by term matching with question term
tsunami.
tf1–tf4 are generated from candidates of an ap-

propriate causal relation identified by term match-
ing. The n-grams of tf1 and tf2 are restricted
to those containing at least one content word in
a question. We distinguish this matched word
from the other words by replacing it with QW, a
special symbol representing a word in the ques-
tion. For example, word 3-gram “this/cause/QW”
is extracted from This causes tsunamis in A2 for
“Why is a tsunami generated?” Further, we cre-
ate a word class version of word n-grams by con-
verting the words in these word n-grams into their
corresponding word class using the semantic word
classes (500 classes for 5.5 million nouns) from
our previous work (Oh et al., 2012). These word
classes were created by applying the automatic
word clustering method of Kazama and Torisawa
(2008) to 600 million Japanese web pages. For
example, the word class version of word 3-gram
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“this/cause/QW” is “this/cause/QW,WCtsunami”,
where WCtsunami represents the word class of
a tsunami. tf3 is a binary feature that indi-
cates the existence of candidates of an appropri-
ate causal relation identified by term matching in
an answer candidate. tf4 represents the degree
of the relevance of the candidates of an appro-
priate causal relation measured by the number of
matched terms: one, two, and more than two.

4.2.2 Partial Tree Matching
Our partial tree matching method judges a causal
relation as a candidate of an appropriate causal re-
lation if its effect part contains at least one par-
tial tree in a question, where the partial tree covers
more than one content word. For example, only
the causal relation A1 among A1–A4 is a can-
didate of an appropriate causal relation for ques-
tion “Why are tsunamis generated?” by partial
tree matching because only its effect part contains

partial tree “tsunamis
dep−−→ (are) generated” of the

question.
pf1–pf4 are generated from candidates of an

appropriate causal relation identified by the par-
tial tree matching. The syntactic dependency n-
grams in pf1 and pf2 are restricted to those that
contain at least one content word in a question. We
distinguish this matched content word from the
other content words in the n-gram by converting
it to QW, which represents a content word in the
question. For example, syntactic dependency 2-

gram “QW
dep−−→ cause” and its word class version

“QW,WCtsunami
dep−−→ cause” are extracted from

Tsunamis that can cause in A1. pf3 is a binary
feature that indicates whether an answer candidate
contains candidates of an appropriate causal rela-
tion identified by partial tree matching. pf4 rep-
resents the degree of the relevance of the candi-
date of an appropriate causal relation measured by
the number of matched partial trees: one, two, and
more than two.

4.2.3 Excitation Polarity Matching
Hashimoto et al. (2012) proposed a semantic ori-
entation called excitation polarities. It classifies
predicates with their argument position (called
templates) into excitatory, inhibitory and neu-
tral. In the following, we denote a template
as “[argument position,predicate].” According to
Hashimoto’s definition, excitatory templates im-
ply that the function, effect, purpose, or the role of

an entity filling an argument position in the tem-
plates is activated/enhanced. On the contrary, in-
hibitory templates imply that the effect, purpose
or the role of an entity is deactivated/suppressed.
Neutral templates are those that neither activate
nor suppress the function of an argument.

We assume that the meanings of a text can
be roughly captured by checking whether each
noun in the text is activated or suppressed in the
sense of the excitation polarity framework, where
the activation and suppression of each entity (or
noun) can be detected by looking at the excita-
tion polarities of the templates that are filled by
the entity. For instance, effect part “tsunamis
that can cause large coastal inundation are gen-
erated” of A1 roughly means that “tsunamis” are
activated and “inundation” is (or can be) acti-
vated. This activation/suppression configuration
of the nouns is consistent with sentence “tsunamis
are caused” in which “tsunamis” are activated.
This consistency suggests that A1 is a good an-
swer to question “Why are tsunamis caused?”, al-
though the “tsunamis” are modified by different
predicates; “cause” and “generate.” On the other
hand, effect part “tsunamis weaken as they pass
through forests” of A4 implies that “tsunamis”
are suppressed. This suggests that A4 is not
a good answer to “Why are tsunamis caused?”
Note that the consistency checking between ac-
tivation/suppression configurations of nouns3 in
texts can be seen as a rough but lightweight ap-
proximation of the recognition of textual entail-
ments or paraphrases.

Following the definition of excitation polarity
in Hashimoto et al. (2012), we manually classi-
fied templates4 to each polarity type and obtained
8,464 excitatory templates, such as [が, 増える]
([subject, increase]) and [が, 向上する] ([sub-
ject, improve]), 2,262 inhibitory templates, such
as [を, 防ぐ] ([object, prevent]) and [が, 死ぬ]
([subject, die]), and 7,230 neutral templates such
as [を, 考える] ([object, consider]). With these
templates, we obtain activation/suppression con-
figurations (including neutral) for the nouns in the
causal relations in the answer candidates and ques-

3 Because the activation/suppression configurations of
nouns come from an excitation polarity of templates, “[argu-
ment position,predicate],” the semantics of verbs in the tem-
plates are implicitly considered in this consistency checking.

4 Varga et al. (2013) has used the same templates as ours,
except they restricted their excitation/inhibitory templates to
those whose polarity is consistent with that given by the au-
tomatic acquisition method of Hashimoto et al. (2012).
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tions.
Next, we assume that a causal relation is ap-

propriate as an answer to a question if the effect
part of the causal relation and the question share
at least one common noun with the same polarity.
More detailed information concerning the config-
urations of all the nouns in all the candidates of an
appropriate causal relation (including their cause
parts) and the question are encoded into our fea-
ture set ef1–ef4 in Table 4 and the final judgment
is done by our re-ranker.

For generating ef1 and ef2, we classified all the
nouns coupled with activation/suppression/neutral
polarities in a causal relation into three types:
SAME (the question contains the same noun with
the same polarity), DiffPOL (the question con-
tains the same noun with different polarity), and
OTHER (the others). ef1 indicates whether each
type of noun-polarity pair exists in a causal rela-
tion. Note that the types for the effect and cause
parts are represented in distinct features. ef2 is the
same as ef1 except that the types are augmented
with the word classes of the corresponding nouns.
In other words, ef2 indicates whether each type
of noun-polarity pair exists in the causal relation
for each word class. ef3 indicates the existence of
candidates of an appropriate causal relation iden-
tified by this matching scheme, and ef4 repre-
sents the number of noun-polarity pairs shared by
the question and the candidates of an appropriate
causal relations (one, two, and more than two).

5 Experiments

We experimented with causal relation recognition
and why-QA with our causal relation features.

5.1 Data Set for Why-Question Answering

For our experiments, we used the same why-QA
data set as the one used in our previous work (Oh
et al., 2012). This why-QA data set is composed
of 850 Japanese why-questions and their top-20
answer candidates obtained by answer candidate
extraction from 600 million Japanese web pages.
Three annotators checked the top-20 answer can-
didates of these 850 questions and the final judg-
ment was made by their majority vote. Their inter-
rater agreement by Fleiss’ kappa reported in Oh et
al. (2012) was substantial (κ = 0.634). Among the
850 questions, 250 why-questions were extracted
from the Japanese version of Yahoo! Answers,
and another 250 were created by annotators. In

our previous work, we evaluated the system with
these 500 questions and their answer candidates as
training and test data in 10-fold cross-validation.
The other 350 why-questions were manually built
from passages describing the causes or reasons of
events/phenomena. These questions and their an-
swer candidates were used as additional training
data for testing subsamples in each fold during the
10-fold cross-validation. In our why-QA experi-
ments, we evaluated our why-QA system with the
same settings.

5.2 Data Set for Causal Relation Recognition
We built a data set composed of manually anno-
tated causal relations for evaluating our causal re-
lation recognition. As source data for this data set,
we used the same 10-fold data that we used for
evaluating our why-QA (500 questions and their
answer candidates). We extracted the causal re-
lation candidates from the answer candidates in
each fold, and then our annotator (not an author)
manually marked the span of the cause and effect
parts of a causal relation for each causal relation
candidate, keeping in mind that the causal rela-
tion must be expressed in terms of a c-marker in
a given causal relation candidate. Finally, we had
a data set made of 16,051 causal relation candi-
dates, 8,117 of which had a true causal relation;
the number of intra- and inter-sentential causal re-
lations were 7,120 and 997, respectively.

Note that this data set can be partitioned into ten
folds by using the 10-fold partition of its source
data. We performed 10-fold cross validation to
evaluate our causal relation recognition with this
10-fold data.

5.3 Causal Relation Recognition
We used CRF++5 for training our causal relation
recognizer. In our evaluation, we judged a sys-
tem’s output as correct if both spans of the cause
and effect parts overlapped those in the gold stan-
dard. Evaluation was done by precision, recall,
and F1.

Precision Recall F1

BASELINE 41.9 61.0 49.7
INTRA-SENT 84.5 75.4 79.7
INTER-SENT 80.2 52.6 63.6

ALL 83.8 71.1 77.0

Table 5: Results of causal relation recognition (%)

Table 5 shows the result. BASELINE represents
5 http://code.google.com/p/crfpp/
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the result for our baseline system that recognizes
a causal relation by simply taking the two phrases
adjacent to a c-marker (i.e., before and after) as
cause and effect parts of the causal relation. We
assumed that the system had an oracle for judging
correctly whether each phrase is a cause part or an
effect part. In other words, we judged that a causal
relation recognized by BASELINE is correct if both
cause and effect parts in the gold standard are adja-
cent to a c-marker. INTRA-SENT and INTER-SENT

represent the results for intra- and inter-sentential
causal relations and ALL represents the result for
the both causal relations by our method. From
these results, we confirmed that our method rec-
ognized both intra- and inter-sentential causal rela-
tions with over 80% precision, and it significantly
outperformed our baseline system in both preci-
sion and recall rates.

Precision Recall F1

ALL-“MORPH” 80.8 66.4 72.9
ALL-“SYNTACTIC” 82.9 67.0 74.1
ALL-“C-MARKER” 76.3 51.4 61.4
ALL 83.8 71.1 77.0

Table 6: Ablation test results for causal relation
recognition (%)

We also investigated the contribution of the
three types of features used in our causal rela-
tion recognition to the performance. We evalu-
ated the performance when we removed one of
the three types of features (ALL-“MORPH”, ALL-
“SYNTACTIC” and ALL-“C-MARKER”) and com-
pared the results in these settings with the one
when all the feature sets were used (ALL). Ta-
ble 6 shows the result. We confirmed that all the
feature sets improved the performance, and we got
the best performance when using all of them. We
used the causal relations obtained from the 10-fold
cross validation for our why-QA experiments.

5.4 Why-Question Answering
We performed why-QA experiments to confirm
the effectiveness of intra- and inter-sentential
causal relations in a why-QA task. In
this experiment, we compared five systems:
four baseline systems (MURATA, OURCF, OH

and OH+PREVCF) and our proposed method
(PROPOSED).

MURATA corresponds to our answer candidate
extraction.

OURCF uses a re-ranker trained with only our

causal relation features.

OH, which represents our previous work (Oh et
al., 2012), has a re-ranker trained with mor-
phosyntactic, semantic word class, and senti-
ment polarity features.

OH+PREVCF is a system with a re-ranker
trained with the features used in OH and with
the causal relation feature proposed in Hi-
gashinaka and Isozaki (2008). The causal re-
lation feature includes an indicator that deter-
mines whether the causal relations between
two terms appear in a question-answer pair;
cause in an answer and its effect in a question.
We acquired the causal relation instances (be-
tween terms) from 600 million Japanese web
pages using the method of De Saeger et al.
(2009) and exploited the top-100,000 causal
relation instances in this system.

PROPOSED has a re-ranker trained with our
causal relation features as well as the three
types of features proposed in Oh et al. (2012).
Comparison between OH and PROPOSED re-
veals the contribution of our causal relation
features to why-QA.

We used TinySVM6 with a linear kernel
for training the re-rankers in OURCF, OH,
OH+PREVCF and PROPOSED. Evaluation was
done by P@1 (Precision of the top-answer) and
Mean Average Precision (MAP); they are the same
measures used in Oh et al. (2012). P@1 measures
how many questions have a correct top-answer
candidate. MAP measures the overall quality of
the top-20 answer candidates. As mentioned in
Section 5.1, we used 10-fold cross-validation with
the same setting as the one used in Oh et al. (2012)
for our experiments.

P@1 MAP
MURATA 22.2 27.0
OURCF 27.8 31.4
OH 37.4 39.1
OH+PREVCF 37.4 38.9
PROPOSED 41.8 41.0

Table 7: Why-QA results (%)

Table 7 shows the evaluation results. Our pro-
posed method outperformed the other four sys-
tems and improved P@1 by 4.4% over OH, which
is the-state-of-the-art system for Japanese why-

6 http://chasen.org/∼taku/software/TinySVM/

1740



QA. OURCF showed the performance improve-
ment over MURATA. Although this suggests the
effectiveness of our causal relation features, the
overall performance of OURCF was lower than
that of OH. OH+PREVCF outperformed neither
OH nor PROPOSED. This suggests that our ap-
proach is more effective than previous causality-
based approaches (Girju, 2003; Higashinaka and
Isozaki, 2008), at least in our setting.
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Figure 4: Effect of causal relation features on the
top-answers

We also compared confident answers of
OURCF, OH, and PROPOSED by making each sys-
tem provide only the k confident top-answers (for
k questions) selected by their SVM scores given
by each system’s re-ranker. This reduces the num-
ber of questions that can be answered by a system,
but the top-answers become more reliable as k de-
creases. Fig. 4 shows this result, where the x axis
represents the percentage of questions (against all
the questions in our test set) whose top-answers
are given by each system, and the y axis repre-
sents the precision of the top-answers at a certain
point on the x axis. When both systems provided
top-answers for 25% of all the questions in our test
set, our method achieved 83.2% precision, which
is much higher than OH’s (62.4%). This exper-
iment confirmed that our causal relation features
were also effective in improving the quality of the
highly confident answers.

However, the high precision by our method was
bound to confident answers for a small number
of questions, and the difference in the precision
between OH and PROPOSED in Fig. 4 became
smaller as we considered more answers with lower
confidence. We think that one of the reasons is the
relatively small coverage of the excitation polarity
lexicon, a core resource in our excitation polarity

matching. We are planning to enlarge the lexicon
to deal with this problem.

Next, we investigated the contribution of the
intra- and inter-sentential causal relations to the
performance of our method. We used only one
of the two types of causal relations for generating
causal relation features (INTRA-SENT and INTER-
SENT) for training our re-ranker and compared the
results in these settings with the one when both
were used (ALL (PROPOSED)). Table 8 shows
the result. Both intra- and inter-sentential causal
relations contributed to the performance improve-
ment.

P@1 MAP
INTER-SENT 39.0 39.7
INTRA-SENT 40.4 40.5
ALL (PROPOSED) 41.8 41.0

Table 8: Results with/without intra- and inter-
sentential causal relations (%)

We also investigated the contributions of the
three types of causal relation features by ablation
tests (Table 9). When we do not use the fea-
tures by excitation polarity matching (ALL-{ef1–
ef4}), the performance is the worst. This implies
that the contribution of excitation polarity match-
ing exceeds the other two.

P@1 MAP
ALL-{tf1–tf4} 40.8 40.7
ALL-{pf1–pf4} 41.0 40.9
ALL-{ef1–ef4} 39.6 40.5
ALL (PROPOSED) 41.8 41.0

Table 9: Ablation test results for why-QA (%)

6 Conclusion

In this paper, we explored the utility of intra- and
inter-sentential causal relations for ranking answer
candidates to why-questions. We also proposed a
method for assessing the appropriateness of causal
relations as answers to a given question using the
semantic orientation of excitation. Through ex-
periments, we confirmed that these ideas are ef-
fective for improving why-QA, and our proposed
method achieved 41.8% P@1, which is 4.4% im-
provement over the current state-of-the-art system
of Japanese why-QA. We also showed that our
system achieved 83.2% precision for its confident
answers, when it only provided its confident an-
swers for 25% of all the questions in our test set.
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Abstract

In this paper, we study the answer
sentence selection problem for ques-
tion answering. Unlike previous work,
which primarily leverages syntactic analy-
sis through dependency tree matching, we
focus on improving the performance us-
ing models of lexical semantic resources.
Experiments show that our systems can
be consistently and significantly improved
with rich lexical semantic information, re-
gardless of the choice of learning algo-
rithms. When evaluated on a bench-
mark dataset, the MAP and MRR scores
are increased by 8 to 10 points, com-
pared to one of our baseline systems using
only surface-form matching. Moreover,
our best system also outperforms pervious
work that makes use of the dependency
tree structure by a wide margin.

1 Introduction

Open-domain question answering (QA), which
fulfills a user’s information need by outputting di-
rect answers to natural language queries, is a chal-
lenging but important problem (Etzioni, 2011).
State-of-the-art QA systems often implement a
complicated pipeline architecture, consisting of
question analysis, document or passage retrieval,
answer selection and verification (Ferrucci, 2012;
Moldovan et al., 2003). In this paper, we focus
on one of the key subtasks – answer sentence se-
lection. Given a question and a set of candidate
sentences, the task is to choose the correct sen-
tence that contains the exact answer and can suf-
ficiently support the answer choice. For instance,
although both of the following sentences contain
the answer “Jack Lemmon” to the question “Who
won the best actor Oscar in 1973?” only the first
sentence is correct.

A1: Jack Lemmon won the Academy Award for
Best Actor for Save the Tiger (1973).

A2: Oscar winner Kevin Spacey said that Jack
Lemmon is remembered as always making
time for other people.

One of the benefits of answer sentence selec-
tion is that the output can be provided directly to
the user. Instead of outputting only the answer, re-
turning the whole sentence often adds more value
as the user can easily verify the correctness with-
out reading a lengthy document.

Answer sentence selection can be naturally re-
duced to a semantic text matching problem. Con-
ceptually, we would like to measure how close
the question and sentence can be matched seman-
tically. Due to the variety of word choices and
inherent ambiguities in natural languages, bag-of-
words approaches with simple surface-form word
matching tend to produce brittle results with poor
prediction accuracy (Bilotti et al., 2007). As a
result, researchers put more emphasis on exploit-
ing both the syntactic and semantic structure in
questions/sentences. Representative examples in-
clude methods based on deeper semantic anal-
ysis (Shen and Lapata, 2007; Moldovan et al.,
2007) and on tree edit-distance (Punyakanok et
al., 2004; Heilman and Smith, 2010) and quasi-
synchronous grammar (Wang et al., 2007) that
match the dependency parse trees of questions and
sentences. However, such approaches often re-
quire more computational resources. In addition
to applying a syntactic or semantic parser during
run-time, finding the best matching between struc-
tured representations of sentences is not trivial.
For example, the computational complexity of tree
matching is O(V 2L4), where V is the number of
nodes and L is the maximum depth (Tai, 1979).

Instead of focusing on the high-level seman-
tic representation, we turn our attention in this
work to improving the shallow semantic compo-
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nent, lexical semantics. We formulate answer se-
lection as a semantic matching problem with a la-
tent word-alignment structure as in (Chang et al.,
2010) and conduct a series of experimental stud-
ies on leveraging recently proposed lexical seman-
tic models. Our main contributions in this work
are two key findings. First, by incorporating the
abundant information from a variety of lexical se-
mantic models, the answer selection system can
be enhanced substantially, regardless of the choice
of learning algorithms and settings. Compared to
the previous work, our latent alignment model im-
proves the result on a benchmark dataset by a wide
margin – the mean average precision (MAP) and
mean reciprocal rank (MRR) scores are increased
by 25.6% and 18.8%, respectively. Second, while
the latent alignment model performs better than
unstructured models, the difference diminishes af-
ter adding the enhanced lexical semantics infor-
mation. This may suggest that compared to in-
troducing complex structured constraints, incorpo-
rating shallow semantic information is both more
effective and computationally inexpensive in im-
proving the performance, at least for the specific
word alignment model tested in this work.

The rest of the paper is structured as follows.
We first survey the related work in Sec. 2. Sec. 3
defines the problem of answer sentence selection,
along with the high-level description of our solu-
tion. The enhanced lexical semantic models and
the learning frameworks we explore are presented
in Sec. 4 and Sec. 5, respectively. Our experimen-
tal results on a benchmark QA dataset is shown in
Sec. 6. Finally, Sec. 7 concludes the paper.

2 Related Work

While the task of question answering has a long
history dated back to the dawn of artificial in-
telligence, early systems like STUDENT (Wino-
grad, 1977) and LUNAR (Woods, 1973) are typ-
ically designed to demonstrate natural language
understanding for a small and specific domain.
The Text REtrieval Conference (TREC) Question
Answering Track was arguably the first large-
scale evaluation of open-domain question answer-
ing (Voorhees and Tice, 2000). The task is de-
signed in an information retrieval oriented setting.
Given a factoid question along with a collection
of documents, a system is required to return the
exact answer, along with the document that sup-
ports the answer. In contrast, the Jeopardy! TV

quiz show provides another open-domain question
answering setting, in which IBM’s Watson system
famously beat the two highest ranked players (Fer-
rucci, 2012). Questions in this game are presented
in a statement form and the system needs to iden-
tify the true question and to give the exact answer.
A short sentence or paragraph to justify the answer
is not required in either TREC-QA or Jeopardy!

As any QA system can virtually be decomposed
into two major high-level components, retrieval
and selection (Echihabi and Marcu, 2003), the an-
swer selection problem is clearly critical. Limiting
the scope of an answer to a sentence is first high-
lighted by Wang et al. (2007), who argued that it
was more informative to present the whole sen-
tence instead of a short answer to users.

Observing the limitations of the bag-of-words
models, Wang et al. (2007) proposed a syntax-
driven approach, where each pair of question and
sentence are matched by their dependency trees.
The mapping is learned by a generative probabilis-
tic model based on a Quasi-synchronous Gram-
mar formulation (Smith and Eisner, 2006). This
approach was later improved by Wang and Man-
ning (2010) with a tree-edit CRF model that learns
the latent alignment structure. In contrast, gen-
eral tree matching methods based on tree-edit dis-
tance have been first proposed by Punyakanok et
al. (2004) for a similar answer selection task. Heil-
man and Smith (2010) proposed a discriminative
approach that first computes a tree kernel func-
tion between the dependency trees of the question
and candidate sentence, and then learns a classifier
based on the tree-edit features extracted.

Although lexical semantic information derived
from WordNet has been used in some of these
approaches, the research has mainly focused
on modeling the mapping between the syntac-
tic structures of questions and sentences, pro-
duced from syntactic analysis. The potential im-
provement from enhanced lexical semantic mod-
els seems to have been deliberately overlooked.1

3 Problem Definition

We consider the answer selection problem in a
supervised learning setting. For a set of ques-
tions {q1, · · · , qm}, each question qi is associated
with a list of labeled candidate answer sentences

1For example, Heilman and Smith (2010) emphasized that
“The tree edit model, which does not use lexical semantics
knowledge, produced the best result reported to date.”
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What is the fastest car in the world?

The Jaguar XJ220 is the dearest, fastest and most sought after car on the planet. 

Figure 1: An example pair of question and answer sentence, adapted from (Harabagiu and Moldovan,
2001). Words connected by solid lines are clear synonyms or hyponym/hypernym; words with weaker
semantic association are linked by dashed lines.

{(yi1 , si1), (yi1 , si2), · · · , (yin , sin)}, where yij =
1 indicates that sentence sij is a correct answer to
question qi, and 0 otherwise. Using this labeled
data, our goal is to learn a probabilistic classifier
to predict the label of a new, unseen pair of ques-
tion and sentence.

Fundamentally, what the classifier predicts is
whether the sentence “matches” the question se-
mantically. In other words, does s have the an-
swer that satisfies the semantic constraints pro-
vided in the question? Without representing the
question and sentence in logic or syntactic trees,
we take a word-alignment view for solving this
problem. We assume that there is an underly-
ing structure h that describes how q and s can
be associated through the relations of the words
in them. Figure 1 illustrates this setting using a
revised example from (Harabagiu and Moldovan,
2001). In this figure, words connected by solid
lines are clear synonyms or hyponym/hypernym;
words connected by dashed lines indicate that they
are weakly related. With this alignment structure,
features like the degree of mapping or whether all
the content words in the question can be mapped
to some words in the sentence can be extracted and
help improve the classifier. Notice that the struc-
ture representation in terms of word-alignment is
fairly general. For instance, if we assume a naive
complete bipartite matching, then effectively it re-
duces to the simple bag-of-words model.

Typically, the “ideal” alignment structure is not
available in the data, and previous work exploited
mostly syntactic analysis (e.g., dependency trees)
to reveal the latent mapping structure. In this
work, we focus our study on leveraging the low-
level semantic cues from recently proposed lexical
semantic models. As will be shown in our experi-
ments, such information not only improves a latent
structure learning method, but also makes a simple

bipartite matching approach extremely strong.2

4 Lexical Semantic Models

In this section, we introduce the lexical seman-
tic models we adopt for solving the semantic
matching problem in answer selection. To go be-
yond the simple, limited surface-form matching,
we aim to pair words that are semantically re-
lated, specifically measured by models of word
relations including synonymy/antonymy, hyper-
nymy/hyponymy (the Is-A relation) and general se-
mantic word similarity.

4.1 Synonymy and Antonymy

Among all the word relations, synonymy is per-
haps the most basic one and needs to be handled
reliably. Although sets of synonyms can be eas-
ily found in thesauri or WordNet synsets, such
resources typically cover only strict synonyms.
When comparing two words, it is more useful to
estimate the degree of synonymy as well. For in-
stance, ship and boat are not strict synonyms be-
cause a ship is usually viewed as a large boat.
Knowing that two words are somewhat synony-
mous could be valuable in determining whether
they should be mapped.

In order to estimate the degree of synonymy, we
leverage a recently proposed polarity-inducing la-
tent semantic analysis (PILSA) model (Yih et al.,
2012). Given a thesaurus, the model first con-
structs a signed d-by-n co-occurrence matrix W ,
where d is the number of word groups and n is
the size of the vocabulary. Each row consists of a

2Proposed by an anonymous reviewer, one justification of
this word-alignment approach, where syntactic analysis plays
a less important role, is that there are often few sensible com-
binations of words. For instance, knowing only the set of
words {”car”, ”fastest”, ”world”}, one may still guess cor-
rectly the question “What is the fastest car in the world?”
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group of synonyms and antonyms of a particular
sense and each column represents a unique word.
Values of the elements in each row vector are the
TFIDF values of the corresponding words in this
group. The notion of polarity is then induced by
making the values of words in the antonym groups
negative, and the matrix is generalized by a low-
rank approximation derived by singular-value de-
composition (SVD) in the end. This design has an
intriguing property – if the cosine score of two col-
umn vectors are positive, then the two correspond-
ing words tend to be synonymous; if it’s negative,
then the two words are antonymous. The degree is
measured by the absolute value.

Following the setting described in (Yih et al.,
2012), we construct a PILSA model based on the
Encarta thesaurus and enhance it with a discrimi-
native projection matrix training method. The es-
timated degrees of both synonymy and antonymy
are used our experiments.3

4.2 Hypernymy and Hyponymy

The Class-Inclusion or Is-A relation is commonly
observed between words in questions and answer
sentences. For example, to correctly answer the
question “What color is Saturn?”, it is crucial that
the selected sentence mentions a specific kind of
color, as in “Saturn is a giant gas planet with
brown and beige clouds.” Another example is
“Who wrote Moonlight Sonata?”, where compose
in “Ludwig van Beethoven composed the Moon-
light Sonata in 1801.” is one kind of write.

Traditionally, WordNet taxonomy is the linguis-
tic resource for identifying hypernyms and hy-
ponyms, applied broadly to many NLP problems.
However, WordNet has a number of well-known
limitations including its rather limited or skewed
concept distribution and the lack of the coverage
of the Is-A relation (Song et al., 2011). For in-
stance, when a word refers to a named entity, the
particular sense and meaning is often not encoded.
As a result, relations such as “Apple” is-a “com-
pany” and “Jaguar” is-a “car” cannot be found in
WordNet. Similar to the case in synonymy, the
Is-A relation defined in WordNet does not provide
a native, real-valued degree of the relation, which
can only be roughly approximated using the num-
ber of links on the taxonomy path connecting two

3Mapping two antonyms may be desired if one of them is
in the scope of negation (Morante and Blanco, 2012; Blanco
and Moldovan, 2011). However, we do not attempt to resolve
the negation scope in this work.

concepts (Resnik, 1995).
In order to remedy these issues, we aug-

ment WordNet with the Is-A relations found in
Probase (Wu et al., 2012). Probase is a knowledge
base that establishes connections between 2.7 mil-
lion concepts, discovered automatically by apply-
ing Hearst patterns (Hearst, 1992) to 1.68 billion
Web pages. Its abundant concept coverage dis-
tinguishes it from other knowledge bases, such as
Freebase (Bollacker et al., 2008) and WikiTaxon-
omy (Ponzetto and Strube, 2007). Based on the
frequency of term co-occurrences, each Is-A rela-
tion from Probase is associated with a probability
value, indicating the degree of the relation.

We verified the quality of Probase Is-A relations
using a recently proposed SemEval task of rela-
tional similarity (Jurgens et al., 2012) in a com-
panion paper (Zhila et al., 2013), where a subset
of the data is to measure the degree of two words
having a class-inclusion relation. Probase’s pre-
diction correlates well with the human annotations
and achieves a high Spearman’s rank correlation
coefficient score, ρ = 0.619. In comparison, the
previous best system (Rink and Harabagiu, 2012)
in the task only reaches ρ = 0.233. These appeal-
ing qualities make Probase a robust lexical seman-
tic model for hypernymy/hyponymy.

4.3 Semantic Word Similarity
The third lexical semantic model we introduce tar-
gets a general notion of word similarity. Unlike
synonymy and hyponymy, word similarity is only
loosely defined when two words can be associated
by some implicit relation.4 The general word sim-
ilarity model can be viewed as a “back-off” so-
lution when the exact lexical relation (e.g., part-
whole and attribute) is not available or cannot be
accurately detected.

Among various word similarity models (Agirre
et al., 2009; Reisinger and Mooney, 2010;
Gabrilovich and Markovitch, 2007; Radinsky et
al., 2011), the vector space models (VSMs) based
on the idea of distributional similarity (Turney
and Pantel, 2010) are often used as the core com-
ponent. Inspired by (Yih and Qazvinian, 2012),
which argues the importance of incorporating het-
erogeneous vector space models for measuring
word similarity, we leverage three different VSMs
in this work: Wiki term-vectors, recurrent neural

4Instead of making the distinction, word similarity here
refers to the larger set of relations commonly covered by word
relatedness (Budanitsky and Hirst, 2006).
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network language model (RNNLM) and a concept
vector space model learned from click-through
data. Semantic word similarity is estimated using
the cosine score of the corresponding word vectors
in these VSMs.

Contextual term-vectors created using the
Wikipedia corpus have shown to perform well
on measuring word similarity (Reisinger and
Mooney, 2010). Following the setting suggested
by Yih and Qazvinian (2012), we create term-
vectors representing about 1 million words by ag-
gregating terms within a window of [−10, 10] of
each occurrence of the target word. The vectors
are further refined by applying the same vocabu-
lary and feature pruning techniques.

A recurrent neural network language
model (Mikolov et al., 2010) aims to esti-
mate the probability of observing a word given its
preceding context. However, one by-product of
this model is the word embedding learned in its
hidden-layer, which can be viewed as capturing
the word meaning in some latent, conceptual
space. As a result, vectors of related words tend
to be close to each other. For this word similarity
model, we take a 640-dimensional version of
RNNLM vectors, which is trained using the
Broadcast News corpus of 320M words.5

The final word relatedness model is a projec-
tion model learned from the click-through data of
a commercial search engine (Gao et al., 2011).
Unlike the previous two models, which are cre-
ated or trained using a text corpus, the input for
this model is pairs of aggregated queries and ti-
tles of pages users click. This parallel data is
used to train a projection matrix for creating the
mapping between words in queries and documents
based on user feedback, using a Siamese neural
network (Yih et al., 2011). Each row vector of
this matrix is the dense vector representation of
the corresponding word in the vocabulary. Perhaps
due to its unique information source, we found this
particular word embedding seems to complement
the other two VSMs and tends to improve the word
similarity measure in general.

5 Learning QA Matching Models

In this section, we investigate the effectiveness of
various learning models for matching questions
and sentences, including the bag-of-words setting

5http://www.fit.vutbr.cz/˜imikolov/
rnnlm/

and the framework of learning latent structures.

5.1 Bag-of-Words Model

The bag-of-words model treats each question and
sentence as an unstructured bag of words. When
comparing a question with a sentence, the model
first matches each word in the question to each
word in the sentence. It then aggregates features
extracted from each of these word pairs to rep-
resent the whole question/sentence pair. A bi-
nary classifier can be trained easily using any ma-
chine learning algorithm in this standard super-
vised learning setting.

Formally, let x = (q, s) be a pair of question q
and sentence s. Let Vq = {wq1 , wq2 , · · · , wqm}
and Vs = {ws1 , ws2 , · · · , wsn} be the sets of
words in q and s, respectively. Given a word pair
(wq, ws), where wq ∈ Vq and ws ∈ Vs, feature
functions φ1, · · · , φd map it to a d-dimensional
real-valued feature vector.

We consider two aggregate functions for defin-
ing the feature vectors of the whole ques-
tion/answer pair: average and max.

Φavgj (q, s) =
1

mn

∑

wq∈Vq
ws∈Vs

φj(wq, ws) (1)

Φmaxj (q, s) = max
wq∈Vq
ws∈Vs

φj(wq, ws) (2)

Together, each question/sentence pair is repre-
sented by a 2d-dimensional feature vector.

We tested two learning algorithms in this set-
ting: logistic regression and boosted decision
trees (Friedman, 2001). The former is the log-
linear model widely used in the NLP community
and the latter is a robust non-linear learning algo-
rithm that has shown great empirical performance.

The bag-of-words model does not require an ad-
ditional inference stage as in structured learning,
which may be computationally expensive. Nev-
ertheless, its lack of structure information could
limit the expressiveness of the model and make it
difficult to capture more sophisticated semantics
in the sentences. To address this concern, we in-
vestigate models of learning latent structures next.

5.2 Learning Latent Structures

One obvious issue of the bag-of-words model is
that words in the unrelated part of the sentence
may still be paired with words in the question,
which introduces noise to the final feature vector.
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This is observed in many question/sentence pairs,
such as the one below.

Q: Which was the first movie that James Dean
was in?

A: James Dean, who began as an actor on TV
dramas, didn’t make his screen debut until
1951’s “Fixed Bayonet.”

While this sentence correctly answers the ques-
tion, the fact that James Dean began as a TV
actor is unrelated to the question. As a result,
an “ideal” word alignment structure should not
link words in this clause to those in the ques-
tion. In order to leverage the latent structured in-
formation, we adapt a recently proposed frame-
work of learning constrained latent representa-
tions (LCLR) (Chang et al., 2010). LCLR can be
viewed as a variant of Latent-SVM (Felzenszwalb
et al., 2009) with different learning formulations
and a general inference framework. The idea of
LCLR is to replace the decision function of a stan-
dard linear model θTφ(x) with

arg max
h

θTφ(x, h), (3)

where θ represents the weight vector and h repre-
sents the latent variables.

In this answer selection task, x = (q, s) rep-
resents a pair of question q and candidate sen-
tence s. As described in Sec. 3, h refers to the
latent alignment between q and s. The intuition
behinds Eq. (3) is: candidate sentence s correctly
answers question q if and only if the decision can
be supported by the best alignment h.

The objective function of LCLR is defined as:

minθ
1

2
||θ||2 + C

∑

i

ξ2i

s.t. ξi ≥ 1− yi max
h

θTφ(x, h)

Note that the alignment is latent, so LCLR uses
the binary labels in the training data as feedback
to find the alignment for each example.

The computational difficulty of the inference
problem (Eq. (3)) largely depends on the con-
straints we enforce in the alignment. Complicated
constraints may result in a difficult inference prob-
lem, which can be solved by integer linear pro-
gramming (Roth and Yih, 2007). In this work,
we considered several sets of constraints for the
alignment task, including a two-layer phrase/word

alignment structure, but found that they generally
performed the same. Therefore, we chose the
many-to-one alignment6, where inference can be
solved exactly using a simple greedy algorithm.

6 Experiments

We present our experimental results in this sec-
tion by first introducing the data and evaluation
metrics, followed by the results of existing sys-
tems and some baseline methods. We then show
the positive impact of adding information of word
relations from various lexical semantics models,
with some discussion on the limitation of the
word-matching approach.

6.1 Data & Evaluation Metrics
The answer selection dataset we used was orig-
inally created by Wang et al. (2007) based on
the QA track of past Text REtrieval Confer-
ences (TREC-QA). Questions in this dataset are
short factoid questions, such as “What is Crips’
gang color?” In average, each question is associ-
ated with approximately 33 answer candidate sen-
tences. A pair of question and sentence is judged
positive if the sentence contains the exact answer
key and can provide sufficient context as support-
ing evidence.

The training set of the data contains manu-
ally labeled 5,919 question/sentence pairs from
TREC 8-12. The development and testing sets
are both from TREC 13, which contain 1,374
and 1,866 pairs, respectively. The task is treated as
a sentence ranking problem for each question and
thus evaluated in Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR), using the offi-
cial TREC evaluation program. Following (Wang
et al., 2007), candidate sentences with more than
40 words are removed from evaluation, as well as
questions with only positive or negative candidate
sentences.

6.2 Baseline Methods
Several systems have been proposed and tested
using this dataset. Wang et al. (2007) pre-
sented a generative probabilistic model based on
a Quasi-synchronous Grammar formulation and
was later improved by Wang and Manning (2010)
with a tree-edit CRF model that learns the la-
tent alignment structure. In contrast, Heilman and

6Each word in the question needs to be linked to a word
in the sentence. Each word in the sentence can be linked to
zero or multiple words in the question.
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System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951

Table 1: Test set results of existing methods, taken
from Table 3 of (Wang and Manning, 2010).

Dev Test
Baseline MAP MRR MAP MRR
Random 0.5243 0.5816 0.4708 0.5286
Word Cnt 0.6516 0.7216 0.6263 0.6822
Wgt Word Cnt 0.7112 0.7880 0.6531 0.7071

Table 2: Results of three baseline methods.

Smith (2010) proposed a discriminative approach
that first computes a tree kernel function between
the dependency trees of the question and candidate
sentence, and then learns a classifier based on the
tree-edit features extracted. Table 1 summarizes
their results on the test set. All these systems in-
corporated lexical semantics features derived from
WordNet and named entity features.

In order to further estimate the difficulty of
this task and dataset, we tested three simple base-
lines. The first is random scoring, which sim-
ply assigns a random score to each candidate sen-
tence. The second one, word count, is to count
how many words in the question that also occur in
the answer sentence, after removing stopwords7,
and lowering the case. Finally, the last base-
line method, weighted word count, is basically the
same as identical word matching, but the count is
re-weighted using the IDF value of the question
word. This is similar to the BM25 ranking func-
tion (Robertson et al., 1995). The results of these
three methods are shown in Table 1.

Somewhat surprisingly, we find that word count
is fairly strong and performs comparably to previ-
ous systems.8 In addition, weighting the question
words with their IDF values further improves the
results.

6.3 Incorporating Rich Lexical Semantics

We test the effectiveness of adding rich lexical
semantics information by creating examples of
different feature sets. As described in Sec. 5,

7We used a list of 101 stopwords, including articles, pro-
nouns and punctuation.

8The finding has been confirmed by the lead author
of (Wang et al., 2007).

all the features are based on the properties of
the pair of a word from the question and a
word from the candidate sentence. Stopwords
are first removed from both questions and sen-
tences and all words are lower-cased. Features
used in the experiments can be categorized into
six types: identical word matching (I), lemma
matching (L), WordNet (WN), enhanced Lexi-
cal Semantics (LS), Named Entity matching (NE)
and Answer type checking (Ans). Inspired by
the weighted word count baseline, all features ex-
cept (Ans) are weighted by the IDF value of the
question word. In other words, the IDF values help
decide the importance of word pairs to the model.

Staring from the our baseline model, weighted
word count, the identical word matching (I) fea-
ture checks whether the pair of words are the
same. Instead of checking the surface form of
the word, lemma matching (L) verifies whether
the two words have the same lemma form. Ar-
guably the most common source of word rela-
tions, WordNet (WN) provides the primitive fea-
tures of whether two words could belong to the
same synset in WordNet, could be antonyms and
whether one is a hypernym of the other. Alter-
natively, the enhanced lexical semantics (LS) fea-
tures apply the models described in Sec. 4 to the
word pair and use their estimated degree of syn-
onymy, antonymy, hyponymy and semantic relat-
edness as features. Named entity matching (NE)
checks whether two words are individually part
of some named entities with the same type. Fi-
nally, when the question word is the WH-word, we
check if the paired word belongs to some phrase
that has the correct answer type using simple rules,
such as “Who should link to a word that is part of
a named entity of type Person.” We created exam-
ples in each round of experiments by augmenting
these features in the same order, and observed how
adding different information helped improve the
model performance.

Three models are included in our study. For
the unstructured, bag-of-words setting, we tested
logistic regression (LR) and boosted decision
trees (BDT). As mentioned in Sec. 5, the features
for the whole question/sentence pair are the aver-
age and max of features of all the word pairs. For
the structured-output setting, we used the frame-
work of learning constrained latent representa-
tion (LCLR) and required that each question word
needed to be mapped to a word in the sentence.
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LR BDT LCLR
Feature set MAP MRR MAP MRR MAP MRR
1: I 0.6531 0.7071 0.6323 0.6898 0.6629 0.7279
2: I+L 0.6744 0.7223 0.6496 0.6923 0.6815 0.7270
3: I+L+WN 0.7039 0.7705 0.6798 0.7450 0.7316 0.7921
4: I+L+WN+LS 0.7339 0.8107 0.7523 0.8455 0.7626 0.8231
5: All 0.7374 0.8171 0.7495 0.8450 0.7648 0.8255

Table 3: Test results of various models and feature groups. Logistic regression (LR) and boosted decision
trees (BDT) are the two unstructured models. LCLR is the algorithm for learning latent structures.
Feature groups are identical word matching (I), lemma matching (L), WordNet (WN) and enhanced
Lexical Semantics (LS). All includes these four plus Named Entity matching (NE) and Answer type
checking (Ans).

Hyper-parameters are selected using the ones that
achieve the best MAP score on the development
set. Results of these models and feature sets are
presented in Table 3.

We make two observations from the results.
First, while incorporating more information of the
word pairs in general helps, it is clear that map-
ping words beyond surface-form matching with
the help of WordNet (Line #3 vs. #2) is impor-
tant. Moreover, when richer information from
other lexical semantic models is available, the per-
formance can be further improved (Line #4 vs.
#3). Overall, by simply incorporating more in-
formation on word relations, we gain approxi-
mately 10 points in both MAP and MRR com-
pared to surface-form matching (Line #4 vs. #2),
consistently across all three models. However,
adding more information like named entity match-
ing and answer type verification does not seem to
help much (Line #5 vs. #4). Second, while the
structured-output model usually performs better
than both unstructured models (LCLR vs. LR &
BDT), the performance gain diminishes after more
information of word pairs is available (e.g., Lines
#4 and #5).

6.4 Limitation of Word Matching Models

Although we have demonstrated the benefits of
leveraging various lexical semantic models to help
find the association between words, the problem of
question answering is nevertheless far from solved
using the word-based approach. Examining the
output of the LCLR model with all features on the
development set, we found that there were three
main sources of errors, including uncovered or in-
accurate entity relations, the lack of robust ques-
tion analysis and the need of high-level semantic

representation and inference. While the first two
can be improved by, say, using a better named en-
tity tagger, incorporating other knowledge bases
and building a question classifier, how to solve the
third problem is tricky. Below is an example:

Q: In what film is Gordon Gekko the main char-
acter?

A: He received a best actor Oscar in 1987 for his
role as Gordon Gekko in “Wall Street”.

This is a correct answer sentence because “win-
ning a best actor Oscar” implies that the role Gor-
don Gekko is the main character. It is hard to be-
lieve that a pure word-matching model would be
able to solve this type of “inferential question an-
swering” problem.

7 Conclusions

In this paper, we present an experimental study
on solving the answer selection problem using en-
hanced lexical semantic models. Following the
word-alignment paradigm, we find that the rich
lexical semantic information improves the models
consistently in the unstructured bag-of-words set-
ting and also in the framework of learning latent
structures. Another interesting finding we have
is that while the latent structured model, LCLR,
performs better than the other two unstructured
models, the difference diminishes after more in-
formation, including the enhanced lexical seman-
tic knowledge and answer type verification, has
been incorporated. This may suggest that adding
shallow semantic information is more effective
than introducing complex structured constraints,
at least for the specific word alignment model we
experimented with in this work.
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In the future, we plan to explore several di-
rections. First, although we focus on improv-
ing TREC-style open-domain question answering
in this work, we would like to apply the pro-
posed technology to other QA scenarios, such
as community-based QA (CQA). For instance,
the sentence matching technique can help map a
given question to some questions in an existing
CQA database (e.g., Yahoo! Answers). More-
over, the answer sentence selection scheme could
also be useful in extracting the most related sen-
tences from the answer text to form a summary
answer. Second, because the task of answer sen-
tence selection is very similar to paraphrase de-
tection (Dolan et al., 2004) and recognizing tex-
tual entailment (Dagan et al., 2006), we would like
to investigate whether systems for these tasks can
be improved by incorporating enhanced lexical se-
mantic knowledge as well. Finally, we would like
to improve our system for the answer sentence se-
lection task and for question answering in general.
In addition to following the directions suggested
by the error analysis presented in Sec. 6.4, we plan
to use logic-like semantic representations of ques-
tions and sentences, and explore the role of lexical
semantics for handling questions that require in-
ference.
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Abstract
Mining opinion targets is a fundamen-
tal and important task for opinion min-
ing from online reviews. To this end,
there are usually two kinds of methods:
syntax based and alignment based meth-
ods. Syntax based methods usually ex-
ploited syntactic patterns to extract opin-
ion targets, which were however prone to
suffer from parsing errors when dealing
with online informal texts. In contrast,
alignment based methods used word align-
ment model to fulfill this task, which could
avoid parsing errors without using pars-
ing. However, there is no research fo-
cusing on which kind of method is more
better when given a certain amount of re-
views. To fill this gap, this paper empiri-
cally studies how the performance of these
two kinds of methods vary when chang-
ing the size, domain and language of the
corpus. We further combine syntactic pat-
terns with alignment model by using a par-
tially supervised framework and investi-
gate whether this combination is useful or
not. In our experiments, we verify that
our combination is effective on the corpus
with small and medium size.

1 Introduction

With the rapid development of Web 2.0, huge
amount of user reviews are springing up on the
Web. Mining opinions from these reviews be-
come more and more urgent since that customers
expect to obtain fine-grained information of prod-
ucts and manufacturers need to obtain immediate
feedbacks from customers. In opinion mining, ex-
tracting opinion targets is a basic subtask. It is
to extract a list of the objects which users express
their opinions on and can provide the prior infor-
mation of targets for opinion mining. So this task

has attracted many attentions. To extract opin-
ion targets, pervious approaches usually relied on
opinion words which are the words used to ex-
press the opinions (Hu and Liu, 2004a; Popescu
and Etzioni, 2005; Liu et al., 2005; Wang and
Wang, 2008; Qiu et al., 2011; Liu et al., 2012). In-
tuitively, opinion words often appear around and
modify opinion targets, and there are opinion re-
lations and associations between them. If we have
known some words to be opinion words, the words
which those opinion words modify will have high
probability to be opinion targets.

Therefore, identifying the aforementioned opin-
ion relations between words is important for ex-
tracting opinion targets from reviews. To fulfill
this aim, previous methods exploited the words
co-occurrence information to indicate them (Hu
and Liu, 2004a; Hu and Liu, 2004b). Obviously,
these methods cannot obtain precise extraction be-
cause of the diverse expressions by reviewers, like
long-span modified relations between words, etc.
To handle this problem, several methods exploited
syntactic information, where several heuristic pat-
terns based on syntactic parsing were designed
(Popescu and Etzioni, 2005; Qiu et al., 2009; Qiu
et al., 2011). However, the sentences in online
reviews usually have informal writing styles in-
cluding grammar mistakes, typos, improper punc-
tuation etc., which make parsing prone to gener-
ate mistakes. As a result, the syntax-based meth-
ods which heavily depended on the parsing per-
formance would suffer from parsing errors (Zhang
et al., 2010). To improve the extraction perfor-
mance, we can only employ some exquisite high-
precision patterns. But this strategy is likely to
miss many opinion targets and has lower recall
with the increase of corpus size. To resolve these
problems, Liu et al. (2012) formulated identifying
opinion relations between words as an monolin-
gual alignment process. A word can find its cor-
responding modifiers by using a word alignment
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Figure 1: Mining Opinion Relations between Words using Partially Supervised Alignment Model

model (WAM). Without using syntactic parsing,
the noises from parsing errors can be effectively
avoided. Nevertheless, we notice that the align-
ment model is a statistical model which needs suf-
ficient data to estimate parameters. When the data
is insufficient, it would suffer from data sparseness
and may make the performance decline.

Thus, from the above analysis, we can observe
that the size of the corpus has impacts on these
two kinds of methods, which arises some impor-
tant questions: how can we make selection be-
tween syntax based methods and alignment based
method for opinion target extraction when given
a certain amount of reviews? And which kind of
methods can obtain better extraction performance
with the variation of the size of the dataset? Al-
though (Liu et al., 2012) had proved the effective-
ness of WAM, they mainly performed experiments
on the dataset with medium size. We are still curi-
ous about that when the size of dataset is larger
or smaller, can we obtain the same conclusion?
To our best knowledge, these problems have not
been studied before. Moreover, opinions may be
expressed in different ways with the variation of
the domain and language of the corpus. When the
domain or language of the corpus is changed, what
conclusions can we obtain? To answer these ques-
tions, in this paper, we adopt a unified framework
to extract opinion targets from reviews, in the key
component of which we vary the methods between
syntactic patterns and alignment model. Then we
run the whole framework on the corpus with dif-
ferent size (from #500 to #1, 000, 000), domain
(three domains) and language (Chinese and En-
glish) to empirically assess the performance varia-
tions and discuss which method is more effective.

Furthermore, this paper naturally addresses an-
other question: is it useful for opinion targets ex-
traction when we combine syntactic patterns and
word alignment model into a unified model? To

this end, we employ a partially supervised align-
ment model (PSWAM) like (Gao et al., 2010; Liu
et al., 2013). Based on the exquisitely designed
high-precision syntactic patterns, we can obtain
some precisely modified relations between words
in sentences, which provide a portion of links of
the full alignments. Then, these partial alignment
links can be regarded as the constrains for a stan-
dard unsupervised word alignment model. And
each target candidate would find its modifier un-
der the partial supervision. In this way, the er-
rors generated in standard unsupervised WAM can
be corrected. For example in Figure 1, “kindly”
and “courteous” are incorrectly regarded as the
modifiers for “foods” if the WAM is performed
in an whole unsupervised framework. However,
by using some high-precision syntactic patterns,
we can assert “courteous” should be aligned to
“services”, and “delicious” should be aligned to
“foods”. Through combination under partial su-
pervision, we can see “kindly” and “courteous”
are correctly linked to “services”. Thus, it’s rea-
sonable to expect to yield better performance than
traditional methods. As mentioned in (Liu et al.,
2013), using PSWAM can not only inherit the
advantages of WAM: effectively avoiding noises
from syntactic parsing errors when dealing with
informal texts, but also can improve the mining
performance by using partial supervision. How-
ever, is this kind of combination always useful for
opinion target extraction? To access this problem,
we also make comparison between PSWAM based
method and the aforementioned methods in the
same corpora with different size, language and do-
main. The experimental results show the combina-
tion by using PSWAM can be effective on dataset
with small and medium size.
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2 Related Work

Opinion target extraction isn’t a new task for opin-
ion mining. There are much work focusing on
this task, such as (Hu and Liu, 2004b; Ding et al.,
2008; Li et al., 2010; Popescu and Etzioni, 2005;
Wu et al., 2009). Totally, previous studies can be
divided into two main categories: supervised and
unsupervised methods.

In supervised approaches, the opinion target ex-
traction task was usually regarded as a sequence
labeling problem (Jin and Huang, 2009; Li et al.,
2010; Ma and Wan, 2010; Wu et al., 2009; Zhang
et al., 2009). It’s not only to extract a lexicon or list
of opinion targets, but also to find out each opin-
ion target mentions in reviews. Thus, the contex-
tual words are usually selected as the features to
indicate opinion targets in sentences. And classi-
cal sequence labeling models are used to train the
extractor, such as CRFs (Li et al., 2010), HMM
(Jin and Huang, 2009) etc.. Jin et al. (2009) pro-
posed a lexicalized HMM model to perform opin-
ion mining. Both Li et al. (2010) and Ma et al.
(2010) used CRFs model to extract opinion tar-
gets in reviews. Specially, Li et al. proposed a
Skip-Tree CRF model for opinion target extrac-
tion, which exploited three structures including
linear-chain structure, syntactic structure, and con-
junction structure. However, the main limitation
of these supervised methods is the need of labeled
training data. If the labeled training data is insuf-
ficient, the trained model would have unsatisfied
extraction performance. Labeling sufficient train-
ing data is time and labor consuming. And for dif-
ferent domains, we need label data independently,
which is obviously impracticable.

Thus, many researches focused on unsupervised
methods, which are mainly to extract a list of opin-
ion targets from reviews. Similar to ours, most ap-
proaches regarded opinion words as the indicator
for opinion targets. (Hu and Liu, 2004a) regarded
the nearest adjective to an noun/noun phrase as
its modifier. Then it exploited an association
rule mining algorithm to mine the associations be-
tween them. Finally, the frequent explicit prod-
uct features can be extracted in a bootstrapping
process by further combining item’s frequency in
dataset. Only using nearest neighbor rule to mine
the modifier for each candidate cannot obtain pre-
cise results. Thus, (Popescu and Etzioni, 2005)
used syntax information to extract opinion targets,
which designed some syntactic patterns to capture

the modified relations between words. The experi-
mental results showed that their method had better
performance than (Hu and Liu, 2004a). Moreover,
(Qiu et al., 2011) proposed a Double Propagation
method to expand sentiment words and opinion
targets iteratively, where they also exploited syn-
tactic relations between words. Specially, (Qiu
et al., 2011) didn’t only design syntactic patterns
for capturing modified relations, but also designed
patterns for capturing relations among opinion tar-
gets and relations among opinion words. How-
ever, the main limitation of Qiu’s method is that
the patterns based on dependency parsing tree may
miss many targets for the large corpora. There-
fore, Zhang et al. (2010) extended Qiu’s method.
Besides the patterns used in Qiu’s method, they
adopted some other special designed patterns to
increase recall. In addition they used the HITS
(Kleinberg, 1999) algorithm to compute opinion
target confidences to improve the precision. (Liu
et al., 2012) formulated identifying opinion re-
lations between words as an alignment process.
They used a completely unsupervised WAM to
capture opinion relations in sentences. Then the
opinion targets were extracted in a standard ran-
dom walk framework where two factors were con-
sidered: opinion relevance and target importance.
Their experimental results have shown that WAM
was more effective than traditional syntax-based
methods for this task. (Liu et al., 2013) extend
Liu’s method, which is similar to our method and
also used a partially supervised alignment model
to extract opinion targets from reviews. We notice
these two methods ((Liu et al., 2012) and (Liu et
al., 2013)) only performed experiments on the cor-
pora with a medium size. Although both of them
proved that WAM model is better than the meth-
ods based on syntactic patterns, they didn’t dis-
cuss the performance variation when dealing with
the corpora with different sizes, especially when
the size of the corpus is less than 1,000 and more
than 10,000. Based on their conclusions, we still
don’t know which kind of methods should be se-
lected for opinion target extraction when given a
certain amount of reviews.

3 Opinion Target Extraction
Methodology

To extract opinion targets from reviews, we adopt
the framework proposed by (Liu et al., 2012),
which is a graph-based extraction framework and
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has two main components as follows.
1) The first component is to capture opinion

relations in sentences and estimate associations
between opinion target candidates and potential
opinion words. In this paper, we assume opinion
targets to be nouns or noun phrases, and opinion
words may be adjectives or verbs, which are usu-
ally adopted by (Hu and Liu, 2004a; Qiu et al.,
2011; Wang and Wang, 2008; Liu et al., 2012).
And a potential opinion relation is comprised of
an opinion target candidate and its corresponding
modified word.

2) The second component is to estimate the
confidence of each candidate. The candidates with
higher confidence scores than a threshold will be
extracted as opinion targets. In this procedure, we
formulate the associations between opinion target
candidates and potential opinion words in a bipar-
tite graph. A random walk based algorithm is em-
ployed on this graph to estimate the confidence of
each target candidate.

In this paper, we fix the method in the sec-
ond component and vary the algorithms in the
first component. In the first component, we re-
spectively use syntactic patterns and unsupervised
word alignment model (WAM) to capture opinion
relations. In addition, we employ a partially super-
vised word alignment model (PSWAM) to incor-
porate syntactic information into WAM. In exper-
iments, we run the whole framework on the differ-
ent corpora to discuss which method is more effec-
tive. In the following subsections, we will present
them in detail.

3.1 The First Component: Capturing
Opinion Relations and Estimating
Associations between Words

3.1.1 Syntactic Patterns
To capture opinion relations in sentences by using
syntactic patterns, we employ the manual designed
syntactic patterns proposed by (Qiu et al., 2011).
Similar to Qiu, only the syntactic patterns based
on the direct dependency are employed to guar-
antee the extraction qualities. The direct depen-
dency has two types. The first type indicates that
one word depends on the other word without any
additional words in their dependency path. The
second type denotes that two words both depend
on a third word directly. Specifically, we employ
Minipar1 to parse sentences. To further make syn-

1http://webdocs.cs.ualberta.ca/lindek/minipar.htm

tactic patterns precisely, we only use a few depen-
dency relation labels outputted by Minipar, such
as mod, pnmod, subj, desc etc. To make a clear
explanation, we give out some syntactic pattern
examples in Table 1. In these patterns, OC is a
potential opinion word which is an adjective or a
verb. TC is an opinion target candidate which is
a noun or noun phrase. The item on the arrows
means the dependency relation type. The item in
parenthesis denotes the part-of-speech of the other
word. In these examples, the first three patterns
are based on the first direct dependency type and
the last two patterns are based on the second direct
dependency type.

Pattern#1: <OC> mod−−−→<TC>
Example: This phone has an amazing design

Pattern#2: <TC>
obj−−→<OC>

Example: I like this phone very much

Pattern#3: <OC>
pnmod−−−−→<TC>

Example: the buttons easier to use

Pattern#4: <OC> mod−−−→(NN)
subj←−−−<TC>

Example: IPhone is a revolutionary smart phone

Pattern#5: <OC>
pred−−−→(VBE)

subj←−−−<TC>
Example: The quality of LCD is good

Table 1: Some Examples of Used Syntactic Pat-
terns

3.1.2 Unsupervised Word Alignment Model
In this subsection, we present our method for cap-
turing opinion relations using unsupervised word
alignment model. Similar to (Liu et al., 2012),
every sentence in reviews is replicated to gener-
ate a parallel sentence pair, and the word align-
ment algorithm is applied to the monolingual sce-
nario to align a noun/noun phase with its modi-
fiers. We select IBM-3 model (Brown et al., 1993)
as the alignment model. Formally, given a sen-
tence S = {w1, w2, ..., wn}, we have

Pibm3(A|S)

∝
N∏

i=1

n(φi|wi)
N∏

j=1

t(wj |waj )d(j|aj , N)
(1)

where t(wj |waj ) models the co-occurrence infor-
mation of two words in dataset. d(j|aj , n) mod-
els word position information, which describes the
probability of a word in position aj aligned with a
word in position j. And n(φi|wi) describes the
ability of a word for modifying (being modified
by) several words. φi denotes the number of words
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that are aligned with wi. In our experiments, we
set φi = 2.

Since we only have interests on capturing opin-
ion relations between words, we only pay at-
tentions on the alignments between opinion tar-
get candidates (nouns/noun phrases) and potential
opinion words (adjectives/verbs). If we directly
use the alignment model, a noun (noun phrase)
may align with other unrelated words, like prepo-
sitions or conjunctions and so on. Thus, we set
constrains on the model: 1) Alignment links must
be assigned among nouns/noun phrases, adjec-
tives/verbs and null words. Aligning to null words
means that this word has no modifier or modifies
nothing; 2) Other unrelated words can only align
with themselves.

3.1.3 Combining Syntax-based Method with
Alignment-based Method

In this subsection, we try to combine syntactic in-
formation with word alignment model. As men-
tioned in the first section, we adopt a partially
supervised alignment model to make this com-
bination. Here, the opinion relations obtained
through the high-precision syntactic patterns (Sec-
tion 3.1.1) are regarded as the ground truth and
can only provide a part of full alignments in sen-
tences. They are treated as the constrains for the
word alignment model. Given some partial align-
ment links Â = {(k, ak)|k ∈ [1, n], ak ∈ [1, n]},
the optimal word alignment A∗ = {(i, ai)|i ∈
[1, n], ai ∈ [1, n]} can be obtained as A∗ =
argmax

A
P (A|S, Â), where (i, ai) means that a

noun (noun phrase) at position i is aligned with
its modifier at position ai.

Since the labeled data provided by syntactic pat-
terns is not a full alignment, we adopt a EM-based
algorithm, named as constrained hill-climbing al-
gorithm(Gao et al., 2010), to estimate the parame-
ters in the model. In the training process, the con-
strained hill-climbing algorithm can ensure that
the final model is marginalized on the partial align-
ment links. Particularly, in the E step, their method
aims to find out the alignments which are consis-
tent to the alignment links provided by syntactic
patterns, where there are main two steps involved.

1) Optimize towards the constraints. This step
aims to generate an initial alignments for align-
ment model (IBM-3 model in our method), which
can be close to the constraints. First, a simple
alignment model (IBM-1, IBM-2, HMM etc.) is

trained. Then, the evidence being inconsistent
to the partial alignment links will be got rid of
by using the move operator operator mi,j which
changes aj = i and the swap operator sj1,j2 which
exchanges aj1 and aj2 . The alignment is updated
iteratively until no additional inconsistent links
can be removed.

2) Towards the optimal alignment under the
constraints. This step aims to optimize towards
the optimal alignment under the constraints which
starts from the aforementioned initial alignments.
Gao et.al. (2010) set the corresponding cost value
of the invalid move or swap operation in M and
S to be negative, where M and S are respec-
tively called Moving Matrix and Swapping Ma-
trix, which record all possible move and swap
costs between two different alignments. In this
way, the invalid operators will never be picked
which can guarantee that the final alignment links
to have high probability to be consistent with the
partial alignment links provided by high-precision
syntactic patterns.

Then in M-step, evidences from the neighbor of
final alignments are collected so that we can pro-
duce the estimation of parameters for the next iter-
ation. In the process, those statistics which come
from inconsistent alignment links aren’t be picked
up. Thus, we have

P (wi|wai , Â)

=

{
λ, otherwise

P (wi|wai) + λ, inconsistent with Â
(2)

where λ means that we make soft constraints on
the alignment model. As a result, we expect some
errors generated through high-precision patterns
(Section 3.1.1) may be revised in the alignment
process.

3.2 Estimating Associations between Words
After capturing opinion relations in sentences, we
can obtain a lot of word pairs, each of which is
comprised of an opinion target candidate and its
corresponding modified word. Then the condi-
tional probabilities between potential opinion tar-
get wt and potential opinion word wo can be es-
timated by using maximum likelihood estimation.
Thus, we have P (wt|wo) = Count(wt,wo)

Count(wo)
, where

Count(·) means the item’s frequency informa-
tion. P (wt|wo) means the conditional probabili-
ties between two words. At the same time, we can
obtain conditional probability P (wo|wt). Then,
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similar to (Liu et al., 2012), the association be-
tween an opinion target candidate and its modifier
is estimated as follows. Association(wt, wo) =
(α× P (wt|wo) + (1− α)× P (wo|wt))−1, where
α is the harmonic factor. We set α = 0.5 in our
experiments.

3.3 The Second Component: Estimating
Candidate Confidence

In the second component, we adopt a graph-based
algorithm used in (Liu et al., 2012) to compute
the confidence of each opinion target candidate,
and the candidates with higher confidence than the
threshold will be extracted as the opinion targets.
Here, opinion words are regarded as the impor-
tant indicators. We assume that two target candi-
dates are likely to belong to the similar category, if
they are modified by similar opinion words. Thus,
we can propagate the opinion target confidences
through opinion words.

To model the mined associations between
words, a bipartite graph is constructed, which
is defined as a weighted undirected graph G =
(V,E,W ). It contains two kinds of vertex: opin-
ion target candidates and potential opinion words,
respectively denoted as vt ∈ V and vo ∈ V .
As shown in Figure 2, the white vertices repre-
sent opinion target candidates and the gray ver-
tices represent potential opinion words. An edge
evt,vo ∈ E between vertices represents that there is
an opinion relation, and the weight w on the edge
represents the association between two words.

Figure 2: Modeling Opinion Relations between
Words in a Bipartite Graph

To estimate the confidence of each opinion tar-
get candidate, we employ a random walk algo-
rithm on our graph, which iteratively computes
the weighted average of opinion target confidences
from neighboring vertices. Thus we have

Ci+1 = (1− β)×M ×MT × Ci + β × I (3)

where Ci+1 and Ci respectively represent the
opinion target confidence vector in the (i + 1)th

and ith iteration. M is the matrix of word asso-
ciations, where Mi,j denotes the association be-
tween the opinion target candidate i and the po-
tential opinion word j. And I is defined as the
prior confidence of each candidate for opinion tar-
get. Similar to (Liu et al., 2012), we set each item
in Iv =

tf(v)idf(v)∑
v tf(v)idf(v)

, where tf(v) is the term fre-
quency of v in the corpus, and df(v) is computed
by using the Google n-gram corpus2. β ∈ [0, 1]
represents the impact of candidate prior knowl-
edge on the final estimation results. In experi-
ments, we set β = 0.4. The algorithm run un-
til convergence which is achieved when the confi-
dence on each node ceases to change in a tolerance
value.

4 Experiments

4.1 Datasets and Evaluation Metrics

In this section, to answer the questions men-
tioned in the first section, we collect a large
collection named as LARGE, which includes re-
views from three different domains and differ-
ent languages. This collection was also used
in (Liu et al., 2012). In the experiments, re-
views are first segmented into sentences accord-
ing to punctuation. The detailed statistical in-
formation of the used collection is shown in Ta-
ble 2, where Restaurant is crawled from the Chi-
nese Web site: www.dianping.com. The Hotel and
MP3 are used in (Wang et al., 2011), which are re-
spectively crawled from www.tripadvisor.com and
www.amazon.com. For each dataset, we perform
random sampling to generate testing set with dif-
ferent sizes, where we use sampled subsets with
#sentences = 5× 102, 103, 5× 103, 104, 5×
104, 105 and 106 sentences respectively. Each

Domain Language Sentence Reviews
Restaurant Chinese 1,683,129 395,124
Hotel English 1,855,351 185,829
MP3 English 289,931 30,837

Table 2: Experimental Dataset

sentence is tokenized, part-of-speech tagged by
using Stanford NLP tool3, and parsed by using
Minipar toolkit. And the method of (Zhu et al.,
2009) is used to identify noun phrases.

2http://books.google.com/ngrams/datasets
3http://nlp.stanford.edu/software/tagger.shtml
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We select precision and recall as the metrics.
Specifically, to obtain the ground truth, we man-
ually label all opinion targets for each subset. In
this process, three annotators are involved. First,
every noun/noun phrase and its contexts in review
sentences are extracted. Then two annotators were
required to judge whether every noun/noun phrase
is opinion target or not. If a conflict happens, a
third annotator will make judgment for final re-
sults. The average inter-agreements is 0.74. We
also perform a significant test, i.e., a t-test with a
default significant level of 0.05.

4.2 Compared Methods

We select three methods for comparison as fol-
lows.

• Syntax: It uses syntactic patterns mentioned
in Section 3.1.1 in the first component to
capture opinion relations in reviews. Then
the associations between words are estimated
and the graph based algorithm proposed in
the second component (Section 3.3) is per-
formed to extract opinion targets.

• WAM: It is similar to Syntax, where the only
difference is that WAM uses unsupervised
WAM (Section 3.1.2) to capture opinion re-
lations.

• PSWAM is similar to Syntax and WAM,
where the difference is that PSWAM uses the
method mentioned in Section 3.1.3 to capture
opinion relations, which incorporates syntac-
tic information into word alignment model by
using partially supervised framework.

The experimental results on different domains are
respectively shown in Figure 3, 4 and 5.

4.3 Syntax based Methods vs. Alignment
based Methods

Comparing Syntax with WAM and PSWAM, we
can obtain the following observations:

Figure 3: Experimental results on Restaurant

Figure 4: Experimental results on Hotel

Figure 5: Experimental results on MP3

1) When the size of the corpus is small, Syntax
has better precision than alignment based meth-
ods (WAM and PSWAM). We believe the reason
is that the high-precision syntactic patterns em-
ployed in Syntax can effectively capture opinion
relations in a small amount of texts. In contrast,
the methods based on word alignment model may
suffer from data sparseness for parameter estima-
tion, so the precision is lower.

2) However, when the size of the corpus in-
creases, the precision of Syntax decreases, even
worse than alignment based methods. We believe
it’s because more noises were introduced from
parsing errors with the increase of the size of the
corpus , which will have more negative impacts on
extraction results. In contrast, for estimating the
parameters of alignment based methods, the data
is more sufficient, so the precision is better com-
pared with syntax based method.

3) We also observe that recall of Syntax is
worse than other two methods. It’s because the
human expressions of opinions are diverse and the
manual designed syntactic patterns are limited to
capture all opinion relations in sentences, which
may miss an amount of correct opinion targets.

4) It’s interesting that the performance gap be-
tween these three methods is smaller with the in-
crease of the size of the corpus (more than 50,000).
We guess the reason is that when the data is suffi-
cient enough, we can obtain sufficient statistics for
each opinion target. In such situation, the graph-
based ranking algorithm in the second component
will be apt to be affected by the frequency infor-
mation, so the final performance could not be sen-
sitive to the performance of opinion relations iden-
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tification in the first component. Thus, in this situ-
ation, we can get conclusion that there is no obvi-
ously difference on performance between syntax-
based approach and alignment-based approach.

5) From the results on dataset with different lan-
guages and different domains, we can obtain the
similar observations. It indicates that choosing ei-
ther syntactic patterns or word alignment model
for extracting opinion targets can take a few con-
sideration on the language and domain of the cor-
pus.

Thus, based on the above observations, we can
draw the following conclusions: making chooses
between different methods is only related to the
size of the corpus. The method based on syn-
tactic patterns is more suitable for small cor-
pus (#sentences < 5 × 103 shown in our
experiments). And word alignment model is
more suitable for medium corpus (5 × 103 <
#sentences < 5 × 104). Moreover, when the
size of the corpus is big enough, the performance
of two kinds of methods tend to become the same
(#sentences ≥ 105 shown in our experiments).

4.4 Is It Useful Combining Syntactic Patterns
with Word Alignment Model

In this subsection, we try to see whether combin-
ing syntactic information with alignment model by
using PSWAM is effective or not for opinion tar-
get extraction. From the results in Figure 3, 4 and
5, we can see that PSWAM has the similar recall
compared with WAM in all datasets. PSWAM
outperforms WAM on precision in all dataset. But
the precision gap between PSWAM and WAM
decreases when the size of the corpus increases.
When the size is larger than 5 × 104, the perfor-
mance of these two methods is almost the same.
We guess the reason is that more noises from pars-
ing errors will be introduced by syntactic patterns
with the increase of the size of corpus , which have
negative impacts on alignment performance. At
the same time, as mentioned above, a great deal of
reviews will bring sufficient statistics for estimat-
ing parameters in alignment model, so the roles
of partial supervision from syntactic information
will be covered by frequency information used in
our graph based ranking algorithm.

Compared with State-of-the-art Methods.
However, it’s not say that this combination is
not useful. From the results, we still see that
PSWAM outperforms WAM in all datasets on

precision when size of corpus is smaller than
5 × 104. To further prove the effectiveness of
our combination, we compare PSWAM with some
state-of-the-art methods, including Hu (Hu and
Liu, 2004a), which extracted frequent opinion tar-
get words based on association mining rules, DP
(Qiu et al., 2011), which extracted opinion tar-
gets through syntactic patterns, and LIU (Liu et
al., 2012), which fulfilled this task by using un-
supervised WAM. The parameter settings in these
baselines are the same as the settings in the orig-
inal papers. Because of the space limitation, we
only show the results on Restaurant and Hotel, as
shown in Figure 6 and 7.

Figure 6: Compared with the State-of-the-art
Methods on Restaurant

Figure 7: Compared with the State-of-the-art
Methods on Hotel

From the experimental results, we can obtain
the following observations. PSWAM outperforms
other methods in most datasets. This indicates
that our method based on PSWAM is effective
for opinion target extraction. Especially compared
PSWAM with LIU, both of which are based on
word alignment model, we can see PSWAM iden-
tifies opinion relations by performing WAM under
partial supervision, which can effectively improve
the precision when dealing with small and medium
corpus. However, these improvements are limited
when the size of the corpus increases, which has
the similar observations obtained above.

The Impact of Syntactic Information on
Word Alignment Model. Although we have
prove the effectiveness of PSWAM in the corpus
with small and medium size, we are still curious
about how the performance varies when we incor-
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porate different amount of syntactic information
into WAM. In this experiment, we rank the used
syntactic patterns mentioned in Section 3.1.1 ac-
cording to the quantities of the extracted alignment
links by these patterns. Then, to capture opin-
ion relations, we respectively use top N syntactic
patterns according to frequency mentioned above
to generate partial alignment links for PSWAM in
section 3.1.3. We respectively define N=[1,7]. The
larger is N , the more syntactic information is in-
corporated. Because of the space limitation, only
the average performance of all dataset is shown in
Figure 8.

Figure 8: The Impacts of Different Syntactic In-
formation on Word Alignment Model

In Figure 8, we can observe that the syntactic in-
formation mainly have effect on precision. When
the size of the corpus is small, the opinion rela-
tions mined by high-precision syntactic patterns
are usually correct, so incorporating more syntac-
tic information can improve the precision of word
alignment model more. However, when the size of
the corpus increases, incorporating more syntactic
information has little impact on precision.

5 Conclusions and Future Work

This paper discusses the performance variation of
syntax based methods and alignment based meth-
ods on opinion target extraction task for the dataset
with different sizes, different languages and dif-
ferent domains. Through experimental results, we
can see that choosing which method is not related

with corpus domain and language, but strongly
associated with the size of the corpus . We can
conclude that syntax-based method is likely to be
more effective when the size of the corpus is small,
and alignment-based methods are more useful for
the medium size corpus. We further verify that in-
corporating syntactic information into word align-
ment model by using PSWAM is effective when
dealing with the corpora with small or medium
size. When the size of the corpus is larger and
larger, the performance gap between syntax based,
WAM and PSWAM will decrease.

In future work, we will extract opinion targets
based on not only opinion relations. Other seman-
tic relations, such as the topical associations be-
tween opinion targets (or opinion words) should
also be employed. We believe that considering
multiple semantic associations will help to im-
prove the performance. In this way, how to model
heterogenous relations in a unified model for opin-
ion targets extraction is worthy to be studied.
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Abstract

This paper proposes a novel two-stage
method for mining opinion words and
opinion targets. In the first stage, we
propose a Sentiment Graph Walking algo-
rithm, which naturally incorporates syn-
tactic patterns in a Sentiment Graph to ex-
tract opinion word/target candidates. Then
random walking is employed to estimate
confidence of candidates, which improves
extraction accuracy by considering confi-
dence of patterns. In the second stage, we
adopt a self-learning strategy to refine the
results from the first stage, especially for
filtering out high-frequency noise terms
and capturing the long-tail terms, which
are not investigated by previous meth-
ods. The experimental results on three real
world datasets demonstrate the effective-
ness of our approach compared with state-
of-the-art unsupervised methods.

1 Introduction

Opinion mining not only assists users to make in-
formed purchase decisions, but also helps busi-
ness organizations understand and act upon cus-
tomer feedbacks on their products or services in
real-time. Extracting opinion words and opinion
targets are two key tasks in opinion mining. Opin-
ion words refer to those terms indicating positive
or negative sentiment. Opinion targets represent
aspects or attributes of objects toward which opin-
ions are expressed. Mining these terms from re-
views of a specific domain allows a more thorough
understanding of customers’ opinions.

Opinion words and opinion targets often co-
occur in reviews and there exist modified relations
(called opinion relation in this paper) between
them. For example, in the sentence “It has a clear
screen”, “clear” is an opinion word and “screen” is

an opinion target, and there is an opinion relation
between the two words. It is natural to identify
such opinion relations through common syntactic
patterns (also called opinion patterns in this pa-
per) between opinion words and targets. For ex-
ample, we can extract “clear” and “screen” by us-
ing a syntactic pattern “Adj-{mod}-Noun”, which
captures the opinion relation between them. Al-
though previous works have shown the effective-
ness of syntactic patterns for this task (Qiu et al.,
2009; Zhang et al., 2010), they still have some lim-
itations as follows.

False Opinion Relations: As an example, the
phrase “everyday at school” can be matched by
a pattern “Adj-{mod}-(Prep)-{pcomp-n}-Noun”,
but it doesn’t bear any sentiment orientation. We
call such relations that match opinion patterns but
express no opinion false opinion relations. Pre-
vious pattern learning algorithms (Zhuang et al.,
2006; Kessler and Nicolov, 2009; Jijkoun et al.,
2010) often extract opinion patterns by frequency.
However, some high-frequency syntactic patterns
can have very poor precision (Kessler and Nicolov,
2009).

False Opinion Targets: In another case, the
phrase “wonderful time” can be matched by
an opinion pattern “Adj-{mod}-Noun”, which is
widely used in previous works (Popescu and Et-
zioni, 2005; Qiu et al., 2009). As can be seen, this
phrase does express a positive opinion but unfortu-
nately “time” is not a valid opinion target for most
domains such as MP3. Thus, false opinion targets
are extracted. Due to the lack of ground-truth
knowledge for opinion targets, non-target terms
introduced in this way can be hardly filtered out.

Long-tail Opinion Targets: We further no-
tice that previous works prone to extract opinion
targets with high frequency (Hu and Liu, 2004;
Popescu and Etzioni, 2005; Qiu et al., 2009; Zhu
et al., 2009), and they often have difficulty in iden-
tifying the infrequent or long-tail opinion targets.
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To address the problems stated above, this pa-
per proposes a two-stage framework for mining
opinion words and opinion targets. The under-
lying motivation is analogous to the novel idea
“Mine the Easy, Classify the Hard” (Dasgupta and
Ng, 2009). In our first stage, we propose a Senti-
ment Graph Walking algorithm to cope with the
false opinion relation problem, which mines easy
cases of opinion words/targets. We speculate that
it may be helpful to introduce a confidence score
for each pattern. Concretely, we create a Sen-
timent Graph to model opinion relations among
opinion word/target/pattern candidates and apply
random walking to estimate confidence of them.
Thus, confidence of pattern is considered in a uni-
fied process. Patterns that often extract false opin-
ion relations will have low confidence, and terms
introduced by low-confidence patterns will also
have low confidence accordingly. This could po-
tentially improve the extraction accuracy.

In the second stage, we identify the hard cases,
which aims to filter out false opinion targets and
extract long-tail opinion targets. Previous super-
vised methods have been shown to achieve state-
of-the-art results for this task (Wu et al., 2009; Jin
and Ho, 2009; Li et al., 2010). However, the big
challenge for fully supervised method is the lack
of annotated training data. Therefore, we adopt a
self-learning strategy. Specifically, we employ a
semi-supervised classifier to refine the target re-
sults from the first stage, which uses some highly
confident target candidates as the initial labeled
examples. Then opinion words are also refined.

Our main contributions are as follows:
• We propose a Sentiment Graph Walking al-

gorithm to mine opinion words and opinion
targets from reviews, which naturally incor-
porates confidence of syntactic pattern in a
graph to improve extraction performance. To
our best knowledge, the incorporation of pat-
tern confidence in such a Sentiment Graph
has never been studied before for opinion
words/targets mining task (Section 3).
• We adopt a self-learning method for refining

opinion words/targets generated by Sentiment
Graph Walking. Specifically, it can remove
high-frequency noise terms and capture long-
tail opinion targets in corpora (Section 4).
• We perform experiments on three real world

datasets, which demonstrate the effectiveness
of our method compared with state-of-the-art
unsupervised methods (Section 5).

2 Related Work

In opinion words/targets mining task, most unsu-
pervised methods rely on identifying opinion rela-
tions between opinion words and opinion targets.
Hu and Liu (2004) proposed an association mining
technique to extract opinion words/targets. The
simple heuristic rules they used may potentially
introduce many false opinion words/targets. To
identify opinion relations more precisely, subse-
quent research work exploited syntax information.
Popescu and Etzioni (2005) used manually com-
plied syntactic patterns and Pointwise Mutual In-
formation (PMI) to extract opinion words/targets.
Qiu et al. (2009) proposed a bootstrapping frame-
work called Double Propagation which intro-
duced eight heuristic syntactic rules. While man-
ually defining syntactic patterns could be time-
consuming and error-prone, we learn syntactic
patterns automatically from data.

There have been extensive works on mining
opinion words and opinion targets by syntac-
tic pattern learning. Riloff and Wiebe (2003)
performed pattern learning through bootstrapping
while extracting subjective expressions. Zhuang
et al. (2006) obtained various dependency re-
lationship templates from an annotated movie
corpus and applied them to supervised opinion
words/targets extraction. Kobayashi et al. (2007)
adopted a supervised learning technique to search
for useful syntactic patterns as contextual clues.
Our approach is similar to (Wiebe and Riloff,
2005) and (Xu et al., 2013), all of which apply
syntactic pattern learning and adopt self-learning
strategy. However, the task of (Wiebe and Riloff,
2005) was to classify sentiment orientations in
sentence level, while ours needs to extract more
detailed information in term level. In addition,
our method extends (Xu et al., 2013), and we
give a more complete and in-depth analysis on
the aforementioned problems in the first section.
There were also many works employed graph-
based method (Li et al., 2012; Zhang et al., 2010;
Hassan and Radev, 2010; Liu et al., 2012), but
none of previous works considered confidence of
patterns in the graph.

In supervised approaches, various kinds of
models were applied, such as HMM (Jin and Ho,
2009), SVM (Wu et al., 2009) and CRFs (Li et al.,
2010). The downside of supervised methods was
the difficulty of obtaining annotated training data
in practical applications. Also, classifiers trained
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on one domain often fail to give satisfactory re-
sults when shifted to another domain. Our method
does not rely on annotated training data.

3 The First Stage: Sentiment Graph
Walking Algorithm

In the first stage, we propose a graph-based al-
gorithm called Sentiment Graph Walking to mine
opinion words and opinion targets from reviews.

3.1 Opinion Pattern Learning for Candidates
Generation

For a given sentence, we first obtain its depen-
dency tree. Following (Hu and Liu, 2004; Popescu
and Etzioni, 2005; Qiu et al., 2009), we regard all
adjectives as opinion word candidates (OC) and
all nouns or noun phrases as opinion target can-
didates (TC). A statistic-based method in (Zhu et
al., 2009) is used to detect noun phrases. Then
candidates are replaced by wildcards “<OC>” or
“<TC>”. Figure 1 gives a dependency tree exam-
ple generated by Minipar (Lin, 1998).

p red s d et

m od
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<OC>

is
(VBE)

style
<TC>

the
(Det)

of
(P r ep)

scr een
<TC>

p com p -n

the
(Det)

d et

Figure 1: The dependency tree of the sentence
“The style of the screen is gorgeous”.

We extract two kinds of opinion patterns: “OC-
TC” pattern and “TC-TC” pattern. The “OC-
TC” pattern is the shortest path between an OC
wildcard and a TC wildcard in dependency tree,
which captures opinion relation between an opin-
ion word candidate and an opinion target can-
didate. Similarly, the “TC-TC” pattern cap-
tures opinion relation between two opinion tar-
get candidates.1 Words in opinion patterns are
replaced by their POS tags, and we constrain
that there are at most two words other than
wildcards in each pattern. In Figure 1, there
are two opinion patterns marked out by dash
lines: “<OC>{pred}(VBE){s}<TC>” for the
“OC-TC” type and “<TC>{mod}(Prep){pcomp-
n}<TC>” for the “TC-TC” type. After all pat-

1We do not identify the opinion relation “OC-OC” be-
cause this relation is often unreliable.

terns are generated, we drop those patterns with
frequency lower than a threshold F .

3.2 Sentiment Graph Construction
To model the opinion relations among opinion
words/targets and opinion patterns, a graph named
as Sentiment Graph is constructed, which is a
weighted, directed graph G = (V,E,W ), where
• V = {Voc ∪ Vtc ∪ Vp} is the set of vertices in
G, where Voc, Vtc and Vp represent the set of
opinion word candidates, opinion target can-
didates and opinion patterns, respectively.
• E = {Epo∪Ept} ⊆ {Vp×Voc}∪{Vp×Vtc}

is the weighted, bi-directional edge set in G,
where Epo and Ept are mutually exclusive
sets of edges connecting opinion word/target
vertices to opinion pattern vertices. Note that
there are no edges between Voc and Vtc.
• W : E → R+ is the weight function which

assigns non-negative weight to each edge.
For each (e : va → vb) ∈ E, where
va, vb ∈ V , the weight function w(va, vb) =
freq(va, vb)/freq(va), where freq(·) is the
frequency of a candidate extracted by opinion
patterns or co-occurrence frequency between
two candidates.

Figure 2 shows an example of Sentiment Graph.
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Figure 2: An example of Sentiment Graph.

3.3 Confidence Estimation by Random
Walking with Restart

We believe that considering confidence of patterns
can potentially improve the extraction accuracy.
Our intuitive idea is: (i) If an opinion word/target
is with higher confidence, the syntactic patterns
containing this term are more likely to be used to
express customers’ opinion. (ii) If an opinion pat-
tern has higher confidence, terms extracted by this
pattern are more likely to be correct. It’s a rein-
forcement process.
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We use Random Walking with Restart (RWR)
algorithm to implement our idea described above.
Let Moc p denotes the transition matrix from Voc
to Vp, for vo ∈ Voc, vp ∈ Vp, Moc p(vo, vp) =
w(vo, vp). Similarly, we have Mtc p, Mp oc,
Mp tc. Let c denotes confidence vector of candi-
dates so ctoc, c

t
tc and ctp are confidence vectors for

opinion word/target/pattern candidates after walk-
ing t steps. Initially c0oc is uniformly distributed
on a few domain-independent opinion word seeds,
then the following formula are updated iteratively
until cttc and ctoc converge:

ct+1
p = MT

oc p × ctoc +MT
tc p × cttc (1)

ct+1
oc = (1− λ)MT

p oc × ctp + λc0oc (2)

ct+1
tc = MT

p tc × ctp (3)

where MT is the transpose of matrix M and λ is
a small probability of teleporting back to the seed
vertices which prevents us from walking too far
away from the seeds. In the experiments below, λ
is set 0.1 empirically.

4 The Second Stage: Refining Extracted
Results Using Self-Learning

At the end of the first stage, we obtain a ranked
list of opinion words and opinion targets, in which
higher ranked terms are more likely to be correct.
Nevertheless, there are still some issues needed to
be addressed:

1) In the target candidate list, some high-
frequency frivolous general nouns such as
“thing” and “people” are also highly ranked.
This is because there exist many opinion ex-
pressions containing non-target terms such as
“good thing”, “nice people”, etc. in reviews.
Due to the lack of ground-truth knowledge
for opinion targets, the false opinion target
problem still remains unsolved.

2) In another aspect, long-tail opinion targets
may have low degree in Sentiment Graph.
Hence their confidence will be low although
they may be extracted by some high qual-
ity patterns. Therefore, the first stage is in-
capable of dealing with the long-tail opinion
target problem.

3) Furthermore, the first stage also extracts
some high-frequency false opinion words
such as “every”, “many”, etc. Many terms
of this kind are introduced by high-frequency
false opinion targets, for there are large

amounts of phrases like “every time” and
“many people”. So this issue is a side effect
of the false opinion target problem.

To address these issues, we exploit a self-
learning strategy. For opinion targets, we use a
semi-supervised binary classifier called target re-
fining classifier to refine target candidates. For
opinion words, we use the classified list of opin-
ion targets to further refine the extracted opinion
word candidates.

4.1 Opinion Targets Refinement
There are two keys for opinion target refinement:
(i) How to generate the initial labeled data for tar-
get refining classifier. (ii) How to properly repre-
sent a long-tail opinion target candidate other than
comparing frequency between different targets.

For the first key, it is clearly improper to select
high-confidence targets as positive examples and
choose low-confidence targets as negative exam-
ples2, for there are noise with high confidence and
long-tail targets with low confidence. Fortunately,
a large proportion of general noun noises are the
most frequent words in common texts. Therefore,
we can generate a small domain-independent gen-
eral noun (GN) corpus from large web corpora to
cover some most frequently used general noun ex-
amples. Then labeled examples can be drawn from
the target candidate list and the GN corpus.

For the second key, we utilize opinion words
and opinion patterns with their confidence scores
to represent an opinion target. By this means, a
long-tail opinion target can be determined by its
own contexts, whose weights are learnt from con-
texts of frequent opinion targets. Thus, if a long-
tail opinion target candidate has high contextual
support, it will have higher probability to be found
out in despite of its low frequency.

Creation of General Noun Corpora. 1000
most frequent nouns in Google-1-gram3 were se-
lected as general noun candidates. On the other
hand, we added all nouns in the top three levels of
hyponyms in four WordNet (Miller, 1995) synsets
“object”, “person”, “group” and “measure” into
the GN corpus. Our idea was based on the fact that
a term is more general when it sits in higher level
in the WordNet hierarchy. Then inapplicable can-
didates were discarded and a 3071-word English

2Note that the “positive” and “negative” here denote opin-
ion targets and non-target terms respectively and they do not
indicate sentiment polarities.

3http://books.google.com/ngrams.
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GN corpus was created. Another Chinese GN cor-
pus with 3493 words was generated in the similar
way from HowNet (Gan and Wong, 2000).

Generation of Labeled Examples. Let T =
{Y+1,Y−1} denotes the initial labeled set, where
N most highly confident target candidates but not
in our GN corpora are regarded as the positive ex-
ample set Y+1, other N terms from GN corpora
which are also top ranked in the target list are se-
lected as the negative example set Y−1. The re-
minder unlabeled candidates are denoted by T ∗.

Feature Representation for Classifier. Given
T and T ∗ in the form of {(xi, yi)}. For a target
candidate ti, xi = (o1, . . . , on, p1, . . . , pm)

T rep-
resents its feature vector, where oj is the opinion
word feature and pk is the opinion pattern feature.
The value of feature is defined as follows,

x(oj) = conf(oj)×
∑

pk
freq(ti, oj , pk)

freq(oj)
(4)

x(pk) = conf(pk)×
∑

oj
freq(ti, oj , pk)

freq(pk)
(5)

where conf(·) denotes confidence score estimated
by RWR, freq(·) has the same meaning as in Sec-
tion 3.2. Particularly, freq(ti, oj , pk) represents
the frequency of pattern pk extracting opinion tar-
get ti and opinion word oj .

Target Refinement Classifier: We use support
vector machine as the binary classifier. Hence, the
classification problem can be formulated as to find
a hyperplane < w, b > that separates both labeled
set T and unlabeled set T ∗ with maximum mar-
gin. The optimization goal is to minimize over
(T ,T ∗,w, b, ξ1, ..., ξn, ξ∗1 , ..., ξ

∗
k):

1

2
||w||2 + C

n∑

i=0

ξi + C∗
k∑

j=0

ξ∗j

subject to : ∀ni=1 : yi[w · xi + b] ≥ 1− ξi
∀kj=1 : y

∗
j [w · x∗j + b] ≥ 1− ξ∗j

∀ni=1 : ξi > 0

∀kj=1 : ξ
∗
j > 0

where yi, y∗j ∈ {+1,−1}, xi and x∗j represent
feature vectors, C and C∗ are parameters set by
user. This optimization problem can be imple-
mented by a typical Transductive Support Vector
Machine (TSVM) (Joachims, 1999).

4.2 Opinion Words Refinement
We use the classified opinion target results to re-
fine opinion words by the following equation,

s(oj) =
∑

ti∈T

∑

pk

s(ti)conf(pk)freq(ti, oj , pk)

freq(ti)

where T is the opinion target set in which each el-
ement is classified as positive during opinion tar-
get refinement, s(ti) denotes confidence score ex-
ported by the target refining classifier. Particularly,
freq(ti) =

∑
oj

∑
pk
freq(ti, oj , pk). A higher

score of s(oj) means that candidate oj is more
likely to be an opinion word.

5 Experiments

5.1 Datasets and Evaluation Metrics
Datasets: We select three real world datasets to
evaluate our approach. The first one is called
Customer Review Dataset (CRD) (Hu and Liu,
2004) which contains reviews on five different
products (represented by D1 to D5) in English.
The second dataset is pre-annotated and published
in COAE084, where two domains of Chinese re-
views are selected. At last, we employ a bench-
mark dataset in (Wang et al., 2011) and named it
as Large. We manually annotated opinion words
and opinion targets as the gold standard. Three
annotators were involved. Firstly, two annotators
were required to annotate out opinion words and
opinion targets in sentences. When conflicts hap-
pened, the third annotator would make the final
judgment. The average Kappa-values of the two
domains were 0.71 for opinion words and 0.66
for opinion targets. Detailed information of our
datasets is shown in Table 1.

Dataset Domain #Sentences #OW #OT

Large
(English)

Hotel 10,000 434 1,015

MP3 10,000 559 1,158

COAE08
(Chinese)

Camera 2,075 351 892

Car 4,783 622 1,179

Table 1: The detailed information of datasets. OW
stands for opinion words and OT stands for targets.

Pre-processing: Firstly, HTML tags are re-
moved from texts. Then Minipar (Lin, 1998)
is used to parse English corpora, and Standford
Parser (Chang et al., 2009) is used for Chinese

4http://ir-china.org.cn/coae2008.html
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Methods D1 D2 D3 D4 D5 Avg.
P R F P R F P R F P R F P R F F

Hu 0.75 0.82 0.78 0.71 0.79 0.75 0.72 0.76 0.74 0.69 0.82 0.75 0.74 0.80 0.77 0.76
DP 0.87 0.81 0.84 0.90 0.81 0.85 0.90 0.86 0.88 0.81 0.84 0.82 0.92 0.86 0.89 0.86

Zhang 0.83 0.84 0.83 0.86 0.85 0.85 0.86 0.88 0.87 0.80 0.85 0.82 0.86 0.86 0.86 0.85
Ours-Stage1 0.79 0.85 0.82 0.82 0.87 0.84 0.83 0.87 0.85 0.78 0.88 0.83 0.82 0.88 0.85 0.84

Ours-Full 0.86 0.82 0.84 0.88 0.83 0.85 0.89 0.86 0.87 0.83 0.86 0.84 0.89 0.85 0.87 0.86

Table 2: Results of opinion target extraction on the Customer Review Dataset.

Methods D1 D2 D3 D4 D5 Avg.
P R F P R F P R F P R F P R F F

Hu 0.57 0.75 0.65 0.51 0.76 0.61 0.57 0.73 0.64 0.54 0.62 0.58 0.62 0.67 0.64 0.62
DP 0.64 0.73 0.68 0.57 0.79 0.66 0.65 0.70 0.67 0.61 0.65 0.63 0.70 0.68 0.69 0.67

Ours-Stage1 0.61 0.75 0.67 0.55 0.80 0.65 0.63 0.75 0.68 0.60 0.69 0.64 0.68 0.70 0.69 0.67
Ours-Full 0.64 0.74 0.69 0.59 0.79 0.68 0.66 0.71 0.68 0.65 0.67 0.66 0.72 0.67 0.69 0.68

Table 3: Results of opinion word extraction on the Customer Review Dataset.

corpora. Stemming and fuzzy matching are also
performed following previous work (Hu and Liu,
2004).

Evaluation Metrics: We evaluate our method
by precision(P), recall(R) and F-measure(F).

5.2 Our Method vs. the State-of-the-art

Three state-of-the-art unsupervised methods are
used as competitors to compare with our method.

Hu extracts opinion words/targets by using ad-
jacency rules (Hu and Liu, 2004).

DP uses a bootstrapping algorithm named as
Double Propagation (Qiu et al., 2009).

Zhang is an enhanced version of DP and em-
ploys HITS algorithm (Kleinberg, 1999) to rank
opinion targets (Zhang et al., 2010).

Ours-Full is the full implementation of our
method. We employ SVMlight (Joachims, 1999)
as the target refining classifier. Default parameters
are used except the bias item is set 0.

Ours-Stage1 only uses Sentiment Graph Walk-
ing algorithm which does’t have opinion word and
opinion target refinement.

All of the above approaches use same five
common opinion word seeds. The choice of opin-
ion seeds seems reasonable, as most people can
easily come up with 5 opinion words such as
“good”, “bad”, etc. The performance on five prod-
ucts of CRD dataset is shown in Table 2 and Ta-
ble 3. Zhang does not extract opinion words so
their results for opinion words are not taken into
account. We can see that Ours-Stage1 achieves
superior recall but has some loss in precision com-
pared with DP and Zhang. This may be because
the CRD dataset is too small and our statistic-
based method may suffer from data sparseness.

In spite of this, Ours-Full achieves comparable F-
measure with DP, which is a well-designed rule-
based method.

The results on two larger datasets are shown
in Table 4 and Table 5, from which we can have
the following observation: (i) All syntax-based-
methods outperform Hu, showing the importance
of syntactic information in opinion relation identi-
fication. (ii) Ours-Full outperforms the three com-
petitors on all domains provided. (iii) Ours-Stage1
outperforms Zhang, especially in terms of recall.
We believe it benefits from our automatical pattern
learning algorithm. Moreover, Ours-Stage1 do
not loss much in precision compared with Zhang,
which indicates the applicability to estimate pat-
tern confidence in Sentiment Graph. (iv) Ours-
Full achieves 4-9% improvement in precision over
the most accurate method, which shows the effec-
tiveness of our second stage.

5.3 Detailed Discussions

This section gives several variants of our method
to have a more detailed analysis.

Ours-Bigraph constructs a bi-graph between
opinion words and targets, so opinion patterns
are not included in the graph. Then RWR algo-
rithm is used to only assign confidence to opinion
word/target candidates.

Ours-Stage2 only contains the second stage,
which doesn’t apply Sentiment Graph Walking al-
gorithm. Hence the confidence score conf(·) in
Equations (4) and (5) have no values and they are
set to 1. The initial labeled examples are exactly
the same as Ours-Full. Due to the limitation of
space, we only give analysis on opinion target ex-
traction results in Figure 3.
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Methods MP3 Hotel Camera Car Avg.
P R F P R F P R F P R F F

Hu 0.53 0.55 0.54 0.55 0.57 0.56 0.63 0.65 0.64 0.62 0.58 0.60 0.58
DP 0.66 0.57 0.61 0.66 0.60 0.63 0.71 0.70 0.70 0.72 0.65 0.68 0.66

Zhang 0.65 0.62 0.63 0.64 0.66 0.65 0.71 0.78 0.74 0.69 0.68 0.68 0.68
Ours-Stage1 0.62 0.68 0.65 0.63 0.71 0.67 0.69 0.80 0.74 0.66 0.71 0.68 0.69

Ours-Full 0.73 0.71 0.72 0.75 0.73 0.74 0.78 0.81 0.79 0.76 0.73 0.74 0.75

Table 4: Results of opinion targets extraction on Large and COAE08.

Methods MP3 Hotel Camera Car Avg.
P R F P R F P R F P R F F

Hu 0.48 0.65 0.55 0.51 0.68 0.58 0.72 0.74 0.73 0.70 0.71 0.70 0.64
DP 0.58 0.62 0.60 0.60 0.66 0.63 0.80 0.73 0.76 0.79 0.71 0.75 0.68

Ours-Stage1 0.59 0.69 0.64 0.61 0.71 0.66 0.79 0.78 0.78 0.77 0.77 0.77 0.71
Ours-Full 0.64 0.67 0.65 0.67 0.69 0.68 0.82 0.78 0.80 0.80 0.76 0.78 0.73

Table 5: Results of opinion words extraction on Large and COAE08.

Figure 3: Opinion target extraction results.

5.3.1 The Effect of Sentiment Graph Walking
We can see that our graph-based methods (Ours-
Bigraph and Ours-Stage1) achieve higher recall
than Zhang. By learning patterns automatically,
our method captures opinion relations more ef-
ficiently. Also, Ours-Stage1 outperforms Ours-
Bigraph, especially in precision. We believe it is
because Ours-Stage1 estimated confidence of pat-
terns so false opinion relations are reduced. There-
fore, the consideration of pattern confidence is
beneficial as expected, which alleviates the false
opinion relation problem. On another hand, we
find that Ours-Stage2 has much worse perfor-

mance than Ours-Full. This shows the effective-
ness of Sentiment Graph Walking algorithm since
the confidence scores estimated in the first stage
are indispensable and indeed key to the learning
of the second stage.

5.3.2 The Effect of Self-Learning
Figure 4 shows the average Precision@N curve of
four domains on opinion target extraction. Ours-
GN-Only is implemented by only removing 50
initial negative examples found by our GN cor-
pora. We can see that the GN corpora work quite
well, which find out most top-ranked false opin-
ion targets. At the same time, Ours-Full has much
better performance than Ours-GN-Only which in-
dicates that Ours-Full can filter out more noises
other than the initial negative examples. There-
fore, our self-learning strategy alleviates the short-
coming of false opinion target problem. More-
over, Table 5 shows that the performance of opin-
ion word extraction is also improved based on the
classified results of opinion targets.

Figure 4: The average precision@N curve of the
four domains on opinion target extraction.
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ID Pattern Example #Ext. Conf. PrO PrT
#1 <OC>{mod}<TC> it has a clear screen 7344 0.3938 0.59 0.66
#2 <TC>{subj}<OC> the sound quality is excellent 2791 0.0689 0.62 0.70
#3 <TC>{conj}<TC> the size and weight make it convenient 3620 0.0208 N/A 0.67
#4 <TC>{subj}<TC> the button layout is a simplistic plus 1615 0.0096 N/A 0.67
#5 <OC>{pnmod}<TC> the buttons easier to use 128 0.0014 0.61 0.34
#6 <TC>{subj}(V){s}(VBE){subj}<OC> software provided is simple 189 0.0015 0.54 0.33
#7 <OC>{mod}(Prep){pcomp-c}(V){obj}<TC> great for playing audible books 211 0.0013 0.43 0.48

Table 6: Examples of English patterns. #Ext. represent number of terms extracted, Conf. denotes confi-
dence score estimated by RWR and PrO/PrT stand for precisions of extraction on opinion words/targets
of a pattern respectively. Opinion words in examples are in bold and opinion targets are in italic.

Figure 5 gives the recall of long-tail opinion
targets5 extracted, where Ours-Full is shown to
have much better performance than Ours-Stage1
and the three competitors. This observation proves
that our method can improve the limitation of
long-tail opinion target problem.

Figure 5: The recall of long-tail opinion targets.

5.3.3 Analysis on Opinion Patterns
Table 6 shows some examples of opinion pattern
and their extraction accuracy on MP3 reviews in
the first stage. Pattern #1 and #2 are the two
most high-confidence opinion patterns of “OC-
TC” type, and Pattern #3 and #4 demonstrate two
typical “TC-TC” patterns. As these patterns ex-
tract too many terms, the overall precision is very
low. We give Precision@400 of them, which is
more meaningful because only top listed terms
in the extracted results are regarded as opinion
targets. Pattern #5 and #6 have high precision
on opinion words but low precision on opinion
targets. This observation demonstrates the false
opinion target problem. Pattern #7 is a pattern ex-
ample that extracts many false opinion relations
and it has low precision for both opinion words
and opinion targets. We can see that Pattern #7 has

5Since there is no explicit definition for the notion “long-
tail”, we conservatively regard 60% opinion targets with the
lowest frequency as the “long-tail” terms.

a lower confidence compared with Pattern #5 and
#6 although it extracts more words. It’s because
it has a low probability of walking from opinion
seeds to this pattern. This further proves that our
method can reduce the confidence of low-quality
patterns.

5.3.4 Sensitivity of Parameters
Finally, we study the sensitivity of parameters
when recall is fixed at 0.70. Figure 6 shows the
precision curves at different N initial training ex-
amples and F filtering frequency. We can see that
the performance saturates when N is set to 50 and
it does not vary much under different F , showing
the robustness of our method. We thus set N to
50, and F to 3 for CRD, 5 for COAE08 and 10 for
Large accordingly.

Figure 6: Influence of parameters.
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6 Conclusion and Future Work

This paper proposes a novel two-stage framework
for mining opinion words and opinion targets. In
the first stage, we propose a Sentiment Graph
Walking algorithm, which incorporates syntactic
patterns in a Sentiment Graph to improve the ex-
traction performance. In the second stage, we pro-
pose a self-learning method to refine the result of
first stage. The experimental results show that our
method achieves superior performance over state-
of-the-art unsupervised methods.

We further notice that opinion words are not
limited to adjectives but can also be other type of
word such as verbs or nouns. Identifying all kinds
of opinion words is a more challenging task. We
plan to study this problem in our future work.
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Abstract
Understanding the connotation of words
plays an important role in interpreting sub-
tle shades of sentiment beyond denotative
or surface meaning of text, as seemingly
objective statements often allude nuanced
sentiment of the writer, and even purpose-
fully conjure emotion from the readers’
minds. The focus of this paper is draw-
ing nuanced, connotative sentiments from
even those words that are objective on the
surface, such as “intelligence”, “human”,
and “cheesecake”. We propose induction
algorithms encoding a diverse set of lin-
guistic insights (semantic prosody, distri-
butional similarity, semantic parallelism of
coordination) and prior knowledge drawn
from lexical resources, resulting in the first
broad-coverage connotation lexicon.

1 Introduction

There has been a substantial body of research
in sentiment analysis over the last decade (Pang
and Lee, 2008), where a considerable amount of
work has focused on recognizing sentiment that is
generally explicit and pronounced rather than im-
plied and subdued. However in many real-world
texts, even seemingly objective statements can be
opinion-laden in that they often allude nuanced
sentiment of the writer (Greene and Resnik, 2009),
or purposefully conjure emotion from the readers’
minds (Mohammad and Turney, 2010). Although
some researchers have explored formal and statis-
tical treatments of those implicit and implied sen-
timents (e.g. Wiebe et al. (2005), Esuli and Sebas-
tiani (2006), Greene and Resnik (2009), Davidov
et al. (2010)), automatic analysis of them largely
remains as a big challenge.

In this paper, we concentrate on understanding
the connotative sentiments of words, as they play
an important role in interpreting subtle shades of
sentiment beyond denotative or surface meaning
of text. For instance, consider the following:

Geothermal replaces oil-heating; it helps re-
ducing greenhouse emissions.1

Although this sentence could be considered as a
factual statement from the general standpoint, the
subtle effect of this sentence may not be entirely
objective: this sentence is likely to have an influ-
ence on readers’ minds in regard to their opinion
toward “geothermal”. In order to sense the subtle
overtone of sentiments, one needs to know that the
word “emissions” has generally negative connota-
tion, which geothermal reduces. In fact, depend-
ing on the pragmatic contexts, it could be precisely
the intention of the author to transfer his opinion
into the readers’ minds.

The main contribution of this paper is a broad-
coverage connotation lexicon that determines the
connotative polarity of even those words with ever
so subtle connotation beneath their surface mean-
ing, such as “Literature”, “Mediterranean”, and
“wine”. Although there has been a number of
previous work that constructed sentiment lexicons
(e.g., Esuli and Sebastiani (2006), Wilson et al.
(2005a), Kaji and Kitsuregawa (2007), Qiu et
al. (2009)), which seem to be increasingly and
inevitably expanding over words with (strongly)
connotative sentiments rather than explicit senti-
ments alone (e.g., “gun”), little prior work has di-
rectly tackled this problem of learning connota-
tion,2 and much of the subtle connotation of many
seemingly objective words is yet to be determined.

1Our learned lexicon correctly assigns negative polarity to
emission.

2A notable exception would be the work of Feng et al.
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POSITIVE NEGATIVE

FEMA, Mandela, Intel, Google, Python, Sony, Pulitzer,
Harvard, Duke, Einstein, Shakespeare, Elizabeth, Clooney,
Hoover, Goldman, Swarovski, Hawaii, Yellowstone

Katrina, Monsanto, Halliburton, Enron, Teflon, Hi-
roshima, Holocaust, Afghanistan, Mugabe, Hutu, Sad-
dam, Osama, Qaeda, Kosovo, Helicobacter, HIV

Table 1: Example Named Entities (Proper Nouns) with Polar Connotation.

A central premise to our approach is that it is
collocational statistics of words that affect and
shape the polarity of connotation. Indeed, the ety-
mology of “connotation” is from the Latin “com-
” (“together or with”) and “notare” (“to mark”).
It is important to clarify, however, that we do not
simply assume that words that collocate share the
same polarity of connotation. Although such an
assumption played a key role in previous work for
the analogous task of learning sentiment lexicon
(Velikovich et al., 2010), we expect that the same
assumption would be less reliable in drawing sub-
tle connotative sentiments of words. As one ex-
ample, the predicate “cure”, which has a positive
connotation typically takes arguments with nega-
tive connotation, e.g., “disease”, when used as the
“relieve” sense.3

Therefore, in order to attain a broad cover-
age lexicon while maintaining good precision, we
guide the induction algorithm with multiple, care-
fully selected linguistic insights: [1] distributional
similarity, [2] semantic parallelism of coordina-
tion, [3] selectional preference, and [4] seman-
tic prosody (e.g., Sinclair (1991), Louw (1993),
Stubbs (1995), Stefanowitsch and Gries (2003))),
and also exploit existing lexical resources as an ad-
ditional inductive bias.

We cast the connotation lexicon induction task
as a collective inference problem, and consider ap-
proaches based on three distinct types of algorith-
mic framework that have been shown successful
for conventional sentiment lexicon induction:

Random walk based on HITS/PageRank (e.g.,
Kleinberg (1999), Page et al. (1999), Feng
et al. (2011) Heerschop et al. (2011),
Montejo-Ráez et al. (2012))

Label/Graph propagation (e.g., Zhu and Ghahra-

(2011) but with practical limitations. See §3 for detailed dis-
cussion.

3Note that when “cure” is used as the “preserve” sense, it
expects objects with non-negative connotation. Hence word-
sense-disambiguation (WSD) presents a challenge, though
not unexpectedly. In this work, we assume the general conno-
tation of each word over statistically prevailing senses, leav-
ing a more cautious handling of WSD as future work.

mani (2002), Velikovich et al. (2010))

Constraint optimization (e.g., Roth and Yih
(2004), Choi and Cardie (2009), Lu et al.
(2011)).

We provide comparative empirical results over
several variants of these approaches with compre-
hensive evaluations including lexicon-based, hu-
man judgments, and extrinsic evaluations.

It is worthwhile to note that not all words have
connotative meanings that are distinct from deno-
tational meanings, and in some cases, it can be dif-
ficult to determine whether the overall sentiment is
drawn from denotational or connotative meanings
exclusively, or both. Therefore, we encompass any
sentiment from either type of meanings into the
lexicon, where non-neutral polarity prevails over
neutral one if some meanings lead to neutral while
others to non-neutral.4

Our work results in the first broad-coverage
connotation lexicon,5 significantly improving both
the coverage and the precision of Feng et al.
(2011). As an interesting by-product, our algo-
rithm can be also used as a proxy to measure the
general connotation of real-world named entities
based on their collocational statistics. Table 1
highlights some example proper nouns included in
the final lexicon.

The rest of the paper is structured as follows.
In §2 we describe three types of induction algo-
rithms followed by evaluation in §3. Then we re-
visit the induction algorithms based on constraint
optimization in §4 to enhance quality and scala-
bility. §5 presents comprehensive evaluation with
human judges and extrinsic evaluations. Related
work and conclusion are in §6 and §7.

4In general, polysemous words do not seem to have con-
flicting non-neutral polarities over different senses, though
there are many exceptions, e.g., “heat”, or “fine”. We treat
each word in each part-of-speech as a separate word to reduce
such cases, otherwise aim to learn the most prevalent polar-
ity in the corpus with respect to each part-of-speech of each
word.

5Available at http://www.cs.stonybrook.edu/
˜ychoi/connotation.
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Figure 1: Graph for Graph Propagation (§2.2).
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Figure 2: Graph for ILP/LP (§2.3, §4.2).

2 Connotation Induction Algorithms

We develop induction algorithms based on three
distinct types of algorithmic framework that have
been shown successful for the analogous task of
sentiment lexicon induction: HITS & PageRank
(§2.1), Label/Graph Propagation (§2.2), and Con-
straint Optimization via Integer Linear Program-
ming (§2.3). As will be shown, each of these ap-
proaches will incorporate additional, more diverse
linguistic insights.

2.1 HITS & PageRank

The work of Feng et al. (2011) explored the use
of HITS (Kleinberg, 1999) and PageRank (Page
et al., 1999) to induce the general connotation
of words hinging on the linguistic phenomena of
selectional preference and semantic prosody, i.e.,
connotative predicates influencing the connotation
of their arguments. For example, the object of
a negative connotative predicate “cure” is likely
to have negative connotation, e.g., “disease” or
“cancer”. The bipartite graph structure for this
approach corresponds to the left-most box (labeled
as “pred-arg”) in Figure 1.

2.2 Label Propagation

With the goal of obtaining a broad-coverage lexi-
con in mind, we find that relying only on the struc-
ture of semantic prosody is limiting, due to rel-
atively small sets of connotative predicates avail-
able.6 Therefore, we extend the graph structure
as an overlay of two sub-graphs (Figure 1) as de-
scribed below:

6For connotative predicates, we use the seed predicate set
of Feng et al. (2011), which comprises of 20 positive and 20
negative predicates.

Sub-graph #1: Predicate–Argument Graph
This sub-graph is the bipartite graph that encodes
the selectional preference of connotative predi-
cates over their arguments. In this graph, conno-
tative predicates p reside on one side of the graph
and their co-occurring arguments a reside on the
other side of the graph based on Google Web 1T
corpus.7 The weight on the edges between the
predicates p and arguments a are defined using
Point-wise Mutual Information (PMI) as follows:

w(p→ a) := PMI(p, a) = log2

P (p, a)

P (p)P (a)

PMI scores have been widely used in previous
studies to measure association between words
(e.g., Turney (2001), Church and Hanks (1990)).

Sub-graph #2: Argument–Argument Graph
The second sub-graph is based on the distribu-
tional similarities among the arguments. One pos-
sible way of constructing such a graph is simply
connecting all nodes and assign edge weights pro-
portionate to the word association scores, such as
PMI, or distributional similarity. However, such a
completely connected graph can be susceptible to
propagating noise, and does not scale well over a
very large set of vocabulary.

We therefore reduce the graph connectivity by
exploiting semantic parallelism of coordination
(Bock (1986), Hatzivassiloglou and McKeown

7We restrict predicte-argument pairs to verb-object pairs
in this study. Note that Google Web 1T dataset consists of
n-grams upto n = 5. Since n-gram sequences are too short
to apply a parser, we extract verb-object pairs approximately
by matching part-of-speech tags. Empirically, when overlaid
with the second sub-graph, we found that it is better to keep
the connectivity of this sub-graph as uni-directional. That is,
we only allow edges to go from a predicate to an argument.
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POSITIVE NEGATIVE NEUTRAL

n. avatar, adrenaline, keynote, debut,
stakeholder, sunshine, cooperation

unbeliever, delay, shortfall, gun-
shot, misdemeanor, mutiny, rigor

header, mark, clothing, outline,
grid, gasoline, course, preview

v. handcraft, volunteer, party, ac-
credit, personalize, nurse, google

sentence, cough, trap, scratch, de-
bunk, rip, misspell, overcharge

state, edit, send, put, arrive, type,
drill, name, stay, echo, register

a. floral, vegetarian, prepared, age-
less, funded, contemporary

debilitating, impaired, swollen,
intentional, jarring, unearned

same, cerebral, west, uncut, auto-
matic, hydrated, unheated, routine

Table 2: Example Words with Learned Connotation: Nouns(n), Verbs(v), Adjectives(a).

(1997), Pickering and Branigan (1998)). In par-
ticular, we consider an undirected edge between a
pair of arguments a1 and a2 only if they occurred
together in the “a1 and a2” or “a2 and a1” coor-
dination, and assign edge weights as:

w(a1 − a2) = CosineSim(−→a1,−→a2) =
−→a1 · −→a2
||−→a1|| ||−→a2||

where −→a1 and −→a2 are co-occurrence vectors for a1
and a2 respectively. The co-occurrence vector for
each word is computed using PMI scores with re-
spect to the top n co-occurring words.8 n (=50)
is selected empirically. The edge weights in two
sub-graphs are normalized so that they are in the
comparable range.9

Limitations of Graph-based Algorithms
Although graph-based algorithms (§2.1, §2.2) pro-
vide an intuitive framework to incorporate various
lexical relations, limitations include:

1. They allow only non-negative edge weights.
Therefore, we can encode only positive (sup-
portive) relations among words (e.g., distri-
butionally similar words will endorse each
other with the same polarity), while miss-
ing on exploiting negative relations (e.g.,
antonyms may drive each other into the op-
posite polarity).

2. They induce positive and negative polarities
in isolation via separate graphs. However, we
expect that a more effective algorithm should
induce both polarities simultaneously.

3. The framework does not readily allow incor-
porating a diverse set of soft and hard con-
straints.

8We discard edges with cosine similarity ≤ 0, as those
indicate either independence or the opposite of similarity.

9Note that cosine similarity does not make sense for the
first sub-graph as there is no reason why a predicate and an ar-
gument should be distributionally similar. We experimented
with many different variations on the graph structure and
edge weights, including ones that include any word pairs that
occurred frequently enough together. For brevity, we present
the version that achieved the best results here.

2.3 Constraint Optimization
Addressing limitations of graph-based algorithms
(§2.2), we propose an induction algorithm based
on Integer Linear Programming (ILP). Figure 2
provides the pictorial overview. In comparison to
Figure 1, two new components are: (1) dictionary-
driven relations targeting enhanced precision, and
(2) dictionary-driven words (i.e., unseen words
with respect to those relations explored in Figure
1) targeting enhanced coverage. We formulate in-
sights in Figure 2 using ILP as follows:

Definition of sets of words:
1. P+: the set of positive seed predicates.
P−: the set of negative seed predicates.

2. S: the set of seed sentiment words.
3. Rsyn: word pairs in synonyms relation.
Rant: word pairs in antonyms relation.
Rcoord: word pairs in coordination relation.
Rpred: word pairs in pred-arg relation.
Rpred+(−)

: Rpred based on P+ (P−).

Definition of variables: For each word i, we
define binary variables xi, yi, zi ∈ {0, 1}, where
xi = 1 (yi = 1, zi = 1) if and only if i has a pos-
itive (negative, neutral) connotation respectively.
For every pair of word i and j, we define binary
variables dpqij where p, q ∈ {+,−, 0} and dpqij = 1
if and only if the polarity of i and j are p and q
respectively.

Objective function: We aim to maximize:

F = Φprosody + Φcoord + Φneu

where Φprosody is the scores based on semantic
prosody, Φcoord captures the distributional similar-
ity over coordination, and Φneu controls the sen-
sitivity of connotation detection between positive
(negative) and neutral. In particular,

Φprosody =

Rpred∑

i,j

wpredi,j (d++
i,j + d−−i,j − d+−i,j − d−+

i,j )

Φcoord =

Rcoord∑

i,j

wcoordi,j (d++
i,j + d−−i,j + d00i,j)
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Φneu = α

Rpred∑

i,j

wpredi,j · zj

Soft constraints (edge weights): The weights in
the objective function are set as follows:

wpred(p, a) =
freq(p, a)∑

(p,x)∈Rpred

freq(p, x)

wcoord(a1, a2) = CosSim(−→a1,−→a2) =
−→a1 · −→a2
||−→a1|| ||−→a2||

Note that the same wcoord(a1, a2) has been used
in graph propagation described in Section 2.2. α
controls the sensitivity of connotation detection
such that higher value of α will promote neutral
connotation over polar ones.

Hard constrains for variable consistency:

1. Each word i has one of {+,−, ø} as polarity:
∀i, xi + yi + zi = 1

2. Variable consistency between dpqij and
xi, yi, zi:

xi + xj − 1 ≤ 2d++
i,j ≤ xi + xj

yi + yj − 1 ≤ 2d−−i,j ≤ yi + yj

zi + zj − 1 ≤ 2d00i,j ≤ zi + zj

xi + yj − 1 ≤ 2d+−i,j ≤ xi + yj

yi + xj − 1 ≤ 2d−+i,j ≤ yi + xj

Hard constrains for WordNet relations:

1. Cant: Antonym pairs will not have the same
positive or negative polarity:

∀(i, j) ∈ Rant, xi + xj ≤ 1, yi + yj ≤ 1

For this constraint, we only consider
antonym pairs that share the same root, e.g.,
“sufficient” and “insufficient”, as those pairs
are more likely to have the opposite polarities
than pairs without sharing the same root, e.g.,
“east” and “west”.

2. Csyn: Synonym pairs will not have the oppo-
site polarity:

∀(i, j) ∈ Rsyn, xi + yj ≤ 1, xj + yi ≤ 1

3 Experimental Result I

We provide comprehensive comparisons over vari-
ants of three types of algorithms proposed in §2.
We use the Google Web 1T data (Brants and Franz
(2006)), and POS-tagged ngrams using Stanford
POS Tagger (Toutanova and Manning (2000)). We
filter out the ngrams with punctuations and other
special characters to reduce the noise.

3.1 Comparison against Conventional
Sentiment Lexicon

Note that we consider the connotation lexicon to
be inclusive of a sentiment lexicon for two prac-
tical reasons: first, it is highly unlikely that any
word with non-neutral sentiment (i.e., positive or
negative) would carry connotation of the oppo-
site, i.e., conflicting10 polarity. Second, for some
words with distinct sentiment or strong connota-
tion, it can be difficult or even unnatural to draw a
precise distinction between connotation and senti-
ment, e.g., “efficient”. Therefore, sentiment lexi-
cons can serve as a surrogate to measure a subset
of connotation words induced by the algorithms,
as shown in Table 3 with respect to General In-
quirer (Stone and Hunt (1963)) and MPQA (Wil-
son et al. (2005b)).11

Discussion Table 3 shows the agreement statis-
tics with respect to two conventional sentiment
lexicons. We find that the use of label propaga-
tion alone [PRED-ARG (CP)] improves the per-
formance substantially over the comparable graph
construction with different graph analysis algo-
rithms, in particular, HITS and PageRank ap-
proaches of Feng et al. (2011). The two com-
pletely connected variants of the graph propa-
gation on the Pred-Arg graph, [

⊗
PRED-ARG

(PMI)] and [
⊗

PRED-ARG (CP)], do not neces-
sarily improve the performance over the simpler
and computationally lighter alternative, [PRED-
ARG (CP)]. The [OVERLAY], which is based
on both Pred-Arg and Arg-Arg subgraphs (§2.2),
achieves the best performance among graph-based
algorithms, significantly improving the precision
over all other baselines. This result suggests:

1 The sub-graph #2, based on the semantic par-
allelism of coordination, is simple and yet
very powerful as an inductive bias.

2 The performance of graph propagation varies
significantly depending on the graph topol-
ogy and the corresponding edge weights.

Note that a direct comparison against ILP for top
N words is tricky, as ILP does not rank results.
Only for comparison purposes however, we assign

10We consider “positive” and “negative” polarities conflict,
but “neutral” polarity does not conflict with any.

11In the case of General Inquirer, we use words in POSITIV
and NEGATIV sets as words with positive and negative labels
respectively.

1778



GENINQ EVAL MPQA EVAL
100 1,000 5,000 10,000 ALL 100 1,000 5,000 10,000 ALL

ILP 97.6 94.5 84.5 80.8 80.4 98.0 89.7 84.6 81.2 78.4
OVERLAY 97.0 95.1 78.8 (78.3) 78.3 98.0 93.4 82.1 77.7 77.7⊗

PRED-ARG (PMI) 91.0 91.4 76.1 (76.1) 76.1 88.0 89.1 78.8 75.1 75.1⊗
PRED-ARG (CP) 88.0 85.4 76.2 (76.2) 76.2 87.0 82.6 78.0 76.3 76.3
PRED-ARG (CP) 91.0 91.0 81.0 (81.0) 81.0 88.0 91.5 80.0 78.3 78.3

HITS-ASYMT 77.0 68.8 - - 66.5 86.3 81.3 - - 72.2
PAGERANK-ASYMF 77.0 68.5 - - 65.7 87.2 80.3 - - 72.3

Table 3: Evaluation of Induction Algorithms (§2) with respect to Sentiment Lexicons (precision%).

ranks based on the frequency of words for ILP. Be-
cause of this issue, the performance of top ∼1k
words of ILP should be considered only as a con-
servative measure. Importantly, when evaluated
over more than top 5k words, ILP is overall the
top performer considering both precision (shown
in Table 3) and coverage (omitted for brevity).12

4 Precision, Coverage, and Efficiency

In this section, we address three important aspects
of an ideal induction algorithm: precision, cover-
age, and efficiency. For brevity, the remainder of
the paper will focus on the algorithms based on
constraint optimization, as it turned out to be the
most effective one from the empirical results in §3.

Precision In order to see the effectiveness of the
induction algorithms more sharply, we had used a
limited set of seed words in §3. However to build a
lexicon with substantially enhanced precision, we
will use as a large seed set as possible, e.g., entire
sentiment lexicons13.

Broad coverage Although statistics in Google
1T corpus represent a very large amount of text,
words that appear in pred-arg and coordination re-
lations are still limited. To substantially increase
the coverage, we will leverage dictionary words
(that are not in the corpus) as described in §2.3
and Figure 2.

Efficiency One practical problem with ILP is ef-
ficiency and scalability. In particular, we found
that it becomes nearly impractical to run the ILP
formulation including all words in WordNet plus
all words in the argument position in Google Web
1T. We therefore explore an alternative approach
based on Linear Programming in what follows.

12In fact, the performance of PRED-ARG variants for top
10K w.r.t. GENINQ is not meaningful as no additional word
was matched beyond top 5k words.

13Note that doing so will prevent us from evaluating
against the same sentiment lexicon used as a seed set.

4.1 Induction using Linear Programming
One straightforward option for Linear Program-
ming formulation may seem like using the same
Integer Linear Programming formulation intro-
duced in §2.3, only changing the variable defini-
tions to be real values ∈ [0, 1] rather than integers.
However, because the hard constraints in §2.3 are
defined based on the assumption that all the vari-
ables are binary integers, those constraints are not
as meaningful when considered for real numbers.
Therefore we revise those hard constraints to en-
code various semantic relations (WordNet and se-
mantic coordination) more directly.

Definition of variables: For each word i, we de-
fine variables xi, yi, zi ∈ [0, 1]. i has a positive
(negative) connotation if and only if the xi (yi) is
assigned the greatest value among the three vari-
ables; otherwise, i is neutral.

Objective function: We aim to maximize:

F = Φprosody + Φcoord + Φsyn + Φant + Φneu

Φprosody =

Rpred+∑

i,j

wpred
+

i,j · xj +
Rpred−∑

i,j

wpred
−

i,j · yj

Φcoord =

Rcoord∑

i,j

wcoordi,j · (dc++
i,j + dc−−i,j )

Φsyn = W syn
Rsyn∑

i,j

(ds++
i,j + ds−−i,j )

Φant = W ant
Rant∑

i,j

(da++
i,j + da−−i,j )

Φneu = α

Rpred∑

i,j

wpredi,j · zj

Hard constraints We add penalties to the
objective function if the polarity of a pair of words
is not consistent with its corresponding semantic
relations. For example, for synonyms i and j, we
introduce a penalty W syn (a positive constant) for
ds++
i,j , ds

−−
i,j ∈ [−1, 0], where we set the upper

bound of ds++
i,j (ds−−i,j ) as the signed distance of
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FORMULA
POSITIVE NEGATIVE ALL

R P F R P F R P F
ILP Φprosody + Csyn + Cant 51.4 85.7 64.3 44.7 87.9 59.3 48.0 86.8 61.8

Φprosody + Csyn + Cant + CS 61.2 93.3 73.9 52.4 92.2 66.8 56.8 92.8 70.5
Φprosody + Φcoord + Csyn + Cant 67.3 75.0 70.9 53.7 84.4 65.6 60.5 79.7 68.8
Φprosody + Φcoord + Csyn + Cant + CS 62.2 96.0 75.5 51.5 89.5 65.4 56.9 92.8 70.5

LP Φprosody + Φsyn + Φant 24.4 76.0 36.9 23.6 78.8 36.3 24.0 77.4 36.6
Φprosody + Φsyn + Φant + ΦS 71.6 87.8 78.9 68.8 84.6 75.9 70.2 86.2 77.4
Φprosody + Φcoord + Φsyn + Φant 67.9 92.6 78.3 64.6 89.1 74.9 66.3 90.8 76.6
Φprosody + Φcoord + Φsyn + Φant + ΦS 78.6 90.5 84.1 73.3 87.1 79.6 75.9 88.8 81.8

Table 4: ILP/LP Comparison on MQPA′ (%).

xi and xj (yi and yj) as shown below:

For (i, j) ∈ Rsyn,

ds++
i,j ≤ xi − xj , ds++

i,j ≤ xj − xi
ds−−i,j ≤ yi − yj , ds−−i,j ≤ yj − yi

Notice that ds++
i,j , ds

−−
i,j satisfying above inequal-

ities will be always of negative values, hence in
order to maximize the objective function, the LP
solver will try to minimize the absolute values of
ds++
i,j , ds

−−
i,j , effectively pushing i and j toward

the same polarity. Constraints for semantic coor-
dination Rcoord can be defined similarly. Lastly,
following constraints encode antonym relations:

For (i, j) ∈ Rant ,

da++
i,j ≤ xi − (1− xj), da++

i,j ≤ (1− xj)− xi
da−−i,j ≤ yi − (1− yj), da−−i,j ≤ (1− yj)− yi

Interpretation Unlike ILP, some of the vari-
ables result in fractional values. We consider a
word has positive or negative polarity only if the
assignment indicates 1 for the corresponding po-
larity and 0 for the rest. In other words, we treat
all words with fractional assignments over differ-
ent polarities as neutral. Because the optimal so-
lutions of LP correspond to extreme points in the
convex polytope formed by the constraints, we ob-
tain a large portion of words with non-fractional
assignments toward non-neutral polarities. Alter-
natively, one can round up fractional values.

4.2 Empirical Comparisons: ILP v.s. LP
To solve the ILP/LP, we run ILOG CPLEX Opti-
mizer (CPLEX, 2009)) on a 3.5GHz 6 core CPU
machine with 96GB RAM. Efficiency-wise, LP
runs within 10 minutes while ILP takes several
hours. Table 4 shows the results evaluated against
MPQA for different variations of ILP and LP.
We find that LP variants much better recall and
F-score, while maintaining comparable precision.

Therefore, we choose the connotation lexicon by
LP (C-LP) in the following evaluations in §5.

5 Experimental Results II
In this section, we present comprehensive intrin-
sic §5.1 and extrinsic §5.2 evaluations comparing
three representative lexicons from §2 & §4: C-
LP, OVERLAY, PRED-ARG (CP), and two popular
sentiment lexicons: SentiWordNet (Baccianella et
al., 2010) and GI+MPQA.14 Note that C-LP is the
largest among all connotation lexicons, including
∼70,000 polar words.15

5.1 Intrinsic Evaluation: Human Judgements

We evaluate 4000 words16 using Amazon Me-
chanical Turk (AMT). Because we expect that
judging a connotation can be dependent on one’s
cultural background, personality and value sys-
tems, we gather judgements from 5 people for
each word, from which we hope to draw a more
general judgement of connotative polarity. About
300 unique Turkers participated the evaluation
tasks. We gather gold standard only for those
words for which more than half of the judges
agreed on the same polarity. Otherwise we treat
them as ambiguous cases.17 Figure 3 shows a part
of the AMT task, where Turkers are presented with
questions that help judges to determine the subtle
connotative polarity of each word, then asked to
rate the degree of connotation on a scale from -
5 (most negative) and 5 (most positive). To draw

14GI+MPQA is the union of General Inquirer and MPQA.
The GI, we use words in the “Positiv” & “Negativ” set. For
SentiWordNet, to retrieve the polarity of a given word, we
sum over the polarity scores over all senses, where positive
(negative) values correspond to positive (negative) polarity.

15∼13k adj, ∼6k verbs, ∼28k nouns, ∼22k proper nouns.
16We choose words that are not already in GI+MPQA and

obtain most frequent 10,000 words based on the unigram fre-
quency in Google-Ngram, then randomly select 4000 words.

17We allow Turkers to mark words that can be used with
both positive and negative connotation, which results in about
7% of words that are excluded from the gold standard set.
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Figure 3: A Part of AMT Task Design.

YES NO
QUESTION % Avg % Avg
“Enjoyable or pleasant” 43.3 2.9 16.3 -2.4
“Of a good quality” 56.7 2.5 6.1 -2.7
“Respectable / honourable” 21.0 3.3 14.0 -1.1
“Would like to do or have” 52.5 2.8 11.5 -2.4

Table 5: Distribution of Answers from AMT.

the gold standard, we consider two different voting
schemes:

• ΩV ote: The judgement of each Turker is
mapped to neutral for −1 ≤ score ≤ 1, pos-
itive for score ≥ 2, negative for score ≤ 2,
then we take the majority vote.

• ΩScore: Let σ(i) be the sum (weighted vote)
of the scores given by 5 judges for word i.
Then we determine the polarity label l(i) of i
as:

l(i) =





positive if σ(i) > 1
negative if σ(i) < −1
neutral if −1 ≤ σ(i) ≤ 1

The resulting distribution of judgements is shown
in Table 5 & 6. Interestingly, we observe
that among the relatively frequently used English
words, there are overwhelmingly more positively
connotative words than negative ones.

In Table 7, we show the percentage of words
with the same label over the mutual words by the
two lexicon. The highest agreement is 77% by
C-LP and the gold standard by AMTV ote. How
good is this? It depends on what is the natural de-
gree of agreement over subtle connotation among
people. Therefore, we also report the degree of
agreement among human judges in Table 7, where
we compute the agreement of one Turker with re-
spect to the gold standard drawn from the rest of
the Turkers, and take the average across over all
five Turkers18. Interestingly, the performance of

18In order to draw the gold standard from the 4 remaining
Turkers, we consider adjusted versions of ΩV ote and ΩScore

schemes described above.

POS NEG NEU UNDETERMINED

ΩV ote 50.4 14.6 24.1 10.9
ΩScore 67.9 20.6 11.5 n/a

Table 6: Distribution of Connotative Polarity from
AMT.

C-LP SENTIWN HUMAN JUDGES

ΩV ote 77.0 71.5 66.0
ΩScore 73.0 69.0 69.0

Table 7: Agreement (Accuracy) against AMT-
driven Gold Standard.

Turkers is not as good as that of C-LP lexicon. We
conjecture that this could be due to generally vary-
ing perception of different people on the connota-
tive polarity,19 while the corpus-driven induction
algorithms focus on the general connotative po-
larity corresponding to the most prevalent senses
of words in the corpus.

5.2 Extrinsic Evaluation

We conduct lexicon-based binary sentiment clas-
sification on the following two corpora.

SemEval From the SemEval task, we obtain a
set of news headlines with annotated scores (rang-
ing from -100 to 87). The positive/negative scores
indicate the degree of positive/negative polarity
orientation. We construct several sets of the posi-
tive and negative texts by setting thresholds on the
scores as shown in Table 8. “≶ n” indicates that
the positive set consists of the texts with scores
≥ n and the negative set consists of the texts with
scores ≤ −n.

Emoticon tweets The sentiment Twitter data20

consists of tweets containing either a smiley
emoticon (positive sentiment) or a frowny emoti-
con (negative sentiment). We filter out the tweets
with question marks or more than 30 words, and
keep the ones with at least two words in the union
of all polar words in the five lexicons in Table 8,
and then randomly select 10000 per class.

We denote the short text (e.g., content of tweets
or headline texts from SemEval) by t. w repre-
sents the word in t. W+/W− is the set of posi-

19Pearson correlation coefficient among turkers is 0.28,
which corresponds to a positive small to medium correlation.
Note that when the annotation of turkers is aggregated, we
observe agreement as high as 77% with respect to the learned
connotation lexicon.

20http://www.stanford.edu/˜alecmgo/
cs224n/twitterdata.2009.05.25.c.zip
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DATA
LEXICON TWEET SEMEVAL

≶20 ≶40 ≶60 ≶80
C-LP 70.1 70.8 74.6 80.8 93.5
OVERLAY 68.5 70.0 72.9 76.8 89.6
PRED-ARG (CP) 60.5 64.2 69.3 70.3 79.2
SENTIWN 67.4 61.0 64.5 70.5 79.0
GI+MPQA 65.0 64.5 69.0 74.0 80.5

Table 8: Accuracy on Sentiment Classification
(%).

tive/negative words of the lexicon. We define the
weight of w as s(w). If w is adjective, s(w) = 2;
otherwise s(w) = 1. Then the polarity of each text
is determined as follows:

pol(t) =





positive if
W+∑
w∈t

s(w) ≥
W−∑
w∈t

s(w)

negative if
W+∑
w∈t

s(w) <
W−∑
w∈t

s(w)

As shown in Table 8, C-LP generally performs
better than the other lexicons on both corpora.
Considering that only very simple classification
strategy is applied, the result by the connotation
lexicon is quite promising.

Finally, Table 1 highlights interesting exam-
ples of proper nouns with connotative polarity,
e.g., “Mandela”, “Google”, “Hawaii” with pos-
itive connotation, and “Monsanto”, “Hallibur-
ton”, “Enron” with negative connotation, sug-
gesting that our algorithms could potentially serve
as a proxy to track the general connotation of real
world entities. Table 2 shows example common
nouns with connotative polarity.

5.3 Practical Remarks on WSD and MWEs
In this work we aim to find the polarity of most
prevalent senses of each word, in part because it
is not easy to perform unsupervised word sense
disambiguation (WSD) on a large corpus in a reli-
able way, especially when the corpus consists pri-
marily of short n-grams. Although the resulting
lexicon loses on some of the polysemous words
with potentially opposite polarities, per-word con-
notation (rather than per-sense connotation) does
have a practical value: it provides a convenient
option for users who wish to avoid the burden of
WSD before utilizing the lexicon. Future work in-
cludes handling of WSD and multi-word expres-
sions (MWEs), e.g., “Great Leader” (for Kim
Jong-Il), “Inglourious Basterds” (a movie title).21

21These examples credit to an anonymous reviewer.

6 Related Work

A very interesting work of Mohammad and Tur-
ney (2010) uses Mechanical Turk in order to build
the lexicon of emotions evoked by words. In con-
trast, we present an automatic approach that in-
fers the general connotation of words. Velikovich
et al. (2010) use graph propagation algorithms for
constructing a web-scale polarity lexicon for sen-
timent analysis. Although we employ the same
graph propagation algorithm, our graph construc-
tion is fundamentally different in that we integrate
stronger inductive biases into the graph topology
and the corresponding edge weights. As shown
in our experimental results, we find that judicious
construction of graph structure, exploiting multi-
ple complementing linguistic phenomena can en-
hance both the performance and the efficiency of
the algorithm substantially. Other interesting ap-
proaches include one based on min-cut (Dong et
al., 2012) or LDA (Xie and Li, 2012). Our pro-
posed approaches are more suitable for encoding
a much diverse set of linguistic phenomena how-
ever. But our work use a few seed predicates with
selectional preference instead of relying on word
similarity. Some recent work explored the use
of constraint optimization framework for inducing
domain-dependent sentiment lexicon (Choi and
Cardie (2009), Lu et al. (2011)). Our work dif-
fers in that we provide comprehensive insights into
different formulations of ILP and LP, aiming to
learn the much different task of learning the gen-
eral connotation of words.

7 Conclusion

We presented a broad-coverage connotation lexi-
con that determines the subtle nuanced sentiment
of even those words that are objective on the sur-
face, including the general connotation of real-
world named entities. Via a comprehensive eval-
uation, we provided empirical insights into three
different types of induction algorithms, and pro-
posed one with good precision, coverage, and effi-
ciency.
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M. Teresa Martı́n-Valdivia, and L. Alfonso Ureña
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