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Message from the General Chair

Welcome to ACL 2022, the 60th Annual Meeting of the Association for Computational Linguistics! The
conference will be held in Dublin, the capital of Ireland, on May 22-27, 2022.

ACL 2022 will be a hybrid conference. After two fully virtual editions, ACL 2020 and ACL 2021, due to
the covid-19 pandemic, this year we are gradually coming back to normality, estimating, at the moment
of writing this message, that about 50% of the registered participants will be able to attend the conference
in-person, enjoying the atmosphere of the CCD congress center, the social events of the conference, and
the many opportunities in Dublin. On the other side, virtual attendees will have the possibility to interact
almost like they were in Dublin, thanks to a sophisticated virtual conference platform.

There are few important innovations this year. The most relevant is that ACL 2022 adopted a new
reviewing process, based on “rolling review” (ARR), with the goal of coordinating and making more
efficient the paper reviews of the ACL conferences. This initiative was shared with NAACL 2022, resul-
ting in a coordinated effort. As a side effect of moving to ARR, we have been working on a new version
of the software, called ACLPUB2, used to produce both the conference proceedings and the conference
schedule. I would like to thank all the people who contributed to those achievements. Finally, this year
we celebrate the 60th anniversary of the ACL conference. Thanks to the enthusiastic contributions of
many organizations, coordinated by the Diversity and Inclusion co-chairs, we are preparing a very spe-
cial initiative for our community, which, at the time of writing this message, is still secret and that will
be disclosed during the opening of the conference.

I was very lucky to work together with three fantastic Program Chairs: Preslav Nakov, Smaranda Mure-
san and Aline Villaviciencio. I could not thank you more for the dedication and the capacity with which
you have organized a very exciting scientific program and for the help in all the phases of the conference
organization.

Thanks to the local organizers in Dublin, Andy Way and John Kelleher, and to the PCO, who managed the
local organization in a period in which we have had very few certainties, and many more uncertainties.

We are extremely grateful to all sponsors for their continuing and generous support to help our conferen-
ces be very successful. Thank you to Chris Callison-Burch, the ACL Sponsorship Director, for managing
the relations between the sponsors and ACL 2022.

I am also very grateful to the chairs of the previous years’ conferences, who were always ready to help
and to provide advice, contributing to the transmission, from year to year, of all the know-how and
collective memory. Thanks to all the members of The ACL Executive Committee, they were always
supportive, particularly when feedback on delicate issues was needed.

Many thanks to the senior area chairs, the area chairs, the reviewers, our workshop organizers, our tutorial
instructors, the authors and presenters of papers, and the invited speakers.

ACL requires a long process, involving a large team of committed people. It is an honor for me to have
coordinated such a team of talented people, who kindly volunteered their time to make this conference
possible. I would like to thank the members of the organizing committee for their dedication and hard
work, often under a tight schedule:

e Workshop Co-Chairs: Elena Cabrio, Sujian Li, Mausam;
e Tutorial Co-Chairs: Naoaki Okazaki, Yves Scherrer, Marcos Zampieri;
e Demo Co-Chairs: Valerio Basile, Zornitsa Kozareva, Sanja étajner;

e Student Research Workshop Co-Chairs: Samuel Louvan, Brielen Madureira, Andrea Madotto;



e SRW Faculty Advisors: Cecile Paris, Siva Reddy, German Rigau;

e Publication Co-Chairs (also publication co-chairs for NAACL 2022): Danilo Croce, Ryan Cotte-
rell, Jordan Zhang;

e Conference Handbook Chair: Marco Polignano;

e Diversity & Inclusion Co-chairs: Mona Diab, Martha Yifiru Tachbelie;
e Ethic advisor committee: Su Lin Blodgett, Christiane Fellbaum:;

e Technical OpenReview Chair: Rodrigo Wilkens;

e Publicity and Social Media Co-chairs: Isabelle Augenstein, Emmanuele Chersoni, Diana May-
nard, Soujanya Poria, Joel Tetreault;

e Local Arrangement Committee: Fiona McGillivray, Greg Carew, Laird Smith;

e Student Volunteer Coordinators: Filip Klubicka, Vasudevan Nedumpozhimana, Guodong Xie,
Pintu Lohar;

e Internal Communications Chair: Marcely Boito Zanon.

Let me deserve a special thanks to Priscilla Rasmussen. She has been the pillar not only of this year’s
ACL, but of the ACL conferences for many years. She has offered her invaluable experience to the
organizing committee, and her presence has always given us a pleasant sense of security.

Finally, I would like to thank all the participants, both in-person and virtual, who will be the main
actors from May 22 to May 27, 2022. I am convinced that we will experience a fantastic conference,
scientifically exciting and full of fond memories.

Welcome and hope you all enjoy the conference!

Bernardo Magnini (FBK, Italy)
ACL 2022 General Chair
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Message from the Program Chairs

Welcome to the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022).
ACL 2022 has a special historical significance, as this is the 60th Anniversary edition. It is also the first
hybrid ACL conference after two years of a fully virtual format for ACL in 2020 and 2021 due to the
COVID-19 pandemic. Finally, it is the first *ACL conference to fully embrace the ACL Rolling Review
(ARR) as a reviewing process. Below, we discuss some of these changes and we highlight the exciting
program that we have put together with the help from our community.

Using ARR for Reviewing

In coordination with the NAACL 2022 team and the ACL executive committee, we decided to fully
adopt the ACL Rolling Review (ARR) as the only reviewing platform for ACL 2022. ARR is a new
review system for * ACL conferences, where reviewing and acceptance of papers to publication venues is
done in a two-step process: (i) centralized rolling review via ARR, and (ii) commitment to a publication
venue, e.g., ACL 2022. The purpose of the ACL Rolling Review is to improve the efficiency and the
turnaround of reviewing in *ACL conferences while keeping diversity (geographic and otherwise) and
editorial freedom.

As ACL 2022 is the first conference to fully adopt the ARR review process, we worked very closely
with ARR and we coordinated our efforts with the NAACL 2022 PC chairs. In particular, given the short
distance between ACL 2022 and NAACL 2022, we allowed authors to commit their papers to ACL 2022
and simultaneously to submit a revision to ARR in January, which were eligible for NAACL 2022. We
also joined ARR as Guest Editors-in-Chief (EiCs) to help with the September—November submissions
to ARR, which primarily targeted ACL 2022. We worked together to integrate ARR and some of the
conference workflows to ensure scaling up, and to maintain the quality and the timely processing of the
submissions for November, and thus to guarantee that all papers submitted by the November 15, 2021
ARR deadline could be considered for ACL 2022 if the authors decided to commit them. This required
making sure we had all reviews and meta-reviews ready in time, which we managed to achieve thanks
to the combined efforts of the ARR and the ACL 2022 teams. We would also like to note that this is a
community effort, and we are grateful for the support of the authors, the reviewers, the Action Editors
(AEs), and the Senior Area Chairs (SACs), who have been constructively engaging and helping with
ARR and ACL 2022.

Committing to ACL 2022

The commitment form for ACL 2022 asked the authors to provide a link to their paper in ARR: we
asked for a link to the latest version of the paper that had reviews and a meta-review. The authors also
needed to select an area (including the Special Theme area) they were submitting their paper to (this
was needed as ACL 2022 had areas, while ARR did not). Finally, the authors were allowed to submit
optional comments to the ACL 2022 Senior Area Chairs (SACs). Note that these comments were only
visible to the SACs, and they were not sent to the reviewers or to the Action Editors: the rationale was
that responding to reviewers and Action Editors should be handled in a response letter if the authors
decided to do a resubmission in ARR, which is a completely different process than committing a paper
to ACL 2022. These comments to the SACs were designed mainly to raise concerns about objective
misunderstandings by the reviewers and/or by the Action Editor about the technical aspect of the paper
that the authors believed might help the SACs in their decision-making process.

Areas While ARR did not have areas, ACL 2022 did: it had 23 areas, including the 22 areas from ACL
2021 plus our Special Theme. Our special theme was on “Language Diversity: from Low-Resource to
Endangered Languages,” to commemorate the 60th anniversary of ACL with the goal of reflecting and
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stimulating a discussion about how advances in computational linguistics and natural language proces-
sing can be used to promote language diversity from low-resource to endangered languages. We invited
papers that discuss and reflect on the “role of the speech and language technologies in sustaining langua-
ge use” (Bird, 2020) for the large variety of world languages with focus on under-resourced, indigenous,
and/or endangered languages. We were interested in the challenges for developing and scaling up the
current NLP technologies for the rich diversity of human languages and in the ethical, cultural, and po-
licy implications of such technologies for local communities. We also have a best Theme paper award
category.

Acceptance to ACL 2022

As ACL 2022 submissions in ARR, we count all papers from September, October, and November, which
we advertised as ACL 2022 months, after removing all re-submissions and also nine papers that selected
NAACL 2022 as a preferred venue (a total of 3,360 papers) + the papers from the May—August period
that were actually committed to ACL 2022 and that were not resubmissions (a total of 18 papers), for a
total of 3,378 papers.

This number is on par with the number of submissions to ACL 2021, which received 3,350 submissions.
Subsequently, 1,918 papers were committed to ACL 2022 (i.e., 57%). After the review process, 701
papers (604 long and 97 short) were accepted into the main conference.

Acceptance Rates for the Main Conference

The quality of a conference is often perceived based on the acceptance rate of the papers submitted there,
and thus it is important to have an acceptance rate that adequately represents the difficulty of publishing
a paper in the conference. Given the adoption of ARR, it is also important to allow for consistency
across various conferences. Thus, ACL 2022 (and NAACL 2022) adopted the following two ways of
calculating the acceptance rates:

(a) (Number of accepted papers at ACL 2022) / (Number of papers that selected ACL 2022 as the
preferred venue in ARR or were committed to ACL 2022). For ACL 2022, for the denominator we
consider the 3,378 papers as explained above. Thus, the acceptance rate is 701 / 3,378 = 20.75%
for the Main conference.

(b) (Number of accepted papers at ACL 2022) / (Number of papers committed to ACL 2022). For the
denominator, we had 1,918 papers committed to ACL 2022, and thus, the acceptance rate is 701 /
1,918 = 36.54% for the Main conference.

Note that option (a) is closer to the way the acceptance rate was computed at previous *ACL conferences,
where submitting and committing a paper was done in one step and papers were rarely withdrawn after
the reviews, the meta-reviews, and the corresponding scores were released. However, one issue with this
option for ACL 2022 was that indicating a preferred venue was only enabled starting with the October
ARR submissions, and it was not available for earlier months. As mentioned above, we removed a small
number of papers from our denominator that selected NAACL 2022 as a preferred venue in October
and November (a total of 9 papers) and we considered the ARR submissions only for the months of
September, October, and November, as these months were advertised in our CFP, plus any papers that
were committed to ACL 2022 from earlier months (May-July) and which were also not resubmissions.
Option (b) yields a higher “acceptance rate”, as many authors with low reviewing scores chose not to
commit their paper to ACL 2022.

Best Paper Awards

From the committed ACL 2022 papers, we selected 32 papers as candidates for the following Best Paper
awards, based on nominations by the Senior Area Chairs: Best Research Paper, Best Special Theme
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Paper, Best Resource Paper, and Best Linguistic Insight Paper. These papers were assessed by the Best
Paper Award Committee. The selected best papers will be presented in a dedicated plenary session for
Best Paper Awards on May 24, 2022.

Findings of ACL 2022

Given the success of the Findings at EMNLP 2020 and 2021 and ACL-IJCNLP 2021, we also have Fin-
dings of ACL 2022 papers, which are papers that were not accepted for publication in the main confe-
rence, but nonetheless were assessed by the Program Committee as solid work with sufficient substance,
quality, and novelty. A total of 361 papers were offered to be included in the Findings of ACL 2022.
Given the two ways of computing acceptance rates described above, this results in a 10.68% acceptance
rate in option (a), and 19.82% in option (b). Out of the 361 papers, 30 papers declined the offer, leading
to 331 papers to be published in the Findings of ACL 2022. In order to increase the visibility of the
Finding of ACL 2022 papers, we offered the authors of these 331 papers the possibility to present their
work as a poster at ACL 2022, in addition to making a 6-minute or a 3-minute video to be included in
the virtual conference site (for long and for short papers, respectively). The authors of 305 of the 331
papers accepted our invitation to present their work as a poster at ACL 2022.

TACL and Computational Linguistics

Continuing the tradition from previous years, ACL 2022 also features 43 articles that were published
at the Transactions of the Association for Computational Linguistics (TACL) and 8 papers from the
Computational Linguistics journal.

Keynote and Invited Speakers
Another highlight of our program are the keynotes, which we run in three different formats:

¢ a keynote talk by Angela Friederici (Max Planck Institute for Human Cognitive and Brain Scien-
ces) on “Language in the Human Brain’;

o a Kkeynote fire-side chat on “The Trajectory of ACL and the Next 60 years” with Barbara Grosz
(Harvard University) and Yejin Choi (University of Washington and Allen Institute for Artificial
Intelligence), moderated by Rada Mihalcea (University of Michigan);

e a keynote panel on “How can we support linguistic diversity?” led by Steven Bird (Charles
Darwin University), with panelists representing a variety of world languages, including (currently
confirmed) Teresa Lynn (Irish), Robbie Jimerson (Seneca), Heather Long (Creole languages), and
Manuel Mager (Wixaritari).

‘We further had two additional invited talk initiatives:

¢ Spotlight Talks by Young Research Stars (STIRS) by Eunsol Choi (University of Texas at Au-
stin), Ryan Cotterell (ETH Zurich), Sebastian Ruder (Google, London), Swabha Swayamdipta
(Allen Institute for Al), and Diyi Yang (Georgia Tech);

e Next Big Ideas Talks by Marco Baroni (Pompeu Fabra University), Eduard Hovy (The Univer-
sity of Melbourne and Carnegie Mellon University), Heng Ji (UIUC), Mirella Lapata (Universi-
ty of Edinburgh), Hang Li (Bytedance Technology), Dan Roth (University of Pennsylvania and
Amazon), and Thamar Solorio (University of Houston).
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Thank You

ACL 2022 is the result of a collaborative effort and a supportive community, and we want to acknowledge
the efforts of so many people who have made significant efforts into the organization of ACL 2022! First
of all, we would like to thank our Program Committee (the full list of names is quite long and it is
included in the Program Committee pages of the Proceedings):

Our awesome 82 Senior Area Chairs who were instrumental in every aspect of the review process,
from liaising with ARR, to supporting the implementation of a two-stage reviewing system, re-
commending Action Editors and reviewers, working on paper acceptance, and nomination of best
papers and outstanding reviewers. For all of them, this involved familiarizing themselves with a
new protocol to accommodate the integration of ARR reviews and a new system, and for many of
them, the scope of their responsibilities was equivalent to chairing a small conference.

The 363 ARR Action Editors (from the June—November ARR cycles), who had the role of ACL
2022 Area Chairs interacting with reviewers, leading paper review discussions, and writing meta-
reviews.

The 2,323 ARR reviewers (from the June—-November ARR cycles), who contributed for the ACL
2022 reviewing cycles, providing valuable feedback to the authors.

The emergency ARR Action Editors and reviewers, who provided their support at the last minute
to ensure a timely reviewing process.

The amazing ARR team, who collaborated in the challenge of managing and implementing the
ARR reviewing needed for the scale of ACL 2022. In particular, we acknowledge Amanda Stent
and Goran Glava$ as Guest ARR Editors-in-Chief for ACL 2022, Graham Neubig as Guest ARR
Chief Technical Officer for ACL 2022, and Sara Goggi as Guest ARR Editorial Manager for ACL
2022.

ACL 2022 counted on the contributions of many wonderful committees, including:

Our Best Paper Selection Committee, who selected the best papers and the outstanding papers:
Tim Baldwin, Kathleen McKeown, David Chiang, Min-Yen Kan, and Taro Watanabe.

Our Ethics Advisory Committee, chaired by Christiane Fellbaum and Su Lin Blodgett, for their
hard work to ensure that all the accepted papers addressed the ethical issues appropriately, under a
very tight schedule and on a new platform.

Our amazing Publication Chair Danilo Croce, our Handbook Chair Marco Polignano, the Techni-
cal OpenReview Chair Rodrigo Wilkens, and the Scheduler Chair Jordan Zhang, who jointly with
the NAACL 2022 Publication Chair, Ryan Cotterell, made an enormous contribution to the com-
munity by implementing the integration scripts for generating the proceedings, the handbook and
the schedule from the OpenReview platform.

Our Publicity Chairs Isabelle Augenstein, Emmanuele Chersoni, Diana Maynard, Soujanya Poria,
and Joel Tetreault, for their work on managing the communications on social media platforms.

The Internal Communications Chair Marcely Boito Zanon for streamlining the processes.

The wonderful Technical OpenReview Chair Rodrigo Wilkens, who went above and beyond to
ensure that the typical ACL conference functionalities were translated to a new environment.

We would also like to thank many people who helped us with various software used for the conference:

The ARR Tech team, in particular Sebastin Santy and Yoshitomo Matsubara, who served as Guest
ARR Tech Team for ACL 2022.



The OpenReview team, in particular Nadia .’Bahy, Celeste Martinez Gomez, and Melisa Bok,
who helped to implement the integration of ARR as a reviewing platform for ACL 2022.

The whole Underline team, in particular Sol Rosenberg, Jernej Masnec, Damira Mrsi¢, and Mateo
Antonic, who created a virtual site for the conference.

As Program chairs, we had to deal with many tasks, including handling new protocols and situations and
a new conference management environment. We would not be able to complete these tasks without the
advice from our colleagues, including

Our fantastic General Chair Bernardo Magnini, who provided invaluable support and feedback
throughout the whole process, including collaborating on the efforts to take on the challenge of
reengineering the conference reviewing processes and pipeline.

The Program Co-Chairs of NAACL 2022 Marine Carpuat, Marie-Catherine de Marneffe, and Ivan
Vladimir Meza Ruiz, and the NAACL 2022 General Chair, Dan Roth, for collaborating in the
challenge of coordinated adoption of ARR reviewing in a full scale for ACL 2022 and NAACL
2022.

The Program Co-Chairs of previous editions of *ACL conferences, in particular the ACL-IJCNLP
2021 PC chairs Roberto Navigli, Fei Xia, and Wenjie Li, as well as the EMNLP 2021 PC chairs Lu-
cia Specia, Scott Wen-tau Yih, and Xuanjing Huang for providing amazing guidance and support,
and sharing their experience and answering our many questions, often on short notice.

The ACL Executive Committee, especially Tim Baldwin (the ACL President), Rada Mihalcea (the
ACL Past President), Shiqi Zhao (Secretary), Priscilla Rasmussen (Business Manager), and the
members of the ACL executive committee for providing invaluable feedback and for helping us
sort through various issues.

The Computational Linguistics Editor-in-Chief Hwee Tou Ng, the TACL Editors-in-Chief Ani
Nenkova and Brian Roark, and the TACL Editorial Assistant Cindy Robinson, for coordinating the
Computational Linguistics and the TACL presentations at ACL 2022.

We would also like to thank all the authors who submitted/committed their work to ACL 2022. Although
we were only able to accept a small percentage of the submissions, your hard work makes this conference
exciting and our community strong. Our huge thanks goes to the *ACL communities for the kind and
patient support during a year of major changes in our submission and reviewing processes.

Last, but not least, we thank our students, interns, postdocs, colleagues, and families for being so under-
standing and supportive during this intense year, and especially when we were swamped by countless
conference deadlines and meetings. Our deepest gratitude is to all of you. We hope you will enjoy this
60th Anniversary edition of ACL.

Smaranda Muresan (Columbia University and Amazon AWS Al Labs, USA)
Preslav Nakov (Qatar Computing Research Institute, HBKU)
Aline Villavicencio (University of Sheffield, UK)

ACL 2022 Program Committee Co-Chairs
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Message from the Local Chairs

Back in March 2020, just after the first COVID-19 lockdown, we submitted our bid for Dublin to host
ACL 2022, conference that you are currently attending. In November 2020, we learned that our bid had
been successful, which we were of course delighted to hear. Of course, at that stage — and at many points
in between — we have wondered whether we would be able to meet face-to-face at all, and it is great
that we are able to host you in the wonderful city of Dublin where we are privileged to live, as well as
accommodating many of you online.

ACL is an opportunity to welcome not just our European friends and colleagues, but also those from
farther afield. Ireland punches above its weight in the areas of NLP and Machine Learning, principally
through the SFI-funded €100 million ADAPT Centre for Digital Content Technology, which comprises
experts from 4 local Dublin universities as well as 4 further universities from across the country in a
range of disciplines in Al. We have internationally renowned groups in machine translation, information
retrieval, speech technology, parsing and grammar Induction, among others, so we believe it is appro-
priate that ACL is being held in our country for the first time. We are of course grateful to everyone
who submitted a paper; whether your work was selected for presentation or not, if no-one had submitted,
we wouldn’t have had a conference. For those of you whose work was selected for presentation, many
thanks for coming to Dublin, or for presenting online.

Along the way, we have been helped greatly by the General Chair Bernardo Magnini, and by Priscilla
Rasmussen and others from the ACL executive team, to whom we are extremely thankful. However, by
far the biggest thanks are due to Greg Carew and his team in Abbey Conference and Events for their
professional support of the conference. You will have met them at registration, and they are available
throughout the event to ensure your needs are met. We have been engaging with them for 2 years now on
ACL, and for longer as they helped Andy host the MT Summit in 2019. We could not have made a better
choice of PCO to assist us with all the requirements involved in hosting the best-regarded conference in
our area. This has been a true partnership that has made this journey an enjoyable one.

We are also extremely grateful to Fdilte Ireland for their extremely generous support of this conference,
and to our PostDocs Guodong Xie & Pintu Lohar (with Andy at DCU), and Vasudevan Nedumpozhimana
& Filip Klubic¢ka (with John at TUD) for their huge efforts to recruit and manage the small army of
student volunteers. Finally, we really hope that you all enjoy the conference, that you benefit from
the excellent programme that has been assembled, and that you go away from here having made new
friends. We are fortunate indeed that many of our very best friends are in the computational linguistics
community, and we will try our very best to meet as many of you as possible during the event.

Andy Way (Dublin City University, Ireland)
John Kelleher (TU Dublin, Ireland)

Local Chairs, ACL 2022
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Keynote Talk: Language in the Human Brain

Angela D. Friederici
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Abstract: Language is considered to be a uniquely human faculty. The different aspects of the language
system, namely phonology, semantics and syntax have long been discussed with respect to their species-
specificity. Syntax as the ability to process hierarchical structures appears to be specific to humans. The
available neuroscientific data allow us to define the functional language network which involves Broca’s
area in the inferior frontal cortex and the posterior superior temporal cortex. Within this network, the
posterior part of Broca’s area plays a special role as it supports the processing of hierarchical syntactic
structures, in particular the linguistic computation Merge which is at the root of every language. This
part of Broca’s area is connected to the posterior temporal cortex via a dorsally located white matter
fiber tract hereby providing to structural basis for the functional interplay of these regions. It has been
shown that the maturation of this white matter pathway is directly correlated with the ability to process
syntactically complex sentences during human development. Moreover, this dorsal pathway appears to
be weak in the prelinguistic infant and in the non-human primate. These findings suggest that the dorsal
pathway plays a crucial role in the emergence of syntax in human language.

Bio: Angela D. Friederici is a cognitive neuroscientist in the domain of language. She is director at the
Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig, Germany and the
Founding director of this institution founded in 1994.

She graduated in linguistics and psychology at the University of Bonn (Germany) and spent a postdoc-
toral year at MIT (USA). She was a research fellow at the Max Planck Institute in Nijmegen (NL), at the
University Rene Descartes, Paris (F) and University of California, San Diego (USA). Prior to joining the
Max Planck Society as a director, she was professor for Cognitive Sciences at the Free University Berlin.
Friederici is honorary professor at the University of Leipzig (Psychology), the University of Potsdam
(Linguistics) and the Charité Universititsmedizin Berlin (Neurology) and she holds a Doctor honoris
causa from the University of Mons, Belgium. Between 2014 and 2020 she was Vice President for the
Human Sciences Section of the Max Planck Society.

Her main field of research is the neurobiology of language. She published about 500 scientific papers on
this topic in major international journals. She received a number of scientific awards: 1987 Heisenberg
Fellowship of the German Research Foundation, 1990 Alfried Krupp Award of the Alfried Krupp von
Bohlen and Halbach-Stiftung, 1997 Gottfried Wilhelm Leibniz Prize of the German Research Founda-
tion, and 2011 Carl Friedrich Gauss Medal of the Brunswick Scientific Society. She is member of the
Berlin-Brandenburg Academy of Sciences and Humanities, member of the national German Academy
of Sciences ’Leopoldina’ and member of the Academia Europaea.
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Keynote Fire-Side Chat with Barbara Grosz and Yejin Choi
on “The Trajectory of ACL and the Next 60 Years”

For the 60th Anniversary of ACL 2022, we will feature a keynote fire-side chat on “The Trajectory of
ACL and the Next 60 years” with two keynote talks in dialogue: Barbara Grosz and Yejin Choi followed
by a moderated discussion lead by Rada Mihalcea.

Remarks on What the Past Can Tell the Future

Barbara J. Grosz
Harvard University SEAS

Abstract: Research in computational linguistics and spoken language systems has made astonishing
progress in the last decade. Even so, the challenge remains of achieving human-level fluent dialogue
conversational capabilities beyond narrowly defined domains and tasks. Findings of earlier ACL times
research on dialogue hold some lessons for breaking the “dialogue boundary” in computational lingui-
stics yet again, if ways can be found to integrate them into deep-learning language models. These models
raise some of the most serious ethical challenges of current computing research and technologies. Ex-
panding their powers in this direction will raise more. In discussing these topics, I will raise questions
for Prof. Choi and our subsequent discussion.

Bio: Barbara J. Grosz is Higgins Research Professor of Natural Sciences in the Paulson School of En-
gineering and Applied Sciences at Harvard University. Her contributions to Al include fundamental
advances in natural-language dialogue processing and in theories of multi-agent collaboration as well
as innovative uses of models developed in this research to improve healthcare coordination and science
education. She co-founded Harvard’s Embedded EthiCS program, which integrates teaching of ethical
reasoning into core computer science courses. A member of the National Academy of Engineering,
the American Philosophical Society, and the American Academy of Arts and Sciences, she is a fellow
of several scientific societies and recipient of the 2009 ACM/AAAI Allen Newell Award, the 2015 1J-
CAI Award for Research Excellence, and the 2017 Association for Computational Linguistics Lifetime
Achievement Award.

2082: An ACL Odyssey
The Dark Matter of Intelligence and Language

Yejin Choi
Paul G. Allen School of Computer Science & Engineering at the University of Washington

Abstract: In this talk, I will wander around reflections on the past of ACL and speculations on the future
of ACL. This talk will be purposefully imaginative and accidentally controversial, by emphasizing on the
importance of deciphering the dark matter of intelligence, by arguing for embracing all the ambiguous
aspects of language at all pipelines of language processing, by highlighting the counterintuitive contin-
uum across language, knowledge, and reasoning, and by pitching the renewed importance of formalisms,
algorithms, and structural inferences in the modern deep learning era. Looking back, at the 50’th ACL,
I couldn’t possibly imagine that I would be one day giving this very talk. For that reason, I will also
share my personal anecdotes on the lasting inspirations from the previous lifetime achievement award
speeches, how I believe talent is made, not born, and the implication of that belief for promoting diversity
and equity.
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Bio: Yejin Choi is Brett Helsel Professor at the Paul G. Allen School of Computer Science & Engi-
neering at the University of Washington and a senior research manager at AI2 overseeing the project
Mosaic. Her research investigates commonsense knowledge and reasoning, neuro-symbolic integration,
neural language generation and degeneration, multimodal representation learning, and Al for social good.
She is a co-recipient of the ACL Test of Time award in 2021, the CVPR Longuet-Higgins Prize in 2021,
a NeurIPS Outstanding Paper Award in 2021, the AAAI Outstanding Paper Award in 2020, the Borg
Early Career Award in 2018, the inaugural Alexa Prize Challenge in 2017, IEEE AI’s 10 to Watch in
2016, and the ICCV Marr Prize in 2013.
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Keynote Panel: Supporting Linguistic Diversity

Chair: Steven Bird, Charles Darwin University

Panelists and languages represented:

e Robert Jimerson, Rochester Institute of Technology (Seneca, USA)

Fajri Koto, The University of Melbourne (Minangkabau, Indonesia)

Heather Lent, University of Copenhagen (Creole languages)

Teresa Lynn, Dublin City University (Irish)

Manuel Mager, University of Stuttgart (Wixaritari, Mexico)

Perez Ogayo, Carnegie Mellon University (Luo and Kiswabhili, Kenya)

How do the tools and techniques of computational linguistics serve the full diversity of the world’s lan-
guages? In particular, how do they serve the people who are still speaking thousands of local languages,
often in highly multilingual, post-colonial situations? This 60th meeting of the ACL features a special
theme track on language diversity with the goal of “reflecting and stimulating discussion about how the
advances in computational linguistics and natural language processing can be used for promoting lan-
guage diversity”. This keynote talk-panel will showcase the special theme and identify key learnings
from the conference. We hope this session will help to shape the future agenda for speech and language
technologies in support of global linguistic diversity. The session will be organised around a series of
questions under three headings.

Diverse Contexts. What is the situation of local languages where panel members are working? Are
there multiple languages with distinct functions and ideologies? What are the local aspirations for the
future of these languages. How are people advocating for language technology on the ground? How did
the work begin? What does success look like?

Understanding Risks. Do the people who provide language data fully understand the ways their da-
ta might be used in future, including ways that might not be in their interest? What benefit are local
participants promised in return for their participation, and do they actually receive these benefits? Are
there harms that come with language standardisation? What principles of doing no harm can we adopt?

New Challenges. How can we provide benefits of text technologies without assuming language stan-
dardisation, official orthography, and monolingual usage? When working with local communities, do
we always require data in exchange for technologies, or is a non-extractive NLP possible? How do we
decolonise speech and language technology? At the beginning of the International Decade of Indigenous
Languages 2022-2032, we ask: how do we respond as a community, and how can our field be more
accessible to indigenous participation?
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Abstract

Pre-trained language models have shown stel-
lar performance in various downstream tasks.
But, this usually comes at the cost of high
latency and computation, hindering their us-
age in resource-limited settings. In this work,
we propose a novel approach for reducing the
computational cost of BERT with minimal loss
in downstream performance. Our method dy-
namically eliminates less contributing tokens
through layers, resulting in shorter lengths and
consequently lower computational cost. To
determine the importance of each token rep-
resentation, we train a Contribution Predictor
for each layer using a gradient-based saliency
method. Our experiments on several diverse
classification tasks show speedups up to 22x
during inference time without much sacrifice
in performance. We also validate the quality
of the selected tokens in our method using hu-
man annotations in the ERASER benchmark.
In comparison to other widely used strategies
for selecting important tokens, such as saliency
and attention, our proposed method has a sig-
nificantly lower false positive rate in generat-
ing rationales. Our code is freely available
at https://github.com/amodaresi/
AdapLeR.

1 Introduction

While large-scale pre-trained language models ex-
hibit remarkable performances on various NLP
benchmarks, their excessive computational costs
and high inference latency have limited their us-
age in resource-limited settings. In this regard,
there have been various attempts at improving the
efficiency of BERT-based models (Devlin et al.,
2019), including knowledge distilation (Hinton
et al., 2015; Sanh et al., 2019; Sun et al., 2019,
2020; Jiao et al., 2020), quantization (Gong et al.,
2014; Shen et al., 2020; Tambe et al., 2021), weight

* Equal Contribution.
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pruning (Han et al., 2016; He et al., 2017; Michel
et al., 2019; Sanh et al., 2020), and progressive
module replacing (Xu et al., 2020). Despite pro-
viding significant reduction in model size, these
techniques are generally static at inference time,
i.e., they dedicate the same amount of computation
to all inputs, irrespective of their difficulty.

A number of techniques have been also proposed
in order to make efficiency enhancement sensitive
to inputs. Early exit mechanism (Schwartz et al.,
2020b; Liao et al., 2021; Xin et al., 2020; Liu et al.,
2020; Xin et al., 2021; Sun et al., 2021; Eyza-
guirre et al., 2021) is a commonly used method
in which each layer in the model is coupled with
an intermediate classifier to predict the target la-
bel. At inference, a halting condition is used to
determine whether the model allows an example
to exit without passing through all layers. Vari-
ous halting conditions have been proposed, includ-
ing Shannon’s entropy (Xin et al., 2020; Liu et al.,
2020), softmax outputs with temperature calibra-
tion (Schwartz et al., 2020b), trained confidence
predictors (Xin et al., 2021), or the number of agree-
ments between predictions of intermediate classi-
fiers (Zhou et al., 2020).

Most of these input-adaptive techniques com-
press the model from the depth perspective (i.e.,
reducing the number of involved encoder layers).
However, one can view compression from the
width perspective (Goyal et al., 2020; Ye et al.,
2021), i.e., reducing the length of hidden states.
(Ethayarajh, 2019; Klafka and Ettinger, 2020).
This is particularly promising as recent analytical
studies showed that there are redundant encoded
information in token representations (Klafka and
Ettinger, 2020; Ethayarajh, 2019). Among these
redundancies, some tokens carry more task-specific
information than others (Mohebbi et al., 2021),
suggesting that only these tokens could be con-
sidered through the model. Moreover, in contrast
to layer-wise pruning, token-level pruning does not
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come at the cost of reducing model’s capacity in
complex reasoning (Sanh et al., 2019; Sun et al.,
2019). POWER-BERT (Goyal et al., 2020) is one of
the first such techniques which reduces inference
time by eliminating redundant token representa-
tions through layers based on self-attention weights.
Several studies have followed (Kim and Cho, 2021;
Wang et al., 2021); However, they usually optimize
a single token elimination configuration across the
entire dataset, resulting in a static model. In addi-
tion, their token selection strategies are based on
attention weights which can result in a suboptimal
solution (Ye et al., 2021).

In this work, we introduce Adaptive Length
Reduction (AdapLeR). Instead of relying on at-
tention weights, our method trains a set of Contri-
bution Predictors (CP) to estimate tokens’ saliency
scores at inference. We show that this choice re-
sults in more reliable scores than attention weights
in measuring tokens’ contributions. The most re-
lated study to ours is TR-BERT (Ye et al., 2021)
which leverages reinforcement learning to develop
an input-adaptive token selection policy network.
However, as pointed out by the authors, the prob-
lem has a large search space, making it difficult for
RL to solve. To mitigate this, they resorted to extra
heuristics such as imitation learning (Hussein et al.,
2017) for warming up the training of the policy net-
work, action sampling for limiting the search space,
and knowledge distillation for transferring knowl-
edge from the intact backbone fine-tuned model.
All of these steps significantly increase the train-
ing cost. Hence, they only perform token selection
at two layers. In contrast, we propose a simple
but effective method to gradually eliminate tokens
in each layer throughout the training phase using
a soft-removal function which allows the model
to be adaptable to various inputs in a batch-wise
mode. It is also worth noting in contrast to our ap-
proach above studies are based on top-k operations
for identifying the k most important tokens during
training or inference, which can be expensive with-
out a specific hardware architecture (Wang et al.,
2021).

In summary, our contributions are threefold:

* We couple a simple Contribution Predictor
(CP) with each layer of the model to estimate
tokens’ contribution scores to eliminate redun-
dant representations.

* Instead of an instant token removal, we grad-
ually mask out less contributing token repre-

sentations by employing a novel soft-removal
function.

* We also show the superiority of our token
selection strategy over the other widely used
strategies by using human rationales.

2 Background

2.1 Self-attention Weights

Self-attention is a core component of the Trans-
formers (Vaswani et al., 2017) which looks for
the relation between different positions of a sin-
gle sequence of token representations (1, ..., T5)
to build contextualized representations. To this
end, each input vector x; is multiplied by the corre-
sponding trainable matrices (), K, and V" to respec-
tively produce query (g;), key (k;), and value (v;)
vectors. To construct the output representation z;, a
series of weights is computed by the dot product of
g; with every k; in all time steps. Before applying
a softmax function, these values are divided by a
scaling factor and then added to an attention mask
vector m, which is zero for positions we wish to
attend and —oo (in practice, —10000) for padded
tokens (Vaswani et al., 2017). Mathematically, for
a single attention head, the weight attention from
token x; to token x; in the same input sequence
can be written as:

fit aky n R (1)
Q; ; =solftmax | —= +m; | €

The time complexity for this is O(n?) given the
dot product qzk;r where n is the input sequence
length. This impedes the usage of self-attention
based models in low-resource settings.

While self-attention is one of the most white-box
components in transformer-based models, relying
on raw attention weights as an explanation could
be misleading given that they are not necessarily re-
sponsible for determining the contribution of each
token in the final classifier’s decision (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Abnar and
Zuidema, 2020). This is based on the fact that raw
attentions are being faithful to the local mixture of
information in each layer and are unable to obtain a
global perspective of the information flow through
the entire model (Pascual et al., 2021).

2.2 Gradient-based Saliency Scores

Gradient-based methods provide alternatives to at-
tention weights to compute the importance of a
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Figure 1: To reduce the inference computation, in each layer (1) the attribution score of the token representation is
estimated and (2) based on a reduced uniform-level threshold (6¢ = ne/n) token representations with low importance
score are removed. Since the final layer’s classifier is connected to the [CLS] token and it could act as a pooler
within each layer it is the only token that would remain regardless of its score.

specific input feature. Despite having been widely
utilized in other fields earlier (Ancona et al., 2018;
Simonyan et al., 2013; Sundararajan et al., 2017;
Smilkov et al., 2017), they have only recently be-
come popular in NLP studies (Bastings and Fil-
ippova, 2020; Li et al., 2016; Yuan et al., 2019).
These methods are based on computing the first-
order derivative of the output logit y. w.r.t. the
input embedding h{ (initial hidden states), where
c could be true class label to find the most impor-
tant input features or the predicted class to interpret
model’s behavior. After taking the norm of output
derivatives, we get sensitivity (Ancona et al., 2018),
which indicates the changes in model’s output with
respect to the changes in specific input dimensions.
Instead, by multiplying gradients with input fea-
tures, we arrive at gradientxinput (Bastings and
Filippova, 2020), also known as saliency, which
also considers the direction of input vectors to de-
termine the most important tokens. Since these
scores are computed for each dimension of embed-
ding vectors, an aggregation method such as L2
norm or mean is needed to produce one score per
input token (Atanasova et al., 2020a):

0y
DhY

S; =|| ® hY |2 2)

3 Methodology

As shown in Figure 1, our approach relies on drop-
ping low contributing tokens in each layer and
passing only the more important ones to the next.
Therefore, one important step is to measure the im-
portance of each token. To this end, we opted for
saliency scores which have been recently shown

as a reliable criterion in measuring token’s con-
tributions (Bastings and Filippova, 2020; Pascual
et al., 2021). In Section 5.1 we will show results
for a series quantitative analyses that supports this
choice. In what follows, we first describe how we
estimate saliency scores at inference time using a
set of Contribution Predictors (CPs) and then elab-
orate on how we leverage these predictors during
inference (Section 3.2) and training (Section 3.3).

3.1 Contribution Predictor

Computing gradients during inference is problem-
atic as backpropagation computation prolongs in-
ference time, which is contrary to our main goal.
To circumvent this, we simply add a CP after each
layer ¢ in the model to estimate contribution score
for each token representation, i.e., S¢. The model
then decides on the tokens that should be passed to
the next layer based on the values of S¢. CP com-
putes S! for each token using an MLP followed
by a softmax activation function. We argue that,
despite being limited in learning capacity, the MLP
is sufficient for estimating scores that are more gen-
eralized and relevant than vanilla saliency values.
We will present a quantitative analysis on this topic
in Section 5.

3.2 Model Inference

Most BERT-based models consist of L encoder
layers. The input sequence of n tokens is usually
passed through an embedding layer to build the
initial hidden states of the model h". Each encoder
layer then produces the next hidden states using the



ones from the previous layer:
h* = Encodery(h*~1) 3)

In our approach, we eliminate less contribut-
ing token representations before delivering hidden
states to the next encoder. Tokens are selected
based on the contribution scores ¢ obtained from
the CP of the corresponding layer ¢. As the sum
of these scores is equal to one, a uniform level
indicates that all tokens contribute equally to the
prediction and should be retained. On the other
hand, the lower-scoring tokens could be viewed as
unnecessary tokens if the contribution scores are
concentrated only on a subset of tokens. Given
that the final classification head uses the last hid-
den state of the [CLS] token, we preserve this
token’s representation in all layers. Despite pre-
serving this, other tokens might be removed from
a layer when [CLS] has a significantly high esti-
mated contribution score than others. Based on this
intuition, we define a cutoff threshold based on the
uniform level as: 6/ = 1’ - 1/n with 0 < * < 1to
distinguish important tokens. Tokens are consid-
ered important if their contribution score exceeds &
(which is a value equal or smaller than the uniform
score). Intuitively, a larger n provides a higher §
cutoff level, thereby dropping a larger number of
tokens, hence, yielding more speedup. The value
of 7 determines the extent to which we can rely
on CP’s estimations. In case the estimations of
CP are deemed to be inaccurate, its impact can be
reduced by lowering 7. We train each layer’s n°
using an auxiliary training objective, which allows
the model to adjust the cutoff value to control the
speedup-performance tradeoff. Also, since each
input instance has a different computational path
during token removal process, it is obvious that
at inference time, the batch size should be equal
to one (single instance usage), similarly to other
dynamic approaches (Zhou et al., 2020; Liu et al.,
2020; Ye et al., 2021; Eyzaguirre et al., 2021; Xin
et al., 2020).

3.3 Model Training

Training consists of three phases: initial fine-
tuning, saliency extraction, and adaptive length re-
training. In the first phase, we simply fine-tune the
backbone model (BERT) on a given target task. We
then extract the saliencies of three top-perfroming
checkpoints from the fine-tuning process and com-
pute the average of them to mitigate potential in-
consistencies in saliency scores (cf. Section 2.2).

Figure 2: The soft-removal function plotted with
A€ {3,9,27,81} and 6 = 0.25. As \ increases, the
removal region (1) gets steeper while the other zone (2),
which is almost horizontal, approaches the zero level.

The final step is to train a pre-trained model us-
ing an adaptive length reduction procedure. In
this phase, a non-linear function gradually fades
out the representations throughout the training pro-
cess. Each CP is jointly trained with the rest of
the model using the saliencies extracted in the pre-
vious phase alongside with the target task labels.
We also define a speedup tuning objective to deter-
mine the thresholds (via tuning 1) to control the
performance-speedup trade-off. In the following,
we elaborate on the procedure.

Soft-removal function. During training, if to-
kens are immediately dropped similarly to the in-
ference mode, the effect of dropping tokens can-
not be captured using a gradient backpropagation
procedure. Using batch-wise training in this sce-
nario will also be problematic as the structure
will vary with each example. Hence, inspired by
the padding mechanism of self-attention models
(Vaswani et al., 2017) we introduce a new proce-
dure that gradually masks out less contributing to-
ken representations. In each layer, after predicting
contribution scores, instead of instantly removing
the token representations, we accumulate a nega-
tive mask to the attention mask vector M using a
soft-removal function:

Aadj(gf—éé)—g SE< ot
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This function consists of two main zones (Figure
2). In the first term, the less important tokens with
scores lower than the threshold (5¢) are assigned
higher negative masking as they get more distant



from §. The slope is determined by A\,q; = /s,
where ) is a hyperparameter that is increased ex-
ponentially after each epoch (e.g., A +— 10 x X af-
ter finishing each epoch). Increasing A makes the
soft-removal function stronger and more decisive
in masking the representations. To avoid under-
going zero gradients during training, we define
0 < B < 0.1 to construct a small negative slope
(similar to the well known Leaky-ReLLU of Maas
et al. 2013) for those tokens with higher contribut-
ing scores than ¢¢ threshold. Consider a scenario in
which n’ sharply drops, causing most of 5! get over
the 6¢ threshold. In this case, the non-zero value
in the second term of Equation 4, which facilitates
optimizing 7’

Training the Contribution Predictors. The CPs
are trained by an additional term which is based
on the KL-divergence' of each layer’s CP output
with the extracted saliencies. The main training
objective is a minimization of the following loss:

L = Lcg + vLcp )

Where + is a hyperparameter which that specifies
the amount of emphasis on the CP training loss:

L—-1
Lep =) (L—0)Dxi(5]]59)
= (©6)

L—-1 N S,g
=S (-0 Slog(3)
/=0 i=1 i

Since S is based on the input embeddings, the
[CLS] token usually shows a low amount of con-
tribution due to not having any contextualism in
the input. As we leverage the representation of
the [CLS] token in the last layer for classification,
this token acts as a pooler and gathers information
about the context of the input. In other words, the
token can potentially have more contribution as it
passes through the model. To this end, we amplify
the contribution score of [CLS] and renormalize
the distribution (5’ %) with a trainable parameter 6t

ae _ 0°S{1[i = 1] + S{1i > 1]

; 7
’ 0¢St + >0, St @

By this procedure, the next objective (discussed
in the next paragraph) will have the capability of
tuning the amount of pooling, consequently con-
trolling the amount of speedup. Larger 6 push the

"Inclusive KL loss. Check Appendix A.

CPs to shift the contribution towards the [CLS] to-
ken to gather most of the task-specific information
and avoids carrying redundant tokens through the
model.

Speedup Tuning. In the speedup tuning process,
we combine the cross-entropy loss of the target
classification task with a length loss which is the
expected number of unmasked token representa-
tions in all layers. Considering that we have a
non-positive and continuous attention mask M,
the length loss of a single layer would be the
summation over the exponential of the mask val-
ues exp(m;) to map the masking range [—o0, 0]
to a [0 (fully masked/removed), 1 (fully retained)]
bound.

ESPD./PERF. = £CE + ¢£LENGTH

L n (8)
Lienotn = Z Z exp(mf)

=1 i=1

Equation 8 demonstrates how the length loss is
computed inside the model and how it is added to
the main classification loss. During training, we
assign a separate optimization process which tunes
7 and 6 to adjust the thresholds and the amount of
[CLS] pooling? alongside with the CP training.
The reason that this objective is treated as a sep-
arate problem instead of merging it with the pre-
vious one, is because in the latter case the CPs
could be influenced by the length loss and try to
manipulate the contribution scores for some tokens
regardless of their real influence. So in other words,
the first objective is to solve the task and make it
explainable with the CPs, and the secondary objec-
tive builds the speedup using tuning the threshold
levels and the amount of pooling in each layer.

4 Experiments

4.1 Datasets

To verify the effectiveness of AdapLeR on infer-
ence speedup, we selected eight various text classi-
fication datasets. In order to incorporate a variety
of tasks, we utilized SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011) for sentiment, MRPC
(Dolan and Brockett, 2005) for paraphrase, AG’s
News (Zhang et al., 2015) for topic classification,
DBpedia (Lehmann et al., 2015) for knowledge
extraction, MNLI (Williams et al., 2018) for NLI,

%Since 6 is not in the computational DAG, we employed a
dummy variable inside the model. See Appendix B.



Model SST-2 IMDB HateXplain MRPC MNLI QNLI AG’s news DBpedia
Acc. Speedup Acc. Speedup Acc Speedup FI1. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup
BERT 927 1.00x 93.8 1.00x 683 1.00x 875 1.00x 842 1.00x 903 1.00x 944 1.00x 993 1.00x
DistilBERT 922 2.00x 929 200x 682 200x 8.0 200x 81.8 200x 881 2.00x 942 2.00x 99.3 2.00x
PoWER-BERT 92.1 1.18x 922 1.70x 669 2.69x 880 1.07x 829 1.10x 89.7 1.23x 921 12.50x 98.1 14.80x
TR-BERT 92.1 1.46x 932 290x 679 223x 819 [l.16x 848 1.00x 89.0 1.09x 932 10.20x 989 10.01x
AdapLeR 923 1.49x 91.7 32Ix 68.6 473x 876 127x 829 142x 893 147x 925 17.10x 989 22.23x

Table 1: Comparison of our proposed method (AdapLeR) with other baselines in eight classification tasks in terms
of performance and speedup. For each dataset the corresponding metric has been reported (Accuracy: Acc., F1: F-1
Score). In the MNLI task, the speedup and performance values are the average of the evaluations on the matched

and mismatched test sets.

QNLI (Rajpurkar et al., 2016) for question answer-
ing, and HateXplain (Mathew et al., 2021) for hate
speech.® Evaluations are based on the test split of
each dataset. For those datasets that are in the
GLUE Benchmark (Wang et al., 2018), test results
were acquired by submitting the test predictions to
the evaluation server.

4.2 Experimental Setup

As our baseline, we report results for the pre-
trained BERT model (base-uncased) (Devlin et al.,
2019) which is also the backbone of AdapLeR.
We also compare against three other approaches:
DistilBERT (uncased) (Sanh et al., 2019) as a
static compression method, POWER-BERT and
TR-BERT as two strong length reduction methods
(cf. Sec. 1). We used the provided implemen-
tations and suggested hyperparameters* to train
these baselines. To fine-tune the backbone model,
we used same hyperparameters over all tasks (see
Section D for details). The backbone model and
our model implementation is based on the Hug-
gingFace’s Transformers library (Wolf et al., 2020).
Trainings and evaluations were conducted on a dual
2080Ti 11GB GPU machine with multiple runs.

Hyperparameter Selection. Overall, we intro-
duced four hyperparameters (7, ¢, A, 5)° which are
involved in the training process. Among these, ¢
and +y are the primary terms that have considerable
effects on AdapLeR’s downstream performance
and speedup. This makes our approach comparable
to existing techniques (Goyal et al., 2020; Ye et al.,
2021) which usually have two or three hyperpa-
rameters adjusted per task. We used grid search to

3See the statistics of datasets in Table 5 in Appendix.

“Since some of the datasets were not used originally, we
had to search the hyperparameters based on the given ranges.

Note that § and 7 are trainable terms that are tuned by the
model during training.

find the optimal values for these two terms, while
keeping the other hyperparameters constant over
all datasets. Hyperparamter selection is further
discussed in Section D.

FLOPs Computation. We followed Ye et al.
(2021) and Liu et al. (2020) and measured com-
putational complexity in terms of FLOPs, i.e., the
number of floating-point operations (FLOPs) in
a single inference procedure. This allows us to
assess models’ speedups independently of their op-
erating environment (e.g., CPU/GPU). The total
FLOPs of a given model is a summation of the
measured FLOPs over all test examples. Then, a
model’s speedup can be defined as the total FLOPs
measured on BERT (our baseline) divided by the
corresponding model’s total FLOPs. To have a fair
comparison, we also computed FLOPs for POWER-
BERT in a single instance mode, described in Sec-
tion C.

4.3 Results

Table 1 shows performance and speedup for
AdapLeR and other comparison models across
eight different datasets. While preserving the same
level of performance, AdapLeR outperforms other
techniques in terms of speedup across all tasks
(ranging from +0.2x to +7.4x compared to the best
model in each dataset).

It is noteworthy that the results also reveal some
form of dependency on the type of the tasks. Some
tasks may need less amount of contextualism dur-
ing inference and could be classified by using only
a fraction of input tokens. For instance, in AG’s
News, the topic of a sentence might be identifiable
with a single token (e.g., soccer — Topic: Sports,
see Figure 6 in the Appendix for an example).
PoWER-BERT adopts attention weights in its to-
ken selection which requires at least one layer of
computation to be determined, and TR-BERT ap-
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Figure 3: Accuracy-Speedup trade-off curve for

AdapLeR and two other state-of-the-art reduction meth-
ods; TR: TR-BERT, PoWER: PoOWER-BERT on two
different tasks.

plies token elimination only in two layers to reduce
the training search space. In contrast, our proce-
dure performs token elimination for all layers of
the model, enabling a more effective removal of re-
dundant tokens. On the other hand, we observe that
TR-BERT and PoWER-BERT lack any speedup
gains for tasks such as QNLI, MNLI, and MRPC
which need a higher degree of contextualism dur-
ing inference. However, AdapLeR can offer some
speedups even for these tasks.

Speedup-Performance Tradeoff. To provide a
closer look at the efficiency of AdapLeR in com-
parison with the other state-of-the-art length re-
duction methods, we illustrate speedup-accuracy
curves in Figure 3. We provide these curves for
two tasks in which other length reduction methods
show comparable speedups to AdapLeR. For each
curve, the points were obtained by tuning the most
influential hyperparameters of the corresponding
model. As we can see, AdapLeR significantly out-
performs the other two approaches in all two tasks.
An interesting observation here is that the curves
for TR-BERT and AdapLeR are much higher than
that of POWER-BERT. This can be attributed to
the input-adaptive procedure employed by the for-
mer two methods for determining the number of
reduced tokens (whereas POWER-BERT adopts a
fixed retention configuration in token elimination).

Movie Reviews MultiRC

Strategy Acc. Speedup Acc. Speedup
Full input 93.3 1.0x 67.7 1.0x
Human rationale  96.7 3.7x 76.6 4.6x
Saliency 92.3 3.7x 66.4 4.4x
Attention ALL 78.5 3.7x 62.9 4.4x
Attention [CLS] 70.3 3.7x 63.7 4.4x

Table 2: Accuracy and speedup when the most impor-
tant input tokens during fine-tuning are computed based
on attention and saliency strategies and human rationale
(the upper bound). The bold values indicate the best
corresponding strategy for each task (the closest perfor-
mance to the upper bound).

S Analysis

In this section, we first conduct an experiment to
support our choice of saliency scores as a super-
vision in measuring the importance of token rep-
resentations. Next, we evaluate the behavior of
Contribution Predictors in identifying the most im-
portant tokens in the AdapLeR.

5.1 Rationale as an Upper Bound

A natural question that arises when dealing with
token pruning is that of importance measure: what
is the most appropriate criterion for assessing the
relative importance of tokens within a sentence?
We resort to human rationale as a reliable up-
per bound for measuring token importance. To
this end, we used the ERASER benchmark (DeY-
oung et al., 2020), which contains multiple tasks
for which important spans of the input text have
been highlighted as supporting evidence (aka “ra-
tionale”) by human. Among the tasks in the
benchmark, we opted for two diverse classifica-
tion tasks: Movie reviews (Zaidan and Eisner,
2008) and MultiRC (Khashabi et al., 2018). In
the former task, the model predicts the sentiment
of the passage. Whereas the latter contains a pas-
sage, a question, and multiple candidate answers,
which is cast as a binary classification task of
passage/question/answer triplets in the ERASER
benchmark.

In order to verify the reliability of human ratio-
nales, we fine-tuned BERT based on the rationales
only, i.e., by excluding those tokens that are not
highlighted as being important in the input. In Ta-
ble 2, the first two rows show the performance of
BERT on the two tasks with full input and with hu-
man rationales only. We see that fine-tuning merely



SST-2 (dev) - Label: Negative

Layer O: [CLS] what was once original has been co - opted so frequently that it now seems pedestrian . [SEP]
Layer 5:  [CLS] once original co - opted - frequently seems
Layer 11:  [CLS] opted  frequently seems

QNLI (dev) - Label: Entailment

Layer O:
Layer 5: [CLS] what did tesla patent in 1891 ?
Layer 11: [CLS] did tesla patent 1891 ?

[CLS] what did tesla patent in 1891 ? [SEP] in the same year , he patented the tesla coil . [SEP]

tesla coil
tesla coil

same year patented

patented

Figure 4: The illustration of contribution scores obtained by CPs in three different layers of the model for two input
examples from SST-2 (sentiment) and QNLI (Question-answering NLI) tasks. The contribution scores are shown by
color intensity. Only the highlighted token representations are processed in each layer. See more full-layer plots in

the appendix 6.

on rationales not only yields less computation cost,
but also results in a better performance when com-
pared with the full input setting. Obviously, human
annotations are not available for a whole range of
downstream NLP tasks; therefore, this criterion is
infeasible in practice and can only be viewed as an
upper bound for evaluating different strategies in
measuring token importance.

5.2 Saliency vs. Attention

We investigated the effectiveness of saliency and
self-attention weights as two commonly used strate-
gies for measuring the importance of tokens in
pre-trained language models. To compute these,
we first fine-tuned BERT with all tokens in the
input for a given target task. We then obtained
saliency scores with respect to the tokens in the
input embedding layer. This brings about two ad-
vantages. Firstly, representations in the embedding
layer are non-contextualized, allowing us to mea-
sure the importance of each token independently
from the others. Secondly, the backpropagation
of gradients through layers to the beginning of the
model provides us with aggregated values for the
relative importance of each token based on the
entire model. Similarly, we aggregated the self-
attention weights across all layers of the model
using a post-processed variant of attentions called
attention rollout (Abnar and Zuidema, 2020), a pop-
ular technique in which the attention weight matrix
in each layer is multiplied with the preceding ones
to form aggregated attention values.

To assign an importance score to each token, we
examined two different interpretation of attention
weights. The first strategy is the one adopted by
PoWER-BERT (Goyal et al., 2020) in which for
each token we accumulate attention values from

other tokens. Additionally, we measured how much
the [CLS] token attends to each token in the sen-
tence, a strategy which has been widely used in
interpretability studies around BERT (Abnar and
Zuidema, 2020; Chrysostomou and Aletras, 2021;
Jain et al., 2020, inter alia). For a fair comparison,
for each sentence in the test set, we selected the
top-k salient and attended words, with & being the
number of words that are annotated as rationales.

Results in Table 2 show that fine-tuning on the
most salient tokens outperforms that based on the
most attended tokens. This denotes that saliency
is a better indicator for the importance of tokens.
Nonetheless, recent length reduction techniques
(Goyal et al., 2020; Kim and Cho, 2021; Wang
et al., 2021) have mostly adopted attention weights
as their criterion for selecting important tokens.
Computing these weights is convenient as they
are already computed during the forward pass,
whereas computing saliency requires an additional
backpropagation step. Note that in our approach,
saliency scores are easily estimated within infer-
ence time by the pre-trained CPs.

5.3 Contribution Predictor Evaluation

In this section we validate our Contribution Predic-
tors in selecting the most contributed tokens. Fig-
ure 4 illustrates two examples from the SST-2 and
QNLI datasets in which CPs identify and gradually
drop the irrelevant tokens through layers, finally
focusing mostly on the most important token rep-
resentations; pedestrian (adjective) in SST-2 and
tesla coil in the passage part of QNLI (both of
which are highly aligned with human rationale).
In order to quantify the extent to which
AdapLeR’s CPs can preserve rationales without
requiring direct human annotations in an unsuper-



—-x~- Saliency —-— Attention Rollout
Attention

—o— CP

O ity sl Gt piel

%0.45
€
0.40 -
0.35-  SEmrmpZy gy
1 2 3 4 5 6 7 8 9 10 11 12
Layer

Figure 5: Agreement with human rationales in terms
of mean Average Precision and False Positive Rate for
Contribution Predictor (CP) and three alternative tech-
niques.

vised manner we carried out the following exper-
iment. To investigate the effectiveness of trained
CPs in predicting human rationales we computed
the output scores of CPs in AdapLeR for each to-
ken representation in each layer. We also fine-tuned
a BERT model on the Movie Review dataset and
computed layer-wise raw attention, attention roll-
out, and saliency scores for each token represen-
tation. Since human rationales are annotated at
the word level, we sum the scores across tokens
corresponding to each word to arrive at word-level
importance scores. In addition to these soft scores,
we used the uniform-level threshold (i.e., 1/n) to
reach a binary score indicating tokens selected in
each layer.

As for evaluation, we used the Average Precision
(AP) and False Positive Rate (FPR) metrics by com-
paring the remaining tokens to the human rationale
annotations. The first metric measures whether the
model assigns higher continuous scores to those
tokens that are annotated by humans as rationales.
Whereas, the intuition behind the second metric
is how many irrelevant tokens are selected by the
model to be passed to subsequent layers. We used
soft scores for computing AP and binary scores for
computing FPR.

Figure 5 shows the agreement between human
rationales and the selected tokens based on the
two metrics. In comparison with the other widely
used strategies for selecting important tokens, such
as salinecy and attention, our CPs have signifi-
cantly less false positive rate in preserving ratio-

nales through layers. Despite having similar FPRs
at the final layer, CP is preferable to attention in
that it can better identify rationales at the earlier
layers, allowing the model to combine the most
relevant token representations when building the
final one. This in turn results in better performance,
as was also shown in the previous experiment in
Section 5.2. Also, we see that the curve of mAP for
saliency is consistently higher than other strategies
in terms of alignment with human rationales which
supports our choice of saliency as a measure for
token importance.

Finally, we note that there is a line of research
that attempts at guiding models to perform human-
like reasoning by training rationale generation si-
multaneously with the target task that requires hu-
man annotation (Atanasova et al., 2020b; Zhao
et al., 2020; Li et al., 2018). As a by-product of the
contribution estimation process, our trained CPs
are able to generate these rationales at inference
without the need for human-generated annotations.

6 Conclusion

In this paper, we introduced AdapLeR, a novel
method that accelerates inference by dynamically
identifying and dropping less contributing token
representations through layers of BERT-based mod-
els. Specifically, AdapLeR accomplishes this by
training a set of Contribution Predictors based on
saliencies extracted from a fine-tuned model and
applying a gradual masking technique to simulate
input-adaptive token removal during training. Em-
pirical results on eight diverse text classification
tasks show considerable improvements over exist-
ing methods. Furthermore, we demonstrated that
contribution predictors generate rationales that are
highly in line with those manually specified by
humans. As future work, we aim to apply our
technique to more tasks and see whether it can be
adapted to those tasks that require all token rep-
resentations to be present in the final layer of the
model (e.g., question answering). Additionally,
combining our width-based strategy with a depth-
based one (e.g., early exiting) might potentially
yield greater efficiency, something we plan to pur-
sue as future work.

Broader Impact

Using our proposed method, pre-trained language
models can use fewer FLOPs, reducing energy use
and carbon emissions (Schwartz et al., 2020a).
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A Inclusive KL Loss Consideration

We opted for an inclusive KL loss since CPs should
be trained to cover all tokens considered important
by saliency and not to be mode seeking (i.e., cover-
ing a subset of high contributing tokens considered
by the saliency scores.). Suppose an exclusive KL
is selected. Due to the limited learning capacity
of the CP and miscalculation possibility from the
saliency, the CP may be trained to maximize its
contribution on noninformative tokens. While in
an inclusive setting, it trains to extend its coverage
over all high-saliency tokens.
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Additionally, our initial research indicated that
using a symmetric loss (e.g. Jensen-Shannon di-
vergence) would produce similar results but with a
significantly longer convergence time.

B Optimization of ¢

In Section 3.3, we introduced 6° as a trainable pa-
rameter that increases the saliency score of [CLS].
We can deduce from Equations 6 and 7 that this pa-
rameter does not exist in the model’s computational
DAG and we need to compute the derivative of St
w.r.t. 6% to train this parameter. Hence, first we
assume that S’ is a close estimate of S* (due to the
CPs’ training objective). Second, using a dummy
variable 9§—that is involved in the computational
graph and is always equal to 1—we reformulate
St

055{1]i = 1]+ S1[i > 1]
0451 + 371y 5

St~ S = €))

This reformulation is valid due to 92 1 and
Yo S*f = 1. Now we compute the partial deriva-
tive w.r.t. Gfl which is the gradient that is computed
in the backpropagation:
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By knowing that Hg =1
2 ) )
gﬁé =S —8H1[i =1]— S > 1)) (11)
d

Now using our initial assumption (S”f ~ gf), we
can substitute S with S! based on Equation 7:

DS54

¢

00

— S{((1 = §{)1fi = 1] — §1fi > 1)

_0USH(i, Sl = 1) — S{1[i > 1))
OS]+ S0, 512

(12)
In addition, the gradient of Sf w.rt. 0% is as follows
(cf. Equation 7):
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By comparing Equations 12 and 13, these deriva-
tives are related with a term of %
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Therefore, during training, we can compute the
gradient w.r.t. the dummy variable Gfi and then
divide it by 6°.

C Evaluating POWER-BERT in Single
Instance Mode

Due to the static structure of POWER-BERT, the
speedup ratios reported in Goyal et al. (2020) are
based on wall time acceleration with batch-wise
inference procedure. This means that some inputs
might need extra padding to make all inputs with
the same token length. However, since our ap-
proach and other dynamic approaches are based
on single instance inference, in our procedure in-
puts are fed without being padded. To even out
this discrepancy, we apply a single instance flops
computation on the POWER-BERT, which means
we compute the computational cost for all input
lengths that appear in the test dataset. Some in-
stnaces may have shorter input length than some
values in the resulting retention configuration (num-
ber of tokens that are retained in each layer). To
overcome this issue, we update the retention con-
figuration by selecting the minimum between the
input length and each layers’ number of tokens re-
tained, to build a new retention configuration for
each input length. For instance, if the retention con-
figuration trained model on a given task be (153,
125, 111, 105, 85, 80, 72, 48, 35, 27, 22, 5), for an
input with 75 tokens length, the new configuration
which is used for speedup computation will be: (75,
75,75,75,75,75, 72, 48, 35, 27, 22, 5).

D AdapLeR Training Hyperparameters

For the initial step of fine-tuning BERT, we used the
hyperparameters in Table 3. For both fine-tuning
and training with length reduction, we employed an
AdamW optimizer (Loshchilov and Hutter, 2019)
with a weight decay rate of 0.1, warmup proportion
6% of total training steps and a linear learning rate
decay which reaches to zero at the end of training.

For the adaptive length reduction training step,
we also used the same hyperparameters in Table
3 with two differences: Since MRPC and CoLA
have small training sets, to prolong the gradual soft-
removal process, we increased the training duration
to 10 epochs. Moreover, we increase the learning
rate to 3e-5. Other hyperparameters are stated in
Table 4. To set a trend for ), it needs to start from
a small but effective value (10 < A < 100) and
grow exponentially per each epoch to reach an ex-
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Dataset Epoch LR MaxLen. BSZ
SST-2 5 2e-5 64 32
IMDB ) 2e-5 512 16
HateXplain 5 3e-5 72 32
MRPC 5 2e-5 128 32
MNLI 3 2e-5 128 32
QNLI 5 2e-5 128 32
AG’s News 5 2e-5 128 32
DBpedia 3 2e-5 128 32

Table 3: Hyperparameters in each dataset; LR: Learn-
ing rate; BSZ: Batch size; MaxLen: Maximum Token
Length

tremely high amount at the end of the training to
mimic a hard removal function (1e+5 < A). Hence,
datasets with the same amount of training epochs
have similar \ trends.

Dataset 0 [0) A
SST-2 5¢-3  Se-4 10Epoch
IMDB 5e-3  5e-4 10Epoch
HateXplain 5Se-2 2e-2 50Fpoch
MRPC 3e-2 5e-2 10 x 3Fpoch
MNLI 5e-3  Se-4 50Fpoch
QNLI 5e-3  le-4 10Epoch
AG’s News le-1 le-1 10Epoch
DBPedia le-1 le-1 50Epoch

Table 4: AdapLeR hyperparameters in each dataset;
Since ) increases exponentially on each epoch the coor-
responding formula is written.

E
F Additional Qualitative Examples

Statistics of Datasets
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Figure 6: The illustration of contribution scores obtained by CPs in each layers of the model for different input
examples from QNLI (Question-answering NLI), SST-2 (sentiment), and AG’s news (topic classification) tasks. The
color intensity indicates the degree of contribution scores. Only the highlighted token representations are processed

in each layer

Number of Examples

Number of Tokens

Task Train Test Mean / Median
SST-2 67349 1821 14/11
IMDB 25000 25000 275/233
HateXplain 15383 1924 30/27
MRPC 3668 1725 53/53
MNLI 392702 97961 /9847% 40/37
QNLI 104743 5463 50/47
AG’s News 120000 7600 53/51
DBPedia 560000 70000 64 /64

Table 5: The statistics of datasets: number of training
and test examples and average and median of sequence
length (number of tokens) of test examples based on

BERT’s tokenizer. T and ¥ indicate marched and mis-

matched versions of MNLI test split, respectively.
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Abstract

This paper describes and tests a method for car-
rying out quantified reproducibility assessment
(QRA) that is based on concepts and definitions
from metrology. QRA produces a single score
estimating the degree of reproducibility of a
given system and evaluation measure, on the
basis of the scores from, and differences be-
tween, different reproductions. We test QRA
on 18 system and evaluation measure combina-
tions (involving diverse NLP tasks and types
of evaluation), for each of which we have the
original results and one to seven reproduction
results. The proposed QRA method produces
degree-of-reproducibility scores that are com-
parable across multiple reproductions not only
of the same, but of different original studies.
We find that the proposed method facilitates
insights into causes of variation between repro-
ductions, and allows conclusions to be drawn
about what changes to system and/or evaluation
design might lead to improved reproducibility.

1 Introduction

Reproduction studies are becoming more common
in Natural Language Processing (NLP), with the
first shared tasks being organised, including RE-
PROLANG (Branco et al., 2020) and ReproGen
(Belz et al., 2021b). In NLP, reproduction studies
generally address the following question: if we cre-
ate and/or evaluate this system multiple times, will
we obtain the same results?

To answer this question for a given specific sys-
tem, typically (Wieling et al., 2018; Arhiliuc et al.,
2020; Popovi¢ and Belz, 2021) an original study
is selected and repeated more or less closely, be-
fore comparing the results obtained in the original
study with those obtained in the repeat, and de-
ciding whether the two sets of results are similar
enough to support the same conclusions.

This framing, whether the same conclusions can
be drawn, involves subjective judgments and dif-
ferent researchers can come to contradictory con-
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clusions: e.g. the four papers (Arhiliuc et al., 2020;
Bestgen, 2020; Caines and Buttery, 2020; Huber
and Coltekin, 2020) reproducing Vajjala and Rama
(2018) in REPROLANG all report similarly large
differences, but only Arhiliuc et al. conclude that
reproduction was unsuccessful.

There is no standard way of going about a repro-
duction study in NLP, and different reproduction
studies of the same original set of results can differ
substantially in terms of their similarity in system
and/or evaluation design (as is the case with the Va-
jjala and Rama (2018) reproductions, see Section 4
for details). Other things being equal, a more simi-
lar reproduction can be expected to produce more
similar results, and such (dis)similarities should
be factored into reproduction analysis and conclu-
sions, but NLP lacks a method for doing so.

Being able to assess reproducibility of results
objectively and comparably is important not only
to establish that results are valid, but to provide
evidence about which methods have better/worse
reproducibility and what may need to be changed to
improve reproducibility. To do this, assessment has
to be done in a way that is also comparable across
reproduction studies of different original studies,
e.g. to develop common expectations of how simi-
lar original and reproduction results should be for
different types of system, task and evaluation.

In this paper, we (i) describe a method for quanti-
fied reproducibility assessment (QRA) directly de-
rived from standard concepts and definitions from
metrology which addresses the above issues, and
(ii) test it on diverse sets of NLP results. Following
areview of related research (Section 2), we present
the method (Section 3), tests and results (Section 4),
discuss method and results (Section 5), and finish
with some conclusions (Section 6).

2 Related Research

The situation memorably caricatured by Pedersen
(2008) still happens all the time: you download
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some code you read about in a paper and liked the
sound of, you run it on the data provided, only to
find that the results are not the same as reported
in the paper, in fact they are likely to be worse
(Belz et al., 2021a). When both data and code are
provided, the number of potential causes of such
differences is limited, and the NLP field has shared
increasingly detailed information about system, de-
pendencies and evaluation to chase down sources
of differences. Sharing code and data together with
detailed information about them is now expected
as standard, and checklists and datasheets have
been proposed to standardise information sharing
(Pineau, 2020; Shimorina and Belz, 2021).

Reproducibility more generally is becoming
more of a research focus. There have been sev-
eral workshops and initiatives on reproducibility,
including workshops at ICML 2017 and 2018,
the reproducibility challenge at ICLR 2018 and
2019, and at NeurIPS 2019 and 2020, the RE-
PROLANG (Branco et al., 2020) initiative at LREC
2020, and the ReproGen shared task on repro-
ducibility in NLG (Belz et al., 2021b).

Despite this growing body of research, no con-
sensus has emerged about standards, terminology
and definitions. Particularly for the two most fre-
quently used terms, reproducibility and replicabil-
ity, multiple divergent definitions are in use, var-
iously conditioned on same vs. different teams,
methods, artifacts, code, and data. For example, for
Rougier et al. (2017), reproducing a result means
running the same code on the same data and obtain-
ing the same result, while replicating the result is
writing and running new code based on the infor-
mation provided by the original publication. For
Wieling et al. (2018), reproducibility is achieving
the same results using the same data and methods.

According to the ACM’s definitions (Associa-
tion for Computing Machinery, 2020), results have
been reproduced if obtained in a different study
by a different team using artifacts supplied in part
by the original authors, and replicated if obtained
in a different study by a different team using ar-
tifacts not supplied by the original authors. The
ACM originally had these definitions the other way
around until asked by ISO to bring them in line
with the scientific standard (ibid.).

Conversely, in Drummond’s view 2009 obtain-
ing the same result by re-running an experiment in
the same way as the original is replicability, while
reproducibility is obtaining it in a different way.
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Whitaker (2017), followed by Schloss (2018),
defines four concepts rather than two, basing defi-
nitions of reproducibility, replicability, robustness
and generalisability on the different possible com-
binations of same vs. different data and code.

None of these definitions adopt the general sci-
entific concepts and definitions pertaining to repro-
ducibility, codified in the International Vocabulary
of Metrology, VIM (JCGM, 2012). One issue is
that they all reduce the in principle open-ended
number of dimensions of variation between mea-
surements accounted for by VIM to just two or
three (code, data and/or team). Another, that unlike
VIM, they don’t produce comparable results.

NLP does not currently have a shared approach
to deciding reproducibility, and results from repro-
ductions as currently reported are not comparable
across studies and can, as mentioned in the intro-
duction, lead to contradictory conclusions about
an original study’s reproducibility. There appears
to be no work at all in NLP that aims to estimate
degree of reproducibility which would allow cross-
study comparisons and conclusions.

3 Metrology-based Reproducibility
Assessment

Metrology is a meta-science: its subject is the stan-
dardisation of measurements across all of science
to ensure comparability. Computer science has
long borrowed terms, most notably reproducibil-
ity, from metrology, albeit not adopting the same
definitions (as discussed in Section 2 above).

In this section, we describe quantified repro-
ducibility assessment (QRA), an approach that is
directly derived from the concepts and definitions
of metrology, adopting the latter exactly as they
are, and yields assessments of the degree of simi-
larity between numerical results and between the
studies that produced them. We start below with
the concepts and definitions that QRA is based on,
followed by an overview of the framework (Section
3.2) and steps in applying it in practice (Section
3.3).

3.1 VIM Definitions of Repeatability and
Reproducibility

The International Vocabulary of Metrology (VIM)
(JCGM, 2012) defines repeatability and repro-
ducibility as follows (defined terms in bold, see
VIM for subsidiary defined terms):

2.21 measurement repeatability (or repeatability,



for short) is measurement precision under a
set of repeatability conditions of measure-
ment.

2.20 arepeatability condition of measurement
(repeatability condition) is a condition of
measurement, out of a set of conditions that
includes the same measurement procedure,
same operators, same measuring system,
same operating conditions and same location,
and replicate measurements on the same or

similar objects over a short period of time.

2.25 measurement reproducibility (reproducibil-
ity) is measurement precision under repro-

ducibility conditions of measurement.

2.24 a reproducibility condition of measure-
ment (reproducibility condition) is a condi-
tion of measurement, out of a set of condi-
tions that includes different locations, oper-
ators, measuring systems, etc. A specifica-
tion should give the conditions changed and

unchanged, to the extent practical.

In other words, VIM considers repeatability and
reproducibility to be properties of measurements
(not objects, scores, results or conclusions), and
defines them as measurement precision, i.e. both
are quantified by calculating the precision of a set
of measured quantity values. Both concepts are de-
fined relative to a set of conditions of measurement:
the conditions have to be known and specified for
assessment of repeatability and reproducibility to
be meaningful. In repeatability, conditions are the
same, whereas in reproducibility, they differ.

In an NLP context, objects are systems, and mea-
surements involve applying an evaluation method
to a system usually via obtaining a sample of its
outputs and applying the method to the sample
(further details of how concepts map to NLP are
provided in Section 3.3).

3.2 Assessment framework

The VIM definitions translate directly to the fol-
lowing definition of repeatability R® (where all
conditions of measurement C' are the same across
measurements):

RO(Ml, My, ...M,,) := Precision(v1, va, ... ),

1
where M, : (m,O,t;,C) — v; )

and the M, are repeat measurements for measur-
and m performed on object O at different times ¢;
under (the same) set of conditions C', producing
measured quantity values v;. Below, the coefficient
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of variation is used as the precision measure, but
other measures are possible. Conditions of mea-
surement are attribute/value pairs each consisting
of a name and a value (for examples, see following
section). Reproducibility R is defined in the same
way as RY except that condition values (but not
names) differ for one or more of the conditions of
measurement Cj:

R(Mi, My, ...My) := Precision(v1, va, ...Un),

2
where M;: (m, O, t;,C;) — v; &

Precision is typically reported in terms of some or
all of the following: mean, standard deviation with
95% confidence intervals, coefficient of variation,
and percentage of measured quantity values within
n standard deviations. We opt for the coefficient
of variation (CV),! because it is a general measure,
not in the unit of the measurements (unlike mean
and standard deviation), providing a quantification
of precision (degree of reproducibility) that is com-
parable across studies (Ahmed, 1995, p. 57). This
also holds for percentage within n standard devi-
ations but the latter is a less recognised measure,
and likely to be the less intuitive for many.

In reproduction studies in NLP/ML, sample sizes
tend to be very small (a sample size of 8, one origi-
nal study plus 7 reproductions, as in Table 6 is cur-
rently unique). We therefore need to use de-biased
sample estimators: we use the unbiased sample
standard deviation, denoted s*, with confidence
intervals calculated using a t-distribution, and stan-
dard error (of the unbiased sample standard devi-
ation) approximated on the basis of the standard
error of the unbiased sample variance se(s?) as
se;2(s%) ~ 2=se(s?) (Rao, 1973). Assuming mea-
sured quantity values are normally distributed, we
calculate the standard error of the sample variance

in the usual way: se(s?) = 4/ % Finally, we also
use a small sample correction (indicated by the star)
for the coefficient of variation: CV* = (14 -)CV
(Sokal and Rohlf, 1971).2

Before applying CV* to values on scales that
do not start at 0 (mostly in human evaluations) we
shift values to start at O to ensure comparability.’
This means that to calculate the CV* scores in the

tables below, measurements are first shifted.

!"The coefficient of variation (CV), also known as relative
standard deviation (RSD) is defined as the standard deviation
over the mean, often expressed as a percentage.

2Code and data are available here: https://github.
com/asbelz/coeff-var.

3Otherwise CV* reflects differences solely due to different
lower ends of scales.



3.3 Application of the framework

Using the defined VIM terms and the notations
from Section 3.2, we can refine the question from
the start of this paper as follows: if we perform
multiple measurements of object O and measurand
m under reproducibility conditions of measurement
C;, what is the precision of the measured quantity
values we obtain? For NLP, this means calculating
the precision of multiple evaluation scores for the
same system and evaluation measure.

Focusing here on reproducibility assessment
where we start from an existing set of results (rather
than a set of experiments specifically designed to
test reproducibility), the steps in performing QRA
are as follows:

1. For a set of n measurements to be assessed,
identify the shared object and measurand.

2. Identify all conditions of measurement C;; for
which information is available for all mea-
surements, and specify values for each con-
dition, including measurement method and
procedure.

3. Gather the n measured quantity values
V1,02, ...Up.

4. Compute precision for vy, vo, ...vy, giving re-
producibility score R.

5. Report resulting R score and associated con-
fidence statistics, alongside the Cj;.

In NLP terms, the object is the ready-to-use system
(binaries if available; otherwise code, dependen-
cies, parameter values, how the system was com-
piled and trained) being evaluated (e.g. the NTS-
default system variant in Table 1), the measurand is
the quantity intended to be measured (e.g. BLEU-
style modified n-gram precision), and measurement
method and procedure capture how to evaluate the
system (e.g. obtaining system outputs for a speci-
fied set of inputs, and applying preprocessing and
a given BLEU implementation to the latter).

VIM holds that reproducibility assessment is
only meaningful if the reproducibility conditions of
measurement are specified for a given test. Condi-
tions of measurement cover every aspect and detail
of how a measurement was performed and how
the measured quantity value was obtained. The
key objective is to capture all respects in which the
measurements to be assessed are known to be either
the same or different. If QRA is performed for a
set of existing results, it is often not possible to

discover every aspect and detail of how a measure-
ment was performed, so a reduced set may have
to be used (unlike in experiments designed to test
reproducibility where such details can be gathered
as part of the experimental design).

The reproducibility and evaluation checklists
mentioned in Section 2 (Pineau, 2020; Shimorina
and Belz, 2021) capture properties that are in effect
conditions of measurement, and in combination
with code, data and other resources serve well as
a way of specifying conditions of measurement, if
they have been completed by authors. However,
at the present time, completed checklists are not
normally available. The following is a simple set
of conditions of measurement the information re-
quired for which is typically available for existing
work (we include object and measurand for com-
pleteness although strictly they are not conditions,
as they must be the same in each measurement in a
given QRA test):

1. Object: the system (variant) being evaluated.*
E.g. a given MT system.

2. Measurand: the quantity intended to be eval-
vated.’ E.g. BLEU-style n-gram precision or
human-assessed Fluency.

3. Object conditions:

(a) System code: source code including any
parameters. E.g. the complete code im-
plementing an MT system.

(b) Compile/training information: steps
from code plus parameters to fully com-
piled and trained system, including de-
pendencies and environment. E.g. com-
plete information about how the MT sys-
tem code was compiled and the system
trained.

4. Measurement method conditions:®

(a) Method specification: full description
of method used for obtaining values
quantifying the measurand. E.g. a for-
mal definition of BLEU.

(b) Implementation: the method imple-
mented in a form that can be applied to
the object in order to obtain measured
quantity values. E.g. a full implementa-
tion of BLEU.

*VIM doesn’t define ‘object’ but refers to it as that which

is being measured.
SFor definition of ‘measurand’ see VIM 2.3.
For definition of ‘measurement method’, see VIM 2.5.



System (Object) Eva(l;/?;;(;ﬁrr;l:g)s ure scges Papers reporting results NLP task Evaluation type

Clarity 2

Fluency 2 van der Lee et al. (2017), e
PASS Identifiability ) Mille et al. (2021) data-to-text human, intrinsic

of stance

mult-base wil 8
mult-word ™ wF1 8
mult-word™ wF1 8
mult-POS™ wF1 8 Vajjala and Rama (2018),
mult-POS™ wF1 8 Huber and Coltekin (2020), | multilingual essay | metric: intrinsic,
mult-dep™ wF1 8 Arhiliuc et al. (2020), scoring as text evaluated against
mult-dep™ wF1 8 Bestgen (2020), classification single reference
mult-dom™ wF1 8 Caines and Buttery (2020)
mult-dom™ wF1 8
mult-emb ™ wF1 8
mult-emb™ wF1 8

BLEU 7 Nisioi et al. (2017), metric: intrinsic,
NTS_default SARI 5 Cooper & Shardlow (2020), L . eval. against input

e . text simplification .
NTS-w2v default BLEU 6 additional rf:productlon and/or multiple
- SARI 4 study for this paper references

Table 1: Summary overview of the 18 object/measurand combinations taht were QRA-tested for this paper.

5. Measurement procedure conditions:’

(a) Procedure: specification of how sys-
tem outputs (or other system characteris-
tics) are obtained and the measurement
method is applied to them. E.g. running
a BLEU tool on system outputs and ref-
erence outputs.

Test set: the data used in obtaining
and evaluating system outputs (or other
system characteristics). E.g. a test set
of source-language texts and reference
translations.

(b)

(c) Performed by: who performed the mea-
surement procedure and any additional
information about how they did it. E.g.
the team applying the BLEU tool, and

the run-time environment they used.

The names of the conditions of measurement used
in this paper are boldfaced above. The values for
each condition characterise how measurements dif-
fer in respect of the condition. In reporting results
from QRA tests in the following section, we use pa-
per identifiers as shorthand for each distinct condi-
tion value (full details in each case being available
from the referenced papers).

4 QRA Tests

Table 1 provides an overview of the 18 object/ mea-
surand pairs (corresponding to 116 individual mea-

"For definition of ‘measurement procedure’, see VIM 2.6.
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surements) for which we performed QRA tests in
this study. For each object/measurand pair, the
columns show, from left to right, information about
the system evaluated (object), the evaluation mea-
sure applied (measurand), the number of scores
(measured quantity values) obtained, the papers in
which systems and scores were first reported, and
the NLP task and type of evaluation involved.

There are three sets of related systems: (i) the
(single) PASS football report generator (van der
Lee et al., 2017), (ii) Vajjala and Rama (2018)’s
11 multilingual essay scoring system variants, and
(i11) two variants of Nisioi et al. (2017)’s neural
text simplifier (NTS). PASS is evaluated with three
evaluation measures (human-assessed Clarity, Flu-
ency and Stance Identifiability), the essay scoring
systems with one (weighted F1), and the NTS sys-
tems with two (BLEU and SARI). For PASS we
have one reproduction study, for the essay scorers
seven, and for the NTS systems, from three to six.
The PASS reproduction was carried out as part of
ReproGen (Belz et al., 2021b), the reproductions
of the essay-scoring systems and of one of the NTS
systems as part of REPROLANG (Branco et al.,
2020), and we carried out an additional reproduc-
tion study of the NTS systems for this paper.®

The PASS text generation system is rule-based,
the essay classifiers are ‘theory-guided and data-
driven’ hybrids, and the text simplifiers are end-to-
end neural systems. This gives us a good breadth

8 Authors of original studies gave permission for their work
to be reproduced (Branco et al., 2020; Belz et al., 2021b).



Measured quantity value Sample
Object | Measurand | van der Lee et al. | Mille et al. (2021) size mean | stdev | stdev95% Cl | CV* |
(2017)
Clarity 5.64 6.30 2 4969 | 0.583 | [-2.75,3.92] | 13.193
PASS | Fluency 5.36 6.14 2 4.75 | 0.691 [-3.26, 4.65] | 16.372
Stance id. 91% 97% 2 93.88 | 5.096 | [-24.05, 34.24] | 6.107

Table 2: Precision (CV*) and component measures (mean, standard deviation, standard deviation, confidence
intervals) for measured quantity values obtained in two measurements for each of the three human-assessed
evaluation measures for the PASS system. Columns 6-9 calculated on shifted scores (see Section 3.2).

) - Measurement method Measurement procedure Measured
) Object conditions o » .
Object | Measurand conditions conditions quantity cv*
Code by | Comp./trained by | Method | Implem. by | Procedure | Testset | Performed by value
) vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al 5.64
Clarity F — = — |- = — = — — — — — |- —- -1 - === _——— = - - -1 - == = 13.193
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 6.30
PASS | Fluency | vot&al | vdtéal | vdl&al | vdl&al | vdl&al | vdl&al | - vdl&al | 536 | ...,
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 6.14
) vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al 91%
Stanceid. | — — — —|—- - — — — — — | B T e e | e - - - = = 6.107
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 96.75%

Table 3: Conditions of measurement for two measurements each for three evaluation measures (measurands) and
the PASS system. vdL.&al = van der Lee et al. (2017); M&al = Mille et al. (2021).

of NLP tasks, system types, and evaluation types
and measures to test QRA on.

4.1 QRA for NTS systems

The neural text simplification systems reported by
Nisioi et al. (2017) were evaluated with BLEU
(n-gram similarity between outputs and multi-
ple reference texts) and SARI (based on word
added/retained/deleted in outputs compared to both
inputs and reference texts, summing over addition
and retention F-scores and deletion Precisions).
Table 4 shows BLEU and SARI scores for the
two system variants from the original paper and
the two reproduction studies, alongside the four
corresponding CV* values. In their reproduction,
Cooper and Shardlow (2020) regenerated test out-
puts for NTS-w2v_def, but not for NTS_def, which
explains the missing scores in Column 4. The
different numbers of scores in different rows in
Columns 6-9 are due to our own reproduction us-
ing Nisioi et al.’s SARI script, but two different
BLEU scripts: (i) Nisioi et al.’s script albeit with
the tokeniser replaced by our own because the for-
mer did not work due to changes in the NLTK
library; and (ii) SacreBLEU (Xu et al., 2016).
Table 5 shows the conditions of measurement
for each of the 22 individual measurements. The
measured quantity values for those measurements
where Comp./trained by=Nisioi et al. are identi-
cal for the SARI metric (scores highlighted by
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green/lighter shading and italics), but differ by
up to 1.4 points for BLEU (scores highlighted by
blue/darker shading). Because Test set=Nisioi et al.
in all cases, the differences in these BLEU scores
can only be caused by differences in BLEU scripts
and how they were run. The corresponding CV* is
as big as 0.838 for (just) the four NTS_def BLEU
scores, and 1.314 for (just) the three NTS-w2v_def
BLEU scores, reflecting known problems with non-
standardised BLEU scripts (Post, 2018).

If we conversely look just at those measurements
(identifiable by boldfaced measured quantity values
in Table 5) where the reproducing team regenerated
outputs (with the same system code) and evaluation
scripts were the same, SARI CV* is 3.11 for the
NTS_def variants, and 4.05 for the NTS-w2v_def
variants (compared in both cases to 0 (perfect)
when the same outputs are used). BLEU CV* is
2.154 for the NTS_def variants (compared to 0.838
for same outputs but different evaluation scripts, as
above), and 6.598 for the NTS-w2v_def variants
(compared to 1.314 for same outputs but different
evaluation scripts). These differences arise simply
from running the system in different environments.

The overall higher (worse) CV* values for NTS-
w2v_def variants (compared to NTS_def) are likely
to be partly due to the NTS models using one third
party tool (openNMT), and the NTS-w2v models
using two (openNMT and word2vec), i.e. the latter
are more susceptible to changes in dependencies.



Measured quantity value
Object Measurand | Nisioi et al. | Cooper & Shardlow this paper Sample | mean | stdev | stdev 95% CI | CV* |
outputs 1 | outputs 1 | outputs 2 outputs 1 outputs 3 size
s1/bl | s1/b2 | s1/b2 |s1/b3[s1/b4]|s1/b3[s1/b4
NTS def BLEU 84.51 84.50 87.46 | 85.60 [ 84.20 | 86.61 [ 86.20 7 85.58 | 1.29 | [0.45,2.13] | 1.562
- SARI 30.65 30.65 29.13 30.65 29.96 5 30.21 | 0.72 | [0.095, 1.34] | 2.487
NTS-w2v d BLEU 87.50 - 80.75 | 89.36 [ 88.10 | 89.64 [ 88.80 6 87.36 | 3.502 | [0.92,6.08] | 4.176
- ef
- SARI 31.11 - 30.28 31.11 29.12 4 30.41| 1.02 | [-0.11,2.15] | 3.572

Table 4: Precision (CV*) and component measures (mean, standard deviation, standard deviation confidence
intervals) for measured quantity values obtained in multiple measurements of the two NTS systems. Outputs 1 =
test set outputs as generated by Nisioi et al. (2017); outputs 2 = test set outputs regenerated by Cooper and Shardlow
(2020); outputs 3 = test set outputs regenerated by the present authors. s1 = SARI script (always the same); bl =
Nisioi et al.’s BLEU script, run by Nisioi et al.; b2 = Nisioi et al.’s BLEU script, run by Cooper & Shardlow; b3 =
Nisioi et al.’s BLEU script with different version of NLTK tokeniser (see in text), run by the present authors; b4 =
SacreBLEU (Xu et al., 2016), run by the present authors.

Object conditions Measurement method Measurement procedure Measured
Object Measurand conditions conditions quantity | CV*
Code by | Comp./trained by | Method [ Implem. by | Procedure| Test set Performed by value
Nisioi et al. Nisioi et al. bleu(o,t) | Nisioi et al. OTE Nisioi et al. | Nisioi et al. 84.51
[Nisioietal.| Nisicietal. | bleu(o,t) | Nisicietal. | OTE | Nisioi etal.| Coop. & Shard.| 84.50
|Nisioi etal.| Nisioietal. | bleu(ot) | ~Nisioietal.| OTE |Nisioietal.| thispaper | 85.60
BLEU [Nisioietal.| Nisioietal. | bleu(ot) | SacreBLEU | OTE |Nisioietal.| thispaper | 84.20 | 1.562
| Nisioi et al. | Coop. & Shard. | bleu(o,ty | Nisioietal. | OTE | Nisioi etal. | Coop. & Shard.| 87.46 |
TS dof [Nisoistal. | ~this paper _ | bleu(o,) | <Nisoi stal.” OTE | Nisoiotal.| _thi paper _| 8681 |
- Nisioi et al. this paper bleu(o,t) | SacreBLEU OTE Nisioi et al. this paper 86.20
Nisioi et al. Nisioi et al. sari(o,s,t) | Nisioi et al. OITE Nisioi et al. Nisioi et al. 30.65
|Nisioi etal.| Nisioietal. |sari(ost)| Nisioietal. | OITE |Nisioietal. |Coop. & Shard.| 30.65
SARI  [Nisioietal.| Nisioietal. [sari(o,st)| Nisioietal. | OITE |Nisioietal.| thispaper | 30.65 |2.487
[Nisioi et al. | Coop. & Shard. |sari(o,s;ty| Nisioietal. | OITE | Nisioietal.|Coop. & Shard.| 2913 |
INisioi etal.| ~ this paper ~ |sari(o,s.t)| Nisioietal. | OITE |Nisioietal.| thispaper | 29.96 |
Nisioi et al. Nisioi et al. bleu(o,t) | Nisioi et al. OTE Nisioi et al. | Nisioi et al. 87.50
[Nisioi etal. | ~Nisioi etal. | bleu(o,t) | ~Nisici etal.| OTE |Nisioietal.| this paper | 89.36
puey [NSoietal [ Nisioetal | bleu(o | SacieBLEU | OTE |Nisoistal.| thspaper | 8010 |, o
Nisioi et al. | Coop. & Shard. | bleu(o,t) | Nisioi et al. OTE Nisioi et al. | Coop. & Shard 80.75
TS w2y o [Nisio ot al. | _thi paper _ | beulo.) | <Nisiletal. | OTE | Niiretal.| _thspaper | 8964 |
- Nisioi et al. this paper bleu(o,t) | SacreBLEU OTE Nisioi et al. | this paper 88.80
Nisioi et al. Nisioi et al. sari(o,s,t) | Nisioi et al. OITE Nisioi et al. Nisioi et al. 31.11
oay [Nl etal [ Niioetal.~ [sarlos| Nisioetal | OFE _|Nsioietal.| _thispaper | 3117 | ;)
Nisioi et al. | Coop. & Shard. |sari(o,s,t) | Nisioi et al OITE | Nisioi et al. | Coop. & Shard 30.28
[Nisioi etal. |~ this paper  |sari(o,s.)| Nisioietal. | OFE |Nisioietal.| this paper | 2942 |

Table 5: Conditions of measurement for each measurement carried out for the NTS systems. OTE = outputs vs.
targets evaluation, OITE = outputs vs. inputs and targets evaluation. Shaded cells: evaluation of the same system
outputs, i.e. the reproductions did not regenerate outputs. Bold: evaluation of (potentially) different system outputs,

i.e. the reproductions did regenerate outputs.

4.2 QRA for PASS system

The PASS system, developed by van der Lee et al.
(2017), generates football match reports from the
perspective of each of the competing teams. The
original study evaluated the system for Clarity, Flu-
ency and Stance Identifiability in an evaluation with
20 evaluators and a test set of 10 output pairs. The
evaluation was repeated with a slightly different
evaluation interface and a different cohort of evalu-
ators by Mille et al. (2021). Table 2 shows the re-
sults from the original and reproduction evaluations
(columns 3 and 4), where the Clarity and Fluency
results are the mean scores from 7-point agreement
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scales, and Identifiability results are the percentage
of times the evaluators correctly guessed the team
whose supporters a report was written for. Columns
6-9 show the corresponding sample size (number
of reproductions plus original study), mean, stan-
dard deviation (stdev), the confidence interval (CI)
for the standard deviation, and CV*, all calculated
on the shifted scores (see Section 3.2).

Table 3 shows the values (here, paper identifiers)
for the nine conditions of measurement introduced
in Section 3.3, for each of the six individual mea-
surements (three evaluation measures times two
studies). Note that both object conditions and the



test set condition are the same, because Mille et al.
used the system outputs shared by van der Lee et al.
The values for the Implemented by, Procedure and
Performed by conditions reflect the differences in
the two evaluations in design, evaluator cohorts,
and the teams that performed them.

The scores vary to different degrees for the three
measurands, with CV* lowest (reproducibility best)
for Stance Identifiability, and highest (worst) for
Fluency. These CV* results are likely to reflect that
evaluators agreed more on Clarity than Fluency.
Moreover, the binary stance identification assess-
ment has better reproducibility than the other two
criteria which are assessed on 7-point rating scales.

4.3 QRA for essay scoring system variants

The 11 multilingual essay scoring system variants
reported by Vajjala and Rama (2018) were evalu-
ated by weighted F1 (wF1) score. Table 6 shows
wF1 scores for the 11 multilingual system variants
from each of the five papers, alongside the 11 cor-
responding CV* values. Table 7 in the appendix
shows the corresponding conditions of measure-
ment. The baseline classifier (mult-base) uses doc-
ument length (number of words) as its only feature.
For the other variants, +/- indicates that the multi-
lingual classifier was / was not given information
about which language the input was in; the mult-
word variants use word n-grams only; mult-word
uses POS (part of speech) tag n-grams only; mult-
dep uses n-grams over dependency relation, depen-
dent POS, and head POS triples; mult-dom uses
domain-specific linguistic features including docu-
ment length, lexical richness and errors; mult-emb
uses word and character embeddings. The mult-
base and mult-dom models are logistic regressors,
the others are random forests.

A very clear picture emerges: system variant
pairs that differ only in whether they do or do not
use language information have very similar CV
scores. For example, mult-POS™ (POS n-grams
without language information) and mult-POS™
(POS n-grams with language information) both
have a very good degree of wF1-reproducibility,
their CV* being 3.818 and 3.808 respectively; mult-
word ™ (word n-grams without language informa-
tion) and mult-word™ (word n-grams with language
information) have notably higher CV*, around 10.
This tendency holds for all such pairs, indicating
that using language information makes next to no
difference to reproducibility. Moreover, the mult-
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dom and mult-emb variants all have similar CV*.?
The indication is that the syntactic information
is obtained/used in a way that is particularly repro-
ducible, whereas the domain-specific information
and the embeddings are obtained/used in a way that
is particularly hard to reproduce. Overall, the ran-
dom forest models using syntactic features have the
best reproducibility; the logistic regressors using
domain-specific features have the worst.

5 Discussion

Quantified reproducibility assessment (QRA) en-
ables assessment of the degree of reproducibility
of evaluation results for any given system and eval-
uation measure in a way that is scale-invariant!'®
and comparable across different QRAs, for repro-
ductions involving either the same or different
original studies. Moreover, formally capturing
(dis)similarities between systems and evaluation
designs enables reproducibility to be assessed rela-
tive to such (dis)similarities. In combination, a set
of results from QRA tests for the same system and
evaluation measure can provide pointers to which
aspects of the system and evaluation might be as-
sociated with low reproducibility. E.g. for the wF1
evaluations of the essay scoring systems above, it
is clear that variations in reproducibility are associ-
ated at least in part with the different features used
by systems.

It might be expected that the reproducibility of
human-assessed evaluations is generally worse than
metric-assessed. Our study revealed a more mixed
picture. As expected, the Fluency and Clarity eval-
uations of the PASS system were among those with
highest CV*, and the BLEU and SARI evaluation
of the NTS systems and wF1 evaluation of the
mult-POS and mult-dep systems were among those
with lowest CV*. However, human-assessed Stance
Identifiability of PASS was among the most re-
producible, and metric-assessed wF1 of mult-base,
mult-dom and mult-emb were among the worst.

In this paper, our focus has been QRA testing of
existing research results. However, ideally, QRA
would be built into new method development from
the outset, where at first reporting, a detailed stan-

The high CV* for the baseline system may be due to an
issue wiith the evaluation code (macro-F1 instead of weighted-
F1), as reported by Bestgen (Section 3.2, first paragraph),
Caines and Buttery (Section 2.5, one before last paragraph)
and Huber and Coltekin (Section 3.2, second paragraph).

10If evaluation scores are multiplied by a common factor,
CV™ does not change.



Measured quantity value

Vajjala | Huber & | Arhiliuc

Object Meas- | & Rama | Coltekin | et al. Bestgen Caines & Buttery | Sample | mean | stdev | stdev 95% CI | CV* |
urand | seed 1 | seed2 | seed ? seed 1 seed 2 | seed 1| seed ? size

el /il e2/i2 e3/i1 |ed4/i1|e5/i1|e5/i3 | eb/i1 | e7/i4
mult-base wF1 0.428 0.493 | 0.426 | 0.574 | 0.579 | 0.590 | 0.574 | 0.600 8 0.533 | 0.08 | [0.03,0.12] | 14.633
mult-word™ | wF1 0.721 0.603 0.605 | 0.606 | 0.720 | 0.732 | 0.606 0.740 8 0.667 | 0.07 | [0.03,0.11] | 10.609
mult-word® | wF1 0.719 0.604 | 0.607 | 0.607 | 0.723 | 0.733 | 0.607 | 0.736 8 0.667 | 0.07 | [0.03,0.11] | 10.440
mult-POS™ | wF1 0.726 0.681 0.680 | 0.680 | 0.722 | 0.728 | 0.680 0.732 8 0.704 | 0.03 | [0.01,0.04] 3.818
mult-POS™ | wF1 0.724 0.680 0.680 | 0.681 | 0.725 | 0.729 | 0.681 0.731 8 0.704 | 0.03 | [0.01,0.04] 3.808
mult-dep™ wF1 0.703 0.660 0.650 | 0.651 | 0.699 | 0.711 | 0.651 0.710 8 0.679 | 0.03 | [0.01,0.05] | 4.500
mult-depJr wF1 0.693 0.661 0.652 | 0.653 | 0.699 | 0.712 | 0.653 0.716 8 0.68 | 0.03 | [0.01,0.05] | 4.387
mult-dom™ wF1 0.449 0.600 0.433 | 0.597 | 0.635 | 0.646 | 0.597 0.698 8 0.582 | 0.1 [0.04,0.15] |17.147
mult-dom* wF1 0.471 0.647 0.447 | 0.647 | 0.696 | 0.711 | 0.647 0.726 8 0.624 | 0.11 [0.05,0.18] | 18.248
mult-emb™ wF1 0.693 0.658 0.683 | 0.668 | 0.692 | 0.689 | 0.659 0.391 8 0.642 | 0.11 [0.04,0.17] | 17.033
mult-embt wF1 0.689 0.662 0.681 | 0.659 | 0.681 | 0.684 | 0.657 0.401 8 0.639 | 0.1 [0.04,0.16] | 16.226

Table 6: Precision (CV*) and component measures (mean, standard deviation, standard deviation confidence
intervals) for measured quantity values obtained in multiple measurements of the essay scoring systems. Seed ¢ =
different approaches to random seeding and cross-validation; et = different compile/run-time environments; iz =

different test data sets and/or cross-validation folds.

dardised set of conditions of measurement is spec-
ified, and repeatability tests (where all conditions
are identical except for the team conducting the
tests, see Section 3.2) are performed to determine
baseline reproducibility. Such repeatability QRA
would provide quality assurance for new methods
as well as important pointers for future reproduc-
tions regarding what degree of reproducibility to
expect for given (types of) methods.

If this is not possible, post-hoc reproducibility
QRA (where there are differences in conditions of
measurement values) is performed instead. If this
yields high (poor) CV*, one way to proceed is to
minimise differences in conditions of measurement
between the studies and observe the effect on CV*,
changing aspects of system and evaluation design
and adding further conditions of measurement if
need be. For human evaluation in particular, persis-
tently high CV* would indicate a problem with the
method itself.

6 Conclusion

We have described an approach to quantified re-
producibility assessment (QRA) based on concepts
and definitions from metrology, and tested it on 18
system and evaluation measure combinations in-
volving diverse NLP tasks and types of evaluation.

QRA produces a single score that quantifies the
degree of reproducibility of a given system and
evaluation measure, on the basis of the scores from,
and differences between, multiple reproductions
of the same original study. We found that the ap-
proach facilitates insights into sources of variation
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between reproductions, produces results that are
comparable across different reproducibility assess-
ments, and provides pointers about what needs to
be changed in system and/or evaluation design to
improve reproducibility.

A recent survey (Belz et al., 2021a) found that
just 14% of the 513 original/reproduction score
pairs analysed were exactly the same. Judging the
remainder simply ‘not reproduced’ is of limited
usefulness, as some are much closer to being the
same than others. At the same time, assessments
of whether the same conclusions can be drawn
on the basis of different scores involve subjective
judgments and are prone to disagreement among
assessors. Quantifying the closeness of results as in
QRA, and, over time, establishing expected levels
of closeness, seems a better way forward.
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A Conditions of Measurement for the Essay Scoring Systems

Table 7 shows the conditions of measurement for each of the 88 individual measurements for the Essay
Scoring Systems.

Object conditions Measurement method Measurement procedure Measured
Object Measurand conditions conditions quantity (0%
Code by | Comp./trained by | Method [ Implem. by | Procedure | Test set | Performed by value
Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.428
| Va&Ra. |Huber & Coltekin |wF1(ot)| Va&Ra. | OTE |Va.&Ra |Huber& Coltekin | 0.493 |
| Va.&Ra. | “Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Arhilucetal. | 0426 |
Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Bestgen 0.574
mutbase | WEl - G eRa [ T VasRa | |wFion] Va&Ra | OTE |Va&Ra| Besigen | 0579 | +0%
| Va&Ra. | ~ Vai&Ra.  |wFl(ol)| ~Va&Ra | OTE |Va&Ra | Bestgen | 0590 |
| Va&Ra. | =~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0574 |
|Cai & But.| Cai.&But. |wFi(ot)| Cai.&But. | OTE |Va&Ra | Cai.&But. | 0600 |
Va.& Ra Va.& Ra. wF1(o,t) | Va.& Ra OTE Va.& Ra. Va.& Ra 0.721
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.603 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra | Arhiiucetal. | 0.605 |
sutword— | wp | VaRRa [~ Va&Ra _ |wFilo)] VasFa |~ OTE_ [Va&Ra]|  Besigen | 0606 | oo
Va.& Ra Va.& Ra. wF1(o,t) | Va.& Ra OTE Va.& Ra Bestgen 0.720
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| ~Va&Ra. | OTE |Va&Ra.| Bestgen | 0732 |
| VagRa. | ~ Va&Ra.  |wFi(ol)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0606 |
|Cai. &But.| ~Cai. &But. |wFi(ot)| Cai. &But. | OTE | Va.&Ra.| Cai. &But. | 0.740 |
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra OTE Va.& Ra Va.& Ra 0.719
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.604 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra | Arhiiucetal. | 0.607 |
Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Bestgen 0.607
muttword™ | WET & Ra. | Va&Ra | wFl(oh)| Va&Ra | OTE [Va&Ra| Besigen | 0723 | 'O
| Vag&Ra. | ~ Va&Ra.  |wFi(ot)| ~Va&Ra. | OTE |Va&Ra.| Besigen | 0.733 |
| Va&Ra. | ~ Va&Ra.  |wFi(ol)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0607 |
|Cai. &But.| ~Cai. &But. |wFi(ot)| Cai. &But. | OTE | Va.&Ra.| Cai. &But. | 0.736 |
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra OTE Va.& Ra. Va.& Ra 0.726
| Va&Ra. |Huber & Coltekin |wF1(ot)| Va&Ra. | OTE |Va.&Ra |Huber& Coltekin | 0.681 |
| Va&Ra. | Ariliucetal. |wFi(ot)| Va&Ra. | OTE |Va.&Ra.| Arhiiucetal. | 0.680 |
_ Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Bestgen 0.680
mutPOS™ | WFT VakRa | T VagRa _ |wFi(of)| VasRa | OTE |Va&Ra| Besigen | o722 | 288
| Vag&Ra. | ~ Va&Ra.  |wFi(ol)| ~Va&Ra | OTE |Va&Ra | Bestgen | 0.728 |
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Cai&But. | 0680 |
|Cai. & But.| Cai.&But. |wF1(ot)| Cai. &But. | OTE |Va&Ra. | Cai.&But. | 0732 |
Va.& Ra Va.& Ra. wF1(o,t) | Va.& Ra OTE Va.& Ra Va.& Ra 0.724
| Va&Ra. |Huber & Coltekin |wF1(ot)| Va&Ra. | OTE |Va.&Ra |Huber & Coltekin | 0.680 |
| Va.&Ra. | “Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Arhilucetal. | 0680 |
Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Bestgen 0.681
muPOST | WFT G & Ra [ T Va&Ra | wFiloh| VasRa | OTE [Va&Ra| Besigen | o725 | *%%
| Va&Ra. | ~ Va&Ra  |wFl(ol)| ~Va&Ra | OTE |Va&Ra | Bestgen | 0729 |
| Vag&Ra. | ~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra | Cai&But. | 0681 |
|Cai 8 But.| Cai.&But. |wFi(ot)| Cai. &But. | OTE |Va&Ra | Cai.&But. | 0731 |
Va.& Ra Va.& Ra. wF1(o,t) | Va.& Ra OTE Va.& Ra. Va.& Ra 0.703
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.660 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra | Arhiiucetal. | 0.650 |
_ | Va&Ra. | ~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Bestgen | 0.651 |
mult-dep wF1 b T o P T I e Il P 4.5
Va.& Ra Va.& Ra. wF1(o,t) | Va.& Ra OTE Va.& Ra Bestgen 0.699
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| ~Va&Ra. | OTE |Va&Ra.| Bestgen | 0.711 |
| Va&Ra. | ~ Va&Ra  |wFi(ot)| Va&Ra. | OTE |Va&Ra| Cai&But. | 0.651 |
|Cai. &But.| Cai. &But. |wFi(ot)] Cai. &But. | OTE | Va&Ra.| Cai &But. | 0.710 |
Va.& Ra Va.& Ra wF1(ot) | Va.& Ra OTE Va.& Ra. Va.& Ra 0.693
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.661 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra | Arhiiucetal. | 0652 |
nutcept | wri | V& Ra [~ VasRa _ wFio)] VesRa | OTE_ [Va&Ra |  Besgen | 0653 | .o
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra OTE Va.& Ra Bestgen 0.699
| Va&Ra. | ~ Va&Ra  |wFi(ot)| ~Va&Ra. | OTE |Va&Ra.| Bestgen | 0712 |
| Va&Ra. | ~ Vaa&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0653 |
|Cai. &But.| ~Cai. &But. |wFi(ot)| Cai. & But. | OTE |Va.&Ra.| Cai.&But. | 0.716 |

Table continued on next page.
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Object conditions Measurement method Measurement procedure Measured
Object | Measurand conditions conditions quantity cv*
Code by | Comp./trained by | Method [ Implem. by | Procedure | Test set Performed by value
Va.& Ra. Va.& Ra. wF1(o,t) | Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.449
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.600 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra. | Arhilucetal. | 0433 |
matdom- | wp || Va&Ra [ _ VasRa _ |wiloy]| VasRa |~ OTE_ [VadFa] _ Besigen | 0597 | ...
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Bestgen 0.635
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| ~Va&Ra. | OTE |Va.&Ra.| Besigen | 0.646 |
| VagRa. | ~ Va&Ra.  |wFi(ol)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0597 |
|Cai. &But.| ~Cai. &But. |wFi(ot)| Cai. &But. | OTE |Va.&Ra.| Cai &But. | 0.698 |
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Va.& Ra 0.471
| Va.& Ra. |Huber & Coltekin |wF1(ot)| Va.& Ra. | OTE |Va.& Ra.|Huber & Coltekin | 0.647 |
| Va&Ra. | Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra | Arhiiucetal. | 0447 |
mocomt | wri || Va&Ra [ T Va&Ra _ Jwrion] VesRa | OTE_ [Va&Ra| _ Besigen | 067 | 0.
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra. Bestgen 0.696
| Va&Ra. | ~ Va&Ra  |wFi(ot)| ~Va&Ra. | OTE |Va&Ra.| Bestgen | 0.711 |
| Va&Ra. | ~ Vas&Ra.  |wFi(ol)| Va&Ra. | OTE |Va&Ra | Cai.&But. | 0647 |
|Cai. &But.| ~Cai. &But. |wFi(ot)| Cai. &But. | OTE |Va&Ra.| Cai&But. | 0.726 |
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Va.& Ra 0.693
| Va&Ra. |Huber & Coltekin |wF1(ot)| Va&Ra. | OTE |Va.&Ra|Huber& Coltekin | 0.658 |
| Va&Ra. | Ariliucetal. |wFi(ot)| Va.&Ra. | OTE |Va.&Ra.| Arhiiucetal. | 0.683 |
moemp- | wri | Va&Ra [~ Va8Ra _ |wrilog] VagRa | OFE_ |[Va&Ra| _ Besigen | 0668 | o
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Bestgen 0.692
| VagRa. | ~ Va&Ra.  |wFi(ol)| ~Va&Ra. | OTE |Va&Ra | Bestgen | 0689 |
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Cai&But. | 0.659 |
|Cai. & But.| Cai. &But. |wF1(ot)| Cai. &But. | OTE |Va&Ra. | Cai.&But. | 0391 |
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Va.& Ra 0.689
| Va&Ra. |Huber & Coltekin |wF1(ot)| Va&Ra. | OTE |Va.&Ra |Huber& Coltekin | 0.662 |
| Va.&Ra. | “Arhiiucetal. |wFi(ot)| Va&Ra. | OTE |Va&Ra.| Arhilucetal. | 0681 |
moompt | wei | Va&Ra [~ VaRRa _ |wrioy] Va&Ra | OTE_ [Va&Ra| _ Besigen | 0659 | o0
Va.& Ra Va.& Ra wF1(o,t) | Va.& Ra. OTE Va.& Ra Bestgen 0.681
| Va&Ra. | ~ Vas&Ra.  |wFl(ol)| ~Va&Ra | OTE |Va&Ra | Bestgen | 0684 |
| Va&Ra. | ~ Va&Ra.  |wFi(ot)| Va&Ra. | OTE |Va&Ra| Cai&But. | 0.657 |
|Cai & But.| Cai.&But. |wF1(ot)| Cai.&But. | OTE |Va&Ra | Cai.&But. | 0401 |

Table 7: Conditions of measurement for each measurement carried out for the multilingual essay scoring systems.
OTE = outputs vs.targets evaluation.
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Abstract

Recent studies have determined that the learned
token embeddings of large-scale neural lan-
guage models are degenerated to be anisotropic
with a narrow-cone shape. This phenomenon,
called the representation degeneration problem,
facilitates an increase in the overall similarity
between token embeddings that negatively af-
fect the performance of the models. Although
the existing methods that address the degenera-
tion problem based on observations of the phe-
nomenon triggered by the problem improves
the performance of the text generation, the train-
ing dynamics of token embeddings behind the
degeneration problem are still not explored. In
this study, we analyze the training dynamics
of the token embeddings focusing on rare to-
ken embedding. We demonstrate that the spe-
cific part of the gradient for rare token embed-
dings is the key cause of the degeneration prob-
lem for all tokens during training stage. Based
on the analysis, we propose a novel method
called, adaptive gradient gating (AGG). AGG
addresses the degeneration problem by gating
the specific part of the gradient for rare to-
ken embeddings. Experimental results from lan-
guage modeling, word similarity, and machine
translation tasks quantitatively and qualitatively
verify the effectiveness of AGG.

1 Introduction

Neural language models have been developed with
various architectures during recent years (Graves,
2013; Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017). Despite the improvement in
model architectures, models usually share the same
process for input and output. They process token
embeddings as inputs to compute contextualized
features and subsequently project the features into
a categorical distribution of tokens at the output
softmax layer whose weight is token embedding

*Corresponding author.
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matrix (Merity et al., 2017; Yang et al., 2018; Press
and Wolf, 2017). Recent studies have determined
that the learned embedding distribution is biased in
a common direction, thereby resulting in a narrow
cone-shaped anisotropy (Mu and Viswanath, 2018;
Ethayarajh, 2019; Gao et al., 2019; BiS et al., 2021).
This phenomenon, named the representation degen-
eration problem by Gao et al. (2019), increases the
overall similarity between embeddings, and leads
to a problem in which the expressiveness of the to-
ken embeddings decreases. Therefore, it is difficult
for the model to learn the semantic relationship be-
tween the tokens and to generate high quality texts.
Existing studies addressing this problem suggest
methods that apply post-processing or regulariza-
tion techniques to all token embeddings based on
the observed phenomena owing to the degenera-
tion problem (Mu and Viswanath, 2018; Gao et al.,
2019; Wang et al., 2019; Wang et al., 2020; BiS
et al., 2021). Although these works improve the
quality of token embeddings and generated texts,
it is still not clear how token embeddings become
degenerate during training procedure. Also, there
exists the problem of over regularization for the to-
ken embeddings whose semantic relationships are
trained well because the above methods are applied
for all token embeddings.

In this study, we conduct empirical studies about
training dynamics of token embeddings, focusing
on rare token embeddings. By observing the initial
training dynamics of token embeddings grouped
based on appearance frequency, we hypothesize
that the degeneration of the rare token embeddings
triggers the degeneration of the embeddings of the
remaining tokens. We show that the entire degen-
eration problem is mitigated by only freezing rare
tokens during training, and we demonstrate that the
main cause of the entire degeneration problem is
the specific part of the gradient for rare token em-
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Figure 1: Visualization of token embeddings of language model trained on WikiText-103. Red, green, and blue
points represent rare, medium, and frequent groups respecively. (a), (b), (c), (d) present a visualization of each

training step.

beddings. This gradient part pushes away rare token
embeddings from the feature vector of the non-rare
targets in the current training sample. Based on
the analysis, we propose a new method, adaptive
gradient gating (AGG). With a dynamic grouping
of rare tokens at each training step, AGG solves
the entire degeneration problem by gating a spe-
cific part of the gradient that is solely about rare
tokens. Because AGG is optimized to target the
main cause of the degeneration problem, rare token
embeddings, it can prevent the over regularization
problem about frequent token embeddings which
occurs in other methods addressing the degenera-
tion problem. The proposed method is evaluated
in three tasks: language modeling, word similarity,
and machine translation. The AGG outperforms the
baseline and other existing methods in all tasks. In
addition, it shows compatibility with other method
that addresses the neural text degeneration problem.
Via qualitative studies, we identify a correlation be-
tween our method and the frequency bias problem
of learned embeddings (Gong et al., 2018; Ott et al.,
2018).

2 Background

2.1 Text Generation of Neural Language
Models

Neural language generative models process text
generation tasks as conditional language modeling,
in which the model is typically trained by minimiz-
ing the negative log likelihood of the training data.
With a vocabulary of tokens V' = {v1, ..., ux } and
embedding vectors {wy, ..., Wy}, where w; cor-
responds to token v;, at every training step, the
model obtains a mini-batch input and target text
corpus pair (X, y), where z;, y; € V,andy € V7,
The conditional probability for the target token y,
Py(yi|hy), where h; is a context feature vector of
the t-th position of the generated text conditioned

30

by (X, y<¢), and # denotes model parameters, which
is defined as follows.

exp (htw?(yt))

Zfi1 exp (hthT),

where w is the output token embedding which roles
the weight of the output softmax layer, and I (y;)
represents the index of token y;. The negative log
likelihood loss for an input and target pair (X, y),
L is expressed as follows.

Pop(yi/hy) = (1)

T

Lnpr =~ Y log Po(ylhy).
=1

2

2.2 Embedding Problems in Neural Language
Models

Recent studies on the geometric properties of con-
textual embedding space have observed that the dis-
tribution of embedding vectors is far from isotropic
and occupies a relatively narrow cone space(Mu
and Viswanath, 2018; Liu et al., 2019; Zhou et al.,
2019; Ethayarajh, 2019;). Gao et al. (2019) named
this phenomenon the representation degeneration
problem. This degeneration problem results in an
increase in the overall cosine similarity between
token embeddings, making it difficult for the model
to learn semantic relationships between tokens.
Demeter et al. (2020) demonstrated that the norm
information of the token embeddings is so domi-
nant that angle information about the feature vector
is ignored when calculating the logits in the out-
put layer. Owing to this structural weakness of the
embedding space, embeddings with small norms
are always assigned with a low probability, which
reduces the diversity of the text generated by the
model. Anisotropy of the embedding space is a still
problem for the pre-trained large language mod-
els, and language models with improved isotropic



PPL | I(W) 1
Methods Freq  Med Rare Total | Freq Med Rare Total
MLE 16.58 224.24 813.76  20.77 | 0.426 0.286 0.198 0.293
Freeze 16.48 23392 3017.53 20.78 | 0.840 0.651 0.831 0.739

Table 1: Perplexity and I(W) for each token groups. Lower is better for PPL and higher is better for 1(W).
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Figure 2: Plot of I(W) for rare and frequent groups and average cosine similarity between rare and frequent
embeddings when freezing the training of rare tokens until specific training steps.

embedding space performs well in downstream
tasks(BiS et al., 2021; Rajaee and Pilehvar, 2021).
Although the problem has been theoretically ana-
lyzed in several studies, existing methods are based
on the observed phenomena as a result of the prob-
lem. To mitigate the phenomena observed from
the problem, the post-processing of the embedding
vectors(Mu and Viswanath, 2018; BiS et al., 2021)
or regularization terms about the phenomena(Gao
et al., 2019; Wang et al., 2019; Wang et al., 2020;
Zhang et al., 2020) were introduced. These meth-
ods are applied to all token embeddings, so there
is the problem of over regularization for the em-
beddings whose semantic relationship is trained
well. Also, methodologies based on the training
dynamics of the token embeddings concerning the
degeneration problem remain subject to study.
Frequency bias in embedding space is another
problem. Ott et al. (2018) conducted a comprehen-
sive study on the under-estimation of rare tokens
in neural machine translation. Gong et al. (2018)
observed that embeddings in the language model
were biased towards frequency and proposed an ad-
versarial training scheme to address this problem.

3 Empirical Study: Token Embedding
Training Dynamics led by Rare Tokens

3.1 Initial Training Dynamics of Embeddings

To analyze the training procedure of token em-
beddings, we train a Transformer language model
at the WikiText-103 dataset from scratch. Whole

31

vocabulary tokens are divided into three groups:
frequent, medium, and rare groups. Based on the
appearance frequency in the training corpus, the
30%, 50%, and 20% tokens are assigned to the fre-
quent, medium, and rare group. We visualize the
initial training dynamics of these groups via the
projection of the embeddings into 2D, using sin-
gular value decomposition (SVD) projection. As
illustrated in Figure 1, rare groups degenerate first,
as they emerge from the entire embedding distribu-
tion. Subsequently, other groups also start to degen-
erate, following the degeneration of the rare group.
Based on this observation, we hypothesize that the
degeneration of rare token embeddings induces the
degeneration of non-rare token embeddings.

3.2 Rare Tokens Degenerate Non-Rare Tokens

Because Transformer (Vaswani et al., 2017) is rep-
resentative of the current language models, we
adopt the 6-layer Transformer decoder model ar-
chitecture for an empirical study on the training dy-
namics of embedding vectors. The model is trained
in language modeling task using WikiText-103
dataset (Merity et al., 2018). Experimental details
regarding the model and training hyperparameter
configurations can be found in the Appendix B. To
verify the hypothesis of the previous subsection, we
train a model while freezing the rare group token
embeddings in their initial states during training,
and compare it to the baseline model, where all em-
beddings are trained with negative log-likelihood
loss. In addition, we train the models of various set-



PPL | I(W) 1
Methods Freq  Med Rare  Total | Freq Med Rare Total
MLE 16.58 22424 813.76 20.77 | 0426 0.286 0.198 0.293
Freeze (b) & (c) || 17.41 247.89 66.41 21.79 | 0.323 0.693 0.551 0.536
Freeze (b) 16.99 240.72 65.76 21.26 | 0.495 0.561 0.678 0.748
Freeze (c) 16.61 220.07 64524 20.76 | 0.443 0.276 0.15 0.317

Table 2: Perplexity and (W) for each token group at gradient partial freezing experiment.

tings relative to freezing steps and examine whether
the degeneration of rare token embeddings depends
on when training of rare embeddings begins.

The performance of the models is evaluated in
two ways; the likelihood and isotropy of token
embeddings. Perplexity (Bengio et al., 2000) is
adopted to evaluate the performance of the likeli-
hood of the model. To measure the isotropy of the
token embedding distribution, we adopt the parti-
tion function Z(a) = Zf\i L exp (w;al’) defined in
Arora et al. (2016), where w; denotes the embed-
ding vector of token v;, and a represents a unit vec-
tor. Lemma 2.1. in Arora et al. (2016) demonstrate
that if the embedding vectors are isotropic, Z(a) is
approximately constant. Based on this property, we
measure the isotropy of an embedding matrix W
using 1(W), which is defined as follows.
I mingex Z(a)

W) =

 maxaex Z(a)’

3)

where I(W) € [0,1] and X represents the set of
eigenvectors of wi'w (Mu and Viswanath, 2018;
Wang et al., 2020; BiS et al., 2021). Furthermore,
we measure the relatedness between the rare and
frequent group token embeddings to verify that the
degeneration of the frequent group follows the de-
generation of the rare group. We calculate the aver-
age cosine similarity between the rare and frequent
group embeddings to measure the relatedness.
Table 1 shows the comparison of the baseline
model and the model with frozen rare tokens. We
denote the baseline as "MLE" and the freezing
method as "Freeze". Surprisingly, the PPL of fre-
quent group tokens and overall (W) improved by
simply not training the rare token embeddings. Fig-
ure 2 illustrates the change in 1 (W) for the frequent
and rare token embeddings, including the similar-
ity between frequent and rare token embeddings at
various freezing step settings. Whenever the rare
token embeddings start to be trained, their (W)
decreases steeply, followed by decreasing (W) of
frequent embeddings and increasing similarities
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between the frequent and rare embeddings. From
the analysis in this subsection, we demonstrate that
the entire degeneration problem can be solved by
solely handling just rare embeddings during the
entire training procedure.

3.3 Finding the Primary Cause of the
Degeneration Problem: From the
Gradient

With T context feature vectors h; (i € [1,T]) from
the training sample, the negative log-likelihood loss
gradient for the rare token embedding w;. is calcu-
lated as follows.

V. Inee = Y (pri — Dh

Yi=Vr
(a)
“)
+ Z pr|jhj+ Z pr|khk7
yJ¢VT ykev'r

(b) (c)

where y; denotes the target token for h;, V. is the
rare token vocabulary group, and p,.|; represents the
conditional probability of token v, given h;, which
is calculated as [softmax(h;W')],.. We divide the
gradient for w,. to 3 parts in Eq. 4. Part (a) pulls
w,- close to the feature vectors whose target tokens
are v,. Part (b) pushes away w, from the feature
vectors whose target tokens are not rare. Part (c)
pushes away w,. from the feature vectors whose tar-
get tokens are rare. As an extension of the analysis
in the previous subsection, we freeze these parts of
the gradient with various settings during training
to identify the key cause of the degeneration prob-
lem. In other words, depending on the settings, the
specific gradient parts that will not be used for em-
bedding training is detached from the computation
graph during training stage. This can be easily im-
plemented by detach () function of Pytorch
(Paszke et al., 2019). All model and training con-
figurations are the same as in the previous sections,
except those to be frozen.



Table 2 presents the results of the experiments in
this subsection. We freeze the parts of the gradient
for the rare tokens with three settings. Because part
(a) is a key component required to train the token
embedding to be aligned to the target, all settings
activate part (a). We notice that when part (b) is
activated (solely freezing part (c)), I (W) decreases
and PPL for rare tokens increases almost 10 times
compared to when part (b) is frozen. Because ac-
tivating part (c) is not seen to be negative for PPL
and I(W), we conclude that part (b) of Eq. 4 is the
bedrock cause for the degeneration problem. From
the analysis in this section, we demonstrate that the
degeneration problem could be solved to a large
extent by mainly addressing the part of the gradient
for rare embeddings that pushes away rare token
embeddings from non-rare feature vectors.

4 Method

4.1 Dynamic Rare Token Grouping

To handle the specific part of the gradient for the
rare token embeddings studied in the previous sec-
tion, we need to properly group the rare tokens. A
naive approach can be used to group rare tokens
based on the appearance frequency of the training
corpus, as described in the previous section. How-
ever, this static grouping method is suboptimal be-
cause the model is typically trained via mini-batch
training. The group of rare tokens that appeared
less frequently in recent batch samples is variable
in the mini-batch training. Therefore, it is necessary
to dynamically group rare tokens based on token
appearances in recent batch samples.

To consider the token appearances in recent
batch samples, we introduce the token counter
memory that remembers the number of the appear-
ances of each token during the previous K training
steps. For K memories, [my, ..., mg], m; € RY
represents the number of appearances of each token
of N-size vocabulary at the ¢-th previous training
step. Memories are set as zero vectors at the initial
stage. At each training step, the token appearance,
a € RY, is calculated as the sum of all K mem-
ories: a = Zfi ; m;. Based on a, we determine
whether token v; is in the rare token group V,. as
follows. '

—“<a=uv eV,
K 5)
?ﬁ >a=uv ¢V,
where a; is the ¢-th component of a, and « is a
hyper-parameter in our method that controls the
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proportion of rare tokens in the entire vocabulary.
In this study, we set K to the number of iteration
steps during one epoch of training stage.

4.2 Adaptive Gradient Gating for Rare
Tokens

After dynamically grouping the rare tokens at each
training step, we need to handle a specific part of
the gradient for the rare token embeddings to solve
the degeneration problem of all embeddings. To
solely control the gradient for rare token embed-
dings, we introduce a gradient gating method for a
parameter x. We define x as a tensor whose value
is the same as x, but detached from the current
training graph. This implies that X is considered a
constant, hence, gradient about X does not exist. In
practice, X can be easily obtained from x using the
detach () function of Pytorch (Paszke et al.,
2019). With x, we can gate the gradient for x as
follows.

Xgated:gQX"i‘(l—g)@i
vxf(xgated) =g0 fo(X),

where Xg4¢cq 1S @ new parameter whose value is the
same as X, and g € [0,1] is a gate tensor. When
the Xgq4t¢q is fed to the function f(-) as input, the
gradient for x is gated by g.

As we described in section 3, part (b) of Eq. 4
should mainly be handled to solve the degenera-
tion problem. To address part (b) of Eq. 4, given
a context feature vector of the i-th position h;, we
introduce a gate vector g; € R as follows.

glk:{

where g1, denotes a k-th component of g;. g; con-
trols the degree to which rare token embeddings
move away from non-rare feature vectors whose tar-
gets differ from each rare token embedding. Also,
each component of g; is calculated based on the
rarity of each rare token, ay, so gradient gating for
part (b) of Eq. 4 is adaptive for each rare tokens.
Although part (c) of Eq. 4, which pushes embed-
dings away from the feature vectors whose targets
are other rare tokens, is not to be seen as the cause
of the degeneration problem in section 3, this part
also induces the degeneration problem for the cer-
tain situation when rare tokens degenerate other
rare tokens. To address this, we approximate the
multiple levels of rarity in the rare token group to
two levels in this paper: ‘less rare’ and ‘very rare’.

(6)

ak/K
1

ifvg € Vi, o # ui
else ,

(N



PPL | Uniq 1
Methods Freq  Med Rare  Total | Freq Med qRare Total 1wt
MLE 13.30 146.47 438.67 1551 | 9107 3945 91 13143 | 0.377
AGG 13.35 146.44 7539 1551 | 9105 4287 345 13737 | 0.813
Human — — — — 10844 7146 300 18920 —

Table 3: Experimental results for each token group in WikiText-103 language modeling task comparing MLE

baseline and AGG.
PPL | Uniq 1
Methods Freq Med Rare Total | Freq Med Rare Total (W)
UL 14.05 125.17 385.6 16.17 | 9527 4402 97 14026 | 0.396
UL + AGG || 14.17 12593 71.48 1625 | 9625 4884 453 14962 | 0.654
Human — — — — 10844 7146 300 18920 —

Table 4: Experimental results for each token group in WikiText-103 language modeling task comparing UL and

UL+AGG.

We define the two rarity levels based on the average
number of appearances of the entire rare tokens: if
the token appearance ay, is smaller than the mean
of a, where r € V,., corresponding token is a very
rare token. For the very rare token embeddings,
part (c) of the gradient about embeddings pushes
them away from the feature vectors whose targets
are less rare tokens that are relatively frequent com-
pared to them. This means that part (c) roles like
part (b) in the above situation, which becomes the
cause of the degeneration problem. Therefore, we
need to handle part (c) of Eq. 4 for very rare tokens.
To address part (c) of Eq. 4 for the very rare to-
ken embeddings, we introduce another gate vector
g, € RY as follows.

min(gt,1) if v, € Vo, v # i
9ok = "
1 else,

®)

where gy, is the k-th component of g, and a, is the
mean of a, where r € V.. g, controls the degree
to which very rare token embeddings move away
from less rare feature vectors whose targets differ
from each very rare token embedding. Also, each
component of g, is calculated based on the rarity of
each very rare token, ay, so gradient gating for part
(c) of Eq. 4 is adaptive for each very rare tokens.
To calculate the loss of h;, we calculate three

logits, z,z}, and z2, as follows.
0 hW'
! EowT v O
Z, :nghZ‘W + (1—g,)®hiW y

where W denotes an embedding matrix, and [ =

34

1, 2. Because our method solely handles the gradi-
ent for embeddings, we calculate z? for a gradient
about h;, which does not need to be gated. Finally,
the negative log-likelihood loss for ¢-th position L;
is computed as follows.

Li = —log bl
— 1y ¢ ‘/;”)logp}(yi)li
— L(i € Vi) log gy,

(10)

where p7i, ;= [softmax (z]")](,,) with m=0, 1,2
and 1(-) denotes the Indicator function. Derivation
of the gradient for rare token embeddings, V, L;,

is provided in Appendix A.

5 Experiments

We evaluate our method on various tasks including
language modeling, word similarity, and machine
translation. In the language modeling task, we fo-
cus on verifying the diversity of the generated texts.
We test the learning of the semantic relationships
between tokens on the word similarity task. Finally,
we evaluate the quality of generated texts on the
machine translation task. For all the experimental
results below, we adopt the state-of-the-art model
architecture as a baseline to properly demonstrate
the effectiveness of our method. Every detail on the
experiment, such as model hyper-parameters and
training configurations, regard the reproducibility
are provided in Appendix B.



Method Texts Uniq 1
Prefix No. 20 Squadron is a Royal Australian Air Force ( RAAF ) support squadron . Coming under
the control of No. 96 Wing , it is responsible for the management of the airfield at RAAF Base
Woomera , South Australia . The squadron
MLE is responsible for air defence , air defence , and air defence , as well as air defence , aerial 15
reconnaissance , and air defence . It is also responsible for air defence , air defence , and air
defence , as well as air defence , aerial reconnaissance , and air defence .
AGG was established in October 1943 at Townsville , Queensland , under the command of Group 48

Captain Paddy Heffernan . It was initially based at Townsville , Queensland , under the control
of No. 9 Operational Group , which controlled all air bases in New South Wales . It was renamed

No. 1 Mobile Fighter Sector in April 1944 .

Table 5: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 BPE tokens are given as
prefix and the models are to generate the continuation of 100 next BPE tokens.

5.1 Language Modeling

Setting We conduct experiments using WikiText-
103 dataset, which is a significantly large dataset
for language modeling task with approximately
103M words and 260K vocabulary size (Merity
et al., 2018). Texts in the dataset are preprocessed
based on the byte-pair encoding(Sennrich et al.,
2016). We adopt the GPT-2 medium architec-
ture(Radford et al., 2019), which comprises 24
Transformer decoder layers as a baseline model.
Because our method is about learning token em-
beddings, we train the models from scratch for
a maximum of 50k iterations and evaluate them
based on the perplexity of the validation set.
For hyper-parameter searching, we select o &
{0.01,0.02,0.03,0.04,0.05} for AGG method on
the language modeling task. The hyper-parameter
sensitivity for the AGG are given in Appendix D.

We use three quantitative metrics to evaluate our
method: Perplexity, Uniq, and I(W). Related to
the likelihood of generated texts, Perplexity quan-
tifies the prediction difficulty over the next token.
Uniq (Welleck et al., 2020) quantify the number of
unique next-token predictions, measuring the token
diversity. As described in section 3, (W) measures
the isotropy of the token embedding space.

Results We present our results for the testset in
Table 3. We denote the baseline method as ‘MLE’
and our method as ‘AGG’. We measure Perplexity
and Uniq for each token group defined in Section 3.
As presented in Table 3, AGG improves the over-
all metrics for the medium and rare groups while
maintaining performance for the frequent token
group. This shows that our method not only im-
proves the quality of rare token embeddings, but
also the quality of non-rare token embeddings. In
particular, for the rare group, the Perplexity score
decrease significantly and the number of unique
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predictions surpasses the human distribution. The
I(W) for all token embeddings increased over 2
times the baseline. Experimental results of /(W)
for the embeddings of each frequency groups can
be found in Appendix C. Table 5 shows examples
of generated texts from MLE baseline and AGG.
We also show additional examples of generated
texts in Appendix F.

Compatibility Neural text degeneration problem
is another problem in neural text generative mod-
els, where the model generates texts that are less
likely to match human word distributions. Existing
methods for this problem focus on the diversity of
the generated texts by adding an auxiliary loss to
the original negative log-likelihood loss (Welleck
et al., 2020). Although Welleck et al. (2020) and
AGG attempts to address the same problem about
diversity, AGG can be compatible with the existing
method in the text degeneration problem because
AGG does not alter the form of the loss function
in MLE training. Table 4 presents the results of
the experiments about fusion of unlikelihood tra